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Abstract

This thesis focuses on form factors in superconformal theories, in particular maximally

supersymmetric Yang-Mills (MSYM) and ABJM. Scattering amplitudes in these the-

ories have a wealth of special properties and significant amount of insight has been

developed for these along with the modern techniques to calculate them. In this thesis,

it is presented that form factors have very similar properties to scattering amplitudes

and the techniques for scattering amplitudes can be successfully applied to form factors.

After a review of the methods employed, the results for tree-level and multi-loop form

factors of protected operators are derived.

In four dimensions, it is shown that the tree-level form factors can be computed using

MHV diagrams BCFW relations by augmenting the set of vertices with elementary form

factors. Tree and loop-level MHV and non-MHV form factors of protected operators

in the stress-tensor multiplet of MSYM are computed as examples. A solution to

the BCFW recursion relations for form factors is derived in terms of a diagrammatic

representation. Supersymmetric multiplets of form factors of protected operators are

constructed.

In three dimensions, Sudakov form factor of a protected biscalar operator is computed

in ABJM theory. This form factor captures the IR divergences of the scattering ampli-

tudes. It is found that this form factor can be written in terms of a single, non-planar

Feynman integral which is maximally transcendental. Additionally, the sub-leading

colour corrections to the one-loop four-particle amplitude in ABJM is derived using

unitarity cuts. Finally a basis of two-loo pure master integrals for the Sudakov form

factor topology is constructed from a principle that relies on certain unitarity cuts.
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1 Introduction

Since it was first possible to access the subatomic world almost a century ago, scattering

experiments have been the primary tool to probe its physics. In today’s particle colliders

such as the Large Hadron Collider, the physics of partons is probed by colliding two

particles, such as protons, at high energies. Such processes are understood under the

framework of the Standard Model of Particle Physics which includes the gauge theories

Quantum Chromodynamics (QCD) and Elecroweak Theory for the two main kinds of

interactions that elementary particles go through in these processes. Our understanding

of the laws of nature governing the interactions of the elementary particles is tested by

confirming whether the Standard Model reproduces the data recorded by the detectors

surrounding an interaction point.

The main ingredients for predicting scattering cross sections, that is roughly speaking

the probability to produce some kind of particles due to the collision of two incoming

particles, are the scattering amplitudes, M . In a quantum field theory, the existence of

incoming and outgoing particles are represented by multi-particle states and scattering

amplitudes are matrix elements corresponding to the inner product of an initial multi-

particle state and a final one, which includes outgoing particles in the scattering process.

In other words, the quantities which are schematically represented as

M = 〈in|S|out〉 , (1.1)

where S is the operator that evolves in time a multi-particle state 〈in|, need to be

computed in order to make a prediction for a collider experiment.

Unfortunately, it is often impossible to perform exact computations in interacting quan-

tum field theories and the gauge theories are not an exception. However, at energy

scales where the coupling constants are small enough, it is possible to approximate the

matrix elements in a perturbation series in the coupling constants. Although they are

much easier than exact computations, apart from some very simple cases, perturbative

computations in QFT are full of challenges and their computation is one of the major

bottlenecks for making predictions for collider experiments.
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Chapter 1: Introduction 7

The textbook-standard method for computing scattering amplitudes starts with the

corresponding correlation function and then obtains the scattering amplitude using

LSZ reduction and projecting it to the external polarisation data. To compute the

correlation function perturbatively, one first draws all the Feynman diagrams relevant

to the process of interest, which are limited by the desired number of their interaction

vertices or the number of their loops. The edges and the vertices represent propagators

and couplings, which have spacetime and colour dependence. One also has to integrate

over the momenta that run in the loops, which can be a challenging task on its own.

The Feynman diagram method is highly straightforward and mechanical, in the sense

that many of its steps can be automatised on a computer. On the other hand, com-

putations can become extremely heavy as the number of Feynman diagrams one can

draw grows extremely rapidly. Even without any loops, for a n-particle process, on

has to compute O(n!) Feynman diagrams. To make such computations realistic, other

methods need to be followed.

The computational load is not the only, and perhaps also not the main reason for ex-

pecting the existence of better methods to compute scattering amplitudes. Surprisingly

simple results for scattering amplitudes have been known for decades, hinting that there

should be methods other than Feynman diagrams, which are not only computationally

more efficient, but also more transparent for understanding the results for the computed

scattering amplitudes.

At tree level, the n-gluon colour-ordered1 MHV amplitude in QCD, which is valid for

any four-dimensional Yang-Mills theory, has been conjectured in [1] to be

A = ign−2 〈i j〉4
〈12〉〈23〉 · · · 〈n1〉 , (1.2)

where two of the gluons, 1 and 2 in this case, are taken to have negative helicty while the

rest have positive helicity. Here the quantities 〈ab〉 are brackets of spinors associated

with the momenta pa and pb, as defined in Appendix A. g is the Yang-Mills coupling

constant. Apart from direct checks, this result can be proved using the factorisation

properties of scattering amplitudes. A proof using recursion relations is provided in

Chapter 2.

This result, and other scattering amplitudes that depend on the particle content of the

theory one is interested in, can be derived without any reference to a Lagrangian, path

integral and to Feynman diagrams. Starting with a simpler theory than QCD, namely

1Colour ordering is a procedure in which colour dependence is decoupled from kinematics depen-
dence.
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MSYM, several modern methods have been developed to construct these scattering

amplitudes at tree level [2, 3] and also at loop level [4, 5]. The common feature of these

methods is that they rely on the factorisation properties of the scattering amplitudes.

The idea of constructing scattering amplitudes from their factorisation properties is not

new, but part of a long-lasting programme dating back to the 1960s, see for example

[6].

Choosing the right variables to encode kinematical data is crucial for efficient and trans-

parent computation of scattering amplitudes. The use of the spinor-helicity formalism

provides considerable convenience even for Feynman diagram computations. Besides

using spinors, dual momenta, twistors and other variables to encode kinematical data

where appropriate, is crucial in obtaining simple and more transparent expressions for

scattering amplitudes [7]. Conceptually, finding the correct variables to encode the

kinematical data of scattering amplitudes is still an open problem [8, 9].

There is a very special quantum field theory, namely the maximally supersymmetric

Yang-Mills (MSYM) theory, which is arguably the most symmetric gauge theory in

four dimensions. As the name suggests, it has the maximal amount of supersymmetry

(SUSY) a theory can have without introducing fields with spins higher than 1. In

addition to supersymmetry, it is conformally invariant, meaning that the theory does

not evolve with the energy scale and the coupling constant is actually a constant fixed

at will.

The scattering amplitudes in MSYM theory are particularly simple and uncontami-

nated in a sense elaborated in the following Chapter, where explicit results for scat-

tering amplitudes in this theory are presented. It is relatively easier to understand

the mathematical properties of scattering amplitudes in the sterile environment of this

theory.

Although simpler, MSYM is also considerably different than the physical theories that

make up the Standard Model. The matter fields transform under the adjoint represen-

tation of the gauge group. A priori, there seems to be no reason to be interested in

scattering amplitudes of the theory because there would be no experiments to compare

the results with. However MSYM has been a perfect laboratory to develop technology

for computing scattering amplitudes and many of the modern techniques have been

developed in this theory. The automated computation of all QCD one-loop gauge the-

ory amplitudes using unitarity techniques by the BlackHat collaboration [10] is a good

example of how advances in MSYM have improved QCD computations.



Chapter 1: Introduction 9

1.1 MSYM

MSYM is the unique maximally supersymmetric Yang-Mills theory in four dimensions,

up to the rank of the special unitary gauge group and the strength of a single, dimen-

sionless coupling constant. The field content of this theory consists of an SU(Nc) gauge

field and matter fields which are four Majorana fermions and six real scalar fields. The

gauge fields and the matter fields are transformed into each other by supersymmetry

transformations, thus they belong to the same adjoint representation of the gauge group

SU(Nc), more precisely they take values in its algebra su(Nc)

Historically, MSYM originates from string theory. It has first emerged as the effective

model arising from string compactifications [11]. This model is the maximally super-

symmetrised extension of a Yang-Mills theory. It has the unique particle content of a

maximally supersymmetric theory in four dimensions.

Since its inception, it has been considered as a very special field theory, not only because

of its unique maximal supersymmetry, but also due to the fact that it has a vanishing

beta function in all orders in perturbation theory. This has been explicitly checked in

perturbation theory up to three loops [12–14] . Alternatively, it can be proved using

the proportionality between the beta function and the trace of the stress-energy tensor

and showing the vanishing of the latter using superconformal invariance [15, 16].

A commonly studied limit of MSYM is the planar limit where number of colour Nc

is very large but g2N is kept fixed. In fact, every gauge theory is known to have

simplifications in this limit, for example in general non-planar Feynman diagrams can

be discarded as they contribute with subleading dependence on Nc [17]. The weak

coupling regime is where g2N is taken to be small and perturbative quantities are

defined in an expansion in the ’t Hooft coupling constant

a =
g2Nc

16π2(4π)−γEǫ
, (1.3)

where γE is the Euler-Mascheroni constant and ǫ is the dimensional regularisation

parameter in D = 4− 2ǫ dimensional computations. a is defined such that every order

in the loop expansion comes with a nice coefficient of the form aL, without the usual

γE appearing in what multiplies it. In the entirety of this work, the planar MSYM and

(ABJM) will be assumed and for brevity, the dependence on a will dropped, which is

implied from the number of loops considered.

In the strong coupling limit, where a is large, MSYM has a very nice interpretation

in the framework of string theory. In the string theory picture, the MSYM theory
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with a gauge group U(Nc) is the gauge theory living on the 3+1 dimensional world

volume of a stack of Nc D3 branes. It has seen great interest after the late 90s when

it was understood, by the seminal work of Maldacena [18], that in the planar strong

coupling limit, the theory is dual to supergravity on an AdS5 × S5 manifold. As a

consequence, it has become the most prominent quantum field theory in which analytic

strong coupling results can be obtained.

Although it is not within the focus of this thesis, a remarkable property of MSYM, that

has to be mentioned, is integrability. Thanks to integrability, analytic results for many

quantities in this theory can be obtained exactly. Integrability has been exploited to

compute several quantities, such as correlation functions, anomalous dimensions, etc.,

see [19] and the references therein for a comprehensive review of integrability in MSYM.

Recently, recursion relations between scattering amplitudes have been exploited to

construct scattering amplitudes from the invariants of an infinite dimensional symmetry,

namely the Yangian symmetry. These invariants can be obtained from integrability

techniques such as the Bethe Ansatz [20–24].

As already a very interesting theory with the above-mentioned aspects, it is not sur-

prising that MSYM has a very special perturbation theory. Firstly, in parallel with

the vanishing beta function and conformal symmetry, scattering amplitudes and the

correlation functions of protected operators do not have UV divergences. Furthermore,

the simplicity of scattering amplitudes is not restricted to tree level, but also the loop

corrections have a remarkable simplicity, in contrast to their counterparts in QCD. This

is particularly the case for MHV amplitudes.

The unique properties of MSYM have allowed several breakthroughs in computations

of scattering amplitudes to predate similar computations in QCD by several years. At

the time of writing of this thesis, the state of the art computations include up to four-

loop MHV scattering amplitudes of six gluons [25] 2, while in QCD processes involving

three or four particles and two or three loops are considered a challenge. Symmetries

play a major role in this situation. For instance dual superconformal symmetry, which

is discussed more in detail in Section 1.1.3, restricts the integral basis considerably such

that generalised unitarity methods are applied more efficiently.

Inspired by the simple yet beautiful scattering amplitudes in MSYM, a natural ques-

tions arises: what are the limits of the convenience that this theory provides are. To

what extend can the lessons learned from advances in scattering amplitudes help us to

perform computations in this theory and understand it better? How relevant are the

2The computation of the MHV amplitudes in MSYM rely one the duality with expectation values
of Wilson loops, which are relatively easier to compute.
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modern computational tools for other “observables” in this theory? It turns out that

in many ways form factors in special theories like MSYM and ABJM are objects of a

very similar nature to scattering amplitudes and their computation can be simplified

drastically using similar methods.

1.1.1 MSYM Lagrangian and its symmetries

Although it has to be stressed that the knowledge of the Lagrangian is not necessary

for computing scattering amplitudes or form factors, for definiteness, the Lagrangian

of MSYM is presented in this Section. The Lagrangian of MSYM can be written as

L = Tr

[

− 1

2
F 2 +

1

2
DµφABD

µφ̄AB +
1

8
g2 [φAB, φCD]

[

φ̄AB, φ̄CD
]

+ 2iλ̄α̇,Aσ
α̇β
µ DµλAβ −

√
2gλαA

[

φAB, λ
B
α

]

+
√
2gλ̄α̇,A

[

φ̄AB, λ̄α̇B
]

]

(1.4)

Here F , λ, λ̄, φ denote the gauge-field strength, Weyl fermions, their conjugates and

scalar fields, respectively. φ̄ is defined as follows:

φ̄AB =
(

φAB
)∗

=
1

2
ǫABCDφ

CD . (1.5)

The index µ is a space-time index. A, I are R-symmetry indices for the SU(4) ∼= SO(6)

R-symmetry index that run from 1 to 4 and 1 to 6, respectively. The gauge coupling g

is a dimensionless free parameter.

All fields are in the adjoint representation of the algebra of the gauge group SU(Nc):

X = Xa (T a)i
j , X = Aµ, λα, λ

α̇, φAB (1.6)

Many of the symmetries of scattering amplitudes can be seen in the Lagrangian of

the theory while some cannot. In particular, conformal symmetry and the N = 4

supersymmetry which together give rise to superconformal symmetry are symmetries

of the Lagrangian (1.4). The full set of generators of the symmetries of the MSYM

Lagrangian is quoted in Appendix C.

Scattering amplitudes in MSYM, as any other quantity in this theory, transform appro-

priately under the actions of the above mentioned symmetries and satisfy the relevant

Ward identities. Some of these properties will be discussed below and further in detail

in Chapter 2 when explicit expressions for scattering amplitudes are provided.
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1.1.2 Scattering in MSYM

This Section aims to give a brief overview of the special properties of scattering ampli-

tudes in MSYM. Some of these properties immediately follow from the symmetries of

the Lagrangian of the theory, but some have a much more non-trivial origin.

The Lagrangian symmetries of MSYM have some immediate consequences on the scat-

tering amplitudes. For instance, the defining property of MSYM is the supersymmetry

generated by sixteen supercharges, the maximum allowed in four dimensions and it sets

stringent conditions on scattering amplitudes. SUSY is not broken perturbatively and

thus the scattering amplitudes obey non-anomalous, homogeneous SUSY Ward iden-

tities. As a result, the scattering amplitudes with less than 2 negative-helicity gluons

vanish:

QA
i A = 0 ⇒

{

A(1±, 2±, . . . , n±) = 0

A(1±, 2±, . . . , i∓, . . . , n±) = 0
. (1.7)

As mentioned in the previous Section, at tree level, QCD gluon amplitudes are kinemat-

ically indistinguishable from those of MSYM and the implications of Ward identities

also apply to tree-level QCD amplitudes [26]. Hence, while QCD amplitudes with zero

or one odd helicity gluons do not vanish at the loop level, they do not exist in MSYM.

In general, all scattering amplitudes of processes for which the R-charge is not con-

served, such as φ12φ12 → φ12φ34, vanish.

Moreover, SUSY relates the amplitudes of diverse particle species to each other allowing

the amplitudes to be packaged in supermultiplets as described in Section 2.1 of the

following Chapter.

The scattering amplitudes of MSYM are known to have conformal symmetry, at least

at tree level [27]. Since the theory is massless the loop amplitudes are IR divergent

and have to be regulated. With the scale introduced by the regulators, conformal

symmetry of amplitudes is broken. However, the IR-safe observables respect all of the

superconformal symmetries of the theory [28].

There are other special properties of scattering amplitudes in MSYM which do not

directly follow from the Lagrangian.

An extremely curious property of MSYM amplitudes at loop level is the so-called

“maximal transcendentality”. All known amplitudes in this theory are made out of

polylogarithm functions and transcendental numbers which have uniform degree of

transcendentality 2L at L loops. This is expected to be the case for all MHV amplitudes

however to break down for the 10-gluon amplitude with 5 positive and 5 negative-
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helicity gluons at two loops. This amplitude is given in terms of a elliptic integral -

a class of functions which appear in many QCD computations with massive internal

particles, see for example the two-loop self energies computed in [29].

There are diverse formulations of scattering amplitudes in MSYM which make certain

properties more transparent. In [27] it was shown that, when transformed into twistor

space, the L-loop, NkMHV scattering amplitudes in MSYM have support on holomor-

phic curves of degree k + L + 1. This has been one of the first geometric ways of

understanding the simplicity of MHV amplitudes.

Later further geometric pictures have emerged in which they are defined in the Grass-

mannian space [30], or as polyhedra in twistor space [31]. These Grassmannian integrals

can be written down as a solution of the all-loop recursion relations, using a prescrip-

tion from three equivalent pictures, namely on-shell diagrams with trivalent vertices,

permutations and polyhedra. They reproduce scattering amplitudes in MSYM to an

arbitrary number of loops, or the integrals thereof, once a correct contour is chosen for

the Grassmannian integral. In the Grassmannian formalism, the Yangian symmetry of

the theory is manifest [32].

Although the advances in QCD often lag behind those in MSYM due to the complication

of the computations, the two theories are not as unrelated as one might expect. Despite

all the differences between MSYM and QCD, there exist surprising results that link the

amplitudes in the two theories.

As the most trivial example, the tree amplitudes of gluons in two theories have the

same kinematical dependence as they share the same Yang-Mills action (apart from

the number of colours) and the matter fields play a role only at loop level. Moreover,

surprising results at loop level indicate interesting connections between MSYM and

QCD. In some known cases, such as form factors, anomalous dimensions and Wilson

coefficients [33], the maximally-transcendental parts of the QCD quantities, which are

the parts with transcendentality weight 2L for an L-loop quantity, coincide with the

corresponding quantity in MSYM. For example, a two-loop form factor of a BPS op-

erator with three gluons captures the maximally transcendental part of a H → ggg

scattering amplitude in QCD [34].

1.1.3 Hidden symmetries of scattering amplitudes in MSYM

Besides of the symmetries that can be derived from the Lagrangian of this theory, there

is another set of symmetry transformations that realise a copy of the superconformal
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algebra and leave the scattering amplitudes in MSYM invariant.

This symmetry is called the dual conformal symmetry and it first emerged in a strong

coupling computation of scattering amplitudes [35]. In the AdS/CFT picture, the com-

putation of scattering amplitudes is mapped to the problem of computing the expecta-

tion value of a light-like Wilson loop. This is achieved by a T-duality transformation,

which acts on the boundary spacetime where MSYM lives and leaves the AdS bulk

unchanged.

The AdS bulk spacetime has SO(2, 4) symmetry, corresponds to a conformal symmetry

of the boundary theory. It is very important that the conformal symmetry of the

dual Wilson loop is independent of the conformal symmetry of the original scattering

picture.

The duality was confirmed to hold for one-loop perturbative Wilson loops and MHV

scattering amplitudes with four and five gluons in [36] and for all MHV amplitudes

in [37]. At two loops, there are numerical confirmations of that the duality holds for

six-particle scattering amplitudes [38, 39] as well as analytic checks for four [40] and

five [41] particles. Since the Wilson loop expectation values have conformal symmetry,

the duality explicitly confirms the dual conformal symmetry for scattering amplitudes.

The dual symmetry of all-loop perturbative scattering amplitudes / Wilson loops relies

on the co-variance of the tree-level prefactor multiplying dual conformal invariant in-

tegral functions. It was conjectured in [42] and it was proven in [43] that all MHV and

non-MHV- tree scattering amplitudes transform co-variantly under the dual symmetry.

The dual transformations act on ’t Hooft region momenta xi which are defined such

that:

xi − xi+1 = pi (1.8)

and the fermionic analogues thereof such that:

θAiα − θAi+1α = λi αη
A
i . (1.9)

The momenta pi form a closed polygon with vertices xi. Such a construction is possible

if and only if
∑n

i=1 pi = 0, ie when all the momenta of the particles in the asymptotics

state sum to zero - which is not the case for form factors.

An obvious freedom in the definition of the region momenta xi is the choice of the
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origin. Overall shifts of the region momenta generated by

P =

n
∑

i=1

∂

∂xiαα̇
(1.10)

do not change the momentum. Similar to P , the other generators of the dual super-

conformal transformations acting on the dual space coordinates coordinates xi, λi and

θi are defined in analogy to the ordinary space as if these were ordinary spatial coordi-

nate. The explicit forms of the dual superconformal symmetry generators are quoted

in Appendix C.

The dual conformal symmetry has important consequences on the scattering amplitudes

that have this symmetry. As explained in Chapter 2, it is very useful to be able to

expand scattering amplitude in terms of an integrand basis. If the theory has a dual

conformal symmetry, integrals not invariant under dual conformal symmetry, which

amount to a big majority of integrands one can think of, should be discarded.

Dual conformal symmetry also clarifies the remarkable iterative structure observed [44]

in MSYM, namely The BDS Ansatz. Motivated by the resummation of the infrared

divergences, the BDS Ansatz predicts the all-loop scattering amplitude for an n < 6

particle process in an exponential form, which kinematically only depends on the 1-loop

scattering amplitude. This astonishing resummation can be explained by realising that

the BDS Ansatz the unique solution to the dual conformal Ward identities for n < 6

[41]. The prediction of [44] was based on the known two-loop results [45] and a three

loop computation in that paper. It has been explicitly checked up to four loops for

n = 4 [46–48] and up to two loops for n = 5 [49] .

When the number of particles n is equal to or greater than 6, it is possible to define

kinematical variables

uij :=
x2i,j+1x

2
i+1,j

x2ijx
2
i+1,j+1

(1.11)

which are invariant under dual conformal transformations, including inversions xi 7→
xi/x

2
i .

This makes it possible to define a function, that depends non-trivially on the kinematical

variables and also annihilated by the generator of dual conformal transformations,

because any function of the uij variables would be invariant under such transformations

and be a homogeneous solution of the dual conformal Ward identity [36].

As a consequence of the existence of dual conformal invariant cross ratios for n ≥ 6,

the amplitude can be modified by a homogeneous solution to the Ward identity. These
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functions are called remainder functions and they have been computed numerically

with a large number of legs [50] and analytically up to four loops for n = 6 [8, 25, 51].

The remainder functions for higher number of particles have not yet been computed.

The dual superconformal symmetry of scattering amplitudes together with the ordi-

nary superconformal symmetry generate a Yangian algebra [52]. The Yangian is an

infinite dimensional algebra and it is argued that it is linked to the integrability of the

scattering amplitudes of MSYM [53]. Supporting this, it is possible to find Yangian

invariants using integrability techniques and identify these as scattering amplitudes

[20–24]. However, finding Yangian invariants is not enough to construct scattering

amplitudes because the scattering amplitudes are made of non-trivial combinations of

Yangian invariants3. The construction of a scattering amplitude in terms of Yangian

invariants needs further input. For a Yangian invariant to be identified as a scattering

amplitude, it must have the required factorisation properties and this input comes from

recursion relations.

1.2 ABJM

From the string theory perspective, MSYM is the effective field theory of a stack of

D3 branes. The field theory lives on the 3+1 dimensional world volume of the brane

and the gauge fields correspond to the open strings attached to these branes. String

theory however, arises from compactifications of M theory, which only involves M2 and

M5 branes. From this point of view, it is a very natural question to ask what the field

theory living on the world volume of M2 branes is.

The answer turns out to be [55] a 2+1 dimensional theory with two Chern-Simons

gauge fields [56] of level k and additional matter fields such that the theory has N =

6 supersymmetry. The Chern-Simons gauge fields transform under two independent

U(N) rotations, making the gauge symmetry of the theory U(N)×U(N). The matter

fields consist of four fermions and four scalars. Each matter field comes in two types,

those transforming as (N, N̄) and those transforming as (N̄ ,N) representations to this

gauge group. These two types couple to each other such that they are the antiparticles

of each other.

The 4+4 scalar degrees of freedom can be interpreted as the transverse motion of an M2

brane, which is a 2+1 dimensional object embedded in a 10+1 dimensional spacetime.

This is largely analogous of the role played by the six scalars of the MSYM theory. The

3This is compatible with the observation made in [54], namely that conformal and dual conformal
symmetries do not constrain the amplitudes entirely.
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Field U(N) U(N ′)

Aµ N 1

Âµ 1 N′

φ, ψ N N̄′

φ̄, ψ̄ N̄ N′

Table 1-A: The field content of ABJ(M) theories. 1 stands for a singlet, N, N′ for
the fundamental and N̄, N̄′ for the anti-fundamental representation of the gauge group
they are written under. For ABJM theory, the ranks of the two gauge groups are equal
to each other: N = N ′.

fermions are the supersymmetric partners of these degrees of freedom.

Although in ABJM theory, as described above, the two independent gauge transforma-

tions are representations of the same special unitary group, it is possible to have these

groups with unequal ranks [57] i.e., U(N) × U(N ′) instead of U(N) × U(N). In this

theory, which is referred to as the ABJ theory, the matter fields are N ×N ′ non-square

matrices in colour space.

The field content of ABJM and ABJ theories can be summarised as shown in table 1-A

The string/M theory interpretation of ABJ theory is a stack of N ′−N M2 branes fixed

at the singularity of the manifold C/Zk manifold and N M2 branes move unrestrictedly,

where without loss of generality N ′ > N is assumed.

Although this thesis is mainly concerned with form factors in ABJM theory, the nota-

tion is used for the colour degrees of freedom of the fields is suitable to describe the

ABJ generalisation. For the fundamental (anti-fundamental) U(N) indices of a particle

labelled m the indices im (im) are used, while for the fundamental (anti-fundamental)

U(N) indices of such a particle are indicated by īm (̄im). The indices im run from 1 to

N , whereas īm run from 1 to N ′. To recover the ABJM case, N ′ is simply set to N .

In this thesis, the form factors in ABJM theory are considered in the large N = N ′

limit. The scattering amplitudes in the large N ABJM theory are organised in a power

series in the ratio λABJM := k/N , the analogous to the ’t Hooft coupling in this theory.

1.2.1 Comparison to MSYM

If one is unaware of the string/M theory origin of the two theories, at a first glance at

ABJM theory is quite unrelated to MSYM: it is defined in 2+1 dimension instead of

3+1, it has two Chern-Simons gauge fields instead of a Yang-Mills gauge field and the

matter fields transform under the bi-fundamental representation of the gauge group.
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One would also not necessarily expect similarities for the scattering amplitudes, either.

Spinor-helicity in three dimensions is essentially different to that in four dimensions, as

there is no helicity in three dimensions. There is a single type of spinors that correspond

to on-shell momenta and there are no MHV amplitudes.

Nevertheless, the 2n-point scattering amplitudes of ABJM theory behave similarly

to the scattering amplitudes of MSYM with equal number of negative and positive

helicities, as if the barred fields had one helicity and the unbarred the other. Thus the

four point scattering amplitudes, have the simplicity of an MHV amplitude, six point

amplitudes that of an NMHV amplitude and so on.

To some surprise, the two-loop, four-point scattering amplitude, which is purely of

transcendentality weight 2 turns out to have the exact same functional form as the one-

loop scattering amplitude in MSYM theory [58]. Moreover, the two-loop six-particle

scattering amplitude has the same BDS part [59]. This is actually not so surprising

as the ABJM amplitudes possess an anomalous dual conformal symmetry and the

anomalous Ward identities they satisfy are the same [59]. As a result the unique

special solution to the anomalous Ward identities are the same as in MSYM. However

the remainder functions are not constrained by the Ward identity and indeed they differ

in these theories.

1.3 Form factors

At a first glance, form factors are objects in the middle of scattering amplitudes and

correlation functions. Scattering amplitudes are the overlap of an in-state with an out

state. Correlation functions are the vacuum expectation values of operators inserted at

space-time points. Form factors on the other hand, are expectation values of operators

between multi-particle states.

More precisely, the objects of interest have the following form:

F̃ (pi;x) = 〈0|O(x)|m.p. state〉 , (1.12)

where |m.p. state〉 is a multi-particle state with, n particles and the (composite) opera-

tor O is chosen to be a protected (BPS) operator such that it does not get renormalised.

The ket state can involve any of the particles in the theory considered, for the form

factor to be non-zero, it must involve fields that saturate the elementary fields that

make up O.
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For the computation of the form factor F , it is more convenient to write its spacetime

dependence of F in momentum space. This is done as follows. One first Fourier

transforms x

F̃ (pi; q) =

∫

dx exp (iq · x) F̃ (x) (1.13)

and then translates the operator to the origin with the finite generators of translations

O(x) = exp
(

iP̂ · x
)

O(0) exp
(

−iP̂ · x
)

(1.14)

and acts with the translation generators on 〈0| and |m.p. state. One obtains:

F̃ (q) = δ

(

q −
n
∑

i=1

pi

)

F (pi), (1.15)

where

F (pi) = 〈0|O(0)|m.p. state〉 (1.16)

and pi, i, . . . n are the momenta of the particles in |m.p. state〉, such that

n
∑

i=1

pi = q . (1.17)

In quantum field theory, form factors appear in several interesting places. For example

they appear in the cross sections of hadrons scattering off hadrons or other particles.

One such process is deep inelastic scattering (DIS), where a lepton probes a hadron by

interacting with its constituents by a boson exchange and also producing some particles

in the final state. Another one is a Drell-Yann process, in which two hadrons collide

and several different particles are produced.

The hadrons are non-perturbative objects and it is very hard to treat them entirely

in a hadron - lepton collision process governed by a perturbative model of quarks,

gluons and leptons. Considering DIS for definiteness, one can instead assume that the

lepton and the hadron interact via a boson exchange and inside of the hadron, the

boson couples to a parton which is found in the hadron with a certain probability. The

amplitude corresponding to this process is the matrix element of a quark current, which

the exchanged boson couples to. The initial state in this matrix element is the QCD

vacuum as hadrons do not exist in perturbative QCD and the final state is the one with

several unobserved particles.

The Sudakov form factor, which is the matrix element of an operator with a two-

particle state, can be used to compute the universal infrared divergences of (colour-
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ordered) scattering amplitudes and the anomalous dimensions that control these soft

and collinear divergences. For example in the planar MSYM theory the infrared diver-

gences are particularly simple and they factorise as follows [44]:

A(pi) =
n
∏

i

[

F 1→2(si,i+1)
]
1
2 h(pi) , (1.18)

where F 1→2 is the Sudakov form factor and h is a finite hard function. The main

feature of the IR singularities of planar MSYM is that they only arise from kinematical

limits of neighbouring particles, as is apparent from the momentum dependence of the

IR-divergent parts of (1.18).

Furthermore, it is also an interesting question how much one can achieve in the compu-

tation of “off-shell” quantities using “on-shell” techniques. They certainly drastically

simplify the computation of scattering amplitudes, in which all the fields are on-shell.

One would be encouraged to attempt to utilise these methods for computing correlation

functions. Indeed, it has been possible to compute correlation functions of protected

operators in MSYM and results form factors have been central in this [60].

In [61], on-shell techniques have been successfully applied to some form factors in

MSYM at tree and one-loop level. Using recursion relations it was possible to show

that there is a subclass of form factors, which can be classifies a MHV and resemble the

MHV scattering amplitudes with their simplicity and resemblance to the Parke-Taylor

form of MHV scattering amplitudes (1.2). Moreover, using unitarity methods it has

been possible to derive known and unknown one-loop results using unitarity cuts.

Other old and new works on the form factors of this type include the two-loop Sudakov

form factor in MSYM [62], two-loop computations of the form factors of the operators

that appear in the stress-tensor multiplet in component formalism [63], and in super-

space [64]. The Sudakov form factor in MSYM has also been computed up to three

loops [65].

More general form factors have been considered in a recent paper [66]. These form

factors are constructed with longer BPS operators such as Tr(φk) have a recursive

structure which links form factors with different values of k.



2 On-shell methods

This Chapter contains the review of the techniques used in Chapters 3 and 4 to compute

form factors of protected operators in MSYM and ABJM. Example calculations are

provided at the end of the Chapter.

Some of the results quoted here are among the important milestones of amplitude com-

putations in MSYM and ABJM. Using recursion techniques, it is extremely easy to

derive certain tree-level scattering amplitudes with an arbitrary number of particles, a

task impossible using the traditional Feynman diagram approach. At loop level, (gen-

eralised) unitarity is a very powerful method. This is especially true at one loop, where

it is possible to expand any gauge theory amplitude into an non-over-complete integral

basis and to find the coefficients in a straightforward way. Thanks to this method,

certain gauge theory amplitudes, in particular the one-loop MHV superamplitude in

MSYM, can be easily computed also with an arbitrary number of particles.

Furthermore, these results are an important ingredient of the computations presented in

Chapters 3 and 4. The tree-level and loop-level factorisation diagrams of form factors

contain simpler form factors as welle as scattering amplitudes. Due to the colour

structure of form factors, the loop level form factor computations require not only the

leading Nc parts of scattering amplitudes but also the sub-leading ones, which is not

the case for scattering amplitudes.

The methods (and results) discussed in this Chapter are restricted by their practical

relevance for the form factor computations that are the subject of this thesis. For

further details on these methods one may consult to several detailed review articles

available on the subject: [26, 67–69].

This Chapter is organised such that the technical backround reviewed at the beginning

without many examples. Explicit computations of amplitudes using a number these

techniques are included at the end of the Chapter.

21
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2.1 Supersymmetry multiplets of scattering amplitudes

Especially in MSYM, SUSY has very constraining consequences and is responsible for

many simple results for scattering amplitudes in this theory. These properties can be

made manifest by not considering amplitudes that are related to each other through

SUSY as multiplets in a superspace.

To study supersymmetric multiplets of scattering amplitudes, it is necessary to have

an on-shell representation of the supersymmetry algebra, in which the on-shell multi-

particle states transform. Such a representation was constructed for MSYM in [70].

The on-shell superalgebra can be constructed starting from the off-shell algebra. The

maximal supersymmetry algebra in four dimensions is:

{QA
α , Q̄α̇,B} = pαα̇δ

A
B , (2.1)

where A, B are the R symmetry indices and α, α̇ are Weyl spinor indices for the

two kinds of spinor representations of four-dimensional Lorenz algebra. pαα̇ is the

momentum of a massless one-particle state dotted with the matrices σαα̇ defined in

Appendix A.

For massless single-particle states, the momentum can be decomposed into one left-

and one right-handed spinor, as described in Appendix A:

pα,α̇ = λαλ̃α̇ , (2.2)

such that p · p = 0. Moreover, the supermomentum generators can be projected onto

the spinors corresponding to the momentum of an on shell particle as follows:

QA
α = QAλα +Q⊥,A

α , Q̄α̇,B = Q̄Bλ̃α̇ + Q̄⊥
A,α̇ . (2.3)

The supersymmetry generators QA
α and Q̄α̇,B are indeed proportional to the spinors

λα and λ̃α̇ associated with the momentum pµ of the one-particle state, as can be seen

by dotting equation (2.1) with these spinors. Therefore the perpendicular components

Q⊥,A
α and Q̄⊥

A,α can be set to zero.

Substituting the decompositions into the supersymmetry algebra (2.1) one finds the

following anti-commutation relation for QA and Q̄B:

{QA, Q̄B} = δAB , (2.4)
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which can be represented using four anti-commuting variables ηA:

QA = ηA, Q̄A =
∂

∂ηA
. (2.5)

Supersymmetry relates different field configurations that can appear as an external

state of an amplitude. This is realised by organising the fields in a supermultiplet Φ in

the ηA superspace:

Φ = G+ + ηAψA +
1

2
ηAηBφ

AB +
1

3!
ǫABCDη

AηBηCψD +
1

4!
ǫABCDη

AηBηCηDG− (2.6)

on which the representations of the on-shell SUSY generators (2.5) act naturally.

For multi-particle states, the representation of the superalgebra is just a product of

the single-particle representations. In particular, multiplets of scattering amplitudes

are polynomials in the η variables corresponding to the particles involved, as explained

further below.

Types of particles in a scattering process are transformed into each other via super-

symmetry transformations of the external states and it is possible to package these

amplitudes in a multiplet of amplitudes, called the superamplitude. Superamplitudes

have an overall supermomentum-conserving delta function of the sum of the supermo-

menta carried by the particles involved in the process. An L-loop superamplitude in

MSYM is defined as

M(L)
n =

δ(8)
(
∑n

i=1 η
A
i λi,α

)

δ(4)(pαα̇)

〈12〉〈23〉 · · · 〈n1〉 P(L)
n , (2.7)

where P is a sum of monomials of Grassmann degree 4k. Each term in P(L)
n is equal to

the ratio of an NkMHV amplitude to an MHV, with the first term being equal to one.

The delta function δ(8)
(
∑n

i=1 η
A
i λi,α

)

involves the fermionic variables ηAi , thus the

superamplitude is a polynomial of a limited degree. The component amplitudes can

be extracted from it as the monomial with the correct powers of ηAi according to the

multiplet (2.6). For instance, the scattering amplitude of

1. A gluon with + helicity

2. A gluon with − helicity

3. A scalar φ12

4. A scalar φ34
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would be the coefficient of (η1)
0(η2)

4η13η
2
3η

3
4η

4
4 in the superamplitude M4 where

(ηi)
4 =

1

4
ǫABCDη

A
i η

B
i η

C
i η

D
i . (2.8)

A superamplitude of the form (2.7) is annihilated by the supersymmetry generators.

The q symmetry is manifest by the holomorphic (chiral) fermionic delta function ap-

pearing in the numerator.

The Q̄ symmetry is similarly easy to see. When Q̄A,α̇ = λ̃α̇
∂

∂ηA
acts on the fermionic

delta function in (2.51), it converts the η’s to λ̃’s and the resulting expression is propor-

tional to
∑

λλ̃ which is equivalent to zero by the momentum conserving delta function.

In four dimensions, the on-shell superalgebra (2.4) can be realised using only one kind of

fermionic variable ηA. Therefore, the representation of on-shell N = 4 supersymmetry

is chiral. This is not the case in many other supersymmetric gauge theories with less

supersymmetry [71].

Also in ABJM theory, it is possible to package the on-shell fields of ABJM theory into

two chiral Nair [70] superfields which depend only on the chiral half of the superspace:

Φ(l, η) = φ4(l) + ηAψA(l) +
1

2
ǫABCη

AηBφC(l) +
1

3!
ǫABCη

AηBηCψ4(l) , (2.9)

Φ̄(l, η) = ψ̄4(l) + ηAφ̄A(l) +
1

2
ǫABCη

AηBψ̄C(l) +
1

3!
ǫABCη

AηBηC φ̄4(l) , (2.10)

where the indices A,B, . . . take values between 1 and 3. This breaks the manifest

SU(4) R symmetry to SU(3). However the theory still retains the full SU(4) symmetry

and the breaking is only a notational issue.

The superfields Φ behave like even variables while Φ̄ behave like odd ones. The two

superfields carry the antiparticles of each other and unsurprisingly the superamplitude

in ABJM theory is always a function of pairs of superfields Φ̄2i−1Φ2i, i ∈ N+:

M = M(Φ̄1,Φ2, . . . , Φ̄n−1Φn) . (2.11)

Whether one starts writing a colour-ordered superamplitude with a barred field or an

unbarred one is a matter of convention.
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2.2 Colour ordering

In gauge theories, like Yang-Mills theories and Chern-Simons theories, where fields

transform under an internal symmetry group (such as the colour symmetry) as well as

the symmetry group the scattering amplitudes depend on the colour configuration of

the particles involved in the scattering as well as their kinematics.

An immediate simplification in the computation of scattering amplitudes is achieved

when the dependence on colour is decoupled from the dependence on kinematics. This

is done by expanding the scattering amplitude in all the possible colour structures. The

coefficients of these colour structures are called “colour-ordered amplitudes”. They can

be computed using either colour-ordered Feynman rules or using their factorisation

properties under unitarity cuts and recursion techniques. In this thesis, and commonly

in the literature, the colour-ordered amplitudes as referred to as just amplitudes.

2.2.1 Colour structures in MSYM

In MSYM theory in four dimensions, which is an SU(Nc) gauge theory, the fields are

in the adjoint representation of the gauge group. Therefore the scattering amplitude

has one free adjoint index ai = 1, . . . , N2
c − 1 for each particle. A suitable basis for

expanding these is the traces of generators of the SU(Nc) symmetry group in the adjoint

representation.

At tree level, the scattering amplitude, or a superamplitude, can be expanded into

single-trace factors, i.e.,

M({pi, hi, ai}) =
∑

σ

Tr(T aσ(1) · · ·T aσ(2))A(σ(1), σ(2), . . . , σ(n)) (2.12)

where σ belongs to the set of permutations of the n particles. It turns out that this

is a more than adequate, even much redundant decomposition due to the identities

amongst the amplitudes.

The first constraint comes from the U(1) decoupling identity, also known as the dual

Ward identity, which follows from the statement that the amplitude must vanish when-

ever an external particle is a neutral photon, instead of a charged gluon. This identity

relates [72] the amplitudes in the following way:

∑

σ

A(1, σ(2), σ(3), . . . , σ(n)) = 0, (2.13)
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hence they reduce the number of independent amplitudes to (n − 1)! in an n-particle

scattering process.

The U(1) decoupling identity discussed above follows from considering the U(1) ×
SU(Nc) subgroup of an U(Nc) gauge group. More general identities, called Kleiss-Kuijf

identities, can be obtained by considering a more general case, namely an SU(N1) ×
SU(N2) embedded in a U(N1 + N2). They reduce the number of independent ampli-

tudes to (n − 2)! . In fact, an alternative colour decomposition [73] for gauge theory

amplitudes, which uses the structure constants of the colour algebra instead of the

fundamental generators unlike in (2.12), has already (n− 2)! independent terms:

A({pi, hi, ai}) =
∑

σ

Tr(T aσ(1) · · ·T aσ(2))A(1, σ(2), σ(3), . . . , σ(n− 1), n) , (2.14)

where σ are the permutations of the legs 2, . . . , n − 1. It can be shown that (2.14)

results from imposing the Kleiss-Kuijf relations to the decomposition (2.12) [74].

Jacobi identities for kinematical factors were observed in [75] and they are known as

BCJ relations. At loop level, these relations imply structures between the the numer-

ators of the integrand level which are analogous to the usual Jacobi identities satisfied

by the colour factors. The BCJ relations reduce the number of independent amplitudes

to (n− 3)!.

At loop level, the colour decomposition is slightly more involved. In general, planar

amplitudes come with leading contributions in the number of colours whereas non-

planar amplitudes come with subleading contributions. Two ways of organising these

colour structures will be presented below. One can either use the adjoint generators

used in the tree-level colour decomposition and the sub-leading-colour contributions

would be manifestly separated with explicit powers of 1
Nc

multiplying the subleading

colour structures. Alternatively, one could use the fundamental generators, where the

leading and sub-leading terms are treated on an equal footing. The latter is particularly

useful for deriving form factor integrands from generalised unitarity cuts.

Using the fundamental generators, the the one-loop amplitude is decomposed as follows

[76]:

Mn = Nc

∑

σ∈Sn/Zn

Tr(T aσ(1) . . . T aσn )A(1)
n (σ(1), . . . σ(n))

+

⌊n/2⌊+1]
∑

c=2

∑

σ∈Sn/Sn;c

Tr(T aσ(1) · · ·T aσ(c−1))Tr(T aσ(c) · · ·T aσ(n))A(1)
n,c(σ(1), . . . σ(n))

(2.15)
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where Sn,c is the subset of the permutations of {1, 2, . . . , n} which leave the double-

trace structure Tr(T aσ(1) · · ·T aσ(c−1)Tr(T aσ(c) · · ·T aσ(n) · · ·T aσn ) invariant. Indeed, in

this formalism, the non-planar amplitudes A(1)
n,c(σ(1), . . . σ(n)) are explicitly lacking a

factor of Nc compared to the planar amplitudes A(1)
n (σ(1), . . . σ(n)).

In the expansion of [74], which uses adjoint generators, it is possible to package (2.15)

into a single sum. In this formalism, the one-loop full amplitude can be written as

M(1, . . . , n) =
∑

σ∈Sn/(Zn×R)

Tr(F aσ1 · · ·F aσ1 )A(σ(1), σ(2), . . . , σ(n)), (2.16)

where F a
bc are the adjoint generators related to the structure constants as F a

bc = ifabc.

In this colour decomposition, one sums over the permutations modulo the reflections

R which reverse the ordering of the momenta. Thus the number of independent terms

is (n− 1)!/2.

2.2.2 Colour structures in ABJM

Colour-ordered amplitudes in ABJM can be defined in a similar fashion. The difference

in ABJM is that the fields carry bifundamental indices. The colour factors can be

constructed using Kronecker deltas such as δ
i′
k

ik
δ
ī′
k

īk
where ik and ī′

k are indices that

belong to a barred particle, whereas ik and ī′
k
are indices that belong to an unbarred

one.

Thus, the colour decomposition of an n-particle tree superamplitude would be as follows

[77, 78]

M(0)(1̄, 2, . . . , n) =
∑

Pn

sgn(σ)A(0)
(

σ(1̄), σ(2), σ(3̄), . . . , σ(n)
) [

σ(1̄), σ(2), σ(3̄), . . . , σ(n)
]

,

(2.17)

where Pn := (Sn/2×Sn/2)/Cn/2 are permutations of n sites that only mix even (bosonic)

and odd (fermionic) particles among themselves, modulo cyclic permutations by two

sites. The function sgn(σ) is equal to −1 if σ involves an odd permutation of the

odd (fermionic) sites, and +1 otherwise. A(0)(1̄, 2, 3̄ . . . , n) are colour-ordered tree

superamplitudes. It is also useful define the following shorthand notation for the strings

of Kronecker deltas:
[

1̄, 2, 3̄, . . . , n
]

:= δī1
ī2
δi2i3δ

ī3
ī4
· · · δini1 . (2.18)

At loop level, certain colour structures are of leading order in the large-Nc expan-

sion. These are the ones that are made of a single string of Kronecker deltas such as
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[

σ(1̄), σ(2), σ(3̄), . . . , σ(n)
]

, and not products of such colour singlet such as
[

σ(1̄), σ(2), σ(3̄), . . . , σ(k)
][

σ( ¯k + 1), σ(k + 2), σ( ¯k + 3), . . . , σ(n)
]

.

The symmetry properties of the full superamplitude imply relations among the colour

ordered amplitudes. Because of the barred superfields are Grassmann odd and the

unbarred ones are Grassmann even, some care is necessary in deriving these properties.

The spin-statistics theorem requires that the full amplitude M should be odd under the

exchange of fermionic superfields. With the conventions of the colour decomposition

(2.17), this implies that the L-loop colour-ordered amplitudes should satisfy [79]:

A(L)(1̄, 2, 3̄, 4, . . . , n) = (−1)
n
2
−LAL(3̄, 4, . . . , 1̄, 2) (2.19a)

and

A(L)(1̄, 2, 3̄, 4, . . . , n) = (−1)
n(n−2)

8
+LA(1̄, n, n− 1, n− 2, . . . , 3̄, 2) . (2.19b)

2.3 Tree-level recursion

The complication of computing scattering amplitudes at tree level is mainly due to the

increasing number of Feynman diagrams with the number of external particles. Con-

sider for example the scattering of six gluons. There are about 6! Feynman diagrams

that contribute to this amplitude, where the exact number depends on the gauge choice.

Interestingly, all these diagrams sum up to zero for cases with one or less particles of

opposite helicity compared to the others, to one simple term for two such particles and

finally to three very simple terms when half of the particles are of one helicity and the

other half are of the other.

To provide insight into this phenomenon and compute tree-level amplitudes with just

complication expected from their helicity structure, analytic continuation of scattering

amplitudes to complex momenta is very useful, as it is the case for loop amplitudes.

Under a certain complex-valued shift of the momenta, which is demonstrated below

and known as the “BCFW-shift”, the tree level amplitudes have poles in complex

kinematics where an internal propagator becomes on-shell. Around this pole, the tree

amplitude factorises to two lower-point scattering amplitudes. The recursion relations

not only make the computation simpler but also helps one to understand the simplicity

of tree-level results.

To realise what kind of singularities the tree-level amplitudes might have, it is useful
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to think about Feynman diagrams. The amplitudes are constructed from external and

internal propagators, vertex terms and polarisation vectors which are in the appropriate

representation of the Lorentz group that are attached to the external propagators. At

tree level, internal propagators are of the form

i

P 2
i,j + iǫ

, Pi,j = pi + pi+1 + · · ·+ pj (2.20)

and they are the only source for any poles that a diagram might have. These poles are

called multi-particle singularities corresponding to the configuration in which sum of

the momenta of particles from i to j, pi + · · ·+ pj is light-like.

The multiparticle singularities can be used to derive recursion relations between tree

level scattering amplitudes [80]. Consider the behaviour of a tree level amplitude near

a multi-particle singularity. One can check that the residue at this pole becomes the

sum of the products of two amplitudes with the propagator replaced by all possible

external diagrams. Schematically this can be expressed as

P 2
ijAn →

∑

h

Ah
LA

−h
R as P 2

i,j → 0 (2.21)

where the amplitude AL (AR) is the amplitude of particles to the left (right) of the

propagator and one extra particle carrying the momentum Pi,j and helicity h. This

behaviour is known as factorisation.

2.3.1 Recursion in four dimensions

In [2] it was realised that the factorisation properties lead to recursion relations between

tree-level amplitudes. The conjecture of [2] was proved in [80] using a particular, com-

plex parameter to parametrise the multi-particle limit P 2
i,j → 0 together with Cauchy’s

theorem. These relations are known as the BCFW relations due to the authors of [80].

The derivation of the BCFW relations is as follows. Consider a complex “shift” of the

momenta of two particles1:

p̂i(z) = pi − zη, p̂j(z) = pj + zη (2.22)

by some momentum η. Note that this shift of momenta still respects the momentum

1Although in principle one can shift the spinors of any two particles, for the example presented the
most convenient choice turns out to be that of adjacent ones. However, this choice has an effect on the
large-z behaviour.



Chapter 2: On-shell methods 30

conservation. If η is chosen as:

η = λiλ̃j (2.23)

then the light-likeness of the spinors is preserved as well. Such a shift often denoted as

the [ij〉 shift because it essentially corresponds to shifting the spinors of two particles:

λ̃î = λ̃i − zλ̃j , λĵ = λj + zλj . (2.24)

The shift (2.24) can also be written in the matrix form

(

λ̂i

λ̂j

)

=

(

1 z

0 1

)(

λi

λj

)

,

(

ˆ̃
λi
ˆ̃
λj

)

=

(

1 0

−z 1

)(

λ̃i

λ̃j

)

, (2.25)

which sets the notation for the three-dimensional shifts discussed in Section 2.3.2 of

this Chapter. The momentum conservation implies that the shift matries in (2.25) are

unitary.

For simplicity we will employ an adjacent [n1〉 shift or a 〈n1], wherever possible. Ad-

jacent shifts commonly reduce the number of recursion diagrams. This choice between

the two shifts is important for the large-z behaviour of the sifted amplitude.

Focusing on the [n1〉 shift it can be noted that this modifies the propagator momenta

which include either pn or p1. The propagators that include only p1 or only pn become

functions of z, too:
i

P 2
1,j

→ i

P̂ 2
1,j(z)

=
i

P 2
1,j − z〈n|P1,j |1]

. (2.26)

With the shifted momenta the amplitude can be considered as a meromorphic function

Â(z) with simple poles only. Its poles are at

z1j =
P 2
1,j

〈n|P1,j |1]
. (2.27)

At this pole the propagator momentum Pij(z) becomes light-like.

Now consider the integral of A(z)/z along a closed contour at infinity where for the

moment we assume that the amplitude vanishes. Therefore, the integral along this

contour is zero. This means that the value at the origin A(0) and the contributions

from other poles have to cancel each other and an expression for A(0) in terms of the

factorised amplitudes at the poles is obtained:

0 =
1

2πi

∮

C∞

dz
A(z)

z
= A(0) +

∑

z1j 6=0

Res

[

A(z)

z

]

z1j

(2.28)
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P
AL AR

n̂ 1̂ 2

j + 1j + 2 j

Figure 2.1: Diagrammatic representation of equation (2.30)

where z1j are the poles of the shifted amplitude A(z). The residues can be computed

using the factorisation property of the amplitude that was sketched in equation (2.21).

Res(A(z), z1j) = lim
z→z1j

(z − z1j)A(z)

= −
∑

particles

AL(P, j + 1, . . . , n)
∣

∣

z1j
i
z1j
P 2
1j

AR(1, . . . , j, P )
∣

∣

z1j
,

(2.29)

where the sum represents all possible particles of both helicities that could be running

between AL and AR. Plugging the residues in equation (2.28) it is possible to express

the physical amplitude A(0) in terms of some other lower point amplitudes evaluated

at the poles:

A(0) =
∑

z1j

∑

particles

AL(P, j + 1, . . . , n)
∣

∣

z1j
i
1

P 2
1j

AR(1, . . . , j, P )
∣

∣

z1j
(2.30)

This equality can be represented by diagrams depicted in Figure 2.1.

The derivation assumes that the amplitude vanishes as z → ∞. Polarisation vectors

have z dependence as well as the propagators (see Appendix A). It is possible to make

a similar construction whenever a suitable choice of shifted spinors assures vanishing

at infinity. For gluon amplitudes, shifts of the type [−+〉, [++〉 and [−−〉 are good in

this sense while [+−〉 is not.

The above construction is valid for any gauge theory, given that the large-z behaviour

is good. In theories with supersymmetry, it is possible to write the supersymmetric

versions of equation (2.30), which relate superamplitudes to each other. In the case

of MSYM, the supersymmetrisation of the BCFW recursion is particularly simple and

takes the form [81]

A =
∑

P

∫

d4ηPAL(zP )
i

P 2
AR(zP ) (2.31)

where
∫

d4ηP is over the four supersymmetric coordinates that appear in the internal

legs.
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2.3.2 Recursion in three dimensions

There is no obstacle for applying the BCFW recursion to amplitudes in ABJM theory.

The amplitudes exhibit the required factorisation properties and they can be recon-

structed from their singularities. However the shifts in three dimensions are necessarily

non-linear as explained below and this makes the application of recursion relations

slightly more laboursome.

When a shift like (2.24) is applied to the three dimensional spinors, a solution to the

on-shell condition Pij(z) = 0 cannot be found assuming that the transformation matrix

is linear in z. The solution to this technical obstacle is circumvented by giving up the

linearity assumption [82] and shifting the spinor that corresponds to the momenta pi

and pj as
(

λ̂i

λ̂j

)

=

(

z+z−1

2 − z−z−1

2i
z−z−1

2i
z+z−1

2

)(

λi

λj

)

. (2.32)

The ABJM amplitude A(z) shifted through the map (2.32) reduces to the original

amplitude at z = 1, unlike in four dimensions, where the amplitude is recovered at

z = 0. Therefore, for ABJM amplitudes can be computed by summing all he residues

of A/(z − 1) apart from the one at z = 1.

The three-dimensional analogue of (2.31) was derived in [82] as:

A(0)(z = 1) = − 1

2πi

∑

f

∫

d3η H(z1,f , z2,f )A(0)
L (z1,f , η)

1

p2f
A(0)

R (z1,f , η) + z1,f → z2,f ,

(2.33)

where the sum is over the factorisation channels in which pf = p1+ · · ·+pl with l even.
The function H(z1, z2), which defined as

H(z1, z2) =
z1(z

2
2 − 1)

z21 − z22
, (2.34)

is present because the propagators are not linear in the deformation parameter z, and

therefore the the poles are not simple poles. The sum over f represents the sum over

all factorisation channels. (2.33). A factorisation channel f is shown in Figure 2.2, in

which the momenta K1 and K2 are defined as:

K1 = pi+1 + pi+2 + · · ·+ pn K2 = p3 + p4 + · · ·+ pi (2.35)
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n

i

Figure 2.2: A factorisation channel of a tree-level amplitude in ABJM

The recursion relation was cast into a refined form in [83]:

A(0)(z = 1) =
∑

f

1
√

K2
1K

2
2

∫

d4ηf

z1 − z−1
1

A(0)
L (z1,f , η)A(0)

R (z1,f , η) + z1,f → z2,f . (2.36)

Not that in (2.36), the unpleasant factors of H(z1, z2) and the propagator are replaced

by the factor 1/(z1 − z−1
1 ).

As an example, the derivation of the six-particle amplitude in ABJM from the recursion

relation (2.36) is sketched in Section 2.5.3.

The ABJM scattering amplitudes also allow an all-loop generaslisation of the recursion

relation which has a Grassmannian interpretation like in MSYM. In the case for the

ABJM amplitudes, the Grassmannian is the positive orthogonal Grassmannian [84, 85].

2.4 Unitarity

Unitarity is not only a property that physical quantum field theories are mostly assumed

to have, but also the name of an approach to perform loop-level computations.

Much like the tree-level recursion relations, the unitarity-based techniques rely on the

factorisation properties of scattering amplitudes. To compute loop corrections to scat-

tering amplitudes, clearly one integrates the loop momenta over the whole domain,

which also includes on-shell values. In other words, there exist a hyperspace inside the

D×L-dimensional space of loop momenta which is defined by the condition that some

of the internal propagators carry light-like momentum. Such configurations of loop

momenta, where a scattering amplitude is divided into two or more pieces, bridged by

on-shell loop momenta are called “cuts”. In these isolated points in the integration

domain, the scattering amplitude, or its integrand, factorises into individual pieces.

The idea of (generalised) unitarity techniques is to revert this process and construct the

amplitude, or its integrand from, all possible factorisation channels. This can be made
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in an algorithmic way in which one writes down an Ansatz a sa linear combination of

some basis of integrals that contribute to a scattering amplitude and solves a system

of equations for the coefficients of these integrals. For simpler cases, it is possible to

write down all possible factorisation channels and manually identify the integrals that

would make up the amplitude.

2.4.1 Traditional Unitarity

Unitarity is a basic assumption of quantum theories. A state |ψ〉 evolves to another

state as

|ψ′〉 = S|ψ〉 (2.37)

and the statement is that S is a unitary operator. This follows from the expectation

that the |ψ′〉 is still an element of the same Hilbert space as the one that |ψ〉 belongs
to.

This can be shown by recalling that the inner product

Min→out = 〈out|S|in〉, (2.38)

i.e. the matrix elements of the operator S, is interpreted as the probability amplitude

of a state |in〉 to evolve in time and to be observed as |out〉. The probability is obtained

by squaring the modulus of the probability amplitude. If one should expect that the

sum of such probability over all possible |out〉 states is unity, then the condition

S†S = 1 (2.39)

is imposed on S. Unitarity of the S operator has useful consequences on the analytic

structure of scattering amplitudes which are discussed in Section 2.4.1. When the

ideas of unitarity techniques are applied to the integrand of a scattering amplitude by

considering more constrained kinematical configurations, where several intermediate

particles are treated as on-shell states, they go under the name generalised unitarity

and such techniques are briefly discussed in Section 2.4.2.

Historically, the use of unitarity cuts have started by studying the analytic struc-

ture of the scattering amplitude itself, and not its integrand. In a scattering pro-

cess, the momenta are real-valued and therefore so are the kinematical invariants

si,j,... = (pi + pj . . . )
2. However it is common that one gains substantial insight and

computational power when scattering amplitudes are analytically continued to complex

values of kinematical invariants. These are analytically continued to complex values
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and to study the analytic properties of the scattering amplitudes as a function of com-

plex kinematical invariants. Unitarity of the S matrix implies that near the branch

cuts, (the imaginary part of) the scattering amplitudes can be written as a product of

two other scattering amplitudes. This has useful consequences in perturbation theory.

The unitarity of the S matrix (2.39) implies

i
(

T † − T
)

= T †T (2.40)

on the T matrix, defined as S − 1. The T matrix is essentially the non-trivial part of

the S matrix. Then for non-trivial scattering amplitudes, defined using the T matrix,

the following relation can be written using the invariance of the matrix elements under

time inversion:

2 ImM =
∑

n

〈in|T †|n〉〈n|T |out〉 , (2.41)

where the sum over n denotes the sum over all states of the theory. The object 〈n|T |out〉
is the non-trivial scattering amplitude of a state |n〉 producing a state |n〉 whereas the
object 〈in|T †|n〉 is the complex conjugate of the same quantity but the out state is

replaced with |in〉. Using the CPT theorem, this can be related to the scattering of the

state |n̄〉 into |in〉 state with the anti-particles of |n〉 with reversed momenta.

For the scattering of four particles, this relation becomes schematically

=Im L R

.

. (2.42)

The ellipsis represent the many particles that may appear in the intermediate state.

The lines representing these intermediate particles are drawn in a way, such that they

connect the two amplitudes and remind the fact that the particles at the both ends of

the line are antiparticles of each other and carry the opposite momentum.

The relation (2.42) is not a perturbative statement, however it becomes particularly

useful in perturbation theory. When the amplitude in the LHS is wanted up to some

certain number of loops, the intermediate states can contain a limited number of par-

ticles, and furthermore the amplitudes in the RHS are of at least one-less loop order.

Once the imaginary part of the amplitude is computed, the full amplitude can be
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constructed through dispersion integrals. The assumption of an analytic S matrix, i.e.

the absence of singularities other than the branch cuts implied by unitarity allows these

integrals to be performed in practice. This procedure is one of the most basic examples

of “bootstrap procedures” in computing scattering amplitudes.

2.4.2 Generalised unitarity cuts of the integrand

A loop correction to a scattering amplitude is a sum of some Feynman integrals with a

fixed number of loops and external legs. Instead of considering a cut of the amplitude

such as in equation (2.42), one can consider the cut of the integrands that compute

it. This approach is more efficient than computing dispersion relations but there is a

subtlety coming from the dimension of the spacetime the loop momenta live in.

In most cases, even the if the scattering amplitude is UV-finite, the integrals one has

compute are divergent due to IR-effects which arise in regions in the integration domain

where the loop momentum becomes collinear with one of the external legs (the collinear

limit), or its magnitude tends to zero (the soft limit). These divergences have to be

regularised and the most common method to do so is to compute the integrals not in

four dimensions but in D = 4− 2ǫ dimension.

This raises the question whether on-shell loop momenta have to be in four or D-

dimensions. Indeed, to compute the O(ǫ) terms, one has to consider the −2ǫ dimen-

sional componeents of the loop momenta. However, as long as one is interested in up

to O(1) terms in the ǫ expansion, four-dimensional cuts are adequate.

At one loop, the unitarity method is particularly efficient. At this level, the integral

cannot contain irreducible numerators. This means that an arbitrary one-loop integral

with an arbitraty numerator can be written in terms of scalar integrals with the same

or lower number of external legs. This leads to an integral basis, in which one-loop

scattering amplitudes can be expanded. Schematically, one can write:

M =
∑

ciIi +Rational terms (2.43)

where Ii stands for integrals of box, triangle and bubble topologies. The coefficient

ci are, in general, functions of kinematical invariants. These integrals contain branch

cuts in the kinematic variables and they constitute the “cut constructable” part of the

scattering amplitude. The rational terms, which are non-zero for example in QCD, do

not have branch cuts and their computation requires further considerations, such as

[86]. In supersymmetric theories, they are zero.
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Starting from two loops, a systematic expansion of an amplitude into an integral basis is

not straightforward anymore since finding a basis of integrals at two loops is a difficult

task. At two loops, it is always possible to find a basis for the Feynman integrals that

appear in an amplitude but this basis would most likely be overcomplete.

One can also proceed in a less-systematic way and consider cuts of an integrand in

various channels and hope to detect all integrals contributing the amplitude in this

way [87]. The cuts will detect only a limited number of integrals, namely those that

have propagators in the cut channel with some coefficients. Therefore one has to cut the

amplitude all possible ways and build an Ansatz for the scattering amplitude (or the

form factor) which is compatible with all possible unitarity cuts. In the computation

of the two-loop Sudakov form factor in ABJM theory, which is presented in Chapter 4,

this method has been emploted used.

2.5 Some results for scattering amplitudes

In this section some results for the scattering amplitudes in four and three dimensions

are presented. As well as they serve as examples for the technical background reviewed

earlier in this Chapter, these amplitudes are important ingredients of the results pre-

sented in Chapters 3 and 4.

2.5.1 Tree-level n-point MHV in four dimensions

One of the most remarkable results in scattering amplitudes is arguably n-point tree-

level MHV amplitude in four dimensional Yang-Mills theories. This amplitude has a

famously simple form which led to research in finding ever simpler structures in scat-

tering amplitudes, many of which are non-manifest in the Feynman diagram approach.

The component amplitude for the scattering of n gluons, where only the gluons i and

j have negative helicity is

A(0)
n = ign−2 〈ij〉4

〈12〉〈23〉 . . . 〈n1〉 δ
(4)

(

n
∑

i=1

P1,n

)

, (2.44)

where

p1,n =
n
∑

i=1

λiλ̃i (2.45)

is the total momentum of the scattering particles and the spinor brackets 〈kl〉 are
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defined in Appendix A.

The Feynman diagram computation of A
(0)
n involves O(n!) Feynman diagrams however

complexity of the answer remains the same. For any n, the proof of (2.44) by induction

using induction is extremely simple using the BCFW recursion relations. To demon-

strate this, it is practical to assume 1 < i < j − 1 < n. Other cases can be treated

similarly.

Under the shift [ii+1〉 applied to (2.44) there is a single factorisation channel (pole in

the z plane):

An = An−1(1
+ . . . , î−, P̂+, . . . , j−, . . . , n)

1

P 2
i+1,i+2

A3(î+ 1, i+ 2, P̂ )

=
〈ij〉4

〈12〉 . . . 〈iP̂ 〉〈P̂ , i+ 3〉 · · ·
1

〈i+ 1 i+ 2〉[i+ 1 i+ 2]

[i+ 1 i+ 2]4

[i+ 1 i+ 2][i+ 2, P̂ ][P̂ i+ 1]
,

(2.46)

where the hatted quantities are evaluated at the pole:

z∗ =
〈i+ 1 i+ 2〉
〈i+ 2 i〉 . (2.47)

At this pole, the shifted momentum P̂ is

P̂ = Pi+1 + Pi+2 +
〈i+ 1 i+ 2〉
〈i+ 2 i〉 λiλ̃i+1 . (2.48)

Using (2.48), P̂ can be eliminated from the brackets in (2.46). In particular one can

write:

〈i P̂ 〉[P̂ i+ 2] = 〈i i+ 1〉[i+ 1 i+ 2] (2.49a)

〈i+ 3 P̂ 〉[P̂ i+ 1] = 〈i+ 3 i+ 2〉[i+ 2 i+ 1] . (2.49b)

With the help of (2.49a), the only residue (2.46) yields the n-point MHV gluon ampli-

tude (2.44).

The proof by induction is completed by computing the three-point MHV amplitude

either by Feynman diagrams or by deriving it from physical constraints to be:

A3(1
−, 2−, 3+) = ig

〈12〉4
〈12〉〈23〉〈31〉 A3(1

−, 2+, 3+) = ig
[23]4

[12][23][31]
. (2.50)
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In MSYM, this amplitude is just a component of the MHV superamplitude,

An =
δ(4) (P ) δ(8) (Q1,n)

〈12〉〈23〉 · · · 〈n1〉 , (2.51)

where

Q1,n =
n
∑

i=1

λiηi (2.52)

is the total supermomentum of the n particles. The apparently missing factor of

〈ij〉4 in the numerator is the coefficient of the relevant term in the η expansion of

the supermomentum-conserving delta function δ(8) (q).

The action on superconformal symmetry on amplitudes and its anomaly can be seen

from the superamplitude. It does not depend on antiholomorphic variables λ̃ and

it may seem like it should be annihilated by any of the generators that contain ∂
∂λ̃

.

However when the momenta are real and the left and right handed spinors are complex

conjugates of each other,
∂

∂λ̃

1

〈λµ〉 (2.53)

is proportional to δ(2)(〈λµ〉) and is nonzero when the two spinors become collinear.

In the collinear limit the amplitude is proportional to another amplitude with one

less particle. This problem can be cured by redefining the symmetry operators by

subtracting the anomalous piece from the symmetry generator and considering the

symmetry as acting on the whole S-matrix rather than just one amplitude [88].

2.5.2 The colour-ordered one-loop MHV superamplitude in four MSYM

One-loop amplitudes can be computed using general unitarity cuts, which are discussed

in section 2.4.2. The MHV superamplitude in MSYM for any number of external legs is

exceptionally constrained due to supersymmetry and is computed relatively easily using

this method [89]. Here the derivation of this quantity is presented closely following [89].

The maximal number of cuts allowed in strictly four dimensions is four. This is because

the loop momentum is assumed to be four-dimensional and only four constraints can

be simultaneously imposed upon it. Therefore the cut diagram is a chain of four

superamplitudes connected by four propagators set on-shell.

The cut diagrams that can contribute to the MHV superamplitude are highly con-

strained. Firstly, for the cut of the MHV superamplitude, only diagrams with two

MHV and two MHV vertices can contribute. This follows from the fact that the MHV
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Figure 2.3: An sample generalised cut of the one-loop MHV amplitude in MSYM. The
white and black blobs represent MHV and MHV tree amplitudes, respectively.

amplitude has Grassmann degree eight and it should be proportional to the overall

supermomentum-conserving delta function:

A(1)
n ∝ δ(8)(Q1,n) , (2.54)

where the shorthand

Qi,j =

j
∑

k=1

λkηk (2.55)

is used for convenience. Four four-dimensional Grassmann integrals at the edges remove

in total 16 fermionic degrees of freedom. Therefore, the cut diagram must have 24

fermionic degrees of freedom before the fermionic integrals are preformed. Recalling

that all MHV or MHV amplitudes have Grassmann degree 8, with the exception of

the three-particle MHV amplitude, which has Grassmann degree four, it is easy to

realise that this can only be constructed if two of the vertices are MHV and two of

the vertices are three-particle MHV amplitudes. This guarantees that only two-mass-

easy box integral topologies contribute to the one-loop MHV superamplitude. The

numerator, which turns out to be independent of the loop momenta and therefore is

merely a coefficient for the scalar box function, is given by the cut diagram evaluated

at both of the solutions.

An example for the type of cut diagrams that give the coefficient of the relevant box

function is depicted in Figure 2.3. The box function detected by this cut has massless

momenta 1 and i and its coefficient c(1|i) is the product of four tree-level amplitudes

evaluated at the solution to the cut conditions.

c(1|i) =
1

2

∑

∫

d16ηAaAbAcAd , (2.56)
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where Aa,b,c,d are superamplitudes depicted in figure. The white blobs indicate MHV

superamplitudes whereas shaded blobs indicate MHV super amplitudes. The product

of these tree amplitudes is

δ(4)(Qa)

[1P1][P1P4][P41]

δ(8)(Qb)

〈23〉 · · · 〈i− 2 i− 1〉
δ(4)(Qc)

[iP3][P3P2][P2i]

δ(8)(Qd)

〈i+ 1 i+ 2〉 · · · 〈n− 1n〉 , (2.57)

where the supermomenta Qa,b,c,d are defined as

Qa = η1[P1P4] + ηP1 [P4, 1] + ηP4 [1P1] , (2.58a)

Qb = Q2,i−1 + ηP1λP2 − ηP4λP1 , (2.58b)

Qc = ηλ1 + ηP1λP4 − ηP4λP3 (2.58c)

Qd = ηi[P3P2] + ηP3 [P2, i] + ηP2 [iP3] , (2.58d)

where the internal variables ηPi
are to be integrated.

The integrations over the internal η variables can be performed one after the other.

Each of the internal η variables are contained in the delta functions belonging to two

neighbouring vertices. For example for the ηP1 integration, the relevant delta functions

are δ(4)(Qa) and δ
(8)(Qb):

∫

dηP1 δ
(4)(Qa) δ

(8)(Qb) . (2.59)

On the support of the four-dimensional delta function, the eight-dimensional delta

function can be freed of the integration variable and the integral (2.59) can be rewritten

as:
∫

d4ηP1 δ
(4)(Qa) δ

(8)(Q1,i−1 + λP2ηp2 − λP4ηP4) . (2.60)

Then, the argument of δ(4)(Qa) can be solved for ηP1 and so that the ηP4 becomes

trivial. After this manipulation (2.54) becomes

∫

d4ηP1 [P41]
4δ(4)(ηP1 + · · · ) δ(8)(Q1,i−1) = [P41]

4δ(8)(Q1,i−1) , (2.61)

where the factor [PP41]
4 comes as the Jacobian of the change of variables inside the

delta function. The ellipsis denotes terms that do not depend on ηP4 .

After an identical procedure the ηP3 integral gives:

∫

dηP3 δ
4)(Qc)δ

(8)(Qd) = [P2i]
4 δ(8)(Qi,n + λP4ηp4 − λP2ηP2) (2.62)
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After working (2.61) and (2.62), the total Grassmann integral reduces to:

∫

d16η δ(4)(Qa)δ
(8)(Qb)δ

(4)(Qc)δ
(8)(Qd) = [P2i]

4[P41]
4

∫

d4ηP2d
4ηP4δ

(8)(Q1,i−1)δ
(8)(Qi,n) .

(2.63)

The remaining integrals can be done very easily by noting that

δ(8)(Q1,i−1+λP2ηP2−λP4ηP4) δ
(8)(Qi,n+λP4ηP4−λP2ηP2) = δ(8)(Q1,n) δ

(8)(Qi,n+λP2ηP2−λP4ηP4)

(2.64)

and

δ(8)(Qi,n + λP2ηP2 − λP4ηP4) = 〈P2P4〉4 δ(4)(ηP4 + · · · ) δ(4)(ηP2 + · · · ) . (2.65)

Combining all the steps together, the result of the Grassmann integration becomes:

∫

d16η δ(4)(Qa)δ
(8)(Qb)δ

(4)(Qc)δ
(8)(Qd) = [P2i]

4[P41]
4〈P2P4〉4 = [i|P2P4|1]4 (2.66)

After performing the Grassmann integrations, the coefficient for the box function be-

comes

c1,i = Atree
n 〈i− 1 i〉〈i i+ 1〉〈n 1〉〈1 2〉 [1|P4P2|i]

〈i− 1|P2P3|i+ 1〉〈2|P1P4|n〉
, (2.67)

where the tree-level MHV superamplitude presented in equation (2.51) has been pulled

out. Using the fact that the loop momenta are null on the cut and the constraints

imposed thereon by the MHV vertices,

|P1〉 ∝ |P4〉 ∝ |1〉, |P2〉 ∝ |P3〉 ∝ |i〉, (2.68)

the coefficients can be simplified to:

c1,i = Atree
n [P1 P4]〈P4 P2〉[P2 P3]〈P3 P1〉

= P 2
2,i−1P

2
i+1,n − st ,

(2.69)

with

s = P2,i−1, and t = Pi+1,n . (2.70)

In writing the second line one relies on the fact that the loop momenta are null P 2
i =

0. Therefore, the coefficients of integrals detected by a particular unitarity cut are

defined up to terms proportional to P 2
i . However, in this case the four particle cuts

are considered. These cuts can only come from box functions and terms such as P 2
i

would cancel a propagator, turning the integral into a triangle. Therefore in generalised

unitarity with maximal cuts, this ambiguity does not arise. However when non-maximal
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cuts are considered, such as the ones considered in Section 4.2.2.1.

2.5.3 Tree-level amplitudes in ABJM

Four particles

The simplest non-trivial superamplitude in ABJM theory is the four-particle tree am-

plitude. This amplitude can be expanded into the following colour factors:

M(0)
4 (1̄, 2, 3̄, 4) = A(0)

4 (1̄, 2, 3̄, 4)[1, 2, 3, 4] +A(0)
4 (1̄, 4, 3̄, 2)[1, 4, 3, 2] . (2.71)

The relative sign of the two different colour structures is plus since we chose to write

the amplitudes by exchanging bosonic sites.

The colour-ordered tree amplitude has the following pecuilar form: [90],

A(0)
4

(

1̄, 2, 3̄, 4
)

= i
δ(6)(Q)δ(3)(P )

〈1 2〉 〈2 3〉 . (2.72)

Although does not manifest the cyclic symmetry of ABJM amplitudes, it is not hard

to confirm this by noting that the 2〉〈2 in the denominator is in fact the momentum

p2. Using momentum conservation of four particles,

p2 = −p1 − p3 − p4 , (2.73)

and the fact that pi annihilates |i〉, one can rewrite (2.72) and then perform the cyclic

rotation of the momenta to obtain:

A(0)
4

(

1̄, 2, 3̄, 4
)

= −i δ
(6)(q)δ(3)(p)

〈1 4〉 〈4 3〉
pi→pi+2−−−−−→ −i δ

(6)(q)δ(3)(p)

〈1 2〉〈2 3〉 , (2.74)

in accordance with the relations (2.19) satisfied by the colour-ordered amplitudes.

A further symmetry of the amplitude (2.72) implied by the relations (2.19) that it is

mapped to minus itself under the exchange of the momenta of the bosonic particles, ie

p2 ↔ p4:

A(0)
4

(

1̄, 2, 3̄, 4
)

= A(0)
4

(

1̄, 4, 3̄, 2
)

, A(0)
4

(

1̄, 2, 3̄, 4
)

= −A(0)
4

(

3̄, 2, 1̄, 4
)

(2.75)

Similarly, this can be checked by sending p2 to p4 in (2.72) and using momentum

conservation (2.73) to replace p2 with p4 inside the denominator.
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Figure 2.4: BCFW recursion of the six-particle superamplitude in ABJM

Using this relation the full tree amplitude can be rewritten in a more compact form:

M(0)
4 (1̄, 2, 3̄, 4) = A(0)

4 (1̄, 2, 3̄, 4) ([1, 2, 3, 4]− [1, 4, 3, 2]) . (2.76)

This amplitude is the main ingredient for the unitarity cuts that are used to derive the

full one-loop scattering amplitude in Section 2.5.4.

Six particles

The six-particle amplitudeA6(1̄, 2, 3̄, 4, 5̄, 6) can be derived from the four-particle colour

ordered amplitude using the recursion relation (2.36).

Closely following [82], one can choose to shift particles 1 and 2̄ according to (2.25)

λ̂1 = z+z−1

2 λ1 − z−z−1

2i λ2 (2.77a)

λ̂2 = z−z−1

2i λ1 +
z+z−1

2 λ2 (2.77b)

such that the only factorisation channel will be the one shown in Figure 2.4 The shifted

propagator in the only factorisation channel is

P6,1,2 = p6 + p1(z) + p2(z) = λ6λ6 + λ̂1λ̂1 + λ̂2λ̂2 (2.78)

and the kinematical configuration where factorisation should occur is such that

P 2
6,1,2(z) = az2 + b+ cz−2 = 0 (2.79)

with

a = P56 · q, b = −P34 · P56, c = P56 · q̃ , (2.80)

where it is convenient to define the null momenta q and q̃ such that:

λq = λ1 + iλ2, λq̃ = λ1 − iλ2 . (2.81)
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Figure 2.5: The one-loop box function in (2.85).

The two solutions of this quadradic equation (2.79) for z2 are given simply as [82]:

z2± =
P34 · P56 ± 〈34〉〈56〉

〈λ1 + iλ2|P34|λ1 − iλ2〉
. (2.82)

Evaluating the residues at these poles, one obtains the six-particle superamplitude in

ABJM [83]:

M(0)
6 =

δ(3)(p)δ(6)(q)

P24

[

δ(3)(ǫijk〈jk〉ηi − ǭij̄k̄〈j̄k̄〉ηī)
(〈2|P34|5〉+ i〈34〉〈61〉)(〈1|P23|4〉+ i〈23〉〈56〉)

+
δ(3)(ǫijk〈jk〉ηi − ǭij̄k̄〈j̄k̄〉)

(〈2|P34|5〉 − i〈34〉〈61〉)(〈1|P23|4〉 − i〈23〉)〈56〉

]

(2.83)

2.5.4 The complete one-loop four-point amplitude in ABJM

In this section the result for the complete four-point amplitude at one loop in ABJM is

presented. This amplitude will be needed in order to construct the two-particle cuts of

the two-loop form factor since the colour structure of the tree-level form factor amplifies

some subleading colour structures when glued to a scattering ampltide in a unitarity

cut.

The one-loop colour-ordered four-point superamplitude with the leading-color structure

is equal to:

A(1)
(

1̄, 2, 3̄, 4
)

= iA(0)
(

1̄, 2, 3̄, 4
)

N I(1, 2, 3, 4) , (2.84)

where the one-loop integral I(1, 2, 3, 4) is defined by

I(1, 2, 3, 4) :=

∫

dDℓ

iπD/2

s12Tr(ℓ p1 p4) + ℓ2Tr(p1 p2 p4)

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
, (2.85)

with D = 3− 2ǫ. sij denote the usual Mandelstam invariants (pi + pj)
2.
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As opposed to [91], where the normalisation for the loop measure is 1/(2π)D per loop,

in this thesis the integrals have been computed with a factor 1/(iπD/2). Note that

Tr(abc) = 2ǫ(a, b, c) := 2ǫµνρa
µbνcρ.

Explicit evaluation of the right-hand side of (2.84) shows that A(1)(1̄, 2, 3̄, 4) is of O(ǫ),

and hence vanishes in three dimensions [91]. This is consistent with the fact that all one-

loop amplitudes in ABJM can be expanded in terms of one-loop triangle functions [79],

as expected from dual conformal invariance. The vanishing of the four-point amplitude

then follows since one-mass (and two-mass) triangles vanish in three dimensions. Very

interestingly, the box function with the particular numerator in (2.85) is also dual

conformal invariant, as was demonstrated in [91] using a five-dimensional embedding

formalism. Furthermore, the expression for A(1)(1̄, 2, 3̄, 4) given in (2.84) is correct to

all orders in the dimensional regularisation parameter ǫ. The integrand of (2.85) will be

the main ingredient that is responsible for the appearance of the particular numerators

that appear in the unitarity cut computation of the Sudakov form factor.

The complete one-loop four-point amplitude is given by the sum of a planar and non-

planar contribution, which can be written in terms of the integral (2.85):

Ã(1)(1̄, 2, 3̄, 4) = A(1)
P (1̄, 2, 3̄, 4) + A(1)

NP(1̄, 2, 3̄, 4) , (2.86)

where

A(1)
P (1̄, 2, 3̄, 4) = iN A(0)(1̄, 2, 3̄, 4) I(1, 2, 3, 4)

(

[

1, 2, 3, 4] +
[

1, 4, 3, 2]
)

, (2.87)

and

A(1)
NP(1̄, 2, 3̄, 4) =− 2 iA(0)(1̄, 2, 3̄, 4)

[(

I(1, 2, 3, 4)− I(4, 2, 3, 1)
)

[1, 2][3, 4]

−
(

I(2, 3, 4, 1)− I(1, 3, 4, 2)
)

[1, 4][3, 2]
]

.

(2.88)

Note that the part [1, 2] of the double-trace structure [1, 2][3, 4] is a short hand for two

Kronecker deltas:

[1, 2] = δī1
ī2
δi2i1 . (2.89)

The complete one-loop amplitude can also be written in the following way,

Ã(1)(1̄, 2, 3̄, 4)

A(0)(1̄, 2, 3̄, 4)
= i
{

I(1, 2, 3, 4)
[

N
(

[1, 2, 3, 4] + [1, 4, 3, 2]
)

− 2[1, 2][3, 4]− 2[1, 4][3, 2]
]

+ 2
[

I(4, 2, 3, 1)[1, 2][3, 4]− I(1, 3, 4, 2)[1, 4][3, 2]
]}

. (2.90)
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Symmetry properties of the one-loop amplitude

Before discussing the derivation of (2.86), it is instructive to prove that A(1)
P and A(1)

NP

are antisymmetric under the swap 1̄ ↔ 3̄. In order to show this one needs to use (2.75)

and the following relations satisfied by the one-loop box (2.85):

I(a, b, c, d) = − I(b, c, d, a) , I(a, b, c, d) = −I(c, b, a, d) , (2.91)

which can be directly checked from its definition.

These relations state that by cyclically shifting the labels of the external legs of the

box function (2.85) by one unit one picks a minus sign; and similarly if one swaps

two non-adjacent legs. Both relations are straightforward to prove using the definition

(2.85) of the box function. One then finds,

I(3, 2, 1, 4)− I(4, 2, 1, 3) = I(2, 3, 4, 1)− I(1, 3, 4, 2) ,

I(2, 1, 4, 3)− I(3, 1, 4, 2) = I(1, 2, 3, 4)− I(4, 2, 3, 1) . (2.92)

Using (2.92) on obtain

A(1)
P (1̄, 2, 3̄, 4) = −A(1)

P (3̄, 2, 1̄, 4) ,

A(1)
NP(1̄, 2, 3̄, 4) = −A(1)

NP(3̄, 2, 1̄, 4) . (2.93)

Notice the presence of a minus sign between the two non-planar colour structure

[1, 2][3, 4] and [1, 4][3, 2] appearing in the non-planar one-loop amplitude (2.88).

Derivation of the complete one-loop amplitude from cuts

The outline of the strategy for the derivation of the complete one-loop amplitude (2.86),

which is very similar to that in MSYM 2, is as follows. One considers the two-particle

cuts of the complete one-loop amplitude, which are obtained by merging two tree-level

amplitudes summed over all possible colour structures and internal particle species.

Each of these cuts can be re-expressed in terms of cuts of sums of box functions (2.85).

The sum over internal species is (partially) performed via an integration over the Grass-

mann variables ηℓ1 and ηℓ2 associated to the cut momenta. If one of the particles cross-

ing is bosonic and the other is fermionic one also has to add to this the same expression

with ℓ1 ↔ ℓ2 – this is necessary only for the s- and t-cuts. For instance, the s-cut

2see for example [92]
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integrand of the one-loop amplitude is3

M(1)(1̄, 2, 3̄, 4)|s−cut =
1

2

∫

d3ηℓ1d
3ηℓ2 M(0)(1̄, 2,−ℓ̄2,−ℓ1)×M(0)(3̄, 4, ℓ̄1, ℓ2)+ℓ1 ↔ ℓ2 .

(2.94)

The one-loop amplitude has cuts in the s-, t- and u-channels, for which one finds the

following integrands:

M(1)(1̄, 2, 3̄, 4)|s−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cs S12I(1, 2, 3, 4)|s−cut ,

M(1)(1̄, 2, 3̄, 4)|t−cut =
i

2
A(0)(1̄, 2, 3̄, 4) ct S23I(1, 2, 3, 4)|t−cut ,

M(1)(1̄, 2, 3̄, 4)|u−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cu S13I(3, 1, 2, 4)|u−cut , (2.95)

where the colour factors cs, ct, cu are

cs = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 2][3, 4] ,

ct = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 4][3, 2] ,

cu = 2[1, 2][3, 4]− 2[1, 4][3, 2] , (2.96)

and recalling that A(0)(1̄, 2, 3̄, 4) denotes the colour-ordered four-point superamplitude.

Furthermore, SabI(a, b, c, d)|sab−cut indicates the sab-cut of the one-loop box function

I(a, b, c, d) in (2.85), symmetrised in the cut loop momenta ℓ1 and ℓ2, which are defined

such that ℓ1 + ℓ2 = pa + pb,

S12I(1, 2, 3, 4)|s−cut =
sTr(ℓ1p1p4)

(ℓ1 − p1)2(ℓ1 + p4)2
+ ℓ1 ↔ ℓ2 ,

S23I(1, 2, 3, 4)|t−cut =
(−t)Tr(ℓ1p1p2)

(ℓ1 − p1)2(ℓ1 + p2)2
+ ℓ1 ↔ ℓ2 ,

S13I(3, 1, 2, 4)|u−cut =
uTr(ℓ2p3p4)

(ℓ2 − p3)2(ℓ2 + p4)2
+ ℓ1 ↔ ℓ2 . (2.97)

It should be stressed here that despite the simplified notation the cut momenta ℓ1

and ℓ2 are different for the three distinct channels under considerations. For instance,

ℓ1+ ℓ2 = p1+ p2 for the s-cut, while ℓ1+ ℓ2 = p2+ p3 in the t-cut and ℓ1+ ℓ2 = p1+ p3

in the u-cut. Recall that the symmetrisation in the cut momenta in the s- and t-

channel coefficients originates from summing over all possible particle species that can

propagate on the cut legs, while in the u cut there is a single configuration allowed,

and the result turns out to be automatically symmetric in ℓ1 and ℓ2.

3For convenience, a factor of 1
2
is included in the definition of the (symmetrised) cuts. In practice it

means that one takes the average of the two contributions in the s- and t-cuts, and multiply the u-cut
with a symmetry factor as two identical (super)particles cross the cut.
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Next one merges the cuts into box functions. For the planar structures [1, 2, 3, 4] and

[1, 4, 3, 2] this is immediate as the only function consistent with the s- and t-cuts in

(2.95) and vanishing u-cut is I(1, 2, 3, 4). Hence, the corresponding planar amplitude

is

iA(0)(1̄, 2, 3̄, 4) N
(

[1, 2, 3, 4] + [1, 4, 3, 2]
)

I(1, 2, 3, 4) , (2.98)

thus arriving at the expression (2.87) for the planar part of the full one-loop amplitude.4

For the non-planar terms [1, 2][3, 4] and [1, 4][3, 2], it useful to notice a property of the

box integral (2.85):

SabI(a, b, c, d)|sab−cut = SabI(a, b, d, c)|sab−cut . (2.99)

The relation (2.99) means that if one exchanges two momenta of the two adjacent legs

pc and pd of the ABJM box integral, then the cut integrand of the resulting integrand

would be the equivalent to the cut integrand of the original integral in channel sab.

Obviously, the cut integral - with the phase space integration performed - depends only

on sab and it depends and any transformation that leaves sab invariant would leave the

cut invariant. However, the statement above applies for the cut integrand. It is crucial

that the equivalence can be proved only by symmetrising the integrand with respect to

different relabellings of the loop momentum.

This can easily be proved explicitly by considering the symmetrised cut of (2.85) and

the same integral with p3 and p4 echanged. In the s12 channel cut of the original

integrand (2.85):

S12 I(1, 2, 3, 4) = I(1, 2, 3, 4)

∣

∣

∣

∣

s−cut

+ p1 ↔ p2

=
s12〈41〉)
〈4|ℓ1|1〉

+
s12〈41〉)
〈4|ℓ2|1〉

(2.100)

Using 〈4|ℓ1 + ℓ2|1〉 = 〈4|2|1〉 it is possible to write the symmetrised cut as:

S12 I(1, 2, 3, 4) =
s12〈41〉〈4|2|1〉
〈4|ℓ1|1〉〈4|ℓ2|1〉

, (2.101)

Under the exchange p3 ↔ p4 the symmetrised cut integrand becomes:

S12 I(1, 2, 4, 3) =
s12〈31〉〈3|2|1〉
〈3|ℓ1|1〉〈3|ℓ2|1〉

. (2.102)

It is easy to check that the two expressions (2.101) and (2.102) are equal using momen-

4Note that at the level of the integral one can simply replace S12I(1, 2, 3, 4) by 2 I(1, 2, 3, 4).
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tum conservation on 3〉〈3 that appears in (2.102).

An immediate consequence of this result is that

S23 I(2, 3, 4, 1)|t−cut − S23I(2, 3, 1, 4)|t−cut = 0 , (2.103)

in other words the combination I(2, 3, 4, 1)− I(2, 3, 1, 4), symmetrised in the loop mo-

menta ℓ1 and ℓ2, with ℓ1 + ℓ2 = p2 + p3, has a vanishing t-channel cut as expected for

the coefficient of the [1, 2][3, 4] colour structure (see (2.84)). For the same combination

one finds, using I(2, 3, 4, 1) = −I(1, 2, 3, 4), the symmetrised s-cut

− S12 I(1, 2, 3, 4)|s−cut , (2.104)

and similarly, for the symmetrised u-cut one obtains

S13 I(3, 1, 4, 2)|u−cut = S13I(3, 1, 2, 4)|u−cut , (2.105)

where the identity I(2, 3, 1, 4) = −I(3, 1, 4, 2) and (2.99) were used, which allow one to

swap the last two legs on the symmetrised u-cut. Comparing with (2.95) and (2.96)

one can uniquely fix the coefficient of the non-planar structure [1, 2][3, 4]:

2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[

I(2, 3, 4, 1)− I(2, 3, 1, 4)
]

, (2.106)

or, using the first relation of (2.91),

− 2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[

I(1, 2, 3, 4)− I(4, 2, 3, 1)
]

. (2.107)

One can proceed similarly for the coefficient of the other non-planar structure [1, 4][3, 2],

arriving at the result quoted earlier in (2.88). Note that in that result one uses the

freedom to rename loop momenta in order to eliminate the various symmetrisations

introduced by the operation Sab above.



3 Form factors in
four dimensions

In this Chapter tree and loop-level form factors of protected, half-BPS operators in

MSYM are considered. Thanks to the factorisation properties, form factors admit

recursion relations very similar to those of scattering amplitudes.

In particular, it is possible to derive more complicated form factors using MHV rules.

Such derivations are presented with a focus on the NMHV and the N2MHV cases. Also,

BCFW recursion relations can be efficiently applied to form factors. The solution to the

BCFW recursion relations for the split-helicty case is given in terms of a diagrammatic

procedure.

The operators which the form factors are constructed from, belong to chiral supermul-

tiplets of MSYM and using these it is possible to construct supermultiplets of form

factors, or super form factors. The super form factors are objects very similar to su-

peramplitudes and encode form factors of various operators and particles which belong

to different supermultiplets in an expansion in Grassmann variables. This construction

also allows the supersymmetrisation of the recursion relations.

3.1 MHV form factors of Trφ12φ12

MHV tree-level amplitudes can famously be written as a single term with the Parke-

Taylor denominator. Apart from the aesthetic advantage of this form, the simplicity of

MHV amplitudes, which is irrespective of the number of particles involved, makes them

practically useful seeds of recursion relations of more complicated scattering amplitudes.

Similarly, the concept of maximal helicity violation exists for form factors, in the sense

that for certain helicity configurations of the particles in the asymptotic state, they

become remarkable simple and can be written with a Parke-Taylor denominator, very

similar to tree-level MHV amplitudes.

For example, the tree-level form factor of Trφ12φ12 with two scalars φ12 and n positive

51
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helicity gluons is [61]:

∫

d4x e−iqx 〈g+(p1) · · ·φ12(pi) · · ·φ12(pj) · · · g+(pn)|Tr(φ12φ12)(x)|0〉

= gn−2(2π)4δ(4)(
n
∑

k=1

λkλ̃k − q) FMHV
φ2 , (3.1)

where

FMHV
φ2 =

〈ij〉2
〈12〉 · · · 〈n1〉 . (3.2)

Here pm := λmλ̃m are on-shell momenta of the external particles, and q :=
∑n

m=1 pm

is the momentum carried by the operator insertion.

One can verify that the little-group weights for the gluons and scalars are correct on

the right hand side of (3.1). It can be easily derived by induction through BCFW

recursion in the exact same way as the derivation of the tree-level MHV amplitude

presented in Section 2.3.1, with the only difference being that for form factors it is

possible to recurse down to a two-particle object, the Sudakov form factor:

F (0)(1φ12 , 2φ12) = 1 . (3.3)

The computational details of the recursion of form factors are given in Sections 3.2.2.1

with focus on the split-helicity case.

3.2 Tree-level bootstrap in four dimensions

3.2.1 MHV diagrams

As an initial example of how the form factors can be used as vertices in an MHV diagram

expansion [3] of non-MHV form factors, the NMHV form factors of the simplest class

of operators in N = 4 SYM, namely the half-BPS operators Tr(φ12φ12) are constructed

in this Section. These NMHV form factors take the following form:

〈 g+(p1) · · ·φ12(pi) · · ·φ12(pj) · · · g+(pn−1) g
−(pn) |Tr(φ12φ12)(x)| 0 〉 , (3.4)

Although only tree-level calculations are considered here, the extension to loop level,

following [93], is straightforward and this will be considered in Section 3.5.

To make use of MHV diagrams to compute form factors of the half-BPS operator, one

simply augments the set of usual MHV vertices for amplitudes by including a new family
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of MHV vertices, obtained by continuing off shell the tree-level MHV form factors of

the half-BPS operators.

For the computation of the above NMHV form factor, it is enough to include the MHV

form factors given by equation (3.2) as a vertex. Since (3.2) is a holomorphic function

of the spinor variables, the MHV form factors are localised on a complex line in twistor

space, similarly to the MHV amplitudes [27].

Using localisation as an inspiration, it is proposed to use an appropriate off-shell con-

tinuation of (3.2) as a new vertex to construct the perturbative expansion of non-MHV

form factors of the operator Tr(φ12φ12). The off-shell continuation is the standard one

introduced in [3]. The momentum L of an internal, off-shell particle is decomposed as

L = l + zξ, where l = λLλ̃L is an on-shell momentum and ξ an arbitrary reference

null momentum. The off-shell continuation of [3] consists then in using the spinor λL

as the spinor variable associated with the internal leg of momentum L, where

λL,α =
Lαα̇ξ̃

α̇

[λ̃L , ξ̃]
. (3.5)

The denominator in the right-hand side of (3.5) will be irrelevant for our applications

since each MHV diagram is invariant under rescalings of the internal spinor variables.

Hence, it will be discarded and simply replaced as λL,α → Lαα̇ξ̃
α̇.

3.2.1.1 NMHV form factors

The NMHV form factor can be derived using the MHV rules outlined in the previous

Section. Specifically, the simplest NMHV form factor -which is not dual to an MHV

form factor under parity- is

FNMHV
φ2 (1φ12 , 2φ12 , 3

−, 4+) := 〈φ12(p1)φ12(p2)g−(p3)g+(p4)|Tr(φ12φ12)(0)|0〉 . (3.6)

There are four MHV diagrams contributing to (3.6), depicted in Figure 3.1. A short
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Figure 3.1: The four MHV diagrams contributing to the NMHV form factor (3.6).

calculation shows that these are given by the following expressions:

Diagram (a) =
[2ξ]

[ξ3]

1

[32]〈41〉
〈1|q − p4|ξ]
|〈4|q − p1|ξ]

,

Diagram (b) =
〈23〉

〈34〉s234
〈3|p2 + p4|ξ]2

〈2|p3 + p4|ξ]〈4|p2 + p3|ξ]
,

Diagram (c) =
〈12〉
[43]

[ξ4]3

[3ξ]

1

〈2|p3 + p4|ξ]〈1|p3 + p4|ξ]
,

Diagram (d) =
1

s341

〈13〉2
〈34〉〈41〉

〈3|p4 + p1|ξ]
〈1|p3 + p4|ξ]

. (3.7)

It has been checked that the sum of all MHV diagrams is independent of the choice of

the reference spinor ξ̃. A particularly convenient choice of ξ̃ is ξ̃ = λ̃4, in which case

one obtains

FNMHV
φ2 (1φ12 , 2φ12 , 3

−, 4+) =
[24]

[34]

1

〈4|p2 + p3|4]
[ 〈1|q|4]
[23]〈41〉 +

[24]〈23〉2
〈34〉

1

s234

]

+
〈13〉2[14]

〈41〉〈34〉[43]
1

s341
. (3.8)

It is straightforward to apply this procedure to more general form factors. All re-

sults derived in the next subsection using recursion relations have been compared with

formulae obtained from MHV diagrams finding a perfect match in all cases.
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3.2.2 Recursion relations

In this Section, the application of recursion relations to the derivation of tree-level

form factors is studied. As a warm-up, the NMHV form factor in (3.6) is re-derived,

finding agreement with (3.8), which is followed by more general cases including split-

helicity configurations. Since form factors contain a single operator insertion, it is

clear that every recursive diagram will contain one amplitude and one form factor as

the factorisation properties used in the case of tree-level recursions for amplitudes also

apply to tree-level form factors. This is the only modification to the on-shell recursion

relations of [2]. In Section 3.4 the behaviour of form factors under large complex

deformations is discussed, and the validity of the calculations below is confirmed, i.e.

it is shown that under the shifts used the form factors vanish sufficiently quickly as

z → ∞.

The re-derivation of the NMHV form factor (3.6) using recursion relations works as

follows:

Under a [34〉 shift, namely

ˆ̃
λ3 := λ̃3 + zλ̃4 , λ̂4 := λ4 − zλ3 , (3.9)

there are two recursive diagrams, depicted in Figure 3.3 below. Note that the mo-

mentum insertion is not included in the colour ordering. A short calculation shows

that

Diagram (a) =
[24]2

[23][34]

1

s234

〈1|q|4]
〈1|q|2] ,

Diagram (b) =
〈13〉2

〈34〉〈41〉
1

s341

〈3|q|2]
〈1|q|2] , (3.10)

so that

FNMHV
φ2 (1φ12 , 2φ12 , 3

−, 4+) =
1

〈1|q|2]

[

[24]2

[23][34]

1

s234
〈1|q|4] +

〈13〉2
〈34〉〈41〉

1

s341
〈3|q|2]

]

.

(3.11)

It is interesting to note that the 1/〈1|q|2] pole is in fact spurious. This can be shown

by using the identities

〈1|q p4|3〉+ 〈1|q p2|3〉 = 〈13〉s234 ,
[4|p3 q|2] + [4|p1 q|2] = [42]s341 , (3.12)
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which allow to recast the form factor in the alternative form

FNMHV
φ2 (1φ12 , 2φ12 , 3

−, 4+) =
1

s34 [23]〈41〉

[〈14〉〈23〉[24]2
s234

+
[41][32]〈13〉2

s341
+ [24]〈13〉

]

.

(3.13)

The result (3.13) has been checked against the form factor derived using MHV diagrams,

(3.8) and they are in perfect agreement.

The form factor (3.13) is divergent as q → 0. However the NMHV form factor

〈g−(p1)g−(p2)g−(p3)g+(p4)|Tr
(

F 2
SD

)

|0〉 = δ(4)(q −
4
∑

i=1

pi)F
NMHV
F 2
SD

(1−, 2−, 3−, 4+) ,

(3.14)

which is related to the former via supersymmetry, has a particular value in this limit.

More precisely, in this limit this form factor is expected the reproduce the vanishing

scattering amplitude A(1− 2− 3− 4+). This can be checked by a direct computation of

this NMHV form factor, which is conveniently done using BCFW recursion.

The four BCFW diagrams that appear in the [4 3〉 shift of this form factor are shown

in Figure 3.2. Of these four diagrams, only the ones shown in Figures 3.2a and 3.2d

give non-zero residues.

Summing the contributions from these diagrams one obtains:

FNMHV
F 2
SD

(1−, 2−, 3−, 4+) =
〈3|q|4]3

[41][12]〈3|q|2]s234
+

〈1|q|4]3
[23][34]〈1|q|2]s234

. (3.15)

The O(q3) factors in both terms of (3.15) ensure that this form factor does not diverge

but vanishes in the q → 0 limit, as required.

3.2.2.1 Recursion relations for the split-helicity form factor

In the previous section it was observed that the BCFW recursion relation for the NMHV

form factor with a [3, 4〉 shift has just two diagrams. This property in fact holds for

all form factors of the form Fφ2;q−2,n−q(1φ, 2φ, 3
−, . . . , q−, (q + 1)+, . . . , n+), which are

henceforth called split-helicity. As is shown shortly, performing a [q, q + 1〉 shift leads
to a general, closed-form solution of the BCFW recursion relations for this special class

of form factors. Note that all split-helicity gluon scattering amplitudes were computed

in [94] – a similar solution for form factors is constructed here.

Each recursive diagram with a [q, q + 1〉 shift contains a three-point amplitude and an

(n−1)-point form factor. The three-point amplitude and the propagator can be neatly
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Figure 3.2: The four BCFW diagrams contributing to the NMHV form factor. The
momentum q does not enter colour ordering.
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Figure 3.3: The two recursive diagrams contributing to the NMHV form factor (3.6).

combined in a prefactor to write1

Fq−2,n−q =
[q − 1q + 1]

[q − 1q][qq + 1]
Fq−3,n−q(1φ, 2φ, 3

−, . . . , q̂ − 1
−
, q̂ + 1

+
, . . . , n+)

+
〈qq + 2〉

〈qq + 1〉〈q + 1q + 2〉Fq−2,n−q−1(1φ, 2φ, 3
−, . . . , q̂−, q̂ + 2

+
, . . . n+) ,

(3.16)

where the shifted spinors of the external momenta that appear in the lower-point form

1For the rest of this Section it is always assumed that the operator O = Tr(φ12φ12) is inserted and
it will not be mentioned explicitly. Although the solution is presented for this particular insertion, the
construction can be generalised to form factors involving other operators.
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factors are

λ
q̂+1

=
[q − 1|Pq,q+1

[q − 1 q + 1]
, (3.17a)

λ̃q̂ =
Pq,q+2|q + 2〉
〈q q + 2〉 , (3.17b)

with Pa,b = pa+ . . .+ pb. Furthermore, the shifted spinors associated with internal legs

are relabelled as

λP̂q−1 q
(z = zq−1 q) → λ

q̂−1
=

Pq,q+1|q + 1]

[q − 1 q + 1]
, (3.18a)

λ̃P̂q+1 q+2
(z = zq+1 q+2) → λ̃

q̂+2
=

〈q|Pq,q+2

〈q q + 2〉 , (3.18b)

so that the notation remains compatible with subsequent recursions. Crucially, all

lower-point form factors appearing in (3.16) are of split-helicity form, so that the split

helicity form factors are closed under recursions. Once one has reduced the form factor

to expressions that involve only MHV and MHV terms, one can insert the shifted

momenta.

It is useful to illustrate the structure of the recursion relations for split-helicity form

factors using a square lattice as in Figure 3.4. Consider for example the form factor

F2,2. In this case, the first iteration using equation (3.16) relates F2,2 to the form

factors F2,1 and F1,2, which however are neither MHV nor MHV. The next iteration

leads to an expression involving one F2,0, two F1,1’s and one F0,2 evaluated at some

shifted momenta. A final iteration would then allow us to express the answer in terms

of MHV and MHV form factors alone, or even to reduce everything down to F0,0. It

is also easy to see that this pattern generalises to arbitrary split-helicity form factors

and that each term generated by subsequent recursions corresponds to a unique path

between the form factor and the MHV or MHV edges of the lattice, as illustrated in

Figure 3.4.

In principle, all one needs to do to compute a split-helicity form factor is to collect

all prefactors picked up at each step of the recursion process and follow the iterated

momentum shifts along a particular path on the lattice.

3.2.2.2 Solution for the split-helicity form factor

A very efficient way to organise the recursion is in terms of zig-zag diagrams, like those

introduced in [94] for split-helicity gluon amplitudes. It is natural to split the terms

of the solution into those corresponding to paths ending on the MHV or MHV lines,
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F0,0

F1,0F0,1

F2,0F1,1F0,2

F2,1F1,2

F2,2

Figure 3.4: The iterative structure of split-helicity form factors illustrated by a square
lattice. The three coloured paths ending on the MHV line are in one-to-one correspon-
dence with terms that appear in the iterated recursion of F2,2. Similarly there will be
three paths (terms) that end on the MHV line.

respectively.

Zig-zag diagrams that correspond to recursion terms with an MHV form factor will

be denoted as MHV zig-zags and the ones with an MHV form factor as MHV zig-

zags. Note that there are therefore two types of diagrams, in contrast to the case

of amplitudes in [94]. One can make this separation also for amplitudes as it only

means that the iterated recursion terminates once it reaches an MHV term, instead

of recursing it further down to F0,0 (or A2,2 for the case of amplitudes). In the path

picture of the previous section, this separation corresponds to the fact that there is a

unique path between any MHV form factor and F0,0, hence one can replace that part

of the recursion directly with an MHV form factor. Because the MHV zig-zags defined

below are not compatible with two point objects such as F0,0, this formalism with two

types of diagrams is preferred. This has the added advantage that it makes the parity

symmetry of Fq−2,q−2 form factors manifest.

The MHV zig-zags are parameterised with 2k + 1 labels

2 ≤ a1 < · · · < ak < q − 1 and n ≥ b1 > · · · > bk+1 > q, k ≥ 0,

representing expressions in the following manner

2

1

n b1 + 1 b1 b2 + 1 b2 q + 2 q + 1

a1 a1 + 1 q − 1 q

=
N1N2N3

D1D2D3
(3.19)
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while the MHV zig-zags are parameterised with 2k + 1 labels

2 ≤ b̄1 < · · · < b̄k+1 < q and n ≥ ā1 > · · · > āk > q + 1, k ≥ 0,

representing expressions, similarly shown below

2

1

3 b̄1 b̄1 + 1 b̄2 b̄2 + 1 q − 1 q

n ā1 + 1 ā1 q + 2 q + 1

=
N̄1N̄2N̄3

D̄1D̄2D̄3
(3.20)

where N1,2,3 and D1,2,3 are defined as

N1 = 〈1|P2,b1Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q〉

× [2|Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q〉2

N2 = 〈b1 + 1 b1〉〈b2 + 1 b2〉 · · · 〈bk+1 + 1 bk+1〉
N3 = [a1a1 + 1] · · · [ak ak + 1]

D1 = P 2
2,b1P

2
a1+1,b1P

2
a1+1,b2P

2
a2+1,b2 · · ·P 2

q,bk+1

D2 = Zq,1Z̄2,q−1

D3 = [2|P2,b1 |b1 + 1〉〈b1|Pa1+1,b1 |a1][a1 + 1|Pa1+1,b2 |b2 + 1〉 · · · 〈bk+1|Pq,bk+1
|q − 1]

(3.21a)

N̄1 = [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2
, Pb̄2+1,ā1

, Pb̄1+1,ā1
|1〉2

× [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2
, Pb̄2+1,ā1

, Pb̄1+1,ā1
Pb̄1+1,1|2]

N̄2 = [b̄1 b̄1 + 1] · · · [b̄k+1 b̄k+1 + 1]

N̄3 = 〈ā1 + 1 ā1〉 · · · 〈āk + 1 āk〉
D̄1 = P 2

b̄1+1,1P
2
b̄1+1,ā1

P 2
b̄2+1,ā1

. . . P 2
b̄k+1,q+1

D̄2 = Z̄2,q+1Zq+2,1

D̄3 = 〈1|Pb̄1+1,1|b̄1][b̄1 + 1|Pb̄1+1,ā1
|ā1 + 1〉〈ā1|Pb̄2+1,ā1

|b̄2] . . . [b̄k + 1|Pb̄k+1,q+1|q + 2〉,
(3.21b)

with

Zi,j = 〈i i+ 1〉 · · · 〈j − 1 j〉, Z̄i,j = [i i+ 1] · · · [j − 1 j]. (3.21c)

The split-helicity form factor is then the sum of all recursion terms, or equivalently
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the sum of all possible MHV and MHV zig-zags, which is equal to

Fq−2,n−q−2 =
∑

{ai,bi}

N1N2N3

D1D2D3
+
∑

{āi,b̄i}

N̄1N̄2N̄3

D̄1D̄2D̄3
. (3.22)

Notice that for the form factors with equal number of negative and positive helic-

ity gluons, the MHV zig-zags can be obtained from the MHV ones by changing

(2, 3, . . . , q) → (1, n, . . . , q + 1) and 〈ij〉 → [ji].

Let us now explain the precise relation between the zig-zag diagrams and the paths on

the split-helicity form factor lattice. Let a path with r1 steps to the right, l1 steps to

the left followed by r2 steps to the right etc. be represented by

Rrk · · ·Rr2Ll1Rr1 . (3.23)

Then an MHV zig-zag labelled by {ai, bi} corresponds to the path:

La1−1Rb1−b2 · · ·Lak−ak−1Rbk−bk+1Lq−1−akRbk−(q+1),

while an MHV zig-zag labelled by {āi, b̄i} corresponds to the path:

Rā1+1Lb̄2−b̄1 · · ·Rāk−āk−1Lb̄k+1−b̄kRāk−q−1Lq−b̄k+1−1 .

Note that if there are no ai indices in the MHV zig-zag diagram a1 is set to a1 = 1;

and if there are no āi in the MHV zig-zag diagram, it is set to ā1 = n. All powers in

the above formulae are modulo n.

3.2.2.3 Examples

Here, some examples are listed to demonstrate that the solution (3.22) reproduces

indeed the correct expressions.

MHV case

The zig-zag diagrams collapse onto a point between 1 and 2 as there are neither bi nor

āi. Hence, the only contributions are N1 = 〈12〉 and D2 = F2,1 and

F1,n−3(1φ, 2φ, 3
+, . . . , n+) =

〈12〉
〈23〉〈34〉 . . . 〈n1〉 , (3.24)

as required. The situation for MHV amplitudes is similar [94]. An equivalent calculation

for the MHV zig-zag gives the MHV form factor.
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NMHV case

At four points, there is exactly one MHV and one MHV zig-zag, representing one move

to the left and one move to the right, making the application of the zig-zag diagrams

a simple reiteration of the BCFW recursion relation presented in the previous Section.

In the zig-zag picture, the form factor F (1φ12 , 2φ12 , 3
−, 4+) as a sum of two terms

represented by two single-step moves that reach the edge of the lattice:

F (1φ12 , 2φ12 , 3
−, 4+, ) =

F1,1

+

F1,1

(3.25)

Comparing with equations (3.19) and (3.20) one can read off b1 = 4 for the MHV

zig-zag and b̄1 = 2 for the MHV zig-zag.

F1,1

=

2

1

3

4

=
[24]2

[32][43]

〈1|q|4]
〈1|q|2]

1

s234
(3.26)

F1,1

=

2

1

3

4

=
〈13〉2

〈34〉〈41〉
〈3|q|2]
〈1|q|2]

1

s341
(3.27)

This result is in agreement with the previous section.

In general, for the NMHV form factors, there is one MHV zig-zag corresponding to

the path which proceeds along the NMHV line until it reaches the MHV edge of the

lattice, and n − 3 MHV zig-zags where the path shifts onto the MHV edge before it

arrives at the MHV edge. The MHV paths and the corresponding zig-zags are shown

in Figure 3.5.

An N2MHV example

The N2MHV form factor F (1φ12 , 2φ12 , 3
−, 4+, 5+) is the first non-trivial example, where

using the direct solution in terms of zig-zag diagrams is more convenient than successive

applications of BCFW recursion relations.

As it can be seen from the lattice in Figure 3.4, there are three MHV and three MHV
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F1,n−3

=

2

1

n n− 1 5 4

3

Figure 3.5: Correspondence of lattice paths and MHV zig-zags for NMHV form factors.

terms in the recursion of the six-point split-helicity form factor:

F (1φ12 , 2φ12, 3
−, 4+, 5+) = FLL + FRLL + FLRL + FRR + FLRR + FRLR , (3.28)

where the diagrammatic representation of each term is given below together with its

value. The subscripts encode the shape of the path as described earlier. For example,

FRLL is the term which corresponds to the path that starts with a step to right and

terminates at the MHV edge with two steps to the left. The MHV terms are:

• b1 = 5, no a:

FLL =
2

1

3

4

5

6

= − [25]2

[23][34][45]〈61〉
1

P 2
2,5

[5|P2,4|1〉
[2|P2,5|6〉

(3.29a)

• b1 = 6, no a:

FRLL =
2

1

3

4

5

6

=
1

〈45〉〈56〉[23]
1

P 2
2,6P

2
4,6

〈1|P2,6P4,6|4〉[2|P4,6|4〉2
[2|P2,6|1〉〈6|P4,6|3]

(3.29b)

• b1 = 6, b2 = 5, a1 = 2:
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FLRL =
2

1

3

4

5

6

=
1

[34][45]

1

P 2
2,6P

2
3,6P

2
3,5

〈1|P2,6P3,6P3,5|5][2|P3,6P3,5|5]2
[2|P2,6|1〉〈6|P3,61|2][3|P3,5|6〉

(3.29c)

The MHV terms are:

• b̄1 = 3, no ā

FRR =
2

1

3

4

5

6

=
〈14〉2

〈45〉〈56〉〈61〉[23]
1

P 2
4,1

〈4|P4,1|2]
〈1|P4,1|3]

(3.30a)

• b̄1 = 2, no ā

FLRR =
2

1

3

4

5

6

=
1

[34][45]〈61〉
1

P 2
3,5P

2
3,1

〈1|P3,5|5]2[5|P3,5P3,1|2]
〈1|P3,1|2][3|P3,5|6〉

(3.30b)

• b̄1 = 2, b2 = 3, ā1 = 6

FRLR =
2

1

3

4

5

6

=
1

〈45〉〈56〉
1

P 2
3,1P

2
3,6P

2
4,6

〈4|P4,6P3,1|1〉2〈5|P4,6P3,6P3,1|2]
〈1|P3,1|2][3|P3,6|1〉〈6|P4,6|3][4|P4,6|6〉

(3.30c)

This result has been checked against an MHV diagram calculation and both methods

yield the same result.
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3.3 Supersymmetric multiplets of form factors

The superamplitude formalism, reviewed in Section 2.1, is a very convenient tool which

packages all the scattering amplitudes in a supersymmetric theory as the coefficients

of its Taylor expansion in superspace coordinates. Superamplitudes are particularly

useful when amplitudes are fed into recursion relations. Summation over several internal

particles can be replaced by a simple integration over the odd variables, see for example

[43].

It is also possible to construct such supermultiplets of form factors of protected op-

erators. The construction involves not only the supersymmetrisation of multi-particle

states, but also the supersymmetrisation of the operator of the form factor. Similar to

superamplitudes, the super form factors have a supermomentum-conserving delta func-

tion alongside a momentum-conserving one. This supermomentum-conserving delta

function equates the total on-shell supermomentum of the particles to the supermo-

mentum carried by the operator and the form factors of the component fields can be

extracted from an expansion in fermionic variables.

The derivation of form factors presented here is very close to the derivation of superam-

plitudes and it uses the supersymmetry Ward identities for correlation functions of the

form 〈0|Φ(1) · · ·Φ(n)O|0〉. These Ward identities impose that the form factor must

be equal to a supermomentum-conserving delta function multiplied by a bosonic factor

which can be easily derived for MHV form factors.

3.3.1 BPS Multiplets in MSYM

In a supersymmetric quantum field theory, there is a very important special operators,

namely BPS operators. Such operators are annihilated by a subset of the supersym-

metry generators. MSYM is a theory with 16 supercharges and operators which are

annihilated by half of these are called half-BPS. For instance, the operators

Trφ12φ12(x) , (3.31)

which is considered in the whole of the present chapter is such an operator. Since the

SUSY variation of a scalar operator is

δξ φ
AB = −i

√
2
(

ξα,AλBα − ξα,BλAα − ǫABCD ξ̄α̇,C λ̄
α̇
D

)

, (3.32)
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half of the possible independent transformation parameters ξ leave the operator

Trφ12φ12 invariant. Other operators, which are annihilated by a smaller fraction of all

possible SUSY transformations are called 1/8-BPS, etc. depending on the number of

such directions in the transformation parameter space.

BPS operators are also called protected operators, since supersymmetry protects them

from renormalisation. They are not renormalised and their scaling dimensions do not

receive anomalous corrections.

The operator Trφ12φ12 is embedded in the chiral half of the stress-tensor multiplet

together with the on-shell Lagrangian and other fermionic fields. This multiplet is

explicitly given as [95]:

T (x, θ+) = Tr(φ++φ++) + i2
√
2θ+a

α Tr(λ+α
a φ++)

+ θ+a
α ǫabθ

+b
β Tr

(

λ+c(αλ+β)
c − i

√
2Fαβφ++

)

− θ+a
α ǫαβθbβTr

(

λ+γ
(a λ

+
b)γ − g

√
2[φ+C

(a , φ̄C +b)]φ
++
)

− 4

3
(θ+)3 aα Tr

(

Fα
β λ

+β
a + ig[φ+B

a , φ̄BC ]λ
Cα
)

+
1

3
(θ+)4 L . (3.33)

Notice that the (θ+)0 component is nothing but the scalar operator Tr(φ++φ++),

whereas the (θ+)4 component is the on-shell Lagrangian. The field φ++ is related

to the scalar φAB through projection onto harmonic variables:

φ++ = −1

2
u+a
A ǫab u

+b
B φAB . (3.34)

The operator T (x, θ+) is the chiral part of the full stress-tensor multiplet operator,

T (x, θ+, θ̄−, u), obtained by setting θ− = 0. The full multiplet can be written in terms

of the vector multiplet of MSYM as

T (x, θ+, θ̃−) := Tr(W++W++)

= eiθ
+Q++iθ̃−Q̄−

Tr(φ++φ++)(x) e−iθ+Q+−iθ̃−Q̄−

(3.35)

= Tr(φ++φ++) + (θ+)4L+ (θ̃−)
4L̃+ (θ+σµθ̃−)(θ

+σν θ̃−)Tµν + · · · ,

where only some terms of the full multiplet are indicated in the expansion in the chiral

as well as anti-chiral variables θ+ and θ̃−.

The advantage of the chiral part over the full multiplet is that the supersymmetry

algebra closes on this multiplet without the need of imposing the equations of motion,

whereas this is not true for the full mutiplet. However, as far as the tree-level form
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factors are concerned, this does not raise any problems.

The multiplet T (x, θ+, θ̃−) takes its name from its spin-2 component which is the stress-

tensor of MSYM, which is not present in T (x, θ+) since it is obtained from T (x, θ+, θ̃−)

by setting θ̃− = 0.

The full stress-tensor multiplet T (x, θ+, θ̄−) is an example in a series of half-BPS op-

erators which are constructed from the vector multiplet of MSYM

Tr
[

(W++W++)k
]

, (3.36)

which have a composite operator as their lowest component that transforms in the

[0 k 0] representation of SU(4). In accordance with this, the operator Trφ12φ12 belongs

to the 20-dimensional [0 2 0] representation of the SU(4) R-symmetry.

3.3.2 Form factor of the chiral stress-tensor multiplet

In this Section, the form factors of the chiral supersymmetric operator T (x, θ+) are

considered. This is a special case of the form factors of operators belonging to the full

multiplet.

Just as it is the case for the amplitudes, [72, 96–98], Ward identities can be used to

constrain the form of the form factors. They require that the form factors are non-

vanishing only under the support of certain delta functions, such as supermomentum-

conserving delta functions for supersymmetry. This functional form plays the central

role in the construction of the multiplets.

Ward identities associated with a certain symmetry generator s which leaves the vacuum

invariant are obtained in a standard way by expanding the identity

0 = 〈0|[s ,Φ(1) · · ·Φ(n)O ]|0〉 , (3.37)

or

0 = 〈0|Φ(1) · · ·Φ(n) [s , O] |0〉 +
n
∑

i=1

〈0|Φ(1) · · · [s , Φ(i)] · · ·Φ(n)O|0〉 . (3.38)

For instance, by considering s to be the momentum generator P and using [Pµ,O(x)] =

−i∂µO(x) as well as the the action of Q on a single-particle Nair superstate, q|i〉 =
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ηiλi|i〉, one obtains

− i 〈0|Φ(1) · · ·Φ(n) ∂µO(x) |0〉+ (
n
∑

i=1

pi)〈0|Φ(1) · · ·Φ(n)O(x)|0〉 = 0 . (3.39)

Fourier transforming x to Q and integrating by parts one obtains

(q −
n
∑

i=1

pi)F (q; 1, . . . , n) = 0 , (3.40)

where

F (q; 1, . . . , n) :=

∫

d4x e−iqx 〈1 · · ·n|O(x) |0〉 . (3.41)

From this, it follows that

F (q; 1, . . . , n) = 〈0|Φ(1) · · ·Φ(n)O(0) |0〉 = δ(4)(q −
n
∑

i=1

pi)〈1 · · ·n|O(0) |0〉 , (3.42)

where the action of the momentum operator on the operator and the states has been

used to get rid of the space dependence on the matrix element, namely:

〈1 · · ·n|O(x) |0〉 = 〈1 · · ·n| exp (iP )O(0) exp (−iP ) |0〉 . (3.43)

and

〈1 · · ·n| exp (iP ) = exp

(

i
n
∑

i=1

pi

)

〈1 · · ·n| . (3.44)

Then the relation (3.42) immediately follows from the Fourier transform of a phase.

Similarly, for the Ward identities for the harmonic projections Qα
±a, a = 1, 2, of the

Q-supersymmetry generators one obtains

0 = 〈0|Φ(1) · · ·Φ(n)[Q± , T (x, θ+)] |0〉+
n
∑

i=1

〈0|Φ(1) · · · [Q± , Φ(i)] · · ·Φ(n) T (x, θ+) |0〉 .

(3.45)

It is now necessary to discuss how supersymmetry acts on the chiral part of T (x, θ+)

as well as on the states.

In general the supersymmetry algebra closes only up to gauge transformations and

equations of motion, however gauge-invariant operators such as T which, furthermore,

are made only of a subset of all fields, namely φAB, λAα and Fαβ are considered here.

It is an important fact that the algebra of the Q-generators closes off shell on the chiral

part of T [95], and hence these generators can be realised as differential operators. Of
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course, representing the Q̄-generators in terms of differential operators is, in general,

problematic, because the full supersymmetry algebra closes only on shell.

Moreover, restricting to θ− = 0 in order to obtain the chiral operator T (x, θ+) breaks

the Q̄− symmetry, hence this operator does not have a representation. For the Q±-

variation of T (x, θ+), which is unbroken, one can write have,

[Q− , T (x, θ+)] = 0 , [Q+ , T (x, θ+)] = i
∂

∂θ+
T (x, θ+) . (3.46)

Note that since the chiral part of the stress-tensor multiplet is considered, θ̄ is set

to zero and hence the θ̄-dependent terms are dropped in the realisation of Q and Q̄.

Then the first relation is obvious since T (x, θ+) is independent of θ−. This also makes

manifest the fact that all component operators of T (x, θ+) are annihilated by Qα
−a

[95]. On the other hand, Qα
+a relates different components of the supermultiplet, as

the second relation in (3.46) shows.

The super form factor is defined as the super Fourier transform of the matrix element

〈1 · · ·n|T (x, θ+) |0〉, i.e.

FT (q, γ+; 1, . . . , n) :=

∫

d4x d4θ+ e−(iqx+iθ+a
α γα

+a) 〈 1 · · ·n |T (x, θ+) |0〉 , (3.47)

where γα+a is the Fourier-conjugate variable to θ+a
α . Note that there is no γα−a variable,

since θ−a
α has been set to zero in order to define the chiral part of the stress-tensor

multiplet. The Ward identities (3.45) can then be recast as

(

n
∑

i=1

λiη−,i

)

FT (q, γ+; 1, . . . , n) = 0 ,

(

n
∑

i=1

λiη+,i − γ+
)

FT (q, γ+; 1, . . . , n) = 0 , (3.48)

where

η±a,i := ūA±aηA,i , (3.49)

has also been introduced.

The Ward identities (3.48) can be derived from the action on the Q± operator on

the multiplet T (x, θ+), (3.46), and using the fact that that Q|i〉 = ηiλi|i〉 for a Nair

superstate |i〉.

To solve the Ward identities (3.48), the form factors must have the following functional
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form:

FT (q, γ+; 1, . . . , n) = δ(4)(q−
n
∑

i=1

λiλ̃i) δ
(4)
(

γ+−
n
∑

i=1

η+,iλi
)

δ(4)
(

n
∑

i=1

η−,iλi
)

R, (3.50)

for some function R which in principle depends on all bosonic and fermionic variables.

The simplest example is that of the MHV form factor, where the function R has a

particularly simple expression derived in [61], namely

RMHV =
1

〈12〉 · · · 〈n1〉 . (3.51)

Notice that for an NkMHV form factor, R does depend on the fermionic coordinates

with a fermionic degree of 4k. Although, it is possible to further constrain R by using

some of the Q̄-supersymmetries.

More precisely, an inspection of the supersymmetry transformations of the fields reveals

that a Q̄− transformation on the chiral part of the stress-tensor multiplet produces op-

erators which are part of the full stress-tensor multiplet but not of its chiral truncation.

Also, since [Q−, T (x, θ+)] = 0 it is not possible to realise Q̄− such that its anticommu-

tator with Q− gives a translation. One could of course still write a Ward identity for

Q̄−, but this would involve operators of the full multiplet.

On the other hand, the Q̄+-supersymmetry charge moves in the opposite direction of

Q+ across the different components of T (x, θ+), and is therefore realised as Q̄+
α̇ =

−θ+α∂/∂xα̇α.

It is necessary to stress at this point that the supersymmetry algebra on component

fields closes only up to equations of motion and gauge transformations (the latter drop

out for the gauge invariant operators considered here). An important exception is the

subalgebra formed by the Q’s alone which does close off-shell for the fields appearing

in T (x, θ+) [95]. Now using the fact that matrix elements of terms proportional to

equations of motion vanish at tree level, one can argue that for the tree-level form

factors the algebra formed by Q+ and Q̄+ does indeed close and, therefore, can be

realised in the fashion described above. Thus, it is possible to consider the Q̄+ Ward

identity to constrain the function R. It implies, after integrating by parts and using

the fact that Q̄|i〉 = λ̃i
∂
∂ηi

|i〉 for a Nair superstate |i〉,

(

n
∑

i=1

λ̃i
∂

∂η+,i
− q

∂

∂γ+

)

FT (q, γ+; 1, . . . , n) = 0 . (3.52)
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Acting on (3.50), one obtains the following relation for R,

δ(4)(q−
n
∑

i=1

λiλ̃i) δ
(4)
(

γ+−
n
∑

i=1

η+,iλi
)

δ(4)
(

n
∑

i=1

η−,iλi
)

[

(

n
∑

i=1

λ̃i
∂

∂η+,i
− q

∂

∂γ+

)

R

]

= 0 .

(3.53)

Notice that (3.53) implies a realisation of the supersymmetry generators on the form

factor as

Qα
+a =

n
∑

i=1

λαi η+a,i − γα+a , Qα
−a =

n
∑

i=1

λαi η−a,i , (3.54)

whereas for Q̄+a
α̇ ,

Q̄+a
α̇ =

n
∑

i=1

λ̃i,α̇
∂

∂η+a,i
− Qαα̇

∂

∂γα+a
. (3.55)

3.3.3 Examples

In the previous Section, the general form of the supersymmetric form factor defined

in (3.47) have been derived. This expression is given in (3.50), and was obtained

by solving Ward identities related to translations and Q±-supersymmetries. The use

of Q̄+ supersymmetry led to the constraint (3.53) on the function R. For the sake of

illustration, a few examples of component form factors derived from (3.50) are presented

below.

3.3.3.1 Form factor of Tr(φ++φ++)

The first example is the form factor of Tr(φ++φ++), which appears as the (θ+)0-term

in the expansion of T (x, θ+) in (3.33). In this case, since

∫

d4θ+ eiθ
+a
α γα

+a = (γ+)
4 , (3.56)

it is needed to extract the (γ+)
4 component of (3.50). This gives

∫

d4x e−iqx 〈1 · · ·n|Tr(φ++φ++)(x)|0〉 = δ(4)(q −
n
∑

i=1

λiλ̃i) δ
(4)
(

n
∑

i=1

η−a,iλ
α
i

)

R ,

(3.57)

or

〈1 · · ·n|Tr(φ++φ++)(0)|0〉 = δ(4)
(

n
∑

i=1

η−a,iλ
α
i

)

R . (3.58)
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Notice that with the help of (3.58) one can rewrite the supersymmetric form factor

FT (q, γ+; 1, . . . , n) as

FT (q, γ+; 1, . . . , n) = δ(4)(q−
n
∑

i=1

λiλ̃i) δ
(4)
(

γ+−
n
∑

i=1

η+,iλi
)

〈1 · · ·n|T (0, 0)|0〉 , (3.59)

since T (0, 0) := Tr(φ++φ++)(0). In other words, the function R appearing in the

T (x, θ+) form factor can be calculated from the form factor of its lowest component2

Tr(φ++φ++)(0). Similar considerations apply to form factors of other half BPS opera-

tors such as Tr(φ++)n with n > 2.

3.3.3.2 Form factor of the on-shell Lagrangian

As a second important example, the form factor for the on-shell Lagrangian is presented.

This operator is defined as: [95]

L = Tr
[

− 1

2
FαβF

αβ +
√
2gλαA[φAB, λ

B
α ]−

1

8
g2[φAB, φCD][φAB, φCD]

]

. (3.60)

Notice that it contains the self-dual part of Tr(F 2). The on-shell Lagrangian appears as

the (θ+)4 coefficient of the expansion of T (x, θ+) in (3.33). The corresponding Fourier

transform gives
∫

d4θ+ e−iθ+a
α γα

+a(θ+)4 = 1 , (3.61)

i.e. one has to take the O(γ0) component of (3.50). This is simply

〈1 · · ·n|L(0)|0〉 = δ(8)
(

n
∑

i=1

ηiλi
)

·R . (3.62)

It is interesting to note that for an MHV form factor, (3.62) is formally identical to the

tree-level MHV superamplitude, except for a delta function of momentum conservation

which now imposes
∑n

i=1 pi = q rather than the usual momentum conservation of the

particles. This allows us to make an interesting observation for the limit q → 0 in which

this form factor reduces simply to the correspond scattering amplitude. Actually, it

turns out that any form factor with the on-shell Lagrangian L inserted reduces to the

corresponding scattering amplitude in the q → 0 limit, since the insertion of the action

corresponds to differentiating the path-integral for the amplitude with respect to the

coupling [99–101].

2One could arrive at (3.59) in a much more straightforward way by noticing that T (x, θ+a
α ) =

exp(iPx) exp(iQα
+aθ

+a
α )T (0, 0) exp(−iPx) exp(−iQα

+aθ
+a
α ) and using the invariance of the vacuum un-

der supersymmetry and translations.
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Another observation is that for the case of a gluonic state with MHV helicity configura-

tion, (3.62) agrees with the Higgs plus multi-gluon or “φ-MHV” amplitude considered

in [102]. Indeed, if one has a gluonic state, one can effectively replace the on-shell

Lagrangian (3.60) with its first term, the square of the self-dual field strength.

3.3.3.3 Why is the maximally non-MHV form factor so simple?

The simplest tree-level form factor is the MHV form factor, e.g.

〈1+2+ · · · i− · · · j− · · · (n− 1)+n+|Tr(F 2
SD)(0) |0〉 =

〈ij〉4
〈12〉〈23〉 · · · 〈n 1〉 . (3.63)

Interestingly, there are non-MHV form factors whose expression is also remarkably

simple. Consider for example that of the self-dual field strength with an all negative-

helicity gluons state – which will be referred to as the “maximally non-MHV” form

factor. The result for this quantity is [102]

〈1− · · ·n−|Tr(F 2
SD)(0) |0〉 =

q4

[1 2][2 3] · · · [n 1]
. (3.64)

In the following it is shown that the simplicity of (3.64) is determined by the supersym-

metric Ward identity discussed earlier, and is linked to that of the MHV super form

factor (3.51).

Recall from (3.59) that the super form factor of the chiral part of the stress-tensor

multiplet T (x, θ+) has the form

FT = δ(4)(q −
n
∑

i=1

λiλ̃i) δ
(4)
(

γ+ −
n
∑

i=1

η+,iλi
)

Fφ2 , (3.65)

where

Fφ2 := 〈1 · · ·n|Tr(φ++φ++)(0) |0〉 = δ(4)
(

n
∑

i=1

η−,iλi
)

R . (3.66)

For the MHV helicity configuration, the function RMHV is given in (3.51),

FMHV
φ2 =

δ(4)
(
∑n

i=1 η−,iλi
)

〈12〉 · · · 〈n1〉 . (3.67)

One can now use this fact and perform a Grassmann Fourier transform in order to
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derive the maximally non-MHV super form factor,

FNmaxMHV
φ2 =

n
∏

i=1

∫

d4η̃i e
iηi,Aη̃Ai

δ(4)
(
∑n

i=1 η̃
+
i λ̃i
)

[12] · · · [n1] . (3.68)

Thus, the maximally non-MHV super form factor for the chiral part of the stress-tensor

multiplet is

FNmaxMHV
T = δ(4)(q −

n
∑

i=1

λiλ̃i) δ
(4)
(

γ+ −
n
∑

i=1

η+,iλi
)

FNmaxMHV
φ2 . (3.69)

The following discussion focuses on the component corresponding to the self-dual field

strength, which can be obtained from the coefficient of (γ+)
0. This is given, omitting

a trivial delta function of momentum conservation, by

δ(4)
(

n
∑

i=1

η+,iλi
)

n
∏

i=1

∫

d4η̃i e
iηiη̃i

δ(4)
(
∑n

i=1 η̃
+
i λ̃i
)

[12] · · · [n1]

= δ(4)
(

n
∑

i=1

η+,iλi
)

∑

i<j [ij]
∑

k<l[kl]

[12] · · · [n1] η41..η
3
i ..η

3
j ..η

3
k..η

3
l ..η

4
n

=

∑

i<j〈ij〉[ij]
∑

k<l〈kl〉[kl]
[12] · · · [n1] η41 · · · η4n

=
q4

[12] · · · [n1]η
4
1 · · · η4n . (3.70)

Equation (3.70) shows that there is a non-vanishing maximally non-MHV form factor

for the self-dual field strength, whose expression is precisely given by (3.64).

3.3.4 Form factor of the complete stress-tensor multiplet

In this Section the form factor of the the full, non-chiral stress-tensor multiplet

T (x, θ+, θ̃−) is considered , which depends on both θ+ and θ̃− One can parallel this

feature in the states by using a non-chiral description as in [103] with fermionic

variables η+ and η̃−. With this choice, the supersymmetry algebra is realised on

states as

〈 i |Q+ = 〈 i |λiη+,i , 〈 i |Q− = 〈 i |λi
∂

∂η̃−i
,

〈 i |Q̄− = 〈 i |λ̃iη̃−i , 〈 i| Q̄+ = 〈 i |λ̃i
∂

∂η+,i
. (3.71)
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This non-chiral representation can be obtained via a simple Fourier transform of half of

the chiral superspace variables. In terms of the Nair description of states, this amounts

to introducing a new super wavefunction,

Φ(p, η+, η̃
−) :=

∫

d2η− eiη−η̃−Φ(p, η) (3.72)

= g+(p)(η̃−)2 + · · ·+ φ++(η+)
2(η̃−)2 + φ−− + · · ·+ g−(p)(η+)

2 .

As a result, operators and superstates live in a non-chiral superspace. The non-chiral

form factor in this representation is defined as

F(q, γ+, γ̃
−; 1, . . . , n) :=

∫

d4x d4θ+ d4θ̃− e
−i(qx+θ+γ++θ̃−γ̃−) 〈1 · · ·n| T (x, θ+, θ̃−)|0〉 .

(3.73)

The Ward identities for (3.73) are written down by considering the action of supersym-

metry generators on the operator T (x, θ+, θ̃−):

[Q+, T (x, θ+, θ̃−)] = i
∂

∂θ+
T (x, θ+, θ̃−) , [Q−, T (x, θ+, θ̃−)] = −θ̃−

∂

∂x
T (x, θ+, θ̃−) ,

[Q̄−, T (x, θ+, θ̃−)] = − ∂

∂θ̃−
T (x, θ+, θ̃−) , [Q̄+, T (x, θ+, θ̃−)] = iθ+

∂

∂x
T (x, θ+, θ̃−) .

(3.74)

Following closely the derivation of the Ward identities described in the previous section,

one arrives at the following relations for each supersymmetry generator,

Q+ : (η+λ− γ+)F = 0 , Q− :
(

q
∂

∂γ̃−
− λ

∂

∂η̃−

)

F = 0 , (3.75)

Q̄− : (η̃−λ̃− γ̃−)F = 0 , Q̄+ :
(

q
∂

∂γ+
− λ̃

∂

∂η+

)

F = 0 , (3.76)

and hence the form factor in (3.73) takes the form

F = δ(4)(q −
n
∑

i=1

λiλ̃i) δ
(4)
(

γ+ −
n
∑

i=1

η+,iλi
)

δ(4)
(

γ̃− −
n
∑

i=1

η̃−i λ̃i
)

Fnc
φ2 , (3.77)

for some function Fnc
φ2 .

A useful observation is that Fnc
φ2 can be obtained from the corresponding function

introduced in (3.65) for the chiral form factor via a half-Fourier transform on the η and

η̃ variables, as

Fnc
φ2 (λ, λ̃, η+, η̃

−) =

n
∏

i=1

∫

d2η−,i e
iη−,iη̃

−

i Fφ2(λ, λ̃, η+, η−) . (3.78)
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In the remaining part of this section a few applications of this formulation are presented.

The MHV case is the first example, for which one has:

FMHV, nc
φ2 =

n
∏

i=1

∫

d2η−,i e
iη−,iη̃

−

i
δ(4)
(
∑n

i=1 η−,iλi
)

〈12〉 · · · 〈n1〉

=
〈kl〉2

〈12〉 · · · 〈n1〉
n
∏

i 6=k,l

(η̃−i )
2 + · · · . (3.79)

The MHV form factor of Tr(φ+)2 is then obtained by extracting the coefficient of

(γ+)
4(γ̃−)4 in (3.77), and thus it is immediately seen to give the correct answer. The

form factor with an insertion of the chiral Lagrangian L (which includes Tr(F 2
SD)) is

obtained by taking the coefficient of (γ+)
0(γ̃−)4:

FMHV
L = δ(4)

(

n
∑

i=1

η+,iλi
)

FMHV
φ2 =

〈kl〉4
〈12〉 · · · 〈n1〉

(

η2+,kη
2
+,l

n
∏

i 6=k,l

(η̃−i )
2
)

+ · · · , (3.80)

as expected. Finally, in order to obtain the form factor with L̃ (which includes

Tr(F 2
ASD)), one extracts the coefficient of (γ+)

4(γ̃−)0:

FMHV
L̃

= δ(4)
(

n
∑

i=1

η̃−i λ̃i
)

FMHV
φ2 =

∑

i<j〈ij〉[ij]
∑

k<l〈kl〉[kl]
〈12〉 · · · 〈n1〉

n
∏

i=1

(η̃−i )
2

=
q4

〈12〉 · · · 〈n1〉
n
∏

i=1

(η̃−i )
2 , (3.81)

which is indeed also correct. Note that the form factor FMHV
L̃

is the parity conjugate of

the form factor of the self-dual field strength with only positive-helicity gluons, which

is given in equation (3.64), as expected.

3.3.5 Supersymmetric methods

Using the supersymmetric form factors derived in the previous section, it is possible to

uplift the MHV rules in the component form to supersymmetric MHV rules. To do so,

FMHV(1, 2, · · · , n; q) = δ(4)(q −∑i λiλ̃i) δ
(4)(
∑n

i=1 λiηi,−)

〈1 2〉〈2 3〉 · · · 〈n 1〉 , (3.82)

is continued off shell with the standard prescription (3.5) of [3], and used as a vertex in

addition to the standard MHV vertices. Form factors have a single operator insertion,

hence only diagrams with a single form factor MHV vertex are drawn.
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The simplest example produces by supersymmetric MHV rules is the NMHV tree-level

super form factor. It can be computed by summing over all diagrams in Figure 3.7(a),

whose expression is

F (0)
NMHV =

n
∑

i=1

i+n−2
∑

j=i+1

∫

d4Pij

∫

d4ηP A(0)
MHV(i, .., j, Pij)

1

P 2
ij

F (0)
MHV(j+1, .., i−1,−Pij ; q)

= F (0)
MHV

n
∑

i=1

i+n−2
∑

j=i+1

〈i−1 i〉〈j j+1〉
〈i−1 Pij〉〈Pij i〉〈j Pij〉〈Pij j+1〉

1

P 2
ij

δ(4)
(

j
∑

k=i

〈Pij k〉ηAk
)

.(3.83)

It has been also checked that the tree-level N2MHV super form factor up to six points,

obtained using supersymmetric MHV diagrams is independent of the reference spinor

and the relevant components match the split-helicity result presented in Section 3.2.2.1.

As a final remark, it should be possible to prove the MHV vertex expansion at tree

level through a procedure along the lines of [104], namely by using a BCFW recursion

relation with an all-line shift and showing that this is identical to the MHV diagram

expansion.

3.3.6 Supersymmetric recursion relations

The BCFW recursion relations [2, 80] of form factors [61] can be supersymmetrised in

the spirit of [43, 105]. For supersymmetric recursions of the form factors considered

here, it is suitable to work with an [i, j〉 shift, λ̃i → λ̃i+zλ̃j , λj → λj−zλi, ηi → ηi+zηj .

Factorisation requires that each term in the recursion relation must contain one form

factor and one amplitude. Hence, for each kinematic channel it is necessary to sum over

two diagrams, with the form factor appearing either on the left-hand or right-hand side,

see Figure 3.6. The result one obtains by summing over these two classes of diagrams

has the form

F(0) =
∑

a,b

∫

d4Pd4ηP FL(z=zab)
1

P 2
ab

AR(z=zab)

+
∑

c,d

∫

d4Pd4ηP AL(z=zcd)
1

P 2
cd

FR(z=zcd) . (3.84)

One point deserves a special attention, namely the large-z behaviour of the form factor.

Recall that in order to have a recursion relation without boundary terms it is necessary

to have F(. . . p̂i, . . . , p̂j , . . .) → 0 as z → ∞. This important point is discussed in the

following Section. In the form factors considered in this thesis there is no boundary

contributions to the sum of the residues. However, in [66] it was observed that the
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F A

a

ĵ

b

î

q
FA

d

î

c
ĵ

q

Figure 3.6: The two recursive diagrams discussed in the text.

recursion of form factors of Tr(φk12), k > 2, there is indeed a boundary term and it is

related to the form factors with a lower k.

3.4 Vanishing of form factors at large z

3.4.1 Bosonic form factors

In this Section, a generic non-MHV bosonic form factor of the operator Tr(φ2) is con-

sidered and it is proved that, for a [k, l〉 shift

ˆ̃
λk := λ̃k + zλ̃l , λ̂l := λl − zλk , (3.85)

F (z) vanishes as z → ∞ if

(hk, hl) is equal to : (0,+), (+,+), (−,+), (0, 0), (−, 0), (−,−) . (3.86)

The proof is based on the MHV diagram expansion of form factors, and follows closely

that for amplitudes presented in [80].

To begin with, it is immediate to see that an MHV form factor (3.2) with a [k, l〉 shift
vanishes as z → ∞, with the only exception of the case (hk, hl) = (+, 0). Consider now

a generic non-MHV form factor. Each MHV diagram contributing to its expansion is

a product of MHV vertices, times propagators 1/L2. These propagators will either be

independent of z, or vanish when z → ∞. As in [80], the spinors λL = L|ξ̃] associated
to internal legs can also be made z-independent by choosing the reference spinor ξ̃ to be

equal to ξ̃ = λ̃l. Thus, dangerous z-dependent terms can only arise from terms affected

by the shifts in the external legs k and l.

For the cases where (hk, hl) is (±,+) or (0,+), only the denominators acquire z-

dependence, and hence F (z) vanishes at large z. By using anti-MHV diagrams one

arrives at the same result for the case where (hk, hl) is equal to either (−,−) or (−, 0).
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The case (hk, hl) = (0, 0) needs special attention. The case when k and l belong to the

same MHV vertex has already been considered, and leads to a falloff of the diagram as

z → ∞. When k and l belong to different vertices, there will be at least one propagator

depending on z, which will provide a factor of 1/z at large z. The vertex involving leg

l behaves asymptotically as z2/z2 regardless of whether it is an MHV form factor or

a conventional MHV vertex, while all other vertices are independent of z. This proves

that each MHV diagram falls off as 1/z at large z.

The argument described above can also be applied to scattering amplitudes. Shifting

two scalars makes the amplitude vanish as z → ∞ provided that the scalars take the

same SU(4) indices.

3.4.2 Supersymmetric form factors

As it was shown in the previous Section, the bosonic form factor vanishes at infinity

for an [i, j〉 shift if i and j are both scalars. The strategy of this section is to use

supersymmetry to relate the large-z behaviour of generic supersymmetric form factors

to that of form factors with legs i and j being both scalars. This will then prove the

validity of the supersymmetric BCFW recursion relation for all supersymmetric form

factors in fashion similar to [105].

For supersymmetric non-chiral form factor F (λ, λ̃, η+, η̃
−), the [i, j〉 shift is

ˆ̃
λi(z) := λ̃i + zλ̃j , λ̂j := λj − zλi ,

η̂i,+ := ηi,+ + zηj,+ , ˆ̃η−j = η̃−j − zη̃−i . (3.87)

As in [105], a suitable transformation is where

Q̄ζ̃ = ζ̃α̇+Q̄
α̇+ , Qξ = ξ−αQ

α
− , (3.88)

where

ζ̃ =
1

[i j]

(

− λ̃iηj + λ̃jηi

)

, ξ =
1

〈i j〉
(

− λiη̃j + λj η̃i

)

. (3.89)

One can check that their action on the fermionic coordinates ηk,+, η̃
−
k is

eQ̄ζ̃ηk,+ := η′k,+ = ηk,+ − ηi,+
[kj]

[ij]
+ ηj,+

[ki]

[ij]
, (3.90)

eQξ η̃−k := η̃′−k = η̃−k − η̃−i
〈kj〉
〈ij〉 + η̃−j

〈ki〉
〈ij〉 , (3.91)
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and in particular eQ̄ζ̃ηi,+ = eQ̄ζ̃ηj,+ = eQξ η̃−i = eQξ η̃−j = 0. Since the form factor is

invariant under Q̄+ and Q− transformations, i.e. eQ̄ζ̃F = eQξF = F (see (3.75)), one

concludes that

F(λ1, λ̃1, η1,+, η̃
−
1 ; · · · ;λi,

ˆ̃
λi, η̂i,+, η̃

−
i ; · · · ; λ̂j , λ̃j , ηj,+, ˆ̃η−j ; · · · ;λn, λ̃n, ηn,+, η̃−n )

= F(λ1, λ̃1, η
′
1,+, η̃

′−
1 ; · · · ;λi, ˆ̃λi, 0, 0; · · · ; λ̂j , λ̃j , 0, 0; · · · ;λn, λ̃n, η′n,+, η̃′−n ) .

(3.92)

Thus, one can always choose a supersymmetry transformation which sets i and j to be

scalars. It is important to notice that under the [i, j〉 shift, the transformed η′+ and η̃′−

variables are independent of z. The large-z behaviour of F(z) is therefore the same as

that of the bosonic form factor with i and j being scalars. This case was considered in

the previous Section, and shown to fall off as 1/z at large z. Hence the statement is

also true for the shifted supersymmetric form factor F(z). The proof illustrated above

concerned the large-z behaviour of the full non-chiral super form factor, but a very

similar one applies to the form factor in chiral superspace, since the latter is related to

the former by a half-Fourier transform in superspace.

3.5 Loop-level

Also at loop level, the form factors of Trφ12φ12 in MSYM can be computed using very

similar bootstrap procedures to those which are used to compute scattering amplitudes,

such as unitarity cuts [61] and loop-level MHV diagrams [43]. Unitarity cuts are a par-

ticularly efficient method for deriving MHV component form factors with an arbitrary

number of particles. Nevertheless, in this Section supersymmetric MHV rules are used

to compute a one-loop MHV form factor as a demonstration of the methods developed

in the preceeding Sections.

Additionaly, one and two-loop results obtained from generalised unitarity [34, 61] are

quoted. It has been verified in [34] that the two-loop three-particle form factor pre-

sented below exponentiates to a BDS-like form and admits the definition of a remain-

der function. This remainder has interesting connections to hexagonal Wilson loops in

MSYM and Higgs boson amplitudes in QCD, which will be elaborated at the end of

this Section.
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3.5.1 One-loop

General one-loop form factors of the stress-tensor multiplet can be written as a super

sum constructed from MHV vertices. As an example, consider the one-loop MHV super

form factor. Following [106], this can be computed by summing over all diagrams in

Figure 3.7(b), and is given by

F (1)
MHV =

n
∑

i=1

i+n−1
∑

j=i

∫

dDL1

L2
1 + iε

dDL2

L2
2 + iε

∫

d4ηL1

∫

d4ηL2 (3.93)

A(0)
MHV

(

i . . . , j, L1, L2

)

F (0)
MHV(−L2,−L1, j+1, . . . , i−1; q) .

A simple yet illustrative appication, in which the relation (3.93) can be used, is the

Sudakov form factor of the operator Tr (φ++φ++). The emergence of the result obtained

in [61], which involves only a scalar triangle integral can be presented very explicitly.

FA

j

i

q
FA

j

i

q

Figure 3.7: (a) MHV diagram for a tree-level NMHV form factor. (b) MHV diagram
for a one-loop MHV form factor.

For this form factor, one simply has:

A(0)(1, 2, L1, L2) =
δ(4) (p1 + p2 − L1 − L2) δ

(8) (λ1η1 + λ2η2 + λL1ηL1 + λL2ηL2)

〈12〉〈2L1〉〈L1L2〉〈L21〉
(3.94)

and

F (0)(L1, L2) =
δ(4) (q + L1 + L2) δ

(4)
(

γ+ − λ1η
+
1 − λ2η

+
2

)

−〈L1L2〉2
, (3.95)

where γ+ is the supermomentum carried by the operator of the form factor. To perform

the integration over the fermionic coordinates

∫

d4ηL1d
4ηL2 δ

(4)
(

γ+ − λL1η
+
L1

− λL2η
+
L2

)

δ(8) (λ1η1 + λ2η2 + λL1ηL1 + λL2ηL2)

(3.96)

it is useful to change variables to the harmonic projections and write:

d4ηL1d
4ηL2 = d2η+L1

d2η−L1
d2η+L2

d2η−L2
(3.97)
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and

δ(8) (λ1η1 + λ2η2 + λL1ηL1 + λL2ηL2)

= δ(4)
(

λ1η
+
1 + λ2η

+
2 + λL1η

+
L1

+ λL2η
+
L2

)

δ(4)
(

λ1η
−
1 + λ2η

−
2 + λL1η

−
L1

+ λL2η
−
L2

)

.

(3.98)

Moreover, if one is interested with the form factor of Tr (φ++φ++), one has to pick

out the γ+ component of the super form factor, which can also be obtained by setting

γ+ = 0. This simplifies the first delta function to δ(4)(λ1η
+
1 − λ2). Then, under the

support of this delta function it is possible to simplify the integral (3.96) to:

∫

d4ηL1d
4ηL2 δ

(4)
(

λL1η
+
L1

− λL2η
+
L2

)

δ(4)
(

λ1η
+
1 + λ2η

+
2

)

δ(4)
(

λ1η
−
1 + λ2η

−
2 + λL1η

−
L1

+ λL2η
−
L2

)

(3.99)

The η−L1,2
integrals pick the top component in the delta function containing these vari-

ables, with a Jacobian factor of 〈L1L2〉2. The η+L1,2
integrals can also be performed in

terms of a Jacobian to obtain:

〈L1L2〉2〈12〉2(η+1 )2(η+1 )2 , (3.100)

which is the only non-vanishing component of δ(4)
(

λ1η
+
1 + λ2η

+
2

)

. This is compatible

with the fact that one has to saturate the two scalars in the operator with at least two

scalars in the multi-particle state to get a non-zero Sudakov form factor at tree level.

Plugging the result (3.100) of the fermionic integration (3.96) into the expression (3.93),

one obtains the following integrand 3:

2

∫

dDL1

L2
1 + iε

dDL2

L2
2 + iε

〈L1L2〉〈12〉
〈2L1〉〈L21〉

δ(4) (L1 + L2 + p1 + p2) , (3.101)

where

|Li〉 =
Li|η̃]
[L̃iη̃]

, (3.102)

for an arbitrarily chosen reference spinor |η̃] according to the CSW prescription [3].

The precise value of the spinor |L̃1] is irrelevant as the expressions obtained are neutral

with respect to the rescalings of the spinor |Li〉 and the spinor product [L̃iη̃] can be set

to 1.

3the factor of 2 has been insterted manually like in [61] to match the definition of the ‘t Hooft
coupling in the literature [44].
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Setting |η̃] = |1], using momentum conservation and integrating over L1 trivially due

to the momentum-conserving delta function one obtains:

F (1)(1φ++ , 2φ++) = 2

∫

dDL2
q2

L2
2(L2 − p1 − p2)2(L2 − p1)2

= 2

, (3.103)

where [1|L2|1〉 was written as (L2 − p1)
2 and the iǫ prescription of the propagators is

assumed. This is precisely a one-mass triangle integral and reproduces the well-known

result [62], which can also be obtained from unitarity cuts [61].

The form factor or the one-mass triangle integral depends only on a single scale, q2,

where q is the momentum of the leg shown with a double line. It is IR divergent with

a 1/ǫ2 pole in dimensional regularisation and captures the IR divergences of one-loop

amplitudes (box functions) in MSYM.

Higher-point one-loop MHV form factors are given as a combination of triangles and

two-mass-easy box functions:

F (1)(1, . . . , n; q) = F (0)(1, . . . , n; q)



−
n
∑

l=1

(−sl l+1)
ǫ

ǫ2
+
∑

a,b

Fin2me(pa, pb, P,Q)



 ,

(3.104)

where F (1) is the tree-level MHV form factor and Fin2me is the finite part of the two-

mass-easy box functions4, which is what remains after the cancellations between the

triangles and and boxes. The sum over a, b represents all the ordered partitions of

the momenta of the particles, which put pa and pb on the massless corners of the box

function and P,Q are the sums of the momenta in between these. The IR divergences

arise only from neighbouring momenta, as expected.

Supersymmetric generalised unitarity, as well as supersymmetric MHV rules, are easily

applied to form factors. Consider for example a two-particle cut, depicted in Figure

3.8. On one side of the cut there is a tree-level form factor, on the other a tree

scattering amplitude. For the case of a one-loop supersymmetric MHV form factor, the

4See for example [37] for their explicit form.



Chapter 3: Form factors in four dimensions 84

two-particle cut is equal to

F (1)
MHV

∣

∣

∣

sa+1,b−1−cut
=

∫

dLIPS(l1, l2;P )

∫

d4ηl1

∫

d4ηl2 (3.105)

F (0)
MHV(−l2,−l1, b, . . . , a; q)A

(0)
MHV

(

l1, l2, (a+ 1) . . . , (b− 1)
)

,

where the Lorentz-invariant phase-space measure is

dLIPS(l1, l2;P ) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + P ) . (3.106)

The sum over all possible states which can propagate in the loop is automatically

FA

pb − 1

pa + 1

pa + 2

pb

q

pa

Figure 3.8: A two-particle cut diagram for a one-loop form factor.

performed by the fermionic integration. A simple calculation gives

F (1)
MHV

∣

∣

∣

sa+1,b−1−cut
= F (0)

MHV

∫

dLIPS(l1, l2;Pa+1,b−1)
〈a a+ 1〉〈l2 l1〉
〈a l2〉〈l2 a+ 1〉

〈b− 1 b〉〈l1 l2〉
〈b− 1 l1〉〈l1 b〉

,

(3.107)

which reproduces the result derived in [61] using component form factors and ampli-

tudes.

3.5.2 Two loops

Two-loop form factors can be derived through generalised unitarity methods without

major subtleties. Known results include two-loop Sudakov form factor of the half-BPS

operator Tr(φ12φ12) and the form factor with an additional gluon. They are given in

terms of integrals that planar and non-planar, even in the large-Nc limit. The reason

for the non-planar integrals to appear in the leaing Nc term is that the tree-level form

factor is proportional to a delta function in colour space. Considering the unitarity cut

with a tree-level form factor and a one-loop amplitude, including the sub-leading-in-Nc

corrections to the amplitude, it is easy to see that the delta function would form a

colour loop with the sub-leading colour structures of the amplitude and enhance their

order by Nc.

The result for the two-loop Sudakov form factor is known for a few decades [62]. It is
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given by the combination:

F (2)(1φ12 , 2φ12 ; q) = 2

[

4 +

]

, (3.108)

where the figures represent scalar integrals of the drawn topology. Their values are

given below:

= (−q2)−2ǫ

[

1

4ǫ
+

5π2

24ǫ2
+

29

6ǫ
ζ3 +

3

32
π4 +O(ǫ)

]

(3.109)

= (−q2)−2ǫ

[

1

ǫ4
− π2

ǫ2
− 83

3ǫ
ζ3 −

59

120
π4 +O(ǫ)

]

. (3.110)

This result is of uniform transcendentality four and captures correctly the two-loop

divergences of amplitudes.

Wheres it is a relatively simple exercise of generalised unitarity to derive the result

(3.108), the two-loop form factor with a gluon in addition to the scalars, namely

g δ(q − p1 − p2 − p3)F
(2)(1φ12 , 2φ12 , 3

+)

=

∫

d4x

(2π)4
eiq·x〈0|Tr(φ12φ12)(x)|φ12(p1), φ12(p2), g+(p3)〉 , (3.111)

is much more involved. One has to consider considerable more unitarity cuts to nail

down the integrands contributing to this form factor [34]. The result is given as a linear

combination of integrals and evaluates to:

F (2)(1φ12 , 2φ12 , 3
+) = F

(2)
BDS(1φ12 , 2φ12 , 3

+) +R(2)
3 , (3.112)

where F
(2)
BDS is the part that is predicted by the BDS-like exponentiation of the one-loop

form factor and

R(2)
3 = − 2

[

J4

(

−uv
w

)

+ J4

(

−vw
u

)

+ J4

(

−wu
v

)]

− 8

3
∑

i=1

[

Li4
(

1− u−1
i

)

+
log4 ui
4!

]

− 2

[

3
∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[

3
∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

,

(3.113)

with u = s12/q
2, v = s223/q

2 and w = p231/q
2 = −s212/q2 − s223/q

2. The function J4 is
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defined as:

J4(z) := Li4(z)−log(−z)Li3(z)+
log2(−z)

2!
Li2(z)−

log3(−z)
3!

Li1(z)−
log4(−z)

48
. (3.114)

The result (3.108), in particular the remainder function (3.113), can be computed

analytically, as well as bootstrapped from its symbol by imposing symmetry and kine-

matical constraints on it. This result has multiple extremely interesting properties.

One of these was already mentioned in the Introduction. The two-loop form factor

F (2)(1φ12 , 2φ12 , 3
+) captures the maximally transcendental part of the QCD amplitude

H → ggg. The correspondence between the two quantities can be understood by recall-

ing that the half-BPS operator Tr(φ12φ12) sits in the same supersymmetry multiplet

with TrF 2 and observing that computing this form factor is equivalent to to comput-

ing the H → ggg amplitude. Nevertheless, it the matching between the transcendental

parts is an extremely intriguing phenomenon, which certainly deserves further atten-

tion.

The other curious property of the result (3.108), is that the remainder function R(2)
3

has the same symbol as the light-like hexagonal Wilson loop remainder function in a

particular limit [34]. The hexagon remainder function depends on three dual conformal

cross ratios:

u1 =
x213x

2
46

x214x
2
36

u2 =
x224x

2
51

x225x
2
41

u3 =
x226x

2
35

x236x
2
25

, (3.115)

where xij = xi − xj and xi are the coordinates of the vertices of the Wilson loop.

Imposing the constraint u3 = 1−u1−u2 on the remainder function of this Wilson loop

and identifying

u1 ↔ u, u2 ↔ v, u3 ↔ w

yields the remainder function of the form factor F (2)(1φ12 , 2φ12 , 3
+).

This is a very non-trivial result since the normalised Mandelstam invariants of the form

factor have noting to do with the conformal cross ratios parameterising the Wilson loop

remainder function. It would be very interesting to look for similar correspondences

at higher loops and with a greater number of particles and investigate the underlying

principles of this phenomenon.



4 Form factors in
three dimensions

In this Chapter, the Sudakov form factor in ABJM theory is computed up to two loops.

The form factor considered is constructed with a simple, biscalar BPS operator. This

quantity has no UV divergences as the operator is protected, but it is IR divergent.

At one loop, the Sudakov form factor in ABJM is O(ǫ) in dimensional regularisation,

compatible with the fact that the one-loop amplitudes are eitherO(ǫ) (for four particles)

or finite (for more particles).

At two loops, the form factor is expressed in terms of a single non-planar integral. It

has a 1/ǫ2 pole in dimensional regularisation, as expected, and the coefficient of this

pole matches that of the IR-divergent parts of two-loop amplitudes in ABJM.

In addition, a discussion of pure functions in three dimensions is included. It was

observed that upon imposing certain trivalent vertex cut conditions to integrals, such

as the ones used in [59] to construct the four-point amplitude, the integrals become

maximally transcendental. This observation is verified by considering other integrals,

that do not contribute to the form factor. A basis of pure master integrals for this

topology is also included in Appendix E.

4.1 BPS operators

Before considering their form factors, the simple BPS operators are derived in this

Section. Very similar to MSYM, there exist a biscalar BPS operator in ABJM, which

has the form

O = Tr
(

φI φ̄J
)

with I 6= J , (4.1)

and is annihilated by half of the supersymmetry generators.

To see this, one can consider the SUSY variation of O. Setting for example I = 1 and

J = 4, this expands to

δTr
(

φ1φ̄4
)

= Tr
(

δφ1φ̄4 + φ1δφ̄4
)

. (4.2)

87
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Following [107], one uses the transformations:

δφI = i ωIJψJ , (4.3)

δφ̄I = i ψ̄JωIJ . (4.4)

The ωIJ ’s are given in terms of the (2 + 1)-dimensional Majorana spinors, ǫi (i =

1, . . . , 6) which are the supersymmetry generators:

ωIJ = ǫi(Γ
i)IJ , (4.5)

ωIJ = ǫi
(

(Γi)∗
)IJ

, (4.6)

that are anti-symmetric in I, J . The 4× 4 matrices Γi are given by:

Γ1 = σ2 ⊗ 12 , Γ4 = −σ1 ⊗ σ2 , (4.7)

Γ2 = −iσ2 ⊗ σ3 , Γ5 = σ3 ⊗ σ2 , (4.8)

Γ3 = iσ2 ⊗ σ1 , Γ6 = −i12 ⊗ σ2 , (4.9)

and satisfy the following relations,

{

Γi,Γj†
}

= 2δij ,
(

Γi
)

IJ
= −

(

Γi
)

IJ
, (4.10)

1

2
ǫIJKLΓi

KL = −
(

Γj†
)IJ

=
((

Γi
)∗)IJ

, (4.11)

leading to
(

ωIJ
)

α
= ((ωIJ)

∗)α , ωIJ =
1

2
ǫIJKLωKL . (4.12)

Explicitly, ωIJ is given by the following matrix:

ωIJ =













0 −iǫ5 − ǫ6 −iǫ1 − ǫ2 ǫ3 + iǫ4

iǫ5 + ǫ6 0 ǫ3 − iǫ4 −iǫ1 + ǫ2

iǫ1 + ǫ2 −ǫ3 + iǫ4 0 iǫ5 − ǫ6

−ǫ3 − iǫ4 iǫ1 − ǫ2 −iǫ5 + ǫ6 0













. (4.13)

The term φ1δφ̄4 yields

φ1δφ̄4 = φ1
[

−ψ̄1(ǫ3 + iǫ4) + iψ̄2(ǫ1 + iǫ2)− iψ̄3(ǫ5 + iǫ6) + 0
]

. (4.14)
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Therefore, requiring φ1δφ̄4 = 0 the conditions are:

ǫ1 + iǫ2 = 0 ,

ǫ3 + iǫ4 = 0 ,

ǫ5 + iǫ6 = 0 ,

(4.15)

which relate half of the generators with the other half by constraining the components

ω4J = 0.

Note that because of the relations (4.12) which set components of the form ω4L to zero,

the entries ωIJ with I, J ∈ (1, 2, 3) automatically vanish implying that δφI = 0 ⇐⇒
I ∈ (1, 2, 3). This procedure may be iterated to show that generally the operators

Tr
(

φ̄Iφ
J
)

for I 6= J are indeed half-BPS. In the present work the operators under

consideration are of the type

O = Tr (φAφ̄4) , (4.16)

where A 6= 4.

4.2 Sudakov form factor at loop level

In this section the Sudakov form factor of BPS operators presented in the previous

Section is derived at one loop and at two loops. Similar to the Sudakov form factor

in MSYM which is reviewed in Section 3.5, the object considered here capture the

IR divergences of scattering amplitudes in ABJM theory. Moreover, since they are

constructed with a half-BPS operator, they are free of UV divergences.

More precisely the objects of interest are the colour-ordered functions F (q2), defined

in the following way.

〈(φ̄A)ī1i1(p1) (φ
4)i2

ī2
(p2)|Tr(φ̄Aφ4)(0)|0〉 := [1, 2] F (q2) , (4.17)

.

The colour-ordered form factors are normalised to unity at tree level:

F (0)(q2) = 1 . (4.18)
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F
q

φ4(p2)

φ̄A(p1)

ℓ1

ℓ2

Figure 4.1: The q2 cut of the Sudakov form factor. Note that the amplitude on the
right-hand side of the cut is summed over all possible colour orderings.

4.2.1 One-loop Sudakov form factor in ABJM

At one loop it is possible to determine the integrand of the form factor from a single

unitarity cut in the q2 channel. As shown in Figure 4.1, on one side of the cut there

is the Sudakov form factor and on the other side the complete four-point amplitude,

both at tree level. The colour-ordered tree amplitude is given in (2.72). Let us work

out the colour factor first. It is given by

δ
īℓ2
īℓ1
δ
iℓ1
iℓ2

(δī1
ī2
δi2iℓ1

δ
īℓ1
īℓ2
δ
iℓ2
i1

− δī1
īℓ2
δi2i1δ

īℓ1
ī2
δ
iℓ2
iℓ1

) = (N ′ −N)δī1
ī2
δi2i1 . (4.19)

Obviously, the one-loop form factor vanishes identically in ABJM theory, because in

this case N ′ = N .

We now consider the kinematic part. Since the operator is built solely out of scalars,

only the four-point scalar amplitude can appear in the cut. To match the particles of

the tree amplitude in Figure 4.1, we pick the (η1)
1(ηℓ1)

3(ηℓ2)
2(η2)

0 component from the

δ6(Q) to write the q2 cut of the one-loop form factor as:

δ(6)(Q)
∣

∣

(η1)1(ηℓ1 )
3(ηℓ2 )

2(η2)0

〈1 2〉〈2 ℓ1〉
=

〈ℓ1 ℓ2〉2〈1 ℓ1〉
〈1 2〉〈2 ℓ1〉

=
〈1 2〉〈1 ℓ1〉
〈2 ℓ1〉

= −Tr(ℓ1p1p2)

2(ℓ1 · p2)
, (4.20)

which can be immediately lifted to a full integral as it is the only possible cut of the

form factor. Thus we get,

F (1)(q2) = (N ′ −N)

∫

dDℓ1

iπD/2

Tr(ℓ1p1p2)

ℓ21 (ℓ1 − p2)2(ℓ1 − p1 − p2)2
. (4.21)

The integral in (4.21) is a linear triangle and is ofO(ǫ). Hence, we conclude that the one-

loop Sudakov form factor in ABJ theory vanishes in strictly three dimensions. More-

over, the three-dimensional integrand vanishes in ABJM theory but is non-vanishing

for N 6= N ′ and can (and does) participate in unitarity cuts at two loops in ABJ theory.

Note, that the vanishing of the one-loop form factors in ABJ(M) is consistent with the
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infrared finiteness of one-loop amplitudes in ABJ(M).

4.2.2 Two-loop Sudakov form factor in ABJM

Next, we come to the computation of the two-loop Sudakov form factor. In order to

construct an ansatz for its integrand we will make use of two-particle cuts, and fix

potential remaining ambiguities with various three-particle cuts described in detail in

Sections 4.2.2.2 and 4.2.2.3.

Three-particle cuts are very useful because they receive contributions from planar as

well as non-planar integral functions at the same time, and thus are particularly con-

straining. A special feature of ABJM theory is that all amplitudes with an odd number

of external particles vanish and, as a consequence, all cuts involving such amplitudes

are identically zero [59]. In our case this observation will be important for triple cuts,

where three- and five-particle amplitudes would appear.

A particular type of such cuts, first considered in [59] in the context of loop ampli-

tudes in ABJM, involves three adjacent cut loop momenta meeting at a three-point

vertex. The vanishing of these cuts imposes strong constraints on the form of the loop

integrands. We will discuss and exploit this later in this section, where we will also

make the intriguing observation that integral functions with numerators satisfying such

constraints are transcendental and free of certain unwanted infrared divergences.

4.2.2.1 Two-particle cuts

We begin by considering the cut shown in Figure 4.2, which contains a tree-level Su-

dakov form factor merged with the integrand of the complete one-loop, four-point am-

plitude. The internal particle assignment is fixed and is determined by the particular

operator we consider. The integrand of this cut is schematically given by

F (0)(ℓ̄2, ℓ1)[ℓ2, ℓ1] Ã(1)
(

φ̄A(p1), φ
4(p2), φ̄4(−ℓ1), φA(−ℓ2)

)

, (4.22)

where we picked the relevant component amplitude of the complete one-loop amplitude

Ã(1), given in (2.86), and we recall that the colour factor [a, b] is defined in (2.89).

We begin by working out the colour structures that will appear in the result. Firstly

we consider the planar amplitude (2.87) and combine it with the part of the non-planar

amplitude (2.88) containing I(1, 2,−ℓ1,−ℓ2). Intriguingly, by contracting this with the
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tree-level form factor (given in (4.17) and (4.18)) we obtain a vanishing result:

(

N
(

[1, 2, ℓ1, ℓ2] + [1, ℓ2, ℓ1, 2]
)

− 2[1, 2][ℓ1, ℓ2]
)

[ℓ2, ℓ1] = 0 . (4.23)

We now consider the remaining contributions arising from the non-planar one-loop

amplitude (2.88). There are two possible colour contractions to consider,

c
(1)
NP := 2 [1, 2][ℓ1, ℓ2][ℓ2, ℓ1] = 2N2[1, 2] , (4.24)

and

c
(2)
NP := 2 [ℓ1, 2][1, ℓ2][ℓ2, ℓ1] = 2 [1, 2] . (4.25)

Note that (4.25) is sub-leading in the large N limit, and can be discarded in the large-N

limit. Moreover, the corresponding coefficient actually vanishes which implies that the

two-loop form factor does not have non-planar corrections.

F
q

φ4(p2)

φ̄A(p1)

ℓ1

ℓ2

Figure 4.2: Tree-level form factor glued to the complete one-loop amplitude.

We now need to determine the coefficient of c
(1)
NP. On the two-particle cut ℓ21 = ℓ22 = 0

its integrand is given by the appropriate component tree-level amplitude (4.20) times

a particular box integral (2.88):

C(NP)
1 |s−cut :=

1

2

〈12〉〈1ℓ1〉
〈2ℓ1〉

I(−ℓ2, 2,−ℓ1, 1) + ℓ1 ↔ ℓ2 . (4.26)

Recall that we have to symmetrise in order to include all particle species in the sum over

intermediate on-shell states. Since I(−ℓ2, 2,−ℓ1, 1) is anti-symmetric under ℓ1 ↔ ℓ2 the

complete cut-integrand can be written as1

C(NP)
1 |s−cut :=

1

2

(〈12〉〈1ℓ1〉
〈2ℓ1〉

− 〈12〉〈1ℓ2〉
〈2ℓ2〉

)

I(−ℓ2, 2,−ℓ1, 1) (4.27)

= −1

2

∫

dDℓ3

iπD/2

q2
[

Tr (p1p2ℓ1ℓ3)− q2ℓ23
]

ℓ23 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2
.

1Similarly as done earlier for the complete one-loop amplitude, we include a factor of 1/2 in the
symmetrisation.
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Summarising, the two-particle cut indicates that the two-loop form factor is expressed

in terms of a single crossed triangle with a particular numerator, represented in Figure

4.3,

XT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
q2
[

Tr (p1p2ℓ1ℓ3)− q2ℓ23
]

ℓ21 ℓ
2
2 ℓ

2
3 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2

, (4.28)

so that

C(NP)
1 = −1

2
XT(q2) . (4.29)

For future convenience we will define

xt :=
q2
[

Tr (p1p2ℓ1ℓ3)− q2ℓ23
]

ℓ21 ℓ
2
2 ℓ

2
3 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2

. (4.30)

The result of the evaluation of XT(q2) is quoted in (4.39) and shows that this quantity

has maximal degree of transcendentality. Before evaluating XT(q2), we use triple cuts

in order to confirm the correctness of the ansatz obtained from two-particle cuts.

4.2.2.2 Three-vertex cuts

To confirm the uplift of the two-particle cut to the integral (4.28), we will study addi-

tional cuts. We begin by considering three-point vertex cuts involving three adjacent

legs meeting at a three-point vertex. These cuts were first examined in [59], where

it was observed that they must vanish since there are no three-particle amplitudes in

ABJM theory. Calling k1, k2 and k3 the momenta meeting at the vertex, we have

k1 + k2 + k3 = 0 , k21 = k22 = k23 = 0 . (4.31)

The conditions (4.31) imply that all spinors associated to these momenta are propor-

tional, thus

〈k1 k2〉 = 〈k2 k3〉 = 〈k3 k1〉 = 0 . (4.32)

As an example consider the three-point vertex cut of XT(q2) with momenta ℓ2, ℓ4

and ℓ6 := ℓ2 − ℓ4 (see Figure 4.3 for the labelling of the momenta). Importantly, the

form factor is expected to vanish as the three momenta belonging to a three-point

vertex become null. By rewriting the numerator of (4.28) using only cut momenta, it

is immediately seen that it vanishes, since

Tr
[

p1p2(p1 − ℓ2)(p1 − ℓ6)
]

− q2(p1 − ℓ6)
2 = −Tr

[

p1p2(p1 − ℓ2)ℓ6
]

− q2(p1 − ℓ6)
2

= −Tr(p1p2p1ℓ6) + 4(p1 · p2)(p1 · ℓ6) = 0 , (4.33)
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where we have used 〈ℓ2ℓ6〉 = 0 to set Tr(p1p2ℓ2ℓ6) = 0. It is easy to see that all

other three-vertex cuts of the integral (4.28) vanish in a similar fashion because of the

particular form of its numerator.

Important consequences of these specific properties of the numerator of the integral

function (4.28) are that the result is transcendental as we will show below and is

free of unphysical infrared divergences related to internal three-point vertices. These

divergences appear generically in three-dimensional two-loop integrals with internal

three-vertices even if the external kinematics is massive (unlike in four dimensions) and

it appears that master integrals with appropriate numerators to cancel these peculiar

infrared divergences are a preferred basis for amplitudes and form factors in ABJM.

Related discussions in the context of ABJM amplitudes have appeared in [59, 108].

Note that for form factors we do not have dual conformal symmetry, which gives fur-

ther constraints on the structure of the numerators of integral functions appearing in

amplitudes.

4.2.2.3 Three-particle cuts

The remaining cut we will study is a triple cut of the type illustrated in Figure 4.4.

These cuts may potentially detect additional integral functions which have no two-

particle cuts at all, and are thus very important. Moreover, such cuts are sensitive

to both planar and non-planar topologies. In this triple cut, a tree-level amplitude is

connected to a tree-level form factor by three cut propagators. Due to the vanishing

of amplitudes with an odd number of external legs in the ABJM theory, the triple cut

in question vanishes. We will now check that the triple cut of the two-loop crossed

triangle XT of (4.28), which we have detected using two-particle cuts, is indeed equal

to zero.

To this end, we note that there are two possible ways to perform a triple-cut on XT,

shown in Figures 4.5a and 4.5b. The cut loop momenta are called ℓ2, ℓ5 and ℓ3 and

satisfy

ℓ2 + ℓ5 + ℓ3 = p1 + p2 , ℓ22 = ℓ25 = ℓ23 = 0 . (4.34)

We observe that these two cuts cannot be converted into one another by a simple rela-

belling of the cut momenta because of the non-trivial numerators. The A-cut depicted

in Figure 4.5a of the non-planar integrand is:

XT
∣

∣

3-p cut A
= −q2 〈1 2〉

〈ℓ3 ℓ5〉〈ℓ5 2〉〈1 ℓ3〉
. (4.35)
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After a similar calculation, the B-cut of this integral, depicted in Figure 4.5b, turns

out to be identical to the A-cut:

XT
∣

∣

3-p cut B
= XT

∣

∣

3-p cut A
= −q2 〈1 2〉

〈ℓ3 ℓ5〉〈ℓ5 2〉〈1 ℓ3〉
. (4.36)

A quick way to establish the vanishing of the triple cuts consists in symmetrising in

the particle momenta p1 and p2, which is allowed since the Sudakov form factor is a

function of q2. This symmetrisation gives

− q2〈1 2〉
〈ℓ3 ℓ5〉

[

1

〈ℓ5 2〉〈1 ℓ3〉
− 1

〈ℓ5 1〉〈2 ℓ3〉

]

= − q4

〈1|ℓ5|2〉 〈1|ℓ3|2〉
. (4.37)

This expression is symmetric in ℓ5 and ℓ3. In evaluating the triple cut one has to

introduce a Jacobian proportional to ǫ(ℓ2, ℓ3, ℓ5) [59] which effectively makes this triple

cut vanish upon integration. This implies that the complete answer for the two-loop

form factor in ABJM is proportional XT(q2) and no additional integral functions have

to be introduced.

4.2.2.4 Results and comparison to the two-loop amplitudes

Combining the information from the unitarity cuts discussed above, we conclude that

the two-loop Sudakov form factor in ABJM is given by a single non-planar integral

FABJM(q2) = −2

(

N

k

)2 (

−1

2

)

XT(q2) , (4.38)

where XT(q2) is defined in (4.28) and we have reintroduced the dependence on the

Chern-Simons level k. The integral XT(q2) can be computed by reduction to master

integrals using integration by parts identities. The details of the reductions are provided

in Appendix E. The expansion of the result in the dimensional regularisation parameter

ǫ can then be found using the expressions for the the master integrals (E.18)–(E.21).

Plugging these masters into the reduction (E.15), we arrive at

XT(q2) =

(−q2eγE
µ2

)−2ǫ [
π

ǫ2
+

2π log 2

ǫ
− 4π log2 2− 2π3

3
+O(ǫ)

]

, (4.39)

where γE is the Euler-Mascheroni constant. One comment is in order here. We have

derived (4.39) in a normalisation where the the loop integration measure is written as

dDℓ/(iπD/2). This should be converted to the standard one dDℓ/(2π)D. At two loops,

this implies that (4.39) has to be multiplied by a factor of −1/(4π)D. The result in the
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standard normalisation is then

FABJM(q2) = − 1

(4π)3

(

N

k

)2(−q2eγE
4πµ2

)−2ǫ [
π

ǫ2
+

2π log 2

ǫ
− 4π log2 2− 2π3

3
+O(ǫ)

]

.

(4.40)

We note that F(q2) can be expressed more compactly by introducing a new scale

µ′
2
:= 8π e−γEµ2 , (4.41)

in terms of which we get

FABJM(q2) =
1

64π2

(

N

k

)2(−q2
µ′2

)−2ǫ [

− 1

ǫ2
+ 6 log2 2 +

2π2

3
+ O(ǫ)

]

, (4.42)

which is our final result.

We now discuss two consistency checks that confirm the correctness of (4.42). Firstly,

we recall that the Sudakov form factor captures the infrared divergences of scattering

amplitudes. We now check that (4.42) matches the infrared poles of the four-point

amplitude evaluated in [91, 109]. Here we quote its expression as given in [109]:

A(2)
4 = − 1

16π2
A(0)

4

[

(−s/µ′2)−2ǫ

4ǫ2
+

(−t/µ′2)−2ǫ

4ǫ2
− 1

2
log2

(−s
−t

)

− 4ζ2 − 3 log2 2

]

,

(4.43)

where µ′ is related to µ in the same way as in (4.41). Hence, the Sudakov form

factor (4.42) is in perfect agreement with the form of the infrared divergences of (4.43).

Secondly, we have also checked that the expansion of our result in terms of master

integrals (i.e. the expansion of the two-loop non-planar triangle XT defined in (4.28)) is

identical to that obtained from the Feynman diagram based result of [110]. This implies

that the cut-based calculation of this paper and the Feynman diagram calculation of

[110] agree to all orders in ǫ – even though we have been using cuts in strictly three

dimensions.

4.3 Pure functions in three dimensions

As discussed in Section 4.2.2.2, the integrand xt that appears in the Sudakov form

factor in ABJM has a particular numerator such that all the cuts which isolate a three-

point vertex vanish. We have observed in this example that this property ensures that

the integral XT has a uniform (and maximal) degree of transcendentality – failure to

obey the triple-cut condition, for instance by altering the form of the numerator, would
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result in the appearance of new terms with lower degree of transcendentality. In this

section we present further integrals that vanish in these three-particle cuts and have

maximal degree of transcendentality. These integrals are expected to appear in the

form factor of ABJ theory where cancellations between colour factors such as that in

(4.23), do not occur.

We begin by considering the following planar integral function:

LT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
−q2

[

Tr(p1 ℓ3 p2 ℓ1)− (ℓ1 − p1)
2(ℓ3 − p2)

2
]

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (p1 + p2 − ℓ3)2(ℓ1 − ℓ3)2(ℓ3 − p2)2

=

(−q2eγE
µ2

)−2ǫ [

− π

4ǫ2
− π log 2

ǫ
+ 2π log2 2− 5π3

8
+O(ǫ)

]

,

(4.44)

which is shown in Figure 4.6a. It is easy to see that the three vertex cut {ℓ1, ℓ3, ℓ5}
vanishes, since on this cut the numerator can be placed in the form

〈ℓ1 1〉〈ℓ3 2〉〈1 2〉〈ℓ3 ℓ1〉 , (4.45)

after using a Schouten identity. (4.45) vanishes because 〈ℓ3 ℓ1〉 = 0 on this cut.

A further property of (4.44) emerges when we consider particular triple cuts involving

two adjacent massless legs, which in three dimensions are associated with soft gluon

exchange [59]. With reference to Figure 4.6a, we cut the three momenta ℓ3, ℓ6 and ℓ4.

The cut conditions ℓ23 = ℓ26 = ℓ24 = 0 together with the masslessness of p1 and p2 can

only be satisfied if ℓ6 becomes soft, that is

ℓ6 → 0 , ℓ4 → p1 , ℓ3 → p2 . (4.46)

In this limit, the second term of (4.44) vanishes since ℓ3 − p2 = ℓ6 → 0. The first term

becomes

−q2Tr(p1 ℓ3 p2 ℓ1)
8ǫ(ℓ3, p1, p2)

→ −q2 〈2|ℓ1|1〉
4〈12〉 , (4.47)

where 8ǫ(ℓ3, p1, p2) is the Jacobian.2 After restoring the remaining propagators we are

left with

2ǫ(ℓ1, p1, p2)

ℓ21(ℓ1 − p2)2(q − ℓ1)2
, (4.48)

which reproduces the one-loop integrand of the one-loop form factor, given earlier in

2This Jacobian arises from re-writing the δ-functions of the cut momenta, ℓ23 = ℓ24 = ℓ26 = 0, in
terms of p1, p2 and ℓ6.
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(4.21).

Other examples of integrals with different topologies that satisfy the three-particle cut

condition are depicted in Figures 4.6b and 4.6c. The definitions of the integrals as well

as their values are listed below:

CT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
Tr(p1, p2, ℓ3, ℓ1)

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (ℓ1 − ℓ3)2 (ℓ3 − p2)2

=

(−q2eγE
µ2

)−2ǫ [

− π

4ǫ2
+

7π3

24
+O(ǫ)

]

,

(4.49)

FAN(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
Tr(p1, p2, ℓ3, ℓ1)

ℓ21 ℓ
2
3 (p1 + p2 − ℓ1 − ℓ3)2 (ℓ1 − p1)2 (ℓ3 − p2)2

=

(−q2eγE
µ2

)−2ǫ [

− π

4ǫ2
+

7π3

24
+O(ǫ)

]

.

(4.50)

Note that the ǫ expansion of (4.49) and (4.50) agree up to O(1). It is simple to

show that these integrals satisfy the properties discussed earlier, for example by setting

{ℓ1, ℓ3, ℓ5} on shell in CT and {ℓ1, p1, ℓ5} in FAN and similarly for all other possible

three-vertex cuts.

The reductions of the integrals considered in this section in terms of scalar master

integrals through IBP identities can be found in Appendix E.
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ℓ4

ℓ3

ℓ6

ℓ1

ℓ2

q

p1 p2

Figure 4.3: The crossed triangle integral arising from gluing a tree form factor with the
complete one-loop four-point amplitude. The arrow in the middle denotes the location
where the momentum q = p1+p2 is injected. We call these integrals “crossed triangles”
because they have the topology of the master integral (E.21). Note however that the
latter integral is non-transcendental, while the particular numerator in (4.28) makes
this integral transcendental.

F
q

φA(p2)

φ̄4(p1)

= 0

Figure 4.4: The (vanishing) three-particle cut of the two-loop Sudakov form factor.

ℓ3 ℓ5

ℓ2

q

p1 p2

(a) The A-cut.

ℓ5ℓ3

ℓ2

qp1 p2

(b) The B-cut.

Figure 4.5: The two triple cuts of the crossed triangle, with ℓ2+ℓ3+ℓ5 = q. In the second
figure we have relabelled the loop momenta in order to merge the two contributions.
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q

ℓ1

ℓ4 ℓ3
ℓ5

ℓ6
p1 p2

(a) The LT topology

q

ℓ1

ℓ3
ℓ5

p1 p2

(b) The CT topology

q

ℓ1 ℓ3

ℓ5
p1 p2

(c) The FAN topology

Figure 4.6: The three maximally transcendental integrals considered in (4.44), (4.49)
and (4.50).



5 Conclusion

In this work, the tree and loop-level form factors in MSYM and ABJM theories using

bootstrap methods have been presented. In particular, recursion relations have been

applied to construct all split-helicity form factors of the protected bi-scalar operator

Trφ12φ12 in MSYM. It has been demonstrated with examples how form factors can

be computed as an MHV-diagram expansion. Furthermore, supermultiplets of form

factors have been constructed which involve the supersymmetrisation of the operator

Trφ12φ12 as well as the supersymmetrisation of external multi-particle state. In ABJM

theory, the two-loop Sudakov form factor of the bi-scalar operator has been computed

analytically. As an ingredient of this computation, the sub-leading colour dependence

of one-loop four-particle superamplitudes has been derived.

Thanks to the factorisation properties of form factors, the bootstrap methods work

the same way as they do for scattering amplitudes. The main theme in adopting

these methods to form factors is to augment the set of elementary vertices to include

an elementary form factor vertex. In the MHV diagrams technique, this is done by

including all tree-level MHV form factors in the recursion. For BCFW-type recursion,

the higher-point from factors factorise into a simple form factor and and a scattering

amplitude.

The construction of all-loop integrands using on-shell diagrams such as in [30] rely only

on the factorisation properties of scattering amplitudes. Considering that the form

factors have the same properties, it would be very interesting to see if the addition of

a simple trivalent vertex to the on-shell diagrams of [30] could generate all-loop form

factors or the integrands thereof from an integral over a Grassmannian.

On the other hand, there are essential differences between form factors and scattering

amplitudes. The most important of these is the apparent absence of dual conformal

symmetry. Therefore, the advantages that the dual conformal symmetry brings to the

computation of scattering amplitudes in MSYM are not there for form factors. In

particular, when applying generalised unitarity, non-dual-conformal-invariant integrals

have to be considered. This can be seen from the triangle and non-planar integrals

contributing to the loop-level form factors included in Section 3.5.
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The results presented in this thesis can be carried further on to several natural direc-

tions. Form factors with more particles, higher MHV degree and more loops are very

interesting challenges. In particular, it would be very nice to extend the two loop result

for form factor of the half-BPS operator to three and perhaps to four loops due to a

very curious observation about the two-loop form factor of Trφ12φ12 with two scalars

and a gluon in MSYM. This form factor depends on the following variables, namely

u = s12/q
2, v = s23/q

2 and w = s31/q
2, where sij = (pi + pj)

2 and q is the momentum

carried by the operator, as usual. Obviously momentum conservation relates the three

to each other: u+ v + w = 1.

It turns out that the remainder function of the two-loop correction to the light-like

hexagonal Wilson loop expectation value [51] matches this form factor, when the the

variables u1,2,3 that parameterise the Wilson loop are taken such that they satisfy

u1+u2+u3 = 1. This is a highly surprising phenomenon as the variables u1,2,3 are the

dual conformal cross ratios and have no relation to the Mandelstam invariants of the

form factor. This hints a non-trivial principle that constrains the seemingly unrelated

quantities in this theory. It would be very interesting to see whether such a relationship

exists between other form factors and higher-point Wilson loops in MSYM.

With the higher-loop results for the form factor, it would be possible to check whether

this relation extends to higher loops. In the case where a match is observed, an very in-

teresting problem would be to investigate the underlying principles of this phenomenon.

In MSYM, integrability is being exploited in an increasingly powerful way. It has been

possible to compute tree-level scattering amplitudes through mapping the problem to

a spin chain [20]. These constructions rely on the Yangian symmetry, which includes

dual conformal symmetry - a feature the form factors are lacking. Nevertheless it needs

to be understood how powerful the predictions can be made form factors through

integrability.

There are some open questions left from the analysis of the integrals that contribute

to the Sudakov form factor ABJM, considered in Chapter 4 and Appendix E. It is

known that pure integrals such as the ones considered here satisfy simplified differential

equations [111]. It unclear how the analysis made here through trivalent unitarity cuts

relates to the differential equations satisfied by pure integrals. Moreover, it could be

interesting to construct bases of pure master integrals for more complicated topologies

and attempt to relate these constructions to higher (four) dimensional master integrals.

To conclude, form factors in superconformal gauge theories in three and four dimen-

sions, in particular MSYM and ABJM are special objects, as the scattering amplitudes
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in these theories. They share many properties such as the existence of simple MHV form

factors, maximal transcendentality principle to name a couple. Modern methods such

as recursion relation and MHV diagrams can be used to compute them very efficiently.

Although the computations in this thesis and relevant work [34, 61, 63–66, 110, 112–114]

have verified much of this, there is a large room for further explorations of similarities

and differences between form factors and scattering amplitudes.



A Spinor/helicity in four di-
mensions

Lorentz vectors, which transform under the fundamental representation of the SO(3,1)

Lorentz transformations , can be written as SL(2,C) matrices through the group ho-

momorphism1:

SO(3, 1) → SL(2,C). (A.1)

The map between the linear spaces on which the groups act is done by the σ-matrices:

xµ 7→ xαα̇ = σµ, αα̇xµ, σµ =

{(

1 0

0 1

)

,

(

0 1

1 0

)

,

(

0 −i
i 0

)

,

(

1 0

0 −1

)}

(A.2)

xαα̇ transforms in the (12 ,
1
2) representation of SL(2,C),

xµ 7→ Λµ
νx

ν ⇔ xαα̇ 7→ N(Λ)α
βxββ̇N(Λ)∗β̇ α̇ (A.3)

therefore it carries indices α = 1, 2 and α̇ = 1, 2. The norm of a Lorentz vector is given

by the determinant which is preserved by SL(2,C) transformations.

For massless vectors the determinant of xαα̇ is zero. That is xαα̇ has rank at most one

and it can be written in the following form:

xαα̇ = λαλ̃α̇, λ, λ̃ ∈ C2 (A.4)

λα transform under the fundamental (12 , 0) while λ̃α̇ transform under the

anti-fundamental (0, 12) representations of SL(2,C). The former are called left handed

Weyl spinors and the latter are called right handed spinors. The fundamental and

anti-fundamental representations are complex conjugates of each other. This restricts

λ and λ̃ in (A.4) so that they are the complex conjugates of each other. Therefore the

only freedom in the decomposition (A.4) is the unitary re-scaling:

λ→ eiθλ, λ̃→ e−iθλ̃ (A.5)

1The isomorphism is: SO(3, 1) ∼= SL(2,C)/Z2
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For the complex Minkowski space-time the homomorphism (A.1) takes the following

form:

SO(3, 1;C) → SL(2,C)× SL(2,C). (A.6)

Therefore a 2× 2 complex matrix corresponding to complex Lorentz vector transforms

by the left and right actions of two independent linear matrices.

xµ 7→ Λµ
νx

ν , Λ ∈ SO(3, 1;C) ⇔ xαα̇ 7→ N(Λ)α
βxββ̇M(Λ)∗β̇ α̇, (A.7)

where (N,M) ∈ SL(2,C)×SL(2,C). As a result, the spinors that correspond to massless

complex Lorentz vectors are independent whereas they are the complex conjugates of

each other in the real case.

The decomposition (A.4) is valid also for null complex vectors with the only difference

being that λ and λ̃ are independent of each other. For complex vectors, there is more

freedom in the definition of the corresponding vectors. Namely, one is allowed to do

the following re scaling of the spinors

λ→ tλ λ̃→ 1

t
λ̃ (A.8)

which leave the momentum pµ = σµ, αα̇ invariant.

By Lorentz symmetry the scattering amplitudes have to be functions of the following

spinor products:

〈ij〉 = ǫαβλi, αλj, β [ij] = ǫα̇β̇λ̃i, α̇λ̃j, β̇ (A.9)

where λi and λ̃i are the spinors associated with the momentum of the particle labelled

with i, pi. The brackets are co-variant under the transformations (A.8) and so is the

amplitude. In essence, the weight hi of the particle i under these transformation, which

given by

ĥ =
1

2

(

λ̃i α̇
∂

∂λ̃i α̇
− λαi

∂

∂λαi

)

(A.10)

is the helicity of the particle i. This way of writing scattering amplitudes, and other

quantities that depend on the helicity of the particles, avoids polarisation vectors and

thus eliminates the redundancy in the definition thereof.

There are various identities that are useful for computations in the spinor helicity

formalism. One raises and lowers the spinor indices with the anti-symmetric tensor:

λα = ǫαβλβ , λ̃α̇ = ǫα̇β̇λ̃β̇ (A.11)
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The σ-matrices with upper spinor indices are defined as:

σ̄α̇αµ = ǫαβǫα̇β̇σµ,ββ̇ . (A.12)

The Clifford algebra of the γ-matrices is realised at the level of Weyl spinors with σ

and σ̄ matrices:

{σµαα̇, σ̄ν,α̇β} = 2δβαη
µν {σ̄µ,α̇α, σν

,αβ̇
} = 2δβ̇α̇η

µν (A.13)

Lorentz vectors are converted to bi-spinors via equation (A.2) and bi-spinors are con-

verted into Lorentz vectors by:

pµ =
1

2
Tr
(

pαα̇σ̄
µ α̇β

)

. (A.14)

The dot product of two massless Lorentz vectors can be written in terms of spinor

brackets:

2pi · pj = 〈ij〉[ji]. (A.15)

Moreover, an important identity that is satisfied by the spinor brackets is the Schouten

identity:

〈ij〉λk + 〈ki〉λj + 〈jk〉λi = 0 or [ij]λ̃k + [ki]λ̃j + [jk]λ̃i = 0, (A.16)

which is a consequence of the fact that spinors live in C2 and every third spinor is a

linear combination of two linearly independent vectors.



B Spinor/helicity in three
dimensions

The spinor-helicity formalism in three dimensions is similar to four dimensions As the

homomorphism between the vector and spinor representations of the three-dimensional

spacetime is just

SO(2, 1) → SL(2;C), (B.1)

there only one type of spinors to encode the kinematical data of on-shell processes in

2+1 dimensions. To map the vectors in the (+,−,−) signature, which has been used

throughout this thesis, to the elements of the corresponding Clifford algebra, one can

use the following set of real matrices:

σµαβ =

(

1 0

0 1

)

,

(

0 1

1 0

)

,

(

1 0

0 −1

)

. (B.2)

In this basis a vector pµ(p0, p1, p2) is mapped to the matrix

pαβ = σµαβpµ =

(

p0 − p2 −p1
p1 p0 + p2

)

. (B.3)

The determinant of such a matrix is equal to the norm of the vector, and similar to

the case in four dimensions, the constraint p2 = 0 can be solved by writing pαβ as a

bi-spinor:

pαβ = λαλβ , (B.4)

where λα is a two-component complex vector. The spinor λα corresponding to a null

vector pµ is not unique and the spinor −λαλβ would describe the same vector.

It can be seen that spinors with real components correspond to positive energy vectors,

whereas purely imaginary spinors correspond to negative energy ones. In the “all-

outgoing” convention for scattering processes, the former would correspond to physi-

cally outgoing particles whereas the latter would correspond to incoming particles.

The Lorentz invariant quantities can be constructed by contracting the spinors with

the 2 dimensional Levi-Civita symbol ǫαβ , where the convention ǫ12 = 1 has been used.

The most basic quantity is the spinor bracket 〈ij〉 made out of two spinors λi and λj ,
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and it is defined as

〈ij〉 = ǫαβλ
αλβ . (B.5)

Other invariants constructed from on-shell momenta can be written in terms of the

spinor bracket. For instance the Mandelstam invariant of two particles in a scattering

process is simply

(pi + pj)
2 = 〈ij〉2. (B.6)

Another invariant that can be constructed in three dimensions is the contraction of the

three-dimensional Levi-Civita symbol with three vectors. This can be written as:

ǫµνρp
µ
i p

ν
j p

ρ
k =

1

2
Tr(σµσνσρ)p

µ
i p

ν
j p

ρ
k. (B.7)

It appears often in the integrands of one-loop amplitudes and form factors and in this

thesis it is commonly abbreviated as ǫ(i, j, k). If the vectors are null, then the invariant

factorises as:

ǫ(i, j, k) =
1

2
〈ij〉〈jk〉〈ki〉. (B.8)

. Because the spinors of odd-dimensional spaces have no chirality, the concept of MHV

degree does not exist in the ABJ(M) theories. In fact, all the amplitudes in ABJM

theory come with particle anti-particle pairs of matter and they have the simplicity of

a helicity non-violating amplitude, where there are equal numbers of particles of either

helicity.



C Symmetry generators in
MSYM

For completeness, the representation of generators of the superconformal algebra and

the dual superconformal algebra in which they act on on-shell quantities such as scat-

tering amplitudes, are quoted in this Appendix.

In a notation very close to the one used in [42], where the dual symmetry generators

first have been written down, the realisation of the superconformal algebra psu(2, 2|4)
as superspace transformations is as follows:

Translations:

pαα̇ =
∑

i

λi αλ̃i α̇ (C.1a)

Lorentz transformations:

mαβ =
∑

i

λi(α
∂

∂λ
β)
i

, (C.1b)

mα̇β̇ =
∑

i

λ̃i(α̇
∂

∂λ̃
β̇)
i

(C.1c)

Special conformal transformations:

kαα̇ =
∑

i

∂

∂λαi

∂

∂λ̃α̇i
(C.1d)

Dilatations:

d =
∑

i

[

1

2
λαi

∂

∂λαi
− 1

2
λ̃i,α̇

∂

∂λ̃i α̇
+ 2

]

(C.1e)
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Superconformal boosts:

sαA =
∑

i

∂

∂λi α

∂

∂η,Ai
(C.1f)

s̄Aα̇ =
∑

i

ηi A
∂

∂λ̃iα̇
(C.1g)

Supersymmetry:

qAα =
∑

i

λi αη
A
i (C.1h)

q̄A α̇ =
∑

i

λ̃i α̇
∂

∂ηAi
(C.1i)

R symmetry:

rAB =
∑

i

[

ηAi
∂

∂ηBi
− 1

4
ηCi

∂

∂ηCi

]

(C.1j)

In addition to these, there is a set of “dual” generators that realise another, independent

represenation of N = 4 superconformal algebra. They are the superconformal algebra

acting on the variables xi and θi, in addition to the ordinary on shell space made out

of λ, λ̃, η. The superamplitudes are supported on the hyperspace defined by [42]:

λiλ̃i = xi − xi+1, λαi η
A
i = θAα

i − θAα
i+1 (C.2)

Again, in a notation closely following that of [42] the dual superconformal generators

are:

Dual supersymmetry:

QαA =
∑

i

∂

∂θαA
(C.3a)

Q̄A
α =

∑

i

(

θαA
i

∂

∂xi α̇α
+ ηAi

∂

∂λ̃i α̇

)

(C.3b)

Dual Lorentz transformations:

Mαβ =
∑

i

(

xi (αα̇
∂

∂x
β)
i α̇

+ θAiα
∂

∂θβ A
i

+ λ
(α
i

∂

∂λ
β)
i

)

(C.3c)
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M̄α̇β̇ =
∑

i

(

xαi,(α̇
∂

∂xβ̇α)
+ λ̃i,(α̇

∂

∂λ̃
β̇)
i

)

(C.3d)

Dual R-transformations:

RA
B =

∑

i

(

θαA
i

∂

∂θαB
+ ηAi

∂

∂ηi B
− 1

4
δABθ

αC
i

∂

∂θi αC
− 1

4
ηCi

∂

∂ηi C

)

(C.3e)

Dual dilatations:

D =
∑

i

(

xαα̇i
∂

∂xαα̇i
+

1

2
θαA
i

∂

∂θαA
i

+
1

2
λαi

∂

∂λαi
+

1

2
λ̃α̇i

∂

∂λ̃α̇i

)

(C.3f)

Central charge / Helicity:

C =
∑

i

1

2

(

λαi
∂

∂λαi
− λ̃i α̇

∂

∂λ̃i α̇
− ηAi

∂

∂ηAi

)

(C.3g)

Dual superconformal transformations:

SA
α =

∑

i

(

θBiαθ
β A
i

∂

∂θβ B
i

− xβ̇i αθ
β A
i

∂

∂xββ̇
− λi αθ

γ A
i

∂

∂λγi
− xβ̇i+1,αη

A
i

∂

∂λ̃β̇i

+ θBi+1αη
A
i

∂

∂ηBi

)

(C.3h)

S̄α̇ A =
∑

i

(

xβi α̇
∂

∂θβ A
i

+ λ̃i α̇
∂

∂ηAi

)

(C.3i)

Dual conformal boosts:

Kαα̇ =
∑

i

(

xβ̇i αx
β
i α̇

∂

∂xββ̇i

+ xβiα̇θ
B
iα

∂

∂θβ B
i

+ xβ̇i+1αx
β
i α̇

∂

∂xββ̇i

+ λ̃i α̇θ
B
i+1α

∂

∂ηBi

)

(C.3j)

The ordinary superconformal generators together with the dual superconformal gener-

ators give rise to the Yangian of the superconformal algebra [52], which is an infinite-

dimensional algebra. The generators of this algebra are labelled with “levels”, where

the ordinary superconformal generators belong to level 0 and dual superconformal gen-

erators belong to level 1.



D Non-MHV form factors

In this Appendix some results from the MHV diagram expansion of form factors are

included for comparison with the results of split-helicity recursion relations and the

supersymmetric methods of Chapter 3. In particular, the explicit and rather long ex-

pressions for the N2MHV bosonic form factors with five and six particles are presented.

As the MHV-diagram method requires, their expressions apparently depend on an

auxiliary spinor, |ξ]. However it has numerically been checked that the |ξ] dependence
cancels in the entire expression.

The first example is the NMHV form factor with three gluons F (1φ12 , 2φ12 , 3
−, 4+, 5+).

The sum of all MHV diagrams contributing to this form factor is equal to:

F (1φ12 , 2φ12 , 3
−, 4+, 5+) = − 〈1|4〉2 〈2|3〉 〈3|2|ξ] (〈4|1|ξ] + 〈4|5|ξ])

s23 s45 〈1|5〉 〈4|5〉 (〈1|4|ξ] + 〈1|5|ξ]) 〈2|3|ξ]

− 〈1|3〉2 (〈3|1|ξ] + 〈3|4|ξ] + 〈3|5|ξ]) 〈4|5|ξ]3
s45 s345 〈4|5〉 (〈1|4|ξ] + 〈1|5|ξ]) (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (〈3|4|ξ] + 〈3|5|ξ]) 〈5|4|ξ]

− 〈3|4〉3 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ]) (−[ξ|3|2|ξ]− [ξ|4|2|ξ])
s34 s234 〈1|5〉 〈3|4|ξ] 〈4|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ])

+
〈2|3〉 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ]) 〈3|2|ξ] (〈4|2|ξ] + 〈4|3|ξ])2

s23 s234 〈1|5〉 〈2|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ]) ([ξ|4|2|ξ] + [ξ|4|3|ξ])

− 〈3|4〉3 (−[ξ|3|1|ξ]− [ξ|4|1|ξ]− [ξ|5|1|ξ])
s345 s345 〈4|5〉 (〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ])

+
〈3|4〉3 (−[ξ|3|2|ξ]− [ξ|4|2|ξ]− [ξ|5|2|ξ])

s345 s2 3 4 5 〈4|5〉 (〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ])

+
〈1|2〉 (〈3|4|ξ] + 〈3|5|ξ])2 〈4|5|ξ]3

s45 s345 〈4|5〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) 〈5|4|ξ] (−[ξ|4|3|ξ]− [ξ|5|3|ξ])

− 〈1|4〉2 (〈3|1|ξ] + 〈3|4|ξ] + 〈3|5|ξ])2 (〈4|1|ξ] + 〈4|5|ξ])
s45 s345 〈1|5〉 〈4|5〉 (〈1|4|ξ] + 〈1|5|ξ]) ([ξ|3|1|ξ]− [ξ|4|3|ξ]− [ξ|5|3|ξ])

112
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+

(

〈2|3〉 (〈3|2|ξ] + 〈3|4|ξ] + 〈3|5|ξ])2 〈4|5|ξ]3
)

(

s45 s2345 〈4|5〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) (〈3|4|ξ] + 〈3|5|ξ])
〈5|4|ξ] (−[ξ|4|2|ξ]− [ξ|4|3|ξ]− [ξ|5|2|ξ]− [ξ|5|3|ξ])

)

+
〈2|3〉 (〈1|2|ξ] + 〈1|3|ξ]) 〈3|2|ξ] 〈4|5|ξ]3

s23 s45 〈4|5〉 (〈1|4|ξ] + 〈1|5|ξ]) 〈2|3|ξ] 〈5|4|ξ] ([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ])

− 〈2|3〉 〈3|2|ξ] (〈4|2|ξ] + 〈4|3|ξ]) (〈4|2|ξ] + 〈4|3|ξ] + 〈4|5|ξ])2
s23 s2345 〈4|5〉 〈2|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ]) ([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ])

− 〈1|2〉 〈3|4〉3 ([ξ|5|3|ξ] + [ξ|5|4|ξ])3
s34 s345 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])2

+
〈3|4〉3 (〈1|3|ξ] + 〈1|4|ξ])2 (−[ξ|3|1|ξ]− [ξ|4|1|ξ] + [ξ|5|3|ξ] + [ξ|5|4|ξ])
s34 s345 〈1|5〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])

− 〈3|4〉3 (〈2|3|ξ] + 〈2|4|ξ]) (−[ξ|3|2|ξ]− [ξ|4|2|ξ] + [ξ|5|3|ξ] + [ξ|5|4|ξ])2
s34 s2345 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ]) (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ])

As the next example, the result for the N2MHV form factor with five particles is

reported. Due to the increased MHV degree and the nature of the MHV diagram

method, the expression is considerably larger.

This is a form factor with a split-helicity configuration and the result below should

be compared with the compact result from of the diagrammatic method obtained in

Section 3.2.2.1.

F (1φ12 , 2φ12 , 3
−, 4−, 5+, 6+) = − 〈14〉2 〈23〉 〈3|2|ξ] (〈4|1|ξ] + 〈4|5|ξ] + 〈4|6|ξ])

s23 s456 〈16〉 〈45〉 〈56〉 (〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) 〈2|3|ξ]

−
(

〈13〉2 (〈3|1|ξ] + 〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ]) (〈4|5|ξ] + 〈4|6|ξ])3
)

(

s456 s3456 〈45〉 〈56〉 (〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]
+ 〈1|6|ξ]) (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ]) (〈6|4|ξ] + 〈6|5|ξ])

)

+
〈13〉2 (〈3|1|ξ] + 〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ]) 〈4|5|ξ]3

s45 s3456 〈16〉 〈45〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈3|4|ξ] + 〈3|5|ξ]) 〈5|4|ξ] (〈6|4|ξ] + 〈6|5|ξ])

−
(

〈12〉 (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])3 〈4|5|ξ]3
)

(

s45 s3456 〈45〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ]) (〈3|4|ξ]
+ 〈3|5|ξ]) 〈5|4|ξ] (〈6|4|ξ] + 〈6|5|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)
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−
(

〈23〉 (〈3|2|ξ] + 〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])2 〈4|5|ξ]3
)

(

s45 s23456 〈45〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ]) (〈3|4|ξ] + 〈3|5|ξ])
〈5|4|ξ] (〈6|4|ξ] + 〈6|5|ξ]) (〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)

− 〈34〉3 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ]) (−[ξ|3|2|ξ]− [ξ|4|2|ξ])
s34 s234 〈16〉 〈56〉 〈3|4|ξ] 〈4|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ])

+
〈23〉 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ]) 〈3|2|ξ] (〈4|2|ξ] + 〈4|3|ξ])2

s23 s234 〈16〉 〈56〉 〈2|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ]) ([ξ|4|2|ξ] + [ξ|4|3|ξ])

− 〈34〉3 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (−[ξ|3|2|ξ]− [ξ|4|2|ξ]− [ξ|5|2|ξ])
s345 s2345 〈16〉 〈45〉 (〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ]) (〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

−
(

〈12〉 (〈3|4|ξ] + 〈3|5|ξ])2 〈4|5|ξ]3
)

(

s45 s345 〈16〉 〈45〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ])
〈5|4|ξ] (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ]) (−[ξ|4|3|ξ]− [ξ|5|3|ξ])

)

−
(

〈23〉 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (〈3|2|ξ] + 〈3|4|ξ] + 〈3|5|ξ])2 〈4|5|ξ]3
)

(

s45 s2345 〈16〉 〈45〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) (〈3|4|ξ] + 〈3|5|ξ]) 〈5|4|ξ]
(〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ]) (−[ξ|4|2|ξ]− [ξ|4|3|ξ]− [ξ|5|2|ξ]− [ξ|5|3|ξ])

)

− 〈23〉 (〈1|2|ξ] + 〈1|3|ξ]) 〈3|2|ξ] 〈4|5|ξ]3
s23 s45 〈16〉 〈45〉 〈2|3|ξ] 〈5|4|ξ] (〈6|4|ξ] + 〈6|5|ξ]) ([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ])

+

(

〈23〉 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) 〈3|2|ξ] (〈4|2|ξ] + 〈4|3|ξ]) (〈4|2|ξ] + 〈4|3|ξ] + 〈4|5|ξ])2
)

(

s23 s2345 〈16〉 〈45〉 〈2|3|ξ] (〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ])
(〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ]) ([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ])

)

+
〈12〉 〈34〉3 ([ξ|5|3|ξ] + [ξ|5|4|ξ])3

s34 s345 〈16〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])2 (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

+

〈34〉3 (〈1|2|ξ] + 〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ]) (〈2|3|ξ] + 〈2|4|ξ])
(−[ξ|3|2|ξ]− [ξ|4|2|ξ] + [ξ|5|3|ξ] + [ξ|5|4|ξ])2

(

s34 s2345 〈16〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])
(〈5|2|ξ] + 〈5|3|ξ] + 〈5|4|ξ]) (〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)

− 〈34〉3 (−[ξ|3|1|ξ]− [ξ|4|1|ξ]− [ξ|5|1|ξ]− [ξ|6|1|ξ])
s3456 s3456 〈45〉 〈56〉 (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

+
〈34〉3 (−[ξ|3|2|ξ]− [ξ|4|2|ξ]− [ξ|5|2|ξ]− [ξ|6|2|ξ])

s3456 s23456 〈45〉 〈56〉 (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])
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+

(

〈12〉 (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])2 (〈4|5|ξ] + 〈4|6|ξ])3
)

(

s456 s3456 〈45〉 〈56〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ])
(〈6|4|ξ] + 〈6|5|ξ]) (−[ξ|4|3|ξ]− [ξ|5|3|ξ]− [ξ|6|3|ξ])

)

−
(

〈14〉2 (〈3|1|ξ] + 〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])2 (〈4|1|ξ] + 〈4|5|ξ] + 〈4|6|ξ])
)

(s456 s3456 〈16〉 〈45〉 〈56〉 (〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) ([ξ|3|1|ξ]− [ξ|4|3|ξ]− [ξ|5|3|ξ]− [ξ|6|3|ξ]))

+

(

〈23〉 (〈3|2|ξ] + 〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])2 (〈4|5|ξ] + 〈4|6|ξ])3
)

(

s456 s23456 〈45〉 〈56〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ]) (〈3|4|ξ] + 〈3|5|ξ] + 〈3|6|ξ])
(〈6|4|ξ] + 〈6|5|ξ]) (−[ξ|4|2|ξ]− [ξ|4|3|ξ]− [ξ|5|2|ξ]− [ξ|5|3|ξ]− [ξ|6|2|ξ]− [ξ|6|3|ξ])

)

+

(

〈23〉 (〈1|2|ξ] + 〈1|3|ξ]) 〈3|2|ξ] (〈4|5|ξ] + 〈4|6|ξ])3
)

(

s23 s456 〈45〉 〈56〉 (〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) 〈2|3|ξ] (〈6|4|ξ] + 〈6|5|ξ])
([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ] + [ξ|6|2|ξ] + [ξ|6|3|ξ])

)

−
(

〈23〉 〈3|2|ξ] (〈4|2|ξ] + 〈4|3|ξ]) (〈4|2|ξ] + 〈4|3|ξ] + 〈4|5|ξ] + 〈4|6|ξ])2
)

(

s23 s23456 〈45〉 〈56〉 〈2|3|ξ] (〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])
([ξ|4|2|ξ] + [ξ|4|3|ξ] + [ξ|5|2|ξ] + [ξ|5|3|ξ] + [ξ|6|2|ξ] + [ξ|6|3|ξ])

)

−
(

〈12〉 〈34〉3 ([ξ|5|3|ξ] + [ξ|5|4|ξ] + [ξ|6|3|ξ] + [ξ|6|4|ξ])3
)

(

s34 s3456 〈56〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ])
〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)

+
〈34〉3 (〈1|3|ξ] + 〈1|4|ξ])2 (−[ξ|3|1|ξ]− [ξ|4|1|ξ] + [ξ|5|3|ξ] + [ξ|5|4|ξ] + [ξ|6|3|ξ] + [ξ|6|4|ξ])
s34 s3456 〈16〉 〈56〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])

−
(

〈34〉3 (〈2|3|ξ] + 〈2|4|ξ]) (−[ξ|3|2|ξ]− [ξ|4|2|ξ] + [ξ|5|3|ξ] + [ξ|5|4|ξ] + [ξ|6|3|ξ] + [ξ|6|4|ξ])2
)

(

s34 s23456 〈56〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ]) 〈3|4|ξ] 〈4|3|ξ] (〈5|3|ξ] + 〈5|4|ξ])
(〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)

− 〈12〉 〈34〉3 ([ξ|6|3|ξ] + [ξ|6|4|ξ] + [ξ|6|5|ξ])3
(

s345 s3456 〈45〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ]) (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ])
(〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])2

)

+
〈34〉3 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ])2 (−[ξ|3|1|ξ]− [ξ|4|1|ξ]− [ξ|5|1|ξ] + [ξ|6|3|ξ] + [ξ|6|4|ξ] + [ξ|6|5|ξ])

(

s345 s3456 〈16〉 〈45〉 (〈1|3|ξ] + 〈1|4|ξ] + 〈1|5|ξ] + 〈1|6|ξ])
(〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ]) (〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)

−〈34〉3 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ])
(−[ξ|3|2|ξ]− [ξ|4|2|ξ]− [ξ|5|2|ξ] + [ξ|6|3|ξ] + [ξ|6|4|ξ] + [ξ|6|5|ξ])2

(

s345 s23456 〈45〉 (〈2|3|ξ] + 〈2|4|ξ] + 〈2|5|ξ] + 〈2|6|ξ]) (〈3|4|ξ] + 〈3|5|ξ]) (〈5|3|ξ] + 〈5|4|ξ])
(〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ]) (〈6|2|ξ] + 〈6|3|ξ] + 〈6|4|ξ] + 〈6|5|ξ])

)
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This rather lengthy result has been numerically checked and not only it does not depend

on the reference spinor |ξ] but also it is equal to the much more compact expression

obtained using the zig-zag diagrams.



E Feynman integrals

The appendix chapter includes the details of the evaluation of the Feynman integrals

that are relevant to the two-loop Sudakov form factor in ABJM theory presented in

Chapter 4. These integrals include the XT integral, which is the only integral that is

needed for the Sudakov form factor, as well as other maximally transcendental integrals

in three dimensions LT, CT, FAN. These are defined as:

XT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
q2
[

Tr (p1p2ℓ1ℓ3)− q2ℓ23
]

ℓ21 ℓ
2
2 ℓ

2
3 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2

, (E.1)

LT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
−q2

[

Tr(p1 ℓ3 p2 ℓ1)− (ℓ1 − p1)
2(ℓ3 − p2)

2
]

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (p1 + p2 − ℓ3)2(ℓ1 − ℓ3)2(ℓ3 − p2)2
(E.2)

CT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
Tr(p1, p2, ℓ3, ℓ1)

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (ℓ1 − ℓ3)2 (ℓ3 − p2)2
(E.3)

FAN(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
Tr(p1, p2, ℓ3, ℓ1)

ℓ21 ℓ
2
3 (p1 + p2 − ℓ1 − ℓ3)2 (ℓ1 − p1)2 (ℓ3 − p2)2

(E.4)

All the scalar integrals corresponding to the topologies of XT, LT, CT, FAN are

known to all orders in ǫ in dimensional regularisation. However these integrals have

complicated numerators - typical for maximally transcendental integrals in three di-

mensions. These integrals can be related to the well-known scalar integrals through

IBP identities of Feynman integrals.

The IBP identities for Feynman integrals can be easily derived by multiplying a scalar

integrand by either one of the external momenta or one of the loop momenta and

computing the derivative with respect to one of the loop momenta. This is a total

differential and clearly integrates to zero,

0 =

∫

dLℓ
∂

∂ℓµi

[

kµj I(p, ℓ)
]

, 0 =

∫

dLℓ
∂

∂ℓµi

[

pµj I(p, ℓ)
]

, (E.5)
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assuming the integrand vanishes sufficiently fast at the integration boundaries. Consid-

ering the first of the two equations (E.5), when the derivative acts on the momentum

factor inside the brackets, it reproduces the original integrand I. However when it acts

on the integrand, it increases the index of one of the 1propagators of it.

The bubble integral with generic propagator powers (or indices) is a simple but illus-

trative example. The integral is defined as:

BUB(a1, a2; q
2) =

∫

dLℓ
1

[ℓ2]a1 [(ℓ− q)2]a2
. (E.6)

The IBP identity obtained by multiplying the integrand by ℓ implies a relation between

BUB integrals with different indices

0 = BUB(a1, a2; q
2) +

d− 2a1 − a2 + 1

(a2 − 1)q2
BUB(a1, a2 − 1; q2) +

1

q2
BUB(a1 − 1, a2; q

2)

(E.7)

Complicated scalar numerators that appear in Feynman integrals can be written as

a linear combination of inverse propagators. In other words, Feynman integrals with

complicated numerators can be written as a linear combination of other Feynman in-

tegrals with a unit numerator and some of the indices taking smaller values than those

of the original Feynman integrals.

The integrals with unit numerator in turn can be related to “simpler” integrals using

the IBP identities. The Laporta algorithm defines a sense of simplicity among Feynman

integrals with different indices and uses the IBP identities to rewrite any integral in

terms of master integrals which have the “simplest” indices.

A comment on the simplicity of master integrals is appropriate. Traditionally, master

integrals are chosen such that they have the simplest topology which makes them

easiest to evaluate via well-established methods. However, in [111] it was shown that

it is possible to find a basis of master integrals which have indices such that they are

all pure functions i.e., the coefficients of their Laurent expansion in the dimensional

regularisation parameter have transcendentality weight 2L + n for the O(ǫn) term,

where L is the number of loops. Pure master integrals satisfy a simple differential

equation

∂xi
f = ǫAif , (E.8)

where f is a column matrix collecting all the pure master integrals, xi are the kinemat-

ical invariant that the integrals f depend on and A is a matrix which is independent

of ǫ and has rational entries as functions of the kinematical invariants xi. Using this

differential equation it has been possible to compute pure master integrals for several
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multi-loop processes [115–118].

Nevertheless, the master integrals relevant to the form factors considered in this thesis

are already known all orders in ǫ and it is not necessary to find integrals that satisfy

(E.8). After rewriting any of the integrals (E.1) in terms of integrals with unit nu-

merators but various different indices, one can run any implementation of the Laporta

algorithm and obtain expressions for the original integrals in terms of four masters

integrals.

As an instructive example, the procedure of obtaining the reduction of the integral CT

to master integrals using FIRE, which is an implementation of the Laporta algorithm

in Mathematica, is presented in what follows.

One begins by writing the integral CT in the following form:

CT(q2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
NCT

D1D2D3D4D5D6D7
, (E.9)

where

D1 = ℓ21 (E.10a)

D2 = (ℓ1 − p1 − p2)
2 (E.10b)

D3 = ℓ23 (E.10c)

D4 = (ℓ3 − p1 − p2)
2 (E.10d)

D5 = (ℓ1 − ℓ3)
2 (E.10e)

D6 = (ℓ3 − p2)
2 (E.10f)

D7 = (ℓ1 − p1)
2 (E.10g)

and

NCT = −Tr(12ℓ3ℓ1)

= 2p1 · p2 ℓ3 · ℓ1 − 2p1 · ℓ3 p2ℓ1 + 2p1 · ℓ1 p2 · ℓ3 .
(E.11)

The numerator NCT can be written in terms of the denominators Di:

NCT =
1

2
D1D3 +D2D4 +D1D6 −D2D6 +D3D7 −D4D7 −D1q

2

−D2q
2 −D3q

2 −D4q
2 +D5q

2 +D6q
2 +D7q

2 + (q2)2

(E.12)

Substituting (E.12) into (E.5), one can write the original integral in terms of scalar



Appendix E: Feynman integrals 120

integrals with modified powers of denominators:

CT(q2) = CT(0, 1, 0, 0, 1, 1, 0; q2) +CT(1, 0, 0,−1, 1, 1, 0; q2)

+CT(0, 1, 1, 0, 1, 1, 0; q2)−CT(1, 0, 1, 0, 1, 0, 0; q2)

+CT(1, 1, 0, 0, 1, 1,−1; q2)−CT(1, 1, 1,−1, 1, 1,−1; q2)

− q2CT(0, 1, 1, 0, 1, 1, 0; q2)− q2CT(1, 0, 1, 0, 1, 1, 0; q2)

− q2CT(1, 1, 0, 0, 1, 1, 0; q2)− q2CT(1, 1, 1,−1, 1, 1, 0; q2)

+ q2CT(1, 1, 1, 0, 0, 1, 0; q2) + q2CT(1, 1, 1, 0, 1, 0, 0; q2)

+ q2CT(1, 1, 1, 0, 1, 1,−1; q2) + (q2)2CT(1, 1, 1, 0, 1, 1, 0; q2) ,

(E.13)

where CT(a1, a2, a3, a4, a5, a6, a7; q
2 is a generalisation of CT(q2)

CT(a1, a2, a3, a4, a5, a6, a7; q
2) =

∫

dDℓ1d
Dℓ3

(iπD/2)2
1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7

. (E.14)

Each of the terms that make up CT(q2) in equation (E.13) can be fed into the Laporta

algorithm and be expressed in one of the master integrals for this topology.

Using the implementation FIRE [119], this is done by preparing the IBP identities

according to the manual of the package and running the the function F[] for each of

the integrals in (E.13). For example for CT(0, 1, 0, 0, 1, 1, 0; q2) one calls

F[0,1,0,0,1,1,1,0]

if FIRE is prepared with the definitions of the propagators as in equation (E.10). The

output is a linear combination of integrals of the form

G[{a_1,a_2,a_3,a_4,a_5,a_6,a_7}]

where ai are such thatG(ai) correspond to a master integral which can be obtained from

of equations (E.14) and (E.10) by setting the values of ai that appear in the argument

of G. For example G(0, 1, 1, 0, 1, 0, 0) is equal to the SUNSET master integral.

Below is the summary of the results for the reductions of the integrals listed in (E.1):

XT(q2) =
7(D − 3)(3D − 10)(3D − 8)

2(D − 4)2(2D − 7)
SUNSET(q2)

+ (−q2)5(D − 3)(3D − 10)

2(D − 4)(2D − 7)
TRI(q2) + (−q2)3 D − 4

4(2D − 7)
TrianX(q2)

.

(E.15)



and

LT(q2) =
8− 3D

D − 3
SUNSET(q2) + q2

(

GLASS(q2)−TRI(q2)
)

, (E.16)

CT(q2) = FAN(q2) =

(

1

4ǫ
− 3

2

)

SUNSET(q2) . (E.17)

In D = 3−2ǫ dimensions, the master integrals SUNSET, TRI, TrianX and GLASS

have the following values:

SUNSET(q2) = = −
(−q2
µ2

)−2ǫ Γ
(

1
2 − ǫ

)3
Γ (2ǫ)

Γ
(

3
2 − 3ǫ

) (E.18)

TRI(q2) = = −(−q2)−1

(−q2
µ2

)−2ǫ Γ
(

1
2 − ǫ

)2
Γ (−2ǫ) Γ

(

3
2 + ǫ

)

Γ (2 + 2ǫ)

ǫ(1 + 2ǫ)2Γ
(

1
2 − 3ǫ

)

(E.19)

GLASS(q2) = = (−q2)−1

(−q2
µ2

)−2ǫ Γ
(

1
2 − ǫ

)4
Γ
(

1
2 + ǫ

)2

Γ (1− 2ǫ)2
(E.20)

TrianX(q2) = = (−q2)−3

(−q2
µ2

)−2ǫ

e−2γEǫ

[

4π

ǫ2
+
π(3 + 8 log 2)

ǫ

− 2π

3

(

81 + 4π2 + 6 log 2 (4 log 2− 9)
)

+
π

6

(

−π2(7 + 40 log 2)

+ 8
(

69 + 6 log 2 + 2 log2 2(8 log 2− 27)− 113ζ3
)

)

ǫ+O(ǫ)

]

,

(E.21)

where the conventions of [120] for the integration measure have been used. The first

three of these integrals are planar and their expressions in all orders in ǫ can be easily

obtained by first computing their Mellin-Barnes representations most conveniently us-

ing the AMBRE package [121] and then performing the Mellin-Barnes integrations using

the MB tools, in particular MB.m [120] and barnesroutines.m by David Kosower. The

expansion around ǫ = 0 of the TRI and GLASS topologies has uniform degree of

transcendentality, while this is not the case for the SUNSET and TrianX topologies.

121



References

[1] S. J. Parke and T. Taylor, An Amplitude for n Gluon Scattering, Phys.Rev.Lett.

56 (1986) 2459.

[2] R. Britto, F. Cachazo, and B. Feng, New Recursion Relations for Tree

Amplitudes of Gluons, Nucl.Phys. B715 (2005) 499–522, [hep-th/0412308].

[3] F. Cachazo, P. Svrcek, and E. Witten, MHV vertices and tree amplitudes in

gauge theory, JHEP 0409 (2004) 006, [hep-th/0403047].

[4] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Fusing Gauge Theory

Tree Amplitudes into Loop Amplitudes, Nucl.Phys. B435 (1995) 59–101,

[hep-ph/9409265].

[5] R. Britto, F. Cachazo, and B. Feng, Generalized Unitarity and One-Loop

Amplitudes in N = 4 super-Yang-Mills, Nucl.Phys. B725 (2005) 275–305,

[hep-th/0412103].

[6] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic

S-Matrix. Cambridge University Press, 1966.

[7] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, The S-Matrix in

Twistor Space, JHEP 1003 (2010) 110, [arXiv:0903.2110].

[8] A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Classical

Polylogarithms for Amplitudes and Wilson Loops, Phys.Rev.Lett. 105 (2010)

151605, [arXiv:1006.5703].

[9] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Motivic

Amplitudes and Cluster Coordinates, JHEP 1401 (2014) 091,

[arXiv:1305.1617].

[10] C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, et al., An Automated

Implementation of On-Shell Methods for One-Loop Amplitudes, Phys.Rev. D78

(2008) 036003, [arXiv:0803.4180].

[11] L. Brink, J. H. Schwarz, and J. Scherk, Supersymmetric Yang-Mills Theories,

Nucl.Phys. B121 (1977) 77.

[12] S. Ferrara and B. Zumino, Supergauge Invariant Yang-Mills Theories,

Nucl.Phys. B79 (1974) 413.

[13] L. Avdeev, O. Tarasov, and A. Vladimirov, Vanishing of the three loop charge

renormalization function in a supersymmetric gauge theory, Phys.Lett. B96

(1980) 94–96.

[14] D. Jones, Charge Renormalization in a Supersymmetric Yang-Mills Theory,

Phys.Lett. B72 (1977) 199.

122

http://xxx.lanl.gov/abs/hep-th/0412308
http://xxx.lanl.gov/abs/hep-th/0403047
http://xxx.lanl.gov/abs/hep-ph/9409265
http://xxx.lanl.gov/abs/hep-th/0412103
http://xxx.lanl.gov/abs/0903.2110
http://xxx.lanl.gov/abs/1006.5703
http://xxx.lanl.gov/abs/1305.1617
http://xxx.lanl.gov/abs/0803.4180


[15] M. F. Sohnius and P. C. West, Conformal Invariance in N=4 Supersymmetric

Yang-Mills Theory, Phys.Lett. B100 (1981) 245.

[16] S. L. Adler, J. C. Collins, and A. Duncan, Energy-Momentum-Tensor Trace

Anomaly in Spin 1/2 Quantum Electrodynamics, Phys.Rev. D15 (1977) 1712.

[17] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl.Phys. B72

(1974) 461.

[18] J. M. Maldacena, The Large N limit of Superconformal Field Theories and

Supergravity, Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[19] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, et al., Review of

AdS/CFT Integrability: An Overview, Lett.Math.Phys. 99 (2012) 3–32,

[arXiv:1012.3982].

[20] N. Kanning, T. Lukowski, and M. Staudacher, A Shortcut to General Tree-level

Scattering Amplitudes in N=4 SYM via Integrability, arXiv:1403.3382.

[21] R. Frassek, N. Kanning, Y. Ko, and M. Staudacher, Bethe Ansatz for Yangian

Invariants: Towards Super Yang-Mills Scattering Amplitudes,

arXiv:1312.1693.

[22] J. Broedel, M. de Leeuw, and M. Rosso, A dictionary between R-operators,

on-shell graphs and Yangian algebras, arXiv:1403.3670.

[23] N. Beisert, J. Broedel, and M. Rosso, On Yangian-invariant regularisation of

deformed on-shell diagrams in N=4 super-Yang-Mills theory, arXiv:1401.7274.

[24] L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka, and M. Staudacher, Harmonic

R-matrices for Scattering Amplitudes and Spectral Regularization,

Phys.Rev.Lett. 110 (2013), no. 12 121602, [arXiv:1212.0850].

[25] L. J. Dixon, J. M. Drummond, C. Duhr, and J. Pennington, The four-loop

remainder function and multi-Regge behavior at NNLLA in planar N=4

super-Yang-Mills theory, arXiv:1402.3300.

[26] L. J. Dixon, Calculating Scattering Amplitudes Efficiently, hep-ph/9601359.

[27] E. Witten, Perturbative Gauge Theory as a String Theory in Twistor Space,

Commun.Math.Phys. 252 (2004) 189–258, [hep-th/0312171].

[28] A. Sever and P. Vieira, Symmetries of the N=4 SYM S-matrix,

arXiv:0908.2437.

[29] S. Bauberger, M. Bohm, G. Weiglein, F. A. Berends, and M. Buza, Calculation

of two loop selfenergies in the electroweak standard model,

Nucl.Phys.Proc.Suppl. 37B (1994) 95–114, [hep-ph/9406404].

[30] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov,

et al., Scattering Amplitudes and the Positive Grassmannian, arXiv:1212.5605.

[31] N. Arkani-Hamed and J. Trnka, The Amplituhedron, arXiv:1312.2007.

[32] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka,

The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM, JHEP

1101 (2011) 041, [arXiv:1008.2958].

[33] L. Bianchi, V. Forini, and A. V. Kotikov, On DIS Wilson coefficients in N=4

123

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/1012.3982
http://xxx.lanl.gov/abs/1403.3382
http://xxx.lanl.gov/abs/1312.1693
http://xxx.lanl.gov/abs/1403.3670
http://xxx.lanl.gov/abs/1401.7274
http://xxx.lanl.gov/abs/1212.0850
http://xxx.lanl.gov/abs/1402.3300
http://xxx.lanl.gov/abs/hep-ph/9601359
http://xxx.lanl.gov/abs/hep-th/0312171
http://xxx.lanl.gov/abs/0908.2437
http://xxx.lanl.gov/abs/hep-ph/9406404
http://xxx.lanl.gov/abs/1212.5605
http://xxx.lanl.gov/abs/1312.2007
http://xxx.lanl.gov/abs/1008.2958


super Yang-Mills theory, Phys.Lett. B725 (2013) 394–401, [arXiv:1304.7252].

[34] A. Brandhuber, G. Travaglini, and G. Yang, Analytic two-loop form factors in

N = 4 SYM, JHEP 1205 (2012) 082, [arXiv:1201.4170].

[35] L. F. Alday and J. M. Maldacena, Gluon scattering amplitudes at strong

coupling, JHEP 0706 (2007) 064, [arXiv:0705.0303].

[36] G. Korchemsky, J. Drummond, and E. Sokatchev, Conformal properties of

four-gluon planar amplitudes and Wilson loops, Nucl.Phys. B795 (2008)

385–408, [arXiv:0707.0243].

[37] A. Brandhuber, P. Heslop, and G. Travaglini, MHV amplitudes in N=4 super

Yang-Mills and Wilson loops, Nucl.Phys. B794 (2008) 231–243,

[arXiv:0707.1153].

[38] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, Hexagon Wilson

loop = six-gluon MHV amplitude, Nucl.Phys. B815 (2009) 142–173,

[arXiv:0803.1466].

[39] Z. Bern, L. Dixon, D. Kosower, R. Roiban, M. Spradlin, et al., The Two-Loop

Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory,

Phys.Rev. D78 (2008) 045007, [arXiv:0803.1465].

[40] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl.Phys. B795 (2008) 52–68,

[arXiv:0709.2368].

[41] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, Conformal Ward

identities for Wilson loops and a test of the duality with gluon amplitudes,

Nucl.Phys. B826 (2010) 337–364, [arXiv:0712.1223].

[42] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, Dual

Superconformal Symmetry of Scattering Amplitudes in N = 4 super-Yang-Mills

Theory, Nucl.Phys. B828 (2010) 317–374, [arXiv:0807.1095].

[43] A. Brandhuber, P. Heslop, and G. Travaglini, A Note on dual superconformal

symmetry of the N=4 super Yang-Mills S-matrix, Phys.Rev. D78 (2008)

125005, [arXiv:0807.4097].

[44] Z. Bern, L. J. Dixon, and V. A. Smirnov, Iteration of planar amplitudes in

maximally supersymmetric Yang-Mills theory at three loops and beyond,

Phys.Rev. D72 (2005) 085001, [hep-th/0505205].

[45] C. Anastasiou, Z. Bern, L. J. Dixon, and D. Kosower, Planar amplitudes in

maximally supersymmetric Yang-Mills theory, Phys.Rev.Lett. 91 (2003) 251602,

[hep-th/0309040].

[46] J. M. Henn, S. G. Naculich, H. J. Schnitzer, and M. Spradlin, Higgs-regularized

three-loop four-gluon amplitude in N=4 SYM: exponentiation and Regge limits,

JHEP 1004 (2010) 038, [arXiv:1001.1358].

[47] Z. Bern, J. Carrasco, L. J. Dixon, H. Johansson, and R. Roiban, The Complete

Four-Loop Four-Point Amplitude in N=4 Super-Yang-Mills Theory, Phys.Rev.

124

http://xxx.lanl.gov/abs/1304.7252
http://xxx.lanl.gov/abs/1201.4170
http://xxx.lanl.gov/abs/0705.0303
http://xxx.lanl.gov/abs/0707.0243
http://xxx.lanl.gov/abs/0707.1153
http://xxx.lanl.gov/abs/0803.1466
http://xxx.lanl.gov/abs/0803.1465
http://xxx.lanl.gov/abs/0709.2368
http://xxx.lanl.gov/abs/0712.1223
http://xxx.lanl.gov/abs/0807.1095
http://xxx.lanl.gov/abs/0807.4097
http://xxx.lanl.gov/abs/hep-th/0505205
http://xxx.lanl.gov/abs/hep-th/0309040
http://xxx.lanl.gov/abs/1001.1358


D82 (2010) 125040, [arXiv:1008.3327].

[48] Z. Bern, J. Carrasco, H. Johansson, and R. Roiban, The Five-Loop Four-Point

Amplitude of N=4 super-Yang-Mills Theory, Phys.Rev.Lett. 109 (2012) 241602,

[arXiv:1207.6666].

[49] Z. Bern, M. Czakon, D. Kosower, R. Roiban, and V. Smirnov, Two-loop

iteration of five-point N=4 super-Yang-Mills amplitudes, Phys.Rev.Lett. 97

(2006) 181601, [hep-th/0604074].

[50] C. Anastasiou, A. Brandhuber, P. Heslop, V. V. Khoze, B. Spence, et al.,

Two-Loop Polygon Wilson Loops in N=4 SYM, JHEP 0905 (2009) 115,

[arXiv:0902.2245].

[51] V. Del Duca, C. Duhr, and V. A. Smirnov, The Two-Loop Hexagon Wilson

Loop in N = 4 SYM, JHEP 1005 (2010) 084, [arXiv:1003.1702].

[52] J. M. Drummond, J. M. Henn, and J. Plefka, Yangian symmetry of scattering

amplitudes in N=4 super Yang-Mills theory, JHEP 0905 (2009) 046,

[arXiv:0902.2987].

[53] L. Dolan, C. R. Nappi, and E. Witten, Yangian symmetry in D = 4

superconformal Yang-Mills theory, hep-th/0401243.

[54] G. Korchemsky and E. Sokatchev, Symmetries and analytic properties of

scattering amplitudes in N=4 SYM theory, Nucl.Phys. B832 (2010) 1–51,

[arXiv:0906.1737].

[55] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N = 6

superconformal Chern-Simons-matter theories, M2-branes and their gravity

duals, JHEP 0810 (2008) 091, [arXiv:0806.1218].

[56] J. H. Schwarz, Superconformal Chern-Simons theories, JHEP 0411 (2004) 078,

[hep-th/0411077].

[57] O. Aharony, O. Bergman, and D. L. Jafferis, Fractional M2-branes, JHEP 0811

(2008) 043, [arXiv:0807.4924].

[58] M. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, Four-points

two-loop scattering amplitude in ABJM theory, Fortsch.Phys. 60 (2012)

921–927.

[59] S. Caron-Huot and Y.-t. Huang, The two-loop six-point amplitude in ABJM

theory, JHEP 1303 (2013) 075, [arXiv:1210.4226].

[60] O. T. Engelund and R. Roiban, Correlation functions of local composite

operators from generalized unitarity, JHEP 1303 (2013) 172,

[arXiv:1209.0227].

[61] A. Brandhuber, B. Spence, G. Travaglini, and G. Yang, Form Factors in N = 4

Super Yang-Mills and Periodic Wilson Loops, JHEP 1101 (2011) 134,

[arXiv:1011.1899].

[62] W. van Neerven, Infrared Behavior of on-shell Form Factors in N = 4

Supersymmetric Yang-Mills Field Theory, Z.Phys. C30 (1986) 595.

125

http://xxx.lanl.gov/abs/1008.3327
http://xxx.lanl.gov/abs/1207.6666
http://xxx.lanl.gov/abs/hep-th/0604074
http://xxx.lanl.gov/abs/0902.2245
http://xxx.lanl.gov/abs/1003.1702
http://xxx.lanl.gov/abs/0902.2987
http://xxx.lanl.gov/abs/hep-th/0401243
http://xxx.lanl.gov/abs/0906.1737
http://xxx.lanl.gov/abs/0806.1218
http://xxx.lanl.gov/abs/hep-th/0411077
http://xxx.lanl.gov/abs/0807.4924
http://xxx.lanl.gov/abs/1210.4226
http://xxx.lanl.gov/abs/1209.0227
http://xxx.lanl.gov/abs/1011.1899


[63] L. Bork, D. Kazakov, and G. Vartanov, On form factors in N = 4 sym, JHEP

1102 (2011) 063, [arXiv:1011.2440].

[64] L. Bork, On NMHV form factors in N = 4 SYM theory from generalized

unitarity, JHEP 1301 (2013) 049, [arXiv:1203.2596].

[65] T. Gehrmann, J. M. Henn, and T. Huber, The three-loop form factor in N = 4

super Yang-Mills, JHEP 1203 (2012) 101, [arXiv:1112.4524].

[66] B. Penante, B. Spence, G. Travaglini, and C. Wen, On super form factors of

half-BPS operators in N=4 super Yang-Mills, arXiv:1402.1300.

[67] Z. Bern, L. J. Dixon, and D. A. Kosower, Progress in one loop QCD

computations, Ann.Rev.Nucl.Part.Sci. 46 (1996) 109–148, [hep-ph/9602280].

[68] H. Johansson, D. A. Kosower, and K. J. Larsen, An Overview of Maximal

Unitarity at Two Loops, PoS LL2012 (2012) 066, [arXiv:1212.2132].

[69] L. J. Dixon, A brief introduction to modern amplitude methods,

arXiv:1310.5353.

[70] V. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys.Lett.

B214 (1988) 215.

[71] H. Elvang, Y.-t. Huang, and C. Peng, On-shell superamplitudes in N¡4 SYM,

JHEP 1109 (2011) 031, [arXiv:1102.4843].

[72] M. L. Mangano and S. J. Parke, Multiparton Amplitudes in Gauge Theories,

Phys.Rept. 200 (1991) 301–367, [hep-th/0509223].

[73] V. Del Duca, A. Frizzo, and F. Maltoni, Factorization of tree QCD amplitudes

in the high-energy limit and in the collinear limit, Nucl.Phys. B568 (2000)

211–262, [hep-ph/9909464].

[74] V. Del Duca, L. J. Dixon, and F. Maltoni, New color decompositions for gauge

amplitudes at tree and loop level, Nucl.Phys. B571 (2000) 51–70,

[hep-ph/9910563].

[75] Z. Bern, J. Carrasco, and H. Johansson, New Relations for Gauge-Theory

Amplitudes, Phys.Rev. D78 (2008) 085011, [arXiv:0805.3993].

[76] Z. Bern and D. A. Kosower, Color decomposition of one loop amplitudes in

gauge theories, Nucl.Phys. B362 (1991) 389–448.

[77] T. Bargheer, F. Loebbert, and C. Meneghelli, Symmetries of Tree-level

Scattering Amplitudes in N = 6 Superconformal Chern-Simons Theory,

Phys.Rev. D82 (2010) 045016, [arXiv:1003.6120].

[78] A. E. Lipstein, Integrability of N = 6 Chern-Simons Theory, arXiv:1105.3231.

[79] T. Bargheer, N. Beisert, F. Loebbert, T. McLoughlin, N. Beisert, et al.,

Conformal Anomaly for Amplitudes in N = 6 Superconformal Chern-Simons

Theory, J.Phys. A45 (2012) 475402, [arXiv:1204.4406].

[80] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct Proof of Tree-Level

Recursion Relation in Yang-Mills Theory, Phys.Rev.Lett. 94 (2005) 181602,

[hep-th/0501052].

[81] A. Brandhuber, B. Spence, and G. Travaglini, Tree-Level Formalism, J.Phys.

126

http://xxx.lanl.gov/abs/1011.2440
http://xxx.lanl.gov/abs/1203.2596
http://xxx.lanl.gov/abs/1112.4524
http://xxx.lanl.gov/abs/1402.1300
http://xxx.lanl.gov/abs/hep-ph/9602280
http://xxx.lanl.gov/abs/1212.2132
http://xxx.lanl.gov/abs/1310.5353
http://xxx.lanl.gov/abs/1102.4843
http://xxx.lanl.gov/abs/hep-th/0509223
http://xxx.lanl.gov/abs/hep-ph/9909464
http://xxx.lanl.gov/abs/hep-ph/9910563
http://xxx.lanl.gov/abs/0805.3993
http://xxx.lanl.gov/abs/1003.6120
http://xxx.lanl.gov/abs/1105.3231
http://xxx.lanl.gov/abs/1204.4406
http://xxx.lanl.gov/abs/hep-th/0501052


A44 (2011) 454002, [arXiv:1103.3477].

[82] D. Gang, Y.-t. Huang, E. Koh, S. Lee, and A. E. Lipstein, Tree-level Recursion

Relation and Dual Superconformal Symmetry of the ABJM Theory, JHEP 1103

(2011) 116, [arXiv:1012.5032].

[83] A. Brandhuber, G. Travaglini, and C. Wen, A note on amplitudes in N = 6

superconformal Chern-Simons theory, JHEP 1207 (2012) 160,

[arXiv:1205.6705].

[84] Y.-t. Huang, C. Wen, and D. Xie, The Positive orthogonal Grassmannian and

loop amplitudes of ABJM, arXiv:1402.1479.

[85] Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal

grassmannian, JHEP 1402 (2014) 104, [arXiv:1309.3252].

[86] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, On-shell

unitarity bootstrap for QCD amplitudes, Nucl.Phys.Proc.Suppl. 160 (2006)

261–270, [hep-ph/0610089].

[87] Z. Bern and Y.-t. Huang, Basics of Generalized Unitarity, J.Phys. A44 (2011)

454003, [arXiv:1103.1869].

[88] T. Bargheer, N. Beisert, and F. Loebbert, Exact Superconformal and Yangian

Symmetry of Scattering Amplitudes, J.Phys. A44 (2011) 454012,

[arXiv:1104.0700].

[89] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, Generalized

Unitarity for N = 4 super-amplitudes, Nucl.Phys. B869 (2013) 452–492,

[arXiv:0808.0491].

[90] A. Agarwal, N. Beisert, and T. McLoughlin, Scattering in Mass-Deformed N=4

Chern-Simons Models, JHEP 0906 (2009) 045, [arXiv:0812.3367].

[91] W.-M. Chen and Y.-t. Huang, Dualities for Loop Amplitudes of N = 6

Chern-Simons Matter Theory, JHEP 1111 (2011) 057, [arXiv:1107.2710].

[92] B. Feng, Y. Jia, and R. Huang, Relations of loop partial amplitudes in gauge

theory by Unitarity cut method, Nucl.Phys. B854 (2012) 243–275,

[arXiv:1105.0334].

[93] A. Brandhuber, B. Spence, and G. Travaglini, From trees to loops and back,

JHEP 0601 (2006) 142, [hep-th/0510253].

[94] R. Britto, B. Feng, R. Roiban, M. Spradlin, and A. Volovich, All split helicity

tree-level gluon amplitudes, Phys.Rev. D71 (2005) 105017, [hep-th/0503198].

[95] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, The

super-correlator/super-amplitude duality: Part I, Nucl.Phys. B869 (2013)

329–377, [arXiv:1103.3714].

[96] M. T. Grisaru, H. Pendleton, and P. van Nieuwenhuizen, Supergravity and the S

Matrix, Phys.Rev. D15 (1977) 996.

[97] M. T. Grisaru and H. Pendleton, Some Properties of Scattering Amplitudes in

Supersymmetric Theories, Nucl.Phys. B124 (1977) 81.

127

http://xxx.lanl.gov/abs/1103.3477
http://xxx.lanl.gov/abs/1012.5032
http://xxx.lanl.gov/abs/1205.6705
http://xxx.lanl.gov/abs/1402.1479
http://xxx.lanl.gov/abs/1309.3252
http://xxx.lanl.gov/abs/hep-ph/0610089
http://xxx.lanl.gov/abs/1103.1869
http://xxx.lanl.gov/abs/1104.0700
http://xxx.lanl.gov/abs/0808.0491
http://xxx.lanl.gov/abs/0812.3367
http://xxx.lanl.gov/abs/1107.2710
http://xxx.lanl.gov/abs/1105.0334
http://xxx.lanl.gov/abs/hep-th/0510253
http://xxx.lanl.gov/abs/hep-th/0503198
http://xxx.lanl.gov/abs/1103.3714


[98] H. Elvang, D. Z. Freedman, and M. Kiermaier, SUSY Ward identities,

Superamplitudes, and Counterterms, J.Phys. A44 (2011) 454009,

[arXiv:1012.3401].

[99] K. A. Intriligator, Bonus symmetries of N=4 superYang-Mills correlation

functions via AdS duality, Nucl.Phys. B551 (1999) 575–600, [hep-th/9811047].

[100] B. Eden, P. S. Howe, C. Schubert, E. Sokatchev, and P. C. West, Extremal

correlators in four-dimensional SCFT, Phys.Lett. B472 (2000) 323–331,

[hep-th/9910150].

[101] B. Eden, C. Schubert, and E. Sokatchev, Three loop four point correlator in

N=4 SYM, Phys.Lett. B482 (2000) 309–314, [hep-th/0003096].

[102] L. J. Dixon, E. N. Glover, and V. V. Khoze, MHV rules for Higgs plus

multi-gluon amplitudes, JHEP 0412 (2004) 015, [hep-th/0411092].

[103] Y.-t. Huang, Non-Chiral S-Matrix of N=4 Super Yang-Mills, arXiv:1104.2021.

[104] H. Elvang, D. Z. Freedman, and M. Kiermaier, Proof of the MHV vertex

expansion for all tree amplitudes in N=4 SYM theory, JHEP 0906 (2009) 068,

[arXiv:0811.3624].

[105] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, What is the Simplest Quantum

Field Theory?, JHEP 1009 (2010) 016, [arXiv:0808.1446].

[106] A. Brandhuber, B. J. Spence, and G. Travaglini, One-loop gauge theory

amplitudes in N=4 super Yang-Mills from MHV vertices, Nucl.Phys. B706

(2005) 150–180, [hep-th/0407214].

[107] S. Terashima, On M5-branes in N = 6 Membrane Action, JHEP 0808 (2008)

080, [arXiv:0807.0197].

[108] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, Scattering

in ABJ theories, JHEP 1112 (2011) 073, [arXiv:1110.0738].

[109] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, Scattering

Amplitudes/Wilson Loop Duality In ABJM Theory, JHEP 1201 (2012) 056,

[arXiv:1107.3139].

[110] D. Young, Form Factors of Chiral Primary Operators at Two Loops in ABJ(M),

JHEP 1306 (2013) 049, [arXiv:1305.2422].

[111] J. M. Henn, Multiloop integrals in dimensional regularization made simple,

arXiv:1304.1806.

[112] R. H. Boels, B. A. Kniehl, O. V. Tarasov, and G. Yang, Color-kinematic Duality

for Form Factors, JHEP 1302 (2013) 063, [arXiv:1211.7028].

[113] T. Huber, The Sudakov form factor to three loops in N=4 super Yang-Mills,

PoS LL2012 (2012) 026, [arXiv:1210.1339].

[114] J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a

Y-system, JHEP 1011 (2010) 104, [arXiv:1009.1139].

[115] J. M. Henn, K. Melnikov, and V. A. Smirnov, Two-loop planar master integrals

for the production of off-shell vector bosons in hadron collisions,

128

http://xxx.lanl.gov/abs/1012.3401
http://xxx.lanl.gov/abs/hep-th/9811047
http://xxx.lanl.gov/abs/hep-th/9910150
http://xxx.lanl.gov/abs/hep-th/0003096
http://xxx.lanl.gov/abs/hep-th/0411092
http://xxx.lanl.gov/abs/1104.2021
http://xxx.lanl.gov/abs/0811.3624
http://xxx.lanl.gov/abs/0808.1446
http://xxx.lanl.gov/abs/hep-th/0407214
http://xxx.lanl.gov/abs/0807.0197
http://xxx.lanl.gov/abs/1110.0738
http://xxx.lanl.gov/abs/1107.3139
http://xxx.lanl.gov/abs/1305.2422
http://xxx.lanl.gov/abs/1304.1806
http://xxx.lanl.gov/abs/1211.7028
http://xxx.lanl.gov/abs/1210.1339
http://xxx.lanl.gov/abs/1009.1139


arXiv:1402.7078.

[116] J. M. Henn, A. V. Smirnov, and V. A. Smirnov, Evaluating single-scale and/or

non-planar diagrams by differential equations, arXiv:1312.2588.

[117] J. M. Henn and V. A. Smirnov, Analytic results for two-loop master integrals

for Bhabha scattering I, JHEP 1311 (2013) 041, [arXiv:1307.4083].

[118] J. M. Henn, A. V. Smirnov, and V. A. Smirnov, Analytic results for planar

three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP

1307 (2013) 128, [arXiv:1306.2799].

[119] A. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 0810

(2008) 107, [arXiv:0807.3243].

[120] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals,

Comput.Phys.Commun. 175 (2006) 559–571, [hep-ph/0511200].

[121] J. Gluza, K. Kajda, T. Riemann, and V. Yundin, Numerical Evaluation of

Tensor Feynman Integrals in Euclidean Kinematics, Eur.Phys.J. C71 (2011)

1516, [arXiv:1010.1667].

129

http://xxx.lanl.gov/abs/1402.7078
http://xxx.lanl.gov/abs/1312.2588
http://xxx.lanl.gov/abs/1307.4083
http://xxx.lanl.gov/abs/1306.2799
http://xxx.lanl.gov/abs/0807.3243
http://xxx.lanl.gov/abs/hep-ph/0511200
http://xxx.lanl.gov/abs/1010.1667

	Statement of Originality
	Abstract
	Introduction
	MSYM
	MSYM Lagrangian and its symmetries
	Scattering in MSYM
	Hidden symmetries of scattering amplitudes in MSYM

	ABJM
	Comparison to MSYM

	Form factors

	On-shell methods
	Supersymmetry multiplets of scattering amplitudes
	Colour ordering
	Colour structures in MSYM
	Colour structures in ABJM

	Tree-level recursion
	Recursion in four dimensions
	Recursion in three dimensions

	Unitarity
	Traditional Unitarity
	Generalised unitarity cuts of the integrand

	Some results for scattering amplitudes
	Tree-level n-point MHV in four dimensions
	The colour-ordered one-loop MHV superamplitude in four MSYM
	Tree-level amplitudes in ABJM
	The complete one-loop four-point amplitude in ABJM


	Form factors in four dimensions
	MHV form factors of Tr  1212
	Tree-level bootstrap in four dimensions
	MHV diagrams 
	Recursion relations

	Supersymmetric multiplets of form factors
	BPS Multiplets in MSYM
	Form factor of the chiral stress-tensor multiplet
	Examples
	Form factor of the complete stress-tensor multiplet 
	Supersymmetric methods
	Supersymmetric recursion relations

	Vanishing of form factors at large z 
	Bosonic form factors 
	Supersymmetric form factors 

	Loop-level
	One-loop
	Two loops


	Form factors in three dimensions
	BPS operators
	Sudakov form factor at loop level
	One-loop Sudakov form factor in ABJM
	Two-loop Sudakov form factor in ABJM

	Pure functions in three dimensions

	Conclusion
	Spinor/helicity in four dimensions
	Spinor/helicity in three dimensions
	Symmetry generators in MSYM
	Non-MHV form factors
	Feynman integrals
	References





