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ABSTRACT 
 

Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a 
higher risk of important adverse health outcomes such as stroke and death. AF is linked 
to distinct electro-anatomic alterations. The main tool for AF diagnosis is the 
Electrocardiogram (ECG). However, an ECG recorded at a single time point may not 
detect individuals with paroxysmal AF. In this study, we developed machine learning 
models for discrimination of prevalent AF using a combination of image-derived 
radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of 
prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-
differential remodelling by building sex-specific models. Our integrative model including 
radiomics and ECG together resulted in a better performance than ECG alone, 
particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 
0.88, p<0.05) but adding radiomics features, the accuracy of the model was able to 
improve significantly. The sensitivity also increased considerably in women by adding 
the radiomics (0.68 vs 0.79, p<0.05) having a higher detection of AF events. Our findings 
provide novel insights into AF-related electro-anatomic remodelling and its variations by 
sex. The integrative radiomics-ECG model also presents a potential novel approach for 
earlier detection of AF. 
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Introduction 
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is characterized by an 
irregular heart rhythm and often abnormally rapid heart rate. The most common 
complications of AF are increased risk of stroke, heart failure, and death1. These 
complications may be mitigated by early AF detection and initiation of appropriate 
treatments, such as anticoagulation and rate control therapies. 

Cardiac structure and electrical activity are two important, inter-linked aspects of 
cardiac health and disease. The cardiac conduction system is complex and depends on 
the global and local structure of the cardiac chambers. The occurrence of AF is linked to 
distinct electro-anatomic cardiovascular remodeling2. 

Electrical recordings of the heart such as the 12-lead electrocardiograms (ECG) 
provide indications of cardiovascular health. The ECG is a dynamic physiological signal 
that represents the electrical activity of the heart. It is widely used to identify patterns or 
abnormalities in cardiac rhythms and waveforms. ECG recordings are the main clinical 
tool for AF diagnosis3. The best indicators are the absence of the p-wave degenerating 
into small magnitude fibrillatory waves and the irregularity of R-R intervals indicating 
irregular conduction of atrial impulses through the atrioventricular (AV) node to the 
ventricles. The study of the QRS complex, a combination of the Q wave, R wave and S 
wave that represents ventricular depolarization, might also add some information by 
analyzing the height of the amplitude or the size of the interval. But the latter indicator 
might have normal values even when the AF is present4. Furthermore, AF frequently 
occurs intermittently with the characteristic AF-defining features only apparent when an 
individual experiences a paroxysm of AF. Whilst paroxysmal AF is more challenging to 
diagnose, it confers the same adverse risks as individuals continuously in an AF rhythm5.  

Emerging deep learning approaches have shown promise in quantifying complex 
patterns in cardiac electrical activity 6,7. However, there is room for improvement. For 
patients with undiagnosed AF, ischemic stroke may be the first clinical manifestation of 
the condition. AF is detected for first time in approximately one-fourth of patients 
presenting with ischemic stroke8,9. Early detection of AF may enable early intervention 
and prevention of ischemic stroke.  

There are numerous conference challenges, particularly organized by Physionet, 
which aim to address early detection using machine learning techniques10. In spite of the 
successful results, the existing works in the literature do not stratify by sex. This is an 
important consideration given significant sex differential patterns in AF highlighted in 
clinical papers. The estimated prevalence of AF is lower in women, whilst this may reflect 
genuine lower burden of AF in women it may also indicate under-diagnosis in this 
population11. Indeed, women with AF experience higher mortality and ischemic stroke 
and are less often prescribed anticoagulation treatments12. 

Cardiovascular Magnetic Resonance Imaging (CMR) plays an important role in 
the diagnosis of complex cardiac diseases. Recently, the concept of radiomics has 
attracted significant attention in the cardiac imaging community13 due to its ability to 
quantify and analyse large pools of advanced imaging phenotypes, which are descriptive 
of complex shape, size, intensity or textural patterns. Preliminary results have shown the 
promise of CMR radiomics for AF discrimination14.  
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CMR radiomics extracts a large number of quantitative features using data 
characterization algorithms. These techniques are very promising for deeper image 
phenotyping of cardiac structure and tissue15. 

The combination of imaging phenotypes and ECG features for AF detection has 
not been explored in the existing literature. Yet, such an approach may enable integration 
of complementary signals and hence improve AF detection by considering both 
anatomical and electrical alterations. 

In this work, we aim to evaluate the feasibility of combining cardiac imaging with 
ECG features for AF detection considering sex-differential patterns. Integrated risk 
prediction models were built combining CMR radiomics and ECG parameters, separately 
for men and women. Morphological, temporal and non-linear features were extracted 
from the ECG waveforms. The study was performed using the UK Biobank resource, a 
large-scale health database publicly available under request. To our knowledge, it is the 
first time, that the combination of ECG and imaging are explored. The inclusion of 
radiomics allows a more precise information of the AF event and quantifies the 
complexity of cardiac structure and remodeling providing a complementary information 
additionally to the ECG test. 
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Related Work 

The related works can be divided into three categories according to the computation of 
the features: ECG features extracted from the waveforms with machine learning 
techniques, ECG features extracted from deep learning methods and hybrid 
frameworks that combines traditional ECG features with the ones extracted using deep 
learning algorithms. 

Classical approaches were mainly based on morphological features of the ECG signal 
in time domain such as heartbeat,  analysis of intervals and amplitudes of  QRS,  QT,  
PR and R-R16,17. Those studies, with satisfactory results, may be sensitive to the ECG 
noise. To alleviate this issue, the morphological features were computed in other 
domains such as in the frequency or time–frequency domain. Some examples of these 
features are power spectral density of the R-R intervals and frequency bands (e.g., 
ultra low , very low and low). Non-linear features were also considered as  the model of 
the heart cannot be reduced to a linear function as it also involves a nonlinear 
contribution 18,19. Some works combining ECG features in different domains are the 
following: Yin et al. proposed a multi-domain ECG feature extraction method20. The 
multi-domain features  were composed of nonlinear and frequency domain features, 
which were used as input features to train and test an SVM classifier model. Zabihi et 
al.  also proposed a multi-domain ECG feature extraction which included time-domain 
features, time-frequency, phase-space based on non-linear features and meta-level 
information21. Random forest classifier was applied for feature selection as well as for 
classification. 

As the technology evolves, more data can be processed, and deep learning techniques 
emerge.  Many works have applied deep learning for feature extraction using 
convolutional neural networks (CNN)22–24, long and short memory networks (LSTM)25,26 
as well as their variants27–29. 

Other studies have applied deep learning to obtain new features and fused them with 
traditional features. Some examples are the following. Smoleń created an initial model 
using Recurrent Neural Network (RNN) classifier, that was fed by lengths of intervals 
between following R peaks. The computed probabilities for each class were combined 
with hand-designed features and used as an input for Gradient Boosting Machine 
(GBM) classifier30. The features selected were categorized into 5 categories: statistical 
features, QRS morphology features, RR-interval features, noise features, and 
frequency-based features. The performance of those methods was very promising. 
Most of them used publicly available databases within conference challenges. 
However, the main issue of deep learning techniques is that a large number of samples 
are required in order to ‘learn’ and generally, hospitals do not have enough cases to 
use this type of methods.  
 
Additionally, the AF might not be registered on standard of care 12-lead ECG during 
hospital visits, opening a new line of research into AF detection using portable devices 
such as smartwatches31–34. Those portable devices might not be as sophisticated and 
exact as clinical ECG devices. But it has the advantage that it can deal with the early 
detection of the AF as long periods of signal are recorded.   
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Screening is suggested as one strategy to increase AF detection rates and start 
anticoagulation in an earlier stage in high-risk individuals. Screening by opportunistic 
pulse palpation or ECG rhythm strip is already recommended by the European Society 
of Cardiology (ESC) in all patients older than 65 years contacting health services and 
by the National Institute for Health and Care Excellence (NICE) where patients have a 
symptom suggestive of AF35.  
 
Another line of research is using risk factors, biomarkers, ECGs or a combination of 
risk factors and imaging features in order to predict incident cases of AF. A strong 
causal relationship between natriuretic peptides NT-proBNP, BNP and MR-proANP, 
and incidence of AF was ruled out by Geelhoed et al.36. Vascular risk factors including 
diabetes, hypertension as well as daily lifestyle variables such as smoking and 
obesity37,38 have also been studied in relation to incident atrial fibrillation as well as the 
inclusion of CMR Imaging39, in recent studies. ECG features have also been analyzed 
to study the possibility to develop AF40. In spite of the promising results, the studies are 
in an initial stage of research and have not been integrated in clinical routine.  

 

Results 
Baseline characteristics 
We studied 32,121 UK Biobank participants with an average age of 63 (±7.53) years. 
51% of the participants were female. A total of 495 participants had prevalent AF. The 
AF cohort included a greater proportion of men (69.3%), slightly older individuals with 
greater comorbidity burden, and higher BMI. For most baseline metrics there was no 
statistically significant difference between men and women except in education level 
and alcohol intake. Specifically, men were more likely to participate in higher education 
(48% vs. 34%) than women and consume alcohol more than 1-2 time a week. The 
Table 1 summarizes the baseline characteristics. 

 

Correlation between ECG and Radiomics features 
The correlation between ECG and radiomics features was not very high, as illustrated in 
Figure 1. The morphological features were the ones with a certain correlation along all 
the radiomics features both in short and in long axis. Moreover, a higher correlation is 
shown for radiomics features computed from long axis images (vs short axis) as these 
features include atrial radiomics, particularly in the heart rate variability in temporal and 
non-linear domain. Thus, ECG features seem to have a higher correlation with the 
features related to the atria than with the other regions of interest of the heart. However, 
the correlation found is not high between ECG and radiomics with the two providing 
additive and complementary information. 

 

Feature Selection for each Model 
For the model that includes both sexes, the ECG features which are related to the heart 
rate (such as tachycardia) were the most predominant features. The volume and surface 
of the left atrial were also important features in the model. Most of the relevant radiomics 
features are first, shape and then texture. The region of interest (ROI) selected for all the 
features are left atrium (LA) and the phase end diastole (ED). In Table 2, all the selected 
features are shown for the general model. 



6/3 

 

 
 For the separate model in women, the most predominant features are mean of 
RR and diameter of the LA. The shape and texture variables are also informative model 
features. The ranking of importance is lower than the other models. In the model built 
with only male participants, the sphericity and volume of the LA are selected as the most 
relevant features followed by the ECG features such as tachycardia and bradycardia. 
The shape features are the most selected and secondly the texture.  
 
 In Table 3 and Table 4, the features for  female and male are described with the 
ranking score. In Table 5, the repeatability of the variables in women is also shown in 
the partitions of the nested-cross validation. 
 
 In the three models, ED phase is selected the most and most of the radiomics 
features are from the left atrial ROI. The most predominant features are mainly based on 
shape and secondly textural features. First-order features do not have a high presence 
in the models. Figure 2 highlights visually the most relevant CMR markers, in the ED 
phase from the left atrial, for the women case but for men, it would be equivalent.  The 
arrows indicate the axis, and the circular shape shows the sphericity. The AF patient has 
larger axis with a more oval sphericity than the healthy patient with a more circular shape 
of the left atrial.   
 

 

Performance of Electro-Radiomics Models 
Table 6 shows the performance of the models adjusted by sex for the whole sample 
and for men and women separately.  In the model with both sexes, radiomics did not 
show an added value compared with ECG alone or with the combination of both. In 
sex-specific analyses, we found poorer performance of the ECG model in women than 
men (AUC: 0.77 vs 0.88, p<0.05). The addition of radiomics features improved the 
model accuracy for women to similar levels as for the ECG only model in men (AUC: 
0.87 vs 0.88, p >0.05). The sensitivity also increases considerably in women by adding 
the radiomics (Sensitivity:0.68 vs 0.79) having a higher detection of AF cases. 
According to our experiments, the addition of radiomics features has greater 
incremental value for AF discrimination in women than for men, where the added value 
is not clear. This behavior is not observed if we do not separate the data between men 
and women.  To show, that the added value of radiomics in women does not depend 
on the data selected, we repeated the experiments with another randomly selected 
healthy comparator, observing consistent results throughout (Figure 5). In order to test 
the robustness of the results with respect to covariates, we repeated the sex-specific 
experiments adjusting the models by:  i) age and sex (p>0.05) and ii) age, sex and 
main comorbidities related to AF which are diabetes, high cholesterol and hypertension 
(p>0.05). The results in Table 7 follow the same pattern than the model adjusted by 
sex.  It shows the robustness and strength of the features selected related to AF of the 
models.  

Finally, we extended the statistical analysis of phenotyping prevalent AF by 
selecting only the cases with patients of AF with a sinus rhythm without being 
differentiated with a normal ECG of a healthy patient and randomly matched with the 
healthy cohort with N=45 and N = 49 for men and women, respectively. Again, the best 
added value of adding radiomics is for women reaching an 0.72 of AUC vs 0.54 (p<0.05). 
The sensitivity increased significantly compared with ECG alone (0.65 vs 0.72). The best 
general model combining women and men was ECG+ radiomics with an AUC of  0.61. 
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For men the most predictive model was using radiomics with an 0.59 of AUC. Then, we 
observe that using radiomics in this scenario, the prediction improves for all cases, 
particularly in women. A summary of the results is shown in Table 8. 

  

Discussion 
In this study we demonstrate the feasibility and clinical utility of using an integrative 
electro-anatomic model for AF diagnosis. We demonstrate the usefulness of these 
models in understanding phenotypic alterations that occur in AF. Importantly, we 
identified different electro-anatomical remodeling patterns in male and female patients 
with AF. Our findings indicate the usefulness of a more integrative approach to disease 
in women, who may have more subtle phenotypic alterations than men, particularly in 
the early disease stages.  

 As ECG is the main clinical tool for AF diagnosis, we expected ECG to have 
better results than radiomics alone, as was shown in the results for the men and general 
models. However, we found lower performance of the ECG model for women than men 
in AF. This behavior is clearly seen when the models are split into female and male 
subjects. The combination of ECG with radiomics predictors was able to improve the 
model performance among female subjects. Radiomics showed less added value for 
men, however the most relevant features selected by the Chi-Squared test were 
radiomics-based features, particularly from the left atrial. Although, it did not improve the 
model’s overall accuracy, this finding suggests that radiomics features may precede 
ECG changes in both men and women. 

The underlying mechanisms of the sex differences in AF are incompletely 
understood. The main driving factors reported in the literature are higher body mass 
index, larger atria and ventricle size among males41–43. Notably, atrial enlargement has 
been linked to higher risk of incident AF and AF recurrence44,45. Moreover a study by van 
de Vegte et al. demonstrated that genetically susceptibility to AF increases indexed left 
atrial volumes and decreases LA ejection fraction46. On the other hand, these factors 
might also impact the interpretation of the ECG signal.  

 Our results suggest that women with AF have less overt ECG changes than men. 
Indeed, women have a higher heart rate at rest due to hormone effects, autonomic 
nervous system influences, and intrinsic properties of the sinus node. The P-wave is 
significantly shorter as well as the PR interval and the QRS duration. QT has also a more 
prolonged corrected interval in women47. As an example, prolonged QT interval possibly 
cause lower sensitivity for ECG in women with leading to false positive cases. Moreover, 
shorter P-waves with lower amplitude might make ECG recordings susceptible to noise 
and motion artifacts48. This means that the subtler radiomics feature changes are 
important for improving AF detection in women. 

 Due to the more pronounced ECG changes among male participants our model 
can differentiate between cases and controls with high accuracy using these features 
alone. Notably, radiomics features appear dominant in the combined models even for 
men. This suggests that radiomics features are more sensitive at picking up AF-related 
alterations and these changes may complement the information derived from the ECG.  

 We also performed an extension including only the patients with the diagnosed 
AF who were in sinus rhythm at time of their ECG. As expected, ECG was not able to 
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distinguish between healthy and unhealthy participants. However, the inclusion of 
radiomics substantially improved the model performance, particularly in women. 
Importantly, increased atrial volume49 and atrial fibrosis50 might serve as a substrate for 
AF, and these alterations can be picked up by radiomics features. Although further 
information is needed to better describe the link between atrial radiomics features and 
biological precursors of AF.  

The utility of artificial intelligence-based methods has been already demonstrated 
in the detection of AF, importantly sex differences are rarely addressed in these studies. 
The Apple Heart Study assessed the ability of an irregular pulse notification algorithm to 
identify AF in 419,297 (42% female) individuals34. Overall, 2161 (21% female) 
participants received a notification and 34% of cases were clinically confirmed from the 
total number of users detected by the smartwatch. In the study positive predictive value 
of an irregular pulse notification was 0.84 (95% CI, 0.76–0.92), supporting the ability of 
the algorithm to correctly identify atrial fibrillation, mainly among white male subjects. 
Notably, the datasets collected among smart device users rarely permit the assessment 
of sex differences, as man are more likely to own these devices in the first place51. AI 
applications are also used in the monitoring52, risk stratification53  and management of 
AF patients.  

As a future work, we will extend this work to other cohorts to generalize the 
models and validate them to external data. With the inclusion of more data, we will also 
explore deep learning techniques combining all leads with the features that we identified 
in this work to improve the model accuracy. Moreover, we will also differentiate between 
certain types of atrial fibrillation to find phenotypes in each category instead of atrial 
fibrillation patients in general. We will also test the utility of the present model to predict 
incident AF.  

Limitations:  
 
Our ascertainment of AF status relied on clinical diagnoses. A limitation of this 
approach is that we would not capture as yet clinically unrecognized AF cases. As a 
result, some of the participants labelled as controls in our study may have low burden 
or paroxysmal AF that is not yet clinically identified. The impact of such 
misclassification would be attenuation rather than spurious high performance of our 
models. Additionally, the models were not validated externally limiting the 
generalizability of our results.  

 

 

Conclusions:  
In this study of the UK Biobank participants we demonstrated that an ECG-based model 
had lower accuracy to detect AF in female subjects compared to males. The inclusion of 
CMR radiomics combined with ECG increased the model performance in women. 
Especially CMR derived radiomics shape features of the LA had robust role in the 
betterment of our models, suggesting the critical role of atrial remodeling in the disease 
mechanism of AF. The main universal implication is that a combined approach of ECG 
and atrial imaging might lead to better assessment of female participants suspected of 
AF.  
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As a further layer of our analysis we selected prevalent AF patients with normal 
ECG tests, here, we found that all models got benefit from adding radiomics. But again, 
the clearest case was for women with the inclusion of radiomics with ECG features. 

 

Methods 
Population and Setting 
UK Biobank is a large-scale health database containing over a half million of participants 
aged between 40 and 69 years old and recruited across UK between 2006 and 2010.  It 
is a powerful research resource including biomarkers, medical records, risk factors, 
clinical tests and physical measurements to study the most common and life-threatening 
diseases. The database is regularly updated with additional data, making it a potential 
source for research purposes. AF was detected through the Hospital Episode Statistics 
(HES) system, a database containing clinical details of all the admissions of the NHS 
hospitals in England, to provide a continuous follow-up of the participants. 

 
Study design and data 
From the 495 prevalent AF cases in the UK Biobank cohort, we selected all the patients 
with AF who underwent both ECG and the CMR scan and the corresponding 
segmentation of the Left Ventricle (LV) and Right Ventricle (RV) cavities as well as the 
left and right atria were available (n=383). To analyze the differences between sexes, 
we separated the data into female (n=121) and male (n=262) participants. Of these, 45 
women and 49 men were in sinus rhythm at the time of their ECG recording. The healthy 
controls were defined as participants who were not diagnosed with AF and had a normal 
sinus rhythm on their ECG. For the healthy controls, we considered the first 2000 UK 
Biobank participants for computational purposes with ECG and CMR imaging. To avoid 
unbalanced models, the same number of healthy controls were randomly selected for 
each sex (Figure 3).  

 
 

Feature extraction 
The features of ECG were extracted in temporal, morphological and non-linear 
domains. Radiomics features were computed from the LV and RV segmentations in 
end-systole (ES) and end-diastole (ED) phases from short- and long-axis cine CMR 
images. The radiomics of the atrias were computed from the long-axis images. In this 
section, we will explain in detail how the features were extracted.  

 
 
Radiomics Feature extraction 
Radiomics features were extracted from the CMR images and the corresponding 
contours from three segmented ROIs: LV and RV cavities and LV myocardium in ED and 
ES in short axis. The segmentation of the ROIs was performed manually by expert 
cardiologists by defining the contours with points with a different label for each ROI using 
Cardiac MRI and CT Software (CVI42). The segmentations for each patient  were 
exported in a single xml file containing the contour points for the RV, LV and MYO 
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segmentations. In order to convert each contour into a binary mask, we developed an in-
house software that transforms CVI42 contours into readable format contours54. 

We also obtained the atrial segmentation using an automatic segmentation 
model based on a traditional U-Net architecture. First, a manual segmentation was 
performed by clinical experts in 764 datasets from Barts Heart Centre, UK55.Then, data 
augmentation techniques were used for generalizability of the model such as small 
rotations, random contrast adjustments and random intensity histogram shifting. The 
Adam optimizer was used with a learning rate of 0.0001 and 0.9 and 0.999 for first and 
second moments, respectively. The model was then trained with a batch size of 16 
256x256 images with 100 epochs. The loss function used was cross entropy.  

We computed the radiomics using the open-source python-based PyRadiomics 
library (version 2.2.0). To harmonize the images, the histogram matching technique was 
applied given a reference image. A binwidth of 25 was used to discretize the grey values 
of the image as it is the default parameter selected by pyradiomics. We extracted the 
relevant information present in the image by using three classes of features: 

1. First Order Features: are histogram-based features related to the 
distribution of the gray level values in the tissue, without focusing on their spatial 
relationships. 

2. Shape Features: describe geometrical properties of the organ, such as 
volume, diameter, minor/major axis and sphericity. 

3. Texture Features: are derived from images and allow quantification of 
spatial relationships among pixels.  

The shape radiomics of all the ROIs both for the short axis and long axis were all 
considered. However, the first-order and textural features were only considered from the 
LV myocardium as the other ROIs included parts such as the papillary muscles that can 
alter the intensity signals within the ventricular and atrial cavities. Shape features derived 
from the LV myocardium, LV, RV and LA, RA were selected for the analysis, while first-
order and textural features derived only from the LV myocardium were used. A total of 
420 atrial radiomics features were computed in long axis where each ROI contained the 
same number of features of each type (ROI shape n=24, ROI first-order n=36, ROI 
texture n=150). Additionally, 262 radiomics features both for short and for long axis were 
included from each CMR study (LV shape n=26, RV shape n=26, MYO shape n=26, LV 
myocardium first-order n=36, LV myocardium texture n=148). 

 
 

ECG Feature extraction 
We extracted the features of the ECG signals that are related according to literature with 
AF. We do not use the whole ECG signal as an input of the classification method to avoid 
overfitting. The ECG features for morphological, classical and non-linear features were 
computed using the open source code for ECG feature extraction in AF implemented in 
Matlab and mainly based on Physionet library56.  

Firstly, classical ECG features were extracted based on morphological features in time 
domain including heartbeat intervals, analysis of QRS, QT, PR, R-R intervals and 
amplitude.  
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For robustness, morphological features in frequency domain were also extracted 
including power spectral density of the R-R intervals and frequency bands (ultra-low, 
very low, low and high frequency and Ratio of low- to high-frequency power). 

Finally, non-linear features were also considered as the model of the heart is not 
only linear but also involves a nonlinear contribution. In this work, Poincaré Plot was 
used to extract non-linear features in ECG. Poincaré Plot is a 2D dimensional scatter 
plot where each point represents the RR interval as a function of the previous RR interval. 
The Poincaré analyzes quantitatively the shape of the plot which provides rich 
information of the behavior of the heart. For example, the plot for a patient with AF has 
a more circular shape than a healthy subject that is similar to a comet along the line of 
identity57.In order to determine the geometric appearance of the plot quantitively, some 
techniques such as ellipse fitting, correlation coefficient and histogram-based methods 
were implemented. Additionally, the Sample entropy was computed to measure the 
complexity of the time series58. 

We proposed a multi-domain ECG feature extraction method including classical, 
non-linear and frequency domain features with a total number of 116 features. The 
second lead was used to extract the features as both old devices and the wearable 
devices are using a single lead. According to literature, the second lead provides the 
most valuable information59,60 including P, QRS and T waves. For that reason, it is the 
most used within the single-lead ECG works and the one with better results from 12-lead 
ECG recordings61.  
 

Feature Selection 
Chi-squared test is applied to the features, and selects metrics statistically significantly 
linked to the outcome.  

The Chi-squared test can be defined as given the data of two variables, we can 
get observed count O and expected count E. Chi-Square measures how expected count 
E and observed count O deviate from each other. The formulation is as follows: 

 

A small p-value of the test statistic indicates that the corresponding features is 
dependent on the outcome, and it is an important feature. The statistical test returns 
each feature's importance score using the -log of the p-value. A large score value 
indicates that the corresponding feature is important. In our approach, the number of 
features selected was 30 as the model stabilizes after 30 features. 

 
Statistical Analysis 
The experiments were conducted using the Matlab 2021b software. The correlation 
between ECG and radiomics was performed using Pearson’s correlation.  

We used the fscchi2 function to apply the Chi-Squared test to select the most 
relevant features. A hierarchical model was built by combining radiomics with ECG to 
show the added value of incorporating radiomics features into the model for women, men 
and for both sexes. For comparison, we built the ECG and Radiomics-based models 
alone.   
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The models were trained with a Support Vector Machine (SVM) technique which 
has been widely used in cardiovascular risk predictions62,63 due to its numerous 
advantages such as computationally efficient and robustness for real-world applications 
as well as the ability to find non-linear relationships through the kernel trick.  

The models were tested following a nested cross validation also known as double 
cross-validation, in order to minimize a biased evaluation of the accuracy of the model.  
Nested cross validation is widely employed in the machine learning field and was mainly 
developed to work with small datasets.  Compared to standard cross validation 
techniques, nested cross validation can help in the reduction of overfitting and alleviate 
the limitation of optimistic biases, especially in relatively small samples. Varma and 
Simon et al., showed that nested cross validation methods provide an almost unbiased 
estimate of the true error compared to standard k-fold cross-validation particularly when 
used for both hyperparameter tuning and evaluation64–66. The method is divided into two 
loops: the inner loop is responsible for the selection of the best parameters, and the outer 
loop estimates the generalization accuracy66. This procedure splits the data into training 
and test folds k times in an outer loop. For each training fold, the hyperparameter 
optimization process is performed in an inner loop and returns the best parameters that 
minimize the error following the same procedure of partitioning and rotating the training 
fold into training and validation sets. Using this scheme, the test folds are never used to 
build the model, decreasing the possibility of overfitting. Notice that we have ten models 
trained with different partitions of the data not a single partition, making this procedure 
robust and reliable. Additionally, all the data has been used for testing making the 
performance measurements more reliable. 

The hyperparameter optimization procedure was performed using greedy 
optimization which apply a brute force exhaustive search by trying each combination of 
each parameter. Five partitions are used for tuning the parameters of the SVM for each 
training fold in the inner loop (5-cross validation) and 10 cross-validation for the outer 
loop with partitions of 90% for training and 10% of testing in each outer fold. The 
summary of this procedure is shown in Figure 4.  

We computed to assess the performance of the models, the receiver operating 
characteristics (ROC) curve and area under the curve (AUC), as well as F1-score, 
accuracy, sensitivity and specificity over the test set. Additionally, Welch´s t-test was 
computed for group-wise comparisons. Several healthy partitions are randomly selected 
to show that the model does not depend on the selected data using different random 
seeds and we computed the ROC curve for each different partition of the healthy cohort. 

To compare the models, a paired t-test on the distributions of AUC performances was 
performed to analyze the statistical significance in a nested cross validation 
framework67. 
 Data Availability 
The datasets generated and/or analysed during the current study are available online 
from the UK Biobank database, http://www.ukbiobank.ac.uk. 
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Figure 1. Correlation between ECG and radiomics features showing low correlation between 
radiomics features extracted from the short-axis images and a slightly higher correlation with the 
features from the long axis images including atrial metrics. Temp: Temporal, Freq: Frequency, 

HRV: Heart Rate Variability and HR: Heart Rate. 
 

 

  

(a)                                                     (b)                                                            
Figure 2: The figure shows four-chamber cine CMR images in end-diastole from two female UK 
Biobank  participants. Our models selected the most important radiomics features from the left 
atrial region of interest. The arrows show the axis, and the circular shape indicates the spheric-
ity. The first image (a) shows an AF patient with a larger axis and pronounced oval sphericity. 
The second image (b) illustrates a healthy subject with normal atrial dimensions, with more cir-

cular sphericity and a smaller axis than an AF patient. 

 
  
 



2/3 

 

 
 

Figure 3. The process to select the data from the UK Biobank 
 
 
 
 
 
 
 

 
 
 

Figure 4. A nested cross validation scheme. 
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Figure 5. Different random partitions of the healthy cohort were randomly selected to show the 
added value of radiomics versus ECG alone. For all the cases, the improvement is clear and 

statistically significant (p<0.05). 
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Table 1. Baseline characteristics describing the whole population, population without AF, 
patients with AF in general and sex-specific. In bold, the characteristics with not significant 

differences. 
 
 

Characteristics  Whole Population 

 (n=32121)  

 

Subjects without AF 

 (n=31424)  

 

 

Patients with AF 

 (n=495)  

 

 

 

ll 

    

p-value         
AF vs Non-AF   

AF in women 

(n=152)  

AF in men 

(n=343)  

p-value AF in 
women vs men 

Age mean 
(std)  

63.27((±7.53) 63.16(±7.52)  68 (±6.43)  < 0.001 68.04(±6.54)  68.61(±6.55)  0.29 

Female sex 
n(%)  

16658(51.86%) 16442(52.32%)  152 (30.70%)  < 0.001 152(100%) 0(0%)  

Townsend 
deprivation 
index 
median(IQR)  

-1.95 (3.30) -2.64 (3.30)  -2.74 (3.54)  0.66 -2.73 (3.50)  -2.74 (3.55)  0.43 

Body mass 
index mean 
(kg/m2)  

26.57 (±4.35) 26.55 (±4.34)  27.79 (±4.53)  < 0.001 27.91(±5.41)  27.74(±4.09)  0.73 

Current 
smoker n (%)  

2032 (6.32%) 1993 (6.34%)  26 (5.25%)  0.32 5 (3.28%)  21 (6.12%)  0.19 

Diabetes status 
n (%)  

993(3.09%) 963(3.06%)  20 (4.04%)  0.21 6 (3.94%)  14 (4.08%)  0.94 

Hypertension 
status n (%)  

4397(13.68%) 4177 (13.29%)  165 (33.33%)  < 0.001 48 (31.57%)  117 (34.11%)  0.58 

High 
cholesterol 
status n (%)  

7272(22.63%) 7055 (22.45%)  164 (33.13%)  < 0.001 42 (27.63%)   122 (35.56%)   0.08 

IPAQ (MET 
minutes/week) 
median [IQR]  

2271(2360) 1528 [2350] 1532 [2545] 0.84 1543 [2772] 1515 [2373] 0.99 

Education 
level n (%)  

    0.56   0.002 

Left school age 
14 or younger  

421 (1.31%) 414 (1.31%)  5 (1.01%)   2 (1.31%)  3 (0.87%)   

Left school age 
15 or older  

2260 (7.03%) 2198 (6.99%)  46 (9.29%)   18 (11.84%)  28 (8.16%)   

High school 
diploma  

4229 (13.16%) 4138 (13.16%)  59 (11.91%)   27 (17.76%)  32 (9.32%)   

Sixth form 
qualification  

1820 (5.66%) 1785 (5.68%)  24 (4.84%)   5 (3.28%)  19 (5.53%)   

Professional 
qualification  

8953 (27.87%) 8745 (27.82%)  143 (28.88%)   48 (31.57%)  95 (27.69%)   

Higher 
education 
University 
degree  

14438 (44.94%) 14144 (45.01%)  218 (44.04%)   52 (34.21%)  166 (48.39%)   

Alcohol intake 
n(%)  

16658(51.86%)     < 0.001   < 0.001 

Never  -1.95 (3.30) 1505 (4.78%)  28 (5.65%)   13 (8.55%)  15 (4.37%)   

Special 
occasions only  

26.57 (±4.35) 2601 (8.27%)  35 (7.07%)   20 (13.15%)  15 (4.37%)   

1–3 times a 
month  

2032 (6.32%) 3393 (10.79%)  40 (8.08%)   21 (13.81%)  19 (5.53%)   

1–2 times a 
week  

993(3.09%) 8133 (25.88%)  109 (22.02%)   31 (20.39%)  78 (22.74%)   

3–4 times a 
week  

4397(13.68%) 8896 (28.30%)  133 (26.86%)   36 (23.68%)  97 (28.27%)   

Daily or 
almost daily  

7272(22.63%) 6896 (21.94%)  50 (26.31%)   31 (20.39%)  119 (34.69%)   
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Table 2. Feature Selection for AF for all participants for the electro-radiomics model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feature Selection Feature type ROI Phase Importance 

'tachy' 
'Clvl6' 
'brady' 
'LA_shape_SurfaceArea_ED' 
'LA_shape_VoxelVolume_ED' 
'LA_shape_MeshVolume_ED' 
'medianRR' 
'LA_shape_Sphericity_ED' 
'meanRR' 
'LA_shape_SurfaceVolumeRatio_ED' 
'DistCennS' 
'LA_gldm_DependenceNonUniformity_ED' 
'LA_shape_Maximum2DDiameterColumn_ED' 
'LA_shape_Maximum2DDiameterSlice_ED' 
'LA_shape_Maximum3DDiameter_ED' 
'LA_firstorder_Energy_ED' 
'LA_firstorder_TotalEnergy_ED' 
'LA_shape_MajorAxisLength_ED' 
'LA_ngtdm_Strength_ED' 
'LA_shape_MinorAxisLength_ED' 
'LA_glrlm_GrayLevelNonUniformity_ED' 
'LA_glszm_GrayLevelNonUniformity_ED' 
'LA_ngtdm_Busyness_ED' 
'Dlvl2' 
'Dlvl8' 
'LA_glrlm_RunLengthNonUniformity_ED' 
'LA_ngtdm_Coarseness_ED' 
'LA_gldm_GrayLevelNonUniformity_ED' 
'Dlvl3' 
'Dlvl9' 

 
 
 
Shape 
Shape 
Shape 
 
Shape 
 
Shape 
 
Texture 
Shape 
Shape 
Shape 
First-Order 
First-Order 
Shape 
Texture 
Shape 
Texture 
Texture 
Texture 
 
 
Texture 
Texture 
Texture 
 

 
 
 
LA 
LA 
LA 
 
LA 
 
LA 
 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
 
 
LA 
LA 
LA 
 

 
 
 
ED 
ED 
ED 
 
ED 
 
ED 
 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
 
 
ED 
ED 
ED 
 

95.7189000000000 
95.3946000000000 
94.4181000000000 
93.3183000000000 
93.0671000000000 
92.9818000000000 
92.2226000000000 
91.1313000000000 
89.5061000000000 
86.7621000000000 
86.5382000000000 
86.0905000000000 
85.0250000000000 
84.4272000000000 
84.4272000000000 
84.0768000000000 
83.5177000000000 
83.3500000000000 
77.9337000000000 
77.4875000000000 
75.8153000000000 
74.2248000000000 
74.0887000000000 
73.8246000000000 
73.8246000000000 
72.1410000000000 
69.0288000000000 
67.3082000000000 
65.5733000000000 
65.5733000000000 
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Feature Selection Feature type ROI Phase Importance 

'meanRR' 
'LA_shape_Maximum2DDiameterColumn_ED' 
'Clvl6' 
'brady' 
'LA_shape_Sphericity_ED' 
'medianRR' 
'tachy' 
'LA_shape_MinorAxisLength_ED' 
'LA_firstorder_TotalEnergy_ED' 
'LA_shape_VoxelVolume_ED' 
'LA_shape_MeshVolume_ED' 
'LA_shape_SurfaceArea_ED' 
'Dlvl2' 
'Dlvl8' 
'LA_shape_SurfaceVolumeRatio_ED' 
'LA_firstorder_Energy_ED' 
'LA_gldm_DependenceNonUniformity_ED' 
'LA_glrlm_RunLengthNonUniformity_ED' 
'LA_shape_MajorAxisLength_ED' 
'LA_glrlm_GrayLevelNonUniformity_ED' 
'DistCennS' 
'RA_shape_MajorAxisLength_ED' 
'LA_shape_Maximum2DDiameterColumn_ES' 
'Dlvl3' 
'Dlvl9' 
'LA_glszm_GrayLevelNonUniformity_ED' 
'LA_ngtdm_Coarseness_ED' 
'LA_ngtdm_Strength_ED' 
'RA_shape_Maximum2DDiameterSlice_ED' 
'RA_shape_Maximum3DDiameter_ED' 

 
Shape 
 
 
Shape 
 
 
Shape 
First-Order 
Shape 
Shape 
Shape 
 
 
Shape 
First-Order 
Texture 
Texture 
Shape 
Texture 
 
Shape 
Shape 
 
 
Texture 
Texture 
Texture 
Shape 
Shape 

 
LA 
 
 
LA 
 
 
LA 
LA 
LA 
LA 
LA 
 
 
LA 
LA 
LA 
LA 
LA 
LA 
 
RA 
LA 
 
 
LA 
LA 
LA 
RA 
RA 

 
ED 
 
 
ED 
 
 
ED 
ED 
ED 
ED 
ED 
 
 
ED 
ED 
ED 
ED 
ED 
ED 
 
ED 
ES 
 
 
ED 
ED 
ED 
ED 
ED 

23.8432000000000 
23.2997000000000 
23.2829000000000 
22.6090000000000 
22.1852000000000 
21.1193000000000 
20.5118000000000 
20.4190000000000 
20.3422000000000 
20.2966000000000 
20.2541000000000 
20.2347000000000 
20.1606000000000 
20.1606000000000 
20.0505000000000 
19.5947000000000 
19.3729000000000 
19.2391000000000 
19.0635000000000 
18.6670000000000 
18.3854000000000 
17.3390000000000 
17.3050000000000 
17.0507000000000 
17.0507000000000 
16.8258000000000 
16.6224000000000 
16.3367000000000 
15.9814000000000 
15.9814000000000 
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Feature Selection Feature type ROI Phase Importance 

'LA_shape_Sphericity_ED' 
'LA_shape_VoxelVolume_ED' 
'LA_shape_MeshVolume_ED' 
'LA_shape_SurfaceArea_ED' 
'LA_shape_Maximum2DDiameterSlice_ED' 
'LA_shape_Maximum3DDiameter_ED' 
'tachy' 
'brady' 
'LA_shape_MajorAxisLength_ED' 
'LA_gldm_DependenceNonUniformity_ED' 
'Clvl6' 
'medianRR' 
'LA_firstorder_TotalEnergy_ED' 
'LA_shape_SurfaceVolumeRatio_ED' 
'LA_firstorder_Energy_ED' 
'DistCennS' 
'meanRR' 
'LA_shape_Maximum2DDiameterColumn_ED' 
'LA_glrlm_GrayLevelNonUniformity_ED' 
'LA_ngtdm_Busyness_ED' 
'LA_ngtdm_Coarseness_ED' 
'LA_shape_MinorAxisLength_ED' 
'LA_glrlm_RunLengthNonUniformity_ED' 
'LA_gldm_GrayLevelNonUniformity_ED' 
'RA_shape_Sphericity_ED' 
'LA_ngtdm_Strength_ED' 
'RA_shape_MajorAxisLength_ED' 
'LA_glszm_GrayLevelNonUniformity_ED' 
'pNN50' 
'RA_shape_VoxelVolume_ED' 

Shape 
Shape 
Shape 
Shape 
Shape 
Shape 
 
 
Shape 
Texture 
 
 
First-Order 
Shape 
First-Order 
 
 
Shape 
Texture 
Texture 
Texture 
Shape 
Texture 
Texture 
Shape 
Texture 
Shape 
Texture 
 
Shape 

LA 
LA 
LA 
LA 
LA 
LA 
 
 
LA 
LA 
 
 
LA 
LA 
LA 
 
 
LA 
LA 
LA 
LA 
LA 
LA 
LA 
RA 
LA 
RA 
LA 
 
RA 

ED 
ED 
ED 
ED 
ED 
ED 
 
 
ED 
ED 
 
 
ED 
ED 
ED 
 
 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
 
ED 

67.1634000000000 
66.8851000000000 
66.6944000000000 
65.4330000000000 
64.5759000000000 
64.5759000000000 
64.0718000000000 
63.9600000000000 
63.9363000000000 
63.8068000000000 
63.3610000000000 
63.3370000000000 
61.8981000000000 
61.3106000000000 
60.8644000000000 
60.3365000000000 
59.1486000000000 
58.8432000000000 
56.8149000000000 
53.9070000000000 
53.7045000000000 
53.6843000000000 
52.9183000000000 
51.8710000000000 
50.8045000000000 
50.1410000000000 
49.2244000000000 
49.1139000000000 
48.8595000000000 
48.5482000000000 

 

 
Table 4. Feature Selection for AF for men for the electro-radiomics model. 
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 Feature selection for AF in women in electro-radiomics 
model in all nested-cross validation partitions 

Feature type ROI Phase Number of 
Iterations 

'meanRR' 
'LA_shape_Maximum2DDiameterColumn_ED' 
'Clvl6' 
'brady' 
'LA_shape_Sphericity_ED' 
'medianRR' 
'tachy' 
'LA_shape_MinorAxisLength_ED' 
'LA_firstorder_TotalEnergy_ED' 
'LA_shape_VoxelVolume_ED' 
'LA_shape_MeshVolume_ED' 
'LA_shape_SurfaceArea_ED' 
'Dlvl2' 
'Dlvl8' 
'LA_shape_SurfaceVolumeRatio_ED' 
'LA_firstorder_Energy_ED' 
'LA_gldm_DependenceNonUniformity_ED' 
'LA_glrlm_RunLengthNonUniformity_ED' 
'LA_shape_MajorAxisLength_ED' 
'LA_glrlm_GrayLevelNonUniformity_ED' 
'DistCennS' 
'RA_shape_MajorAxisLength_ED' 
'LA_shape_Maximum2DDiameterColumn_ES' 
'Dlvl3' 
'Dlvl9' 
'LA_glszm_GrayLevelNonUniformity_ED' 
'LA_ngtdm_Coarseness_ED' 
'LA_ngtdm_Strength_ED' 
'RA_shape_Maximum2DDiameterSlice_ED' 
'RA_shape_Maximum3DDiameter_ED' 
'LA_shape_Maximum2DDiameterSlice_ED' 
'LA_shape_Maximum3DDiameter_ED' 
'LA_ngtdm_Busyness_ED' 
'LA_shape_MajorAxisLength_ES' 
'RA_shape_Maximum2DDiameterColumn_ED' 
'LA_shape_Maximum2DDiameterSlice_ES' 
'edgebins2nL' 
'LA_shape_Sphericity_ES' 
'LA_shape_Maximum3DDiameter_ES' 
 

 
Shape 
 
 
Shape 
 
 
Shape 
First-Order 
Shape 
Shape 
Shape 
 
 
Shape 
First-Order 
Shape 
Shape 
Shape 
Texture 
 
Shape 
Shape 
 
 
Texture 
Texture 
Texture 
Shape 
Shape 
Shape 
Shape 
Texture 
Shape 
Shape 
Shape 
 
Shape 
Shape 
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LA 
 
 
LA 
LA 
LA 
LA 
LA 
 
 
LA 
LA 
LA 
LA 
LA 
LA 
 
RA 
LA 
 
 
LA 
LA 
LA 
RA 
RA 
LA 
LA 
LA 
LA 
RA 
LA 
 
LA 
LA 

 
ED 
 
 
ED 
 
 
ED 
ED 
ED 
ED 
ED 
 
 
ED 
ED 
ED 
ED 
ED 
ED 
 
ED 
ES 
 
 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ED 
ES 
ED 
ES 
 
ES 
ES 
 

10 
10 
10 
10 
10 
10 
10 
8 
10 
10 
10 
10 
10 
9 
10 
10 
10 
10 
10 
8 
10 
5 
7 
9 
9 
5 
7 
7 
8 
8 
9 
8 
2 
4 
2 
2 
1 
1 
1 

 
Table 5. Feature selection for AF for women for the electro-radiomics model in all partitions in 

the nested-cross validation indicating the number of repetitions in each feature in each different 
partition. 
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Table 6. Average performance of the models for all AF patients adjusted by sex. The standard 
deviation is indicated in parenthesis. 

 
 
 

 
 
 

Table 7. Average performance of the models for all AF patients adjusted by sex and age only, 
and sex age and other comorbidities. The standard deviation is indicated in parenthesis. 

 
 
 

 

 

 

 

  ECG Radiomics 
 

ECG+Radiomics 
 

All F1_score 
Accuracy 
Sensitivity 
Specificity 

0.82 
0.84 
0.77 
0.91 

0.71 
0.74 
0.66 
0.82 

0.81 
0.81 
0.77 
0.86 

 AUC 0.86(±0.04) 0.82 (±0.03) 0.87(±0.04) 
Women F1_score 

Accuracy 
Sensitivity 
Specificity 

0.72 
0.74 
0.68 
0.80 

0.72 
0.73 
0.69 
0.77 

0.78 
0.78 
0.79 
0.77 

 AUC 0.77 (±0.13) 0.81 (±0.09) 0.87 (±0.05) 
Men F1_score 

Accuracy 
Sensitivity 
Specificity 

0.84 
0.85 
0.81 
0.89 

0.73 
0.75 
0.69 
0.80 

0.82 
0.82 
0.82 
0.82 

 AUC 0.88 (±0.05) 0.82 (±0.04) 0.89(±0.06) 

Adjusted by sex and age (p>0,05) Adjusted by sex and comorbidities (p>0.05) 
  ECG Radiomics 

 
ECG+Radiomics 
 

ECG Radiomics 
 

ECG+Radiomics 
 

Women F1_score 
Accuracy 
Sensitivity 
Specificity 

0.72 
0.75 
0.67 
0.83 

0.73 
0.75 
0.67 
0.83 

0.80 
0.80 
0.79 
0.81 

0.71 
0.73 
0.68 
0.78 

0.73 
0.75 
0.68 
0.82 

0.77 
0.78 
0.76 
0.80 

 AUC 0.79 (±0.09) 0.82 (±0.03) 0.88 (±0.07) 0.78(±0.13) 0.83(±0.04) 0.85(±0.05) 
Men F1_score 

Accuracy 
Sensitivity 
Specificity 

0.85 
0.85 
0.79 
0.92 

0.74 
0.75 
0.70 
0.80 

0.84 
0.84 
0.81 
0.87 

0.86 
0.86 
0.82 
0.90 

0.73 
0.74 
0.69 
0.79 

0.84 
0.84 
0.81 
0.87 

 AUC 0.89 (±0.05) 0.83 (±0.06) 0.89 (±0.06) 0.89(±0.04) 0.82(±0.06) 0.89(±0.05) 
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Table 8. Average performance of the models when the AF patients have a normal sinus rhythm 

and a normal ECG. The standard deviation is indicated in parenthesis. 
 
 

 

  ECG Radiomics 
 

ECG+Radiomics 
 

All F_score 
Accuracy 
Sensitivity 
Specificity 

0.49 
0.53 
0.51 
0.56 

0.55 
0.53 
0.57 
0.49 

0.60 
0.60 
0.62 
0.57 

 AUC 0.54(±0.11) 0.59(±0.12) 0.61(±0.08) 
Women F_score 

Accuracy 
Sensitivity 
Specificity 

0.60 
0.54 
0.65 
0.44 

0.60 
0.59 
0.66 
0.52 

0.68 
0.66 
0.72 
0.60 

 AUC 0.54(±0.23) 0.67(±0.16) 0.72 (±0.15) 
Men F_score 

Accuracy 
Sensitivity 
Specificity 

0.49 
0.49 
0.49 
0.51 

0.58 
0.58 
0.57 
0.60 

0.50 
0.54 
0.49 
0.59 

 AUC 0.45(±0.14) 0.59(±0.19) 0.56(±0.19) 


