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Abstract

The regression discontinuity design is a quasi-experimental design that estimates the

causal effect of a treatment when its assignment is defined by a threshold value

for a continuous assignment variable. The regression discontinuity design assumes

that subjects with measurements within a bandwidth around the threshold belong to

a common population, so that the threshold can be seen as a randomising device

assigning treatment to those falling just above the threshold and withholding it from

those who fall just below.

Bandwidth selection represents a compelling decision for the regression discontinuity

design analysis as the results may be highly sensitive to its choice. A few methods

to select the optimal bandwidth, mainly originating from the econometric literature,

have been proposed. However, their use in practice is limited.

We propose a methodology that, tackling the problem from an applied point of

view, considers units’ exchangeability, i.e., their similarity with respect to measured

covariates, as the main criteria to select subjects for the analysis, irrespectively of their

distance from the threshold. We carry out clustering on the sample using a Dirichlet

process mixture model to identify balanced and homogeneous clusters. Our proposal

exploits the posterior similarity matrix, which contains the pairwise probabilities that

two observations are allocated to the same cluster in the Markov chain Monte Carlo

sample. Thus we include in the regression discontinuity design analysis only those

clusters for which we have stronger evidence of exchangeability.

We illustrate the validity of our methodology with both a simulated experiment and

a motivating example on the effect of statins on cholesterol levels.
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1 Introduction

The Regression Discontinuity Design (RDD) is a quasi-experimental design that

estimates the causal effects of a treatment by exploiting the presence of a

pre-determined treatment rule (either naturally occurring or regulated by on-

going policies). The first publication on RDD was an application in education

by Thistlethwaite and Campbell1. Since then this framework has proved to be

effective in a wide range of applications in other disciplines, including economics2

and politics3. More recently there has been some interest in the RDD for

epidemiology4–6 and health and primary care applications7–10.

The RDD can be applied in any context in which a particular treatment

or intervention is administered according to a pre-specified rule linked to a

continuous variable, referred to as the ‘assignment’ or ‘forcing’ variable: the

treatment is then administered if the units’ value for the assignment variable

(X) lies above or below a certain threshold (x0), depending on the nature of the

treatment. If thresholds are strictly adhered to when assigning treatment, the

design is termed sharp, while when this is not the case it is termed fuzzy.

The regression discontinuity design has become of particular interest in the

definition of public health policies as it enables the use of routinely collected

electronic medical records to evaluate the effects of drugs when these are

prescribed according to well-defined decision rules. This is useful as government

agencies such as the Food and Drug Administration (FDA) in the USA and

the National Institute for Health and Care Excellence (NICE) in the UK are

increasingly relying on guidelines for drug prescription in primary care. In fact
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we will use prescription of statins in the UK as our motivating example, but

there is a wide range of potential applications including the prescription of anti-

hypertensive drugs when systolic blood pressure exceeds 140mmHg or initiating

antiretroviral therapy in patients with HIV-1 when their CD4 count has fallen to

350 cells/mm3 or below.

The RDD can mimic a randomised experiment around the threshold and the

treatment effect at the threshold can be obtained averaging the outcomes in ‘small’

bins in its proximity. The choice of the ‘bandwidth’ is an important decision for

an RDD analysis since the results are highly sensitive to its choice, especially in

all those cases in which the relationship between the assignment variable and the

outcome, on both sides of the threshold, deviates from linearity.

In many applied studies9,11,12, a standard strategy adopted to address the

bandwidth issue is to produce local linear regression estimates obtained using data

within a limited number of bandwidths (often not more than 3 or 4, sometimes

defined with the guidance of experts in the field of study). Alternatively, more

complex approaches can be adopted.

Historically, these methods find their roots in the econometric literature and

have close connection with the non-parametric estimation of the effect for

RDD. Their common rationale is that the ‘optimal’ bandwidth must be selected

according to some criteria aimed to minimise an error term. The first proposal, by

Ludwig and Miller13, was based on a leave-one-out cross validation (CV) strategy

in order to find the estimator minimising the mean integrated square error. Later,

Imbens and Kalyanaraman14 and Calonico et al.15 demonstrated that the CV

method was a potential source of bias and that it was not reliable in any case

when the design is fuzzy, and hence devised two slightly different minimisation

methods based on the asymptotic mean square error. Lee and Lemieux16 give an

overview of these approaches.

More recently, Local Randomization (LR) has been proposed by Cattaneo et

al.17 and used since in several applied papers12,18,19 in an attempt to select a

window around the threshold where the units can be seen as part of a randomised

experiment. This approach, although motivated by a different intuition, shares a

common trait with the other approaches outlined above (and further described in

Section 3): they all aim at finding one bandwidth, having optimal properties under

certain criteria and then use it within the RDD framework. As a consequence, they
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rely on what we named ‘all-or-nothing’ selection mechanism: all units within the

bandwidth are considered for the RDD analysis, but none of those outside.

In this paper, we propose an alternative approach to select the units to be

included in a RDD analysis. Similarly to the LR method, our approach originates

from a pragmatic and applied point of view, focusing on units’ exchangeability, an

attribute rooted in the unconfoundness assumption that guarantees that a RDD

mimics a randomised control trial thanks to the similarity of the units above and

below the threshold. However, our proposal has a more ambitious goal: not only

do we aim at including units for the RDD analysis based on their mutual similarity

and not on their proximity to the threshold, but we also want to overcome the

need of an ‘all-or-nothing’ approach shared by all other methods existing in the

literature.

Our novel proposal is motivated by the idea that that units can be grouped

in an unknown yet finite number of clusters in which the available covariates are

balanced among units above and below the threshold. Using a Dirichlet process

mixture model (DPMM), we cluster the units using continuous and categorical

covariates to account for potential sources of confounding. By quantifying the

internal similarity of the clusters obtained, only units belonging to the most

homogeneous clusters are then used in the RDD analysis, irrespective of their

distance from the threshold. Our proposal aims to a more effective sample

selection, as it searches for ‘signal’ in the data in farther regions from the threshold

generally overlooked by the currently available bandwidth selection approaches

and discards the ‘noise’ from data points closer to the cut-off.

The paper is organised as follows. Section 2 introduces the RDD and gives

details about the Bayesian modelling framework we adopt for the analysis. Section

3 gives an overview of the current literature on bandwidth selection for regression

discontinuity designs. Section 4 presents the methodological core of the paper,

where we discuss the use of clustering based on Dirichlet Process Mixture Models

(DPMM) within the RDD framework and Section 5 addresses the issue on

cluster selection for the subsequent RDD analysis. Results on both a simulated

experiment and a real dataset on the effect of statins on cholesterol level are given

in Section 6. Finally a closing discussion is presented in Section 7.
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2 Bayesian Inference for the Regression Discontinuity Design

In this section we introduce the basic framework and notation for the RDD.

Our work is motivated by an application of the regression discontinuity design

to statin prescription in primary care. In the past years other works from our

broader research group have originated from the same practical application and

data, every time exploring a different aspect of the RDD8,9,20. In the UK,

according to guidelines given by the National Institution for Health and Care

Excellence (NICE), statins must be prescribed to patients whose 10-year risk

score of developing a cardiovascular disease, predicted using a logistic regression

model with a number of clinical and lifestyle indicators as independent variables,

exceeds 20%21. This threshold has been revised in 2014, lowering it to 10%, but

we used pre-2014 data in this work and hence we applied the old cut-off value.

Using the risk score as our forcing variable (X ∈ [0, 1]), a RDD analysis can

assess whether binary statins treatment (T ∈ {0, 1}) can cause a reduction in

Low-Density Lipoprotein (LDL) cholesterol (our outcome, Y ), evaluated at the

threshold set to x0 = 0.20. To complete the basic notation, let Xc = (X − x0) be

the centred assignment variable and Z be the binary threshold indicator such that

Z = 1 if the forcing variable X ≥ x0 and Z = 0 otherwise. Note that Z coincides

with the observed treatment assignment variable T when the design is sharp, but

when RDD is applied to health and medical data it is reasonable to expect the

design to be fuzzy, and hence the two variables not to coincide. In our motivating

example this can be due both to GPs not adhering to NICE guidelines and to

patients failing to take statins although prescribed to do so.

It is widely known that the threshold indicator Z is a special case of binary

Instrumental Variable (IV)22. For this reason, in order for the RDD analysis to

be performed, a set of assumptions which can be derived from the IV literature

must hold9,23.

While further theoretical and technical aspects of the RDD would add very

little to the scope of this paper, being extensively covered24,25, we make use

of the next subsection to provide a more detailed overview of the Bayesian

modelling framework we aim to use for the the estimation of the causal effect

at the threshold.
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2.1 The causal effect

Motivated by our example, where GPs’ prescribing behaviour may not adhere

to NICE guideline, our primary focus is on fuzzy designs, hence the effect we

are interested in is the Local Average Treatment Effect (LATE) at the threshold,

defined as

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
.

The LATE numerator is equal to the Average Treatment Effect (ATE). If the

design is sharp, this can be proved to be an unbiased estimator for the jump

in the outcome at the threshold. However, in the context of a fuzzy design, and

aiming at estimating the effect at the threshold, such an estimate fails to account

for the different probabilities of being treated above and below the threshold, due

to the fact that the treatment assignment is greatly (but not deterministically)

determined by the threshold indicator Z.

The denominator, obtained as the difference in the expected treatment

probabilities above and below the threshold, scales the ATE to account for the

fuzziness of the design. In our motivating example, the LATE quantifies the

change in LDL cholesterol at the 10-year risk threshold of 20%. More details

about the assumptions that allow the identification of the above effect under a

fuzzy observational regime can be found in Constantinou and O’Keeffe26.

2.1.1 Models for the ATE Let the index l ∈ {a, b} specify whether a unit’s forcing

variable value lies above or below the threshold. We decided to model the outcome,

i.e., LDL cholesterol, separately for l = a and l = b as

yil ∼ N(µil, σ
2);

µil = β0l + β1lx
c
il,

where xcil is the centred distance of variable X from the threshold x0 for the i-th

individual belonging to l.

In our examples in Section 6, both for the simulated scenarios and for the real

data analysis, the relatively large sample size reduces the impact on posterior

inference of distributional assumptions, especially for σ which is likely dominated

by information from observed data. With smaller samples or to ensure further

robustness to prior on σ, other models are obviously possible, e.g., by considering

an Half-Cauchy distribution27.
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For the regression parameters, their prior distributions are chosen to reflect

plausible LDL cholesterol levels for the observed range of risk scores. Prior

specifications are defined as follows

β0a = β0b + λ;

β0b ∼ N(3.7;σ2
0b = 0.25);

β1l ∼ N(0;σ2
1l = 2);

σ ∼ Uniform(0, 5).

To encode in the model some available information from the literature28 about

the effect of statins in lowering cholesterol levels, we specify the prior distribution

of λ in order to be moderately informative, i.e.,

λ ∼ N(−2, 1).

Finally the ATE is calculated as ∆β = β0a − β0b.

2.1.2 Models for the denominator of the LATE The total number of subjects

treated on each side of the threshold is modelled, again separately for l ∈ {a, b}
as

nl∑
i=1

til ∼ Binomial(nl, πl),

where nl is the number of units either above or below the threshold.

Depending on the desired prior structure for (πb, πa), we specify two models

which, analogously to those in Geneletti et al.9, have been named unconstrained

and flexible difference model.

For the unconstrained model we use vague Beta distributions, i.e.,

πunctl ∼ Beta(1, 1),

with l ∈ {a, b}. Hence, we define the denominator for the LATE when using the

unconstrained prior specification as

∆unct
π = πuncta − πunctb .
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For the flexible difference model, we impose a mild prior structure acknowledging

an actual difference between the treatment probabilities above and below the

threshold, defining

logit(πflexa ) ∼ N(2, 1) and logit(πflexb ) ∼ N(−2, 1).

These distributions keep the bulk on the prior probability of treatment

distributions, above and below the threshold, reasonably separate from one

another, limiting the possibility that they result to be similar, while not

constraining them to have a fixed difference. For the flexible difference model,

the denominator of the LATE is thus given by the difference

∆flex
π = πflexa − πflexb .

***

Depending on the chosen model for the denominator we get two different local

average treatment effects, namely

LATEunct =
∆β

∆unct
π

and LATEflex =
∆β

∆flex
π

for the unconstrained and flexible difference model respectively.

3 A concise review of bandwidth selection methods

In recent years there has been a surge in the interest of researchers for the

choice of the bandwidth, as accounted by Cattaneo and Vazquez-Bare29 in their

comprehensive review on the topic. In fact the definition of the bandwidth

represents a fundamental decision for the RDD as there is both a clear link

between the size of the bandwidth and the assumption of exchangeability and

a trade-off with the precision of the estimates. If the bandwidth is small, units

can be reasonably considered more similar to one another. If the bandwidth is too

large, the converse is true, i.e., units could no longer be considered homogeneous.

In this section, we give an overview of the most prominent methods for

neighbourhood selection in the literature.
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3.1 Cross Validation based approach

The first approach found in the literature is based on a Cross Validation procedure

as proposed by Ludwig and Miller13∗, also discussed by Imbens and Lemieux24.

Let

m̂h(Xi) =

αa + βaX
c
i , if Xi ≥ x0,

αb + βbX
c
i , if Xi < x0

be the predicted value, using a bandwidth equal to h, of the outcome Y regressed

on the centred assignment variable Xc
i when the i-th unit is left out from the

calculation. The Cross Validation criterion is defined as:

CVY,δ(h) =
1

N

N∑
i:qX,δ,b≤Xi≤qX,1−δ,a

(Yi − m̂h(Xi))
2
. (1)

Here m̂h(Xi) is estimated using only observations on one side of Xi to mimic the

fact that RDD estimates are based on regression estimates at the boundary. As a

result, equation (1) is an average of boundary prediction errors. Furthermore qX,δ,b

and qX,1−δ,a are the δ-th and (1− δ)-th quantiles of the empirical distribution of

X for the sub-samples ‘below’ and ‘above’ the threshold, respectively. Ludwig

and Miller30 suggest δ = 0.95 to be appropriate, while other works16,24 state that

δ = 0.5 represents a reasonable value, but the choice of an appropriate value varies

according to the problem at hand and should be evaluated with care. The choice

for the bandwidth given by this CV method is then represented by

hoptCV = arg min
h
CVY,δ(h).

This criterion leads to the bandwidth choice that minimises an approximation of

the Mean Integrated Square Error (MISE):

MISE(h) = E

[∫
x

(m̂h(x)−m(x)) f(x)dx

]
where m(x) = E[Yi|Xi = x] and f(x) is the density of the forcing variable.

In the case of a fuzzy RDD, Imbens and Lemieux24 suggest to use the smallest

bandwidth selected by two CV criteria applied separately to the outcome and to

∗This is a working paper, later published as peer-reviewed article in a shortened version30

Prepared using sagej.cls



10 Journal Title XX(X)

the treatment:

hoptCV = min

(
arg min

h
CVY,δ(h), arg min

h
CVT,δ(h)

)
,

where T denotes the treatment received and the formulation for CVT,δ(h) is similar

to that in (1).

3.2 MSE expansion bandwidth selection

Both Imbens and Kalyanaraman14 and Calonico et al.15 criticise the CV based

approach, stating that this criterion relies on fitting the entire regression line

between the δ-quantile for the observation on the left and the (1− δ)-quantile for

those on the right, so that the result is not optimal for the problem at hand, being

the aim of a RDD to estimate the effect at the threshold.

Let τ̂ be the estimated effect at the threshold for the RDD, the proposal of

Imbens and Kalyanaraman is based on minimising its asymptotic Mean Squared

Error (MSE), i.e., (τ̂ − τ)2. Hence the MSE is defined as:

MSE(h) = E[(τ̂ − τ)2] = E[((µ̂a − µa)− (µ̂b − µb))2]

where µ̂b = limx↑x0 m̂h(x) and µ̂a = limx↓x0 m̂h(x), i.e, the two regression

estimators for the ‘true’ models on the two sides of the threshold, i.e., µb =

limx↑x0 m(x) and µa = limx↓x0 m(x).

To overcome some issues arising when trying to minimise the MSE(h) directly,

the authors use a first-order approximation around h = 0 of the above quantity,

which they term Asymptotic Mean Squared Error or AMSE(h). The optimal

bandwidth is therefore:

hIK = arg min
h

AMSE(h) = CK

(
σ2
a(x0) + σ2

b (x0)

f(x0)(m′′a(x0) +m′′b (x0))2

)1/5

N−1/5

where CK is a constant value depending on the choice of the kernel function

K(·); σ2
b (x0) and σ2

a(x0) are the left and right limit at the threshold of the

variance σ2(x) = V ar(Yi|Xi = x); f(x) is the density of the forcing variable;

m′′a(x0) and m′′b (x0) are the right and left limits of the second derivative of

m(x) = E[Yi|Xi = x]. The authors propose a data-dependent method to estimate

hIK in three steps.
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Calonico et al.15 considered that both previous methods produce bandwidths

that are too wide, leading to confidence intervals with poor asymptotic coverage.

The authors prove that correct asymptotic coverage is reached only if the

bandwidth can satisfy the bias condition nh5n → 0, a requirement that none of

the above mentioned methods can guarantee, leading to a first order bias in the

distributional approximation. As a result, the conventional confidence intervals

may substantially over-reject the null hypothesis of no treatment effect.

The authors propose a bias correction to address this problem that is able to

improve the performance in finite samples. The final result is a generalisation of

hIK , which we term hCCT , which allows for higher order polynomial to be used

for the inference and provides more robust confidence interval estimators.

3.3 Local Randomization

The Local Randomization (LR) approach selects a window around the cutoff in

which the randomization assumption is likely to hold17,31–33.

The rationale behind LR is that, because treatment assignment is assumed

to be randomised by the threshold inside the window, the distribution of pre-

intervention covariates should be the same for treated and untreated units. This

observation is directly related to the non-testable unconfoundness assumption

needed for the RDD to infer valid causal estimators. For the RDD framework

to be useful, the distribution of these covariates for treated and untreated units

should be unaffected by the treatment T within the bandwidth h but should be

affected by the treatment outside the window.

To find such desired bandwidth an iterative selection method is implemented.

Starting from a arbitrary ‘small’ bandwidth h1, for each one of the covariates,

multiple tests of the null hypothesis of no effect of the treatment on the covariates

is conducted and the minimum p-value taken.

If the minimum p-value obtained, p1, is less than some pre-specified level the

initial window was too large, hence one should decrease the initial window and

start over. Otherwise, if p1 is greater than the selected significance level, choose

a larger window h2 ⊇ h1, and go back to calculate a second iteration minimum

p-value, p2. The process continues until the minimum p-value is smaller than the

desired level and a final bandwidth hLR is defined.

* * *
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The limited literature available and the lack of an unequivocal methodology for

the bandwidth selection motivates our work: in the following we develop a more

general RDD framework in which the choice of the bandwidth is not required,

with positive effect on our results.

4 Dirichlet Process Mixture Models

In this paper, we propose a Dirichlet process mixture model to identify units

that are similar (and so will be treated as exchangeable), above and below the

threshold. We propose to identify these units by exploiting the characteristics of

the clusters obtained with a Dirichlet process mixture model.

The Dirichlet process mixture model is a Bayesian nonparametric method

for (unsupervised) clustering and applied in a variety of areas, such as retail

analysis34, language processing and classification35–37, medical imaging38,39,

epidemiology40–46 and genetics47. The Dirichlet process was first introduced by

Ferguson48 and is defined as a probability distribution over random probability

measures. The distribution of a Dirichlet process is (almost surely) discrete, in

that a random sample drawn from a Dirichlet process has a non zero probability

that multiple draws will have identical values. It is this discreteness property

which makes the Dirichlet process ideal for clustering, as it avoids the need to

determine the number of clusters a priori49. The basic Dirichlet process mixture

model is formulated as follows:

wi|θi ∼ p(wi|θi)

θi|G ∼ G

G ∼ DP (α,G0).

The Dirichlet process models the distribution from which data w1, . . . , wn are

drawn as a mixture of distributions, p(wi|θi), where each parameter θi is drawn

from a mixing distribution G49. G0 is the base distribution, that is the prior

expectation of G, i.e., E[G] = G0, and the concentration parameter α acts as an

inverse variance where larger values of α result in smaller variances. Posterior

inference from a DPMM utilises Markov chain Monte Carlo (MCMC) posterior

simulation and our implementation uses the slice sampling procedure50. Moreover,

due to the nature of the stick-breaking construction of the Dirichlet process51,
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label-switching moves are also implemented, to prevent the slice sampler from

getting stuck in local modes52.

In this paper, the DPMM is implemented to model both continuous and discrete

data using a mixture of Gaussian and categorical random variables . Let Si be

the latent allocation variable so that if Si = c then individual i is in cluster

c ∈ {1, C}, then conditional on each cluster c, the likelihood for observable data

Di = (D1
i ,D

2
i ) is

p(Di|Si = c,Θc) = p(D1
i |µDPc ,Σc)p(D

2
i |Φc)

where D1
i = (D1

i,1, ..., D
1
i,J1

) is the subset of the J1 continuous random variables

in Di and D2
i = (D2

i,1, ..., D
2
i,J2

) is the subset of the J2 categorical random

variables in Di. Note that we are assuming independence between continuous

and categorical data conditional on the cluster allocations. The cluster specific

parameters are given by Θc = (µDPc ,Σc,Φc), which are defined in detail below.

For the continuous random variables, we have

p(D1
i |µDPc ,Σc) = (2π)−

J1
2 |Σc|−

1
2 exp

{
−1

2
(D1

i − µDPc )>Σ−1c (D1
i − µDPc )

}
and we choose µDPc ∼ Normal(µDP0 ,Σ0) and Σc ∼ InvWishart(R0, κ0) (for each

c) for our prior model to obtain a conjugate model, permitting Gibbs updates for

the parameters µDP and Σ.

For the discrete random variables, we have

p(D2
i |Φc) =

J2∏
j=1

φSi,j,Xi,j .

For each individual i, D2
i = (D2

1, . . . , D
2
J2

) is a vector of J2 locally independent

discrete categorical random variables, where the number of categories for

covariate j = 1, 2, . . . , J2 is Rj . Then we can write Φc = (Φc,1, . . . ,Φc,J2)

with Φc,j = (φc,j,1, φc,j,2, . . . , φc,j,Rj ). Letting a = (a1,a2, . . . ,aJ2), where aj =

(aj,1, . . . , aj,Rj ) and adopting conjugate Dirichlet priors Φc,j ∼ Dirichlet(aj), each

Φc,j can be updated directly using Gibbs iterations.

As each iteration of the MCMC Gibbs sampler provides an estimate of the

cluster labels, Partitioning Around Medoids (PAM) was used to obtain an overall

estimate of the optimal number of clusters53. As the number of clusters varies
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between iterations, the proposed method uses the posterior similarity matrix P.

The best clustering is selected by maximising an associated clustering score54.

The Dirichlet process mixture model described above is available in the R package

PReMiuM55.

5 Cluster Ranking and Selection

Once we have identified units that are similar to one another using a Dirichlet

process mixture model, above and below the threshold, we must identify the most

suitable clusters for the RDD analysis. We propose to identify clusters that are

balanced and homogeneous. These concepts have been extensively exploited in

several branches of statistics, most notably by the Propensity Score Weighting

literature56,57, where overlap in covariates between treatment groups is a desired

feature to estimate average treatment effects for sub-populations defined according

to the propensity score.

A cluster is balanced when it has enough units on both sides of the threshold. As

many small clusters are usually fully above, or below, the threshold, it is important

to ensure that we consider balanced clusters for the RDD analysis. We call πZc

the proportion of units in cluster c with Zi = 1, i.e., for which the assignment

variable is greater than the threshold x0. We then empirically set a constant

value ζ , deeming a cluster balanced if the proportion πZc falls within an acceptable

range, i.e.,
1

ζ
≤ πZc ≤

ζ − 1

ζ
. Empirical evidence, based on our experience, suggests

that at least 10% of the units in a cluster should be treated, so ζ ≤ 10, and for

symmetry we suggest ζ > 2. These settings will guarantee that the acceptable

range for πZc is always centered around 0.5 and its width cannot exceed 0.8. Finally,

we discard unbalanced clusters, leaving us with C ′ ≤ C clusters. For c′ = 1, . . . , C ′

let K′ = {K1, . . . ,KC′} with Kc′ ⊆ V be the clustering set where the unbalanced

clusters have been removed so that nc′ = |Kc′ | is the number of units in cluster

c′.

A cluster is homogeneous (or compact) when the observations within it are

very similar to one another. However, modelling with a mixture model does not

always result in clusters of similar observations. For example, a Gaussian mixture

model with a fully flexible covariance matrix may incur in large within-cluster

dissimilarities compared to a model in which covariance matrices are assumed to

be equal or spherical: observations that are modelled well by a common probability
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distribution are not necessarily close. For example, in the case of a 2-dimensional

Gaussian distribution with a high correlation, the maximum distance between the

further observations can be significant. Generally, the mixture model does not

come with implicit conditions that ensure the separation of clusters58. Therefore,

we employ the Dirichlet process mixture model to exploit its flexibility, but we

must take a close look to the homogeneity of each cluster.

We propose to rank clusters based on their homogeneity. The concept of

homogeneity is widely explored in the clustering literature59 and relies on the

idea that if properly identified, units in a cluster must have a cohesive structure.

The most straightforward way to formalise that all objects within a cluster should

be similar to each other is the average within-cluster distance, a commonly used

index for cluster internal validation60. We employ a version of this within-cluster

index based on the posterior similarity matrix P obtained post-processing the

output of the Dirichlet process mixture model. The values in P are the pairwise

probabilities that two observations are allocated to the same clusters in the

MCMC sample. As such, adapting the definition of dissimilarity from Henning60,

we can define a similarity function s : V2 7−→ R+
0 so that s(v1, v2) = s(v2, v1) ≥ 0

and s(v1, v1) = 1, where v1 and v2 are elements from V, the space of observations

that we are clustering. This similarity function can be used to compute the within-

cluster homogeneity.

Let pl,v be the elements of the similarity matrix P. For each cluster this within-

cluster homogeneity index can be calculated as:

Ic′ =
2

nc′(nc′ − 1)

nc′∑
l=1

nc′∑
v≤l

pl,v.

A lower within-cluster index is an indicator of a more homogeneous cluster, with 0

being the minimum value for Ic′ . We exploit this measure of homogeneity to rank

the clusters from the least homogeneous to the most homogeneous. We relabel

the index as I(c′) for c′ = 1, . . . , C ′ such that I(1) < I(2) < . . . < I(C′).

Among the balanced clusters, we propose to use homogeneity to select the

clusters to include in our model. We propose the following four criteria.

1. We include clusters until the relative difference between the homogeneity

for the c′-th and (c′ + 1)-th ordered clusters is within a 10% margin, that
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is, all ordered clusters from 1 to c′ such that

I(c′+1) − I(c′)
I(c′)

< 0.10

for c′ = 1, . . . , C ′. We refer to this criteria as inc10.

2. We include the first quartile of the balanced clusters, that is, all clusters c′

with

I(dhe) such that h ≤ C ′/4.

We refer to this method as c25.

3. We include clusters starting from the most homogeneous until the sample

includes at least half of the units from the entire cohort, that is, all clusters

c′ with c′ = 1, . . . , C ′ such that

C′−1∑
c′=1

n(c′) < N/2 and

C′∑
c′=1

n(c′) ≥ N/2

where n(c′) is the cardinality of the c′-th cluster, ordered according to the

homogeneity index I(s). We refer to this criteria as n50.

4. We named to this final criteria as n25 as it is similar to n50, but only

considering one quarter of the units from the entire cohort, that is, all

clusters c′ with c′ = 1, . . . , C ′ such that

C′−1∑
c′=1

n(c′) < N/4 and

C′∑
c′=1

n(c′) ≥ N/4.

The four strategies detailed above define four (possibly) different sub-samples of

the partition obtained applying a Dirichlet process mixture model as in Section

4. RDD analysis, as detailed in Section 2, is hence performed for each of the

sub-samples of units irrespective of their distance from the threshold (x0). Note

that we empirically observed that the inc10 strategy tends to include fewer

observations. This is due to the fact that it is the only method that does not

provide any guarantee on the number of observations selected: c25, n50 and n25

are based on quartiles or sample size, while inc10 is only based on the homogeneity

of the clusters and its rate of decrease.
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6 Applications and results

We make use of our methodology for an application to primary care prescription:

according to the guidelines given by the National Institute for Health and

Care Excellence (NICE) between 2008 and 2014, statins should have been

prescribed in the UK to patients with 10-year cardiovascular disease (CVD)

risk scores, calculated via the so called Framingham Risk Score61, in excess

of 20%. To illustrate our methodology and check its performance, we use

statins prescriptions data from The Health Improvement Network (THIN -

www.the-health-improvement-network.com) a large primary care database that

provides anonymised longitudinal general practice data on patients’ diagnostic

and prescribing records from more than 500 general practices across the UK. The

database is broadly representative of the UK population62. Access to the dataset

can be obtained by contacting the network.

In the following Sections we will present results obtained using our methodology

both on a realistically simulated dataset (Section 6.1) and on a subset of data

from THIN patients (Section 6.2). The simulated experiment makes a formal

comparison between different methods (i.e., our DPMM clustering based approach

and other relevant bandwidth selection criteria), while the real-data application

showcases how our methodology can be useful in practice. In both cases, the

values of three key covariates are used to cluster units with our DPMM: age,

systolic blood pressure and high-density lipoprotein (HDL) cholesterol. With the

same data, we have obtained results of RDD analyses using established bandwidth

selection methods: those based on MSE (i.e., methods originating from Imbens

and Kalyanaraman14 and Calonico et al.15, IK and CCT for short, respectively)

and Local Randomization (LR) as detailed in Sections 3.2 and 3.3 as well as

two arbitrarily selected windows, i.e., bandwidth of width 0.05 and 0.1 on each

side of the threshold. Appropriate functions from R packages rdd, rdrobust and

rdlocrand are used to estimate hIK , hCCT and hLR respectively.

6.1 Simulated example

For this example we followed the same approach as Geneletti et al.9 and used

simulated data originated from the THIN database (details about the simulation

algorithm can be found on the supplementary material of that paper). In

particular data are obtained under a simulation scenario in which the risk score
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Figure 1. Scatterplot of 10-year CVD risk score vs. LDL cholesterol for one of the
realistically simulated datasets, highlighting the units selected for the RDD analysis using
the ‘c25’ strategy (treated (blue) and untreated (red)), compared with other bandwidth
selection methods (LR bandwidths are not depicted as they are too close to the threshold
line).

is a strong instrument for the treatment, the treatment effect size is equal to -2

and there is low level confounding. Both statins treatment status and the LDL

cholesterol outcome are simulated to mimic realistic values.

We have simulated 100 datasets and for each of them, separately, we clustered

the units using the DPMM approach. Then we selected the most homogeneous

clusters based on the four criteria detailed in Section 5. The range for acceptable

assignment probability for each cluster is 1
10 ≤ π

Z
c ≤ 9

10 , i.e., ζ = 10. These

boundaries are set in order to account for the fact that in most of the clusters the

assignment probabilities are not very well balanced between observations below

and above the threshold. Our aim is thus to define a reasonable way to discard

extreme, ineligible clusters while, at the same time, preventing a too drastic

exclusion of most of them. Finally we performed RDD Bayesian analysis and

combined the results to obtain LATEunct and LATEflex.
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Table 1. Results for the simulated example.

method Median Mean Lower Upper

LATEflex inc10 -2.16 -2.19 -3.10 -1.47
LATEunct -2.26 -2.42 -3.55 -1.41

LATEflex c25 -1.96 -1.97 -2.28 -1.66
LATEunct -1.97 -1.97 -2.28 -1.67

LATEflex n50 -2.03 -2.03 -2.18 -1.89
LATEunct -2.03 -2.03 -2.18 -1.89

LATEflex n25 -1.96 -1.96 -2.16 -1.77
LATEunct -1.96 -1.96 -2.16 -1.77

LATEflex LR -1.44 -1.46 -2.79 -0.27
LATEunct -1.54 -1.62 -3.52 -0.27

LATEflex CCT -2.05 -2.05 -2.21 -1.90
LATEunct -2.05 -2.05 -2.21 -1.90

LATEflex IK -2.08 -2.08 -2.24 -1.93
LATEunct -2.08 -2.09 -2.24 -1.93

LATEflex h = 0.10 -2.10 -2.10 -2.25 -1.94
LATEunct -2.10 -2.10 -2.25 -1.95

LATEflex h = 0.05 -2.10 -2.10 -2.27 -1.93
LATEunct -2.10 -2.10 -2.27 -1.93

Figure 1 gives a visual representation of how units are selected according to

different bandwidth methods compared with our DPMM framework combined

with the c25 criteria: solid red dots and blue diamonds represent the selected

units out of the whole initial sample, represented using void grey markers. Vertical

lines show the bandwidths selected with some of the methods described in Section

3. Note that LR bandwidths are not shown to avoid confusion, as they are too

close to the threshold.

Table 1 and Figure 2 show the results of these scenarios. It is worth noticing

that flexible and unconstrained estimators give very similar results. Among

the four cluster selection strategies we propose, c25, n50 and n25 all show a

reduced or similar bias than those obtained using other established methods -

i.e., CCT, IK, LR and arbitrarily-selected fixed-width bandwidths. Our proposed

DPMM clustering method is performing as well existing methods in certain
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Figure 2. Comparison of results for the simulated example.

circumstances, so it can prove valuable in all those RDD applications where

exchangeability is regarded as a key feature and where traditional methods do

not offer viable solutions to tackle it. On the other hand, results for strategy

inc10 are considerably less reliable. Precision of all estimators is comparable for

all strategies but inc10, which shows wider credible intervals.

6.2 Real data - Statins prescription in the UK

In this second example, we considered a subset of patients from THIN: male

individuals aged from 50 to 70 who had not previously received a statin

prescription nor suffered from a CVD event and for whom the Framingham

risk score was recorded by the GP during the time between 1 January 2007

and 31 December 2008. We further restricted the analysis to non-diabetic and

non-smoking patients, so that the total number of units is 1386.

Figure 3 shows why we believe an RDD is appropriate for the data at hand.

On the left-hand side, the scatterplot highlights a discontinuity for the LDL level,

which is visibly higher for data points with a risk score lower than 0.2 and drops

sensibly when the risk score is higher than the threshold. The decrease is also

shown by the black dots representing mean values within equally spaced bins. On
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Figure 3. The left-hand plot shows 10-year CVD risk score vs. LDL cholesterol for treated
(blue) and untreated (red), and the mean cholesterol lever within some equally spaced bins
(black); the right-hand side plot shows risk score vs. the estimated probability of treatment,
within the same bins. The dashed line indicates the threshold of 0.2.

the right-hand side, the probability of being assigned with the statins treatment

displays a characteristic S-shape, with a rapid increase when crossing the risk

score threshold and more stable values far from it. Moreover, there is substantial

fuzziness in the data around the threshold, suggesting that LATE estimators

are appropriate in this setting, and we calculated them using the Bayesian

methods detailed in Section 2 and relying on both flexible and unconstrained

prior specifications. The data also shows that the assumption of monotonicity,

required for an RDD, is tenable. The monotonicity assumption states that no

decision-maker systematically defies the guidelines - i.e., no GPs would prescribe

statins only to those patients with their risk score lower than the threshold and

withhold treatment only to those with a risk greater than 0.2.8.

For the clustering selection process, the range for acceptable assignment

probability for each cluster is set to 1
10 ≤ π

Z
c ≤ 9

10 , i.e., ζ = 10. Similarly to

Figure 1 for the simulated example, Figure 4 depicts unit selection according

to different established bandwidth methods (i.e., IK, CCT, LR and arbitrarily

selected) compared with our proposed framework based on the DPMM and the

c25 strategy. Once again it is possible to notice how the solid red and blue dots

and diamonds are picked across most of the Risk Score range when exchangeability

is the privileged criteria for unit selection.
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Figure 4. Scatterplot of 10-year CVD risk score vs. LDL cholesterol for Real case,
highlighting the units selected for the RDD analysis using the ‘c25’ strategy (treated (blue)
and untreated (red)), compared with other bandwidth selection methods.

Table 2 and Figure 5 show the results. Obviously there is no real value to

compare the results of the estimators with, but there are a few aspects of interest

nonetheless. All our DPMM estimators, including inc10, produce similar results,

irrespective of which cluster selection method is used, with n50 and n25 strategies

both producing more precise estimates. It is also interesting to note how, in this

case, the LR method produces very wide credible intervals for both LATEunct

and LATEflex, as this method is not able to pick a large enough subset of similar

unit, being constrained to limit the search within nested windows. Results from

both MSE based and arbitrary-selected bandwidths appear substantially different:

CCT estimators are less precise that the DPMM based ones, and only h = 0.10

produces results similar, in median, to those obtained applying our DPMM and

cluster selection.
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Table 2. Results for example based on real data.

method Median Mean Lower Upper

LATEflex inc10 -1.01 -1.03 -1.58 -0.57
LATEunct -1.10 -1.10 -1.74 -0.49

LATEflex c25 -1.02 -1.04 -1.59 -0.55
LATEunct -1.09 -1.09 -1.67 -0.49

LATEflex n50 -0.95 -0.96 -1.32 -0.67
LATEunct -0.97 -0.97 -1.30 -0.68

LATEflex n25 -1.12 -1.12 -1.49 -0.76
LATEunct -1.14 -1.14 -1.56 -0.71

LATEflex LR -2.07 0.53 -21.36 26.04
LATEunct -1.79 3.52 -28.67 57.38

LATEflex CCT -1.53 -1.56 -2.21 -0.95
LATEunct -1.55 -1.58 -2.44 -0.94

LATEflex IK -1.17 -1.18 -1.63 -0.82
LATEunct -1.19 -1.19 -1.61 -0.83

LATEflex h = 0.10 -1.04 -1.05 -1.40 -0.74
LATEunct -1.09 -1.09 -1.42 -0.72

LATEflex h = 0.05 -1.39 -1.40 -1.98 -0.94
LATEunct -1.42 -1.43 -2.00 -0.99

7 Conclusions

We have proposed a novel, data-driven approach to deal with the bandwidth

selection issue for the regression discontinuity design from a different perspective

than those adopted in the available literature. Our approach originates from

the idea that what matters the most in a regression discontinuity design is

the exchangeability of the units included in the analysis, i.e., their homogeneity

with respect to know observable characteristics. Following this rationale, it is

reasonable to believe that subgroups of units might share common characteristics

irrespective of their distance from the threshold. This, we believe, represents

the most appealing aspect of this framework: instead of relying on the ‘all-or-

nothing’ approach, which is implicit with any of the currently available bandwidth

selection methodologies, we propose a tool that is capable of using all the
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Figure 5. Comparison of results for the Real Case.

available information from all the individuals showing homogeneous covariates

and balanced forcing variable.

Furthermore, when compared with the Local Randomization method which is

similar in principle to ours, our DPMM clustering approach has the merit of

tackling exchangeability more directly: while the former tests the null hypothesis

of no effect of the treatment on each observed confounder separately in a univariate

way, the latter, relying on clustering methods, evaluates the homogeneity of the

considered covariates in a joint, more comprehensive approach.

The results of the RDD analysis using our DPMM clustering framework,

especially in combination with c25 cluster selection strategy, compared favourably

in terms of bias with those obtained following other bandwidth selection

approaches, i.e., CCT and IK (methods that are specifically designed to minimise

the bias of the causal estimator), LR and with the arbitrarily-selected fixed-width

bandwidths.

We are aware of the limitations to our approach. In particular we acknowledge

the issue that, due to the complexity of the DPMM which involves the estimation

of a latent clustering structure, our analysis is more time consuming than those

based on other bandwidth selection methods, an issue that is amplified as the

number of clustering covariates increases. Due to label switching and the lack of a
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specific parameter to target, it is also hard to assess Bayesian DPMM convergence

with the usual MCMC diagnostics. We remain convinced that these limitations

are a reasonable price to pay in order to be able to overcome the ‘all-or-nothing’

bandwidth approach. A further limitation is the fact that our method relies on

the availability of observed data or known confounders, although this issue is not

exclusive of our approach as it is shared with Local Randomization method as

well.

As a final remark, we think it is useful to note that we are not advocating

the indiscriminate use of our methodology in any given RDD analysis. Expert

assessment of any application and a proper evaluation of the plausibility of the

RDD assumptions must always constitute the ground for subsequent analyses.

Also, availability of covariates data and their role as potential confounders must

be assessed beforehand. A certain degree of subjectivity remains in the choice of

value ζ, for which an assessment of the balance of the forcing variable has been

proposed as a way to deal with clusters with unbalanced representation on both

sides of the threshold, but the magnitude of the reasonably allowed unbalance

represents an application-specific feature and it is left for the practitioner to be

determined.

Rather than being a ‘one-size-fits-all’ tool, our proposal offers an alternative

approach to identify the units to be included in the RDD analysis in a

more targeted way than the bandwidth selection methods currently available.

Thoughtful use of our proposed DPMM clustering framework can prove valuable

in all those RDD applications where exchangeability is regarded as a key feature

and where traditional methods do not offer viable solutions to tackle it.
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