
PERFORMANCE MIDI-TO-SCORE CONVERSION BY
NEURAL BEAT TRACKING

Lele Liu∗1,2 Qiuqiang Kong3 Veronica Morfi1 Emmanouil Benetos1,2
1 Centre for Digital Music, Queen Mary University of London, UK
2 The Alan Turing Institute, UK 3 ByteDance Shanghai, China

lele.liu@qmul.ac.uk

ABSTRACT

Rhythm quantisation is an essential part of converting
performance MIDI recordings into musical scores. Pre-
vious works on rhythm quantisation are limited to the
use of probabilistic or statistical methods. In this paper,
we propose a MIDI-to-score quantisation method using
a convolutional-recurrent neural network (CRNN) trained
on MIDI note sequences to predict whether notes are on
beats. Then, we expand the CRNN model to predict the
quantised times for all beat and non-beat notes. Further-
more, we enable the model to predict the key signatures,
time signatures, and hand parts of all notes. Our pro-
posed performance MIDI-to-score system achieves signif-
icantly better performance compared to commercial soft-
ware evaluated on the MV2H metric. We release the tool-
box for converting performance MIDI into MIDI scores at:
https://github.com/cheriell/PM2S.

1. INTRODUCTION

Performance MIDI-to-Score (PM2S) conversion aims to
convert a performance MIDI, usually recorded by elec-
tronic MIDI keyboards, into musical scores in computer-
readable score format such as MIDI, MusicXML [1] and
Lilypond [2]. PM2S covers a list of subtasks including
rhythm quantisation, note value prediction, key estimation,
voice separation, and possibly score typesetting such as
beaming and playing techniques annotation. PM2S can be
used in various scenarios such as music improvisation [3],
complete music transcription [4–7] in combination with
multi-pitch detection, music alignment [8], music educa-
tion, music performance analysis [9], and building music
archives.

Although research on the various subtasks on PM2S
dates back to earlier decades [10–13], the first academic
paper that fully formulated this task was published in 2016
[14]. The paper works on converting a performance MIDI
recording into a LilyPond score. The authors firstly fixed

* The author conducted this work as an intern at ByteDance.

© L. Liu, Q. Kong, V. Morfi, and E. Benetos. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: L. Liu, Q. Kong, V. Morfi, and E. Benetos, “Per-
formance MIDI-to-score conversion by neural beat tracking”, in Proc. of
the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru,
India, 2022.

spurious overlapping notes according to a defined note
overlapping ratio, then applied a probabilistic model using
Hidden Markov Models (HMMs) based on a tactus-root
combination concept [15] for meter, harmony, and stream
estimation. After that, the note onsets and offsets are quan-
tised to beat subdivisions. Note spellings and staves are
determined from the predicted harmony and streams.

Following the use of conventional methods for solv-
ing subtasks such as rhythm quantisation, recent years
have seen some advances on statistical methods [5,16–19].
Nakamura et al. [16] proposed an improvement for rhythm
transcription using a merged-output HMM to solve the
problem introduced by multiple voices. A note value pre-
diction method using Markov random fields was proposed
in [17]. The two methods were further improved for au-
tomatic music transcription by combining multi-pitch de-
tection [5, 19]. Mcleod and Steedman [18] proposed an
HMM-based meter detection method for aligning MIDI
performances.

Over the past two years, researchers have published pa-
pers using deep learning methods on PM2S. Hiramatsu
et al. [20] proposed to use a recurrent neural network for
joint estimation of note values and voices from note pitches
and onset times, which in combination with multi-pitch
detection and rhythm quantisation, outperformed previous
methods [14, 19] for automatic music transcription. The
Score Transformer [21] provided a solution to generating
human-readable scores from quantised MIDI files.

From previous works, we observe that the problem of
PM2S is usually solved through a combination of differ-
ent methods for subtasks. Moreover, although there are
attempts on applying deep learning methods for the task,
they do not cover the rhythm quantisation step.

To address the limitations mentioned above, we propose
to use a deep learning method for PM2S. We develop a
CRNN model that directly converts a performance MIDI
into a MIDI score. We pay special attention to the rhythm
quantisation step, and propose to solve the problem by
tracking beats on a MIDI note sequence. We then expand
the CRNN model to predict a compact output for gener-
ating a quantised MIDI score, including quantised onset
times and note values, time signatures, key signatures and
hand parts. To better capture our method’s ability in mod-
elling expressive performances, we train and evaluate our
proposed model on a set of classical piano music datasets
[22, 23]. In a comparison with two commercial software

https://github.com/cheriell/PM2S
https://github.com/cheriell/PM2S


products MuseScore [24] and Finale [25], our proposed
method achieved significantly better performance based on
the MV2H metric [26].

2. METHODOLOGY

2.1 Problem definition

Our proposed method aims to predict a MIDI score from a
performance MIDI using a deep learning model. Assume
a performance MIDI note sequence X where notes are or-
dered firstly by time and secondly by pitch. Each note in
the sequence is represented by a tuple:

X = {(pn, on, dn, vn)}Nn=1 (1)

where pn, on, dn, vn are the MIDI pitch number, onset and
duration in seconds, and velocity for the n-th note, N is the
number of notes. We aim to predict the transcribed MIDI
score annotations including

Yn = {(mon, nvn, hn)}Nn=1 (2)

Yt = {(ti, tni, tdi)}Ti=1 (3)

Yk = {(ti, ki)}Ki=1 (4)

Y = (Yn,Yt,Yk) (5)

where Yn covers the musical onset time mon, note value
nvn and hand part hn for all notes; Yt and Yk are the time
signature and key signature changes, where ti is the time
and tni, tdi and ki are the time signature numerator, time
signature denominator, and key signature respectively. T
and K are the numbers of time signature changes and key
signature changes. A MIDI score can be obtained by com-
bining information from X and Y.

2.2 From beat tracking to rhythm quantisation

Considering rhythm quantisation as a fine-grained tracking
of beats and beat subdivisions, we propose to do rhythm
quantisation by combining beat tracking and the prediction
of musical note onset times in subdivisions within a beat.
We use a deep learning model for both beat tracking and
musical onset time prediction. Adding the beat tracking
component allows the two components to learn from each
other. It also allows us to use training data such as [23] that
has beat-level annotations, but do not provide fine-grained
alignment in subdivision level.

We define mon in Eq. (2) as a ratio of:

mon = sn/S (6)

where sn is the musical note onset time in subdivisions
within a beat, and S is the number of subdivisions per beat
in rhythm quantisation.

Note sequence

kernel size & channel
(9, 1), 512

(9, 1), 256
(9, in_features), 128

Convolutional

Batch normalisation

Exponential linear unit

Dropout (0.15)

To next convolutional layer

Bi-directional GRU (512)

Bi-directional GRU (512)

Linear (512)

ConvBlock

GRUBlock

Linear (1)

In-note beat probabilities

(a) In-note beat prediction

Note sequence

ConvBlock

GRUBlock

GRUBlock

GRUBlock Linear (200)

Linear (1)

Linear (1)

tempo

downbeats

beats

ConvBlock GRUBlock Linear (24) musical onsets

ConvBlock GRUBlock Linear (96) note values

ConvBlock GRUBlock
Linear (5) time signature numerators

Linear (4) time signature denominators

ConvBlock GRUBlock Linear (12) key signatures

ConvBlock GRUBlock Linear (1) hand parts

concatenate

disable back propagation during training

(b) Performance MIDI-to-score

Figure 1. Model architecture for in-note beat prediction.

2.3 Neural beat tracking on note sequences

2.3.1 In-note and out-of-note beats

To match the model input data in note sequence format, we
separate beats into two groups:

• In-note: beats concurrent with at least one note onset;
• Out-of-note: beats not concurrent with any note onset.
In our proposed approach, we first train a deep learn-

ing model to predict in-note beats in a binary classification
task, and then use dynamic programming to infer out-of-
note beats from the in-note ones.

2.3.2 In-note beat prediction

Let the ground truth in-note beat labels for each note in the
note sequence be Bn ∈ {0, 1}. We define a binary classifi-
cation model that predicts the in-note beat probabilities for
each note given the note sequence X, that is:

Pn = P (Bn|X) (7)

The model is trained to find the minimum binary cross-
entropy loss defined as:

L = − 1

N

N∑
n=1

(Bn ∗ log(Pn) + (1−Bn) ∗ log(1− Pn))

(8)
In order to acquire the beat and downbeat predictions,

we use a CRNN with 3 convolutional layers and 2 bi-
directional gated recurrent unit (GRU) layers. Figure 1
shows the model architecture. The predicted in-note beat
probabilities are then converted to binary labels by dy-
namic thresholding. The dynamic threshold depends on
the maximum predicted probability in a fixed segment
length in seconds.

2.3.3 Out-of-note beat prediction

We assume there are in total N i in-note beats and out-of-
note beats are at subdivisions of their neighbouring in-note
beats bin and bin+1 where bin means the n-th in-note beat



Algorithm 1 Out-of-note beat prediction
Input: List of in-note beats Bi
Output: List of all beats B after adding out-of-note beats

1: n← 1
2: for K = 0, 1, 2, 3 do
3: Initialise objective function OK ← 0
4: Initialise beat sequence BK ← {b1}
5: end for
6: for n = 1, 2, . . . , N i − 2 do
7: for Kcur = 0, 1, 2, 3 do
8: Get out-of-note beats for current step by Eq.

(9)
9: if Tempo is beyond tempo range limits then

10: Go to next Kcur

11: end if
12: for Kprev = 0, 1, 2, 3 do
13: Update objective function by Eq. (11)
14: end for
15: Select the minimum objective among all Kprev

values
16: Add out-of-beats for current step to the beat

sequence mapped to the selected Kprev

17: end for
18: for Kcur = 0, 1, 2, 3 do
19: Update OK , BK mapped with Kcur

20: end for
21: end for
22: Return the beat sequence in BK with the minimum ob-

jective function OK

and n ∈ {1, 2, . . . , N i}. We insert out-of-note beats bo

from candidates in:

bon,K = {bin +
k

K + 1
(bin+1 − bin)}Kk=1 (9)

where K ∈ {0, 1, 2, 3} is the number of out-of-note beats
to insert for the current interval. We try to find a way that
minimises the tempo change after adding out-of-note beats
to the beat sequence. To describe the level of tempo change
for a list of beats, we define an objective function as fol-
lows:

O1 =

N−2∑
n=1

∣∣∣∣log(bn+2 − bn+1

bn+1 − bn

)∣∣∣∣ (10)

where N is the number of beats in the final beat sequence
and bn is the n-th beat. However, this function does not
take into account adding too many out-of-note beats. We
thus add a penalty associated with the number of out-of-
note beats to the objective function, resulting in:

O = O1 + λ×No (11)

where λ is the penalty coefficient applied to avoid adding
too many out-of-note beats which is tuned based on exper-
iments and No is the number of out-of-note beats added.
In this way, we obtain an objective function O to be min-
imised in the out-of-note beat prediction process that en-
courages both a low level of tempo change and adds fewer
out-of-note beats.

Note sequence

kernel size & channel
(9, 1), 512

(9, 1), 256
(9, in_features), 128

Convolutional

Batch normalisation

Exponential linear unit

Dropout (0.15)

To next convolutional layer

Bi-directional GRU (512)

Bi-directional GRU (512)

Linear (512)

ConvBlock

GRUBlock

Linear (1)

In-note beat probabilities

(a) In-note beat prediction

Note sequence

ConvBlock

GRUBlock

GRUBlock

GRUBlock Linear (200)

Linear (1)

Linear (1)

tempo

downbeats

beats

ConvBlock GRUBlock Linear (24) musical onsets

ConvBlock GRUBlock Linear (96) note values

ConvBlock GRUBlock
Linear (5) time signature numerators

Linear (4) time signature denominators

ConvBlock GRUBlock Linear (12) key signatures

ConvBlock GRUBlock Linear (1) hand parts

concatenate

disable back propagation during training

(b) Performance MIDI-to-scoreFigure 2. Model architecture for performance MIDI-to-
score conversion.

We use a dynamic programming algorithm (defined in
Algorithm 1) to find the optimal out-of-note beats while
minimizing O.

2.4 Performance MIDI-to-Score

Based on the problem definition in Section 2.1, we make
some modifications to the prediction of time signature and
key signature changes. In our proposed model, we define
Yt and Yk in a way that the time signature and key signa-
ture values are mapped with each note by the note onsets.
We also add beat bn, downbeat dbn, and tempo temn pre-
diction in note level. Beat probabilities are defined as in
Eq. (7); similar definitions are used for downbeats. As a
result, we define our model as X→ Y′ where:

Y′ = {(mon, nvn, hn, tnn, tdn, kn, bn, dbn, temn)}Nn=1

(12)
We then define a CRNN-based model that maps the in-

put note sequence X with Y′. Among the output elements,
hand part hn, beats bn and downbeats dbn are defined as
binary classification tasks; the others are defined as multi-
class classification tasks, where

• Musical onset mon is defined as in Eq. (6), whose
value is quantised by beat subdivisions;

• Note values nvn are quantised by beat subdivisions;
• Time signature is defined to be tnn ∈ {0, 2, 3, 4, 6}

and tdn ∈ {0, 2, 4, 8}, 0s indicate other values;
• Key signature kn is defined to be in {C, Db, D, Eb, E,

F, Gb, G, Ab, A, Bb, B};
• Tempo is quantised following a minimum inter-beat-

interval of 0.01s.
Our proposed model structure is shown in Figure 2.

The Convolutional blocks (ConvBlock) and GRU blocks
(GRUBlock) have similar structure to the ones in Figure 1.
Links between branches allow the output elements to learn
from each other. The model is trained jointly using binary
cross-entropy loss for binary classification output elements
and negative log-likelihood loss for multi-task classifica-
tion output elements.

A MIDI score can then be generated by combining the
information given in the performance MIDI and the output



Statistics Train Valid Test Total
Distinct pieces 426 49 29 504
Performances 1324 157 29 1510
Duration (hour) 108.3 12.7 2.2 123.2
Notes (103) 3984.0 517.6 73.2 4574.7

Table 1. Dataset Statistics. Performances from the MAPS
dataset and the CPM database for the same piece are not
counted as different performances, since MAPS pieces are
originally obtained from the CPM database.

predictions from our proposed model.

3. EXPERIMENTS

3.1 Data

3.1.1 Datasets

To better demonstrate the ability of our proposed method
on quantising expressive performance, we use a collection
of classical piano music pieces from 1) The MAPS dataset
[22] and corresponding metrical annotations from the A-
MAPS dataset [27]; 2) The Classical Piano-Midi (CPM)
database [28]; and 3) The ASAP dataset [23].

In order to avoid piece overlaps between train, valida-
tion and test splits, we use the distinct music piece labels
for all piano performances given in the ACPAS dataset
[29]. We use a real recording subset in MAPS (the EN-
STDkCl subset) as the test set as in [5, 20]. Other music
pieces not included in the test set are randomly split into
training and validation based on their distinct music piece
labels. In this way, we get a train/validation/test setup with
no overlapping music pieces among splits. Table 1 shows
the dataset statistics.

3.1.2 Annotation

Annotations are provided in different formats in the
datasets we use. The A-MAPS dataset and the CPM
database provide fully annotated MIDI scores with tempo
and metrical information. Thus, we extract the annota-
tions we need from the MIDI scores directly. Performances
from the ASAP dataset come with two sets of annotations,
MIDI scores and annotations in .tsv files. However, the
MIDI scores were written by non-professionals and are
not a good source of ground truth. Thus, we follow the
authors’ suggestion to use the provided annotations in the
.tsv files, in which beat, downbeat, time signature and key
signature annotations are provided. Due to the fact that the
.tsv annotations do not cover precise fine-grained metrical
and hand part annotations, we mask the ASAP data on mu-
sical onset time, note value, and hand part prediction dur-
ing training. Moreover, when matching note onset times
to beats or non-beats in our proposed model, we set a tol-
erance of ±50ms to beat matching to comprise short-time
variances introduced by human performance.

3.1.3 Data augmentation

Given the note sequence information defined in Section 2,
we consider the following data augmentation methods:

• Pitch shift: Shift MIDI pitch values up or down
for the whole music performance. The shifted pitch
is defined as: ps = p0 + pshift where p0 is
the original pitch value and pitch shift pshift ∈
{0,±1,±2, ...,±12}.

• Tempo change: Change the tempo to a ratio of the
original tempo. The new tempo temc = rt ∗ tem0

where tem0 is the original tempo and rt ∈ [0.8, 1.2]
is the ratio.

• Note removal: For polyphonic music, there should be
little influence to the metrical structure of the music
piece when removing some concurrent notes. Thus,
for each group of M concurrent notes, we randomly
remove 0 to M-1 of them from the MIDI performance.

• Note introduction: Contrary to note removal, we ran-
domly select 0-100% of notes from the MIDI perfor-
mance, and add new notes that are concurrent with the
selected ones. We keep the velocity and duration the
same, so as to preserve the original music structure
as much as possible. The new note pitches are ±12
semitones apart from the original note pitches.

3.2 Evaluation metrics

3.2.1 Beat tracking evaluation

We define a note-level F-measure for evaluating in-note
beat tracking, and a beat-level F-measure which follows
the benchmark F-measure for beat and downbeat tracking
[30] with a time tolerance of ±70ms. In both cases, a true
positive means a predicted beat is in the ground truth; a
false positive means a predicted beat is not in the ground
truth; and a false negative means a ground truth beat is
missing in prediction.

For both F-measures, we report the precision p, recall r
and F-score f . Similar definitions are used for downbeats.

3.2.2 Performance MIDI-to-Score evaluation

We use the MV2H metric [26] to evaluate the system per-
formance on PM2S conversion. The metric covers five
sub-metrics including multi-pitch detection (Fp), voice
separation (Fvo), metrical alignment (Fme), note value de-
tection (Fva), and harmonic analysis (Fha). The final ac-
curacy F is the average of all the sub-metrics.

3.3 Comparative experiments

Among the subtasks in PM2S, rhythm quantisation is a
crucial and difficult part. It is also highly related to the es-
timation of time signatures, musical onsets, and note val-
ues. In our proposed rhythm quantisation method which
combines neural beat tracking and musical onset time esti-
mation, we consider beat tracking as a more important step
since it works on drawing the skeleton of the metrical grid.

Thus, for the first part of our experiments, we investi-
gate different input data configurations and data augmen-
tation methods for the beat tracking part of our proposed
method. To get rid of influences from out-of-note beat pre-
diction, we use the note-level F-measure in our compari-
son. After that, we validate our beat tracking method on



beat-level F-measure combining out-of-note beat predic-
tion in comparison with a baseline beat tracking model.

3.3.1 Input data encoding

Given the input data in note sequences, we consider the
following ways of encoding the input elements:

• Pitches:
– M: 128-dimensional one-hot vectors in MIDI

pitch numbers;
– C: 12-dimensional one-hot vectors in octave val-

ues.
• Onset times:

– AR: the raw value in seconds;
– AO: one-hot vectors quantised by 10ms resolu-

tion;
– SR: onset time shift in seconds compared to the

previous note onset (oshifti = oi − oi−1 for i >
0, oshift0 = 0);

– SO: one-hot onset time-shift quantised by 10ms
resolution (with a maximum onset time shift of
4s, larger values are trimmed to 4s).

• Durations:
– R: the raw values in seconds;
– O: one-hot vectors quantised by 10ms resolution

(similar to onset shift, large values are trimmed
to 4s).

• Velocities are always normalised to 0-1.

For all possible input encoding combinations, we train
and evaluate the in-note beat prediction part of our pro-
posed model (excluding downbeat). The model learning
rate is set to be 0.001. Since different input encodings can
cause changes in the model convergence speed, we do not
add learning rate decay in this comparison. The model is
trained using a batch size of 32 over 4 GPUs with a dropout
rate of 0.15. For each combination, we take the best model
checkpoint on the validation set during training, and eval-
uate it over the test set. The performances of the model on
all different input data encoding combinations are reported
in Table 2.

From the results, we can see that in terms of pitch en-
coding, using the MIDI pitches tends to outperform using
the chroma groups most of the time. For onsets, onset shift
leads to better results than absolute onset across all encod-
ing combinations. Using one-hot encoding for onset is bet-
ter than using the raw values for most cases. 6 out of 8
encoding combinations result in better model performance
with onsets encoded in one-hot format. However, an oppo-
site preference is discovered for duration encoding, where
duration in raw values ends up with better results for more
cases.

Among all the 16 input data encoding combinations
tested, the one with MIDI pitch, one-hot onset shift, and
duration in raw value shows the best model performance.
We use this input data encoding combination in our subse-
quent experiments.

Input encodings Note-level F-measure
Pitch Onset Duration p r f

M AR R 86.7 77.7 79.9
M AR O 89.9 57.2 65.2
M AO R 82.1 78.3 79.3
M AO O 83.3 72.2 76.0
M SR R 89.2 89.4 87.8
M SR O 88.8 91.9 89.5
M SO R 91.2 94.3 91.3
M SO O 91.1 90.3 89.1
C AR R 86.7 68.7 73.6
C AR O 80.7 64.4 67.2
C AO R 82.8 76.2 78.4
C AO O 82.7 71.9 76.0
C SR R 90.4 88.0 87.3
C SR O 90.2 88.9 87.5
C SO R 89.9 91.3 89.1
C SO O 88.8 90.6 88.0

Table 2. Model performance on different input data en-
coding combinations.

Input feature omitted p r f

Pitch 90.4 93.7 90.6
Onset 84.6 72.8 76.4
Duration 89.5 93.1 90.1
Velocity 89.5 93.9 90.6
Use all features 91.2 94.3 91.3
Augmentation method omitted p r f

Pitch shift 92.0 92.0 90.6
Tempo change 91.7 89.5 89.7
Note removal 91.5 90.9 90.4
Extra note 91.2 94.3 91.3
Use all methods 92.9 93.7 92.2
No data augmentation 89.7 95.2 90.9

Table 3. Note-level F-measure results on the ablation stud-
ies.

3.3.2 Ablation studies

Using the best input encoding combination observed in the
previous comparison, we run an ablation study on the input
features and different data augmentation techniques. We
use all four input features when exploring different data
augmentation methods.

Table 3 shows the ablation study results. From the table,
we see that all four input features are helpful in beat track-
ing, among which the onset feature is the most beneficial
one. This is consistent with the fact that onsets can be the
feature to carry most metrical information in music perfor-
mances. People can usually infer beat times from drum
beats without knowing other information such as pitch or
duration. Pitch and velocity are less important but still
make a difference. That may be because pitch carries some
harmony information that helps beat prediction. Velocity
can provide useful information as well since beats are more
probable to be concurrent with heavy notes. Finally, du-
ration is of certain importance, suggesting it carries more
metrical information than pitch and velocity.



Models (output data) fb fdb
Baseline (b, db) 66.9 57.6
Proposed (b, db) 85.7 63.3
Proposed (d, db, t) 86.2 69.8

Table 4. Beat-level F-measure results on the baseline and
proposed models. b: beat, db: downbeat, t: tempo.

Methods Fp Fvo Fme Fva Fha F

Finale 82.2 54.6 9.9 92.2 86.2 65.0
MuseScore 10.0 65.0 15.3 95.0 84.5 54.0
Proposed 99.8 87.0 61.7 99.9 91.1 87.9

Table 5. MV2H evaluation on performance MIDI-to-score
conversion.

Results on different data augmentation methods suggest
that all four proposed data augmentation methods improve
performance, among which tempo change is the most ben-
eficial one. Not performing data augmentation does not re-
sult in the lowest note-level F-score. However, its low pre-
cision rate indicates a limitation on predicting more false
positives, which is discouraged since we will be adding
out-of-note beats based on the predicted in-note beats. It is
possible that we can add the false negatives back when pre-
dicting out-of-note beats, but we cannot remove the false
positives.

3.3.3 Proposed model vs. baseline model

Using the best configurations in previous experiment re-
sults, we combine the out-of-note beat prediction step and
evaluate our proposed model performance on beat track-
ing using beat-level F-measure. We compare our method
with a baseline model that is similar to a state-of-the-art
audio beat tracking model [31]. We retrain the baseline
model using a pianoroll input replacing the original audio
spectrogram input, where the pianoroll is calculated from
the performance MIDI, and let the model predict beat and
downbeat probabilities. The probabilities are then passed
to a dynamic Bayesian network [32, 33] to get beats and
downbeats in seconds.

Table 4 shows the comparative results between the base-
line and our proposed model. Results suggest our pro-
posed model largely outperforms the baseline when jointly
trained with beats and downbeats. This is possibly be-
cause that the baseline model is a general purpose sys-
tem designed to operate on richer content than piano mu-
sic alone, and that our proposed model can better handle
tempo changes. By adding tempo to the output data, the
performance of our proposed model can be further im-
proved, which suggests a benefit of joint learning.

3.4 System performance evaluation

Using the best configurations found in the comparative
experiments, we train and evaluate our proposed CRNN
model defined in Section 2.4 on PM2S conversion. We
report the model performance on the MV2H metric de-
scribed in Section 3.2.2.

When looking for other methods for comparison, we re-
alise that there are some difficulties in comparing our sys-
tem with existing academic works. Cogliati et al. [14] eval-
uated their method in a subjective way by inviting five mu-
sic theory students to rate the transcribed musical scores.
Works such as [5, 19, 34] do provide a combination of
methods to achieve PM2S conversion, however, the system
performance was reported on audio-to-score transcription.
Thus, we compared our proposed method with two com-
mercial software products Finale v27 [25] and MuseScore
v3 [24] that can do PM2S conversion.

Results in Table 5 suggest that our proposed model out-
performs MuseScore and Finale across all MV2H sub-
metrics. A significantly better performance can be ob-
served in the metrical alignment sub-metric Fme which is
highly related to the rhythm quantisation step. By check-
ing outputs generated from MuseScore, we found that its
low performance on Fp is caused by time shifts introduced
when quantising notes according to a constant tempo esti-
mated over the whole music piece. Constant tempo esti-
mation also caused its low performance reported on Fme.
A similar limitation can be found in output scores from Fi-
nale. On the contrary, our proposed method tracked tempo
changes during rhythm quantisation and preserved the ex-
pressiveness of music performance as much as possible.
This not only benefits metrical alignment, but also results
in high accuracies on Fp and Fva. Still, the rhythm quan-
tisation performance (Fme) is far from satisfactory. Some
typical errors include double/half tempo error and errors
introduced by missing/extra beat predictions.

To provide a better understanding of the performance
of our proposed method, we provide some example out-
puts from our model together with their performance MIDI
recordings 1 .

4. CONCLUSION

We described our proposed method for rhythm quantisa-
tion by using a CRNN beat tracking model that predicts
whether notes are at a beat position or not. We explored
different input data encoding and data augmentation meth-
ods on the beat tracking model. We found that note onset
time is the most important input feature in beat prediction
and it is best to encode it into a one-hot onset-shift vec-
tor. Tempo change benefits most among the data augmen-
tation methods explored. We validated our model’s beat
tracking ability in comparison with a pianoroll-input base-
line model. In the end, we report the performance of our
proposed system on PM2S conversion in comparison with
MuseScore and Finale.

Possible next steps include investigating more power-
ful model architectures such as the Transformer [35], ex-
panding the output data to generate a machine-readable
score [21], probing our system’s ability in dealing with
more genre and instrumentation [19,36,37], and exploring
our method’s potential in automatic music transcription by
combining multi-pitch detection [38, 39].

1 Example outputs: https://cheriell.github.io/
research/PM2S

https://cheriell.github.io/research/PM2S
https://cheriell.github.io/research/PM2S
https://cheriell.github.io/research/PM2S
https://cheriell.github.io/research/PM2S


5. ACKNOWLEDGEMENTS

L. Liu is a research student at the UKRI Centre for Doc-
toral Training in Artificial Intelligence and Music, sup-
ported jointly by the China Scholarship Council and Queen
Mary University of London. The work of L. Liu is sup-
ported by The Alan Turing Institute through an Enrichment
Scheme.

We would like to thank Huan Zhang, Changhong Wang
and the reviewers for their valuable feedback to improve
our work.

6. REFERENCES

[1] M. Good, “MusicXML: An internet-friendly
format for sheet music,” XML Conference
and Expo, pp. 1–12, 2001. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.118.5431&rep=rep1&type=pdf

[2] H.-W. Nienhuys and J. Nieuwenhuizen, “Lilypond, a
System for Automated Music Engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), 2003, pp. 167–171.

[3] S. D. Reeves and T. T. P. Walsh, Creative jazz improvi-
sation. Taylor & Francis, 2022.

[4] R. G. C. Carvalho and P. Smaragdis, “Towards End-
to-End Polyphonic Music Transcription: Transform-
ing Music Audio Directly to A Score,” in IEEE Work-
shop on Applications of Signal Processing to Audio
and Acoustics, vol. 2017-Octob, 2017, pp. 151–155.

[5] E. Nakamura, E. Benetos, K. Yoshii, and S. Dixon,
“Towards Complete Polyphonic Music Transcription:
Integrating Multi-Pitch Detection and Rhythm Quanti-
zation,” in ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 2018-
April. IEEE, 2018, pp. 101–105.

[6] L. Liu and E. Benetos, “From Audio to Music Nota-
tion,” in Handbook of Artificial Intelligence for Music,
E. R. Miranda, Ed. Springer, 2021, pp. 693–714.

[7] L. Liu, V. Morfi, and E. Benetos, “Joint Multi-pitch
Detection and Score Transcription for Polyphonic Pi-
ano Music,” in ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing,
2021.

[8] J. Huang, E. Benetos, and S. Ewert, “Improving
Lyrics Alignment through Joint Pitch Detection,” in
ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing. Institute of Electrical
and Electronics Engineers (IEEE), 2 2022, pp. 451–
455. [Online]. Available: https://arxiv.org/abs/2202.
01646v1

[9] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma,
“Creating a Multitrack Classical Music Performance
Dataset for Multimodal Music Analysis: Challenges,

Insights, and Applications,” IEEE Transactions on
Multimedia, vol. 21, no. 2, pp. 522–535, 2019.

[10] P. Desain and H. Honing, “The Quantization of Musi-
cal Time: A Connectionist Approach,” Computer Mu-
sic Journal, vol. 13, no. 3, pp. 56–66, 1989.

[11] D. Temperley and D. Sleator, “Modeling meter and
harmony: A preference-rule approach,” Computer Mu-
sic Journal, vol. 23, no. 1, pp. 10–27, 1999.

[12] C. Raphael, “Automated Rhythm Transcription,” in IS-
MIR, 2001, pp. 99–107.

[13] H. Takeda, N. Saito, T. Otsuki, M. Nakai, H. Shi-
modaira, and S. Sagayama, “Hidden Markov model for
automatic transcription of MIDI signals,” Proceedings
of 2002 IEEE Workshop on Multimedia Signal Pro-
cessing, MMSP 2002, pp. 428–431, 2002.

[14] A. Cogliati, D. Temperley, and Z. Duan, “Transcrib-
ing Human Piano Performance into Music Notation,”
in ISMIR, 2016.

[15] D. Temperley, “A unified probabilistic model for poly-
phonic music analysis,” Journal of New Music Re-
search, vol. 38, no. 1, pp. 3–18, 2009.

[16] E. Nakamura, K. Yoshii, and S. Sagayama, “Rhythm
Transcription of Polyphonic Piano Music Based
on Merged-Output HMM for Multiple Voices,”
IEEE/ACM Transactions on Audio Speech and Lan-
guage Processing, vol. 25, no. 4, pp. 794–806, 2017.

[17] E. Nakamura, K. Yoshii, and S. Dixon, “Note Value
Recognition for Piano Transcription Using Markov
Random Fields,” IEEE/ACM Transactions on Audio
Speech and Language Processing, vol. 25, no. 9, pp.
1542–1554, 2017.

[18] A. McLeod and M. Steedman, “Meter detection and
alignment of MIDI performance,” Proceedings of the
19th International Society for Music Information Re-
trieval Conference, ISMIR 2018, pp. 113–119, 2018.

[19] K. Shibata, E. Nakamura, and K. Yoshii, “Non-
Local Musical Statistics as Guides for Audio-
to-Score Piano Transcription,” arXiv preprint
arXiv:2008.12710, 2020. [Online]. Available: http:
//arxiv.org/abs/2008.12710

[20] Y. Hiramatsu, E. Nakamura, and K. Yoshii, “Joint Es-
timation of Note Values and Voices for Audio-to-Score
Piano Transcription,” in ISMIR. International Society
for Music Information Retrieval Conference, 2021, pp.
278–284.

[21] M. Suzuki, “Score Transformer: Generating Musical
Score from Note-level Representation,” in ACM Inter-
national Conference Proceeding Series, vol. 1, 2021.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.5431&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.5431&rep=rep1&type=pdf
https://arxiv.org/abs/2202.01646v1
https://arxiv.org/abs/2202.01646v1
http://arxiv.org/abs/2008.12710
http://arxiv.org/abs/2008.12710


[22] V. Emiya, R. Badeau, and B. David, “Multipitch Es-
timation of Piano Sounds Using a New Probabilis-
tic Spectral Smoothness Principle,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 18,
no. 6, pp. 1643–1654, 2010.

[23] F. Foscarin, A. Mcleod, P. Rigaux, F. Jacquemard,
and M. Sakai, “ASAP: A Dataset of Aligned Scores
and Performances for Piano Transcription,” in ISMIR,
International Society for Music Information Retrieval
Conference, 2020.

[24] “MuseScore.” [Online]. Available: https://musescore.
org

[25] “Finale music notation software.” [Online]. Available:
https://www.finalemusic.com

[26] A. Mcleod and M. Steedman, “Evaluating Auto-
matic Polyphonic Music Transcription,” in ISMIR,
International Society for Music Information Retrieval
Conference, 2018, pp. 42–49. [Online]. Available:
https://www.github.com/apmcleod/MV2H.

[27] A. Ycart and E. Benetos, “A-MAPS: Augmented
MAPS Dataset with Rhythm and Key Annotations,”
in ISMIR, International Society for Music Information
Retrieval Conference, Late-Breaking Demo, 2018.

[28] “Classical Piano-Midi Database.” [Online]. Available:
http://www.piano-midi.de

[29] L. Liu, V. Morfi, and E. Benetos, “ACPAS: A
Dataset of Aligned Classical Piano Audio And scores
for Audio-To-Score Transcription,” in ISMIR Late-
Breaking Demo, 2021, pp. 2–4.

[30] M. E. P. Davies, N. Degara, and M. D. Plumbley,
“Evaluation Methods for Musical Audio Beat Tracking
Algorithms,” Centre for Digital Music, Queen Mary
University of London, Tech. Rep., vol. C4DM-TR-09,
no. October, p. 17, 2009.

[31] S. Böck and M. E. P. Davies, “Deconstruct, Anal-
yse, Reconstruct: How To Improve Tempo, Beat, and
Downbeat Estimation,” in ISMIR, International Society
for Music Information Retrieval Conference, 2020.

[32] S. Böck, F. Krebs, and G. Widmer, “A multi-model ap-
proach to beat tracking considering heterogeneous mu-
sic styles,” Proceedings of the 15th International Soci-
ety for Music Information Retrieval Conference, ISMIR
2014, pp. 603–608, 2014.

[33] F. Krebs, S. Böck, and G. Widmer, “An efficient state-
space model for joint tempo and meter tracking,” Pro-
ceedings of the 16th International Society for Music In-
formation Retrieval Conference, ISMIR 2015, pp. 72–
78, 2015.

[34] A. Mcleod, “Evaluating Non-Aligned Musical Score
Transcriptions with MV2H,” in ISMIR, International
Society for Music Information Retrieval Conference,
Late-Breaking Demo, 2019.

[35] Y.-H. Chou, I.-C. Chen, C.-J. Chang, J. Ching, and Y.-
H. Yang, “MidiBERT-Piano: Large-scale Pre-training
for Symbolic Music Understanding,” arXiv preprint
arXiv: 2107.05223, 7 2021. [Online]. Available:
https://arxiv.org/abs/2107.05223v1

[36] K. Tanaka, T. Nakatsuka, R. Nishikimi, K. Yoshii,
and S. Morishima, “Multi-instrument Music Transcrip-
tion Based on Deep Spherical Clustering of Spectro-
grams and Pitchgrams,” in ISMIR, International Soci-
ety for Music Information Retrieval Conference, 2020,
pp. 327–334.

[37] Y. T. Wu, B. Chen, and L. Su, “Multi-Instrument Auto-
matic Music Transcription with Self-Attention-Based
Instance Segmentation,” IEEE/ACM Transactions on
Audio Speech and Language Processing, vol. 28, pp.
2796–2809, 2020.

[38] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang,
“High-resolution Piano Transcription with Pedals
by Regressing Onsets and Offsets Times,” arXiv
preprint arXiv:2010.01815, pp. 1–10, 2020. [Online].
Available: http://arxiv.org/abs/2010.01815

[39] R. M. Bittner, J. J. Bosch, D. Rubinstein, G. Meseguer-
Brocal, and S. Ewert, “A Lightweight Instrument-
Agnostic Model for Polyphonic Note Transcription and
Multipitch Estimation,” in ICASSP, 2022, pp. 781–
785.

https://musescore.org
https://musescore.org
https://www.finalemusic.com
https://www.github.com/apmcleod/MV2H.
http://www.piano-midi.de
https://arxiv.org/abs/2107.05223v1
http://arxiv.org/abs/2010.01815

	1. Introduction
	2. Methodology
	2.1. Problem definition
	2.2. From beat tracking to rhythm quantisation
	2.3. Neural beat tracking on note sequences
	2.3.1. In-note and out-of-note beats
	2.3.2. In-note beat prediction
	2.3.3. Out-of-note beat prediction

	2.4. Performance MIDI-to-Score

	3. Experiments
	3.1. Data
	3.1.1. Datasets
	3.1.2. Annotation
	3.1.3. Data augmentation

	3.2. Evaluation metrics
	3.2.1. Beat tracking evaluation
	3.2.2. Performance MIDI-to-Score evaluation

	3.3. Comparative experiments
	3.3.1. Input data encoding
	3.3.2. Ablation studies
	3.3.3. Proposed model vs. baseline model

	3.4. System performance evaluation

	4. Conclusion
	5. Acknowledgements
	6. References

