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Abstract

This thesis discusses several questions related to the local existence of

the characteristic initial value problem (CIVP) in general relativity (GR)

First, we study the CIVP of vacuum Einstein field equations by using

Newman-Penrose (NP) formalism. Working in a gauge suggested by

Stewart, and following the strategy taken in the work of Luk, we demon-

strate local existence of solutions in a neighbourhood of the set on which

data are given. These data are given on intersecting null hypersurfaces.

Existence near their intersection is achieved by combining the obser-

vation that the field equations are symmetric hyperbolic in this gauge

with the results of Rendall. To obtain existence all the way along the

null-hypersurfaces themselves, a bootstrap argument involving the NP

variables is performed.

Second, applying the same strategy, we analyze the asymptotic CIVP

for the conformal Einstein field equations (CEFE) and demonstrate the

local existence of solutions in a neighbourhood of the set on which the

data are given. In particular, we obtain existence of solutions along a

narrow rectangle along null infinity which, in turn, corresponds to an

infinite domain in the asymptotic region of the physical spacetime. This

result generalises work by Kánnár on the local existence of solutions to

the CIVP by means of Rendalls reduction strategy.

In the last part of the thesis, we make use of a CIVP for the CEFE to

provide an alternative proof of local extension of null infinity given by Li

and Zhu see [1]. This proof builds on the framework developed in first

two parts of the thesis.
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Chapter 1

Introduction

General relativity (GR) is the most successful theory of gravitation in physics. It is

based on the equivalence principle and Mach’s principle. Einstein explained gravity

in terms of the curvature of spacetime manifold with a Lorentzian metric – the

famous Einstein field equations (EFE). This theory is so beautiful and the simple

elegant equations can offer us not only many incredible predictions, like black holes,

gravitational waves and singularity but also promote the developments of Riemann

geometry.

One important aspect of a physical theory is its Cauchy / initial value problem

(IVP). That is because a well-posed IVP is related to the predictability of the theory.

Another reason why the IVP of GR is of interest is that many physical concepts

like the total energy, the total momentum and positivity of total energy are also

related to a well-posed IVP of GR. Mathematically, the well-posed IVP in GR is the

study of EFE as a second order hyperbolic system of partial differential equations

(PDEs). In 1952, Choquet-Bruhat [2] showed that any initial data set (Σ,h,K)

satisfies constraint on a 3-manifold has a future development (M, g). Here M is a

4-dimensional manifold with a Lorentzian metric g satisfying the vacuum EFE. And

further in 1969 Choquet-Bruhat and Geroch showed that there is a unique maximal

future development with such initial data set. So GR is a ”good” theory.

The existence and stability problem are related to the global properties of so-

lutions to EFE. So Penrose in the 1960s introduced the conformal transformation

which preserve the global causal structure. With this idea, Friedrich introduced the

16



conformal Einstein field equations (CEFE) in the study of asymptotic characteristic

initial value problem for EFE where data are given on part of past null infinity.

CEFE are such powerful that conformal geometry can be used to analyze the ex-

istence and stability of many asymptotically simple spacetimes. For example, the

global existence and stability of de Sitter-like spacetimes and the semiglobal exis-

tence and stability of Minkowski-like spacetimes—see [3, 4], the local existence of

anti-de Sitter-like spacetimes—see [5, 6], matter model — see [7, 8] and black hole

model — see [9].

Rather than specifying data just on a spacelike hypersurface as in the IVP how-

ever, we can consider additionally the initial boundary value problem. In this setup

we might have, for example, a compact spatial domain and then choose suitable

boundary conditions on a timelike worldtube at the boundary of that domain. A

third possibility, that we consider in the present work, is the characteristic initial

value problem (CIVP). Here data are specified on characteristic surfaces of the equa-

tions under consideration. In the context of GR these surfaces are null hypersurfaces.

In GR the CIVP has a long history which dates back at least to the pioneering

work by Bondi and collaborators on gravitational waves —see [10,11]. The analysis

in this work is based on the observation that in coordinates (Bondi coordinates)

adapted to the geometry of outgoing light cones, the EFE give rise to a hierarchy

of equations which can be formally solved in sequence if certain pieces of data are

provided. These ideas were formalised in subsequent work by Sachs —see [12]. The

CIVP was reconsidered by Newman & Penrose in their more geometric reformulation

of the original analysis of gravitational radiation by Bondi and collaborators —

see [13], which also contains the original formulation of the frame formulation of

the EFE known as the Newman-Penrose (NP) formalism. The work by Newman

& Penrose identifies particular components of the Weyl tensor (expressed in terms

of a null frame) as the key pieces of free data to be specified on the characteristic

hypersurfaces. The CIVP setup also underlies subsequent work by Penrose on the

properties of massless spin fields and his approach of exact sequences of fields —

see [14]. The common theme in this early work on the CIVP in GR is that is

mainly concerned with the structural (i.e. algebraic) properties of the system of

equations and does not systematically address the issue of existence and uniqueness

of solutions.

17



Pioneering work on technical issues concerning the existence and uniqueness of

solutions to the characteristic problem for the EFE can be found in the analysis of

Müller zu Hagen and Seifert [15]. These ideas were brought to fruition in the work of

Friedrich —see [16]. There, it was shown that the formulation of the characteristic

problem by Newman & Penrose implies a symmetric hyperbolic evolution system

for which known techniques from the theory of PDEs can be applied. In particular,

Friedrich shows the local existence of solution near the intersection of the charac-

teristic hypersurfaces under the assumption of analyticity of the freely specifiable

data. This method was extended in subsequent work to characteristic problems

for a conformal representation of the Einstein field equations (the conformal Ein-

stein field equations) —see [17, 18]. Among other things, this work demonstrates

the mathematical consistency of the work on the nature of gravitational waves by

Bondi and collaborators and Newman & Penrose. The formulation of the CIVP for

the Einstein equations using the NP formalism was further developed as a possible

pathway towards numerical simulations of the Einstein field equations [19] —see

also [20] for an alternative formulation for numerics using the Bondi approach to

the characteristic problem, and also influenced work on the nature and classification

of caustics in Relativity [21].

A major milestone in the analysis of the problem came with the influential

work by Rendall on the reduction of the CIVP to a standard IVP [22], whose well-

posedness is guaranteed by the classical results of Choquet-Bruhat [2]. In particular

this reduction provides an improved version of the local existence theorem for the

CIVP for the EFEs which only requires a finite level of differentiability of the initial

data. Rendall’s method was subsequently used to obtain a smooth data version

Friedrich local existence result for the asymptotic CIVP for the CEFE. Ideas arising

from the CIVP underline and permeate the fundamental work by Christodoulou &

Klainermann and on the non-linear stability for the Einstein field equations [23,24].

In particular, Christodoulou & Klainermann make use of a null frame formalism re-

lated to that of Newman & Penrose. Moreover, their analysis systematically exploits

the nonlinear structure of the Einstein field equations when expressed in terms of

such a null frame.

The structural properties identified in the analysis by Christodoulou & Klain-

ermann paved the way for an improved local existence result for the CIVP for the

18



Einstein equations. Working in a gauge adopted from Christodoulou’s work on the

formation of black holes [25], which explicitly employs double-null coordinates, such

an improved result has been given by Luk [26]. This work guarantees an existence

domain no longer restricted to a neighbourhood of the intersection of the initial null

hypersurfaces but that stretches along them. Recently, Luk’s analysis has been ex-

tended so that the existence interval extends arbitrarily along the null hypersurfaces

and, thus, the solution contains a piece of infinity —see [1]. An alternative approach

to an improve local existence result for the CIVP has been pursued by Chruściel

and collaborators —see [27–29] This approach makes use of second order evolution

equations for which well developed theory of the CIVP exists —see e.g. [30,31].

1.1 Main results of the thesis

In this thesis, we discuss three problems involving the CIVP in GR. The first one

is about the EFE. We answer two follow-up questions for which the work of Ren-

dall [22] and Luk [26] are most relevant. One question is how do the aforementioned

results look when expressed in the language of the Newman-Penrose formalism?

Following long-term existence results in harmonic gauge [32], it is apparent that

a variety of formulations of GR exhibit desirable structure in their nonlinearities.

Another is that we are therefore curious as to the robustness of this ‘null-structure’

under changes of gauge. We hence give a formulation of the CIVP heavily influenced

by that of Stewart [33], and demonstrate for that formulation local existence in a

full neighbourhood of the initial null surfaces. In first instance, the argument here

provided gives an improved local existence result along one of the initial hypersur-

faces. This argument can be adapted, mutatis mutandi, to obtain improved local

existence along the other initial hypersurface —see Figure 1.1, (b). For conciseness,

we restrict our discussion to the neighbourhood of only one of the hypersurfaces. A

tertiary aim in translating to the NP formalism is to allow for the arguments and

methods employed with Christodoulou’s formulation to be reformed for application

elsewhere. Our interest in understanding the structural properties of the NP field

equations is what drives us to consider the approach to an improved local existence

result for the CIVP pursued by Luk rather than the one followed by Chruściel and

collaborators.
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(a) (b)

N?N?N ′? N ′?

S? S?

Figure 1.1: Comparison of the existence domains for the characteristic problem:
(a) existence domain using Rendall’s strategy based on the reduction to a standard
Cauchy problem; (b) existence domain using Luk’s strategy —in principle, the long
side of the rectangles extends for as much as one has control on the initial data.

The second problem we consider is the asymptotic characteristic initial value

problem, a CIVP for Friedrich’s CEFE in which one of the null initial hypersurfaces

is a portion of past null infinity, and show that Luk’s strategy can also be adapted

to this setting. Accordingly, we obtain a domain of existence of the solution to the

CEFE on a narrow rectangle having a portion of null infinity as one of its long sides

—see Figure 1.2. In doing so we improve Kánnár’s local existence result for the

asymptotic CIVP in which existence of a solution is only guaranteed in a neigh-

bourhood of the intersection of the initial null hypersurfaces —see [34] and also [35],

Chapter 18. Expressed in terms of a solution to the EFE the improved rectangular

existence domain corresponds, in fact, to an infinite domain. Kánnár’s result is, in

turn, an extension to the setting of smooth (i.e. C∞) functions of Friedrich’s seminal

analysis of the CIVP for the Einstein and conformal Einstein field equations in the

analytic setting —see [16–18].

The third problem is studying the question of the local extendibility of null infinity

by using CIVP of CEFE. To this end, initial data is prescribed on two future oriented

hull hypersurfaces intersecting a 2-dimensonal surface with the topology of the 2-

sphere S2. These null hypersurfaces are assumed to intersect future null infinity,

I +. The question to be adressed is through this initial value problem is whether

it is possible to recover a portion of future null infinity lying in the causal future

of the initial hypersurfaces. Observe that in the future null infinity version of the

asymptotic characteristic initial value problem analysed in Section 4, the solution
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(a) (b)

I −I −N ′? N ′?

Z? Z?

Figure 1.2: Comparison of the existence domains for the characteristic problem:
(a) existence domain using Rendall’s strategy based on the reduction to a standard
Cauchy problem; (b) existence domain using Luk’s strategy —in principle, the long
side of the rectangles extends for as much as one has control on the initial data.

constructed is located in the causal past of the initial hypersurfaces —see Figure 5.1.

The question of the local extendibility of null infinity through a chracteristic initial

value problem has been studied by Li & Zhu in [1] directly through the Einstein

field equations. In this approach, in order to encode the asymptotic behaviour of

the various field at infinity it is necessary to make use of weighted functional spaces

and norms. Moreover, it is necessary to consider the existence of solutions to the

field equations of a domain with an infinite extent. Accordingly, this study requires

a delicate and lengthy analysis. By contrast, in this section we make use of what we

believe is the natural setting to address the local extendibility of null infinity: the

use of a conformal representation of the spacetime and the conformal Einstein field

equations —see e.g. [35].

1.2 Notations and Conventions

We take {a, b, c, . . . } to denote abstract tensor indices whereas {µ,ν ,λ , . . . } will be

used as spacetime coordinate indices with the values 0, . . . , 3. Our conventions for
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(a) (b)

I +
I +

N? N?
N ′?

Figure 1.3: Comparison between the asymptotic characteristic problem (a) and the
standard characteristic problem (b) for the conformal Einstein field equations. In
the future null infinity version of the asymptotic characteristic initial value problem
initial data is prescribed on future null infinity and on an outgoing lightcone N?.
The optimal existence result allows to recover a narrow causal diamond along null
infinity. The length of this rectangle is limited by the portion of I + on which one
has cntrol of the initial data. Observe that region of existence of solutions lies in
the causal past of the null hypersurfaces and that the existence of, at least a portion
of null infinity is a priori assumed. In the characteristic problem considered in this
article the initial data is prescribed on two standard null hypersurfaces N? and N ′?
with at least one of them (N?) intersecting the conformal boundary. The improved
existence result allows then to recover a narrow rectangle whose long side lies on N?
and the short one gives a portion of future null infinity. Observe that the region of
existence is on the causal future of the initial hypersurfaces and that, a priori only
the existence of a cut of null infinity is assumed.

the connections is torsion-free and for the curvature tensors are fixed by the relation

(∇a∇b −∇b∇a)v
c = Rc

dabv
d. (1.1)

We make systematic use of the NP formalism as described, for example, in [33,36].

In particular, the signature of Lorentzian metrics is (+ − −−). In this thesis, we

restrict our attention to the 4-dimensional vacuum case with vanishing Cosmological

constant.
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Chapter 2

Mathematical Preliminaries

2.1 The Einstein Field Equations

Given a spacetime (M̃, g̃), the well-known vacuum Einstein field equations (EFE)

are

R̃ab = 0. (2.1)

Here R̃ab is the Ricci curvature. In order to analyse the properties of EFE we use

frame formalisms. The advantages are, first, that it is simpler to handle scalars than

tensors and, second, that it leads to spinorial counterpart directly. Here scalars mean

the components which depend on the local choice of frame.

Let {ẽa} denote a frame and {ω̃b} denote its dual coframe basis. Here the bold

indices a, b, ... ranking over 0, 1, 2, 3. Namely, one has that 〈ω̃b, ẽa〉 = δ b
a . The

connection coefficients of ∇̃ with respect to the frame {ẽa} are denoted by Γ̃ b
a c and

are defined by

∇̃ẽa ẽc = Γ̃ b
a cẽb.

Using the torsion-free condition

[ẽa, ẽb]− (Γ̃ b
a c − Γ̃ a

b c)ẽc = 0 (2.2)

one obtain the first equation of the frame formalisms, the commutator relationship.
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The second equation is known as the (Cartan) structure equations.

P̃abcd − ρ̃abcd = 0. (2.3)

Here P̃ dcab denote the definition of Riemann curvature

P̃ dcab = ẽa(Γ̃ d
b c)− ẽb(Γ̃ d

a c) + Γ̃ d
σ c(Γ̃

σ
b a − Γ̃ σ

a b)

+ Γ̃ σ
b cΓ̃

d
a σ − Γ̃ σ

a cΓ̃
d
b σ. (2.4)

We call P̃dcab the geometric curvature. And tensor ρ̃dcab is known as algebraic

curvature which is led to by irreducible decomposition of the Riemann curvature

ρ̃abcd = C̃abcd + 2R̃[a[cg̃d]b] +
1

3
R̃g̃[a[cg̃d]b]. (2.5)

The third equation is the Bianchi identity

∇̃[aR̃bc]de = 0. (2.6)

In summary, in the frame formalism a solution of the Einstein field is a collection

(ẽa, Γ̃
b
a c, R̃

d
cab) satisfying Equations (2.2), (2.3) and (2.6).

2.2 The Conformal Einstein Field Equations

In this section we provide a brief introduction to Friedrich’s conformal Einstein field

equations —see e.g. [17, 37]. The reader interested in full details, derivation and

discussion is refered to [35], Chapter 8.

Assume one has two spacetimes (M̃, g̃ab) and (M, gab) which are related to each

other by a conformal transformation

gab = Ξ2g̃ab, (2.7)

where Ξ is the conformal factor which is formally regular up to the conformal bound-

ary —i.e. the points for which Ξ = 0. We call (M̃, g̃ab) and (M, gab) the physical

spacetime and the unphysical spacetime respectively. The sets of points of the con-
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formal boundary giving rise to a hypersurface —i.e. the points for which dΞ 6= 0—

are called null infinity, I . We assume, for simplicity, that I = ∂M. Null infinity

can be shown to correspond to the endpoints of null geodesics and, thus, it consists

of two disconnected components —past and future null infinity, I − and I +. For

concreteness we restrict our discussion to a neighbourhood of I −. In what follows

let ∇a denote the Levi-Civita connection of the metric gab and let Rab, C
a
bcd be its

Ricci and Weyl tensors, respectively.

From the conformal transformation (2.7) and the Einstein field equation for g̃ab

one can obtain the following relationship between physical and unphysical Ricci

tensor

Rab −
1

2
Rgab = −2Ξ−1(∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇cΞ∇cΞgab (2.8)

which can be regarded as an Einstein field equation for the unphysical metric gab

with energy momentum tensor −2Ξ−1(∇a∇bΞ−∇c∇cΞgab)−3Ξ−2∇cΞ∇cΞgab. The

term Ξ−1 becomes singular at the point for which Ξ = 0 which means equation (2.8)

is singular at the conformal boundary.

In order to explore the conformal boundary as well as avoid the singular be-

haviour in equation (2.8), one can define some new fields

Lab ≡
1

2
Rab −

1

12
Rgab,

dabcd ≡ Ξ−1Ca
bcd,

s ≡ 1

4
∇a∇aΞ +

1

24
RΞ,

—the Schouten tensor, the rescaled Weyl tensor and the Friedrich scalar. In terms

of the latter the conformal vacuum Einstein field equations (CEFE) with vanishing

Cosmological constant are given by:

∇a∇bΞ = −ΞLab + sgab, (2.9a)

∇as = −Lac∇cΞ, (2.9b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd, (2.9c)

∇ad
a
bcd = 0, (2.9d)
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6Ξs− 3∇cΞ∇cΞ = 0. (2.9e)

One important property of these equations is that they are regular at the conformal

boundary where Ξ = 0. Furthermore, a solution to the conformal vacuum Einstein

field equations implies a solution to the Einstein field equations at the point Ξ 6= 0.

To be specific, the relation between the conformal Einstein field equations (2.9a)-

(2.9e) and the Einstein field equations is expressed in the following result:

Proposition 1 (solutions of the conformal vacuum Einstein field

equations as solutions to the vacuum Einstein field equations). Let

(gab, Ξ, s, Lab, d
a
bcd)

denote a solution to equations (2.9a)-(2.9d) such that Ξ 6= 0 on an open set U ⊂
M. If, in addition, equation (2.9e) is satisfied at a point p ∈ U , then the metric

g̃ab = Ξ−2gab is a solution to the vacuum Einstein field equations on U .

More details can be found in Chapter 8 in [35].

Given a basis {ea} and in order to use the frame formalism to analyze CEFE,

one need to supplement (2.9a)-(2.9e) with the structure equations

[ea, eb]− (Γ b
a c − Γ a

b c)ec = 0,

P dcab − ρdcab = 0.

Here P dcab is the geometric curvature of gab and ρdcab is algebraic curvature which

is defined by

ρdcab ≡ Cdcab +
(
δd[aLb]c − gc[aLb]d

)
.

All the components of tensor are with respect to basis {ea}.
Together with these structure equations, one obtain the frame formalism for

CEFE:

[ea, eb]− (Γ b
a c − Γ a

b c)ec = 0, (2.10a)
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P dcab − ρdcab = 0, (2.10b)

∇a∇bΞ = −ΞLab + sgab, (2.10c)

∇as = −Lac∇cΞ, (2.10d)

∇cLdb −∇dLcb = ∇aΞdabcd, (2.10e)

∇adabcd = 0, (2.10f)

6Ξs− 3∇aΞ∇aΞ = 0. (2.10g)

Accordingly, a solution to the frame conformal Einstein field equations is a collection

(ea,Γ
b
a c,Ξ, s, Lab, d

a
bcd) satisfying Equations (2.10a)-(2.10g).

2.3 Newman-Penrose(NP) formalism

The Newman-Penrose formalism is a type of frame formalism which is deeply related

to spinors. So we provide some basic knowledge of spinors. We start by introducing

a spin basis {o, ι} on a neighbourhood of spacetime M equipped with a symplectic

linear structure

[., .] : Cp × Cp → C

at point p. This structure can be represented by a antisymmetric valence 2 spinor

εAB and spin basis {o, ι} satisfies conditions

εABo
AιB = 1,

εABo
AoB = εABι

AιB = 0.

The set of Hermitian spinors ξAA
′
is a four dimensional real vector space and can

describe the tangent space. ′ means the complex conjugate. The correspondence

between the metric and εAB is

gab = εABεA′B′ .

Therefore one can introduce the NP null tetrad {la, na, ma, m̄a} by

la = oAoA
′
, na = ιAιA

′
, ma = oAιA

′
, m̄a = ιAoA

′
,
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la = oAoA′ , na = ιAιA′ , ma = oAιA′ , m̄a = ιAoA′ .

Then one obtain following contractions

gabl
amb = gabl

am̄b = gabn
amb = gabn

am̄b = 0,

gabl
anb = −gabmam̄b = 1.

From the definitions l and n are real while m and m̄ are complex conjugate of

each other. In order to introduce the spinorial counterpart of connection, one need

a more systematic manner to write the spinor basis. We make use of notation

ε A
0 = oA, ε A

1 = ιA.

In the following, we will use bold indices A, B which rank over 0 and 1 to express

the component with respect to spinor basis. Hence one can define the spinorial

counterpart of connection coefficients Γ b
a c by spinor conponents

Γ BB′

AA′ CC′ ≡ ωBB
′

BB′∇AA′e BB′

CC′

where ∇AA′ ≡ e AA′

AA′ ∇AA′ denote the directional covariant derivative in the direc-

tion of e AA′

AA′ . Using that

ωBB
′

BB′ = εBB ε̄
B′

B′ , e CC′

CC′ = ε C
C ε̄ C′

C′ ,

one can obtain

Γ BB′

AA′ CC′ = Γ B
AA′ Cδ

B′

C′ + Γ̄ B′

AA′ C′δ
B

C (2.11)

where Γ B
AA′ C are called the spin connection coefficients defined by

Γ B
AA′ C ≡ εBB∇AA′ε B

C . (2.12)

In the NP formalism the directional derivatives along directions are denoted by

D ≡ ∇00′ = la∇a, ∆ ≡ ∇11′ = na∇a, δ ≡ ∇01′ = ma∇a, δ̄ ≡ ∇10′ = m̄a∇a.
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Now, one can construct the scalar coefficient αA∇βA where α, β are o or ι and ∇ is

one of D, ∆, δ and δ̄. Therefore one has 12 complex rotation coefficients

κ ≡ oADoA, ε ≡ oADιA, π ≡ ιADιA, (2.13a)

τ ≡ oA∆oA, γ ≡ oA∆ιA, ν ≡ ιA∆ιA, (2.13b)

σ ≡ oAδoA, β ≡ oAδιA, µ ≡ ιAδιA, (2.13c)

ρ ≡ oAδ̄oA, α ≡ oAδ̄ιA, λ ≡ ιAδ̄ιA. (2.13d)

The definitions of these coefficients with NP frame are presented in Appendix 1.

2.3.1 NP field equations

In this part we focus on the fields on the physical spactime M̃. For convenience,

we remove the tilde˜in the discussion. One can start from the commutator relation

(2.2) by writing its spinorial form

[eAA′ , eBB′ ]− (Γ CC′

AA′ BB′ − Γ CC′

BB′ AA′)eCC′ = 0. (2.14)

Then applying the decomposition (2.11) and the definition of the rotation coefficients

(2.13a) one can obtain the NP commutators

(∆D −D∆)ψ =
(
(γ + γ̄)D + (ε+ ε̄)∆− (τ̄ + π)δ − (τ + π̄)δ̄

)
ψ, (2.15a)

(δD −Dδ)ψ =
(
(ᾱ + β − π̄)D + κ∆− (ρ̄+ ε− ε̄)δ − σδ̄

)
ψ, (2.15b)

(δ∆−∆δ)ψ =
(
− ν̄D + (τ − ᾱ− β)∆ + (µ− γ + γ̄)δ + λ̄δ̄

)
ψ, (2.15c)

(δ̄δ − δδ̄)ψ =
(
(µ̄− µ)D + (ρ̄− ρ)∆ + (α− β̄)δ − (ᾱ− β)δ̄

)
ψ. (2.15d)

where ψ is any scalar field.

Next we focus on the structure equation (2.3). From the definition of the geo-

metric curvature (2.4), one can obtain its spinorial counterpart:

PCC
′

DD′AA′BB′ =eAA′(Γ
CC′

BB′ DD′)− eBB′(Γ CC′

AA′ DD′)

+ Γ CC′

FF ′ DD′Γ
FF ′

BB′ AA′ − Γ CC′

FF ′ DD′Γ
FF ′

AA′ BB′

+ Γ FF ′

BB′ DD′Γ
FF ′

AA′ DD′ − Γ FF ′

AA′ DD′Γ
CC′

BB′ FF ′ . (2.16)
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For the algebraic curvature, since we know that the Weyl curvature can be expressed

in terms of a valence 4 totally symmetric spinor ΨABCD (Weyl spinor), one has that

Cabcd = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD,

and the trace-free Ricci tensor

Φab ≡ Rab −
1

4
Rgab

can be written in terms of a spinor ΦABC′D′ :

Φab = RAA′BB′ −
1

4
RεABεA′B′ = 2ΦABA′B′ ,

so that one obtains that

ρAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD + ΦABC′D′εA′B′εCD

+ Φ̄A′B′CDεABεC′D′ + 2Λ(εACεBDεA′C′εB′D′ − εADεBCεA′D′εB′C′)

where Λ = − 1
24
R. Using the spin basis {o, ι}, one can obtain the components of the

curvature spinors:

Ψ0 = ΨABCDo
AoBoCoD, Ψ1 = ΨABCDo

AoBoCιD, Ψ2 = ΨABCDo
AoBιCιD,

Ψ3 = ΨABCDo
AιBιCιD, Ψ4 = ΨABCDι

AιBιCιD, (2.17)

and

Φ00 = ΦABA′B′o
AoB ōA

′
ōB
′
, Φ01 = ΦABA′B′o

AoB ōA
′
ῑB
′
,

Φ02 = ΦABA′B′o
AoB ῑA

′
ῑB
′
, Φ10 = ΦABA′B′o

AιB ōA
′
ōB
′
,

Φ11 = ΦABA′B′o
AιB ōA

′
ῑB
′
, Φ12 = ΦABA′B′o

AιB ῑA
′
ῑB
′
,

Φ20 = ΦABA′B′ι
AιB ōA

′
ōB
′
, Φ21 = ΦABA′B′ι

AιB ōA
′
ῑB
′
,

Φ22 = ΦABA′B′ι
AιB ῑA

′
ῑB
′
. (2.18)

Using the above expressions one can obtain the components from of each equation

(2.3) –the so-called NP structure equations.
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The spinorial Bianchi identity ∇̃[aR̃bc]de = 0 can be expressed as

∇̃ A
B′ ΨABCD = ∇̃ A

B′ Φ̃CDA′B′ − 2ε̃B(C∇̃D)B′Λ̃.

Under the vacuum condition, namely ΦABC′D′ = 0 and Λ = 0, the Weyl spinor

satisfies

∇̃ A
B′ ΨABCD = 0.

The components of the Bianchi identities, together with the NP structure equations,

can be found in Appendix 6.2 and 6.2.

2.3.2 The NP formalism of CEFE

This subsection presents the NP formalism of CEFE. Now we focus on the fields on

unphysical spacetimeM. From the definition of rescaled Weyl tensor dabcd we define

its spinorial counterpart given by the 4 valence total symmetric spinor-rescaled Weyl

spinor φABCD

φABCD = Ξ−1ΨABCD.

The spinor φABCD is related to the rescaled Weyl tensor via correspondance

dabcd = φABCDεA′B′εC′D′ + φA′B′C′D′εABεCD.

Using the spin basis {o, ι}, one can denote the components of rescaled Weyl tensor

as follows:

φ0 = φABCDo
AoBoCoD, φ1 = φABCDo

AoBoCιD, φ2 = φABCDo
AoBιCιD,

φ3 = φABCDo
AιBιCιD, φ4 = φABCDι

AιBιCιD. (2.19)

The spinorial counterpart of the Schouten tensor is

Lab = −ΛεABεA′B′ + ΦABA′B′ .
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Then the spinorial counterpart of frame conformal Einstein field equations (2.10a)-

(2.10g) are

[eAA′ , eBB′ ]− (Γ CC′

AA′ BB′ − Γ CC′

BB′ AA′)eCC′ = 0, (2.20a)

PAA′BB′CC′DD′ − cAA′BB′CC′DD′ = 0, (2.20b)

∇BB′∇AA′Ξ = −ΞΦABA′B′ + sεAB ε̄A′B′ + ΞΛεAB ε̄A′B′ , (2.20c)

∇AA′s = Λ∇AA′Ξ− ΦABA′B′∇BB′Ξ, (2.20d)

∇AA′ΦBCB′C′ −∇BB′ΦACA′C′ = εBC ε̄B′C′∇AA′Λ− εAC ε̄A′C′∇BB′Λ

−φ̄A′B′C′D′εAB∇ D′

C Ξ− φABCD ε̄A′B′∇D
C′Ξ, (2.20e)

∇DC′φ
D

ABC = 0, (2.20f)

λ = 6Ξs− 3∇AA′Ξ∇AA′Ξ. (2.20g)

The components equations of CEFE can be found in Appendix 6.2
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Chapter 3

Revisiting the characteristic initial

value problem for the vacuum

Einstein field equations

In this chapter, using the NP formalism we study the characteristic initial value

problem in vacuum General Relativity. We work in a gauge suggested by Stewart,

and following the strategy taken in the work of Luk, demonstrate local existence of

solutions in a neighbourhood of the set on which data are given. These data are

given on intersecting null hypersurfaces. Existence near their intersection is achieved

by combining the observation that the field equations are symmetric hyperbolic in

this gauge with the results of Rendall. To obtain existence all the way along the

null-hypersurfaces themselves, a bootstrap argument involving the NP variables is

performed.

3.1 The geometry of the problem

Let (M, g) denote a vacuum spacetime satisfying Rab = 0, where M is a 4-

dimensional manifold with boundary and an edge. The boundary consists of two

null hypersurface: N?, the outgoing null hypersurface; N ′?, the incoming null hyper-

surface with non-empty intersection S? ≡ N?∩N ′?. For concreteness we will assume

that S? ≈ S2.
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Given a neighbourhood U of S?, one can introduce coordinates x = (xµ) with x0 =

v and x1 = u such that, at least in a neighbourhood of S? one can write

N? = {p ∈ U | u(p) = 0}, N ′? = {p ∈ U | v(p) = 0}.

Given suitable data on (N? ∪N ′?)∩U we are interested in making statements about

the existence and uniqueness of solutions to the vacuum Einstein field equations of

the aforementioned type on some open set

V ⊂ {p ∈ U | u(p) ≥ 0, v(p) ≥ 0}

which we identify with a subset of the future domain of dependence, D+(N? ∪N ′?),
of N? ∪N ′?.

3.1.1 Construction of the gauge: Stewart’s approach

We will ultimately be concerned with existence and uniqueness of solutions, but, as

is common in such constructions, it is useful to start by assuming existence in order

to give a concrete PDE formulation of the problem. In this section we thus briefly

review the gauge choice. In the rest of this article we will call this construction

Stewart’s gauge.

3.1.1.1 Coordinates

In the following it will be convenient to regard the 2-dimensional surface S? as

a submanifold of a spacelike hypersurface S . The subsequent discussion will be

restricted to the future of S . As S? ≈ S2, one has that S? divides S in two regions

—the interior of S? and the exterior of S?. Now, consider a foliation of S by 2-

dimensional surfaces with the topology of S2 which includes S?. At each of the

2-dimensional surfaces we assume there pass two null hypersurfaces. Further, we

assume that:

i). one of these hypersurfaces has the property that the projection of the tangent

vectors of their generators at S? point outwards —we call these null hypersur-

faces outgoing light cones ;
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ii). one of these hypersurfaces has the property that the projection of the tangent

vectors of their generators at S? point inwards —we call these null hypersur-

faces ingoing light cones .

Thus, as least close to S one obtains a 1-parameter family of outgoing null

hypersurface Nu and a 1-parameter family of ingoing null hypersurface N ′v. One

can then define scalar fields u and v by the requirements, respectively, that u is

constant on each of the Nu and v is constant on each N ′v. In particular, we assume

that N0 = N? and N ′0 = N ′?. Following standard usage, we call u a retarded time

and v an advanced time. We use the notation Nu(v1, v2) to denote the part of the

hypersurface Nu with v1 ≤ v ≤ v2. Likewise N ′v(u1, u2) has a similar definition. We

denote the sphere intersected by Nu and N ′v by Su,v. We define the region⋃
0≤v′≤v,0≤u′≤u

Su′,v′ (3.3)

as Du,v. We also define the time function

t ≡ u+ v, (3.4)

and the truncated causal diamond,

D t̃
u,v ≡ Du,v ∩ {t ≤ t̃}, (3.5)

which will be used frequently throughout our arguments.

The scalar fields u and v introduced in the previous paragraph will be used as

coordinates in a neighbourhood of S?. To complete the coordinate system, consider

arbitrary coordinates (xA) in a coordinate patch U on S?, with the index A taking

the values 2, 3. These coordinates are then propagated into N? by requiring them

to be constant along the generators of N?. Once coordinates have been defined

on N?, one can propagate them into V by requiring them to be constant along the

generators of each N ′v. In this manner, for each coordinate patch U one obtains a

coordinate system (xµ) = (v, u, xA) on DU in V . Here area DU is defined by the

image of first generating U along v and then generating long u.
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la, vna, u

N?N ′?

Su?,v?

Su,v

Du,v

ε

v•Nu N ′v

Figure 3.1: Setup for Stewart’s gauge. The construction makes use of a double null
foliation of the future domain of dependence of the initial hypersurface N?∪N ′?. The
coordinates and NP null tetrad are adapted to this geometric setting. The analysis
in this article is focused on the arbitrarily thin grey rectangular domain along the
hypersurface N?. The argument can be adapted, in a suitable manner, to a similar
rectangle along N ′?. See the main text for the definitions of the various regions and
objects.

3.1.1.2 The NP frame

To construct a null NP tetrad we choose vector fields la and na to be tangent to the

generators of Nu and N ′v respectively. Further we require them to be normalised

according to

gabl
anb = 1.

The latter normalisation condition is preserved under the boost,

la 7→ ςla, na 7→ ς−1na, ς ∈ R.

This freedom can be used to set

na = ∇av.
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This requirement still leaves some freedom left as one can choose a relabelling of the

form v 7→ V (v). Next, we choose the complex vector fields ma and m̄a so that they

are tangent to the surfaces Su,v and satisfy the conditions

gabm
am̄b = −1, gabm

amb = 0.

There is still the freedom to perform a spin

ma 7→ eiθma, θ ∈ R

at each point.

Remark 1. Now, observing that, by construction, on the generators of each null

hypersurface N ?
v only the coordinate u varies, one has that

nµ∂µ = Q∂u,

where Q is a real function of the position. Furthermore, since the vector la is tangent

to the generators of each Nu and lana = la∇av = 1, one has that

lµ∂µ = ∂v + CA∂A,

where, again, the components CA are real functions of the position. By construc-

tion, the coordinates (xA) do not vary along the generators of N?-that is, one has

that la∇ax
A = 0. Accordingly, one has that

CA = 0 on N?.

Finally, because ma and m̄a span the tangent space of each surface Su,v, hence in

these coordinate system one has that

mµ∂µ = PA∂A,

where the coefficients PA are complex functions.

Summarising, we make the following choice:
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Assumption 1 (Stewart’s choice of the components of the frame). On a

local coordinate patch DU of V one can find a NP frame {la, na, ma, m̄a} of the

form:

l = ∂v + CA∂A, n = Q∂u, m = PA∂A.

Remark 2. The coordinate system we use is the same with the choice by Luk as long

as we replace v to u. But the null frame choice is different and up to a rescaling. To

be specific, Luk chooses e3 = Ω−1∂u and e4 = Ω−1(∂u + bA∂A) with a normalization

g(e3, e4) = −2 as null directions to decompose the equations. In his analysis, null

vector L = Ωe3 and L = Ωe4 are also needed.

Remark 3. In view of the normalisation condition gabm
am̄b = −1, there are only

3 real functions involved in the PA’s. Thus, Q, CA together with PA give six scalar

fields describing the metric. Thus the components (gµν) of the contravariant form

of the metric g are of the form

(gµν) =

 0 Q 0

Q 0 QCA

0 QCA σAB

 ,

where

σAB ≡ −(PAP̄B + P̄APB).

Here and in what follows σ is the induced metric on Su,v, and has contravari-

ant components σAB defined in the standard manner. Note that care is needed

to distinguish σ, the NP connection coefficient, from this quantity. From the ex-

pression, we can compute that lµdx
µ = Q−1du, σABP

APB = 0, σABP
AP̄B = −1

and −∂ACA = m̄AδC
A +mAδ̄C

A directly.

Remark 4. On N ′? one has that n = Q∂u. As the coordinates (xA) are constant

along the generators of N? and N ′?, it follows that on N ′? the coefficient Q is only

a function of u. Thus, without loss of generality one can parameterise u so as to

set Q = 1 on N ′?.
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3.1.2 Analysis of the NP commutators

In this subsection we analyse some simple consequences of the NP frame of Assump-

tion 1 and the NP commutator equations (2.15a)-(2.15d). In particular, we exploit

the fact that given a choice of NP frame, the evaluation of the NP commutators on

the coordinates gives rise to two different types of equations, namely i). conditions

on the spin connection coefficients, and ii). equations for the coefficients of the

frame. In what follows we analyse these two classes of equations. For future use

observe that from the definition of the NP frame {la, na, ma, m̄a} in Assumption 1

it readily follows that,

Dv = 1, ∆v = 0, δv = 0, δ̄v = 0, (3.8a)

Du = 0, ∆u = Q, δu = 0, δ̄u = 0, (3.8b)

DxA = CA, ∆xA = 0, δxA = PA, δ̄xA = P̄A. (3.8c)

3.1.2.1 Spin connection coefficients

Direct inspection of the NP commutators (2.15a)-(2.15d) applied to the coordi-

nates (v, u, x2, x3) taking into account (3.8a)-(3.8c) yields on V the conditions,

κ = ν = 0, γ + γ̄ = 0, ρ = ρ̄, µ = µ̄, π = α + β̄.

We will see that these gauge conditions can be refined still further.

Fixing the rotation freedom. The set up of frame vectors under Assumption 1

allows the freedom of a rotation

ma 7→ m′a = eiθma.

The latter, in turn, implies the transformation

γ − γ̄ 7→ γ′ − γ̄′ = γ − γ̄ − i∆θ.

Accordingly, by requiring θ to satisfy the equation

∆θ = i(γ̄ − γ) (3.9)
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it is always possible to assume that γ̄−γ = 0, which, together with the condition γ+

γ̄ = 0 allows us to set γ = 0 on V . A similar computation shows that

ε− ε̄ 7→ ε′ − ε̄′ = ε− ε̄+ iDθ.

This equation can be used to set ε− ε̄ = 0 on N?. Also, after solving this equation,

the result θ on N? can be the initial value of equation (3.9). The value of Q on N?
can be propagated from S? using the transport equation,

DQ = −(ε+ ε̄)Q = −2εQ

that is,

∂vQ = −2εQ.

Summarising, we have the following gauge restriction, which we employ exclusively

in what follows:

Lemma 1 (properties of the connection coefficients in Stewart’s gauge).

The NP frame of Assumption 1 can be chosen such that

κ = ν = γ = 0, (3.10a)

ρ = ρ̄, µ = µ̄, (3.10b)

π = α + β̄ (3.10c)

on V and, furthermore, with

ε− ε̄ = 0 on V ∩ N?.

3.1.2.2 Equations for the frame coefficients

Taking into account the conditions on the spin connection coefficients given by (3.10a)-

(3.10c), it follows that the remaining commutators yield the equations

∆CA = −(τ̄ + π)PA − (τ + π̄)P̄A, (3.11a)
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∆PA = −µPA − λ̄P̄A, (3.11b)

DPA − δCA = (ρ+ ε− ε̄)PA + σP̄A, (3.11c)

DQ = −(ε+ ε̄)Q, (3.11d)

δ̄PA − δP̄A = (α− β̄)PA − (ᾱ− β)P̄A, (3.11e)

δQ = (τ − π̄)Q. (3.11f)

Remark 5. Equations (3.11a)-(3.11b) allow us to evolve the frame coefficients CA

and PA off of the null hypersurface N ′?. Equations (3.11c)-(3.11d) allow evolution

of the coefficients Q and PA along the null generators of N?. Finally (3.11e)-(3.11f)

provide constraints for Q and PA on the spheres Su,v.

3.2 The formulation of the CIVP

In this section we analyse general aspects of the CIVP for the vacuum Einstein field

equations on the null hypersurfaces N? and N ′?. The hierarchical structure allows

the identification of the basic reduced initial data set r? from which the full initial

data on N? ∪N ′? can be computed.

Lemma 2 (freely specifiable data for the CIVP). Working in the gauge given

by Assumption 1 and Lemma 1, initial data for the vacuum Einstein field equations

on N? ∪N ′? can be computed (near S?) from the reduced data set r? consisting of:

Ψ0, ε+ ε̄ on N?,

Ψ4 on N ′?,

λ, σ, µ, ρ, π, PA on S?.

Proof. The proof follows by inspection of the various intrinsic equations on N?, N ′?
and S?.

Data on S?. Since PA are given, the operators δ and δ̄ are well defined on S? and

intrinsic to this 2-dimensional hypersurface. From the definition of the connection

coefficients α and β it follows that the inner connection of S? is described by the

combination α − β̄. This is readily computable from the data PA on S?. Thus,

using α + β̄ = π, one can compute α and β. Noting that Q = 1 on S? ⊂ N ′?,
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we obtain that π = τ̄ from (3.11f). Then we obtain all the values of connection

coefficients on S?. Thus, the constraint equations (3q), (3j), (3n) of the structure

equations can be used to compute the value of Ψ1, Ψ2, Ψ3 on S?. With that, all initial

data for the connection coefficients and Weyl curvature on S? have been obtained.

Data on N ′?. On the incoming null hypersurface N ′? we can obtain that Q = 1

leads to τ = π̄ from equation (3.11f) and ∆ = ∂u. Making use of the structure

equations (3g) and (3o), which can be reduced by the gauge condition, namely

∂µ

∂u
= −λλ̄− µ2,

∂λ

∂u
= −Ψ4 − 2λµ,

we can obtain the value of µ and λ on N ′?. Then the frame coefficients PA on N ′?
are computed using equation (3.11b) which takes the form

∂PA

∂u
= −µPA − λ̄P̄A.

Thus we can compute the δ-direction derivative on N ′?. Solving the structure equa-

tions (3d), (3k) with the Bianchi identity equation (4d), namely

− ∂α

∂u
= Ψ3 + βλ+ αµ̄+ λτ,

− ∂β

∂u
= αλ̄+ βµ+ µτ,

∂Ψ3

∂u
− PA∂Ψ4

∂xA
= (4β − τ)Ψ4 − 4µΨ3,

together we can compute the value of α, β and Ψ3 on N ′?. Then equation (3.11a)

∂CA

∂u
= −(τ̄ + π)PA − (τ + π̄)P̄A

reveals the value of the frame coefficients CA on N ′?. With the above information

at hand one can use equations (3a), (3i), (3r) and (4e):

∂ε

∂u
= −Ψ2 − βπ − απ̄ − ατ − πτ − βτ̄ ,
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PA
∂τ

∂xA
− ∂σ

∂u
= λ̄ρ+ µσ − ᾱτ + βτ + τ 2,

P̄A
∂τ

∂xA
− ∂ρ

∂u
= Ψ2 + µ̄ρ+ λσ + ατ − β̄τ + τ τ̄ ,

∂Ψ2

∂u
− PA∂Ψ3

∂xA
= σΨ4 + 2(β − τ)Ψ3 − 3µΨ2

to compute the value of ε, σ, ρ and Ψ2 on N ′?. The Bianchi identity equation (4h)

∂Ψ1

∂u
− PA∂Ψ2

∂xA
= −2µΨ1 − 3τΨ2 + 2σΨ3,

provides the value of Ψ1 on N ′?. With the results above, we can then compute the

value of Ψ0 from equation (4b)

∂Ψ0

∂u
− PA∂Ψ1

∂xA
= −µΨ0 − 2(2τ + β)Ψ1 + 3σΨ2.

Data on N?. From equation (3.11d) one has that ∂vQ = −(ε+ε̄)Q so that, using the

value of Q at S? one can compute the value of Q on N?. The structure equations (3f)

and (3m) give

∂σ

∂v
= Ψ0 + 3εσ − ε̄σ + 2ρσ,

∂ρ

∂v
= 2ερ+ ρ2 + σσ̄.

Solving these last equations one can obtain the value of σ and ρ on N?. Then the

value of PA on N? can be computed using equation (3.11c) which in the present

setting takes the form

∂PA

∂v
= ρPA + σP̄A.

Then the structure equations (3e), (3l) and the Bianchi identity (4a), namely,

PA
∂ε

∂xA
− ∂β

∂v
= −Ψ1 + ᾱε+ βε̄− επ̄ − βρ− ασ − πσ,

P̄A
∂ε

∂xA
− ∂α

∂v
= 2αε+ β̄ε− αε̄− επ − αρ− πρ− βσ̄,
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P̄A
∂Ψ0

∂xA
− ∂Ψ1

∂v
= (4α− π)Ψ0 − 2(2ρ+ ε)Ψ1,

provide us the value of α, β and Ψ1 on N?. Next, the structure equation (3b) which

takes the form

∂τ

∂v
= Ψ1 + π̄ρ+ πσ + ετ − ε̄τ + ρτ + στ̄

gives us the value of τ on N?. Similarly, the structure equations (3h), (3p) and the

Bianchi identity equation (4e)

PA
∂π

∂xA
− ∂µ

∂v
= −Ψ2 + εµ+ ε̄µ+ ᾱπ − βπ − ππ̄ − µρ− λσ,

P̄A
∂π

∂xA
− ∂λ

∂v
= 3ελ− ε̄λ− απ + β̄π − π2 − λρ− µσ̄,

∂Ψ2

∂v
− P̄A∂Ψ1

∂xA
= −λΨ0 + 2(π − α)Ψ1 + 3ρΨ2,

give us the value of µ, λ and Ψ2 on N?. Next, the Bianchi identity equations (4g)

and (4c)

∂Ψ3

∂v
− P̄A∂Ψ2

∂xA
= 2(ρ− ε)Ψ3 + 3πΨ2 − 2λΨ1,

P̄A
∂Ψ3

∂xA
− ∂Ψ4

∂v
= (4ε− ρ)Ψ4 − 2(2π + α)Ψ3 + 3λΨ2,

show us the value of Ψ3 and Ψ4 on N?. Finally, we have obtained all the initial

values on N? ∪N ′? from the reduced data set r?.

3.3 Rendall’s local existence theory

In order to apply the basic local existence theory for the CIVP as formulated by

Rendall [22] (see also Section 12.5 of [35]), one has to extract a suitable symmetric

hyperbolic evolution system from the Einstein field equations. The gauge introduced

in Section 3.1.1 allows us to perform this reduction.
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3.3.1 Construction of the reduced evolution system

In the following it will be convenient to group the components of the frame in the

vector valued function

et ≡ (CA, PA, Q),

the spin connection coefficients not fixed by the gauge in

Γt ≡ (ε, π, β, µ, α, λ, τ, σ, ρ),

and the independent components of the Weyl spinor as

Ψt ≡ (Ψ0, Ψ1, Ψ2,Ψ3, Ψ4),

where superscript-t denotes the operation of taking the transpose of a column vector.

A suitable symmetric hyperbolic system for the the frame components and the

spin coefficients can be obtained from equations (3.11a), (3.11b), (3.11d) and (3a),

(3b), (3c), (3d), (3f), (3g), (3k), (3m), (3o), respectively. These can be written in

the schematic form

D1e = B1(Γ, e)e,

D2Γ = B2(Γ,Ψ)Γ,

where D1 and D2 are matrix operators given by,

D1 = diag(∆, ∆, D),

D2 = diag(∆, ∆, ∆, ∆, ∆, ∆, D, D, D),

and B1, B2 are smooth matrix-valued functions of their arguments whose explicit

form will not be required in the subsequent analysis in this section.

The Bianchi identity equations (4a)-(4h) can be reorganised as

D3Ψ = B3Ψ (3.12)
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where

D3 =


∆ −δ 0 0 0

−δ̄ D + ∆ −δ 0 0

0 −δ̄ D + ∆ −δ 0

0 0 −δ̄ D + ∆ −δ
0 0 0 −δ̄ D


and B3 = B3(Γ). Writing

D3 = Aµ
3∂µ

one has that

Av
3 = diag(0, 1, 1, 1, 1),

Au
3 = diag(Q, Q, Q, Q, 0),

and

AA3 =


0 −PA 0 0 0

−P̄A CA −PA 0 0

0 −P̄A CA −PA 0

0 0 −P̄A CA −PA

0 0 0 −P̄A CA

 .

The evolution system (3.12) for the components of the Weyl tensor are obtained

through the combinations (4b), (4h)-(4a), (4e)+(4f), (4d)+(4g) and −(4c) respec-

tively. It can be readily verified that the matrices Aµ
3 are Hermitian. Moreover,

Aµ
3(lµ + nµ) = diag(1, 2, 2, 2, 1)

is clearly positive definite. We can summarise the above discussion with:

Lemma 3 (the evolution system). The evolution system

D1e = B1e, (3.13a)
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D2Γ = B2Γ, (3.13b)

D3Ψ = B3Ψ, (3.13c)

implied by the NP field equations written in Stewart’s gauge (see Section 3.1.1) is

symmetric hyperbolic with respect to the direction given by τa = la + na.

Remark 6. In the following, making use of the standard terminology, we call the

evolution system the reduced Einstein field equations.

Remark 7. The symmetric hyperbolicity of the reduced equations (3.13a)-(3.13c)

is the key structural property which allows us to employ Rendall’s local existence

strategy —see the discussion in Section 3.3.2 below.

As the hyperbolic reduction leading to the previous result makes use of a subset

of the NP equations, it is also key to have a propagation of the constraints result

for the discarded equations. Making use of analysis similar to the one discussed in

Section 12.5 of [35] one obtains the following:

Proposition 2 (propagation of the constraints). A solution of the reduced vac-

uum Einstein field equations (3.13a)-(3.13c) on a neighbourhood V of S? on J+(S?),

the causal future of S?, that coincides with initial data on N ′? ∪ N? satisfying the

vacuum Einstein equations is a solution to the vacuum Einstein field equations on V.

Remark 8. A consequence of the propagation of the constraints, once local existence

has been established, is that we may use any combination of the NP field equations

in their gauge simplified form in the required subsequent analysis. For example,

from this point on we have π = α+ β̄, and hence discard π or view it as a shorthand

in what follows.

3.3.2 Computation of the formal derivatives on N ′? ∪N?

As already mentioned, Rendall’s approach to the local existence of solutions to the

characteristic problem for symmetric hyperbolic systems makes use of an auxiliary

Cauchy problem on a spacelike hypersurface

S? ≡ {p ∈ R× R× S2 | v(p) + u(p) = 0}.
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The formulation of this problem crucially depends on Whitney’s extension theorem.

To apply this extension theorem it is necessary to be able to evaluate all derivatives

(interior and transverse) of the initial data on N ′? ∪ N?. A discussion of the ideas

behind Rendall’s approach can be found in Section 12.5 of [35]. For completeness,

a formulation of Rendall’s result is given below:

Theorem 1 (local existence for the CIVP, Rendall). Let N? and N ′? denote

two characteristic hypersurfaces for the symmetric hyperbolic system

Aµ(x,u)∂µu = B(x,u)

with smooth, freely specifiable data on N? and N? such that all (formal) derivatives

of u on N? ∪ N ′? to any desired order can be computed in a neighbourhood W ⊂
N? ∪ N ′? of N? ∩ N ′?. Then there exists a unique solution u to the CIVP in a

neighbourhood V of N? ∩N ′? with u ≥ 0, v ≥ 0.

An important property of the NP equations in Stewart’s gauge is that they

allow the computation of the (formal) derivatives of all the fields to any order from

the reduced data r? provided in Lemma 2. This property is discussed in the next

paragraphs.

Computation of formal derivatives on N?. To compute the formal derivatives

onN? one first observes that the partial derivatives ∂v, ∂2, ∂3 are interior whereas ∂u

is transverse. In this case, direct inspection shows that except for

∂uQ, ∂uτ, ∂uΨ4,

all ∂u-derivatives of the unknowns in the vectors e, Γ, Ψ can be computed using

the structure equations (3.11a), (3.11b), the NP Ricci identities (3a), (3c), (3d),

(3g), (3i), (3k), (3o), (3r), and the Bianchi identities (4b), (4d), (4f) and (4h).

To obtain these exceptional cases one first applies Q∂u to both sides of equa-

tions (3.11d), (3b) and (4c) to obtain

Q∂v(∂uQ) = −Q2∂u(ε+ ε̄)−Q(ε+ ε̄)∂uQ,

Q∂v(∂uτ) = L(∂uτ),

Q∂v(∂uΨ4)−Q∂uP̄A∂AΨ3 −QP̄A∂u∂AΨ3 = M(∂uΨ4),
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where L,M are smooth functions of {e,Γ,Ψ} and their n-direction derivatives.

One can regard the above equations as first order linear ordinary differential equa-

tions for ∂uQ, ∂uτ, ∂uΨ4 along the generators of N?. Since we have all the initial

values of the components of {e,Γ,Ψ} on N ′? ∪N?, we can compute the initial value

of ∂uQ, ∂uτ, ∂uΨ4 on S?. The general results for the existence theorem of ordi-

nary differential equations ensures that the above equation system can be solved in

a neighbourhood of S?. In the following, we assume that the initial data provided

is such that it yields a uniform existence domain for the solutions to the transport

equations —this is a major assumption on the initial data in this construction. Ac-

cordingly, all the first transverse derivatives on N? can be explicitly computed. The

higher order ∂u-derivatives can be computed in a similar way. Throughout it is

assumed that the neighbourhood on which this construction can be done in uniform

for any order of the derivatives.

Computation of formal derivatives on N ′?. The analysis of the formal deriva-

tives on N ′? is almost the mirror image of that on N?. In this case ∂u, ∂2, ∂3 are

interior while ∂v is transverse. Accordingly, except for

∂vC
A, ∂vε, ∂vΨ0,

all ∂v-derivatives of the components of {e,Γ,Ψ} can be computed using the structure

equations (3.11c)-(3.11d), the Ricci identities and the Bianchi identity. Applying the

directional derivative D = ∂v + CA∂A to both sides of equations (3.11a), (3a) and

(4b) one obtains equations which can be regarded as first order linear ordinary

differential equations for ∂vC
A, ∂vε, ∂vΨ0. The solutions to these equations can be

obtained from the initial values prescribed on S?. Thus, all transverse derivatives

can be computed in a neighbourhood of S? on N ′?. A similar procedure applies to

higher order derivatives.

The analysis described in the previous paragraph proves the following lemma:

Lemma 4 (computation of formal derivatives). Any arbitrary formal deriva-

tives of the unknown functions {e,Γ,Ψ} on N ′? ∪ N? can be computed from the

prescribed initial data r? for the reduced vacuum Einstein field equations on N ′?∩N?.

Combining the analysis above and applying Rendall’s reduction strategy for the
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CIVP for symmetric hyperbolic systems (see e.g. Section 12.5 of [35]) one obtains

the following local existence result in a neighbourhood of S? = N ′? ∪N?:

Theorem 2 (existence and uniqueness to the characteristic problem).

Given a smooth reduced initial data set r? for the vacuum Einstein field equations

on N ′? ∪ N?, there exists a unique smooth solution of the vacuum Einstein field

equations in a neighbourhood V of S? on J+(S?) which implies the prescribed initial

data on N ′? ∪N?.

Remark 9. The proof of the above result has two distinct parts. In a first stage

one uses Rendall’s reduction procedure to show the existence of a solution in a

neighbourhood of V . In a second stage one shows that this solution to the reduced

equations implies, in fact, a solution to the full Einstein field equations. This part of

the argument relies on the propagation of the constraints as given in Proposition 2.

3.4 Setting-up Luk’s strategy

In this section we begin the implementation of Luk’s strategy to obtain an improved

existence interval for the solutions to the CIVP for the NP field equations in Stew-

art’s gauge.

3.4.1 Outline and main strategy

As the argument leading to the improved existence result for the CIVP is lengthy,

we provide here a summary of the role of the various lemmas and propositions and

a discussion of how they fit into the overall analysis. The whole scheme is based on

the use of sequentially more sophisticated a priori estimates of an arbitrary solution

that, ultimately, arrives at a contradiction giving us the desired result. This priori

estimate is made in the rectangular neighbourhood along N? and hence we name

the outgoing direction, l–the long direction and the ingoing direction, n–the short

direction.

Step 0. Estimates for the components of the frame. The basic step in the

construction is to obtain estimates on the components of the frame. This can be

done by assuming control on the L∞-norm on the spheres Su,v of a number of spin
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connection coefficients by a constant ∆Γ. A peculiarity of the analysis is that one

needs to introduce a certain derivative (to be denoted by χ) of the components of the

frame as an unknown to quick-start the argument —this quantity, which is at the

level of the spin connection coefficients, does not arise in the original NP formalism.

The key result in this step is Lemma 5 and 6 in which the frame coefficientsQ and PA

are controlled by their initial data and Lemma 7 in which the frame coefficients CA

are controlled along the short direction.

The bounds on the components of the frame allow us to control in a systematic

and streamlined manner the solutions to transport equations along null directions

in terms of integral quantities over the spheres Su,v. The technical results required

to this end are presented in Lemmas 8 and 9. From these, more specific results

valid for Lp and L∞ norms are given in Propositions 3, 4, 6 and 7. Within our

geometric setup and gauge these results are fairly general and are used repeatedly

in the subsequent steps of the procedure.

Step 1. Estimates for the connection coefficients. With the general tech-

nology to study transport equations along the generators of light cones has been

established, one can proceed to control the spin connection coefficients. The key

idea of this analysis is the integration of the transport equations implied by the

Ricci identities. In a first step, in Proposition 8, assuming control on the supremum

norm of the third angular derivatives of the NP connection coefficient τ and on the

components of the curvature one obtains control on the supremum norm of the var-

ious connection coefficients and τ itself. This result is used in turn in Proposition 9

to obtain control on the L4-norms of the connection coefficients and the L2-norm of

their derivatives in Proposition 10.

Step 2. First estimate for the curvature. A first estimate for the components

of the Weyl tensor is given in Proposition 11. In this result one assumes control

of the components of the Weyl tensor along the light cones and of the L2-norm of

the third angular derivatives of the connection coefficient τ on the spheres to obtain

control of the components of the Weyl tensor on the spheres.

The results of the steps 1 and 2 are conveniently summarised in Proposition 12

in which an assumed control on the components of the curvature along light cones

and of the L2-norm of the third angular derivatives of τ is used to obtain control

on the spheres Su,v of various norms of the connection and its derivatives and of the
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components of the curvature.

Step 3. Improved estimate for the connection. In the next step one obtains

an improved estimate for the connection in which the third angular derivatives of

the connection, including τ , are controlled assuming control only on the curvature

along the light cones. This result is given in Proposition 13.

Step 4. Main estimates for the curvature. At this point we are in a position

to run the central part of the argument, which depends crucially on the particular

structure of the Bianchi identities. General inequalities for integrals of the various

components of the Weyl tensor implied by the Bianchi identities are given in Propo-

sitions 14, 15 and 16 and 17. The whole argument is wrapped up in Proposition 18

in which, under the boundedness of the connection and the curvature on the initial

null hypersurfaces one obtains control of the curvature on later null hypersurfaces.

This is the crucial estimate which allows us to close the lengthy boostrap argument.

Final step. Last slice argument. The control of various norms of the connection

and curvature obtained in the previous steps do not provide, by themselves, the

improved existence result. For this, we make use of a last slice argument in which

one argues by contradiction under the assumption that the solution to the evolution

equations breaks down at some point. The estimates of the previous steps show that

this assumption leads to a contradiction.

3.4.2 Definitions and conventions

In this section we set up the conventions for the various norms that will be used in

the subsequent analysis.

Integration. In the following let φ denote a scalar field. Let U be a coordinate

patch on S? and U0,v be a coordinate patch on S0,v defined by generating U along l

direction. Then define Uu,v be a coordinate patch on Su,v by generating U along n

direction. Let DU ≡ ∪0≤u≤ε,0≤v≤IUu,v. Let f ∗U be a partition of unity in U and then

again generate along l and n to DU where we denote by fU . Functions fU can be

the partition of unity on Su,v. Now one has that DfU = 0 = ∆fU . For conciseness,
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we will use the notation ∫
Su,v

φ ≡
∑
U

∫
Su,v

φfUdσ

to denote integration on the spheres Su,v of constant u and v. In the previous

expression dσ ≡
√
| detσ|dx2dx3 denotes the volume element of the induced metric

σ on Su,v. On the truncated causal diamonds D t
u,v we define integration using the

volume form of the spacetime metric,∫
D t

u,v

φ ≡
∑
U

∫ u

0

∫ ṽ

0

∫
Su′,v′

φfU
√
| det g|dx2dx3dv′du′

=
∑
U

∫ u

0

∫ ṽ

0

∫
Su′,v′

Q−1φfU
√
| detσ|dx2dx3dv′du′,

with ṽ ≡ min(v, t−u). We will denote integration over the complete causal diamond

in the obvious manner by the natural omission of the superscript t on D t
u,v. As there

are no canonical volume forms on the null hypersurfaces Nu and N ′v we define, for

convenience the following:∫
Nu(0,v)

φ ≡
∑
U

∫ v

0

∫
Su,v′

φfU
√
| detσ|dx2dx3dv′,∫

N ′v(0,u)

φ ≡
∑
U

∫ u

0

∫
Su′,v

φfU
√
| detσ|dx2dx3du′.

We will often use the notation∫
N t

u

φ ≡
∫
Nu(I t)

φ,

∫
N ′tv

φ ≡
∫
N ′v [0,ε]t

φ

where I t ≡ [0,min(v•, t− u)], with v• ∈ R+, denotes the truncated long integration

interval. Similarly, the interval [0, ε]t ≡ [0,min(ε, t − v)] will be called the trun-

cated short integration interval. Dropping the superscript t we define the full long

and short integration intervals, I and [0, ε] respectively, and the norms on the full

outgoing and incoming slices in the natural way.

Norms. Keeping the above conventions for integration in mind, we can now define
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the various norms to be used in our analysis. As before, let φ define a scalar field.

For 1 ≤ p <∞ we define the Lp-norms

||φ||Lp(Su,v) ≡

(∫
Su,v
|φ|p
)1/p

, ||φ||Lp(N t
u ) ≡

(∫
N t

u

|φ|p
)1/p

, ||φ||Lp(N ′tv ) ≡
(∫
N ′tv
|φ|p
)1/p

.

The L∞-norm is defined by

||φ||L∞(Su,v) ≡ sup
Su,v
|φ|.

For a tensor field φa1...ap on the 2-sphere, we define

||φ||Lp(Su,v) ≡

(∫
Su,v
〈φ, φ〉p/2σ

)1/p

, ||φ||Lp(N t
u ) ≡

(∫
N t

u

〈φ, φ〉p/2σ
)1/p

,

||φ||Lp(N ′tv ) ≡
(∫
N ′tv
〈φ, φ〉p/2σ

)1/p

,

where 〈φ, φ〉σ ≡ σa1b1 ...σapbpφ̄a1,...,apφb1,...,bp . As in the definition of the integrals,

suppresion of the label t denotes taking the norms over the full long and short

integration intervals.

Remark 10. By assumption, Su,v is topological 2-sphere. So one has at least two

coordinate patches U1 and U2 in an atlas: U1 ∩ U2 6= ∅, U1 ∪ U2 = Su,v. Let f1 and

f2 be the partition of unity for U1 and U2 such that: f1 + f2 = 1 and suppfi ⊂ Ui.

Here suppfi is the support of fi which is compact. On each of U1 and U2 consider

pairs {m1, m̄1}, {m2, m̄2} spaning T U1 and T U2. On U1 ∩ U2 these two frame

are related via a rotation:

m1 = eiθm2 (m̄1 = e−iθm̄2)

For a spin-weighted scalar φ over Su,v (i.e. φ→ eisθφ for some s if m→ eiθm) one

has that |φ|2 = φφ̄ is defined unambiguously over the whole Su,v:

|φ|2 = φφ̄→ eisθe−isθφφ̄ = |φ|2.
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Accordingly, the Lp-type norm over Su,v is unambiguously defined if φ has definite

spin-weight. Thus the strategy in the argument is always working with spin-weight

scalars. For example the NP scalars κ, τ , σ, ρ, ν, π, µ and λ, the Weyl curvature

Ψi and the Ricci curvature Φij. The most notorious exception is give by α and β.

Although the gauge could set π = α+ β̄ with π having spin-weight, $ = β− ᾱ which

is the connection on Su,v has no definite spin weight. Let $i be the value of $ on

patch Ui with respect to a fixed basis {mi, m̄i}. One can define a frame-dependent

scalar $ ≡ $1f1 +$2f2 over Su,v globally. Then its norm can be defined in standard

way introduced above. The discussion for ε is the same.

Integration by parts. In the following we denote by /∇ the covariant derivative

of the induced metric σ on the spheres Su,v of constant u and v. Similarly, /∆ will

denote the associated Laplacian. As these spheres have no boundary we have

||/∇φ||2L2(Su,v) =

∫
Su,v

σab/∇aφ/∇bφ̄ =

∫
Su,v

/∇a(σ
abφ/∇bφ̄)−

∫
Su,v

φ/∆φ̄,

= −
∫
Su,v

φ/∆φ̄ ≤ 2

(∫
Su,v
|φ|2
)1/2(∫

Su,v
|/∇2φ|2

)1/2

where in the last step inequality (13) in Appendix 6.2 has been used. Integrating

over 〈φ, π〉σ over two-spheres naturally defines an inner product, so we similarly

obtain,

||/∇φ||L2(Su,v) ≤ ||φ||L2(Su,v) + ||/∇2φ||L2(Su,v),

||/∇2φ||L2(Su,v) ≤ ||/∇φ||L2(Su,v) + ||/∇3φ||L2(Su,v).

3.4.3 Estimates for the components of the frame

As a preliminary step we now show that, assuming the components of the connection

coefficients are controlled by a basic boostrap assumption, it is possible to estimate

the components of the NP frame in terms of the size of its initial data on N? ∪N ′?.
The key observation in the argument is that the structure equations provide ∆-

equations for all the components of the frame. Given our particular choice of gauge,

these equations are essentially ordinary differential equations with respect to the
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coordinate u. In fact as the structure equations form a neat hierarchy, they can be

integrated sequentially. The quantity,

∆e? ≡ sup
N?,N ′?

(
|Q|, |Q−1|, |CA|, |PA|

)
(3.14)

will be used to measure of the size of the initial data of the coefficients of the

frame. Throughout, given that the procedure has only a finite number of steps we

denote all constants depending on the initial data generically by C(∆e?) —the latter

corresponds to the largest constant arising in the various steps. For convenience in

the subsequent discussion let

χ ≡ ∆ logQ.

The scalar χ, being a derivative of a component of the frame is at the same level of

the connection coefficients. It provides a component of the connection which does

not arise in the original NP formalism, but is needed to obtain a complete set of ∆

equations for the frame. A direct computation using the definition of χ = ∆ logQ

and the NP Ricci identities yields

Dχ = Ψ2 + Ψ̄2 + 2ατ + 2β̄τ + 2ᾱτ̄ + 2βτ̄ + 2τ τ̄ − (ε+ ε̄)χ. (3.15)

The initial data of χ on N ′? is 0 due to the gauge choice that Q = 1 on N ′?. On N?,
making use of the information of α, β, τ , ε and Ψ2 obtained in Lemma 2, one can

compute the value of χ with equation (3.15). It will also be convenient to define,

$ ≡ β − ᾱ

corresponding to the only independent component of the connection on the spheres Su,v.
As mentioned above, the proof is based on demonstrating a priori estimates for an

arbitrary solution and consequently demonstrating that any such solution must ex-

tend to a neighborhood of N?∪N ′?. We therefore now introduce the following, which

will be initially guaranteed on a sufficiently small diamond by Theorem 1, and will

be employed in most of what follows:

Assumption 2 (assumption to control the coefficients of the frame). As-
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sume that we have a solution to the vacuum EFEs in Stewart’s gauge satisfying,

||{µ, λ, α, β, τ, χ}||L∞(Su,v) ≤ ∆Γ,

on a truncated causal diamond D t
u,v•, where ∆Γ is some constant.

Lemma 5 (control on the scalar field Q). Under Assumption 2, if ε > 0 is

sufficiently small, there exists a constant C depending on the size of the initial data

such that

Q−1, Q ≤ C(∆e?),

on D t
u,v•.

Proof. Work under Assumption 2. Integrating the definition of χ = ∆ logQ in the

short (i.e. u) direction along an incoming null geodesic one readily finds that,

|Q−Q?| =
∣∣∣∣ ∫ ε

0

χdu

∣∣∣∣ ≤ ∫ ε

0

|χ|du ≤
∫ ε

0

∆Γdu = ∆Γε

for any v. It follows that

||Q−Q?||L∞(Su,v) ≤ ∆Γε.

Hence, one can find a constant C depending on the initial data such that

Q−1, Q ≤ C(∆e?).

Lemma 6 (control on the components of the frame ). We require that PA

are bounded on U0,v such that σAB is invertible and bounded above and below. Here

U0,v is coordinate patch on S0,v generated along l from coordinate patch U on S?.
Under Assumption 2, if ε > 0 is sufficiently small, there exists a constant C, c

depending on the size of the initial data such that on DU such that

|σAB|, |σAB| ≤ C(∆e?), c(∆e?) ≤ | detσ| ≤ C(∆e?).
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and on D t
u,v•

sup
u,v
|Area(Su,v)− Area(S0,v)| ≤ C(∆e?)∆Γε,

Proof. We can integrate the components PA in the short direction using equa-

tion (3.11b). It follows then that

∂u|PA|2 = ∂u(P
AP̄A) = PA∂uP̄

A + P̄A∂uP
A

= −Q−1
(
PA(µ̄P̄A + λPA) + P̄A(µPA + λ̄P̄A)

)
= −Q−1

(
µ̄|PA|2 + λ(PA)2 + µ|PA|2 + λ̄(P̄A)2

)
≤ Q−1(µ+ µ̄+ λ+ λ̄)|PA|2.

In the previous chain of inequalities it is understood that there is no summation on

the repeated indices A. From the last inequality one readily concludes that

∂u ln |PA|2 ≤ 4Q−1∆Γ

so that

|PA|2 ≤ |PA? |2 exp(4C(∆e?)∆Γε).

As ε is arbitrary, we can choose it so that

|PA| ≤ C(∆e?), for any u and fixed v.

Then follows from the relation

σAB = −PAP̄B − PBP̄A,

one can control the components of the induced metric on the coordinate patch Uu,v

of Su,v:

|σAB|, |σAB| ≤ C(∆e?), c(∆e?) ≤ | detσ| ≤ C(∆e?).
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Here c(∆e?) and C(∆e?) are non-negative constants depend on ∆e? . Moreover, the

boundedness of | detσ| on each coordinate patch leads to that

sup
u,v
|Area(Su,v)− Area(S0,v)| ≤ C(∆e?)∆Γε,

on D t
u,v• . Consequently the area of Su,v is bounded above by a constant depending

in initial data in the same region, for ε sufficiently small.

One can now use equation (3.11a) to integrate the coefficients CA. By a proce-

dure similar to that used in the previous steps one has,

|CA − CA? | =
∣∣∣∣ ∫ ε

0

Q−1
(
(τ̄ + π)PA + (τ + π̄)P̄A

)
du

∣∣∣∣
≤ C(∆e?)

∫ ε

0

|(τ̄ + π)PA + (τ + π̄)P̄A|du

≤ 2C(∆e?)

∫ ε

0

|τ̄ + π||PA|du ≤ 2C(∆e?)2∆Γε.

Here π should be viewed as a shorthand for π = α + β̄. Since CA? = 0 on N?, we

arrive at:

Lemma 7 (control on the components of the frame. II ). Under Assumption

2, if ε > 0 is sufficiently small, then there is a constant C(∆e? ,∆Γ) depending

only on the initial data such that on coordinate patch DU , choosing ε suitably, one

has |CA| ≤ C(∆e? ,∆Γ)ε on D t
u,v•.

3.4.4 General estimates for transport equations

The purpose of this section is to develop a general set of tools that allow us to obtain

estimates from the transport equations on hypersurfaces of constant u or v. The

prototype of these transport equations are the NP Ricci identities (3a)-(3r). The

results of this section do not depend on Assumption 2 unless explicitly stated.

Derivatives of integrals over Su,v. We are mostly interested on integral estimates

over the spheres Su,v and how they evolve along null directions. In the following we

will systematically need to compute derivatives of integrals over Su,v with respect
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to the advanced and retarded null coordinates. The key observation in this respect

is the following:

Lemma 8 (computing derivatives of integrals over Su,v). Given a scalar φ

one has that

d

dv

∫
Su,v

φ =

∫
Su,v

(Dφ− 2ρφ) , (3.16a)

d

du

∫
Su,v

φ =

∫
Su,v

Q−1 (∆φ+ 2µφ) , (3.16b)

Proof. The proof follows a direct computation. More precisely, one has that

d

dv

∫
Su,v

φ =

∫
Su,v

∂

∂v
(φ
√
| detσ|)dx2dx3

=

∫
Su,v

(
D(φ

√
| detσ|)− CA∂A(φ

√
detσ

)
)dx2dx3

=

∫
Su,v

(
Dφ
√
| detσ|+ φD

√
| detσ| − CA∂A(φ

√
| detσ|)

)
dx2dx3.

For the second term in the integrand, φD
√
| detσ|, we find that

D
√
| detσ| = 1

2
√
| detσ|

D detσ =
| detσ|

2
√
| detσ|

σABDσAB = −
√
| detσ|

2
σABDσ

AB

=
√
| detσ|σAB

(
P̄BDPA + PADP̄B

)
=
√
| detσ|

(
σABP̄

BδCA + σABP
Aδ̄CB − 2ρ+ σσABP̄

AP̄B + σ̄σABP
APB

)
=
√
| detσ|

(
m̄AδC

A +mAδ̄C
A − 2ρ

)
= −

√
| detσ|

(
∂AC

A + 2ρ
)
,

where we have used Remark 1 and the structure equation (3.11c). For the third

term in the integral one has that∫
Su,v

CA∂A

(
φ
√
| detσ|

)
dx2dx3

=

∫
Su,v

∂A

(
CAφ

√
| detσ|

)
dx2dx3 −

∫
Su,v

φ∂AC
A
√
| detσ|dx2dx3

=−
∫
Su,v

φ∂AC
A
√
| detσ|dx2dx3 +

∫
Su,v
∇A

(
CAφ

√
| detσ|

)
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=−
∫
Su,v

φ∂AC
A
√
| detσ|dx2dx3,

where for the last equality we have use Stokes’ theorem and the fact that sphere has

no boundary. Combining the above observations one finds that

d

dv

∫
Su,v

φ =

∫
Su,v

(Dφ− 2ρφ)
√
| detσ|dx2dx3.

To compute the derivative with respect to u, we first consider

∆
√
| detσ| = −1

2

√
| detσ|σAB∆σAB =

1

2

√
| detσ|σAB

(
P̄B∆PA + PA∆P̄B

)
=

1

2

√
| detσ|σAB

(
P̄B(−µPA − λ̄P̄A) + PA(−µ̄P̄B − λPB)

)
=

1

2
(µ+ µ̄)

√
| detσ| = µ

√
| detσ|.

From the above identity one readily obtains

d

du

∫
Su,v

φ =

∫
Su,v

∂

∂u

(
φ
√
| detσ|

)
dx2dx3

=

∫
Su,v

Q−1
(√
| detσ|∆φ+ φ∆

√
| detσ|

)
dx2dx3

=

∫
Su,v

Q−1 (∆φ+ 2µφ)
√
| detσ|dx2dx3,

as required.

Remark 11. We follow the strategy from Chapter 3.1 of book [38] and provide a

geometric version of proof. For each Su,v, there are two null directions l and n, which

are the direction of the generator on Nu and Nv. For the convenience one define

new null vector field l̂ (n̂) whose the 1-parameter family of the diffeomorphisms

{φt} ({φ
t
}) maps the Su,v entirely to Su,v′ (Su′,v). Then vector field l̂ (n̂) is said

to be equivariant relative to the foliation. From the definition, a curve on Su,v can

be mapped to a curve on Su,v′ by φt, hence the push forward of vector V |Su,v , φt?V

is tangent on Su,v′. From the Lemma 3.1.2 of book [38], this requirement leads to

l̂(u) = 0, l̂(v) = 1 and n̂(u) = 1,n̂(v) = 0. Therefore l̂ must be proportional to l and

n̂ is proportional to n. Then one can compute and obtain that l̂ = l and n̂ = Q−1n.
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With these preparations in hand, precisely one has that

d

dv

∫
Su,v

fεab = lim
∆v→0

1

∆v

(∫
Su,v+∆v

fεab −
∫
Su,v

fεab

)

Here εab is the volume element on S. The diffeomorphism φ∆v generated by vector

field l̂ maps Su,v to Su,v+∆v. Then one has∫
Su,v+∆v

fεab =

∫
Su,v

φ?∆v(fεab).

Hence one obtain that

d

dv

∫
Su,v

fεab = lim
∆v→0

1

∆v

∫
Su,v

(φ?∆v(fεab)− fεab)

=

∫
Su,v

Ll̂(fεab).

Here Ll̂ is the Lie derivative with respect to l̂. One can compute that

Ll̂(fεab) = Ll(fεab) = Ll(f)εab + fLl(εab).

The first term on the right hand side is Dfεab and the second term is a 2-form on

Su,v which is proportional to εab. Namely one has a scalar h such that

Ll(εab) = hεab

Contract with εab one can fix that h = 1
2
σab∇alb = −(ρ + ρ̄). Collect the results

above and consider the gauge choice ρ̄ = ρ one has

d

dv

∫
Su,v

φ =

∫
Su,v

(Dφ− 2ρφ) .

The derivative of integral with respect to u can be obtained in the same way.

Integrals over Du,v. The construction of energy-type estimates for the compo-

nents of the Weyl tensor require further integral identities. These integrals allow us

to write the integral over the diamond Du,v of the D and ∆-derivatives of the com-
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ponents of the Weyl tensor in terms of integrals on the light cones and an integral

over the bulk diamond of the (undifferentiated) components.

Lemma 9 (integral over causal diamonds of derivatives of a scalar).

Let f be a scalar field in the causal diamond Du,v. One has then that∫
Du,v

Df =

∫
N ′v(0,u)

Q−1f −
∫
N ′0(0,u)

Q−1f +

∫
Du,v

(2ρ+ ε+ ε̄)f,∫
Du,v

∆f =

∫
Nu(0,v)

f −
∫
N0(0,v)

f −
∫
Du,v

2µf.

Proof. The proof of the identities follows by integration by parts. For the long

direction we have, by definition, that∫
Du,v

Df =

∫ u

0

∫ v

0

∫
Su′,v′

Q−1(∂vf + CA∂Af)
√
| detσ|dx2dx3du′dv′.

Now, on the one hand, integrating by parts with respect to v one has that,∫ u

0

∫ v

0

∫
Su′,v′

Q−1∂vf
√
| detσ|dx2dx3dv′du′

=

∫ u

0

∫ v

0

∫
Su′,v′

∂v(Q
−1f
√
| detσ|)dx2dx3dv′du′

−
∫ u

0

∫ v

0

∫
Su′,v′

f∂v(Q
−1
√
| detσ|)dx2dx3dv′du′,

=

∫
N ′v(0,u)

Q−1f −
∫
N ′0(0,u)

Q−1f

−
∫ u

0

∫ v

0

∫
Su′,v′

(f∂vQ
−1
√
| detσ|+Q−1f∂v

√
| detσ|)dx2dx3dv′du′.

On the other hand, integration by parts respect to the angular coordinates gives∫ u

0

∫ v

0

∫
Su′,v′

Q−1CA∂Af
√
| detσ|dx2dx3dv′du′

= −
∫ u

0

∫ v

0

∫
Su′,v′

f∂A(Q−1CA
√
| detσ|)dx2dx3dv′du′,
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= −
∫ u

0

∫ v

0

∫
Su′,v′

(f
√
| detσ|CA∂AQ−1 +Q−1f

√
| detσ|∂ACA

+Q−1fCA∂A
√
| detσ|)dx2dx3dv′du′.

Thus, we have∫
Du,v

Df =

∫
N ′v(0,u)

Q−1f −
∫
N ′0(0,u)

Q−1f

−
∫ u

0

∫ v

0

∫
Su′,v′

(
√
| detσ|fQ−2DQ+Q−1fD

√
| detσ|+Q−1f

√
| detσ|∂ACA)dx2dx3dv′du′.

Finally, making use of the expressions for DQ from equation (3.11d) and D
√
| detσ|

from Proposition 8, respectively, one obtains the desired identity.

To demonstrate the identity along the short direction one proceeds in a similar

fashion.

Corollary 1. If f = f1f2, then∫
Du,v

f1Df2 +

∫
Du,v

f2Df1 =

∫
N ′v(0,u)

Q−1f1f2 −
∫
N ′0(0,u)

Q−1f1f2 +

∫
Du,v

(2ρ+ ε+ ε̄)f1f2,∫
Du,v

f1∆f2 +

∫
Du,v

f2∆f1 =

∫
Nu(0,v)

f1f2 −
∫
N0(0,v)

f1f2 −
∫
Du,v

2µf1f2.

Basic Lp estimates. The first step in the analysis is the construction of Lp esti-

mates. These estimates require a priori control of the NP spin connection coeffi-

cients ρ and µ. The reason for their special treatment can be traced back to their

appearance in Lemma 8. Proceeding in this way we obtain the following:

Proposition 3 (control of the Lp-norm with transport equations). Work

under Assumption 2. Assume furthermore on D t
u,v• that

sup
u,v
||{ρ, µ}||L∞(Su,v) ≤ O.

Then there exists ε? = ε?(∆e? ,O) such that for all ε ≤ ε? and for every 1 ≤ p <∞,
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we have the estimates:

||φ||Lp(Su,v) ≤ C(I,O)

(
||φ||Lp(Su,0) +

∫ v

0

||Dφ||Lp(Su,v′ )dv
′
)
,

||φ||Lp(Su,v) ≤ 2

(
||φ||Lp(S0,v) + C(∆e? ,O)

∫ u

0

||∆φ||Lp(Su′,v)du
′
)
,

where, as elsewhere, I denotes the long direction interval.

Proof. Making use of the definition of ||φ||Lp(Su,v) and the identity in Lemma 8, we

have

||φ||pLp(Su,v) = ||φ||pLp(Su,0) +

∫ v

0

d

dv
||φ||pLp(Su,v′ )

dv′

= ||φ||pLp(Su,0) +

∫ v

0

(
d

dv

∫
Su,v′
|φ|p
)

dv′

= ||φ||pLp(Su,0) +

∫ v

0

(∫
Su,v′

(D|φ|p − 2ρ|φ|p)

)
dv′.

Now, Young’s inequality gives

D|φ|p = p|φ|p−1D|φ| ≤ p

(
(|φ|p−1)

p
p−1

p/ (p− 1)
+

(D|φ|)p

p

)
= (p− 1)|φ|p + (D|φ|)p .

Thus, we have that

||φ||pLp(Su,v) ≤ ||φ||
p
Lp(Su,0) +

∫ v

0

(∫
Su,v′

(D|φ|)p + (p− 1− 2ρ)|φ|p
)

dv′

≤ ||φ||pLp(Su,0) +

∫ v

0

(∫
Su,v′

(D|φ|)p + C1(O)|φ|p
)

dv′

≤ ||φ||pLp(Su,0) +

∫ v

0

||Dφ||pLp(Su,v′ )
dv′ + C1(O)

∫ v

0

||φ||pLp(Su,v′ )
dv′.

Now, making use of Grönwall’s inequality, we obtain

||φ||pLp(Su,v) ≤ C(I,O)

(
||φ||pLp(Su,0) +

∫ v

0

||Dφ||pLp(Su,v′ )
dv′
)
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≤ C(I,O)

(
||φ||pLp(Su,0) +

(∫ v

0

||Dφ||Lp(Su,v′ )dv
′
)p)

≤ C(I,O)

(
||φ||Lp(Su,0) +

∫ v

0

||Dφ||Lp(Su,v′ )dv
′
)p

,

so that, in fact, one has

||φ||Lp(Su,v) ≤ C(I,O)

(
||φ||Lp(Su,0) +

∫ v

0

||Dφ||Lp(Su,v′ )dv
′
)
.

Now, for the integration in the short direction 0 ≤ u ≤ ε, using the assumption

that supu,v ||µ||L∞(Su,v) ≤ O, a similar argument as before, and now using Lemma 5,

allows us to show that

||φ||pLp(Su,v) ≤ ||φ||
p
Lp(S0,v) + C(∆e?)

(
C(O)

∫ u

0

||φ||pLp(Su′,v)du
′ +

∫ u

0

||∆φ||pLp(Su′,v)du
′
)
,

so that one has

||φ||Lp(Su,v) ≤ ||φ||Lp(S0,v) + C(∆e? ,O)

(∫ u

0

||φ||Lp(Su′,v)du
′ +

∫ u

0

||∆φ||Lp(Su′,v)du
′
)
.

Then, using Grönwall’s inequality one is led to

||φ||Lp(Su,v) ≤ exp(C(∆e? ,O)ε)

(
||φ||Lp(S0,v) + C(∆e? ,O)

∫ u

0

||∆φ||Lp(Su′,v)du
′
)
.

From, the latter choosing ε > 0 small enough one concludes that

||φ||Lp(Su,v) ≤ 2

(
||φ||Lp(S0,v) + C(∆e? ,O)

∫ u

0

||∆φ||Lp(Su′,v)du
′
)
.

As a particular example of the previous discussion consider φ = δf , with p = 2.

In this case one has

||δf ||L2(Su,v) ≤ C(I,O)

||δf ||L2(Su,0) +

∫ v

0

(∫
Su,v′

D|δf |2
)1/2

dv′

 .
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If p = 4 one has that

||δf ||L4(Su,v) ≤ C(I,O)

||δf ||L4(Su,0) +

∫ v

0

(∫
Su,v′

D|δf |2
)1/4

dv′

 .

For the short direction one readily obtains analogous expressions.

Basic L∞ estimates. Our analysis will also require estimates on the L∞ norm of

various scalars. The first result in this direction is the following:

Proposition 4 (supremum norm of solutions to transport equations).

Work under Assumption 2. There exists ε? such that for all ε ≤ ε?, we have

||φ||L∞(Su,v) ≤ ||φ||L∞(Su,0) +

∫ v

0

||Dφ||L∞(Su,v′ )dv
′,

||φ||L∞(Su,v) ≤ ||φ||L∞(S0,v) + C(∆e?)

∫ u

0

||∆φ||L∞(Su′,v)du
′,

on D t
u,v•.

Proof. Given a fixed point (u, 0, xA) on N ′?, and then integrating out along integral

curves of la, conveniently parametrizing with v, gives

φSu,v − φSu,0 =

∫ v

0

dφ

dv
dv′ =

∫ v

0

Dφdv′.

Fixing u, varying the angular point xA on N ′? arbitrarily, and taking the supremum

we obtain the inequality of the of the proposition. The proof of the second inequality

is similar.

More advanced Lp-estimates. Finally, we discuss the construction of more re-

fined Lp-estimates. As in the case of the basic Lp-estimates, these estimates require

some a priori control on the L∞-norm of the the NP spin connection coefficients ρ

and µ. More precisely, one has the following:

Proposition 5 (L4-norm of solutions to transport equations). Work under

Assumption 2. Assume, as in Proposition 3, furthermore that

sup
u,v
||{ρ, µ}||L∞(Su,v) ≤ O.
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on D t
u,v•. Then there exists ε? = ε?(∆e? ,O) such that for all ε ≤ ε? we have the

estimates:

||φ||L4(Su,v) ≤ C(∆e? ,O)

(
||φ||L4(Su,0) + ||Dφ||1/2L2(Nu(0,v))

(
||φ||2L2(Nu(0,v)) + ||/∇φ||2L2(Nu(0,v))

)1/4
)
,

||φ||L4(Su,v) ≤ 2

(
||φ||L4(S0,v) + C(∆e?)||∆φ||1/2L2(N ′v(0,u))

(
||φ||2L2(N ′v(0,u)) + ||/∇φ||2L2(N ′v(0,u))

)1/4
)
,

on D t
u,v•.

Proof. The proof proceeds by direct computation. We first obtain the estimate on

the long direction. Following arguments similar to those used in Proposition 3, we

find that

||φ||4L4(Su,v) = ||φ||4L4(Su,0) +

∫ v

0

(∫
Su,v′

D|φ|4 − 2ρ|φ|4
)

dv′

≤ ||φ||4L4(Su,0) + 2O
∫ v

0

||φ||4L4(Su,v′ )dv
′ + 4

(∫
Nu(0,v)

|φ|6
)1/2(∫

Nu(0,v)

|Dφ|2
)1/2

.

(3.17)

Now, for small enough ε, using the Nirenberg-Sobolev inequality (see Appendix 6.2)

we estimate:∫
Nu(0,v)

|φ|6 =

∫ v

0

∫
Su,v′
|φ|6dv′ =

∫ v

0

|||φ|3||2L2(Su,v′ )dv
′

≤ C(∆e?)

∫ v

0

(
|||φ|3||L1(Su,v′ ) + ||/∇|φ|3||L1(Su,v′ )

)2

dv′

≤ C(∆e?)

∫ v

0

(
|||φ|2||L2(Su,v′ )||φ||L2(Su,v′ ) + |||φ|2||L2(Su,v′ )||/∇φ||L2(Su,v′ )

)2

dv′

≤ C(∆e?)

∫ v

0

||φ||4L4(Su,v′ )

(
||φ||L2(Su,v′ ) + ||/∇φ||L2(Su,v′ )

)2

dv′

≤ 2C(∆e?)

(
sup
u,v
||φ||4L4(Su,v)

)∫ v

0

(
||φ||2L2(Su,v′ ) + ||/∇φ||2L2(Su,v′ )

)
dv′

≤ C(∆e?)

(
sup
u,v
||φ||4L4(Su,v)

)(
||φ||2L2(Nu(0,v)) + ||/∇φ||2L2(Nu(0,v))

)
,

where to pass from the second to the third line we have made use of Hölder’s
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inequality and, to pass from the third to fourth we have extracted common factors.

Making use of the above estimate in inequality (3.17), we have that

||φ||4L4(Su,v) ≤ ||φ||4L4(Su,0) + 2O
∫ v

0

||φ||4L4(Su,v′ )dv
′

+ C(∆e?)

(
sup
u,v
||φ||2L4(Su,v)

)(
||φ||2L2(Nu(0,v)) + ||/∇φ||2L2(Nu(0,v))

)1/2

||Dφ||L2(Nu(0,v))

≤ ||φ||4L4(Su,0) + 2O
∫ v

0

||φ||4L4(Su,v′ )dv
′ + C(∆e?)δ

(
sup
u,v
||φ||4L4(Su,v)

)
+
C(∆e?)

4δ

(
||φ||2L2(Nu(0,v)) + ||/∇φ||2L2(Nu(0,v))

)
||Dφ||2L2(Nu(0,v)),

for some δ > 0. Now, choosing δ sufficiently small and making use of Grönwall’s

inequality, one finally obtains that

||φ||4L4(Su,v) ≤ C(∆e? ,O)
(
||φ||4L4(Su,0) + ||Dφ||2L2(Nu(0,v))

(
||φ||2L2(Nu(0,v)) + ||/∇φ||2L2(Nu(0,v))

))
.

The proof of the estimate along the short direction is similar. In this case we can

choose ε > 0 sufficiently small to make the overall constant equal to, say, 2.

3.4.5 Sobolev inequalities

In the last step in our preparatory work, we now obtain Sobolev-type inequalities on

the spheres Su,v —i.e. estimates of the Lp-norms of a scalar in terms of its L2-norms

and those of its derivatives. The key tool in this analysis is the isoperimetric Sobolev

inequality on Su,v —see [24]:

Theorem 3 (isoperimetric Sobolev inequality on Su,v). Let φ denote an in-

tegrable function and with integrable first derivatives on Su,v. Then we have that

∫
Su,v
|φ− φ̄|2 ≤ I(Su,v)

(∫
Su,v
|/∇φ|

)2

, (3.18)

where φ̄ denotes the average of φ over Su,v and I(Su,v) is the isoperimetric constant.

Remark 12. The isoperimetric inequality can be shown to be controlled by the

area of the 2-dimensional surfaces Su,v —see e.g. [24]. Thus, if one has control over
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the area of the surface (as it is, in principle, in our setup), one has also control over

the isoperimetric constant.

Using this we can prove the following result concerning Sobolev-type inequalities:

Proposition 6 (Sobolev-type inequality. I ). Work under Assumption 2. Let φ

be a scalar field on Su,v which is square-integrable with square-integrable first co-

variant derivatives. Then for each 2 < p < ∞, φ ∈ Lp(Su,v), there exists ε? =

ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we have

||φ||Lp(Su,v) ≤ Gp(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v)

)
where Gp(σ) is a constant also depends on the isoperimetric constant I(Su,v) and p,

but is controlled by some C(∆e?), /∇ is the induced connection on Su,v which is

associated with the metric σ.

Proof. We make use of the following result which can be found in Lemma 5.1 in

Chapter 5.2 of [25]:

(Area(Su,v))−1/p ||φ||Lp(Su,v) ≤ Cp

√
I ′(Su,v)

(
(Area(Su,v))−1/2 ||φ||L2(Su,v) + ||/∇φ||L2(Su,v)

)
,

(3.19)

where Cp is a numerical constant depending only on p,

I ′(Su,v) = max{1, I(Su,v)},

where as above I(Su,v) is the isoperimetric constant of Su,v. Now, under Assump-

tion 2 we have that the area of Su,v is finite in the tilted rectangle. Accordingly,

inequality (3.19) can be adapted to our particular setting.

Consequently we have the following two results:

Proposition 7 (Sobolev-type inequality. II ). Work under Assumption 2. There

exists ε? = ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we have

||φ||L∞(Su,v) ≤ Gp(σ)
(
||φ||Lp(Su,v) + ||/∇φ||Lp(Su,v)

)
,
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with 2 < p <∞ and Gp(σ) ≤ C(∆e?) as above.

Corollary 2 (Sobolev-type inequality. III ). Work under Assumption 2. There

exists ε? = ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we have

||φ||L4(Su,v) ≤ G(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v)

)
,

||φ||L∞(Su,v) ≤ G(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v) + ||/∇2φ||L2(Su,v)

)
,

again with G(σ) ≤ C(∆e?).

3.5 Main estimates

In this section we provide a discussion of the construction of the main estimates

required to obtain the improved existence result for the CIVP. The arguments rely

heavily on the preparatory work carried out in the previous section.

3.5.1 Norms for the initial data

The boostrap argument requires assumptions on the size of the initial data. Follow-

ing Luk [26], we define the following:

i). Norm for the initial value of the connection coefficients, given by

∆Γ? ≡ sup
Su,v⊂N?,N ′?

sup
Γ∈{µ,λ,ρ,σ,α,β,τ,ε}

max{1,
1∑
i=0

||/∇iΓ||L∞(Su,v),
2∑
i=0

||/∇iΓ||L4(Su,v),

3∑
i=0

||/∇iΓ||L2(Su,v)}.

ii). Norm for the initial value of the components of the Weyl tensor, given by

∆Ψ? ≡ sup
Su,v⊂N?,N ′?

sup
Ψ∈{Ψ0,Ψ1,Ψ2,Ψ3,Ψ4}

max{1,
1∑
i=0

||/∇iΨ||L4(Su,v),
2∑
i=0

||/∇iΨ||L2(Su,v)}

+
3∑
i=0

sup
Ψ∈{Ψ0,Ψ1,Ψ2,Ψ3}

||/∇iΨ||L2(N?) + sup
Ψ∈{Ψ1,Ψ2,Ψ3,Ψ4}

||/∇iΨ||L2(N ′?).
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iii). Norm for the components of the Weyl tensor at later null hypersurfaces, given

by

∆Ψ ≡
3∑
i=0

sup
Ψ∈{Ψ0,Ψ1,Ψ2,Ψ3}

sup
u
||/∇iΨ||L2(N t

u ) + sup
Ψ∈{Ψ1,Ψ2,Ψ3,Ψ4}

sup
v
||/∇iΨ||L2(N ′tv )

where the suprema in u and v are taken over D t
u,v• .

iv). Sup over the L2-norm of the components of the Weyl tensor at spheres of

constant u, v, given by,

∆Ψ(S) =
2∑
i=0

sup
u,v
||/∇i(Ψ0,Ψ1,Ψ2,Ψ3)||L2(Su,v),

with the supremum taken over D t
u,v• , and in which u will be taken sufficiently

small to apply our estimates.

Remark 13. There is no appearance of χ in ∆Γ? because initial data for χ used in

the following calculations are required only on N ′? where χ is zero.

Remark 14. In addition to the above norms, we recall that the norm ∆e? , as defined

in equation (3.14) has been used to control the initial value of the components of

the frame.

Remark 15. Observe that the above expressions do not include any norm for the

components of the connection coefficients away from the initial null hypersurfaces.

Instead such norms will be controlled by local bootstrap arguments within the proof.

Remark 16. Throughout the proof besides keeping track of ∆Ψ? and ∆Ψ?(S), to

assist in future generalization, we trace also the dependence of our various constants

on I,∆e? ,∆Γ? ,∆Ψ? . Note that because of the way that we setup our frame none of

the constants so far depend upon I.

3.5.2 Estimates for the connection coefficients

In this section we show how to construct estimates on the coefficients of the con-

nection. The strategy is an application of the tools developed in Section 3.4.4 to
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estimate the solutions of generic transport equations along null hypersurfaces. In

this approach, as a bootstrap, control is assumed of the curvature (components of

the Weyl tensor) on the double foliation of null hypersurfaces and on the 2-spheres

of constant u and v through the norms ∆Ψ and ∆Ψ(S).

In a first step we obtain basic control of the L∞-norm of the connection coeffi-

cients by assuming finiteness of ∆Ψ and ∆Ψ(S) and of third derivatives of the NP

coefficient τ in terms of the L2-norm on the 2-spheres Su,v.

Proposition 8 (control on the supremum norm of the connection coeffi-

cients). Assume that we have a solution of the vacuum EFEs in Stewart’s gauge

in a region D t
u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ}||L∞(Su,v) ≤ ∆Γ ,

for some positive ∆Γ. Assume also

sup
u,v
||/∇2τ ||L2(Su,v) <∞, sup

u,v
||/∇3τ ||L2(Su,v) <∞, ∆Ψ(S) <∞, ∆Ψ <∞,

on the same domain. Then there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Ψ),

such that when ε ≤ ε?, we have

sup
u,v
||{τ, χ}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)),

sup
u,v
||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 3∆Γ? ,

on D t
u,v•.

Remark 17. Observe that in the above proposition, as well as in several of the

following ones, the NP spin connection coefficient τ is singled out as it requires

additional hypotheses.

Remark 18. The first assumption here covers Assumption 2, which allows us to

employ Lemma 5, Lemma 6 Lemma 7, Proposition 4 and the Sobolev inequalities of
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Propositions 6, 7 and Corollary 2. It also permits the use of Propositions 3 and 5.

Proof.

Basic bootstrap assumption. We start by making the bootstrap assumption

sup
u,v
||({µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 4∆Γ? .

Estimate for τ . As first step we prove that

||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)).

For this, we make use of the D-equation (3b) for the NP coefficient τ :

Dτ = (ε− ε̄+ ρ)τ + στ̄ + π̄ρ+ πσ + Ψ1.

Making use of the Sobolev inequality in Proposition 7, we readily obtain from our

assumptions that for ε sufficiently small,

||Ψ0, Ψ1, Ψ2, Ψ3, Ψ4||L∞(Su,v) ≤ ∆Ψ(S) <∞.

Moreover, the inequalities in Proposition 4 show that

||τ ||L∞(Su,v) ≤ ||τ ||L∞(Su,0) +

∫ v

0

||Dτ ||L∞(Su,v′ )dv
′

≤ ||τ ||L∞(Su,0) +

∫ v

0

||π̄ρ+ πσ + Ψ1||L∞(Su,v′ )dv
′

+

∫ v

0

|ε− ε̄+ ρ| ||τ ||L∞(Su,v′ )dv
′ +

∫ v

0

|σ| ||τ̄ ||L∞(Su,v′ )dv
′

≤ ∆Γ? + (32∆2
Γ?

+ ∆Ψ(S))v• + 16∆Γ?

∫ v

0

||τ ||L∞(Su,v′ )dv
′.

Using Grönwall’s inequality in the previous expression one then concludes that

||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)).

Estimate for χ. To obtain the estimate for χ we proceed in a similar manner. We
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use the D-transport equation equation (3.15) for χ to obtain

||χ||L∞(Su,v) ≤ ||χ||L∞(Su,0) +

∫ v

0

||Dχ||L∞(Su,v′ )dv
′

≤ (2∆Ψ(S) + c∆Γ? + C)v• + 2∆Γ?

∫ v

0

||χ||L∞(Su,v′ )dv
′,

where c is a positive constant and the constant C is related to the constant appearing

in the estimate for τ . From the latter, Grönwall’s inequality readily yields

||χ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)).

Estimates for µ and λ. To obtain estimates of the NP coefficients µ and λ we

make use of the ∆-transport equations (3g) and (3o):

∆µ = −µ2 − λλ̄,

∆λ = −2µλ−Ψ4.

These are Riccati-type equations and, thus, they can only be naively integrated

for a small distance in the u direction —i.e. u ∈ [0, ε]. Now, making use of the

inequalities in Proposition 4 we find that

||µ||L∞(Su,v) ≤ ||µ||L∞(S0,v) + C(∆e?)

∫ ε

0

||∆µ||L∞(Su′,v)du
′.

Accordingly, one concludes that

||µ||L∞(Su,v) ≤ ||µ||L∞(S0,v) + C(∆e?)

∫ ε

0

||µ2 + λλ̄||L∞(Su′,v)du
′

≤ ||µ||L∞(S0,v) + 32C(∆e?)

∫ ε

0

∆2
Γ0

du′

≤ ∆Γ? + 32C(∆e?)∆2
Γ?
ε.

For λ one obtains that

||λ||L∞(Su,v) ≤ ∆Γ? + 32C(∆e?)∆2
Γ?
ε+ C(∆e?)

∫ u

0

||Ψ4||L∞(Su′,v)du
′
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≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ C(∆e?)

∫ u

0

2∑
i=0

||/∇iΨ4||L2(Su′,v)du
′,

where in the second inequality we have made use of the Sobolev embedding property

—see corollary 2. Now, using Hölder’s inequality, we can transform the estimate

of Ψ4 from one on sphere Su,v to one on a null hypersurface. More precisely, one has

that

∫ u

0

||/∇iΨ4||L2(Su′,v)du
′ =

∫ u

0

(∫
Su′,v
|/∇iΨ4|2

)1/2

du′ ≤

(∫ u

0

∫
Su′,v
|/∇iΨ4|2du′

)1/2(∫ u

0

1du′
)1/2

≤ Cε1/2||/∇iΨ4||L2(N ′v(0,u)).

Hence, we conclude that

||λ||L∞(Su,v) ≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ C∆Ψε
1/2.

Together, the estimates for µ and λ show that the maximum of these functions will

not be too far away from their initial value for ε sufficiently small.

Estimates for α, β and ε. Estimates α, β and ε can be obtained by a similar

method —i.e. integration along the short direction. In this case the relevant ∆-

transport equations are given by the structure equations (3k), (3d) and (3a),

∆α = −µα− λβ − λτ −Ψ3,

∆β = −λ̄α− µβ − τµ,

∆ε = −απ̄ − βπ − ατ − βτ̄ − πτ −Ψ2,

where it is recalled that in the present gauge one has that π = α+ β̄ —see Lemma 1,

equation (3.10c). The details are omitted.

Estimates for ρ and σ. In this case the relevant ∆-transport equations are the

structure equations (3i) and (3r):

∆ρ = δ̄τ − µρ− λσ − ατ + β̄τ − τ τ̄ −Ψ2,

∆σ = δτ − λ̄ρ− µσ + ᾱτ − βτ − τ 2.
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Observe that these equations contain the derivatives δτ and δ̄τ . To control these

terms from our hypotheses, we make use of the Sobolev inequalities in corollary 2

which, together with integration by parts on Su,v allows us to show that,

||/∇τ ||L∞(Su,v) ≤ C(∆e?)
3∑
i=1

||/∇iτ ||L2(Su,v)

≤ C(∆e?)
(
||τ ||L2(Su,v) + ||/∇2τ ||L2(Su,v) + ||/∇3τ ||L2(Su,v)

)
.

It follows then from the Hölder inequality

||τ ||L2(Su,v) ≤ ||τ ||L∞(Su,v) Area(Su,v)1/2

and the boundedness assumptions on ||/∇iτ ||L2(Su,v) for i = 2, 3, that

||/∇τ ||L∞(Su,v) <∞.

From this observation, an argument similar to the one used for µ and λ yields the

required estimates.

Concluding the argument. From the estimates for the NP connection coefficients

constructed above it follows that one can choose

ε = ε(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Ψ(S),∆Ψ)

sufficiently small so that

sup
u,v
||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 3∆Γ? .

Accordingly, we have improved our initial bootstrap assumption. As this is our

first such improvement we give an overview of the technique. Recall that to com-

plete a bootstrap argument we need first, to verify that the hypothesis, in our

case that supu,v ||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 4∆Γ? holds over the region of inter-

est, is satisfied. We then need to demonstrate, as in the previous argument, that

the hypothesis can be improved for ε sufficiently small. Obviously if the conclu-

sion supu,v ||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 3∆Γ? holds at some point then our hypoth-
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esis holds in a neighborhood of that point. Since the interval [0, ε] is connected and

the set on which our desired conclusion holds is open, closed and non-empty, it fol-

lows that the desired conclusion holds for u ∈ [0, ε]. In the argument above we have

shown that we can improve the hypothesis from a bound 4∆Γ? to 3∆Γ? . Evidently

the same arguments could be used to improve from (N+1)∆Γ? to N∆Γ? for any natu-

ral number N ≥ 3. Given our initial assumption that ||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤
∆Γ we can therefore choose N so that ∆Γ ≤ N∆Γ? and iterate from N down to 4

to guarantee that our hypothesis is indeed satisfied in some truncated diamond,

demonstrating the statement.

The existence proof also requires control over the L4-norms of the δ and δ̄ deriva-

tives of the NP spin connection coefficients. This is provided by the following:

Proposition 9 (control on the L4-norm of the connection coefficients).

Make the same assumptions as in Proposition 8, and additionally assume that,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) ≤ ∆Γ,

in the truncated diamond D t
u,v•. Then there exists,

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Ψ(S),∆Ψ),

such that when ε ≤ ε?, we have,

sup
u,v
||/∇{τ, χ}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)),

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) ≤ 3∆Γ? ,

on D t
u,v•.

Proof.

Basic bootstrap assumption. In order to run the argument we make the following

bootstrap assumption:

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) ≤ 4∆Γ? .
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Estimates for /∇τ . First we make use of the boundedness of the L2-norm of τ

and its angular derivatives up to third order to estimate the L4-norm of the first

order angular derivatives of τ . For this, we apply δ to the D-transport equation

for τ —equation (3b). After making use of the commutators of directional covariant

derivatives one arrives at the equations

Dδτ = (ρ+ ρ̄+ 2ε− 2ε̄)δτ + σδ̄τ + σδτ̄ + δ(ε− ε̄+ ρ)τ

+ τ̄ δσ + ρδπ̄ + π̄δρ+ σδπ + πδσ + δΨ1, (3.20a)

Dδ̄τ = 2ρδ̄τ + σδ̄τ̄ + σ̄δτ + τ δ̄(ε− ε̄+ ρ) + τ̄ δ̄σ

+ ρδ̄π̄ + π̄δσρ+ σδ̄π + πδ̄σ + δ̄Ψ1. (3.20b)

The above equation contains terms of the form Γ/∇Γ —i.e. products of connection

coefficients and their derivatives. In the following the L4-norm of these products

will be split using the Hölder inequality as follows:

||Γ/∇Γ||L4(Su,v) ≤ ||Γ||L∞(Su,v)||/∇Γ||L4(Su,v).

Observe that from Proposition 8 it follows that terms of the type ||Γ||L∞(Su,v) are

bounded.

Now, making use of the Sobolev inequality in Proposition 6, we obtain that

1∑
j=0

||/∇jΨi||L4(Su,v) ≤ ∆Ψ(S) <∞, i = 0, 1, 2, 3.

Combining this with the inequality in the long direction shown in Proposition 3 we

find that

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v)

≤ C(I,∆Γ?)
(
||δτ ||L4(Su,0) + ||δ̄τ ||L4(Su,0) +

∫ v

0

||Dδτ ||L4(Su,v′ ) + ||Dδ̄τ ||L4(Su,v′ )dv
′
)
.

Substituting the expressions for Dδτ and Dδ̄τ given by equations (3.20a)-(3.20b)

79



one concludes that

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v)

≤ C1(I,∆Γ? ,∆Ψ(S)) + C2(I,∆Γ?)

∫ v

0

(||δτ ||L4(Su,v′ ) + ||δ̄τ ||L4(Su,v′ ))dv
′.

Thus, using Grönwall’s inequality it follows that

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v) ≤ C(I,∆Γ? ,∆Ψ(S)).

Consequently, one has

||/∇τ ||L4(Su,v) ≤ C(I,∆Γ? ,∆Ψ(S))

as required.

Estimates for /∇χ. From equation (3.15) one can readily compute that

Dδχ = (ρ̄− 2ε̄)δχ+ σδ̄χ+ δ(Ψ2 + Ψ̄2) + ΓδΓ− χδ(ε+ ε̄),

where Γ represents a combination of connection coefficients whose particular form is

not essential. A similar equation for Dδ̄χ can be computed. Using the same strategy

used for /∇χ one concludes from the above equations that,

||δχ||L4(Su,v) + ||δ̄χ||L4(Su,v) ≤ C(I,∆Γ? ,∆Ψ(S)).

In other words, we find that

||/∇χ||L4(Su,v) ≤ C(I,∆Γ? ,∆Ψ(S)).

Estimates for the remaining connection coefficients. In order to obtain equa-

tions for δµ and δλ, we apply the ∆-directional derivative on both sides of equa-

tions (3g) and (3o). This gives,

∆δµ = (τ − ᾱ− β)(µ2 + λλ̄)− 3µδµ− λ̄δ̄µ− λδλ̄− λ̄δλ,

∆δλ = (τ − ᾱ− β)(2µλ+ Ψ4)− 3µδλ− λ̄δ̄λ− 2λδµ− δΨ4.
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A direct computation using Proposition 3 shows that there exists an ε? such that

||/∇{µ, λ}||L4(Su,v) ≤ 3∆Γ?

if ε ≤ ε?. The details of this computation can be found in Appendix 6.2. We

can estimate δα, δβ and δε by the same method. Since, by our bootstrap assump-

tion supu,v ||/∇3τ ||L2(Su,v) <∞, it follows from the Sobolev inequalities in Corollary 2

that ||/∇iτ ||L4(Su,v) for i ≤ 2 are finite. Using this information we can estimate δρ

and δσ applying the δ-directional derivative to equations (3i) and (3r).

Concluding the argument. From the previous estimates it follows that we

can find an ε? depending on I, ∆e? ,∆Γ? , supu,v ||/∇2τ ||L2(Su,v), supu,v ||/∇3τ ||L2(Su,v),

∆Ψ(S), and ∆Ψ, such that

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) ≤ 3∆Γ? .

The bootstrap can hence be closed as in Proposition 8.

In a similar vein, the next proposition shows how to obtain control on the L2-

norms of the NP connection coefficients and their first and second derivatives.

Proposition 10 (control on the L2-norm of the connection coefficients).

Assume that we have a solution of the vacuum EFEs in Stewart’s gauge in a re-

gion D t
u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ}||L∞(Su,v) ≤ ∆Γ ,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) ≤ ∆Γ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ}||L2(Su,v) ≤ ∆Γ,

for some positive ∆Γ. Assume also

sup
u,v
||/∇3τ ||L2(Su,v) <∞, ∆Ψ(S) <∞, ∆Ψ <∞,
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on the same domain. We have that there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇3τ ||L2(Su,v),∆Ψ(S),∆Ψ),

such that when ε ≤ ε?, we have that

sup
u,v
||/∇2{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)),

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ}||L2(Su,v) ≤ 3∆Γ? .

Proof.

Basic bootstrap assumption. Examining the above hypotheses we first observe

that both Propositions 8 and 9 are applicable. We start then with the following

basic bootstrap assumption:

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ}||L2(Su,v) ≤ 4∆Γ? .

Estimates for ||/∇2τ ||L2(Su,v) and ||/∇2χ||L2(Su,v). Starting from equation (3.20a),

applying the δ-directional derivative and using the commutators one obtains a D-

transport equation of the form

Dδ2τ = Γδ2τ + Γδ2τ̄ + Γδ̄δτ + Γδδ̄τ + δ2Ψ1 + Γ1δ
2Γ1 + δΓ1δΓ1,

where Γ depends linearly on ε, ρ, σ, while Γ1 depends linearly on τ, α, β, ε, ρ, σ.

Similar computations lead to equations for Dδ̄τ and Dδδ̄τ . The term δΓ1δΓ1 is dealt

with using the Hölder inequality to obtain

||δΓ1δΓ1||L2(Su,v) ≤ ||δΓ1||L4(Su,v)||δΓ1||L4(Su,v).

Using Proposition 9, it follows then that the left-hand side of the inequality is finite.

Now, the inequality in the long direction of Proposition 3 and the equation

for Dδτ show that,

||δ2τ ||L2(Su,v) ≤ C(I,∆Γ?)

(
||δ2τ ||L2(Su,0) +

∫ v

0

||Dδ2τ ||L2(Su,v′ )dv
′
)
,
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≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)) + C(I,∆e? ,∆Γ?)

∫ v

0

||/∇2τ ||L2(Su,v′ )dv
′.

Similar estimates can be obtained for δ̄2τ , δδ̄τ and δ̄δτ .

Recalling the result in Lemma 6 that the area of Su,v is bounded one can estimate

the norm ||δτ ||L2(Su,v) by observing that

||δτ ||L2(Su,v) ≤ C(∆e? ,∆Γ?)||δτ ||L4(Su,v).

Hence, using Proposition 9 it follows that ||δτ ||L2(Su,v) is also finite. Now, from

inequality (10) we then obtain that

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)) + C(I,∆e? ,∆Γ?)

∫ v

0

||/∇2τ ||L2(Su,v′ )dv
′.

so that using Grönwall’s inequality one concludes that

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ(S)).

Estimates for ||/∇2χ||L2(Su,v). An analysis analogous to that for τ , readily shows

that ||/∇2χ||L2(Su,v) is bounded.

Estimates for the the remaining spin connection coefficients. The remaining

connection coefficients can be estimated using the same ideas as in Proposition 8 —

namely, we first compute equations for ∆δ2Γ and ∆δ̄δΓ using the NP Ricci identities

and the commutators for covariant directional derivatives. In a second step we make

use of the short direction inequality of Proposition 3. It then follows that one can

choose ε small enough so that,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ}||L2(Su,v) ≤ 3∆Γ? ,

for,

ε ≤ ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇3τ ||L2(Su,v),∆Ψ(S),∆Ψ) .

Details of the generic calculations involved in these last steps are discussed in Ap-
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pendix 6.2.

3.5.3 A first estimate for the curvature

Having obtained estimates for the NP spin connection coefficients, we are now in the

position to obtain a first estimate for the curvature. The proposition of this section

provides for bounds the components of the Weyl tensor of the spheres Su,v assuming,

as a bootstrap, their boundedness on the null hypersurfaces and boundedness on τ

and its derivatives.

Proposition 11 (basic control of the curvature). Assume that we are given

a solution to the vacuum EFEs in Stewart’s gauge satisfying the assumptions of

Proposition 10. Then there exists

ε? = ε?(∆e? ,∆Γ? ,∆Ψ? , sup
u,v
||/∇3τ ||L2(Su,v),∆Ψ)

such that for ε ≤ ε?, one has

∆Ψ(S) ≤ C(∆Ψ?) ,

on D t
u,v•.

Proof.

Boostrap assumption. In this proof we start with the following bootstrap as-

sumption:

sup
u,v
||/∇i{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v) ≤ 4∆Ψ? , i = 0, ..., 2,

which we then aim to improve.

L2-norm of the components {Ψ0,Ψ1,Ψ2,Ψ3}. Estimates for the L2-norms of the

components {Ψ0,Ψ1,Ψ2,Ψ3} can be obtained from the ∆-Bianchi identity equa-

tions (3b), (3h), (3f) and (3d) which are then integrated along the short direction.

As an example of the procedure we consider here the coefficient Ψ2. From Proposi-
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tion 3 it follows that

||Ψ2||L2(Su,v) ≤ 2

(
||Ψ2||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

||∆Ψ2||L2(Su′,v)du
′
)

≤ 2
(

∆Ψ? + C(∆e? ,∆Γ?)

∫ u

0

||/∇Ψ3||L2(Su′,v) + ||3µΨ2||L2(Su′,v)

+ ||2(β − τ)Ψ3||L2(Su′,v) + ||σΨ4||L2(Su′,v)du
′
)

≤ 2
(
∆Ψ? + C(∆e? ,∆Γ? ,∆Ψ?)ε+ C(∆e? ,∆Γ?)∆Ψε

1/2

+C(∆e? ,∆Γ?)||Ψ4||L2(N ′v(0,u))ε
1/2
)

≤ 2∆Ψ? + C(∆e? ,∆Γ? ,∆Ψ?)ε+ C(∆e? ,∆Γ? ,∆Ψ?)∆Ψε
1/2,

In passing from the second to the third inequality we have used that the term∫ u

0

||/∇Ψ3||L2(Su′,v)du′

is, in fact, an statement on the light cone and, hence, it is controlled by the definition

of ∆Ψ. Moreover, we have also used Hölder’s inequality in the form∫ u

0

||Ψ4||L2(Su′,v)du
′ ≤ Cε1/2||Ψ4||L2(Nv′ (0,u)).

The analysis for the coefficients Ψ0,Ψ1,Ψ3 is similar. Consequently, we can find ε?

depending on the initial data, ∆Ψ and I such that for ε ≤ ε?, we have

sup
u,v
||{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v) ≤ 3∆Ψ? .

Estimates for ||/∇{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v). Again, we focus our discussion on the

analysis of the coefficient Ψ2. From Proposition 3 we find that

||/∇Ψ2||L2(Su,v) ≤ 2

||/∇Ψ2||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

∆ 〈/∇Ψ2, /∇Ψ2〉σ

)1/2

du′


≤ 2∆Ψ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v
|/∇Ψ2|(|∆δΨ2|+ |∆δ̄Ψ2|)

)1/2

du′.
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Now, using the expression for ∆δΨ2 and ∆δ̄Ψ2 obtained from using the commutators

on the ∆-Bianchi equation for Ψ2, and schematically denoting arbitrary connection

coefficients by Γ, one obtains that

∫ u

0

(∫
Su′,v
|/∇Ψ2|(|∆δΨ2|+ |∆δ̄Ψ2|)

)1/2

du′

≤
∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ|2|Ψ2,3|

)1/2

du′ +

∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ|2|Ψ4|

)1/2

du′

+

∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ||/∇Ψ2,3|

)1/2

du′ +

∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ||/∇Ψ4|

)1/2

du′

+

∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇Γ||Ψ2,3|

)1/2

du′ +

∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇Γ||Ψ4|

)1/2

du′

+

∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇2Ψ3|

)1/2

du′. (3.21)

In the first and third terms of the right-hand side or the above inequality we can

separate the L∞-norm of the connection coefficients. Thus, using the bootstrap

assumption with Proposition 8, we find that∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ|2−i|/∇iΨ2,3|

)1/2

du′

≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ u

0

||/∇Ψ2||1/2L2(Su′,v)||/∇
iΨ2,3||1/2L2(Su′,v)du

′,

for i = 0, 1. Accordingly, using the bootstrap assumption once again, we conclude

that, ∫ u

0

(∫
Su′,v
|/∇iΨ2||Γ|2−i|/∇Ψ2,3|

)1/2

du′ ≤ C(I,∆e? ,∆Γ? ,∆Ψ?)ε,

for i = 0, 1. The second and fourth term in the right-hand side of inequality (3.21)

can be handled in an analogous manner. Since we do not have control on the

the L2(Su,v) norm of Ψ4, we transform the L2(Su,v) norm to a norm over the light
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cone. More precisely, one has that using Hölder’s inequality∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ|2−i|/∇iΨ4|

)1/2

du′ ≤
∫ u

0

||/∇Ψ2||1/2L2(Su′,v)||/∇
iΨ4||1/2L2(Su′,v)du

′

≤ C(∆Ψ?)||/∇iΨ4||1/2L2(N ′v(0,u))ε
3/4, i = 0, 1.

Hence, we conclude that∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ|2|Ψ4|

)1/2

du′,

∫ u

0

(∫
Su′,v
|/∇Ψ2||Γ||/∇Ψ4|

)1/2

du′ ≤ C(∆Ψ? ,∆Ψ)ε3/4.

Now, for the fifth term in inequality (3.21) one has that∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇Γ||Ψ2,3|

)1/2

du′ ≤
∫ u

0

(
||Ψ2,3||L∞(Su,v)||/∇Ψ2||L2(Su,v)||/∇Γ||L2(Su,v)

)1/2
du′,

where the first term in the integral in the right-hand side can be controlled by the

bootstrap assumption and Sobolev embedding (Corollary 2). The third term can

be controlled by the L4(Su,v) norm as given by Proposition 9, again in combination

with the bootstrap assumption. One then concludes that,

∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇Γ||Ψ2,3|

)1/2

du′ ≤ C(I,∆e? ,∆Γ? ,∆Ψ?)
2∑
i=0

∫ u

0

||/∇iΨ2,3||1/2L2(Su′,v)du
′

≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε3/4.

The sixth term in inequality (3.21) can also be dealt with by transforming the

norms of the coefficients of the Weyl tensor on Su,v to norms on the light cone.

More precisely, one has that∫ u

0

(∫
Su′,v
|/∇Ψ2||/∇Γ||Ψ4|

)1/2

du′ ≤
∫ u

0

(
||Ψ4||L∞(Su,v)||/∇Ψ2||L2(Su,v)||/∇Γ||L2(Su,v)

)1/2
du′

≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

(∫ u

0

2∑
i=0

||/∇iΨ4||L2(Su,v)du
′

)1/2

≤ C(I,∆e? ,∆Γ? ,∆Ψ?)
( 2∑
i=0

||/∇iΨ4||L2(N ′v(0,u))

)
≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε3/4.
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Finally, the last integral in the right-hand side of inequality (3.21) can be separated

into two L2-norms. The estimate of /∇2Ψ3 can, in turn, be transformed to an estimate

on the light cone and, hence, it can be controlled by the definition of ∆Ψ.

Collecting all the estimates for the various terms in inequality (3.21) we conclude

that,

||/∇Ψ2||L2(Su,v) ≤ 2∆Ψ? + C(I,∆e? ,∆Γ? ,∆Ψ?)ε+ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)∆Ψε
3/4.

The latter inequality implies that we can improve the bootstrap assumption by

choosing ε small enough. A similar strategy allows us to estimate /∇{Ψ0,Ψ1,Ψ3}.
Therefore we have that

sup
u,v
||/∇{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v) ≤ 3∆Ψ? .

Estimates for ||/∇2{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v). As before, we focus the discussion

on ||/∇2Ψ2||L2(Su,v). The estimate along the short direction in Proposition 3 shows

that

||/∇2Ψ2||L2(Su,v) ≤ 2

||/∇2Ψ2||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

∆
〈
/∇2Ψ2, /∇2Ψ2

〉
σ

)1/2

du′


≤ 2∆Ψ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v
|/∇2Ψ2|(|∆T |)

)1/2

du′, (3.22)

where T denotes an expression involving products of connection coefficients, their

derivatives and components of the Weyl tensor and their derivatives. In particular,

one has that∫
Su′,v
|/∇2Ψ2|(|∆T |)

≤
∫
Su′,v

|/∇2Ψ2||Ψ/∇2Γ + Γ/∇2Ψ + /∇Ψ/∇Γ + Γ2/∇Ψ + ΓΨ/∇Ψ + Γ3Ψ + Ψ3/∇Ψ2 + /∇3Ψ3|.

We can then proceed with a strategy similar to that used in the analysis of the

estimates for the first order derivatives of the components of the Weyl tensor. In
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particular, we use Hölder’s inequality to split products and then apply the Sobolev

embedding theorem as necessary. The estimates on the sphere for the terms /∇iΨ4

and /∇3Ψ3 are transformed into estimates on the light cone. Hence the integral on the

right-hand-side of inequality (3.22) can be made as small as necessary by choosing

a suitable ε. Ultimately, we conclude that

sup
u,v
||/∇2{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v) ≤ 3∆Ψ? .

Concluding the argument. Collecting all the estimates in the previous steps one

obtains the statement

sup
u,v
||/∇i{Ψ0,Ψ1,Ψ2,Ψ3}||L2(Su,v) ≤ 3∆Ψ? , i = 0, ..., 2,

which improves the starting bootstrap assumption.

Applying the standard embedding of Lp into Lq for p ≤ q, we can summarise the

results of Propositions 8, 9, 10 and 11 in the following proposition:

Proposition 12 (summary of the basic estimates for the NP quantities).

Suppose we are given a solution to the vacuum EFE’s in Stewart’s gauge emanating

from data for the CIVP as prepared in Lemma 2, satisfying

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ}||L2(Su,v) <∞ , sup

u,v
||/∇3τ ||L2(Su,v) <∞ ,

∆Ψ(S) <∞ , ∆Ψ <∞ ,

on some truncated causal diamond D t
u,v•. Then there exists,

ε? = ε?(I,∆e? ,∆Γ? ,∆Ψ? , sup
u,v
||/∇3τ ||L2(Su,v),∆Ψ) ,

such that for ε ≤ ε?, we have

||Γ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?),
1∑
i=0

||/∇iΓ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?),
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2∑
i=0

||/∇iΓ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?), ∆Ψ(S) ≤ C(∆Ψ?),

on D t
u,v•, with Γ standing for an arbitrary connection coefficient.

3.5.4 Estimates on the third derivatives of connection coef-

ficients

We are now in the position to obtain estimates for the NP spin connection coefficients

which only require assumptions on the curvature on the light cone. More precisely,

one has the following:

Proposition 13 (further control on the L2-norm of the connection coeffi-

cients). Assume, as in the previous proposition, that we are given a solution to the

vacuum EFE’s in Stewart’s gauge emanating from data for the CIVP as prepared in

Lemma 2. Suppose that,

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ}||L2(Su,v) <∞ , ∆Ψ(S) <∞ , ∆Ψ <∞ ,

and furthermore that,

sup
u,v
||/∇3{µ, λ, α, β, ε, τ}||L2(Su,v) <∞ ,

on D t
u,v•. Then there exists ε? = ε?(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ) such that for ε ≤ ε?, we

have

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇3{ρ, σ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?),

sup
u,v
||/∇3{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ).

Proof.
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Bootstrap assumption. In order to start the proof we place bootstrap assump-

tions on µ, λ, α, β and ε, and name the bound on τ as follows,

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 4∆Γ? , sup

u,v
||/∇3τ ||L2(Su,v) ≤ ∆τ .

Estimates for ρ and σ. We first estimate the spin connection coefficients ρ and σ

using the long direction transport equations (3m) and (3f) as this allows to avoid

higher derivatives on the sphere that arise in the short direction equations. Using

the expression for ||/∇3f ||L2(Su,v) for an arbitrary scalar f given in Appendix 6.2, we

will discuss four typical terms. The first is δ3ρ. Making use of the commutators

of directional covariant derivatives, we can compute the long direction derivative of

any third derivatives of ρ on the sphere —for example, one has that,

Dδ3ρ = Γ5 + Γ3δΓ + Γ(δΓ)2 + Γ2δ2Γ + δΓδ2Γ + ρδ3(ε+ ε̄)

+ (4ε− 2ε̄+ 5ρ)δ3ρ+ σδ3σ̄ + σ̄δ3σ + σδ2δ̄ρ,

where here Γ represents linear combinations of the coefficients ε, ρ and σ, whose

precise form is not crucial for the discussion. The L2-norm of the term δΓδ2Γ can

be split as

||δΓδ2Γ||L2(Su,v) ≤ ||/∇Γ||L4(Su,v)||/∇2Γ||L4(Su,v).

The first term on the right-hand side of the inequality can be controlled using the

results of Proposition 9. The second term can be controlled using the Sobolev

inequality,

||/∇2Γ||L4(Su,v) ≤ C(∆e?)
(
||/∇2Γ||L2(Su,v) + ||/∇3Γ||L2(Su,v)

)
.

Proceeding in a similar way with the other terms in the equation for Dδ3ρ and the

using the long direction inequality in Proposition 3 leads to

||δ3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

+ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v′ )

)
dv′.
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The second representative term in the expansion of ||/∇3ρ||L2(Su,v) is ||$δ2ρ||L2(SSu,v)

(recall that $ ≡ β − ᾱ). One has

D($δ2ρ) = D$(δ2ρ) +$Dδ2ρ

= (Ψ1 + Γ2 + δε− δε̄)δ2ρ+ Γ5 + Γ3δΓ +$(δΓ)2 + Γ2δ2Γ,

from which we can conclude that

||$δ2ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?) + C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇3ρ||L2(Su,v′ )dv
′,

by Sobolev embedding as before. The third representative term is ||δ$δρ||L2(Su,v)

for which we have

D(δ$δρ) = −Ψ1π̄δρ+ Γ3δρ+ δΨ1δρ+ Γ(δΓ)2 + δ2(ε− ε̄)δρ,

so that

||δ$δρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?) + C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇3ρ||L2(Su,v′ )dv
′.

The fourth representative term is $2δρ for which we can compute

D($2δρ) = 2$Ψ1δρ+ Γ3δΓ + Γ(δΓ)2 + Γ5.

Consequently, one finds that

||$2δρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?).

Combining all the expressions arising in the expansion of /∇3ρ one then concludes,

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

+ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v′ )

)
dv′,
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and Grönwall’s inequality finally gives

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?) + C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇3σ||L2(Su,v′ )dv
′.

In order to estimate ||/∇3σ||L2(Su,v), we make use, again, of the general expressions

contained in Appendix 6.2. The structure of equation Dδ3σ is similar to that of ρ.

Then one can also calculate and obtain the inequality for /∇3σ like

||/∇3σ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?) + C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇3ρ||L2(Su,v′ )dv
′.

Combine with the equality of ρ, one can obtain that

||/∇3σ||L2(Su,v) + ||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

+ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v)

)
dv′.

So the Grönwall’s estimate gives us

||/∇3σ||L2(Su,v) + ||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?).

These inequalities above in turn imply that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?),

||/∇3σ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ?).

Estimates for τ and χ. Making use of the structure equation (3b) and the

commutators we obtain

Dδ3τ = δ3Ψ1 + Γδ3Γ1 + Γδ3τ + Γδ2Ψ1 + δΓδ2Γ + Γ2δ2Γ

+ Γ2δΨ1 + δΓδΨ1 + Γ3δΓ + Γ(δΓ)2,

where Γ1 contains combinations of ε, α, β, ρ and σ. Thus, using the main bootstrap
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assumption and the definition of ∆Ψ we obtain that

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ) + C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇3τ ||L2(Su,v′ )dv
′.

Accordingly, using Grönwall’s inequality one arrives to

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ).

The construction of an estimate for χ is similar. In this case we obtain that

||/∇3χ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ).

Estimates for the remaining connection coefficients. In order to provide

estimates for

||/∇3{µ, λ, α, β, ε}||L2(Su,v),

we make use of the transport equations along the short direction. The proofs for

the various coefficients are similar so for brevity we discuss only the argument for ε.

In this case one can readily compute that

∆δ3ε = −δ3Ψ2 + Γδ3Γ1 + Γδ3ε+ Ψ1δ
2Γ + δΓδ2Γ + Γ2δ2Γ

+ Γδ2Ψ2 + Γ2δΨ2 + Γ3δΓ + Γ(δΓ)2 + Γ3Ψ2 + Γ5,

where the coefficients Γ1 do not contain ε. Making use of the short direction in-

equality of Proposition 3 we obtain that

||/∇3ε||L2(Su,v) ≤ 2||/∇3ε||L2(S0,v) + C(I,∆e? ,∆Γ? ,∆Ψ?)∆Ψε
1/2

+ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ u

0

||/∇3ε||L2(Su′,v)du
′.

In particular, we can choose the range of integration sufficiently small so that

||/∇3ε||L2(Su,v) ≤ 3∆Γ? .
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The argument for ||/∇3{µ, λ, α, β}||L2(Su,v) is the same.

Concluding the argument. An inspection of the estimates obtained in the previ-

ous paragraphs shows that we have improved the initial bootstrap assumption. This

concludes the proof of the proposition.

3.5.5 Main estimates for the curvature

We are now in the position to obtain the main estimates for the components of the

Weyl tensor. We start with an estimate on a given pair of null hypersurfaces in

terms of their value at hypersurfaces in the past.

Proposition 14 (basic control of components of the Weyl tensor on the

light cones in terms of its values on causal diamonds). Suppose that we are

given a solution to the vacuum EFEs in Stewart’s gauge and that Du,v is contained

in the existence area. The following L2 estimates for the Weyl curvature hold:

∑
i=0,1,2

∫
Nu(0,v)

|Ψi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|Ψj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|Ψi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|Ψj|2 +

∫
Du,v

|ΨHΨΓ + cc|,

where Ψ contains Ψk, k = 0, ..., 4, ΨH denotes the components Ψk, k = 0, ..., 3, “cc”

denotes the complex conjugate of the last term on the right-hand side and Γ stands

for arbitrary connection coefficients from the collection {µ, λ, α, β, ε, ρ, σ, τ}.

Proof. Assuming, as always that the vacuum field equations of GR are satisfied, we

start considering the Bianchi identities (4b) and (4a) written schematically as

∆Ψ0 = δΨ1 + ΓΨ,

DΨ1 = δ̄Ψ0 + ΓΨ.

Then, integration by parts one obtains (again, using schematic notation) that∫
Du,v

Ψ̄0∆Ψ0 =

∫
Du,v

Ψ̄0δΨ1 +

∫
Du,v

Ψ̄0ΓΨ
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= −
∫
Du,v

Ψ1δΨ̄0 −
∫
Du,v

Ψ1Ψ̄0$ +

∫
Ψ̄0ΓΨ

= −
∫
Du,v

Ψ1DΨ̄1 +

∫
Du,v

{Ψ̄0,Ψ1}ΓΨ.

Hence, using the identities in Lemma 9, we conclude that∫
Nu(0,v)

|Ψ0|2 +

∫
N ′v(0,u)

Q−1|Ψ1|2 ≤
∫
N0(0,v)

|Ψ0|2 +

∫
N ′0(0,u)

Q−1|Ψ1|2

+

∫
Du,v

(|{Ψ0,Ψ1}ΨΓ + cc|),

where in the previous expression Ψ contains Ψ0,1,2. Analogous inequalities can be

obtained for the pairs ∆Ψ1, DΨ2, and ∆Ψ2, DΨ3.

Similar estimates can be obtained for the first angular derivatives of the compo-

nents of the Weyl tensor.

Proposition 15 (control of the first angular derivatives of the compo-

nents of the Weyl tensor). Again let Du,v be contained in the existence area,

then we have that∑
i=0,1,2

∫
Nu(0,v)

|/∇Ψi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇Ψj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|/∇Ψi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|/∇Ψj|2

+

∫
Du,v

|/∇ΨH |(|ΨΓ2|+ |Γ/∇Ψ|+ |Ψ/∇Γ|),

where Ψ contains Ψk, k = 0, ..., 4, and ΨH contains Ψk, k = 0, ..., 3, and again Γ

stands for some combination of the connection coefficients {µ, λ, α, β, ε, ρ, σ, τ}.

Proof. Again, we make use of integration by parts. Consider for example∫
Du,v

δ̄Ψ̄0∆δΨ0 =

∫
Du,v

δ̄Ψ̄0δ
2Ψ1 +

∫
Du,v

δ̄Ψ̄0(Γ2Ψi + ΓδΨi + ΨiδΓ)

= −
∫
Du,v

δδ̄Ψ̄0δΨ1 +

∫
Du,v

δ̄Ψ̄0(Γ2Ψi + ΓδΨi + ΨiδΓ)
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= −
∫
Du,v

δΨ1Dδ̄Ψ̄1 +

∫
Du,v

(δ̄Ψ̄0, δΨ1)(Γ2Ψi + ΓδΨi + ΨiδΓ)

with i = 0, 1, 2. A similar expression can be obtained for the combination∫
Du,v

δΨ̄0∆δ̄Ψ0 +

∫
Du,v

δ̄Ψ1DδΨ̄1.

Thus, using Lemma 9 can conclude that∫
Nu(0,v)

|/∇Ψ0|2 +

∫
N ′v(0,u)

Q−1|/∇Ψ1|2 ≤
∫
N0(0,v)

|/∇Ψ0|2 +

∫
N ′0(0,v)

Q−1|/∇Ψ1|2

+

∫
Du,v

|/∇{Ψ0,Ψ1}|(|ΨΓ2|+ |Γ/∇Ψ|+ |Ψ/∇Γ|),

where Ψ contains the components Ψ0, Ψ1 and Ψ2. A similar computation for the

other pairs of components renders the desired result.

The previous result can be extended to include higher order derivatives. More

precisely:

Proposition 16 (control of the higher angular derivatives of the compo-

nents of the Weyl tensor). Let Du,v again be contained in the existence area.

Given a non-negative integer m, one has

∑
i=0,1,2

∫
Nu(0,v)

|/∇mΨi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇mΨj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|/∇mΨi|2 +
∑
j=1,2,3

∫
N ′0(0,v)

Q−1|/∇mΨj|2

+

∫
Du,v

|/∇mΨH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ|.

where Ψ contains the components Ψk, k = 0, ..., 4, and ΨH contains the compo-

nents Ψk, k = 0, ..., 3. Again Γ stands for some combination of the connection

coefficients {µ, λ, α, β, ε, ρ, σ, τ}.

To wrap up the argument we also need estimates on the components Ψ3 and Ψ4.
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These follow from the Bianchi identities

∆Ψ3 − δΨ4 = 4Ψ4β −Ψ4τ − 4Ψ3µ,

DΨ4 − δ̄Ψ3 = Ψ4(ρ− 4ε) + 2Ψ3(3α + 2β)− 3Ψ2λ. (3.23)

Using a similar approach to the one used in the previous propositions one can prove

the following:

Proposition 17 (control of the higher angular derivatives of the “bad”

components of the Weyl tensor). Let Du,v be contained in the existence area.

Given a non-negative integer m, one has that∫
Nu(0,v)

|/∇mΨ3|2 +

∫
N ′v(0,u)

Q−1|/∇mΨ4|2

≤
∫
N0(0,v)

|/∇mΨ3|2 +

∫
N ′0(0,u)

Q−1|/∇mΨ4|2

+

∫
Du,v

|/∇mΨ4|
∑

i1+i2+i3+i4=m

|/∇i1Γ′ i2||/∇i3Γ′||/∇i4Ψ4|

+

∫
Du,v

|/∇mΨ3|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ|

+

∫
Du,v

|/∇mΨ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ′H |,

where Ψ contains the components Ψ3 and Ψ4, while Ψ′H contains the components Ψ2

and Ψ3. Here Γ stands for some combination of the connection coefficients {µ, λ, α, β, ε, ρ, τ, σ}.
Because neither the coefficient of Ψ4 on the right hand side of (3.23) nor the NP δδ̄-

commutator (2.15d) contain τ, χ terms, neither does Γ′.

Propositions 14-17 clearly make no use of the estimates demonstrated in the

previous sections. Finally, we therefore conclude this section with the main estimate

for the components of the Weyl tensor employing our earlier work. This proposition

makes only assumptions on the initial data.

Proposition 18 (control of the components of the Weyl tensor in terms

of the initial data). Suppose we are given a solution to the vacuum EFE’s in
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Stewart’s gauge emanating from data for the CIVP as prepared in Lemma 2, satis-

fying

∆e? , ∆Γ? , ∆Ψ? <∞,

with the solution itself satisfying

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ}||L2(Su,v) <∞ , sup

u,v
||/∇3{µ, λ, α, β, ε, τ}||L2(Su,v) <∞ ,

∆Ψ(S) <∞ , ∆Ψ <∞ ,

on some truncated causal diamond D t
u,v•. Then there exists ε? = ε?(I,∆e? ,∆Γ? ,∆Ψ?)

such that for ε? ≤ ε we have

∆Ψ ≤ C(I,∆e? ,∆Γ? ,∆Ψ?).

Proof. The aim in this proof is to control the terms involving integrals on the dia-

mond Du,v arising in Propositions 16 and 17 for m ≤ 3. Starting with Proposition 16

one has that the relevant integral is given by∫
Du,v

|/∇mΨH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ|, (3.24)

for (u, v) in D t
ε,v• . On the one hand, for the first factor in this integral, given

that ΨH ∈ {Ψ0,Ψ1,Ψ2,Ψ3} can be controlled in L2(Nu(0, v)), one readily obtains

||/∇mΨH ||L2(Du,v) =

(∫ u

0

∫ v

0

∫
Su′,v′

|/∇mΨH |2dv′du′

)1/2

≤ C∆Ψε
1/2,

On the other, for the factors contains Ψ4, one only has control on N ′v(0, u) —that

is,

||/∇mΨ||L2(Du,v) ≤ C∆Ψ.
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It then follows that the integral (3.24) can be estimated as,∫
Du,v

|/∇mΨH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ|

≤ Cε1/2∆Ψ

∑
i1+i2+i3+i4≤3

||/∇i1Γi2/∇i3Γ/∇i4Ψ||L2(Du,v). (3.25)

In particular, for m = 0, the right-hand side of the above inequality gives

Cε1/2∆Ψ||ΓΨ||L2(Du,v) ≤ Cε1/2∆Ψ||Γ||L∞(S)||Ψ||L2(Du,v) ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2.

Next, when m = 1, we have that the right-hand of inequality (3.25) gives

Cε1/2∆Ψ||Γ2Ψ + Γ|/∇Ψ|+ Ψ|/∇Γ|||L2(Du,v).

The first two terms can be controlled like the case m = 0, and the third can be

controlled by means of Sobolev embedding:

||Ψ|/∇Γ|||L2(Su,v) ≤ ||/∇Γ||L∞(Su,v)||Ψ||L2(Du,v)

≤
(
||/∇Γ||L2(Su,v) + ||/∇2Γ||L2(Su,v) + ||/∇3Γ||L2(Su,v)

)
||Ψ||L2(Du,v).

For the case m = 2, the terms on the right-hand side of inequality (3.25) give

Cε1/2∆Ψ||Γ|/∇2Ψ|+ Γ3Ψ + Γ2|/∇Ψ|+ ΨΓ|/∇Γ|+ |/∇Ψ||/∇Γ|+ Ψ|/∇2Γ|||L2(Du,v).

(3.26)

All terms, save last one, can be controlled by analysis analogous to that used in the

previous cases. To see this, we split the L∞-norm of the connection coefficient and

the L2-normal of the curvature. The L∞-normal can then be controlled by means

of Sobolev embedding. For the last term, we have(∫ u

0

∫ v

0

∫
Su′,v′

(Ψ|/∇2Γ|)2dv′du′

)1/2

≤
(∫ u

0

∫ v

0

||Ψ||2L∞(Su′,v′ )||/∇
2Γ||2L2(Su′,v′ )dv

′du′
)1/2

≤

(
sup
Du,v

||/∇2Γ||L2(Su′,v′ )

)
2∑
i=0

||/∇iΨ||L2(Du,v),
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hence (3.26) under control.

Finally, when m = 3 the terms on the right-hand side of inequality (3.25) give

Cε1/2∆Ψ||(Γ|/∇3Ψ|+ Ψ|/∇3Γ|+ |/∇Γ||/∇2Ψ|+ |/∇Ψ||/∇2Γ|+ Γ2|/∇2Ψ|+ ΓΨ|/∇2Γ|

+ Γ|/∇Γ||/∇Ψ|+ Ψ|/∇Γ|2 + Γ3|/∇Ψ|+ ΨΓ2|/∇Γ|+ Γ4Ψ)||L2(Du,v).

The various terms in this expression can be estimated in a manner analogous to the

previous cases. We conclude that the integral over Du,v can be controlled by∫
Du,v

|/∇mΨH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ| ≤ C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2.

We now proceed to examine the estimate from Proposition 17. The terms in∫
Du,v

|/∇mΨ3|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ|

are identical to those already analysed and can be controlled by

C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2.

The terms ∫
Du,v

|/∇mΨ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Ψ′H |

can also be controlled because the components of the Weyl tensor contained in Ψ′H =

{Ψ2,Ψ3} have already been shown to be controlled. The remaining terms are∫
Du,v

|/∇mΨ4|
∑

i1+i2+i3+i4=m

|/∇i1Γ′ i2||/∇i3(ρ+ ε)||/∇i4Ψ4|.

We proceed to by treating m = 0, . . . , 3 individually. Notice in particular, that Γ′

does contains neither τ nor χ. Crucially the weakest bounds of Proposition 12

and Proposition 13 involving ∆Ψ are therefore not invoked in the resulting compu-
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tation, and so after a lengthy analysis one concludes that these terms satisfy∫
Du,v

|/∇mΨ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3(ρ+ ε)||/∇i4Ψ4|

≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

||/∇mΨ4||L2(N ′
v′ (0,u))

m∑
i=0

||/∇iΨ4||L2(N ′
v′ (0,u))dv

′

≤ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

m∑
i=0

||/∇iΨ4||2L2(N ′
v′ (0,u))dv

′.

Substituting the previous expressions into the inequality of Proposition 17 one con-

cludes that

3∑
i=0

||/∇iΨ4||2L2(N ′v(0,u)) ≤ C∆Ψ? + C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2

+ C(I,∆e? ,∆Γ? ,∆Ψ?)

∫ v

0

m∑
i=0

||/∇iΨ4||2L2(N ′v(0,u))dv
′.

Accordingly, using Grönwall’s inequality and taking ε sufficiently small one finds,

3∑
i=0

||/∇iΨ4||2L2(N ′v(0,u)) ≤ C∆Ψ? + C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2 ≤ C(I,∆e? ,∆Γ? ,∆Ψ?).

Using this estimate, it follows that

∆Ψ ≤ C(I,∆e? ,∆Γ? ,∆Ψ?) + C(I,∆e? ,∆Γ? ,∆Ψ? ,∆Ψ)ε1/2.

Taking ε small enough we have proven the proposition.

3.6 Last slice argument and the end of the proof

In this section we make use of the estimates developed in the previous sections to

show the existence of solutions to the vacuum Einstein field equations exists in the

rectangular domain

D = {0 ≤ u ≤ ε, 0 ≤ v ≤ v•}.
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The strategy makes use of an argument by contradiction known as the last slice

argument, in which it is assumed that the solution does not fill the whole of D and,

accordingly, there exists a hypersurface (the last slice) which bounds the domain of

existence of the solution. The estimates we have constructed in the previous sections

allow then to show that, in fact, on this slice the solution and its derivatives are

bounded. Thus, it is possible to make use of the standard Cauchy problem for the

Einstein field equations to show that the solution extends beyond the hypersurface t∗

—an observation which contradicts the original assumption.

3.6.1 Setup

In order to implement the above strategy one foliates the rectangle D by means of

spacelike hypersurfaces. To this end recall definition (3.4) of the time function

t ≡ u+ v

so that ∇t is timelike. Let Σt denote the level sets of t.

The last slice argument starts by invoking the local existence result for the CIVP

based on Rendall’s reduction strategy. This result ensures the existence of a solution

to evolution equations in a neighbourhood V of S? on J+(S?) —see Theorem 2.

Within this neighbourhood there exists a truncated causal diamond on which all the

bootstrap assumptions required to obtain the estimates from the previous sections

hold. Thus, we know that the set on which the bootstrap hypotheses hold is non-

empty, and hence render our estimates applicable. The rest of the last slice argument

proceeds now to show that this basic truncated causal diamond can be progressively

enlarged as long as one has control on the initial data on the null cone N? thus

exhausting the domain D.

If the solution does not exist in the whole of D, we must have t∗ ∈ (0, I+ε) such

that

t∗ = sup{t : the spacetime exists in D ∩ ∪τ∈[0,t)Στ}.

Let ht and Kt be, respectively, the induced metric and second fundamental form

on Σt. A schematic depiction of the geometric set-up is shown in Figure 3.2.
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N?
D

N ′?

Su?,v?

t∗

t = u+ v = constant

Σt

Figure 3.2: Setup for the last slice argument. On each slice of the family of hyper-
surfaces Σt one has a smooth initial data set (ht,Kt) for the vacuum Einstein field
equations. The estimates of Proposition 18 then show that even on the last slice Σt∗

one has a well initial data set. Thus, the solution can be extended beyond this slice
—a contradiction!

3.6.2 Main argument

In the following we will show that the fields ht and Kt converge in C∞ to fields ht∗

and Kt∗ . Moreover, it will be shown that the pair (ht∗ ,Kt∗) satisfy the Einstein

constraint equations on Σt∗ . In order to show this, it is necessary to show that

all derivatives of ht are bounded uniformly in L2(Σt) for all t < t∗. The method

proceeds by induction:

Base step. The first step corresponds, in essence, to the estimates obtained in

the previous sections. More precisely, we have first derived uniform estimates for

the L∞-norm of the zeroth order derivatives of connection on D —see Proposition 8.

For this we needed to assume that

sup
u,v
||/∇2τ ||L2(Su,v) <∞, sup

u,v
||/∇3τ ||L2(Su,v) <∞, ∆Ψ(S) <∞, ∆Ψ <∞

(3.27)

on the truncated causal diamond. These conditions also lead to the analysis the L4-

norms of the first order derivatives (Proposition 9) and L2-norms of the second order
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t∗

D+(Σt∗)

N?

W

Figure 3.3: Zoom in on the hypothetical last slice. Regular Cauchy initial data
on Σt∗ allows to extend the solution to, at least, a slab on D+(Σt∗) making use of
the standard Cauchy problem for the Einstein field equations. On the wedge W , a
solution can be recovered by appealing to Rendall’s formulation of the local CIVP.

derivatives of the connection —see Proposition 10. Now, using the bootstrap as-

sumptions, it follows that ∆Ψ(S) <∞ uniformly on D with bounds given in terms

of the initial data —thus, this condition can be removed from the list in (3.27). Sim-

ilarly, we can also drop the condition ||/∇3τ ||L2(Su,v) <∞ and estimate the L2-norm

of the third order angular derivatives of the connection. In order to do so, we make

use of the D-direction (i.e. the long direction) equations for the NP coefficients ρ

and σ, rather than the equations along the short direction as we want to avoid deal-

ing with the higher order derivative of τ on spheres Su,v. Now, using integration

by parts, one concludes that ∆Ψ satisfies a similar uniform bound on D. Thus, it

has been shown that given some initial data on the initial light cone, it is possible

to estimate the L2-norm on the spheres Su,v of the connection coefficients and their

derivatives up to third order.

Intermediate step. The previous analysis is the base step of the induction. As

an intermediate induction step one analyses the fourth order derivatives of the con-

nection coefficients. To this end, we make use of the same approach used in the

analysis of the third order derivatives in Proposition 13 This approach requires the

control of the norms of the fourth order derivatives of the components of the Weyl

tensor on the light cone. As in the case of the Base Step, the required bounds need

to be uniform on the truncated causal diamond with bounds given in terms of the
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initial data. This control can be achieved by the using integration by parts as in the

analysis of Proposition 18.

Remark 19. The reason the method to analyse the fourth order derivatives of the

connection coefficients is different from that of the third and lower orders lies in

the structural properties of the equations —these properties become manifest when

considering higher order derivatives. In particular, one has that:

i). For zeroth-order derivatives, we cannot make use of the Codazzi equation to

access the norms of ρ and σ, since the Codazzi equation is a first order equation

for the derivatives of ρ and σ. Further difficulties arise from the nonlinear

term ρ2 in the D-direction equation (3m) for the coefficient ρ.

ii). For the first-order derivatives, we can readily estimate the L2-norm of the

connection. However, this is not enough for the second order derivatives. In

the L2 estimate for the second order derivatives of the connections, we need

Hölder’s inequality to separate products of the form δΓ× δΓ. This procedure

leads to estimates involving the L4-norm.

Induction step. A procedure analogous to the one used to control the fourth order

derivatives of the connection coefficients is employed to estimate the k + 1-th order

derivatives of the connection if control on the derivatives of k-th order is assumed.

This calculation, requires, in particular, control of the value of such norms on the

initial light cone —this control follows readily from the procedure used to evaluate

the formal derivatives on the initial light cone —see Lemma 4.

Concluding the argument. The previous step shows that it is possible to obtain

control over the L2-norms of all angular derivatives of the connection over the rectan-

gular domain D. Control of the derivatives respect to the optical functions u and v

can be obtained by applying, as required, the directional covariant derivatives D

and ∆ to the evolution equations and commuting. Since the domain is bounded,

then all derivatives of ht and Kt are bounded uniformly in L2(Σt) for t < t∗. More-

over, one has that the 1-parameter family of data (ht,Kt) converges uniformly in C∞

to a pair (ht∗ ,Kt∗). The pair (ht∗ ,Kt∗) satisfies the Einstein constraint equations

on the hypersurface defined t = t∗ —see [26]. This leads to a contradiction with the

assumption of the existence of a last slice as the theory of the Cauchy problem for
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the Einstein field equations allows us to readily obtain a (future) development of the

data set (ht∗ ,Kt∗) —see Figure 3.3 Thus, no such last slice exists and the solution

to the Einstein vacuum equations exists on the whole of the rectangular domain D.

3.6.3 Statement of the main result

The long analysis of the preceding sections leads to the following:

Theorem 4 (main result —improved local existence for the CIVP for

the EFE ). Given regular initial data for the vacuum Einstein field equations as

contructed in Lemma 2 on the null hypersurfaces N? ∪ N ′? for I ≡ {0 ≤ v ≤ v•},
there exists ε > 0 such that a unique smooth solution to the vacuum Einstein field

equations exists in the region where v ∈ I and 0 ≤ u ≤ ε defined by the null

coordinates (u, v). The number ε can be chosen to depend only on I, ∆e?, ∆Γ?

and ∆Ψ?. Furthermore, in this area one has that,

sup
u,v

sup
Γ∈{µ,λ,ρ,σ,α,β,ε,τ,χ}

max

{ 1∑
i=0

||/∇iΓ||L∞(Su,v),
2∑
i=0

||/∇iΓ||L4(Su,v),
3∑
i=0

||/∇iΓ||L2(Su,v)

}

+
3∑
i=0

sup
Ψ∈{Ψ0,Ψ1,Ψ2,Ψ3}

sup
u
||/∇iΨ||L2(Nu) + sup

Ψ∈{Ψ1,Ψ2,Ψ3,Ψ4}
sup
v
||/∇iΨ||L2(N ′v)

≤ C(I,∆e? ,∆Γ? ,∆Ψ?).
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Chapter 4

Improved existence for the

characteristic initial value problem

with the conformal Einstein field

equations

In this chapter we adapt Luk’s analysis of the characteristic initial value problem

in General Relativity to the asymptotic characteristic problem for the conformal

Einstein field equations (see 2.2) to demonstrate the local existence of solutions in

a neighbourhood of the set on which the data are given. In particular, we obtain

existence of solutions along a narrow rectangle along null infinity which, in turn,

corresponds to an infinite domain in the asymptotic region of the physical spacetime.

This result generalises work by Kánnár [34] on the local existence of solutions to

the characteristic initial value problem by means of Rendall’s reduction strategy.

In analysing the conformal Einstein equations we make use of the Newman-Penrose

formalism and a gauge due to J. Stewart.

4.1 The geometry of the problem

In this section, we will discuss the geometric and the gauge choices in the asymptotic

CIVP on past null infinity.
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4.1.1 Basic setting

Our basic geometric setting consists of an unphysical manifold M with a bound-

ary and an edge. The boundary consists of two null hypersurfaces: I −, past null

infinity on which Ξ = 0; and N ′?, an incoming null hypersurface with non-vacuum

intersection S? ≡ I − ∩ N ′?. We will assume that S? ≈ S2. In a neighbourhood U
of S?, one can introduce coordinates x = (xµ) with x0 = v and x1 = u such that, at

least in a neighbourhood of S? one can write

I − = {p ∈ U | u(p) = 0}, N ′? = {p ∈ U | v(p) = 0}.

Given suitable data on (I −∪N ′?)∩U one is interested in making statements about

the existence and uniqueness of solutions to the conformal Einstein field equations

on some open set

V ⊂ {p ∈ U | u(p) ≥ 0, v(p) ≥ 0} (4.1)

which we identify with a subset of the future domain of dependence, D+(I −∪N ′?),
of I − ∪N ′?.

4.1.2 Stewart’s gauge

The basic geometric setting described in the previous section is supplemented by a

gauge choice first introduced by Stewart [33].

4.1.2.1 Coordinates

It is convenient to regard the 2-dimensional surface S? as a submanifold of spacelike

hypersurfaces. The subsequent discussion will be restricted to the future of the

hypersurface. As S? ≈ S2, one has that S? divides the spacelike hypersurface into

two regions, the interior of S? and the exterior of S?. Now, consider a foliation

of the spacelike hypersurface by 2-dimensional surfaces with the topology of S2

which includes S?. At each of the 2-dimensional surfaces we assume there pass

two null hypersurfaces. Further, we assume that one of these hypersurfaces has

the property that the projection of the tangent vectors of their generators at S?
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la, vna, u

I −N ′?

Su?,v?

Su,v

Du,v

Dtu,v

t

ε

v•

Nu N ′v

Figure 4.1: Setup for Stewart’s gauge. The construction makes use of a double null
foliation of the future domain of dependence of the initial hypersurface I − ∪ N ′?.
The coordinates and NP null tetrad are adapted to this geometric setting. The
analysis in this article is focused on the arbitrarily thin grey rectangular domain
along the hypersurface I −. The argument can be adapted, in a suitable manner,
to a similar rectangle along N ′?. See the main text for the definitions of the various
regions and objects.

point outwards . We call these null hypersurfaces outgoing light cones . Moreover, it

is also assumed that one of these hypersurfaces has the property that the projection

of the tangent vectors of their generators at S? point inwards . We call these null

hypersurfaces ingoing light cones .

Thus, at least locally, one obtains a 1-parameter family of outgoing null hy-

persurface Nu and a 1-parameter family of ingoing null hypersurface N ′v. One can

then define scalar fields u and v by the requirements, respectively, that u is con-

stant on each of the Nu and v is constant on each N ′v. In particular, we assume

that N0 = I − and N ′0 = N ′?. Following standard usage, we call u a retarded time

and v a advanced time. The scalar fields u and v will be used as coordinates in a

neighbourhood of S?. To complete the coordinate system, consider arbitrary coor-

dinates (xA) in a coordinate patch U on S?, with the index A taking the values 2, 3.

These coordinates are then propagated into I − by requiring them to be constant

along the generators of I −. Once coordinates have been defined on I −, one can
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propagate them into V by requiring them to be constant along the generators of

each N ′v. In this manner one obtains a coordinate system (xµ) = (v, u, xA) on DU

in V . Here area DU is defined by the image of first generating U along v and then

generating long u.

We use the notation Nu(v1, v2) to denote the part of the hypersurface Nu with

v1 ≤ v ≤ v2. Likewise N ′v(u1, u2) has a similar definition. We denote the sphere

intersected by Nu and N ′v by Su,v. We define the region⋃
0≤v′≤v,0≤u′≤u

Su′,v′

as Du,v. We also define the time function t ≡ u + v, and the truncated causal

diamond,

D t̃
u,v ≡ Du,v ∩ {t ≤ t̃}.

Remark 20. It is observed that while the null coordinte u has a compact range,

this is, in principle, not the case for v.

4.1.2.2 The NP frame

A null Newman-Penrose (NP) tetrad is constructed by choosing vector fields la

and na tangent to the generators of Nu and N ′v respectively. Following the standard

conventions we make use of the normalisation gabl
anb = 1 is preserved under boost

transformations. This freedom can be used to set na = ∇av. This requirement still

leaves some freedom left as one can choose a relabelling of the form v 7→ V (v). Next,

we choose the vector fields ma and m̄a so that they are tangent to the surfaces Su,v ≡
Nu ∩ N ′v and satisfy the conditions gabm

am̄b = −1, gabm
amb = 0. This leaves the

freedom to perform a spin transformation at each point.

Now, observing that, by construction, on the generators of each null hypersur-

face N ?
v only the coordinate u varies, one has that

nµ∂µ = Q∂u,

where Q is a real function of the position. Further, since the vector la is tangent to
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the generators of each Nu and lana = la∇av = 1, one has that

lµ∂µ = ∂v + CA∂A,

where, again, the components CA are real functions of the position. By construction,

the coordinates (xA) do not vary along the generators of I −, that is, one has

that la∇ax
A = 0. Accordingly, one has

CA = 0 on I −.

Finally, since ma and m̄a span the tangent space of each surface Su,v one has that

mµ∂µ = PA∂A,

where the coefficients PA are complex functions.

Summarising, we make the following assumption:

Assumption 3. On a local coordinate patch DU of V one can find a Newman-

Penrose frame {la, na, ma, m̄a} of the form:

l = ∂v + CA∂A, (4.2a)

n = Q∂u, (4.2b)

m = PA∂A. (4.2c)

Remark 21. In view of the normalisation condition gabm
am̄b = −1, there are

only 3 independent real functions in the coefficients PA. Thus, Q, CA together

with PA give six scalar fields describing the metric. The components (gµν) of the

contravariant form of the metric gab are of the form

(gµν) =

 0 Q 0

Q 0 QCA

0 QCA σAB

 ,

112



where

σAB ≡ −(PAP̄B + P̄APB)

is the (contravariant) induced metric on Su,v.

On N ′? one has that n = Q∂u. As the coordinates (xA) are constant along the

generators of I − and N ′?, it follows that on N ′? the coefficient Q is only a function

of u. Thus, without loss of generality one can reparameterise u so as to set Q = 1

on N ′?.

4.1.2.3 Spin connection coefficients

Direct inspection of the NP commutators (2.15a)-(2.15d) applied to the coordi-

nates (v, u, x2, x3) taking into account together with the remaining gauge freedom

in the vector frame of Assumption 4.8 leads to the following:

Lemma 10. The NP frame of Assumption 4.8 can be chosen such that

κ = ν = γ = 0, (4.3a)

ρ = ρ̄, µ = µ̄, (4.3b)

π = α + β̄, (4.3c)

on V and, furthermore, with

ε− ε̄ = 0 on V ∩I −.

Proof. The proof of this result is analogous to that of Lemma 1 in Chapter 3.

4.1.2.4 Equations for the frame coefficients

Taking into account the conditions of the spin connection coefficients given by (4.3a)-

(4.3c), the remaining commutators yield the equations

∆CA = −(τ̄ + π)PA − (τ + π̄)P̄A, (4.4a)

∆PA = −µPA − λ̄P̄A, (4.4b)
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DPA − δCA = (ρ̄+ ε− ε̄)PA + σP̄A, (4.4c)

DQ = −(ε+ ε̄)Q, (4.4d)

δ̄PA − δP̄A = (α− β̄)PA − (ᾱ− β)P̄A, (4.4e)

δQ = (τ − π̄)Q. (4.4f)

Equations (4.4a)-(4.4b) allow the evolution of the frame coefficients CA and PA off of

the null hypersurface N ′?. Equations (4.4c)-(4.4d) allow to evolve the coefficients Q

and PA to be evolved along the null generators of I −. Finally, (4.4e)-(4.4f) provide

constraints for Q and PA on the spheres Su,v.

4.1.2.5 The conformal gauge conditions

The conformal Einstein field equations have an in-built conformal freedom which

can be exploited to simplify the geometric setting of the problem. This freedom

allows us, in particular, to select in an indirect manner the conformal factor via a

conformal gauge source function. More precisely, one has the following:

Lemma 11 (conformal gauge conditions). Let (M̃, g̃) denote an asymptotically

simple spacetime satisfying Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal

extension for which the condition Ξ = 0 describes past null infinity I −. Given the

previous NP frame (4.2a)-(1), the conformal factor Ξ can be chosen so that given a

null hypersurface N ′? intersecting I − on S? ≈ S2 one has

Λ = − 1

24
R(x), in a neighourhood V of S? on J+(S?)

where R(x) is an arbitrary function of the coordinates. Moreover, one has the addi-

tional gauge conditions

Σ2 = 1, µ = ρ = 0 on S?,

Φ22 = 0 on N ′?,

Φ00 = 0 on I −.

Proof. The definition of asymptotically simple spacetime follows from Def 7.1. and

the proof of the above result is analogous to that of Lemma 18.2 in [35].
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4.2 The formulation of the CIVP

In this section we analyse general aspects of the asymptotic CIVP for the conformal

vacuum Einstein field equations with data on the null hypersurface I − and N ′?. A

key feature of the setting is the existence of a hierarchical structure in the reduced

conformal equations which allows to identify the basic reduced initial data set from

which the full initial data on I −∪N ′? for the conformal Einstein field equations can

be computed.

4.2.1 Specifiable free data

The following result identifies a possible choice of freely specifiable initial data for

the asymptotic CIVP:

Lemma 12 (freely specifiable data for the characteristic problem). As-

sume that the gauge condition given by Lemma 10 and Lemma 11 is satisfied in

a neighbourhood V of S?. Initial data for the conformal Einstein field equations

on I − ∪N ′? can be computed from the reduced data set r? consisting of:

φ0, ε+ ε̄ on I −,

φ4 on N ′?,

λ, φ2 + φ̄2, Φ20, φ3, PA, on S?.

Remark 22. An alternative, less symmetric, reduced initial data set is given by:

λ, ε+ ε̄ on I −,

φ4 on N ′?,

φ3, φ2 + φ̄2, PA, on S?.

Proof. The proof of this result follows from a lengthy but straightforward com-

putation on the same lines of Lemma 2 in Paper I. See also Section 18.2 in [35]

and [34].

Remark 23. From the smoothness of the freely specifiable component φ4 on the

incoming null hypersurface N ′? and, in particular at the intersection with I − it
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follows that that the resulting spacetime will satisfy the peeling behaviour near

past null infinity —see e.g. [35], Chapter 10. A reformulation of our characteristic

problem to future null infinity, for which now φ0 is freely specifiable data along

an outgoing null hypersurface, gives rise mutatis mutandi to solutions with peeling

at I +.

4.2.2 Basic local existence

To apply the theory of CIVP, as discussed say in Section 12.5 of [35], one has to

extract a suitable symmetric hyperbolic evolution system out of the conformal field

equations and the structure equations. The gauge introduced in Section 3.1.1 allows

us to perform this reduction.

4.2.2.1 The reduced conformal field equations

In what follows, we group the four directional derivatives of the conformal factor

and s as

Σt ≡ (Σ1, Σ2, Σ3, Σ4, s),

the components of the frame as

et ≡ (CA, PA, Q),

the spin connection coefficients not fixed by the gauge as

Γt ≡ (ε, π, β, µ, α, λ, τ, σ, ρ),

the independent components of the rescaled Weyl spinor as

φt ≡ (φ0, φ1, φ2, φ3, φ4),

and finally those of tracefree Ricci spinor as

Φt ≡ (Φ00, Φ01, Φ11, Φ02,Φ12, Φ22),
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where t denotes the operation of taking the transpose of a column vector.

A suitable symmetric hyperbolic systems for the four directional derivatives of

the conformal factor, the frame components and the spin coefficients can be obtained

from equations (5d)-(5f), (5f)*, (6b), (4.4a), (4.4b), (4.4d) and (3a)-(3d), (3f), (3g),

(3k), (3m), (3o), respectively. Here ∗ means the complex conjugate of the equation.

These can be written in the schematic form,

D0Σ = B0(Σ,Γ, s)Σ,

D1e = B1(Γ, e)e,

D2Γ = B2(Γ,φ,Φ)Γ,

where D0, D1 and D2 are given by

D0 ≡ diag(∆, ∆, ∆, ∆, ∆),

D1 ≡ diag(∆, ∆, D),

D2 ≡ diag(∆, ∆, ∆, ∆, ∆, ∆, D, D, D),

and B0, B1, B2 are smooth matrix-valued functions of their arguments, whose

explicit form will not be required.

The components of the third conformal field equation (2.9c), equations (7a)-(7m)

can be reorganised as

D3Φ = B3Φ

where

D3 =



∆ −δ̄ 0 0 0 0

−δ D + 2∆ −δ −δ̄ 0 0

0 −δ̄ D + ∆ 0 −δ̄ 0

0 −δ 0 D + ∆ −δ 0

0 0 −δ −δ̄ 2D + ∆ −δ
0 0 0 0 −δ̄ D
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with B3 = B3(Φ, φ, Γ, Σi). Writing

D3 = Aµ
3∂µ

one has that

Av
3 = diag(0, 1, 1, 1, 2, 1),

Au
3 = diag(Q, 2Q, Q, Q, Q, 0).

and

AA3 =



0 −P̄A 0 0 0 0

−PA CA −PA −P̄A 0 0

0 −P̄A CA 0 −P̄A 0

0 −PA 0 CA −PA 0

0 0 −PA −P̄A 2CA −PA

0 0 0 0 −P̄A CA


.

To be specific, the equations above are obtained through the combinations (7a)+(7k),

(7j)+2(7b)+(7l), (7d)*+(7h)*, (7c)+(7i), (7e)+2(7g)+(7l) and (7f)+(7m), respec-

tively. It can be readily verified that the matrices Aµ
3 are Hermitian. Moreover,

Aµ
3(lµ + nµ) = diag(1, 3, 2, 2, 3, 1)

is likewise clearly positive definite.

The components of the fourth conformal equation (2.9d), (8a)-(8h), can be

grouped as

D4φ = B4φ
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where

D4 =


∆ −δ 0 0 0

−δ̄ D + ∆ −δ 0 0

0 −δ̄ D + ∆ −δ 0

0 0 −δ̄ D + ∆ −δ
0 0 0 −δ̄ D

 ,

and B4 = B4(φ, Γ). Again, writing

D4 = Aµ
4∂µ,

one has that

Av
4 = diag(0, 1, 1, 1, 1),

Au
4 = diag(Q, Q, Q, Q, 0),

and

AA4 =


0 −PA 0 0 0

−P̄A CA −PA 0 0

0 −P̄A CA −PA 0

0 0 −P̄A CA −PA

0 0 0 −P̄A CA

 .

Specifically, the above matricial expressions are obtained from the combinations (8a),

(8b)+(8e), (8c)+(8f), (8d)+(8g) and (8h). Again, the matrices Aµ
4 can be seen to

be Hermitian and, moreover, one has that

Aµ
4(lµ + nµ) = diag(1, 2, 2, 2, 1)

is clearly positive definite.

We can summarise the above discussion as:
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Lemma 13. The evolution system

D0Σ = B0Σ (4.6a)

D1e = B1e, (4.6b)

D2Γ = B2Γ, (4.6c)

D3Φ = B3Φ, (4.6d)

D4φ = B4φ, (4.6e)

is symmetric hyperbolic with respect to the direction given by

τa = la + na.

4.2.2.2 Computation of the formal derivatives on N ′? ∪I − and propaga-

tion of the constraints

As discussed in Section 12.5 of [35], the existence and uniqueness of solutions to a

CIVP can be obtained via an auxiliary Cauchy problem on the spacelike hypersurface

S ≡ {p ∈ R× R× S2 | v(p) + u(p) = 0}.

The formulation of this problem depends crucially on Whitney’s extension theorem,

which requires being able to evaluate all derivatives (interior and transverse) of

initial data on N ′? ∪I −. One has the following:

Lemma 14 (computation of formal derivatives). Any arbitrary formal deriva-

tives of the unknown functions {Σ, e, Γ, Φ, φ} on N ′?∪I − can be computed from

the prescribed initial data r? for the reduced conformal field equations on N ′? ∪I −.

Proof. The statement follows from a careful inspection of the conformal field equa-

tions in the present gauge, see Section 18.2 in [35] and [34] for more details.

Moreover, using arguments similar to those discussed in [35], Section 12.5, one

can establish the following result concerning the relation between the reduced equa-

tions and the full conformal vacuum Einstein field equations:
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Proposition 19 (propagation of the constraints). A solution of the reduced

conformal field equations (4.6a)-(4.6e) on a neighbourhood V of S? on J+(S?) that

coincides with initial data on N ′? ∪I − satisfying the conformal equations gives rise

to a solution of the conformal Einstein field equations (2.9a)-(2.9e) on V.

In addition, one has that:

Corollary 3 (preservation of the conformal gauge). Let u denote a solution

to the characteristic problem for the conformal field equations on a neighbourhood V
of S? on J+(S?) which satisfies the gauge conditions given in Lemmas 1 and 2.

Then the metric g constructed from the components of the solution u satisfies the

conformal vacuum Einstein field equations in a gauge for which R[g] = R(x).

4.2.2.3 Summary

Combining the analysis above and applying the theory of the CIVP for the sym-

metric hyperbolic systems of Section 12.5 of [35], one obtains the following existence

result:

Theorem 5 (existence and uniqueness to the standard asymptotic char-

acteristic problem). Given a smooth reduced initial data set r? for the conformal

Einstein field equations on N ′? ∪ I −, there exists a unique smooth solution of the

conformal field equations in a neighbourhood V of S? on J+(S?) which implies the

prescribed initial data on N ′?∪I −. Moreover, this solution to the conformal Einstein

field equations implies, in turn, a solution to the vacuum Einstein field equations in

a neighbourhood of past null infinity.

Remark 24. Although the region V is, in the unphysical picture, finite, from the

physical point of view, it corresponds to an infinite domain of the asymptotic region

near past null infinity.

4.3 Improved existence result

In this section we provide the basic setting for the improved local existence result for

the asymptotic CIVP for the conformal Einstein field equations using Luk’s method.
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Our analysis builds on the general formalism developed in chapter 3. Similarly,

the long direction mean l-direction and the short direction means n. Hence the

Gronwell’s type estimate Prop. 3 can be applied in the following analysis.

The main difference between the present analysis and that of chapter 3 is that

when dealing with the conformal Einstein field equations one has more unknown

equations to take care of. Specifically, we now have the conformal factor, its deriva-

tives and the components of the tracefree Ricci tensor.

4.3.1 Estimates for the components of the frames and the

conformal factor

A first step in the analysis in chapter 3 was the construction of basic estimates for

the components of the frame in terms of the initial conditions. A similar step is

required for the conformal Einstein field equations. The main difference in this case

is that one also needs to obtain some basic control on the conformal factors and its

derivatives. These estimates are constructed presently.

4.3.1.1 Definitions

Following chapter 3, in the following it will be convenient to define the following

norm measuring the size of the initial value of the components of the frame:

∆e? ≡ sup
I−,N ′?

(
|Q|, |Q−1|, |CA|, |PA|

)
.

Moreover, we define a scalar

χ ≡ ∆ logQ,

and with the NP Ricci identities we obtain that

Dχ = 2Φ11 + Ψ2 + Ψ̄2 + 2ατ + 2β̄τ + 2ᾱτ̄ + 2βτ̄ + 2τ τ̄ − (ε+ ε̄)χ. (4.7)
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Now, as a consequence of the gauge choice Q = 1 on N ′?, the initial data for χ on N ′?
is 0. For convenience we also define

$ ≡ β − ᾱ

corresponding to the only independent component of the connection on the spheres Su,v.

4.3.1.2 The estimates

Following the main strategy in 3, we construct estimates for the components of

the frame and the conformal factor through the analysis of ∆-equations under the

following bootstrap assumption:

Assumption 4 (assumption to control the coefficients of the frame and

the conformal factor). Assume that we have a solution to the vacuum conformal

Einstein field equations in Stewart’s gauge satisfying

||{χ, µ, λ, α, β, τ,Σ2}||L∞(Su,v) ≤ ∆Γ

on a truncated causal diamond D t
u,v•, where ∆Γ is some (possibly large) constant.

The construction of the estimates proceeds along the following steps:

Step 1. We integrate χ = ∆ logQ = ∂uQ in the short direction so as to obtain

|Q−Q?| = |
∫ ε

0

χdu| ≤
∫ ε

0

|χ|du ≤
∫ ε

0

∆Γdu = ∆Γε

for any v. Then we have

||Q−Q?||L∞(Su,v) ≤ ∆Γε.

So there is a constant C depending on the initial data such that

Q−1, Q ≤ C(∆e?).
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Step 2.: To estimate the conformal factor Ξ, we integrate Ξ along the short direction

|Ξ| = |
∫ ε

0

Q−1Σ2du| ≤ C(∆Γ)ε.

Accordingly, we have the following lemma:

Lemma 15 (control of conformal factor). Under Assumption 4.8, if ε > 0 is

sufficiently small, there exists a constant C depending on the size of the initial data

such that

||Ξ||L∞(Su,v) ≤ C(∆Γ)ε

on D t
u,v•.

Step 3. Integrating PA in the short direction using equation (4.4b) one readily

obtains the following lemma:

Lemma 16 (control on the components of the frame, I ). We require that

PA are bounded on U0,v such that σAB is invertible and bounded above and below.

Here U0,v is coordinate patch on S0,v generated along l from coordinate patch U on

S?. Under Assumption 4.8, if ε > 0 is sufficiently small, there exists a constant C

depending on the size of the initial data such that

|{PA, (PA)−1}| ≤ C(∆e?),

on coordinate patch DU of D t
u,v•. Moreover, since

σAB = −PAP̄B − PBP̄A,

we also obtain that

|σAB|, |σAB| ≤ C(∆e?),

c(∆e?) ≤ detσ ≤ C(∆e?).
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Thus, for any vector va on Su,v, we have that the norms∫
Su,v

(σABv
AvB)p/2, and

∫
Su,v

((v1)2 + (v2)2)p/2,

are equivalent. Finally, one also has

sup
u,v
|Area(Su,v)− Area(S0,v)| ≤ C∆Γε.

Step 4. Integrating CA in the short direction using equation (4.4a) yields the lemma

Lemma 17 (control on the components of the frame, II ). Choosing ε suit-

ably, since CA? = 0 on I − one has that

|CA| ≤ C∆Γε

on a coordinate patch of D t
u,v•.

4.4 Main estimates

In this section we discuss the construction of the main estimates to obtain the

improved existence results for the asymptotic CIVP for the conformal Einstein field

equations. The strategy of the arguments resemble that in Einstein field equations.

As many of the ideas and techniques are similar to those in chapter 3, as elsewhere,

in this section we focus our attention on the particular aspects of arising from the

use of the conformal Einstein equations.

4.4.1 Norms

The argument in this and subsequent sections relies on the use of a number of

tailor-made norms. We define the following:

(i) Norm for the initial value of the connection coefficients, given by

∆Γ? ≡ sup
Su,v⊂I−,N ′?

sup
Γ∈{µ,λ,ρ,σ,α,β,τ,ε}

max{1,
1∑
i=0

||/∇iΓ||L∞(Su,v),

2∑
i=0

||/∇iΓ||L4(Su,v),
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3∑
i=0

||/∇iΓ||L2(Su,v)}.

(ii) Norm for the initial value of the derivative of conformal factor Σa, given by

∆Σ? ≡ sup
Su,v⊂I−

max{1,
1∑
i=0

||/∇iΣ2||L∞(Su,v),

2∑
i=0

||/∇iΣ2||L4(Su,v),

3∑
i=0

||/∇iΣ2||L2(Su,v)}.

(iii) Norm for the initial value of the Ricci curvature components, given by

∆Φ? ≡ sup
Su,v⊂I−,N ′?

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

max{1,
1∑
i=0

||/∇iΦ||L4(Su,v),
2∑
i=0

||/∇iΦ||L2(Su,v)}

+
3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(I−) + sup
Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}

||/∇iΦ||L2(N ′?).

(iv) Norm for the initial value of the rescaled Weyl curvature components, given

by

∆φ? ≡ sup
Su,v⊂I−,N ′?

sup
φ∈{φ0,φ1,φ2,φ3,φ4}

max{1,
1∑
i=0

||/∇iφ||L4(Su,v),
2∑
i=0

||/∇iφ||L2(Su,v)}

+
3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(I−) + sup
φ∈{φ1,φ2,φ3,φ4}

||/∇iφ||L2(N ′?).

(v) Norm for the components of the Ricci curvature components at later null hy-

persurfaces, given by

∆Φ ≡
3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(N t
u) + sup

Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}
||/∇iΦ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(vi) Supremum-type norm over the L2-norm of the components of the Ricci curva-
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ture at spheres of constant u, v, given by

∆Φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v),

where the supremum is taken over Dtu,v• .

(vii) Norm for the components of the Weyl tensor at later null hypersurfaces, given

by

∆φ ≡
3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(N t
u) + sup

φ∈{φ1,φ2,φ3,φ4}
||/∇iφ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(viii) Supremum-type norm over the L2-norm of the components of the rescaled Weyl

curvature at spheres of constant u, v, given by,

∆φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{φ0, φ1, φ2, φ3}||L2(Su,v),

with the supremum taken over Dtu,v• and in which u will be taken sufficiently

small to apply our estimates.

4.4.2 Estimates for the connection coefficients and the deriva-

tive of conformal factor

In this subsection, we prove estimates for connection coefficients and derivatives of

the conformal factor. We assume first that the norms of curvature are bounded

and prove that the short range ε can be chosen such that connection coefficients

and the derivative of conformal factor can be controlled by initial data and ∆Φ(S).

This can be achieved by considering the transport equations. For the connection

coefficients τ and χ, we only have their long direction D equations. However, the

fact that there is no quadratic term in τ or χ themselves allows us to regard these

as linear equations for τ and χ. Then the Grönwall-type inequalities will show us

that these two connection coefficients are bounded. Accordingly, except for τ and χ,
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we can analyse the ∆-equations for the connection coefficients and the derivatives

of conformal. The small range of ε does not let them drift too far from their initial

data on I −. Consequently, we find that although Σ1, Σ3 and Σ4 are all small, the

component Σ1 has a different power of ε than Σ3 and Σ4 in our estimates.

Proposition 20 (control on the supremum norm of the connection coef-

ficients and the derivatives of the conformal factor). Assume that we have

a solution of the vacuum conformal Einstein field equations in Stewart’s gauge in a

region D t
u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∆Γ,Σ ,

for some positive ∆Γ,Σ. Assume also that

∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞,

sup
u,v
||/∇iτ ||L2(Su,v) <∞, i = 2, 3,

on the same domain. Then there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ),

such that when ε ≤ ε?, we have

sup
u,v
||{µ, λ, ρ, σ, α, β, ε}||L∞(Su,v) ≤ 3∆Γ? ,

sup
u,v
||{τ, χ}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)),

sup
u,v
||Σ2||L∞(Su,v) ≤ 3∆Σ? ,

sup
u,v
||{Σ1,Σ3,Σ4}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε,

sup
u,v
||s||L∞(Su,v) ≤ C(∆e? ,∆Σ? ,∆Φ)ε1/2,

on D t
u,v•.

Proof.
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Basic bootstrap assumption. Place the following bootstrap assumptions:

sup
u,v
||{µ, λ, ρ, σ, α, β, ε}||L∞(Su,v) ≤ 4∆Γ? ,

sup
u,v
||{Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ 4∆Σ? .

Estimate for τ . First we prove that ||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)). We

make use of the D-direction equation of τ , (3b),

Dτ = (ε− ε̄+ ρ)τ + στ̄ + π̄ρ+ πσ + Ξφ1 + Φ01. (4.8)

The above equation crucially contains no τ 2 terms. Making use of the Sobolev

inequality in the Proposition 7, we obtain that

||φi||L∞(Su,v) ≤ ∆φ(S) <∞, i = 0, 1, 2, 3,

||ΦH ||L∞(Su,v) ≤ ∆Φ(S) <∞,

where ΦH = {Φ00,Φ01,Φ02,Φ11,Φ12}. Then the inequalities in Proposition 4 show

that

||τ ||L∞(Su,v) ≤ ||τ ||L∞(Su,0) +

∫ v

0

||Dτ ||L∞(Su,v′ )dv
′

≤ ∆Γ? + C(∆Γ? ,∆e? ,∆Φ(S))v• + C(I,∆Σ? ,∆e? ,∆φ(S))ε

+ C(∆Γ?)

∫ v

0

||τ ||L∞(Su,v′ )dv
′.

Now, choosing ε sufficiently small, it follows from Grönwall’s inequality that

||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).

Estimate for χ In order to estimate χ, we use the D-direction equation (4.7) for χ.

A similar analysis as before yields

||χ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).
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Estimates for µ, λ, α, β and ε. To estimate the coefficients µ and λ, we consider

equations (3g) and (3o):

∆µ = −µ2 − λλ̄− Φ22,

∆λ = −2µλ− Ξφ4.

Making use of the inequalities in Proposition 4 for the short direction, we obtain

that

||µ||L∞(Su,v) ≤ ||µ||L∞(S0,v) + C(∆e?)

∫ ε

0

||∆µ||L∞(Su′,v)du
′

≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ C(∆e?)

∫ u

0

||Φ22||L∞(Su′,v)du
′.

From the Sobolev and Hölder inequalities, we further find that

∫ u

0

||Φ22||L∞(Su′,v)du
′ ≤ C(∆e?)

∫ u

0

2∑
i=0

||/∇iΦ22||L2(Su′,v)du
′

=
2∑
i=0

C(∆e?)

∫ u

0

(∫
S
|/∇iΦ22|2

)1/2

du′

≤

(
2∑
i=0

C(∆e?)

∫ u

0

∫
S
|/∇iΦ22|2du′

)1/2(∫ u

0

1du′
)1/2

≤ C(∆e?)ε1/2||/∇iΦ22||L2(N ′v(0,u)).

Hence we obtain that

||µ||L∞(Su,v) ≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ Cε1/2∆Φ.

For the connection coefficient λ, a similar computation yields

||λ||L∞(Su,v) ≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ C(∆e?)

∫ u

0

||Ξφ4||L∞(Su′,v)du
′,

≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ Cε3/2∆φ.

With the same method, we can estimate α, β and ε by using their short direction
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structure equations (3k), (3d) and (3a):

∆α = −µα− λβ − λτ − Ξφ3,

∆β = −λ̄α− µβ − τµ− Φ12,

∆ε = −απ̄ − βπ − ατ − βτ̄ − πτ − Ξφ2 − Φ11,

The details are omitted.

Estimates for ρ and σ. In this case, the relevant ∆-transport equations are the

structure equations (3i) and (3r):

∆ρ = δ̄τ − µρ− λσ − ατ + β̄τ − τ τ̄ − Ξφ2,

∆σ = δτ − λ̄ρ− µσ + ᾱτ − βτ − τ 2 − Φ02.

In order to estimate δτ and δ̄τ , we make use of the Sobolev inequalities in Corollary 2

and partial integration on Su,v to obtain

||/∇τ ||L∞(Su,v) ≤ C(∆e?)
3∑
i=1

||/∇iτ ||L2(Su,v)

≤ C(∆e?)
(
||τ ||L2(Su,v) + ||/∇2τ ||L2(Su,v) + ||/∇3τ ||L2(Su,v)

)
.

Then the Hölder inequality

||τ ||L2(Su,v) ≤ ||τ ||L∞(Su,v)Area(S)1/2

and the assumptions

sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v) <∞

show us that ||/∇τ ||L∞(Su,v) is bounded. So we can estimate the ||/∇τ ||L∞(Su,v) term

in the short direction using equations (3i) and (3r) for σ and ρ, respectively.

Estimate for s. Before estimating the derivatives of the conformal factor, we

first analyse the Friedrich scalar s. Making use of the conformal Einstein field
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equations (6b),

∆s = −Σ1Φ22 − Σ2Φ11 + Σ3Φ21 + Σ4Φ12

and the initial value s|I− = 0, we readily have that

||s||L∞(Su,v) ≤ C(∆e?)

∫ u

0

||Σ2Φ11 − Σ4Φ12 − Σ3Φ21 + Σ1Φ22||L∞(Su′,v)du
′,

≤ C(∆e? ,∆Σ? ,∆Φ(S))ε+ C(∆e? ,∆Σ? ,∆Φ)ε1/2.

Estimate for Σ2. Making use of the conformal Einstein field equation (5e)

∆Σ2 = −ΞΦ22,

we have that

||Σ2||L∞(Su,v) ≤ ∆Σ? + C(∆e?)

∫ u

0

||ΞΦ22||L∞(Su′,v)du
′ ≤ ∆Σ? + C(∆e? ,∆Σ? ,∆Φ)ε3/2.

Thus, we can choose ε? sufficiently small such that ||Σ2||L∞(Su,v) remains close to its

initial value.

Estimate for Σ1. Next, equation (5d)

∆Σ1 = −Σ4τ − Σ3τ̄ + s− ΞΦ11

and the initial value Σ1|I− = 0, gives that

||Σ1||L∞(Su,v) ≤ C(∆e?)

∫ u

0

|| − Σ4τ − Σ3τ̄ + s− ΞΦ11||L∞(Su′,v)du
′

≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ C(∆e? ,∆Σ? ,∆Φ)ε3/2

+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε2.

Estimates for Σ3 and Σ4. Equation (5f)

∆Σ3 = −Σ2τ − ΞΦ12
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readily gives that

||Σ3||L∞(Su,v) ≤ C(∆e?)

∫ u

0

||Σ2τ + ΞΦ12||L∞(Su′,v)du
′,

≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ C(∆e? ,∆Σ? ,∆Φ(S))ε2.

The method is the same for Σ4.

Concluding the argument. From the estimates for the NP connection coefficients

and ΣAA′ constructed above it follows that one can choose

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ,∆φ,∆Φ(S)),

sufficiently small so that

sup
u,v
||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 3∆Γ? ,

sup
u,v
||Σ2||L∞(Su,v) ≤ 3∆Σ? ,

sup
u,v
||{Σ1,Σ3,Σ4}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

Accordingly, we have improved our initial bootstrap assumption.

Now we use the similar method to analyse the L4 estimate of the connection

coefficients and the derivative of conformal factor.

Proposition 21 (control on the L4-norm of the connection coefficients

and the derivatives of the conformal factor). With the same assumptions in

Proposition 20, and additionally assuming that

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∆Γ,Σ,

in the truncated diamond D t
u,v•, we find that there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ,∆φ(S),∆Φ(S)),
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such that when ε ≤ ε?, we have we have

sup
u,v
||/∇{τ, χ}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)),

sup
u,v
||/∇{µ, λ, ρ, σ, α, β, ε}||L4(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇Σ2||L4(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

on D t
u,v•.

Proof.

Basic bootstrap assumption. We make bootstrap assumptions

sup
u,v
||/∇(µ, λ, ρ, σ, α, β, ε)||L4(Su,v) ≤ 4∆Γ?

sup
u,v
||/∇{Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ 4∆Σ? .

Estimates for /∇τ . First, we estimate the L4(Su,v) norm of /∇τ . Apply the δ-

derivative to the D-direction equation of τ and the commutator of directional co-

variant derivatives we obtain

Dδτ = (ρ+ ρ̄+ 2ε− 2ε̄)δτ + σδ̄τ + σδτ̄ + δ(ε− ε̄+ ρ)τ + τ̄ δσ + ρδπ̄

+ π̄δρ+ σδπ + πδσ + Γ3 + Σ3φ1 + Ξδφ1 + Ξφ1Γ + δΦ01 + Φ01Γ.

In order to estimate the terms in ||Γ/∇Γ||L4(Su,v), we use the Hölder inequality and

split it as

||Γ/∇Γ||L4(Su,v) ≤ ||Γ||L∞(Su,v)||/∇Γ||L4(Su,v).

Now, Proposition 20 shows that terms of the form ||Γ||L∞(Su,v) are, in fact, bounded.

Making use of the Sobolev inequality in Proposition 6 and the long direction in-

equality in Proposition 5, we find that

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v)
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≤ C
(
||δτ ||L4(Su,0) + ||δ̄τ ||L4(Su,0) +

∫ v

0

||Dδτ ||L4(Su,v′ )
+ ||Dδ̄τ ||L4(Su,v′ )

dv′
)

≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S),∆φ(S))ε

+ C(∆Γ?)

∫ v

0

(
||δτ ||L4(Su,v′ ) + ||δ̄τ ||L4(Su,v′ )

)
dv′.

Thus Grönwall’s inequality gives

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S),∆φ(S))ε.

Accordingly, for a small range ε, we obtain that

||/∇τ ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).

Estimates for /∇χ. A direct computation shows that

Dδχ = (ρ̄− 2ε̄)δχ+ σδ̄χ+ ΓδΓ− χδ(ε+ ε̄) + Σ3(φ2 + φ̄2) + Ξδ(φ2 + φ̄2) + δΦ11,

where Γ represents a combination of the connection coefficients whose particular

form is not required. A similar equation can be obtained for Dδ̄χ. Using the same

method as for the coefficient τ , we obtain that ||/∇χ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).

Estimates for /∇{µ, λ, ρ, σ, α, β, ε}. Applying the operator ∆ to equations (3g)

and (3o) we find that

∆δµ = (τ − ᾱ− β)(µ2 + λλ̄)− 3µδµ− λ̄δ̄µ− λδλ̄− λ̄δλ− δΦ22,

∆δλ = (τ − ᾱ− β)(2µλ+ Ξφ4)− 3µδλ− λ̄δ̄λ− 2λδµ− Σ3φ4 − Ξδφ4.

Now, a direct computation applying Proposition 3 shows that we can find an ε? such

that when ε ≤ ε?, we have

||/∇{µ, λ}||L4(Su,v) ≤ 3∆Γ? .

We can estimate δα, δβ and δε by using the same method. Since we are using the

assumption supu,v ||/∇3τ ||L2(Su,v) <∞ in the truncated causal diamond, the Sobolev

inequalities of Corollary 2 show that ||/∇2τ ||L4(Su,v) is finite. Proceeding in a similar
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way we can estimate δσ and δρ by applying δ to equations (3i) and (3r).

Estimate for /∇Σ2. Applying δ to the short direction equation (5e) for Σ2 and

using the commutators we find that

∆δΣ2 = −ΞδΦ22 − Σ3Φ22 + ΞΦ22(τ − π̄) + ΞΦ21λ̄+ ΞΦ12µ,

+ Σ2(πλ̄+ π̄µ)− Σ3(λλ̄+ µ2)− 2Σ4λ̄µ̄.

Similar arguments to the ones used for the connection coefficients show that

||/∇Σ2||L4(Su,v) ≤ 2∆Σ? + C(I,∆e? ,∆Γ? ,∆Σ?)ε+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε2 + o(ε2).

Accordingly, the ε? can be chosen sufficiently small to ensure that ||/∇Σ2||L4(Su,v) is

no more than 3∆Σ? .

Estimate for /∇Σ1. Making use of the equation for ∆δΣ1:

∆δΣ1 = −Σ1Φ12 − Σ2Φ01 + Σ4Φ02 + s(π̄ − τ) + ΞΦ11(τ − π̄) + Σ4τ(τ − π̄)

+ Σ3τ̄(τ − π̄)− µδΣ1 − τ̄ δΣ3 − τδΣ4 − ΞδΦ11 − Σ4δτ − Σ3δτ̄ − λ̄δ̄Σ1,

it follows from the bootstrap assumption, that

||/∇Σ1||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

Estimate for /∇Σ3,4. A direct computation yields the equation

∆δΣ3 = −Σ3Φ12 + ΞΦ12(τ − π̄) + Σ2τ(τ − π̄)− τδΣ2 − Σ2δτ − µδΣ3 − ΞδΦ12 − λ̄δ̄Σ3.

accordingly, one can readily find that

||/∇Σ3||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

A similar result holds for ||/∇Σ4||L4(S). It follows from the previous discussion that

when ε is suitably small, we can improve the bootstrap assumption.
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Concluding the argument. From the analysis above, it follows we can choose

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ,∆φ(S),∆Φ(S)),

sufficiently small so that

sup
u,v
||/∇{µ, λ, ρ, σ, α, β, ε}||L4(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇Σ2||L4(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

The above estimates improve the bootstrap assumption.

The discussion of this section is concluded with L2-estimates for the connection

coefficients and the derivative of conformal factor.

Proposition 22 (control on the L2-norm of the connection coefficients

and the derivatives of the conformal factor). Assume that we have a solution

of the vacuum conformal Einstein field equations in Stewart’s gauge in a region D t
u,v•

with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∆Γ,Σ ,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∆Γ,Σ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ ∆Γ,Σ,

for some positive ∆Γ,Σ. Assume also

sup
u,v
||/∇3τ ||L2(Su,v) <∞, ∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞

on the same domain. We have that there exists

ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? sup
u,v
||/∇3τ ||L2(Su,v),∆φ,∆Φ,∆φ(S),∆Φ(S)),
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such that when ε ≤ ε?, we have that

sup
u,v
||/∇2{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)),

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ}||L2(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇2Σ2||L4(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇2{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

Proof.

Basic bootstrap assumption. We make following bootstrap assumptions:

sup
u,v
||/∇2{µ, λ, ρ, σ, α, β, ε}||L2(Su,v) ≤ 4∆Γ? ,

sup
u,v
||/∇2{Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ 4∆Σ? .

Estimates for ||/∇2τ ||L2(Su,v) and ||/∇2χ||L2(Su,v). Applying the operator δ to the

equation for Dδτ and using the commutators, one obtains following the D-direction

equation of δ2τ :

Dδ2τ = Γδ2τ + Γδ2τ̄ + Γδ̄δτ + Γδδ̄τ + Γ4
1 + Γ1δ

2Γ1

+ δΓ1δΓ1 + Γ2
1δΓ1 + δ2Φ01 + Γ1δΦ01 + Φ01δΓ1 + Φ01Γ2

1

+ δΣ3φ1 + 2Σ3δφ1 + Ξδφ1 + Ξφ1Γ2 + ΞΓ1δφ1 + Ξφ1δΓ1 + Ξδ2φ1 + Σ3φ1Γ1,

where Γ contains a combination of the coefficients ρ, σ, ε, Γ1 contains a combination

of τ, α, β, σ, ε, ρ. A similar computation renders equations for Dδ̄τ , Dδδ̄τ . Terms of

the form δΓ1δΓ1 can be handled using the Hölder inequality

||δΓ1δΓ1||L2(Su,v) ≤ ||δΓ1||L4(Su,v)||δΓ1||L4(Su,v),

where Proposition 21 shows that the bound is finite. The analysis for the term δΣ3φ1

is the same. More precisely, one has that

||δΣ3φ1||L2(Su,v) ≤ ||δΣ3||L4(Su,v)||φ1||L4(Su,v)
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≤ C(∆e?)||δΣ3||L4(Su,v)

(
||φ1||L2(Su,v) + ||/∇φ1||L2(Su,v)

)
.

Similar arguments can be employed in the rest of the terms for the equation for Dδ2τ

so that with the long direction inequality in Proposition 3 we obtain

||δ2τ ||L2(Su,v) ≤ C(I,∆Γ?)

(
||δ2τ ||L2(Su,0) +

∫ v

0

||Dδ2τ ||L2(Su,v′ )dv
′
)
,

≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S),∆φ(S))ε

+ C(I,∆e? ,∆Γ?)

∫ v

0

||/∇2τ ||L2(Su,v′ )dv
′.

Similar estimates can be obtained for δ̄2τ , δδ̄τ and δ̄δτ . To estimate ||δτ ||L2(Su,v) we

can make use of the fact that the area of Su,v is bounded so that

||δτ ||L2(Su,v) ≤ C(∆e? ,∆Γ?)||δτ ||L4(Su,v),

hence, Proposition 21 shows us that this is also finite. From inequality (32) of

Paper I we get

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆Γ? ,∆Φ(S),∆φ(S))ε

+ C(I,∆e? ,∆Γ?)

∫ v

0

||/∇2τ ||L2(Su,v′ )dv
′,

so that using Grönwall’s inequality we conclude that

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆φ(S))ε.

Hence, one finds that ||/∇2τ ||L2(Su,v) is bounded by a constant C(I,∆e? ,∆Γ? ,∆Φ(S)).

Using the same analysis, we can conclude that ||/∇2χ||L2(Su,v) is bounded.

Estimates for the the remaining spin connection coefficients. Estimates for

the remaining connection coefficients can be obtained by the same methods as in

Proposition 21 namely, first we compute equations for ∆δ2Γ and ∆δ̄δΓ, and make

use of the short direction inequality in Proposition 3 to find that

||/∇2{µ, λ, α, β, ε, σ, ρ}||L2(Su,v) ≤ 3∆Γ?
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for sufficiently small ε.

Estimates for /∇2Σ2. A direct calculation shows that

∆δ2Σ2 = Γδ2Σ2 + δΓδΣ2 + Γ2δΣ2 + Ξδ2Φ22 + ΞΦ22δΓ

+ Φ22δΣ3 + Σ3δΦ22 + ΞΓδΦ22 + Σ3Φ22Γ + ΞΦ22Γ2.

The other short direction equation for the remaining second order spherical deriva-

tives of Σ2 have the same structure. From these equations we obtain that

||/∇2Σ2||L2(Su,v) ≤ 2∆Σ? + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

The term o(ε) arises from the presence of δiΞ, i = 0, 1, 2.

Estimates for /∇2Σ1 and /∇2Σ3,4. Again, a direct computation yields the equation

∆δ2Σ1 = Γδ2Σ1 + Γδ2Σ′ + ΣΓδΓ + δΣδΓ + Σδ2Γ + ΣΓ3 + Γ2δΣ + ΓΣΦ,

+ Γ2ΞΦ + sΓ2 + sδΓ + ΦδΣ + ΣδΦ + ΞΓδΦ + ΞΦδΓ + Ξδ2Φ,

where Γ contains τ , Σ contains Σ2, and Σ′ does not contain Σ1, while Φ does not

contain Φ22. Making use of the same arguments as for Σ2, we obtain that

||/∇2Σ1||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

Similar arguments give

||/∇2Σ3||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

Concluding the argument. From the analysis in the previous paragraphs it

follows that we can choose

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ,∆φ(S),∆Φ(S)),

sufficiently small so that

sup
u,v
||/∇2{µ, λ, ρ, σ, α, β, ε}||L2(Su,v) ≤ 3∆Γ? ,
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sup
u,v
||/∇2Σ2||L2(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇2{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

The above estimates improve the bootstrap assumptions.

4.4.3 First estimates for the curvature

Building on the Lp-estimates for the connection coefficients and the derivative of the

conformal factor obtained in the previous section, we now show that the norms ∆Φ(S)

and ∆φ(S) are bounded by the initial data. This is achieved in the next two propo-

sitions.

Proposition 23 (basic control of the Ricci curvature). Assume that we are

given a solution to the vacuum CEFEs in Stewart’s gauge satisfying the assumptions

of Proposition 22. Then there exists

ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆Φ,∆φ, sup
u,v
||/∇3τ ||L2(Su,v))

such that for ε ≤ ε?, we have

∆Φ(S) < 3∆Φ? .

on D t
u,v•.

Proof.

Bootstrap assumption. We make the following bootstrap assumption:

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 4∆Φ? , i = 0, ..., 2.

L2-norm of the components {Φ00,Φ01,Φ02,Φ11,Φ12}. We focus on the L2(S)

norm of {Φ00,Φ01,Φ02,Φ11,Φ12}. We will use the short direction equations (7a)-(7e)

to estimate these components. We take Φ11 as an example. The relevant equation
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is in this case given by

∆Φ11 = δΦ21 + 2βΦ21 − λ̄Φ20 − 2µΦ11 + ρ̄Φ22 − τΦ21 − τ̄Φ21 + Σ2φ̄2 − Σ4φ̄3.

(4.9)

It follows then that

||Φ11||L2(Su,v) ≤ 2

(
||Φ11||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

||∆Φ11||L2(Su′,v)du
′
)
,

≤ 2∆Φ? + C(∆e? ,∆Γ?)

∫ u

0

(
||δΦ21||L2(Su′,v) + ||ρ̄Φ22||L2(Su′,v) + ||Σ2φ̄2||L2(Su′,v),

+ ||2βΦ21 + λ̄Φ20 + 2µΦ11 + τΦ21 + τ̄Φ21||L2(Su′,v) + ||Σ4φ̄3||L2(Su′,v)

)
du′.

Using the Hölder inequality, the first three terms can be transformed to a norm on

the light cone. More precisely, one has

∫ u

0

||δΦ21||L2(Su′,v)du
′ =

∫ u

0

(∫
Su′,v
|δΦ21|2

)1/2

du′ ≤

(∫ u

0

∫
Su′,v
|δΦ21|2

)1/2(∫ u

0

1

)1/2

≤ ε1/2||δΦ21||L2(N ′v(0,u)) ≤ ∆Φε
1/2.

Similarly, one has that∫ u

0

||ρ̄Φ22||L2(Su′,v)du
′ ≤ C(∆Γ? ,∆Φ)ε1/2,

∫ u

0

||Σ2φ̄2||L2(Su′,v)du
′ ≤ C(∆Σ? ,∆φ)ε1/2.

The (large) fourth term can be estimated as follows:∫ u

0

||ΓΦ||L2(Su′,v)du
′ ≤
∫ u

0

||Γ||L∞(Su′,v)||Φ||L2(Su′,v)du
′ ≤ C(I,∆e? ,∆Γ? ,∆Φ?)ε.

For the last term we have that∫ u

0

||Σ4φ̄3||L2(Su′,v)du
′ ≤
∫ u

0

||Σ4||L∞(Su′,v)||φ̄3||L2(Su′,v)du
′

≤ Cε||φ3||L2(N ′v(0,u))ε
1/2 ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆φ)ε3/2.
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Hence, we find that

||Φ11||L2(Su,v) ≤ 2∆Φ? + C(∆e? ,∆Σ? ,∆Γ? ,∆Φ,∆φ)ε1/2 + C(I,∆e? ,∆Γ? ,∆Φ?)ε

+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆φ)ε3/2.

Accordingly, ε? can be chosen sufficiently small so that ||Φ11||L2(Su,v) is less than 3∆Φ? ,

and similarly for the remaining terms. Consequently, we have improved the boot-

strap assumption and finished Step 1, that is, we have

sup
u,v
||(Φ00,Φ01,Φ02,Φ11,Φ12)||L2(Su,v) ≤ 3∆Φ? .

Estimates for ||/∇{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v). We now focus on the L2(Su,v)-
norm of the first derivative of the Ricci curvature. We take /∇Φ11 as an example.

Using the results of Proposition 3 we readily have

||/∇Φ11||L2(Su,v) ≤ 2

||/∇Φ11||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

∆ 〈/∇Φ11, /∇Φ11〉σ

)1/2

du′

 ,

≤ 2∆Φ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v
|/∇Φ11|(|∆δΦ11|+ |∆δ̄Φ11|)

)1/2

du′,

while the short direction equation for δΦ11 is given by

∆δΦ11 = δ2Φ21 + Σ2φ̄2(π̄ − τ) + φ̄2δΣ2 + Σ2δφ̄2 + Σ4φ̄3(τ − π̄)− φ̄3δΣ4 + Σ4δφ̄3

+ Φ22ρ̄(π̄ − τ) + ρ̄δΦ22 + Φ22δρ̄+ ΦΓ2 + ΓδΦ + ΦδΓ.

Here the letter Φ is used to denote {Φ20,Φ21,Φ11}. The first term on the right hand

side of the previous equation, δ2Φ21, can be controlled by

∫ u

0

(∫
Su′,v
|/∇Φ11||/∇2Φ21|

)1/2

du′ ≤
∫ u

0

(∫
Su′,v
|/∇Φ11|2

)1/4(∫
Su′,v
|/∇2Φ21|2

)1/4

du′

≤ sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇

2Φ21||1/2L2(N ′v(0,u))ε
3/4

≤ C(∆Φ? ,∆Φ)ε3/4.
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In the case of the terms

Σ2φ̄2(π̄ − τ) + φ̄2δΣ2 + Σ2δφ̄2 + Φ22ρ̄(π̄ − τ) + ρ̄δΦ22 + Φ22δρ̄,

the use of the estimates of the curvature of the light cone (rather than on the sphere)

gives a contribution with the same power of ε. Furthermore, the terms

Σ4φ̄3(τ − π̄), and Σ4δφ̄3

contribute with a power ε5/4 since ||Σ4||L∞(Su,v) is controlled by ε in Proposition 20.

For the term φ̄3δΣ4 we have that

∫ u

0

(∫
Su′,v
|/∇Φ11||φ̄3/∇Σ4|

)1/2

du′ ≤ sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇Σ4||1/2L2(Su,v)

∫ u

0

||φ3||1/2L∞(Su′,v)du
′

≤ C(∆e?) sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇Σ4||1/2L4(Su,v)

2∑
i=0

||/∇iφ3||1/2L2(N ′v(0,u))ε
3/4

≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)ε5/4.

Here we have used the Sobolev inequality and Proposition 20. Next, the term ΦΓ2

gives us

∫ u

0

(∫
Su′,v
|/∇Φ11||ΦΓ2|

)1/2

du′ ≤
2∑
i=0

C(∆e?) sup
u,v
||Γ||L∞(Su,v)||/∇Φ11||1/2L2(Su,v)||/∇

iΦ||1/2L2(Su,v)ε
3/4

≤ C(I,∆e? ,∆Γ? ,∆Φ?)ε3/4.

Terms ΓδΦ and ΦδΓ give a similar contribution. Putting everything together we

find that

||/∇Φ11||L2(Su,v) ≤ 2∆Φ? + C(I,∆e? ,∆Γ? ,∆Φ?)ε3/4 + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)ε5/4,

so that it is possible to choose a suitably small ε? to improve the bootstrap assump-

tion.

Estimates for ||/∇2{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v). We present the analysis of /∇2Φ11
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as an example. The relevant short direction equation is

∆δ2Φ11 = δ3Φ21 + Φδ2Γ + Γδ2Φ + δΦδΓ + ΦΓδΓ + Γ2δΦ

+ ΦΓ3 + Σδφ+ φδ2Σ + δΣδφ+ ΣΓδφ+ φΓδΣ + ΣφΓ2.

Then, making use of the short direction Grönwall-type estimate one obtains

||/∇2Φ11||L2(Su,v) ≤ 2

||/∇2Φ11||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

∆
〈
/∇2Φ11, /∇2Φ11

〉
σ

)1/2

du′


≤ 2∆Φ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v
|/∇2Φ11|(|∆T1|+ |∆T2|)

)1/2

du′,

where

T1 ≡ δ̄δ̄Φ11 + (β̄ − α)δ̄Φ11, T2 ≡ δ̄δΦ11 + (α− β̄)δΦ11.

Since Φ contains only the components {Φ11,Φ20,Φ21,Φ22}, we can analyse terms

which contain Φ in a similar way. Namely, we make use of the Hölder inequality

to separate the product terms, and then we make use of the Sobolev embedding

theorem. When we encounter the terms /∇iΦ22 and /∇3Φ21, we can make use of

the estimate on the light cone. Finally, a quick inspection of the remaining terms

reveals that only those related to Σ2 contribute to the integration. For example, the

term Σ2δφ gives

∫ u

0

(∫
Su′,v
|/∇2Φ11||Σ2δφ|

)1/2

du′ ≤
∫ u

0

||/∇2Φ11||1/2L2(Su′,v)||Σ2||1/2L∞(Su′,v)||/∇φ||
1/2

L2(Su′,v)du
′

≤ sup
u,v
||/∇2Φ11||1/2L2(Su,v)||Σ2||1/2L∞(Su,v)||/∇φ||

1/2

L2(N ′v(0,u))ε
3/4

≤ C(∆Σ? ,∆Φ? ,∆φ)ε3/4.

Similarly, the Hölder and the Sobolev inequalities allow us to analyse other terms
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which also controlled by ε. Putting everything together one finds that

sup
u,v
||/∇2{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 3∆Φ? .

Concluding the argument. From the estimates obtained in the previous para-

graphs one concludes that

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 3∆Φ? , i = 0, . . . , 2.

Hence, we have improved the starting bootstrap assumption.

Using a similar method, we can obtain the following result:

Proposition 24. Assume that we are given a solution to the vacuum CEFEs in

Stewart’s gauge satisfying the same assumptions of Proposition 22. Then there exists

ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆Φ,∆φ, sup
u,v
||/∇3τ ||L2(Su,v))

such that for ε ≤ ε?, we have

∆φ(S) < 3∆φ? .

In order to estimate the curvature, we need L2(Su,v)-estimates of the connection

coefficients and the derivatives of the conformal factor up to third order. These

estimates can be obtained, except for ρ and σ, by a method similar to the one used

in the previous proof. For these coefficients, instead of considering their n-direction

equations, we make use of their long direction equations and the Codazzi equation

to obtain the required estimates.

Proposition 25 (further control on the L2-norm of the connection coeffi-

cients). Assume again that we have a solution of the vacuum CEFEs in Stewart’s

gauge in a region D t
u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∞,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∞,
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sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ ∞,

∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞

for some positive ∆Γ,Σ and furthermore that

sup
u,v
||/∇3{µ, λ, α, β, ε, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) <∞

on D t
u,v•. Then there exists ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆Φ,∆φ) such that for ε ≤

ε?, we have

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇3{ρ, σ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ),

sup
u,v
||/∇3{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ),

sup
u,v
||/∇3Σ2||L2(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇3{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε.

Proof.

Bootstrap assumption. We make the following bootstrap assumption to start

the proof:

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 4∆Γ? ,

sup
u,v
||/∇3τ ||L2(Su,v) ≤ ∆τ ,

sup
u,v
||/∇3{Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ 4∆Σ? ,

where ∆τ is a constant whose value will be fixed later.

Estimates for ρ and σ. We first estimate ρ and σ using the long direction equa-

tions (3m) and (3f) as we want to avoid the higher derivatives on sphere in the short

direction equations. From the full expression of ||/∇3ρ||L2(Su,v) (see Appendix C in

Paper I), we will analyse four typical terms namely, δ3ρ, ξδ2ρ, δξδρ and ξ2δρ. For
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the term δ3ρ, we have

Dδ3ρ = Γ5 + Γ3δΓ + Γ(δΓ)2 + Γ2δ2Γ + δΓδ2Γ + ρδ3(ε+ ε̄)

+ (4ε− 2ε̄+ 5ρ)δ3ρ+ σδ3σ̄ + σ̄δ3σ + σδ2δ̄ρ+ δ3Φ00.

The term δΓδ2Γ can be estimated as

||δΓδ2Γ||L2(Su,v) ≤ ||/∇Γ||L4(Su,v)||/∇2Γ||L4(Su,v)

≤ C(∆e?)||/∇Γ||L4(Su,v)

(
||/∇2Γ||L2(Su,v) + ||/∇3Γ||L2(Su,v)

)
,

where Γ contains ε, ρ and σ. Then, making use of the norm of Φ00 on the long light

cone, we find that

∫ v

0

||δ3Φ00||L2(Su,v′ )dv
′ ≤

(∫ v

0

∫
Su,v′
|δ3Φ00|2dv′

)1/2(∫ v

0

1dv′
)1/2

≤ C(I)||/∇3Φ00||L2(Nu(0,v)).

Hence, the long direction of inequality in Proposition 3 yields

||δ3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆Γ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v′ )

)
dv′.

For the term $δ2ρ, we readily find that

||$δ2ρ||L2(Su,v) ≤ ||$||L∞(Su,v)||/∇2ρ||L2(Su,v) ≤ C(∆Γ?).

Similar estimates can be found for δ$δρ and $2δρ. Hence, we conclude that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆Γ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v′ )

)
dv′.

From here, using Grönwall’s inequality one finds that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆Γ?)

∫ v

0

||/∇3σ||L2(Su,v′ )dv
′.
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Similarly, one can have the estimate for σ

||/∇3σ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆Γ?)

∫ v

0

||/∇3ρ||L2(Su,v′ )dv
′.

Combine these two inequality above one have

||/∇3σ||L2(Su,v) + ||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ)

+ C(I,∆Γ?)

∫ v

0

(
||/∇3ρ||L2(Su,v′ ) + ||/∇3σ||L2(Su,v)

)
dv′.

Then the Grönwall’s inequality gives us

||/∇3σ||L2(Su,v) + ||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ).

Finally we obtain

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ),

||/∇3σ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ).

Estimates for τ and χ. The ∆-equation for /∇3τ can be obtained from the structure

equation (3b) and the commutator relationship. More precisely, one has that

Dδ3τ = δ3(Ξφ1) + δ3Φ01 + Γδ3Γ1 + Γδ3τ + Γδ2Ψ1

+ δΓδ2Γ + Γ2δ2Γ + Γ3δΓ + Γ(δΓ)2,

where Γ1 contains ε, α, β, ρ and σ. Then, using the bootstrap assumption and the

definition of ∆Ψ, we obtain

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆e? ,∆Σ? ,∆Γ? ,∆Φ? ,∆φ)ε

+ C(I,∆Γ?)

∫ v

0

||/∇3τ ||L2(Su,v′ )dv
′,

so that using Grönwall’s inequality we conclude that

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(∆e? ,∆Σ? ,∆Γ? ,∆Φ? ,∆φ)ε.
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We can then choose the constant ∆τ larger than the right side above so as to improve

the bootstrap assumption. The estimate of χ is similar:

||/∇3χ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(∆e? ,∆Σ? ,∆Γ? ,∆Φ? ,∆φ)ε.

Estimates for the the remaining spin connection coefficients. To obtain the

estimates for

||/∇3{µ, λ, α, β, ε}||L2(Su,v),

we make use of their short direction equations. Since the proof are similar, we only

show the details of ε as a representative example. In this case the relevant equation

is

∆δ3ε = −δ3(Ξφ2 + Φ12) + Γδ3Γ1 + Γδ3ε+ δΓδ2Γ + Γ2δ2Γ + Γ3δΓ + Γ(δΓ)2 + Γ5,

where Γ1 does not contain ε. We can then make use of the short inequality in

Proposition 3 and obtain that

||/∇3ε||L2(Su,v) ≤ 2∆Γ? + C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ)ε3/4 + o(ε3/4).

Choosing the integral range sufficiently small we conclude that

||/∇3ε||L2(Su,v) ≤ 3∆Γ? .

The estimates of ||/∇3{µ, λ, α, β}||L2(Su,v) are are similar. Hence, we have improved

the bootstrap assumption for the connection coefficients.

Estimates for /∇3Σ2. The short direction equation for δ3Σ2 can be analysed by the

same method. Starting from

∆δ3Σ2 = Γ3δΣ2 + ΓδΣ2δΓ + Γ2δ2Σ2 + δΓδ2Σ2 + δΣ2δ
2Γ + Γδ3Σ2

+
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ22,

where Γ contains τ and it is observed that the terms in the summation will contribute
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higher order of ε in the integration. Then applying Proposition 23 we find that

||/∇3Σ2||L2(Su,v) ≤ 2∆Σ? + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε+ o(ε),

where the term o(ε) arises from the summation.

Estimates for /∇3Σ1. In this case one has that the ∆-equation for ∆δ3Σ1 is of the

form

∆δ3Σ1 = Σ2ΦΓ2 + ΦΓ/∇Σ2 + /∇Σ2/∇Φ + Σ2Φ/∇Γ + Φ/∇2Σ2

+ sΓ3 + sΓδΓ + sδ2Γ +
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ,

here the first line on the right hand side contains the leading order contribution,

and Φ does not contain Φ22. From this equation one readily obtains that

||/∇3Σ1||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε+ o(ε).

Estimates for /∇3Σ3,4. In this case the term contributing to the leading order of

the estimate of ||/∇3Σ3||L2(Su,v) is

∆δ3Σ3 = Σ2Γ4 + Γ/∇Σ2 + Σ2Γ2/∇Γ + Σ2(/∇Γ)2 + Γ2/∇2Σ2 + Σ2Γ/∇2Γ + Σ2/∇3Γ + Γ/∇3Σ2

+
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ,

again here the first line of the right hand side offers the leading contribution, and

gives

||/∇3Σ3||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε+ o(ε).

Concluding the argument. From the analysis above, it follows that we can choose

ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆φ? ,∆Φ? ,∆φ,∆Φ),
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sufficiently small so that

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇3{ρ, σ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ),

sup
u,v
||/∇3{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ),

sup
u,v
||/∇3Σ2||L2(Su,v) ≤ 3∆Σ? ,

sup
u,v
||/∇3{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε,

on D t
u,v• .

4.4.4 The energy estimates for the curvature

In this subsection, we show how to obtain the main energy estimates for the com-

ponents of the Ricci and rescaled Weyl curvature.

4.4.4.1 Analysis of the rescaled Weyl tensor

We begin by introducing some integral identities which follow from using integration

by parts in the conformal equations satisfied by the components of the rescaled Weyl

tensor, equations (8a)-(8h). The proof of these results follows the same arguments

used for the components of the Weyl tensor in Paper I as the (vacuum) Bianchi

identities have an identical structure to that of the equations for the rescaled Weyl

tensor and are thus omitted.

Proposition 26 (control of the angular derivatives of the components of

the rescaled Weyl tensor). Suppose that we are given a solution to the CEFEs

in Stewart’s gauge and that Du,v is contained in the existence area. The following L2

estimates for the components of the rescaled Weyl curvature hold. First,

∑
i=0,1,2

∫
Nu(0,v)

|φi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|φj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|φi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|φj|2 +

∫
Du,v

φHφΓ,
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then ∑
i=0,1,2

∫
Nu(0,v)

|/∇φi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇φj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|/∇φi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|/∇φj|2

+

∫
Du,v

|/∇φH |(φΓ2 + Γ|/∇φ|+ φ|/∇Γ|),

next∑
i=0,1,2

∫
Nu(0,v)

|/∇2φi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇2φj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|/∇2φi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|/∇2φj|2

+

∫
Du,v

|/∇2φH |(Γ|/∇2φ|+ φ|/∇2Γ|+ |/∇φ||/∇Γ|+ Γ2|/∇φ|+ φΓ|/∇Γ|+ Γ3φ),

and finally

∑
i=0,1,2

∫
Nu(0,v)

|/∇3φi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇3φj|2

≤
∑
i=0,1,2

∫
N0(0,v)

|/∇3φi|2 +
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|/∇3φj|2

+

∫
Du,v

|/∇3φH |
(
Γ|/∇3φ|+ φ|/∇3Γ|+ |/∇Γ||/∇2φ|+ |/∇φ||/∇2Γ|+ Γ2|/∇2φ|+ Γφ|/∇2Γ|

+ Γ|/∇Γ||/∇φ|+ φ|/∇Γ|2 + Γ3|/∇φ|+ φΓ2|/∇Γ|+ Γ4φ
)
,

where Γ stands for arbitrary connection coefficients from the collection {µ, λ, α, β, ε, ρ, σ, τ}.

To summarise, the previous results can be given a more general formulation:

Proposition 27. Suppose that we are given a solution to the CEFEs in Stewart’s

gauge and that Du,v is contained in the existence area. Then we have that

∑
i=0,1,2

∫
Nu(0,v)

|/∇mφi|2 +
∑
j=1,2,3

∫
N ′v(0,u)

Q−1|/∇mφj|2 ≤
∑
i=0,1,2

∫
N0(0,v)

|/∇mφi|2
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+
∑
j=1,2,3

∫
N ′0(0,u)

Q−1|/∇mφj|2 +

∫
Du,v

|/∇mφH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ|,

where φ contains φk, k = 0, ..., 4, φH contains φk, k = 0, ..., 3.

In addition, we have the following proposition:

Proposition 28 (control of the angular derivatives of the “bad” compo-

nents of the rescaled Weyl tensor). Suppose that we are given a solution to

the CEFEs in Stewart’s gauge and that Du,v is contained in the existence area. Then

we have that∫
Nu(0,v)

|/∇mφ3|2 +

∫
N ′v(0,u)

Q−1|/∇mφ4|2 ≤
∫
N0(0,v)

|/∇mφ3|2 +

∫
N ′0(0,u)

Q−1|/∇mφ4|2

+

∫
Du,v

|/∇mφ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3(ρ+ ε)||/∇i4φ4|

+

∫
Du,v

|/∇mφ3|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ|

+

∫
Du,v

|/∇mφ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ′H |,

where φ contains φ3 and φ4, φ′H contains φ2 and φ3.

4.4.4.2 Analysis of the Ricci curvature

In order to estimate the L2-norms of the components of the Ricci tensor we need in-

equalities analogous to the ones used for the rescaled Weyl tensor. In order to obtain

these, we first we need to regroup the conformal equations for the Ricci tensor shown

in Appendix 6.2. More precisely, we pair the components Φ01 and Φ11 by analysing

equations (7b) and (7h); pair the components Φ02 and Φ12 by analysing (7c) and (7g)+(7l);

pair the components Φ11 and Φ12 by analysing (7d) and (7g); pair the compo-

nents Φ01 and Φ02 by analysing (7b)+(7l) and (7h). Making use of this strategy one

obtains the following:

Proposition 29. Suppose that we are given a solution to the CEFEs in Stewart’s

154



gauge and that Du,v is contained in the existence area. Then we have that

∑
Φi∈ΦL

∫
Nu(0,v)

|Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|Φj|2 ≤
∑

Φi∈ΦL

∫
N0(0,v)

|Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|Φj|2

+

∫
Du,v

ΦHΓΦ +

∫
Du,v

ΦHΣφ,

where ΦL =≡ {Φ00,Φ01,Φ02,Φ11}, ΦS ≡ {Φ01,Φ02,Φ11,Φ12}, Φ ≡ {Φ00,Φ01,Φ02,Φ11,Φ12,Φ22}
and ΦH ≡ {Φ00,Φ01,Φ02,Φ11,Φ12}.

Proof. For simplicity, we demonstrate the argument with the conformal equations (7a)

and (7j) written in the form

∆Φ00 = δΦ10 + ΓΦ + Σφ,

DΦ01 = δΦ00 + ΓΦ + Σφ.

Integrating by parts we have that∫
Nu(0,v)

|Φ00|2 +

∫
N ′v(0,u)

Q−1|Φ01|2 ≤
∫
N0(0,v)

|Φ00|2 +

∫
N ′0(0,u)

Q−1|Φ01|2

+

∫
Du,v

(Φ00,Φ01)ΓΦ +

∫
Du,v

(Φ00,Φ01)Σφ.

A similar argument applies to the pairs Φ01 and Φ11, Φ02 and Φ12, Φ11 and Φ12, Φ01

and Φ02. Putting everything together we obtain the required result.

Now, applying the angular derivatives to the conformal equations we obtain the

following statement:

Proposition 30. Suppose that we are given a solution to the CEFEs in Stewart’s

gauge and that Du,v is contained in the existence area. Then we have first that

∑
Φi∈ΦL

∫
Nu(0,v)

|/∇Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇Φj|2

≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇Φj|2
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+

∫
Du,v

|/∇ΦH |
(
ΦΓ2 + Γ|/∇Φ|+ Φ|/∇Γ|

)
+

∫
Du,v

|/∇ΦH |
(
ΣφΓ + φ|/∇Σ|+ Σ|/∇φ|

)
,

and also,

∑
Φi∈ΦL

∫
Nu(0,v)

|/∇2Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇2Φj|2

≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇2Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇2Φj|2

+

∫
Du,v

|/∇2ΦH |
(
Γ|/∇2Φ|+ Φ|/∇2Γ|+ |/∇Φ||/∇Γ|+ Γ2|/∇Φ|+ ΦΓ|/∇Γ|+ Γ3Φ

)
+

∫
Du,v

|/∇2ΦH |
(
ΣφΓ2 + Γφ|/∇Σ|+ ΓΣ|/∇φ|+ Σφ|/∇Γ|+ |/∇φ||/∇Σ|+ φ|/∇2Σ|+ Σ|/∇2φ|

)
,

and finally,

∑
Φi∈ΦL

∫
Nu(0,v)

|/∇3Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇3Φj|2

≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇3Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇3Φj|2

+

∫
Du,v

|/∇3ΦH |
(
Γ|/∇3Φ|+ Φ|/∇3Γ|+ |/∇Γ||/∇2Φ|+ |/∇Φ||/∇2Γ|+ Γ2|/∇2Φ|+ ΓΦ|/∇2Γ|

+ Γ|/∇Γ||/∇Φ|+ Φ|/∇Γ|2 + Γ3|/∇Φ|+ ΦΓ2|/∇Γ|+ Γ4Φ
)

+

∫
Du,v

|/∇3ΦH |
(
Σ|/∇3φ|+ φ|/∇3Σ|+ |/∇2φ||/∇Σ|+ |/∇2Σ||/∇φ|+ ΣΓ|/∇2φ|+ Σφ|/∇2Γ|

+ φΓ|/∇2Σ|+ Γ|/∇Σ||/∇φ|+ Σ|/∇φ||/∇Γ|+ φ|/∇Σ||/∇Γ|

+ φΓ2|/∇Σ|+ ΣΓ|/∇φ|+ ΣφΓ|/∇Γ|+ ΣφΓ3
)
.

As before, we can summarise the previous estimates in the following more concise

statement:

Proposition 31 (control of the higher angular derivatives of the compo-

nents of the Ricci tensor). Suppose that we are given a solution to the CEFEs

in Stewart’s gauge and that Du,v is contained in the existence area. Then we have
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that∑
Φi∈ΦL

∫
Nu(0,v)

|/∇mΦi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇mΦj|2

≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇mΦi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇mΦj|2

+

∫
Du,v

|/∇mΦH |
∑

i1+i2+i3+i4=m

(|/∇i1Γi2||/∇i3Γ||/∇i4Φ|+ |/∇i1Γi2||/∇i3Σ||/∇i4φ|),

where m = 0, 1, 2, 3.

Using equations (7e) and (7f) we can obtain a similar control over the compo-

nents Φ12 and Φ22. More precisely, one has that:

Proposition 32 (control of the higher angular derivatives of the “bad”

components of the Ricci tensor). Suppose that we are given a solution to the

CEFEs in Stewart’s gauge and that Du,v is contained in the existence area. Then

we have that∫
Nu(0,v)

|/∇mΦ12|2 +

∫
N ′v(0,u)

Q−1|/∇mΦ22|2 ≤
∫
N0(0,v)

|/∇mΦ12|2 +

∫
N ′0(0,u)

Q−1|/∇mΦ22|2

+

∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γ′i2 ||/∇i3Γ′||/∇i4Φ22|

+

∫
Du,v

|/∇mΦ12|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|

+

∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ′H |

+

∫
Du,v

(
|/∇mΦ12||/∇i1Γi2||/∇i3Σ||/∇i4φ|+ |/∇mΦ22||/∇i1Γi2||/∇i3Σ||/∇i4φ′H |

)
,

where Γ′ does not contain τ and χ, Φ does not contain Φ00,Φ
′
H does not contains Φ22

and Φ00, φ contains φ3 and φ4, φ′H contains φ2 and φ3.

Making use of the previous estimates for the Ricci tensor, we can show their

boundedness in the truncated diamonds:
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Proposition 33 (control of the components of the Ricci tensor in terms

of the initial data). Suppose we are given a solution to the vacuum CEFE’s in

Stewart’s gauge arising from data for the CIVP satisfying

∆e? , ∆Γ? , ∆Σ? , ∆Φ? ∆φ? <∞,

with the solution itself satisfying

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σi}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σi}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σi}||L2(Su,v) <∞ , sup

u,v
||/∇3{µ, λ, α, β, ε, τ,Σi}||L2(Su,v) <∞ ,

∆Φ(S) <∞ , ∆Φ <∞ , ∆φ(S) <∞ , ∆φ <∞,

on some truncated causal diamond D t
u,v•. Then there exists ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)

such that for ε? ≤ ε we have

∆Φ < C(I,∆e? ,∆Γ? ,∆Φ?).

Proof. We need to control the integration in Du,v in Propositions 31 and 32. Firstly,

we focus on Proposition 31. We need control∫
Du,v

|/∇mΦH |
∑

i1+i2+i3+i4=m

(|/∇i1Γi2||/∇i3Γ||/∇i4Φ|+ |/∇i1Γi2||/∇i3Σ||/∇i4φ|),

where ΦH = {Φ00,Φ01,Φ02,Φ11,Φ12}. We can separate |/∇mΦH | and the summation

using the Hölder inequality. In turn, the term |/∇mΦH | can be controlled as follows:

||/∇mΦH ||L2(Du,v) =

(∫ u

0

∫ v

0

∫
S

|/∇mΦH |2
)1/2

≤ C∆Φε
1/2.

We observe that as Φ contains Φ22, we can only control it on N ′v. Accordingly, we

have that

||/∇mΦ||L2(Du,v) ≤ C∆Φ.

Next, we need to analyse the L2-norm of the summation. Observing that the first

158



term of the summation has a structure similar to that of the Weyl tensor Ψ in

vacuum Einstein case, we readily obtain that this term is controlled by

C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ)ε1/2.

The second term in the summation can be shown to be less than

C∆Φε
1/2

∑
i1+i2+i3+i4=m

||/∇i1Γi2/∇i3Σ/∇i4φ||L2(Du,v).

Every time we encounter the components φ0 to φ3 and their derivatives, we can

control them through the L2-norm on the long light cone Nu. Moreover, by analogy

to Φ22, we control φ4 and its derivatives on the short light cone N ′v. Hence following

the same procedure we can obtain that this norm is less than

C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ,∆Φ)ε3/2.

In the next step, we consider the terms on the right hand side of the estimate in

Proposition 32. The terms∫
Du,v

|/∇mΦ12|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|

can be controlled in the same manner as it was done in Proposition 31 and are

bounded by

C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ)ε1/2.

Next, the terms ∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γi2||/∇i3Γ||/∇i4Φ′H |

can also be controlled because it does not contains the term (Φ22)2. Moreover, the
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terms ∑
i1+i2+i3+i4=m

∫
Du,v

|/∇mΦ12||/∇i1Γi2||/∇i3Σ||/∇i4φ|

can be controlled by

C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ,∆Φ)ε3/2.

In the case of the term∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γ′i2||/∇i3Γ′||/∇i4Φ22|,

we readily found that it is bounded by

C(I,∆e? ,∆Γ? ,∆Φ?)

∫ v

0

||/∇mΦ22||L2(N ′v(0,u))

m∑
i=0

||/∇iΦ22||L2(N ′v(0,u))

≤ C(I,∆e? ,∆Γ? ,∆Φ?)

∫ v

0

m∑
i=0

||/∇iΦ22||2L2(N ′v(0,u)).

Similarly, we also have that

∑
i1+i2+i3+i4=m

∫
Du,v

|/∇mΦ22/∇i1Γi2/∇i3Σ/∇i4φ′H |

≤ ε3/2C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)

∫ v

0

||/∇mΦ22||2L2(N ′v(0,u)).

Putting together the above estimates in the inequality of Proposition 32 we have

that

3∑
i=0

||/∇iΦ22||2L2(N ′v) ≤ C∆Φ? + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ)ε1/2

+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ,∆Φ)ε3/2 + (C(I,∆e? ,∆Γ? ,∆Φ?)

+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)ε3/2)

∫ v

0

m∑
i=0

||/∇iΦ22||2L2(N ′v(0,u)).
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Thus, applying the Grönwall’s inequality, we obtain that

∆Φ ≤ C(I,∆e? ,∆Γ? ,∆Φ?) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆Φ)ε1/2 + o(ε1/2).

Finally, taking ε small enough we prove the proposition.

The final ingredient in our analysis is the following proposition whose proof is

analogous to that of Proposition 17 in Paper I:

Proposition 34 (control of the components of the Rescaled Weyl tensor

in terms of the initial data). With the same assumptions in proposition 38 on

some truncated causal diamond D t
u,v•. Then there exists ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?)

such that for ε? ≤ ε we have

∆φ ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆φ?).

4.5 Concluding the argument

The estimates obtained in the previous sections can be used in a last slice argument

to obtain our main result. The proof is completely analogous to that given in Section

7 in Paper I and is thus omitted.

Theorem 6. Given smooth initial data on I − ∪ N ′? for 0 ≤ v ≤ I as constructed

in Lemma 20, there exists ε such that an unique smooth solution to the vacuum

conformal Einstein field equations exists in the region where 0 ≤ v ≤ I and 0 ≤ u ≤ ε

under the coordinate system and ε can be chosen to depend only on ∆e?, ∆Γ?, ∆Σ?,

∆Φ? and ∆φ?. Moreover, in this area,

sup
u,v

sup
Γ∈{χ,µ,λ,ρ,σ,α,β,τ,ε}

max{
1∑
0

||/∇iΓ||L∞(Su,v),
2∑
i=0

||/∇iΓ||L4(Su,v),
3∑
i=0

||/∇iΓ||L2(Su,v)}

+ sup
u,v

max{
1∑
i=0

||/∇iΣ2||L∞(Su,v),

2∑
i=0

||/∇iΣ2||L4(Su,v),

3∑
i=0

||/∇iΣ2||L2(Su,v)}

+ ∆Φ + ∆φ ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?)
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and

sup
u,v

max{
1∑
i=0

||/∇iΣ1,3,4||L∞(Su,v),

2∑
i=0

||/∇iΣ1,3,4||L4(Su,v),

3∑
i=0

||/∇iΣ1,3,4||L2(Su,v)}

≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε.
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Chapter 5

The conformal Einstein field

equations and the local extension

of future null infinity

In this chapter we make use of an optimal existence result for the characteristic

initial value problem for the conformal Einstein equations to show that given initial

data on two null hypersurfaces N? and N ′? such that the conformal factor (but not

its gradient) vanishes on a section of N? one recovers a portion of null infinity.

The problem. In this chapter we study the question of the local extendibility

of null infinity. To this end, initial data is prescribed on two future oriented null

hypersurfaces intersecting a 2-dimensonal surface with the topology of the 2-sphere

S2. These null hypersurfaces are assumed to intersect future null infinity, I +. The

question to be adressed is through this initial value problem is whether it is possible

to recover a portion of future null infinity lying in the causal future of the initial

hypersurfaces. Observe that in the future null infinity version of the asymptotic

characteristic initial value problem analysed in Chapter 4, the solution constructed

is located in the causal past of the initial hypersurfaces —see Figure 5.1. The

question of the local extendibility of null infinity through a chracteristic initial value

problem has been studied by Li & Zhu in [1] directly through the Einstein field

equations. In this approach, in order to encode the asymptotic behaviour of the

various field at infinity it is necessary to make use of weighted functional spaces and
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norms. Moreover, it is necessary to consider the existence of solutions to the field

equations of a domain with an infinite extent. Accordingly, this study requires a

delicate and lengthy analysis. By contrast, in this chapter we make use of what we

believe is the natural setting to address the local extendibility of null infinity: the

use of a conformal representation of the spacetime and the conformal Einstein field

equations —see e.g. [35].

Conformal methods. The use of conformal methods in the study of the local

extendibility of (future) null infinity allows to transform question of existence of

solutions to hyperbolic evolution equations on an infinite domain into the study of

solutions on a finite region. Moroever, the asymptotic decay of the various fields

fields is conveniently encoded through regularity of the fields. Accordingly, it is

possible to work with standard (unweighted) functional spaces and norms. Luk’s

strategy to analyse the characteristic initial value problem allows to ensure the

existence of solutions on causal diamonds having a long and a short direction —see

Figure 5.1. Existence on the long direction is ensured as long as one has control on

the initial data. On the other hand, the extent of the short direction is restricted

by the potential appearance of singularities in finite time due to the presence of

Riccati-type equations in the evolution system. In the present problem the conformal

framework provides a natural causal diamond with one of its sides lying on one of

the null initial hypersurfaces, N?, and a short side covering a portion of null infinity.

Although from the point of view of the conformal representation this domain has

a finite size, in the physical spacetime it actually represents an infinite domain

contained between two parallel null hypersurfaces. The main result of this chapter

is that it is possible to ensure the existence of solutions to the conformal Einstein

field equations on the causal diamond with sides on N? and I +. Thus, it is possible

to recover a portion of null infinity to the future of N? —i.e. we have extended I +.

The hyperboloidal initial value problem. Historically, the first resolution of

the local extendibility of null infinity has been given by Friedrich’s in his analysis

of the hyperboloidal initial value problem for the conformal Einstein field equations

—see [3, 39], also [4, 35]. In this case, initial data is prescribed on a spatial hyper-

surface H? which becomes asymptotically null near the conformal boundary. Due

to the formal regularity of the conformal Einstein field equations at the conformal
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(a) (b)

I +
I +

N? N?
N ′?

Figure 5.1: Comparison between the asymptotic characteristic problem (a) and the
standard characteristic problem (b) for the conformal Einstein field equations. In
the future null infinity version of the asymptotic characteristic initial value problem
initial data is prescribed on future null infinity and on an outgoing lightcone N?.
The optimal existence result allows to recover a narrow causal diamond along null
infinity. The length of this rectangle is limited by the portion of I + on which one
has cntrol of the initial data. Observe that region of existence of solutions lies in
the causal past of the null hypersurfaces and that the existence of, at least a portion
of null infinity is a priori assumed. In the characteristic problem considered in this
article the initial data is prescribed on two standard null hypersurfaces N? and N ′?
with at least one of them (N?) intersecting the conformal boundary. The improved
existence result allows then to recover a narrow rectangle whose long side lies on N?
and the short one gives a portion of future null infinity. Observe that the region of
existence is on the causal future of the initial hypersurfaces and that, a priori only
the existence of a cut of null infinity is assumed.

boundary, the standard local existence theory for symmetric hyperbolic systems al-

lows to recover a slab of spacetime in the causal future of H? which covers a portion

of null infinity —see Figure 5.2. A particular drawback of this approach, in constrast

with the characteristic initial value problem, is the increased complexity in solving

the constraint equations on H? and obtaining conditions ensuring peeling (see be-

low) —see [40–42]. In view of the later and the historical and practical relevance

of the characteristic initial value problem we believe it is of interest to discuss the

extendibility of null infinity form this alternative point of view.

Peeling. The problem here considered is closely related to one of the central issues

on the study of the asymptotics of the gravitational field: peeling. As part of the

formulation of the characteristic initial value problem here considered it is necessary

to prescribe the value of one of the components of the Weyl tensor (φ0) on one of
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I + I +

H?

Figure 5.2:

the null hypersurfaces. This component is usually loosely interpreted as describing

some sort of incoming radiation —see [43]. For simplicity, in the present analysis it

is assumed that the component φ0 is smooth at null infinity. It follows that on the

portion of future null infinity recovered by the optimal local existence result for the

characteristic initial value problem the Weyl tensor satisfies the peeling behaviour.

If a finite regularity is assumed below a certain threshold, then the assumptions of

the peeling theorem are no longer satisfied.

Differences with the asymptotic characteristic problem. The characteristic

initial value problem considered in this article differs from the one in Chapter 4

in that in the former reference one of the initial hypersurfaces coincides with the

conformal boundary. This leads to a number of simplifications in the gauge and

equations. In the present case, both initial null hypersurfaces lie in the physical

spacetime —except for their intersections with null infinity. Thus, one has to deal

with a somewhat more general set up. Nevertheless, a careful inspection of the

analysis of Chapter 4 shows that all the main assertions and estimates hold in the

present situation. Roughly speaking these estimates control the size of the L2-norm

of the fields appearing in the conformal Einstein field equations in terms of the

size of the initial data. Thus, if the data is finite, so will also the solutions to the

conformal Einstein field equations. The existence of solutions on the causal diamond

containing a portion of null infinity then follows from a last slice argument in which

the basic existence domain arising from the use of Rendall’s reduction strategy [22]

is progressively extended.
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la, vna, u

I +

N ′? N?

S ′?

S? = Su?,v?

Su,v

Du,v

Dtu,v
t

ε

Nu N ′v

Figure 5.3: Geometric setup for the analysis of the local extension of future null
infinity. The construction makes use of a double null foliation of the domain of
dependence of the initial hypersurface N ′?∪N?. The null hypersurface N? terminates
at the conformal boundary where Ξ = 0. Our construction allows us to recover a
portion of length ε on I +. The coordinates and null NP tetrad are adapted to this
geometric setting. The analysis is focused on the thing grey rectangular domain
along N?. The conformal Einstein field equation allows to treat this problem on an
infinite domain in terms of a problem in unphysical space on a finite domain.

5.1 The geometry of the problem

In this section we discuss the geometric setting of the local extension of future null

infinity. This is very similar to the one used in Chapter Revisiting the characteristic

initial value problem for the vacuum Einstein field equations and 4 and makes use

of a gauge which we will call Stewart’s gauge. The reader is refered to [44, 45] for

further details and discussion —see also [19,33].
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5.1.1 Basic geometric setting

In our basic setting, the unphysical manifold M has a boundary and two edges.

The boundary consists of three null hypersurfaces: the outgoing null hypersurface

N?; the incoming null hypersurface N ′? with non-vacuum intersection S? ≡ N?∩N ′?;
future null infinity I + intersecting with N? at the corner S ′?. For concreteness, we

will assume that S?,S ′? ≈ S2. See Figure 5.3 for further details.

One can introduce coordinates x = (xµ) in a neighbourhood U of Z? with x0 = v

and x1 = u such that, at least in a neighbourhood of S? one can write

N? = {p ∈ U | u(p) = 0}, N ′? = {p ∈ U | v(p) = 0}.

Given suitable data on (N? ∩N ′?)∩U we are interested in making statements about

the existence and uniqueness of solutions to the CEFE on some open set

V ⊂ {p ∈ U | u(p) ≥ 0, v(p) ≥ 0}

which we identify with a subset of the future domain of dependence, D+(N?∪N ′?) of

N?∪N ′?. Moreover, we want to show that the existence region can be extended along

N? to reach the conformal conformal boundary —this improved existence domain

corresponds to the grey rectangle in Figure 5.3.

5.1.2 Stewart’s Gauge

Following the discussion of Chapter 3 and 4, in the following we assume that the

future of S? can be foliated by a family of null hypersurfaces: Nu (the outgoing null

hypersurfaces) and N ′v (the ingoing null hypersurfaces). The scalars u and v satisfy

g](du,du) = g](dv,dv) = 0.

In particular, we assume that N0 = N? and N ′0 = N ′?. Following standard usage,

we call u an retarded time and v a advanced time and use these two scalar fields u

and v as coordinates in a neighbourhood of S?. To complete the coordinate system,

consider arbitrary coordinates (xA) on D?, with the index A taking the values 2, 3.

These coordinates are then propagated into N? by requiring them to be constant
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along the generators of N?. Once coordinates have been defined on N?, one can

propagate them into V by requiring them to be constant along the generators of

each N ′v. In this manner one obtains a coordinate system (xµ) = (u, v, xA) in V .

Moreover, we define Su,v ≡ Nu ∩ N ′v ≈ S2. Our analysis will be mostly carried out

in causal diamonds of the form

Du′,v′ ≡ {0 ≤ v ≤ v′, 0 ≤ u ≤ u′} = ∪0≤v≤v′,0≤u≤u′Su,v.

By means of the time function t ≡ u+ v one can readily define the truncated causal

diamond

Dt̃u′,v′ ≡ Du′,v′ ∩ {t ≤ t̃}.

The above coordinate construction is complemented by a Newman-Penrose (NP)

null tetrad {l, n, m, m̄} with the vectors l and n tangent to the generators of the

null hypersurfacesNu andN ′v respectively. Following the same discussion of Chapter

3 and 4 we make

Gauge choice 1 (Stewart’s choice of the components of the frame). On

V we consider a NP frame of the form

l = ∂v + CA∂A, n = Q∂u, m = PA∂A,

where CA = 0 on N?, m and m̄ span the tangent space of Su,v. On N ′? one has

that n = Q∂u. As the coordinates (xA) are constant along the generators of N? and

N ′?, it follows that on N ′? the coefficient Q is only a function of u. Thus, without

loss of generality one can reparametrise u so as to set Q = 1 on N ′?.

Direct inspection of the NP commutators applied to the coordinates (u, v, xA)

leads to the following:

Lemma 18 (conditions on the connection coefficients). The NP frame of

the Gauge Choice 1 can be chosen such that

κ = ν = γ = 0, (5.1a)

ρ = ρ̄, µ = µ̄, (5.1b)
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π = α + β̄ (5.1c)

on V and, furthermore, with

ε− ε̄ = 0 on V ∩ N?.

Remark 25. Additional commutator relations can be used to obtain equations for

the frame coefficients Q, PA and CA —see equations (4.4a)-(4.4f) in Chapter 4.

In addition to the coordinate and frame gauge freedom we also need to fix the

conformal gauge freedom. This is done in the following lemma whose proof follows

the same scheme as Lemma 11 in Chapter 4:

Lemma 19 (conformal gauge conditions for characteristic problem). Let

(M̃, g̃) denote a vacuum asymptotically simple spacetime and let (M, g,Ξ) with

g = Ξ2g̃ a conformal extension. Given the NP frame of the Gauge Choice 1, the

conformal factor Ξ can be chosen so that

R[g] = R(x), in a neighourhood V of S? on J+(S?)

where R(x) is an arbitrary function of the coordinates. Moreover, one has the addi-

tional gauge conditions

Σ2 = 1, µ = ρ = 0 on S?,

Φ22 = 0 on N ′?,

Φ00 = 0 on N?.

5.2 The formulation of the characteristic initial

value problem

This section provides a brief discussion of the basic set up and local existence theory

of the characteristic initial value problem for the conformal Einstein field equations

with data on the null hypersurfaces N? and N ′? using Rendall’s reduction strategy

[22] —see also Section 12.5 of [35]. The analysis is completely analogous to the one
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carried out in Chapter 3 in which the initial value problem for the vacuum Einstein

field equations was considered —note, by contrast, the conceptual difference with

Chapter 4 in which an asymptotic characteristic problem was considered.

5.2.1 Specifiable free data

In order to obtain a solution in the domain J+(S?), we need to provide initial data

for the evolution equations on N? ∪ N ′?. In particular, we need to know the value

of the derivatives of conformal factor {Σ1, Σ2, Σ3, Σ4}, the components of frame

{CA, PA, Q}, the spin connection coefficients {ε, π, β, µ, α, λ, τ, σ, ρ}, the

rescaled Weyl tensor {φ0, φ1, φ2, φ3, φ4} and the Ricci tensor {Φ00, Φ01, Φ11, Φ02,

Φ12, Φ22} on the initial hypersurfaces. However, as a consequence of the constraints

implied by the CEFE, this data cannot be freely specified. As in the case of the

discussion in Chapter 3 and 4, The hierarchical structure of the CEFE allows to

identify the basic reduced initial data set r∗ from which the full initial data on

N? ∪N ′? for the conformal Einstein field equations can be computed. The following

lemma shows us the freely specifiable data for our characteristic problem.

Lemma 20 (freely specifiable data for the characteristic problem). Assume

that the Gauge Choice 1 and the gauge conditions implied by Lemmas 1 and 19 are

satisfied in a neighbourhood V of S?. Initial data for the conformal Einstein field

equations on N? ∪N ′? can be computed from the reduced data set r? consisting of:

φ0, Ξ, on N?,

φ4 on N ′?,

λ, φ2 + φ̄2, Φ20, φ3, PA, on S?.

The proof of this result is completely analogous to that of Lemma 20 in Chapter

4—see also 2 in Chapter 3.

In the problem under consideration we require that N? has a finite range v ∈
[0, v+] and extends to the conformal boundary I + —i.e. future null infinity. This

idea can be encoded in the following requirements on Ξ:

Ξ > 0 on N?/I +
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Ξ = 0 on S0,v+ .

In addition, it is also necessary to ensure that one remains on I + if we move away

from S0,v+ along the direction given by n. This is ensured by the following Lemma.

Lemma 21 (Conditions for Ξ on conformal boundary I +). Under the same

assumptions in Lemma 20, and with a conformal factor satisfying

Ξ = 0 on S0,v+ ,

we have

Ξ = 0, dΞ 6= 0, on N ′v+ .

Proof. From the definition of Σa and the conformal equation (2.9a) it follows that

in our gauge one has

∆Ξ = Σ2,

∆Σ2 = −ΞΦ22,

along N ′v? . Combining these equations we find that

∆2Ξ = −ΞΦ22,

so that Ξ = 0 is a solution such that Ξ|S0,v?
. The theory of ordinary differential

equation shows that this is the unique solution.

5.2.2 The reduced conformal field equations

In Chapter 4 it has been discussed how the CEFE expressed in Stewart’s gauge

imply a symmetric hyperbolic evolution system. More precisely, letting

Σt ≡ (Ξ,Σ1, Σ2, Σ3, Σ4, s),

et ≡ (CA, PA, Q),

Γt ≡ (ε, π, β, µ, α, λ, τ, σ, ρ),

φt ≡ (φ0, φ1, φ2, φ3, φ4),
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Φt ≡ (Φ00, Φ01, Φ11, Φ02,Φ12, Φ22),

it can be shown that

Dµ(x,u)∂µu = B(x,u)u (5.2)

with

u = (et,Σt,Γt,Φt,φt)t

is a symmetric hyperbolic system with respect to the direction given by

τa = la + na.

In particular, Dµ(x,u) are Hermitian matrices andB(x,u) is smooth matrix-valued

functions of their arguments whose explicit form will not be required in the subse-

quent discussion in this section. We call the evolution system (5.2) the reduced

conformal Einstein field equations.

Remark 26. The propagation of the constraint equations implied by the CEFE on

the initial hypersurface N?∪N ′? can be addressed along the same lines of the analysis

in Section 12.5 of [35]. It follows from the latter that a solution of the reduced

conformal field equations on a neighbourhood V of S? on J+(S?) that coincides with

initial data on N ′? ∪ N? satisfying the conformal equations is, in fact, a solution to

the conformal Einstein field equations on V .

Rendall’s approach to the existence and uniqueness of solutions of CIVP can be

obtained via an auxiliary Cauchy initial value problem on a spacelike hypersurface

S∗ denoted by {p ∈ R × R × S2 | v(p) + u(p) = 0}. The formulation of this

problem crucially depends on Whitney’s extension theorem which requires being

able to evaluate all derivatives (interior and transverse) of initial data on N ′? ∪ N?.
A key property of the NP equations in Stewart’s gauge is that any arbitrary formal

derivatives of the unknown functions {Σ, e, Γ, Φ, φ} on N ′?∪N? can be computed

from the prescribed initial data r? for the reduced conformal field equations on

N ′? ∪ N?. This observation allows to make use of Whitney’s extension theorem.

More details can be found in Chapter 3 and Chapter 4.

Combining the previous analysis and applying the theory of CIVP for the sym-

metric hyperbolic systems of Section 12.5 of [35], one obtains the following existence
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result:

Theorem 7 (existence and uniqueness to the standard asymptotic char-

acteristic problem). Given an smooth reduced initial data set r? on N ′? ∪ N?,
there exists a unique smooth solutionto the CEFE in a neighbourhood V of Z? on

J+(S?) which implies the prescribed initial data on N ′?∪N?. Moreover, this solution

to the conformal Einstein field equations implied, in turn, a solution to the vacuum

Einstein field equations in a neighbourhood of null infinity.

5.3 Basic set up for the improved existence result

As already discussed, in this article we address the question of the local extendibility

of null infinity by means of an improved existence result for the CIVP for the CEFE.

In this section we briefly review the basic technical tools for this construction.

5.3.1 Norms

In the following we make use the same conventions for the norms of functions as in

Chapter 4 —see Section 4.3.

5.3.2 Estimates for the frame and the conformal factor

The first step in the analysis of the improved existence result is to obtain control

on the coefficients of the frame and the conformal factor. The asymptotic char-

acteristic initial value problem considered in Chapter 4 leads to some non-generic

simplifications which do not arise when one of the initial null hypersurfaces is not

the conformal boundary. Nevertheless, the basic analysis follows through.

In the following we make use of

∆e?,Ξ? ≡ max{ sup
N∗,N ′∗

(
|Q|, |Q−1|, |CA|, |PA|

)
, sup
N∗

(Ξ)}

to measure the size of the initial data of frame and the conformal factor. In addition,
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for convenience we define the scalar

χ ≡ ∆ logQ,

which, being a derivative of a component of the frame, is at the same level of the

connection coefficients. A direct computation using the definition of χ = ∆ logQ

and the NP Ricci identities yields

Dχ = Ψ2 + Ψ̄2 + 2ατ + 2β̄τ + 2ᾱτ̄ + 2βτ̄ + 2τ τ̄ − (ε+ ε̄)χ. (5.3)

In view of the gauge choice Q = 1 on N ′? it follows that χ = 0 on N ′?. We also define

$ ≡ β − ᾱ

corresponding to the only independent component of the connection on the spheres Su,v.

In order to start the analysis we make the following:

Assumption 5 (assumption to control the coefficients of the frame and

conformal factor). Assume that we have a solution to the vacuum CEFEs in

Stewart’s gauge satisfying,

||{µ, λ, α, β, τ, χ,Σ2}||L∞(Su,v) ≤ ∆Γ,

on a truncated causal diamond D t
u,v•, where ∆Γ is some constant.

This assumption is initially guaranteed on a sufficiently small diamond. With

the above assumption and the definition of χ, Σ2 and making use of the equations

for the frame coefficients implied by the NP commutators we obtain the following

basic estimates for metric and conformal factor:

Lemma 22 (control on the metric and conformal factor). Given sufficiently

small ε > 0 there exist constants C1, C2 and C3 depending ∆e?,Ξ? and ∆Γ such that

on D t
u,v•

||Q,Q−1||L∞(Su,v), |PA|, |(PA)−1| ≤ C1(∆e?,Ξ?),

|CA| ≤ C2(∆e?,Ξ? ,∆Γ)ε,
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||Ξ||L∞(Su,v) ≤ C3(∆e?,Ξ?).

Moreover one has

|σAB|, |σAB| ≤ C(∆e?,Ξ?), c(∆e?) ≤ | detσ| ≤ C(∆e?,Ξ?),

and finally

sup
u,v
|Area(Su,v)− Area(S0,v)| ≤ C(∆e?,Ξ?)∆Γε.

5.4 Main analysis

In this section we present the main analysis of this article leading, ultimately, to

an improved existence result for the characteristic initial value problem for the con-

formal Einstein equations. The strategy followed is very similar to that in Chapter

4. In view of this, most of the proofs of the various lemmas and propositions are

omitted and we focus our attention at the points where there may be differences in

the analysis of Chapter 4.

5.4.1 Norms and statement of the main result

As in Chapter 4, we make use of a number of tailor-made norms to control the

various assumptions and conclusions of the bootstrap argument underpinning our

analysis.

(i) Norm for the initial value of the connection coefficients, given by

∆Γ? ≡ sup
Su,v⊂N?,N ′?

sup
Γ∈{µ,λ,ρ,σ,α,β,τ,ε}

max{1,
1∑
i=0

||/∇iΓ||L∞(Su,v),

2∑
i=0

||/∇iΓ||L4(Su,v),

3∑
i=0

||/∇iΓ||L2(Su,v)}.
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(ii) Norm for the initial value of the derivative of conformal factor Σa, given by

∆Σ? ≡ sup
Su,v⊂N?

sup
j=1,...,4

max{1,
1∑
i=0

||/∇iΣj||L∞(Su,v),

2∑
i=0

||/∇iΣj||L4(Su,v),

3∑
i=0

||/∇iΣj||L2(Su,v)}.

(iii) Norm for the initial value of the components of the Ricci curvature given by

∆Φ? ≡ sup
Su,v⊂N?,N ′?

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

max{1,
1∑
i=0

||/∇iΦ||L4(Su,v),

2∑
i=0

||/∇iΦ||L2(Su,v)}

+
3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(N?) + sup
Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}

||/∇iΦ||L2(N ′?).

(iv) Norm for the initial value of the components of the rescaled Weyl curvature ,

given by

∆φ? ≡ sup
Su,v⊂N?,N ′?

sup
φ∈{φ0,φ1,φ2,φ3,φ4}

max{1,
1∑
i=0

||/∇iφ||L4(Su,v),
2∑
i=0

||/∇iφ||L2(Su,v)}

+
3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(N?) + sup
φ∈{φ1,φ2,φ3,φ4}

||/∇iφ||L2(N ′?).

(v) Norm for the components of the Ricci curvature components at later null hy-

persurfaces, given by

∆Φ ≡
3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(N t
u) + sup

Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}
||/∇iΦ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(vi) Supremum-type norm over the L2-norm of the components of the Ricci curva-

ture at spheres of constant u, v, given by

∆Φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v),

where the supremum is taken over Dtu,v• .
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(vii) Norm for the components of the Weyl tensor at later null hypersurfaces, given

by

∆φ ≡
3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(N t
u) + sup

φ∈{φ1,φ2,φ3,φ4}
||/∇iφ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(viii) Supremum-type norm over the L2-norm of the components of the rescaled Weyl

curvature at spheres of constant u, v, given by,

∆φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{φ0, φ1, φ2, φ3}||L2(Su,v),

with the supremum taken over Dtu,v• and in which u will be taken sufficiently

small to apply our estimates.

The main result of this article can be expressed, in terms of the above norms,

as:

Theorem 8 (local extension of null infinity). Given regular initial data for the

conformal Einstein field equations on N?∪N ′? such that Ξ|v=v• for some v• ∈ [0,∞),

there exists ε > 0 such that an unique smooth solution to the vacuum conformal

Einstein field equations exists in the region

D ≡ {0 ≤ u ≤ ε, 0 ≤ v ≤ v•}

and such that ε? can be chosen to depend only on ∆e?,Ξ?, ∆Γ?, ∆Σ?, ∆Φ? and ∆φ?.

The set defined by the condition v = v• can be identified with a portion of future null

infinity I +. Furthermore, on D one has that

sup
u,v

sup
Γ∈{µ,λ,ρ,σ,α,β,τ,ε,χ}

max{
1∑
0

||/∇iΓ||L∞(S),

2∑
i=0

||/∇iΓ||L4(S),

3∑
i=0

||/∇iΓ||L2(S)}

+ sup
u,v

sup
j=1,...,4

{
1∑
i=0

||/∇iΣj||L∞(S),
2∑
i=0

||/∇iΣj||L4(S),
3∑
i=0

||/∇iΣj||L2(S)}+ ∆Φ + ∆φ

≤ C(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?).
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The proof of the above result is based on a lengthy bootstrap argument. All the

main ingredients for it have already been developed in Chapter 3 and Chapter 4.

The main task in this chapter is to verify that the arguments follow through in the

slightly different setting of the problem of the local extension of null infinity. The

various steps in the proof are as follows:

(0) Construct L∞ estimates for the components of the frame and the conformal

factor and its derivatives on the spheres Su,v in terms of initial data and the

length ε of the short direction of integration. These bounds, in turn, allow

to control in a systematic manner the solutions of the transport equations

implied by the CEFE along null directions.

(i) Construction of L∞, L2 and L4 estimates for the connection coefficients over

the spheres Su,v. These estimates require the assumption that the components

of the curvature are bounded.

(ii) Show that the components of the curvature are bounded in the L2 norm on

the spheres Su,v. These bounds are given in terms of the initial conditions an

the value of the curvature of the light cones Nu and N ′v.

(iii) Show that the norms of the curvature on the light cones can be bounded in

terms of the initial data.

(iv) Last slice argument. Make use of the estimates obtained in the previous steps

to show that the solution to the evolution equations exists close to N? as long

as one has control of the data on this initial hypersurface.

5.4.2 Estimates for the connection coefficients and the deriva-

tive of conformal factor

In this section we provide a discussion of the first step of our bootstrap argument and

provide estimates for connection coefficients and the derivative of conformal factor.

In order to prove these estimates it is assumed that the norms of the components

of the curvature spinors are bounded. It follows then that the short range ε can

be chosen such that connection coefficients and the derivative of conformal factor
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can be controlled by the norm of the initial data and the norm ∆Φ(S). The main

tool in this estimation are the transport equations satisfied by the various fields.

Most of the connection coefficients satisfy transport equations in both the D and

∆ directions. Only for the connection coefficients τ and χ, we only have their long

direction D equations. Crucially, however, these equations do not contain quadratic

terms and can basically be regarded as linear equations.

The first step in the argumentation to control the supemum norm of the con-

nection coefficients and the derivatives of the conformal factor —cf. Proposition

20 in Chapter 4. The assumptions in this estimate are that there exists a positive

constant ∆Γ,Σ Du,v• such that

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∆Γ,Σ ,

in a causal diamond and that, moreover,

sup
u,v
||/∇3τ ||L2(Su,v) <∞, ∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞.

Next, one constructs L4-estimates of the connection coefficients and the derivative

of conformal factor —cf. Proposition 21 in Chapter 4. These estimates are needed

to make use of the Gagliardo-Nirenberg inequality in dealing with the non-linearities

of the evolution equations when constructing L2-estimates. This step requires the

further assumption that

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∆Γ,Σ.

The last step in this process is a L2-estimate for the connection coefficients and the

derivative of conformal factor —cf. Proposition 22 in Chapter 4— which is obtained

without the need of any further assumptions.

In order to estimate the components of the curvature, we need L2-estimates

of the connection coefficients and derivatives of the conformal factor up to third

order. This can be achieved by a method similar to the one used to estimate the

undifferentiated fields —cf. Proposition 25 in Chapter 4. The analysis described in

the previous paragraphs can be summarised as follows:
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Proposition 35 ( estimates for the L∞, L4 and L2 norms of the connec-

tion coefficients and the derivatives of the conformal factor to second

derivative). Assume

∆Φ <∞, ∆φ <∞,

in the truncated diamond D t
u,v•. Then there exists

ε? = ε?(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ,∆φ, sup
u,v
||/∇3τ ||L2(Su,v))

such that for ε ≤ ε?, we have

sup
u,v

sup
Γ∈{µ,λ,α,β,ε,ρ,σ,τ,χ}

(
||Γ||L∞(Su,v) +

1∑
i=0

||/∇iΓ||L4(Su,v) +
2∑
i=0

||/∇iΓ||L2(Su,v)

)
≤ C(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ(S),∆φ(S)),

sup
u,v

sup
j=1,...,4

(
||Σj||L∞(Su,v) +

1∑
i=0

||/∇iΣj||L4(Su,v) +
2∑
i=0

||/∇iΣj||L2(Su,v)

)
≤ C(∆e?,Ξ? ,∆Σ?),

in the truncated diamond D t
u,v•.

Armed with L2-estimates for the connection coefficients and the derivative of

conformal factor up to the second order, it is now possible to show that the norms

∆Φ(S) and ∆φ(S) are finite —see Proposition 23 in Chapter 4. More precisely, one

has that

Proposition 36 ( boundedness of the components of the curvature). As-

sume that

∆Φ <∞, ∆φ <∞, sup
u,v
||/∇3τ ||L2(Su,v) <∞

in the truncated diamond Dtu,v•. Then there exists

ε? = ε?(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ? ,∆Φ,∆φ, sup
u,v
||/∇3τ ||L2(Su,v))
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such that for ε ≤ ε?, we have

∆Φ(S) <∞, ∆φ(S) <∞.

With the results above, we gather all the estimates for connection coefficients

and derivative of conformal factor

Proposition 37 (estimates for the L∞, L4 and L2 norms of the connection

coefficients and the derivatives of the metric). Assume

∆Φ <∞, ∆φ <∞,

in the truncated diamond D t
u,v•. Then there exists

ε? = ε?(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ? ,∆Φ,∆φ)

such that for ε ≤ ε?, we have

sup
u,v

sup
Γ∈{µ,λ,α,β,ε}

(
1∑
i=0

||/∇iΓ||L∞(Su,v) +
2∑
i=0

||/∇iΓ||L4(Su,v) +
3∑
i=0

||/∇iΓ||L2(Su,v)

)
≤ C(∆e?,Ξ? ,∆Γ?),

sup
u,v

(
||{ρ, σ}||L∞(Su,v) +

1∑
i=0

||/∇i{ρ, σ}||L4(Su,v) +
2∑
i=0

||/∇i{ρ, σ}||L2(Su,v)

)
≤ C(∆e?,Ξ? ,∆Γ?),

sup
u,v

(
||{τ, χ}||L∞(Su,v) +

1∑
i=0

||/∇i{τ, χ}||L4(Su,v) +
2∑
i=0

||/∇i{τ, χ}||L2(Su,v)

)
≤ C(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?),

sup
u,v

(
||/∇{ρ, σ}||L∞(Su,v) + ||/∇2{ρ, σ}||L4(Su,v) + ||/∇3{ρ, σ}||L2(Su,v)

)
≤ C(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ,∆φ),

sup
u,v

(
||/∇{τ, χ}||L∞(Su,v) + ||/∇2{τ, χ}||L4(Su,v) + ||/∇3{τ, χ}||L2(Su,v)

)
≤ C(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ,∆φ),

sup
u,v

sup
j=1,...,4

(
1∑
i=0

||/∇iΣj||L∞(Su,v) +
2∑
i=0

||/∇iΣj||L4(Su,v) +
3∑
i=0

||/∇iΣj||L2(Su,v)

)
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≤ C(∆e?,Ξ? ,∆Σ?),

in the truncated diamond D t
u,v•.

5.4.3 The energy estimates for the curvature

The next step in the boostrap argument leading to the optimal local existence result

is to make use of the estimates provided by Proposition 35 to obtain sharper energy

estimates for the components of the Ricci and rescaled Weyl curvature spinors. The

hierarchical structure of the CEFE allows to proceed with this estimation in a two-

step process: first one looks at the components of the Weyl tensor –cf. Propositions

26 and 28 of Chapter 4. In the second step one estmates the components of the

Ricci tensor —cf. Propositions 31 and 32. For both the rescaled Weyl tensor and

the Ricci tensor the analysis of most of the components is straightforwrad. Only

certain bad components require extra consideration —the components φ3 and φ4 of

the Weyl tensor and the components Φ12 and Φ22 of the Ricci tensor. The final

result of this analysis is the following Proposition estimating the components of the

curvature in terms of the initial data. The key ingredient in this proposition is the

assumption that the curvature is assumed to be bounded.

Proposition 38 (control of the components of the curvature in terms

of the initial data). Suppose we are given a solution to the vacuum CEFE’s in

Stewart’s gauge arising from data for the CIVP satisfying

∆e?,Ξ? , ∆Γ? , ∆Σ? , ∆Φ? ∆φ? <∞,

with the solution itself satisfying

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σi}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σi}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σi}||L2(Su,v) <∞ , sup

u,v
||/∇3{µ, λ, α, β, ε, τ,Σi}||L2(Su,v) <∞ ,

∆Φ(S) <∞ , ∆Φ <∞ , ∆φ(S) <∞ , ∆φ <∞,

on some truncated causal diamond D t
u,v•. Then there exists ε? = ε?(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?)
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such that for ε? ≤ ε we have

∆Φ < C1(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?),

∆φ ≤ C2(I,∆e?,Ξ? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?).

5.4.4 Last slice argument

The estimates discussed in the previous subsections can be used, in turn, to show

that the solution to the conformal Einstein field equations exist on a rectangular

domain of the form

D ≡ {0 ≤ u ≤ ε, 0 ≤ v ≤ v•},

with v• such that Ξ|v=v• = 0. Accordingly, the set {v = v•} ∩ D corresponds to a

portion of future null infinity I +. The strategy to show this result is similar to the

one used in Chapter 3 and Chapter 4 and is based on a last slice argument. In this

scheme one argues by contradiction and assumes that the solution does not fill the

whole domain D. Accordingly, there must exist a hypersurface (the last slice) which

bounds the domain of existence of the solution. The estimates constructed in the

previous subsections allow then to show that in this last slice the solution and its

derivatives are bounded so that it is possible to formulate a (standard) initial value

problem for the conformal Einstein field equations to show that the solution extends

beyond the last slice —thus resulting in a contradiction.

As the workings of the last slice argument have been discussed in detail in Chap-

ter 3 —see Section 3.6 of this reference— here we focus on the modifications that

need to be taken into account due to the peculiarities of the problem at hand. As

the main purpose of the present analysis is to ensure that one recovers a portion of

future null infinity, in order to ensure existence of the solution to the CEFE on the

domain D one actually needs to show existence in a slightly larger domain. This is

because the existence domains are given in terms of open sets. As the CEFE are

regular at the sets where Ξ = 0, one can consider an initial hypersurface N? which

extends beyond I +. The basic initial data on N? as described in Proposition 20 can

be extended in an arbitrary, but controlled, manner beyond the intersection of null

infinity with I + up to, say v•+ 1
10

, in such a way that it coincides with the original

data for v ∈ [0, v•] —see Figure 5.4. In particular we require that the extension is
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I +

ε

D

D′

N ′? N?

Figure 5.4: Extension of the initial data on N?. By causality the choice of the
extension of the data beyond I + does not influence the solution of the causal
domain D.

such that the norms ∆e?,Ξ? , ∆Γ? , ∆Σ? , ∆Φ? and ∆φ? which have a contribution along

N? are finite. Using this extended data on N? together with the data on N ′? and

S? one can compute the full initial data set for the conformal evolution equations.

The last slice argument as discussed in Chapter 3 and Chapter 4 can then be used

to ensure existence on

D′ ≡ {0 ≤ u ≤ ε, 0 ≤ v ≤ v• + 1
10
} ⊃ D.

As a consequence of Lemma 21, one has that the set defined by the condition v = v•

is a null hypersurface and, accordingly, our domain of existence contains a portion

of I +. Finally, observe that by causality the solution on D is independent of the

choice of extended data on {u = 0, v ∈ (v•, v• + 1
10
} —I + is the Cauchy horizon of

the data on {v = 0, u ∈ [0, ε} ∪ {u = 0, v ∈ [0, v•]}.
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Chapter 6

Outlook and Conclusions

6.1 Summary

Chapters 3, 4 and 5 present the main themes of this thesis—the local existence

problem of CIVP of EFE and CEFE and applications. In Chapter 3, following

Luk’s strategy, we use NP language to study the existence of CIVP for EFE under

Stewart’s gauge. Adapting the same strategy, in Chapter 4, we analyze the CIVP

of CEFE and demonstrate the local existence of solutions in a narrow rectangle

along null infinity. Based on the aforementioned result, in Chapter 5, we make use

of CEFE to show the existence of CIVP on the local extension of the future null

infinity.

6.2 Future Directions

Naturally, the first direction is the CIVP of CEFE coupled with a matter field, like

the electromagnetic field, conformally invariant scalar field and radiation perfect

fluids. These fields possess the property of a trace-free energy-momentum tensor

which leads to a simple transformation law for the equations for the matter models.

We hope to explore the equations of these matter models and find a similar hierarchy

structure to discuss the existence problem in the rectangular area. The second

direction is to use the tool of CEFE to explore the perturbation problem of the

Kerr horizon. For this purpose, we shall discuss the Killing spinor data [46] in an
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unphysical spacetime. Finally, one could try to adapt the methods of An [47] which

are also based on the characteristic problem to the CEFE to study the formation of

trapped surfaces.
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Appendix A

Field equations in NP formalism

In this appendix, we provide the NP equations for structure equations, the Bianchi

identities and the conformal Einstein equations. All the fields are defined in un-

physical spacetime M.

Given the NP frame {la, na, ma, m̄a}, the following is the definition the complex

spin connection coefficients and curvature with NP frame:

κ = −malb∇bla, ρ = −mam̄b∇bla, σ = −mamb∇bla, τ = −manb∇bla, (1a)

ν = m̄anb∇bna, µ = m̄amb∇bna, λ = m̄am̄b∇bna, π = m̄alb∇bna, (1b)

α =
1

2
(lam̄b∇bna −mam̄b∇bm̄a), β =

1

2
(m̄amb∇bma − namb∇bla), (1c)

ε =
1

2
(m̄alb∇bma − nalb∇bla), γ =

1

2
(lanb∇bna −manb∇bm̄a), (1d)

and

Ψ0 = Cabcdl
amblcmd, Ψ1 = Cabcdl

anblcmd, Ψ2 =
1

2
Cabcdl

anb(lcnd −mcm̄d) (2a)

Ψ3 = Cabcdn
albncm̄d, Ψ4 = Cabcdn

am̄bncm̄d, (2b)

Φ00 =
1

2
R{ab}l

alb, Φ01 =
1

2
R{ab}l

amb, Φ02 =
1

2
R{ab}m

amb, (2c)

Φ11 =
1

4
R{ab}(l

anb +mam̄b), Φ12 =
1

2
R{ab}n

amb, (2d)

Φ22 =
1

2
R{ab}n

anb, Λ = −R
24
, (2e)
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The structure equation

∆ε−Dγ = Λ− Φ11 −Ψ2 + ε(2γ + γ̄) + γε̄+ κν − βπ − απ̄ − ατ − πτ − βτ̄ , (3a)

∆κ−Dτ = −Φ01 −Ψ1 + 3γκ+ γ̄κ− π̄ρ− πσ − ετ + ε̄τ − ρτ − στ̄ , (3b)

∆π −Dν = −Φ21 −Ψ3 + 3εν + ε̄ν − γπ + γ̄π − µπ − λπ̄ − λτ − µτ̄ , (3c)

δγ −∆β = Φ12 − ᾱγ − 2βγ + βγ̄ + αλ̄+ βµ− εν̄ − νσ + γτ + µτ, (3d)

δε−Dβ = −Ψ1 + ᾱε+ βε̄+ γκ+ κµ− επ̄ − βρ̄− ασ − πσ, (3e)

δκ−Dσ = −Ψ0 + ᾱκ+ 3βκ− κπ̄ − 3εσ + ε̄σ − ρσ − ρ̄σ + κτ, (3f)

δν −∆µ = Φ22 + λλ̄+ γµ+ γ̄µ+ µ2 − ᾱν − 3βν − ν̄π + ντ, (3g)

δπ −Dµ = −2Λ−Ψ2 + εµ+ ε̄µ+ κν + ᾱπ − βπ − ππ̄ − µρ̄− λσ, (3h)

δτ −∆σ = Φ02 − κν̄ + λ̄ρ− 3γσ + γ̄σ + µσ − ᾱτ + βτ + τ 2, (3i)

δ̄β − δα = −Λ− Φ11 + Ψ2 − αᾱ + 2αβ − ββ̄ − εµ+ εµ̄− γρ− µρ+ γρ̄+ λσ, (3j)

δ̄γ −∆α = Ψ3 − β̄γ − αγ̄ + βλ+ αµ̄− εν − νρ+ λτ + γτ̄ , (3k)

δ̄ε−Dα = −Φ10 + 2αε+ β̄ε− αε̄+ γκ̄+ κλ− επ − αρ− πρ− βσ̄, (3l)

δ̄κ−Dρ = −Φ00 + 3ακ+ β̄κ− κπ − ερ− ε̄ρ− ρ2 − σσ̄ + κ̄τ, (3m)

δ̄µ− δλ = −Φ21 + Ψ3 − ᾱλ+ 3βλ− αµ− β̄µ− µπ + µ̄π − νρ+ νρ̄, (3n)

δ̄ν −∆λ = Ψ4 + 3γλ− γ̄λ+ λµ+ λµ̄− 3αν − β̄ν − νπ + ντ̄ , (3o)

δ̄π −Dλ = −Φ20 + 3ελ− ε̄λ+ κ̄ν − απ + β̄π − π2 − λρ− µσ̄, (3p)

δ̄σ − δρ = −Φ01 + Ψ1 − κµ+ κµ̄− ᾱρ− βρ+ 3ασ − β̄σ − ρτ − ρ̄τ, (3q)

δ̄τ −∆ρ = 2Λ + Ψ2 − κν − γρ− γ̄ρ+ µ̄ρ+ λσ + ατ − β̄τ + τ τ̄ . (3r)

The Bianchi identities

δ̄Ψ0 −DΨ1 +DΦ01 − δΦ00 = (4α− π)Ψ0 − 2(2ρ+ ε)Ψ1 + 3κΨ2

+ (π̄ − 2ᾱ− 2β)Φ00 + 2(ε+ ρ̄)Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02, (4a)

∆Ψ0 − δΨ1 +DΦ02 − δΦ01 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2 − λ̄Φ00

+ 2(π̄ − β)Φ01 + 2σΦ11 + (ρ̄+ 2ε− 2ε̄)Φ02 − 2κΦ12, (4b)

δ̄Ψ3 −DΨ4 + δ̄Φ21 −∆Φ20 = (4ε− ρ)Ψ4 − 2(2π + α)Ψ3 + 3λΨ2 + 2λΦ11
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− 2νΦ10 − σ̄Φ22 + (2γ − 2γ̄ + µ̄)Φ20 + 2(τ̄ − α)Φ21, (4c)

∆Ψ3 − δΨ4 + δ̄Φ22 −∆Φ21 = (4β − τ)Ψ4 − 2(2µ+ γ)Ψ3 + 3νΨ2 + 2λΦ12

− 2νΦ11 − ν̄Φ20 + (τ̄ − 2β̄ − 2α)Φ22 + 2(γ + µ̄)Φ21, (4d)

DΨ2 − δ̄Ψ1 + ∆Φ00 − δ̄Φ01 + 2DΛ = −λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3

− 2τΦ10 + 2ρΦ11 + σ̄Φ02 + (2γ + 2γ̄ − µ̄)Φ00 − 2(τ̄ + α)Φ01, (4e)

∆Ψ2 − δΨ3 +DΦ22 − δΦ21 + 2∆Λ = σΨ4 + 2(β − τ)Ψ3 − 3µΨ2 + 2νΨ1

+ 2πΦ12 − 2µΦ11 − λ̄Φ20 + (ρ̄− 2ε− 2ε̄)Φ22 + 2(π̄ + β)Φ21, (4f)

DΨ3 − δ̄Ψ2 −DΦ21 + δΦ20 − 2δ̄Λ = −κΨ4 + 2(ρ− ε)Ψ3 + 3πΨ2 − 2λΨ1

− 2πΦ11 + 2µΦ10 + κ̄Φ22 + (2ᾱ− 2β − π̄)Φ20 − 2(ρ̄− ε)Φ21, (4g)

∆Ψ1 − δΨ2 −∆Φ01 + δ̄Φ02 − 2δΛ = νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3

+ 2τΦ11 − 2ρΦ12 − ν̄Φ00 + (τ̄ − 2β̄ + 2α)Φ02 + 2(µ̄− γ)Φ01, (4h)

DΦ11 − δΦ10 − δ̄Φ01 + ∆Φ00 + 3DΛ = (2γ − µ+ 2γ̄ − µ̄)Φ00 + (π − 2α− 2τ̄)Φ01

+ σ̄Φ02 + σΦ20 + (π̄ − 2ᾱ− 2τ)Φ10 + 2(ρ+ ρ̄)Φ11 − κ̄Φ12 − κΦ21, (4i)

DΦ12 − δΦ11 − δ̄Φ02 + ∆Φ01 + 3δΛ = (−2α + 2β̄ + π − τ̄)Φ02 + (ρ̄+ 2ρ− 2ε̄)Φ12

+ ν̄Φ00 − λ̄Φ10 + 2(π̄ − τ)Φ11 + (2γ − 2µ̄− µ)Φ01 + σΦ21 − κΦ22, (4j)

DΦ22 − δΦ21 − δ̄Φ12 + ∆Φ11 + 3∆Λ = (ρ+ ρ̄− 2ε− 2ε̄)Φ22 + (2β̄ + 2π − τ̄)Φ12

+ νΦ01 + ν̄Φ10 + (2β + 2π̄ − τ)Φ21 − 2(µ+ µ̄)Φ11 − λ̄Φ20 − λΦ02. (4k)

Conformal vacuum Einstein field equations

CFE1

The spinorial counterpart of the first equation (11)

∇BB′∇AA′Ξ = −ΞΦABA′B′ + sεAB ε̄A′B′ + ΞΛεAB ε̄A′B′ .

When we decompose it by the Newman-Penrose null tetrad, we have:

−Σ1(ε+ ε̄) + Σ4κ+ Σ3κ̄+DΣ1 = −ΞΦ00, (5a)

Σ2(ε+ ε̄)− Σ3π − Σ4π̄ +DΣ2 = s+ ΞΛ− ΞΦ11, (5b)

−Σ3(ε− ε̄) + Σ2κ− Σ1π̄ +DΣ3 = −ΞΦ01, (5c)
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−Σ1(γ + γ̄) + Σ4τ + Σ3τ̄ + ∆Σ1 = s+ ΞΛ− ΞΦ11, (5d)

Σ2(γ + γ̄)− Σ3ν − Σ4ν̄ + ∆Σ2 = −ΞΦ22, (5e)

−Σ3(γ − γ̄)− Σ1ν̄ + Σ2τ + ∆Σ3 = −ΞΦ12, (5f)

−Σ1(ᾱ + β) + Σ3ρ̄+ Σ4σ + δΣ1 = −ΞΦ01, (5g)

Σ2(ᾱ + β)− Σ4λ̄− Σ3µ+ δΣ2 = −ΞΦ12, (5h)

−Σ3(−ᾱ + β)− Σ1λ̄+ Σ2σ + δΣ3 = −ΞΦ02, (5i)

Σ4(−ᾱ + β)− Σ1µ+ Σ2ρ̄+ δΣ4 = −s− ΞΛ− ΞΦ11. (5j)

CFE2

The spinorial counterpart of the second equation (6) is

∇AA′s = Λ∇AA′Ξ− ΦABA′B′∇BB′Ξ,

we can decompose it by Newman-Penrose null tetrad:

−Ds = −Σ1Λ + Σ2Φ00 − Σ4Φ01 − Σ3Φ10 + Σ1Φ11, (6a)

−∆s = −Σ2Λ + Σ2Φ11 − Σ4Φ12 − Σ3Φ21 + Σ1Φ22, (6b)

−δs = −Σ3Λ + Σ2Φ01 − Σ4Φ02 − Σ3Φ11 + Σ1Φ12. (6c)

CFE3

The spinorial counterpart of the third equation (2.20e) is

∇AA′ΦBCB′C′ −∇BB′ΦACA′C′ = εBC ε̄B′C′∇AA′Λ− εAC ε̄A′C′∇BB′Λ

−φ̄A′B′C′D′εAB∇ D′
C Ξ− φABCD ε̄A′B′∇D

C′Ξ.

The components of this equation with respect to the null tetrad are:

∆Φ00 − δΦ10 + 2DΛ = Φ00(2γ + 2γ̄ − µ)− 2Φ10(ᾱ + τ)− 2Φ01τ̄ + 2Φ11ρ̄+ Φ20σ

+Σ3φ̄1 − Σ1φ̄2 (7a)

∆Φ01 − δΦ11 + δΛ = Φ01(2γ − µ) + Φ00ν̄ + Φ12ρ̄+ Φ21σ − Φ10λ̄− 2Φ11τ − Φ02τ̄

+Σ3φ̄2 − Σ1φ̄1, (7b)
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∆Φ02 − δΦ12 = Φ02(2γ − 2γ̄ − µ) + 2Φ12(ᾱ− τ) + 2Φ01ν̄ + Φ22σ − 2Φ11λ̄

+Σ3φ̄3 − Σ1φ̄4, (7c)

∆Φ11 − δΦ21 + ∆Λ = Φ01ν + Φ10ν̄ + Φ21(2β − τ) + Φ22ρ̄− Φ20λ̄− 2Φ11µ− Φ12τ̄

+Σ2φ̄2 − Σ4φ̄3, (7d)

∆Φ12 − δΦ22 = Φ22(2ᾱ + 2β − τ) + Φ02ν + 2Φ11ν̄ − 2Φ12(γ̄ + µ)− 2Φ21λ̄

+Σ2φ̄3 − Σ4φ̄4, (7e)

DΦ22 − δΦ21 + 2∆Λ = Φ22(ρ̄− 2ε− 2ε̄) + 2Φ21(β + π̄) + 2Φ12π − Φ20λ̄− 2Φ11µ

+Σ3φ3 − Σ2φ2 (7f)

DΦ12 − δΦ11 + δΛ = Φ02π + 2Φ11π̄ + Φ12(ρ̄− 2ε̄) + Φ21σ − Φ22κ− Φ10λ̄− Φ01µ

−Σ2φ1 + Σ3φ2, (7g)

DΦ11 − δΦ10 +DΛ = Φ01π + Φ10(π̄ − 2ᾱ) + 2Φ11ρ̄+ Φ20σ − Φ21κ− Φ12κ̄− Φ00µ

−Σ4φ1 + Σ1φ2, (7h)

DΦ02 − δΦ01 = Φ02(2ε− 2ε̄+ ρ̄) + 2Φ01(π̄ − β) + 2Φ11σ − 2Φ12κ− Φ00λ̄

−Σ2φ0 + Σ3φ1, (7i)

DΦ01 − δΦ00 = 2Φ01(ε+ ρ̄) + Φ00π̄ + 2Φ10σ − 2Φ00(ᾱ + β)− 2Φ11κ− Φ02κ̄

−Σ4φ0 + Σ1φ1, (7j)

δΦ10 − δ̄Φ01 = Φ00(µ− µ̄) + 2Φ11(ρ− ρ̄) + 2Φ10ᾱ + Φ02σ̄ − 2Φ01α− Φ20σ

+Σ4φ1 − Σ3φ̄1 − Σ1φ2 + Σ1φ̄2, (7k)

δΦ11 − δ̄Φ02 + δΛ = 2Φ02(β̄ − α) + Φ01(µ− 2µ̄) + Φ12(2ρ− ρ̄) + Φ10λ̄− Φ21σ

+Σ2φ1 − Σ3(φ2 + φ̄2) + Σ1φ̄3, (7l)

δΦ21 − δ̄Φ12 = 2Φ11(µ− µ̄) + Φ22(ρ− ρ̄) + 2Φ12β̄ + Φ20λ̄− 2Φ21β − Φ02λ

+Σ2(φ2 − φ̄2)− Σ3φ3 + Σ4φ̄3. (7m)

CFE4

The spinorial counterpart of the forth equation (2.20f) is

∇DC′φ
D

ABC = 0.
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Decomposing it by the null tetrad, we obtain:

∆φ0 − δφ1 = −2φ1(β + 2τ) + φ0(4γ − µ) + 3φ2σ, (8a)

∆φ1 − δφ2 = 2φ1(γ − µ) + φ0ν + 2φ3σ − 3φ2τ , (8b)

∆φ2 − δφ3 = 2φ3(β − τ)− 3φ2µ+ 2φ1ν + φ4σ, (8c)

∆φ3 − δφ4 = φ4(4β − τ) + 3φ2ν − 2φ3(γ + 2µ), (8d)

Dφ1 − δ̄φ0 = φ0(π − 4α) + 2φ1(ε+ 2ρ)− 3φ2κ, (8e)

Dφ2 − δ̄φ1 = 2φ1(π − α)− φ0λ+ 3φ2ρ− 2φ3κ, (8f)

Dφ3 − δ̄φ2 = 2φ3(ρ− ε)− 2φ1λ+ 3φ2π − φ4κ, (8g)

Dφ4 − δ̄φ3 = φ4(ρ− 4ε) + 2φ3(α + 2π)− 3φ2λ. (8h)

CFE5

The spinorial counterpart of the fifth equation (9a) is:

λ = 6Ξs− 3∇AA′Ξ∇AA′Ξ,

and its components equation is:

λ = −6Σ1Σ2 + 6Σ3Σ4 + 6Ξs (9a)
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Appendix B

Inequalities

In this appendix, as a quick reference, we list the key inequalities which are used

routinely in our analysis. These inequalities are standard and proofs can be found,

e.g. in [48].

Cauchy-Schwarz inequality. If u1, ..., un ∈ C and v1, ..., vn ∈ C, we have

|u1v1 + ...+ unvn|2 ≤ (|u1|2 + ...+ |un|2)(|v1|2 + ...+ |vn|2).

Grönwall’s inequality. If β(t) is a non-negative continuous function and u(t)

satisfies

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ [a, b],

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, t ∈ [a, b].

In addition, if the function α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(s)ds

)
, t ∈ [a, b].

Moreover, if β ≡ C where C is a positive constant, then

u(t) ≤ C(b− a)α(t).
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Young’s inequality. If a and b are non negative real numbers and p and q are

positive real numbers such that 1/p+ 1/q = 1, then

ab ≤ ap

p
+
bq

q
.

The equality holds if and only if ap = bq. Moreover, if a and b are non negative real

numbers and p ≥ 1, then

ap + bp ≤ (a+ b)p.

Finally, if f(x) is non-negative continuous function and p ≥ 1, then∫
K

fp ≤
(∫

K

f

)p
,

where K is a compact set.

Generalised Hölder’s inequality. Let K be a measurable space. Assume f ∈
Lp(K) and g ∈ Lq(K) with 1 ≤ p, q ≤ ∞ and 1/r = 1/p+ 1/q ≤ 1, then

||fg||Lr(K) ≤ ||f ||Lp(K)||g||Lq(K).

Gagliardo-Nirenberg-Sobolev inequality. Let U be a bounded, open subset

of Rn, and assume ∂U is C1. Let 1 ≤ p < n, and suppose that u ∈ W 1,p(U).

Then u ∈ Lp∗(U), with the estimate,

||u||Lp∗(U) ≤ C||u||W 1,p(U)

the constant C depending only on p, n and U and 1/p+ 1/p∗ = 1/n.
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Appendix C

Angular derivatives of a scalar function

In our analysis we make repeated use of properties of the angular derivatives of a

scalar field over the 2-spheres Su,v of constant u, v. In the following let f : Su,v → C
denote a sufficiently smooth complex scalar field.

Definitions and basic inequalities

In terms of the NP vectors ma and m̄a one has that

/∇af = −mam̄
b/∇bf − m̄am

b/∇bf = −maδ̄f − m̄aδf.

Moreover, we have that

|/∇f |2 ≡ −σab/∇af/∇bf = δ̄fδf̄ + δ̄f̄ δf.

A direct computation shows that,

||/∇f ||Lp(Su,v) =

(∫
Su,v
|δ̄fδf̄ + δ̄f̄ δf |p/2

)1/p

= |||δf |2 + |δ̄f |2||1/2
Lp/2(Su,v)

≤
(
|||δf |2||Lp/2(Su,v) + |||δ̄f |2||Lp/2(Su,v)

)1/2

≤ |||δf |2||1/2
Lp/2(Su,v)

+ |||δ̄f |2||1/2
Lp/2(Su,v)

= ||δf ||Lp(Su,v) + ||δ̄f ||Lp(Su,v).
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Conversely, we have

||δf ||Lp(Su,v), ||δ̄f ||Lp(Su,v) ≤

(∫
Su,v
|δ̄fδf̄ + δ̄f̄ δf |p/2

)1/p

≤ ||/∇f ||Lp(Su,v).

Thus, we can estimate /∇f in terms of δf and δ̄f and vice versa. This observation

is used repeatedly in the main text.

The Hessian

The Hessian /∇a/∇bf of the scalar function f can be expanded in terms of NP objects

as

/∇a/∇bf =
(
δ̄δ̄f + (β̄ − α)δ̄f

)
mamb + (δδf + (β − ᾱ)δf) m̄am̄b

+
(
δ̄δf + (α− β̄)δf

)
mam̄b +

(
δδ̄f + (ᾱ− β)δ̄f

)
m̄amb,

where we have made use of the expansion

/∇amb = (α− β̄)mamb + (β − ᾱ)m̄amb.

Defining, for convenience, the scalars

T1 ≡ δ̄δ̄f + (β̄ − α)δ̄f, T2 ≡ δ̄δf + (α− β̄)δf,

T3 ≡ δδ̄f + (ᾱ− β)δ̄f, T4 ≡ δδf + (β − ᾱ)δf,

one can then write

|/∇2f |2 ≡ σabσcd/∇a/∇cf/∇b/∇df = |T1|2 + |T2|2 + |T3|2 + |T4|2.

Making use of the above decomposition we then have that

||/∇2f ||Lp(Su,v) =
(∫
Su,v(|T1|2 + |T2|2 + |T3|2 + |T4|2)p/2

)1/p

≤
∑4

i=1 ||Ti||Lp(Su,v)

≤ ||δ2f ||Lp(Su,v) + ||δ̄2f ||Lp(Su,v) + ||δδ̄f ||Lp(Su,v) + ||δ̄δf ||Lp(Su,v)

+4∆Γ(||δf ||Lp(Su,v) + ||δ̄f ||Lp(Su,v)), (10)
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where ∆Γ is defined as in the main text. Also, observe that ||/∇2f ||Lp(Su,v) is not

smaller than any of the individual terms in the right side of the first inequality (10).

A final observation following the irreducible decomposition

/∇a/∇bf = /∇{a/∇b}f +
1

2
σab/∆f + /∇[a/∇b]f (11)

of the Hessian, where the curly brackets denote the symmetric-tracefree part with

respect to the metric σab, is that

|/∇a/∇bf |2 = |/∇{a/∇b}f |2 +
1

2
|/∆f |2 + |/∇[a/∇b]f |2, (12)

so that

|/∆f |2 ≤ 2|/∇a/∇bf |2 (13)

Third derivatives of a scalar field

As in the main text denote by $ ≡ β− ᾱ the simple independent component of the

connection of the 2-sphere Su,v. It follows from the from the structure equation (3j)

and its complex conjugate, that the Gaussian curvature curvature

K ≡ 2$$̄ + 2δ$̄ + 2δ̄$

satisfies the relation

K = σλ+ σ̄λ̄− ρµ− ρ̄µ̄+ Ψ2 + Ψ̄2,

see [36] for details.

Now, the third order covariant derivative of f on Su,v can be expanded as

/∇a/∇b/∇cf = M1mambmc +M5m̄am̄bm̄c +M2m̄ambmc +M6mam̄bm̄c

+M3mambm̄c +M7m̄am̄bmc +M4m̄ambm̄c +M8mam̄bmc,
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where,

M1 ≡ −(δ̄3f + 3$̄δ̄2f + δ̄$̄δ̄f + 2$̄2δ̄f),

M2 ≡ −δδ̄2f − $̄δδ̄f + 2$δ̄2f − δ$̄δ̄f + 2$$̄δ̄f,

M3 ≡ −δ̄2δf + $̄δ̄δf + δ̄$̄δf,

M4 ≡ −δδ̄δf + $̄δ2f + δ$̄δf,

M5 ≡ −(δ3f + 3$δ2f + δ$δf + 2$2δf),

M6 ≡ −δ̄δ2f −$δ̄δf + 2$̄δ2f − δ̄$δf + 2$$̄δf,

M7 ≡ −δ2δ̄f +$δδ̄f + δ$δ̄f,

M8 ≡ −δ̄δδ̄f +$δ̄2f + δ̄$δ̄f.

It follows then that,

|/∇3f |2 =
8∑
i=1

|Mi|2.

From the above expression one finds that

||/∇3f ||Lp(Su,v) ≤ ||δ3f ||Lp(Su,v) + ||δ̄3f ||Lp(Su,v) + ||δ2δ̄f ||Lp(Su,v) + ||δδ̄2f ||Lp(Su,v)

+ ||δ̄2δf ||Lp(Su,v) + ||δ̄δ2f ||Lp(Su,v) + ||δδ̄δf ||Lp(Su,v) + ||δ̄δδ̄f ||Lp(Su,v)

+ 3||$̄δ̄2f ||Lp(Su,v) + ||$̄δδ̄f ||Lp(Su,v) + 2||$δ̄2f ||Lp(Su,v) + ||$̄δ̄δf ||Lp(Su,v)

+ ||$̄δ2f ||Lp(Su,v) + 3||$δ2f ||Lp(Su,v) + ||$δ̄δf ||Lp(Su,v) + 2||$̄δ2f ||Lp(Su,v)

+ ||$δδ̄f ||Lp(Su,v) + ||$δ̄2f ||Lp(Su,v) + ||δ̄$̄δ̄f ||Lp(Su,v) + ||δ$̄δ̄f ||Lp(Su,v)

+ ||δ̄$̄δf ||Lp(Su,v) + ||δ$̄δf ||Lp(Su,v) + ||δ$δf ||Lp(Su,v) + ||δ̄$δf ||Lp(Su,v)

+ ||δ$δ̄f ||Lp(Su,v) + ||δ̄$δ̄f ||Lp(Su,v) + 2||$̄2δ̄f ||Lp(Su,v) + 2||$$̄δ̄f ||Lp(Su,v)

+ 2||$2δf ||Lp(Su,v) + 2||$$̄2δf ||Lp(Su,v).

The above expression contains four representative terms, namely ||δ3f ||Lp(Su,v), ||$δ2f ||Lp(Su,v),

||δ$δf ||Lp(Su,v) and ||$2δf ||Lp(Su,v) which will be used to illustrate the analysis in

the main text.
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Appendix D

Details in Propositions 9 and 10

In this appendix we provide further details regarding the lengthy computations

arising in the analysis of Propositions 9 and 10.

Estimates on the L4-norm of connection coefficients

In the following we consider, for conciseness, the NP spin connection coefficient λ.

Making use of Proposition 3 to estimate ||λ||L4(S) one finds that

||/∇λ||L4(Su,v) ≤ 2

||/∇λ||L4(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

∆ 〈/∇λ, /∇λ〉2σ

)1/4

du′

 .

One can then estimate∫
Su′,v
|∆ 〈/∇λ, /∇λ〉2σ | =

∫
Su′,v
|/∇λ|2|∆(δ̄λδλ̄+ δ̄λ̄δλ)|

=

∫
Su′,v
|/∇λ|2|(∆δλ)δ̄λ̄+ δλ∆δ̄λ̄+ δλ̄∆δ̄λ+ δ̄λ∆δλ̄|

≤
∫
Su′,v

|/∇λ|2
√

2|δλ|2 + 2|δ̄λ|2
√

2|∆δλ|2 + 2|∆δ̄λ|2

≤ 2

∫
Su′,v
|/∇λ|3

(
|∆δλ|+ |∆δ̄λ|

)
,
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where we have made use of the Cauchy-Schwarz inequality in the first inequality.

Now, making use of the expressions for ∆δλ and ∆δ̄λ one further finds that,∫
Su′,v
|∆ 〈/∇λ, /∇λ〉2σ | ≤ 2

∫
Su′,v
|/∇λ|3

(
|Γ|3 + |Γ||Ψ4|+ |Γ′||/∇λ|+ 4|λ||/∇µ|+ |/∇Ψ4|

)
≤ C(I,∆e? ,∆Γ? ,∆Ψ(S))

(∫
Su′,v
|/∇λ|3 + ||Ψ4||L∞(Su′,v)

∫
Su′,v
|/∇λ|3

)
+ C(∆Γ?)

∫
Su′,v
|/∇λ|4 + C(∆Γ?)

∫
Su′,v
|/∇λ|3|/∇µ|+ 2||/∇Ψ4||L∞(Su′,v)

∫
Su′,v
|/∇λ|3

≤ C(I,∆e? ,∆Γ? ,∆Ψ(S))Area(Su′,v)1/4||/∇λ||3L4(Su′,v)

(
1 +

( 2∑
i=0

||/∇iΨ4||L2(Su′,v)

))
+ C(∆Γ?)||/∇λ||3L4(Su′,v)||/∇µ||L4(Su′,v) + C(∆Γ?)||/∇λ||4L4(Su′,v)

+ C(∆Γ?)Area(Su′,v)1/4||/∇λ||3L4(Su′,v)

( 3∑
i=1

||/∇iΨ4||L2(Su′,v)

)
,

where in the previous chain of inequalities we have made use of Hölder’s inequality

and the Sobolev’s embedding. Moreover, here Γ represents a linear combination of

the NP spin connection coefficients τ, α, β, µ, λ whereas Γ′ contains no τ term, which

allows the use of sharper estimates. Both Γ and Γ′ are controlled in L∞(Su′,v) as a

result of Proposition 8.

Making use of the latter estimate and of the bootstrap assumption in Proposi-

tion 9, one readily obtains that

||/∇λ||L4(Su,v) ≤ 2∆Γ? + C(I,∆e? ,∆Γ? ,∆Ψ(S))ε+ C(I,∆e? ,∆Γ? ,∆Ψ(S))∆Ψε
7/8,

where it has been used that

∫ u

0

(∫
Su′,v
|Ψ4|2

)1/8

du′ ≤

(∫ u

0

∫
Su′,v
|Ψ4|2du′

)1/8(∫ u

0

1du′
)7/8

≤ ε7/8||Ψ4||1/4L2(N ′v(0,u)).

Thus, we can choose a suitable ε > 0 such that ||/∇λ||L4(Su,v) ≤ 3∆Γ? . This improves

the starting bootstrap assumption.
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Estimates on ||/∇2λ||L2(Su,v)

In this case we start from∫
Su,v
|∆
〈
/∇2λ, /∇2λ

〉
σ
| =

∫
Su,v

2|∆(T1T̄1 + T2T̄2 + T3T̄3 + T4T̄4)|

≤ 2
√

2

∫
Su,v
|/∇2λ| (|∆T1|+ |∆T2|+ |∆T3|+ |∆T4|) .

we can then further expand to obtain (in schematic notation for simplicity) that∫
Su′,v
|∆
〈
/∇2λ, /∇2λ

〉
σ
| ≤ 2

√
2

∫
Su′,v
|/∇2λ|(|Γ′||/∇2λ|+ |Γ′||/∇2Γ|+ |/∇2Ψ4|+ |/∇Γ||/∇Γ|

+ |Γ2||/∇Γ|+ |Ψ4||/∇Γ|+ |Ψ3||/∇λ|+ |Γ||/∇Ψ4|+ |Ψ4||Γ2|+ |Γ4|)

≤ C(∆Γ?)

∫
Su′,v
|/∇2λ|2 + C(∆Γ?)

∫
Su′,v
|/∇2λ||/∇2Γ|+

∫
Su′,v
|/∇2λ||/∇2Ψ4|

+

∫
Su′,v
|/∇2λ||/∇Γ||/∇Γ|+ C(I,∆e? ,∆Γ? ,∆Ψ(S))

∫
Su′,v
|/∇2λ||/∇Γ|

+ C(∆Ψ(S))

∫
Su′,v
|/∇2λ||/∇Γ|+ C(I,∆e? ,∆Γ? ,∆Ψ(S))

∫
Su′,v
|/∇2λ||/∇Ψ4|

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))

∫
Su′,v
|/∇2λ|+

∫
Su′,v
|/∇2λ||/∇Γ||Ψ4|

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))

∫
Su′,v
|/∇2λ||Ψ4|

≤ C(∆Γ?)||/∇2λ||2L2(Su′,v) + C(∆Γ?)||/∇2λ||L2(Su′,v)||/∇2Γ||L2(Su′,v)

+ ||/∇2λ||L2(Su′,v)||/∇2Ψ4||L2(Su′,v) + ||/∇2λ||L2(Su′,v)||/∇Γ||2L4(Su′,v)

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))||/∇2λ||L2(Su′,v)||/∇Γ||L4(Su′,v)

+ C(∆e? ,∆Γ?)||Ψ4||L∞(Su′,v)||/∇2λ||L2(Su′,v)

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))||/∇2λ||L2(Su′,v)||/∇Ψ4||L2(Su′,v)

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))||/∇2λ||L2(Su′,v)

+ C(I,∆e? ,∆Γ? ,∆Ψ(S))||/∇2λ||L2(Su′,v)||/∇Γ||L4(Su′,v)||Ψ4||L∞(Su′,v)

≤ C(I,∆e? ,∆Γ? ,∆Ψ(S))(1 + ||Ψ4||L2(Su′,v) + ||/∇Ψ4||L2(Su′,v) + ||/∇2Ψ4||L2(Su′,v)).
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In the previous chain of inequalities we have made repeated use of our bootstrap as-

sumption, the results in Proposition 5 and of Hölder’s inequality. Finally, combining

with the short direction estimate in Proposition 3 we conclude that

||/∇2λ||L2(Su,v) ≤ 2∆Γ? + C(I,∆e? ,∆Γ? ,∆Ψ(S))ε+ C(I,∆e? ,∆Γ? ,∆Ψ(S))∆Ψε
3/4.

The factor ε3/4 results from the transferring of the 2-sphere estimate of Ψ4 to the

light cone.
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