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Abstract

When calculating a fixed order differential cross section in QCD, one must take into

account the contribution of threshold radiation, i.e., soft or collinear radiation produced

in the threshold limit of the kinematic invariants of a given process. However, large

logarithmic terms associated with threshold radiation threaten the stability of the fixed

order theory prediction. A possible antidote to this problem is the resummation of such

terms. Part one of this thesis is concerned with the resummation of a particular class

of large log, the next-to-leading-power (NLP) logs. We investigate the structure and

sources of NLP logs by using the Drell-Yan process as a probe. More specifically, we

consider the case of two real emissions and 1 virtual emission, as well as the case of any

number of real emissions.

The second half of this thesis changes course towards the double copy - a duality

relating gravity and gauge theories. The double copy operates perturbatively, linking

the amplitudes of these theories, as well as the exact solutions of the equations of mo-

tion when considering the classical limit. The double copy package includes biadjoint

scalar theory - a scalar theory that encapsulates much of the information encoded in the

propagators of gravity and gauge theories, but with the benefit of relative simplicity.

We pose the question of whether the double copy operates at a non-perturbative level,

and use biadjoint scalar theory as a probe. We explore monopole solutions in biadjoint

scalar theory, and attempt to match these to monopoles in Yang-Mills theory, using

the Aichelburg-Sexl ultraboost procedure to generate shockwave solutions in aid of this

inquiry. Although the monopoles do not seem to match up, we attain new insights re-

garding how Abelian and non-Abelian monopoles can double copy to the same gravity

object.
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Leonardo Vernazza on [3, 4], and with Domenico Bonocore, Eric Laenen, and Lorenzo

Magnea on [4]. Where other sources have been used, they are cited in the bibliography.

3



Contents

1 Introduction 10

I Threshold Radiation 12

2 The QCD Differential Cross Section - an Overview 13

2.1 QCD - A brief introduction . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 The running coupling and asymptotic freedom . . . . . . . . . . 16

2.2 Hadronic vs. partonic cross sections . . . . . . . . . . . . . . . . . . . . 18

2.3 Our probe: Drell-Yan production . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Leading order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Next-to-leading order . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The general differential cross section for heavy particle production . . . 24

2.4.1 Classification of logs . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 The K-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Resummation 27

3.1 Factorisation at the amplitude level . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Feynman rules for soft emissions . . . . . . . . . . . . . . . . . . 28

3.1.2 The soft function: exponentiation and Wilson lines . . . . . . . . 31

3.2 Resummation of LP terms in the Drell-Yan cross section . . . . . . . . . 33

3.2.1 Factorisation and the soft function . . . . . . . . . . . . . . . . . 34

3.2.2 The soft function: exponentiation and Wilson lines . . . . . . . . 36

3.2.3 The eikonal cross section at NLO . . . . . . . . . . . . . . . . . . 38

3.3 The prospect of resummation beyond LP terms . . . . . . . . . . . . . . 43

4 Next-to-Leading Power Leading Logs at N3LO 45

4.1 Squared matrix element for 2-real, 1-virtual emissions . . . . . . . . . . 46

4.1.1 Method of regions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Squared matrix element terms . . . . . . . . . . . . . . . . . . . 49

4



CONTENTS

4.2 Phase space integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Master integral 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Master integral 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Results for the K−factor from each region . . . . . . . . . . . . . 59

4.3 Conclusions and learnings for resummation . . . . . . . . . . . . . . . . 61

5 Next-to-Leading Power Leading Logs at NnLO 62

5.1 Leading soft term for the squared matrix element . . . . . . . . . . . . . 63

5.2 Phase space integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Integral A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Integrals B1 and B2 . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.4 NLP phase space integral . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Resummation of NLP leading logs . . . . . . . . . . . . . . . . . . . . . 71

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Threshold Radiation Conclusion 74

6.1 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Learnings and achievements . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 A bridge to gravity and other theories . . . . . . . . . . . . . . . . . . . 75

II The Double Copy 76

7 Introduction to the Double Copy 77

7.1 Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Amplitude for four-point scattering (gg → gg) . . . . . . . . . . . 80

7.1.3 Amplitude for m−point scattering . . . . . . . . . . . . . . . . . 84

7.2 Perturbative gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Colour-kinematics duality . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 BCJ double copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.1 Biadjoint scalar theory . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 The Classical Double Copy 93

8.1 Classical gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Kerr-Schild metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5



CONTENTS

8.3 The Kerr-Schild double copy . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.1 Black hole and point charge examples . . . . . . . . . . . . . . . 99

8.3.2 Beyond weak coupling and Abelian-like solutions . . . . . . . . . 106

8.3.3 Comparison with the BCJ double copy . . . . . . . . . . . . . . . 106

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 The Biadjoint Monopole Zoo 109

9.1 Biadjoint monopoles involving spherical symmetry . . . . . . . . . . . . 110

9.2 Biadjoint monopoles involving cylindrical symmetry . . . . . . . . . . . 113

9.2.1 Solutions with a common gauge group . . . . . . . . . . . . . . . 113

9.2.2 Solutions for SU(2) × SU(2) . . . . . . . . . . . . . . . . . . . . 116

9.2.3 Extended solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10 Making Shockwaves - the Ultraboost 126

10.1 Ultraboosting the linear solutions . . . . . . . . . . . . . . . . . . . . . . 127

10.1.1 Linear solutions of the double copy . . . . . . . . . . . . . . . . . 127

10.1.2 Abelian-like biadjoint scalar theory . . . . . . . . . . . . . . . . . 128

10.1.3 Coulomb potential in Kerr-Schild coordinates . . . . . . . . . . . 132

10.1.4 Schwarzschild black hole in Kerr-Schild coordinates . . . . . . . . 136

10.1.5 Comparison of shockwaves across theories . . . . . . . . . . . . . 138

10.2 Ultraboosting the biadjiont monopole . . . . . . . . . . . . . . . . . . . 139

10.3 The Wu-Yang and Dirac monopoles . . . . . . . . . . . . . . . . . . . . 140

10.3.1 New insights to the double copy . . . . . . . . . . . . . . . . . . 142

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11 Double Copy Conclusion 144

11.1 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.2 Learnings and achievements . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A Feynman Rules 146

B Special Functions 148

B.1 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Polygamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.3 The Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.4 The Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6



CONTENTS

C Distributions and Transformations 151

C.1 Delta Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.2 The Plus Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.3 The Mellin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.4 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D Sudakov Decomposition 158

D.1 Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D.2 Integration bounds for k+ and k− . . . . . . . . . . . . . . . . . . . . . . 160

E Integrals 161

F N3LO Data 162

G The Schwarzschild Metric in Kerr-Schild coordinates 164

G.0.1 Mostly + signature . . . . . . . . . . . . . . . . . . . . . . . . . . 164

G.0.2 Mostly - signature . . . . . . . . . . . . . . . . . . . . . . . . . . 165

H Ultraboosting the general SU(2)×SU(2) Monopole 166

I Gauge Transforming the Dirac Monopole to the Wu-Yang Monopole167

J Ultraboosting the Wu-Yang Monopole 170

Bibliography 171

7



List of Figures

1 Schematic depiction of an all order amplitude on the left as a pertur-

bative expansion where each correction on the right corresponds to the

addition of a virtual particle. . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Infrared radiation: zoom in on gluon radiation too soft or too close to

quark leg (collinear) to resolve . . . . . . . . . . . . . . . . . . . . . . . 15

3 LO: qq̄ → γ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 NLO: qq̄ → γ?g, 1 real emission from the quark leg only . . . . . . . . . 20

5 Cut diagrams for Drell-Yan NLO 1 real emission . . . . . . . . . . . . . 22

6 fermion with n soft emissions . . . . . . . . . . . . . . . . . . . . . . . . 29

7 (a) An example of connected diagrams Gc of soft virtual photon exchange

between incoming hard fermionic legs; (b) An example of webs W of soft

virtual gluon exchange between incoming hard fermionic legs. . . . . . 31

8 Drell-Yan 2 real, 1 virtual emission - 1 example scalar Feynman diagram 47

9 Integrated hard region coefficients at N3LO, 2R1V . . . . . . . . . . . . 60

10 Integrated collinear region coefficients at N3LO, 2R1V . . . . . . . . . . 60

11 gg → gg at tree-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

12 s− channel for gg → gg at tree-level . . . . . . . . . . . . . . . . . . . . 81

13 The Jacobi identity cs = ct − cu in terms of tree-level diagrams. . . . . . 83

14 The Jacobi identity cs = ct − cu embedded in a 1-loop diagram. . . . . . 84

15 Feynman diagrams for gravity interactions . . . . . . . . . . . . . . . . . 86

16 The double copy mappings for perturbative amplitudes . . . . . . . . . . 91

17 The double copy mappings for exact solutions . . . . . . . . . . . . . . . 100

18 Integral curves of the vector field defined by (9.73), with critical points

in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

19 Numerical solution to (9.73) using a built-in Mathematica solver, with

boundary conditions set by (9.82). . . . . . . . . . . . . . . . . . . . . . 123

20 Numerical solution in terms of ρ. . . . . . . . . . . . . . . . . . . . . . . 123

8



LIST OF FIGURES

21 Generalisation of the Kerr-Schild double copy, in which one may identify

Abelian or non-Abelian exact solutions of a gauge theory with the same

gravity solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9



Chapter 1

Introduction

Bridging the gap between gauge theories and gravity is one of the most important and

notorious open problems in theoretical physics today. Although these theories boast

great success in describing an impressive array of physical phenomena, they do so in-

dependently of each other. This is problematic as some phenomena, such as black

holes, require a dual description. There are a number of proposals to unify or bridge

these seemingly disparate theories - one of which is the double copy, which constitutes

a significant part of the research underpinning this thesis.

As important as it is to find a correspondence between theories of nature, it is of

equal importance to improve the precision of a theory prediction, i.e., an observable.

Gaining greater insight into the theories governing the experiments carried out at the

LHC could enable us to see exciting new physics beyond the Standard Model, such as

the detection of previously unseen heavy particles. One contribution to this endeavour

comes in the form of calculating quantities related to the differential cross section in

Quantum Chromodynamics (QCD). A QCD prediction can be enhanced by accounting

for the phenomenon of threshold radiation associated with the scattering process.

I have had the rare privilege of studying these two different avenues throughout my

PhD research. As such, this thesis is organised in two parts.

Part I of the thesis covers the topic of threshold radiation. Chapter 2 introduces the key

foundations of QCD underpinning the calculation and structure of the differential cross

section (our observable) via our probe, the Drell-Yan process. Having been acquainted

with problematic large logarithmic terms in differential cross section calculations, in

chapter 3 we will review a technique to tackle them, i.e. resummation. We break new

ground in chapter 4 with a fixed order calculation (next-to next-to next-to leading or-

der, or N3LO), where we discover some important features about the substructure and

10



CHAPTER 1. INTRODUCTION

sources of a class of large logs. Spurred by our findings, we embark on investigating

this same class of large logs for a key part of the differential cross section at any order

in chapter 5. We recap and conclude our findings in chapter 6, and build a small bridge

to the next half of the thesis.

Part II of the thesis covers the topic of the double copy. Chapter 7 introduces the

BCJ double copy, which draws a relationship between scattering amplitudes of gauge

theory and gravity, as well as a third theory - biadjoint scalar theory. This paves the

way for the Kerr-Schild double copy reviewed in chapter 8, where we explain our claim

that although this double copy relates exact classical solutions, it nonetheless relates

their respective theories in an approximate way. This raises the question of whether

the double copy operates at an arguably deeper non-perturbative level. We explore

this idea by expanding the catalogue of non-Abelian strongly coupled exact solutions

of biadjoint scalar theory in chapter 9. We rule out a prospective link between one of

those solutions and its proposed gauge theory counterpart in chapter 10. Although this

leaves the question of the existence of a non-perturbative double copy unresolved, we

do discover some novelties regarding shockwaves, as well as the nature of many-to-one

mappings in the double copy.

11
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Threshold Radiation
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Chapter 2

The QCD Differential Cross

Section - an Overview

Comparing a theory prediction against LHC data requires developing some expectation

of what is possible according to the Standard Model. If this is done accurately, then

a mismatch between observed data and the expectation could signal new physics, such

as that associated with the production of heavy particles. Such a theoretical prediction

is the differential cross section.

We calculate the differential cross section by using perturbation theory, which approx-

imates the physical observable by a power series expansion in the theory’s coupling

constant, αs = g2s
4π in QCD. We can interpret each order in the series as accounting for

the effect of adding a parton (i.e. a gluon or quark) emission to the underlying process,

including all possibilities of this additional parton being virtual, or a real emission.

Figure 1 schematically illustrates this idea. Calculating the differential cross section

typically proceeds order by order, that is, by starting with the leading order term, and

correcting it by successively adding a particle (real and virtual configurations) to arrive

at a fixed order (i.e. a truncated) expansion. In this thesis, we will focus on corrections

associated with gluon emissions.

The series expansion of the physical observable (i.e. the differential cross section)

depends on the kinematic invariants of the underlying process. In QCD, the coeffi-

cients of the perturbation expansion can take the form of a function of a dimensionless

variable, e.g. for the production of a heavy particle,

z ≡ Q2

√
ŝ
, (2.1)

13



CHAPTER 2. THE QCD DIFFERENTIAL CROSS SECTION - AN OVERVIEW

Figure 1: Schematic depiction of an all order amplitude on the left as a perturbative
expansion where each correction on the right corresponds to the addition of a virtual
particle.

where Q is the energy of the outgoing virtual boson or heavy particle, and
√
ŝ is the

partonic centre of mass energy of the process producing such a particle. This ratio

of kinematic invariants can effectively track the proportion of initial state energy go-

ing toward producing heavy particles and therefore also that lost to radiative emissions.

The differential cross section is particularly interesting and notoriously challenging

to calculate in the threshold limit z → 1. In this limit, nearly all available incoming

energy goes toward heavy particle production, and so any residual or accompanying

radiation must be infrared. Infrared radiation (IR) can take the form of soft gluons,

i.e. gluons with four-momentum kµ → 0, or collinear gluons, i.e. gluons with nearly

vanishing transverse momentum with respect to the hard particles of the process, or

indeed both soft and collinear gluons. Physically, a detector can not resolve this type

of emission, because the emissions are either too weak to resolve, or can not be dis-

tinguished from the hard particles, as illustrated by figure 2. However, their inclusion

in a differential cross section calculation is necessary for improving the accuracy of the

prediction. References [5,6] offer a few pedagogical examples of the impact of including

information from threshold contributions for predictions at fixed order.

Crucially, near the threshold limit, the coefficient of the coupling becomes large enough

to override the smallness of the coupling. The perturbative expansion is populated by

large logarithms, and exactly at threshold, divergent terms. The divergent terms do

not pose any real threat to producing a finite physical observable, as the Kinoshita-Lee-

Nauenberg theorem guarantees that at all orders real and virtual emissions associated

with IR divergences will cancel [7–9]. On the other hand, the large logarithms near

threshold offer, at each order, large corrections to the first term of the series. This

means that order by order, the fixed order differential cross section may vary wildly,

and therefore the use of these logs as corrections requires care.

Although the fixed order logarithmic terms in the perturbative expansion are large

near threshold, they do contain useful information for improving predictions, which

motivates their study. By examining these large logs, it is possible to construct a sta-

ble correction to the fixed order prediction that captures some all-order information.

This construction is typically achieved via resummation, which will be explored in the

14



CHAPTER 2. THE QCD DIFFERENTIAL CROSS SECTION - AN OVERVIEW

Figure 2: Infrared radiation: zoom in on gluon radiation too soft or too close to quark
leg (collinear) to resolve

subsequent chapter.

In this chapter, we will briefly familiarise the reader with differential cross sections

in QCD, and classify the large logarithmic terms in fixed order differential cross sec-

tions associated with near threshold radiation.

As a precursor, we will review some key aspects of QCD that underpin the calcula-

tions associated with the differential cross section.

2.1 QCD - A brief introduction

QCD is a quantum field theory describing how the constituents of a hadron bind to-

gether via the strong nuclear force. The constituents, also referred to as partons, are

the 6 flavours of quark, and the force-carrying gluons, all of which carry the “colour”

charge. Quarks and gluons exchange colour charges in accordance with the symmetry

set out by the non-abelian gauge group SU(3). In this context, the gauge transforma-

tions acting on gluons contain the 8 generators of group, typically represented by the

Gell-Mann matrices. These matrices can act on each other and on quarks, which are

represented by 3-vectors in colour space.

An important feature of QCD is that the gluon carries the charge of the gauge group

(i.e. the colour charge), unlike the chargeless photon in QED. This allows for gluon

self interactions, greatly complicating the number of Feynman diagrams possible, and

thus realistically impairing the calculation of full fixed order differential cross sections

at higher orders. This motivates a whole host of research into methods that can reduce

15



CHAPTER 2. THE QCD DIFFERENTIAL CROSS SECTION - AN OVERVIEW

or streamline calculations. Some of these involve looking for patterns or substructure

inside fixed order partonic cross section expressions.

A further complication to calculating partonic cross sections is the phenomenon of

confinement. Non-neutral colour charged particles, or free quarks or gluons have not

been observed in nature. Rather, we have observed hadrons and other bound states

of quarks and gluons where the net colour charge is neutral. This begs the question,

under what conditions can we meaningfully calculate partonic processes where partons

are treated as free particles?

2.1.1 The running coupling and asymptotic freedom

So far, we have described some features of the colour charge in quarks and gluons,

but we have not yet touched on the strength with which these partons are bound to

each other. It is slightly misleading to call the QCD coupling αs a “constant” as it

varies with the energy scale of the process, a phenomenon known as running coupling.

The running coupling has serious implications for how we can use perturbation theory.

Firstly, at a particular energy scale, the coupling should be sufficiently weak to justify

treating partons as free particles, rather than particles confined in bound states. Sec-

ondly, the validity of the perturbative expansion depends on its expansion parameter

and coefficients being sufficiently small. In other words, perturbation theory will hold

only for certain energy scales.

The running of the coupling becomes visible in perturbation theory when calculat-

ing higher order diagrams. When performing integrals over infinite loop momenta,

ultraviolet (UV) divergences (i.e. divergences associated with high energy scales) ap-

pear. These expressions form physical observables representing probabilities, which can

not be infinite. UV divergences may indicate that at very high energies, well beyond

the operating level of any collider, QCD could break down as a theory. Typically, this

challenge is dealt with via renormalisation, in which divergences above a mass or en-

ergy scale cut-off are removed from amplitude calculations by absorbing them in the

parameters of the theory. More specifically, each bare parameter can be decomposed

into a finite term and a counterterm absorbing divergent behaviour. There is some

choice in how this is done, the most common being the modified minimal subtraction

scheme, MS. This is a modification of the minimal subtraction scheme, in which the

counterterms are chosen to have no finite parts at all. In the modified version, some

constants arising from dimensional regularisation are also subtracted off the finite terms.

In performing renormalisation, the bare coupling takes on a dependence on the ar-
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bitrary mass scale parameter µ according to the Callan-Symanzik equation

µ2dαs
dµ2

= β(αs) (2.2)

where the beta function is a power series in αs. The coefficients are determined by

calculating higher order diagrams:

β(αs) = −α2
s(b0 + b1αs + b2α

2
s + ...). (2.3)

For example, at the first order in QCD which is governed by the SU(3) group, we have

b0 =
33− 2nf

12π
(2.4)

where nf is the number of quark flavours. At most, nf can be 6, which ensures that b0

is positive. At the subsequent order we have

b1 =
153− 19nf

24π
. (2.5)

Consider the Callan-Symanzik equation (2.2) up to first order. This can be analytically

solved between two energy scales, where∫ αs(Q1)

αs(Q0)

1

β(αs)
dαs =

∫ Q2
1

Q2
0

1

µ2
dµ2 (2.6)

is solved by

αs(Q1) =
αs(Q0)

1 + αs(Q0)b0 ln
(
Q2

1

Q2
0

) . (2.7)

There are several important features to note about this expression. Firstly, we only

know the value of the coupling constant αs at an energy level relative to its value at

another energy level, i.e. we can not read off an absolute value of the coupling. Secondly,

the phenomenon of running coupling is explicit given that the value of αs varies with

energy. Thirdly, we can see that if we fix Q0, then as Q1 increases, αs decreases as

we are guaranteed that b0 is positive. This last feature is especially pertinent in the

context of perturbation theory, where the coupling needs to be sufficiently small to

serve as a suitable expansion parameter. At very high energies, the partons behave as

free particles - a property known as asymptotic freedom. At very low energies, typically

at scales less than 1 GeV, the coupling will be too strong to allow for a perturbative

expansion. The coupling diverges to infinity at a reference energy scale Q0 = Λ, where

(2.7) can be rewritten as:

αs(Q1) =
1

b0 ln
(
Q2

1
Λ2

) (2.8)
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As Q1 → Λ ∼ 200 MeV, i.e. roughly approaching the scale of a pion’s mass, the

coupling becomes infinite. This is known as the Landau pole, which can be viewed as

an energy scale cut-off effectively separating perturbative from non-perturbative effects.

This type of analysis suggests that it is possible to reason how and when partons can

be treated as free particles, and when perturbation theory can be used meaningfully to

calculate cross sections.

2.2 Hadronic vs. partonic cross sections

Asymptotic freedom allows us to treat partons as free particles, enabling calculations

such as partonic cross sections. However, processes at the LHC require some prediction

for hadronic processes. In order to offer an intuitive picture of how hadronic and

partonic cross sections are related to each other, we will first state the relationship for

the simplest case, leading order. In the next chapter, we will refine this and flesh it out

for a specific process at a higher order. Hadronic and partonic cross sections at leading

order can be related according to the formula

σhadronic =
∑
i,j

∫ 1

0
dx1

∫ 1

0
dx2 fi(x1) fj(x2) σ̂ij , (2.9)

where

� x1 and x2 are the momentum fractions representing the proportion of momentum

carried off by two interacting partons from their parent hadrons. These variables

run from 0, where the parton carries no momentum of the hadron, to 1, where

the parton carries all of the momentum of the hadron.

� fi(x) is a parton distribution function (PDF), encapsulating the probability that

a hadron will emit a parton of type i with momentum fraction x. Typically, we

denote the fi in literature by q, q̄, g depending on whether the parton is a quark,

antiquark, or gluon. At higher orders, PDFs can absorb collinear divergences,

and as such, will be sensitive to the factorization scheme choice1.

� The sum is over all possible parton types that can be emitted from a hadron,

i.e. including all flavours of quark and antiquark. It is a necessary and intuitive

condition that
∑

i

∫ 1
0 dxfi(x) = 1.

� σ̂ij is the partonic cross section. In general, the hat notation refers to partonic

quantities rather than hadronic.

1The factorization scale is a cut-off on transverse momenta, and can effectively serve as a separator
of perturbative from non-perturbative physics.
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The PDFs are sensitive to strongly interacting physics, and so we do not know how

to derive these from first principles. These functions are treated as non-perturbative

objects, determined by comparing against data. This area is an important and vast

subject in its own right, as evidenced by references [10–12] to name only a few examples.

In contrast to the non-perturbative nature of PDFs, partonic cross sections can be

calculated using perturbation theory. Note that the partonic cross section depends on

the amount of energy transferred from the parent hadrons to the partons, which is vari-

able. This means that in modelling parton interactions producing a particular heavy

particle, the amount of incoming energy can exceed that needed for production. The

“excess” energy can take the form of radiation, including the case where such radiation

is soft. We begin the endeavour of studying soft radiation with a probe.

2.3 Our probe: Drell-Yan production

The Drell-Yan process is one of the most commonly studied processes for a number of

reasons. Firstly, it is often the process directly producing heavy particles. Additionally,

this process contributes to many of the background processes at the LHC, and thus can

contribute to improving precision in data analysis. Drell-Yan is also a common probe

in the search for signals of dark matter, with implications for cosmological research

related to the anisotropy of the cosmic microwave background.

Although Drell-Yan can be used to directly model physical processes, it can also serve

as a convenient testing ground for more abstract ventures such as resummation stud-

ies. This is partly thanks to the fact that particles produced via Drell-Yan are not

enhanced by collinear final state radiation, only soft radiation, as a consequence of

kinematics [13]. This simplifies greatly any resummation studies and so the process is

often used as a probe in this domain.

In the standard model, Drell-Yan production is characterised by a quark-antiquark

pair annihilation producing a virtual photon or Z boson, subsequently decaying into a

pair of leptons. Higher orders are associated with real infrared gluon emissions as well

as virtual gluons off the initial quark/antiquark legs. As our interest lies in threshold

emissions associated with incoming particles, we do not need to be concerned with lep-

ton production. That is, we only need to study a sub-process of Drell-Yan, as illustrated

by figures 3 and 4 depicting this sub-process at leading order and next-to-leading order

respectively, and defined by:

q(p) + q̄(p̄)→ γ∗(Q) +X (2.10)
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µ

p

r1

p̄

r2

q
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Q

Figure 3: LO: qq̄ → γ?

µ

α

p

r1, i

p− k
l

k
s1, a

p̄

r2, j

q

s

Q

Figure 4: NLO: qq̄ → γ?g, 1 real
emission from the quark leg only

where the incoming quark and antiquark have d−dimensional momenta p and p̄ respec-

tively, the energy of the outgoing virtual photon is fixed at Q, and X represents the

total emitted radiation (although we will focus on gluon radiation only). The differ-

ential cross-section associated with this process at leading order and next-to-leading

order is very well known and well-studied [14–20]. In light of this, we will very briefly

review these results.

2.3.1 Leading order

At leading order, in d−dimensional spacetime, the amplitude corresponding to the

process depicted in figure 3 according to the Feynman rules given in appendix A is

iMLO = v̄r2(p̄)×−ieγµ × ur1(p)× ε∗µ,s(q) (2.11)

where e is the electromagnetic charge of the incoming quark, r1 and r2 are the spins of

the incoming quark and antiquark respectively, and s is the spin of the virtual photon.

We parametrise the d−dimensional momentum of the photon by q. The squared matrix

element2 is

|M |2LO =
e2(d− 2)s

2Nc
(2.12)

where Nc = 3 is the number of quark colours, and s = 2p · p̄ is the squared centre

of mass energy 3 in the limit where quark masses are negligible, which we will always

assume. The differential cross section is simply this squared matrix element integrated

over the phase space with one integral left undone. The leading order cross section is

2Unless otherwise stated, the “squared matrix element” reflects initial state spin and colour averag-
ing, and summing over final state spins.

3Although this is a partonic quantity, we drop the hat notation as we are not at risk yet of confusing
this with a hadronic quantity. Where we toggle between the partonic and hadronic quantities, we will
reinstate the hat notation.
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defined as

σ̂(0) =
1

F

∫
dΦ(1) |M |2LO (2.13)

where F is the flux factor associated with the initial state, i.e. F = 2s, and the dΦ(1)

signifies the phase space given by∫
dΦ(1) = (2π)d

∫
ddq

(2π)d−1
δ+(q2 −Q2)δd(q − (p+ p̄)). (2.14)

The δ+ distribution is defined in Appendix C.1.

Recall that earlier in this chapter, we defined the dimensionless threshold variable

z in expression (2.1). This variable tracks how much of the initial state energy carried

by the incoming quark and antiquark is transferred to the virtual photon and how much

is lost to accompanying radiation. We are interested in how the cross section changes

with respect to this variable, and so we will always leave one integral undone of the

cross section.

At leading order, we do not model any radiation in the process, and so it must be

the case that z → 1. It is unsurprising then to see this reflected in the differential cross

section at leading order in the threshold variable:

dσ̂

dz

(0)

=
2πe2(d− 2)

4sNc
δ(1− z). (2.15)

There are no large logarithms, which is as expected since we have not yet encoun-

tered any gluon emissions. The delta function produces a distribution of the threshold

variable z, effectively telling us that all incoming centre of mass energy
√
s must be

transferred to the virtual photon.

For simplicity, we can rewrite the differential cross section as

dσ̂

dz

(0)

= σo δ(1− z), (2.16)

where σo is the Born level cross section:

σo =
2πe2(d− 2)

4sNc
. (2.17)

At higher orders, we will see the recurrence of this term.
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Figure 5: Cut diagrams for Drell-Yan NLO 1 real emission

2.3.2 Next-to-leading order

We will now consider the next-to-leading order case: 1 gluon emission with d−dimensional

momenta k and spin s1 from an incoming hard leg. We do not consider virtual gluons,

as those diagrams will not yield any terms of interest for us, i.e. a particular class of

large logarithm - to be discussed later on in this chapter. Consider diagram 4. The

amplitude for this diagram (again using the Feynman rules in appendix A) is

iM = v̄j,r2(p̄)×−ieγµδjl × ε∗µ,s(q)×
i(6 p− 6 k)

(p− k)2
× igstaliγα × ε∗α,s1(k)× ui,r1(p), (2.18)

where we have included colour indices for all partons. Note that the gluon could have

been emitted from the antiquark. Then the full squared matrix element corresponding

to 1 real gluon emission is illustrated by the four diagrams of figure 5, with expression:

|M |2NLO =
e2g2

sCF (d− 2)

2Nc

[
(d− 2)

(
p · k
p̄ · k

+
p̄ · k
p · k

)
+ 2(d− 4)

+

(
s2

p̄ · k p · k
− 2s

p̄ · k
− 2s

p · k

)]
, (2.19)

where CF = 4
3 is the quadratic Casimir associated with gluon emission. We can already

identify some source of potentially divergent behaviour in the squared matrix element.

If our gluon is soft, i.e. kµ → 0, then the scalar products of the quark or antiquark

with the gluon will vanish, i.e. p · k → 0, and p̄ · k → 0. Counting the occurrence

of these terms in the denominator and adjusting for cancellation from the numerator

would indicate some degree of divergence, with s2

p̄·k p·k winning this race. However, the

squared matrix element is not the only possible source of divergence when considering

the cross section, defined as

σ̂(1) =
1

F

∫
dΦ(2) |M |2NLO. (2.20)

The flux factor F = 2s is the same at NLO as for LO as the incoming particles are

the same at both orders. On the other hand, the phase space must now reflect the
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additional outgoing gluon:∫
dΦ(2) = (2π)d

∫
ddq

(2π)d−1
δ+(q2 −Q2)

∫
ddk

(2π)d−1
δ+(k2) δd(k + q − (p+ p̄)). (2.21)

Performing the integral as set out by (2.20), but leaving one integral undone in z gives

us the differential cross section

dσ̂

dz

(1)

= σo
αs
4π
K(1)(z). (2.22)

where the K−factor4 is

K(1)(z) = CF 26−dπ2−d/2(1− z)d−3sd/2−2

×
(
−Γ(d/2− 1)

Γ(d− 2)
+

(
d− 2

4
+

z

(1− z)2

)
Γ2(d/2− 2)

Γ(d/2− 1)Γ(d− 4)

)
. (2.23)

This is a common notation in the literature, representing a type of normalised dif-

ferential cross section. We will generalise this notation further in this chapter. The

dimensional regularisation convention is d = 4 − 2ε, with a regularisation factor µ to

keep the coupling dimensionless. We can see that there will be terms in (2.23) that

are divergent as z → 1 and ε → 0, warranting a Laurent expansion around z ∼ 1 and

ε ∼ 0:

K(1)(z) = CF

(
4π

eγE

)2ε[1

ε

(
8− 8

(1− z)

)
+

16 log(1− z)
1− z

− 16 log(1− z) + 8

+ ε

(
16 log2(1− z)− 16 log(1− z)− 2π2 +

2π2 − 16 log2(1− z)
1− z

)]
(2.24)

where the prefactor 4π
eγE containing the Euler-Mascheroni constant is a consequence

of dimensional regularisation. We would like now to analyse this expression in the

threshold limit z → 1, close to 4 dimensions ε→ 1. To begin, we can classify three sets

of terms in (2.24), according to their order in ε:

� ε: The terms in the last set of brackets will vanish in the limit ε→ 0.

�
1
ε : Virtual contributions are of this type, taking the form ∼ δ(1 − z) at this

order, had we included them. The KLN theorem states that soft divergences (i.e.

z = 1) cancel between virtual and real contributions. This implies that the terms

in the first set of brackets dressed by the 1
ε pole must be associated with collinear

divergence. Collinear divergences arise in the limit where quarks are massless.

This is an idealized picture - quarks are massive, and when cross sections are

4This is not exactly the complete K−factor, as it does not include virtual contributions.
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calculated with non-zero mass, collinear divergences are not present. In this vein,

collinear divergences do not pose any real threat to the stability of our prediction

as they can be absorbed in the PDFs.

� ε0: There are two terms which are very large in the threshold limit z → 1,

threatening the stability of the correction to the fixed order differential cross

section: 16 log(1−z)
1−z which we call the leading power (LP) term, and −16 log(1−z),

the next-to-leading power (NLP) term, as it is suppressed by a power of (1 − z)
compared with the LP term. At higher orders, the LP terms of threshold processes

are well catalogued and understood, while less is known about NLP terms and

thus, this will be a focal point of this thesis.

In generalising beyond Drell-Yan at NLO, there is further substructure to LP and NLP

terms in the threshold limit.

2.4 The general differential cross section for heavy parti-

cle production

In the previous section, we were introduced to the series of large log terms arising in

the differential cross section at NLO for Drell-Yan production. In this section, we will

generalise this picture to differential cross sections at all orders for any type of heavy

particle production. Furthermore, we will classify the types of logarithmic terms that

form the series, and identify the class of terms we will focus on in this thesis.

In the threshold limit, perturbation theory will give us the differential cross section

of a process producing a heavy particle (including but not limited to Drell-Yan) to all

orders as follows (see e.g. [21]):

dσ̂

dξ
= σo

∞∑
n=0

(αs
π

)n 2n−1∑
m=0

[
c(−1)
nm

(
logm ξ

ξ

)
+

+ c(δ)
nmδ(ξ) + c(0)

nm logm ξ +O(ξ)

]
(2.25)

where

� Generally, the precise definition of ξ is process-dependent. Our choice of process

is Drell-Yan production, discussed earlier in this chapter, and ξ = 1− z where z

is defined in (2.1).

� σo is the Born level cross section defined in (2.17).

� The index n counts each fixed order in an expansion set out by perturbation

theory.
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� The index m indicates some order to the size or impact of logarithmic terms - the

logarithms raised to a higher value of m have a larger impact than those with a

lower value of m.

� The coefficients c
(r)
nm can be divergent (i.e., contain negative powers of ε) within

a partonic cross section. At the level of the hadronic cross section, the divergent

parts of these coefficients can be absorbed by parton distribution functions.

� The plus distribution
(

logm ξ
ξ

)
+

is explained in appendix C.2.

In the threshold limit where ξ → 0 (or in our case, z → 1), the logarithmic terms

dressed by the coefficients c
(−1)
nm and c

(0)
nm are large. Much is known about c

(−1)
nm , but

less is known about c
(0)
nm. This will be our area of interest. Note that this coefficient

concisely encapsulates a double sum - this means we will be scrutinizing many terms. It

will be helpful then to assign names to the substructure of (2.25) in a manner consistent

with supporting literature.

2.4.1 Classification of logs

The guide to the substructure is offered by the three indices of c
(r)
nm, each offering the

following classification:

� The index n can effectively count virtual and real emissions. For example, n = 0

indicates a tree level process devoid of any emissions whether real or virtual,

which we call leading order (LO). Adding one real or virtual emission (n = 1) is

next-to-leading order (NLO). The perturbation expansion at a general n is NnLO,

a mnemonic containing n next-to’s.

� Lower r’s dress the largest terms, i.e. c
(−1)
nm , in (2.25) for a particular m. We

call these terms leading power (LP). Much is known and written about LP terms,

particularly in the context of resummation - a technique producing a stable, finite

sum from a series of individually large terms [13, 22–26]. The terms dressed by

c
(0)
nm are the next largest, and so we refer to them as next-to-leading power (NLP).

Our area of focus will be (the less well known) NLP terms.

� Expanding the sum in m gives a series of logarithms. The logarithms raised to

the highest value of m are leading logs (LL), while those raised to the next highest

value of m are referred to as next-to-leading logs (NLL). More generally, any log

that is not leading can be referred to as sub-leading.

Each log term individually will be large, and with each order, the fixed order differential

cross section may vary wildly. However, their combination, either by resummation or

an alternative technique, can be finite and stable.
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2.4.2 The K-factor

In literature associated with threshold radiation, fixed order differential cross sections

are normalized to reveal pure radiative corrections. Such an expression is called a K-

factor, which we saw in expression (2.23) for Drell-Yan at NLO. The K−factor can be

generalised for higher orders:

(αs
4π

)n
K(n)(ξ) =

1

σo

dσ̂

dξ

(n)

(2.26)

where dσ̂
dξ

(n)
is the nth order differential cross section.

Each K−factor will include a sum of large log terms as per (2.25). We will hunt for

NLP logs either by calculating K−factors, or parts of K−factors contributing relevant

terms at higher orders of Drell-Yan production.

2.5 Summary

Ultimately, our goal is to seek out new physics, such as those associated with processes

at the LHC. Although these processes are hadronic, we have explained how, when, and

why we can use partonic processes as a key ingredient to forming a physical observable

to measure against experiment. The key observable we can calculate for a partonic

process is the partonic differential cross section via perturbation theory. The partonic

differential cross section will be a series of terms dependent on the kinematic invariants

of the process. In a particular limit of these kinematics, i.e. the threshold limit where

outgoing radiation is soft or collinear, this series will be populated by large logarithmic

terms, challenging the stability of a fixed order theory prediction. A possible antidote

comes in the form of resummation (the topic of the next chapter), however, to carry this

out it is necessary to understand the substructure and sources of these large logs. We

offered a gentle introduction via our probe, Drell-Yan production, where we reviewed

the the differential cross section at LO and NLO (where we saw our first large logs).

We then generalised this picture to an expression of a generic all-order differential

cross section, with a bird’s eye view of the log landscape and a classification of their

interesting features. Our area of focus will be the NLP logs, for which we intend to

perform a resummation. This is spurred by the success of past work to resum LP logs,

which will be reviewed in the next chapter.
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Chapter 3

Resummation

We finished the last chapter with a problem: when trying to correct differential cross

sections, large NLP logs threaten the stability of fixed order predictions. We also sug-

gested that the solution could take the form of resummation, where NLP log data is

processed to simulate the effect of all-order information. The resummed quantity then

offers a stable correction to the fixed order differential cross section.

Resummation is closely connected to exponentiation, the idea that an amplitude can

be expressed as an exponential, where the terms in the exponent are determined by

fixed order calculations. The act of placing a calculated fixed order result into an expo-

nential to yield an all-order correction is resummation. Since the squared amplitude is

an input to the cross section, the cross section can inherit some of this nice structure,

provided that the phase space meets some requirements about how it factorizes.

Historically, we can date the resummation of LP logs in QCD to LL level back to

1980, when it was found that a resummed correction offered a well-behaved result in

the threshold limit [27,28]. Since then, resummation was extended to include sublead-

ing logs at LP [22,23,29]. At present, NNLL is the state of the art for Drell-Yan. To get

a sense of resummation in action, we will walk through the well-understood example

of resummation of LP LL at NLO in this chapter.

The success of LP resummation gives us some confidence for investigating NLP resum-

mation. We surmise that resummation may depend on factorisation of the amplitude

(and by extension the differential cross section which should inherit the factorisation).

This is a feature that LP terms have been demonstrated to have and studies so far

suggest factorisation is a feature of NLP effects as well [21, 30–38]. If factorisation is

the bedrock of resummation, then we should begin by explaining what it is.
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3.1 Factorisation at the amplitude level

Factorisation offers a complementary view of the differential cross section to that ex-

pressed in (2.25). Before launching into the arguably more complicated subject of fac-

torisation at the level of the differential cross section, we will first become acquainted

with the concept at the level of the amplitude. In the threshold limit, the amplitude

for n external hard legs can be expressed as a product of independent factors

A(n) = H(n) · S(n) ·
n∏
i

Ji
Ji
. (3.1)

� The hard function H(n) collects IR finite contributions to the amplitude at any

order, and is free of infrared divergences.

� The jet function Ji accounts for emissions collinear to the hard leg i while Ji
corrects for any double counting of emissions that could be both soft and collinear.

� The soft function S(n) captures soft emission effects.

As the sole producer of leading logs, the soft function will be the primary focal point

for the resummation discussion to come. Note that our interest in the soft function

is highly dependent on what we are resumming. If we were to resum subleading logs,

we would need to explore the jet functions encompassing the hard collinear effects that

would start to contribute at NLL.

The soft function has properties inherently linked to resummation: universality and

exponentiation. Universality is equivalent to the statement that soft gluons have their

own Feynman rules independent of the underlying scattering process, as we shall see

next.

3.1.1 Feynman rules for soft emissions

In this section, we will develop the Feynman rule for soft emissions. To do this, we

will use the QED example of a fermion leg emitting n soft photons. The non-Abelian

version, i.e. soft gluon emission, has a similar Feynman rule, but has a more compli-

cated derivation due to the non-Abelian nature of QCD. Although it is not the original

derivation, an easy to follow pedagogical treatment (in a context and notation similar

to ours) can be found here: [39,40].

Consider a variation of the Drell-Yan process that we were introduced to in the previ-

ous chapter, where the hard quark leg with momentum pµ emits n soft photons (i.e.

instead of gluons) with momentum kµ as captured by figure 6. In the high energy limit,
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p
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q
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k1

α2
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αn
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Figure 6: fermion with n soft emissions

stripping out emission polarisations, charges, and other such dressings, the amplitude

associated with this picture will be

Aα1α2...αn
n = v̄(p̄)γµ

(6 p− 6 Kn)

(p−Kn)2
γαn ...

( 6 p− 6 K2)

(p−K2)2
γα2

( 6 p− 6 K1)

(p−K1)2
γα1u(p)ε∗µ(q), (3.2)

where Km =
∑m

i=1 ki for m = {1, 2, ..., n}.

In the soft limit ki → 0, the leading-power terms are

Aα1α2...αn
n = v̄(p̄)γµ

6 p
(−2p ·Kn)

γαn ...
6 p

(−2p ·K2)
γα2

6 p
(−2p ·K1)

γα1u(p)ε∗µ(q). (3.3)

A few words may be needed with regards to the denominator of the propagators.

Examining one such denominator, we see three types of term:

(p−Km)2 = p2 +K2
m − 2p ·Km. (3.4)

Given our assumption that the particles are massless, we have p2 = 0. As for K2
m, the

non-zero terms will be cross terms of the form ki · kj . In the soft limit, these terms are

dwarfed by the p ·Km terms, which is why we have discarded them.

Further simplifications can be made by using the anti-commutation properties of gamma

matrices

{γµ, γν} = 2ηµν14, (3.5)

as well as the Dirac equation for a massless fermion (in terms of spinors)

6 pu(p) = 0. (3.6)
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Combining these two properties, we have

6 p γα1u(p) = 2pα1u(p), (3.7)

and we can iteratively use these properties to ultimately arrive at a simplified version

of our amplitude

Aα1α2...αn
n = (−1)nv̄(p̄)γµu(p)ε∗µ(q)

pα1pα2 ...pαn

(p ·K1)(p ·K2)...(p ·Kn)
. (3.8)

Now, the labelling of the photons is arbitrary, and so we must take into account the

various permutations of the n photons. With this reasoning, we should re-write the

above with the following permutation accountancy adjustment:

1

(p ·K1)(p ·K2)...(p ·Kn)
→
∑
π

1

p · kπ1 p · (kπ1 + kπ2)...p · (kπ1 + ...kπn)
(3.9)

where we sum over all n! possible photon permutations π. Now we can invoke the

eikonal identity

∑
π

1

p · kπ1 p · (kπ1 + kπ2)...p · (kπ1 + ...kπn)
=

1

p · k1 p · k2...p · kn
. (3.10)

This identity can be easily proven by induction. We can highlight that n = 2 offers a

quick and simple sense check:

1

p · k1 p · (k1 + k2)
+

1

p · k2 p · (k1 + k2)
=

1

p · k1 p · k2
. (3.11)

The amplitude now takes the concise form

Aα1α2...αn
n = (−1)n

[
v̄(p̄)γµu(p)ε∗µ(q)

] n∏
i=1

pαi

p · ki
. (3.12)

From the above, we recognize the term in the square brackets as the leading order

amplitude for the hard scattering process that we saw in (2.11). The factor next to it is

what appears to be a product of n Feynman rules for a soft emission with momentum

k from a hard fermion leg with momentum p:

p
α

k
∼ pα

p · k
(3.13)
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(a)

(b)

Figure 7: (a) An example of connected diagrams Gc of soft virtual photon exchange
between incoming hard fermionic legs; (b) An example of webs W of soft virtual gluon
exchange between incoming hard fermionic legs.

This result is so important and useful that it has earned its own box. In addition to

the simplicity it lends to what could be quite complicated cross section calculations,

the eikonal Feynman rule subtly suggests that the soft emission is independent of the

underlying scattering process. This may appear surprising at first, but there is an

intuitive explanation - a soft emission has a Compton wavelength too long to resolve

the underlying hard scattering process. The property of universality is closely linked

to factorisation, where all soft emission contributions can be neatly packaged into the

soft function.

Considering the soft function contains its own Feynman rule, it can be considered

to be an amplitude in its own right, or at least, have amplitude-like properties. One

such property is exponentiation.

3.1.2 The soft function: exponentiation and Wilson lines

It is a well known result in QFT (using path integral methods) that Abelian ampli-

tudes exponentiate, such that the exponential contains a series of connected diagrams.

Disconnected diagrams are accounted for as they are expressed in terms of connected

diagrams. This holds true for amplitudes involving soft virtual photon radiation, and

thus the soft function will have the form (see e.g. [42])

SAbelian ∼ exp
[∑

Gc

]
, (3.14)

where Gc stands for connected diagrams, an example of which is captured in figure 7a.

In this particular example, virtual soft photons are exchanged between the incoming

hard fermionic legs of the Drell-Yan sub-process.
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Exponentiation of the soft function at the level of the amplitude also holds for vir-

tual soft gluon exchange, albeit complicated by the non-commutativity of the vertices

(see [43–45] for the original proof, as well as [39, 42] for a more modern treatment).

The series of diagrams in the exponent now reflects a non-trivial colour structure,

Snon-Abelian ∼ exp
[∑

C̄WW
]

(3.15)

where W are special diagrams called webs. These are connected diagrams, but fur-

thermore, they are two-eikonal irreducible. Put simply, it is not possible to partition

these diagrams into sub-diagrams by making cuts to the hard legs. This is reflected

in the colour structure associated with the diagrams. An example is given by figure

7b, involving soft virtual gluon exchange. The colour factors C̄W are not the same as

those normally dressing each graph, CW , although the latter can be used to construct

the former.

Equivalently, the effect of soft radiation can also be expressed in the language of Wilson

lines. More precisely and formally, the soft function (at the level of the amplitude) is

the vacuum expectation value of Wilson line operators, where the Wilson lines track

the underlying hard colliding partons producing the soft radiation (see e.g. [46, 47]):

Samp = 〈0|Φβ̄(0,∞)Φβ(−∞, 0)|0〉. (3.16)

The Wilson line operator related to the quark leg extends from the spacetime point

−∞ to 0 along the trajectory βµ,

Φβ(−∞, 0) = P exp

[
igsT

a

∫ 0

−∞
dλ β ·A(λβ)

]
, (3.17)

where P indicates path ordering and T a are the group generators. The dimensionless

d−vectors βµ and β̄µ are proportional to the momenta of the hard legs of the process,

pµ =
√
ŝβµ ; p̄µ =

√
ŝβ̄µ. (3.18)

A Wilson line operator Φβ̄ for the antiquark leg can also be similarly defined. By this

definition, gluon emission effects are captured within Wilson line operators. There is

an intuitive connection between Wilson lines and soft gluons. A Wilson line connects

a field at two spacetime points that may not be immediately comparable due to dif-

ferences in phase choice. In this context, the soft gluon may be too weak to “kick”

the hard quark’s momentum, but it can leave the hard leg changed by a phase factor,

exactly as a Wilson line does. Additionally, Wilson lines are gauge covariant objects
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which can be used to construct gauge invariant expressions.

To see how expression (3.16) really does capture soft effects, we will have a closer

look at the exponent of the Wilson line operator where we will unearth the Feynman

rule for soft gluon emissions. Consider the gauge field of (3.17), which can be expressed

as the Fourier transform of its momentum space counterpart:

A(λβ) =

∫
ddk

(2π)d
eiλβ·kÃ(k) (3.19)

Then the exponent of (3.17) becomes

igsT
a

∫ 0

−∞
dλ β ·A(λβ) = igsT

a

∫
ddk

(2π)d
β · Ã(k)

∫ ∞
0

dλ e−iλ(β·k−iε) (3.20)

where we have switched the integration variable λ → −λ. We have also manually

included the Feynman prescription to preserve causality and ensure correct boundary

conditions. The integral over λ is then straightforward to solve, with (3.20) resulting

in

igsT
a

∫ 0

−∞
dλ β ·A(λβ) =

∫
ddk

(2π)d
Ãµ(k)

[
gsT

a βµ

β · k − iε

]
(3.21)

Given that the dimensionless parameter βµ is proportional to the momentum pµ of the

hard leg, we can recognise the term in square brackets as the Feynman rule for a soft

gluon emission as per (3.13).

Although it is not strictly necessary to cast the soft function in the language of Wilson

lines, doing so can ease the extension of exponentiation to the level of the differential

cross section. So far, our discussion of factorisation and exponentiation has been con-

fined to the level of the amplitude. In the next section, we will see how these principles

should be interpreted for the differential cross section of the Drell-Yan process at NLO,

laying the grounds for resummation.

3.2 Resummation of LP terms in the Drell-Yan cross sec-

tion

This section reviews in detail the well-established resummation of leading logs of the

leading power terms in the Drell-Yan cross section at NLO. By walking through this

process slowly, we will gain a closer understanding of how resummation works, as well

as the interdependence of resummation and factorisation. Further, it will establish con-

fidence in approaching resummation of NLP terms to come in the subsequent chapters.
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As a starting point, we isolate the part of the cross section where we will conduct

the resummation exercise - the soft function.

3.2.1 Factorisation and the soft function

Here we will probe inside the hadronic cross section and fish out the soft function. We

begin by relating the hadronic and partonic cross sections, building on the introduction

given in section 2.2. As always, using Drell-Yan as the probe, the partonic process is

that of (2.10). The hadronic differential cross section is then given by:

dσ

dτ
= σo(Q

2)

∫ 1

0
dz

∫ 1

0
dx1

∫ 1

0
dx2 δ(τ−x1x2z)q(x1, µ

2
F )q̄(x2, µ

2
F )∆

(
z, αs(µ

2
R),

µ2
F

Q2
,
µ2
R

Q2

)
.

(3.22)

A few notes explaining the features and notation of the above:

� z = Q2

ŝ is the same familiar ratio defined in (2.1) tracking how much partonic

centre of mass energy (
√
ŝ) is lost to radiation.

� τ = Q2

s keeps track of how much hadronic centre of mass energy (
√
s) could be

lost to radiation.

� x1 and x2 are the momentum fractions described in section 2.2, which also de-

scribes the PDFs q, q̄ (see (2.9) for the relation to fi ).

� the hadronic momenta (P, P̄ ) are related to the partonic momenta (p, p̄) according

to p = x1P and p̄ = x2P̄ , so that ŝ = x1x2s.

� The delta function δ(τ−x1x2z) technically leads us to view (3.22) as a convolution

of the PDFs and the partonic cross section ∆. It implements that the partonic and

hadronic centre of mass energies are related to each other and not independent.

� µF and µR are the factorisation and renormalisation scales respectively. Given

that scale choice effects contribute only to subleading logs, we can simplify (3.22)

by setting µF = µR = Q (see e.g. [23]).

� ∆ is partonic, and closely related to the K−factor described in section 2.4.2. For

example, at leading order, ∆(0) = δ(1 − z) which reconciles with the differential

cross section of (2.16).

The interesting factorisation and exponentiation activity resides in ∆, however, many

terms on the right hand side of (3.22) are interlinked by the delta function δ(τ−x1x2z).

It would be nice to decouple these terms in order to properly isolate ∆ for further
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exploration. This is easily done by taking Mellin moments with respect to τ , i.e.∫ 1

0
dτ τN−1dσ

dτ
. (3.23)

The corresponding right hand side of this equation will be

σo(Q
2)

∫ 1

0
dz

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dτ τN−1δ(τ − x1x2z)q(x1, Q

2)q̄(x2, Q
2)∆(z,Q2),

(3.24)

which simplifies and results in the relation∫ 1

0
dτ τN−1dσ

dτ
= σo(Q

2)q(N,Q2)q̄(N,Q2)∆(N,Q2) (3.25)

where the partonic differential cross section in Mellin space is

∆(N,Q2) =

∫ 1

0
dz zN−1∆(z,Q2), (3.26)

and the transformed quark PDF is

q(N,Q2) =

∫ 1

0
dx1 x

N−1
1 q(x1, Q

2). (3.27)

We described in the previous chapter how the partonic differential cross section will be

populated by logs and we have described how to categorize these logs. In this section,

we will resum the LP logs taken from calculations at NLO. In momentum space, these

take the form of log(1−z)
1−z . In Mellin space, this translates as (see appendix C.3):

∫ 1

0
dz zN−1

(
log(1− z)

1− z

)
+

∼ 1

2
log2(N) + subleading terms. (3.28)

The threshold limit in Mellin space corresponds to N →∞. This is apparent when com-

paring the Mellin transforms of LP and NLP log terms, both of which can be found in

appendix C.3. In comparison with the LP term, the NLP term is suppressed by a power

in (1−z) in z−space. In Mellin space, this suppression manifests itself by a power of 1
N .

Finding the coefficients of these logs in this limit will enable the ultimate goal of re-

summation. To extract these logs, we need to pinpoint where to look for them in ∆.

Factorisation helps us do this. Analogous to amplitude-level factorisation in section

3.1, the partonic differential cross section in Mellin space can be factorised into hard,
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collinear, and soft contributions as follows:

∆(N,Q2, ε) = |H(Q2)|2 ·
∏
i ψi(N,Q

2, ε)∏
i ψeik,i(N,Q2, ε)

· S(N,Q2, ε). (3.29)

A few notes about this:

� H(Q2) is the familiar amplitude-level hard function, containing off-shell virtual

contributions. This term is finite.

� ψi(N,Q
2, ε) is a perturbative quark distribution function collecting collinear sin-

gularities associated with line i, while ψeik,i(N,Q
2, ε) accounts for any possible

double counting of contributions that could be both soft and collinear.

� S(N,Q2, ε) is the soft function, containing all real and virtual contributions as-

sociated with soft radiation.

The hard collinear contributions do not produce any leading logs at leading power. This

is because at any fixed order in αs, leading logs at leading power only arise when the

maximum number of singular integrations is performed - yielding the highest inverse

power of ε. In this context, we can set the hard collinear contributing terms collectively

to unity as per ∏
i ψi(N,Q

2, ε)∏
i ψeik,i(N,Q2, ε)

≡ 1. (3.30)

This leaves us with a simplified factorized form of ∆ producing leading logs,

∆(N,Q2, ε) = |H(Q2)|2 · S(N,Q2, ε). (3.31)

As desired, we have isolated the soft function S in the partonic differential cross section,

which governs the landscape of leading logs in Drell-Yan. A resummation of these logs

requires some confidence that this function exponentiates. We already been introduced

to exponentiation at the level of the amplitude in section 3.1.2, but now we will explore

this concept at the level of the differential cross section.

3.2.2 The soft function: exponentiation and Wilson lines

The soft function at the level of the amplitude was defined as the expectation value

of Wilson line operators (3.16). At the level of the differential cross section, the soft

function must reflect the integration of a “square” over an appropriate phase space, all

of which is formally given by

S(z,Q2, ε) =
1

Nc

∑
n

Tr
[
〈0|Φ†βΦβ̄|n〉〈n|Φ

†
β̄
Φβ|0〉

]
δ

(
z − Q2

ŝ

)
. (3.32)

36



CHAPTER 3. RESUMMATION

L L2 L3 L4 L5 · · ·
αs c

(−1)
11

α2
s c

(−1)
21 c

(−1)
22 c

(−1)
23

α3
s c

(−1)
31 c

(−1)
32 c

(−1)
33 c

(−1)
34 c

(−1)
35

...

Table 1: LP coefficients of (2.25), with LL terms in red, NLL in green, and subleading
logs in blue. Here we use the shorthand L ≡ log ξ

ξ
.

The sum over final states containing n partons generated by Wilson lines includes the

integration over the phase space. This is subject to constraint on the total final state

energy imposed by the the delta function. The trace is over the colour indices. The

soft function can then be shown to have a manifestly exponential form at the level of

the differential cross section provided two conditions are met:

� The vacuum expectation value of Wilson lines exponentiates prior to phase space

integration (shown diagramatically in [43–45], or by using renormalisation group

arguments in [48–53]).

� The phase space for n soft gluons factorizes into n decoupled 1-parton phase space

integrals, which is a necessary condition for factorisation at the level of the cross

section.

Proof of exponentiation has also more recently been reinterpreted by a path integral

approach that uses the “replica trick” [42], a method borrowed from statistical physics.

The bottom line is that the soft function will indeed have an exponential form, with a

series of webs populating the exponent. In other words, the exponent will contain an

expansion in the coupling constant of the theory, i.e.,

S ∼ exp
[
αsc1 + α2

sc2 + α3
sc3 + ...

]
. (3.33)

We can relate this picture back to the differential cross section of (2.25). Consider for

example, the LP terms only, i.e. those dressed by the coefficients c
(−1)
nm . These terms

are neatly packaged into a double sum. In table 1, we have unpacked the first few

orders of these terms, and colour coded them by the leading power of the log. The

LL terms begin at order αs, while the NLL terms begin at order α2
s. Therefore, if we

are interested in collecting some leading log information for LP terms, we can calculate

the NLO diagrams, isolate the LP LL terms, and place them in an exponential. This

process is resummation. Alternatively, should we wish to resum subleading log data, we

would need to calculate diagrams at higher orders, and exponentiate the appropriate

terms.
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Now that we have seen in principle how resummation works, we will flesh out a well-

understood example that we have already briefly started to discuss - the resummation

of the LP LL terms at NLO for the Drell-Yan process.

3.2.3 The eikonal cross section at NLO

The soft function, or eikonal cross-section (i.e. the cross section involving the leading

soft term with Feynman rule established in section 3.1.1) up to NLO in momentum

space is

S(z,Q2, ε) = (1 + S
(1)
virtual)δ(1− z) + S

(1)
real(z) +O(α2

s) (3.34)

where the contribution attributed to real emissions S
(1)
real(z) is illustrated in figure 5.

This part of the cross-section is (using the soft Feynman rule (3.13), and corresponding

to the third last term of (2.19))

S
(1)
real(z) =

ŝ

2π
µ2εg2

sCF

∫
dΦ(2) ŝ

p · k p̄ · k
(3.35)

where the two-body phase space is given by (2.21), but reproduced here for the reader’s

convenience:∫
dΦ(2) = (2π)d

∫
ddk

(2π)d−1
δ+(k2)

∫
ddq

(2π)d−1
δ+(q2 −Q2)δ(d)(q + k − p− p̄). (3.36)

Note that in (3.35), some dressing factors (e.g. flux factor, electric charge etc. ) have

already been absorbed in the hard factor seen in (3.31). Also note the absence of

the outgoing virtual photon momentum in the integrand, as expected since this is not

present in the Feynman rule for the soft gluon. We can then carry out the integral

over the photon momentum in the phase space integral by applying one of the delta

functions: ∫
dΦ(2) =

(2π)

ŝ

∫
ddk

(2π)d−1
δ+(k2)δ

(
1− z − 2k · (p+ p̄)

ŝ

)
. (3.37)

In applying the delta function, we made use of the definition of z as per (2.1) as well

as the property δ(ax) = 1
aδ(x). This brings us to

S
(1)
real(z) = µ2εg2

sCF

∫
ddk

(2π)d−1
δ+(k2)δ

(
1− z − 2k · (p+ p̄)

ŝ

)
ŝ

p · k p̄ · k
. (3.38)

As for the virtual contribution, we can calculate this directly or use the soft gluon

unitarity requirement ∫ 1

0
dz S(z,Q2, ε) = 1, (3.39)
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which when combined with (3.34) offers the simple relationship linking virtual to real

corrections

S
(1)
virtual = −

∫ 1

0
dz̃ S

(1)
real(z̃). (3.40)

The full NLO eikonal contribution is then composed of building blocks of real contri-

butions:

S(1)(z) = S
(1)
real(z)−

∫ 1

0
dz̃ S

(1)
real(z̃) δ(1− z), (3.41)

which reduces nicely to the integral

S(1)(z) = µ2εg2
sCF

∫
ddk

(2π)d−1
δ+(k2)

[
δ

(
1− z − 2k · (p+ p̄)

ŝ

)
− δ(1− z)

]
2p · p̄

p · k p̄ · k
.

(3.42)

This integral is easily solvable using a Sudakov decomposition, such as

kµ = k+β
µ + k−β̄

µ + kµT , (3.43)

where kT is a d-vector transverse to the dimensionless vectors βµ and β̄µ defined in

(3.18),

kT · β = kT · β̄ = 0. (3.44)

The k+ and k− terms can be arrived at by contracting (3.43) with p̄ and p respectively:

k+ =
2p̄ · k√

ŝ
; k− =

2p · k√
ŝ
. (3.45)

In the Sudakov decomposition, the integration measure becomes∫
ddk =

1

2

∫
dk+dk−d

d−2kT (3.46)

where kT is the d − 2 dimensional vector contained in kµT , and the factor of 1/2 is

the Jacobian associated with the change to Sudakov coordinates (see appendix D.1 for

more details). Moving to spherical polar coordinates yields the integration measure∫
ddk =

1

4

∫
dk+dk−dk

2
T dΩd−2(k2

T )
d−4
2 , (3.47)

where dΩm is the element of solid angle in m spatial dimensions. Having taken care of

the integration measure, we now express the integrand in Sudakov coordinates, made

of the following terms:

δ+(k2) = δ+(k+k− − k2
T ) (3.48)

2p · p̄
p · k p̄ · k

=
4

k+k−
(3.49)
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δ

(
1− z − 2k · (p+ p̄)√

ŝ

)
= δ

(
1− z − 1√

ŝ
(k+ + k−)

)
. (3.50)

Altogether, the integral in Sudakov coordinates is now

S(1)(z) =
µ2εg2

sΩd−2CF
(2π)d−1

∫
dk+dk−dk

2
T (k2

T )
d−4
2 δ+(k+k− − k2

T )

×
[
δ

(
1− z − 1√

ŝ
(k+ + k−)

)
− δ(1− z)

]
1

k+k−
. (3.51)

Applying the δ+ will act to change the integration bounds (see appendix D.2):

S(1)(z) =
µ2εg2

sΩd−2CF
(2π)d−1

∫ ∞
0

dk+dk− (k+k−)
d−6
2

[
δ

(
1− z − 1√

ŝ
(k+ + k−)

)
− δ(1− z)

]
.

(3.52)

This is easily solved with a variable change

k+ =
√
ŝ(1− z̃)y ; k− =

√
ŝ(1− z̃)(1− y), (3.53)

which has the corresponding integration measure:∫ ∞
0

dk+dk− =

∫ 1

0
ŝ(1− z̃)dz̃dy. (3.54)

The transformed integral becomes

S(1)(z) =
µ2εg2

sΩd−2CF
(2π)d−1

ŝ
d−4
2

∫ 1

0
dz̃ dy (1− z̃)d−5y

d−6
2 (1− y)

d−6
2

×

δ(z̃ − z)︸ ︷︷ ︸
A

− δ(1− z)︸ ︷︷ ︸
B

 . (3.55)

The integral has been broken into two integrals. The first, integral A, is a beta function

(see appendix B.3):∫ 1

0
dz̃ dy (1− z̃)d−5y

d−6
2 (1− y)

d−6
2 δ(z̃ − z)

= (1− z)d−5

∫ 1

0
dy y

d−6
2 (1− y)

d−6
2

= (1− z)−1−2ε Γ2(−ε)
Γ(−2ε)

, (3.56)

where, in the last step, we replaced d by our dimensional regularisation convention

d = 4 − 2ε. Integral B is actually the product of two beta functions if recast in the
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format:

−
∫ 1

0
dz̃ dy (1− z̃)d−5y

d−6
2 (1− y)

d−6
2 δ(1− z)

= −δ(1− z)
∫ 1

0
dz̃ z̃0(1− z̃)d−5

∫ 1

0
dy y

d−6
2 (1− y)

d−6
2

= δ(1− z) Γ2(−ε)
2εΓ(−2ε)

. (3.57)

In the last step, we used the property Γ(n + 1) = nΓ(n). Now that all integrals have

been carried out, we only have to tidy up the prefactor of (3.55). The solid angle in

our dimensional regularisation convention is

Ωd−2 =
2π

d−2
2

Γ(d−2
2 )
−→ Ω2−2ε =

2π1−ε

Γ(1− ε)
. (3.58)

Further, we can rewrite (3.55) using the MS renormalisation scale µ̄2 = 4πe−γEµ2 as

well as αs = g2s
4π . Altogether, (3.55) becomes

S(1)(z) =
µ̄2εeεγEαs

π

CF
Γ(1− ε)

(
1

ŝ

)ε Γ2(−ε)
Γ(−2ε)

[
(1− z)−1−2ε +

1

2ε
δ(1− z)

]
. (3.59)

Clearly this expression is divergent close to 4 dimensions, i.e. as ε → 0, and in the

threshold limit z → 1. If we want to understand this expression in these limits, then

we must perform the appropriate Laurent expansions which will produce the threshold

logs of interest to us. Prior to doing so however, we should recognise that there are

extra factors of z hiding in the
(

1
ŝ

)ε
dressing since z = Q2

ŝ . More precisely, we incur an

extra factor of zε, which, when expanded is

zε = 1− ε(1− z) + ... (3.60)

where the ellipses denote quadratic and higher order terms in ε and (1 − z). In light

of this, with dependence on the energy of the virtual momentum now made explicit,

(3.59) becomes

S(1)(z,Q2) =
αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)
(1− ε(1− z) + ...)

[
(1− z)−1−2ε +

1

2ε
δ(1− z)

]
.

(3.61)

It is evident that the factor of ε(1− z) will only act to suppress divergences and powers

of (1− z), resulting in power-suppressed log behaviour. As we are interested in leading

power behaviour, we can ignore these terms and instead simply consider only the leading
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term, i.e. truncate at zε = 1. Then (3.61) becomes

S(1)(z,Q2) =
αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)

[
(1− z)−1−2ε +

1

2ε
δ(1− z)

]
. (3.62)

Ultimately, we are interested in resumming the leading logs of the leading power terms.

The prerequisites to resummation are exponentiation and factorisation, which are ap-

parent in Mellin space. Our expression for the NLO eikonal cross section is in terms of

z in momentum space. To move from momentum space to Mellin space, we perform a

Mellin transform as set out below:

S(1)(N,Q2) =

∫ 1

0
dz zN−1S(1)(z,Q2). (3.63)

Applying this transform to (3.62) is straightforward, and the resulting integral is similar

to those of past steps in this section. In Mellin space, we have

S(1)(N,Q2) =
αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)

[
Γ(N)Γ(−2ε)

Γ(−2ε+N)
+

1

2ε

]
. (3.64)

Expanding this in ε ∼ 0, keeping only terms of order 1
ε and ε0 (as terms of higher order

will vanish in this limit), we have

S(1)(N,Q2, ε) =
αsCF
π

(
µ̄2

Q2

)ε [
2

ε

(
ψ(0)(N) + γE

)
+ 2

(
(ψ(0)(N))2 + 2γEψ

(0)(N)− ψ(1)(N) + γ2
E +

π2

6

)]
, (3.65)

where the polygamma functions ψ(m)(N) are defined in appendix. In the limit N →∞,

if we truncate any subleading log behaviour, then (3.65) reduces to

S(1)(N,Q2, ε)|LL =

(
µ̄2

Q2

)ε
2αs
π
CF

[
logN

ε
+ log2N

]
, (3.66)

where the first term accounts for the (anti-)collinear contributions (to be absorbed

in PDFs) and the second is the dominant log of the soft contribution. We know S
exponentiates, and so, the resummed soft function will contain the term:

Sresummed ∼ exp

[
2αs
π
CF

(
logN

ε
+ log2N

)]
. (3.67)
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We relate this back now to our original cross section defined in (3.25), although here

we truncate this expression strictly to the leading logs at leading power, i.e.∫ 1

0
dττN−1dσ

dτ
|LL = σo(Q

2)qLL(N,Q2)q̄LL(N,Q2)∆(N,Q2)|LL. (3.68)

Firstly, we can allow the PDFs to absorb the collinear and anti-collinear divergent

leading log contributions. The quark PDF thus becomes

qLL(N,Q2) = q(N,Q2) exp

[
αs
π
CF

logN

ε

]
(3.69)

and the antiquark PDF is similarly modified. This leaves us with a resummed expression

for the leading logs of the leading power terms of the cross section (or K−factor):

∆(N,Q2)|LP,LL = exp

[
2αs
π
CF log2N

]
, (3.70)

where the hard function here is unity since the Born-level cross section is factored out.

This expression resums the leading logs at leading power based on information gleaned

at NLO, simulating the effect of an all order correction.5 It is easily verified by earlier

publications (see e.g. [15, 28]).

Lastly, if we want to recover our expression for the leading power part of the dif-

ferential cross section in z− space, we would need to expand (3.70) in powers of αs,

and include all of the terms in the second line of (3.65) (rather than truncating at the

leading log) before performing an inverse Mellin transform. Comparing this second line

with that of (C.31), it is evident that our NLO LP differential cross section in z−space

is

∆(N,Q2)|LP =
2αs
π
CF

(
2

(
log(1− z)

1− z

)
+

)
(3.71)

which is consistent with the expression (2.24). In a later chapter, we will combine the

LP result with that pertaining to NLP terms.

3.3 The prospect of resummation beyond LP terms

To recap, we are motivated to improve the accuracy of the differential cross section by

including threshold radiation, but this leads to large logs at fixed order. The cure for

this is resummation, where large logs can be used to simulate an all-order correction to

the differential cross section. We have reproduced the resummation of a particular class

of logs - the leading logs at leading power for a differential cross section at NLO, which is

5Note that in practice, this exponential would need to be inverse Mellin transformed as part of the
hadronic cross section to be useful.
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a well-known piece of analysis. We now pose the question of whether a similar treatment

can be carried out for the NLP leading logs. We have a reasonable understanding of

what kind of data we need to perform such an exercise - i.e. the coefficients dressing the

large logs associated with differential cross section calculations. However, performing

such calculations is a considerable task. It may be worth probing first what part of the

differential cross section could be a source of leading behaviour, and which parts produce

subleading logs at NLP and therefore can be disregarded. The next two chapters explore

the sources of leading and subleading logs at NLP, for a process involving 3 gluons (2

real 1 virtual) and for a process involving any number of real emissions.
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Chapter 4

Next-to-Leading Power Leading

Logs at N3LO

We would like to improve the accuracy of cross section or K−factor expressions by in-

cluding threshold corrections given by the resummation of NLP LL terms. This involves

calculating fixed order cross sections to gather data useful for resummation. However,

calculating entire cross sections or random pieces of cross sections blindly is computa-

tionally expensive. This is one of many motivations to investigate whether there are

some substructures within cross sections that are sources of leading terms, and other

substructures which are consistently producing subleading terms and can therefore be

disregarded from further calculations.

A natural question arises of what has been done to date to answer such a question. So

far, NNLO is the state of the art for Drell-Yan cross section predictions, supplemented

by resummed logs [14–16,18,19,54,55]. A convenient method for calculating contribu-

tions to NNLO involving virtual corrections is the method of regions in which the loop

momentum can be separated out into non-overlapping hard, soft, and (anti-)collinear

modes or regions [56–58]. When using this classification for calculating the cross sec-

tion for the 1-real, 1-virtual contribution to NNLO, it was found that certain types of

log term had clear links to particular regions [59].

How persistent are the method of regions/NLP LL relationships beyond NNLO? We

explore a subset of N3LO contributions to the K−factor via the method of regions.

More specifically, we will focus on the “easiest” possible starting point - 2-real, 1-

virtual Abelian diagrams, i.e., diagrams associated with colour structure C3
F at O(α3

s).

Any learnings in this arena can be carried forward toward a more general case (e.g.

non-Abelian diagrams) down the line. To understand how NLP LL are connected to

the region substructures of the differential cross section, we will need to set up the right
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machinery which will be a combination of method of regions and Sudakov parametri-

sations, coming right up.

4.1 Squared matrix element for 2-real, 1-virtual emissions

Consider the subset of Abelian diagrams of the Drell-Yan process in which the higher

order emissions are of the form of 2 real gluon emissions and 1 virtual gluon. These

diagrams can be reduced to a set of scalar diagrams via methods such as the Passarino-

Veltman reduction, or Integration by Parts. An example of such a scalar diagram is

illustrated in figure 8, although it must be said that this is only one of the many Abelian

diagrams of this order (see [3] for full details).

One could use the method of regions to calculate 4 “region-specific” squared matrix

elements associated with this process, such that the sum of all 4 expressions is the total

squared matrix element. The regions are determined by a book-keeping parameter λ

related to our threshold parameter z according to λ ∼
√

1− z. Further to this clas-

sification, each region-specific squared matrix element can be expressed as a series of

terms organised by degree in λ. Once integrated over the full phase space (to be shown

in detail in the next section), clear relationships between the region substructures and

the LP, NLP etc. log structures of the K−factor will become apparent.

This section is intended help the reader understand what is meant by a “region-specific”

squared matrix element, and what its substructures are in terms of leading and sub-

leading behaviour in λ. To shine light on this, we will briefly explore some features of

the sample amplitude of figure 8 in the context of the method of regions. Familiarity

with the language around method of regions will allow us to state (but we will not

derive 6) the “region-specific” squared matrix elements.

4.1.1 Method of regions

Working with figure 8, we make use of a Sudakov decomposition to separate out collinear

from transverse momenta etc for the virtual gluon momentum,

kµ =
1

2
(n− · k)︸ ︷︷ ︸
≡k+

nµ+ +
1

2
(n+ · k)︸ ︷︷ ︸
≡k−

nµ− + kµT , (4.1)

6Although the derivation of the squared matrix elements does not form part of this thesis, the reader
may find further information about this in [3].
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d

b

c

p

Q

p̄

k2

k1

a

k

Figure 8: Drell-Yan 2 real, 1 virtual emission - 1 example scalar Feynman diagram

where we have defined dimensionless null vectors

nµ+ =
2√
ŝ
pµ, nµ− =

2√
ŝ
p̄µ, n+ · n− = 2, (4.2)

and we can treat transverse momentum as one component

kµ = (k+,kT , k−). (4.3)

We now attempt to account for “thresholdness”, i.e. degrees of threshold behaviour, in

the hope of decomposing our amplitude into non-overlapping soft, hard, (anti-)collinear

contributions led by the virtual gluon. We use the scaling parameter λ ∼
√

1− z to

divide the virtual gluon momentum into the four regions:

Hard: k ∼
√
ŝ(1, 1, 1); Soft: k ∼

√
ŝ(λ2, λ2, λ2);

Collinear: k ∼
√
ŝ(1, λ, λ2); Anticollinear: k ∼

√
ŝ(λ2, λ, 1). (4.4)

This is not the only possible scaling, however, it can be shown that these regions are

the only ones relevant for threshold expansion [3].

Using the region scaling and the Sudakov parametrisation, it is possible then to derive

4 region-specific amplitudes, each of which can be organised in powers of λ - the thresh-

old accountancy parameter. We can explore this principle in the amplitude associated

with diagram 8.

The contribution specific to figure 8 will roughly be a loop integral with integrand being

a product of propagators

I =

∫
[dK]

1

DaDbDcDd
(4.5)
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where the propagator denominators Di are

Da = k2

Db = (k + p)2 = k2 + 2p · k

Dc = (k + p− (k1 + k2))2 = k2 + 2k · p− 2k · (k1 + k2)− 2p · (k1 + k2) + 2k1 · k2

Dd = (p̄− k)2 = k2 − 2p̄ · k. (4.6)

We express this in the Sudakov decomposition, which we can connect back to the region

scaling.

Da = k2

Db = k2 +
√
ŝn+ · k

Dc = k2 +
√
ŝn+ · k − (n− · k)n+ · (k1 + k2)− (n+ · k)n− · (k1 + k2)

−
√
ŝn+ · (k1 + k2)− 2kT · (k1 + k2) + 2k1 · k2

Dd = k2 −
√
ŝn− · k. (4.7)

Each of the 4 Di can be split into 4 regions according to the scaling set out in (4.4). For

illustrative purposes, this has been for the propagator Db (where we use the Minkowski

metric in lightcone coordinates):

region for Db k+ kT k− k2 = 4k−k+ − kT
2
√
ŝn+ · k =

√
ŝk−

hard (h) 1 1 1 1 1

collinear (c) 1 λ λ2 λ2 λ2

anti-collinear (c) λ2 λ 1 λ2 1

soft(s) λ2 λ2 λ2 λ4 λ2

Leading terms in λ are highlighted grey in the table. Similar tables can also be arranged

for each propagator, providing all of the ingredients needed to build region-specific

amplitudes organised by leading behaviour in λ. However, there are a few crucial

points to be mindful of when using this approach:

� There are some subtleties regarding shifting the loop momentum, as the decom-

position of k into regions breaks Lorentz invariance, leading to a violation in shift

symmetry7 . The consequence is then that certain regions may be missed if the

loop momentum is chosen näıvely and propagators are truncated to leading terms

in λ prior to loop integration. This is not a serious problem, however, as it can be

cured by a careful choice of loop momentum parametrisation and/or conducting

7For a given master integral, shifting the loop momentum should not affect the final calculations.
Region expansion changes this.
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sensitivity analysis of propagator expansion before and after loop integration. A

full treatment of this phenomenon is explored in [3].

� There is some interplay between UV and IR divergences between the hard and

soft regions, which leads to some counterintuitive or surprising results such as

spurious infrared singularities seen in the hard region. This is because the method

of regions can alter the propagators, hence producing spurious divergences.

� Adding another gluon to the process could introduce new regional effects not seen

before. For example, at N3LO, the soft region contributes NLP terms in contrast

to NNLO where the soft region contributes nothing [59].

4.1.2 Squared matrix element terms

We have some idea of how amplitudes can be organised using the method of regions.

These amplitudes are the building blocks of squared matrix elements. The derivation

of these squared matrix elements and their building block amplitudes does not form

part of this thesis, however, we can state what the squared matrix elements are split

by region as well as identify whether they are LP or NLP .

For the squared matrix elements, it is convenient to adopt a notation of invariants:

t2 = (p− k1)2 = −2p · k1,

t3 = (p− k2)2 = −2p · k2,

u2 = (p̄− k1)2 = −2p̄ · k1,

u3 = (p̄− k2)2 = −2p̄ · k2,

s12 = (k1 + k2)2 = 2k1 · k2. (4.8)

In addition to this notation, we will capture the dressing of the squared matrix elements

by the factor

N = 128πα3
s(1− ε)C3

F e
2Nc(µ

2)2ε. (4.9)

Finally, we also define functions {fXi } in appendix F.

The squared matrix elements per region are as follows:

Hard Region

MLP
hard = N

(
µ2

MS

−ŝ

)ε
fH

1

ŝ3

t2t3u2u3
;
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MNLP
hard = N

(
µ2

MS

−ŝ

)ε
ŝ2(t2 + t3 + u2 + u3)

t2t3u2u3

[
fH

2 +
1

2

t2u3 + t3u2 − s12ŝ

(t2 + t3)(u2 + u3)
fH

1

]
; (4.10)

Collinear Region

MLP
col. = 0;

MNLP
col. = N

(
µ2

MS

)ε ŝ2

t2t3u2u3

{[
u2(−t2)−ε + u3(−t3)−ε

]
fC

1

+
t3u2 + t2u3 − s12ŝ

t2 + t3

[(
(−t2)−ε − 2(−t2 − t3)−ε + (−t3)−ε

)
fC

2

−
(
t2
t3

(−t2)−ε − (t22 + t23)

t2t3
(−t2 − t3)−ε +

t3
t2

(−t3)−ε
)
fC

3

]}
. (4.11)

The anticollinear region expressions are obtained through the simple exchange of p↔ p̄.

Soft Region

MLP
soft = 0;

MNLP
soft = N

(
µ2

MS

−s12

)ε
ŝ2

t2t3u2u3

×
{

t3f
S
1

t2(t2 + t3)2

[
(s12ŝ− t2u3 − t3u2)

(
t2 + t3 − t3 2F1

(
1, 1, 1− ε, t2

t2 + t3

))]
+

fS
2

ŝ s12(t2 + t3)

[
(t2u3 − t3u2)2 − s12ŝ(t2u3 + t3u2)

]
+

fS
3

ŝ s12t2(t2 + t3)2

[
s2

12ŝ
2t3(t2 − t3) + t3(t2 + t3)(t2u3 − t3u2)2

+ s12 ŝ t2(t2 + t3)(t2u3 − t3u2)− t3(s2
12ŝ

2(t2 − t3) + (t2 + t3)(t2u3 − t3u2)2

− 2s12 ŝ t2(t2u3 + t3u2))2F1

(
1, 1, 1− ε, t2

t2 + t3

)]
+ {t2, t3 ↔ u2, u3}+ {t2, t3 ↔ u3, u2}+ {t2, u2 ↔ t3, u3}

}
. (4.12)

Note that 2F1

(
1, 1, 1− ε, t2

t2+t3

)
is a hypergeometric function.

4.2 Phase space integrals

All of the terms present in the region-specific squared matrix elements given by (4.10),(4.11),

(4.12) can be distilled into 4 master expressions. When integrating over the phase space,
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this translates to four master integrals:8

Integral 1 : I1(α1, α2, β1, β2, γ1, γ2) =∫
dΦ(3)

2∏
i=1

(
1

p · ki

)αi ( 1

p̄ · ki

)βi ( 1

p · k1 + p · k2

)γ1 ( 1

p̄ · k1 + p̄ · k2

)γ2
(4.13)

Integral 2 : I2(α1, α2, β1, β2, γ1, γ2) =∫
dΦ(3)

2∏
i=1

(
1

p · ki

)αi ( 1

p̄ · ki

)βi ( 1

p · k1 + p · k2

)γ1 ( 1

p̄ · k1 + p̄ · k2

)γ2
2k1 · k2

(4.14)

Integral 3 :∫
dΦ(3)

2∏
i=1

(
1

p · ki

)αi ( 1

p̄ · ki

)βi ( 1

p · k1 + p · k2

)γ1 ( 1

p̄ · k1 + p̄ · k2

)γ2
(2k1 · k2)δ

(4.15)

Integral 4 :∫
dΦ(3)

2∏
i=1

(
1

p · ki

)αi ( 1

p̄ · ki

)βi ( 1

p · k1 + p · k2

)γ1 ( 1

p̄ · k1 + p̄ · k2

)γ2
(2k1 · k2)δ

×2 F1

(
1, 1; a+ 1;

p · k1

p · k1 + p · k2

)
(4.16)

The parameters αi, βi, γi, δ can be (but are not necessarily) fractional powers, or can

be also set to 0. The hard and (anti)collinear regions can be constructed strictly out

of Integrals 1 (4.13) and 2 (4.14) while Integrals 3 (4.15) and 4 (4.16) are specific to

the soft region only. The former integrations make up the bulk of this chapter. The

integration associated with the soft region does not form part of this thesis.

The 3-body phase space in d dimensions is given by

∫
dΦ(3) = (2π)d

∫
ddq

(2π)d−1

(
2∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

)
δ+(q2 −Q2)

× δ(d) (q + k1 + k2 − (p+ p̄)) , (4.17)

where the δ+ distributions are defined in appendix C.1. We can immediately carry

out the integral over the photon momentum q using the delta function, simplifying the

8Note that there are small differences in the naming convention of the master integrals presented
here and those in [3].
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phase space to

∫
dΦ(3) = (2π)(3−2d)

(
2∏
i=1

∫
ddki δ+(k2

i )

)
δ(((p+ p̄)− (k1 + k2))2 −Q2), (4.18)

where we were able to drop the “+” from the delta function, as we are guaranteed that

the centre of mass energy will never be less than the total gluon energy. Throughout

the integration, we will use a slightly different convention of the Sudokov decomposition

to that laid out in section 4.1.1. Here we define

ki+ = n− · ki ; ki− = n+ · ki. (4.19)

For the reader’s convenience, table 2 offers a Rosetta stone of some popular terms.

Description Expression Sudakov Coordinates

ŝ 2p · p̄ ŝ

−ti 2p · ki
√
ŝki−

−ui 2p̄ · ki
√
ŝki+

gluon correlation 2ki · kj ki+kj− + ki−kj+ − 2kiT · kjT

on shell condition k2
i = 0 ki+ki− − |kiT |2 = 0

Table 2: Notation Key

We can translate the phase space integration measure into the Sudakov decomposition

as we did in (3.46), ∫
ddki =

1

2

∫
dki+dki−d

d−2kiT . (4.20)

The on shell condition is enforced by the delta plus,

δ+(k2
i ) = δ+(ki+ki− − |kiT |2), (4.21)

where the “+” will work toward changing the integration bounds on the ki+, ki− inte-

grals to coincide with positive energy requirements while leaving the transverse momen-

tum integral bounds stretching from negative to positive infinity (see appendix D.2).

Finally we have the the last delta function,
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δ(((p+p̄)−(k1+k2))2−Q2) =
1

ŝ
δ

(
(1− z)− 1√

ŝ
(k1+ + k1− + k2+ + k2−) +

2

ŝ
k1 · k2

)
(4.22)

where we have used the definition of z = Q2

ŝ as per (2.1), as well as the property

δ(ax) = 1
aδ(x). The cross term k1 · k2 at first glance looks like a fly in the ointment for

integration, however, we will soon see it is really not a problem. We will deal with this

first by expressing the delta function as a Fourier transform,

δ

(
(1− z)− 1√

ŝ
(k1+ + k1− + k2+ + k2−) +

2

ŝ
k1 · k2

)
=

∫ ∞
−∞

dω

2π
eiω(1−z)e

−iω√
ŝ

(k1++k1−+k2++k2−)
e

2iω
ŝ
k1·k2 . (4.23)

We can Taylor expand the exponential in k1 · k2, given that higher order terms will be

suppressed by powers of 1− z:

e
2iω
ŝ
k1·k2 = 1+

2iω

ŝ
k1 · k2 +O(k4

i )

= 1+
iω

ŝ
(k1+k2− + k1−k2+ − 2k1T · k2T ) (4.24)

+ terms suppressed by powers of (1− z).

So far, our phase space has the form

∫
dΦ(3) =

(2π)(3−2d)

22ŝ

2∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
−∞

dd−2kiT δ(ki+ki− − |kiT |2)

×
∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)e

−ω̃√
ŝ

(k1++k1−+k2++k2−)

×
[
1 +

ω̃

ŝ
(k1+k2− + k1−k2+ − 2k1T · k2T )

]
, (4.25)

where we have transformed ω̃ = iω.

At this point, we will need to bring the integrand (i.e. squared matrix element) into

the picture as the second master integral (4.14) has a cross term, unlike the first master

integral (4.13). The implication of this of course is that the cross term will need careful

handling within each master integral. We will begin with the easier of the two, the first

master integral.

53



CHAPTER 4. NEXT-TO-LEADING POWER LEADING LOGS AT N3LO

4.2.1 Master integral 1

Consulting table 2, the squared matrix element of the first master integral (4.13) in the

Sudakov decomposition has the form:

M ≡
2∏
i=1

(
1

p · ki

)αi ( 1

p̄ · ki

)βi ( 1

p · k1 + p · k2

)γ1 ( 1

p̄ · k1 + p̄ · k2

)γ2
=

(
2√
ŝ

)C 2∏
i=1

(
1

ki−

)αi ( 1

ki−

)βi ( 1

k1− + k2−

)γ1 ( 1

k1+ + k2+

)γ2
(4.26)

where

C = α1 + α2 + β1 + β2 + γ1 + γ2. (4.27)

We notice two nice properties in the above, namely the independence of the squared

matrix element from cross terms in gluon momentum k1 ·k2, and transverse momentum.

The lack of cross terms means that we can make short work of the cross term present

in the phase space given by (4.25). Consider the gluon transverse momentum cross

term k1T · k2T in the context of one of the transverse momentum integrals. When this

odd function (i.e. linear in k1T ) is coupled with the inherently even delta function, the

integral will vanish, i.e.∫ ∞
−∞

dd−2k1T δ(k1+k1− − |k1T |2)k1T · k2T = 0. (4.28)

This leaves us with the phase space,

∫
dΦ(3) =

(2π)(3−2d)

22ŝ

2∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
0

dd−2kiT δ(ki+ki− − |kiT |2)

×
∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)e

−ω̃√
ŝ

(k1++k1−+k2++k2−)

×
[
1 +

ω̃

ŝ
(k1+k2− + k1−k2+)

]
. (4.29)

The transverse momentum integrals can further be transformed into spherical polar

coordinates, much as we did in (3.47). This will yield the phase space

∫
dΦ(3) =

(2π)(3−2d)

24ŝ
Ω2
d−2

2∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
0

d|kiT |2 (|kiT |2)
d−4
2

× δ(ki+ki− − |kiT |2)

×
∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)e

−ω̃√
ŝ

(k1++k1−+k2++k2−)

54



CHAPTER 4. NEXT-TO-LEADING POWER LEADING LOGS AT N3LO

×
[
1 +

ω̃

ŝ
(k1+k2− + k1−k2+)

]
. (4.30)

Note that we were able to carry out our solid angle integration directly as there is no

angular dependence at all (in any of our master integrals), and that each real gluon

emission incurred its own solid angle factor. As the squared matrix element has no

dependence on transverse momentum, we can perform our transverse momentum phase

space integrals in (4.30) immediately, i.e.

2∏
i=1

∫ ∞
0

d|kiT |2 (|kiT |2)
d−4
2 δ(ki+ki− − |kiT |2) =

2∏
i=1

k
d−4
2

i+ k
d−4
2

i− . (4.31)

Putting all of this together, the first master integral is

I1(α1, α2,β1, β2, γ1, γ2)

=
(2π)3−2d

24−C ŝ−1− 1
2
CΩ2

d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

×
∫ ∞

0
dk1+e

−ω̃√
s
k1+k

d−4
2
−β1

1+

∫ ∞
0

dk2+e
−ω̃√
s
k2+k

d−4
2
−β2

2+

(
1

k1+ + k2+

)γ2
×
∫ ∞

0
dk1−e

−ω̃√
s
k1−k

d−4
2
−α1

1−

∫ ∞
0

dk2−e
−ω̃√
s
k2−k

d−4
2
−α2

2−

(
1

k1− + k2−

)γ1
×

 1︸︷︷︸
A

+
ω̃

ŝ
(k1+k2−︸ ︷︷ ︸

B1

+ k1−k2+︸ ︷︷ ︸
B2

)

 , (4.32)

where we have divided our integral into three separate integrals. We can start with the

simplest integral - Integral A.

Integral A

We can immediately make the variable change k̃i± = ω̃√
s
ki±:

I1A(α1, α2,β1, β2, γ1, γ2)

=
(2π)3−2d

24−C ŝd−3−CΩ2
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)2d−4−C

︸ ︷︷ ︸
Iω̃

×
∫ ∞

0
dk̃1+e

−k̃1+ k̃
d−4
2
−β1

1+

∫ ∞
0

dk̃2+e
−k̃2+ k̃

d−4
2
−β2

2+

(
1

k̃1+ + k̃2+

)γ2
︸ ︷︷ ︸

I+

×
∫ ∞

0
dk̃1−e

−k̃1− k̃
d−4
2
−α1

1−

∫ ∞
0

dk̃2−e
−k̃2− k̃

d−4
2
−α2

2−

(
1

k̃1− + k̃2−

)γ1
︸ ︷︷ ︸

I−

. (4.33)
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The integral Iω̃ over ω̃ is an inverse Laplace transform (see appendix C.4), i.e.

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)2d−4−C
=

(1− z)2d−5−C

Γ(2d− 4− C)
. (4.34)

The other integrals can be solved by the method described in appendix E. More specif-

ically,

I+ = I(m =
d− 4

2
− β1, n =

d− 4

2
− β2, l = γ2)

=
Γ(d−2

2 − β1)Γ(d−2
2 − β2)

Γ(d− 2− β1 − β2)
Γ(d− 2− β1 − β2 − γ2) (4.35)

I− = I(m =
d− 4

2
− α1, n =

d− 4

2
− α2, l = γ1)

=
Γ(d−2

2 − α1)Γ(d−2
2 − α2)

Γ(d− 2− α1 − α2)
Γ(d− 2− α1 − α2 − γ1). (4.36)

This gives us

I1A(α1, α2, β1, β2, γ1, γ2) =
(2π)3−2d

24−C Ω2
d−2s

d−3−C (1− z)2d−5−C

Γ(2d− 4− C)

×
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)
× Γ(d− 2− α1 − α2 − γ1)Γ(d− 2− β1 − β2 − γ2)

Γ(d− 2− α1 − α2)Γ(d− 2− β1 − β2)
. (4.37)

Integrals B1 and B2

Now we make the variable change k̃i± = ω̃√
s
ki± to Integral B1 of (4.32):

I1B1(α1, α2,β1, β2, γ1, γ2)

=
(2π)3−2d

24−C ŝd−3−CΩ2
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)2d−3−C

︸ ︷︷ ︸
Iω̃

×
∫ ∞

0
dk̃1+e

−k̃1+ k̃
d−2
2
−β1

1+

∫ ∞
0

dk̃2+e
−k̃2+ k̃

d−4
2
−β2

2+

(
1

k̃1+ + k̃2+

)γ2
︸ ︷︷ ︸

I+

×
∫ ∞

0
dk̃1−e

−k̃1− k̃
d−4
2
−α1

1−

∫ ∞
0

dk̃2−e
−k̃2− k̃

d−2
2
−α2

2−

(
1

k̃1− + k̃2−

)γ1
︸ ︷︷ ︸

I−

. (4.38)
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All of the integrals present are of a similar form to those of Integral A. We then have:

I1B1(α1, α2, β1, β2, γ1, γ2) =
(2π)3−2d

24−C Ω2
d−2ŝ

d−3−C (1− z)2d−5−C

Γ(2d− 4− C)

×
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)
× Γ(d− 2− α1 − α2 − γ1)Γ(d− 2− β1 − β2 − γ2)

Γ(d− 2− α1 − α2)Γ(d− 2− β1 − β2)

× 1− z
2d− 4− C

(
d− 2

2
− β1

)(
d− 2

2
− α2

)
×
(
d− 2− α1 − α2 − γ1

d− 2− α1 − α2

)(
d− 2− β1 − β2 − γ2

d− 2− β1 − β2

)
.

(4.39)

It turns out that Integral B2 is the same as B1 under the change α1 ↔ α2 and β1 ↔ β2.

Finale

Putting together Integrals A,B1 and B2, we have

I1(α1, α2,β1, β2, γ1, γ2)

=
(2π)3−2d

24−C Ω2
d−2ŝ

d−3−C (1− z)2d−5−C

Γ(2d− 4− C)

2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)
× Γ(d− 2− α1 − α2 − γ1)Γ(d− 2− β1 − β2 − γ2)

Γ(d− 2− α1 − α2)Γ(d− 2− β1 − β2)

×
{

1 +
1− z

2d− 4− C

[(
d− 2

2
− β1

)(
d− 2

2
− α2

)
+

(
d− 2

2
− β2

)(
d− 2

2
− α1

)]
×
(
d− 2− α1 − α2 − γ1

d− 2− α1 − α2

)(
d− 2− β1 − β2 − γ2

d− 2− β1 − β2

)}
. (4.40)

A Small Check

If the reader will permit a slight jump to the future, we can perform a small cross check

with a result we will see in the next chapter. If we take αi = βi = 1, γi = 0, (and

therefore also C = 4), we will recover the leading soft term integrated over the full

3-body phase space for 2 real soft gluon production:

∫
dΦ(3)

2∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
= (2π)3−2dΩ2

d−2ŝ
d−7 (1− z)2d−9

Γ(2d− 8)
Γ4

(
d− 4

2

)[
1 + (1− z)

(
d− 4

4

)]
(4.41)

which reassuringly agrees with equation (5.28) for n=2.
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4.2.2 Master integral 2

Unlike Integral 1, we now have the presence of cross terms and therefore also transverse

momentum in our integrand via the gluon correlation term 2k1 · k2. This means that

we should use the phase space as per (4.25), allowing us to write Integral 2 as

I2(α1, α2, β1, β2, γ1, γ2)

=
(2π)3−2d

4ŝ

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

∫ ∞
0

dk1+

∫ ∞
0

dk1−

∫ ∞
0

dd−2k1T δ(k1+k1− − |k1T |2)∫ ∞
0

dk2+

∫ ∞
0

dk2−

∫ ∞
0

dd−2k2T δ(k2+k2− − |k2T |2)e
−ω̃√
ŝ

(k1++k1−+k2++k2−)

×M ×
(

1 +
ω̃√
ŝ

2k1 · k2

)
2k1 · k2. (4.42)

Consider the last piece of this expression, i.e.(
1 +

ω̃√
ŝ

2k1 · k2

)
2k1 · k2 = 2k1 · k2 +O((k1 · k2)2). (4.43)

Now, each gluon implicitly carries a factor (1 − z), and our area of interest is the

soft limit where z → 1. In this limit, 2k1 · k2 ∼ (1 − z)2, which will act to suppress

divergences. Given that we are most interested in leading divergent terms in 1− z, we

can discard:

O((k1 · k2)2) ∼ O((1− z)4). (4.44)

Furthermore, we can express the remaining first order gluon correlation term in Sudakov

coordinates, leaving us with:

I2(α1, α2, β1, β2, γ1, γ2)

=
(2π)3−2d

4ŝ

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

∫ ∞
0

dk1+

∫ ∞
0

dk1−

∫ ∞
0

dd−2k1T δ(k1+k1− − |k1T |2)

×
∫ ∞

0
dk2+

∫ ∞
0

dk2−

∫ ∞
0

dd−2k2T δ(k2+k2− − |k2T |2)e
−ω̃√
ŝ

(k1++k1−+k2++k2−)

×M × (k1+k2− + k1−k2+ − 2k1T · k2T ). (4.45)

Now we deal with all terms containing transverse momenta in (4.45):

� The transverse momenta cross term 2k1T · k2T will drop off using the same rea-

soning as we saw for the first master integral (see (4.28)).

� The integrals over transverse momenta and remaining delta functions will get the

same treatment as that leading up to (4.30), i.e. a change of coordinate system

to spherical polar coordinates before application of delta functions.
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The resulting integral has a similar form to that of integrals 1 B1 and B2 (see (4.39)):

I2(α1, α2, β1, β2, γ1, γ2)

=
(2π)3−2d

24ŝ
Ω2
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

∫ ∞
0

dk1+e
−ω̃√
ŝ
k1+k

d−4
2

1+

∫ ∞
0

dk1−e
−ω̃√
ŝ
k1−k

d−4
2

1−

×
∫ ∞

0
dk2+e

−ω̃√
ŝ
k2+k

d−4
2

2+

∫ ∞
0

dk2−e
−ω̃√
ŝ
k2−k

d−4
2

2−

×M × (k1+k2− + k1−k2+)

=
(2π)3−2d

24−C ŝ−1− 1
2
CΩ2

d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

×
∫ ∞

0
dk1+e

−ω̃√
ŝ
k1+k

d−4
2
−β1

1+

∫ ∞
0

dk2+e
−ω̃√
ŝ
k2+k

d−4
2
−β2

2+

(
1

k1+ + k2+

)γ2
×
∫ ∞

0
dk1−e

−ω̃√
ŝ
k1−k

d−4
2
−α1

1−

∫ ∞
0

dk2−e
−ω̃√
ŝ
k2−k

d−4
2
−α2

2−

(
1

k1− + k2−

)γ1
× (k1+k2− + k1−k2+). (4.46)

In the second step, we used (4.26). Using the same reasoning as for integral 1 B1 and

B2, we can finally arrive at an expression for master integral 2:

I2(α1, α2, β1, β2, γ1, γ2)

=
(2π)3−2d

24−C Ω2
d−2ŝ

d−2−C (1− z)2d−3−C

Γ(2d− 2− C)
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)
Γ(d− 2− α1 − α2 − γ1)Γ(d− 2− β1 − β2 − γ2)

Γ(d− 2− α1 − α2)Γ(d− 2− β1 − β2)

×
[(

d− 2

2
− β1

)(
d− 2

2
− α2

)
+

(
d− 2

2
− β2

)(
d− 2

2
− α1

)]
×
(
d− 2− α1 − α2 − γ1

d− 2− α1 − α2

)(
d− 2− β1 − β2 − γ2

d− 2− β1 − β2

)}
. (4.47)

The presence of the gluon correlation in this integral clearly generates a result sub-

subleading in terms of soft divergence having (1− z)2d−3−C in comparison with master

integral 1 containing a (1 − z)2d−5−C term. However, it is really not possible to read

too much into these integrals as they are not physical by themselves. Rather, they are

the building blocks of various region specific components of the K−factor. In the next

section, we will see the ensuing log terms associated with the hard and (anti)collinear

regions.

4.2.3 Results for the K−factor from each region

For the hard and collinear regions, we have all of the necessary ingredients for as-

sembling the Abelian-like terms (∼ CF ) in the 2-real, 1-virtual contribution to the
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K−factor of (2.26), truncating at NLP. We arrive at these results by a combination of

Laurent expansions in z → 1 and ε → 0 (using the dimensional regularisation conven-

tion as always d = 4 − 2ε), as well as of course reading the parameters αi, βi, γi given

in (4.10) and (4.11). The K−factor coefficients specific to the hard region9 are found

in table 9:

Figure 9: Integrated hard region coefficients at N3LO, 2R1V

The K−factor coefficients specific to the collinear region10 are found in table 10:

Figure 10: Integrated collinear region coefficients at N3LO, 2R1V

Leading log terms have been highlighted in yellow, and subleading log terms are colour

coded. The anticollinear region results are the same as those of the collinear region.

The zeta functions ζn are defined in appendix B.4.

Although the derivation of the soft function is not part of this thesis, the soft region

contributions to the K−factor are included for completeness. No table is necessary to

report the coefficients, as it is quite small:

Ksoft = 32

[
1

ε

(
2

3
ζ2 +

1

3
ζ3

)
− (4ζ2 + 2ζ3) log(1− z)

]
. (4.48)

Some observations on the above results:

� The (anti-)collinear regions are subleading log producers at NLP in comparison

with the hard region, and the hard region is the only producer of LP terms, which

is consistent with the findings at NNLO [59].

9All coefficients in the hard region need to be multiplied by a factor of 128.
10All coefficients in the collinear region need to be multiplied by a factor of 32.
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� For the first time, we see a non-zero soft region contribution (albeit heavily sup-

pressed in ε).

� Some structure effects are visible before phase space integration such as the (anti-

)collinear region being subleading compared to the hard region, and the compar-

atively heavily subleading soft region, and thus are connected to the structure of

the squared matrix element.

4.3 Conclusions and learnings for resummation

We have set out to learn more about NLP terms at N3LO for the purpose of resum-

mation. We calculated a set of contributions to the 2-real 1-virtual K−factor via the

method of regions, where the matrix element is organised by loop momentum modes

into 4 non-overlapping regions. The region-specific squared matrix elements were in-

tegrated over the full phase space, providing data for resummation (i.e. coefficients of

logs). But further to this, the method of regions approach offered some insights into the

structure and sources of leading log behaviour. Our findings suggest that the collinear

region is subleading compared with the hard region, which is in line with the expec-

tations set at NNLO. This result has implications for the relevance of jet functions at

higher orders in perturbation theory. Furthermore, ruling out collinear effects for LL at

NLP could pave the way toward showing the exponentiation of NLP LL - an important

stepping stone for resummation. Finally, we also saw that some structure effects are

visible before phase space integration, and thus are connected to the structure of the

squared matrix element. We could ask if the phase space also has some underlying

structure such that leading and subleading contributions have distinct sources. This

will be discussed in the next chapter.
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Chapter 5

Next-to-Leading Power Leading

Logs at NnLO

In the previous chapter, we saw that certain types of logarithmic term could be con-

nected to the structure of the squared matrix element prior to integration over the

phase space. This raised the question about how the phase space contributes to the

organisation of logarithmic terms. In this chapter, we will explore which parts of the

phase space integrals produce leading and subleading logs at NLP.

To conduct an investigation into the role of the phase space in producing leading logs,

we need to introduce some sort of structure to the phase space. We can partition the

phase space and the squared matrix element of the differential cross section as a series

of terms ordered in degrees of the threshold variable:

σ̂ =
1

2ŝ

[∫
dΦLP|M |2LP +

∫
dΦNLP|M |2LP +

∫
dΦLP|M |2NLP + ...

]
. (5.1)

We expect that leading power terms must come from the first term, i.e. the combina-

tion of leading power squared matrix element integrated over the leading power part

of the phase space. Highly subleading terms are associated with the ellipsis.

This classification has already been applied in studies up to NNLO. According to [18],

NLP leading logs only come from the LP part of the phase space - i.e. the NLP part

of the phase space only produces subleading NLP logs, even if the integrand is the

LP squared matrix element. A natural question arises around the persistence of this

relationship. Does the NLP part of the phase space consistently produce only sublead-

ing terms beyond NNLO? If so, this means that we would have one less calculation to

worry about for the resummation of NLP LL.
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In this chapter, we will investigate the Drell-Yan process with any number of real

gluon emissions, i.e. a subset of NnLO, and find that it is indeed true: NLP leading

logs can not come from the NLP part of the phase space (i.e. the second term in (5.1),

so these terms must come from the third term. In order to see this, we can begin by

using eikonal Feynman rules to construct |M |2LP.

5.1 Leading soft term for the squared matrix element

In the threshold limit, the term with leading threshold behaviour within the squared

matrix element is the Eikonal squared matrix element, also known as the leading soft

term. For example, at NLO, the leading soft term in the squared matrix element given

by (2.19) is −2(p̄·p)2
(p·k)(p̄·k) . All other terms within (2.19) are suppressed by a power of k.

The building block of the leading soft term for any number of gluon emissions is given

by the Feynman rule for a soft gluon emission with momentum k from a quark leg with

momentum p, which we developed in detail for the Abelian case in section 3.1.1. For

the benefit of the reader, we can re-state it here:

pµ

p · k
. (5.2)

At NLO, the amplitude for the Drell-Yan process must take into account that the gluon

emission could have emanated from the quark leg or the anti-quark leg. Furthermore,

the squared matrix element must account for interference terms (see figure 5). The

same principles apply for the Drell-Yan process involving n real emissions - all possible

combinations of the gluons emanating from the quark and antiquark legs etc. must be

accounted for. It can be shown that the leading soft term involving n real emissions

(ignoring couplings, charges, and other such dressings) is (see e.g. [39, 40])

|M |2LP(αns ) ∼
n∏
i=1

p · p̄
(p · ki)(p̄ · ki)

. (5.3)

Of all terms in the squared matrix element, this is the one that will produce leading

terms in the threshold variable. We can now integrate this over the phase space to

understand what the phase space brings to the mix in terms of threshold contributions.

5.2 Phase space integral

To begin the integration over the phase space, we use once again the Sudakov parametri-

sation, where each real gluon i, where i = {1, ..., n} is parameterized such that its

63



CHAPTER 5. NEXT-TO-LEADING POWER LEADING LOGS AT NNLO

transverse momentum is distinct from the momentum (anti)collinear to the quarks:

kµi =
ki+√
ŝ
pµ +

ki−√
ŝ
p̄µ + kµiT (5.4)

where

kµiT = (0,kiT , 0) and p · kiT = p̄ · kiT = 0. (5.5)

Our Rosetta stone can now be updated (see table 3) to include the leading soft term

which has a particularly convenient form in the Sudakov decomposition.

Description Expression Sudakov Coordinates

ŝ 2p · p̄ ŝ

−ti 2p · ki
√
ŝki−

−ui 2p̄ · ki
√
ŝki+

gluon correlation 2ki · kj ki+kj− + ki−kj+ − 2kiT · kjT

on shell condition k2
i = 0 ki+ki− − |kiT |2 = 0

leading soft term
∏n
i=1

p·p̄
p·kip̄·ki 2n

∏n
i=1

1
ki+ki−

Table 3: Notation Key

The n + 1 body phase space for the Drell-Yan process 2.10 involving n real gluon

emissions is given by:

∫
dΦ(n+1) = (2π)d

∫
ddq

(2π)d−1

(
n∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

)
δ+(q2−Q2)δ(d)(q+

n∑
j=1

kj−(p+p̄)).

(5.6)

As for the 2-real 1-virtual case, we can choose to fix the momenta of the photon, killing

off the photon integral, and allowing us to drop the “+” from the associated delta

function as we are guaranteed that the centre of mass energy will never be less than

the total gluon energy:

∫
dΦ(n+1) = (2π)n+1−nd

(
n∏
i=1

∫
ddkiδ+(k2

i )

)
δ(((p+ p̄)−

n∑
j=1

kj)
2 −Q2). (5.7)
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The integration measure can be expressed in Sudakov coordinates much like the 2-real,

1-virtual case - by using the Jacobian in appendix D.1, while being mindful that now

we have n such Jacobians:

n∏
i=1

∫
ddki =

(
1

2

)n n∏
i=1

∫
dki+dki−d

d−2kiT . (5.8)

The delta function containing the on-shell condition will have the form given in (4.21).

The other delta function δ(((p+ p̄)−
∑n

j=1 kj)
2 −Q2) requires some care due to cross

terms. Following the same steps as set out around (4.22), we will be able to express

this delta function as a Fourier transform in Sudakov coordinates,

δ

((p+ p̄)−
n∑
j=1

kj)
2 −Q2

 =
1

ŝ

∫ ∞
−∞

dω

2π
eiω(1−z)e

−iω√
ŝ

∑n
j=1(kj++kj−)

e
2iω
ŝ

∑n−1
i=1

∑n
j=i+1 ki·kj .

(5.9)

As for the 2-real 1-virtual case, we Taylor expand the exponential containing the cross

term about ki · kj ∼ 0, i.e. the soft limit:

e
2iω
ŝ

∑n−1
i=1

∑n
j=i+1 ki·kj = 1 +

2iω

ŝ

n−1∑
i=1

n∑
j=i+1

ki · kj + ... (5.10)

In Sudakov coordinates this is

1+
2iω

ŝ

n−1∑
i=1

n∑
j=i+1

ki ·kj = 1+
2iω

ŝ

n−1∑
i=1

n∑
j=i+1

(
1

2
(ki+kj− + ki−kj+)− kiT · kjT

)
. (5.11)

Finally, our delta function is:

δ

((p+ p̄)−
n∑
j=1

kj)
2 −Q2

 =
1

ŝ

∫ ∞
−∞

dω

2π
eiω(1−z)e

−iω√
ŝ

∑n
j=1(kj++kj−)

×

1 +
2iω

ŝ

n−1∑
i=1

n∑
j=i+1

(
1

2
(ki+kj− + ki−kj+)− kiT · kjT

) ,

(5.12)

so that our full phase space is:∫
dΦ(n+1) =

(2π)n+1−nd

2nŝ

n∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
−∞

dd−2kiT δ(ki+ki− − |kiT |2)∫ ∞
−∞

dω

2π
eiω(1−z)e

−iω√
ŝ

∑n
j=1(kj++kj−)
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1 +
2iω

ŝ

n−1∑
i=1

n∑
j=i+1

(
1

2
(ki+kj− + ki−kj+)− kiT · kjT

) . (5.13)

The leading soft term is independent of transverse momentum. In light of this, we can

evaluate the integrals of cross terms in transverse momenta. Consider the integral:∫ ∞
−∞

dd−2kiT δ(ki+ki− − |kiT |2)
n∑

j=i+1

kiT · kjT . (5.14)

The same logic as for the 2-real, 1-virtual case expressed around (4.28) applies here.

The delta function is an even function in kiT , while the sum of cross terms is an odd

function (being linear kiT ). The integral then vanishes, leaving us with the phase space:∫
dΦ(n+1) =

(2π)n+1−nd

2nŝ

n∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
−∞

dd−2kiT δ(ki+ki− − |kiT |2)∫ ∞
−∞

dω

2π
eiω(1−z)e

−iω√
ŝ

∑n
j=1(kj++kj−)

×

1 +
iω

ŝ

n−1∑
i=1

n∑
j=i+1

(ki+kj− + ki−kj+)

 . (5.15)

Switching to spherical polar coordinates as per (3.47) allows us to apply the remaining

delta function, and an analytic continuation ω̃ = iω will leave our phase space in a

more readily useful form:∫
dΦ(n+1) =

(2π)n+1−nd

22nŝ
Ωn
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

n∏
i=1

∫ ∞
0

dki+e
−ω̃√
ŝ
ki+k

d−4
2

i+

∫ ∞
0

dki−e
−ω̃√
ŝ
ki−k

d−4
2

i−

×

1 +
ω̃

ŝ

n−1∑
i=1

n∑
j=i+1

(ki+kj− + ki−kj+)

 . (5.16)

We have gone as far as we can with simplifying the phase space integral before applying

it to the leading soft term. We can integrate the leading soft term by dividing up the

phase space integrals into three separate terms:∫
dΦ(n+1)

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
=

(2π)n+1−nd

ŝn+1
Ωn
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

n∏
i=1

∫ ∞
0

dki+e
−ω̃√
ŝ
ki+k

d−6
2

i+

∫ ∞
0

dki−e
−ω̃√
ŝ
ki−k

d−6
2

i−
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×

 1︸︷︷︸
A

+
ω̃

ŝ

n−1∑
i=1

n∑
j=i+1

(ki+kj−︸ ︷︷ ︸
B1

+ ki−kj+︸ ︷︷ ︸
B2

)


(5.17)

where we have combined the phase space 5.16 with the Sudakov expression of the

leading soft term in table 3. To solve this integral, we can start with the simplest part,

integral A.

5.2.1 Integral A

∫
dΦ

(n+1)
A

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
=

(2π)n+1−nd

ŝn+1
Ωn
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

n∏
i=1

∫ ∞
0

dki+e
−ω̃√
ŝ
ki+k

d−6
2

i+

∫ ∞
0

dki−e
−ω̃√
ŝ
ki−k

d−6
2

i− .

(5.18)

Observe that the integrals over ki+ and ki− are identical to each other and could be

replaced by a dummy x. Furthermore, we can expect n integrals of each, amounting

to 2n integrals over x. Finally, we will be able to recognize some familiar functions by

making the variable change x̃ = ω̃√
ŝ
x resulting in:

∫
dΦ

(n+1)
A

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)

= (2π)n+1−ndŝn( d
2
−3)−1Ωn

d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)(d−4)n(∫ ∞
0

dx̃ e−x̃x̃
d−6
2

)2n

.

(5.19)

The integral over x̃ is a gamma function (see appendix B.1):∫ ∞
0

dx̃ e−x̃x̃
d−6
2 = Γ

(
d− 4

2

)
, (5.20)

while the integral over ω̃ is an inverse Laplace transform (see appendix C.4), i.e.

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)n(d−4)

=
(1− z)n(d−4)−1

Γ(n(d− 4))
. (5.21)

Putting together equations 5.19 - 5.21 gives us∫
dΦ

(n+1)
A

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
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= (2π)n+1−ndŝn( d
2
−3)−1Ωn

d−2

(1− z)n(d−4)−1

Γ(n(d− 4))
Γ2n

(
d− 4

2

)
. (5.22)

5.2.2 Integrals B1 and B2

We can start with integral B1:∫
dΦ

(n+1)
B1

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
=

(2π)n+1−nd

ŝn+1
Ωn
d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

n∏
i=1

∫ ∞
0

dki+e
−ω̃√
ŝ
ki+k

d−6
2

i+

∫ ∞
0

dki−e
−ω̃√
ŝ
ki−k

d−6
2

i−

× ω̃

ŝ

n−1∑
i=1

n∑
j=i+1

ki+kj−. (5.23)

In the ki+kj− sum, there will be n(n−1)
2 terms. Consider one of these terms. It will be

evaluated by one of the n “ki+” and one of the n “ki−” integrals. These two integrals

will both be of the form

∫ ∞
0

dx e
− ω̃√

ŝ
x
x
d−4
2 =

(√
ŝ

ω̃

) d−2
2 ∫ ∞

0
dx̃ e−x̃x̃

d−4
2 , (5.24)

while the remaining 2n− 2 integrals will have the form

∫ ∞
0

dy e
− ω̃√

ŝ
y
y
d−6
2 =

(√
ŝ

ω̃

) d−4
2 ∫ ∞

0
dỹ e−ỹỹ

d−6
2 , (5.25)

and this will happen identically n(n−1)
2 times. Thus our expression will be:

∫
dΦ

(n+1)
B1

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
=(2π)n+1−ndŝn( d

2
−3)−1Ωn

d−2

n(n− 1)

2

×
∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)n(d−4)+1

×
(∫ ∞

0
dx̃ e−x̃x̃

d−4
2

)2(∫ ∞
0

dỹ e−ỹỹ
d−6
2

)2n−2

.

(5.26)

We recognize the gamma function integrals as well as the inverse Laplace transform,

yielding: ∫
dΦ

(n+1)
B1

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
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= (2π)n+1−ndŝn( d
2
−3)−1Ωn

d−2

n(n− 1)

2

(1− z)n(d−4)

Γ(n(d− 4) + 1)
×

Γ

(
d− 4

2

)2n−2

Γ

(
d− 2

2

)2

. (5.27)

It can easily be shown that integral B2 turns out to be exactly the same as B1.

5.2.3 Finale

Altogether, and making use of the property Γ(n+ 1) = nΓ(n) we have∫
dΦ(n+1)

n∏
i=1

(
1

p · ki

)(
1

p̄ · ki

)
=(2π)n+1−ndΩn

d−2ŝ
n(d−4)/2−n−1Γ2n

(
d− 4

2

)
(1− z)n(d−4)−1

Γ(n(d− 4))

×
[
1 +

(
(n− 1)(d− 4)(1− z)

4

)]
. (5.28)

5.2.4 NLP phase space integral

Equation (5.28) represents the LP squared matrix element integrated over the entire

phase space in the soft limit for n real gluons. Consider the factor of (1 − z) in our

integral. We have arranged the expression such that the first term in square brackets

∼ (1 − z)n(d−4)−1, while the second term in square brackets ∼ (1 − z)n(d−4). In 4-

dimensional spacetime in the soft limit, the second term is suppressed in terms of

(1 − z) compared with the first. Given that our squared matrix element can not be

anything but eikonal, the difference in powers of (1− z) between these terms must be

down to the phase space. Relabelling our phase space as per (5.1), we can express

(5.28) as ∫
dΦ(n+1)|M |2LP =

∫
dΦ

(n+1)
LP |M |2LP︸ ︷︷ ︸

∼(1−z)n(d−4)−1

+

∫
dΦ

(n+1)
NLP |M |2LP︸ ︷︷ ︸

∼(1−z)n(d−4)

. (5.29)

To answer our original question about whether the log terms will be leading or sub-

leading in our second term, we need to expand the divergent parts of our expression in

ε ∼ 0 (using dimensional regularisation convention d = 4 − 2ε). Firstly, consider the

purely LP part:

Γ2n

(
d− 4

2

)
(1− z)n(d−4)−1

Γ(n(d− 4))
=

Γ2n(−ε)
Γ(−2nε)

(1− z)−1−2nε. (5.30)

We know from appendix B.1 that for small ε, we have

Γ(ε) ∼ 1

ε
, (5.31)
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and so we have
Γ2n(−ε)
Γ(−2nε)

∼ ε1−2n. (5.32)

Now we examine the term (1− z)−1−2nε, and denote it by

f(ε) ≡ (1− z)−1−2nε −→ log(f(ε)) = (−1− 2nε) log(1− z). (5.33)

Re-writing the function in this way enables a friendly expression for an expansion in ε

close to zero

f(ε) = f(0) +

∞∑
k=1

f (k)(0)

k!
εk, (5.34)

where f (k)(ε) = (−2n)k logk(1 − z)f(ε) is the kth derivative of f(ε) with respect to ε.

Then we can evaluate (5.34) as

f(ε) =
1

1− z
+
∞∑
k=1

(−2n)k

k!

logk(1− z)
1− z

εk. (5.35)

Combining this expression with that of (5.32) means that our LP term (5.30) has the

expansion in small ε

Γ2n(−ε)
Γ(−2nε)

(1− z)−1−2nε ∼ 1

1− z
ε1−2n +

∞∑
k=1

(−2n)k

k!

logk(1− z)
1− z

εk−(2n−1). (5.36)

Consider the series of log terms on the right hand side. The terms where k > 2n − 1

will vanish in the limit ε→ 0, and thus can be discarded. This means that the highest

power of log term will have the form[
Γ2n(−ε)
Γ(−2nε)

(1− z)−1−2nε

]
largest log

∼ log2n−1(1− z)
1− z

. (5.37)

Benchmarking this leading term to our general expression classifying logs in a differen-

tial cross section (2.25) tells us two things: 1) this is indeed a leading power log, and

2) the exponent 2n − 1 is the highest power possible. This is a leading LP log, pro-

duced by the LP part of the phase space combined with the LP squared matrix element.

Now we turn our attention to the NLP part of (5.29), which roughly has the form

Γ2n

(
d− 4

2

)
(1− z)n(d−4)−1

Γ(n(d− 4))
× (1− z)(d− 4) =

Γ2n(−ε)
Γ(−2nε)

(1− z)−2nε(−2ε). (5.38)

We give the same treatment to the NLP term as we had done for the LP term. We note

that the NLP term (5.38) is essentially the LP term (5.30) suppressed by a power of ε
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and a power of (1− z). Then it is straightforward to see that the NLP term produces

NLP logs, where the highest power is:[
Γ2n(−ε)
Γ(−2nε)

(1− z)−2nε(−2ε)

]
largest log

∼ log2n−2(1− z). (5.39)

Because the exponent is 2n−2 rather than 2n−1, we can describe this log comparatively

as subleading. And so ends the proof that for any number of real emission gluons, the

leading power NLP logs can not come from the LP squared matrix element as it only

produces subleading NLP logs.

5.3 Resummation of NLP leading logs

We have shown in great detail how the NLP part of the phase space does not produce

NLP leading logs, and therefore can be excluded from calculations pertaining to gath-

ering coefficients for resummation. A source for the NLP LL must be the NLP squared

matrix element, i.e. ∫
dΦLP|M |2NLP. (5.40)

As for the well-known LP LL resummation exercise shown in section 3.2, a similar

exercise can be done for NLP LL. Although this particular calculation is not the main

focus of this chapter, a few steps at bird’s eye view with the final result using the same

conventions as in 3.2 are included here for some sense of closure for this topic.

For the reader’s convenience, we reprint here from (3.42) the LP soft function at NLO:

S
(1)
LP(z,Q2, ε) = µ2εg2

sCF

∫
ddk

(2π)d−1
δ+(k2)

[
δ

(
1− z − 2k · (p+ p̄)

ŝ

)
− δ(1− z)

]
2p · p̄

p · k p̄ · k
.

(5.41)

The NLP analogue (i.e. leading terms coming from phase space integration of the NLP

squared matrix element) is

S
(1)
NLP(z,Q2, ε) = −2µ2εg2

sCF

∫
ddk

(2π)d−1
δ+(k2)δ

(
1− z − 2k · (p+ p̄)

ŝ

)[
1

p · k
+

1

p̄ · k

]
,

(5.42)

where the squared matrix element terms are recognisably the last two terms of (2.19).

The soft function can then be integrated in spherical polar coordinates using the Su-

dakov parametrization as per (3.43), as well as the variable change as per (3.53), yielding

S
(1)
NLP(z,Q2, ε) = −µ

2εg2
sCFΩd−2

(2π)d−1

∫
dz̃ dy ŝ

d−4
2 (1− z̃)d−4y

d−6
2 (1− y)

d−6
2

× δ(1− z − (1− z̃)). (5.43)
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Following the same steps as done for the LP exercise (i.e. for integral “B”, equations

(3.57)-(3.62)), we arrive at

S
(1)
NLP(z,Q2, ε) =

−αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)
(1− z)−2ε. (5.44)

Mellin transforming this yields

S
(1)
NLP(N,Q2, ε) =

−2αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ(−ε)Γ(N)

Γ(1− 2ε+N)
. (5.45)

Now we Laurent-expand, and we can be dismissive of terms of order ε as they will

vanish in the limit ε→ 0. The result is

S
(1)
NLP(N,Q2, ε) =

−2αsCF
π

(
µ̄2

Q2

)ε [
1

εN
+

2

N

(
ψ(0)(N + 1) + γE

)]
+O(ε). (5.46)

We highlight the leading log behaviour in the large N limit (see appendix B.2),

S
(1)
NLP(N,Q2, ε) =

2αsCF
π

(
µ̄2

Q2

)ε [
1

ε

1

N
+

2 logN

N
+ ...

]
(5.47)

where the ellipsis indicates terms that are non-singular in ε, non-logarithmic in N , and

terms suppressed by powers of N .

To perform the resummation, we first need to carefully combine this result with (3.66).

Note that in the NLP soft function, we have a term of the form ∼ 2 logN
N . This is also

the case for the LP soft function of (3.65), although it is not a leading LP term and thus

not present in the LP LL expression (3.66). The LP soft function (3.65) contributes

a term of ∼ − logN
N . Likewise, it also contributes a subleading term of order 1

ε , i.e.
−1
ε2N to be combined with its NLP counterpart (and ultimately destined for absorption

by PDFs). Altogether, combining leading NLP terms with leading and appropriate

subleading LP terms leads to

S
(1)
LP+NLP(N,Q2, ε) =

2αsCF
π

(
µ̄2

Q2

)ε [
1

ε

(
logN +

1

2N

)
+ log2N +

logN

N
+ ...

]
.

(5.48)

It is now safe to exponentiate this expression. The set of terms of order O(ε−1) are

collinear contributions which can be absorbed in PDFs, similar to (3.69). Then the

remaining terms (i.e. the logarithmic terms) can be exponentiated, resulting in the

resummed K−factor

∆(N,Q2)|LP+NLP = exp

[
2αs
π
CF

(
log2N +

logN

N

)]
. (5.49)
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Now to return to z−space, we expand (5.49) in αs and include all subleading terms. We

had already performed this procedure for the LP terms, encapsulated by (3.71). Com-

paring the NLP terms of order ε0 in (5.46) with those present in the Mellin transform

for NLP terms in (C.36) allows for a very straightforward Mellin transform, i.e.,

∆(z,Q2)|NLP =

(
2αsCF
π

)
[−2 log(1− z)] . (5.50)

Combining this with the LP counterpart (3.71) yields

∆(z,Q2)|LP+NLP =

(
2αsCF
π

)[
2

(
log(1− z)

1− z

)
+

− 2 log(1− z)
]
. (5.51)

This is in complete agreement with the result of ref. [60], and is consistent with (2.24).

5.4 Conclusions

In the interest of resumming NLP LL, we posed the question of whether the phase

space could be structured such that leading and subleading logs have distinct sources.

It was indeed the case for a subset of NnLO involving n real gluon emissions that the

NLP part of the phase space only produces subleading logs and therefore lightens our

load for calculating the resummation of NLP LL. Although the focus of this chapter

was developing this result in great detail, we also offered a bird’s eye view of the

resummation exercise with the final result for completeness.
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Chapter 6

Threshold Radiation Conclusion

6.1 Recap

To summarise, our study of threshold gluon radiation in QCD processes is largely moti-

vated by improving theory predictions to match against experiment, specifically in the

production of heavy particles where new physics is often found. A convenient probe

for this endeavour is the Drell-Yan process, which we used throughout our research.

Theory predictions such as fixed order differential cross sections are enhanced by the

phenomenon of threshold radiation. However, the presence of threshold radiation gives

rise to large logarithmic contributions, potentially threatening the stability of the pre-

diction. A possible antidote to this issue is resummation, where a stable correction

capturing some all-order information can be constructed. At the time of performing

the research supporting this thesis, the state of the art theory prediction for the Drell-

Yan process is NNLO, with resummation of next-to next-to leading logs of the LP

variety. While LP log resummation is well known and firmly established, less is known

about NLP logs - the focus of this thesis.

6.2 Learnings and achievements

In our research, we reviewed the resummation procedure for LP logs at NLO, and we

made significant progress toward the resummation of NLP logs beyond NNLO. More

specifically, we explored a subset of N3LO contributions (2-real, 1-virtual) by using

a method of regions approach. We found that leading and subleading logs can be

ascribed to specific regions, easing the way for exponentiation - a key stepping stone

toward resummation. Some of these structure effects were visible before phase space

integration, suggesting the question of how the phase space contributes to leading and

subleading effects. This was studied at NnLO (real contributions only), where the phase

space could be structured such that leading and subleading logs have distinct sources.

74



CHAPTER 6. THRESHOLD RADIATION CONCLUSION

This information was helpful toward performing the resummation of leading NLP logs,

of which we offered a bird’s eye view.

6.3 Impact

In conjunction with our work in studying NLP logs using a diagrammatic approach,

there is also a considerable effort toward NLP log resummation using Soft Collinear

Effective Theory (SCET) - see e.g. [61–63]. Various methods for including leading

and subleading logs at NLP are assessed and compared in ref. [64]. Studies of NLP

effects have been extended to processes involving coloured final state particles - made

more complex by non-negligible collinear effects associated with real radiation [65].

Furthermore, sensitivity analysis conducted for the Drell-Yan and Higgs cross sections

reveals that the inclusion of NLP leading log data significantly increases the precision

of predictions [66].

6.4 Further work

Building on the results presented, there are a number of directions of further work. The

N3LO calculations in this thesis comprised only one channel - future work could center

on the other contributing channels, such as 2 virtual and 1 real emissions. Furthermore,

the calculations could be generalised to include all possible colour structures involving

fully non-Abelian corrections. Regarding the resummation of NLP leading logs at NLO,

clearly, the resummation could be extended to subleading logarithmic accuracy at NLP.

This would require a more involved treatment of non-factorising phase-space effects for

real emission contribution.

6.5 A bridge to gravity and other theories

While the study of threshold radiation deepens our understanding of QCD phenomenol-

ogy and theory, it is also the case that infrared singularities in gauge theories such as

QED and QCD can connect to those of gravity. Infrared photons and gravitons have

been formalised in Weinberg’s soft theorems [67], and BMS symmetries have been

explored in the context of gravitational scattering with soft gravitons [68]. Infrared

singularities of QCD and gravity have been shown to be related to each other via the

duality of the double copy [69]. The double copy framework extends beyond this re-

mit, to broader classical and quantum field theory amplitudes, as well as to the exact

solutions of classical theories. A study of the latter forms the second half of this thesis.
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The Double Copy
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Chapter 7

Introduction to the Double Copy

The double copy - a novel duality relating gauge theories to gravity - is best summed

up by the catch phrase “gravity is Yang-Mills squared”. This idea has its origins in the

Kawai-Lewellen-Tye (KLT) relations of string theory that express closed string ampli-

tudes in terms of sums of products of open string amplitudes [70]. In 2002, Bern found

that a similar principle applies in field theory where tree level gravity amplitudes could

be constructed from gauge theory amplitudes, and be subsequently promoted to loop

level using the unitarity method [71]. Within a decade, Bern, Carrasco and Johansson

(BCJ) proposed the double copy as a means of constructing gravity amplitudes from

gauge theory amplitudes by exploiting colour-kinematics duality [72–75] (see also [76]

for a comprehensive yet pedagogical introduction and overview). While this signifi-

cantly reduces the complexity of quantum gravitational computations, it also suggests

a relationship between seemingly disparate theories of nature.

Although still a relatively young theory, the double copy has blossomed within and

beyond the study of amplitudes to classical theories. This thesis focuses largely on the

classical double copy, however, we will devote this chapter to a brief tour of the older

and more firmly established original BCJ double copy to fix our bearings.

Before we build double copy bridges between the amplitudes of gauge theory and grav-

ity, we will first review what those theories are, and what their amplitudes look like.

7.1 Yang-Mills theory

Yang-Mills theories are types of gauge theory with a non-Abelian symmetry group.

For example, QCD, stripped of quarks, is called pure Yang-Mills as it describes gluon

self-interactions governed by the non-Abelian group SU(3). For our discussion, we will

stay general, i.e. our theory will be governed by SU(N) symmetry. The Lagrangian
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defining such a theory is

LYM = −1

2
Tr(FµνFµν), (7.1)

where the field strength tensor is given by

Fµν = DµAν −DνAµ. (7.2)

The gauge covariant derivative ensuring gauge invariance of our Lagrangian is defined

as

Dµ = ∂µ − igAµ, (7.3)

where g is the coupling constant. This is a non-Abelian theory, and so we expect that

colour generators should feature somewhere in the above. The gauge field Aµ can be

expanded into a product of colour indexed fields and generators of the gauge group

SU(N),

Aµ = AaµT
a. (7.4)

The generators T a obey a Lie algebra defined by the commutation relation,

[T a, T b] = ifabcT c, (7.5)

with normalisation condition

Tr(T aT b) =
1

2
δab. (7.6)

The Latin indices a, b, c count out the number of generators in the adjoint representa-

tion of the group. For example, in SU(3), these indices run from 1 to 8, while in SU(2)

they run from 1 to 3. The antisymmetric structure constants fabc are at the heart of

defining the theory, and are simply 0 in the case where the theory is Abelian. In double

copy literature and beyond, the term colour structure is synonymous with factors of

fabc appearing in amplitudes and Feynman diagrams.

Given that the generators can be represented by matrices (e.g. in SU(2), these can

be related to the Pauli matrices, or the Gell-Mann matrices in SU(3)), they must obey

the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0. (7.7)

When combining this with the rules set out by the Lie algebra of (7.5), the Jacobi

identity takes on an important form in terms of structure constants:

fabef cde − facef bde + fadef bce = 0. (7.8)
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This identity sets us on the road to colour-kinematics duality, a key foundation of the

double copy. But before we jump ahead of ourselves, we first need to build up the

quantity which will offer a playground for this duality - i.e. the amplitude. To do this,

we can rewrite the Lagrangian such that we can see explicitly the interaction terms,

which will determine what type of Feynman diagrams we can expect. Combining

equations (7.2) to (7.5), it is possible to decompose the field strength tensor into a

product of generators and colour indexed field strength tensors, i.e.,

Fµν = F aµνT
a, (7.9)

where the colour indexed field strength tensor is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (7.10)

We use this to re-write the Lagrangian (7.1) with colour indices exposed:

LYM = −1

4
F aµνF

aµν . (7.11)

Expanding (7.11) with definition (7.10) reveals the types of Feynman rules we can

expect with this theory:

LYM = − 1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)︸ ︷︷ ︸

kinetic terms

− gfabcAaµAbν∂µAcν︸ ︷︷ ︸
cubic interactions

− g
2

4
fabefecdAaµA

b
νA

cµAdν︸ ︷︷ ︸
quartic interactions

. (7.12)

The first set of terms are the kinetic or “free” terms of the theory. In QCD, this is

the Lagrangian for eight non-interacting, inherently colour-charged gluons, which, as

far as we know, cannot be observed individually thanks to colour confinement. The

remaining sets of terms indicate self-interactions - a key difference from Abelian theo-

ries where this does not happen. Of these self-interactions, we have cubic and quartic

interactions. In the cubic interactions, the presence of the derivative gives a momentum

factor in momentum space. The quartic interaction term is crucial in preserving gauge

invariance of the Lagrangian and amplitudes.

Higher point interactions are built up from three and four-point diagrams. However,

we shall soon see that actually, four-point diagrams are closely related to three-point

diagrams in terms of their colour structure. In this context, the status of diagrams

with three-point vertices is elevated to that of building blocks for higher point interac-
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tions. We will examine this more closely by working out the amplitude for four-point

(gg → gg) scattering, for which we need Feynman rules.

7.1.1 Feynman rules

Feynman rules are determined by fixing a gauge. As we will only be working with a

relatively simple scattering example, the Feynman gauge will do for us. However, for

more involved scattering, other gauges such as the Gervais-Neveu can be more double-

copy friendly (see [77,78], or [79] for a pedagogical treatment).

In the Feynman gauge, the gluon propagator is

q
ν, b µ, a = −i gµν

q2 + iε
δab. (7.13)

The cubic gluon vertex is given by

p

µ, a

k

ν, b

ρ, c

q
= gfabc[gµν(p− k)ρ + gνρ(k − q)µ + gρµ(q − p)ν ], (7.14)

and the quartic gluon vertex,

µ, a ν, b

ρ, c σ, d

= −ig2× [ fabef cde(gµρgνσ − gµσgνρ)
+facef bde(gµνgρσ − gµσgνρ)
+fadef bce(gµνgρσ − gµρgνσ)].

(7.15)

The colour structure of the quartic vertex roughly appears as a “doubling up” of the

colour structure of the cubic vertex. Furthermore, the keen reader may notice a similar-

ity in the colour structure factors of the quartic vertex and those present in the Jacobi

identity (7.8). These two observations will be explored in the context of four-point

scattering.

7.1.2 Amplitude for four-point scattering (gg → gg)

Consider the process of four gluons scattering as defined by gg → gg. The full tree

level amplitude is composed of scattering by three channels, i.e. s, t, and u, as well as
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Figure 11: gg → gg at tree-level
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p1 + p2

ω, e p3 + p4

γ, f

Figure 12: s− channel for gg → gg at tree-level

the contact term set out by the quartic vertex, as illustrated schematically by figure

11.

Using the Feynman rules set out earlier in section 7.1.1, we can write down expressions

corresponding to each diagram in 11. We start with the s−channel, which has been

blown up in figure 12 and dressed with momenta, colour indices, and all the bells and

whistles for the convenience of the reader. The corresponding sub-amplitude for the

s−channel is:

Ms = ε1µε2νε3ρε4σ︸ ︷︷ ︸
incoming polarisation vectors

× gfabe[gµν(p1 − p2)ω + gνω(p1 + 2p2)µ − gωµ(2p1 + p2)ν ]︸ ︷︷ ︸
cubic vertex factor

× −igωγδ
ef

(p1 + p2)2︸ ︷︷ ︸
propagator

× gf cdf [gρσ(p3 − p4)γ + gσγ(p3 + 2p4)ρ − gγρ(2p3 + p4)σ]︸ ︷︷ ︸
cubic vertex factor

(7.16)

With on-shell conditions εi · pi = 0, the above reduces to

iMs =
g2

s
fabef cde × [ε1 · ε2(p1 − p2)ω + 2εω2 (p2 · ε1)− 2εω1 (p1 · ε2)]

× [ε3 · ε4(p3 − p4)ω + 2ε4ω(p4 · ε3)− 2ε3ω(p3 · ε4)], (7.17)
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where s is the Mandelstam invariant s = (p1 + p2)2. Similarly, the expressions for the

t and u channel diagrams are

iMt =
g2

t
fadef bce × [ε2 · ε3(p2 − p3)ω + 2εω3 (p3 · ε2)− 2εω2 (p2 · ε3)]

× [ε1 · ε4(p1 − p4)ω + 2ε4ω(p4 · ε1)− 2ε1ω(p1 · ε4)], (7.18)

iMu =
g2

u
facef bde × [ε1 · ε3(p1 − p3)ω + 2εω3 (p3 · ε1)− 2εω1 (p1 · ε3)]

× [ε2 · ε4(p2 − p4)ω + 2ε4ω(p4 · ε2)− 2ε2ω(p2 · ε4)], (7.19)

with Mandelstam variables t = (p1 + p4)2 and u = (p1 + p3)2. Lastly, we have the

diagram associated with the contact vertex:

iMx = g2 × {fabef cde[(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)]

+facef bde[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε4)(ε2 · ε3)]

+fadef bce[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε3)(ε2 · ε4)]}. (7.20)

The full tree-level four-point scattering amplitude is the grand total of these 4 subam-

plitudes, i.e.,

A(tree)
4 = iMs + iMt + iMu + iMx. (7.21)

This can be reorganised in a notation that clearly separates colour from kinematic

factors, and highlights the cubic diagram building block notion:

A(tree)
4 = g2 ×

(csns
s

+
ctnt
t

+
cunu
u

)
. (7.22)

The colour factors ci correspond to the combination of structure constants distinct to

each channel, i.e.,

cs = fabef cde; ct = −fadef bce; cu = −facef bde. (7.23)

These colour factors are also present in the contact term of (7.20), which can be rewrit-

ten to highlight the colour structure as:

iMx = iMx = g2 × {cs[(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)]

−cu[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε4)(ε2 · ε3)]

−ct[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε3)(ε2 · ε4)]}. (7.24)

This format draws a relationship between the contact term and the three channels.

Additionally, in this notation, the Jacobi identity set out in (7.8) takes on a deeper
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Figure 13: The Jacobi identity cs = ct − cu in terms of tree-level diagrams.

meaning in terms of the relationship among the colour structures of the three channels,

cs − ct + cu = 0. (7.25)

This relationship is depicted schematically in figure 13.

The kinematic factors ni contain information about spin and momenta per channel

with additional appropriate contributions of the contact term. For example, the kine-

matic factor ns combines factors from the s−channel in (7.17), with the spin-related

terms dressing the cs colour factor of (7.20):

ns =[ε1 · ε2(p1 − p2)ω + 2εω2 (ε1 · p2)− 2εω1 (ε2 · p1)]

×[ε3 · ε4(p3 − p4)ω + 2ε4ω(ε3 · p4)− 2ε3ω(ε4 · p3)]

+s[(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)]. (7.26)

Likewise, the other two kinematic factors are

nt =[ε2 · ε3(p3 − p2)ω − 2εω3 (ε2 · p3) + 2εω2 (ε3 · p2)]

×[ε1 · ε4(p1 − p4)ω + 2ε4ω(ε1 · p4)− 2ε1ω(ε4 · p1)]

−t[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε3)(ε2 · ε4)]; (7.27)

nu =[ε1 · ε3(p3 − p1)ω − 2εω3 (ε1 · p3) + 2εω1 (ε3 · p1)]

×[ε2 · ε4(p2 − p4)ω + 2ε4ω(ε2 · p4)− 2ε2ω(ε4 · p2)]

−u[(ε1 · ε2)(ε3 · ε4)− (ε1 · ε4)(ε2 · ε3)]. (7.28)

The key observations about the four-point tree-level amplitude that advance the double

copy story are:

� It is possible to factorise the amplitude such that colour factors are distinct from

kinematic factors.

� The colour factors obey the Jacobi identity.

� The colour structure suggests the amplitude can be organised to resemble a sum

of diagrams with cubic vertices.
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Figure 14: The Jacobi identity cs = ct − cu embedded in a 1-loop diagram.

These statements can be generalised beyond four-point tree-level scattering to higher-

point scattering at loop level.

7.1.3 Amplitude for m−point scattering

We briefly generalise the learnings of the four-point scattering exercise in this section.

Consider the general case for the scattering of m external gluons. At tree-level, the

amplitude for this process can be written as (see e.g. [73])

A(tree)
m = gm−2

∑
i∈Γ

nici∏
αi
p2
αi

(7.29)

where the sum over i refers to the sum over m−point graphs Γ with cubic vertices. Like

the four-point scattering example, the amplitude is primarily organised by the colour

factors ci associated with these cubic vertices, with kinematic factors ni dressing the

colour factors. The denominator indicates a combination of propagators.

At loop level, this amplitude generalises for L loops in D spacetime dimensions to

A(L)
m = iLgm−2+2L

∑
i∈Γ

∫ L∏
l=1

dDkl
(2π)D

1

Si

nici∏
αi
p2
αi

(7.30)

where the factor Si accounts for symmetries typically encountered at loop level. The

Jacobi identity still holds for the colour factors ci at loop level. By making strategic

unitarity cuts in which the loop momentum goes on-shell, loop diagrams effectively can

be treated as tree level diagrams where the Jacobi identity is embedded (see e.g. [73,80]).

Figure 14 displays an example of this idea at 1-loop.

We have an expression for a Yang-Mills amplitude, and we have organised it so that

colour and kinematic factors are separate, with the colour factors obeying the Jacobi

identity. The BCJ double copy relates this amplitude to that of gravity. This naturally

raises the question - how does the picture we have presented for Yang-Mills theory

compare with gravity?
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7.2 Perturbative gravity

Our starting point for perturbative gravity (guided by [81–83]) is the same as for Yang-

Mills - the Lagrangian. We can pick off the Lagrangian from the action that yields the

Einstein field equations, i.e., the Einstein-Hilbert action in D spacetime dimensions for

pure gravity (without matter fields),

SEH =
1

2κ2

∫
dDx

√
−gR (7.31)

where κ2 = 8πGN is Einstein’s gravitational constant with Newton’s constant GN , the

determinant of the underlying metric gµν is denoted by g, and R is the curvature or

Ricci scalar constructed by contracting the Ricci tensor with the underlying inverse

metric, i.e.

R = gµνRµν . (7.32)

The Ricci tensor is a contraction of the Riemann tensor, i.e.

Rµν = Rσµσν . (7.33)

The Riemann tensor (also known as the curvature tensor) is defined as

Rρµσν = ∂σΓρµν − ∂νΓρµσ + ΓλµνΓρλσ − ΓλµσΓρλν . (7.34)

Each Christoffel symbol is composed of derivatives of the metric as per

Γρµν =
1

2
gρσ [∂µgνσ + ∂νgµσ − ∂σgµν ] . (7.35)

This metric is the gravitational field we wish to quantize within the context of perturba-

tion theory. In our treatment of Yang-Mills theory, the field Aµ is quantised such that

the scattering of particles is against a flat background spacetime. We can adopt this

principle for our metric by modelling it as a graviton field hµν perturbing a Minkowski

background spacetime ηµν , i.e.,

gµν = ηµν + κhµν . (7.36)

To be able to see what kind of Feynman diagrams could emerge in Yang-Mills theory,

we expressed the Lagrangian in terms of powers of the field Aµ and its derivatives as

per (7.12). To see the Feynman diagrams of gravity, we should do something similar -

express (7.31) in terms of powers of the graviton field κhµν and its derivatives. To do

this, we need an expression for the inverse metric gµν , which will be an infinite series
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. . .

Figure 15: Feynman diagrams for gravity interactions

in powers of h, i.e.

gµν = ηµρ(δ ν
ρ − κh ν

ρ + κ2h σ
ρ h

ν
σ − ...). (7.37)

The term
√
−g, will also be an infinite series in powers of h upon Taylor-expanding the

square root:
√
−g = 1 +

κ

2
hαα −

κ2

4
hαβh

β
α + ... (7.38)

The Ricci tensor will contain two derivatives of h in every term, but it too will be an

infinite series in powers of h thanks to the inverse metric present in each Christoffel

symbol. The terms of the Ricci tensor series that are lowest in order of h will be:

Rµν ≈
κ

2
ηαβ
[
∂α∂µhβν − ∂α∂βhµν − ∂µ∂νhαβ + ∂β∂νhµα

]
−κ

2

2
hαβ

[
∂α∂µhβν − ∂α∂βhµν − ∂µ∂νhαβ + ∂β∂νhµα

]
+
κ2

4
ηωαηλβ

[
∂λhωα (∂µhβν + ∂νhβµ − ∂βhµν)

− (∂µhαβ + ∂αhµβ − ∂βhµα) (∂λhων + ∂νhλω − ∂ωhνλ)

]
+ ... (7.39)

Schematically, the types of term present in (7.39) can be expressed more clearly as

Rµν ∼ κ∂2h+ κ2h∂2h+ κ2(∂h)2 + ... (7.40)

Altogether, this means that schematically, the action will take on a form resembling an

infinite series in powers of κh,

SEH ∼
∫
dDx h∂2h+ κh2∂2h+ κ2h3∂2h+ ... (7.41)

where all total derivatives have vanished. This implies that gravity has Feynman dia-

grams for 3, 4, 5,...infinitely many point interactions, as illustrated by figure 15. This

poses a stark contrast with Yang-Mills theory which presented only 3 and four-point

interactions. The ensuing computations of gravitational amplitudes by Feynman rules

are imaginably unwieldy, also in part because the gravitational interactions themselves

are complicated in comparison with Yang-Mills theory. For example, in the de-Donder
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gauge, ∂µhµν = 1
2∂νh

µ
µ , the 3 graviton vertex factor has at least 100 terms (see e.g. [76]):

Gµρ,νλ,στ (p1, p2, p3) = i
κ

2
Sym

[
− 1

2
P3(p1 · p2η

µρηνληστ )− 1

2
P6(pν1p

λ
1η

µρηστ ) +
1

2
P3(p1 · p2η

µνηρληστ )

+ P6(p1 · p2η
µρηνσηλτ ) + 2P3(pν1p

τ
1η
µρηλσ)− P3(pλ1p

µ
2η

ρνηστ )

+ P3(pσ1p
τ
2η
µνηρλ) + P6(pσ1p

τ
1η
µνηρλ) + 2P6(pν1p

τ
2η
λµηρσ)

+ 2P3(pν1p
µ
2η

λσητρ)− 2P3(p1 · p2η
ρνηλσητµ)

]
(7.42)

where pi are the momenta of the three gravitons, and Sym signifies a symmetrisation

of the graviton indices, i.e. µ↔ ρ, ν ↔ λ, σ ↔ τ . Further to this is a symmetrisation

over graviton legs, indicated by P3 and P6 yielding three and six terms respectively.

In comparison, the 3 gluon vertex presented in section 7.1.1 has only 6 terms. The

two theories at this point look hopelessly different, with gravity looking painfully more

complicated than Yang-Mills. However, much of the complexity of gravity arises from

diffeomorphism invariance, suggesting some degree of redundancy in the Feynman rules.

Under on-shell conditions for the external legs,

εµρ = ερµ, pµε
µρ = 0, pρε

µρ = 0, ηµνεµν = 0, (7.43)

the three-graviton vertex reduces dramatically:

Gµρ,νλ,στ (p1, p2, p3) = −iκ
2

[
(p1 − p2)σηµν + (p2 − p3)µηνσ + (p3 − p1)νησµ

]
×
[
(p1 − p2)τηρλ + (p2 − p3)ρηλτ + (p3 − p1)λητρ

]
. (7.44)

The three-graviton vertex factor starts to resemble a striking “double copy” or square of

the Yang-Mills cubic vertex factor. The drama heightens when we contract this vertex

with graviton polarisations, and compare the expression to the gauge theory analogue.

Contracting the graviton vertex (7.44) with polarisation vectors yields

εµρ1 ενλ2 εστ3 Gµρ,νλ,στ (p1, p2, p3) =

− iκ
2

[(ε1 · ε2) ε3 · (p1 − p2) + (ε2 · ε3) ε1 · (p2 − p3) + (ε3 · ε1) ε2 · (p3 − p1)]2 . (7.45)

Compare this expression with the cubic gluon vertex (7.14) contracted with three po-

larisation vectors

gfabcεµ1 ε
ν
2ε
ρ
3[gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ] =

gfabc [(ε1 · ε2) ε3 · (p1 − p2) + (ε2 · ε3) ε1 · (p2 − p3) + (ε3 · ε1) ε2 · (p3 − p1)] . (7.46)
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This hints that gravity may be simpler than we thought - possibly “Yang-Mills squared”.

We just need to find the hidden symmetries or structures to reveal this relationship.

BCJ duality is one such avenue.

7.3 Colour-kinematics duality

In section 7.2, we caught the hint of a “double copy” structure between the three-

graviton vertex factor and the Yang-Mills cubic vertex factor. However, unlike gravity,

the vertices and amplitudes of Yang-Mills theory are laced with colour structure. At

first glance, this difference may look like an obstacle to constructing a map between

the two theories. On the contrary, we will see in this section that colour factors will

offer us a bridge via colour-kinematics duality, otherwise known as BCJ duality [72,74]

named after the founders Bern, Carrasco, and Johannson.

The foundation stone of BCJ duality rests on the Jacobi identity (7.25) we encoun-

tered in Yang-Mills theory. BCJ duality conjectures that it is possible to choose a

representation of kinematic numerators that obeys the Jacobi identity in the same way

that colour factors do, i.e.

ci + cj − ck = 0 =⇒ ni + nj − nk = 0. (7.47)

This choice comes about by the freedom afforded by generalised gauge transformations.

It is always possible to deform the kinematic numerators of (7.30) by shifts, i.e.

ni → ni + ∆i, (7.48)

where the shifts ∆i are arbitrary functions independent of colour, satisfying the con-

straint ∑
i∈Γ

∆ici∏
αi
p2
αi

= 0. (7.49)

We can see that under this type of transformation, the newly transformed kinematic

factors ni do not change the overall amplitude.

When the kinematic factors ni are in a representation that obeys the Jacobi iden-

tity, we refer to them as BCJ numerators. Returning to the four-point example, we

note that the kinematic factors are already in such a representation, i.e. the kinematic

numerators (7.26), (7.27), (7.28) satisfy

ns − nt + nu = 0. (7.50)
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Generally, at higher points, it is not as easy to find BCJ numerators! BCJ duality has

been proven at tree level, and conjectured at loop level [72, 74]. However, it should be

noted that there is a string of successes of finding BCJ numerators, as evidenced by

just a few of many examples:

� BCJ numerators in one-loop amplitudes under certain helicity conditions in self-

dual Yang-Mills [84];

� BCJ numerator extraction from one-loop ambitwistor-string correlators [85];

� Colour-kinematics duality for pure Yang -Mills and gravity at one and two loops

[86], as well as for N = 4 supergravity at four loops [87].

The notion of colour-kinematics duality essentially places kinematic factors and colour

on the same footing, paving the way for their interchangeability.

7.4 BCJ double copy

In this section, we describe how the amplitudes of Yang-Mills theory and perturbative

gravity relate to each other through the double copy. The foundation of the double

copy has been laid by two actions:

1. We have organised our Yang-Mills amplitude as a sum of trivalent diagrams, where

kinematic factors are separate from colour factors (as per (7.29) and(7.30)).

2. We have chosen BCJ numerators, i.e. a kinematic representation that obeys the

Jacobi identity, putting colour and kinematic factors on the same footing.

These two actions enable us to replace the colour factors ci of the Yang-Mills amplitude

with a set of BCJ kinematic numerators ñi from a second gauge-theory amplitude,

ci → ñi. (7.51)

Note that these numerators can come from a second gauge theory amplitude, but they

do not have to. They can also come from the same amplitude, and in that case, ñi = ni.

If we also map the Yang-Mills coupling constant g to the gravitational coupling κ
2 , then,

remarkably, the resulting quantity corresponds to a gravitational amplitude [73,75]11

A(L)
m

ci→ñi,g→κ
2−−−−−−−→M(L)

m = iL−1
(κ

2

)m−2+2L∑
i∈Γ

∫ L∏
l=1

dDkl
(2π)D

1

Si

niñi∏
αi
p2
αi

. (7.52)

11Note that the double copy of a pure Yang-Mills gauge theory will also generate a dilaton and an
axion in addition to a graviton, unless polarisation vectors are chosen to be traceless and symmetric.
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The “square” or “double copy” of kinematic factors in the numerator lends the name to

the theory. Note that the diagrams specified by the propagators in the denominator are

identical in the gravitational amplitude to those of Yang-Mills. There is no hyperbole in

describing this result as anything short of astonishing, not only because it is an elegant

idea, but crucially because it has been shown to work for a variety of well-understood

amplitudes. One such example is the four-point scattering we have been working with

throughout this chapter.

Returning back to our Yang-Mills four-point scattering, we can perform the double

copy procedure immediately as we had already established that the kinematic factors

are BCJ numerators. The resulting amplitude does indeed correspond to four gravitons

scattering (see e.g. [76] for a pedagogical treatment),

M tree
4 =

(κ
2

)2
×
(
n2
s

s
+
n2
t

t
+
n2
u

u

)
. (7.53)

Beyond four points, there is growing body of evidence supporting this theory, notably:

� The prefactors of the two-loop five-point N = 4 super Yang-Mills amplitude

double copy to N = 8 supergravity [88];

� Entangled states of gluons scattering exactly like gravitons double copy at the

level of the wave function [89];

� The conservative potential of a compact binary system (e.g. two-body Hamilto-

nian for spinless black holes) is calculated using the double copy [90];

� At tree level, the double copy encodes the KLT relations, an early precursor

relating closed and open strings [70,71];

� CHY formalism utilises the scattering equations to express field theory amplitudes

as integrals, where the theory specific integrands have a manifestly double copy

form. This further enables a greater generalization of the double copy to include

theories beyond super Yang-Mills and supergravity, such as the non-linear sigma

model (NLSM) [91–93].

It should be noted that the inverse action of replacing one set of kinematic factors in

a gravitational amplitude with a set of colour factors leads to a Yang-Mills amplitude.

This mapping leaves behind one single copy of kinematic factors in the numerator, and

so it is aptly named the single copy. Figure 16 illustrates the mappings of the double

copy, including an additional theory which the double copy gives us for free, biadjoint

scalar theory.
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Biadjoint Scalar Theory∑
i∈Γ

c̃ici∏
αi
p2αi

Gauge Theory∑
i∈Γ

nici∏
αi
p2αi

Gravity∑
i∈Γ

niñi∏
αi
p2αi

Zeroth Copy

c̃i ← ni

Single Copy

ci ← ñi

c̃i → ni

Inverse Zeroth Copy

ci → ñi

Double Copy

Figure 16: The double copy mappings for perturbative amplitudes

7.4.1 Biadjoint scalar theory

We have focussed on the double copy map between gauge theory and gravity, where

colour in a gauge theory amplitude is replaced by kinematic factors. Likewise, the

single copy replaces one set of kinematic factors in a gravity amplitude with colour.

One could take this idea a step further, and perform a zeroth copy by replacing the

kinematic factors of a gauge theory amplitude with a second set of colour factors, i.e.

ni → c̃i. (7.54)

These colour factors c̃i do not need to stem from the same symmetry group as the

colour factors ci of the resident gauge group. Under the map 7.54, the gauge theory

amplitude transforms into a biadjoint scalar theory amplitude [94–97]:

A(L)
m

ni→c̃i,g→λ−−−−−−−→ T (L)
m = iLλm−2+2L

∑
i∈Γ

∫ L∏
l=1

dDkl
(2π)D

1

Si

cic̃i∏
αi
p2
αi

. (7.55)

where λ is the coupling constant of the biadjoint scalar theory. This amplitude corre-

sponds to a massless scalar field theory with Lagrangian

LBS =
1

2
∂µΦaȧ∂µΦaȧ +

λ

3
fabcf̃ ȧḃċΦaȧΦbḃΦcċ. (7.56)

The scalar fields Φaȧ transform in the adjoint representation of two Lie algebras which

may be (but do not have to be) distinct.

Although this theory does not purport to be a theory of nature, it is interesting that

in performing the zeroth copy, the propagators (and therefore also the structure of the

diagrams) are kept intact - i.e. they are the same in biadjoint scalar theory as those of

gauge theory and gravity in the double copy framework. This makes biadjoint scalar
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theory a potential building block for gauge and gravity theories, but with the bonus of

simplicity thanks to it being a scalar theory.

7.5 Conclusion

In this chapter, we have described how the BCJ double copy utilises the conjecture of

colour-kinematics duality to relate amplitudes of seemingly disparate theories, Yang-

Mills theory and perturbative gravity. We walked through an example of the double

copy in action for four-point scattering in Yang-Mills and four-graviton scattering. Fur-

thermore, we complemented this view by peppering the chapter with examples of the

many successes of the double copy in more involved calculations in perturbation theory.

While the double copy renders the typically unwieldy gravity amplitudes much easier

to calculate, it also suggests a profound connection between theories of nature.

In addition, the double copy serves up biadjoint scalar theory, the amplitudes of which

preserve or inherit some crucial structure of the amplitudes of the parent gauge theory

or gravity. Being a scalar theory, it has the advantage of relatively simpler calculations

than those of gauge theory or gravity. Although biadjoint scalar theory is not itself a

theory of nature, a study of this theory can be a shortcut to probing those that are.

The story presented so far is in the preserve of perturbation theory, and as such, limited

to quantities that are inherently approximate. It is reasonable to pose the question of

whether the double copy also operates at the arguably deeper level of relating exact or

non-perturbative quantities. In this domain, it would also be interesting to understand

what role biadjoint scalar theory has to play. These themes will be explored in the next

chapter.
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Chapter 8

The Classical Double Copy

In the previous chapter, we saw how the BCJ double copy relates Yang-Mills amplitudes

to gravity amplitudes. This relationship operates within perturbation theory, and is

therefore inherently approximate. To formulate a more complete and potentially deeper

version of the double copy, one could ask whether a non-perturbative counterpart exists.

While the focal points of interest in quantum field theory are amplitudes, classical

theories on the other hand involve solving the equations of motion. A branch of the

classical double copy relates well known exact classical gauge theory solutions, e.g. the

solutions of Maxwell’s equations, to those that solve Einstein’s field equations exactly,

e.g. the Schwarzschild black hole [98]. Furthermore, biadjoint scalar theory also plays

an important role in this framework by encoding the information associated with the

classical propagator, much like the BCJ double copy where propagators stay intact in

biadjoint scalar theory amplitudes.

An argument could be made that a subset of exact solutions may still fall under the

remit of perturbation theory, in that they could be viewed as tree-level or truncated

perturbative expressions. Typically, this class of exact solutions is associated with weak

coupling, i.e. where the field carries a positive power of a small coupling parameter en-

abling a perturbative expansion. This is in contrast to strong coupling, where the field

carries a negative power of the coupling preventing any meaningful expansion, thus

falling under the umbrella of non-perturbative phenomena.

Although classical double copy literature so far is limited to weakly coupled phenomena,

this body of work inspires confidence that the pursuit of a non-perturbative version is a

worthwhile endeavour. Certainly, if it were not possible to construct a classical double

copy of weakly coupled exact solutions, then it would cast doubt about whether effort

spent within the comparatively more complicated arena of non-perturbative phenom-
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ena such as monopoles, instantons, solitons etc. could be justified. It is our view that

the classical double copy canon, while interesting in its own right, is a valuable stepping

stone toward finding a truly non-perturbative duality.

Despite its relatively recent inception [98], there are many examples of the classical

double copy in action - perhaps too many to list in entirety. For the sake of providing

some idea of this collection, we can name a few. The double copy of exact solutions

extends to the self-dual sector [99–101], dimensions other than the four spacetime di-

mensions [102,103], and maps based on the Weyl tensor [104–106]. Much work has also

been achieved in the growing sector of gravitational and classical radiation [107–112].

In this chapter, we will review the construction of a specific type of classical dou-

ble copy, namely the Kerr-Schild double copy, along with a few examples. We will

learn about its strengths and limitations, while keeping an eye on the zeroth copy. It

is our intention to use biadjoint scalar theory as a platform from which we can explore

potential non-perturbative double copy maps in subsequent chapters.

Our starting point for the Kerr-Schild double copy will be an explanation of what

is meant by classical gauge and gravity theories, with a focus on weak versus strong

coupling.

8.1 Classical gauge theory

In section 7.1, we were introduced to non-Abelian Yang-Mills theory given by the

Lagrangian (7.12). We used this to calculate amplitudes - the objects of interest in

the BCJ double copy. In the classical limit of this theory, rather than calculating

amplitudes, we are interested in finding solutions to its equations of motion, which in

a vacuum are given by

∂µF aµν + gfabcAbµF cµν = 0. (8.1)

The definition of the colour indexed field strength tensor was given in (7.10).

The non-linear term in the equations of motion (8.1) could scupper any attempt to

solve this second order differential equation exactly for Aaν . Typically, the next best

strategy involves finding perturbative solutions (see e.g. [113]). This relies on the as-

sumption that the solution could be expanded into a series in the coupling g (assumed

to be small), i.e.

Aaν = A(0)a
ν + gA(1)a

ν + g2A(2)a
ν + ... (8.2)
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where the coefficients A
(i)a
ν are functions assumed to have no dependence on the cou-

pling g. If we were to substitute this ansatz into the equations of motion (8.1) and

choose the Lorenz gauge ∂µAaµ = 0, then we would have

∂2A(0)a
ν + g

(
∂2A(1)a

ν + 2fabcA(0)b
µ ∂µA(0)c

ν − fabcA(0)bµ∂νA
(0)c
µ

)
+O(g2) = 0. (8.3)

This power series in g is sensible only if the coupling is weak. This is why we equate

weak coupling with positive powers of the g.

We could solve (8.3) order by order. At the lowest order of the coupling, we have

the following set of equations:

∂2A(0)a
ν = 0. (8.4)

These equations are reminiscent of Abelian Yang-Mills theory, such as the Maxwell

equations in covariant form,

∂µF aµν = jaν . (8.5)

If the source is point-like at the origin, and vacuum elsewhere, we have jaν ∼ δ(~x). In

an Abelian theory, the field strength tensor linearises to

F aµν = ∂µA
a
ν − ∂νAaµ. (8.6)

We will discuss how linearity is closely linked to “Abelianisation” of a theory later on

in the context of the Kerr-Schild double copy.

The overarching theme here which will be threaded throughout this chapter is that

the solution to the leading term in a perturbative expansion can also be an exact so-

lution to the Abelian Yang-Mills equations. Such solutions contain positive powers of

the coupling, and therefore are weakly coupled and under the umbrella of perturbation

theory, irrespective of whether those solutions are exact or not. A well known example

which we will often refer to is the field potential of a Coulomb-like point charge,

A(0)a
ν =

gca

4πr
(1,~0), (8.7)

where ca is some arbitrary vector of colour constants (i.e. the “charge”), and r measures

the distance from the origin where the charge is located. This is a static solution of

(8.4), or equivalently a static vacuum solution of (8.5). It is evident that A
(0)a
ν contains

a charge proportional to a positive power of the coupling g, which we have stated is the

hallmark of weak coupling. Furthermore, our choice of solution contains colour charge

indices that are not mixed with spatial indices. This kills off the non-linear contribu-

tions of (8.3) due to the antisymmetry of the structure constants fabc. So, although the
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Coulomb-like point charge solution given by (8.7) is an exact solution, it can also be

viewed as a perturbative expansion terminating at the leading order. For this reason,

we assert that even if a solution is exact, it may not be truly non-perturbative if it

contains a positive power of the coupling.

On the other hand, a strongly coupled solution - i.e. a solution containing negative

powers of the coupling, is certain to be non-perturbative. A well-known example is the

Dirac monopole - the solution of the Abelian equations of motion constructed on the

hypothetical12 premise of a magnetic point charge. The gauge potential of the Dirac

monopole can be expressed in spherical polar coordinates (t, r, θ, φ) as

ADa
µ =

g̃c̃a

4π

1− cos θ

r sin θ
(0, 0, 0, 1), (8.8)

where the magnetic coupling g̃ is bound by the quantisation condition

gg̃ =
n

2
(8.9)

for some integer n. It is this quantisation condition that ensures the coupling is strong.

Although g̃ appears as a positive power in (8.8), it can also be understood as a nega-

tive power of g. We will elaborate further on the Dirac monopole in our discussion of

shockwaves in chapter 10.

To sum up, the points about classical gauge theory which play a role in the journey

toward a non-perturbative double copy are

� The solutions of weakly coupled theories contain positive powers of the coupling,

while strong coupling is associated with negative powers.

� Exact solutions to the Abelian equations of motion (e.g. Maxwell’s equations)

could be interpreted as the leading term of a perturbative series, and as such, are

not necessarily non-perturbative.

� In Abelian theories, the field strength tensor is linear in the gauge field.

On our brief tour of classical gauge theory, we highlighted the ideas which will play a

central role in evolving the story of the double copy. We now turn our attention to the

double copy partner of classical gauge theory - general relativity.

12Magnetic monopoles are hypothetical, as far as we know.
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8.2 General relativity

Recall the Einstein-Hilbert Lagrangian of section 7.2. The ensuing field equations

associated with this Lagrangian are

Rµν −
1

2
gµνR = 8πGN Tµν . (8.10)

where the energy-momentum tensor Tµν describes the distribution of matter in space-

time, and can be thought of as a source of gravitational currents. The Ricci tensor Rµν

captures information about the local curvature of spacetime, while the Ricci scalar R

informs of global curvature properties. Where curvature is non-trivial, these objects

can be highly non-linear in the metric. Thus, even though the field equations appear

deceptively simple in this compact form, make no mistake that these second order

differential equations are notoriously difficult to solve. Enter Kerr-Schild.

8.2.1 Kerr-Schild metrics

Kerr-Schild metrics form a class of solutions of the Einstein equations. Originally

proposed by Kerr and Schild for the purpose of expressing the contravariant components

of the metric easily in terms of the covariant components in their 1965 paper [114], a

good comprehensive introduction to Kerr-Schild metrics can be found in Stephani’s

textbook [115]. The general Kerr-Schild metric is defined as:

gµν = ḡµν +
κ2

2
φkµkν , (8.11)

where φ is a scalar field, ḡµν is the background spacetime metric, and the vectors kµ

are null with respect to both the whole and background metrics,

gµνkµkν = 0 = ḡµνkµkν . (8.12)

Further to this, the null vectors kµ must obey the geodesic condition

kµ∇̄µkν = 0, (8.13)

where ∇̄µkν indicates the covariant derivative of k with respect to the background

metric, i.e.,

∇̄µkν = ∂µk
µ + Γ̄νµρk

ρ. (8.14)

The “barred” Christoffel symbol is constructed strictly from the background metric,

Γ̄νµρ =
1

2
ḡνσ (∂µḡρσ + ∂ρḡµσ − ∂σ ḡµρ) . (8.15)
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Generally, the act of raising and lowering indices on an arbitrary tensor is carried out

by the entire metric gµν , as opposed to just the background metric ḡµν . We can relate

the Kerr-Schild metric to its perturbative counterpart of (7.36) by defining the graviton

field as

hµν ≡
κ

2
φkµkν . (8.16)

The inverse of the Kerr-Schild metric is the same as that of (7.37), however the null

condition kµkµ = 0 effectively truncates the series at the first order. The exact form of

the inverse Kerr-Schild metric is then

gµν = ḡµν − κhµν = ḡµν − κ2

2
φkµkν . (8.17)

We will often refer to the special case where the background metric is flat, i.e. Minkowski,

ḡµν = ηµν , rendering the full metric as

gµν = ηµν +
κ2

2
φkµkν . (8.18)

One of the nice properties of this Kerr-Schild metric is that the Einstein field equations

take on a linear form. In particular, the mixed index Ricci tensor is linear in the

graviton field

Rµν =
κ2

4
[∂µ∂α(φkαkν) + ∂ν∂α(φkαkµ)− ∂α∂α(φkµkν)] . (8.19)

The Kerr-Schild metric, by its properties of linearising the field equations, has been

instrumental in revealing the classical double copy.

8.3 The Kerr-Schild double copy

Now that we have outlined our classical gauge theory and general relativity, we will see

how Kerr-Schild metrics illuminate a map between the theories.

Consider the graviton field hµν defined in (8.16), perturbing a flat background space-

time as set out in the metric (8.18). We perform the single copy by removing one null

vector kµ, in conjunction with a change of coupling constant. The result is a new gauge

field Aµ:

hµν =
κ

2
φkµkν −→ Aµ = gφkµ (8.20)

Similar to the quantum field (7.4), we can deconstruct the classical gauge field Aµ into

a product of colour indexed fields and generators

Aµ = T aAaµ, Aaµ = gcaφkµ (8.21)
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where ca is a colour vector, not to be confused with the colour factors ci of (7.23). For

example, in SU(3), as there are a = 8 generators in the adjoint representation, ca would

be a column vector with 8 entries.

If we repeat the mapping once more, we arrive at the zeroth copy, i.e., the biadjoint

scalar field

Aaµ = gcaφkµ −→ Φaȧ = λc̃ȧcaφ (8.22)

which should satisfy the equations of motion associated with the biadjoint scalar field

theory Lagrangian defined in (7.56), i.e.,

∂µ∂
µΦaȧ − λfabcf̃ ȧḃċΦbḃΦcċ = 0. (8.23)

Note that the zeroth copy fixes the choice of φ thereby eliminating any potential am-

biguity in defining φ and kµ between the double and single copies. While this alone

suggests that the zeroth copy is a necessary pillar of the double copy, we will also show

how biadjoint scalar theory classically preserves information about propagators - much

like the amplitudes story of the previous chapter. On the other hand, it is not imme-

diately apparent how the inverse procedure, i.e. the inverse zeroth copy, could “fix” a

particular kµ vector as this mapping appears to be one-to-many. Recent literature on

the double copy in twistor space shows how the Weyl double copy procedure can be

derived, and explores what kind of information the scalar function contains, potentially

shedding light on how to refine the inverse zeroth copy [116,117].

The foundation stone of the version of the double copy presented in this section is

the Kerr-Schild metric, and so we refer to this mapping as the Kerr-Schild double copy,

illustrated in figure 17.

These fields must satisfy the equations of motion of their respective theories. We

show how well this works by offering a few examples.

8.3.1 Black hole and point charge examples

While the double copy in general is often relayed by the slogan “gravity is Yang-

Mills squared”, the Kerr-Schild double copy can be summed up by “black hole =

charge2” [118]. Of the many examples of this relationship, we will discuss two cases.

The first case involves arguably the simplest solutions in gravity and gauge theory -

the Schwarzschild black hole and the Coulomb point charge. This will offer an intuitive

example of the Kerr-Schild double copy while highlighting the relevance of biadjoint

scalar theory in this framework. The second case of the Taub-NUT metric single
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Biadjoint Scalar Theory

Φȧa = λc̃ȧcaφ

Gauge Theory

Aaµ = gcaφkµ

Gravity

hµν = κ
2φkµkν

Zeroth Copy

+c̃ȧ,−kµ

Single Copy

+ca,−kν

−c̃ȧ,+kµ
Inverse Zeroth Copy

−ca,+kν
Double Copy

Figure 17: The double copy mappings for exact solutions

copying to dyons will lead us naturally to ponder life beyond weak-coupling and the

conventional Kerr-Schild double copy - and whether biadjoint scalar theory can offer a

probe therein.

Stationary solutions in general

The first written treatment of the Kerr-Schild double copy demonstrated how the double

copy springs from stationary Kerr-Schild solutions [98]. Recall the mixed convention

Ricci tensor of (8.19), and consider it under the following conditions:

1. stationarity - all time derivatives vanish,

2. all dynamics in the zeroth component of the metric are absorbed by φ, allowing

us to set k0 = 1.

Under such conditions, and using the mostly plus convention for the Minkowski metric

ηµν =diag(−,+,+,+), it is straightforward to reduce (8.19) to:

R0
0 =

κ2

4
∇2φ;

Ri0 =
κ2

4
∂j
(
∂i(φkj)− ∂j(φki)

)
;

Rij =
κ2

4
∂l

(
∂i(φkjk

l) + ∂j(φk
lki)− ∂l(φkikj)

)
. (8.24)

In the special case of a vacuum spacetime, the Einstein field equations are

Rµν = 0. (8.25)

In light of (8.24), this implies the following relations must hold in a vaccum,

∇2φ = 0; ∂j
(
∂i(φkj)− ∂j(φki)

)
= 0. (8.26)
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We are a step away from witnessing a double copy structure emerge from these expres-

sions. Turning our attention to gauge theory, we construct a gauge field according to

the single copy prescription (8.20), under the same stationarity conditions listed above:

Aµ = gφkµ : A0 = gφ, Ai = gφki. (8.27)

The corresponding field strength tensor Fµν is then

Fµν = g (∂µ(φkν)− ∂ν(φkµ)) , (8.28)

with non-zero components being

Fi0 = g∂iφ; Fij = g(∂i(φkj)− ∂j(φki)). (8.29)

The relations we found in (8.26) imply that the gauge field defined in (8.27) automati-

cally fulfils the homogeneous Maxwell equations,

∂µF
µν = 0. (8.30)

This theory may appear Abelian, but there is something more subtle at work here. The

gauge field Aµ comprises colour factors and generators as per (8.21). The correct way to

interpret Aµ is as an Abelian-like solution of a non-Abelian gauge theory. Pursuing this

one step further, the zeroth copy defined by (8.22) inherits this Abelian-like property.

In this case, the zeroth copy yields a stationary solution that satisfies the biadjoint

scalar field equations (8.23) where the interaction term vanishes and the colour factors

ca, c̃ȧ are simply constant vectors. The biadjoint scalar field equations are then

∇2φ = 0. (8.31)

A few points to note so far about the stationary solutions are

� The Kerr-Schild metric linearizes the Einstein field equations, and the single and

zeroth copies inherit this linearity in that the gauge and biadjoint solutions are

Abelian-like.

� It appears that the equations of motion themselves have a double copy-like struc-

ture, and that the nature of the source (i.e. vacuum) is reassuringly consistent

between all three theories.

� The solution to the biadjoint scalar field equations is a Green’s function,13 which

can be interpreted as a scalar propagator. This is in line with the BCJ double

13The biadjoint scalar field is singular at the origin. This feature can be captured by adjusting the
right-hand-side of (8.31) to be the Dirac delta function.
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copy for amplitudes where the propagators are preserved in the biadjoint scalar

theory.

These statements are true for any stationary solutions, such as the Schwarzschild black

hole which we will explore now.

Schwarzschild black hole and the Coulomb point charge

The Schwarzschild black hole solves the vacuum Einstein equations where all spacetime

can be described by a vacuum apart from one pointlike massive source. This can be

captured by the energy-momentum tensor,

Tµν = Mvµvνδ(3)(~x), (8.32)

where M is the mass of the black hole and vµ = (1, 0, 0, 0) is a timelike velocity vector.

Note that the energy-momentum tensor has only one non-zero component T 00, which

makes sense as the shear stress components T i0, T ij should vanish where the source is

static.

The metric that solves the Einstein field equations for this type of source can be put

in Kerr-Schild form [114],14

gµν = ηµν +
κ2

2
φkµkν = ηµν +

2GNM

r
kµkν (8.33)

where φ = M
4πr , kµ = (1, xi/r) and we already are familiar with the gravitational

constant (although here we use a slightly different convention to that of the previous

chapter), κ2 = 16πGN .

Now we take the single copy of this solution [98], the details of which are captured

in table 4. Among the usual prescription of dropping a kµ vector, mapping couplings,

etc. is the mapping of the gravitational mass M to a colour charge caT
a. Although

there is the presence of colour, it must be trivial (i.e. ca is a constant colour vector) as

we are dealing with an intrinsically Abelian-like solution. The resulting gauge field is

then

Aµ =
g caT

a

4πr
(1, xi/r) ≡ AµaT a. (8.34)

The Abelian-like gauge field Aµ has an immediately recognisable physical meaning in

a particular gauge. Consider the gauge transformation

Aµa → A′µa = Aµa + ∂µχa, (8.35)

14See appendix G for details on how to transform the Schwarzschild solution in spherical polar
coordinates to Kerr-Schild form.
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Gravity Gauge Theory

Coupling Constant κ
2 −→ g

Charge M −→ caT
a

Vectors kµkν −→ kµ
Scalar Field/Propagator 1

4πr −→ 1
4πr

Table 4: Schwarzschild Black Hole parameters mapped to Coulomb point charge via
the Single Copy

where the gauge is

χa(x) = −g ca
4π

log

(
r

ro

)
, (8.36)

and ro is some fixed radius. The transformed gauge field A′µ becomes

A′µ = A′µa T
a = (g

caT
a

4πr
,~0). (8.37)

This field can be understood as that associated with a static Coulomb colour charge

located at the origin. It is the solution to the Maxwell field equations

∂µF
µν = jν , (8.38)

where the pointlike colour charge source is

jν = −gcaT avνδ(3)(~x). (8.39)

Comparing this with its gravity counterpart (8.32) could lead us to claim that the

source terms appear to have a double copy-like structure. This should be viewed with

caution as this example is awash with spherical symmetry. In less symmetrical exam-

ples, e.g. Kerr black hole where the source is disc-like, sources double copy only to some

degree [98]. It may be more prudent instead to suggest there is consistency between

the nature of the sources, i.e., they are both pointlike at the origin for the spherically

symmetric cases of the Schwarzschild black hole and the Coulomb point charge (see

also [119] on the double copy of sources).

Finally, we perform the zeroth copy which yields the biadjoint scalar field,

Aaµ = gcaφkµ −→ Φaȧ = λcac̃ȧ
1

4πr
. (8.40)

This is a Green’s function as it solves the free biadjoint scalar field equations

∇2Φaȧ = λcac̃ȧδ(3)(~x). (8.41)
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In this context, we can ascribe physical meaning to biadjoint scalar theory. The bi-

adjoint equations of motion encapsulate how the scalar potential propagates through

spacetime. This is in line with the BCJ double copy, where the amplitudes of biadjoint

scalar theory contain the same propagators as those of gauge theory and gravity.

To conclude this example, we reiterate a crucial point introduced in section 8.1. Al-

though the solutions presented in this section are exact, they could also be viewed as

a perturbative expansion in the coupling that terminates at the first order. As such,

these solutions are still not truly non-perturbative as they are Abelian-like, and lying in

the realm of weakly coupled theories. In the next section, an element of strong coupling

will present itself in the double copy of the Taub-NUT metric, however we will see that

it will still be considered a perturbative map.

The Taub-NUT metric and dyons

The Taub-NUT metric is a stationary axisymmetric vacuum solution, characterised by

two charges [120,121]. Although we refer to it as a black hole, it maintains a rotational

character that does not die off at infinity, and thus is not asymptotically flat (unlike the

previous black hole solutions we have discussed). Of the two charges of the Taub-NUT

metric, one is sourced by a pointlike mass M while the other is the so-called “NUT”

charge N , named after Newman, Unti, and Tamburino. This combination of charges

can be called a gravitational dyon. In the context of the double copy, the gravitational

dyon described by the Taub-NUT metric maps to a gauge theory dyon consisting of an

electric and a magnetic charge [122].

We will not enmesh ourselves in the calculations underpinning the Taub-NUT dou-

ble copy as they are quite onerous and will not particularly add much clarity to the

story of this thesis. We will instead offer a bird’s eye view sufficient enough to provide

scaffolding for three main points:

1. The classical double copy of exact solutions can extend beyond the Kerr-Schild

ansatz of (8.11).

2. It is possible to include strongly coupled phenomena in the double copy.

3. Although the Taub-NUT double copy may include some element of strong cou-

pling, we can not yet claim to have found a non-perturbative double copy.

To address the first of these points, we note that in Plebanski coordinates, the Taub-

NUT metric can be written in a manifestly double Kerr-Schild form [123],

gµν = ḡµν + κhµν (8.42)
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where

hµν =
κ

2
(Mφkµkν +Nψlµlν) . (8.43)

The vectors kµ and lµ are both null and obey the geodesic condition with respect to

the background metric.

The single copy of this gravitational dyon is a gauge theory dyon,

Aaµ = ca(gφkµ + g̃ψlµ). (8.44)

In performing the single copy, the mass and nut charges map to the electric and mag-

netic charges as follows,

M
κ

2
−→ caT ag N

κ

2
−→ c̃aT ag̃. (8.45)

The authors of ref. [122] have verified that the gauge field (8.44) satisfies the Yang-Mills

equations (which linearise).

Now we can discuss the topic of points 2 and 3 - strong coupling. The electric charge g

and magnetic charge g̃ are bound by the quantisation condition of (8.9). The NUT and

mass charges too, are similarly bound, although the quantisation condition translates

into a relation between the periodicity of the time coordinate and the NUT charge

(see [124–126]). Although the inclusion of a magnetic charge does indicate the presence

of strong coupling, the double copy relates dyons which are solutions composed of a

weak charge and a strong charge, as opposed to monopoles which are strictly strongly

coupled solutions. As we have established in section 8.1, a weakly coupled exact so-

lution falls under the umbrella of perturbative phenomena, and so it is appropriate to

classify the dyon-Taub-NUT double copy as a “perturbatively exact” relationship [122].

Last but not least, we conclude our brief Taub-NUT tour with a review of an im-

portant member of the double-copy family - the zeroth copy. The biadjoint scalar field

under the zeroth copy prescription is

Φaȧ = cac̃ȧ(φ+ ψ), (8.46)

where the fields φ and ψ fulfil the linearised biadjoint equation independently of each

other. They can be understood consistently with the other examples of biadjoint scalar

theory so far - as scalar propagators over source charges that preserve propagator

information for all the theories under the double copy. Some care must be exercised

however when interpreting biadjoint scalar theory in this way where the background

metric is not the Minkowski metric [127]. This will not impede our narrative as we will
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not work with such metrics.

8.3.2 Beyond weak coupling and Abelian-like solutions

We have listed only a handful of examples of the classical double copy of exact solutions.

However, even when taking into consideration the wider catalogue, we observe that the

success of the double copy is so far limited on two fronts:

1. While we benefit from the linearity that the Kerr-Schild ansatz bestows on the

Einstein field equations, its single copy appears to limit us to Abelian-like solu-

tions. This is in contrast to the BCJ double copy narrative, where the non-Abelian

nature of the gauge theory plays a central role.

2. So far, the double copy applies to weakly coupled solutions, and therefore can not

be considered non-perturbative.

To break free of these bounds, we may need to leave Kerr-Schild behind. However,

this makes solving the Einstein equations difficult and constructing/finding mappings

between theories murky. If we are to take steps in this direction, it may be wise to begin

with the “easiest” theory to solve - biadjoint scalar theory, and relate these solutions

to strongly coupled gauge theory solutions such as monopoles.

But before embarking on the monopoles adventure, we should first tie up one last

loose end regarding weak coupling. One may suggest that in an exact solution, there

is freedom to set the coupling as one wishes - weak or strong. However, the classical

double copy should have some link with the BCJ double copy, in which the couplings

are already set to be small thereby removing this freedom. It may be prudent then

to take a moment to anchor the Kerr-Schild double copy to the well-established BCJ

double copy.

8.3.3 Comparison with the BCJ double copy

At this point, the Kerr-Schild double copy may seem to bear little resemblance to the

BCJ double copy in the previous chapter. To provide some reassurance that this is not

so, table 5 draws a comparison between the two dualities.

Some observations are in order to accompany this table. In both pictures,

� coupling constant mappings apply;

� moving downward from gravity to the other theories involves at each step remov-

ing a colour-free factor (e.g. kinematic ni or null vector kµ) and adding a colour

factor, while moving upward is the inverse process of this;

106



CHAPTER 8. THE CLASSICAL DOUBLE COPY

Amplitudes Exact Solutions

BCJ Numerators Null Geodesic Vectors
Constraints

ni − nj + nk = 0 kµk
µ = 0; kµ∇̄µkν = 0

Gravity
∑

i∈Γ
niñi∏
αi
p2αi

gµν = ḡµν + κ2

2 φkµkνxy xy xy
Gauge Theory

∑
i∈Γ

nici∏
αi
p2αi

Aaµ = gcaφkµxy xy xy
Biadjoint Scalar Theory

∑
i∈Γ

c̃ici∏
αi
p2αi

Φaȧ = λcac̃ȧφ

Coupling Constant Mappings λ←→ g ←→ κ
2 λ←→ g ←→ κ

2

Table 5: Double Copy: amplitudes vs exact solutions

� there are restrictions which must be obeyed (although admittedly, BCJ duality

is not identical to the null and geodesic restrictions);

� the propagators remain unchanged and appear to be encoded in biadjoint scalar

theory.

The null and geodesic restrictions apply specifically to Kerr-Schild metrics, and it must

be said that not all space-times can be represented by this restrictive form. One can,

however, make a sweeping statement about the broader classical double copy in general.

The classical double copy can be seen as an off-shell generalization of the perturbative

BCJ double copy. Since the gauge field Aµ is measured at a space-time point, the

Feynman diagrams associated with this picture will include external legs that do not

go off to space-time infinity.

Having bridged the classical and BCJ double copies, we can move on to hunt for the

elusive non-perturbative double copy.

8.4 Conclusion

In pursuit of a non-perturbative double copy, we have reviewed how the double copy

can be extended to include classical exact solutions via the Kerr-Schild metric, and

we connected this back to the well-established BCJ double copy. Our review included

two examples: 1) the map of the Schwarzschild black hole in general relativity to the
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Coulomb point charge in classical gauge theory; 2) the Taub-NUT-dyon map to a gauge

theory dyon. While the first example is the archetypal Kerr-Schild double copy, the

second offers a glimpse beyond the conventional Kerr-Schild metric by the use of a

double-Kerr-Schild metric. Throughout, the zeroth copy produces biadjoint scalar the-

ory which plays a similar role to its BCJ double copy counterpart by encoding some

information about the propagators of all the theories under the double copy umbrella.

Although the Kerr-Schild double copy has been fruitful, it has so far yielded maps

limited to Abelian-like solutions of weakly coupled gauge theories. While these maps

do connect exact solutions, we cannot yet claim we have found a non-perturbative

double copy. Why not? A weakly coupled Abelian-like exact solution can also be in-

terpreted as the first term of a perturbative expansion.

By our reasoning, a truly non-perturbative double copy is one that includes strongly

coupled non-Abelian solutions. This is easier said than done. Kerr-Schild metrics lin-

earise the Einstein field equations, and this linearity trickles its way down the single

copy to effectively render Abelian-like solutions to the gauge theory. This means we

may need to abandon Kerr-Schild metrics altogether in our quest.

Luckily, some groundwork toward this goal has already been achieved via (the rela-

tively easier to solve) biadjoint scalar theory. The next chapter introduces us to a

strongly coupled non-Abelian biadjoint exact solution, which we hope can equip us to

springboard to other such solutions.
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Chapter 9

The Biadjoint Monopole Zoo

The double copy of exact solutions presented so far has been limited to Abelian-like

solutions of weakly coupled theories. As such, this duality may still fall under the um-

brella of perturbation theory. A potential road toward a non-perturbative double copy

could involve mapping strongly coupled gauge theory solutions to their gravitational

counterparts. This is not an easy task, as such calculations can become unwieldy. This

difficulty is further compounded by the lack of any precedent of a double copy prescrip-

tion in this domain.

To overcome any hurdles posed by potentially onerous calculations, we can proceed

instead by exploring strongly coupled exact solutions of the relatively easier biadjoint

scalar theory. For the reader’s ease, we write again the Lagrangian defining the theory

here,

L =
1

2
∂µΦaȧ∂µΦaȧ +

λ

3
fabcf̃ ȧḃċΦaȧΦbḃΦcċ. (9.1)

This gives rise to equations of motion

∂µ∂µΦaȧ − λfabcf̃ ȧḃċΦbḃΦcċ = 0. (9.2)

Some groundwork toward solving these equations has already been paved by the spher-

ically symmetric biadjoint monopole, as well as a solution under the common gauge

group of SU(2) [128]. These solutions were then extended by the use of “form fac-

tors” [129]. The previous paper postulates a potential double copy relationship between

the biadjoint monopole and the Wu-Yang monopole - but we will discuss in the next

chapter why this is not so.

In this chapter, we will demonstrate that it is possible to find even more biadjoint

monopoles, specifically those possessing cylindrical symmetry [1]. This choice of sym-

metry is partly motivated by our ultimate goal of forging a link to strongly coupled
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gauge theory solutions - which tend to possess cylindrical symmetry [130]. However, as

the study of biadjoint monopoles is still in its infancy, growing the zoo of such solutions

is also a worthwhile task in its own right.

All of the non-perturbative solutions in this chapter are guided by the following re-

strictions:

� Non-perturbative solutions require that the two types of colour charge in biadjoint

theory be inextricably linked, i.e., not separable functions;

� Assuming a common gauge group fabc = f̃abc greatly simplifies the equations;

� As this is a relatively new arena, only static solutions are explored.

The last two items simplify our equations of motion,

∇2Φaȧ + λfabcf ȧḃċΦbḃΦcċ = 0. (9.3)

where we used the mostly minus convention for the Minkowski metric ηµν =diag(+,−,−,−).

We begin the tour of solutions to (9.3) by a brief review of the first known biadjoint

monopoles - those involving spherical symmetry.

9.1 Biadjoint monopoles involving spherical symmetry

In this section, we briefly review three types of solution to the equations of motion

under all of the restrictions mentioned above. The binding theme is that each one in-

corporates some element of spherical symmetry. We will not reproduce the supporting

calculations, as they are similar to those underpinning the cylindrically symmetric so-

lutions. Rather, we will offer a bird’s eye view, highlighting key features for subsequent

comparison.

i) Simple spherically symmetric solution [128]

The simplest possible spherically symmetric ansatz that can solve the equations (9.3)

is

Φaȧ = δaȧf(r) (9.4)

where r is the radial coordinate. The equations (9.3) take on the form

δaȧ∇2f(r) + λfabcf ȧbcf2(r) = 0. (9.5)
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The normalisation condition below makes short work of the non-linear term:

fabcf ȧbc = δaȧTA, (9.6)

where TA is the normalisation constant. A power-law form for f(r) solves the equations,

i.e.,

f(r) = Krα, (9.7)

leading specifically to the solution

Φaȧ =
−2δaȧ

λTAr2
. (9.8)

This is a fully non-perturbative solution as it involves inverse powers of the coupling

λ. Additionally, this field falls off rapidly as r →∞ and is singular at the origin r = 0

- much like a point-like monopole located at the origin. The profile of this monopole is

further fleshed out by calculating the associated energy,

E =
128πN

9λ2T 2
Ar

3
o

, (9.9)

where N is the dimension of the gauge group, and ro is a short-distance radial cutoff

imposed in order to present some type of closed form for the energy15. The energy is

bounded at large distances, but divergent at small distances.

ii) SU(2) × SU(2) [128]

A further solution assumes a more involved ansatz than (9.4), while imposing a further

condition that the common gauge group be SU(2) where fabc = εabc.16 This choice of

gauge group allows for colour/space index mixing - a feature present in gauge theory

monopoles. An ansatz incorporating this feature is

Φaȧ = A(r)δaȧ +B(r)xaxȧ + C(r)εaȧdxd. (9.10)

While the ansatz itself is not spherically symmetric, the coefficient functions A,B,C

most certainly are, since they depend only on r. Fulfilling the equations of motion (9.3)

reduces (9.10) to the following solution:

Φaȧ =
1

λr2

[
−k
(
δaȧ − xaxȧ

r2

)
±
√

2k − k2
εaȧdxd

r

]
, (9.11)

15It is unavoidable to calculate infinite energy in such a scalar theory by Derrick’s theorem [131].
16In principle, one could generalize this by considering Lie groups with embeddings of the subgroup

SU(2). As far as we know, this has not yet been attempted for exact biadjoint solutions.
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for 0 ≤ k ≤ 2. This field has associated energy

E =
16πk

λ2r3
o

. (9.12)

Similar to the first example, (9.11) represents a point-like monopole located at the

origin. The paper speculates that for the special value of k = 2, (9.11) could be

rewritten to resemble a product of Wu-Yang monopoles where one traces over the

space indices, i.e.,

Φaȧ =
−2

λr2
εabcεȧḃc

xbxḃ

r2
∼ AaiAȧi , (9.13)

where the Wu-Yang monopole could be written in a gauge in which

Aa0 = 0, Aai = −εiakx
k

er2
. (9.14)

Note that this proposed prescription is a bit counter-intuitive in the context of the

Kerr-Schild double copy procedure, i.e., it appears that a squaring of gauge theory re-

sults in biadjoint scalar theory rather than the usual vector-shedding procedure. Given

that we are working outside the familiarity of the Kerr-Schild framework, we keep an

open mind to this possibility. We will revisit this idea in the next chapter and discuss

why this mapping turns out to be coincidental.

iii) Extended solutions [129]

In gauge theories there is an array of solutions in which a pure power-law divergence

can be dressed with a non-trivial form factor, suggesting some internal structure [132].

Furthermore, such form factors can effectively screen divergent behaviour near singular

regions of the field. This principle can also be applied to biadjoint monopoles. For

example, the spherically symmetric ansatz of (9.4) can be dressed as follows

J(r) = 1 + r2f̄(r), (9.15)

where we rescale f ≡ f̄
λTA

. Dimensional analysis assures us that J(r) is finite for all r.

Now f(r) must obey the equations of motion, and this constraint can be expressed as

a differential equation in J :

r2∂
2J

∂r2
− 2r

∂J

∂r
+ J2 − 1 = 0. (9.16)

While this differential equation has no analytic solution, it can be solved numerically,

and its asymptotic limits can be studied analytically. In the problematic region where

there is a divergence, we can say a few words about the effect of the screening. In the
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asymptotic limit r → 0, the field can be approximated using

f̄(r) ' c

r
, (9.17)

for a dimensionful constant c. The divergence near the origin is indeed softer than that

of the undressed solution (9.8) which was ∼ r−2. The same can be said of the energy

close to the origin. Using (9.17), the leading divergent term in the energy is

E ' N
λ2T 2

A

2πc2

ro
. (9.18)

In comparison with the undressed field’s energy (9.9), close to the origin, the divergence

is softened by the screening. The SU(2) × SU(2) solution can likewise be screened with

similar softening effects.

To sum up, we have reviewed the first exact solutions to the non-Abelian biadjoint the-

ory involving inverse powers of the coupling, implying that we have moved away from

perturbation theory to the non-perturbative arena as we had desired. As for the goal

of finding a non-perturbative double copy, ref. [128] does speculate on a tenuous link to

monopoles in gauge theory. However, some monopoles in gauge theory are characteristic

of cylindrical symmetry [130] while the biadjoint solutions presented in [128,129] involve

some element of spherical symmetry. Intent on bridging the monopoles of gauge theory

and biadjoint theory, we turn now toward cylindrically symmetric biadjoint monopoles.

9.2 Biadjoint monopoles involving cylindrical symmetry

In this section, we consider exact solutions possessing cylindrical symmetry, as per

reference [1]. The analysis parallels section 9.1. First, we consider a very simple static

cylindrically symmetric solution to (9.3), under an unspecified common gauge group G.

Secondly, we explore solutions where the common gauge group specfically is SU(2) with

the aim to incorporate colour/space index mixing as we see in gauge theory monopoles.

Thirdly, we will dress our solutions with form factors screening the divergence close to

the charge.

9.2.1 Solutions with a common gauge group

The simplest cylindrically symmetric ansatz we could write down is

Φaȧ = δaȧf(ρ), (9.19)
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where the cylindrical radius is

ρ2 = −xixi. (9.20)

We will use indices i, j, k... ∈ (1, 2) distinct from indices a, b, c ∈ (1, 2, 3). Throughout

the remainder of this chapter we will use cylindrical coordinates (ρ, z, φ). We will con-

tinue to use the normalisation condition (9.6).

Recall that the Laplacian in cylindrical polar coordinates is

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
. (9.21)

Plugging our static ansatz (9.19) into our equations of motion (9.3), we find

δaȧ
(

1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+ λTAf

2(ρ)

)
= 0. (9.22)

To solve this differential equation, we try a power-law solution

f(ρ) = Aρα, (9.23)

which works for the values

A =
−4

λTA
, α = −2, (9.24)

yielding the biadjoint solution

Φaȧ =
−4δaȧ

λTAρ2
. (9.25)

This solution has much in common with the spherically symmetric solution of (9.8),

namely:

� It has an inverse power of the coupling λ and thus is nonperturbative.

� It goes like the inverse square of the cylindrical radius ρ (r in the spherical

case), which could also be deduced by conducting dimensional analysis on the

Lagrangian of (9.1). More specifically, in d−dimensions, the biadjoint scalar field

must have mass dimensions of d/2 − 1 while the coupling constant λ has mass

dimensions 3− d/2.

� Like the spherically symmetric case, this solution has a singularity. However,

where it was point-like for (9.8), the singularity here corresponds to a line defect

in the field localised on the z−axis, i.e. ρ → 0, which we will refer to as the

“wire”.

We can offer a more concrete view of this solution and its singularity by calculating its

energy, as was done for the spherically symmetric solution. The Hamiltonian density
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associated with (9.1) under a common gauge group is given by

H =
1

2

[
∂tΦ

aȧ∂tΦ
aȧ +∇Φaȧ · ∇Φaȧ

]
− λ

3
fabcf ȧḃċΦaȧΦbḃΦcċ. (9.26)

For an ansatz of the form (9.19), this is

H =
N
λ2T 2

A

[
1

2

(
∂f̄(ρ)

∂ρ

)2

− 1

3
f̄3(ρ)

]
. (9.27)

We have rescaled f(ρ) ≡ f̄(ρ)
λTA

. Further, we invoked the normalisation condition (9.6),

as well as the chain rule

∂if̄(ρ) = ∂iρ×
∂f̄

∂ρ
=
−xi
ρ

∂f̄

∂ρ
. (9.28)

The Hamiltonian density is then

H =
160N

3λ2T 2
Aρ

6
. (9.29)

To find the energy, we integrate the Hamiltonian density over space, i.e.,

E =

∫
d3xH. (9.30)

As we are working with an expression in terms of the cylindrical radius, it makes sense

to carry out the integral in cylindrical polar coordinates as per∫ ∞
−∞

d3x =

∫ 2π

0
dφ

∫ ∞
−∞

dz

∫ ∞
0

dρ ρ. (9.31)

Before charging ahead, some integration bounds need to be adjusted to avoid calcu-

lating an infinite quantity that will mask the energy’s distinguishing features. Firstly,

integration over all of the z−axis, will incur an infinite energy, and so instead we will

calculate a “unit energy” per length L of the z−axis. Secondly, the inevitable singular-

ity around ρ → 0 can be regulated by a cutoff ρo, comparable to ro in the spherically

symmetric energy (9.9). With these changes,

E =
160N
3λ2T 2

A

∫ 2π

0
dφ

∫ L

0
dz

∫ ∞
ρo

dρ ρ−5, (9.32)

resulting in the energy per unit length

E

L
=

80πN
3λ2T 2

Aρ
4
o

. (9.33)
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Like the spherically symmetric energy, the energy associated with the cylindrically

symmetric solution falls off rapidly with distance from the wire.

9.2.2 Solutions for SU(2) × SU(2)

We now consider biadjoint scalar theory, where the common gauge group is SU(2) with

structure constants fabc = εabc, defined by the Lagrangian:

L =
1

2
∂µΦaȧ∂µΦaȧ +

λ

3
εabcεȧḃċΦaȧΦbḃΦcċ. (9.34)

As mentioned prior in the example involving spherical symmetry, the SU(2) group

allows for gauge/space index mixing in four spacetime dimensions - a common feature of

gauge theory monopoles. Another common feature of Yang-Mills solutions is cylindrical

symmetry [130], which motivates an ansatz similar (but not identical) to the spherically

symmetric SU(2) ansatz. Consider the ansatz

Φ33 = f1(ρ), Φij = f2(ρ)δij + f3(ρ)xixj + f4(ρ)εij3, Φi3 = Φ3i = 0. (9.35)

We have chosen the z direction in space (and equivalently the “3” direction in gauge

space) about which we would like to impose cylindrical symmetry. Constraining the

ansatz by the equations of motion of (9.3) results in differential equations in fn, which

we will show step by step. Beginning with Φ33, we have

∂i∂
if1(ρ) + λε3bcε3ḃċΦbḃΦcċ = 0. (9.36)

The first term is the Laplacian of a function of ρ, for which we can use the identity

(9.21). As for the non-linear term, we only need to sum over non-zero terms, effectively

restricting the dummy indices to (1, 2), represented in this chapter by i, j, k... etc. In

this spirit, we rewrite the non-linear term as

λε3ijε3klΦikΦjl = λ
(
ΦiiΦjj − ΦijΦji

)
, (9.37)

where we have used the identity for one contracted index in a product of Levi-Civita

tensors:

εabcεade = δbdδce − δbeδcd. (9.38)

Given the form of the ansatz of (9.35), we have

ΦiiΦjj =
(
f2(ρ)δii + f3(ρ)xixi

)2
=
(
2f2 + ρ2f3

)2
= 4f2

2 + 4ρ2f2f3 + ρ4f2
3 . (9.39)
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where we de-clutter the notation of fk(ρ) to fk. Similarly, we have

ΦijΦji =
(
f2δ

ij + f3x
ixj + f4ε

ij3
) (
f2δ

ij + f3x
ixj − f4ε

ij3
)

= 2f2
2 + 2ρ2f2f3 + ρ4f2

3 − 2f2
4 , (9.40)

where we have used the identity for two contracted indices17 in a product of Levi-Civita

tensors:

εabcεabd = 2δcd. (9.41)

Altogether, our equation of motion for Φ33 (9.36) becomes the differential equation:

1

ρ

∂f1

∂ρ
+
∂2f1

∂ρ2
+ 2λ

(
f2

2 + ρ2f2f3 + f2
4

)
= 0. (9.42)

Moving on to the equations of motion for Φij , we have

∂k∂
kΦij + λεibcεjḃċΦbḃΦcċ = 0. (9.43)

We tackle the first term of (9.43):

∂k∂
kΦij = ∂k∂

k
(
f2δ

ij + f3x
ixj + f4ε

ij3
)

= δij
(

1

ρ

∂f2

∂ρ
+
∂2f2

∂ρ2
+ 2f3

)
+ εij3

(
1

ρ

∂f4

∂ρ
+
∂2f4

∂ρ2

)
+ xixj

(
5

ρ

∂f3

∂ρ
+
∂2f3

∂ρ2

)
. (9.44)

As we did earlier, we need only sum over the non-zero terms of the non-linear term of

(9.43). This simplifies to

λεibcεjḃċΦbḃΦcċ = 2λεik3εjl3ΦklΦ33. (9.45)

Using our ansatz (9.35) as well as the Levi-Civita identity for one repeated index (9.38),

the term (9.45) straightforwardly becomes

2λεik3εjl3ΦklΦ33 = 2λf1

(
δij(f2 + ρ2f3)− xixjf3 + εij3f4

)
. (9.46)

Altogether, the equation of motion for Φij (9.43) can be written as the differential

equation

δij
(

1

ρ

∂f2

∂ρ
+
∂2f2

∂ρ2
+ 2f3 + 2λf1(f2 + ρ2f3)

)
17It would be tempting to use the identity for three contracted indices εabcεabc = 6, however, caution

must be taken as we should not treat the index 3 as a dummy index to sum over in εij3εij3.
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+εij3
(

1

ρ

∂f4

∂ρ
+
∂2f4

∂ρ2
+ 2λf1f4

)
+xixj

(
5

ρ

∂f3

∂ρ
+
∂2f3

∂ρ2
− 2λf1f3

)
= 0. (9.47)

Furthermore, linear independence of each line of (9.47) implies that we actually have

four differential equations in total to solve (including (9.42)):

1

ρ

∂f̄1

∂ρ
+
∂2f̄1

∂ρ2
+ 2

(
f̄2

2 + ρ2f̄2f̄3 + f̄2
4

)
= 0; (9.48)

1

ρ

∂f̄2

∂ρ
+
∂2f̄2

∂ρ2
+ 2f̄3 + 2f̄1(f̄2 + ρ2f̄3) = 0; (9.49)

1

ρ

∂f̄4

∂ρ
+
∂2f̄4

∂ρ2
+ 2f̄1f̄4 = 0; (9.50)

5

ρ

∂f̄3

∂ρ
+
∂2f̄3

∂ρ2
− 2f̄1f̄3 = 0. (9.51)

In the above four equations, we have rescaled all of our functions fn ≡ 1
λ f̄n. To solve

these equations, we assume a power law ansatz

f̄n = knρ
αn . (9.52)

On the grounds of preserving dimensionality in each of the equations (9.48)-(9.51), we

can deduce that the exponents αn are

α1 = α2 = α4 = −2, α3 = −4. (9.53)

Plugging this back into (9.48)-(9.51) leaves us with a set of equations in kn:

2k1 + k2
2 + k2k3 + k2

4 = 0; (9.54)

2k2 + k3 + k1(k2 + k3) = 0; (9.55)

(2 + k1)k4 = 0; (9.56)

k1k3 = 0. (9.57)

The last equation (9.57) tells us that either k1 = 0 or k3 = 0. The former leads to

a trivial solution, which is not particularly interesting. On the other hand, the latter

leads to the general solution

k1 = −2; k2 ≡ −2k; k3 = 0; k4 = ±2
√

1− k2. (9.58)
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Putting everything together, we finally have the biadjoint solution

Φ33 = − 2

λρ2
, Φij = − 2

λρ2

[
kδij ∓

√
1− k2εij3

]
. (9.59)

The presence of the parameter k indicates that we have a continuously infinite family of

solutions. The special case of k = 1 corresponds to our previous solution (9.25), where

we invoke TA = 2 for SU(2). Dependence on a free parameter was also a feature of

the spherically symmetric solutions of the common gauge group SU(2) first presented

in [128], and reviewed in section 9.1.

In keeping with the other biadjoint solutions presented in this chapter, we can cal-

culate the energy associated with the solution (9.59), or more precisely, the energy per

unit length of the z−axis. The Hamiltonian density is given by

H =
40

λ2ρ6
. (9.60)

Integration results in an energy per unit length,

E

L
=

20π

λ2ρ4
o

. (9.61)

A sense check confirms that this quantity agrees with the energy found in (9.33) for

the SU(2) specific values of N = 3 and TA = 2. The energy per unit length has no

dependence on the parameter k, suggesting that each member of the family of solutions

has identical energy associated with it. This curiosity is clarified if we re-write our

solution as a matrix Φ with components Φaȧ, under a new parametrisation k ≡ cos θ :

Φ = − 2

λρ2

 cos θ ∓ sin θ 0

± sin θ cos θ 0

0 0 1

 . (9.62)

This matrix represents a rotation about the 3-axis in gauge space by the gauge param-

eter θ. We can further transform this field by rotation to remove the θ dependence.

There is no harm in doing so, as the Lagrangian of (9.34) is invariant under such trans-

formations. To see this explicitly, we can rewrite the Lagrangian in matrix notation.

First we recall the determinant of the matrix Φ is by definition

det[Φ] =
1

3!
εabcεȧḃċΦaȧΦbḃΦcċ, (9.63)
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which allows us to rewrite (9.34) as

L =
1

2
Tr[(∂µΦ)T(∂µΦ)] + 2λdet[Φ]. (9.64)

The Lagrangian written in this way is manifestly invariant under transformations of

the type Φ → RT
1 ΦR2, for arbitrary rotation matrices Ri. For the particular case

where R1 is the identity matrix and R2 is a rotation in gauge space of an angle −θ
about the 3-axis, i.e.,

R2 =

 cos θ ± sin θ 0

∓ sin θ cos θ 0

0 0 1

 , (9.65)

our transformed field can be written simply as

Φ = − 2

λρ2

 1 0 0

0 1 0

0 0 1

 . (9.66)

This solution brings us back home to our original solution of no specified gauge group(9.25).

It clearly exhibits two properties: i) cylindrical symmetry as it is only dependent on

ρ, and ii) strong coupling via the inverse power of λ. One would hope that these two

properties could bring us closer to the elusive non-perturbative double copy. Although

it is not clear how or if this biadjoint solution could map to a Yang-Mills solution under

a double copy prescription, it is a positive step to build up the catalogue of strongly

coupled exact biadjoint solutions. One could extend this solution further by the use of

“form factors”.

9.2.3 Extended solutions

In this section, we will grow the catalogue of biadjoint monopole solutions by par-

tially screening the divergence associated with the cylindrically symmetric biadjoint

monopole of (9.25).

We begin by returning to the ansatz of (9.19), and define:

J(ρ) = 2 + ρ2f̄(ρ). (9.67)

Dimensional analysis fixes f̄(ρ) ∼ ρ−2, assuring us that J(ρ) is finite for all ρ. Under

the constraint of (9.22), we have the following differential equation in J(ρ):

ρ2∂
2J(ρ)

∂ρ2
− 3ρ

∂J(ρ)

∂ρ
+ J2(ρ)− 4 = 0. (9.68)
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This has a cleaner form in the coordinate ξ where

ρ̃ = e−ξ, (9.69)

and ρ̃ is a dimensionless variable such that the dimensionality of ρ is captured by a

dimensionful quantity ρ̂, i.e.

ρ = ρ̃ρ̂. (9.70)

In the ξ coordinate system, (9.68) takes the form

∂2J(ξ)

∂ξ2
+ 4

∂J(ξ)

∂ξ
+ J2(ξ)− 4 = 0. (9.71)

Unfortunately, there is no analytic solution to this equation, which can be related to an

Abel equation of the second kind. Our strategy then is to look for numerical solutions

instead, supplemented by performing any analytical analysis wherever we can - e.g., for

some critical points and asymptotic limits. This endeavour begins by defining

ψ ≡ dJ

dξ
, (9.72)

which enables us to rewrite (9.71) as a set of coupled first order equations,(
dJ

dξ
,
dψ

dξ

)
=
(
ψ, 4− 4ψ − J2

)
. (9.73)

This defines a vector field in the (J, ψ) plane, illustrated in figure 18. At each point in

the plot, there is a directed curve capturing the information given by the tangent to

the solution. We can observe several critical points in this plot(
dJ

dξ
,
dψ

dξ

)
= (0, 0) . (9.74)

This occurs precisely at (J, ψ) = (±2, 0), as indicated in the plot. At these points, we

can say a few words about what our solution looks like:

1. J = +2 : J = 2 + ρ2f̄ → f̄ = 0→ φaȧ = 0, which is the trivial solution.

2. J = −2 : J = 2 + ρ2f̄ → f̄ = −4
ρ2
→ φaȧ = −4δaȧ

λTA
, which corresponds to our

original cylindrically symmetric solution (9.25).

We can also observe what happens as J approaches these critical points, holding all

else fixed, i.e., we hold ∂ψ
∂ξ = 0 but let J vary. By (9.73), this corresponds to a bounded

curve given by the parabola

ψo =
1

4
(4− J2). (9.75)
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Figure 18: Integral curves of the vector field defined by (9.73), with critical points in
red.

In the plot, we can see how this parabola acts as the dividing curve separating downward

from upward arrows. Between the points (J, ψ) = (−2, 0) and (J, ψ) = (+2, 0), this

parabola, i.e. ψo is consistently positive. Since ψ = ∂J
∂ξ , we can deduce that in this

region, J increases with ξ. This allows us to conclude

1. J → +2 as ξ →∞, or equivalently by (9.69), ρ→ 0,

2. J → −2 as ξ → −∞, or equivalently ρ→∞.

We understand J at exactly the critical points, and we have observed some behaviour

close to those points. However, we can go a little further than this and analytically

examine the behaviour of J in the asymptotic limits.

First we consider the case where J → −2, i.e. ξ → −∞. Consider the ansatz

J(ξ) = −2 + χ−(ξ), (9.76)

where we take χ−(ξ) to be very small in comparison with J(ξ) in the limit ξ → −∞.

We plug this ansatz into our differential equation (9.71),

∂2χ−(ξ)

∂ξ2
+ 4

∂χ−(ξ)

∂ξ
− 4χ−(ξ) = 0, (9.77)

where we disregard any quadratic terms in χ−(ξ). The full solution is

χ−(ξ) = c1e
(−2+2

√
2)ξ + c̃1e

(−2−2
√

2)ξ. (9.78)

The second term however, blows up in the limit ξ → −∞. As such, the boundary

condition requires c̃1 = 0.
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Figure 19: Numerical solution to
(9.73) using a built-in Mathematica
solver, with boundary conditions set
by (9.82).

Figure 20: Numerical solution in
terms of ρ.

Similarly, we can also explore the other asymptotic limit ξ →∞ or J(ξ)→ 2. Here we

begin with a similar ansatz:

J(ξ) = 2 + χ+(ξ), (9.79)

where the function χ+(ξ) is small in the limit ξ → ∞. Plugging this ansatz into the

differential equation (9.71) gives us (disregarding quadratic terms in χ+),

∂2χ+(ξ)

∂ξ2
+ 4

∂χ+(ξ)

∂ξ
+ 4χ+(ξ) = 0, (9.80)

which has the solution

χ+(ξ) = c2e
−2ξ + c3ξe

−2ξ. (9.81)

Altogether, we have some approximate analytic solutions in the asymptotic limits

J(ξ) '

−2 + c1e
(−2+2

√
2)ξ, ξ → −∞

+2 + c2e
−2ξ + c3ξe

−2ξ, ξ → +∞.
(9.82)

The full numerical solution is captured by plot 19, where boundary conditions have

been set by the lower ξ limit, taking c1 = 1. For completeness, we can also transform

the extended solution of (9.82) back into terms of ρ:

J(ρ̃) '

−2 + c1ρ̃
−2+2

√
2, ρ→∞

+2 + ρ̃2(c2 − c3 ln ρ̃), ρ→ 0
(9.83)

The numerical solution in terms of ρ is captured by plot 20. Now we can scrutinise

how well the screening has worked. By reinstating the dimensions, the field in the
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asymptotic limit ρ→ 0 is approximately

Φaȧ ' δaȧ

λTA

1

ρ̂2

[
c2 − c3 ln

(
ρ

ρ̂

)]
, (9.84)

which is indeed less divergent than the unscreened solution given by (9.25). We can

explore how the screening affects the energy in the region where there was a divergence

- i.e., close to the wire. We will feed the approximation for the field in the limit ρ→ 0

given by (9.84) into the Hamiltonian density given by (9.27). We note that

f̄ =
c2

ρ̂2
− c3

ρ̂2
ln

(
ρ

ρ̂

)
. (9.85)

The first term of the Hamiltonian density (stripped of the dressing factor) is then

1

2

(
∂f̄(ρ)

∂ρ

)2

=
c2

3

2ρ̂4

1

ρ2
(9.86)

We are interested in the most divergent terms close to the wire. The non-linear term in

the Hamiltonian density will be comparatively less divergent, thus we disregard it. As

we are dealing with an approximation in the asymptotic limit, it is safe to claim that

it is valid up to some cutoff ρ = Λ. As such, the energy can be calculated up to that

point,

E

L
' 2πN
λ2T 2

A

∫ Λ

ρo

dρ ρ
1

2

(
∂f̄(ρ)

∂ρ

)2

=
πN c2

3

λ2T 2
A

1

ρ̂4
ln

(
Λ

ρo

)
. (9.87)

Similar to the spherically symmetric example, this divergence is softer than the un-

screened counterpart of (9.33), which has a divergence ∼ ρ4
o. Note that we could

choose to absorb the factors of ρ̂ into our constant c3, rendering c3 dimensionful.

9.3 Conclusion

In this chapter, we populated the zoo of strongly coupled biadjoint solutions with

those of cylindrical symmetry. We did so by piggybacking off the prototypical solu-

tions - i.e., those with an element of spherical symmetry, which we also briefly reviewed

and contrasted with the newer cylindrically symmetric monopoles. While the former

resembled point-like monopole charges, the latter monopoles were more “wire-like”.

The exercise of finding new solutions was carried out primarily in service of finding a

non-perturbative double copy, which we believe necessarily involves strongly coupled

solutions.

Although it is a nice addition to the catalogue of solutions, it is not clear how the
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biadjoint wire could bring us any closer to a non-perturbative double copy. In this

spirit, we abandon it, and return to a possible lead in ref. [128]. The paper suggests

a map between a strongly coupled SU(2) biadjoint solution (based on some element

of spherical symmetry), and the Wu-Yang monopole. We will see in the next chapter

why this is not the case, as the Wu-Yang monopole has a different role to play in the

classical double copy.
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Chapter 10

Making Shockwaves - the

Ultraboost

We ended the previous chapter with a suitcase full of strongly coupled solutions in

biadjoint theory, but without a map to any gauge theory counterparts. A double copy

between strongly coupled solutions constitutes a non-perturbative double copy, which

is our ultimate goal.

A speculation in [128] suggests some similarity between the strongly coupled biad-

joint monopole and the Wu-Yang monopole. In this chapter, we explore this claim (as

per [2]), and subsequently rule it out on account of several pieces of evidence:

1. We know that shockwaves double copy [98,133]. We can test the strength of the

potential relationship between the biadjoint and gauge theory monopoles by ultra-

boosting (i.e. applying an infinite boost to) both to see if the ensuing shockwaves

match up. Not only do they not match up, but it does not even appear possible

to produce a meaningful shockwave by ultraboosting the biadjoint monopole.

2. This mismatch becomes clear when we take into account the relationship be-

tween the Wu-Yang monopole and the Dirac monopole, which we had previously

overlooked. The latter is already related to the linear biadjoint solution of the

Taub-NUT double copy [122]. So the Wu-Yang monopole does have a place in

the Kerr-Schild double copy after all, but it is not related to the strongly coupled

biadjoint monopole.

Although we still do not have a map between the biadjoint monopole and a gauge

theory monopole, we do see novelty in producing shockwaves via the ultraboost proce-

dure performed in Kerr-Schild coordinates, as well as shine a light on the interplay of

Abelian-like and non-Abelian solutions in the Kerr-Schild double copy. This brings the
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Kerr-Schild double copy closer in line with the BCJ double copy, where the non-Abelian

nature of the gauge theory plays a leading role via BCJ duality [72–75].

We begin this chapter by laying out the steps for the ultraboost procedure, starting

with the linear solutions of the Kerr-Schild double copy.

10.1 Ultraboosting the linear solutions

Shockwave solutions of field theories can be constructed by a procedure known as the

ultraboost, first shown by Aichelburg and Sexl for a gravitational mass [134], and subse-

quently also successfully applied to a static electric charge [135], as well as other black

hole solutions [136]. The ultraboost involves infinitely boosting a field in a particular

direction, and may also involve charge or mass rescaling.

It has already been established that shockwaves double copy, shown extensively at

the level of amplitude [133], and briefly touched on for exact solutions to classical the-

ories [98]. In this section, we revisit the latter, but we will furnish the results with

much more detail. More specifically, the linear Abelian solutions reviewed in section

8.3.1 will be ultraboosted to produce shockwave solutions. By recasting the ultraboost

procedure explicitly in Kerr-Schild coordinates, it is possible to see how the double copy

structure is manifest at various stages. Furthermore, we gain confidence in the ultra-

boost procedure itself before breaking new ground by ultraboosting a strongly coupled

biadjoint monopole (coming up in section 10.2).

10.1.1 Linear solutions of the double copy

For the reader’s benefit, we briefly repeat here the linear Abelian-like solutions of the

Kerr-Schild double copy (reviewed in more detail in section 8.3.1 and originally proposed

in [98]). The example we will focus on is the Schwarzschild black hole, in Kerr-Schild

form, this time where the Minkowski metric has signature (+,−,−,−):18

gµν = ηµν −
κ2

2
φkµkν , (10.1)

with

φ =
M

4πr
, kµ = (1, x/r, y/r, z/r). (10.2)

18To see how the minus sign comes about in the Kerr-Schild representation, see Appendix G for
details.
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This single copies to a Coulomb-like point charge,

Aaµ =
gca

4πr
kµ, (10.3)

and the zeroth copy is then

Φaȧ =
λcac̃ȧ

4πr
. (10.4)

We will perform the ultraboost procedure on these solutions, starting with the simplest

of the theories - the biadjoint scalar theory.

10.1.2 Abelian-like biadjoint scalar theory

Consider an inertial frame S′ with Cartesian coordinates (t′, x′, y′, z′) moving with boost

parameter v in the +x direction with respect to a second frame S whose coordinates

are (t, x, y, z). The two sets of coordinates are related by the Lorentz transformation

x′µ = Λµνx
ν , (10.5)

where the boost in the +x direction takes the form of a matrix

Λ =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 , (10.6)

and γ = (1− v2)−1/2. Applying this boost to the biadjoint scalar field (10.4) is tanta-

mount to boosting the underlying coordinates, i.e.,

Φaȧ(x′) =
λcac̃ȧ

γ4πR
, (10.7)

where

R =
√

(x− vt)2 + γ−2(y2 + z2). (10.8)

We have boosted our biadjoint scalar field, but we would like to go further than this.

Ultraboosting is akin to an infinite boost,19 i.e., v → 1 or equivalently, γ → ∞. If we

were to naively take the limit of (10.7), we would find a vanishing field rather than a

shockwave, which is typically characterised by the presence of a delta function in the

lightfront plane, x− t = 0, i.e.,

Φshockwave ∼ δ(x− t). (10.9)

19An infinite boost entails travel at the speed of light c, where c = 1 in natural units.
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In order to achieve this, it is necessary to rescale the charge in order to absorb any

troublesome factors of γ which threaten the creation of this delta function. For the

biadjoint scalar solution, it will become apparent that the following charge rescaling is

required,

cac̃ȧ → cac̃ȧγ. (10.10)

In fact, this charge rescaling is consistent with that required for a sensible ultraboosted

source term. Recall that the point source is

paȧ = cac̃ȧδ(3)(~x). (10.11)

When boosted, the source then takes the form

paȧ = cac̃ȧγ−1δ(x− vt)δ(y)δ(z). (10.12)

In the ultraboost limit, it would be difficult to make sense of such a source term without

rescaling the charge as per (10.10). Proceeding then with the rescaling, the boosted

biadjoint field is now

Φaȧ =
λcac̃ȧ

4πR
. (10.13)

In the limit v → 1, the boosted field (10.13) behaves quite differently inside and outside

the lightfront plane x− t = 0:

lim
v→1

1

R
=

 1
|x−t| x− t 6= 0

∞ x− t = 0.
(10.14)

Some of this behaviour is reminiscent of a delta function, i.e., infinite in the lightfront

plane. However, outside the plane the field is finite, as opposed to vanishing completely.

We can remedy this by regularizing the field. Consider then the field redefinition:

Φaȧ → Φ̃aȧ =
λcac̃ȧ

4π

(
1

R
− 1

Ro

)
(10.15)

where Ro =
√

(x− t)2 + γ−2ρ2
o for some cylindrical radius cutoff ρo. This field satisfies

the same equations of motion as Φ ∼ 1/R, and so this field redefinition belongs to

the same family of solutions to the equations of motion. The proof is straightforward.

Recall from section 8.3.1 that the linearized equations of motion for biadjoint scalar

theory are20

�Φaȧ = λ cac̃ȧδ(3)(~x). (10.16)

20Note that the equations of motion quoted in section 8.3.1 correspond to the static case, where the
d’Alembertian reduces to the Laplacian operator.
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Stripping out charges and couplings, the d’Alembertian applied to the new chunk of

the redefined field is

�
1

Ro
= (∂2

t − ∂2
x)

1

Ro
= (∂t − ∂x)(∂t + ∂x)

1

Ro
. (10.17)

Now, recall that Ro is essentially a function of x − t only. If we were to switch to

lightfront coordinates

u = x− t; w = x+ t, (10.18)

then we could claim 1
Ro

= f(u). Essentially this means that we can rewrite (10.17) as:

(∂t − ∂x)(∂t + ∂x)
1

Ro
= ∂u∂wf(u) = 0. (10.19)

And so we see that our redefined field still fulfils the same equations of motion as the

original field, and therefore we can proceed with such a redefinition secure in the fact

that we are still operating in the same theory. Returning to taking the ultraboost limit

of our redefined field (10.15), we observe the following equality,

∂

∂x
ln
[
x− t+

(
(x− t)2 + γ−2ρ2

o

)1/2]
=

1

Ro
. (10.20)

This allows us to rewrite our field as

Φ̃aȧ =
λcac̃ȧ

4π
∂x ln

[
x− vt+

(
(x− vt)2 + γ−2ρ2

)1/2
x− t+ ((x− t)2 + γ−2ρ2

o)
1/2

]
(10.21)

where we employ the cylindrical radius notation ρ =
√
y2 + z2. We can simplify (10.21)

by a truncated Taylor expansion along the lines of (1 + α)1/2 ∼ 1 + (1/2)α , i.e.,

(
(x− vt)2 + γ−2ρ2

)1/2 ≈ | x− vt | +γ−2

2

ρ2

| x− vt |
. (10.22)

Note that we are able to do this in the ultraboost limit, where the quantity γ−2/ | x−vt |
is small outside the lightfront plane. This simplification leads to

Φ̃aȧ =
λcac̃ȧ

4π
∂x ln

x− vt+ | x− vt | +γ−2

2
ρ2

|x−vt|

x− t+ | x− t | +γ−2

2
ρ2o
|x−t|

 , (10.23)

which allows us to easily take the ultraboost limit, again where the lightfront plane is

a dividing line between two regions,

lim
v→1

Φ̃aȧ =
λcac̃ȧ

4π
∂x

0 x− t > 0

ln
(
ρ2

ρ2o

)
x− t < 0.

(10.24)
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Now we can rewrite this in terms of the Heaviside function,

θ(x− t) =

1 x− t > 0

0 x− t < 0
(10.25)

and therefore our field in the ultraboost limit is,

lim
v→1

Φ̃aȧ =
λcac̃ȧ

4π
∂x

[
(1− θ(x− t)) ln

(
ρ2

ρ2
o

)]
. (10.26)

Finally, we apply the derivative in (10.26) to arrive at

Φaȧ
sw = lim

v→1
Φ̃aȧ =

−λcac̃ȧ

4π
ln

(
ρ2

ρ2
o

)
δ(x− t). (10.27)

This is of course a shockwave solution to the biadjoint scalar field equations in full

agreement with the solution presented in [98]. Inside the lightfront plane, the field

is infinite, in contrast to all areas outside the plane where the field vanishes. The

construction of this solution rests on the rescaling of the charge as per (10.10). We

can have assurance of the shockwave nature of this solution by observing its effect on

interacting particles. A particle interacting with a shockwave should receive a kick in

the lightfront plane, in a direction transverse to the shockwave’s direction of travel.

Biadjoint Impulse

The impulse of a test particle of mass m and charge ca2 c̃
ȧ
2 interacting with the ultra-

boosted biadjoint scalar field is related to the equations of motion for the interacting

particle coupled with the biadjoint scalar [108],

∂pµ
∂t

= − λ
m
ca2 c̃

ȧ
2∂µΦaȧ

sw. (10.28)

Here, the biadjoint field Φaȧ is given by the shockwave solution given by (10.27). Strip-

ping out charge and mass parameters for the sake of simplicity, we have

∂pµ
∂t

= ∂µ

(
ln

(
ρ2

ρ2
0

)
δ(x− t)

)
. (10.29)

Switching to lightfront coordinates(10.18), the impulse experienced by the particle is

δpµ =

∫ ∞
−∞

dt
∂pµ
∂t

=

∫ ∞
−∞

du
∂pµ
∂u

=

∫ ∞
−∞

du ∂µ

(
ln

(
ρ2

ρ2
0

)
δ(u)

)
. (10.30)
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We will work this out for each component,

δpu =

∫ ∞
−∞

du ∂u

(
ln

(
ρ2

ρ2
0

)
δ(u)

)
= ln

(
ρ2

ρ2
0

)
δ(u)

∣∣∣∣∞
u=−∞

= 0

δpw = 0, δpy =

∫ ∞
−∞

du
2y

ρ2
δ(u) =

2y

ρ2
, δpz =

∫ ∞
−∞

du
2z

ρ2
δ(u) =

2z

ρ2
.

Altogether, the interacting particle experiences an impulse with charges and couplings

reinstated:

δpµ = −λ
2

m

c · c2 c̃ · c̃2

2πρ2
(0, 0, y, z) . (10.31)

Depending on the signs of the charges of the interacting particle and the shockwave

field, the particle will experience a kick toward or away from the shockwave nucleus in

the y− z direction, inside the lightfront plane. The further the test particle is from the

nucleus on contact with the shockwave, the smaller the kick will be. This does have

the hallmarks of shockwave behaviour, and so we can feel assured that the ultraboost

procedure (including charge rescaling) holds for the linear biadjoint scalar theory. In

the next section, we apply this procedure to gauge theory.

10.1.3 Coulomb potential in Kerr-Schild coordinates

Ultraboosting the Coulomb potential is a well-trodden path [135], however, we will

perform this exercise for the field expressed in Kerr-Schild coordinates which is, as far

as we know, a novelty. It is in this domain that the building block idea of Kerr-Schild

coordinates will come into fruition. The gauge field Aaµ defined in (10.3) is boosted as

follows

A′aµ(x′) = gcaφ(x′)k′µ(x′) (10.32)

where we define the scalar field as φ(x) = 1/(4πr). The classical double copy expressed

in Kerr-Schild coordinates depends on the ability to add and remove copies of the null

vector kµ to the ever present scalar field φ. As such, we begin the ultraboost procedure

by boosting these objects separately with the intention to form building blocks that will

illuminate the double copy at all stages of the ultraboost. We know from the previous

section how to boost the scalar field:

φ(x′) =
1

γ4πR
≡ 1

γ
φ̂ (10.33)
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where R is defined in (10.8). The vector field kµ picks up an extra factor of γ when

boosted:

k′µ(x′) = (Λ−1)µνk
ν(x′) =


γ(1− vx′/r′)
γ(v − x′/r′)
−y′/r′

−z′/r′

 ≡ γk̂ν (10.34)

where Λ−1 is the inverse of (10.6), and

k̂ν =


(1− v(x− vt)/R)

(v − (x− vt)/R)

−y/(γ2R)

−z/(γ2R)

 . (10.35)

Putting together (10.32) to (10.35), the boosted gauge field A′aµ is

A′aµ = gcaφ̂k̂µ. (10.36)

Having boosted the gauge field, the behaviour of each component of k̂µ can be exam-

ined in the limit v → 1 in and out of the plane x− t = 0. First we begin with k̂0.

i) Inside the plane, x = t:

lim
v→1

k̂0 = 1− lim
v→1

v(1− v)x√
x2(1− v)2 + ρ2(1− v2)

= 1

ii) Outside the plane, x 6= t:

lim
v→1

k̂0 = 1− x− t√
(x− t)2 + 0

=

0 x− t > 0

2 x− t < 0

Altogether, this gives us:

lim
v→1

k̂0 =


0 x− t > 0

1 x = t

2 x− t < 0

(10.37)

Similarly, the x−component, i.e. k̂x has the same value as (10.37) in the ultraboost

limit while the other components of k̂µ vanish. Finally, we have the ultraboosted vector

k̂µ:
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i) Inside the plane, x = t:

lim
v→1

k̂µ =


1

1

0

0

 ≡ nµ, (10.38)

ii) Outside the plane, x 6= t:

lim
v→1

k̂µ =


1

1

0

0

× 2×

0 x− t > 0

1 x− t < 0
= 2(1− θ(x− t))nµ. (10.39)

We come to an important fork in the road. Outside the plane, we have two regions

- one that the shockwave has already passed through, i.e. x − t < 0, and the region

still waiting for the shockwave x − t > 0. In the region anticipating the shockwave,

our vector k̂µ seems to be decimated in the ultraboost limit. We have to be careful

about how we combine this result with φ̂ which we know from the biadjoint ultraboost

exercise will wind up as a delta function. To be on the safe side, we can consider the

limit of the combined boosted product of φ̂k̂µ in the problematic region of x − t > 0.

Examining this for one component, we see:

lim
v→1

φ̂k̂0 =
1

4π
lim
v→1

(
1

R
− v(x− vt)

R2

)
= 0 if x− t > 0. (10.40)

Similarly, the spatial components vanish as well. This signals that actually it is safe to

take the product of limits. After all, in the potentially tricky case where one of those

limits goes to zero, the limit of the entire product as a whole goes to zero anyhow. As for

the other regions, more or less, we can say that in the ultraboost limit, limv→1 k̂
µ ∼ nµ.

To perform the remainder of the ultraboost, i.e. on φ̂, we should follow the same

procedure as we did for the biadjoint ultraboost21. This will leave us with:

lim
v→1

φ̂ = − 1

4π
ln

(
ρ2

ρ2
o

)
δ(x− t). (10.41)

Now we are well equipped to construct the ultraboosted gauge field (that is, (10.36) in

the limit v → 1), as we have ultraboosted all of its ingredients. When we combine the

ultraboosted φ̂ as per (10.41) with the ultraboosted k̂µ as per (10.38) and (10.39), we

find that the δ−function kills off any activity outside the plane x = t and so we are left

21In the biadjoint ultraboost, we justified regularizing the field by demonstrating that the redefined
field belongs to the same family of solutions that solve the equations of motion. When we regularize
the field in the context of gauge theory, the field redefinition turns out actually to be equivalent to a
gauge transformation.
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with

Aaµsw = lim
v→1

A′aµ =
−gca

4π
ln

(
ρ2

ρ2
o

)
δ(x− t)nµ (10.42)

which agrees with the results of [135] as expected.

When expressed in Kerr-Schild coordinates, structural elements of the double copy

remain intact at key stages of the ultraboost procedure for the gauge field. By compar-

ing the shockwave solution of gauge theory (10.42) with that of the biadjoint theory

(10.27), a zeroth copy emerges by the removal of the null and geodesic vector nµ. Fur-

thermore, the key ingredients of the Kerr-Schild double copy, i.e., the scalar field φ and

null and geodesic vector kµ, can be ultraboosted nearly independently of each other

such that the ensuing results are meaningful.22 This will facilitate ultraboosting the

graviton associated with the Schwarzschild black hole, as we will see in the next section.

Before moving on to gravity, we can provide further assurance that our shockwave is

indeed a shockwave by allowing a test particle to interact with the shockwave field.

Gauge Theory Impulse

The impulse of a particle of charge ca2 interacting with the ultraboosted gauge field is

related to the Lorentz force, given by

∂pµ

∂t
= gca2F

aµ
νv
ν , (10.43)

where vν is the velocity vector of the interacting particle, which we can take to be

vν = (1, 0, 0, 0) in the rest frame of the particle. As such, we need only consider the

following components of the field strength tensor:

F aµ0 = ∂µAa0 − ∂0A
aµ (10.44)

where Aaµ is the shockwave gauge potential given by the ultraboosted field given by

(10.42), and ∂µ ≡ (∂t,−∂x,−∂y,−∂z). The components of interest of the field strength

tensor are

F a1
0 =

gca

4π
ln

(
ρ2

ρ2
0

)
(∂t + ∂x)δ(x− t) = 0

F aj0 =
gca

4π
δ(x− t)∂j ln

(
ρ2

ρ2
0

)
=
ca

4π
δ(x− t) 2xj

ρ2
(10.45)

22We say “nearly” as opposed to completely since the overall γ−count determines the charge rescaling.
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where j = 2, 3 or equivalently xj = y, z. We can now extract the impulse,

δpµ =

∫ ∞
−∞

dt
dpµ

dt
→ δpj =

∫ ∞
−∞

dt
c2 · c
4π

δ(x− t)2xj

ρ2
=
c2 · c
4π

2xj

ρ2
(10.46)

which leaves us finally with the impulse

δpµ :
g2c2 · c
2πρ2

(0, 0, y, z). (10.47)

This is identical (setting aside couplings, charges etc.) to the biadjoint case. If the

interacting particle were to have the same charge as that producing the shockwave, the

effect of the impulse would be to send the particle away from the shockwave nucleus.

Opposite charges would result in the particle being drawn in closer to the nucleus.

10.1.4 Schwarzschild black hole in Kerr-Schild coordinates

Lastly, we construct a gravitational shockwave by ultraboosting the Schwarzschild so-

lution as per Aichelburg and Sexl ( [134], and subsequently also [136]). As we have

done for gauge theory, the ultraboost will be performed in Kerr-Schild coordinates.

The boosted metric takes the form

g′µν(x′) = ηµν −
κ2

2
φ(x′)k′µ(x′)k′ν(x′)︸ ︷︷ ︸

κh′µν(x′)

. (10.48)

The boosted graviton h′µν can be treated similarly to the boosted single copy gauge

field A′µ, i.e., by preserving the integrity of the scalar field and null vectors - essentially

treating them as independent creatures. Employing a language similar to (10.33)23 and

(10.34), we have

h′µν = γ
κ

2
φ̂k̂µk̂ν , (10.49)

The factor of γ will prove problematic in the ultraboost limit unless we rescale the mass

as per

M →Mγ−1. (10.50)

This rescaling is justified in [134] as necessary to keep the source term finite. We em-

ployed a similar argument in biadjoint scalar theory, where we also rescaled the charge.

The mass rescaling fundamentally enables us to proceed with the ultraboost (see sec-

tion 10.1.3 for details on ultraboosting φ̂ and k̂µ). Now, in biadjoint scalar theory, we

altered our field in order to produce a delta function in the ultraboost limit of φ̂. In

gauge theory, this is akin to a gauge transformation. In gravity, our transformation

of φ to φ̂ could be mediated by a diffeomorphism. The graviton associated with the

23Of course now φ̂ contains a factor of mass M .
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Schwarzschild black hole ultraboosts to a shockwave confined to the lightfront plane

x− t = 0:

hsw
µν = lim

v→1
h′µν = −κ

2

M

4π
ln

(
ρ2

ρ2
o

)
δ(x− t)nµnν . (10.51)

This shockwave agrees with the result in [134], although found by different means. For

completeness, and to provide some comparison with gauge theory, we calculate the

effect of this shockwave on a test particle.

Gravitational Impulse

The impulse of a particle of mass m interacting with the ultraboosted graviton field is

related to the geodesic equation given by

∂pµ

∂t
= −mΓµνσv

νvσ, (10.52)

where the velocity vectors can be taken to be in the rest frame of the particle, vν =

(1, 0, 0, 0). In the rest frame, the geodesic equation simplifies greatly to

∂pµ

∂t
= −mΓµ00. (10.53)

The Christoffel symbols are based on the Kerr-Schild metric, where the flat background

spacetime is perturbed by the shockwave graviton (10.51). We only need 4 of the

Christoffel symbols:

Γ0
00 =

−1

2

κ2

2

M

4π
ln

(
ρ2

ρ2
0

)
∂tδ(x− t), Γx00 =

1

2

κ2

2

M

4π
ln

(
ρ2

ρ2
0

)
∂tδ(x− t),

Γy00 =
κ2

2

M

4π

y

ρ2
δ(x− t), Γz00 =

κ2

2

M

4π

z

ρ2
δ(x− t).

The impulse δpµ is then the time integral of these Christoffel symbols,

δp0 = −δpx =
κ2

2

Mm

4π

∫ ∞
−∞

dt
1

2
ln

(
ρ2

ρ2
0

)
∂tδ(x− t)

=
κ2

4

Mm

4π
ln

(
ρ2

ρ2
0

)∫ ∞
−∞

du ∂uδ(u) = 0,

δpy =
−κ2

2

Mm

4π

∫ ∞
−∞

dt δ(x− t) y
ρ2

=
−κ2

2

Mm

4π

y

ρ2
,

δpz =
−κ2

2

Mm

4π

∫ ∞
−∞

dt δ(x− t) z
ρ2

=
−κ2

2

Mm

4π

z

ρ2
. (10.54)
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Static Charge
Solution Shockwave Solution Rescaling Spin

Biadj. Sc. Φaȧ λ c
ac̃ȧ

4πr −λcac̃ȧ

4π ln
(
ρ2

ρ2o

)
δ(x− t) cac̃ȧ → γ1cac̃ȧ 0

Gauge Aaµ g ca

4πrkµ −gca

4π ln
(
ρ2

ρ2o

)
δ(x− t)nµ ca → γ0ca 1

Gravity hµν
κ
2
M
4πrkµkν −κ

2
M
4π ln

(
ρ2

ρ2o

)
δ(x− t)nµnν M → γ−1M 2

Table 6: Shockwave and Rescalings Comparison

The impulse bears a resemblance to those of the biadjoint scalar and gauge theories,

δpµ =
−κ2Mm

8πρ2
(0, 0, y, z). (10.55)

Similar to biadjoint and gauge theories, in gravity, the particle gets a kick in the y − z
direction, with the magnitude of the kick diminishing the further the particle is from

the nucleus of the shockwave. The impulse draws the particle toward the nucleus of

the shockwave, as expected since gravity is attractive. By contrast, like charges repel

in gauge theory, which results in the sign difference between (10.47) and(10.55).

10.1.5 Comparison of shockwaves across theories

By ultraboosting three linear static solutions related to each other by the double copy,

we have constructed three shockwaves which also have a double copy structure, as

summarised by table 6. We observe

� Our baseline is the double copy of static solutions, where copies of the null and

geodesic vector kµ are added or removed between the three theories. In the

shockwave solutions, this is mediated by the null and geodesic vector nµ.

� In all three static solutions, the scalar field 1
4πr is the ever-present propagator.

This role is played in two spatial dimensions by the Green’s function ln
(
ρ2

ρ2o

)
. Ad-

ditionally, the shockwave defining factor δ(x− t) is common to all three solutions.

� While gravity and biadjoint theory require charge rescaling to produce a field

with shockwave form, gauge theory does not. The nature of charge rescaling

follows from the tensor structure, which is indicative of the spin associated with

the theory.

Furthermore, the impulse experienced by a particle interacting with the shockwaves

was consistent among the three theories. This provided further assurance that we had
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performed the ultraboost correctly for the Abelian biadjoint scalar theory - an exercise

that broke new ground.

Having gained confidence in the ultraboost procedure, where it proved successful for

producing a shockwave for one biadjoint scalar theory solution, we can now attempt

an ultraboost of strongly coupled solutions, starting with the spherically symmetric

biadjoint monopole.

10.2 Ultraboosting the biadjiont monopole

Recall the spherically symmetric biadjoint monopole solution (9.8), i.e.,

Φaȧ =
−2δaȧ

λTAr2
. (10.56)

Boosting this monopole in the same manner as we had done for the linear biadjoint

solution in section 10.1.2 yields,

Φaȧ(x′) = −2δaȧ

λTA

1

[γ2(x− vt)2 + ρ2]
. (10.57)

In the ultraboost limit, we have

lim
γ→∞

Φaȧ = −2δaȧ

λTA

 1
ρ2
, x = t

0, x 6= t.
(10.58)

Due to the different dependence on the radial coordinate, this does not diverge on the

transverse plane, in contrast to the boosted point charge considered in the previous

section. Without this divergence, eq. (10.58) does not constitute a shockwave: it is at

most a tepid ripple. That is, it imparts no finite impulse to a test particle, given that

a finite field is confined to an infinitely thin plane.

In the linear solutions of gravity and biadjoint theory, the ability to form shockwaves

via the ultraboost procedure depended fundamentally on rescaling the charge. Unfor-

tunately, this is no remedy for the biadjoint monopole, as it is unclear how δaȧ could

be rescaled. On the other hand, a rescaling of the coupling λ in (10.57) could result in

a solution that has a shockwave-like form,

Φaȧ γ→∞, λ→γ−1λ−−−−−−−−−→ −2πδaȧ

λTA

1

ρ
δ(x− t). (10.59)
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However, the nature of this rescaling is very different to that of the boosted point

charges considered earlier. In the latter cases, the charge parameters forming the source

terms were rescaled. For the non-perturbative monopole, there is no such source, which

makes it questionable that one should be able to rescale the coupling, and worse still,

risk changing the theory altogether 24.

Ultraboosting the spherically symmetric biadjoint monopole seems problematic, but

what about the other biadjoint monopole solutions, such as those presented in chapter

9? After all, it is the SU(2) solution of (9.11) that is postulated to be related to the

Wu-Yang monopole, rather than the simpler spherically symmetric solution (10.56).

This too suffers the same fate. The SU(2) solution of (9.11) ultraboosts to a finite

quantity rather than a shockwave, as evidenced by appendix H.

Based on the above considerations, we conservatively conclude that the non-perturbative

biadjoint monopole does not survive an ultraboost. There are then two possibilities

regarding the suggestion that the biadjoint monopole could be related to a Wu-Yang

monopole in gauge theory. The first is that the two objects are indeed related, but that

the physics of ultraboosting is potentially very different in the two theories, such that

the biadjoint monopole disappears. Whether or not the Wu-Yang monopole survives an

ultraboost is irrelevant for the argument. The second possibility is that the biadjoint

monopole disappears because it is not related to the Wu-Yang monopole after all, and

so there is no meaningful reason why the two ultraboosted solutions should match up.

In the next section, we will explain why the second possibility seems the more likely of

the two.

10.3 The Wu-Yang and Dirac monopoles

In this section, we will explain our reasons for asserting that a relationship between the

biadjoint monopole and the Wu-Yang monopole is unlikely. The Wu-Yang monopole

and the Dirac monopole are related to each other, and this relationship precludes any

connection to the biadjoint monopole. The Wu-Yang monopole in SU(2) gauge theory

can be related via a gauge transformation to a non-Abelian embedding of the Dirac

monopole [137,138]. To see how this works, recall the gauge field of the Dirac monopole

captured in (8.8), which we reiterate here:

Aaµ = caAD
µ , (10.60)

24Coupling constants are of course not constant when quantum corrections are included, leading to
renormalisation. But that is not what is happening here.
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where in spherical polar coordinates (t, r, θ, φ),

AD
µ =

g̃

4π

(
0, 0, 0,

1− cos θ

r sin θ

)
. (10.61)

This solution of the Maxwell equations has a string-like singularity, which we have cho-

sen to lie along the z−axis. Although not strictly speaking a solution of an Abelian

gauge theory, we can think of this solution as Abelian-like as it linearises the Yang-Mills

equations.

For the transformation we will perform, we may choose the constant colour vector

ca to lie in the z−direction in the internal space, such that ca = δa3. We consider an

embedding of the Dirac monopole in the SU(2) group with the form

Aµ = −ADµ σ3. (10.62)

The matrix σ3 is one of the SU(2) generators, and more generally speaking these gen-

erators can be expressed in terms of Pauli matrices,

σi =
1

2
τi (10.63)

where

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (10.64)

The gauge field Aµ can be gauge transformed according to

Aµ → A′µ = UAµU
−1 +

i

g
U
(
∂µU

−1
)
, (10.65)

where the electric charge g and magnetic charge g̃ are related by the quantisation con-

dition (8.9). A special choice of transformation matrix U can transform the embedded

Dirac gauge field (10.62) into that of the Wu-Yang monopole, specifically,

U = e−iφσ3e−iθσ2eiφσ3 . (10.66)

Applying the gauge transformation (10.66) to the embedded Dirac gauge field (10.62)

according to the transformation rule (10.65) results in the gauge field in spherical polar

coordinates (see appendix I for details),

A′µ =
g̃

4πr
(0, 0, σ1 sinφ− σ2 cosφ, σ1 cos θ cosφ+ σ2 cos θ sinφ− σ3 sin θ) . (10.67)
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The gauge field can also be expressed in Cartesian coordinates, the details of which can

be found in appendix I. Cartesian coordinates reveal the familiar form of the Wu-Yang

monopole,

A′a0 = 0, A′ai = − g̃εiakx
k

4πr2
. (10.68)

Although the Wu-Yang monopole is a genuinely non-Abelian solution to the Yang-Mills

equations, it can be viewed as the Dirac monopole in disguise. As such, the Wu-Yang

monopole inherits the double copy relationships of the Dirac monopole - more precisely,

the double copy to the NUT solution in gravity and the zeroth copy to a linear biadjoint

solution (see section 8.3.1 as well as the reference [122]). The relationship between the

Wu-Yang monopole and the linear biadjoint solution with a point-like source crowds out

the biadjoint monopole. This exclusion is further justified by the fact that the Wu-Yang

monopole can be ultraboosted to produce a shockwave, unlike the strongly coupled bi-

adjoint monopole (see appendix J for the ultraboost of the Wu-Yang monopole).

While this chain of events marks a departure from the search for a non-perturbative

double copy, it does open up new insights into the remit of the classical double copy in

general.

10.3.1 New insights to the double copy

Prior to these findings, the Kerr-Schild double copy differed from the double copy

of amplitudes in one important regard. While the Kerr-Schild double copy always

produces an Abelian-like solution, the double copy of amplitudes crucially depends on

BCJ duality, which demands that the gauge theory be non-Abelian. From the results

presented in this chapter, non-Abelian solutions to gauge theories can be brought into

the Kerr-Schild double copy picture. In our example, the NUT solution in gravity is

the double copy of the (Abelian-like) Dirac monopole, which then can be related to the

(non-Abelian) Wu-Yang monopole. The colour-stripped Wu-Yang monopole effectively

can be double copied to the NUT solution. In other words, we now can see a double copy

between the exact solutions of non-Abelian gauge theories and gravity, as illustrated

schematically by figure 21. This is consistent with prior literature supporting the double

copy of perturbative constructions of non-Abelian classical solutions [107,108,139].

10.4 Conclusion

Our motivation was to revisit the speculation that the strongly coupled biadjoint

monopole may be related to the Wu-Yang monopole in gauge theory, signalling the

first sighting of a certainly non-perturbative double copy. As we already know that

shockwaves can be related under the double copy, our initial investigation involved
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Abelian
Double
Copy

non-Abelian

Double
Copy

Gravity
Gauge

Transformation

Figure 21: Generalisation of the Kerr-Schild double copy, in which one may identify
Abelian or non-Abelian exact solutions of a gauge theory with the same gravity solution

creating shockwave solutions by the Aichelburg-Sexl ultraboost procedure in order to

compare ensuing shockwaves of the two solutions. As a warm-up, we applied the ultra-

boost to linear Kerr-Schild solutions - an exercise that had not been carried out before

in Kerr-Schild coordinates. We observed a double copy-like structure surviving various

stages of the ultraboost, and gained the confidence to apply the ultraboost to the bi-

adjoint monopole. While the biadjoint monopole receded to a tepid ripple under the

procedure, the Wu-Yang monopole did not, potentially indicating that the relationship

between the two may not be robust. This suspicion was then confirmed when exploring

the relationship between the Wu-Yang and Dirac monopoles. The Wu-Yang monopole

can be gauge transformed to a non-Abelian embedding of the Dirac monopole in the

SU(2) group. As the latter is already part of the Taub-NUT double copy, the former in-

herits this role, crowding out the strongly coupled biadjoint monopole from the picture.

Although we did not find an example of a truly non-perturbative double copy, we

were able at least to rule out a contender, as well as learn a few interesting things along

the way. Crucially, exact non-Abelian solutions can indeed double copy to a gravity

theory in the Kerr-Schild double copy, bringing the Kerr-Schild double copy closer in

line with the BCJ double copy of amplitudes.

The existence of a fully non-perturbative double copy remains an open question.
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Double Copy Conclusion

11.1 Recap

The double copy offers a promising bridge between the seemingly disparate gravity and

gauge theories, where much of the propagator information can be encapsulated in a rel-

atively simple biadjoint scalar theory. So far, this duality operates within the confines

of perturbation theory - originally by linking amplitudes under the restriction of BCJ

duality, but subsequently also by linking up exact classical solutions limited to weakly

coupled Abelian theories.

Our research sought to address the question of whether there exists a non-perturbative

double copy, such as a connection between an exact solution of a non-Abelian strongly

coupled gauge theory and some appropriate counterpart in gravity. Two impediments

stood in the way: 1) cumbersome calculations , and 2) the construct of the double copy

involving non-Abelian strong coupling without any precedent. Help came in the form

of biadjoint scalar theory, which addressed the first problem by providing a relatively

simpler playing ground for calculations. Additionally, prior literature partly alleviated

the second issue by proposing a potential link between a strongly coupled biadjoint

monopole and the Wu-Yang monopole.

11.2 Learnings and achievements

Our research progressed on two fronts: firstly, we extended the catalogue of strongly

coupled biadjoint monopole solutions to include those with cylindrical symmetry. Sec-

ondly, we tested the proposal of a link between a strongly coupled biadjoint monopole

and the Wu-Yang monopole, by ultraboosting both solutions to see how well the ensu-

ing shockwaves match up. We found that the ultraboost procedure does not produce a

shockwave when applied to the strongly coupled biadjoint monopole, in contrast with
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the Wu-Yang monopole. This mismatch makes sense when taking into consideration

that the Wu-Yang monopole can be seen as a gauge transformed Dirac monopole em-

bedded in colour space. The latter already has a place in the Taub-NUT dyon double

copy, and so the former inherits this relationship - including the zeroth copy which is an

Abelian-like biadjoint solution, not the strongly coupled biadjoint monopole. Although

we did not find a non-perturbative double copy, we were able to rule out a contender, as

well as gain new insight into a long-standing question about how multiple non-Abelian

gauge theory solutions can map to the same gravity solution. As an additional novelty,

we were also able to see how well the double copy structure holds together at various

stages of the ultraboost procedure when applied to Kerr-Schild solutions.

11.3 Impact

Broadening the remit of the double copy is an ongoing project, building on and beyond

the research presented in this thesis. For example, ref. [140] sets out more formally how

non-Abelian and Abelian-like exact solutions in gauge theory can map to one solution in

gravity, where topological information on both sides of the double copy correspondence

is cast in terms of Wilson lines. Additionally, ref. [141] uses biadjoint scalar theory to

formulate a version of the double copy for classical fields in curved spacetimes, affirming

the importance of the role biadjoint scalar theory plays in the double copy.

11.4 Further work

Although some double copy literature mentions biadjoint scalar theory, it is rarely the

showcase subject. However, this theory is interesting in its own right, and could bene-

fit from further study. For example, the catalogue of exact strongly coupled biadjoint

solutions could be extended to include those associated with symmetries other than

spherical or cylindrical, or indeed based on more general ansätze. Also, we do not have

much knowledge of the features of biadjoint scalar theory in general dimensions, for

example in d = 6 where the coupling is dimensionless (similar to Yang-Mills theory

in d = 4). A more complete understanding of this biadjoint scalar theory may conse-

quently have the added benefit of refining our view of its place and role in the double

copy. There is scope to undertake a deeper study of the topological character biadjoint

monopoles may have, as they seem to differ from gauge theory monopoles in the usual

characteristics of string-like singularities, requirements for multiple coordinate patches,

etc. A further line of enquiry could involve comparing the double copy to other du-

alities, such as the well-known and long established AdS-CFT duality [142]. Such a

comparison could open up the double copy to phenomena such as confinement, and

whether this feature has an analogue in biadjoint scalar theory.
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Appendix A

Feynman Rules

Drell-Yan cross sections are calculated by these QED and QCD Feynman rules (where

p, q, k typically signify momenta, and r, s are spin indices):

incoming quark ūr(p)

incoming antiquark vr(p̄)

incoming photon εµ,s(q)

incoming gluon εα,s(k)

ur(p) outgoing quark

v̄r(p̄) outgoing antiquark

ε∗µ,s(q) outgoing photon

ε∗α,s(k) outgoing gluon

photon propagator − iηµν
q2+iε

fermion propagator i( 6p+m)
p2−m2+iε

where 6 p = pµγ
µ

QED vertex factor −ieδijγµ
Note: The colour preserving δij is

for quark interactions.

QCD vertex factor igst
a
jiγ

α where taji are elements of the Gell-Mann matrices
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Further to these rules, for squared matrix elements, we also need to invoke the photon

polarisation sum ∑
s

ε∗µ,s(q)εν,s(q) = −ηµν , (A.1)

as well as the completeness relations (where quark masses are negligible)

2∑
r=1

ur(p)ūr(p) =6 p ;

2∑
r=1

vr(p̄)v̄r(p̄) =6 p̄. (A.2)
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Special Functions

B.1 Gamma

The gamma function Γ(ξ) is defined as

Γ(n) = (n− 1)! (B.1)

and can also be expressed as an integral

Γ(n) =

∫ ∞
0

dt e−ttn−1. (B.2)

The gamma function also has the recursive property,

Γ(n+ 1) = nΓ(n− 1). (B.3)

This property allows us to easily expand Γ(ξ) = 1
ξΓ(1 + ξ) for small ξ,

Γ(ξ) =
1

ξ
+
∞∑
j=1

bj(1)

j!
ξj−1 (B.4)

where

bj(ξ) =
1

Γ(ξ)

dj

dξj
Γ(ξ). (B.5)

With this definition, we can also calculate derivatives as:

dk

dξk
Γ(ξ) =

(−1)kk!

ξ(k+1)
+

∞∑
j=k+1

bj(1)

j(j − (k + 1))!
ξj−(k+1). (B.6)

Note that b0 is initialised to 1.
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B.2 Polygamma

The polygamma function ψ(m)(N) is often seen in cross sections in the threshold limit.

It is defined as

ψ(m)(N) =
dm

dNm
ψ(N) , ψ(N) =

Γ′(N)

Γ(N)
(B.7)

where the prime signifies differentiation with respect to N . Alternatively we can rewrite

this definition without recursion as

ψ(m)(N) =
dm+1

dNm+1
log(Γ(N)). (B.8)

When exploring cross sections in the threshold limit (equivalent to N →∞), interesting

leading log terms arise from ψ(0)(N) = d
dN log(Γ(N)). To see how this comes to be, we

begin by exploring Γ(N) as N →∞. According to Stirling’s formula, in this limit,

Γ(N + 1) ∼
√

2πN

(
N

e

)N
. (B.9)

We invoke the property of gamma functions Γ(N + 1) = NΓ(N), which means

Γ(N) ∼
√

2πNNN−1e−N , (B.10)

and furthermore,

log(Γ(N)) =
1

2
log(2πN)−N +N log(N) log(N). (B.11)

Finally we have

ψ(0)(N) =
d

dN
log(Γ(N)) = log(N)− 1

2N
for large N. (B.12)

Further, some special values of the polygamma function which appear in differential

cross sections are:

ψ(0)(1) = −γE (B.13)

ψ(1)(1) =
π2

6
. (B.14)

B.3 The Beta Function

The Beta function has the integral form

B(m,n) =

∫ 1

0
dx xm−1(1− x)n−1 (B.15)
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which evaluates to

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
(B.16)

where m and n are real.

B.4 The Zeta Function

The Riemann Zeta function ζs ≡ ζ(s) is defined as

ζ(s) =
∞∑
n=1

1

s
(B.17)

for a complex variable s = σ + it, converging for Re(s) > 1. For those cases, the

function can also be written as an integral

ζ(s) =
1

Γ(s)

∫ ∞
0

dx
xs−1

ex − 1
(B.18)

where the Gamma function Γ(s) is defined in Appendix B.1. Special values of the Zeta

function are

ζ(2) =
π2

6
(B.19)

ζ(3) = 1.202056903... (B.20)

ζ(4) =
π4

90
. (B.21)
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Distributions and

Transformations

C.1 Delta Plus

The notation δ+ should be understood as:

δ+(k2) = θ(k0)δ(k2) (C.1)

where θ is the Heaviside function:

θ(k0) =

1 if k0 > 0

0 if k0 < 0.
(C.2)

C.2 The Plus Distribution

The plus distribution of a function F (z) is defined as follows:∫ 1

0
dz (F (z))+G(z) =

∫ 1

0
dz F (z)[G(z)−G(1)] (C.3)

where G(z) is a smooth test function. It is possible from this definition to isolate

(F (z))+. Consider the right-hand-side of C.3, and express G(1) as
∫∞
−∞ dy G(y)δ(1−y):

∫ 1

0
dz F (z)[G(z)−G(1)] =

∫ 1

0
dz F (z)G(z)−

∫ 1

0
dz F (z)

∫ ∞
−∞

dy G(y)δ(1−y). (C.4)

We have definite integrals over y and z, so we should be able to relabel these. Further,

we have the freedom to change the bounds of the integral with the delta function as
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long as the value 1 is covered by the bounds. This means:∫ 1

0
dz F (z)

∫ ∞
−∞

dy G(y)δ(1− y) =

∫ 1

0
dz δ(1− z)

∫ 1

0
dyF (y) G(z). (C.5)

Combining this with C.4 yields∫ 1

0
dz F (z)[G(z)−G(1)] =

∫ 1

0
dz

[
F (z)− δ(1− z)

∫ 1

0
dy F (y)

]
G(z). (C.6)

Connecting this result back to C.3 finally offers the following identity

(F (z))+ = F (z)− δ(1− z)
∫ 1

0
dy F (y). (C.7)

In the context of threshold radiation, this function appears in the differential cross

section as

F (z) =
logm(1− z)

1− z
. (C.8)

For the simple case of m = 1, identity C.7 results in(
log(1− z)

1− z

)
+

=
log(1− z)

1− z
+ c δ(1− z) (C.9)

where c is a divergent coefficient.

C.3 The Mellin Transform

This appendix draws heavily upon the appendices of theses [143,144] to reproduce the

Mellin transform of leading power terms appearing in differential cross sections, i.e.

f̃(z) =

(
log(1− z)

1− z

)
+

. (C.10)

The Mellin transform of f̃(z) is defined as

Mf̃(z) =

∫ 1

0
dz zN−1f̃(z). (C.11)

Performing a Mellin transform on this type of term becomes easier if we first rewrite it

as

f̃(z) =

(
log(1− z)

1− z

)
+

=

(
d

dξ
f(ξ)

∣∣∣∣
ξ=0

)
+

(C.12)

where

f(ξ) = (1− z)ξ−1. (C.13)
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Then we can rewrite (C.11) as

Mf̃(z) = M

(
d

dξ
f(ξ)

∣∣∣∣
ξ=0

)
+

=

∫ 1

0
dz zN−1

(
d

dξ
(1− z)ξ−1

∣∣∣∣
ξ=0

)
+

=
d

dξ

(∫ 1

0
dz zN−1(1− z)ξ−1 −

∫ 1

0
dz (1− z)ξ−1

)∣∣∣∣
ξ=0

(C.14)

where we have invoked the definition of the “plus” distribution as per (C.3). The

integrals evaluate to beta functions (see appendix B.3) and we have:

Mf̃(z) =
d

dξ

(
Γ(ξ)Γ(N)

Γ(N + ξ)
− 1

ξ

)∣∣∣∣
ξ=0

. (C.15)

Taking derivatives with respect to ξ in the limit where ξ → 0 will lead to terms po-

tentially blowing up, suggesting that we need more careful treatment of the expression

above. Consider an expansion of

g(ξ) ≡ Γ(N)

Γ(N + ξ)
(C.16)

around ξ ∼ 0:

g(ξ) =

∞∑
j=0

g(j)(0)

j!
ξj (C.17)

where the notation g(j)(0) denotes the jth derivative of g with respect to ξ evaluated

at ξ = 0. These derivatives are functions of N and so we can denote them as

aj(N) ≡ g(j)(0) =

(
dj

dξj
Γ(N)

Γ(N + ξ)

)∣∣∣∣
ξ=0

= Γ(N)

(
dj

dξj
Γ−1(N + ξ)

)∣∣∣∣
ξ=0

(C.18)

allowing us to neatly express

Γ(N)

Γ(N + ξ)
=

∞∑
j=0

aj(N)

j!
ξj , (C.19)

where a0(N) = 1. Note that the functions aj(N) are recursive. From the definition

given by (C.18) we have

aj+1(N) = Γ(N)

(
dj+1

dξj+1
Γ−1(N + ξ)

)∣∣∣∣
ξ=0

. (C.20)

Now consider

d

dN
aj(N) = Γ′(N)

(
dj

dξj
Γ−1(N + ξ)

)∣∣∣∣
ξ=0

+ Γ(N)

(
d

dN

dj

dξj
Γ−1(N + ξ)

)∣∣∣∣
ξ=0

(C.21)
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where the prime indicates differentiation with respect to N . In the first term, we can

recognize the relation to the polygamma function as defined by (B.8), i.e.

ψ(0)(N) =
d

dN
log(Γ(N)) =

Γ′(N)

Γ(N)
. (C.22)

As for the second term, differentiation by N or ξ results in the same expression, making

these interchangeable. So we can rewrite the (C.21) as

aj+1(N) =
d

dN
aj(N)− ψ(0)(N)aj(N) (C.23)

where the property of recursion is now evident.

We connect back to our original goal as set out by (C.15). Now that we have ex-

pansion for terms containing gamma functions, we can begin to differentiate. We use

the Leibniz rule for differentiating the product of gamma functions:

d

dξ

(
Γ(ξ)

Γ(N)

Γ(N + ξ)

)
=

(
d

dξ

Γ(N)

Γ(N + ξ)

)
Γ(ξ) +

Γ(N)

Γ(N + ξ)

(
d

dξ
Γ(ξ)

)
. (C.24)

Consider the first term of (C.24). Using (C.19) and (B.4), we can expand this term as(
d

dξ

Γ(N)

Γ(N + ξ)

)
Γ(ξ) =

∞∑
j′=1

aj′(N)

(j′ − 1)!
ξj
′−2 +

∞∑
j′=1

∞∑
j=1

aj′(N)bj(1)

j!(j′ − 1)!
ξj+j

′−2. (C.25)

In the limit ξ → 0, most of the terms in these sums will vanish, which motivates a

re-write of the above in orders of ξ,(
d

dξ

Γ(N)

Γ(N + ξ)

)
Γ(ξ) =

1

ξ
a1(N) + a2(N) + a1(N)b1(1) +O(ξ). (C.26)

Likewise, we can expand the second set of terms of (C.24) using (C.19) and (B.6):

Γ(N)

Γ(N + ξ)

(
d

dξ
Γ(ξ)

)
= −

∞∑
j′=0

aj′(N)

j′!
ξj
′−2 +

∞∑
j′=0

∞∑
j=2

aj′(N)bj(1)

j′!j(j − 2)!
ξj+j

′−2. (C.27)

Again, we organise this expression in orders of ξ:

Γ(N)

Γ(N + ξ)

(
d

dξ
Γ(ξ)

)
= − 1

ξ2
a0(N)− 1

ξ
a1(N)− 1

2
a2(N) +

1

2
b2(1) +O(ξ). (C.28)

Altogether, we can combine (C.24), (C.26), and (C.28),

d

dξ

(
Γ(ξ)

Γ(N)

Γ(N + ξ)

)
= − 1

ξ2
+

1

2
a2(N) +

1

2
b2(1) + a1(N)b1(1) +O(ξ), (C.29)
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where we have used the identity a0(N) = 1. We plug this into (C.15) to finally arrive

at our Mellin transform:

M

(
log(1− z)

1− z

)
+

=
1

2
a2(N) +

1

2
b2(1) + a1(N)b1(1). (C.30)

In terms of polygamma functions (see appendix B.2), this is

M

(
log(1− z)

1− z

)
+

=
1

2

(
(ψ(0)(N))2 + 2γEψ

(0)(N)− ψ(1)(N) + γ2
E +

π2

6

)
, (C.31)

where we used identities (B.13) and (B.14) for special values of the polygamma. In the

large N limit, we have ψ(0)(N) = log(N)− 1
2N (see (B.12)), and so our Mellin transform

takes the form

M

(
log(1− z)

1− z

)
+

=
1

2

(
log2(N)− log(N)

N
+ 2γE log(N)− (γE + 1)

1

N

)
+ ... (C.32)

where the ellipses denote highly subleading terms and constants. We highlight the

leading log of this expression,

M

(
log(1− z)

1− z

)
+

∣∣∣∣
LL

=
1

2
log2(N). (C.33)

We can also Mellin transform NLP terms. We will only consider those appearing at

NLO, i.e.,

f̃(z) = log(1− z) (C.34)

The analogue of expression (C.15) for the Mellin transform of this type of term is

Mf̃(z) =

∫ 1

0
dz zN−1 log(1− z) =

d

dξ

(
Γ(ξ + 1)Γ(N)

Γ(N + ξ + 1)

)∣∣∣∣
ξ=0

. (C.35)

This simplifies to

M log(1− z) =
−1

N

(
ψ(1)(N + 1) + γE

)
, (C.36)

which in the large N limit is

M log(1− z) =
−1

N

(
log(N) + γE −

1

2N

)
. (C.37)

We highlight the leading log term

M log(1− z)
∣∣∣∣
LL

=
− log(N)

N
. (C.38)
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C.4 The Laplace Transform

The Laplace transform of a function f(t) is defined as

F (s) ≡ L[f(t)] =

∫ ∞
0

dt e−stf(t). (C.39)

The inverse Laplace transform is then

f(t) = L−1[F (s)] =

∫ γ+i∞

γ−i∞

ds

2πi
estF (s), (C.40)

where γ is a real number. We will consider an example of f(t) that is relevant for many

calculations in this thesis,

f(t) = tn (C.41)

for some positive integer n. The Laplace transform is

F (s) = L[tn] =

∫ ∞
0

dt e−sttn. (C.42)

Using integration by parts, we have

L[tn] =
−1

s
e−sttn

∣∣∣∣∞
t=0

+
n

s

∫ ∞
0

dt e−sttn−1

=
n

s

∫ ∞
0

dt e−sttn−1, (C.43)

where the first term of the first line vanishes. We can repeat the integration by parts

again, and will see

L[tn] =
n(n− 1)

s2

∫ ∞
0

dt e−sttn−2. (C.44)

Repeating this step iteratively will eventually yield

L[tn] =
n(n− 1)(n− 2)...(n− (n− 1))

sn

∫ ∞
0

dt e−stt0. (C.45)

Finally we have

F (s) = L[tn] =

∫ ∞
0

dt e−sttn =
n!

sn+1
=

Γ(n+ 1)

sn+1
. (C.46)

Incidentally, by (C.46) we also recover the integral identity of the gamma function

(stated in equation (B.2)), where s = 1:

Γ(n) =

∫ ∞
0

dt e−ttn−1. (C.47)
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Additionally, (C.46) implies that we have the inverse Laplace transform,

L−1

[(
1

s

)n]
=

∫ i∞

−i∞

ds

2πi
est
(

1

s

)n
=

tn−1

(n− 1)!
=
tn−1

Γ(n)
. (C.48)

Although this identity has been derived by considering only positive integer values of

n, it also holds for any n > 0.
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Appendix D

Sudakov Decomposition

In threshold related calculations, the Sudakov decomposition is particularly useful as

it separates transverse momenta from collinear and anti-collinear momenta. In this

decomposition, the emitted gluon can be parametrized as

kµ = k+β
µ + k−β̄

µ + kµT (D.1)

where kT is a d-vector transverse to the dimensionless vectors βµ and β̄µ defined in

(3.18),

kT · β = kT · β̄ = 0. (D.2)

The k+ and k− terms can be arrived at by contracting (3.43) with p̄ and p respectively:

k+ =
2p̄ · k√

ŝ
; k− =

2p · k√
ŝ
. (D.3)

Further to this, we can choose a parametrisation such that we can express the transverse

vector as

kµT = (0,kT , 0) (D.4)

where kT is a d − 2 dimensional vector. In this case, we can also parametrize the

incoming particles as:

pµ = (E1, 0, 0, ..., 0, E1) and p̄µ = (E2, 0, 0, ..., 0,−E2) (D.5)

where the Mandelstam invariant ŝ = 4E1E2.
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D.1 Jacobian

The integration measure ddk can be related to the new coordinates by:

ddk = |J |dk+dk−d
(d−2)kT (D.6)

where J is the Jacobian determinant, by definition:

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂k0

∂k+
∂k0

∂k−
∂k0

∂k1T
... ∂k0

∂kd−2
T

∂k1

∂k+
∂k1

∂k−
∂k1

∂k1T
... ∂k1

∂kd−2
T

...
. . .

∂kd−1

∂k+
∂kd−1

∂k−
∂kd−1

∂k1T
... ∂kd−1

∂kd−2
T

∣∣∣∣∣∣∣∣∣∣∣∣
. (D.7)

Now, these partial derivatives simplify to:

∂kµ

∂k+
=


E1√
ŝ
, if µ = 0 or d− 1

0, otherwise;
(D.8)

∂kµ

∂k−
=


E2√
ŝ
, if µ = 0

−E2√
ŝ
, if µ = d− 1

0, otherwise;

(D.9)

∂kµ

∂kνT
=

0, if µ = 0 or d− 1

δµν , otherwise.
(D.10)

Plugging this into D.7 gives us

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1√
ŝ

E2√
ŝ

0 0 0 ... 0

0 0 1 0 0 ... 0

0 0 0 1 0 ... 0
...

. . .
...

0 0 0 ... 0 1 0
E1√
ŝ
−E2√

ŝ
0 0 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
. (D.11)

Finally we have

ddk =
1

2
dk+dk−d

(d−2)kT . (D.12)
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D.2 Integration bounds for k+ and k−

The gluon respects the on-shell condition k2 = 0. In Sudakov coordinates, this takes

on the form:

0 = k2 = k2
0 − [(k2

x + ...)︸ ︷︷ ︸
|kT |2

+k2
z ]

= k2
0 − k2

z − |kT |2. (D.13)

This implies that the quantity k2
0−k2

z cannot be negative. Furthermore, we can factorize

this such that:

k2
0 − k2

z = (k0 − kz)︸ ︷︷ ︸
2E2√
ŝ
k−

(k0 + kz)︸ ︷︷ ︸
2E1√
ŝ
k+

≥ 0. (D.14)

This condition tells us that:

� the quantities k0− kz and k0 + kz must either both be positive, or both negative,

and

� |k0| ≥ |kz|.

If we encounter a condition that forces k0 to be non-negative (such as δ+(k2)), then

this would mean that

k0 − kz ≥ 0→ k− ≥ 0

k0 + kz ≥ 0→ k+ ≥ 0.

Finally, given that k0 − kz = 2E2√
ŝ
k− and k0 + kz = 2E2√

ŝ
k+ , we can write the on-shell

condition as

k+k− − |kT |2 = 0. (D.15)
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Appendix E

Integrals

Integrals of the form

I(m,n, l) =

∫ ∞
0

dy e−yyn
∫ ∞

0
dx e−xxm

(
1

x+ y

)l
(E.1)

can be solved by a change of variable:

x = Λω ; y = Λ(1− ω)

Under this change of variable, we have

dxdy = ΛdΛdω. (E.2)

Then we can rewrite integral E.1 as

I(m,n, l) =

∫ 1

0
dω ωm(1− ω)n︸ ︷︷ ︸
beta function

∫ ∞
0

dΛ e−ΛΛm+n−l+1︸ ︷︷ ︸
gamma function

=
Γ(m+ 1)Γ(n+ 1)

Γ(m+ n+ 2)
Γ(m+ n− l + 2), (E.3)

where we identified the integral identities of the beta function (B.15) as well as the

gamma function (B.2).
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Appendix F

N3LO Data

This appendix collects the coefficient functions {fXi } for the squared matrix elements.

The coefficients for the hard region are

fH
1 = − 2

ε2
− 3

ε
− 8 + ζ2 + ε

(
−16 +

3ζ2

2
+

14ζ3

3

)
+ ε2

(
−32 + 4ζ2 + 7ζ3 +

47ζ4

8

)
+ ε3

(
−64 + 8ζ2 +

56ζ3

3
+

141ζ4

16
+

62ζ5

5
− 7

3
ζ3ζ2

)
+ ε4

(
−128 + 16ζ2 +

112ζ3

3

+
47ζ4

2
+

93ζ5

5
− 7ζ2ζ3

2
+

949ζ6

64
− 49ζ2

3

9

)
+O(ε5);

fH
2 = (1− ε)fH

1 . (F.1)

The coefficients for the (anti-)collinear regions are

fC
1 = −2

ε
− 5

2
+ ε
(
− 3 + ζ2

)
+ ε2

(
− 4 +

5ζ2

4
+

14ζ3

3

)
+ ε3

(
− 6 +

3ζ2

2
+

35ζ3

6
+

47ζ4

8

)
+ ε4

(
− 10 + 2ζ2 + 7ζ3 +

235ζ4

32
+

62ζ5

5
− 7ζ2ζ3

3

)
+O(ε5);

fC
2 = − 1

4ε
+

1

8
+ ε

(
3

4
+
ζ2

8

)
+ ε2

(
2− ζ2

16
+

7ζ3

12

)
+ ε3

(
9

2
− 3ζ2

8
− 7ζ3

24
+

47ζ4

64

)
+ ε4

(
19

2
− ζ2 −

7ζ3

4
− 47ζ4

128
+

31ζ5

20
− 7ζ2ζ3

24

)
+O(ε5);

fC
3 =

1

4ε2
− 1

8ε
− 3

4
− ζ2

8
+ ε

(
−2 +

ζ2

16
− 7ζ3

12

)
+ ε2

(
−9

2
+

3ζ2

8
+

7ζ3

24
− 47ζ4

64

)
+ ε3

(
−19

2
+ ζ2 +

7ζ3

4
+

47ζ4

128
− 31ζ5

20
+

7

24
ζ2 ζ3

)
+ ε4

(
−39

2
+

9ζ2

4
+

14ζ3

3
+

141ζ4

64

+
31ζ5

40
− 7ζ2 ζ3

48
− 949ζ6

512
+

49ζ2
3

72

)
+O(ε5). (F.2)
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For the soft region, we have

fS
1 =

1

4ε2
+

1

4ε
+

1

2
− ζ2

8
+ ε

(
1− ζ2

8
− 7ζ3

12

)
+ ε2

(
2− ζ2

4
− 7ζ3

12
− 47ζ4

64

)
+ ε3

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64
− 31ζ5

20
+

7ζ2ζ3

24

)
+ ε4

(
8− ζ2 −

7ζ3

3
− 47ζ4

32
− 31ζ5

20
+

7ζ2ζ3

24
− 949ζ6

512
+

49ζ2
3

72

)
+O(ε5);

fS
2 =

1

4ε
+

1

2
+ ε

(
1− ζ2

8

)
+ ε2

(
2− ζ2

4
− 7ζ3

12

)
+ ε3

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64

)
+ ε4

(
8− ζ2 −

7ζ3

3
− 47ζ4

32
− 31ζ5

20
+

7ζ2ζ3

24

)
+O(ε5);

fS
3 =

1

4ε
+

1

4
+ ε

(
1

2
− ζ2

8

)
+ ε2

(
1− ζ2

8
− 7ζ3

12

)
+ ε3

(
2− ζ2

4
− 7ζ3

12
− 47ζ4

64

)
+ ε4

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64
− 31ζ5

20
+

7ζ2ζ3

24

)
+O(ε5). (F.3)
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Appendix G

The Schwarzschild Metric in

Kerr-Schild coordinates

In this appendix, we show how to move between spherical polar coordinates and Kerr-

Schild coordinates for the Schwarzschild solution. We do this for both signatures of the

Minkowski metric - the choice of which impacts the Kerr-Schild form.

G.0.1 Mostly + signature

For ηµν = (−1, 1, 1, 1) the Schwarzschild metric in spherical polar coordinates is

gµνdx
µdxν = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2). (G.1)

The Kerr-Schild form of this metric is given by

gKSµν = ηµν + φkµkν (G.2)

where φ = 2GM
r and kµ = (1, xi/r). Here is the proof:

gKSµν dx
µdxν = −dt2KS + dx2 + dy2 + dz2 +

2GM

r
(kµdx

µ)2. (G.3)

We unpack kµdx
µ to be

kµdx
µ = dtKS +

xi

r
dxi = dtKS + dr (G.4)

where we used the fact that r2 = xixi to lead us to dr = xi

r dx
i. Combining this with a

change to spherical polar coordinates leaves us with

dS2 = gKSµν dx
µdxν =−

(
1− 2GM

r

)
dt2KS +

(
1 +

2GM

r

)
dr2
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+
4GM

r
dtKSdr + r2(dθ2 + sin2 θdφ2). (G.5)

Now we consider the variable change

tKS = t+ 2GM ln | r

2GM
− 1 | +C → dtKS = dt+

2GM

r − 2GM
dr (G.6)

Plugging (G.6) into (G.5) leaves us with the Schwarzschild metric as per (G.1).

G.0.2 Mostly - signature

For ηµν = (1,−1,−1,−1) the Schwarzschild metric in spherical polar coordinates is

gµνdx
µdxν =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2(dθ2 + sin2 θ dφ2). (G.7)

The Kerr-Schild form of this metric is given by

gKSµν = ηµν − φkµkν (G.8)

where φ = 2GM
r and kµ = (1, xi/r). Here is the proof:

gKSµν dx
µdxν = dt2KS − dx2 − dy2 − dz2 − 2GM

r
(kµdx

µ)2. (G.9)

We unpack kµdx
µ to be

kµdx
µ = dtKS −

xi

r
dxi = dtKS + dr (G.10)

where we used the fact that r2 = −xixi to lead us to dr = xi

r dx
i. Combining this with

a change to spherical polar coordinates leaves us with

dS2 = gKSµν dx
µdxν =

(
1− 2GM

r

)
dt2KS −

(
1 +

2GM

r

)
dr2

− 4GM

r
dtKSdr − r2(dθ2 + sin2 θdφ2). (G.11)

And now we use exactly the same variable change (G.6) as for the mostly plus case.

Plugging (G.6) into (G.11) leaves us with the Schwarzschild metric as per (G.7).
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Appendix H

Ultraboosting the general

SU(2)×SU(2) Monopole

In section 10.2, the spherically symmetric biadjoint monopole solution of (10.56) ul-

traboosts to a finite quantity rather than a shockwave. In this appendix, we show that

the ultraboost procedure fails to produce shockwaves when applied to the more general

monopole solutions of (9.11) (derived in [128]). Recall that these solutions have the

form

Φaa′ =
1

λr2

[
−k

(
δaa
′ − xaxa

′

r2

)
±
√

2k − k2
εaa
′dxd

r

]
, 0 ≤ k ≤ 2. (H.1)

As in section 10.2, we boost in the x-direction, and examine the behaviour of the

boosted solution inside and outside the plane x = t. Outside of the plane, we find that

the solution vanishes completely:

Φaa′ γ→∞−−−→ 0 for x− t 6= 0. (H.2)

Inside of the plane, just as for the ultraboost of the (10.58), the field takes finite values

and displays no divergent behaviour. More specifically, in the limit γ →∞ we find

Φ12 = −Φ21 →
z
√

(k2 − 2k)

λ(y2 + z2)3/2
,Φ13 = −Φ31 → −

y
√

(k2 − 2k)

λ(y2 + z2)3/2
,Φ23 = Φ32 → yzk

λ(y2 + z2)2
,

Φ11 → −k
λ(y2 + z2)

, Φ22 → −kz2

λ(y2 + z2)2
, Φ33 → −ky2

λ(y2 + z2)2
. (H.3)

Similarly to (10.58), the ultraboosted solutions (H.3) remain finite in the plane x = t,

and therefore, they do not constitute shockwaves. Rescaling the coupling according to

λ → λ/γ can remedy this, however, this entails changing the theory, than the object

under the ultraboost.
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Appendix I

Gauge Transforming the Dirac

Monopole to the Wu-Yang

Monopole

In this appendix, we transform the Dirac monopole to the Wu-Yang monopole, closely

following [137,138]. Consider the embedded Dirac monopole of (10.62), i.e.

Aµ = − g̃

4π

(
0, 0, 0,

1− cos θ

r sin θ

)
σ3. (I.1)

We apply the gauge transformation (10.66) to the above and work out what the non-

zero components of the transformed gauge field will be. Note that in spherical polar

coordinates, taking into account the appropriate scale factors, the four-derivative is

∂µ =

(
∂

∂t
,
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
≡
(
∂t, ∂r,

1

r
∂θ,

1

r sin θ
∂φ

)
. (I.2)

Stripping out the coupling, the φ component of the transformation is defined by (10.65)

as

A′(φ) = UA(φ)U
(−1) +

i

r sin θ
U∂φU

−1. (I.3)

In the first term, we utilise the fact that σ3 commutes with itself:

UA(φ)U
(−1) = −1− cos θ

r sin θ

[
e−iφσ3e−iθσ2σ3e

iθσ2eiφσ3
]
. (I.4)

This is likewise the case in the second term

i

r sin θ
U∂φU

−1 =
i

r sin θ

[
U(−iσ3)U−1 + U U−1(iσ3)

]
=

1

r sin θ

[
e−iφσ3e−iθσ2σ3e

iθσ2eiφσ3 − σ3

]
. (I.5)

167



APPENDIX I. GAUGE TRANSFORMING THE DIRAC MONOPOLE TO THE
WU-YANG MONOPOLE

Altogether, we have

A′(φ) =
1

r sin θ

[
cos θ(e−iφσ3e−iθσ2σ3e

iθσ2eiφσ3)− σ3

]
. (I.6)

We can simplify the above by expressing each exponential as a Taylor series, e.g.

eiθσ2 =
∞∑
k=0

(iθσ2)k

k!
. (I.7)

Note that for any σm (defined in (10.63)) we have

σkm =


(

1
2

)k
I, k is even(

1
2

)k−1
σm, k is odd.

(I.8)

With these two identities, it is straightforward to show that

eiθσ2 = I cos

(
θ

2

)
+ 2iσ2 sin

(
θ

2

)
. (I.9)

This simplifies (I.6) considerably. For example,

e−iθσ2σ3e
iθσ2 =

[
I cos

(
θ

2

)
+ 2iσ2 sin

(
θ

2

)]
σ3

[
I cos

(
θ

2

)
− 2iσ2 sin

(
θ

2

)]
, (I.10)

which, when expanded, reduces to

e−iθσ2σ3e
iθσ2 = σ3 cos θ + σ1 sin θ. (I.11)

The same process applies for the remaining exponentials, ultimately resulting in

A′(φ) =
1

r
[σ1 cos θ cosφ+ σ2 cos θ sinφ− σ3 sin θ] , (I.12)

which is still stripped of the coupling. The other non-zero component A′(θ) (stripped of

the coupling) is much simpler,

A′(θ) =
i

r
U∂θU

−1 =
−1

r
e−iφσ3σ2e

iφσ3 . (I.13)

Using the same technology described above, this reduces to

A′(θ) =
1

r
[σ1 sinφ− σ2 cosφ] . (I.14)
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WU-YANG MONOPOLE

To transform the field into Cartesian coordinates, we use the tensor transformation law

Aµ =
∂x′ν

∂xµ
A′(ν)h(ν) (I.15)

where h(ν) is a scale factor, and A′(ν) has the same units as the field. Their product

forms the covariant tensor components

A′ν = A′(ν)h(ν). (I.16)

For a deeper discussion on tensor transformations of this type, see [145]. In our case,

the scale factors we need are

h(θ) = r, h(φ) = r sin θ. (I.17)

The non-zero partial derivatives in a convenient form are

∂θ

∂x
=

z

r2
cosφ,

∂θ

∂y
=

z

r2
sinφ,

∂θ

∂z
=
− sin θ

r
,

∂φ

∂x
=

−y
r2 sin2 θ

,
∂φ

∂y
=

x

r2 sin2 θ
. (I.18)

When combining the partial derivatives (I.18), scale factors (I.17), and physical com-

ponents (I.12),(I.14) according to the tensor transformation law (I.15), we have

Ax =
1

r2
[yσ3 − zσ2]

Ay =
1

r2
[zσ1 − xσ3]

Az =
1

r2
[xσ2 − yσ1] . (I.19)

Reinstating the coupling, and expressing this in index notation, we have

Aa0 = 0; Aai =
−g̃εiakxk

4πr2
, (I.20)

where

Aµ = Aaµσa. (I.21)
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Appendix J

Ultraboosting the Wu-Yang

Monopole

Consider a boost to the Wu-Yang monopole25 in the x−direction,

A′µ =
(
Λ−1

)µ
ν
Aν(Λx) =

1

γ2(x− vt)2 + ρ2


γv(yσ3 − zσ2)

γ(yσ3 − zσ2)

−γ(x− vt)σ3 + zσ1

γ(x− vt)σ2 − yσ1

 , (J.1)

where Λ is the Lorentz boost matrix defined in (10.6). To understand how (J.1) behaves

in the ultraboost limit v → 1, we will examine each component inside and outside the

lightfront plane x− t = 0. The y and z components are the most straightfoward,

lim
v→1

A′y =

 zσ1
ρ2
, x = t

0, x 6= t
; lim

v→1
A′z =


−yσ1
ρ2

, x = t

0, x 6= t.
(J.2)

Now onto the A′x component:

lim
v→1

A′x = lim
v→1

γ(yσ3 − zσ2)

γ2(x− vt)2 + ρ2
=

∞, x = t

0, x 6= t.
(J.3)

This has the profile of a delta function. If we postulate that

lim
v→1

γ(yσ3 − zσ2)

γ2(x− vt)2 + ρ2
= a δ(x− t), (J.4)

25It is easiest to use the form in (I.19), stripped of coupling. The A0 component is zero.
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then integration of both sides over x should recover the normalisation a. In this vein,

we have

lim
v→1

∫ ∞
−∞

dx
γ(yσ3 − zσ2)

γ2(x− vt)2 + ρ2
= (yσ3 − zσ2)

∫ ∞
−∞

dx̃

x̃2 + ρ2
, (J.5)

where we made the variable change x̃ = γ(x − vt) thereby removing all dependence

of v from the integral. A further variable change x̃ = ρ tan θ simplifies the above

considerably, since ∫ ∞
−∞

dx̃

x̃2 + ρ2
=

∫ π
2

−π
2

dθ

ρ
=
π

ρ
. (J.6)

As A′t has the same profile as A′x then we have the succinct form for the ultraboosted

Wu-Yang monopole (with coupling stripped),

A′µ = (yσ3 − zσ2)
π

ρ
δ(x− t)nµ + wµ, (J.7)

where nµ is defined in (10.38), and wµ is a vector representing a finite quantity inside

the lightfront plane

wµ =
σ1

ρ2

(0, 0, z,−y), x = t

(0, 0, 0, 0), x 6= t.
(J.8)

This finite quantity could be gauged away, but its presence does not affect our con-

clusion. Clearly the delta function in (J.7) indicates that the Wu-Yang monopole has

been ultraboosted to a shockwave.
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