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Abstract | Multiple sclerosis (MS) is a neuroimmunological disorder of the CNS with a 

strong heritable component. The genetic architecture of MS susceptibility is well 

understood in populations of European ancestry. However, the extent to which this 

architecture explains MS susceptibility in populations of non-European ancestry remains 

unclear. In this Perspective article, we outline the scientific arguments for studying MS 

genetics in ancestrally diverse populations. We argue that this approach is likely to yield 

insights that could benefit individuals with MS from all ancestral groups. We explore the 

logistical and theoretical challenges that have held back this field to date and conclude 

that, despite these challenges, inclusion of participants of non-European ancestry in MS 

genetics studies will ultimately be of value to all patients with MS worldwide. 

 

 



 

 

 

[H1] Introduction 

Individuals of non-European ancestry are systematically under-represented in complex 

genetics research and remain so despite efforts in recent years to address this 

disparity1,2. For example, despite people of European ancestry constituting only ~16% 

of the global population, 78% of individuals included in GWAS are of European descent; 

by contrast, only 11% are of Asian ancestry, 2.4% are of African ancestry, and the 

remainder comprises other populations2,3. This under-representation is a pressing 

scientific and societal concern1,4–6. 

In the field of multiple sclerosis (MS), GWAS in populations of European 

ancestry7,8 have shown that susceptibility to MS is associated with 32 independent 

signals at the major histocompatibility complex (MHC), 200 additional autosomal loci 

and one X-chromosome locus. These signals collectively explain up to ~50% of the 

estimated genetic heritability of MS7,8. However, these findings alone tell us little about 

the genetic architecture of MS in other ancestral populations9–15. 

There are strong ethical and scientific arguments for broadening participation in 

the genetic study of complex traits and diseases, including MS1,3. To some extent, we 

believe that the distinction between ‘ethical’ and ‘scientific’ arguments here is artificial. 

The primary ethical concern is that failure to include individuals of diverse ancestry in 

genetic studies risks perpetuating health inequalities, as developments in personalized 

genomic medicine that are based on findings from populations of European ancestry 

might not translate into benefits for people with non-European ancestral backgrounds. 

Examples of such developments include improved disease prediction with polygenic risk 

scores, enrolment in genetically-stratified prevention studies guided by risk scores, 

pharmacogenetics-informed treatment decisions, and genetics-informed 

prognostication. If genetics begins to inform routine clinical practice in MS, individuals of 

non-European ancestry could receive inferior clinical care, potentially leading to worse 

disease-related outcomes. This possibility is particularly concerning given that existing 

evidence indicates that diagnosis and initiation of treatment are slower for people of 

non-European ancestry with MS and that people in these populations experience 

greater disability and higher overall mortality than people of European ancestry. 

Advances in our understanding of how genetics shapes risk in diverse populations will 

hopefully address this concern. Examination of more complex ethical aspects is beyond 

the scope of this article, but these arguments are explored in greater depth 

elsewhere2,16–19. 

In this Perspective article, we discuss the major scientific benefits of studying MS 

genetics in populations from diverse ancestral backgrounds (Box 1). We draw on recent 



 

 

successes of this approach in other complex traits and diseases, including 

schizophrenia20, chronic kidney disease21, cerebrovascular disease22, blood cell traits23, 

lipid traits24, rheumatoid arthritis (RA)25, type 1 diabetes mellitus (T1DM)26,27 and 

inflammatory bowel disease (IBD)28,29. These studies have led to advances in fine-

mapping and polygenic risk score prediction, and to the discovery of novel associations 

within and beyond known loci. We argue that well-powered GWAS in these populations 

could help to explain variation in MS epidemiology and clinical course, elucidate the 

ways in which MHC variation affects risk, identify causal variants at known loci, uncover 

novel risk loci, and improve prediction of MS risk. 

[H1] Genetics to understand epidemiology 

The Global Burden of Diseases Study revealed global variation in the prevalence of 

MS30. Age-standardized estimates range from 2.0 per 100,000 people in Oceania and 

2.8 per 100,000 in central sub-Saharan Africa to 164.6 per 100,000 in high-income 

North America30. Though the estimates for many of the countries with low prevalence 

are influenced by ascertainment bias and missing data, the differences are striking30. 

Potential contributors to this variation include differences in documentation of cases 

owing to, for example, differential access to medical facilities and health data recording 

practices, and differences in the risk of disease owing to environmental exposures and 

genetic architecture31.  

Rapid changes in the apparent epidemiology of MS provide evidence that non-

genetic factors make important contributions to differences between populations. For 

example, one study published in 2015 indicated that the incidence of MS among women 

of East Asian or South East Asian descent in British Columbia, Canada, doubled 

between 1986 and 201032. Such a rapid change cannot be attributable to genetics. 

Plausible explanations include changes in case ascertainment as a result of, for 

example, changes in diagnostic criteria, access to healthcare services, and the 

availability of MRI scans, or increased exposure to MS risk factors, such as smoking 

and obesity during adolescence. 

A complete understanding of the genetic architecture of MS across ancestral 

populations would help to clarify the proportion of global variation in MS that is due to 

genetics and the proportion that is due to alternative explanations. Combining a pan-

ancestral map of MS genetics with worldwide allele frequencies could even enable 

prediction of the ‘hidden burden’ of MS in low-resource settings, where prevalence and 

incidence estimates are limited by access to specialist neurological care and diagnostic 

facilities30. 

Some evidence indicates that in high-income countries, the incidence of MS is 

higher among individuals of non-European ancestry than among those of European 

ancestry. For example, in a study of the Gulf War cohort of US veterans published in 

2012, age-standardized incidence rates were highest among Black American people 



 

 

(12.1 per 100,000 person–years compared with 9.3 per 100,000 person–years in white 

American people)33. In this study, ethnic groups were based on categories recorded in 

the US Defense Medical Epidemiological Database. This finding was replicated in 

smaller cohorts, in which the disparities were more pronounced among women34. 

Similarly, in a primary care record-based study conducted in London, UK, British 

individuals aged <40 years whose ethnicity was recorded as ‘Black British’ had an 

equal, if not higher, risk of MS than individuals whose recorded ethnicity was ‘White’ 

(OR 1.15, 95% CI 0.81 – 1.62)35. Data published in 2022 from the Kaiser Permanente 

cohort in Southern California, USA, indicate a similar prevalence of MS among Black 

American people (225.8 per 100,000 people) and white American people (237.7 per 

100,000 people)36. In this study, race and ethnicity was based on medical records and 

birth certificates. Taken together, these data suggest that in countries with a high MS 

prevalence, the risk of MS is similar or slightly higher among Black people than among 

white people, although the classification of race and ethnicity in these studies does not 

necessarily provide accurate information about genetic ancestry in these populations.  

Studying migrant populations in high-resource settings could also be helpful in 

determining the proportion of variation in MS risk that can be attributed to genetics 

alone. Such studies offer a unique opportunity to distinguish the roles of genetic and 

environmental factors, and to determine critical windows within which environmental 

factors influence risk. Contemporary studies from Denmark and Sweden support the 

view that migration from a low-prevalence to a high-prevalence country is associated 

with an increase in the risk of MS and that this increase is particularly prominent among 

people who migrate before adolescence37,38. In principle, if a migrant population retains 

similar allele frequencies and linkage disequilibrium structure to individuals who remain 

in their country of origin, the discordance in disease risk could be used to estimate the 

heritability of MS, and substantial differences in the estimated heritability could indicate 

gene–environment interactions.  

For example, a population could harbour several common risk alleles for MS that 

only increase the risk if the individual smokes cigarettes. If people from this population 

move to a country where the prevalence of MS is higher and exposure to cigarette 

smoking is higher than in their country of origin, the estimated heritability of MS among 

this population will be greater than in the population in the country of origin, as these 

alleles have a greater impact on MS risk with increased exposure to smoking. This 

scenario is extreme but illustrates the point that heritability estimates could, in principle, 

be affected by gene–environment interactions. 

Though migration studies are an elegant approach to disentangling the relative 

contributions of genetic and environmental risk factors for MS, sound interpretation of 

these data relies on the assumption that cases are ascertained with equivalent accuracy 

in the two countries. This assumption is unlikely to hold true in the case of migration 

from a low-income country to a high-income country. 



 

 

 

[H1] The MHC locus  

The role of the MHC locus (6p21) in determining MS susceptibility is well-

established39,40. However, studying the role of the MHC in populations of non-European 

ancestry is valuable because population-specific alleles exist and haplotype structures 

differ between populations (Figure 1). Such studies can reveal the role of HLA alleles 

that are not present in European populations and clarify independent and/or shared 

effects of alleles that highlight core disease pathways. Differences between populations 

of different ancestry could also reveal a role for specific pathogens or selection 

pressures. 

Determining the precise mechanisms by which MHC variation affects MS biology 

has been challenging owing to the density of genes in this region, the complex linkage 

disequilibrium, and the existence of long-range haplotypes. A GWAS in populations of 

European ancestry has identified 32 statistically independent signals within the MHC 

locus, including class II alleles that increase risk (HLA-DRB1*15:01, HLA-

DRB1*03:01,HLA-DRB1*13:03, HLA-DRB1*08:01 and HLA-DQB1*03:02), class I 

alleles that are protective (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-

B*55:01), and some risk variants outside of classical HLA genes8,41. Gene–gene 

interactions also occur at this locus in populations of European ancestry — several 

alleles modulate the effect of HLA-DRB1*15:018,41. There is little evidence to suggest 

that the MHC influences MS phenotypes (for example, relapse rate, severity or 

relapsing–remitting versus progressive disease) besides age of onset in European 

populations41–43.  

The frequency, distribution and haplotypes of HLA alleles differ between 

ancestral populations (Figure 1)44,45. Some alleles are absent in the European 

population so their influence on MS risk cannot be studied in populations of European 

ancestry. Conversely, some MS risk alleles, such as HLA-DRB1*15:01, are rare in 

populations of non-European ancestry. The class II allele HLA-DRB1*04:05, which is 

essentially absent in populations of European ancestry, has been associated with MS in 

Japanese46, Turkish 47, South American 48, African American10, and Sicilian 

populations49. The combination of HLA-DRB1*04:05 positivity and HLA-DRB1*15:01 

negativity seems to be associated with a distinct clinical phenotype of MS characterized 

by early onset, a relatively benign course, and an unusually low rate of Epstein–Barr 

virus seropositivity46,50,51; this phenotype contrasts with that in European populations, in 

which HLA-DRB1*15:01 positivity is associated with earlier onset. Similarly, the HLA-

DRB1*15:03 allele is essentially absent in populations of European descent10,13 but is 

consistently associated with MS susceptibility in cohorts from Iran, Brazil and 

Martinique52–54. 

The increased risk of MS associated with HLA-DRB1*15:01-containing 

haplotypes in populations of European ancestry has been replicated in populations of 



 

 

Ashkenazi Jewish55,56, Sardinian57, African10,58,59, Hispanic59,60, Japanese46 and Indian 

ancestry12,61. This allele and the MS-associated HLA-DRB1*15:03 allele (which is most 

common among populations of African ancestry) are characterized by an alanine 

residue at position 71, which alters the peptide groove and might enable presentation of 

epitopes derived from myelin basic protein45. Larger studies in diverse cohorts are 

required to determine the effects of HLA alleles other than DRB1 alleles on MS risk in 

populations of non-European ancestry. Combining findings of HLA allelic associations 

with MS across ancestries could help to determine the common features of MS-

associated MHC molecules. 

[H2] Ancestral variation and MHC fine mapping  

Differences in linkage disequilibrium between HLA alleles across ancestries can help to 

disentangle the effects of individual alleles. Across the genome, blocks of alleles in 

linkage disequilibrium are shorter in African populations than in European populations. 

This difference is due to the greater number of ancestral generations (and therefore 

meiotic recombination events) without genetic bottlenecks or other causes of loss of 

genetic diversity62. This observation has helped to determine that the association of 

MHC with narcolepsy is attributable to the DQB1*06:02 allele63. Similar approaches 

have been used in populations of non-European ancestry to demonstrate the 

association of the non-classical HLA-DRB1*04:01 allele with rheumatoid arthritis64, and 

of the HLA-DRB1*04:03 allele with type 1 diabetes mellitus65. 

In MS, the most notable demonstration of the power of this approach was the 

finding that the association of the European DRB1*15:01–DQB1*06:02 haplotype was 

driven by DRB1*15 alleles (either 15:01 or 15:03)13. This insight was possible because 

the two alleles are not in complete linkage disequilibrium in African American 

populations, so their associations could be tested independently in African American13 

and Martinican54 cohorts. Several years later, the availability of larger European sample 

sizes and sophisticated statistical approaches for fine mapping confirmed that the 

association of this haplotype with MS is primarily driven by HLA-DRB1*15:01 in 

populations of European ancestry41,66. The increasing availability of multi-ancestry HLA 

reference panels, increasing sophistication of algorithms for imputing HLA alleles from 

single nucleotide polymorphism (SNP) data, and the shift towards MHC sequencing 

over genotyping are likely to facilitate further insights from cross-ancestral MHC fine 

mapping65,67. 

[H2] HLA effects and ancestry 

Even if the same HLA alleles are associated with MS in populations with different 

ancestries, they could exert different effects. Heterogeneity in effect sizes could reflect 

differences in the linkage disequilibrium structure at the locus (for example, the same 



 

 

allele could be associated with other haplotypes or other genetic modifiers of the effect), 

differences in the noncoding region of the allele itself, or gene–environment interactions. 

Whether HLA alleles do have differential effects across ancestries in MS remains 

unknown. In one admixture mapping (See Discovery of novel loci below) study of a 

cohort predominantly from California, USA, excess European ancestry was apparent at 

the MHC among African American people with MS67. Among African American people 

who were heterozygotic for the HLA-DRB1*15:01 allele, carriage of an ancestrally 

European allele was associated with a threefold greater risk of MS than was carriage of 

an ancestrally African allele59. However, another admixture mapping study of African 

American people (with a partially overlapping cohort) found no evidence of excess 

European ancestry at the MHC despite a similar study design and comparable statistical 

power14,15. These findings should be interpreted with some caution because the 

admixture peak at the MHC did not pass genome-wide significance in either study. 

Heterogeneity of HLA effects across ancestries would have interesting biological 

implications, but further studies with greater statistical power are required to prove or 

refute this hypothesis.  

[H1] Beyond the MHC 

A common theme emerging from studies of MS genetics in populations of non-

European ancestry is that the risk alleles with large effect sizes identified in European 

populations tend to have broadly similar effects across different ancestral backgrounds: 

this observation has been made in African American9,10,68,69, Hispanic68, Sardinian70, 

Greek71, South Asian11,72 and Japanese73 cohorts. Identifying variants with truly 

heterogeneous effects across ancestries is challenging for two major reasons. First, 

marginal effects of variants are expected to differ across ancestries purely as a result of 

differences in linkage disequilibrium and allele frequency, regardless of whether the 

causal effect differs across ancestries74. Proving that an individual variant’s independent 

effect on risk differs between ancestries therefore requires adeqaute controlling for the 

difference in frequency and linkage disequilibrium. 

 

Second, statistical tests to identify heterogeneity involve comparing estimates of two 

effects, and statistical power is lower when the uncertainty in these estimates is greater. 

Given the relatively small samples in MS GWAS in populations of non-European 

ancestry to date, the power to detect heterogeneity between ancestries is relatively low. 

For this reason, studies that have been done have focused on replication of European 

risk variants — often defined operationally as demonstrating an association with one-

sided P <0.05 — rather than discovery of novel variants. Nevertheless, some intriguing 

signals that require follow-up have been detected to date. 

In one study published in 2019, use of a custom genotyping array called the MS 

Chip (Box 2) to genotype 1,398 Hispanic people with MS, 1,305 African American 



 

 

people with MS and matched control individuals revealed less replication of European 

risk variants in African American people than expected on the basis of power 

calculations — 41 of 200 variants were replicated, whereas 69 (95% CI 57–82) were 

expected68. This study also provided nominal evidence (P <0.05) of effect size 

heterogeneity between all three populations for one variant: rs4545915 in MALT1, which 

encodes a protease involved in B-cell lymphoma/leukaemia 10 (BCL10) signalling. The 

estimates of effect size for this variant were more pronounced in the Hispanic 

population (OR 1.29, 95% CI 1.14–1.47) and the African American population (OR 1.18, 

95% CI 1.04–1.34) than in populations of European ancestry (OR 1.1, 95% CI 1.07–

1.16)68.  The same study also demonstrated nominal heterogeneity of effect size for the 

rs11740512 variant at 5p13.1 between the African American population (OR 1.29, 95% 

CI 1.12–1.49) and populations of European ancestry (OR 1.21, 95% CI 1.16–1.27). This 

variant maps to the prostaglandin E2 receptor, encoded by PTGER4, which is involved 

in vitamin D signalling. Given that vitamin D status differs between ancestral groups, the 

different effect sizes for this variant between ancestries has some appealing biological 

plausibility68.  

Various caveats need to be kept in mind when interpreting these replication 

results. First, the expected number of replicating variants under the null hypothesis of 

homogeneity between populations must be specified. Even if allele frequencies and 

effect sizes of risk variants identified in European populations were identical between 

populations, the power to detect associations in the replicating cohort is limited by 

sample size, especially as all such risk variants outside the MHC have relatively small 

effects (OR <1.3)8. Explicit power calculations help to clarify whether the degree of 

replication is within the expected range for homogeneous effects across ancestries9,68. 

Second, attempts to replicate associations are likely to produce effect sizes and P 

values of smaller magnitude than the original study simply as a result of the so-called 

winner’s curse — the likelihood that discovery-stage GWAS hits are likely to be inflated 

— rather than true population differences. This difficulty is mitigated to some extent by 

the two-step design of the European GWAS and the large sample sizes included, but 

could still create a false impression of heterogeneity if fewer associations are replicated 

than expected. Third, as noted above, replication studies are not statistically powered to 

detect heterogeneity of effect sizes so might not be enable detection of subtle 

differences in effects between populations owing to sample size. Furthermore, the 

biological interpretation of heterogeneity is complicated; although variants with opposite 

effects across ancestries have a clear interpretation, if variants have effects in the same 

direction but different magnitude, the implications for disease biology are less clear. 

Replication studies can also be limited by genotyping array design. The 

genotyping chips used for the successful European MS GWAS — ImmunoChip and 

MSChip — were designed with European linkage disequilibrium structures in mind8,75. 

These chips do not capture the same genetic variation in different ancestries. 



 

 

Replication studies that focus on the lead SNP at a locus identified in a European 

population are, by design, primarily concerned with replication of known signals rather 

than discovery of heterogeneity in associated loci or alleles across populations. These 

efforts will be advanced by the development of new genotyping arrays designed 

specifically for cross-ancestry association testing and fine mapping76, and by decreasing 

sequencing costs, which could make sequencing feasible on a consortium scale. 

 

[H1] Phenotypic and genotypic heterogeneity 

[H2] Extreme phenotypes  

MS is a clinically heterogeneous disease77. To date, GWAS findings have explained 

almost none of this phenotypic variation; notable exceptions are the association of HLA-

DRB1*15:01 with age of onset77,78 and putative associations of relapse rate with 

variation in LRP2 and WNT9B43,79. Possible explanations for the paucity of associations 

include low heritability of clinical phenotypes, imprecision and inaccuracies in phenotype 

recording, and a sizeable influence of many confounders, particularly disease-modifying 

therapy (DMT), which are difficult to measure and adjust for77. Despite this complexity, 

perseverance with genetic studies of MS severity is worthwhile, as insight could help to 

identify targets for drugs that slow or reverse progression, a major unmet clinical need. 

Studying MS genetics in populations with different patterns of MS severity and 

disease course could provide a window into the genetic architecture of these traits. The 

concept of extreme phenotype sampling is well-developed in the study of complex 

quantitative traits. In this approach, rather than performing GWAS with a given 

quantitative trait (such as a disease) as the outcome, a case–control GWAS is 

performed in which the extreme values of the trait (for example people with very benign 

MS versus people with very severe MS) are used as cases and controls80. This 

approach has been used to discover novel loci associated with several complex traits, 

including blood pressure81, anthropometric traits82, time to infection with Pseudomonas 

aeruoginosa in people with cystic fibrosis83, paclitaxel-induced neuropathy84, and facial 

structure85. Use of this approach to study extreme MS phenotypes — for example, 

young-onset MS, or highly inflammatory or progressive disease at onset — could shed 

light on the genetic drivers of susceptibility and the genetic drivers of progression and 

severity, as the findings would be expected to extend beyond the extreme phenotypes 

studied. 

 



 

 

[H2] Ancestral heterogeneity in MS phenotypes  

A substantial body of evidence suggests that MS phenotypes differ between populations 

with different ethnic and ancestral backgrounds. Importantly, these apparent 

discrepancies are likely to partially reflect ascertainment biases and discrepancies in 

healthcare access. Nevertheless, determining whether genetic differences account for 

heterogeneity could provide insight into the determinants of disease course. 

Some evidence suggests that age of MS onset varies according to ancestry. 

Specifically, African American13,86–88 and Hispanic American87,89–91 individuals with MS 

seem to have a younger age of onset and diagnosis than white American individuals. 

However, this difference does not seem to be true for British individuals whose ethnicity 

was recorded in primary care as ‘Black’ (assumed to indicate African ancestry in this 

study)35. A more universal finding is that individuals of African ancestry — approximated 

by Black ethnic background in epidemiological studies — with MS have a more 

aggressive disease course than people of European ancestry, characterized by greater 

disability at diagnosis, more rapid progression through disability milestones, higher 

overall morbidity and mortality, a higher likelihood of progressive (rather than relapsing) 

disease, faster rates of brain and retinal atrophy92,93, more inflammatory activity94, and 

poorer responses to DMTs88,95–98. These findings persist despite adjustment for socio-

economic status, suggesting that healthcare inequalities are unlikely to explain all of this 

phenotypic variability88. Within the USA, data suggest that Hispanic American 

individuals also experience a more aggressive disease course than white American 

individuals87,99. 

Variability in MS severity between ethnicities could plausibly have little genetic 

basis and be mainly due to systematic differences in healthcare access, cultural 

differences in healthcare use, socioeconomic confounders and clinicians’ biases. 

However, epidemiological and genetic data suggest that ancestral genetic variation 

does influence disease severity. For example, correction for measurable confounders 

associated with socioeconomic status suggests at least some residual effect that is not 

attributable to social determinants of health, and clinical observations in populations of 

non-European ancestry living outside the USA support heterogeneity of phenotypes100. 

Furthermore, data from a cohort of ~1,000 Hispanic individuals suggest that higher 

African or Native American ancestry are associated with an earlier age of onset91. 

Larger studies and studies in other populations are required to examine this question 

further. Clarification of the extent to which the genetic architecture of MS is similar 

across ancestries will help to clarify what proportion of variation in phenotypes is 

attributable to non-genetic factors, such as racism and inequality, and could help to 

address these factors. 



 

 

 

[H1] Discovery of novel loci 

[H2] GWAS  

GWAS in populations of non-European ancestry can help to uncover novel risk loci for 

MS. This approach is exemplified by the elucidation of the role of TNFSF13B, which 

encodes B cell activating factor (BAFF), in MS in a Sardinian cohort. Expansion of the 

Sardinian-specific MS GWAS101 and integration of the results with those from extensive 

Sardinian-specific immunophenotyping102 and whole-genome sequencing103 determined 

that variation at the TNFSF13B locus is important in determining MS susceptibility104. 

This GWAS analysis, which involved 2,273 people with MS and 2,148 control 

individuals, identified a genome-wide suggestive association (P <5 x 10-6) of a variant 

near TNFSF13B — rs12874404 — with MS in the Sardinian population. This variant 

was not associated with MS in case–control data sets from the UK and Sweden. This 

apparent lack of replication is explained by differences in linkage disequilibrium and 

allele frequencies between the populations. In the Sardinian population, rs12874404 is 

in linkage disequilibrium (r2 = 0.76) with a common (allele frequency 26%) deletion 

(GCTGT>A; referred to as BAFF-var), which was shown, through conditional analysis, 

to be responsible for the association. In non-Sardinian European populations, the allele 

frequency of BAFF-var is low (2%), so the linkage disequilibrium with rs12874404 is 

substantially weaker (r2 = 0.44); the unique genetic architecture of the Sardinian 

population therefore made this discovery possible despite smaller sample sizes than in 

GWAS conducted in mainland Europe. 

Mechanistic studies have demonstrated a plausible mechanism through which 

this variant could increase MS risk — the variant creates a new polyadenylation signal, 

which results in a shorter transcript that lacks microRNA binding sites and is therefore 

expressed at higher levels. These higher levels of soluble BAFF are likely to increase 

the risk of immune tolerance being broken because they promote B cell proliferation, 

survival and immunoglobulin production104. This association remains one of few 

identified in GWAS for which the likely underlying mechanism has been established. 

This example illustrates how discoveries in one population can have value for all. It also 

emphasizes the critical dependency of genetic studies on statistical power — these 

investigations were successful because Sardinia is an island with a degree of genetic 

isolation from the mainland and an extremely high prevalence of MS.  

Other than this example, efforts to discover novel associations with MS in GWAS 

in populations of non-European ancestry have been less successful. The most likely 

reasons are a lack of statistical power owing to small sample sizes and the use of 

genotyping arrays that have been designed for European populations, making them less 



 

 

useful for novel risk allele discovery in other populations. In one study of an African 

American population in which the ImmunoChip array (Box 2) was used, no novel risk 

variants were identified but the results did demonstrate highly significant concordance 

with the variants identified in GWAS of European populations. These results were 

expected given the statistical power of this study. Seven novel variants (outside of the 

110 loci known at the time) were modestly associated with MS (P <1 x 10-4)9 but a study 

in an independent cohort of 620 African American people with MS and 1,565 control 

individuals produced nominally significant evidence of association for just one of these 

variants (rs2702180 in SMG7, which encodes a protein involved in mRNA 

homeostasis). Even in a combined analysis, the level of evidence for an association 

was modest and well below genome-wide significance.  

[H2] Admixture mapping 

An alternative approach to identifying novel risk loci is admixture mapping105, a relatively 

old technique for mapping loci associated with a disease or trait among individuals with 

a mixture of genetic ancestries. This technique is based on the hypothesis that if a trait 

is more common among one of the parent ancestral groups then variants that are 

associated with that trait will, on average, be inherited in haplotypes derived from the 

ancestrally higher-risk population. The ancestral origin of each region of the genome is 

estimated and the extent to which each locus deviates from the genome-average is 

calculated. Admixture mapping statistics can be calculated on the basis of cases only or 

in a case–control setting. Both approaches involve estimation of local ancestry (the 

ancestral origin of any given haplotype in the genome) and global ancestry (the overall 

proportions of the genome derived from each ancestral group). Case-only analysis 

involves comparison of local ancestry with global ancestry proportions in a genome-

wide scan, with the expectation that disease-associated loci will deviate from the 

average, global ancestry. Case–control analysis involves comparing local ancestry 

across the genome between cases and controls, with the expectation that disease-

associated loci will be derived from the higher risk ancestral group more often in cases 

than controls. 

Early attempts at admixture mapping in an African American cohort with MS 

identified an association of a locus on chromosome one in the region of the 

centromere14,15. However, the strength of the association weakened substantially 

(P = 0.1) in follow-up analysis with a larger number of patients, highlighting the risk of 

type 1 errors in genome-wide scans with relatively small sample sizes15. Another 

genome-wide admixture mapping study identified no novel loci that were significantly 

associated with MS in African American or American people of East Asian ancestry but 

did identify one suggestive locus on chromosome 8 in Hispanic American people59. The 

nearest gene to the identified locus is ZNF596, which encodes a zinc finger with unclear 

relevance to known MS risk pathways. This result has not yet been replicated. 



 

 

An essential prerequisite for admixture mapping is that the disease risk 

attributable to genetic factors differs substantially between the two populations. This 

basic requirement seemed to be supported by data on the epidemiology of MS when 

admixture mapping was first used in this context, but the latest epidemiological 

evidence indicates little difference in the risk of MS between ethnic groups, particularly 

between people of African and European ancestry33–35,106. In the absence of this 

fundamentally important difference, the lack of associations identified is perhaps 

unsurprising. Theoretically, however, this type of mapping could be undertaken in other 

admixed groups whose ancestry is of a population in which the risk of MS does seem to 

be lower, such as South Asian or East Asian populations. 

[H1] Pinpointing causal variants 

Since the migration of humans from Africa and their spread across the world, 

populations have emerged with different sets of haplotypes, alleles and linkage 

disequilibrium structures. Variants that are associated with MS in populations of 

European ancestry at a given locus are likely to be in linkage disequilibrium with the 

causal variant (or variants) at the locus rather than being causal themselves; in fact, the 

causal association for most of the 201 non-MHC risk variants identified in GWAS 

remains poorly understood8,107. Causal variants at a given locus are likely to be shared 

across populations with different ancestries, whereas the variants that are in linkage 

disequilibrium with this causal variant are likely to differ between populations of different 

ancestries108. For this reason, combining results from well-powered GWAS in 

populations with a variety of ancestries would be expected to reduce the size of the 

credible set of variants that could account for a given GWAS signal62,109. Well-powered 

GWAS in populations of African ancestry are likely to be particularly helpful in this 

regard because linkage disequilibrium blocks in these populations tend to be far smaller 

than in other populations62. 

This approach — known as cross-ancestral fine mapping, or trans-ethnic fine 

mapping (Figure 2) — has been successfully applied to the study of several complex 

traits and diseases1,109. Sample size is a crucial determinant of success in fine mapping 

studies; achieving a sufficient sample size from populations in which the prevalence of 

the disease is low is challenging, and this difficulty has limited use of cross-ancestral 

fine mapping in MS to date9,15. 

Cross-ancestral fine-mapping has been attempted for two MS-associated loci 

using data from African American patients with MS who were genotyped with the 

ImmunoChip (Box 2)9. The investigators searched for variants that were in linkage 

disequilibrium with the lead variant identified in European populations at each locus and 

determined whether the lead variant identified at the same locus in the African American 



 

 

population could help to narrow the credible set of causal variants at the locus. At the 

MMEL1 locus (1p36), the linkage disequilibrium block around the lead variant identified 

in the African American population (rs111375644) restricted the size of the locus to a 

single gene — TNFRFS14 — compared with five genes in populations of European 

ancestry9. Subsequent annotation of this locus using cell-type-specific regulatory 

elements revealed that the variant identified in European populations affects expression 

of TNFRFS14 in immune cell types110, a finding that increases confidence in the result 

of the fine mapping. At the PVT1–MIR1208 locus, the lead variant identified in the 

African American population (rs1861842) was in linkage disequilibrium with the lead 

variant identified in the European population (rs759648) only in the European population 

and not in the African American population9. This observation suggests that the 

rs1861842 variant is more likely than the rs759648 variant to tag the causal variant. 

However, the African American population sample was small, so the statistical evidence 

for associations of variants was relatively weak. As a result, the study does not provide 

definitive evidence for successful fine mapping at either locus. 

 

[H1] Downstream insights 

GWAS summary statistics are a starting point for understanding disease biology — a 

range of statistical and bioinformatics tools can be used to translate these findings into 

meaningful disease insights. Examples of such applications include polygenic risk score 

profiling, Mendelian randomization, heritability estimates, including heritability 

partitioning, genetic correlation analysis with linkage disequilibrium score regression, 

functional annotation, and fine mapping. Extending these insights to populations of non-

European ancestry requires GWAS of these populations. 

Polygenic risk scores have several applications, including prediction of future 

disease, risk stratification for prevention or early treatment trials, and to make 

inferences about the causal role of genes in disease, where they can be treated as 

instrumental variables111. The reliability of polygenic risk scores depends on the premise 

that susceptibility alleles have similar effects in the base (GWAS) and target (validation) 

populations. If this premise does not hold true, polygenic risk scores derived from 

GWAS of European populations will perform poorly for populations of non-European 

ancestry17,19,112; this is the case in MS55,68. New methods are being developed to 

improve cross-ancestry performance of polygenic risk scores113,114, but the largest gains 

in performance will come from conducting GWAS in populations of non-European 

ancestry that have greater statistical power than those done to date115. 

Mendelian randomization is an instrumental variable approach in which genetic 

associations with exposures and outcomes of interest are used to determine whether 

observational associations are causal116–119. Two-sample Mendelian randomization 



 

 

involves use of separate GWAS summary statistics for the exposure and the outcome, 

so the population structure must be similar in the two GWAS to ensure that population 

stratification does not bias the result. Mendelian randomization studies in MS in 

European populations have extended and clarified some important epidemiological 

observations. For example, this approach has helped to clarify independent causal roles 

of childhood obesity and low vitamin D levels in MS; more specifically, use of Mendelian 

randomization demonstrated that the increased risk of MS associated with earlier 

puberty is likely to be driven by childhood obesity120. GWAS of MS in non-European 

populations are required to determine whether these findings are generalizable across 

ancestries. This approach has been successful, for instance, in replicating the causal 

influence of type 2 diabetes mellitus and dyslipidaemia on stroke risk in individuals of 

African-ancestry121.  

[H1] Challenges 

Powerful arguments exist for broadening the scope of MS genetics research to non-

European populations, but several challenges need to be overcome to achieve this 

goal. 

The cost of genetic studies is a major challenge. An argument could be made 

that the genetic architecture of MS seems to overlap substantially across populations on 

the basis of existing evidence, so additional costly efforts to perform large GWAS in 

other populations might not yield new insights. However, experience from cross-

ancestral genetic studies of other complex traits and related autoimmune disorders 

suggests that GWAS in non-European populations can lead to important advances in 

fine mapping and allelic heterogeneity if sample sizes are adequate, and that within-

locus heterogeneity can exist between populations even when the genome-wide genetic 

correlation is high28.  

A related challenge is that large sample sizes are needed for GWAS in order to 

detect associations of common variants, most of which are weak (OR <1.3). Identifying 

sufficiently large numbers of patients with disease can be difficult and is complicated by 

differential access to healthcare facilities, phenotypic heterogeneity and a low incidence 

in some populations. We anticipate that the increasing number of international efforts to 

do this work will eventually lead to GWAS in populations of non-European ancestry with 

comparable sample sizes and statistical power to studies in populations of European-

ancestry76.  

A further challenge is the identification of appropriate control participants to avoid 

false discoveries owing to population stratification. This challenge is particularly relevant 

for individuals of African ancestry, who have far more genetic diversity, on average, 

than individuals of European descent. Large-scale biobanks that include genotyping and 

rich phenotyping of increasing numbers of non-European individuals will make such 



 

 

GWAS efforts more tractable. Such biobanks include Genes and Health122, Biobank 

Japan51, and the All Of Us Research Programme123.  

Historically, a methodological issue that has limited progress in cross-ancestral 

genetic studies of complex disease is the relative paucity of tools for cross-ancestry 

analyses. However, several major advances in this field include new approaches for 

inferring an individual’s genetic ancestry, inferring the ancestral origin of specific 

haplotypes, conducting GWAS in admixed populations, deriving cross-ancestry 

polygenic risk scores, calculating cross-ancestry genetic correlations, and performing 

cross-ancestry power calculations124–130. In addition to these advances in statistical 

software, the increasing representation of a broad range of genetic ancestries in 

reference datasets, such as TOPMED131, has been a key driver of recent multi-ancestry 

GWAS efforts.  

Finally, several logistical and ethical issues need to be considered when studying 

genetics in populations of non-European ancestry. Care must be taken to ensure that 

results are interpreted and presented in a way that avoids discrimination. External 

researchers carrying out genetic research in countries with non-European ancestral 

populations must ensure that this is developed with local researchers, and delivers 

lasting infrastructure. In addition, historical, racially-motivated human rights abuses 

have led to understandable skepticism about the motives underlying genetic studies 

among people of non-European ancestry132. One of the most striking examples of such 

abuses is the Tuskegee Syphilis Study, a natural history study of syphilis among a 

cohort of largely African American men that ran from 1932 until 1972. Despite treatment 

becoming available in 1947, these men were denied access to the drug (penicillin) — as 

a consequence, participants were consigned to entirely preventable deterioration and 

many died unnecessarily133. Addressing such concerns is a crucial part of designing 

cross-ancestral genetic studies. 

Early and sustained involvement of researchers and participants from the study 

population is essential to build trust in the medical establishment and to ensure that 

researchers can carry out this scientifically-important work while respecting the ethical 

issues involved. The challenges and current best practices in this field have been 

reviewed in detail elsewhere2. In the ongoing ADAMS study 

(https://app.mantal.co.uk/adams) of MS genetics among British individuals of non-

European ancestry, we have been working with a group of individuals from diverse 

ethnic backgrounds who have MS to ensure that the study methods, goals and 

communications are inclusive and respectful. We believe that inclusion of diverse 

patient and researcher perspectives at all stages in the research process is a key part of 

developing equitable research studies that promote the benefits for all. 

 

[H1] Conclusions 



 

 

In this Perspective article, we have discussed the various ways in which studying the 

genetics of MS in populations of non-European ancestry is likely to deepen our 

understanding of the genetic basis of this complex disease. Despite the logistical and 

theoretical barriers, there is a strong scientific imperative — in addition to the purely 

ethical need — to doing this work. We anticipate that consortium-scale efforts to tackle 

this question, if logistically feasible, will ultimately benefit people with MS from all 

ancestral backgrounds.  
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Figure 1 | Global variation in frequency of the HLA-DRB1*15:01 allele. The HLA-DRB1*15:01 allele has the largest 
effect on MS risk in European populations. Note that numbers are allele frequency, not carrier frequency; for an allele 
frequency of n the carrier frequency is 2n. For example, in the UK, the reported allele frequency is 0.15 and the 
carrier frequency is 0.30, meaning that 30% of individuals carry at least one copy of the DRB1*15:01 allele. Overall, 

there is a latitudinal gradient of DRB1*15:01 frequency – the allele is rare in Africa and South Asia and relatively 
common in North American, Scandinavia and Central Europe. Data from http://www.allelefrequencies.net/, accessed 
11th July 2022. Data included are from studies that involved ≥500 individuals and for which the evidence was classed 
as gold-standard. Note that these data are not specifically from individuals with MS.  

 

Figure 2 | Illustration of cross-ancestral fine mapping. Cross-ancestral fine-mapping (also called trans-

ethnic fine-mapping) is a statistical method for identifying the probable specific causal variant (or variants) 

within a locus associated with disease in a genome-wide association study (GWAS). This approach 

involves triangulation of associations between variants (single-nucleotide polymorphisms) and disease 

across ancestries. Even in situations where the same causal variant explains the association of the locus 

with disease in all populations, the variant with the strongest association (the lead variant) is likely to differ 

between ancestries owing to differences in linkage disequilibrium and allele frequencies. a | The graphs 

depict the strength of association with disease for variants at different genomic positions within a single 

locus associated with disease in a GWAS in populations of African ancestry (top) and European ancestry 

(bottom). The correlation between each variant and the lead variant is indicated by the colours. The lead 

variant (red triangles) differ between the populations. b | This graph depicts the probability that each 

variant is the causal variant, calculated from cross-ancestry fine-mapping based on the GWAS data 

above. Combining the data from the two populations narrows the window within which the causal variant 

is expected to lie (the width of the peak).  
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Box 1 | Insights from cross-ancestral genetic studies of complex diseases 

 

[b1] Identification of causal variants 

Most variants that are identified as being associated with a disease in GWAS are not causal. 

Instead, the true disease-causing variant is likely to be in linkage disequilibrium with the 

identified GWAS variant. The process of determining which variant is the causal variant on the 

basis of GWAS signals is called fine mapping. Linkage disequilibrium between variants differs 

across ancestries, so combining associations identified in GWAS from different ancestral 

populations can help to narrow the list of variants that could plausibly be causal134. For example, 

cross-ancestral fine mapping on the basis of findings from cross-ancestral GWAS of blood lipids 

reduced the 99% credible set — the variants among which the true causal variant lies with 99% 

confidence — from a median of 13 variants to 8 variants24. 

 

[b1] Improved disease prediction 

GWAS results enable calculation of an individual’s risk score for a given disease by summing 

their burden of risk alleles. This approach is known as polygenic risk scoring. Owing to 

differences in linkage disequilibrium and allele frequency between ancestries, the marginal 

effects of genetic variants on disease risk are likely to differ between ancestries even if the 

effects of the truly causal variants are identical. These differences reduce the performance of 

polygenic risk scores across ancestries — greater ancestral distance leads to poorer predictive 

performance112. Use of ancestry-specific marginal effects is expected to improve the 

performance of polygenic risk scores among populations of non-European ancestry74. 

 

[b1] Improved causal inference 

Mendelian randomization is an instrumental variable approach that can be used to estimate the 

extent to which risk factors for a disease are causal. The approach involves use of genetic 

variants as a proxy for the expected lifetime average exposure to a given risk factor. For 

instance, if the effects of single nucleotide polymorphism j on vitamin D levels and MS risk are 

known from GWAS, the ratio of these two effects gives an estimate of the extent to which low 

vitamin D levels lead to an increased risk of MS. Where multiple SNPs are associated with a 

given exposure, these estimates can be combined to provide a causal estimate. Estimated 

effects of a given SNP on the exposure and the outcome in one ancestral group are unlikely to 

be accurate for another ancestral group. Well-powered GWAS from populations of non-

European ancestry are required for accurate ancestry-specific Mendelian randomization, which 

will be helpful to clarify the effects of environmental risk factors across ancestries. This 

approach has been used to replicate the effects of type 2 diabetes mellitus and dyslipidaemia 

on ischaemic stroke risk in individuals of African ancestry121. 

 

[b1] Identification of novel variants 

Owing to differences in allele frequencies between populations of different ancestry, the 

statistical power to detect an effect of a variant on disease risk for a given sample size depends 

on the genetic ancestry of the population. GWAS in populations of non-European ancestry could 

identify novel risk alleles, either within known risk loci or in novel loci. For example, a cross-



 

 

ancestral GWAS of blood cell traits identified a missense variant in IL7, which encodes IL-7, that 

was associated with low lymphocyte count in South Asian individuals3. This variant is more 

common in South Asian populations that in populations of other ancestry (minor allele frequency 

2.6% compared with <0.4%). In vitro studies have shown that this IL7 variant increases IL-7 

protein production without affecting IL-7 mRNA levels, indicating an effect on residues involved 

in intracellular trafficking23. Furthermore, GWAS of lipid traits in multiple ancestries (n ≈99,000) 

identified 15 novel loci associated with changes in blood lipids in African American individuals – 

these loci were not associated with blood lipids in individuals of European ancestry, highlighting 

the power of multi-ancestry cohorts for discovering novel loci when large sample sizes are 

available24.  

 

Box 2 | Genotyping array design 

 

Genotyping array is a high-throughput method for determining an individual’s genotype at a 

large number of genetic loci. Each array consists of beads or wells coated with allele-specific 

oligonucleotides. DNA fragments from the sample bind to complementary oligonucleotides. The 

double-stranded fragment is hybridized with an allele-specific, fluorescently-labelled base. The 

fluorescence signal for each allele gives a readout of the genotype distribution in the sample. 

Contemporary arrays allow multiplexing of many samples across hundreds of thousands to 

millions of single nucleotide polymorphisms (SNPs).  

MS Chip is a custom genotyping array designed by the International MS Genetics 

Consortium (IMSGC). This chip was designed specifically to fine map known MS-associated loci 

and to aid discovery and/or replication of novel loci. Other custom content was added to 

facilitate estimation of global ancestry, to provide coverage of other autoimmune disease-

associated loci, and to provide denser coverage of the major histocompatibility complex locus. 

Approximately 90,000 custom markers were added to the Illumina Exome Core chip; full details 

are available in the supplementary materials of the 2019 IMSGC meta-analysis135. The MS Chip 

assays ~330,000 markers.  

Another example of a custom genotyping array is ImmunoChip, which was designed by 

the Wellcome Trust Case–Control Consortium to provide dense coverage of loci that are 

implicated in autoimmune disease. This array assays ~200,000 markers75. 

the MS Chip and the ImmunoChip were designed to maximize coverage of genetic 

markers in populations of European ancestry. Owing to differences in linkage disequilibrium and 

allele frequency between ancestries, these arrays are imperfect tools for understanding genetic 

variation in populations of non-European ancestry. Newer arrays, such as the Illumina Global 

Screening Array and Global Diversity Array, have been designed to provide better coverage and 

higher imputation accuracy for populations of non-European ancestry. 

 

 

 

 

 

 



 

 

 

 

 

Glossary 

 

Haplotype – a group of alleles which tend to be inherited together on the same chromosome. 

Haplotypes usually span over a short physical distance in the genome.  

Long-range haplotypes – haplotypes in which the LD between alleles stretches over long 

distances in the genome, indicative of limited ancestral recombination events. 

Linkage disequilibrium – the co-occurrence of two alleles on the same chromosome relative to 

the chance that the two alleles would co-occur if they were inherited independently. Usually 

expressed as the squared correlation coefficient (r2) or D’. R2 ranges from 0 to 1, with 0 

indicating complete independence of the two alleles, and 1 indicating that every chromosome 

with allele A also possesses allele B. 

Genetic bottlenecks – historical events which reduce the diversity of haplotypes/alleles within 

a population. Examples include migration events, whereby a small subset of one population 

migrates to a new location, and extinction events, in which a subset of the population dies.  

Admixture – the mixing of haplotypes from more than one ancestral group due to mating 

between parents with different ancestral origins.  

Admixture mapping – a statistical approach to finding disease-associated genetic loci in 

admixed populations. Admixture mapping is most useful in situations where the disease is more 

common in one of the ancestral parental populations that the other. This approach is based on 

the assumption that in admixed individuals, regions of the genome associated with the disease 

are more likely to be inherited on the higher-risk ancestral haplotype. Genome-wide scans can 

be used to identify such regions in case-only or case-control designs. 

Local ancestry – the ancestral origin of a particular genetic variant or haplotype.  

Global ancestry – the genome-wide average proportions of an individual’s alleles which are 

inherited from each ancestral population.  

GWAS – genome-wide association studies (GWAS) of diseases compare the allele frequencies 

of many genetic variants across the genome between cases and controls to determine the 

genetic determinants of disease risk.  

Marginal effect – in GWAS, the estimate of the association between the number of copies of a 

particular allele and the outcome trait/disease. Due to LD between genetic variants, the 

marginal effect of a particular allele in GWAS incorporates the effects of many other alleles 

which are correlated with the tested allele. 

Causal effect – in GWAS, the causal effect (or ‘independent’ effect) of a particular allele refers 

to the effect of that allele on the outcome if all other alleles are adjusted for.  

Conditional analysis – an approach for determining statistically-independent genetic 

associations with a trait/disease. This is usually implemented in a stepwise regression 

framework: if SNP x is found to be the most strongly associated SNP with the trait at a given 

locus, association tests for all other variants at the locus will be re-run adjusting for SNP x. This 

procedure is often repeated until no further statistically significant results remain.  

Winner’s curse – the phenomenon of GWAS discoveries regressing to the null (i.e. the initially-

observed effect appearing less pronounced) when larger or external studies are performed. This 



 

 

arises because estimates of SNP effects from GWAS follow a sampling distribution. The effect 

sizes of variants that surpass an arbitrary statistical significance threshold – traditionally 

P<5x10-8 – are likely to be at the upper end of the sampling distribution for those variants, i.e. 

they are likely to be overestimates of the true effect. When larger sample sizes become 

available, on average the estimates for these SNP effects will therefore decrease.  

Two-step design (of GWAS) – to mitigate the risk of Winner’s curse, GWAS are often 

conducted within an initial cohort, often termed the ‘discovery’ population, and then variants with 

strong statistical support from the discovery stage are taken forward for replication analysis in a 

separate cohort. Examination of a limited number of genetic variants in the replication stage, 

and the strong prior probability for those variants being associated with the disease, permit the 

rational use of a more lax P value threshold for statistical hypothesis testing in the replication 

phase. 

Cross-ancestry fine mapping – a statistical approach which uses genetic association statistics 

from different ancestries to identify the likely causal SNP/s which account for the association of 

a locus with the disease/trait. 

Heritability partitioning – a statistical approach which aims to identify the relative contribution 

of different types of genetic variation – broadly-defined – to the overall heritability of a 

trait/disease. For instance, this approach can be used to distinguish the contribution of genetic 

variants in a particular region (such as the MHC).  

LD score regression – a statistical approach for estimating the heritability of a trait, the shared 

genetic architecture of >1 trait, or diagnosing population stratification as a cause of inflated P 

values in GWAS. LDSC considers the relationship between LD scores – a measure of how 

much genetic variation is tagged by an individual SNP – and the marginal effect of the variant 

from GWAS. In general, variants which have higher LD scores should have larger marginal 

effects on the trait as they are correlated with a greater number of variants. The slope of this 

regression reflects the heritability of the trait. The intercept of this regression reflects the degree 

of population stratification.  

Mendelian randomisation – a statistical approach for inferring the causal impact of a risk factor 

on an outcome which uses genetic variants to approximate the average exposure to the 

exposure. This is a form of instrumental variable analysis – genetic variants associated with the 

risk factor are used as proxies (or instrumental variables) for the risk factor in question.  

Population stratification – case-control GWAS attempts to detect allele frequency differences 

between cases and controls to identify the genetic determinants of disease risk. Population 

stratification refers to influences on the allele frequencies in the groups studies not due to 

case/control status. If not accounted for, population stratification can disguise true genetic 

associations and create false genetic associations by distorting the allele frequencies in the 

study groups. Differences in the genetic ancestry of the case and control populations is an 

important potential source of population stratification in GWAS. 

 

 

 


