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ABSTRACT 

Background  

Vitamin D deficiency in patients with chronic kidney disease, measured by reduced 

serum concentrations of 25 hydroxy vitamin D, is highly prevalent and associated with 

both endothelial dysfunction and an increased risk of cardiovascular disease.    

Observational studies in chronic kidney disease have demonstrated that vitamin D 

therapy reduces the risk of cardiovascular disease.  In patients with chronic kidney 

disease and concomitant vitamin D deficiency, the effect of vitamin D therapy on 

endothelial function, which is associated with cardiovascular disease, is poorly 

understood.  The mechanism by which vitamin D affects endothelial function is unclear. 

Methods 

Presented in this thesis, two studies have addressed these issues:   

1. A double blind, randomized controlled trial evaluating the effect of ergocalciferol 

compared to placebo on microcirculatory endothelial function in patients with non-

dialysis chronic kidney disease and concomitant vitamin D deficiency 

2. In vitro and in vivo experiments to determine the mechanistic effect of ergocalciferol 

on endothelial function in an experimental model of uraemia. 

Results 

In the clinical study, ergocalciferol increased vitamin D serum concentrations and 

improved microcirculatory endothelial function measured by laser Doppler flowmetry 

after iontophoresis of acetylcholine.  Oxidative stress measured by skin 
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autofluorescence for advanced glycation end products did not change in the 

ergocalciferol group but increased significantly in the placebo group. 

Ergocalciferol increased endothelial nitric oxide synthase expression and activity in 

cultured human endothelial cells and improved endothelial function in an in vivo model 

of mild uraemia.  

The findings from the in vivo and clinical studies occurred independently of changes in 

blood pressure, conduit artery function, serum calcium, phosphate and parathyroid 

hormone supporting in vitro findings that ergocalciferol acts directly on the endothelium.   

Conclusion 

Ergocalciferol improved endothelial function in both rodent and human subjects with 

chronic kidney disease.  Experimental evidence suggests this effect occurs through an 

endothelium dependent mechanism involving changes in the upregulation and function 

of endothelial nitric oxide synthase.   
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1 Introduction 

1.1 Vitamin D 

1.1.1 Historical aspects of vitamin D 

The history of the use of vitamin D in medical practice extends back as far as the early 

19th century when sun exposure was recognised as an important preventative and 

potentially curative treatment for rickets1.  Almost 100 years later, the use of radiation 

from a mercury arc lamp for one hour three times a week was shown to increase long 

bone mineralisation in children with rickets based on radiographic evidence2.  These 

findings could not be replicated in children not exposed to mercury arc lamp radiation, 

leading to the conclusion that ultraviolet (UV) radiation was essential for the treatment 

of rickets.  In 1918, rickets in puppies was treated with the use of cod liver oil and in 

1922, the potential factor leading to the amelioration of rickets was termed vitamin D3-4.  

This prompted the exposure of certain food stuffs, notably yeast, to UV light which was 

subsequently demonstrated to have anti-rachitic properties.   

 

When the structure of vitamin D was identified and its synthesis from yeast achieved, it 

was eventually added to milk at a standard dose of 400 international units (IU) per 

quarter gallon.  This represents the first known fortification of food with vitamin D1.  

However, differences in the vitamin D extracted from yeast and that contained in cod 

liver oil became apparent when chickens with rickets were treated with both vitamin D 

obtained from yeast  and cod liver oil.  Yeast extracted vitamin D exerted no anti-

rachitic properties whereas cod liver oil was associated with an improvement in rickets.  

Given these two types of vitamin D were synthesized differently and had potentially 

differing biological effects, they were named vitamin D2 (synthesized artificially from 

yeast) and vitamin D3 (synthesized intrinsically from skin).  Since this original 
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delineation of vitamin D compounds, the understanding of the synthesis, actions and 

pharmaceutical compounds of vitamin D has expanded significantly. 

1.1.2 Vitamin D compounds and metabolism 

Vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) are referred to as nutritional 

forms of vitamin D.  Originally, ergocalciferol and cholecalciferol were considered 

biologically equivalent, however there is now evidence that cholecalciferol is more 

potent than ergocalciferol5.  Both compounds are equally efficaciously absorbed and 

equally converted to 25 hydroxy vitamin D (25 (OH) D) in the liver.  However, 

ergocalciferol upregulates a range of enzymes which causes the degradation of both 

ingested ergocalciferol and intrinsic cholecalciferol6.  Despite this, ergocalciferol can be 

safely used to replete circulating stores of vitamin D7.   

 

Vitamin D is generated in humans by the conversion of 7-dehydrocholesterol to 

previtamin D3 in the epidermis which is then rapidly metabolised to vitamin D3.  This 

conversion occurs after exposure of the skin to ultra-violet B (UVB) light between a 

wavelength of 290-315 nm.  To generate a sufficient store of vitamin D such that it can 

usefully released during winter months when sunlight exposure is ineffective at 

converting 7-dehydrocholesterol to previtamin D3, exposure of bare arms and  legs to 

the correct incident angle of sunlight between the hours of 10am and 3pm twice a week 

is sufficient depending on season, skin tone and latitude1. 

 

Between the months of October to April, the incident angle of sunlight on the skin is 

inadequate to generate the formation of previtamin D3 in 90% of the UK, most of 

Western Europe and 50% of North America8.  UVB from sunlight also results in the 

degradation of any excessive cholecalciferol, thus preventing vitamin D toxicity9. 
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Approximately 50% of vitamin D production is due to conversion of the vitamin D3 

precursor to cholecalciferol with the additional component coming from dietary sources 

including oily fish and mushrooms10.   

 

Vitamin D is transported through the circulation to the liver in chylomicrons where it 

undergoes 25 hydroxylation in the liver to 25 (OH) D, a process primarily mediated by 

the mitochondrial P450 enzyme in hepatic tissue (CYP27A1) but which can also be 

mediated through other enzymatic pathways including the microsomal cytochrome 

P450 enzymes CYP2R1, CYP3A4 and CYP2J311.  In the systemic circulation, 

approximately 85-90% of 25 (OH) D is bound to vitamin D binding protein (VDBP), with 

10-15% bound to albumin and <1% available in the free form12-13.  The 25 (OH) D and 

VDBP complex is filtered at the glomerulus and reabsorbed by the proximal tubule, a 

process which is mediated by the endocytic receptors megalin and cubulin14.  25 (OH) 

D is released into the mitochondria after degradation by proximal tubular lysosomes 

where it undergoes the final hydroxylation step, mediated by kidney 1-OHase activity 

(CYP27B1), to 1,25 (OH)2 D3  before returning to the systemic circulation15. 

 

The conversion of 25 (OH) D to 1,25 (OH)2 D3 is increased in the presence of 

hypocalcaemia, hypophosphataemia and elevated serum concentrations of parathyroid 

hormone (PTH) and decreased by elevated serum concentrations of fibroblast growth 

factor 23 (FGF-23), 1,25 (OH)2 D3 and serum phosphate16.  1,25 (OH)2 D3 reduces the 

activity of CYP27B110 and also induces the expression of 25-hydroxyvitamin D-24-

hydroxylase (CYP24A1) which metabolises both 25 (OH) D and 1,25 (OH)2 D3 to the 

inactive calcitrioic acid17.  Thus, 1,25 (OH)2 D3 acts to prevent significant vitamin D 

toxicity through a negative feedback mechanism.  Table 1 describes the major vitamin 

D compounds, analogues and their respective function and clinical utility. 
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Table 1 Summary of the most common vitamin D compounds, nomenclature, 
chemistry and clinical applications. 

Generic name 
Chemical 

name 

Molecular 

formula 

Type of vitamin 

D compound 
Clinical use 

Previtamin D 7-Dehydro 

cholesterol 
C27H44O 

Vitamin D3 

precursor 

Vitamin D3 

precursor 

Vitamin D2 Ergocalciferol C28H44O2 
Nutritional 

vitamin D 

Vitamin D 

supplement 

Vitamin D3 Cholecalciferol C27H44O 
Nutritional 

vitamin D 

Vitamin D 

supplement 

25-hydroxy 

vitamin D (25 

(OH) D) 

Calcidiol C27H44O2 
25 hydroxylated 

vitamin D 

Major metabolite 

of vitamin D 

1,25 hydroxy  

vitamin D (1,25 

(OH)2 D3) 

Calcitriol C27H44O3 
Active vitamin D 

metabolite 

Major active 

vitamin D 

metabolite 

24,25 hydroxy 

vitamin D Calcitroic acid C23H34O4 

Inactivated 

vitamin D 

metabolite 

Inactivated 

vitamin D 

metabolite 

1-alpha 

calcidol 

1-hydroxy 

cholecalciferol 
C27H44O2 

Synthetic 

vitamin  D3 

analogue 

PTH 

suppression,  

increase  

calcium in CKD  

Paricalcitol 

19-nor-1,25-

(OH)2-vitamin 

D2 

C27H44O3 

Synthetic 1,25-

dihydroxy 

ergocalciferol 

analogue 

PTH 

suppression, 

increase 

calcium in CKD 

Doxercalciferol 1-Hydroxy 

vitamin D2 
C28H44O2 

Synthetic 

vitamin D2 

analogue 

PTH 

suppression, 

increase  

calcium in CKD 

 



26 
 

1,25 (OH)2 D3 has a range of biological effects which are predominantly involved with 

the regulation of calcium and phosphate (Figure 1).  Specifically, 1,25 (OH)2 D3 

increases the absorption of calcium and phosphate from the intestine, a process which 

is mediated through the interaction of 1,25 (OH)2 D3 and the vitamin D receptor (VDR) 

in the intestinal lumen which increases the expression of the intestinal epithelial calcium 

channel transient receptor potential vanilloid type 6 (TRPV6)9 18.  1,25 (OH)2 D3 acts on 

renal tubules to promote the reabsorbtion of calcium and phosphate as well as 

mobilising calcium stores from bone through the stimulation of pre-osteoclasts to 

differentiate into mature osteoclasts.  This process is mediated through the binding of 

1,25 (OH)2 D3 to its receptor on osteoblasts causing an increase in the expression of 

the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)9.  Preosteoclasts 

which express receptor activator of NF-κB (RANK) bind to RANKL and mature into 

differentiated osteoclasts which causes calcium and phosphate release from bones into 

the systemic circulation9.  Parathyroid hormone (PTH) stimulates the kidneys to 

reabsorb calcium and increases renal production of 1,25 (OH)2 D3 as well as stimulating 

calcium reabsorption from bone through the RANK/RANKL pathway.  These 

mechanisms are the primary regulators of serum calcium and phosphate.  Significant 

abnormalities of vitamin D synthesis, actions and regulatory pathways occur in CKD 

and are discussed in section 1.2.4. 
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Figure 1 Metabolism and calcaemic effects of vitamin D.  Vitamin D is generated by 
UVB exposure or through dietary intake.  25-hydroxylation of circulating vitamin D 
occurs in the liver before conversion to 1,25 (OH)2 D3 occurs in the kidney or peripheral 
tissues.  Circulating concentrations of calcium and phosphate are increased through 
reabsorbtion from bone and intestine.  1,25 (OH)2 D3 inhibits the effect of CYP27B1 and 
PTH (red arrows) .  Adapted from Holick 20061 

UVB – ultraviolet B radiation, PTH – parathyroid hormone, OB – osteoblast, OC – 
osteoclasts – RANK - receptor activator of NF-κB, RANKL - receptor activator of 
nuclear factor-κB (NF-κB) ligand 
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25 (OH) D is the most abundant from of vitamin D in the body (1000x greater 

concentration than 1,25 (OH)2 D3)
11 and is used as the routine biochemical assay target 

for vitamin D status in clinical practice.  This is due to its long half-life (2-3 weeks 

compared to 3-4 hours for 1,25 (OH)2 D3), its more reproducible assay8 10 19, better 

correlation with markers of bone metabolism than serum 1,25 (OH)2 D3 concentrations11 

and since serum 25 (OH) D concentrations reflect vitamin D intake from both food and  

sunlight10.  Given that 25 (OH) D is the substrate for extra renal CYB27B111, this adds 

strength to the argument that serum 25 (OH) D concentrations should be carefully 

monitored and maintained. 

1.1.3 Pleotropic actions of vitamin D 

The effect of 1,25 (OH)2 D3 is exerted through the activation of the vitamin D receptor 

(VDR) which is universally expressed in almost all tissues in humans20-21 and is 

reported to control the activation of approximately 200 genes14.  In humans, the VDR is 

coded for on chromosome 12 and is formed from 427 amino acids22.  1,25 (OH)2 D3 is 

transported to the target cell bound to VDBP, crosses the cell membrane and binds to 

the VDR inside the nucleus11.  Target cells expressing extra renal CYP27B1 can uptake 

VDBP bound 25 (OH) D and internally convert it to 1,25 (OH)2 D3 via intracellular 

CYP27B1.  The VDR binds 1,25 (OH)2 D3 with 100 times more affinity than 25 (OH) D 

which indicates the importance of local intracellular 1,25 (OH)2 D3 in the process of 

gene transcription23.   

 

The final step in VDR activation involves the binding of ligand activated VDR to the 

retinoic acid X receptor (RXR)9 22.  The ligand bound and activated VDR only binds to 

nuclear elements of vitamin D responsive genes via a specific vitamin D response 

element (VDRE) which is located upstream of vitamin D response genes.  The 
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activated VDR is then involved with the recruitment of positive or negative transcription 

factors which activate or inactivate gene transcription11 22. 

 

Through these mechanisms and due to the presence of extra renal CYP27B1, vitamin 

D has a number of pleotropic effects including activity in macrophage cells, pancreatic, 

breast, and prostatic tissue9 24 (Figure 2).  Macrophages, when stimulated by 

Mycobacterium tuberculosis (MTB), upregulate the VDR and CYP27B1.  If there is 

sufficient substrate (25 (OH) D) for extra renal CYP27B1 available, intracellular 1,25 

(OH)2 D3 upregulates production of cathelicidin, a peptide that can destroy MTB.  The 

overall effect of 1,25 (OH)2 D3 on the immune system involves increased microbicidal 

capacity as well as reducing the risk of auto-immune diseases18.  Evidence for this 

latter phenomenon is provided by epidemiological studies that link auto-immune 

conditions such as multiple sclerosis25-26 and type 1 diabetes mellitus (DM)27 to lower 

concentrations of vitamin D.     

 

There is increasing epidemiological evidence that the incidence of some malignancies, 

including breast, colon and prostate, is reduced when exposure to sunlight is 

increased18 23.  1,25 (OH)2 D3 is thought to mediate anti-cancer effects through the 

regulation of multiple genes which control cell proliferation (p21 and p27) and the 

inhibition of genes that increase angiogenesis and promote apoptosis9 18.   However, 

there remains uncertainty about the effect of vitamin D on the reduction of cancer 

incidence which requires further investigation18.   
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Figure 2 Pleotropic effects of vitamin D.  25 (OH) D is converted to 1,25 (OH)2 D3  in 
pancreatic, endothelial, kidney and B and T lymphocytic cells.  1,25 (OH) D has a direct 
effect on breast, colon, prostate and macrophage cells.  Adapted from Holick 20061 
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Vitamin D mediates at least part of its effects on the renin-angiotensin-aldosterone 

system (RAAS) with circulating serum concentrations of both 25 (OH) D and 1,25 (OH)2  

D3 having been shown to negatively correlate with serum concentrations of renin28.  In a 

rat model of experimental uraemia induced by 5/6th nephrectomy in which animals were 

treated with paricalcitol or control, there was a reduction in renin and vascular 

endothelial growth factor (VEGF) mRNA, as well as reduced serum concentrations of 

renin and angiotensin in the remaining renal mass29.  These findings occurred 

independently of changes in calcium and phosphate and were additionally associated 

with reductions in proteinuria, hypertension and progression of renal disease.  

Therefore, VDD is associated with abnormalities in the RAAS system which, in rat 

models of experimental uraemia, can be partly overcome by therapeutic intervention 

with activated vitamin D compounds29.   

 

The findings from pre-clinical studies that vitamin D can reduce proteinuria and 

modulate the RAAS system has been evaluated in clinical studies.  Agarwal et al.30 

examined data from 220 patients with CKD stage 3-4 and secondary 

hyperparathyroidism enrolled into 3 clinical trials across 46 sites in the USA and 

Poland.  Patients were randomized to either paricalcitol (mean dose 9.5 µg per week) 

or placebo.  Proteinuria was reduced in the active treatment group compared to 

placebo (p=0.04) independently of DM, pharmacological suppression of the RAAS 

system, age, sex, ethnicity or degree of hypertension.  However, this study used a semi 

quantitative measure of proteinuria in the form of a urine dipstick rather than a more 

precise laboratory measure of proteinuria as well as including patients enrolled into 3 

separate clinical trials and so the results must be interpreted with caution.   
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Paricalcitol has been studied as an intervention for left ventricular hypertrophy (LVH) in 

patients with CKD.  In two randomized controlled trials by Thadani et al.31 and Wang et 

al.32 comparing paricalcitol to placebo in patients with stage 3-5 CKD, LVH was 

assessed by cardiac magnetic resonance imaging (cMRI) after 48-52 weeks of therapy.  

Both studies were relatively small (n=227 in the Thadani et al.31 study, n=60 in the 

Wang et al.32 study) but after nearly 1 year of follow up in each study, neither study 

demonstrated a significant difference in left ventricular mass (LVM) or size but in both 

studies, PTH was reduced in the paricalcitol group.  However, in the study by Thadani 

et al.31, left atrial size, which is associated with improved long term survival in patients 

treated with haemodialysis33, reduced in the paricalcitol treated group and therefore 

longer term follow up in this study may have demonstrated a reduction in mortality.   

 

1.1.4 Vitamin D deficiency and the effect of vitamin D supplementation on all 

cause survival 

Vitamin D deficiency may occur as a result of inadequate nutrition, intestinal 

malabsorption, or lack of exposure to sunlight.  The highest risk groups for VDD include 

ethnic minority groups with darker coloration of the skin, the elderly, especially those in 

institutions including long term care facilities, individuals with limited sunlight exposure, 

obese individuals and individuals taking drugs which adversely affect the metabolism of 

vitamin D8 34.   

 

Worldwide, VDD is now considered a new medical syndrome.  However, there is no 

consensus opinion on the optimum serum 25 (OH) D concentration9 making an 

understanding of the epidemiology of VDD challenging.  Several authors have 

proposed that VDD exists when serum 25 (OH) D concentrations are < 50 nmol/L and 
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recommended targets for serum concentration of 25 (OH) D vary between 50-75 

nmol/L35-38.  These conclusions are largely drawn from optimisation of calcium transport 

and suppression of PTH, data which cannot be readily applied to reduction in cancer 

risk or cardiovascular (CV) mortality in kidney disease.   

 

A recent Cochrane review of 50 trials including 94,148 participants34 examining the 

effect of vitamin D therapy for prevention of mortality in adults identified that only 

cholecalciferol reduced all-cause mortality (relative risk (RR) 0.97, 95% CI 0.94 - 1.00) 

while ergocalciferol, alfacalcidol and calcitriol had no mortality benefit and that these 

compounds increased the risk of hypercalcaemia.  The finding that cholecalciferol but 

not ergocalciferol reduces all cause mortality has also been reported by Chowdhury et 

al.39 in a large meta-analysis of the effect of vitamin D on all-cause mortality in 880,128 

adults (RR cholecalciferol 0.89, 95% CI 0.80 to 0.99, RR ergocalciferol 1.04, 95% CI 

0.97 to 1.11).  In a meta-analysis by Autier et al.40, the effect of vitamin D 

supplementation on all-cause mortality in 18 studies including 57,311 patients either 

supplemented or not with a heterogeneity of vitamin D compounds demonstrated a 

slight reduction in all-cause mortality in patients supplemented with vitamin D (RR for 

death in supplemented patients 0.93, 95% CI 0.87 - 0.99).  In contrast to this, an 

umbrella review of meta-analyses, systematic reviews and randomized controlled trials 

of serum concentrations of 25 (OH) D and any outcome concluded that there is little 

convincing evidence for the overall beneficial effect of vitamin D therapy41.  The effect 

of VDD on morbidity and mortality in patients with CKD is specifically discussed in 

section1.2.6.  

 

The existing evidence for the association between serum concentrations of 25 (OH) D 

may need to be reconsidered in light of a new paradigm for the measurement of serum 
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vitamin D concentrations suggested by Powe et al.13.  This study demonstrated that in 

Black compared to White community dwelling adults in the USA, two common single 

nucleotide polymorphisms of the VDBP involving the rs7041 and rs4588 

polymorphisms may explain lower serum concentrations of total 25 (OH) D in Black 

compared to White patients.  This study demonstrated lower levels of VDBP and lower 

serum 25 (OH) D concentrations in Blacks but that there were equivalent serum 

concentrations of bioavailable 25 (OH) D in both Blacks and Whites while Black 

patients tended to have higher bone mineral density and a lower risk of fractures.  

Thus, standard measurement of serum 25 (OH) D concentrations may not accurately 

represent vitamin D status and may lead to the over classification of VDD in Black 

populations.   

  

1.1.5 The effect of ethnicity on vitamin D metabolism and replacement 

The effect of ethnicity on serum 25 (OH) D concentrations and therefore the differential 

survival of ethnic minority groups is particularly important since ethnic minority groups 

are likely to be at a higher risk of VDD due to darker skin tone, a diet which may 

predispose to VDD, biological and sociological aspects of vitamin D metabolism9 42-43.  

Ethnic variations in the structure of the VDR have been described44, however, the 

functional consequences of VDR mutations in ethnic groups and specifically how 

environmental factors interact with VDR polymorphisms has yet to be fully 

ascertained45.   

 

Tareen et al.46 compared the prevalence of VDD in CKD and non-CKD patients 

comparing ethnicity in both groups.  This study used observational data from the 

National Health and Nutrition Examination Survey (NHANES) study47 and excluded 
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patients taking high dose ergocalciferol but included those taking “routine” vitamin D 

supplements containing lower doses of ergocalciferol (although the details of these 

supplements are not specified).  In both CKD and non-CKD patients not taking vitamin 

D supplements, Black and Hispanic ethnicities were associated with a lower mean 

serum 25 (OH) D concentration (White non-CKD 78.8 nmol/L, White CKD 80.8 nmol/L, 

Black non-CKD 48.0 nmol/L, Black CKD 57.6 nmol/L, Hispanic non-CKD 62.7 nmol/L, 

Hispanic CKD 59.0 nmol/L)   and a higher prevalence of VDD (White non-CKD 48.3% 

White CKD 54.6%, Black non-CKD 86.4%, Black CKD 85.1%, Hispanic non-CKD 

65.9%, Hispanic CKD 73.5%). 

 

Sanchez et al.48, in a prospective study of 184 patients (mean age 67.2 years, 48.9 % 

female, mean eGFR 36.0 mL/min) treated with ergocalciferol for VDD in CKD according 

to Kidney Disease Outcomes and Quality Initiative (K/DOQI) guidelines49, demonstrated 

that Hispanic compared to Caucasian ethnicity was independently associated with 

failure to achieve recommended serum 25 (OH) D concentrations of > 75 nmol/L 

(adjusted odds ratio (OR) for achieving vitamin D repletion in Hispanics 0.25, 95% CI 

0.10 – 0.62, p=0.0032). 

 

In addition to risk factors associated with low serum concentrations of 25 (OH) D, 

Awumey et al.42 demonstrated increased activity of CYP24A1 in skin fibroblasts of 

Asian Indian immigrants to the USA compared to a control Caucasian population which 

they postulated may explain the lower serum concentrations of 25 (OH) D in South 

Asian patients in their study.  Their analysis was conducted in patients without 

significant kidney disease but support the hypothesis that genetic variants in ethnic 

minority patients may play a significant role in determining vitamin D status and the 

likely response to therapy.   
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1.1.6 Summary  

The understanding of vitamin D biology and its effect as a hormone involved in the 

regulation of calcium homeostasis has evolved to include an understanding of the 

pleotropic effects of vitamin D.  Epidemiological and scientific evidence have provided 

insights into the extra renal synthesis and metabolism of vitamin D which includes 

evidence suggesting that vitamin D replacement may reduce all-cause mortality.  The 

effect of ethnicity on vitamin D status has emerged as an important facet of vitamin D 

biology and recent evidence has indicated that standard serum measures of vitamin D 

may not fully describe vitamin D status in ethnic minority groups rendering these groups 

vulnerable to misdiagnosis and inadequate treatment for VDD. 

1.2 Chronic kidney disease 

1.2.1 Background 

CKD has previously been defined as a progressive, irreversible loss of kidney function. 

More recently, the definition of CKD has been revised and the classification is now 

based on the estimated glomerular filtration rate (eGFR)49-50 (Table 2).  The glomerular 

filtration rate (GFR) can be measured by investigations such as inulin clearance, 

creatinine clearance and radio-isotopic techniques.  However, these investigations are 

expensive and invasive.  There are several estimating equations for the GFR in routine 

use, the most commonly used being the 4 variable Modification of Diet in Renal 

Disease (MDRD) equation which requires a measure of the patient’s serum creatinine, 

age, gender and ethnicity51 from which the GFR is estimated.  This equation was used 

at the time of designing the experiments for this thesis.  However, new estimating have 

been introduced and include the CKD EPI equation and variants of this equation using 

serum creatinine alone or serum creatinine combined with serum cystatin C52.   
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Table 2 Current classification of CKD.  Reproduced from Kidney Disease Improving 
Global Outcomes (KDIGO) 2012 guidelines53  Kidney damage is defined as the 
presence of albuminuria (urine albumin to creatinine ratio > 30, urine sediment 
abnormalities, structural renal abnormalities on imaging or a history of kidney 
transplantation).   Abnormalities must be present at least twice over a period of greater 
than 3 months for the diagnosis of CKD to be confirmed 

Degree of kidney damage 
Equivalent stage of 

CKD 
Abnormal parameters 

Evidence of kidney damage 

(one or more) and GFR ≥ 60 

mL/min/1.73m2 

 

Stage 1 CKD – GFR 

≥90 mL/min/1.73m2 

Stage 2 CKD – GFR 

60-90 mL/min/1.73m2 

 

 Albumin excretion ratio ≥ 

30mg/24 h 

 Urine albumin to 

creatinine ratio ≥30mg/g 

 Abnormal urine sediment 

 Tubular disorders causing 

electrolyte abnormalities 

 Structural abnormalities 

detected by kidney biopsy 

or imaging of the kidney 

 Previous renal transplant 

Reduced glomerular filtration 

rate  

 

 

 

Stage 3a CKD – GFR 

45-60 mL/min/1.73m2 

Stage 3b CKD – GFR 

30- 45  mL/min/1.73m2 

Stage 4 CKD – GFR 

15-30 mL/min/1.73m2 

Stage 5 CKD – GFR ≤ 

15 mL/min/1.73m2 

GFR < 60 mL/min/1.73m2 
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1.2.2 The epidemiology of chronic kidney disease 

The prevalence of CKD varies globally and even within geographical regions.  Two 

studies from the USA estimate the prevalence of CKD stage 3-5 from between 4.7% 

and as high as 19.1% with differing ethnic profiles of the populations accounting for the 

wide discrepancy54-55.  Globally, the prevalence of CKD is as high as 12.4% in Kinshasa 

(Democratic Republic of Congo)56 and 19.4% in Northern India57.  Many of the 

prevalence studies for CKD have only used one measure of serum creatinine and urine 

dipstick rendering their prevalence estimates less accurate than might have been 

obtained if two measures of urine and creatinine had been obtained.   

 

In the United Kingdom (UK) the population prevalence of CKD has been estimated as 

8.5%, however only 0.63% of subjects reported their ethnicity in this study and thus the 

ethnic specific prevalence of CKD in the UK remains unclear58.  The prevalence of CKD 

in the UK is as high as 18-22% in populations with DM and hypertension respectively58-

60.  Ethnic differences in the prevalence of CKD in the UK in high risk populations have 

been described.  In a study from east London, an area of high multi-ethnicity and 

deprivation, among diabetic patients with CKD59, South Asian and Black ethnicities 

were associated with an increased OR for stage 4-5 CKD compared to White ethnicity 

(South Asian OR 1.54 (95% CI 1.26 – 1.88), Black OR 1.39 (95% CI 1.06 – 1.81)).  A 

study set in the same area that evaluated the prevalence of CKD in patients with 

hypertension across different ethnicity groups60 demonstrated that South Asian (OR 

1.53, 95% CI 1.21 - 1.89) but not Black ethnicity (OR 1.02, 95% CI 0.78 - 1.27) was 

associated with more severe CKD (stage 4-5).  Both these studies were cross sectional 

in nature and are prone to the problems associated with this study design including 

missing eGFR data and details of the severity of DM and hypertension.  However, 
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these studies do highlight the important effect of non-White ethnicity on the prevalence 

of CKD in high risk populations in multi-ethnic areas of the UK.   

1.2.3 The pathology and epidemiology of cardiovascular disease in chronic 

kidney disease 

The anatomical pattern of CVD in CKD differs to that conferred by traditional risk 

factors seen in the general population.  Arterial stiffness75, vascular calcification76 and 

left ventricular hypertrophy77 dominate in CKD.  Left ventricular hypertrophy is a strong 

predictor of mortality in patients treated with dialysis 69 78 and a prevalent co-morbidity in 

patients with non-dialysis requiring CKD with over 50% of patients developing LVH 

when the eGFR is < 30 mL/min77.  These anatomical differences result in different 

patterns of cause of death from CVD in the general and CKD population, with cardiac 

failure, dysrhythmia and sudden cardiac arrest more prevalent in patients with CKD79.  

 

Progression to ESKD in patients with CKD is far less common than death from CVD, 

the risk of which is increased even in mild CKD61-62 and accounts for approximately 

40% of all deaths in patients with ESKD57-58.  Furthermore, as CKD progresses, the 

coexistence of traditional CV risk factors increases63.    CKD, even in its earlier stages, 

is now recognized to be as strong a CV risk factor as DM and hypertension64.   

 

In a study from the USA, the hazard ratio (HR) of death from any cause in patients with 

an eGFR <15 mL/min compared to individuals with an eGFR of ≥60 mL/min was 5.0 

(95% CI 5.4 - 6.5) and the HR for CV events was 3.4 (95% CI 3.1 - 3.8)2 65.  In a post-

hoc analysis of the Hypertension Optimal Treatment trial, the adjusted risk ratios for a 

major CV event (CV death or all-cause mortality) were all significantly increased 

(p<0.001) in patients with an eGFR <60 mL/min 66.   
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Culleton et al.67 examined 15 year follow up data from the Framingham heart study 

during which, in 6,233 study participants, there were 1,000 CV events and 1,406 

deaths.  In women, CKD (defined as a serum creatinine between 136 and 265 µmol/L) 

was not associated with either an increased risk for CVD (HR 1.04, 95% CI 0.79 - 1.37) 

or all-cause mortality (HR 1.08, 95% CI 0.87 - 1.34).  In men, CKD was not associated 

with CVD (HR 1.17, 95% CI 0.88 - 1.57) but was associated with increased all-cause 

mortality (HR 1.31, 95% CI 1.02 - 1.67).  This study has the significant advantage of 

long term follow-up, robust definitions of CVD and due to the nature of the cohort, 

limited missing data ensuring that key covariates were included in adjusted models for 

outcomes.  However, the study was conducted before the current classification of CKD 

based on the eGFR and it is thus limited by the relatively crude definition of CKD based 

primarily on a range of serum creatinine rather than the precise stage of CKD.   

 

Data from the Second National Health and Nutrition Examination Mortality Survey68, 

which followed 6,354 individuals over 16 years, demonstrated that in subjects with a 

low eGFR (< 70 mL/min) compared to a normal eGFR (> 90 mL/min), there was an 

increased HR for death from CVD (HR 1.68, 95% CI 1.33 - 2.13) and all-cause mortality 

(HR 1.51, 95% CI 1.19 - 1.91).  However, the study did not include an assessment of 

non-fatal CV events including cardiac dysrhythmia, a major cause of death in CKD 

which has been included in other studies of CVD in CKD69. 

 

The increased risk of CVD in CKD has been established in different ethnic groups, age 

groups and geographical areas70.  Studies from Canada71 and Taiwan72 identified a 

reduction in life expectancy from CVD in patients aged > 30 years as the stage of CKD 

worsened.  In the Canadian study70, for stage 3a, 3b, 4 and 5 CKD, life expectancy was 
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reduced respectively by 1.3, 7, 12.5 and 16.7 years.  In Taiwan72, the reduction in life 

expectancy in the same stages of CKD was 2.1, 8.8, 17.8 and 21.3 years. 

 

End stage kidney disease treated with dialysis confers a significantly higher risk of 

death than in age matched members of the general population69 73.  In France, the 

standardised mortality ratio of dialysis patients aged 18-44 compared to the general 

population in the first year of initiating dialysis was 26.773.  The high CV mortality in 

ESKD is independent of age65 69 with young dialysis patients having a near 100-fold 

increase in risk of CV death than an age and sex matched individual from the general 

population69 (Figure 3).  Data from the Renal Registry UK report from 201274 have 

demonstrated that in patients aged 30-34 years receiving dialysis for ESKD, the 

mortality rate compared to the general population was 18-fold higher with CVD 

accounting for 22% of all deaths in patients receiving dialysis. 
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Figure 3 Cardiovascular disease in end stage kidney disease – from Foley et al.69  
The observed effects on mortality of gender, ethnicity and age in the general population 
are no longer apparent when compared to patients receiving dialysis therapy indicating 
the significant effect of dialysis requiring ESKD on increased mortality compared to the 
general population. 
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1.2.4 Vitamin D metabolism and vitamin D receptor activation in chronic 

kidney disease 

CKD affects vitamin D synthesis, metabolism and activity through reduced serum 

concentrations of 25 (OH) D, reduced production of 1,25 (OH)2 D3 and resistance to 

circulating vitamin D14.  The combination of these mechanisms results in abnormalities 

of bone mineral metabolism and affects the pleotropic actions of vitamin D.   

 

Patients with all stages of CKD including ESKD are vulnerable to VDD for multiple 

reasons.  Skin synthesis of vitamin D is reduced due to lower exposure to sunlight and 

hyper pigmentation of the skin in patients with CKD76-77.  Uraemia interferes with the 

normal skin synthesis of vitamin D from exposure to UV sunlight78 and, through its 

associated effect on appetite, reduces the intake of foods rich in vitamin D and the 

absorption of vitamin D from the intestinal tract79.  Uraemia has also been associated 

with reduced hepatic metabolism of 25 (OH) D which has been shown to be mediated 

through the effect of PTH in downregulating the activity of liver CYP450 isoforms 

including CYP27A180.   

 

In CKD, 1,25 (OH)2 D3 metabolism is affected by reduced availability of its substrate (25 

(OH) D) for conversion and reduction in renal mass, a consequence of progressive 

kidney disease, which also leads to reduced availability and activity of the converting 

enzyme CYP27B1.  However, the function of extra-renal CYP27B1 may be regulated 

differently to the renal version of the enzyme.  This hypothesis is supported by a study 

by Jean et al.81 who treated 43 ESKD patients treated with haemodialysis with VDD 

(serum 25 (OH) D concentration < 75 nmol/L, mean age 72.6 years, mean duration on 

dialysis 71 months) with 400-1200 IU/day of cholecalciferol for 6 months.  At the end of 
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the study period, serum concentrations of both 25 (OH) D and 1,25, (OH)2 D3 increased 

significantly (25 (OH) D - 27.8 to 118 nmol/L (p < 0.001), 1,25 (OH)2D3 7.7 to 30.5 

pmol/L (p < 0.001)) and a positive correlation between 25 (OH) D and 1,25 (OH)2D3 was 

observed (p=0.02).  These findings indicate that even in patients with an extended 

period of time on dialysis, extra renal CYP27B1 activity is sufficient to increase serum 

concentrations of 1,25 (OH)2 D3. 

 

In addition to reduced availability of CYP27B1, systemic acidosis, the uraemic milieu 

and elevated serum concentrations of phosphate and FGF-23 reduce the activity of 

CYP27B182-84.  Inactivation of 1,25 (OH)2 D3 is increased by the upregulation of 

CYP24A1 which in CKD is a consequence of elevated serum concentrations of PTH 

and FGF-2382.  Low serum concentrations of 1,25 (OH)2 D3, reduced binding of 1,25 

(OH)2 D3 to the VDR and reduced binding of this whole complex to the nuclear vitamin 

D response element result in resistance to vitamin D85-86.  In addition, the overall 

expression of the VDR is reduced in both uraemia and in uraemic induced 

hyperphosphataemia, the latter of which also modulates VDR mediated gene 

transcription87.  In advanced CKD, there is decreased expression of the VDR in 

parathyroid tissue resulting in a reduced response to vitamin D therapy88.   

1.2.5 The epidemiology of vitamin D deficiency in chronic kidney disease 

The majority of the epidemiological data on VDD in CKD is described in patients 

receiving dialysis, with fewer studies examining the prevalence of VDD in earlier stages 

of CKD.  A cross sectional study of 201 subjects by LaClair et al.89 examined serum 25 

(OH) D concentrations in patients with CKD stage 3-4 in 12 geographically distinct 

regions of the USA.  71% of patients with stage 3 and 83% of patients with stage 4 

CKD had insufficient serum 25 (OH) D concentrations (<75 nmol/L).  This study is in 
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line with the findings that low serum concentrations of 25 (OH) D are present in patients 

even with mild abnormalities before abnormal serum concentrations of bone markers 

such as calcium, PTH and phosphate are evident90-91. 

 

Even in geographical locations where exposure to sunlight is high, VDD in CKD is 

common.  Cuppari et al.92 studied 144 patients with stage 2-5 CKD living in a solar rich 

environment in Brazil.  Severe VDD was rare (only found in 1 patient) but vitamin D 

insufficiency (VDI) defined as a serum 25 (OH) D concentration of 40-75 nmol/L was 

present in 39.6% of patients and serum 25 (OH) D concentrations exhibited a 

downward linear trend as CKD advanced.  This study highlights the importance of 

ambient sunlight as source of vitamin D.  In addition to increased ambient sunlight, the 

younger age, relative preservation of renal function, exclusion of diabetic patients and 

low numbers of patients with significant proteinuria in this study may explain higher 

serum concentrations of 25 (OH) D compared to other studies. 

 

Zehnder et al.93 have demonstrated that the earlier stages of CKD are associated with 

reduced serum concentrations of both 25 (OH) D and 1,25 (OH)2 D3 as well as a 

reduction in the ratio between 1,25 (OH)2 D3 and 25 (OH) D.  In this study, 249 patients 

with CKD (defined as serum creatinine > 130 μmol/L) were compared to 79 age and 

sex matched controls.  Serum concentrations of 25 (OH) D and 1,25 (OH)2 D3 were 

lower in patients with CKD compared to healthy controls (25 (OH) D 42.1 vs. 60.4 

nmol/L p<0.0001, 1,25 (OH)2 D3 58.2 vs. 119.5 pmol/L, p<0.0001).  In addition, serum 

concentrations of both 25 (OH) D (p<0.01) and 1,25 (OH)2 D3 (p<0.001) were 

negatively correlated with kidney function measured by serum cystatin C.  The ratio of 

1,25 (OH)2 D3 to 25 (OH) D was higher in healthy controls than patients with CKD and 

this ratio was negatively correlated with kidney function (p<0.001).  This study did not 
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record the exact nature of vitamin D supplementation in patients with CKD or healthy 

controls, however, the findings indicate that even in the early stages of CKD, there are 

significant abnormalities of vitamin D metabolism. 

 

VDD in patients receiving dialysis is a very common clinical entity.  In a study of 825 

incident haemodialysis patients from over 500 dialysis centres in the USA, Wolf et al.94 

established that 78% of patients had a serum 25 (OH) D concentration < 75 nmol/L and 

18% had a serum 25 (OH) D concentration < 25 nmol/L.  Gonzalez et al.95 examined 

serum 25 (OH) D concentrations in a cohort of dialysis and non-dialysed CKD patients.  

The prevalence of VDD was high in both groups but significantly higher and almost 

universally present in patients treated with dialysis in whom the prevalence of VDD was 

97% compared to 86% in non-dialysed CKD patients.  Saab et al.96 in a study of 131 

haemodialysis patients in the USA, have reported the prevalence of VDD as 92% and 

Taskapan et al.97, in 273 peritoneal dialysis patients in Greece and Turkey, have 

reported the prevalence of VDD as 96%. 

1.2.6 The association between vitamin D status and morbidity and mortality in 

chronic kidney disease 

Observational studies have provided evidence that VDD is associated with CV 

morbidity and mortality in both dialysis and non-dialysis requiring CKD.  Wolf et al.94 

evaluated 825 incident haemodialysis patients from the USA to ascertain the effect of 

vitamin D status on CV and all-cause mortality.  Patients who died within 90 days of 

starting haemodialysis (n=175) were compared to patients who survived beyond 90 

days (n=725).  The lowest tertile of 25 (OH) D serum concentration (<25 nmol/L) but 

not 1,25 (OH)2 D3 (<6 pg/mL) was strongly associated with all cause and CV mortality 

within 90 days of starting dialysis (lowest tertile of 25 (OH) D all-cause mortality HR 1.9, 
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95% CI 1.3 – 2.9, CV mortality HR 1.9, 95% CI 1.0 – 3.4).  These findings were 

independent of residual renal function, nutritional status and markers of bone mineral 

metabolism. 

 

Drechsler et al.98 described the effect of VDD on CV mortality (defined as a composite 

of CV events and death from an unknown cause) in 762 incident dialysis patients (both 

haemodialysis and peritoneal dialysis) from the Netherlands (61% male, mean age 59 

years).  An adjusted Cox regression analysis comparing patients with a serum 25 (OH) 

D concentration of less than or greater than 25 nmol/L demonstrated increased CV 

mortality in the low vitamin D group after 6 months (HR 2.7, 95% CI 1.1 - 6.5) and at 3 

years (HR 1.7, 95% CI 1.1 - 2.7) with no effect of vitamin D status seen on non-CV 

mortality.  The effect of VDD was modified by PTH with low serum 25 (OH) D 

concentrations only affecting CV mortality in patients with a PTH > 123 pmol/L (HR 

compared to patients with a PTH < 123 pmol/L 3.37, 95% CI 1.64 – 6.91).  The same 

authors report the risk of sudden cardiac death in haemodialysis patients in a post-hoc 

analysis of the 4D study which examined the effect of atorvastatin compared to placebo 

in dialysis patients in Germany99.  Their analysis demonstrated that the risk of sudden 

cardiac death is increased in patients with serum 25 (OH) D concentrations < 25 nmol/L 

compared to serum concentrations > 75 nmol/L (HR 2.99, 95% CI 1.39 – 6.40) even 

after adjusting for age, sex, atorvastatin use, bone mineral parameters, blood pressure 

smoking and dialysis vintage.  Similar findings have been described by Anand et al.100 

who demonstrated that in 256 incident haemodialysis patients followed up for a mean 

of 3.8 years, patients with a serum 25 (OH) D concentration <27 nmol/L (the lowest 

tertile of vitamin D status in the study) had a higher incidence of all-cause mortality (HR 

1.75, 95% CI 1.03 - 2.97). 
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In a meta-analysis of 10 studies which included dialysis (7 studies, n=3,441) and non-

dialysis requiring CKD patients (3 studies, n=3,412), Pilz et al.101 demonstrated that 

increasing serum concentrations of 25 (OH) D were associated with a reduction in CV 

mortality.  An increase in serum concentrations of 25 (OH) D by 25 nmol/L was 

associated with an overall reduction in the relative risk of mortality of 0.86 (95% CI 0.82 

- 0.91).  In the three studies that only evaluated non-dialysis requiring CKD102-104, the 

highest risk for all-cause mortality was consistently demonstrated in the lowest category 

of VDD although these studies differed in size and populations studied.   

 

Mehrotra et al.103 have evaluated a large cohort of non-dialysis requiring CKD patients 

(n=3,011, mean age 54 years, stage 1-4 CKD).  Compared to their reference group of a 

serum 25 (OH) D concentration > 75 nmol/L, the lowest tertile of 25 (OH) D status (< 

37.5nmol/L) had an increase in the relative risk of all-cause mortality of 1.56 (95% CI 

1.12 - 2.18).  The middle tertile (37.5-75 nmol/L) had an increased risk but this failed to 

attain statistical significance (RR 1.17, 95% CI 0.99 - 1.38). 

 

The benefit of higher serum 25 (OH) D concentrations on co-morbidity endpoints in 

CKD has also been demonstrated.  In 2 separate observational studies of patients with 

non-dialysis requiring CKD, for every 25 nmol/L reduction in serum  25 (OH) D 

concentration, there was a 23% increase in the risk of developing coronary artery 

calcification105 and a 25% increased risk for more rapid progression of CKD106. 

1.2.7 Active vitamin D compounds and morbidity and mortality in chronic 

kidney disease 

A number of early trials comparing nutritional vitamin D replacement to calcitriol therapy 

in patients with CKD demonstrated that calcitriol was more effective at lowering PTH at 
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the cost of a higher incidence of hypercalcaemia and, in separate studies, that 

nutritional vitamin D replacement therapy did not normalize bone histology after 18 

months of treatment107-108.  These small studies led to a preference for the use of 

calcitriol over nutritional vitamin D in patients with CKD and ESKD treated with dialysis.  

Therapy with active vitamin D has subsequently been associated with a reduction in all-

cause mortality in patients receiving haemodialysis treatment109-112.   

 

Two of the largest studies evaluating the effect of active vitamin D therapy on all-cause 

mortality in dialysis patients have demonstrated that there are differential effects on 

mortality when comparing treatment with injectable vitamin D compared to no treatment 

and that paricalcitol compared to calcitriol therapy differentially reduces all-cause 

mortality.  In the first study109, 37,173 incident ESKD patients treated with 

haemodialysis who received no injectable active vitamin D compound compared to any 

injectable active vitamin D compound were followed up for 2 years.  The two groups 

differed at baseline with the no treatment group having a higher PTH serum 

concentration compared to the treatment group (354 compared to 179 pg/mL, p<0.01).  

Using a Cox regression model, the risk of all-cause mortality was reduced in the group 

receiving any injectable vitamin D compound (HR 0.80, 95% CI 0.76 – 0.83). 

 

In the second observational study by Teng et al.113, the authors evaluated the 

differential effect of paricalcitol compared to calcitriol in 67,399 prevalent ESKD patients 

treated with haemodialysis over 3 years.  Using a Cox regression model, there was a 

16% (95% CI 10 - 21%, p<0.001) greater reduction in mortality with paricalcitol 

compared to calcitriol after 36 months follow up.  When patients were switched from 

calcitriol to paricalcitol and vice-versa, after 2 years of follow up, the patients who 

switched to paricalcitol had a significant 2 year survival advantage (73% compared to 
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64%, p=0.04).  Both of these studies were not randomized but they provided early 

evidence for the potential benefit of activated vitamin D therapy in patients treated with 

haemodialysis and that there may be differential effects on mortality reduction based on 

the choice of injectable agent.   

 

In a retrospective cohort analysis of 58,058 prevalent ESKD patients treated with 

haemodialysis followed-up for 2 years, Kalantar–Zadeh et al.114 demonstrated a U 

shaped association with all-cause mortality and paricalcitol use.  This phenomenon 

may be due to the higher PTH seen at baseline in the high dose paricalcitol group 

which may have been an independent risk factor for mortality rather than therapy with 

high dose paricalcitol. 

 

Similar findings were obtained by Shoji et al.111 and Melamed et al.115 in smaller, 

prospective studies of activated vitamin D compounds and survival.  Shoji et al.111 

evaluated oral alfacalcidol compared to no therapy in 242 haemodialysis patients and 

found that over 5 years, therapy with alfacalcidol was associated with a reduction in CV 

mortality HR 0.38 (95% CI 0.25 – 0.58).  Melamed et al.115 evaluated 1,007 incident 

haemo and peritoneal dialysis patients over 2.5 years and compared any use of 

calcitriol to no use.  Patients treated with calcitriol had a reduction in all-cause mortality 

but the upper confidence interval was equal to 1 (HR 0.74, 95% CI 0.56 – 1.00).   

 

Tentori et al.110 evaluated the differential effects of three vitamin D analogues 

(paricalcitol, doxercalciferol and calcitriol) compared to no vitamin D therapy.  In their 

study of 7,731 incident haemodialysis patients with a median of 37 weeks follow-up, 

they found no significant difference in all-cause mortality between the different 

analogues but they identified that in patients not receiving any vitamin D analogue 
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compared to any analogue, the risk of all-cause mortality was higher HR 1.20 (95% CI 

1.10 – 1.32).  There was no difference observed between calcitriol and paricalcitol in 

contrast to the study by Teng et al.113 and this could be explained by the shorter follow 

and lower number of outcome events in the Tentori study110.   

 

These studies and others are the subject of a meta-analysis by Duranton et al.116 which 

evaluated 10 studies, comparing the effect of activated vitamin D compounds or no 

vitamin D treatment with survival in haemodialysis patients.  The overall effect of 

vitamin D on all-cause mortality was a risk reduction of 0.73 (95% CI 0.64 - 0.83).  This 

meta-analysis also included 3 studies that have evaluated the effect of active vitamin D 

compounds on survival in non-dialysis requiring CKD.  Shoben et al.117 in an 

observational study of 1,418 patients with CKD 3-4 followed up for a mean 1.9 years 

demonstrated that calcitriol use was associated with a 26% lower risk for death (95% CI 

5 - 42% p=0.016) but that there was an increased risk of hypercalcaemia after 

treatment with calcitriol.  Kovesdy et al.118 studied 520 male US veterans with stage 3-5 

CKD treated or untreated with calcitriol over a median follow up of 2.1 years.  Patients 

treated with calcitriol had a lower incidence of death or dialysis initiation compared to 

untreated patients (RR 0.69, 95% CI 0.55 - 0.86, p=0.001).  Sugiura et al.119, in a 

retrospective cohort study, evaluated 665 patients with non-dialysis requiring CKD, 107 

treated with 0.25 – 0.5 μg per day of alfacalcidol and 558 who received no vitamin D 

compound.  During the follow up period of nearly 6 years in the alfacalcidol group 

compared to 3.5 years in the non-treatment group, in a Cox regression model, CV 

events (HR 0.52, 95% CI 0.30 – 0.89, p=0.017) but not death from CVD (HR 0.80 0.44 

–1.46 p=0.46) were significantly lower in the alfacalcidol group.  The meta analysis116 of 

these 3 studies for the effect of active vitamin D on all-cause mortality in non-dialysis 
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requiring CKD showed an overall beneficial effect of alfacalcidol (HR 0.73, 95% CI 0.55 

- 0.98, p=0.04)116. 

1.2.8 Nutritional vitamin D compounds and morbidity and mortality in chronic 

kidney disease 

The K/DOQI guidelines49 have advocated the use of high dose ergocalciferol therapy 

for patients with CKD stage 3-4 and VDD with the specific dose regimen based on 

serum concentrations of 25 (OH) D (Table 3).  There have been a number of studies 

examining the effect of nutritional vitamin D in CKD and ESKD patients but the majority 

of these studies have primarily focused on changes in biochemical parameters and 

have not addressed CV events or mortality endpoints120-129.  The endpoints of these 

studies varied as much as their designs (randomized trials, observational cohorts, 

retrospective analyses) and included the effect of nutritional vitamin D therapy on 

serum concentrations of PTH124 128 130-131, 1,25 (OH)2 D3
81 132, serum calcium122 and 

HbA1c122.  These studies were generally small, and did not include mechanistic 

analyses of the effect of nutritional vitamin D or have long enough follow-up periods to 

detect clinically relevant CV events or their surrogates.  

 

A systematic review133 of studies of nutritional vitamin D compounds in patients with 

CKD and ESKD identified an overall beneficial effect of therapy with vitamin D resulting 

in a reduction in PTH (mean difference 41.7 pg/mL (95% CI 55.8 - 72.7) and increase in 

serum 25 (OH) D concentrations (mean difference  60.3 nmol/L (95% CI 49 – 71.5 

nmol/L).  None of the 22 studies included an assessment of the effect of therapy on CV 

endpoints or mortality. 
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Table 3 The treatment of vitamin D deficiency in chronic kidney disease.  

Reproduced from the Kidney Disease Outcomes and Quality Initiative (K/DOQI) 

guidelines49 for the use of high dose ergocalciferol therapy for patients with CKD and 

vitamin D deficiency.  The specific dose regimen is based on serum concentrations of 

25 (OH) D 

 

Serum 

concentration 

of 25 (OH) D 

ng/mL (nmol/L) 

Category 

of vitamin 

D status 

Recommended 

dose of oral 

ergocalciferol 

Recommended 

duration of 

therapy with 

ergocalciferol 

Interval for 

measurement  

of serum 

concentrations  

of 25 (OH) D 

<5 (<12) 
Severe 

VDD 

50,000 IU/week  

for 12 weeks,  

then monthly 

or 

500,000 IU as a 

single dose IM 

6 months 

Confirm 

adherence. 

Measure serum 

concentrations of 

25 (OH) D after 6 

months 

5-15 (12-37) Mild VDD 

50,000 IU/week 

for 4 weeks then 

50,000 IU/month 

6 months 

Measure serum 

concentrations of 

25 (OH) D after 6 

months 

16-30 (40-75) VDI 50,000 IU/month 6 months 
No specific 

recommendations 

 

VDD – vitamin D deficiency, VDI – vitamin D insufficiency, IU –international units, IM – 

intra-muscular 
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Two studies have evaluated the effect of ergocalciferol on mortality in patients with 

CKD.  Sprague et al.134 conducted an observational study of 204 patients with CKD 

(mean eGFR 31.4 mL/min, mean age 73 years) of whom 160 received 50,000 IU of 

ergocalciferol weekly for 12 weeks and then monthly compared to no intervention.  

Patients were followed up for an average of 27 months.  The likelihood for the 

combination of all-cause mortality and dialysis initiation was significantly lower in 

treated compared to untreated patients (OR 0.11, 95% CI 0.11 - 0.74, p=0.024). 

 

Lishmanov et al.135, in a retrospective cohort study, evaluated the effect of 

ergocalciferol therapy on 126 men with a mean age of 70 years with stage 3-4 CKD 

from a US Veterans cohort.  Ninety patients received ergocalciferol based on their initial 

serum concentration of 25 (OH) D in a dose sufficient to increase serum 25 (OH) D 

concentrations by greater than or equal to 25% after 6 months of therapy with the 

remaining patients (n=36) acting as controls.  The primary outcome was a composite of 

CV events and death from CVD.  Serum 25 (OH) D concentrations were higher in the 

ergocalciferol group (85.6 nmol/L vs 40.5 nmol/L, p<0.001).  In an adjusted logistic 

regression analysis, treatment with ergocalciferol predicted a lower OR for the 

composite endpoint (OR 0.37, 95% CI 0.14–1.00, p=0.05).  Despite the small size and 

retrospective nature of this cohort and borderline statistical significance, this study 

demonstrates the potential reduction in CV events that can be achieved by 

supplementing patients with CKD and VDD with ergocalciferol.  Notably, the benefit of 

ergocalciferol was independent of changes in serum PTH suggesting mechanisms 

other than the amelioration of secondary hyperparathyroidism were responsible for their 

observations.  The nature of the population (elderly American veterans) means these 

results are difficult to generalise to other populations with CKD. 
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1.2.9 Summary  

CKD is a global health problem resulting in an increase risk of CV events.  The 

metabolism, action and absolute serum concentrations of vitamin D are significantly 

altered in CKD which exposes patients with all stages of CKD to a high burden of CVD.  

Observational studies have provided evidence for the beneficial effect of vitamin D in 

reducing CV morbidity and mortality in CKD.  The heterogeneous nature of existing 

studies in terms of design (observational or interventional) populations (dialysis 

compared to non-dialysis requiring CKD) and intervention (nutritional compared to 

active vitamin D) means that the optimum treatment strategy for VDD in CKD remains 

poorly defined.  Specifically, the mechanistic pathway by which vitamin D is exerting a 

beneficial effect remains unclear. 

1.3 Endothelial function in health and in chronic kidney disease 

1.3.1 Background 

The endothelium is located between the muscular wall of all blood vessels and the 

blood stream. It responds to stimuli including pressure, shear stress, and hormonal 

agents which mediate relaxation and contraction of the underlying vascular muscular 

wall. These stimuli prompt endothelial cells to release agents that regulate vasomotor 

function, trigger local inflammatory reactions and affect vascular homeostasis136.   

 

Endothelial dysfunction, a consequence of the imbalance between relaxing and 

contractile factors, results in reduced vasodilatation, a pro-inflammatory state, 

leucocyte adherence and pro-thrombotic consequences that predispose to 

atherosclerotic plaque formation137.  These processes are in turn  associated with 

hypertension138, coronary artery disease139, chronic heart failure140, and peripheral 
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artery disease141.  Risk factors for endothelial dysfunction include traditional (immobility, 

smoking, DM, hypertension, dyslipidaemia) and non-traditional parameters (CKD, 

vasculitis, depression, hyperhomocysteinaemia and vitamin D deficiency)137.   

 

Discovered over 30 years ago, the principle mediator of endothelial vasodilatation is 

nitric oxide (NO)136.  NO is synthesized from L-arginine by nitric oxide synthase (NOS), 

using oxygen and nicotinamide-adenine-dinucleotide phosphate (NADPH) as co-

substrates142.  NO maintains both the vascular smooth muscle tone and its non-

proliferative state as well as reducing platelet and leucocyte adhesion.  These effects 

are modulated by the variable effect of NO on cellular DNA synthesis to either increase 

or decrease the expression of proteins which modulate vascular smooth muscle cell 

(VSMC) proliferation143 and leucocyte adhesion144.  The vasodilating effect of NO is 

mediated by increasing cyclic guanosine monophosphate (cGMP) in adjacent VSMC 

which results in a reduction in basal vascular tone142.  Figure 4 demonstrates pathways 

of VSMC relaxation. 

 

NOS exists in three forms – inducible NOS (iNOS) which is upregulated in response to 

pathological stimuli including bacterial infection, neuronal NOS (nNOS) present in 

neurons and endothelial NOS (eNOS). The latter two forms are present under normal 

physiological conditions whereas iNOS is upregulated in response to various stimuli 

including acute infection.  NOS  requires a critical co-factor, tetrahydrobiopterin, to 

effectively synthesize NO and deficiency of this co-factor leads to dysregulation and 

uncoupling of NOS function resulting in the production of oxidant factors including 

hydrogen peroxide and superoxide137.   
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Figure 4 Mechanisms of vascular smooth muscle cell vasodilatation.  ACh binds 
to the muscarinic type 3 receptor (M3) causing increased intracellular calcium in the 
EC.  This in turn stimulates eNOS, phospholipase A2 and P450 epxoygenase.  The 
overall consequence of this is VSMC relaxation and endothelial vasodilatation mediated 
by reduced Ca2+ in VSMC.  This occurs through the direct stimulation of cGMP by NO 
which can additionally enter VSMC directly via the NO donor SNP.  Additional VSMC 
relaxation occurs as a result of reduced intracellular VSMC Ca2+ mediated via the 
stimulation of the VSMC IP receptor by PGI2 leading to an increase in VSMC cAMP  as 
well as VSMC hyperpolarization mediated by the effect of EDHF on the VSMC KIR. 

EC – endothelial cell, VSMC – vascular smooth muscle cell, eNOS endothelial nitric 
oxide synthase, PLA2 phospholipase A2, PGI2 – prostaglandin I2, EDHF – endothelium 
derived hyperpolarizing factor, SNP – sodium nitroprusside, ACh – acetylcholine, NO – 
nitric oxide, IP – prostanoid receptor, KIR inwardly rectifying potassium channel, cGMP 
– cyclic guanosine monophosphate, cAMP – cyclic adenosine monophosphate.     

 



58 
 

eNOS is expressed primarily on endothelial cells but has been identified in other 

tissues including cardiac myocytes, placenta and platelets145.  The function of eNOS is 

regulated by various molecules including intracellular calcium.  Vascular wall shear 

stress is a key activator of eNOS, mediated through phosphorylation, a process which 

can additionally be induced by exposure of the endothelium to insulin, oestrogen and 

VEGF142.  Phosphorylation of eNOS increases the sensitivity of eNOS to calcium146.  

When the calcium-calmodulin complex binds to eNOS, the flow of electrons from 

NADPH in the reductase domain to the haem moiety in the oxygenase domain of eNOS 

occurs.  This process facilitates the generation of NO from L-arginine142. 

 

Endothelial contractile responses are mediated by endothelin-1 and angiotensin-II 

which induce leucocyte and platelet activation, promote vasoconstriction and a pro-

thrombotic milieu137.  One of the critical roles of NO is to oppose the contractile forces 

of endothelin-1 and angiotensin-II137.  Reduced endothelial vasodilatory responses are 

mainly caused by reduced NO generation due to down-regulation of eNOS. This 

process has been shown to be multi-factorial and includes genetic factors, 

abnormalities of tetrahydropiobterin biology and the influence of inflammatory markers 

including C reactive protein (CRP)147-149. 

 

The understanding of endothelial biology has advanced recently to include the role of 

nitrite (NO2
-) which was initially considered a biologically inert by-product of the 

processes which generate NO.  Nitrite is now considered both a store of NO and as a 

physiologically active molecule capable of generating endothelial vasodilatation150-151.  

Nitrite has two major sources, generated both as a consequence of the conversion of L-

arginine to NO and through dietary intake which includes ingestion of both nitrite and 

nitrate152.  Dietary nitrate is converted to nitrite under the influence of anaerobic 
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bacteria located on the dorsal surface of the tongue and this nitrite is then either 

converted to NO in the acidic conditions of the stomach or enters the systemic 

circulation153.  NO generation from nitrite is mediated by eNOS and is more likely under 

the influence of specific physiological conditions including hypoxia154.  Recently, the 

role of xanthine oxidoreductase as the converter of nitrite to NO in acidotic conditions 

has become evident150.   

 

Pre-clinical and clinical evidence for the beneficial effect of nitrite and the role of the 

endothelium in its synthesis is emerging.  Using an isolated rat Langendorff heart 

preparation, Webb et al.153 demonstrated that nitrite to NO conversion was effectively 

abolished when the endothelium in Langendorff hearts was removed.  The same group 

have demonstrated that dietary nitrate in the form of beetroot juice lowers blood 

pressure, inhibits platelet aggregation and improves endothelial function153.  In this 

open label study which used a cross over design, 30 healthy volunteers received either 

500 mL of beetroot juice or a water control.  The peak reduction in systolic BP (10.4 

±3.0 mmHg) occurred 2.5 h after ingestion of beetroot juice and occurred 

synchronously with the peak nitrite concentrations.  In the same study, nitrate ingestion 

improved the response to post ischaemic endothelial function of the forearm assessed 

by brachial artery flow mediated vasodilatation (FMD) compared to controls (p<0.05).   

1.3.2 Techniques to evaluate endothelial function 

Endothelial function and the endothelial response to various stimuli can be measured in 

large conduit arteries and peripheral microcirculatory beds.  Structural and functional 

assessments of large conduit arteries (brachial, carotid and femoral) can be obtained 

by using ultrasound imaging to evaluate atherosclerotic occlusive lesions as well as 

arterial intima medial thickness (IMT).   
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1.3.2.1 Techniques to measure conduit artery endothelial function 

Pulse wave velocity (PWV) and FMD are the most common techniques used to 

measure conduit artery endothelial function.  Brachial artery FMD is a technique which 

measures the vasodilatory response of the brachial artery (percentage increase in the 

diameter of the brachial artery after exposure to stimulus assessed by ultrasound) to a 

range of stimuli, including induction of ischaemia and subsequent reperfusion by 

occlusion of the brachial artery, local heating of the skin and sublingual nitroglycerin 

administration.   

 

PWV measures the transit time in m/s of one cardiac pulse wave cycle between two 

fixed points in the arterial tree.  PWV is measured by the use of two recording probes 

sited over conduit arteries (often carotid, brachial or femoral) which measure speed of 

transit of pulse waves.  The distance between the two sites is measured and PWV can 

be calculated from these values.   Pathological conditions including atherosclerosis 

lead to stiffening of large conduit arteries which results in an increase in pulse wave 

transit time which is reflected as in increase in measured PWV155.  Increasing PWV has 

been associated with a higher risk of CV events in hypertensive patients and an 

increase in mortality in patients with stages 2-4 CKD156-157. 

1.3.2.2 Techniques to measure microcirculatory endothelial function 

Endothelial function in the microcirculation is an area of increasing interest. The 

microcirculation is defined as any blood vessel < 150µM in diameter located in tissue 

parenchyma158.  Maintaining blood flow to the critical central microcirculatory organ 

beds, the main site of oxygen and nutrient exchange between blood and tissues, is an 

essential part of the maintenance of normal physiology.  Disruption to this process, as a 
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consequence of microcirculatory endothelial dysfunction, has the potential to cause 

significant disruption to normal homeostasis.  

 

While more critical central microcirculatory beds, for example cardiac and renal, are 

less anatomically accessible, the response of the dermal microcirculation can be 

ascertained using bedside techniques.  Dermal microvessels have been shown to 

reflect microcirculatory endothelial function in renal, retinal and cardiac microcirculatory 

beds159-161.  Consequently through relatively simple and non-invasive techniques, the 

skin microcirculation can provide a representative peripheral window onto the more 

functionally relevant central microcirculation162-163. 

 

The response of dermal microcirculatory endothelial function can be quantitatively 

assessed through techniques including Laser Doppler Imaging (LDI) and Laser Doppler 

Flowmetry (LDF)162.  LDF measures erythrocyte flux in dermal microvessels generated 

by direct contact of laser probes with the skin surface with the output measured as 

perfusion in arbitrary units.  LDI is a non-contact technique which produces a visual, 

differential colour speckle output of skin perfusion over a much larger area (up to 

50x50cm) than LDF. 

 

Dermal microcirculatory endothelial function can be assessed by the response of 

microcirculatory vessels to physical stimuli such as reactive hyperaemia, local cooling 

or heating of the skin and pharmacological therapy, most commonly through the 

delivery of  acetylcholine (ACh) and sodium nitroprusside (SNP).  The assessment of 

the microcirculatory endothelial response to ACh and SNP involves the local delivery of 

very small doses of these compounds into the dermal microcirculation using an 

iontophoresis apparatus.  Laser Doppler probes measure the change in the flux of 
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erythrocytes in a fixed volume of dermal tissue in response to these drugs.  This 

technique has the significant advantage of not requiring the delivery of vasoactive 

compounds to the systemic circulation. 

1.3.2.3 The relationship of skin microcirculatory function to central 

microcirculatory function 

Coulon et al.164 evaluated the correlation between renal perfusion, measured by the 

renal resistive index (RI) and both post-occlusive and post heating reactive hyperaemia 

of the forearm skin.  They assessed 22 patients with systemic hypertension and 11 

healthy controls.  Post occlusive reactive hyperaemia was achieved by inflation of a 

blood pressure cuff to 200 mmHg for 3 min and local heating was achieved increasing 

the surface temperature of the skin to 44 oC.  The authors also evaluated the 

correlation between the renal RI and the QKD interval.  This is a measure of the onset 

of the QRS complex and the last sound detected in diastole using a microphone 

positioned over the brachial artery.  This was achieved using a 24 h automated blood 

measure monitor linked to a 3 lead ECG.  The QKD score is corrected for a standard 

systolic blood pressure of 100 mmHg and a pulse of 60 beats per minute and is 

reported as the QKD100-60 with lower scores reflecting increased arterial stiffness. 

 

The authors established that while basal dermal perfusion did not differ between the 

groups, the response of the dermal microcirculation after occlusion of the brachial 

artery and local skin heating (measured as % variation of LDF between post occlusive 

to peak perfusion after release of the blood pressure cuff) was impaired in hypertensive 

patients compared to controls (p<0.05).  In addition they demonstrated a significant 

negative correlation between renal RI and skin microcirculatory endothelial function in a 

univariate analysis.  This finding was present when the renal RI was correlated to both 
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the percentage variation in resting to peak perfusion after release of the BP cuff (r=-

0.44, p=0.01) and the percentage variation in perfusion immediately after occlusion of 

the brachial artery to peak perfusion after release of the cuff (r=-0.42, p=0.02).  The 

QKD100-60 correlated negatively with the renal RI (r=-0.44, p=0.01). 

 

This study indicates an important association between skin and renal perfusion indices 

but is limited by the small numbers and by the fact that 91% of hypertensive patients 

were taking anti-hypertensive drugs which the authors indicate may have affected both 

the dermal response to stimulus and the renal RI.  Additionally, the mean systolic blood 

pressure of the hypertensive group was 133.8 mmHg which while significantly higher 

than controls (111.0 mmHg p<0.0001), would not be considered clinically significant 

hypertension.   

 

Agarwal et al.165 assessed the function of skin microcirculation and the presence or 

absence of coronary artery disease (CAD).  Forty eight patients with angiographically 

proven CAD were compared to 25 age and sex matched controls without evidence of 

CAD.  Skin microcirculatory function was assessed by iontophoresis of ACh, local 

heating to 41 oC and occlusion of the brachial artery.  The difference between baseline 

and maximum perfusion was measured in arbitrary perfusion units by LDF and adjusted 

for BMI, presence of DM, smoking status, waist circumference and systolic blood 

pressure.  Change in perfusion was higher in controls compared to patients with CAD 

when assessed by iontophoresis of ACh (p=0.023) and local skin heating (p=0.032) but 

not post occlusive reactive hyperaemia (PORH, p=0.21).  However the time to peak 

perfusion was higher in patients with CAD compared to healthy controls after PORH 

(p=0.01) but not iontophoresis of ACH or local skin heating.   
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Shamin-Uzzaman et al.160 evaluated 24 patients with established CAD and 24 healthy 

controls using brachial artery FMD and LDI in combination with PORH.  Brachial artery 

FMD was attenuated in patients with CAD compared to controls (1.85 ± 4.29% in CAD 

compared to 4.30 ± 4.00% in controls, p=0.05).  Both change in peak perfusion from 

baseline (CAD 294 ± 290%; controls 501 ± 344%, p=0.04) and time to maximum 

response (CAD 16.84 ± 9.61 s; controls 9.13 ± 4.43 s, p=0.001) were improved in 

controls compared to patients with CAD.  Using a receiver operator curve analysis, the 

LDI time to peak response was a better predictor of CAD than brachial artery FMD 

(FMD sensitivity 71.4%, specificity 73.9%, LDI sensitivity 73.7%, specificity 91.3%). 

 

The relationship between skin and retinal microcirculation has been assessed by Tur et 

al.161 in 25 patients with type 2 DM and 25 non-diabetic controls.  Using skin perfusion 

measured by LDF after PORH, they established that peak blood flow but not time to 

peak blood flow was higher in controls compared to patients with DM.  In a subgroup 

analysis of patients with DM comparing those with proliferative or no retinopathy, the 

ratio of peak to time to peak perfusion (with lower values reflecting impaired 

microcirculatory function) was significantly lower in the retinopathy group (31.4 ± 3.9) 

compared to the non-retinopathy group (50.9 ± 10.9, p<0.05). 

 

While these studies indicate the utility of skin microcirculatory function as a means to 

assess microcirculatory function in less accessible central beds, none of these studies 

reported the degree of renal dysfunction or proteinuria making it difficult to generalise 

the results to patients with kidney disease.  In addition, these studies demonstrate that 

when comparing control to disease groups, resting perfusion (albeit measured with a 

variety of methods) is similar and differences in microcirculatory function only become 

apparent when the endothelium is stimulated by either delivery of ACH, PORH or local 
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heating.  The variety of techniques used to measure peripheral microcirculatory 

function and the lack of consensus about the optimal technique has so far prevented 

the development of a unified diagnostic approach for the assessment of skin 

microcirculatory function. 

 

A newer technique, side stream dark field imaging of the microcirculation, involves real 

time video capture of capillary blood flow using a small camera which directly images a 

capillary bed, usually the sublingual microcirculation166 (see section 2.2.14.1 for 

technique details).  This technique provides a semi quantitative measure of capillary 

blood flow and capillary density and thus provides both a structural and functional 

analysis of the microcirculation166.  While predominantly used in studies of sepsis167-168 

and peri-operative medicine169-170, Reynolds et al.171 have recently evaluated the sub 

lingual microcirculatory parameters in healthy volunteers and those with liver cirrhosis, 

DM and stage 5 CKD.  Comparing 20 patients per group (n=18 in the cirrhosis group), 

there were no significant differences in the primary outcome measure of microvascular 

flow index (MFI) between the comparison groups (p=0.14) nor were there any 

difference in perfused vessel density (p=0.08) or proportion of perfused vessels 

(p=0.46).  The mean MFI was higher in patients with CKD stage 5 compared to healthy 

controls under 25 years of age (MFI CKD – 3.0, MFI controls 2.85).  While this 

difference was not statistically significant, the authors postulate that a larger study may 

have shown a significant difference.  SDF imaging has the significant advantage of 

providing different anatomical and physiological microcirculatory parameters compared 

to LDF or LDI and therefore complements an assessment of the microcirculation by 

other techniques.  However, to date, no studies have evaluated the correlation between 

SDF imaging and either skin microcirculatory parameters or the function of central 

microcirculatory beds. 
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1.3.3 Endothelial dysfunction and cardiovascular events 

Endothelial dysfunction has been established as a pathogenic factor in the full 

spectrum of CVD and is a predictor of future CV morbidity and mortality172.  In a study 

of 308 patients with and without angiographically demonstrated CAD, pharmacological 

stimulation of the coronary circulation with ACh and SNP demonstrated that impaired 

relaxation of the coronary microcirculation was associated with an increased incidence 

of acute ischaemic coronary events173.  Failure of relaxation of the coronary 

microcirculation was an independent risk factor for ischaemia after multivariable 

analysis including adjustment for the presence of baseline CAD.   

 

Tatematsu et al.75 have indentified specific endothelial abnormalities in the coronary 

arteries in an in vivo model of CKD.  In this study, dogs undergoing 5/6th nephrectomy 

had a blunted coronary artery vasodilatory response to stimulation with ACh.  

Endothelial nitric oxide synthase (eNOS) and dimethyl arginine 

dimethylaminohydrolase-II (DDAH-II), a degrading enzyme for asymmetrical dimethyl 

arginine (ADMA), were downregulated in coronary artery cells from 5/6th 

nephrectomised animals and were postulated as mediators of the observed endothelial 

abnormalities.   

 

Evaluating the peripheral circulation can provide prognostic information on future CV 

events.  In 73 patients with angina, Neunteufl et al.174 demonstrated a brachial artery 

FMD of <10% was associated with an increased need for coronary revascularization 

over a 5 year follow up period after multivariable analysis174.  Gocke et al.175, in a study 

of 199 patients with peripheral vascular disease, found that there was an increased OR 

of 9.5 (95% CI 2.3 - 40) for major CV events (death, stroke or myocardial infarction) in 
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patients with an FMD of <8.1%.  In 152 patients with coronary artery disease176 

followed up for 34 months, Chan et al.176 identified that increased carotid artery plaque 

area and reduced FMD of the brachial artery after administration of sublingual 

nitroglycerin were associated with an increased risk of CV events.   

 

Endothelial function measured by the digital response to reactive hyperaemia using the 

Endo-PAT 2000 device has been shown to predict CV events.  In a study by 

Matsuzawa et al.177, 105 CV events over a total of 1,468 person years of follow up were 

observed in 528 stable patients classified as high risk for future CV events.  In a Cox 

regression analysis, digital arterial function was associated with a reduction in risk for 

CV events with a 0.1 increase in the reactive hyperaemia index resulting in a reduction 

in the HR for CV events of 0.76 (95% CI 0.67 – 0.85).  When this information was 

added to more traditional risk models including the Framingham Heart Study risk 

prediction for CV events, the accuracy of CV event prediction improved by 27.5%.  This 

finding indicates the importance of endothelial dysfunction in improving the prediction of 

CV events. 

1.3.4 Endothelial function and vitamin D 

The role of vitamin D in the prevention of an atherosclerotic phenotype in the 

endothelium is primarily mediated through the conversion of 25 (OH) D to 1,25 (OH)2 D3 

in endothelial cells which then acts to reduce endothelial adhesion molecule expression 

and cytokine induced endothelial cell activation44.  Endothelial cells have been shown 

to express CYP27B1 which is involved in the proliferation of endothelial cells, 

peripheral conversion of 25 (OH) D to 1,25 (OH)2 D3 and may regulate the adhesion of 

monocytes to endothelial cells, a process which is in turn modulated by inflammatory 

cytokines24.  Rahman et al.178, using wild type and VDR knock-out mice have shown 
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that reduced VDR stimulation increases metalomatrix proteinases (MMP) 2 and 9 and 

reduces tissue inhibitors of MMP, the combined effect of which results in vascular wall 

remodelling, a pro thrombotic environment and an increase in cellular hypertrophy in 

cardiac myocytes.  Thus, vitamin D at the level of the endothelium plays a key role in 

preventing endothelial dysfunction and progressive vascular disease.  In addition to 

these mechanisms, Wu-Wong et al.179 have identified that gene transcription (assessed 

by real time polymerase chain reaction (RT-PCR) and microarray analysis) was 

modulated in human coronary VSMC after 30 h of incubation with the active vitamin D 

compounds paricalcitol and calcitriol.  Both drugs inhibited cell proliferation and 

paricalcitol was found to regulate genes involved in VSMC cell proliferation (IGF1, WT1 

and TGF-β3).  Calcitriol and paricalcitol were found to upregulate the type-B endothelin 

receptor which increases endothelial NO and thus vessel relaxation. 

 

The coexistence of the VDR and extra renal CYP27B1 in endothelial tissues24 has 

prompted the use of vitamin D as a potential therapeutic agent in endothelial 

dysfunction in pre-clinical and clinical studies.  Borges et al.180 have evaluated the 

effect of cholecalciferol in the spontaneously hypertensive rat (SHR).  After treatment 

with 0.125 µg/kg of cholecalciferol for 6 weeks, blood pressure and endothelial relaxant 

responses to ACh were normalized in cholecalciferol treated rats and this response 

was due to the effect of endothelium-derived hyperpolarizing factor (EDHF) whereas in 

non-cholecalciferol treated SHR, the relaxant effect of ACh was mediated by NO.  In a 

separate study by the same authors181, the mechanism of this effect was demonstrated 

to be the restoration of function of calcium dependent K+ channels in VSMC.  In this 

study, SHR, normotensive Wistar rats (NWR) and normotensive Wistar-Kyoto (WKY) 

animals were treated with cholecalciferol for 6 weeks via oral gavage at a dose of 0.125 

μg/kg.  Systolic blood pressure, endothelium contractile response and resting 
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membrane potential were measured at 6 weeks.  Cholecalciferol treated SHR had a 

lower blood pressure and resting perfusion pressure of the mesenteric arterial bed than 

non-treated SHR and either treated or untreated WKY (p<0.05).  In SHR treated with 

cholecalciferol, there was a significant reduction in the contractile response to 

adrenaline.  However, this effect was abolished after the addition of 100 nmol/L of 

apamin, an inhibitor of calcium dependent K+ channels.  This indicates that the blood 

pressure lowering effect of cholecalciferol in SHR is due to recovery of calcium-

dependent K+ channels which have previously been shown to be abnormal in SHR182.  

The resting membrane potential (RMP) of the mesenteric bed of SHR was higher than 

both NWR and WKY both with and without intact endothelium and this was normalised 

in SHR treated with cholecalciferol.  In addition, in mesenteric arterial rings where the 

endothelium was removed, the magnitude of endothelial hyperpolarization induced by 

adrenaline and the α2-adrenergic agonists UK 14,304 was higher in cholecalciferol 

SHR than in non-treated SHR.   

 

Kalliovalkama et al.183 and Jolma et al.184 have made similar observations about the 

importance of calcium-dependent K+ channels in uraemia.  Using WKY rats exposed to 

5/6th nephrectomy, but not treated with any form of vitamin D, Kalliovalkama et al.183 

established that NO mediated vasodilatation in uraemic compared to control rats was 

impaired in mesenteric arteries.  The addition of apamin and charybdotoxin, (both 

inhibitors of calcium-dependent K+ channels) to control and uraemic animals in which 

NO mediated vasodilatation was inhibited by L-NAME, had significantly different 

results.  In the uraemic group, the addition of apamin and charybdotoxin had no effect 

on vasodilatation whereas in the control group, these compounds significantly inhibited 

the vasodilatory response of mesenteric rings.  This indicates that decreased 

endothelium dependent vasodilatation in the 5/6
th
 nephrectomy group was potentially due to 
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the impaired function of calcium-dependent K
+
 channels.  Blood pressure in the control and 

uraemic animals was not significantly different and the authors suggest that uraemia itself 

may be responsible for the differences they observed.   Jolma et al.184 used a very similar 

experimental design but in their experiments, 4 weeks after 5/6th nephrectomy, some 

animals were fed a high calcium diet (3% compared to 0.3% calcium content).  The 

addition of extra calcium to the diet decreased serum concentrations of PTH and 

phosphate and increased ionised calcium but did not affect blood pressure.  This was 

associated with enhanced vasodilatory function in response to ACh and improvement in 

calcium-dependent K+ channel mediated vasodilatation. 

 

Borges et al.181 have elucidated the receptor through which cholecalciferol may be 

exerting its beneficial effects on endothelial function in SHR and in the studies of 

uraemia by Kalliovalkama et al.183 and Jolma et al.184, this receptor also appears to be 

the calcium-dependent K+ channel.  The exact mechanism of the recovery of calcium-

dependent K+ channels in SHR after exposure to cholecalciferol, which could be a 

transcriptional or post translational modification of the channel, has not been 

elucidated, nor has the effect of cholecalciferol or other vitamin D compounds on 

calcium-dependent K+ channel in uraemia.  The finding by Jolma et al.184 that 

increasing dietary calcium improves endothelial vasodilatory response has a number of 

potential explanations including the suppression of PTH and phosphate, rather than a 

direct effect of calcium itself on vascular tone.  However, these studies181 183 highlight 

the multi-faceted endothelial vasodilatory mechanisms and the potential for therapeutic 

intervention with vitamin D compounds. 

  

The effect of vitamin D on endothelial vasodilatory response has been assessed by 

Wong et al.185 who exposed aortic rings from SHR to 1,25 (OH)2 D3 in organ baths 
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before manipulating vascular tone.  The addition of 1,25 (OH)2 D3 improved endothelial 

vasodilatory  function compared to the absence of the drug when aortic rings were 

stimulated by ACh. The authors identified that 1,25 (OH)2 D3 reduces endothelial 

dysfunction by reducing the cytosolic-free calcium concentration in endothelial cells but 

does not affect VSMC.  Thus, there is evidence to suggest that different vitamin D 

compounds may exert a beneficial effect on endothelial function through different 

cellular pathways. 

 

Andrukhova et al.186 have evaluated the effect of calcitriol on eNOS synthesis and 

activity in VDR knock-out mice.  VDR knock-out mice demonstrated lower 

concentrations of NO as a consequence of reduced expression of eNOS which resulted 

in endothelial dysfunction measured by increased aortic stiffness, remodelling of the 

aorta and systolic and diastolic cardiac dysfunction.  In the same study, aortic tissue 

from wild type mice was treated with 10-7 M 1,25 (OH)2 D3 which resulted in a four-fold 

increase in eNOS mRNA.  25 (OH) D at a concentration of 10-7 M was also associated 

with an increase in aortic eNOS mRNA although the increase was lower (2.5-fold) than 

that achieved with 1,25 (OH)2 D3.  Both of these findings were absent in VDR knock-out 

mice indicating the key role of the VDR in the regulation of NOS synthesis.   

 

Experiments by Molinari et al.187 supplement these findings.  In cultured HUVEC cells, 

1,25 (OH)2 D3 was shown in a dose dependent manner to increase NO production a 

process which was mediated by the phosphorylation of intracellular enzymes including 

eNOS, p38, AKT and ERK all of which are recognised to be part of intracellular 

pathways that lead to the synthesis of NO.  The peak in NO production occurred after 1 

minute of incubation with 1,25 (OH)2 D3.  The addition of L-NAME and the VDR 

antagonist ZK159222 abrogated the production of NO indicating key roles for eNOS 
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and the signalling induced by the VDR in the production of NO at the cellular level.  The 

same authors have demonstrated that in porcine endothelial cells, 1,25 (OH)2 D3 

increases endothelial cell proliferation and that this process is mediated by NO, as 

evidenced by the significant reduction of endothelial cell proliferation in the presence of 

L-NAME188. 

1.3.4.1 Clinical studies of the effect of vitamin D on endothelial function 

In clinical studies of both healthy subjects and patients with disease entities (other than 

CKD) with concomitant vitamin D deficiency, vitamin D therapy has produced conflicting 

results on endothelial function.  Tarcin et al.189 studied twenty three healthy, subjects 

with serum 25 (OH) D concentrations < 25 nmol/L who were compared to a control 

group with serum 25 (OH) D concentrations > 75 nmol/L.  Brachial artery FMD was 

impaired at baseline in vitamin D deficient patients (7% vs 11.2% p=0.001) who were 

then supplemented with 300,000 IU of cholecalciferol intra-muscularly for 3 months.  

Serum 25 (OH) D concentrations increased from 20.4 nmol/L to 116.9 nmol/L after 

treatment with cholecalciferol and were unchanged in the control group.  The repeat 

measures of FMD improved to 10.4% with no change in controls (p=0.02)189.   

 

Shab-Bidar et al.190, conducted a randomized controlled trial of 100 patients with type 2 

DM and normal kidney function allocated to daily cholecalciferol fortified yogurt (1000 

IU/day, n=50) compared to unfortified yogurt (n=50) over 12 weeks.  In the fortified 

group, there was a reduction in circulating markers of endothelial dysfunction 

(endothelin-1, E Selectin and MMP-9, p<0.05 for all).  Sugden et al.191, in a randomized 

controlled trial of type 2 diabetic patients with preserved kidney function (creatinine 

clearance > 80 mL/min in both groups) and VDD (serum 25 (OH) D concentrations < 50 

nmol/L), demonstrated that 8 weeks after a single dose of 100,000 IU of ergocalciferol, 
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brachial artery FMD improved by 2.3% with a relatively modest increase in serum 25 

(OH) D concentrations of 15.3 nmol/L in the treatment compared to placebo group 

(p=0.02).  This effect occurred without concomitant changes in PTH and insulin 

sensitivity suggesting that ergocalciferol had a direct effect at the level of the 

endothelium.   

 

In a similar study by Yiu et al.192, 100 patients with type 2 DM were randomized to 

5,000 IU of cholecalciferol (n=50) or placebo (n=50) daily for 12 weeks.  Despite a rise 

in serum 25 (OH) D concentrations after 12 weeks by 87 nmol/L in the treatment group, 

FMD, highly sensitive C reactive protein (hs CRP), circulating endothelial progenitor 

cells and measures of oxidative stress did not differ between the groups.  Witham et 

al.193 randomized patients with type 2 DM and serum 25 (OH) D concentrations < 100 

nmol/L to either placebo (n=22), a single dose of 100,000 IU cholecalciferol (n=19) or 

200,000 IU of cholecalciferol (n=20).  All patients at enrolment had a serum 25 (OH) D 

concentration between 40 and 50 nmol/L.  The maximum serum 25 (OH) D 

concentration was achieved in the 200,000 IU dose group (79 nmol/L vs 63 nmol/L in 

the 100,000 IU group and 54 nmol/L in the placebo group, p<0.001).  Brachial artery 

FMD, HbA1c and insulin resistance were assessed at 8 weeks and did not differ 

between treatment groups although blood pressure and B type natriuretic peptide were 

lower in both treatment groups. 

 

Witham et al.194 treated south Asian women in the UK with low serum 25 (OH) D 

concentrations with cholecalciferol and found no effect of cholecalciferol on 

microcirculatory function assessed by iontophoresis of ACh and SNP combined with 

LDF after 8 weeks.  Subjects in this trial, which excluded patients with an eGFR < 40 

mL/min, received one dose of 100,000 IU of cholecalciferol only.  The rise in serum 25 
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(OH) D concentrations was small (16 nmol/L 95% CI 11 - 21 nmol/L) and this, 

combined with a single high dose compared to sustained therapy with vitamin D, may 

explain the lack of change in endothelial function.   

 

Vitamin D supplementation has been evaluated as a modifier of endothelial function in 

conditions including human immunodeficiency virus (HIV) infection195, peripheral 

vascular disease196, coronary artery disease197 and in patients who have had a 

myocardial infarction198.  FMD was the primary measure of endothelial function in these 

studies but other surrogate markers including the reactive hyperaemia index using 

fingertip plethysmography, hs CRP, von Willebrand factor and E selectin were 

evaluated differentially across these studies. All of these studies failed to find a 

significant beneficial effect of vitamin D on endothelial function and other surrogate 

marker of CV health.  The heterogeneity of patient populations studied, choice of 

clinical end points and vitamin D replacement strategies combined with the small size 

of these studies makes interpreting these results difficult.   

1.3.5 Endothelial dysfunction in chronic kidney disease 

Uraemia affects endothelial function through a number of mechanisms.  L-arginine, the 

substrate for NO synthesis by eNOS, is reduced in CKD due to impaired conversion of 

citrulline to arginine in the proximal renal tubule, an effect mediated by the reduced 

renal mass in CKD199.  The expression of all renal isoforms of NOS is decreased in 

CKD200.  The mechanism for this includes increased intracellular calcium content as a 

consequence of secondary hyperparathyroidism.  This hypothesis was supported by 

Vaziri et al. who demonstrated that, in a 5/6th nephrectomy model of uraemia in rats, 

parathyroidectomy normalized the expression of eNOS in aortic and remnant renal 

tissue200.  In a model of renal mass reduction by 5/6th nephrectomy, Aiello et al.201 
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demonstrated that NO synthesis in the kidney was reduced as a consequence primarily 

of the downregulation of the iNOS isoform and this is likely to have contributed to the 

progressive decline in renal function201.  Findings from a study by Nakayama et al.202 of 

eNOS knock-out mice compared to control animals, both exposed to renal mass 

reduction by a 5/6th nephrectomy, have demonstrated that lack of eNOS is associated 

with progressive kidney disease and that renal mass reduction is associated with a 

reduction in the number of endothelial cells in remnant renal tissue. 

 

In contrast to the reduction of NO in renal tissue in CKD, NO availability in the systemic 

circulation has been shown to increase in CKD in in vitro203-204, in vivo201 and  human  

studies201.  It is postulated that the increased systemic NO is a key mediator of 

excessive bleeding in CKD mediated by NO induced platelet dysfunction205.  Aiello et 

al.201 have demonstrated that in rats subjected to 5/6th nephrectomy, eNOS expression 

in the thoracic aorta was increased and that this might contribute to the increase in 

systemic NO availability which is postulated to provide some protection against the 

hypertension induced by renal mass reduction.  However, Vaziri et al.200 and Kim et 

al.206 did not replicate the finding of increased eNOS in large conduit vessels of rats 

after sub-total nephrectomy (SNx).  This may in part be due to the differential effects of 

models of renal failure in rats on systemic hypertension.  eNOS expression may have 

been upregulated by Aiello et al.201 since their model of 5/6th nephrectomy induced 

hypertension compared to the model of Vaziri et al.200 and Kim et al.206 which used 

renal artery ligation rather than subtotal nephrectomy which is less likely to induce 

hypertension. 

 

In addition to the downregulation of eNOS and reduction in concentrations of its 

substrate L-arginine, the inhibition of eNOS by ADMA is exacerbated in CKD since the 
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kidneys normally clear ADMA from the circulation.  Accordingly, ADMA has been 

identified as an independent predictor of CVD and endothelial dysfunction in CKD207 

and haemodialysis patients208-209.   

 

Endothelial repair, mediated by bone marrow released endothelial progenitor cells 

(EPC), is impaired in CKD which is associated with lower concentrations of circulating 

EPC which have impaired functional ability210-212.  P-cresyl, a uraemic toxin, has been 

implicated in the pathogenesis of endothelial dysfunction in CKD.  In two studies by 

Dou et al., elevated concentrations of p-cresyl, predicted endothelial dysfunction and 

mortality in haemodialysis patients213-214.  Meijers et al.215 studied 100 prevalent 

haemodialysis patients and identified a positive correlation between serum 

concentrations of p-cresyl and endothelial micro particles, reflecting endothelial 

damage.  These findings were supported by in vitro studies of HUVEC cells in which p-

cresyl in a dose dependent manner increased the presence of endothelial 

microparticles, which are released as a consequence of endothelial damage215.    

 

Endothelial function has been shown to predict the severity of renal damage in a rat 

model of 5/6th nephrectomy216.  Endothelial function assessed by vasodilatation of the 

nephrectomised renal arteries to ACh removed at the time of 5/6th nephrectomy 

correlated with subsequent renal damage after renal mass reduction (proteinuria and 

eGFR).  Renal damage did not correlate with contraction to phenylephrine or 

stimulation with SNP suggesting that endothelial vasodilatory function rather than 

changes in smooth muscle structure and function were more predictive of future renal 

damage after 5/6th nephrectomy. 
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CKD is associated with a generalised inflammatory response that has been implicated 

in the pathogenesis of endothelial dysfunction.  The role of CRP in endothelial 

dysfunction was assessed by Yilmaz et al.217 who evaluated a cohort of 304 patients 

with stage 1-5 CKD.  In this study, CRP increased in a linear fashion as stage of CKD 

worsened.  After a median follow up of 40 months, there were 89 fatal and non-fatal CV 

events.  C-reactive protein together with eGFR and PTH were associated with carotid 

IMT and brachial artery FMD.  In a multivariable analysis, the HR for a CV event 

increased by 1.07 per mg/L increase in CRP (95% CI 1.04 – 1.10, p<0.001).  This study 

excluded patients who were taking drugs that have been shown to modify endothelial 

function in CKD including ACE-I, ARB, statins and erythropoietin and so was not 

representative of the general CKD population.  The cross sectional nature of the design 

means that it is difficult to interpret if a reduction in eGFR causes increased 

concentrations of CRP or vice-versa. 

 

In addition to elevated concentrations of CRP, vascular adhesion molecules including 

vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-

1), and E and P-selectin), have been shown to be increased in CKD218-219 and were 

associated carotid IMT and mortality220.  These molecules regulate the initial 

attachment of circulating monocytes to the endothelium and are involved in their 

tethering and transmigration across the endothelium where they become actively 

involved in the atherogenic processes that eventually lead to vascular dysfunction 

1.3.5.1 Clinical studies evaluating endothelial function in chronic kidney 

disease and end stage kidney disease 

Clinical assessments of endothelial dysfunction in CKD, evaluating large conduit artery 

and microcirculatory endothelial function, support the pre-clinical findings of endothelial 
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dysfunction in CKD.  Kawamoto et al.221 examined the relationship between kidney 

function measured by the eGFR and PWV in 310 patients screened during a yearly 

health check.  There was significant linear, inverse relationship between eGFR and 

PWV (r=-0.317, p<0.001).  The effect of eGFR on PWV remained significant in a linear 

regression model after adjusting for traditional risk factors including age, sex, BMI, 

blood pressure and medication use for hypertension (β regression coefficient =-0.171, 

p<0.001). 

 

Recio-Mayoral et al.222 studied endothelial function and markers of inflammation in 154 

patients with different stages of CKD (pre-dialysis, haemodialysis and post-transplant) 

and compared them to 65 age and sex matched controls with normal kidney function.  

FMD was reduced in haemodialysis patients compared to controls, pre-dialysis and 

post-transplant patients.  In pre-dialysis patients, but not haemodialysis patients, eGFR 

correlated with FMD (r=0.36, p=0.001).  In haemodialysis patients, C-reactive protein 

was found to correlate negatively with FMD (r=-0.51, p<0.001) and positively with 

carotid IMT (r=0.50, p<0.001).  The same pattern of correlation was observed when 

patients with DM were excluded from the analysis.  This study supports the hypothesis 

that CKD is associated with both endothelial dysfunction and inflammation.  However, 

the study was cross sectional in nature, without long term follow up and can only 

support an association rather than determining the mechanistic pathway of endothelial 

dysfunction in CKD. 

 

Landray et al.223 have described the association between CKD and circulating markers 

of endothelial dysfunction in a cross sectional study of 334 patients with CKD 

(creatinine > 130 μmol/L) compared to age and sex matched controls both with and 

without CAD.  CRP, fibrinogen, von Willebrand factor and P-selectin were significantly 
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higher in patients with CKD compared to controls while albumin was significantly lower.  

In an adjusted linear regression analysis, there was a significant association between 

fibrinogen, von Willebrand factor, albumin, P-selectin but not CRP and worsening 

kidney function (measured by serum cystatin C concentration).  These circulating 

markers of inflammation are associated with abnormalities of endothelial function but in 

this study, there was no functional assessment of the endothelium and the clinical 

significance of these factors is difficult to ascertain due to the cross sectional nature of 

the study.  The authors postulate that even if these factors are causally associated with 

CVD, their effect is likely to be modest.   

 

Endothelial dysfunction in CKD has been evaluated using techniques that examine 

peripheral microcirculatory beds.  Cupisti et al. have investigated the dermal response 

to the iontophoretic delivery of ACh in 20 patients with CKD224.  Uraemia itself (mean 

serum creatinine in the CKD group 600 µmol/L) in the absence of hypertension was not 

associated with abnormalities in LDF assessment of dermal microvessels.  Since ACh 

has been shown to mediate endothelial derived NO production and that this process is 

blunted in CKD due to dysregulation of eNOS, this surprising finding may be due to the 

preserved prostanoid mediated vasodilatation in the peripheral circulation of CKD225-226.   

This study did not measure and therefore could not evaluate the effect of potential 

confounding variables in the CKD group including CRP and PTH. 

 

The importance of PTH on endothelial function in patients with CKD has been 

demonstrated in a separate study by Rossi et al.227 who evaluated microcirculatory 

endothelial function in 32 non-dialysis requiring patients with stage 3-5 CKD and 32 age 

and sex matched controls using LDF after brachial artery occlusion to generate reactive 

hyperaemia.  Control patients exhibited a significant increase in perfusion measured by 
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forearm dermal LDF compared to patients with CKD.  The systolic blood pressure 

(r=−0.45, p< 0.01) and  PTH (r=−0.38, p=0.05) correlated with impaired endothelial 

function in patients with CKD227. 

 

Dermal microcirculatory endothelial function assessed by LDF has been shown to be 

abnormal in patients with ESKD in the absence of DM or established CVD.  Stewart et 

al.228 studied 63 patients with ESKD and compared abnormalities of microcirculatory 

function by LDF and LDI after PORH in ESKD patients with DM and established CVD 

(n=30) compared to ESKD without evidence of DM orCVD (n=33).  They demonstrated 

that patients with ESKD and the combination of DM and CVD had a distinct low 

frequency, oscillatory pattern in LDF waveforms, known to be consistent with 

endothelial cell dysfunction229, that was present in 50% of patients with ESKD but 

without DM or CVD.  While this study was cross sectional in nature, the authors 

postulate that the presence of these specific waveforms could predict the development 

of DM or CVD in patients with ESKD and therefore may represent an opportunity for 

therapeutic interventions that reduce the risk or progression of DM or CVD. 

 

Pannier et al.230 have demonstrated that endothelial dysfunction correlates with LVM, 

an important predictor of CV events in patients with ESKD231.  In this study of 60 stable 

patients treated with haemodialysis (mean age 54 ± 14 years, male/female ratio 1.3, 

mean dialysis vintage 103 ± 187 months), microcirculatory function was assessed by 

flow debt repayment (FDR) using venous plethysmography.  This was calculated as the 

ratio between the excess hyperaemic flow (the area under the curve between the 

release of an occlusive BP cuff and duration of hyperaemia) and the flow debt (the area 

under the curve between the start and end of ischemia).  LVM, measured by 

echocardiography, correlated positively with time to FDR (r=0.35, p<0.01).  The findings 
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of Pannier et al.230 are in line with those of Poulikakos et al.232 who studied 30 patients 

with CKD (17 pre-dialysis, 13 post-transplant) and 29 age and sex matched controls.  

FMD was significantly lower (3.2 vs. 6.1 % p<0.001) while CRP (3.9 vs. 1.0 mg/L, 

p<0.001) and left ventricular mass index (LVMI) quantified by cardiac were significantly 

higher in the CKD group ultrasound (146.1 vs. 105.3 g/m, p<0.001).  After adjusting for 

age, DM and smoking, FMD was negatively correlated with LVMI (β regression 

coefficient = -0.39, p=0.004).  Both these studies suggest that endothelial function is 

associated with LVH, although the cross sectional nature of the studies can only 

suggest but not confirm a causal association. 

 

1.3.6 Summary  

Endothelial function and dysfunction is a complex interaction of genetic, hormonal and 

biochemical factors many of which are disturbed in the presence of kidney disease.  

Vitamin D and the VDR modulate endothelial function and there is increasing evidence 

for the efficacy of vitamin D therapy, both nutritional and activated, in ameliorating 

endothelial dysfunction.  There is significant evidence for endothelial dysfunction in 

patients with both CKD and ESKD however, existing studies have used a 

heterogeneous approach to quantifying endothelial dysfunction, either using non-

specific serum markers or functional studies of the endothelium, making direct 

comparison between studies and different patient groups difficult.  Currently, most 

clinical evidence involving an assessment of endothelial function is cross sectional 

without sufficient follow-up periods that allow for a robust evaluation of the true 

association of markers of endothelial dysfunction and the development of CV events in 

patients with CKD and ESKD.  
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1.4 The association between chronic kidney disease, vitamin D deficiency and 

endothelial dysfunction – epidemiology and therapeutic intervention with 

vitamin D 

As discussed in section 1.2.5, vitamin D deficiency in CKD is highly prevalent and is 

related to CV morbidity and mortality in patients with both dialysis and non-dialysis 

requiring CKD.  While the excess of CVD in CKD is multi-factorial, an understating of 

the relationship between VDD and endothelial dysfunction in CKD is an important 

epidemiological and therapeutic avenue to pursue as part of the broader effort to 

reduce CV morbidity and mortality in CKD.  This approach is supported by the 

presence of the VDR on VSMC233 and endothelial cells234 which suggests that 

modification of endothelial function by vitamin D is a plausible biological mechanism. 

 

The association between concomitant CKD and VDD on endothelial dysfunction has 

been investigated in both dialysis and non-dialysis requiring CKD.  Chitalia et al.235 

studied the relationship between serum 25 (OH) D concentrations and endothelial 

function in 50 patients with non-dialysis requiring CKD who were not taking vitamin D 

supplements.  The mean age of the patients was 56 years with an equal distribution of 

males and females.  The mean serum 25 (OH) D concentration was 53 ± 33 nmol/L 

and the mean eGFR was 38 ± 15 mL/min.  There was a linear relationship between 

serum 25 (OH) D concentrations and FMD (r=0.44, p=0.001) which was preserved after 

adjusting for traditional CV risk factor including presence of hypertension, sex, age, 

BMI, smoking and hyperlipidaemia (adjusted regression coefficient β = 0.452, p<0.002).  

Patients were further analysed in two groups with either a serum 25 (OH) D 

concentration of greater or less than 37.5 nmol/L.  The two groups had similar baseline 
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characteristics but FMD was lower in the low vitamin D compared to high vitamin D 

group (4.4 ± 2.5% vs. 2.5 ± 1.6%; p = 0.007). 

 

Despite the exclusion of patients taking vitamin D supplements, the study involved 

patients with a wide range of serum 25 (OH) D concentrations (<10 nmol/L to > 125 

nmol/L) and therefore examined endothelial function across a wide range of serum 25 

(OH) D concentrations.  Patients were excluded if they were receiving any form of renal 

replacement therapy (RRT), had DM, heart failure, active inflammation, a recent CV 

event, cancer or autoimmune diseases and while this means the results of the study 

cannot be readily applied across the entire spectrum of CKD patients, it has provided 

an evaluation of the effect of serum 25 (OH) D concentrations in the absence of likely 

confounding variables.   The cross sectional nature of the design can only imply there is 

an association between serum 25 (OH) D concentrations and endothelial function in 

CKD rather than establishing that VDD directly causes endothelial dysfunction or the 

mechanism by which this may be occurring. 

 

The association between serum 25 (OH) D concentrations and endothelial function in 

patients receiving haemodialysis has been evaluated by London et al.236 who studied 

52 prevalent haemodialysis patients (mean age 58 ± 1.9 years) with a median dialysis 

vintage of 46 months and a minimum time on dialysis of 3 months.  The patients in this 

study had not received vitamin D therapy and had all anti-hypertensive agents stopped 

10 days before endothelium assessment were made.  Endothelial function was 

measured by aortic PWV (n=52), brachial artery dispensability (BAD, a measure of 

arterial wall displacement through the cardiac cycle) (n=42) and brachial artery FMD 

(n=37) after hand warming of the non-fistula arm.  Vitamin D deficiency (serum 25 (OH) 

D concentration < 81 nmol/L) was present in 90% of patients.  Serum 25 (OH) D and 
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1,25 (OH)2 D3 concentrations correlated significantly and positively with FMD and BAD 

and negatively with aortic PWV in both uni and multivariate adjusted analyses (the 

latter adjusted for age and systolic BP).  There were no significant associations 

between Ca2+, PO4 or PTH and either aortic PWV, FMD or BAD.   

1.4.1 The effect of vitamin D therapy on endothelial function in chronic kidney 

disease and coexisting vitamin D deficiency 

1.4.1.1 Pre-clinical evidence  

The beneficial effect of vitamin D therapy on endothelial biology and function has been 

evaluated in both in vitro and in vivo studies.  Talmor et al. in two studies237-238 have 

evaluated the effect of calcitriol on the expression of eNOS and inflammatory markers 

in human umbilical vein endothelial cells (HUVEC) cultured with advanced glycation 

end products (AGE) (elevated in both uraemia and DM) and in an environment more 

similar to CKD in which cultures were incubated in a low calcium, high PTH and AGE 

rich environment.  In both sets of experiments, there was a decrease in eNOS 

expression and function as well as an increase in pro inflammatory IL-6 and expression 

of the receptor of AGE (RAGE).  The addition of calcitriol to culture media in both 

studies reversed these findings, improving eNOS expression and function and reducing 

IL-6 mRNA expression.  The beneficial effect of calcitriol was mediated by blunting of 

the stimulatory effect of NF-κB.   

 

Studies of the effect of vitamin D conducted in in vivo models have principally evaluated 

the effect of activated vitamin D compounds.  Wu-Wong et al.239 evaluated the effect of 

paricalcitol and the calcimimetic drug cinacalcet on endothelial function in 5/6th 

nephrectomised rats.  They report a dose dependent increase in thoracic aortic ring 
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relaxation after stimulation of aortic rings with ACh following treatment with increasing 

doses of paricalcitol.  Near normalization of the ACh mediated endothelial relaxation 

occurred at a dose of 0.083 µg/kg of paricalcitol.  This effect was independent of the 

suppression of PTH since cinacalcet suppressed PTH concentrations but did not affect 

arterial vasodilatory responses.  

 

The effect of vitamin D in the form of calcitriol on the cardiac remodelling process was 

assessed by Koleganova et al.240.  In this study, 5/6th nephrectomised rats were treated 

with calcitriol (6 ng/kg) or vehicle for 12 weeks immediately after 5/6th nephrectomy.  

Cardiac remodelling assessed by myocardial capillary deficit and interstitial fibrosis was 

ameliorated in calcitriol treated rats.  This occurred in the absence of changes in blood 

pressure, activation of the RAAS axis and cardiac mass, through pathways involving 

reduced expression of pro-fibrotic mediators (TGF-β), reduced deposition of collagen I 

and III as well as upregulation of VEGF receptor 2. 

 

Macrovascular function assessed by PWV and aortic calcification in uraemic rats has 

been shown to be differentially affected by Vitamin D receptor activators (VDRA), 

independently of Ca2+, PO4 and the calcium phosphate product.  In a study by Noonan 

et al.241, 5/6th nephrectomised rats were randomized to either doxercalciferol or 

paricalcitol given intra-peritoneally 3 times per week for 6 weeks after 5/6th 

nephrectomy.  Doxercalciferol increased PWV and aortic calcification whereas 

paricalcitol had no effect on PWV or aortic calcification.  This study did not include an 

assessment of functional responses to endothelial vasodilating drugs such as ACh but 

does allude to the different mechanistic properties of VDRA compounds in a model of 

uraemia.   
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In experimental uraemia achieved by 5/6th nephrectomy, a novel VDRA, VS-105, has 

been shown by Wu-Wong et al.242 to effectively suppress PTH without significant 

changes in Ca2+ or PO4 and to improve endothelial vasodilatory capacity in response to 

ACh.  Male, Sprague-Dawley rats were exposed to 5/6th nephrectomy and after 6 

weeks were treated for 2 weeks with a thrice weekly oral or intra peritoneal dose of 

either vehicle or VS-105 (dose range 0.004–0.64 mg/kg).  Endothelial function 

improved in a dose dependent manner after treatment with VS-105 with near complete 

normalization of the endothelial vasodilatory response to ACh occurring at a dose of 

0.16 µg/kg.  Treatment with 0.64 µg/kg of VS-105 was associated with a reduction in 

LVH to levels approaching the sham operated control animals. 

1.4.1.2  Clinical evidence 

The hypothesis that vitamin D can improve endothelial function in patients with  both 

haemodialysis and non-dialysis requiring CKD was tested in a study by Marckmann et 

al.120 which compared the effect of 8 weeks of 40,000 IU of weekly cholecalciferol to a 

placebo in patients with both non-dialysis requiring CKD (n=25) and ESKD treated with 

haemodialysis (n=27).  Patients in the control and intervention group were similar at 

baseline including dialysis status, serum 25 (OH) D, 1,25 (OH)2 D3 and PTH, Ca2+ and 

PO4 concentrations.  There was a significant increase in serum 25 (OH) D 

concentrations in the treatment compared to control group (154.7 nmol/L vs 23.5 

nmol/L, p<0.001) and a significant increase in 1,25 (OH)2 D3 concentrations (p<0.01)  

and reduction in PTH (p<0.001) although these changes were only observed in the 

non-dialysis CKD group.  Despite the significant changes in serum vitamin D 

concentrations, there was no reduction in markers of endothelial dysfunction including 

D-dimer, von Willebrand factor, fibrinogen, IL 8 and CRP.  Additionally, blood pressure, 

aortic pulse wave velocity (aPWV) and aortic augmentation index did not change 
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between the two groups.  Specifically, there were no significant differential effects on 

these parameters when comparing treated and untreated patients in the dialysis and 

non-dialysis groups.   

 

While this study evaluated biomarkers of endothelial function and conduit vessel 

parameters, it did not include an assessment of microcirculatory endothelial function.  

In addition the follow-up time was limited to 8 weeks which may have been too short to 

detect meaningful changes in endothelial function and was too short to assess the 

effect of vitamin D on CV outcomes.  The study was powered to detect a 50% 

difference in serum PTH concentration after treatment but was not powered to evaluate 

other parameters.  In addition, the authors report relatively low numbers of subjects 

who underwent assessment of some of the endothelial parameters with fewer than half 

of the patients in both the placebo and treatment groups evaluated for macrocirculatory 

parameters.   

 

The direct effect of ergocalciferol on biomarkers of endothelial function in patients 

receiving chronic haemodialysis has been assessed in a case control study of 40 

patients (mean age 64.4 years, 21 (52.5%) male) by Assimon et al.219.  Twenty 

haemodialysis patients receiving ergocalciferol (average dose 33,125 IU per month) 

were matched on age and ethnicity to 20 patients not receiving ergocalciferol.  There 

were no significant differences in baseline parameters including dialysis vintage and 

both groups were receiving an equivalent dose of doxercalciferol (5 μg/week in the non-

ergocalciferol group, 6 μg/week in the ergocalciferol group, p=0.76)   Serum 25 (OH) D 

concentrations were higher in the ergocalciferol group (90.8 nmol/L compared to 60.2 

nmol/L, p=0.03) but PTH was not significantly different between groups (p=0.84).  In 

patients treated with ergocalciferol, biomarkers of endothelial function including 
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sVCAM-1 (p=0.03), sICAM-1 (p=0.005) and P-selectin (p=0.02) were lower than in 

patients not receiving ergocalciferol.  There was no difference in inflammatory 

biomarkers including IL-6 and TNF-α, however serum concentrations of CRP were not 

measured.  Despite the fact that this study has relatively low numbers in each 

comparison group, it lends support to the hypothesis that ergocalciferol per se has a 

specific and beneficial effect on biomarkers endothelial function.  However, in keeping 

with other literature in this area, the functional response of the endothelium was not 

evaluated and therefore the reduction in serum concentrations of endothelial 

biomarkers in this study cannot be shown to correlate with the functional status of the 

endothelium.  The case control design cannot determine a causal relationship between 

ergocalciferol and endothelial biomarkers and consequently it is difficult to draw 

definitive conclusions from this study about the effect of ergocalciferol in endothelial 

function.   

 

Stubbs et al.243 evaluated the effect of cholecalciferol therapy in 7 prevalent 

haemodialysis patients who, after a 4 week washout from other VDRA compounds, 

received cholecalciferol 50,000 IU twice per week over 8 weeks, with a dose 

adjustment based on serum 25 (OH) D concentrations at 3 and 6 weeks.  Serum 25 

(OH) D concentrations increased after treatment with cholecalciferol from 35 nmol/L to 

137 nmol/L (p<0.0001) and serum 1,25 (OH)2 D3 concentrations increased from 9.4 to 

32.3 pg/mL (p<0.0001) but there was no significant change in serum PTH 

concentrations.  Correspondingly, concentrations of IL-6, IL-8 and TNF-α fell although 

only the reduction in TNF-α attained statistical significance.  CD16+ monocytes, 

implicated in the pathogenesis of CVD in ESKD, were found to express high levels of 

the VDR although the downstream consequences of this were not evaluated.  Despite 

the small size of this study and lack of a comparison arm, an important finding was that 
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inflammatory biomarkers did change after a relatively short duration of cholecalciferol 

therapy and that the achieved serum 25 (OH) D concentration was higher than in 

previous studies.  This suggests that the maximum beneficial response of vitamin D 

therapy on the endothelium may require significantly higher serum concentrations of 25 

(OH) D than have previously been achieved in other studies. 

 

Chitalia et al.244 have assessed the effect of high dose cholecalciferol on endothelial 

function in stage 3-4 CKD and VDD (defined as a serum 25 (OH) D concentration of < 

75 nmol/L).  In this non-randomized, open label study which excluded patients with DM, 

26 patients (mean age 50 years, mean eGFR 41 ml/min, 73 % males) received 2 doses 

of 300,000 IU oral cholecalciferol at 8 week intervals.  Endothelial function was 

assessed by FMD and measures of serum biomarkers associated with endothelial 

function.  After 16 weeks of follow-up, serum concentrations of 25 (OH) D increased 

from 43 ± 16 nmol/L to 84 ± 29 nmol/L (p<0.001) and PTH fell from 10.8 ± 8.6 to 7.4 ± 

4.4 pmol/L, p = 0.001).  Brachial artery FMD improved from 3.1 ± 3.3% to 6.1 ± 3.7% 

(p=0.001) and there were significant reductions in serum concentrations of E-selectin, 

VCAM-1 and ICAM-1 but there no changes in blood pressure, eGFR, PWV or 

augmentation index.  While this study was non-randomized and thus prone to bias, it 

demonstrates the efficacy of cholecalciferol in improving endothelial function in CKD in 

the absence of changes to macrocirculatory parameters.  The specific mechanism of 

action of cholecalciferol on endothelial function was not elucidated and the study 

duration was too short to evaluate the effect of cholecalciferol on CV endpoints. 

1.4.2 Summary  

CKD and concomitant VDD are associated with endothelial dysfunction. Pre-clinical 

studies have demonstrated that vitamin D, in various formulations, can ameliorate 
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endothelial function.  Clinical data so far has failed to demonstrate a clear benefit of 

vitamin D therapy on endothelial function in CKD but the studies have had short follow-

up periods and did not specifically evaluate the functional response of the 

microcirculation to vitamin D, which may better reflect endothelial function in cardiac 

and renal microcirculatory beds.  The studies by Assimon et al.219, Stubbs et al.243 and 

Chitalia et al.244 do however point to a specific effect of ergocalciferol and 

cholecalciferol on biomarkers of endothelial function and this therapeutic avenue 

requires additional study to clarify the potential role of nutritional vitamin D on 

endothelial function in kidney disease.  

1.5 Rationale for experimental procedures 

The available scientific literature has identified that CKD and concomitant VDD is a 

common clinical entity that results in an increased risk of CV morbidity and mortality94 

101 109-110 112-113 245.  Endothelial dysfunction is a complex interplay of traditional and non-

traditional risk factors and there is evidence that endothelial dysfunction is impaired in 

VDD, CKD and when both CKD and VDD coexist222 230 235-236.  Therapeutic intervention 

with vitamin D has the potential to ameliorate endothelial dysfunction in non-CKD and 

CKD populations.  However, there are significant gaps in the current understanding of 

the optimum approach to address endothelial dysfunction when CKD and VDD co-exist.  

This is critically important given the high prevalence of VDD in CKD which is strongly 

associated with CVD.  

 

Peripheral microcirculatory endothelial function has been established as a window into 

the more critical central microcirculatory beds including in the kidneys and myocardium 

and has been identified as a predictor of CV events in CKD159-161 246.  Therefore, a key 

aspect of endothelial function in CKD and concomitant VDD is the assessment of and 
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therapeutic interventions to improve microcirculatory endothelial function. This 

approach has the potential to reduce CV morbidity and mortality in CKD and 

concomitant VDD.  

 

Existing evidence has provided an indication that nutritional vitamin D compounds may 

have a beneficial effect on endothelial function219 243-244 but further studies are required 

to confirm the effect of nutritional vitamin D on microcirculatory endothelial function in 

CKD and the mechanistic pathway through which this may occur.  A recent review162 

has highlighted the need for further assessments of microcirculatory endothelial 

dysfunction in patients with CKD as a method for predicting adverse CV outcomes.    

To date, current clinical research regarding vitamin D and CKD is mainly observational 

and primarily focuses on the suppression of PTH rather than the pleotropic effects of 

vitamin D therapy in CKD.  A prospective, randomized controlled trial of vitamin D 

therapy in CKD patients, with a particular focus on microcirculatory endothelial 

dysfunction, has yet to be conducted. 

 

Investigating endothelial dysfunction in the earlier stages of CKD is logical since the 

function of the vascular endothelium is already abnormal and is likely to be more 

responsive to therapeutic intervention compared to ESKD.  Therapeutic intervention 

with nutritional vitamin D compounds compared to active vitamin D compounds in early 

CKD and concomitant VDD is appealing for several reasons.  At the time of 

experimental design, ergocalciferol was recommended for the treatment of VDD in 

CKD49 and has subsequently been recommended by Nigwekar et al.14 and in the 

KDIGO guidelines for CKD bone mineral disorders247.  Ergocalciferol is cheap 

(compared to the expense of newer active vitamin D receptor activators), safe, and well 

tolerated and can be effectively used to increase serum 25 (OH) D concentrations in 
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CKD7 128.  However, double blind, randomized controlled trials of the effect of 

ergocalciferol in early CKD on endothelial function, an important surrogate for CV 

events, are conspicuously absent from the scientific literature.  Equally, the mechanistic 

pathway through which nutritional vitamin D compounds affect endothelial function in 

non-dialysis requiring CKD has not been adequately described.   

1.6 Hypothesis 

The experimental work conducted and presented in this thesis has been designed to 

further the understanding of the effect of vitamin D in the form of ergocalciferol on 

microcirculatory endothelial function in patients with CKD and concomitant VDD as well 

as the potential mechanistic pathways through which ergocalciferol may be acting.  

Accordingly, two experimental chapters address these issues. 

 

1. The effect on the microcirculation of ergocalciferol versus placebo in chronic 

kidney disease stage 3-4 and vitamin D deficiency: a pilot, double blind, 

randomized controlled trial 

This study is designed to evaluate the effect of oral ergocalciferol compared to a 

placebo over 6 months on microcirculatory endothelial function in patients with CKD 

and concomitant VDD.  The primary outcome is change in microcirculatory endothelial 

function measured by LDF after the iontophoresis of ACh.  Secondary endpoints 

include measures of oxidative stress assessed by skin autofluorescence for AGE 

products, capillary density and flow in the sublingual microcirculation, bone mineral 

parameters, macrovascular parameters and left ventricular hypertrophy. 
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2.  The effect of ergocalciferol on endothelial function in an in vitro and in vivo 

experimental model 

These experiments describe the effect of ergocalciferol in cultured human aortic 

endothelial cells, specifically evaluating the effect of ergocalciferol on eNOS expression 

and function.  An evaluation of the effect of ergocalciferol on endothelial function and 

associated mechanistic pathways in an in vivo model of experimental mild uraemia is 

described. 
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CHAPTER 2 

THE EFFECT ON THE MICROCIRCULATION OF 

ERGOCALCIFEROL VERSUS PLACEBO IN CHRONIC KIDNEY 

DISEASE STAGE 3-4 AND VITAMIN D DEFICIENCY: A PILOT, 

DOUBLE BLIND, RANDOMIZED CONTROLLED TRIAL  
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2   Introduction 

Many more patients with CKD die from CVD than progress to ESKD61.   CV events are 

the major cause of morbidity and mortality in patients with ESKD receiving RRT69.  

Traditional risk factors including age, hypertension, smoking and DM cannot completely 

explain the excess of CVD in patients with CKD.  Vitamin D deficiency is a non-

traditional CVD risk factor in patients with all stages of kidney disease248-250, is highly 

prevalent in patients with both CKD and ESKD89 122 and is associated with elevated CV 

morbidity and mortality in these patient groups101 105-106.   

 

Observational studies101 105-106 109-110 112 117 251-252 have determined that VDD is an 

important risk factor for CVD in CKD and have provided support for the protective role 

of VDRA in reducing the risk of CVD in patients with CKD and ESKD.  However, these 

studies were heterogeneous in design, therapeutic intervention and patient populations 

(CKD and ESKD) and have not elucidated the mechanism by which vitamin D reduces 

CV risk in this patient group.   Furthermore, these studies have principally focused on 

ESKD rather than CKD as well as the effect of synthetic analogues of vitamin D rather 

than ergocalciferol which, at the time of designing this study, was the recommended 

therapeutic approach for the treatment of VDD in CKD49.  

 

Clinical studies in patients without significant kidney disease, have demonstrated that 

endothelial function can be improved after treatment with nutritional forms of vitamin 

D189-191.  In pre-clinical75 and clinical studies230, endothelial dysfunction has been 

identified as a non-traditional risk factor for CVD in CKD with improvements in 

endothelial function reflecting improved global vascular health and a reduced risk of 

CVD155.  The association between VDD and endothelial dysfunction in patients with 
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CKD and ESKD has been indicated in studies demonstrating a correlation between 

reducing concentrations of serum 25 (OH) D and a reduction in endothelial dysfunction 

(see section 1.4).      

 

Interventions that target endothelial function in early CKD compared to more advanced 

or ESKD have the potential to manipulate and improve endothelial function at a stage 

of disease when the vasculature is more likely to be responsive to these therapies.  As 

discussed in section 1.3.2.3, peripheral microcirculatory endothelial function predicts 

the function of the microcirculatory beds in renal and cardiac tissue and can be 

evaluated using non-invasive, bed side techniques that assess dermal capillary beds159-

161 246.   

 

At the time this study was designed, there were no prospective, randomized controlled 

studies investigating the effect of vitamin D on microcirculatory endothelial in patients 

with CKD253.  Assimon et al.219, Marckmann et al.120 and Chitalia et al.244 have 

evaluated the effect of nutritional vitamin D compounds on biomarkers and function of 

the endothelium in CKD and dialysis requiring ESKD but these studies have produced 

conflicting results.  Thus, there is still a gap in the evidence for the efficacy of nutritional 

vitamin D compounds outside their influence on traditional markers of bone mineral 

metabolism and specifically the effect of these compounds on microcirculatory 

endothelial function. 

 

In line with the unanswered questions in this area, a review of CV assessment in 

patients with CKD162 has highlighted the need for further assessments of 

microcirculatory endothelial dysfunction in patients with CKD as a method for predicting 

adverse CV outcomes.  Given that the mechanism of the beneficial effect of vitamin D 
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on the reduction on CV morbidity and mortality in CKD remains unclear, there is a need 

to conduct randomized controlled trials which both conform to guidelines on 

replacement therapy for VDD in CKD and evaluate the effect of nutritional vitamin D 

compounds on microcirculatory endothelial function.  These studies have the potential 

to confirm that microcirculatory endothelial function can improve after vitamin D 

therapy.  Furthermore, studies of this kind could also elucidate clinical markers of 

endothelial dysfunction which could predict future CV events and can be conducted in a 

routine clinical environment. 

 

We therefore conducted an exploratory, double blind, randomized, controlled trial to 

determine if therapy with ergocalciferol compared to placebo improves microcirculatory 

endothelial function in patients with CKD and concomitant vitamin D deficiency.   

2.1 Hypothesis 

The hypothesis of this study was that therapy with ergocalciferol compared to treatment 

with placebo in patients with non-diabetic CKD stage 3-4 and concomitant VDD 

improves microcirculatory endothelial function. 

2.2 Methods 

2.2.1 Study type and setting 

The study design was a single centre, double blind, exploratory randomized controlled 

trial comparing oral ergocalciferol to placebo in patients with CKD stage 3-4 (estimated 

glomerular filtration rate (eGFR) 60-15 mL/min) and concomitant VDD (defined as a 

serum  25 (OH) D concentration of < 40 nmol/L). The study was conducted at the Royal 

London Hospital Kidney Unit, UK, between 1/5/2009 and 1/9/2010.   
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2.2.2 Trial registration and ethical approval   

All patients and healthy volunteers provided written informed consent on enrolment to 

the study.  The study was approved by the Medicines and Healthcare Regulatory 

Authority UK (MHRA reference - 14620/0021/001-0001, EUDRACT number 2008-

008745-38) and was sponsored by Barts and the London NHS Trust.  Ethical approval 

was obtained from the East London Research Ethics Committee (Reference 

09/H0703/9).  The trial was registered at clinicaltrials.gov (Clinical trials number - 

NCT00882401) and conducted in accordance with the Declaration of Helsinki (see 

appendices for full details of approval and registration documents).   

2.2.3 Study design 

A summary of the interventional study design is shown in Figure 5.  After enrolment, 

subjects with CKD underwent a baseline clinical and laboratory assessment prior to 

commencement of the study drug (ergocalciferol or placebo).  The total treatment 

duration for each subject was 6 months.  Subjects were reviewed in a specialist study 

clinic which was run by the principle investigator (Dr Dreyer).  Medical management of 

study patients was supervised by Professor M.M. Yaqoob (Chief investigator).  

Subjects were seen monthly for 6 months before being discharged back to their routine 

kidney disease clinic at which point the nephrologist normally in charge of their care 

took over all clinical decision making.  Subjects underwent a routine clinical review 

during all study visits.  All patients received dietary advice appropriate to their stage of 

CKD from specialist renal dietitians which included advice on dietary intake of calcium, 

phosphate, sodium, potassium and protein. 
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Figure 5 Diagrammatic representation of study procedures for patients with CKD 
stage 3-4 and concomitant vitamin D deficiency enrolled into the randomized 
controlled trial (see section 2.2.6 for details of intervention) 
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In addition, 15 healthy volunteers were recruited to compare baseline endothelial 

function between patients with and without CKD and to refine and optimize the 

diagnostic techniques used to assess the micro and macrocirculation (large conduit 

arteries) in the study.  Healthy volunteers underwent iontophoresis of ACh and SNP 

combined with LDF, skin autofluorescence for AGE products, measures of aPWV, 

blood pressure and basic laboratory tests including serum 25 (OH) D and serum 

creatinine.  Side stream dark field imaging of the sublingual microcirculation was not 

performed since the equipment was not available during the study period for healthy 

volunteers.  Healthy volunteers received no therapeutic intervention and were 

evaluated before the randomized trial commenced.   

2.2.4 Study endpoints 

2.2.4.1 Primary outcome measure 

The primary outcome measure was microcirculatory endothelial function assessed by 

LDF over forearm skin after iontophoresis of ACh and SNP.   

2.2.4.2  Secondary outcome measure 

Secondary outcome measures included skin AF for AGE products, side stream dark 

field imaging of the sublingual microcirculation as well as macrocirculatory parameters 

including blood pressure, pulse pressure, aPWV, LVMI and bone mineral parameters 

(calcium, phosphate and PTH) 

2.2.5 Recruitment of study subjects 

Patients with CKD stage 3-4 with a concomitant serum 25 (OH) D concentration of < 40 

nmol/L were recruited from general outpatient kidney disease clinics at the Royal 
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London Hospital.  Healthy volunteers were recruited by word of mouth and 

advertisements within the Royal London Hospital.  

For patients with CKD the inclusion criteria were: 

1. eGFR between 15 and 60 mL/min for at least 3 months prior to enrolment 

2. Serum 25 (OH) D concentrations <40 nmol/L within 2 months of enrolment 

3. No evidence of DM (fasting blood sugar <7.1, not taking any diabetic medication) 

4. Not receiving any form of either haemodialysis or peritoneal dialysis  

5. No dialysis therapy within the last 3 months 

6. Age > 18 years and < 80 years 

7. Patient agrees not use any medications (prescribed or over-the-counter including 

herbal remedies) judged to be clinically significant by the Principal Investigator 

during the course of the study. 

8. Able to understand and sign the written Informed Consent form. 

9. Able and willing to follow the protocol requirements. 

 

The exclusion criteria were: 

1. Currently receiving oral ergocalciferol at any dose 

2. Received IM ergocalciferol therapy within last 3 months 

3. Pacemaker or any other implanted cardiac device  

4. Serum calcium above 2.6 mmol/L (the upper limit of the Royal London Hospital 

biochemistry laboratory49) 

5. Pregnant or lactating 

6. Known hypersensitivity to ergocalciferol 
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7. Patient known to have a condition which predisposes to hypercalcaemia 

(multiple myeloma, sarcoidosis, other granulomatous disease) 

8. Initial blood pressure of >160/100 mmHg 

9. History of significant liver disease or cirrhosis  

10.  Anticipated requirement for dialysis in 6 months  

11.  Malabsorption, severe chronic diarrhoea, or ileostomy  

12.  Known diagnosis of hypervitaminosis D 

13.  Known to have renal calculi 

14.  Known to have systemic sclerosis, Raynaud’s phenomenon or other disease 

associated with known microcirculatory dysfunction 

15.  Concurrent participation in any other research study 

Women of childbearing potential were required to have a negative pregnancy test 

within 7 days before starting the study drug and, if the pregnancy test was negative, to 

use an effective method of contraception from the time of enrolment until 6 weeks after 

treatment discontinuation.  

 

Healthy volunteers were included if they were between 18-70 years of age, had no 

acute or chronic medical conditions, were non-smokers and were not taking any 

medications.  There was no restriction on serum 25 (OH) D concentrations for the 

recruitment of healthy volunteers.   

2.2.6 Intervention 

The dose of ergocalciferol delivered to the treatment arm was 50,000 IU weekly for one 

month starting on the day of randomisation followed by 50,000 IU monthly for 5 months 

resulting in a total dose of 450,000 IU over 6 months.  The intervention was based on 
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guidelines from K/DOQI for the treatment of VDD in CKD49.  Ergocalciferol was also 

favoured for use in this study since it is plant derived and thus more appropriate for a 

multi-ethnic population with dietary restrictions that are served by the Royal London 

Hospital.  The dose of ergocalciferol was standardized for all patients to ensure equal 

dosing of ergocalciferol over the duration of the study and to avoid the potential 

confounding effect of varying doses of ergocalciferol based on initial serum 

concentrations of 25 (OH) D.  The control group intervention was a matching placebo 

given at the same dose schedule as ergocalciferol.  To ensure blinding was achieved, 

ergocalciferol tablets (Sanofi Aventis, USA) were over-encapsulated into a red capsule 

and a matching placebo capsule containing lactose was manufactured by the pharmacy 

manufacturing department at Ipswich Hospitals NHS Trust.  Compliance was assessed 

by a manual pill count at each study visit.  A planned 2 week washout period for any 

vitamin D containing drugs or over the counter supplements that were likely to include 

vitamin D compounds e.g. multivitamins was included before randomisation, however, 

no subjects required vitamin D washout. 

2.2.7 Randomisation procedures 

The randomisation schedule was developed by an independent accountant.  

Sequentially numbered, sealed envelopes were used to achieve allocation 

concealment.    Ergocalciferol or placebo were stored and dispensed to study patients 

in line with the randomization schedule by the Royal London Hospital clinical trial 

pharmacy team who were blinded to the intervention and allocation as were the 

remainder of the study team.  
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2.2.8 Criteria for withdrawal of subject 

Withdrawal of study subjects and recruitment of new subjects to replace them was 

permitted if any of the following occurred: 

1. Pregnancy occurring during the trial  

2. Episode of symptomatic hypercalcaemia 

3. Adverse reaction to any of the study drugs or procedures as judged by the 

principal investigator. 

4. Patient request to withdraw for any reason 

5. Permanent pace maker or other implantable cardiac device in situ or fitted 

during trial  

6. Patients received dialysis therapy during trial duration 

7. Patients underwent kidney transplantation during trial duration 

8. Patients developed DM during trial duration 

9. Failure to comply with study protocol, as judged by the principal investigator 

2.2.9 Data collection 

Data for the primary outcome measure and for skin AF was collected at baseline, 1, 3 

and 6 months.  Secondary endpoint measures were compared between baseline and 6 

month follow up.  Healthy volunteers underwent all study procedures except SDF 

imaging and cMRI.  All study procedures except cMRI (performed at the London Chest 

Hospital)  were performed at the Royal London Hospital Kidney Unit. 

 

Study data were recorded and archived on a pre-designed case record form.  Data was 

manually transferred to a master study data collection tool using Microsoft Excel and 
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was double entered to reduce transcribing errors.  All data was held securely on 

password protected computers and was only accessible to the study team. 

2.2.10 Medical care of study patients 

All medical care, trial procedures and interventions were provided in the study clinic.  

Changes to non-trial medications were made based on clinical assessment of the 

Principal and Chief investigators.  For example, blood pressure medications were 

adjusted if necessary to ensure patients were treated in line with existing CKD 

guidelines50.  The original treating nephrologist and primary care physician were 

notified in writing that a patient normally under their care had been enrolled into the 

study, were instructed not to prescribe any vitamin D containing medications for the 

duration of the study and to contact the study team to ensure any new prescription of 

medication or inter-current illness was notified. 

2.2.11 Study procedures for the assessment of primary and secondary 

endpoints 

Patients with CKD and healthy volunteers were instructed to wear loose clothing and 

avoid caffeine and nicotine for 12 h prior to assessment.  Subjects were rested for 15 

min in a temperature controlled room (20-21 0C) before study procedures were 

performed.  Clinical assessments were conducted in the following order to avoid any 

systemic effect of drugs delivered during iontophoresis:  SDF imaging of the sublingual 

microcirculation, skin AF, aPWV and iontophoresis. 

2.2.12 Assessment of the primary outcome measure 

Iontophoresis involves the delivery of charged particles to the local microcirculation, 

through the skin, using electrically repulsive forces.  The most commonly used drugs to 
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generate a response from the endothelium are ACh and SNP.  Sodium nitroprusside 

acts as an endothelium independent NO donor facilitating smooth muscle relaxation 

and thus vasodilatation whereas ACh provokes endothelium dependent vasodilatation 

(see section 1.3.1 and Figure 4).  ACh response is therefore considered to reflect 

endothelial function whereas SNP is used as an assessment of maximal vasodilator 

response regardless of endothelial health.   

 

LDF is a non-invasive technique which uses the Doppler principle to measure flux of 

erythrocytes in sub dermal capillaries.  Laser Doppler probes continuously measure a 

defined volume of tissue (approximately 1mm3) and record their output as erythrocyte 

flux in this volume of tissue measured in arbitrary units.  Increased erythrocyte flux after 

iontophoresis recorded by the laser Doppler probes reflects microcirculatory 

vasodilatation.  The combination of these techniques is a validated method for studying 

endothelial function in the microcirculation in various pathologies including CKD224 254-255 

and has been used to assess the effect of therapeutic interventions (including vitamin 

D) in randomized controlled trials194 256-258. 

2.2.13 Practical achievement of iontophoresis and recording of change in flux 

from baseline using laser Doppler flowmetry 

The skin of the volar aspect of the non-dominant forearm was prepared by gentle 

wiping with an alcohol steret to remove a thin layer of dead skin which could 

theoretically interfere with laser Doppler assessment.  The skin was left exposed to 

room air to dry for 60 s after wiping to avoid any vasoactive effects as a result of the 

cooling effect of the alcohol rub. 
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A diagrammatic representation of the iontophoretic equipment is shown in Figure 6.  

Two iontophoresis chambers (Moor Instruments, Axminster, Devon, UK) were adhered 

to the skin of the non-dominant forearm.  The proximal chamber was located 

approximately 3 cm from the lower elbow crease and the chambers were separated by 

at least 5 cm to avoid the vasoactive response at one chamber being detected at the 

other chamber site.   

 

Both chambers were sited to avoid hair, scars, freckles and visible or palpable blood 

vessels in order to maximize the chance of the laser probes obtaining a true recording 

from dermal microvessels.  The Doppler probes (Moor Instruments, UK) were inserted 

into the centre of the iontophoresis chamber and approximately 100 µl per chamber of 

a 1% solution of ACh (Novartis, Frimley, UK) or SNP (Mawdsley Brooks, Doncaster, 

UK) were introduced to the centre of the chamber via 2 holes in its upper surface.  ACh 

was pre-diluted with water for injections and was inserted at the anode.  SNP was pre-

diluted with 5% dextrose and inserted at the cathode.   

 

The laser probes were connected to a laser Doppler monitor (DRT4 – Moor 

instruments) which is in turn connected to a current delivery device (Moor Iontophoresis 

Controller (MIC) 1 – Moor instruments).  The hardware is supported and controlled by 

integrated software (laser Doppler perfusion monitor v1.2, Moor Instruments) which 

allows for simultaneous laser Doppler recording and delivery of the iontophoretic 

protocol via the MIC 1 device.  Doppler probes were calibrated weekly according to the 

manufacturer’s instructions.  
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Figure 6 Diagrammatic representation of experimental iontophoretic equipment 
and connections.  ACh – acetylcholine, SNP – sodium nitroprusside, MIC – Moor 
iontophoresis controller. 
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The iontophoretic protocol used a low current, sequential dose increases of ACh and 

SNP (Table 4) in order to avoid the galvanic effect of drug delivery itself on vasoactive 

changes in the microcirculation259.  Baseline flux of the clinical trial subjects assessed 

by LDF, prior to the iontophoresis of either ACh or SNP, was measured as the mean of 

the flux recorded over the first epoch of 60 s after subjects had been acclimatised as 

described in section 2.2.11.   Following the recording of baseline flux, a 1% solution of 

both ACh and SNP were iontophoresed on the volar aspect of the non-dominant 

forearm with a maximum achieved dose of 75 μA after 7.5 min.   

To eliminate baseline variability, relative percentage change from baseline flux to 

maximum flux after the maximum iontophoretic dose was the primary outcome 

measure194 254.  To assess that there were no significant changes in the level of 

baseline flux induced by either ergocalciferol or placebo (which may have had an effect 

on percentage change from baseline flux to maximum flux after the maximum 

iontophoretic dose), baseline flux was compared at randomisation and after 6 months 

of therapy in both groups (section 2.2.15.2).  An example of the iontophoretic output is 

shown in Figure 7.   

2.2.14 Secondary outcomes measures 

2.2.14.1 Side stream dark field imaging of the sublingual microcirculation. 

This is a non-invasive, real time, imaging tool to assess intra-vital capillary blood flow.  

This technique utilised the Microscan probe (Microscan Medical, Amsterdam, the 

Netherlands).  Side stream dark field imaging is based on reflectance avoidance in 

which the illuminated light and reflected light travel via independent pathways.  A small 

camera probe (0.7cm lens tip) with a replaceable sterile cap was placed under the 

tongue.  The probe is circumferentially surrounded by green (530 nm) light emitting 
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diodes (LEDs). The light from the LEDs is absorbed and reflected by the haemoglobin 

of erythrocytes and results in the ability to observe the flowing cells in individual 

capillary vessels in the sublingual microcirculation (Figure 8 panel A).  Three separate 

video images of 60 s duration were collected.  Each image is taken from a separate 

area of the sublingual capillary bed by gentle repositioning of the camera tip (Figure 8 

panel B).  
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Table 4  Iontophoretic protocol for patients with CKD and healthy volunteers. 

Epoch Current (μA) ACh SNP 

1 0 (baseline) 60 s 60 s 

2 10 30 s 30 s 

3 0 60 s 60 s 

4 20 30 s 30 s 

5 0 60 s 60 s 

6 35 30 s 30 s 

7 0 60 s 60 s 

8 50 30 s 30 s 

9 0 60 s 60 s 

10 75 30 s 30 s 

11 0 60 s washout 60 s washout 

 

 

 

 

 

 

 

 

 



112 
 

0 1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

Placebo

Ergocalciferol

Epoch

F
lu

x
 (

A
U

)

 

Figure 7 Examples of iontophoresis dose response curves.   6 months of treatment 
for 2 patients after delivery of ACh demonstrating greater relative increase in flux in the 
ergocalciferol compared to placebo treated patient.  Flux measured in arbitrary units 
(AU) 
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Figure 8 Reflectance avoidance in SDF imaging.   

Panel A - Illuminating light (green arrow) and reflected light (blue arrow) travel by 
individual pathways.   

Panel B - Still image from SDF imaging video clips of the sublingual 
microcirculation.  Individual capillaries and flow of circulating red blood cells can be 
visualised in real time.  LED – light emitting diode, RBC – red blood cell, WBC – white 
blood cell.   

Panel A 

Panel B 

Scale:        = 25 μm 
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An analysis of the moving cells in the images permits the semi-quantitative 

measurement of red blood cell flow in the capillaries termed the MFI.  Additionally, 

morphological characteristics of the microcirculation, such as the functional capillary 

density (FCD) and microcirculatory vessel morphology, can be measured using 

reflectance avoidance imaging.  SDF images were scored and interpreted according to 

standard consensus guidelines166.   

2.2.14.2 Skin autofluorescence for tissue advanced glycation end products 

This technique utilised the Diagnoptics AGE reader (Diagnoptics, Groningen, the 

Netherlands) which provides a non-invasive measure of AGE products in the skin.  

Advanced glycation end products correlate with measures of skin AF provided by the 

output from the AGE reader device.  These levels are an independent risk predictor of 

microcirculatory complications and are predictors of CVD in kidney disease260-261.  

 

The principal of this technique is the differing reflectance and fluorescent properties of 

AGE moieties.   The AGE reader consists of a small box, containing an excitation light 

source which emits light with wavelengths of 300–420 nm (peak intensity approximately 

370 nm).  To correct for differences in light absorption, skin AF is calculated by dividing 

the amount of emitted light intensity between 420 and 600 nm by the amount of 

excitation light intensity between 300 and 420 nm, expressed as arbitrary units261. 

 

Patients placed their forearm over the light emitting box.  An area of the volar aspect of 

the forearm free from scars or tattoos was selected for measurement.  The skin was 

gently cleaned with an alcohol steret.  The mean of three separate readings of skin 

reflectance is converted to a measure of skin AF.  
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2.2.14.3   Aortic pulse wave velocity measurement 

Patients were prepared as described in section 2.2.11 and in addition were reclined to 

approximately 15 degrees from horizontal.  This technique utilised the Vicorder device 

(Skidmore Medical, Bristol, UK).  For the measurement of the aPWV, a cuff was placed 

around the neck over the carotid artery as close to the sternal notch as was practical 

and a second cuff was placed around the upper thigh.  These cuffs were connected to 

the control box which was in turn connected to a computer running the Vicorder 

software.  With the patient recumbent at 15 degrees from the horizontal plane, the 

distance between the lower border of the neck cuff and the upper border of the thigh 

cuff is recorded, reflecting the approximate distance of the arterial segment being 

measured. 

 

Both cuffs were inflated simultaneously to approximately 70 mmHg.  The cuffs 

remained inflated for between 3 and 5 pulse transmission cycles.  Pulse wave speed 

(transit time), the time taken in s for the pulse wave to travel between the 2 sensor cuffs 

was recorded and the aPWV was generated by dividing the distance between the supra 

sternal notch and the thigh cuff in cm by the transit time in s.  Readings were taken 

from the left and right thigh and the mean value calculated as aPWV.   

2.2.14.4 Cardiac magnetic resonance imaging  

Studies were performed at the London Chest Hospital, supervised by Dr Mark 

Westwood using a Philips Achieva CV 1.5T.  LVM was measured directly from the 

steady state free precession contiguous short axis cine stack (8mm slice thickness and 

2mm inter slice gap, with whole LV coverage) using Philips MR WorkSpace software.  
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LVM is measured directly by this technique and was normalized to body surface area 

(calculated by the Dubois and Dubois formula262) to produce the LVMI.   

2.2.14.5 Clinical measurements 

Weight was measured on calibrated scales (Seca, London UK).  Height was measured 

using a fixed, wall mounted device.  Body mass index (BMI) was calculated as weight 

in kg divided by height in m2.  Blood pressure was measured using a standard mercury 

sphygmomanometer.  The mean of the blood pressure on the left and right arm, each 

taken 5 min apart, with the patient seated and the cuff at heart level, was calculated.  

All equipment was checked and calibrated regularly in line with hospital guidelines.  

The principal investigator recorded and documented all clinical measures. 

2.2.14.6 Biochemical measures 

All biochemical tests were performed in the Royal London Hospital laboratory by a 

Roche modular unit analyser (F. Hoffmann-La Roche Ltd, London, UK).  Serum 25 

(OH) D concentrations were assessed by a quantitative ultra-performance liquid 

chromatography tandem mass spectrometry assay (UPLC-MS).  Serum parathyroid 

hormone (PTH) concentrations were assessed by the Roche E170 intact PTH assay 

(Roche Diagnostics, West Sussex, UK).  Serum creatinine was converted to the eGFR 

using the 4 variable Modification of Diet in Renal Disease (MDRD) equation which 

includes a correction factor for black ethnicity51. 



117 
 

2.2.15 Statistical analysis 

2.2.15.1 Comparison of healthy volunteers and patients with chronic kidney 

disease 

Baseline parameters for healthy volunteers and patients with CKD were tabulated and 

assessed for normality using tests of skewness and kurtosis.  A comparison between 

the 2 groups was made using the Student’s t test, Mann Whitney U test or Chi2 test 

depending on the distribution or nature (continuous or categorical) of the data.  A 2-

tailed p value of < 0.05 was considered statistically significant.  Analysis was conducted 

on Stata version 10 (www.stata.com) and GraphPad Prism software (version 5). 

2.2.15.2 Analysis of clinical trial data 

At the time of designing the study, there was insufficient available evidence of the effect 

of ergocalciferol therapy on microcirculatory parameters to undertake a standard power 

calculation.  The hypothesis was that ergocalciferol would significantly improve the 

function of the endothelium in patients with CKD and concomitant VDD.  Given the 

profoundly low concentrations of serum 25 (OH) D in this patient group, the expected 

rise in serum 25 (OH) D concentrations with ergocalciferol and predicted lack of change 

of serum 25 (OH) D concentrations in the placebo group, we estimated that 30% of 

patients in the placebo group and 80% of the patients in the ergocalciferol group would 

have an improvement in peripheral LDF after iontophoresis of ACh measured by 

relative change from baseline flux after 6 months of therapy.  At 80% power and with a 

significance level of 0.05, this required 19 patients per study arm.  An intention-to-treat 

analysis was performed. 

 

http://www.stata.com/
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The ergocalciferol and placebo groups were compared for similarity at baseline and 

after 6 months of therapy using the Student’s t test for normally distributed variables, 

Mann Whitney tests for non-parametric data and Chi2 tests or Fisher’s exact test for 

proportions.  The absolute difference in baseline flux, prior to the iontophoresis of ACh 

or SNP, was compared at randomisation and after 6 months of therapy in both groups 

by a paired t test.   Differences in serum 25 (OH) D concentrations and change from 

baseline flux measured by LDF after iontophoresis were analysed using a two way 

repeated measures ANOVA test followed by Bonferroni post tests for comparisons at 

pre determined time points (1, 3 and 6 months).  Forearm LDF is expressed as the 

percentage increase in flux from baseline after iontophoresis of ACh.  The findings from 

the 2 way ANOVA with repeated analysis for the primary outcome measure were 

confirmed using a mixed effects model.   

Four patients in the ergocalciferol group and 1 in the placebo group completed an initial 

3 months on therapy before the end of the predetermined study period and this data 

was included in the analysis.  The analysis of data at 6 months includes data from all 

remaining patients who completed the full follow up period.  SDF imaging of the 

sublingual microcirculation was expressed as FCD and MFI as described previously166.  

Differences between LVMI, SDF imaging, skin AF and bone mineral parameters were 

analysed using t tests and Mann Whitney tests based on the distribution of the data.  A 

p value of <0.05 was considered statistically significant.  Analysis was conducted on 

Stata version 10 (www.stata.com) and GraphPad Prism software version 5. 
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2.3 Results 

2.3.1 Healthy volunteers  

Table 5 summarises the differences between healthy volunteers and patients with CKD 

at baseline before treatment with ergocalciferol.  Age, blood pressure and BMI were 

significantly lower in healthy controls compared to patients with CKD while serum 25 

(OH) D concentrations were significantly higher in healthy volunteers.  aPWV and skin 

AF were significantly higher in patients with CKD compared to healthy controls.    There 

was no significant difference in percentage rise from baseline flux after either 

iontophoresis with either ACh or SNP between the two groups although the absolute 

value of percentage change in flux for both ACh and SNP was higher in healthy 

volunteers compared to the CKD group  

2.3.2 Randomized trial data 

Patient screening, enrolment and randomization are shown in Figure 9.  Two patients 

were lost to follow up in the ergocalciferol arm and 1 in the placebo arm.  One patient in 

the placebo arm developed DM during the trial and was withdrawn from the study 

according to pre specified withdrawal criteria.  At baseline, the treatment and placebo 

groups were similar with respect to demographic, clinical (Table 6 and Table 7) and 

laboratory parameters (Table 8).  Systolic blood pressure and mean pack years of 

smoking were higher in the placebo group but this did not reach statistical significance.  

All patients self-reported complete compliance and this was confirmed by manual 

inspection of study medication bottles at each visit.   
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Table 5 Comparison of baseline demographic, clinical and laboratory data 
between healthy volunteers and patients with CKD.  Figures are mean (SD) or 
Number (%).   

 Healthy 

volunteers 

(n=15) 

CKD patients 

(n=38) 

p value 

Age (years) 32.0 (7.9) 47.0 (1.7) <0.0001 

Sex (% male) 9 (60%) 14 (73.7%) 0.15 

Body mass index 25.2 (3.0) 29.9 (1.0) 0.004 

Creatinine (μmol/L) 79 (14.0) 188 (11.0) <0.0001 

25 (OH) D (nmol/L) 60.7 (7.5) 30.3 (5.4) <0.0001 

eGFR (mL/min) 87.5 (6.3) 35.8 (2.4) <0.0001 

Systolic BP (mmHg) 106 (11) 117 (2) <0.0001 

Diastolic BP (mmHg) 65 (6) 70 (1) 0.002 

MAP (mmHg) 77 (5) 86 (2) 0.003 

Pulse pressure (mmHg) 41 (6) 46 (5) 0.016 

% rise from baseline 

flux after IOP to ACh 

1030 (178.9) 786.6 (107.7) 0.22 

% rise from baseline 

flux after IOP to SNP 

797.6 (153.1) 538.8 (90.6) 0.13 

aPWV m/s 7.2 (0.9) 8.5 (0.2) <0.0001 

Skin AF (AU) 2.02 (0.48) 2.93 (0.15) 0.002 

 

MAP = mean arterial pressure, IOP = iontophoresis, ACh = acetylcholine, SNP = 

sodium nitroprusside, aPWV = aortic pulse wave velocity, AF = autofluorescence, AU = 

arbitrary units, eGFR = estimated glomerular filtration rate.  
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Figure 9 Recruitment and randomisation for subjects entering the clinical trial. 
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Table 6 Baseline demographic and clinical data for patients with CKD.  Figures in 
brackets are standard deviation of the mean or % of total in treatment group.   

 
Ergocalciferol 

(n=20) 
Placebo 
(n=18) 

p value 

Age years 45.8 (10.0) 48.8 (12.2) 0.39 

Sex (% male) 14 (60.9%) 14 (73.7%) 0.22 

Body mass index 30.4 (7.1) 29.2 (3.4) 0.51 

Ethnicity   

0.57 Caucasian 5 (21.8%) 6 (31.6%) 

Non-Caucasian 15 (78.2%) 12 (68.4%) 

Cause of CKD   

0.74 

Hypertension 5 (25%) 7 (38.9%) 

Glomerulonephritis 8 (40%) 5 (27.8%) 

ADPKD 2 (10%) 1 (5.6%) 

Other~ 5 (25%) 5 (27.7%) 

Smoking status   

0.59 Current smoker 1 (5%) 2 (11.1%) 

Never/Ex-smoker 19 (95%) 16 (88.9%) 

Presence of 
endovascular stent 
devices 

0 (0%) 1 (5.6%) 
 

0.47 

ACE-I/ARB 16 (80%) 12 (66.7%) 0.33 

β Blocker 7 (35%) 6 (33.3%) 0.57 

Statin use 9 (45%) 7 (38.9%) 0.84 

Anti platelet therapy 2 (10%) 3 (16.7%) 0.48 

Folic acid 1 (5.0%) 1 (5.6%) 1.00 

Nitrate containing 
medications# 

0 (0%) 0 (0%) 1.00 

Medications containing 
Vitamin D 

0 (0%) 0 (0%) 1.00 

Hypertension in past 
history 

15 (65.2%) 11 (57.9%) 0.63 

 

ADPKD – autosomal dominant polycystic kidney disease, ACE-I angiotensin converting 
enzyme inhibitor, ARB – angiotensin receptor blocker, MAP = mean arterial pressure 

# - any form of glyceryl trinitrate, isosorbide mononitrate, isosorbide dinitrate or other 
esters of nitric acid  

~ - Additional causes of CKD in ergocalciferol group:  tubulo-interstitial nephritis (n=1), 
reflux nephropathy (n=2), unknown (n=2).  Placebo group: reflux nephropathy (n=2), 
ischaemic nephropathy presumed due to reno-vascular disease (n=1), unknown (n=2) 
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Table 7 Comparison of micro and macro circulatory parameters in the 
ergocalciferol and placebo groups at baseline.  Figures in brackets are standard 
deviation of the mean. 

 
Ergocalciferol 

(n=20) 

Placebo 

(n=18) 
P value 

Systolic BP (mmHg) 114 (10) 119 (10) 0.11 

Diastolic BP (mmHg) 70 (8) 71 (7) 0.57 

MAP (mmHg) 84 (8) 87 (8) 0.29 

Pulse pressure (mmHg) 45 (7) 48 (6) 0.08 

% rise from baseline 

flux after IOP to ACh 
964.8 (170.0) 785.9 (121.3) 0.85 

% rise from baseline 

flux after IOP to SNP 
455.8 (117.7) 675.1 (152.2) 0.26 

Skin AF (AU) 2.8 (0.9) 3.1 (0.9) 0.26 

aPWV m/s 8.5 (1.1) 8.5 (1.5) 0.66 

LVMI (g/m2)# 96.1 (36.3) 87.5 (174) 0.55 

 

BP = blood pressure, MAP = mean arterial pressure, IOP = iontophoresis, ACh = 
acetylcholine, SNP = sodium nitroprusside, aPWV = aortic pulse wave velocity, AF = 
autofluorescence, AU = arbitrary units.  LVMI – left ventricular mass index 

# n=13 scanned in ergocalciferol group, n=11 scanned in placebo group 
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Table 8 Baseline laboratory data for CKD patients randomized to either 
intervention or placebo. Figures in brackets are standard deviation of the mean. 

 

Ergocalciferol 

(n=20) 

Placebo 

(n=18) 
P value 

Creatinine (μmol/L) 203 (74) 176 (92.7) 0.60 

eGFR (mL/min) 33.0 (13.5) 38.7 (15) 0.39 

25 (OH) D (nmol/L) 35.7 (5.6) 24.5(2.8) 0.09 

Hb (g/dL) 12.8 (1.8) 12.6 (1.4) 0.63 

Calcium  (mmol/L) 2.24 (0.1) 2.23 (0.2) 0.74 

Phosphate (mmol/L) 1.2 (0.3) 1.1 (0.2) 0.16 

PTH (pmol/L) 10.9 (8.7) 12.6 (11.0) 0.60 

CRP (mg/L) 7.6 (17.2) 5.9 (9.8) 0.71 

Urine P:CR 190.8 (276.4) 102.7 (147.0) 0.32 

Total cholesterol 

(mmol/L) 
5.0 (1.5) 4.8 (0.9) 0.36 

LDL cholesterol 

(mmol/L) 
3.2 (1.5) 2.7 (0.9) 0.20 

HDL cholesterol 

(mmol/L) 
1.6 (0.9) 1.3 (0.5) 0.17 

 

eGFR = estimated glomerular filtration rate, Hb = haemaglobin, PTH = parathyroid 
hormone, CRP = C reactive protein, P:CR = protein: creatinine ratio, LDL – low density 
lipoprotein, HDL – high density lipoprotein 
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If patients had not taken a dose of the study medication before a specific clinical visit, 

they were asked to take the medication at the time of the study visit.  This occurred 

once for each of 6 patients in the ergocalciferol group and 5 patients in the placebo 

group in the monthly dosing phase of the study.  In the intensive weekly dosing phase, 

all patients had taken the correct number of tablets in the first month of the study 

although 4 patients in the ergocalciferol arm and 5 in the placebo had missed a 

scheduled dose by 1-2 days either side of the planned dose date.  These minor 

differences were not considered to significantly affect the total dose of ergocalciferol 

received over the study period.  No patients were taking nitrate containing medications 

that may have acted as vasodilators.  

 

Serum 25 (OH) D concentrations were significantly higher in the ergocalciferol group 

compared to placebo group after 1 month of treatment and this difference was 

maintained over the study duration (repeated measures 2 way ANOVA p<0.0001) 

(Figure 10).  At 6 months, PTH concentration decreased in the ergocalciferol group but 

this did not attain statistical significance.  There were no other statistically significant 

changes to key biochemical parameters during the study (Table 9) 

  

Three patients in the ergocalciferol group and 1 in the placebo group required 

intensification of medication for blood pressure control which was achieved with 

increasing doses of medications that the patients were already taking. 

 

 

 



126 
 

Baseline 1 month 3 months 6 months
0

25

50

75

100

125
Ergocalciferol

Placebo

Number at risk
Baseline   1 month  3 months 6 months

Ergocalciferol 20  19  18      14
Placebo 18  18  16      15

*

*
*

Time

2
5
 (

O
H

) 
D

 n
m

o
l/
L

 

Figure 10 Serum concentrations of 25 (OH) D in patients treated with 
ergocalciferol and placebo.  Absolute values 25 (OH) D nmol/L baseline - 
ergocalciferol 35.7 placebo 24.5 (p>0.05).  1 month - ergocalciferol 98.9, placebo 27.8 
(p<0.0001).  3 months – ergocalciferol 82.4, placebo 27.3 (p<0.0001).  6 months – 
ergocalciferol 91.4, placebo 26.2 (p<0.0001).  p values are Bonferroni post-test 
following two way repeated measures ANOVA.  (* = statistically significant) 
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Table 9 Laboratory results in both groups at baseline and after 6 months of therapy.  Figures in brackets are standard 
deviation of the mean. 

 Baseline  6 months 

 Ergocalciferol  
(n=20) 

Placebo 
 (n=18) 

P value 
 Ergocalciferol  

(n=14) 
Placebo  
(n=15) 

P value 

Creatinine (μmol/L) 203 (74) 176 (92.7) 0.60  212 (80) 203.2 (97.2) 0.80 

eGFR (mL/min) 33.0 (13.5) 38.7 (15) 0.39  31.4 (10.6) 35.0 (14.5) 0.44 

25 (OH) D nmol/L 35.7 (5.6) 24.5(2.8) 0.09  91.4 (6.4) 26.2 (3.2) <0.0001 

Hb (g/dL) 12.8 (1.8) 12.6 (1.4) 0.63  12.6 (2.1) 12.4 (1.3) 0.73 

Calcium  (mmol/L) 2.24 (0.1) 2.23 (0.2) 0.74  2.31 (0.2) 2.26 (0.2) 0.43 

Phosphate (mmol/L) 1.2 (0.3) 1.1 (0.2) 0.16  1.2 (0.2) 1.1 (0.1) 0.98 

PTH (pmol/L) 10.9 (8.7) 12.6 (11.0) 0.60  10.3 (7.9) 14.4 (10.2) 0.26 

CRP (mg/L) 7.6 (17.2) 5.9 (9.8) 0.71  7.5 (15.0) 9.7 (19.8) 0.76 

Urine P:CR 190.8 (276.4) 102.7 (147.0) 0.32  154.0 (210.3) 117.5 (126.3) 0.62 

Total cholesterol 
(mmol/L) 

5.0 (1.5) 4.8 (0.9) 0.36  5.0 (1.0) 4.5 (0.9) 0.21 

LDL cholesterol 
(mmol/L) 

3.2 (1.5) 2.7 (0.9) 0.20  2.6 (0.7) 2.3 (0.7) 0.24 

HDL cholesterol 
(mmol/L) 

1.6 (0.9) 1.3 (0.5) 0.17  1.4 (0.7) 1.3 (0.4) 0.67 

eGFR = estimated glomerular filtration rate, Hb = haemaglobin, PTH = parathyroid hormone, CRP = C reactive protein, P:CR = 
protein: creatinine ratio, LDL – low density lipoprotein, HDL – high density lipoprotein. 
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2.3.3 Primary outcome measure 

There was no significant difference in the baseline value of flux, prior to the 

iontophoresis of ACh or SNP, between randomisation and 6 months follow up in either 

the placebo group (mean difference in flux -6.8 AU, 95% CI -20.8 – 7.2, p=0.31) or the 

ergocalciferol group (mean difference in flux -3.8 AU, 95% CI -13.5 – 5.9, p=0.40).   

Treatment with ergocalciferol compared to placebo was associated with a significant 

increase in change from baseline flux measured by LDF after iontophoresis of ACh 

(repeated measures 2 way ANOVA p=0.03) with a significant difference between 

treatment groups observed at 6 months (Bonferroni post-test p=0.012) (Figure 11).  

There were no significant differences in change from baseline flux after the 

iontophoresis of SNP between treatment groups at 6 months (repeated measures 2 

way ANOVA, p=0.18) (Figure 12).  The use of a mixed effects model did not change the 

significance of these findings (change from baseline after iontophoresis at 6 months 

follow up:  ACh p=0.03, SNP p=0.36).  

2.3.4 Secondary outcome measure 

There was an overall increase in skin AF in the placebo group (repeated measures 2 

way ANOVA p=0.03) with a significant difference observed between treatment groups 

at 6 months (Bonferroni post-test p=0.02, Figure 13).  Skin AF did not change between 

baseline and 6 month follow up in the ergocalciferol group.  There were no differences 

in the SDF imaging parameters of FCD or MFI at the end of the study period (Figure 

14).  Pulse pressure was significantly lower in patients treated with ergocalciferol after 6 

months (p=0.01) but systolic, diastolic and MAP were similar between treatment 

groups.  There were no differences in aPWV or LVMI after 6 months of therapy with 

either ergocalciferol or placebo (Table 10). 
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Figure 11 Percentage rise from baseline flux in arbitrary units (AU) after 
iontophoresis of ACh.  Absolute values of percentage change in flux (AU): baseline - 
ergocalciferol 964.8, placebo 785.9 (p>0.05).  1 month - ergocalciferol 979.5, placebo 
690.9 (p>0.05).  3 months – ergocalciferol 543.7, placebo 613.5 (p>0.05).  6 months – 
ergocalciferol 1130.0, placebo 540.6 (p=0.012).  p values are Bonferroni post-test 
following two way repeated measures ANOVA.  (* = statistically significant) 
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Figure 12 Percentage rise from baseline flux in arbitrary units (AU) after 
iontophoresis of SNP.  Absolute values of percentage change in flux (AU): baseline - 
ergocalciferol 455.8, placebo 670.1 (p>0.05).  1 month - ergocalciferol 395.5, placebo 
601.3 (p>0.05).  3 months – ergocalciferol 530.2, placebo 511.2 (p>0.05).  6 months – 
ergocalciferol 445.7, placebo 585.9 (p>0.05).  p values are Bonferroni post-test 
following two way repeated measures ANOVA. 
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Figure 13 Change in skin AF between treatment groups over total study duration.  
Absolute values of percentage change in flux (AU): baseline - ergocalciferol 2.8, 
placebo 3.1 (p>0.05).  1 month - ergocalciferol 2.8, placebo 3.3 (p>0.05).  3 months – 
ergocalciferol 2.9, placebo 2.8 (p>0.05).  6 months – ergocalciferol 2.8, placebo 3.4 
(p=0.02).  p values are Bonferroni post-test following two way repeated measures 
ANOVA.  (* = statistically significant) 
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Figure 14 Sublingual microcirculatory parameters at baseline and after 6 months.   

Panel A - Microvascular flow index (MFI)  

Panel B - functional capillary density (FCD)

Panel A 

Panel B 
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Table 10 Measures of macrovascular parameters in both groups at baseline and after 6 months of therapy.  Figures in 
brackets are standard deviation of the mean. 

 Baseline  6 months 

 Ergocalciferol (n=20) Placebo (n=18) P value  Ergocalciferol (n=14) Placebo (n=15) P value 

Systolic BP 
(mmHg) 

114 (10) 119 (10) 0.11  118 (10) 123 (15) 0.26 

Diastolic BP 
(mmHg) 

70 (8) 71 (7) 0.57  74 (6) 70 (9) 0.15 

MAP (mmHg) 84 (8) 87 (8) 0.29  89 (7) 88 (10) 0.77 

Pulse pressure 
(mmHg) 

45 (7) 48 (6) 0.08  44 (8) 53 (12) 0.01 

% rise from 
baseline flux 
after IOP to 
ACh 

964.8 (170.0) 785.9 (121.3) 0.85  1130.0 (182.3) 540.6 (189.9) 0.012 

% rise from 
baseline flux 
after IOP to 
SNP 

455.8 (117.7) 670.1 (152.2) 0.26  445.7 (88.3) 585.9 (94.7) 0.28 

Skin AF (AU) 2.8 (0.9) 3.1 (0.9) 0.26  2.8 (0.6) 3.4 (0.9) 0.02 

aPWV (m/s) 8.5 (1.1) 8.5 (1.5) 0.66  8.4 (1.3) 8.5 (1.2) 0.78 

LVMI (g/m2) 96.1 (36.3) 87.5 (17.4) 0.55  94.7 (28.4) 110 (54.3) 0.44 

BP = blood pressure, MAP = mean arterial pressure, IOP – iontophoresis, ACh, acetylcholine, SNP, Sodium nitroprusside, AF – 
autofluorescence, aPWV = aortic pulse wave velocity, LVMI – left ventricular mass index,
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2.3.5 Safety data 

Three patients in each group experienced episodes of gout that resolved with 

paracetamol alone.  The highest serum 25 (OH) D concentration recorded was 174 

nmol/L which itself was not associated with concomitant hypercalcaemia. There were 

no recorded episodes of hypercalcaemia during the study (defined as a serum calcium 

> 2.6 mmol/L).  The study drugs (ergocalciferol and placebo) were well tolerated and 

had no reported side effects. 

2.4 Discussion 

This study has demonstrated that endothelial function is impaired in patients with stage 

3-4 CKD and concomitant VDD compared to healthy volunteers.  Skin AF, aPWV and 

mean blood pressure were all higher in patients with CKD compared to healthy 

controls.  Relative change from baseline flux measured by LDF after iontophoresis with 

ACh was numerically but not significantly higher in the healthy controls compared to 

patients with CKD.  This finding has been previously reported by Cupisti et al.224 who 

demonstrated that maximal LDF response after iontophoresis with ACh and SNP was 

similar between healthy volunteers and patients with advanced CKD (median creatinine 

clearance 12 mL/min) but lower in patients in with essential hypertension who did not 

have CKD. This suggests that arterial hypertension rather than CKD may be a stronger 

risk for endothelial dysfunction.   

 

The principal findings from the randomized controlled trial are that ergocalciferol 

therapy over 6 months in patients with CKD and concomitant VDD was associated with 

improved endothelium dependent microcirculatory function and that measures of tissue 

oxidative stress increased in the placebo group but did not change from baseline in the 

ergocalciferol group after 6 months of therapy.  The increase in relative change of flux 
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from baseline after iontophoresis with ACh but not SNP in subjects treated with 

ergocalciferol indicates that improved microcirculatory function occurred through an 

endothelium dependent mechanism.  The enhanced microcirculatory vasodilatation 

may explain the reduction in pulse pressure, a predictor of future CV events263, as a 

result of lower total systemic vascular resistance in peripheral microcirculatory beds.   

aPWV did not decrease in line with the reduction in pulse pressure and this finding may 

reflect the short duration of the study.  Studies with a longer follow up duration are more 

likely to demonstrate a fall in PWV which may occur after a reduction in pulse pressure. 

 

Skin AF, which is associated with reduced oxidative stress, was increased at 6 months 

in the placebo group but unchanged in the ergocalciferol group.  Lower levels of 

oxidative stress lead to improved endothelial function and a reduced risk of future CV 

events261.  This is in line with previous experimental work that demonstrated the 

protective effect of calcitriol in human endothelial cells cultured in the presence of AGE 

products237-238.   

 

Bone mineral parameters, kidney function, CRP, blood pressure and aPWV were 

similar at 6 month follow up suggesting that functional changes to the microcirculation 

occurred independently of these parameters and specifically, occurred independently of 

changes in large conduit arteries.  After 6 months of therapy with ergocalciferol, there 

was no increase in the FCD or MFI within the sublingual microcirculation in either 

group.  This implies that the observed improvements in endothelium dependent 

microcirculatory function in the ergocalciferol group did not involve the recruitment of 

extra functionally relevant capillaries or changes in blood flow but rather that the 

endothelium dependent function of the existing microcirculatory network was improved 
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by the direct effect of ergocalciferol.  These findings suggest that ergocalciferol may 

have a specific mechanism of action within the microcirculation.  

 

The present study is the first of its kind to explore the effect of vitamin D on 

microcirculatory function in patients with CKD and concomitant VDD.  The exclusion of 

patients with DM allowed us to evaluate the effect of ergocalciferol on the 

microcirculation in CKD without the potentially confounding effect of DM on endothelial 

function.  Given that the CKD patients in the present study were normotensive at 

baseline and that this level of blood pressure control was maintained throughout the 

study (as evidenced by similar measure of blood pressure at enrolment and at the end 

of study, combined with minimal changes in hypertensive medications), we have been 

able to assess the effect of ergocalciferol itself on endothelial function in CKD without 

the potential confounding effect of hypertension.   

 

Prospective studies of the effect of nutritional vitamin D in patients with CKD have so 

far failed to show a beneficial effect of vitamin D on endpoints including LVMI, aPWV, 

blood pressure and inflammatory markers31 264.   Despite the prompt and sustained rise 

in serum 25 (OH) D concentrations, significant differences in key microcirculatory 

endpoints were only observed after 6 months of therapy with ergocalciferol.  Previous 

clinical studies using high dose ergocalciferol or cholecalciferol in healthy and diabetic 

patients without significant kidney disease demonstrated improved microcirculatory 

function between 8-12 weeks189-191.  The delay in attainment of significantly improved 

endothelial function in the current study and in the study by Marckmann et al.120, both of 

which achieved significant and rapid elevations in serum 25 (OH) D concentrations, 

may be a direct consequence of the uraemic milieu.  Experimental cellular models of 

kidney disease demonstrated reduced expression of eNOS75 265 266 and increased 
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consumption of NO203.  Therefore, the beneficial biological effects of vitamin D on the 

endothelium may require more time to overcome the endothelial dysfunction induced by 

uraemia.  

 

In contrast to other studies120 133 267-268, proteinuria and PTH in this study did not 

significantly reduce in the ergocalciferol group although there was a trend to an 

increase in PTH in the placebo group.  The differences in vitamin D compounds, dose 

schedule, study duration and populations between those studies and ours may explain 

this variance.  Similar to the studies by Thadani et al.31 and Wang et al.32 which 

evaluated the effect of paricalcitol on LVM in CKD, LVMI did not change between 

treatment groups in the study in this thesis.  Of note, LVMI remained stable in the CKD 

group but increased in the placebo group but neither of these differences reached 

statistical significance which may reflect the small numbers of subjects undergoing 

cMRI.  The enhanced peripheral microcirculatory vasodilatation and concomitant 

reduction in pulse pressure may explain these findings since the LV will theoretically 

work against a reduced after load if the peripheral vascular resistance is reduced. 

2.4.1 Summary and conclusions 

In patients with CKD stage 3-4 and concomitant vitamin D deficiency, high dose 

ergocalciferol therapy over 6 months improved microcirculatory endothelial function and 

maintained tissue oxidative stress at baseline levels compared to a significant increase 

in tissue oxidative stress levels observed in the placebo group.  Ergocalciferol was well 

tolerated and resulted in no significant adverse side-effects.  The primary endpoint of 

the study reflects global vascular health155 and it is therefore logical to consider that the 

observed improvements in microcirculatory endothelial function will translate into 

improved clinical outcomes including reduction in CV events.  To test this hypothesis, 
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studies in patients with CKD and concomitant VDD with longer follow up and 

adequately powered to detect CV end points are now required.    
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CHAPTER 3 

THE EFFECT OF ERGOCALCIFEROL ON ENDOTHELIAL 

FUNCTION IN AN IN VITRO AND IN VIVO EXPERIMENTAL 

MODEL 
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3  Introduction 

Vitamin D compounds, both nutritional and activated have been shown to improve 

endothelial function in a range of in vitro, in vivo and clinical experiments.  The 

mechanism of action of vitamin D on endothelial cells is mediated by both genomic and 

non-genomic pathways.  In cellular experiments by Talmor et al.237-238 and Zitman-Gal 

et al.269, calcitriol increased the expression of eNOS and reduced the expression of IL-6 

when cultured endothelial cells were exposed to culture media containing variously, 

AGE products, hypocalcaemia and elevated PTH.  The mechanism by which this 

occurred was shown to be through the effects of vitamin D on altering intracellular gene 

expression.  Wu-Wong et al.179 and Zitman-Gal et al.269 have demonstrated significant 

alterations in gene expression in coronary VSMC and human endothelial cells exposed 

to VDRA using RT-PCR and microarray analysis. However, these studies did not 

evaluate the effect of VDRA on gene expression in a uraemic cellular milieu.  

Experiments by Dong et al.270 in non-uraemic, oestrogen deficient rats (induced by 

ovariectomy) demonstrated that calcitriol downregulated expression of cyclo-

oxygenase-2 (COX-2) and the thromboxane prostanoid receptor as well as improving 

endothelial vasodilator function in rat renal arteries.  While not evaluating the effect of 

calcitriol in a model of uraemia, this study provides additional evidence for the effect of 

calcitriol at a cellular level through the modulation of gene expression. 

 

In vivo studies that have evaluated vitamin D compounds in experimental uraemia have 

principally used models of advanced uraemia rather than models of the earlier stages 

of CKD  At the time of experimental design, the effect of nutritional vitamin D in the form 

of cholecalciferol on endothelial function had been evaluated in SHR180 but there were 

no studies examining the effect of ergocalciferol on endothelial function in experimental 
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uraemia.  Therefore, the effect of ergocalciferol on endothelial function in experimental 

models of uraemia, and particularly mild uraemia reflecting the earlier stages of CKD, 

remains unclear. 

 

Refining the use of ergocalciferol in CKD and concomitant VDD requires a better 

understanding of the effect and site of action of ergocalciferol within the endothelium.  

Given that vitamin D compounds have a range of pleotropic effects9, there is no 

pecuniary reason for each vitamin D compound to act on similar cellular pathways or to 

generate the same magnitude of effect.  This is supported by the work of Dong et al.270, 

Borges et al.180-181 and Wong et al.185 which has alluded to potential differential 

mechanistic effects of both nutritional and activated vitamin D compounds on 

endothelial cellular responses, albeit in a variety of experimental models.  Specifically, 

studies in spontaneously hypertensive rats (SHR) and 5/6th nephrectomised animals 

using both nutritional and VDRA compounds have identified that the mechanism by 

which these compounds act on the endothelium is multi-faceted and involves changes 

both in vasodilatory and vasoconstrictor mechanisms180-181 239.   

  

The clinical trial reported in chapter two of this thesis demonstrated that in CKD stage 

3-4 and concomitant VDD, treatment with ergocalciferol improved microcirculatory 

endothelial function in the absence of changes in the structural conformation of the 

microcirculation, conduit artery function, blood pressure and traditional markers of bone 

mineral metabolism.  These findings suggest that ergocalciferol has a direct effect on 

the endothelium in a clinical model of mild uraemia, however, the mechanism of this 

effect remains unclear. 
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At the time of experimental design, studies investigating the effect of ergocalciferol on 

endothelial function in uraemia using in vitro and in vivo models were absent from the 

scientific literature.  Experimental data for the effect of ergocalciferol on endothelial 

function in uraemia has the potential to provide support for the hypothesis generated in 

the clinical trial reported in chapter two that ergocalciferol has a direct effect on the 

endothelium and its function..  

 

The experiments described in this chapter are designed to assess the cellular and 

functional response of the endothelium after therapy with ergocalciferol in cultured 

human endothelial cells and in an animal model of mild uraemia.  These experiments 

have a specific focus on the effect of ergocalciferol on eNOS expression and function 

as well as the effect of ergocalciferol on the functional response of the endothelium.   

3.1 Hypothesis 

Ergocalciferol upregulates eNOS expression and nitrite production in cultured human 

endothelial cells and improves endothelial function in an experimental model of 

uraemia. 

 

Cell culture experiments include an assessment of the effect of ergocalciferol on eNOS 

expression and nitrite production compared to the effect of 1,25 (OH)2 D3.  The effect of 

ergocalciferol on endothelial function in an in vivo model of mild uraemia, to evaluate 

potential mechanistic pathways of ergocalciferol on vasodilatory and vasoconstrictor 

aspects of endothelial function, was evaluated.   
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3.2 Methods 

3.2.1 Cell culture technique 

All reagents were obtained from Sigma Aldrich, Gillingham, UK unless stated.  Cell 

cultures were performed in a MARS ScanLaf Cabinet.  Human aortic endothelial cells 

(HAEC, Promocell, UK), were cultured and passaged on 75 cm2 cell culture flasks 

using Endothelial Cell Growth Medium MV (Promocell) which when prepared contained 

endothelial cell growth supplement/heparin (ECGS/H) 0.4 %, Fetal Calf Serum 2 %, 

Epidermal Growth Factor 0.1 ng/mL, Hydrocortisone 1 μg/mL and basic Fibroblast 

Factor 1 ng/mL.  Cells were used within 6 passages.  Antibiotics were added to the cell 

culture medium as follows: 100 U/mL penicillin, 100 µg/mL streptomycin and 0.25 

µg/mL amphotericin B.  The cells were cultured in a humidified incubator (95% air and 

5% CO2) at 37 ºC. When 90% confluence was achieved, cells were placed into 

suspension using 4 mL of trypsin solution and centrifuged at 800 g for 5 min.  The cell 

pellet was resuspended in 1 mL of culture media and then added to 42 mL of cell 

culture media before being gently inverted 8-10 times.  1 mL of this suspension was 

added to each of 42 cell culture wells (7 x 6 well cell culture plates (Costar, London, 

UK).  Cells were cultured in these wells until 90-95% confluent assessed visually by 

light microscopy.  Culture media was replaced every 24 h.   

 

Cell viability was assessed with Trypan blue staining.  Cells from 1 well from each of 7, 

42 well plates was selected at random.  When HAEC had reached the desired 

confluence, cells were gently scraped from each of the selected wells and briefly 

centrifuges for 5 min at 800 g.  The cells were resuspended in fresh culture medium 

and 25 µL of the suspension were added to 25 µL of 0.4% Trypan blue (Invitrogen, 

UK).  From this suspension, 10 µL was transferred onto a standard counting 
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haemcytometer slide.  Viable (non-stained) cells were counted and the mean 

percentage of viable and non-viable cells in all 7 wells was calculated.   

 

When approximately 90-95% confluence of cells was achieved, experimental 

compounds were added to the cultured cells in the cell media.  Vitamin D compounds in 

the form of ergocalciferol and 1,25 (OH)2 D3 were diluted in ethanol to the appropriate 

concentration as per the manufacturer’s instructions.  Two control experiments were 

conducted synchronously by the addition of culture media alone and culture media with 

ethanol, the diluent for the vitamin D compounds, each added at the same volume as 

the vitamin D compounds to the cell media (10 µL for final dilutions). 

 

Two experimental arms were conducted using either high (300 nmol/L ergocalciferol 

and 104 pmol/L 1,25 (OH)2 D3) or low (30 nmol/L ergocalciferol and 52 pmol/L 1,25 

(OH)2 D3) concentrations of vitamin D compounds.  Incubation with 1,25 (OH)2 D3 was 

undertaken to evaluate the comparative effect on HAEC of an active vitamin D 

metabolite.  Experiments were repeated in triplicate. 

 

Cells were incubated with experimental compounds and experiments were terminated 

immediately and at 24 h.  Twenty four hours after the addition of vitamin D compounds, 

the cells were lifted using a cell scraper and the resulting cell suspension was aspirated 

and centrifuged at 1000 g for 5 min in a pre-cooled centrifuge at 40C.  The supernatant 

was aspirated and stored at -200C and the cell pellet immediately frozen at -800 C. 
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3.2.2 Western blotting of human aortic endothelial cells lysates for endothelial 

nitric oxide synthase expression 

The protein content of cultured HAEC was ascertained using a bicinchoninic acid (BCA) 

Protein Assay Reagent.  HAEC pellets were lysed using 125 µL of commercial lysate 

buffer.  Standard concentrations of bovine serum albumin were assayed with protein 

from lysed HAEC according to the instructions by the manufacturer (Thermo Scientific, 

Slough, UK). 

 

A volume of 30 µL of cell lysates were denatured after adding 10 µL of sample buffer 

(NuPage™, LDS sample buffer, Life Sciences, UK) and heated to 99 ºC for 5 min.  A 4-

12%  gradient  gel (NuPage™, Tris Bis Precast gel, Invitrogen) was prepared by rinsing 

the gel in distilled water (dH20) and the gel wells with 3 washes of running buffer 

(NuPage™ MOPS SDS Running Buffer, Invitrogen).  The electrophoresis block was 

assembled and filled with running buffer.  A volume of 25 µL of each protein sample 

was added to each well in the membrane and 7 µL of the molecular weight marker 

(Santa Cruz, UK) was added to well 1. The electrophoresis conditions were 200 V for 1 

h 40 min.  

 

The transfer membrane was correctly sized and immersed in 100% methanol for 30 s 

before rinsing with water for 20 s.  The membrane, filter paper and blotting pads, were 

soaked in NuPageTM Transfer Buffer (Invitrogen). The gel cassette was opened and 

correctly sized filter paper was placed on top of the gel.  The transfer membrane was 

placed on the gel and a further piece of filter paper was placed on the other side of the 

gel. The gel was encased in two blotting pads and inserted into the electrophoresis 

block which was filled with transfer buffer.  The outer chamber of the electrophoresis 
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block was filled with water.  The block was attached to a power supply of 30 V for 1 h. 

The membrane was removed and washed in 20 mL Tris Buffered Saline containing 

Tween (TBST) for 10 s before the addition of 20 mL of commercial blocking buffer 

(Startblock, Perbio Sciences, Northumberland, UK).  The membrane was agitated in 

this solution for 30 min.  The solution was drained and the membrane agitated in 20 µL 

of anti-eNOS antibody diluted to a concentration of 1:1000 in commercial blocking 

buffer for 1 h.  Membrane stripping between the addition of antibodies was achieved by 

washing the membrane for 15 min in Western blot stripping buffer (Thermo Scientific) 

followed by 3 washes of 5 min in TBST. Assessment for anti-β actin antibody utilized 

the same process described above with a 1:4000 dilution of anti-β actin antibody.  The 

membrane was washed a further three times for 5 min in TBST before the addition of 

goat anti-rabbit antibody (Santa Cruz) bound to horse radish peroxidase at a dilution of 

1:2000 for 1 h.  A further three washes of 5 min using TBST were performed.  Bands 

were visualized using EZ-ECL Chemiluminescent Reagent (Perbio Sciences) on ECL 

X-ray film. 

3.2.3 Western blotting for phosho-endothelial nitric oxide synthase activity 

To establish the effect of vitamin D compounds on the phosphorylation of eNOS, HAEC 

were lysed with a modified buffer.  Freshly made buffer contained 5 mL dH2O to which 

the following compounds were added: 100 µL of 1M Tris, 500 µL of 1 M NaCl, 3 mL of 

0.1 M sodium pyrophosphate (NaPPi) , 100 µL of 0.2M ethylenediaminetetraacetic acid 

(EDTA), 1ml of 0.5 M sodium fluoride (NaF) , 100 µL of 1% Triton X-100, 100 µL of 0.1 

M phenylmethylsulfonyl fluoride (PMSF) , 50 µL 0.2 M sodium orthovandate (Na3VO4) 

and 10 µL of a 1 mg/mL protease inhibitor containing benzamidine, antipain, leupeptin 

and aprotinin.  To ensure maximal cell lysis, the cell pellet and 125 µL of lysis buffer 

were repeatedly agitated in an Ependorff vial before freezing at -800C for 10 min.  
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Western blotting was performed as described previously (section 3.2.2) using 15 µL of 

cell lysate.  In addition, the membrane was incubated with a 1:1000 concentration of 

rabbit anti-phospho-eNOS antibody (Ser 1177, Cell Signalling Technology, New 

England Biolabs, Hertfordshire, UK).   

3.2.4 Real time polymerase chain reaction for endothelial nitric oxide synthase 

gene expression 

To establish the fold increase of eNOS expression compared to a control of β actin 

gene expression, real time polymerase chain reaction (RT-PCR) on cell lysates was 

performed.  Messenger RNA (mRNA) was extracted from cell lysates using 

commercially available kits (QIAGEN RNeasy mini kit, UK) according to the 

manufacturer’s instructions.   

 

The concentration of mRNA was determined by measuring absorption at 260 nm and 

assessed for quality by determining the ratio of absorbance between 260 nm and 280 

nm (Biotech Photometer, UK).  A volume of 0.75 µg of mRNA was added to 1.2 µL of 

Oligo DT12-18 primer (0.5 μg/μL)) and 1.2 µL of 100 nM 2'-deoxynucleoside 5'-

triphosphate (dNTP) (all from Invitrogen).  Genetic grade water (Purelab Ultra ELGA, 

Marlow, UK) was added to a total volume of 14 µL.  This mixture was heated to 650C 

for 5 min and then immediately chilled on ice.  The contents were then briefly 

centrifuged before the addition of 4.7 µL of 5x first standard buffer, 2.3µL of 0.1M 

dithiothreitol (DTT) and 1 µL superscript reverse transcriptase (all from Invitrogen).  The 

mixture was briefly agitated before incubation at 420C for 50 min and then inactivation 

at 700C for 15 min. 
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A volume of 2 µL of the resulting cDNA mixture was added to 0.4 µL of gene mix (either 

eNOS (assay ID: Hs01574659_m1) or β actin (assay ID: Hs99999903_m1) Taqman 

gene expression assay (Applied Biosystems, Warrington, UK)), 4 µL of Master mix 

(Thermo Scientific) and 3.6 µL of dH20 to a total volume of 10 µL.  TaqMan probes 

were the reporter probe FAM and the quencher probe VIC.  The mixture was 

centrifuged briefly before RT-PCR was performed on the Applied Biosystems 7900HT 

Fast Real-Time PCR System.  The RT-PCR conditions were one 2 min cycle (50 °C), 

denaturation for 10 min (95 °C) followed by 40 cycles of denaturation (95 °C for 15 s).  

Annealing and extension were performed as a single step (60 °C for 1 min).  Threshold 

cycles were determined for eNOS and β actin genes.  Data were analyzed with Applied 

Biosystems (ABI) 7900HT Prism sequence detector software (sequence detection 

software (SDS) Version 2.3, ABI). 

3.2.5 Measurement of cell supernatant nitrite concentrations 

Nitrite itself is now considered to be biologically active and a reservoir for NO150 271 

(section 1.3.1).  Nitrite is converted to NO at the haem site of eNOS and therefore, 

increased cellular expression of eNOS in the presence of nitrite will lead to an increase 

in NO production, in turn leading to improved endothelial function150.  Nitrite 

concentrations in supernatant from HAEC cultures were analysed by Dr Alex Milsom 

using a chemiluminescent technique272.  Briefly, the concentrations of nitrite and nitrate 

were calculated by adding cell supernatant samples and standards to 0.1 M vanadium 

chloride in 1 M hydrochloric acid refluxing at 90 0C under nitrogen.  Nitrite 

concentrations were then measured using a chemiluminescent technique after the 

addition of samples to 1.5% potassium iodide in glacial acetic acid under nitrogen at 

room temperature.   
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3.2.6 The effect of ergocalciferol in a rat model of mild uraemia 

3.2.6.1 Preparation of rat aortic ring tissue for experimental procedures 

All experiments were conducted according to the Animals (Scientific Procedures) Act 

1986, UK.  Mr Julius Kiswich performed animal husbandry, surgery, administration of 

ergocalciferol or vehicle and, together with Dr T Andrews, animal sacrifice.  Dr T 

Andrews assisted with the preparation of aortic ring tissue.  I designed and conducted 

experimental procedures and performed the data analysis.   

 

Male Wistar rats (approximately 200-250g, Charles River, UK) were fed on a standard 

rodent diet containing 18.7% protein, 1.0% Ca2+, 0.7% NaCl and 3.6 IU 

cholecalciferol/g (Lillico Biotechnology, UK) with free access to water.  Animals were 

subjected to a 5/6th nephrectomy (SNx) for the induction of uraemia in a two stage 

procedure.  This model has been shown to develop endothelial dysfunction216. 

3.2.6.2 Anaesthesia and surgical technique 

In the first stage, animals were anaesthetised by an intra-peritoneal injection consisting 

of 100 mg/mL of ketamine hydrochloride, and 23.3 mg/mL of xylazine hydrochloride 

made up in a 2:1 ratio (ketamine: xylazine) at a dose of 1.5 mL/kg. The left flank of the 

animal was shaved and an incision made. The left kidney was exposed, isolated and 

de-capsulated using small blunt forceps. 

 

Two thirds of the left kidney mass was removed after a flank incision. Upon cessation of 

bleeding, the renal remnant was replaced in its original anatomical position. Isotonic 

saline (2 mL) was introduced into the peritoneum to replace fluid lost during surgery.  

Analgesia was provided pre and post-operatively with Vertegesic, 0.03 mL 
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(buprenorphine, 0.342 mg/mL, (Alstoe Animal Health, York, UK).  In the second stage 

of the renal mass reduction procedure which followed 10 days later, animals were 

prepared in the same way and the right kidney was completely removed. Control 

animals underwent the same procedure without removal of the renal mass however at 

both stages the renal capsule was removed. 

3.2.6.3 Therapeutic intervention with ergocalciferol 

Animals received either ergocalciferol 1,000 IU (UCB Pharma, UK), or vehicle (ethyl 

oleate) by oral gavage at -7 and -2 days before sacrifice.  Mr Kiswich designed the 

randomization protocol for the dosing of either ergocalciferol or vehicle.  All other 

members of the study team were blinded to the allocation.  Unbinding was only 

performed after completion of all study procedures and data collection.  This created 

four experimental groups – sham animals (n=12), of whom half received ergocalciferol 

and half vehicle and SNx rats (n=12) of whom half received ergocalciferol and half 

vehicle.   

3.2.6.4 Measurement of blood pressure 

Arterial blood pressure was measured in separate experiments involving the same four 

experimental groups, study compound dosing and duration of uraemia.  On the day of 

sacrifice, after anaesthesia, a tracheostomy was performed; and an arterial catheter to 

monitor pulse and blood pressure was inserted into the right carotid artery.  MAP was 

measured by attaching the catheter to a pressure transducer (Harvard Apparatus, Kent, 

UK).  Blood pressure was recorded for at least 20 min until a stable value was 

obtained. 
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3.2.6.5 Sacrifice of animals and preparation of aortic rings 

Four weeks following the final stage of the SNx surgery, the animals not used for blood 

pressure measurement were sacrificed by a guillotine to the neck.  The thoracic and 

abdominal aorta was removed and immediately immersed in a bath of standard Kreb’s 

solution which at x10 strength contained NaCl 69 g/L, KCl 3.5 g/L, MgSO47H20 2.9 g/L, 

KH2PO4 1.6 g/L, NaHCO3, 21 g/L and D-glucose (anhydrous) 20 g/L.  This was diluted 

to 1/10 strength with dH20.  2.5 mL/L of 1 mmol/L CaCl2 was added to the reconstituted 

Kreb’s solution.  Aortic tissue was cleaned of all non-vascular tissue and individual ring 

segments of approximately 7 mm were prepared.  Aortic rings were suspended in 

Kreb’s Ringer’s solution containing 2.5 mL/L of 1 mmol/L CaCl2 in a 10 mL organ bath 

apparatus which was heated to 37 0C (Organ bath warmer c-85D, Jencons PLS, UK).  

The aortic rings were suspended on appropriate wires and connected to Lab Chart 

Reader (ADInstruments, Oxford, UK) by an ADInstruments octabridge at 1 g of resting 

tension.  Carbogen (5% CO2, 95% O2) was perfused through the Kreb’s solution. 

3.2.7 Experimental procedures performed on isolated rat aortic rings 

3.2.7.1 Preparation of experimental compounds 

All compounds were prepared with fresh components on the day of experimentation.  

Experimental compounds were initially made up to a 10-2 M concentration as stock 

solutions.  Specific concentrations in the organ baths were obtained after adding an 

initial and then cumulative dose of each experimental compound to achieve a log 

increase in concentration of the compound.  Phenylephrine (PE), ACh and Spermine 

NONOate (SpNO, Cayman Chemical, Cambridge Biosciences, Cambridge, UK) were 

diluted with 0.9% NaCl.  U-46619 (Enzo Life Sciences, Exeter, UK), was dissolved in 

ethanol and then diluted in 0.9% NaCl.  
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3.2.7.2 Tissue preparation 

Tissue preparation and assessment is shown in Figure 15.  Prior to stimulation and 

experimental procedures, aortic rings were maintained at 1 g of basal resting tension. 

To ensure reproducibility of results and viability of tissue, aortic rings were pre-

contracted with 48 mmol/L KCl on 2 occasions separated by a period of 15 min during 

which aortic rings were washed with 3 rinses of Krebs solution at 5 minute intervals.  

Preservation of endothelial function was assessed by contraction of aortic rings with 10 

μM PE and then sequential doses of ACh (1 µmol/L and 10 µmol/L).  Endothelial 

function was considered intact if aortic rings demonstrated > 50% relaxation from the 

contractile state induced by administration of PE.   

3.2.7.3 Experimental procedures 

In order to determine the potential site of action and magnitude of effect of 

ergocalciferol on the vasodilatory and vasoconstrictor response of the endothelium, 

experimental procedures were conducted to assess the pharmacological response of 

aortic tissue after the addition of compounds known to modify both responses in 

endothelial tissue.  The effect of these compounds was assessed in the 4 experimental 

groups previously described (section 3.2.6.3). Prior to the addition of these compounds, 

aortic rings were pre-contracted with PE at a concentration of 10 μM to achieve a 

contractile tension of 90% of the response of the second dose of 48 mmol/L KCl in the 

tissue preparation stage.  Cumulative dose response curves were generated for ACh, 

SpNO, PE, and U-46619 (a thromboxane receptor agonist).   
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Figure 15 Tissue preparation (before long vertical line) and experimental 
procedures (after long vertical line).  Short vertical hatch lines represent double rinse 
of aortic ring with Kreb’s solution.  Experimental procedures were conducted on 
individual aortic rings after each ring had undergone tissue preparation procedures.  
Each ring was subjected to one experimental compound only.  The number of aortic 
rings for each experiment is described in Table 11.   DR = dose response.  PE = 
phenylephrine, ACh = acetylcholine, SpNO = spermine NONOate, U-4 = U-46619 
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The vasodilatory endothelial function of aortic rings was assessed by the cumulative 

addition of ACh (endothelium dependent vasodilator) and an endothelium independent 

NO donor, SpNO.  Endothelial contractile response was assessed by the addition of PE 

and U-46619.  The range of doses used to generate dose response curves was as 

follows: ACh 0.001 µmol/L – 30 µmol/L, SpNO 0.001 µmol/L – 30 µmol/L, PE (pre and 

post nifedipine) 0.001 µmol/L – 30 µmol/L, U-46619 0.001 µmol/L – 0.3 µmol/L.  

Experimental procedures are shown in Figure 15. 

3.2.8 Measurement of biochemical parameters  

Blood was collected on day 0 (sacrifice) and assayed by an automated analyser 

(IDEXX Laboratories Ltd, Horsham, West Sussex, UK) for urea, creatinine, Ca2+ and 

PO4.  Serum PTH concentrations were assayed by an ELISA kit (ALPCO Diagnostics, 

Stratech Scientific Ltd, Newmarket, Suffolk, UK).  Serum 25 (OH) D concentrations 

were assessed by UPLC-MS at the Royal London Hospital (see section 2.2.14.6).  

3.2.9 Statistical analysis 

3.2.9.1 Human aortic endothelial cell culture analysis 

RT-PCR data were analyzed with ABI 7900HT Prism sequence detector software (SDS 

Version 2.3, Applied Biosystems) using the ΔΔCT method to determine the differential 

fold increase of eNOS compared to β actin.  Differences in gene expression and nitrite 

concentrations were assessed by the Student’s t test.   

3.2.9.2 Aortic ring analysis 

Aortic ring tension is expressed in grams (g).  The response of aortic rings to KCl to 

assess reproducibility of contraction is expressed as change in tension in g above 

resting baseline.  Relaxation of aortic rings induced by ACh or SpNO is expressed as 
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the percentage relaxation after pre-determined contractile tension was achieved.  The 2 

way ANOVA with repeated measures test was used to assess differences between 

dose response curves273.  Continuous data were compared as described in section 

2.2.15 or using a one-way ANOVA test for comparison between multiple groups.  The 

effect of agonist response is expressed as the –log EC50 (pEC50) and compared with a 

Student’s t test.  Data are presented as mean ± standard error of the mean (SEM).  The 

“n” refers to the number of aortic rings per experiment.  Statistical analysis for HAEC 

and aortic rings was performed using GraphPad Prism software (version 5).  A p value 

of < 0.05 was considered to represent statistical significance. 

 

3.3 Results 

3.3.1 Real time polymerase chain reaction results for the effect of 

ergocalciferol on endothelial nitric oxide synthase gene expression 

Cell viability assessed by Trypan blue staining indicated that the mean percentage of 

non-viable cells from 7 separate wells of cultured HAEC was 7.7%.  Compared to the 

control experiment, there was a 2.4-fold increase in eNOS expression after 24 h of 

incubation with ergocalciferol 300 nmol/L (p=0.001) compared to a 1.6-fold increase 

with ergocalciferol at a concentration of 30 nmol/L (p=0.12 compared to control).  The 

relative fold increase in gene expression between low and high concentration 

ergocalciferol was significantly different (p=0.002).  At both high and low concentrations 

of 1,25 (OH)2 D3 there was a slight reduction in fold increase of eNOS gene expression 

compared to the control experiment (0.8 fold increase (p=0.59) and 0.6-fold increase 

(p=0.35) at high and low concentrations respectively).  There was no significant 

difference between gene expression in the control and ethanol experiments (p=0.79).  

The fold increase in eNOS gene expression was significantly higher with high 
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concentration ergocalciferol compared to high concentration 1,25 (OH)2 D3 (p<0.001) 

and with low concentration ergocalciferol compared to low concentration 1,25 (OH)2 D3 

(p=0.004, see Figure 16). 

3.3.2 Western blotting for endothelial nitric oxide synthase, phospho- 

endothelial nitric oxide synthase, and β actin 

eNOS protein expression was increased after 24 h incubation with high concentration 

(300 nmol/L) ergocalciferol compared to high concentration 1,25 (OH)2 D3 (104 pmol/L).  

Incubation with high concentration 1,25 (OH)2 D3 resulted in lower eNOS protein 

expression compared to baseline at time 0 (Figure 17).  This is in line with the 

observation that eNOS gene expression by RT-PCR was upregulated after incubation 

with ergocalciferol but not 1,25 (OH)2 D3.  There were no differences in β actin 

expression in all experimental groups.   After incubation with low concentration vitamin 

D compounds, eNOS protein expression at 24 h compared to baseline was increased 

after incubation with both ergocalciferol (30 nmol/L) and 1,25 (OH)2 D3 (52 pmol/L) 

(Figure 17).  Western blotting for the activated phosphorylated form of eNOS comparing 

incubation with high and low concentrations of vitamin D compounds at 24 h 

demonstrated reduced expression of phosho-eNOS with both ergocalciferol and 1,25 

(OH)2 D3 at high compared to low concentration compounds.  Phospho eNOS 

expression was also reduced in the control and ethanol experiments (Figure 18).   
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Figure 16 Fold increase in eNOS expression compared to β actin control gene by 
RT-PCR in cultured HAEC (n=9).  Ergocalciferol 300 nmol/L compared to control 
(p=0.001), ergocalciferol 30 nmol/L compared to control (p=0.12), ergocalciferol 300 
nmol/L compared to ergocalciferol 30 nmol/L (p=0.002).  1,25 (OH)2 D3 52 pmol/L and 
104 pmol/L compared to control, p=0.35 and p=0.59 respectively.  Ergocalciferol 300 
nmol/L compared to 1,25 (OH)2 D3 104 pmol/L (p<0.001).  Ergocalciferol 30 nmol/L 
compared to 1,25 (OH)2 D3 52 pmol/L (p=0.004).  * = statistically significant compared 
to control 
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Figure 17 Western blots of eNOS protein expression in cultured human aortic 
endothelial cells 

Panel A - Western blots for eNOS and β actin from HAEC cell lysates incubated 
with high concentrations of vitamin D compounds.  Comparing expression after 0 
and 24 h after incubation (ergocalciferol 300 nmol/L, 1,25 (OH)2 D3 104 pmol/L).  Key – 
M=marker for eNOS and β actin antibody.  C = control, D= ergocalciferol, 1,25 = 1,25 
(OH)2 D3, E = ethanol.  Therefore D24 refers to cells incubated with ergocalciferol for 24 
h and E0 refers to ethanol at 0 h.  kDa = kilodalton 

Panel B - Western blots for eNOS and β actin from HAEC cell lysates incubated 
with low concentrations of vitamin D compounds.  Comparing expression after 0 
and 24 h after incubation (ergocalciferol 30 nmol/L, 1,25 (OH)2 D3 52 pmol/L).  Key – 
M=marker for eNOS and β actin antibody.  C = control, D= ergocalciferol, 1,25 = 1,25 
(OH)2 D3, E = ethanol.   kDa = kilodalton 
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Figure 18 Western blots for phosho-eNOS and β actin using cell lysates from 
HAEC cultured with high and low concentrations of vitamin D compounds after 
24 h incubation.  M= marker for phospho eNOS antibody, +ve = Positive control – 
phospho-eNOS protein from cultured human umbilical vein endothelial cells, C= control 
experiment, D = ergocalciferol, 1 = 1,25 (OH)2 D3, E = ethanol, L = low concentration 
compounds (30 nmol/L ergocalciferol, 52 pmol/L 1,25 (OH)2 D3), H = high concentration 
compounds (300 nmol/L ergocalciferol, 104 pmol/L 1,25 (OH)2 D3).  Therefore DH = 
cells incubated with high concentration ergocalciferol.  kDa = kilodalton 
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3.3.3 Cell supernatant nitrite concentrations 

There was a significant increase in cell supernatant nitrite concentrations after 

incubation with high compared to low concentration ergocalciferol at 24 h (p=0.04, 

Figure 19).  This difference was not observed after incubation with low compared to 

high concentration 1,25 (OH)2 D3 (p=0.88).  While numerically higher, at 24 h there was 

no statistically significant increase in nitrite between high concentration ergocalciferol 

and high concentration 1,25 (OH)2 D3 (p=0.18, Figure 19). 

3.3.4 The effect of ergocalciferol in a 4 week, 5/6th nephrectomy rat model of 

uraemia - baseline rat physiology and biochemistry  

One animal was lost prior to sacrifice in the SNx group.  The SNx model effectively 

induced uraemia.  Serum creatinine was higher in SNx compared to sham operated 

animals (p<0.0001) but not different between vehicle and ergocalciferol treated animals 

in sham (p=0.18) or uraemic experimental groups (p=0.65) (Figure 20).   

 

Therapeutic intervention with ergocalciferol compared to vehicle increased serum 25 

(OH) D concentrations in both sham (44.4 ± 7.5 nmol/L vs 92.6 ± 16.8 nmol/L 

p=0.0004) and SNx animals (53.0 ± 8.2 nmol/L vs 82.1 ± 17.4 nmol/L, p=0.005 Figure 

20).  There were no differences between serum 25 (OH) D concentrations in vehicle 

(p=0.12) or ergocalciferol (p=0.31) treated sham and SNx animals.  There were no 

differences between experimental groups in systolic blood pressure (one way ANOVA 

p=0.39) (Figure 21).  Two days prior to sacrifice, animal weights differed between sham 

(444.4 g SEM ±12.3) and uraemic rats (406.3 g SEM ±6.0) (p=0.006) but there were no 

differences between ergocalciferol and vehicle treated animals in sham (p=0.17) and 

uraemic (p=0.19) groups (Figure 21).   
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Serum calcium (one way ANOVA p=0.08), phosphate (one way ANOVA p=0.64) and 

PTH (one way ANOVA p=0.63) did not significantly differ between experimental groups 

(Figure 22).   
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Figure 19 Nitrite concentrations in supernatants of HAEC cultured in high and 
low concentration vitamin D compounds after 24 h (mean ± SEM).  * = significant 
compared to ergocalciferol 30 nmol/L (n=9, p=0.04) 
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Figure 20 Serum 25 (OH) D (Panel A) and creatinine (Panel B) concentrations at 
sacrifice.   

Panel A - Sham vehicle compared to sham ergocalciferol p=0.0004.  SNx vehicle 
compared to SNx ergocalciferol (p=0.005).  Sham vehicle compared to SNx vehicle 
(p=0.12).  Sham ergocalciferol compared to SNx ergocalciferol (p=0.31).  n=5-7   

Panel B - Serum creatinine in SNx compared to sham operated animals (p<0.0001).   
Serum creatinine comparing vehicle and ergocalciferol treated sham animals (p=0.18).  
Serum creatinine comparing vehicle and ergocalciferol treated SNx animals (p=0.65)   
SNx = 5/6th nephrectomy model.  n=5-7 
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Figure 21 Systolic blood pressure (Panel A) and weight (Panel B) at sacrifice.    

Panel A - Systolic blood pressure did not differ between experimental groups (one way 
ANOVA p=0.39).  n=5-7   

Panel B - Weights differed between sham and uraemic rats (p=0.0006) but there were 
no differences between ergocalciferol and vehicle treated animals in sham (p=0.17) and 
SNx (p=0.19) groups.  n=5-7 
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Figure 22 Serum calcium (Panel A), phosphate (Panel B) and PTH (Panel C) 
concentrations at sacrifice.   

Panel A - Serum calcium did not differ between experimental groups (one way ANOVA 
p=0.08).  n=5-7   

Panel B - Serum phosphate did not differ between experimental groups (one way 
ANOVA p=0.64).  n=5-7   

Panel C - Serum PTH did not differ between experimental groups (one way ANOVA 
p=0.63).  n=5-7 
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3.3.5 Pre-contraction of aortic rings with 48 mmol/L KCl 

There was an equivalent magnitude of contraction above baseline resting tension after 

the addition of 48 mmol/L KCl in sham animals treated with either vehicle (2.1 ± 0.2 g 

n=20) or ergocalciferol (2.2 ± 0.2 g n=20) (p=0.63).  In uraemic animals, the contraction 

response to KCl was greater in ergocalciferol (2.4 ± 0.1 g) treated animals compared to 

vehicle treated animals (1.9 ± 0.1 g) (p=0.02). 

3.3.6 Endothelial vasodilatory response after the addition of Spermine 

NONOate and acetylcholine 

The addition of SpNO demonstrated that endothelial function was intact and generated 

almost complete relaxation of aortic tissue after pre contraction with PE.   Tissue 

relaxation did not significantly differ overall between vehicle or ergocalciferol treated 

animals in either the sham (2 way ANOVA with repeated measures p=0.33) or SNx 

groups (2 way ANOVA with repeated measures p=0.58) (Figure 23).   

 

There was a significant overall beneficial effect of ergocalciferol compared to vehicle on 

endothelial function as evidenced by increased aortic ring vasodilatation after the 

addition of ACh following pre contraction with PE in both sham (2 way ANOVA with 

repeated measures p=0.012) and SNx animals (2 way ANOVA with repeated measures 

p=0.016) (Figure 23).  A summary of the pEC50 and maximum achieved aortic ring 

relaxation is shown in Table 11. 
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Figure 23 Aortic ring vasodilatory response to SpNO (Panel A) and ACh (Panel 
B).   

Panel A - Tissue relaxation did not significantly differ between vehicle or ergocalciferol 
treated animals in either the sham (2 way ANOVA with repeated measures p=0.33) or 
SNx groups (2 way ANOVA with repeated measures p=0.58).  n=5 per group   

Panel B - Ergocalciferol compared to vehicle improved endothelial relaxation in both 
sham (2 way ANOVA with repeated measures p=0.012) and SNx animals (2 way 
ANOVA with repeated measures p=0.016).  n=5 per group 
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Table 11 The effect of ergocalciferol on the response to vasodilators and vasoconstrictors in sham and SNx operated 
animals.   

Treatment Analysis 

Sham SNx 

ACh 

n=5 

SpNO 

n=5 

PE 

n=5 

U4 

n=5 

ACh 

n=5 

SpNO 

n=5 

PE 

n=5 

U4 

n=5 

Vehicle 

pEC50 7.3 ± 0.06 6.5 ± 0.06 6.8 ± 0.06 6.2 ± 0.2  6.9 ± 0.04 6.4 ± 0.1 6.8 ± 0.07 6.9 ± 0.2 

Max 
97.8 ±  

2.7% 

96.5 ±  

2.6 % 

4.0 ±  

0.07 g 

5.3 ±  

0.4 g 

87.8 ±  

1.4% 

98.7 ±  

5.2% 

3.5 ±  

0.08 g 

6.2 ±  

0.5 g 

Ergocalciferol 

pEC50 7.4 ±0.07 6.5 ± 0.06 6.7 ± 0.07 6.1 ± 0.2 7.2 ± 0.04 6.2 ± 0.1 6.4 ±0.07 7.0 ± 0.2 

Max 
97.9 ±  

2.0% 

98.3 ± 

2.7% 

4.3 ±  

0.09 g 

6.9 ±  

0.5 g 

95.8 ±  

1.3% 

96.6 ±  

5.4% 

4.2 ±  

0.08 g # 

6.2 ±  

0.4 g 

 

# – significant at p=0.03 compared to corresponding vehicle in the SNx group   

ACh – acetylcholine, SpNO = spermine NONOate, PE – phenylephrine, U4 – U-46619, Max – either maximum 
relaxation as a percentage of relaxation after preconstruction with PE or maximum achieved tension in g.  Data are 
mean ± SEM.  pEC50

 – negative logarithm of the EC50.  n numbers are number of individual aortic ring segments per 
experiment.   
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3.3.7 Contractile response of aortic rings to phenylephrine and U-46619  

There was no difference in contractile response to PE between vehicle and 

ergocalciferol treated animals in the sham surgery group (2 way ANOVA with repeated 

measures p=0.98).  In the SNx group, ergocalciferol significantly increased overall 

contractile response to PE compared to vehicle (2 way ANOVA with repeated 

measures p<0.0001) (Figure 24).  The maximum achieved tension in g was increased 

in the SNx group animals treated with ergocalciferol compared to SNx animals treated 

with vehicle  (SNx ergocalciferol 4.2 ± 0.08g, SNx vehicle 3.5 ± 0.08g, p=0.03).    

 

SNx compared to sham operated animals had a significantly different contractile 

response to U-46619 (2 way ANOVA with repeated measures p<0.0001).  The pEC50 in 

SNx animals was higher than in sham operated animals (pEC50 SNx 6.8 ± 0.3, pEC50 

sham 6.2 ± 0.2, p<0.0001).    No significant overall differences in contractile response 

to U-46619 were observed in either sham or SNx animals after treatment with vehicle 

or ergocalciferol (sham group 2 way ANOVA with repeated measures p=0.63, SNx 

group 2 way ANOVA with repeated measures p=0.61) indicating that uraemia rather 

than ergocalciferol per se modulated the response to U=46619 (Figure 24 and Table 

11) 
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Figure 24 Contractile response to PE (Panel A) and U-46619 (Panel B).   

Panel A In the SNx group, ergocalciferol significantly increased overall contractile 
response to PE compared to vehicle (2 way ANOVA with repeated measures 
p<0.0001) but there was no difference in contractile response to PE between vehicle 
and ergocalciferol in the sham group (2 way ANOVA with repeated measures p=0.98).  
n=5 per group.   

Panel B - SNx compared to sham operated animals had a significantly different 
contractile response to U-46619 (2 way ANOVA with repeated measures p<0.0001).   
No significant differences in contractile response were observed in either sham or 
uraemic animals after treatment with vehicle or ergocalciferol (Sham group 2 way 
ANOVA with repeated measures p=0.63, SNx group 2 way ANOVA with repeated 
measures p=0.61).  n=5 per group. 
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3.4 Discussion 

The principle findings from the experimental work described in this chapter are that in 

cultured HAEC, eNOS gene expression measured by RT-PCR is increased at high 

concentrations of ergocalciferol.  There was a lower and non-significant increase in 

expression of eNOS with low concentration ergocalciferol after 24 h incubation.  1,25 

(OH)2 D3 did not lead to a significant  increase in eNOS gene expression.  In line with 

these findings, eNOS protein expression assessed by Western blotting, was increased 

after 24 h compared to 0 h following incubation with high concentration ergocalciferol 

compared to high concentration to 1,25 (OH)2 D3.  eNOS protein expression in Western 

blots was increased at  24 h compared to 0 h following incubation with both low 

concentrations of ergocalciferol and 1,25 (OH)2 D3. The finding that low concentration 

1,25 (OH)2 D3 does not affect eNOS gene expression by RT-PCR is discordant with the 

finding that low concentration 1,25 (OH)2 D3 is associated with an increase in eNOS 

protein expression by Western blotting.  The reason for this is currently unclear but may 

reflect a non genomic effect of low concentration 1,25 (OH)2 D3 on eNOS protein 

expression. 

 

Western blotting for phospho-eNOS at 24 h demonstrated reduced phosphorylation 

after incubation with high compared to low concentration ergocalciferol and 1,25 (OH)2 

D3.  Phospho-eNOS expression at 24 h, while reduced overall was higher after 

incubation with high concentration ergocalciferol compared to 1,25 (OH)2 D3.  However, 

the reduction in phospho eNOS expression in control and ethanol treated cells makes 

these results difficult to interpret. 
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After 24 h, incubation of HAEC with high concentration compared to low concentration 

ergocalciferol increased cell supernatant nitrite concentrations significantly.  However, 

after 24 h incubation of HAEC with high and low concentrations of 1,25 (OH)2 D3, there 

was no significant change in nitrite concentrations. Nitrite concentrations after 

incubation with low and high concentration 1,25 (OH)2 D3 are similar to those seen with 

high concentration ergocalciferol, however there was no concomitant increase in eNOS 

protein production after incubation with 1,25 (OH)2 D3.  This suggests that nitrite 

generation by ergocalciferol but not 1,25 (OH)2 D3 may be eNOS dependent.  However 

the non-eNOS dependent mechanism by which 1,25 (OH)2 D3 produces nitrite is 

currently unclear.  In addition, given that phospho-eNOS expression was inhibited at 

high concentrations of ergocalciferol, the observed increase in nitrite after incubation 

with high concentration ergocalciferol may be due to another cellular pathway.  Webb et 

al.150 have identified that this cellular pathway may involve xanthine oxidoreductase 

however their findings suggest that this pathway becomes important primarily in 

acidotic conditions. 

 

In an SNx model of mild uraemia, ergocalciferol compared to vehicle improved 

endothelial vasodilator response to ACh.  There were no significant differences in 

endothelial vasodilator response in either sham or SNx animals after the addition of a 

direct endothelial NO donor (SpNO) indicating that ergocalciferol improved vasodilator 

function through a direct effect on the endothelium.  Uraemia blunted the contractile 

response of aortic tissue after stimulation with PE but this was overcome in SNx 

animals treated with ergocalciferol, returning contractile function to the level seen in 

sham operated rats.  The effect on the endothelium of the thromboxane A2 mimetic U-

46619 was markedly different in SNx compared to sham operated animals and this 

effect was not changed by ergocalciferol.  This effect was most apparent at a 
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concentration range of 10-7.5 M to 10-6.5 M.  At the maximum concentration range of 10-6 

M to 10-5 M, there was no difference in contractile response in sham and SNx groups.  

This suggests that uraemia per se, rather than ergocalciferol, modifies the endothelial 

response to U-46619. 

 

Systolic blood pressure in sham operated and SNx rats was not significantly 

different.  Similarly, systolic blood pressure did not differ in these experimental groups 

between animals treated with either vehicle or ergocalciferol.  In SNx animals treated 

with vehicle compared to ergocalciferol, both endothelial vasodilatory and contractile 

responses were reduced compared to animals treated with ergocalciferol.  The 

combined effect of the reduction of vasoconstrictor tone with a concomitant reduction in 

vasodilatory function may represent a compensatory mechanism in the early stages of 

uraemia that prevents the development of systolic hypertension.  In addition, the 

reduction in vasoconstrictor tone may represent impaired auto-regulatory function of the 

arterial tree which could expose end organ capillary beds to variations in systemic 

systolic blood pressure and consequent tissue damage.    These studies have 

demonstrated that, in SNx rats, ergocalciferol not only improved the endothelial 

vasodilatory response but also normalised the adrenergic contractile response.  The 

observation that SNx rats treated with ergocalciferol have contractile responses to PE 

almost normalized to those in sham operated animals implies that uraemia desensitizes 

the target of PE (α-adrenergic receptor) and that ergocalciferol overcomes this 

desensitization.  This finding suggests that ergocalciferol has a beneficial effect on 

vascular function both through improving the endothelial vasodilator response and by 

restoring normal contractile function and therefore vascular auto-regulation. The exact 

effect by which this process occurs is unclear but may include an increase in alpha 

adrenergic receptor expression via a genomic effect of ergocalciferol or an 
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improvement in the function of existing adrenergic receptors through a post 

translational modification by ergocalciferol.  

 

It would be expected that untreated uraemic animals would go on to develop systolic 

hypertension as a consequence of progressive kidney failure.  The fact that systolic 

blood pressure was not different between sham operated and SNx rats and that 

ergocalciferol did not reduce systolic blood pressure in SNx rats may reflect the 

relatively short duration of uraemia in these studies and the relatively short duration and 

dose of ergocalciferol.  In SNx operated, vehicle treated rats, it is reasonable to 

hypothesise that with a longer duration of uraemia, the balance of endothelial response 

will change towards the development of systolic hypertension through an increase in 

vasoconstrictor tone and a decrease in vasodilator tone.  This hypothesis is supported 

by Wu-Wong et al.239 who demonstrated increased systolic blood pressure in SNx 

treated rats (181.0 ± 10.0 mmHg) compared to sham operated rats (127.8 ± 3.8 mmHg) 

with a 6-week duration of uraemia.  In addition, a higher dose and longer treatment with 

ergocalciferol may have altered the vascular response in favour of vasodilatation 

compared to vasoconstriction which may lead to a reduction in systolic blood pressure 

in SNx operated rats treated with ergocalciferol. 

 

In contrast to the effect of ergocalciferol on vasoconstrictor tone after stimulation with 

PE, ergocalciferol did not modulate the response to stimulation of aortic rings with U-

46619. Thromboxane A2 receptor activation by U-46619 in SNx operated animals 

caused a relatively greater increase in aortic ring tone at lower concentrations than in 

sham operated animals.  This may be due to the enhanced sensitization of 

thromboxane A2 receptors to U-46619 in uraemia although the exact mechanism by 

which uraemia increases sensitization to U-46619 is currently unclear.   
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The results of the in vitro and in vivo experiments support the direct and beneficial 

effect of ergocalciferol on endothelial function.  This is mediated by the effect of 

ergocalciferol on the increased expression and function of eNOS in cultured endothelial 

cells.  The observation that ergocalciferol improves endothelial vasodilatory function 

after the addition of ACh in an in vivo model of mild uraemia implies that ergocalciferol 

is exerting its effect on the endothelium through a similar mechanism involving eNOS 

expression and function.  Ergocalciferol, through its upregulation of eNOS gene 

expression, concomitant effect on the increased expression of eNOS protein and 

changes in nitrite concentrations has the potential to improve endothelial function.  

Nitrite itself, as well as a functional mediator of endothelial vasodilatation, is also a 

store for NO150.  Therefore, ergocalciferol may exert its effects through the dual 

pathways of increased stores and availability of NO.   

 

The findings reported in this chapter support those of the clinical trial described in 

chapter two of this thesis in which iontophoresis of ACh demonstrated improved 

function of the endothelium in the ergocalciferol but not placebo group.  In the in vivo 

experimental model of endothelial function and in the clinical trial described in chapter 

two of this thesis, the improvements in endothelial function after treatment with 

ergocalciferol occurred independently of changes in blood pressure, Ca2+, PO4 and 

PTH.  Jolma et al.184 274 and Koobi et al.275 have demonstrated that endothelial 

vasodilatory responses are improved by increasing dietary supplementation of calcium 

in experimental uraemia through effects on the calcium-dependent K+ channel.  Given 

that serum calcium did not change in the experiments presented in this thesis, this 

supports the concept that ergocalciferol is exerting a direct and beneficial effect on 

endothelial function independently of serum calcium concentrations and that the effect 
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of ergocalciferol maybe a transcriptional or post–translation effect on the calcium-

dependent potassium channel as well as on the expression and function of eNOS.    

3.4.1 Summary and conclusions 

The experiments described in this chapter provide preliminary evidence for the effect of 

ergocalciferol on endothelial function and demonstrate its beneficial effect on 

endothelial responses in an in vitro model of cultured HAEC and in an in vivo model of 

mild uraemia. This mechanism involved increased expression and function of eNOS as 

well as modulation of both endothelial vasodilator and vasoconstrictor tone.  The effect 

of ergocalciferol on endothelial function in an in vivo model of mild uraemia was 

independent of changes in blood pressure and bone mineral parameters. 
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CHAPTER 4 

DISCUSSION AND FUTURE DIRECTIONS 

 

 

 

 

 

 

 



 

178 
 

4 Summary of principal findings 

The experimental procedures in this thesis have demonstrated the following novel 

findings: 

1.  In a double blind, randomized controlled trial of ergocalciferol compared to placebo 

in patients with CKD stages 3-4 and concomitant serum 25 (OH) D concentrations of < 

40 nmol/L, ergocalciferol compared to placebo resulted in a rapid increase in serum 25 

(OH) D concentrations which after 6 months of therapy was accompanied by a 

significant improvement in microcirculatory endothelial function.  Skin autofluorescence 

was significantly increased in the placebo group after 6 months of therapy but was 

unchanged from baseline in the ergocalciferol group.  These findings occurred 

independently of changes in blood pressure, large conduit artery function, bone mineral 

parameters, left ventricular hypertrophy and the recruitment of new, functionally 

relevant microcirculatory vessels. 

 

2.  In HAEC incubated with high concentration ergocalciferol there was a 2.4 fold 

increase in eNOS gene expression, increased expression of eNOS protein and an 

increase in cell supernatant nitrite concentrations.  These changes were not induced by 

1,25 (OH)2 D3.  In an in vivo model of mild uraemia induced by 5/6th nephrectomy with a 

shorter period of uraemia compared to other studies, ergocalciferol compared to vehicle 

improved endothelium dependent vasodilatation after exposure to ACh.  Ergocalciferol 

modulated the contractile response of rat aortic rings to stimulation with phenylephrine 

in uraemic but not control animals.  Uraemia per se, rather than ergocalciferol, 

modulated endothelial responses to U-46619.  In line with the findings of the clinical 

trial presented in chapter two, the modulation of vascular tone by ergocalciferol 

occurred in the absence of changes in blood pressure, Ca2+, PO4 and PTH. 
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This chapter discusses the relevance of these findings in the context of the available 

scientific literature and describes further experimental work which could be conducted 

to address questions which have arisen from the experiments described in this thesis. 

4.1 The effect on the microcirculation of ergocalciferol versus placebo in 

chronic kidney disease stage 3-4 and vitamin D deficiency: a pilot, double 

blind, randomized controlled trial  

In contrast to other studies in the field120 219 243-244, the clinical trial presented in this 

thesis has synchronously evaluated macrocirculatory and microcirculatory endothelial 

changes as well as the structural conformation of the endothelial capillary network 

using SDF imaging of the sublingual microcirculation.  It is interesting to note that the 

sublingual MFI in patients with CKD at baseline (MFI mean 2.4, range 1.5-3.0) in the 

clinical trial in this thesis was lower than that reported for normal healthy controls 

regardless of age (<25 years MFI = 2.85, range 2.75–3.0, > 55 years MFI = 2.81, range 

2.66–2.97) and for patients with stage 5 CKD (MFI = 3.0, range 2.78–3.0)  by Reynolds 

et al.171.  The fact that these two studies were not conducted synchronously combined 

with the small numbers of patients in each study are the most likely explanations for 

this finding, rather than a true biological difference as a consequence of CKD stage 3-4. 

 

The findings from our clinical study indicate that the maximum benefit of ergocalciferol 

on endothelial function occurred at 6 months despite a prompt and sustained rise in 

serum 25 (OH) D concentrations at 1 month.  Therefore, follow-up of the patients in the 

Marckmann et al.120 study beyond 8 weeks may have demonstrated improvements in 

endothelial function, and while this assumption is theoretical, it will have important 

implications for determining both the optimum duration of therapy of ergocalciferol and 
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the optimum serum 25 (OH) D concentration to ensure a maximally beneficial effect on 

the microcirculatory endothelial function.   

 

Nutritional vitamin D therapy in haemodialysis patients in the form of cholecalciferol, 

reported by Stubbs et al.243, resulted in a reduction of inflammatory markers after only 6 

weeks of treatment.  Stubbs et al.243 used a replacement regimen for cholecalciferol 

based on successive serum 25 (OH) D concentrations and it represents one of the first 

studies to use an incremental dose increase in vitamin D therapy to treat VDD in CKD.  

In contrast to the study by Marckmann et al.120, the improvements in markers of 

inflammation occurred within 6 weeks with the achievement of similar concentrations of 

serum 25 (OH) D.   

 

Direct comparisons between our study and the studies by Marckmann et al.120, 

Assimon et al.219 Stubbs et al.243 and Chitalia et al.244 are difficult due to the 

heterogeneous populations, study designs and replacement of vitamin D but support 

further investigation of the effect of nutritional vitamin D on endothelial function in all 

stages of CKD.  The short duration of the clinical  study in this thesis and those of 

Marckmann et al.120, Assimon et al.219, Stubbs et al.243 and Chitalia et al.244 has meant 

that the effect of nutritional vitamin D on meaningful clinical outcomes, specifically CV 

morbidity and mortality, cannot be assessed.  However, given the association between 

endothelial function and future CV events in CKD, it could be inferred that nutritional 

vitamin D, through its effect on microcirculatory function and reduction of inflammatory 

mediators, has the potential to reduce CV endpoints where CKD and VDD co-exist 

although a study in CKD and concomitant VDD powered to detect the effect of 

nutritional vitamin D compounds on clinically relevant end points including CV events is 

required to test this assumption. 
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The strengths of the clinical trial in this thesis are its double blind randomized placebo 

control design, replacement of vitamin D in line with international guidelines that was 

standardised for all patients and the use of techniques that specifically and 

concomitantly assess both macro and microcirculatory endothelial function.  At the time 

of designing this study, microcirculatory endothelial function had not previously been 

evaluated in patients with CKD and concomitant VDD in a clinical trial setting and thus 

the current study adds to the existing scientific literature on the subject.   Iontophoresis 

has been used in the setting of clinical trials to evaluate endothelial function.  The use 

of a low current iontophoresis protocol in the current study  reduced the direct galvanic 

effect on the endothelium seen when a higher current is used259.  The experimental 

conditions and iontophoretic protocol were standardised and changes in endothelial 

function were compared with baseline prior to treatment with ergocalciferol.  Therefore, 

any change seen in LDF after iontophoresis must be due to the direct effect of 

ergocalciferol itself on microcirculatory endothelial function.  Despite some reported 

limitations of iontophoresis including a lack of standardised protocols,   reporting of 

results as well as the effect of iontophoretic current itself on the skin microcirculation276-

277, iontophoresis provides a real time, dynamic approach to monitoring the 

physiological response of the endothelium to a pharmacological challenge which can 

provide valuable insights into the function of the endothelium in clinical practice. 

 

Limitations of this study include the short follow up time and small sample size.  The 

study duration is insufficient to detect significant differences between treatment groups 

in key outcome measures including CV events and their relationship to microcirculatory 

endothelial function.  Excluding patients with DM has limited the external validity but 

improved the internal validity and precision of the present study.  The results of this 

study cannot be applied to patients receiving dialysis for ESKD due to the effect of the 
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process of dialysis itself on endothelial function.  A separate study in patients treated 

with dialysis for ESKD is required to ascertain if a similar effect of ergocalciferol on 

endothelial function occurs in this group.  The newer equations for kidney function have 

improved the estimation of kidney function mostly in patients with stage 1-2 CKD and to 

a lesser extent in patients with stage 3-5 CKD278.  Therefore, the use of the MDRD 

equation, which was in routine use when this study was designed, is unlikely to have 

materially altered the classification of the stage of CKD in the study population. 

4.2 The effect of ergocalciferol on endothelial function in an in vitro and in vivo 

experimental model 

Existing in vivo and in vitro studies at the time the experiments in this thesis were 

designed had not evaluated the effect of ergocalciferol in experimental models of 

uraemia.  In contrast, the majority of studies using in vitro and in vivo models included 

assessments of activated vitamin D compounds or did not evaluate the effect of 

nutritional vitamin D in experimental uraemia.  The experiments in this thesis provide 

preliminary evidence for the effect of ergocalciferol on cultured endothelial cells and in 

an in vivo model which reflects earlier compared to more advanced uraemia.   

 

The studies in this thesis have demonstrated that ergocalciferol has a genomic effect 

on cultured endothelial cells as evidenced by the increase in fold expression of eNOS 

after incubation with high concentration ergocalciferol.  The results in this thesis 

suggest that while nitrite generation was increased after incubation with high 

concentration ergocalciferol but not 1,25 (OH)2 D3, the activation of eNOS through 

phosphorylation was reduced after incubation with high compared to low concentrations 

of both ergocalciferol and 1,25 (OH)2 D3.  These results may represent an inhibitory 

effect of vitamin D at supra-physiological concentrations, and therefore allude to an 
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alternative cellular source of nitrite production beyond the effect of eNOS.  However, 

the finding that phosphorylation of eNOS was reduced in control and ethanol treated 

cells means this hypothesis cannot be confirmed. 

 

Andrukhova et al.186 have demonstrated that in wild type compared to VDR knock-out 

mice, both 25 (OH) D and 1,25 (OH)2 D3 increased the expression of eNOS although 

the increase in eNOS expression was greater with 1,25 (OH)2 D3 compared to 25 (OH) 

D (see section 1.3.4).  This is in contrast to the findings reported in this thesis that 1,25 

(OH)2 D3 did not have a significant effect on expression of eNOS or its phosphorylation.  

The use of an in vitro model in this thesis compared to the in vivo model of VDR 

deficiency used by Andrukhova et al.186 may in part explain this discrepancy.   

 

In an in vivo model of experimental mild uraemia, studies in this thesis have 

demonstrated that ergocalciferol acts both through an endothelium dependent pathway 

to improve vasodilatory function and that ergocalciferol has an effect on vasoconstrictor 

function which may reflect restoration of vascular auto-regulation.  In line with findings 

from a study by Wu-Wong et al. of the effect of paricalcitol on endothelial function in 

experimental uraemia239,  the effect of ergocalciferol in a model of mild uraemia was 

independent of blood pressure, serum Ca2+, PO4 and PTH.  The finding that 

ergocalciferol modulates vasoconstrictor tone has not previously been assessed in 

existing studies of the effect of vitamin D on endothelial function180 239 241 279.  There are 

several potential mechanisms through which ergocalciferol may affect vasoconstrictor 

function including genomic and post translational effects.  Modifying the dose and 

duration of ergocalciferol has the potential to move this balance in favour of endothelial 

vasodilator function.  However, additional studies are needed to confirm this 

hypothesis.   



 

184 
 

The strengths of these experiments are that they used ergocalciferol rather than 

activated vitamin D compounds and have thus provided support for the pleotropic 

effects of ergocalciferol itself.  The in vivo experiments used a relatively shorter 

duration of uraemia (4 weeks compared to 6 weeks) compared to other studies239 280 

and in keeping with this, the serum creatinine and PTH were lower in the in vivo studies 

in this thesis compared to studies with a longer duration of uraemia239 241-242.  This 

confirms that the model used in the experiments in this thesis reflected less advanced 

uraemia than achieved in other studies.  This has facilitated an examination of the 

effect of ergocalciferol in an experimental model of mild uraemia when endothelial 

tissue is more likely to be responsive to therapeutic intervention with nutritional vitamin 

D compared to more advanced models of CKD.  Therefore, the studies in this thesis 

add to the available scientific literature which has predominantly evaluated activated 

vitamin D compounds in the later stages of uraemia.   

 

The limitations of the in vitro studies are that HAEC were not cultured in media 

consistent with the degree of CKD in the clinical trial subjects.  This was due to the 

complexity of establishing a culture medium that accurately reflects the earlier rather 

than more advanced stages of CKD.  Consequently, the results from the in vitro 

experiments cannot be directly generalized to the uraemic milieu associated with CKD 

stage 3-4.  A further limitation is that a dose response curve for ergocalciferol and its 

effects on eNOS expression as well as nitrite production has not been elucidated.  

These experiments were a proof of concept study for the effect of ergocalciferol on 

cultured endothelial cells and need to be repeated using a uraemic milieu and include 

dose response studies the effect of ergocalciferol on eNOS expression and function.   

The in vivo experiments are limited by the fact that they did not include a contemporary 

experimental arm in which rats were treated with active vitamin D compounds.  This 
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work has been conducted by other authors and the specific purpose of the studies in 

this thesis was to evaluate the effect of ergocalciferol.  The in vivo studies in this thesis 

used a relatively shorter duration and lower dose of vitamin D therapy compared to 

other studies180 239, however, serum 25 (OH) D concentrations in both groups increased 

significantly after therapy with ergocalciferol.  We did not measure proteinuria in the 

animal studies which has been shown by other authors to be related to endothelial 

function216.   

 

The in vivo experiments were also limited by the fact that they did not evaluate the 

specific mediator of endothelial vasodilatation.  Measures of nitrite, as used in the in 

vitro experiments could not reliably be applied to the in vivo studies due to the effect of 

uraemic induced anorexia on dietary intake, which has a direct effect on serum nitrite 

concentrations.  This hypothesis is supported by the significant difference in the weight 

of sham and SNx operated animals.  Therefore establishing the exact mechanism 

through which ergocalciferol causes vasodilatation in a model of mild uraemia and 

therefore how vasodilatation can be enhanced by manipulating ergocalciferol dose and 

duration, is an important area of further study.   

4.3 The clinical relevance of vitamin D and endothelial function in chronic 

kidney disease 

The current practice of vitamin D therapy to treat VDD in CKD is designed to normalise 

serum concentrations of 25 (OH) D with the aim of suppressing PTH and normalising 

calcium homeostasis.  The pleotropic effects of vitamin D are well described as is the 

beneficial effect of vitamin D therapy in reducing CVD in CKD.  At the time of designing 

this thesis, the association between vitamin D and endothelial function in CKD was 
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incompletely understood.  Several recently published studies of the effect of vitamin D 

on endothelial function have provided conflicting results120 219 243-244. 

 

The studies presented in this thesis add support to the use of ergocalciferol in terms of 

its pleotropic effect on endothelial function in the earlier stages of CKD.  The results of 

the clinical trial in this thesis are supported by the evidence for the direct effect of 

ergocalciferol on improving endothelial function in the in vitro and in vivo experiments.  

These findings require further study but suggest that the use of ergocalciferol in the 

earlier stages of CKD is likely to have significant beneficial effects beyond the 

normalization of serum concentrations of 25 (OH) D and suppression of PTH which 

have been the predominant goals of vitamin D therapy in patients with CKD.   

 

Identifying strategies to refine and improve the use of ergocalciferol in early stage CKD 

should move beyond serum concentrations of 25 (OH) D and PTH.  The results 

presented in this thesis and supported by the study of Wu-Wong et al.239 suggest that 

even in the absence of PTH suppression, microcirculatory endothelial function can be 

significantly improved.  Techniques to assess endothelial function in routine clinical 

practice are becoming more readily available and increasingly operator independent.  

Given that CV risk in CKD is associated with both endothelial dysfunction and VDD, 

refining the desired target for serum concentrations of 25 (OH) D, potentially beyond 

that of > 75 nmol/L suggested for PTH suppression49 53 and incorporating parameters of 

microcirculatory endothelial function in routine clinical practice has the potential to 

further achieve reductions in CVD risk in CKD and concomitant VDD. 
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4.4 Further studies  

In order to refine and optimise the use of ergocalciferol in the earlier stages of CKD and 

concomitant VDD as well as addressing the unanswered questions from this thesis, 

additional studies are required.   

 

The studies that could be conducted include: 

1. An evaluation of the clinical relevance of bioavailable vitamin D in patients with 

CKD in a multi-ethnic population 

2. A prospective study of the effect of ethnicity on the replacement of vitamin D in 

patients from multi-ethnic backgrounds with CKD and concomitant VDD 

3. A clinical study evaluating the effect of ergocalciferol on microcirculatory 

endothelial function and consequent CV morbidity and mortality in patients with 

CKD and concomitant VDD. 

4. Additional in vitro and in vivo studies of the physiology and metabolism of 

ergocalciferol and its effect on endothelial function in uraemia 

4.4.1 An evaluation of the clinical relevance of bioavailable vitamin D in 

patients with chronic kidney disease in a multi-ethnic population 

The study by Powe et al.13 did not include patients with significant kidney disease and 

therefore it is unclear if measures of bioavailable vitamin D and their clinical relevance 

will differ in patients with CKD compared to patients with no evidence of kidney 

disease.  Additional studies of bioavailable vitamin D in patients with CKD will be critical 

to ascertain how serum concentrations of bioavailable 25 (OH) D change as CKD 

progresses and how these measures could refine current clinical practice of the 

replacement of vitamin D when VDD and CKD coexist.  Given the abnormal 
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metabolism of vitamin D in CKD, this study would offer the potential to elucidate the 

most relevant vitamin D metabolite to measure.  While this should include bioavailable 

vitamin D, separate measure of serum concentrations of vitamin D2, vitamin D3, 25 

(OH) D and 1,25 (OH)2 D3 could be performed and will enhance the understanding of 

the most useful measure of vitamin D status for further clinical utility. 

 

4.4.2 A prospective study of the effect of ethnicity on the replacement of 

vitamin D in patients from multi-ethnic backgrounds with chronic kidney 

disease and concomitant vitamin D deficiency 

Recent data from the Royal London Hospital Kidney Unit has demonstrated that 

patients from ethnic minority groups have a blunted response to therapy with 

ergocalciferol in CKD and coexisting VDD (Dreyer et al., manuscript in preparation).  

This study demonstrated that in 93 patients prescribed an equivalent dose of 

ergocalciferol for VDD complicating CKD stages 1-5, patients form ethnic minority 

groups (Black and South Asian) has a significantly higher odds ratio for failing to attain 

a serum concentration of 25 (OH) D of > 75 nmol/L (adjusted OR 3.65 95% CI 1.25 - 

8.13, p=0.01).  This was a retrospective, observational study of a relatively small 

number of patients and while it alludes to the effect of ethnicity on blunting the 

response of therapy to ergocalciferol, a larger, prospective is now required to confirm 

these findings. 

 

A prospective study of ergocalciferol therapy in EM groups separately evaluating the 

effect of White, Black and South Asian ethnicity on serum concentrations of total 25 

(OH) D and bioavailable 25 (OH) D after therapy with ergocalciferol is required.  This 

study would ascertain the optimum dose and frequency of ergocalciferol required to 
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achieve a specific target of serum concentrations of 25 (OH) D across different ethnic 

groups.   This information will be essential when developing dosing strategies of 

ergocalciferol in different ethnic groups in any future study of the effect of ergocalciferol 

on microcirculatory endpoints and CV events in patients with CKD and concomitant 

VDD.  

4.4.3 A clinical study evaluating the effect of ergocalciferol on 

microcirculatory endothelial function and cardiovascular morbidity and 

mortality in patients with chronic kidney disease and concomitant 

vitamin D deficiency. 

This study has the potential to address the relationship between vitamin D therapy in 

the form of ergocalciferol, microcirculatory endothelial function and future CV events in 

patients with kidney disease.  The hypothesis would be that achieving a higher serum 

concentration of 25 (OH) D in patients with CKD and concomitant VDD improves 

microcirculatory endothelial function and reduces CV events.  This study would require 

a significant follow up period (3-5 years) and need to be adequately powered in order to 

detect clinically significant CV events such as myocardial infarction, non-ST segment 

elevation myocardial infarction, sudden death and cerebro-vascular events.  In order to 

achieve sufficient numbers in respective treatment arms, such a study would need to 

be multi-centred.   

 

A multi-centre study could include important subgroups including dialysis and non-

dialysis requiring kidney disease and patients with kidney disease and coexisting DM.  

A study of this nature has the potential to address the efficacy of vitamin D in the form 

of ergocalciferol in reducing CV events in CKD in prospective, randomized fashion.  

Equally, such a study could discern the optimal concentration of serum 25 (OH) D in 
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order to maximise endothelial function and reduce CV morbidity and mortality.  

Including a group with a target serum 25 (OH) D concentration of > 75 nmol/L could 

ascertain if the current guidelines for target serum concentrations of 25 (OH) D need to 

be re-evaluated.   This could be achieved if the randomisation schedule included three 

distinct study arms, each treated with a variable dose regimen to within a specific range 

of serum 25 (OH) D concentrations for example, <50 nmol/L, 50-100 nmol/L and 100-

150 nmol/L.   

 

This study could also ascertain the clinical utility of microcirculatory endothelial 

assessments in routine clinical practice as predictors for future CV events.  In this 

study, if microcirculatory endothelial function is shown to predict future CV events and, 

as has been shown in this thesis, improves with increasing serum concentrations of 25 

(OH) D, then the correlation between microcirculatory function and serum 

concentrations of 25 (OH) D could eventually be used as a clinical tool to determine a 

target serum concentration of 25 (OH) D that maximally reduces CVD risk in patients 

with CKD and concomitant VDD. 

4.4.4 Additional in vitro and in vivo studies of the physiology and metabolism 

of ergocalciferol and its effect on endothelial function in uraemia. 

The preliminary in vitro experiments reported in this thesis could be repeated with 

endothelial cells cultured in a uraemic milieu commensurate with the earlier stages of 

CKD.  Dose titration studies have the potential to determine the concentration of 25 

(OH) D and 1,25 (OH)2 D3 at which eNOS expression and function are optimised.  This 

data could support the proposed clinical trial in determining the optimum concentration 

of serum 25 (OH) D that maximizes endothelial function.   
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Additional in vivo experiments should focus on the exact mechanism through which 

endothelial vasodilatation is achieved and how ergocalciferol affects this process.  

These studies should specifically focus on the measurement of NO and EDHF.  

Extending the duration of uraemia in an in vivo model and modifying the dose of 

ergocalciferol could determine how the balance between endothelial vasodilator and 

constrictor activity changes, how this affects vascular auto-regulation and the 

development of systolic hypertension. 

 

Examination of rat aortic tissue from sham and SNx animals treated with ergocalciferol 

to examine the tissue level effect of ergocalciferol on eNOS, VDR, α-adrenergic and 

thromboxane A2 receptor expression and function are required.   These studies could 

determine if ergocalciferol is exerting its effect at a genomic level or by modifying the 

efficacy of existing receptors through a post translational mechanism.  Further studies 

to examine the effect of ergocalciferol on calcium-dependent K+ channels, will be 

important to understand the effect of ergocalciferol on this channel and the mechanism 

by which any effect is achieved.   

4.5 Conclusions 

This thesis has demonstrated that vitamin D therapy in the form of ergocalciferol for the 

treatment of VDD in patients with CKD is effective at increasing serum 25 (OH) D 

concentrations and improves microcirculatory endothelial dysfunction.  The effect of 

ergocalciferol has been shown to be endothelium dependent.  This is reflected by in 

vitro and in vivo experimental models which have demonstrated that ergocalciferol 

increased expression and function of eNOS and improves endothelial function in a 

model of mild uraemia.  
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The excessive CVD that accompanies CKD is the primary focus of clinical nephrology.  

This thesis has elucidated the potential beneficial effect of ergocalciferol in reducing 

this risk through the improvement of endothelial function which is strongly associated 

with CVD in patients with CKD.  However, questions remain as to the optimum strategy 

for the replacement of vitamin D in CKD and the role of clinical assessments of 

microcirculatory endothelial function in order to maximally reduce CVD.  Further pre–

clinical and clinical studies are now required to enhance our understanding of the 

association between vitamin D and microcirculatory endothelial function in CKD. 
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IV.  Patient information sheet 

The effect of vitamin D supplementation on the microcirculation of patients with 

chronic kidney disease and vitamin D deficiency 

Invitation to participate:   

You have been invited to take part in a post-graduate research study.  Before you 
decide, it is important for you to understand why the research is being done and what it 
will involve.  Please take time to read the following information carefully. Please ask us 
if there is anything that is not clear or if you would like more information.  Take time to 
decide whether or not you wish to take part, and feel free to discuss this issue with 
anyone else before deciding.  If you do decide to take part, please let us know 
beforehand if you have been involved in any other study during the last year. 
 
What is the study all about? 
 
More patients with kidney disease die from heart disease and strokes than end up on 

dialysis treatment.  This is because the microscopic blood vessels in the body can be 

damaged and fail to function properly.  There is growing evidence that giving patients a 

tablet of vitamin D can improve the function of these blood vessels and therefore 

reduce the risk of serious heart problems, worsening of kidney disease and generally 

improve quality of life.   

Many people have very low levels of vitamin D in the blood.  We would like to 

understand more about how vitamin D can help patients with chronic kidney disease by 

comparing 6 months of treatment with vitamin D tablets (called ergocalciferol) to a 

placebo tablet (a “dummy” pill which has no medical effect).  Half the patients in the 

study will receive vitamin D tablets and the other half will receive the placebo tablet.   

Sometimes we don’t know which way of treating patients is best. To find out, we need 

to make comparisons between the different treatments. We put people into groups and 

give each group a different treatment; the results are compared to see if one is better. 

To try to make sure the groups are the same to start with, each patient is put into a 

group by chance (randomly). 

Patients will be allocated at random and both you and the study team will not know 

which tablet you are receiving.  This reduces the chance of the study being biased.  

Certain drugs (such as blood pressure tablets) need to be kept the same during the 

study and you will be asked to avoid certain over the counter medicines so as not to 

affect the study results.  

Why have I been chosen? 

Your doctor has discovered that you have chronic kidney disease (a mild reduction in 

the function of your kidneys) and also a low level of vitamin D in your blood.  We will 

ask 64 patients like you to participate in this study. 
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What will happen to my results? 

Your results will be strictly confidential.  You will be able to see a copy of your results 

as the study progresses.  Your GP and normal kidney specialist will be informed that 

you are taking part in this trial.  They will be able to see your results unless you ask for 

them not be informed.  

We hope to publish this study in a medical journal so we can inform our colleagues 

about our results.   

You will not be identified in this report in any way unless you give your permission. 

I am being supervised by Professor M Yaqoob and I plan to use the results of this study 

to obtain a higher degree (called an MD) 

Do I have to take part? 

No, you are under no pressure to participate in this study.  It is up to you to decide 
whether or not to take part.  If you do, you will be given this information sheet to keep 
and be asked to sign a consent form. You are still free to withdraw at any time and 
without giving a reason.  A decision to withdraw at any time, or a decision not to take 
part, will not affect the standard of care you receive.   

You can withdraw from treatment but keep in contact with us to let us know your 

progress.  Information collected before you withdraw may still be used in our research if 

you agree.  Any stored blood or tissue samples that can still be identified as yours will 

be destroyed if you wish. 

What are the alternatives for diagnosis and treatment? 

If you do not wish to enter the study, your kidney specialist can prescribe a number of 

different forms of vitamin D tablets or injections.  They will also give some advice about 

your diet to improve your vitamin D levels. 

What will happen if I take part? 

The study lasts for 7 months in total.  You will be asked to come to a clinic at the Royal 

London Hospital once a month for 7 months (but twice in the first month).  At the end of 

7 months, you will be followed up by your normal kidney specialist as before.  Some 

visits will only last 10 minutes but others may take longer (up to one hour).  The clinic 

doctor will address all your usual health needs relating to your kidney problem and in 

addition will arrange some extra tests (described below relating to the study) 

A full summary of the study programme is shown below with explanations of each 

procedure: 

1st visit – meet the doctor, go over what the study involves and agree (or not) to take 

part.  You will have a blood test and an examination.  If you agree to be involved, you 



 

218 
 

may asked to stop certain medicines that contain vitamin D (visit time - about 15 

minutes) 

2nd visit (2 weeks later) – meet the doctor.  You will have some tests to examine the 

microscopic blood vessels that we are interested in studying.  These are explained 

below.  (about 1 hour) 

3rd visit (2 weeks later) – meet the doctor.  You will have a blood test and be asked for a 

urine sample.  You will be given a form to fill in to ask about your general health.  We 

will book a cardiac (heart) MRI scan, an ultrasound of the neck and arrange for your 

blood pressure to be recorded over 24 hours.  The doctor will examine you and you will 

be able to discuss any issues that you are concerned about.  You will have the tests to 

examine the microscopic blood vessels as described below.  We ill also do a heart 

tracing (ECG).  You will also receive your first dose of the study medicine and some 

capsules to take at home.  You will need to take one capsule weekly on the same day 

of each week.  You will need to bring all your medicines with you at each visit  

(visit time - about 1 hour) 

4th visit (1 month later) – meet the doctor.  You will have an examination, give a blood 

and urine sample and undergo the tests you had previously to look at the microscopic 

blood vessels.  You will  

receive your next dose of the study medicine (visit time - about 1 hour) 

5th visit (1 month later) - meet the doctor.  You will have a blood test and receive your 

next dose of study medicine (visit time - about 10 minutes) 

6th visit (1 month later) - meet the doctor.  You will have an examination, give a blood 

and urine sample and undergo the tests you had previously to look at the microscopic 

blood vessels.  You will receive your next dose of the study medicine (visit time - about 

1 hour) 

7th visit (1 month later) – meet the doctor.  You will give a blood sample and receive 

your next dose of the study medicine. (visit time - about 10 minutes) 

8th visit (1 month later) - meet the doctor.  You will give a blood sample and receive 

your next and last dose of the study medicine. (visit time - about 10 minutes) 

9th and last visit (1 month later) - meet the doctor.  You will have a blood test and be 

asked for a urine sample.  You will also have the test on the microcirculation.  You will 

be given a form to fill in to ask about your general health.  We will book a cardiac 

(heart) MRI scan, an ultrasound of the neck and arrange for your blood pressure to be 

recorded over 24 hours.  The doctor will examine you and you will be able to discuss 

any issues that you are concerned about.  We will also do a heart tracing (ECG).  (visit 

time - about 1 hour) 
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At every visit, the doctor will ask how you are feeling and if you have had any problems 

or concerns and review your medication.  You will be asked to bring your medication 

with you at each visit.  If you have a mobile phone and you are happy to receive 

messages from us, we will send you a text message to help you remember to take your 

study medication on the correct day.  The message will read “Dear NAME this is a 

reminder to take your vitamin D study medication today.  Thank you” 

Tests to look at the microscopic blood vessels 

You will have four tests done by the study team. 

Pulse wave velocity – this test measures how fast the blood vessels carry the blood in 

your circulation.  This involves having some blood pressure cuffs placed around your 

arm, leg and neck.  They do not inflate as much as a normal blood pressure cuff and 

you should only experience a mild pressure sensation.  A computer records the results.  

This last about 5 minutes 

Iontophoresis – this test looks at how the microscopic blood vessels respond to 2 

different drugs.  Two plastic discs are taped to your forearm containing a liquid form of 

the drugs.  A small electric current is passed into the discs and a machine records how 

the blood vessels in your skin responds.  This is usually painless but some patients 

might experience some mild skin irritation that normally passes in a day or so.  This 

lasts about 15 minutes. 

 

Skin auto-fluorescence – this test detects a build up of abnormal deposits in small 

blood vessels.  Patients rest their forearm over a box which emits an ultra-violet light.  A 

computer measures the reflection from your blood vessels and records the results.  

This is pain free and last about 5 minutes. 
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Sublingual microvascular flow – this test uses a very small camera placed under the 

tongue to look at microscopic blood vessels.  It is painless and feels like having your 

temperature taken with a mercury thermometer. 

 

What will happen to any samples I give? 

During this trial, we will ask you for a blood and urine sample which will be collected in 

the usual way when you come to clinic.  Your blood and urine tests will be analysed at 

the Royal London Hospital for  

routine tests.  Some of the samples will be kept for more specialist testing in 

laboratories at the William Harvey Research Institute, Charterhouse Square and at the 

Royal London Hospital.  We may ask you if we can use these samples for future 

research that has not yet been specified.  Only staff involved in the study will have 

access to these blood tests.  We will keep your samples anonymous.  You will be 

informed of any abnormal result that requires a change in your treatment.  Your 

samples can be destroyed if you wish. 

What do I have to do? 

All we ask is that you attend the clinic at the specified times, take the study medicine 

(which you will receive when you come to clinic), report any problems or changes in 

your health and attend appointments for scans and other tests that are carried out 
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elsewhere.  You should not normally be involved in another drug study.  You can take 

your regular medication as directed by the study doctor but should avoid any over the 

counter drugs except for simple pain killers.  We would also ask you to let us know if 

any other doctor has changed your medication.   

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be 

kept strictly confidential.  If you consent to take part in the research the people 

conducting the study will abide by the Data Protection Act 1998, and the rights you 

have under this Act.   

Information about you will be recorded and stored by the doctor running the trial.  It will 

be kept securely in hospital premises and will be anonymous.  In an emergency relating 

to your health, the doctor running the trial may allow access to other medical staff if this 

is in your best interest.  You will be able to check the data we hold is accurate. 

Occasionally, qualified staff from the hospital may access your records for audit 

purposes.  Your records will be kept in this secure manner for 15 years. 

Involvement of the General Practitioner/Family doctor (GP) 

If you agree, your GP will be informed that you are participating in the study.  The study 

doctor may ask your GP for additional information about any medicines he/she may 

have prescribed that may contain vitamin D. 

Travel expenses 

Unfortunately, we will not be able to offer you any money for participating in this trial but 

if you normally use hospital transport to attend hospital for your appointments, this 

service will be available. 

What are the other possible disadvantages and risks of taking part? 

There are very few risks to participating in this study.  Apart from the mild discomfort of 

a blood test and some possible mild skin irritation from one of the tests looking at the 

microscopic blood vessels, participants should experience no unusual symptoms. 

If you have private health insurance, you should inform your company before you 

decide to participate in the trial. 

What happens if there is a problem?  

We would not expect you to suffer any harm or injury because of your participation in 

this study.  If you are harmed by taking part in this study, there is no special 

compensation arrangement. If you are  

harmed due to someone’s negligence, then you may have grounds for legal action but 

you may have to pay your legal costs. Regardless of this, if you wish to complain or 
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have any concerns about any aspect of the way you have been approached or treated 

during the course of this study, the normal National Health Service complaints 

mechanisms should be available to you.  

Please contact Patient Advisory Liaison Service (PALS) if you have 

any concerns regarding the care you have received, or as an initial point of contact if 

you have a complaint.  Please telephone 020 7377 6335, minicom 020 7943 1350, or 

email pals@bartsandthelondon.nhs.uk, you can also visit PALS by asking at any 

hospital reception. 

What if relevant new information becomes available?   

Sometimes during the course of a research project, new information becomes available 
about the treatment/drug that is being studied.  If this happens, your research doctor 
will tell you about it and discuss whether you want to or should continue in the study.  If 
you decide not to carry on, your research doctor will make arrangements for your care 
to continue as it was before you started the study.  If you decide to continue in the 
study you will be asked to sign an updated consent form. 

Also, on receiving new information your research doctor might consider it to be in your 
best interests to withdraw you from the study.  He/she will explain the reasons and 
arrange for your care to continue.  If the study is stopped for any other reason, you will 
be told why and your continuing care will be arranged. 
 
What are the possible benefits of taking part? 

 
We cannot promise the study will help you but the information we get might help 
improve the treatment of people with chronic kidney disease and vitamin D deficiency.  
These conditions are very common and so this study has the potential to improve the 
lives of many patients similar to you. 
 
What are the side effects of any treatment received when taking part? 

The placebo tablet has no medical effect.  The vitamin D tablet (ergocalciferol) also has 

very few side effects.  It can occasionally cause your blood calcium levels to rise.  

Symptoms of high blood calcium include constipation, irritability, drowsiness and thirst.  

You will be asked if you have any of these problems at each visit.  You will also have 

regular blood tests to monitor your calcium levels.  If the levels are found to be high, the 

trial doctor will be able to offer you treatment and may temporarily stop the study 

medicine. 

What happens when the research study stops? 

You will not receive any of the study medicine after the research has ended.  You will 

be followed up by your normal kidney specialist who will determine if you need any form 

of vitamin D therapy.  If the trial shows that vitamin D tablets are effective and you were 

receiving the placebo medicine, your usual kidney specialist will be able to give you a 

course of vitamin D therapy after the study has ended 

mailto:pals@bartsandthelondon.nhs.uk
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Who can I contact if I have any questions or concerns? 

The princicpal investigator can be contacted by telephone: 

0207 377 7000 

Ask for Doctor Gavin Dreyer 

If you wish to make a formal complaint about the study, please contact: 

Jarrard O’Brien, Quality Development, Barts and The London NHS Trust, Healthcare 
Governance Directorate, 3d floor, Prescot Street, tel 020 7480 4857, email 
jarrard.obrien@bartsandthelondon.nhs.uk 

Who is organising and funding the research and where was it reviewed?   

This study is being funded by the Barts and the London Charitable trust.  The study 

team does not receive any funding above the costs of the study. 

This study has received a favorbale ethical opinion from the East London and the City 

Research Ethics Committee 1.  
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V.  Study protocol 
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London 

E1 1BB  
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Other study contacts: 

Professor Marion Macey 

Dept of haematology 

Royal London Hospital 

3rd Floor 

80, Newark Street 

Whitechapel 

London E1 1BB 

 

IN CASE OF EMERGENCY: 

 

Contact Dr Gavin Dreyer 

Department of translational medicine 

John Vane Science Building 

William Harvey Research Institute 

Charterhouse Square 

London 

EC1M 6BQ 

Tel - 07779652081  

Gavin.Dreyer@bartsandthelondon.nhs.uk 
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Study background  

See chapter 2, section 2 

Investigational agent 

Ergocalciferol - Vitamin D2, a fat-soluble vitamin important for many biochemical 

processes including the absorption and metabolism of calcium and phosphorus. In vivo, 

ergocalciferol is formed after sun (ultraviolet) irradiation of plant-derived ergosterol, 

another form of vitamin D occurring naturally in human skin.  

Ergocalciferol is used to treat chronic hypocalcemia, hypophosphatemia, rickets, and 

osteodystrophy associated with various medical conditions including chronic renal 

failure, familial hypophosphatemia, and hypoparathyroidism (postsurgical or idiopathic, 

or pseudohypoparathyroidism). 

Ergocalciferol is indicated for the prevention and treatment of vitamin D deficiency 

states. Vitamin D deficiency may occur as a result of inadequate nutrition, intestinal 

malabsorption, or lack of exposure to sunlight, but does not occur in healthy individuals 

receiving an adequate balanced diet and exposure to sunlight. 

Vitamin D is essential for promoting absorption and utilization of calcium and phosphate 

from the intestine and for normal calcification of bone. Along with parathyroid hormone 

and calcitonin, it regulates serum calcium concentrations by increasing serum calcium 

and phosphate concentrations as needed. Vitamin D stimulates calcium and phosphate 

absorption from the small intestine and mobilizes calcium from bone. 

The molecular weight of ergocalciferol is 396.65.  It has a plasma half life of 19 to 48 

hours (stored in fat deposits in body for prolonged periods). 

A dose of 1.25mg (50,000IU) to 5mg daily has been recommended. The dose should 

be adjusted according to the severity of the condition.  This medicine is delivered by 

oral administration 

Adverse events are generally associated with excessive intake of ergocalciferol leading 

to the development of hypercalcaemia. The symptoms of hypercalcaemia can include; 

anorexia, nausea, vomiting, diarrhoea, loss of weight, headache, polyuria, thirst, 

vertigo, constipation, fatigue, bone pain, muscle weakness, abdominal pain, mental 

disturbances, impaired renal function, kidney stones and cardiac arrhythmias.  

A single acute overdose is virtually non-toxic and requires supportive treatment with 

liberal fluids only.  Treatment of chronic overdose with resulting hypercalcaemia 

consists of immediate withdrawal of the vitamin, a low calcium diet, and generous fluid 

intake. Severe cases may require hydration with intravenous saline together with 

symptomatic and supportive treatment as indicated by the patient's clinical condition. 

Plasma calcium and U&E's should be monitored.  
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Preclinical Data 

See chapter 1, section 1.3 and 1.4.1.1 

Clinical Data to Date 

See chapter 1, section 1.4.1.2 

Dose Rationale and Risk/Benefits 

A dose regimen of ergocalciferol 50,000 IU weekly for 12 weeks and then monthly for 3 

months has been shown to be effective at both raising serum vitamin D levels and 

lowering PTH levels in a similar cohort which is the precise effect we hope to achieve in 

our study group130.  No patient developed the most common side effect of 

hypercalcaemia and no other adverse effects were reported.  A further study of weekly 

ergocalciferol (50,000 IU/week for 24 weeks) was also shown to raise serum vitamin D 

levels with no adverse events reported122.  We have chosen the dose regimen in the 

K/DOQI guidelines for the replacement of vitamin D in patients with CKD.  This consists 

of 50,000IU of ergocalciferol weekly for 1 month and then monthly for 5 months.  As in 

the studies above, we anticipate a rise in serum vitamin D levels to therapeutic but well 

below toxic levels. 

Rationale and Risk/Benefits 

See chapter 1, section 1.5 

Study Aims and Objectives 

See section 2.2.4 

Study Design 

See chapter 2, section 2.2.3 

General Design 

See chapter 2, section 2.2.3 

Primary Study Endpoints 

See chapter 2, section 2.2.4.1 

Secondary Study Endpoints 

See section 2.2.4.2 

Primary Safety Endpoints 

1.  Clinically significant Hypercalceamia  
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This is the most likely safety issue to occur during the trial.  Previous studies122 130 have 

demonstrated that our proposed dose regimen is very unlikely to cause hypercalcaemia 

while providing an effective increase in vitamin D levels.  Furthermore, it has been 

reported that vitamin D supplementation as per current guidelines is extremely unlikely 

to cause hypervitaminosis D and that the toxic effects of vitamin D (hypercalcemia) only 

start to occur at levels > 200 nmol/L, well above the expected vitamin D level for the 

dose regimen proposed in this study281-282. 

Subject Selection and Withdrawal 

See chapter 2, section 2.2.5 and 2.2.8 

Inclusion Criteria 

See chapter 2, section 2.2.5 

Exclusion Criteria 

See chapter 2, section 2.2.5 

Females of childbearing potential and males must be willing to use an effective method 
of contraception (hormonal or barrier method of birth control; abstinence) from the time 
consent is signed until 6 weeks after treatment discontinuation.  

Females of childbearing potential must have a negative pregnancy test within 7 days 
prior to being registered for protocol therapy.    

NOTE:  Subjects are considered not of child bearing potential if they are surgically 
sterile (they have undergone a hysterectomy, bilateral tubal ligation, or bilateral 
oophorectomy) or they are postmenopausal.  

 

Subject Recruitment and Screening 

See chapter 2, section 2.2.5 

Patients will be provided with a full explanation of the nature, purpose and requirements 

of the study including Patient Information Sheets and Consent Forms. They will be 

invited to participate in a screening evaluation, which will include a medical history and 

physical examination. The subject’s General Practitioners will be informed of an 

individual’s agreement to participate. Results of the screening evaluation will determine 

eligibility for entry into the study.  Patients will have the opportunity to discuss the trial 

further with an investigator before giving consent. 

Withdrawal of Subjects 

When and How to Withdraw Subjects 

See chapter 2, section 2.2.8 
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 Intercurrent medical events and prescription of new medication by the patient’s 
general practitioner that are judged by the principal investigator not to interfere with 
the study protocol will not result in withdrawal.  Such events will be recorded in the 
CRF. 

 New patients will be recruited to ensure that the study meets the patient numbers in 
the power calculation  

 If patients choose to withdraw or are withdrawn prior to completion of the study, they 
will be replaced unless they have withdrawn due to confirmed study drug toxicity. 

 All patients who withdraw will be offered an appointment with their usual 
nephrologist after withdrawal to provide ongoing clinical care 

 All withdrawals will be documented on the CRF and the patient’s general practitioner 
and usual nephrologist will be informed. 

 

Data Collection and Follow-up for Withdrawn Subjects 

We will use data and urine/blood samples which have already been collected for study 

analysis providing the patient gives consent for this to happen.  Patients will have the 

opportunity and choice to inform the trial team how their health has been over the study 

duration even if they withdraw. 

Study Drug  

Description 

See chapter 1, section 1.1.2  

Ergocalciferol capsules and matching placebo capsules will be provided by Mawdsley 

Brooks (UK).  Ergocalciferol capsules will contain 50,000 International Unit (IU) 

(1,25mg) of ergocalciferol.  The ergocalciferol capsule will be over-encapsulated into a 

size 00, red, empty gelatine capsule measuring 20mm and containing no markings.  

The placebo capsule will physically match the over-encapsulated ergocalciferol exactly.  

Product Sourcing Manufacture and Supply 

The study drug and placebo will be sourced and supplied by Mawdsley Brooks UK.  

Manufacture of ergocalciferol is by Sanofi-Aventis Pharmaceuticals, 300, Somerset 

corporate boulevard, Bridgewater NJ 08807-2454 USA.  Sanofi Aventis hold the 

Marketing Authorisation and necessary licence for product use.  Mawdsley Brooks UK 

are supplied with ergocalciferol from the manufacturer by Pharmaceuticals Trade 

Services inc, PO Box 561 Gaitier, MS 39553 USA.  Manufacture of the placebo is by  

Treatment Regimen 

See chapter 2, section 2.2.6 

Method for Assigning Subjects to Treatment Groups 

See chapter 2, section 2.2.7 
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Preparation and Administration of Study Drug 

All study medication will be prepared and logged in the Royal London Pharmacy 

department.  Medication will be dispensed by trained pharmacy personnel or an 

investigator.   Subjects will be observed swallowing the medication at visits 3, 4, 5, 6, 7 

and 8 by either pharmacy staff or an investigator. 

Subject Compliance Monitoring 

During the first month of the trial, patients will receive nine capsules of study 

drug. These will be provided in a sealed container which will be checked at subsequent 

study visits to ensure compliance.  This will avoid over frequent visits to the trial clinic 

and will maximize compliance.  At subsequent study visits, which require attendance at 

the hospital, patients will be observed swallowing their medication to ensure 

compliance.  To enhance compliance, a text message will be sent to patients if they 

have a mobile phone (and if they have indicated they are happy to receive a message 

from the study team) on the day they are due to take the study medication.  The 

message will read “Dear NAME this is a reminder to take your vitamin D study 

medication today.  Thank you” 

Prior and Concomitant Therapies 

Prior therapies: 

There will be a washout period of 2 weeks for all vitamin D therapies currently being 

taken by participants.  The most commonly prescribed oral vitamin D analogues all 

have a half life of less than 14 days (Alfacalcidol— 3 hours, Calcitriol—3 to 6 hours, 

Ergocalciferol—19 to 48 hours).  Participants will be screened for use of all over the 

counter medicines which may contain vitamin D.  It is very unlikely patients will suffer 

any side effects from stopping these medications for this period.  Patients will be 

reassured about the safety of drug withdrawal and the safety and validity of undertaking 

a randomized, placebo controlled trial.  Given that routine supplementation with vitamin 

D in early CKD is not routine, we anticipate that very few individuals will actually need 

to stop vitamin D analogues. 

The patient’s general practitioner will be contacted to ensure no medicines that may 

contain vitamin D are being taken by participants without their prior knowledge and that 

no depot vitamin D preparations have been dispensed in the last 6 months. 

Concomitant therapies: 

Blood pressure medication should be unchanged for study period but additional 

therapies can be added at the discretion of the investigators if blood pressure requires 

clinical intervention on safety grounds.  General practitioners will be asked to maintain 

BP medications at a stable dose.  Any changes in medication by the study team will be 

communicated to GP’s in writing and included in the CRF.  Patients will be asked to 
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take any concomitant therapies which can affect microvascular function after clinic 

visits at which these assessments are made (visits 2,3,4,6,9) 

Drugs which are likely to have these particular effects include aspirin and vasodilating 

anti-hypertensives such as calcium channel blockers.  There is no evidence to suggest 

that iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) is directly 

affected by the presence of any antihypertensive drugs.  However, there is a theoretical 

chance that there may be some affect on vasodilatiation particularly by drugs with a 

known vasodilatory effect eg calcium channel blockers.  Hence, patients will be asked 

to take all their daily medications after all microcirculatory assessments have been 

made.   

Aspirin has been shown to affect microcirculatory response to AcH and SNP but this 

effect can be corrected by measuring skin resistance283.  However, another group has 

shown no effect of aspirin on the response to AcH.  The maximum half life of aspirin is 

20 hours at high doses but is as low as 6 hours when lower doses are used and 

therefore even a dose taken the day before iontophoresis assessments is very unlikely 

to affect the results. 

Patients will be asked at each visit if they have been prescribed or if they have bought 
any other medicinal or herbal product which may interfere with the study.  If a new drug 
is being taken, a decision to withdraw the subject will be made by the Principal 
Investigator based on its pharmacology and pharmacokinetics. All details of 
concomitant medications will be recorded in the Case Report Form (CRF).  
 
There are no dietary restrictions or restrictions on the use of tobacco or alcohol during 
this study but patients will be asked to refrain from smoking for 12 hours before 
undergoing microcirculatory assessments. 

Packaging 

The packaging and labelling of the investigational medicinal product will be in 

accordance with applicable local regulatory requirements.  

Study medicine kept at the pharmacy in the Royal London Hospital will be in sealed 

containers with appropriate clinical trial labelling.  Each container will contain nine (9) 

capsules.  Patients will receive a labelled container of nine (9) capsules to take home 

with them after study visit three.  These will be labelled in accordance with trial protocol. 

Blinding of Study Drug 

Both the investigators and patients will be blinded to the study drug.  Mawdsley Brooks 

UK will facilitate randomisation and blinding of the study subjects.  A master 

randomisation list will be held at Mawdsley Brooks UK with a copy kept at the Royal 

London Hospital Pharmacy department. 
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Receiving, Storage, Dispensing and Return 

Receipt of Drug Supplies 

The investigator is responsible for ensuring IMP accountability, including reconciliation 

of IMP and maintenance of IMP records, throughout the trial in accordance with 

regulatory requirements.  Upon receipt of IMP, the investigator (or Pharmacist) will 

check for accurate delivery and acknowledge receipt and signing (or initialling) and 

dating the documentation provided by the sponsor and returning it to the sponsor.  A 

copy will be retained for the investigator file. 

Storage of study drug 

The IMP should be stored at room temperature (25oC / 77oF ) in its original 

container.  On site, all IMP should be stored in a secure location, in a temperature 

controlled environment, preferably with a temperature log maintained daily, and may be 

dispensed only by the investigator or by a member of staff specifically authorised by the 

investigator, or by the pharmacist, as appropriate.  Any deviations from the 

recommended storage conditions should immediately be reported to the sponsor and 

the use of the IMP interrupted until the Sponsor has given authorisation for its use. 

Dispensing of Study Drug 

The dispensing of the IMP will be carefully recorded on the appropriate drug 

accountability forms provided by the sponsor, and accurate accounting will be available 

for verification by the sponsor, and the sponsors monitor at each visit. Information 

recorded will include:  

Dates, quantities, batch numbers, kit numbers for IMP, expiry dates and trial numbers 

assigned to the subjects. 

Return or Destruction of Study Drug 

Any unused IMP must not be discarded or used for any purpose other than the present 

trial. Subjects should be instructed to return any unused IMP and all empty blisters and 

packaging.   

In summary the IMP accountability records will include: 

Confirmation of the IMP delivery to the trial site 

The inventory at the site of IMP provided by the Sponsor  

The use of each dose by each subject 

Any returns or unused product 

Dates, quantities, batch numbers, kit numbers for IMP, expiry dates and trial numbers 

assigned to the subjects. 
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Laboratory Assays 

See chapter 2, section 2.2.14.6 

Study Procedures and Schedule of Assessments 

See sections 2.2.11, 2.2.12, 2.2.13, 2.2.14 

Statistical Plan and Sample Size Determination 

See chapter 2, section 2.2.15 

Informed consent procedures 

It is the responsibility of the Investigator, or a person delegated by the Investigator (the 
delegation log needs to spell out who is authorised to take consent, only GCP trained 
individual can take consent) to obtain written informed consent from each subject prior 
to participation in this study, following adequate explanation of the aims, methods, 
anticipated benefits and potential hazards of the study.  

Ample time must be given for consideration by the patient before taking part. The PI 
must record when the patient information leaflet (PIL) has been given to the patient. [If 
the amount of time between the PIL being given and the date of consent is less than 24 
hours, the PI needs to explain why this is the case in this study].  

The Investigator or designee must explain the subjects are completely free to refuse to 
enter the study or to withdraw at any time during the study, for any reason. 

If new safety information results in significant changes in the risk/benefit assessment, 
the consent form should be reviewed and updated if necessary. All subjects, including 
those already being treated, should be informed of the new information, giving a copy 
of the revised form and give their consent to continue in the study. 

Safety and Adverse Events 

Expected Adverse Events 

1.  Hypercalcaemia  

2.  Starting any form of renal replacement therapy (haemodialysis, peritoneal dialysis, 

kidney transplant) 

3.  Mild skin erythema over the site of the iontophoresis ion chambers 

4.  Undergoing surgery for dialysis access 

5.  Hospital admission due to sepsis  

6.  Admission to hospital due to poorly controlled blood pressure 
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7.  Hospital admission for any form of cardiovascular event eg stroke, myocardial 

infarction etc. 

7.  Claustrophobia in MRI scanner 

8.  Mild skin reaction to ECG labels 

9.  Any elective admission to hospital which is unrelated to the study protocol or 

admission to hospital as a result of an unrelated medical procedure 

10.  Allergic reaction or any other medical problems related to contrast media from the 

cardiac MRI scan. 

Definition of Adverse Events 

 
Adverse Event  

 
An AE is any untoward medical occurrence in a subject to whom a medicinal product 
has been administered, including occurrences which are not necessarily caused by or 
related to that product.  An AE can therefore be any unfavourable and unintended sign 
(including an abnormal laboratory finding), symptom or disease temporarily associated 
with the use of an Investigational Medicinal Product (IMP), whether or not considered 
related to the IMP.  All such events during this trial will be recorded in the CRF. 

 
Adverse Reaction (AR) 

 
An AR is any untoward and unintended response in a subject to an Investigational 
Medicinal Product (IMP), which is related to any dose administered to that subject.  All 
adverse events judged by either the reporting investigator or the Sponsor as having a 
reasonable causal relationship to a medicinal product qualify as adverse reactions. The 
expression reasonable causal relationship means to convey in general that there is 
evidence or argument to suggest a causal relationship. 
 
Serious Adverse Event (SAE) 

 
An SAE fulfils at least one of the following criteria: 

 

 Is fatal – results in death (NOTE: death is an outcome, not an event) 

 Is life-threatening 

 Requires inpatient hospitalisation or prolongation of existing hospitalization 

 Results in persistent or significant disability/incapacity 

 Is a congenital anomaly/birth defect 
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THE ABOVE IS A BROAD DEFINITION OF AN SAE. HOSPITALISATIONS FOR 
ELECTIVE 

PROCEDURES AND CERTAIN EXPECTED ADVERSE EVENTS MAY BE EXEMPT 
FROM 

THIS REPORTING PROCESS, IF SPECIFIED IN THE TRIAL PROTOCOL.  
ADDITIONAL 

SIGNIFICANT MEDICAL EVENTS MAY BE CLASSED AS SAES.   
 

Suspected Serious Adverse Reaction (SSAR) 
 

An SSAR is an adverse reaction that is classed as serious and which is consistent with 

the information about the medicinal product as set out in the Summary of Product 

Characteristics (SmPC) or Investigator’s Brochure (IB) for that product.   

Suspected Unexpected Serious Adverse Reaction (SUSAR) 

The definition of a SUSAR is any suspected unexpected adverse reaction related to an 

IMP that is both unexpected and serious. In this case the event is not outlined in the 

Summary of Product Characteristics (SmPC) or Investigator’s Brochure (IB) for that 

product.  

Critical Adverse Events  

A critical adverse event is an event which may not be classified as serious but is 

considered to be important to the evaluation of safety. These events may become 

apparent as the trial progresses and requires close communication between the 

sponsor and investigators. 

Recording of Adverse Events 

All events will be recorded on the Adverse Event forms in the patient’s record and a 

copy will be kept in the CRF. 

Notification and Reporting of Serious Adverse Events/SUSAR  

 

For UK MAI IMP licensed IMPs only: As the IMP’s used in this project are licensed in 

the UK and used within their marketing authorization, the EXPECTED SARs (outlined 

in the SmPCs) will be RECORDED in the subjects notes and in the CRF.  No SAE 

forms will be completed and sent to the sponsor.  

UNEXPECTED Serious Adverse Event (SAE’s) will be recorded in the subjects notes, 

the CRF and in the sponsor SAE form and reported to the JRO within one working day 

of the PI or co-investigators becoming aware of the event.  The co-investigators listed 

in this protocol will be authorized to sign the SAE forms in the absence of the PI. 

Suspected Unexpected Serious Adverse Reactions (SUSAR’s) during the trial will be 

reported to the JRO and the main REC within one working day of the PI or co-

investigator becoming aware of the event.  
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When Adverse Events are Recorded 

Events will be recorded at each patient visit.  Patient’s will asked specifically if any 

expected adverse events have occurred or if any other events have occurred in the 

interval between the last patient visit.  Non-leading questions such “How do you feel?” 

and “have you had any problems since I last saw you?” will be asked at each visit. 

Study Stopping Rules  

Subjects who are withdrawn because of serious adverse events (including a Grade 3 or 

4 toxicity (based on the Common Toxicity Criteria (CTC) version 3.0 – included with this 

document) will not be replaced. The Ethics Committee will be notified in writing of any 

study withdrawals that may occur as a result of toxicity. 

The study will be stopped if there are any major safety concerns involving the patients 

involved in the trial as raised by the sponsor or the principal investigator.  The study will 

end when the last patient has received the last dose of study medication and 

undergone the final assessments. 

Unblinding Procedures 

Patients and investigators will be unblinded if they are admitted to hospital with 

hypercalcaemia.  Unblinding will be required as there are a number of common medical 

conditions (myeloma, tuberculosis, sarcoidosis etc) that can cause hypercalcaemia and 

should be ruled out urgently if a study patient who is taking placebo rather than 

ergocalciferol presents with symptoms/signs of hypercalcaemia. 

Mawdsley Brooks UK will hold a master randomisation list which will be able to identify 

which arm any subject is in.  There is a 24 hour trial hotline which can be contacted by 

clinical staff at any time should unblinding be required for medical reasons.  

Furthermore, individual code break envelopes will be available to clinicians at the Royal 

London Hospital.  All renal staff will have access to code break procedures and 

envelopes which will be locked in a secure office with an entry code on the door. 

Code-breaks should only occur when absolutely necessary and beneficial to the 

patient.  In the event of a code break, the sponsor and PI will be informed. 

Medical Monitoring 

Patients will be reviewed at each visit by an investigator.  They will undergo routine 

evaluations for standard outpatient care as well as more detailed evaluations as 

required by the trial protocol.  This will include a medical history, examination, blood 

tests for the trial and others as necessary based on clinical evaluation. 

The Annual Safety reports (ASR) will be sent by the PI to the sponsor and MHRA (the 

date of the anniversary is the date on the “notice of acceptance letter” from the MHRA) 

using the sponsor ASR form. The PI will carry out a risk benefit analysis of the IMPs 

encompassing all events having arisen on the trial.  
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The Annual progress report will be sent to the main REC (the anniversary date is the 

date on the MREC “favourable opinion” letter from the MREC) and to the sponsor. 

Data Handling and Record Keeping 

Confidentiality 

All computers used will be kept on NHS property and password protected. Each 

patient’s information will be recorded against an individual code which will be stored on 

a NHS password protected computer.  CRF’s will not contain names, rather the study 

code for that participant and their initials.  Every effort will be made to respect patient 

confidentiality throughout the trial duration. 

Study Documents 

All relevant documents and correspondence will be kept in the patient’s records.  

Computerised trial documents will be password protected and held on NHS computers 

at the Royal London Hospital.  The investigator and sponsor will have access to these 

records. 

Case Report Forms 

The case report from will contain details of the study name, protocol number, subject 

initials and trial ID code and other relevant information.  It will have a check list for the 

inclusion and exclusion criteria.  It will also contain reporting forms for AE’s, SAE’s and 

SUSAR’s.   

CRF’s for all patients, including those excluded from the study for any reason, will be 

kept and maintained by the PI.  CRF forms are to be completed in black pen and in 

their entirety with no blank spaces allowed unless data is not available or applicable.  

This fact must be indicated.  Corrections must be struck-through and the correct 

information entered adjacent to this and initialled and dated by the investigator.  

Completed CRF’s are to be returned to the sponsor as soon as is practical.  Copies are 

to be retained by the Principal investigator. 

Records Retention 

All records will be held in the archive system for 20 years following the start of the trial. 

Study Monitoring, Auditing, and Inspecting 

Study Monitoring Plan 

The principal and chief investigator will meet after three months to review AE’s, SAE’s 

and SUSAR’s.  The trial may be subject to routine auditing by Research Governance at 

Barts and the London NHS Trust. 
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Phase IV trials: 

It is the CI’s responsibility to ensure that the BLT monitoring template (designed 

especially for the BLT/QM sponsored CTIMPs) is completed in a CONTINUOUS 

fashion throughout the study and kept up to date by the co-investigators (for the first 

part of the report) and by the MONITORS NAMED ON THE FIRST PAGE OF THIS 

PROTOCOL (for both the first part and the source data verification part of the 

template.). This trial is a Phase IV trial, using IMPs licensed in the UK and used within 

their marketing authorisation, this project is therefore risked as a “low risk (risk B)” 

project and the monitoring report will be sent to the JRO a year after the first consent 

has been signed and annually there after. 

Ethical Considerations 

General considerations: 

The study will be conducted in accordance with the principles of the Declaration of 

Helsinki (1997) (Recommendations guiding Medical Doctors in Biomedical Research 

Involving Human Subjects). 

Every effort will be made to minimize discomfort and disruption to the trial participants. 

All relevant study documentation will be submitted to a National Research Ethics 

Service (NRES) and no trial activity will begin until approval from this body has been 

received.  A copy of ethical approval will be forwarded to the sponsor.  If ethical 

approval is suspended or terminated, the sponsor will be informed immediately.  Trial 

progress will be reported to the ethics committee once a year.  All SAE’s will be 

reported to the ethics committee as soon as possible and at least within 72 hours. 

 

Study specific ethical considerations: 

1.  The endpoints of this trial (both in vivo and in vitro) have never been addressed in 

the setting of a randomized clinical trial.  New and relevant information which will 

change practice to enhance patient care and could influence CKD guidelines can be 

generated by undertaking this study . 

2.  The study drug, ergocalciferol, is in routine use for vitamin D deficiency in a number 

of clinical settings.  It has a low side effect profile and is considered to be safe and 

efficacious. 

3.  Placebo controlled trials have been in routine use in medical research for years.  If a 

benefit is shown in the ergocalciferol arm, patients who have received placebo can be 

eligible for ergocalciferol treatment when the trial ends. 

4.  Secondary hyperparathyroidism (SHPT) is a recognized consequence of CKD and 

is treated by vitamin D therapy.  It is possible that patients with modestly elevated PTH 
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levels will receive placebo tablets.  This means that their SHPT will go untreated for 6 

months.  However, an analysis of PTH levels in an existing group of patients at the 

Royal London Hospital with CKD and vitamin D deficiency has shown a low median 

PTH value (median 11.7, standard deviation 19.44 pmol/L).  This level of PTH is 

unlikely to have any serious clinical consequences if not treated over the trial duration 

and we do not believe patients are at risk by potentially not receiving ergocalciferol.  

Patients will be reassured about the safety of the drug and the safety and validity of 

undertaking a randomized, placebo controlled trial. 

5.  Patients will be required to attend more frequently than normal and have more blood 

tests (with the associated discomfort) than they might expect in their routine care.  

Other tests will be required which patients may not have had.  A full explanation and 

support will be offered to patients at every stage of the trial.  We will undertake as many 

trial procedures in a single visit as possible to minimize disruption to the patients. 

6.  Blood and urine samples will be stored for further analysis relating to the trial.  

Patients will be clearly informed of this. 

Local Regulations/Declaration of Helsinki 

 

I will ensure that this study is conducted in accordance with the Principles of the 

“Declaration of Helsinki” (as amended in Tokyo (1975), Venice (1983), Hong Kong 

(1989), South Africa (1996)). http://www.wma.net/e/policy/b3.htm or with the laws of the 

country in which the research is conducted, whichever accords greater protection to the 

individual. The study must fully adhere to the principles outlined in the Guidelines for 

Good Clinical Practice” ICH Tripartite Guideline (January 1997) 

Informed Consent (any special conditions i.e. emergency situations?) 

 

All subjects will provide written informed consent before enrolling in this trial.  A full 

explanation of the study aims and procedures will be given in writing and explained 

face-to-face by the chief investigator.  Patients will have at least 24 hours to decide on 

their participation.  It will be made clear that patients can refuse to participate and 

withdraw from the trial at any stage for any reason.  If any new information becomes 

available about any of the study drugs or techniques, patients will be informed and if 

this information changes the risk /benefit profile of the trial, a new consent form will be 

issued and informed consent will be obtained.  Patients will be informed that the trial 

investigators may need to release clinical details of a patient to other health care 

professionals in an emergency situation relating to the trial.  The date of informed 

consent will be documented in the CRF.  The patients will be given a copy of the 

consent form. 

Independent Ethics Committee  

 

http://www.wma.net/e/policy/b3.htm
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All relevant information and forms will be submitted to an external ethics committee by 

the investigators. 

This protocol and the accompanying material given to a potential patient (Patient 

Information Sheet, Consent form and GP letter) as well as any advertising material will 

be submitted by the Investigator to an Independent Ethics Committee in the UK.  Full 

approval by the Committee will be obtained prior to starting the study and will be fully 

documented by letter to the Chief Investigator naming the study site, local PI (who may 

also be the Chief Investigator) and date the Committee deemed the study as 

permissible at that site.   

Study Finances 

Funding Source 

All costs associated with this study will be covered wholly by: 

Barts and the London Trust 

Royal London Hospital 

Whitechapel Road 

London 

E1 1BB  

Contact:  Dr Alistair Chesser, Department head 

Indemnity for the performance of the study 

This trial will be covered by standard NHS negligence indemnity 

Subject Payments 

Subjects will not receive payment for this trial 

Sponsorship 

Barts and the London NHS trust, Whitechapel Road, London E1 1BB 

Publication Plan 

The trial results will be published in a peer reviewed journal on completion of the study.  

Manuscripts for publication (abstract and full text articles) will be reviewed by the 

principal investigator and be made available to the Sponsor for review prior to 

submission. 


