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Abstract

Massive connectivity, ultra-low latency, and high data rate are some of the fundamental

requirements of the upcoming sixth-generation (6G) wireless networks. In this regard,

non-orthogonal multiple access (NOMA) has been widely envisioned as a promising can-

didate for 6G due to its potential of achieving high spectral efficiency. By multiplexing

the signals in the power or the code domain, NOMA allows multiple users to be served

with the same orthogonal resources, such as frequency and time, hence outperforming

the conventional orthogonal multiple access (OMA) systems with a significant spectral

efficiency gain. The promising advantages of NOMA cannot be realized without proper

optimization designs, of which the complexity escalates in the context of massive connec-

tivity. As a remedy, artificial intelligence (AI) is capable of performing high-dimensional

optimization at a lower computational complexity compared to the conventional iterative

approaches. Hence, this thesis attempts to utilize AI technologies, including deep learn-

ing (DL) and deep reinforcement learning (DRL), to design systematic treatments for

NOMA, from the uplink active user detection to the resource allocation in adaptive next-

generation multiple access (NGMA) networks, to its combination with reconfigurable

intelligent surfaces (RISs), as well as its application in multi-RIS aided device-to-device

(D2D) networks.

First, this thesis investigates the application of generative neural networks for joint user

activity and data detection in uplink NOMA networks. A generative neural network-

enabled multi-user detection (MUD) framework is proposed, which outputs signal recon-

structions in a fixed and small number of steps with low error rates, based on a low-

complexity neural network. Moreover, a non-iterative sparsity estimator is provided to

realize sparsity-blind MUD and is compatible with most existing MUD algorithms.

Second, to maximize the long-term sum data rate of NGMA networks with energy limi-
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tations, DRL is employed to jointly design beamformers, power allocations, and user

clustering strategies. To transform the non-trivial mixed-integer problem, a spatial

correlation-based user clustering approach is proposed, which achieves higher sum rates

compared to the existing channel condition-based clustering approach. To solve the for-

mulated problem, the trust region policy optimization (TRPO) algorithm is employed,

which demonstrates robust convergence under large learning rates and realizes a fast and

stable training process.

Third, the integration of NOMA and RIS is examined, where the sum rate maximiza-

tion performance of DL and DRL are investigated and compared from both short-term

and long-term prospects. By utilizing model-agnostic-meta-learning (MAML), the DL

method benefits from a low complexity network and a fast convergence rate. The DRL

method, on the other hand, demonstrates superior sum rate performance, especially in

the long term.

Fourth, this thesis addresses the sum rate maximization problem in multi-RIS assisted

NOMA empowered D2D networks. The long-term dynamic optimization problem is

reformulated into a Markov game (MG) and a multi-agent deep reinforcement learn-

ing (MADRL)-based framework is proposed to jointly learn sub-channel assignments,

power allocations, and phase shifts, in a centralized training and decentralized execution

(CTDE) manner. Furthermore, the mixed-integer action space is directly addressed by

adopting multi-pass deep Q networks (MP-DQNs).
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Chapter 1

Introduction

In this chapter, an overview of the sixth-generation (6G) wireless networks is presented,

followed by the motivations for studying artificial intelligence (AI)-empowered non-

orthogonal multiple access (NOMA) networks. Then, the main contributions of this

thesis are outlined and the related works of this thesis are discussed. Finally, the orga-

nization of this thesis is presented.

1.1 Background

1.1.1 On the road to 6G

Since 2020, the fifth-generation (5G) wireless communication networks are being stan-

dardized and on their way to being deployed worldwide. As the next decades unfold,

extremely rich multimedia applications (e.g., augmented reality (AR)/virtual reality

(VR)), tactile/haptic-based communications, autonomous vehicles, super-smart city, and

Internet of Everything are envisioned, whereas the requirements are yet to be fulfilled

by 5G. In order to satisfy the future demands of the emerging applications, researchers

in both academia and industry have been shifting their attentions to sixth generation

(6G) wireless networks. 6G networks are expected to extend the capabilities of 5G

networks to a brand new level, such as 10 times larger connectivity, 100 times higher

1
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Figure 1.1: Visions for 6G wireless networks.

spectral efficiency, 10 - 100 times higher energy efficiency, terabit data rate, and sub-

millisecond latency [1–3]. Fig. 1.1 depicts the visions for 6G wireless networks. Towards

this direction, several key technologies such as massive multiple-input multiple-output

(MIMO), reconfigurable intelligent surface (RIS), terahertz (THz) communications, coor-

dinated multipoint (CoMP), unmanned aerial vehicle (UAV), compressive sensing (CS),

AI, blockchain, and integrated sensing and communication (ISaC) have been envisioned

as potential 6G technological enablers.

1.1.2 Evolution of Multiple Access Techniques

In addition to the aforementioned technologies, the multiple access (MA) technique is

recognised as one of the most fundamental components in the physical layer, which

continues to evolve with each generation of wireless networks and has a significant impact

on the definition of technical features. A summary of the major milestones on the
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evolution of wireless communication is illustrated in Fig. 1.2.

Tracing back to the first-generation (1G) networks, which was introduced in the

1980s, an analog frequency modulation based technology known as frequency division

multiple access (FDMA) was utilized to support voice services with a maximum data

rate of 2.4 kilobits per second (Kbps). By dividing the available bandwidth into several

non-overlapping sub-channels, FDMA can serve as many users as the number of sub-

channels. However, since the channels are assigned permanently, spectrum is wasted

when stations were idle. Moreover, to prevent interference, guard bands have to be

inserted, leading to low spectrum efficiency.

In the 1990s, the second-generation (2G) networks shifted to digital modulation and

adopted time division multiple access (TDMA) to achieve a peak data rate of 64 Kbps.

In TDMA, multiple users share the same channel under different time slots. Signals are

divided on a time basis and users transmit their signals in rapid succession, by utilizing
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the allocated time slots. Hence, TDMA benefits from a higher spectrum efficiency and

lower operational costs compared to FDMA. Moreover, services with different data rate

requirements, such as voice and text messages, can be successfully achieved through time

allocation. However, TDMA suffers from high synchronization overhead and time alloca-

tion complexity. Moreover, when switching between cells, the call might be disconnected

due to fully occupied time slots in the next cell.

Around the year 2000, code division multiple access (CDMA) became the dominant

MA standard for the third-generation (3G) communication networks [4]. By employing

spread spectrum technology and orthogonal spreading codes, multiple users can share

the whole bandwidth simultaneously without interference. Specifically, the 3G networks

based on CDMA provided higher data transmission speeds of at least 2 Mbps, while

supporting internet connections in addition to voice and text services. CDMA also

benefit from the soft handoff feature, since the user can remain connected to both base

stations (BS) when switching between cells. However, the near-far effect exists in CDMA

systems and sophisticated power control schemes were required to overcome this problem.

In 2009, the fourth-generation (4G) networks were launched. In this generation,

orthogonal frequency division multiple access (OFDMA) was dominantly adopted to

support even higher data rates of at least 100 megabits per second (Mbps) [5]. The

applications of 4G networks include video chat, Multimedia Messaging Service (MMS),

and high-definition television (HDTV). OFDMA was developed based on orthogonal fre-

quency division multiplexing (OFDM), which divides the whole bandwidth into orthog-

onal smaller bandwidths, known as sub-carriers, to eliminate mutual interference. In

OFDMA, the sub-carriers are grouped into sub-channels, which are assigned to different

users. The main limitations of this technique are that all sub-carriers have to be orthog-

onal to each other and accurate frequency synchronization between the transmitter and

the receiver is required.

In the ongoing 5G networks, OFDMA is still the dominant MA technique. Meanwhile,

a variety of potential MA techniques are also considered, including sparse code multiple
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access (SCMA) [6], rate-splitting multiple access (RSMA) [7], as well as NOMA [8].

SCMA is a combination of OFDMA and CDMA with an additional restriction on sparse

spreading codes for achieving low-complexity signal detection. RSMA split the messages

into sub-massages, which are then combined and encoded into streams. Each stream may

contain the message of one or more users for interference management purposes. Last

but not least, NOMA utilizes superposition coding (SC) in the code or power domain at

the transmitter to realize non-orthogonal signal multiplexing and to achieve significant

capacity improvement. Both RSMA and power-domain NOMA (PD-NOMA) utilize SIC

for signal decoding, where the main difference between PD-NOMA and RSMA can be

explained as follows. In PD-NOMA, the involved users should be priorly ordered. Based

on the predefined order, the signal of each user is successively decoded at the receiver

employing SIC until its intended signal is decoded. However, for RSMA, there is no order

predefined among users and the information of each user should be split into common

and private parts at the transmitter. At the receiver, the common message is decoded

before the private message employing SIC. As a result, user’s signal should be first split

and then combined in RSMA, while there is no such an operation in PD-NOMA.

Although NOMA has been widely investigated in 5G networks, its full potential has

yet to be explored. To support 6G’s massive connectivity, NOMA is becoming quality

of service (QoS)-centric, focusing on not only data rates, but also latency and reliabil-

ity. Moreover, as a highly compatible spectrum enhancement technology, NOMA can

be flexibly integrated with numerous emerging 6G technologies and application scenar-

ios [9], including RIS-empowered NOMA, THz-NOMA, AI-empowered NOMA, ISaC

NOMA, NOMA in autonomous robotics networks, and NOMA in VR/AR multi-layer

video transmission.

1.1.3 Artificial Intelligence for 6G Multiple Access

Since scenarios towards 6G networks are heterogeneous, dynamic, and complex, it demands

advanced optimization solutions to tackle more challenging problems [10]. Specifically,



Chapter 1. Introduction 6

a heterogeneous network architecture with various QoS demands will require an intelli-

gent resource allocation scheme that adapts to different network dynamics. Meanwhile,

resource efficiency, reliability, and robustness are becoming stringent QoS requirements to

6G networks. To meet these demands, AI-based resource allocation schemes are promis-

ing tools. In contrast to conventional approaches that rely on strict preconditions and

strong assumptions, the opportunities that arise from learning environmental knowledge

under diverse wireless channels render AI technology an adaptive and general solution

to provide 6G MA schemes with more optimized and adaptive data-driven decisions.

Among the broad variety of AI algorithms, deep learning (DL) and reinforcement

learning (RL) are two major research directions [11, 12]. DL techniques utilize neu-

ral networks to extract the sophisticated relationships among variables. By offloading

the complexity to the exhaustive offline training process, DL algorithms benefit from

a lower complexity in application compared to conventional techniques, such as con-

vex optimization methods [13] and greedy algorithms [14]. Promising applications of

DL in communications include channel estimation, user detection, user localization, and

resource allocation.

RL techniques, on the other hand, excel at maximizing long-term gains by modeling

the problem as a Markov decision process (MDP). The training data of RL algorithms

are collected through a trial-and-error process and the performance of the model is eval-

uated through a long-term expected reward. Hence, RL is particularly advantageous for

scheduling problems, such as UAV, network caching, data offloading, energy harvesting,

and long-term resource allocation. Moreover, the integration of DL and RL, namely, deep

reinforcement learning (DRL), embraces the feature learning skills of DL to improve the

learning speed and the performance of RL, and has drawn extensive research interests

as a promising optimization tool for supporting future MA schemes [15].
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1.2 Motivation and Contributions

As a promising candidate for future 6G systems, AI-empowered NOMA schemes offer

the following main advantages.

• High spectrum efficiency: Through power-domain or code-domain multiplex-

ing, NOMA enables multiple users to share one orthogonal resource block, resulting

in an enhanced spectrum efficiency. With the aid of AI technologies, the intelligent

resource allocation schemes of NOMA can adapt to diverse channel variations and

long-term goals, allowing for further spectrum efficiency gains.

• Massive connectivity: The future 6G systems are envisioned to support 10 times

higher connectivity than 5G systems. The existence of NOMA offers a promising

solution to this non-trivial task by fully exploiting the non-orthogonal characteris-

tic, while the AI technologies act as powerful high-dimensional optimization tools

for supporting the massive connectivity networks.

• High compatibility: NOMA can be designed as an “add-on” implementation

to any existing OMA techniques, such as TDMA, FDMA, CDMA, OFDMA, and

spatial division multiple access (SDMA). More importantly, NOMA is compatible

with numerous 6G technologies as a spectrum enhancement tool, while the AI

technologies can realize a joint optimization of the strongly coupled variables of

the associated technologies.

• Low computational complexity: Conventional optimization algorithms rely on

iterative updates that consist of high-complexity calculations. By offloading the

complexity to the training process, AI algorithms can accomplish highly-complex

optimization tasks at a lower computational complexity compared to conventional

solutions.

• Adaptive resource management: The heterogeneous and dynamic 6G wire-

less environments make resource management a principal concern in NOMA sys-
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tems. While conventional solutions require strict preconditions, such as convexity,

AI algorithms can be deployed to provide a general data-driven solution and are

applicable to various network dynamics, optimization objectives, and QoS metrics.

Motivated by the aforementioned advantages and the recent advancements in the fields

of NOMA and AI, this thesis spans the system design and the performance enhance-

ment of AI-empowered NOMA systems. More specifically, the research of this thesis

first investigates the optimization problems of NOMA systems, including user detection,

power allocation, user clustering, and beamforming, by utilizing AI-based solutions. The

thesis then focuses on the integration of NOMA with emerging technologies, including

RIS and device-to-device (D2D) communications, with the assistance of AI algorithms.

The specific motivations and contributions of this dissertation are summarized as follows.

1.2.1 Joint User Activity and Data Detection in Grant-Free NOMA

using Generative Neural Networks

In the context of grant-free NOMA, the number of potential users can grow far beyond

the number of orthogonal resources and data packets are transmitted immediately in the

next available time slot without waiting for a grant. Without any prior scheduling, the

BSs must perform multi-user detection (MUD) to identify the group of active users in

addition to their transmitted data. One key characteristic of future 6G communication is

sporadic traffic where a small proportion of users enter the system simultaneously while

the majority of the users remains silent [16]. By exploiting sparsity for signal reconstruc-

tion, compressed sensing (CS) has become a promising solution to MUD problems [17].

In particular, the signals received at the BS can be viewed as a set of underdetermined

equations of the sparse signals. Thus, CS theory guarantees full reconstructions of the

signals with high probability.

In Chapter 3, the MUD problem in uplink NOMA is examined. Since users stay

active during consecutive time slots to complete their transmissions, the received signals

often exhibit strong temporal correlations. Hence, the frame-wise joint sparsity model is
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considered, which assumes that each user is either active or inactive throughout a fixed

number of time slots and signal recovery is jointly performed for all signals received

over the whole time frame. To realize joint user activity and data detection, a genera-

tive neural network-based MUD (GenMUD) framework is proposed. By identifying the

independent user behaviors, the network architecture is designed with a small number

of 1x1 convolutional layers to greatly reduce computational complexity. Moreover, with

the aid of meta-learning, signal recovery can be performed in as few as five iterations

using a single model regardless of the number of available orthogonal resources in the

system. Nonetheless, in practical scenarios, user sparsity is usually unknown at the BS

whereas CS-based algorithms often rely on prior knowledge of user sparsity. To replace

the exhaustive sparsity approximation procedures in most MUD algorithms, a closed-

form low-complexity user sparsity estimator is obtained and examined. The estimator

only requires the information of the received signals and the noise level, both of which can

be easily retrieved in practice. Hence, it can be applied along side any MUD algorithms.

The novelty of this work is supported by the following publication

• Y. Zou, Z. Qin and Y. Liu, “Joint User Activity and Data Detection in Grant-Free

NOMA using Generative Neural Networks,” in Proc. IEEE Int. Communications

Conf. (ICC’21), Montreal, Canada, June 2021.

1.2.2 Adaptive NGMA Scheme for Energy-limited Networks: A Deep

Reinforcement Learning Approach

Despite the superior spectral efficiency of NOMA, its performance gain over conven-

tional OMA techniques can be limited in certain scenarios. For instance, the quasi-

degradation condition [18] was proposed as a sufficient and necessary condition for

NOMA to approach the optimal dirty paper coding (DPC) rate region in the MIMO

context. Moreover, in QoS constrained cases, the performance of NOMA is shown to

decrease when the channel gain difference is small [19]. Hence, in the diverse 6G environ-

ments, there does not exist one optimal MA technique that suits all network scenarios.
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An adaptive MA scheme that can intelligently adjust its MA policy according to the

varying environment is becoming a valuable research direction for supporting future 6G

applications.

In Chapter 4, an adaptive next generation multiple access (NGMA) scheme is designed,

where users can be adaptively allocated to SDMA or NOMA clusters and are served with

the same orthogonal frequency and time resource. The long-term power-constrained sum

rate maximization problem is investigated, where beamforming, power allocation, and

user clustering are jointly optimized. The optimization problem is a non-convex mixed-

integer problem. In Chapter 4, a spatial correlation-based user clustering algorithm is

proposed to transform the problem, where user grouping can be performed by selecting

a clustering threshold, which is a continuous-valued parameter that can be jointly opti-

mized with the other continuous variables. As one of the critical performance targets

of NGMA systems, low energy consumption is achieved by enforcing a long-term total

power constraint. In this case, the BS can coordinate the power consumption among the

time slots to enhance the long-term total sum rate, however, the problem is non-trivial

for conventional iterative algorithms. Hence, a DRL-based resource allocation framework

is proposed to address this dynamic optimization problem. To achieve a fast and sta-

ble training process, the trust region policy optimization (TRPO) learning algorithm is

employed, which imposes a limitation on the maximum distributional distance between

successive policies.

The results of this work are to be submitted for publication in

• Y. Zou, W. Yi, X. Xu, Y. Liu, “Adaptive NGMA Scheme for Energy-limited

Networks: A Deep Reinforcement Learning Approach”, in Proc. IEEE Int. Com-

munications Conf. (ICC’23), Rome, Italy, June 2023; (to be submitted)
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1.2.3 Comparisons between DL and DRL on the Optimization of RIS-

assisted NOMA systems

As two emerging 6G technologies, NOMA can be integrated into RIS-aided networks

to facilitate a win-win transmission framework [20]. Specifically, NOMA can effec-

tively enhance the spectral efficiency of RIS-aided networks, while the RIS can configure

the channel conditions, allowing for increased flexibility in power allocation and decod-

ing order designs and enabling better system performance and better QoS guarantees.

Despite the integration of NOMA and RIS being promising, it also leads to challenging

issues preventing the full benefits from being reaped. Firstly, the objective functions

are often non-convex due to the range constraints on the absolute values of the RIS

phase shifts. Secondly, the high-dimensional phase shift variables are strongly coupled

with the resource allocation strategies of NOMA, leading to challenging optimization

problems. As promising optimization tools, various AI technologies, such as DL and

DRL, demonstrated outstanding performance when implemented in RIS-aided NOMA

systems. However, the performance comparisons between them remain understudied.

In Chapter 5, a novel RIS-aided downlink NOMA system is proposed, in which a QoS-

based NOMA clustering method is designed to enhance the resource efficiency under the

zero-forcing (ZF) precoding scheme. Then, the joint design of the RIS phase shift and

the BS power allocation is examined, subject to the sum rate maximization objective.

To conduct a thorough comparison between DL and DRL, the optimization problem is

formulated from both short-term and long-term perspectives. Specifically, the instanta-

neous power consumption of each time slot is fixed in the short-term formulation, whereas

the long-term formulation allows the BS to coordinate the transmit power among the

time slots subject to a long-term total power constraint. The DL algorithm transforms

the joint optimization problem into a two-step optimization problem and utilizes meta-

learning to improve the convergence rate. The DRL algorithm employs the state-of-the-

art DDPG training algorithm, where the reward function is carefully designed to enforce

both the short-term QoS constraints and the long-term transmit power constraints.
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The novelty of this work is reinforced by the following works

• Y. Zou, Y. Liu, K. Han, X. Liu, and K. K. Chai, “Meta-learning for RIS-assisted

Non-Orthogonal Multiple Access Networks”, in Proc. IEEE Global Communica-

tions Conf. (GLOBECOM’21), Madrid, Spain, December 2021.

• Y. Zou, Y. Liu, X. Liu, X. Mu, X. Zhang, C. Yuen, “Comparisons between DL and

DRL on the Optimization of RIS-assisted NOMA Networks”, IEEE Transactions

on Wireless Communications; (under revision).

1.2.4 Multi-Agent Resource Allocation in NOMA-Enhanced Multi-

RIS Aided D2D Networks

D2D communication has been recognized as a promising technique for enhancing system

capacity and reducing traffic congestion in wireless networks. Nevertheless, co-channel

interference is a growing concern due to the ever-increasing number of D2D equipment

and applications. With the aid of successive interference cancellation (SIC) in NOMA,

the severe interference of co-channel users can be effectively eliminated. Moreover, the

integration with RIS can further promote the spectral efficiency gain of NOMA with

high deployment flexibility and low deployment cost.

In Chapter 6, a RISs-assisted NOMA-empowered D2D communication underlay cel-

lular network is considered. All cellular users (CUEs) and D2D users are assumed to

roam continuously, where the direct links among the D2D users and between the CUEs

and the BS are blocked by obstacles. To enhance the channel quality, multiple RISs

are deployed to establish line-of-sight (LoS) links towards the D2D users, the BS, and

the CUEs. Meanwhile, NOMA is employed by the D2D transmitters (DTs) to commu-

nicate with multiple D2D receivers (DRs) through the same orthogonal resource block

simultaneously. Thus, D2D groups are formed instead of the conventional D2D pairs

to enhance the spectral efficiency. The long-term sum rate maximization problem is

investigated, where the sub-channel assignments of D2D groups, the power allocation

at the DTs, and the RIS phase shifts are jointly optimized. To jointly optimize the
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strongly coupled parameters of various technologies, a multi-agent resource allocation

framework is designed, where the DTs and the RIS controllers are modelled as agents,

who are trained in a centralized training and decentralized execution (CTDE) manner.

Furthermore, all agents adopt the multi-pass deep Q-network (MP-DQN) to address the

mixed-integer problem without any relaxations of the action space or modifications to

the network architecture.

The novelty of this work is supported by the following work

• L. Guo, J. Jia, Y. Zou, Y. Liu, J. Chen, X. Wang, “Resource Allocation for

Multiple RISs Assisted NOMA Empowered D2D Communication: A MAMP-DQN

Approach”, IEEE Transactions on Vehicular Technology ; (under review).

1.3 Related Works

In this section, the related works of this thesis are discussed from three aspects: NOMA

systems, AI-empowered systems, and AI-empowered NOMA systems.

1.3.1 NOMA Systems

The existing NOMA systems can be divided into two main categories, namely code-

domain NOMA (CD-NOMA) systems and PD-NOMA systems. The concept of CD-

NOMA is inspired by CDMA, in which multiple users share the same orthogonal time

and frequency resources through unique spreading sequences. In contrast to CDMA,

the spreading sequences in CD-NOMA are further restricted to sparse non-orthogonal

sequences [21, 22]. Specifically, sparse spreading sequences have the advantage of inter-

ference reduction since each user only spreads its data over a small number of chips, while

non-orthogonal sequences are capable of supporting much more users than the number of

chips. Accordingly, sophisticated MUD algorithms are required at the receivers to accu-

rately decode the superimposed signals. Hence, numerous research contributions have

been established on the designs and the optimization of CD-NOMA systems [23–28].
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Based on trellis-coded modulation techniques, the authors of [23] proposed a joint code-

book and MUD design for CD-NOMA systems. To compare the performance of dense

and sparse codebooks, the authors of [24] conducted theoretical analysis on the diversity

order of these two types of CD-NOMA systems and concluded that dense codebooks can

achieve a lower error rate with comparable complexity compared to sparse codebooks.

In [25], an orthogonal matching pursuit (OMP)-based MUD algorithm was developed

for uplink CD-NOMA systems. By exploiting the user activity sparsity, the proposed

algorithm employed CS theory and adopted a Toeplitz matrix as the spreading code

sequence for satisfying the necessary restricted isometry property (RIP) of CS. In [26],

an iterative thresholding technique, namely approximate message passing, was employed

in conjunction with the expectation maximization algorithm to solve the MUD problem

in uplink CD-NOMA systems, where the spreading sequences are pseudo-random noise

sequences. A block CS-based subspace pursuit algorithm was presented in [27], which

utilized block compressed sensing to improve signal detection accuracy and designed

an algorithm stopping criterion based on noise levels to enhance the sparsity estima-

tion accuracy. Moreover, an alternative direction method of multipliers (ADMM)-based

MUD solution was proposed in [28], which utilized the signal and the support detection

of the previous time slot as prior knowledge to enhance MUD performance.

As another major category of NOMA, PD-NOMA exploits the near-far effect in

wireless environments and superimposes the signals in the power domain. Owing to

the superior spectral enhancement capability, many research efforts have been devoted

to investigating the designs and the resource allocation problems of PD-NOMA sys-

tems [29–34]. Based on IoT scenarios, a joint design of user scheduling and power

allocation was proposed in [29] with the objective of transmit power minimization in

PD-NOMA systems. In [30], a MA selection framework was proposed, which adaptively

switches between OMA and PD-NOMA for maximizing the sum rate. Specifically, the

proposed utility function reflects both the rate and the complexity costs of the MA

schemes, which captures the tradeoff between OMA and NOMA. In [31], the sum rate
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maximization problem in millimeter wave (mmWave)-NOMA systems was investigated,

where user clustering, beamforming, power allocation, and power splitting are optimized,

respectively. The authors of [32] studied the resource allocation problems in uplink multi-

UAV PD-NOMA systems, in which the sum rate maximization problem was formulated

by optimizing sub-channel allocations, power allocations, and the UAVs’ attitudes. The

authors of [33] investigated the designs of user clustering, power allocation, and hybrid

beamforming in mmWave-NOMA systems and the proposed approach outperformed con-

ventional mmWave-OMA systems in terms of both sum rates and energy efficiency. To

enhance the physical layer security of NOMA systems, the authors of [34] proposed a

joint beamforming and power allocation design to maximize the secrecy sum rate, sup-

ported by an asymptotic analysis on the optimality of the proposed power allocation

scheme.

1.3.2 AI-empowered Networks

In recent years, AI has emerged as a tremendous technology to address the prob-

lems of exploding data volume, non-convex optimization, and computational complex-

ity [11, 12, 15]. The research directions of AI in communications can be divided into

two categories, namely DL-empowered wireless networks [35–39] and DRL-empowered

wireless networks [40–43]. In particular, DL techniques utilize extensive datasets to

learn the unknown relationships among the variables, while offloading the optimization

complexity to the training phase. Moreover, DL models often demonstrate strong gener-

alization capability to unseen datasets and robustness to environment variations such as

noise and imperfect CSI. For instance, the authors in [35] designed a deep learning-based

MUD model for massive machine-type communications, which demonstrated improved

detection accuracy while achieving a ten-fold decrease in computing time compared to

the conventional algorithms. In [36], a model-driven deep learning-based joint channel

and signal estimation framework was proposed, which exhibited strong adaptability to

varying channel conditions. In [37], deep transfer learning was employed to solve the

beamforming optimization problem in RIS-assisted networks, where the proposed algo-
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rithm required only a small amount of training data. The problem was further extended

into discrete phase shift cases to address hardware limitations. Moreover, the authors

of [38] and [39] utilized neural networks to learn the interactions between the receiver

locations and the optimal RIS phase shift to achieve maximal sum rate in RIS-assisted

networks.

An alternative type of AI algorithm, namely DRL, collects training samples by inter-

acting with the environment through trial and error. Hence, in contrast to the offline

training mechanism of DL, DRL is often referred to as a type of online learning algorithm.

Moreover, the performance of DRL algorithms is evaluated by their long-term expected

returns, which enables them to maximize future rewards rather than only exploiting

instantaneous benefits. Motivated by these advantages, many research contributions [40–

43] have been devoted to investigating the implementations of DRL in communication

networks. In [40], DRL was employed to optimize the long-term energy efficiency of RIS-

aided multi-input single-output (MISO) networks, where the RIS was implemented with

energy harvesting technologies. The authors in [41] proposed a double-DQN algorithm

for solving the caching problem in mobile edge computing platforms. The proposed

resource allocation scheme exploited vehicular mobility to reduce the cost of energy

consumption, latency, and communication. In [42], the authors studied the resource

management problem in network slicing and designed a DRL algorithm with a long

short-term memory (LSTM) network by exploiting user mobility. Moreover, the authors

of [43] investigated the implementation of DRL in MA protocol designs based on het-

erogeneous networks. The proposed algorithm demonstrated near-optimal performance

subject to various objectives, including sum rate and user fairness.

1.3.3 AI-empower NOMA systems

With the evolution of NOMA technology towards 6G standards, conventional optimiza-

tion techniques are struggling to cope with the escalating network complexity and the

diverse application scenarios. Therefore, many researchers have shifted their atten-
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tions to the implementations of AI technologies in NOMA, leading to DL-empowered

NOMA systems [44–48] and DRL-empowered NOMA systems [49–54]. Among the DL

implementations, the authors of [44] proposed an end-to-end transceiver for NOMA-

based massive machine-type communications via both data-driven and model-driven DL

designs. The authors in [45] utilized fully-connected layers and residual connections to

improve the MUD detection accuracy in grant-free NOMA systems, without the knowl-

edge of sparsity. In [46], a deep neural network was utilized to optimize the subcarrier

assignment of OFDMA and the user clustering of NOMA in downlink video communi-

cations. In [47], the authors investigated the energy efficiency maximization problem in

mmWave-NOMA systems, subject to QoS, interference, and power limitations. In this

work, semi-supervised learning was employed to train a deep neural network for sub-

channel assignment and power allocation. In [48], a DL-based outage probability and

sum rate prediction framework was proposed for cognitive NOMA systems.

In terms of the implementations of DRL in NOMA systems, a prototype of transmit

power pool was developed in [49] for grant-free NOMA, in which a multi-agent DQN net-

work was designed to optimize the transmit power levels. The authors in [50] studied the

long-term sum rate maximization problem in RIS-aided NOMA systems, by optimizing

the stochastic phase shift with a deep deterministic policy gradient (DDPG) algorithm.

In [51], two asynchronous DRL algorithms were proposed for joint relay selection and

power allocation in hybrid NOMA/OMA systems. The authors of [52] investigated

the long-term sum rate maximization problem in uplink grant-free NOMA systems by

formulating the problem as a partially observable MDP. In [53], the power allocation

of cache-aided NOMA systems was studied, where an optimal power allocation policy

was derived in closed-form and a dual-network driven DRL solution was proposed. The

DRL-based method outperformed the closed-form solution at the cost of extensive model

training. In [54], a DRL-based power allocation and channel assignment algorithm was

designed for NOMA systems, which demonstrated near-optimal performance.
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1.4 Dissertation Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the fundamen-

tal concepts such as the basic principles of NOMA, DL, DRL, meta-learning, and RIS.

Chapter 3 proposes a DL-based MUD framework for uplink grant-free NOMA systems.

Chapter 4 designs an adaptive NGMA framework and investigates the application of DRL

for resource allocation in the proposed network. Chapter 5 studies the performance com-

parisons between DL and DRL when applied to RIS-assisted NOMA systems. Chapter 6

examines the application of multi-agent DRL for resource allocation in NOMA-enhanced

D2D networks with multiple RISs. Chapter 7 presents the conclusions of this thesis and

discusses promising future research directions.



Chapter 2

Fundamental Concepts

This chapter provides the technical background knowledge that supports this thesis.

First, the fundamental principles of NOMA are introduced, including CD-NOMA, PD-

NOMA, and MIMO-NOMA, which lays a comprehensive foundation for the technical

works. Second, the background knowledge of several AI technologies is discussed, includ-

ing DL, DRL, and meta-learning, which provides the fundamental guidelines for the opti-

mization frameworks. Finally, the concepts of several related technologies, namely CS,

SDMA, and RIS, are outlined to offer a thorough understanding of the network designs.

2.1 Fundamental principles of NOMA

This section aims to provide a detailed introduction to NOMA principles, from the key

technologies of NOMA, such as superposition coding (SC), SIC, and MUD, to the general

mathematical formulations of both CD-NOMA and power domain NOMA, followed by

an overview of MIMO-NOMA systems, including beamformer-based MIMO-NOMA and

cluster-based MIMO-NOMA.

19
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2.1.1 Key Technologies of NOMA

The core principles of NOMA consist of two concepts, namely signal multiplexing and

signal decoding. In typical NOMA systems, SC is employed to multiplex the signals in

the power or code domain. Then, to accurately decode the superimposed signal, the

receivers need to carry out SIC or MUD, depending on the multiplexing technique.

2.1.1.1 Superposition Coding

How to effectively communicate with multiple transmitters or multiple receivers has

been a challenging problem in communications. Conventionally, the solution is to set

up orthogonal channels through time or frequency multiplexing. These orthogonal

approaches have the advantage of ensuring zero interference between the channels, how-

ever, they often fail to achieve the optimal transmission rate for a given packet error

rate [55]. As a non-orthogonal multiplexing technique, SC has been theoretically proved

to achieve the capacities of scalar Gaussian broadcast channels [56], leading to exten-

sive research interests in various channels, such as MA channels [57], interference chan-

nels [58], relay channels [59], and wiretap channels [60].

The fundamental concept of SC is to superimpose the intended signals before trans-

mission to exploit the combined degrees of freedom available to these signals in orthogonal

schemes. By recognizing the channel differences among the users, the SC method can

be carefully designed with the decoding algorithm to ensure the successful separation of

the superimposed signal at the receiver side.

2.1.1.2 Successive Interference Cancellation

In terms of power-domain multiplexing, the most dominant decoding technique is SIC,

which has been demonstrated to achieve the capacity region in both additive white

Gaussian noise (AWGN) channels and fading channels [61]. The main concept of SIC is

to enable the receiver with a stronger channel to first decode the signal of the receiver

with a weaker channel. Then, the decoded signal is subtracted from the superimposed
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signal as interference. Therefore, the signal of the stronger transmitter can be decoded in

an interference-free manner. To ensure successful and reliable transmission, the receiver

with a weaker channel is often allocated with more transmit power and the optimal

decoding order starts from decoding the signal of the user with the weakest channel gain

to the user with the strongest channel gain [62].

2.1.1.3 Multi-User Detection

With code-domain multiplexing, MUD algorithms are often utilized to perform user

detection and signal detection. Existing MUD algorithms are mostly designed based on

CS theory, which relies on two conditions, namely RIP and sparsity. The necessary RIP

condition of CS can be satisfied by carefully designing the spreading code sequence and

the sparsity condition can be ensured by assuming sporadic traffic patterns [63]. Then,

the signals at the receiver can be viewed as a set of underdetermined equations of the

sparse signals and CS theory guarantees full reconstructions of the signals with high

probability.

2.1.2 Mathematical Formulation of NOMA

2.1.2.1 PD-NOMA

Consider a downlink NOMA system of a single-antenna BS and K single-antenna users.

The signal intended for user k is denoted by sk. To employ power-domain multiplexing,

the signal intended for each user k is allocated with transmit power pk. Hence, the

resulting superimposed signal x is formulated as x =
∑K

k=1

√
pksk. By denoting the

channel between the BS and each user k as hk, the signal received by user k is given by

yk = hk

K∑
k=1

√
pksk + nk (2.1)

= hk
√
pksk︸ ︷︷ ︸

Desired signal

+hk
∑

l=1,...,K,l ̸=k

√
plsl︸ ︷︷ ︸

SIC signal

+ nk︸︷︷︸
noise

. (2.2)
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Figure 2.1: Block diagram of PD-NOMA.

According to the principles of SIC, each user performs a decode-then-subtract pro-

cedure following a pre-defined decoding order until the intended signal is obtained. To

simplify the demonstration, the channel gains are assumed to follow |h1|2 ≥ |h2|2 ≥ · · · ≥

|hK |2, hence the achievable rate of user k is formulated by

Rk = log2

(
1 +

pk|hk|2∑k−1
i=1 pi|hk|2 + σ2k

)
, (2.3)

where σ2k denotes the variance of the AWGN noise. A typical PD-NOMA transceiver

system with the optimal decoding order is illustrated in Fig. 2.1.

Similarly, in an uplink PD-NOMA system, the BS is required to send controlling

signals to the users for power allocation. Then, the users send their intended signals

through the same orthogonal resource block. With the aid of the SIC technique, the

BS decodes all the signals following the pre-defined decoding order. In this thesis, PD-

NOMA systems are considered in Ch. 4–Ch. 6.

2.1.2.2 CD-NOMA

For the CD-NOMA, consider an uplink network with K single-antenna users and one

single-antenna BS, supported by M subcarriers. The signal to be transmitted by user

k is denoted by sk. The concept of CD-NOMA is to assign sparse sequences or non-
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orthogonal low-correlation sequences to each user. By denoting the spreading sequence

assigned to user k as λk = [λ1k, . . . , λMk]
T ∈ CN×1, the signal received by the BS on

subcarrier n is formulated by

ym =

K∑
k=1

hmkλmksk + nm, (2.4)

where hmk denotes the channel of user k over subcarrier m and nm denotes the AWGN

noise on subcarrier m. Hence, the signal vector y = [y1, . . . , yM ]T received by the BS is

given by

y = Hs+ n, (2.5)

where s = [s1, . . . , sK ]T , H denotes theM×K channel matrix, whose entries are [H]mk =

hmkλmk, and n = [n1, . . . , nM ]T denotes the noise vector.

Based on the received signal vector y, the BS needs to extract the transmitted signal

vector s by solving the following MUD problem:

min
s
||y −Hs||22. (2.6)

In 6G massive connectivity networks, the number of users can easily exceed the

number of subcarriers, resulting in an overloaded system, i.e., N >> M . In this case,

the MUD problem in (2.6) becomes a non-trivial under-determined system. Existing

MUD methods find approximated solutions to (2.6) through two types of relaxation

techniques, namely convex relaxation and greedy algorithms. In Ch. 3, the MUD problem

in an uplink grant-free CD-NOMA system is investigated.

2.1.3 MIMO-NOMA

As an indispensable component of 6G, multi-antenna techniques introduce additional

degrees of freedom in the spatial domain for performance enhancement. By carefully

designing the beamformer at the transmitter, the signal power and the interference power
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can be effectively adjusted, which consequently impacts the SINR of each user. Exist-

ing MIMO-NOMA systems can be divided into two categories, namely beamforming-

based MIMO-NOMA systems [64] and cluster-based MIMO-NOMA systems [65]. In

beamforming-based NOMA, a dedicated beamformer is allocated for each user, which

is jointly optimized with the beamformer of all users. When there is a sufficient spa-

tial degree of freedom, the multi-user interference can be effectively eliminated to achieve

high spectral efficiency. However, the beamforming design needs to take into account the

MUD algorithm, such as the SIC decoding order, to ensure successful signal decoding,

which leads to high optimization complexity. Moreover, designing a dedicated beam-

former for each user induces exponential complexity, which prevents the implementation

of beamforming-based MIMO-NOMA in large scale networks.

In contrast to the beamforming-based NOMA, cluster-based NOMA allocates users

into multiple clusters and assigns the same beamformer to all users in the same cluster.

The SIC decoding order is designed within each cluster, while the signals of the users

from other clusters are treated as inter-cluster interference. This technique exploits the

spatial correlation features among the users to reduce or even eliminate inter-cluster

interference. Moreover, the number of beamformers can be significantly less than the

number of users, which is of vital importance in large scale networks.

In Ch. 4, an adaptive MA framework is designed based on MIMO networks, which

serves OMA and NOMA users with the same time and frequency resources. In Ch. 5,

the resource allocation problem in RIS-enhanced MIMO-NOMA systems is investigated.

2.2 Artificial Intelligence

This section presents the fundamental principles of the AI technologies used in this thesis,

including DL, DRL, and meta-learning.
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2.2.1 Deep Learning

The core concept of DL is to design intelligent algorithms, known as neural networks,

that mimic the structure of the neurons in the human brain. A typical neural network

has three main components, namely the input layer, the hidden layer, and the output

layer. Each layer consists of a group of neurons, each of which performs mathematical

calculations based on the values of the previous layer and the result is forwarded to the

next layer. The input layer is often a linear layer of the same dimension as the input,

where each neuron represents each input value. The hidden layer and the output layer

can take various forms. The neurons in the hidden layer and the output layer are denoted

by f1(·), . . . , fH(·) and g1(·), . . . , gM (·), respectively. Thus, the computation performed

by the three-layer neural network is formulated as ym = gm(
∑H

h=1 fh(x)),∀m = 1 . . . ,M ,

where x = [x1, . . . , xN ]
T and y = [y1, . . . , yM ]T denote the network input and output,

respectively. Common choices of layers are introduced as follows:

• Fully connected layer : The fully connected layer is the most basic hidden layer,

which can be represented by fi(x) = wT
i x+ bi, where x denotes the output of the

previous layer, wi is known as the weights, and bi is the bias.

• Activation layer : Activation layers are indispensable components in modern neural

network design, due to their vital impacts on the capability and performance of

the neural network. Common choices of activation functions include rectified linear

unit (ReLU), sigmoid, and hyperbolic tangent (tanh). Nonetheless, any customized

functions can be employed as the activation function, as long as it is differentiable.

• Convolutional layer : A convolutional layer uses kernels to slide across the input,

performing a convolution operation between each input region and the kernel.

Each kernel has a window size, usually 3× 3, which significantly reduces the com-

putational complexity and often demonstrates outstanding learning performance

in image processing tasks due to the spatial learning characteristic [66].

Recent developments in DL have also introduced more advanced network architectures,
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such as generative adversarial networks (GANs) [67], autoencoders [68], and LSTM net-

works [69].

Apart from the network architecture, another crucial component of DL is the loss

function, which evaluates how poorly the network performs and serves as the learning

objective. Similar to the activation function, any differentiable function can be utilized

as the loss function. The two most widely used loss functions are the mean squared error

loss for regression problems and the cross-entropy loss for classification problems.

Given the network architecture and the loss function, the training procedure can be

initiated. Neural networks are usually trained via gradient-based techniques through the

following update equation

wt+1 ← wt − γ
1

B

B∑
b=1

∇wJ b(wt), (2.7)

where wt indicates the network weights at iteration t, γ denotes the learning rate, B

denotes the batch size, and J b(·) denotes the loss of the network evaluated using the

data batch b.

In Ch. 3, a generative neural network with convolutional layers is designed to solve

the MUD problem in grant-free NOMA systems. In Ch. 4, a neural network is trained

to perform resource allocation in RIS-aided NOMA systems.

2.2.2 Deep Reinforcement Learning

In contrast to DL, where the training data is prepared beforehand, the training data

of DRL is collected during training by interacting with the environment. The goal of

DRL is to determine the optimal action that maximizes the future return based on the

current observations. To be specific, the optimization problems of DRL must follow the

MDP framework, which is defined as a tuple (S,A,P, r, γ). Here, S and A are the state

space and the action space, respectively. P : S ×A×S → [0, 1] is the Markov transition

probability, which specifies the probability of transitioning to a particular future state
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given the current state. r : S × A → R is the reward function. γ is the discount factor,

which determines how much the agent should care about rewards in the distant future

relative to those in the immediate future. The agent is represented as a policy function

π : S → A, which specifies a mapping from the state space to the action space. In terms

of the formulated MDP, the goal of DRL is to find the optimal policy π∗ that maximizes

the expected return E[
∑∞

t=0 γ
tr(st,at)].

There are three commonly used metrics for evaluating the policy π, namely the action-

value function Qπ : S ×A → R, the state-value function V π : S → R, and the advantage

function Aπ : S ×A → R. First, the action-value function, also known as the Q-function

is defined as

Qπ(s,a) = E[
∞∑
t=0

γnr(st,at)|s0 = s,a0 = a,at ∼ π(st), st+1 ∼ P(·|st,at)], (2.8)

which evaluates the goodness of taking action a at state s. The state-value function is

defined as

V π(s) = E[
∞∑
t=0

γnr(st,at)|s0 = s,at ∼ π(st), st+1 ∼ P(·|st,at)], (2.9)

which evaluates the goodness of being in state s. Finally, the advantage function is

computed by

Aπ(s,a) = Qπ(s,a)− V π(s), (2.10)

which describes the advantage of taking action a in state s among all other possible

actions and states.

The training procedure of existing DRL algorithms can be generally classified into

two categories, namely policy-based methods and value-based methods. In policy-based

approaches, the policy function π is directly optimized, whereas, in value-based algo-

rithms, the value function (action-value function/station-value function) is optimized

and the optimal policy is implicitly derived from the optimal value function. Trust
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region policy optimization (TRPO) and DQN are examples of policy-based and value-

based DRL algorithms, respectively.

In Ch. 4, the DDPG algorithm is employed to perform resource allocation in RIS-

aided NOMA systems. In Ch. 5, the TRPO algorithm is employed to solve the resource

allocation problem in NGMA systems.

2.2.3 Meta-learning

Meta-learning, also known as learning to learn, refers to the process of improving a

learning algorithm over multiple learning episodes. In conventional AI algorithms, the

training data is assumed to follow a certain distribution, denoted as T1. With sufficient

data and training time, the neural network is expected to perform well on any data

following T1. However, poor performance is expected if the network is directly applied

to data with a different distribution, such as T2. A common solution is to train a new

neural network, which results in expensive computational and time costs.

Model agnostic meta-learning (MAML) [70] is a commonly used meta-learning algo-

rithm that is developed to reduce the excessive training time on previously unseen tasks,

i.e., T2 in the previous example. In particular, MAML assumes that these tasks share a

common distribution T , known as the task distribution, i.e., T1, T2 ∼ T . Each training

iteration k of MAML consists of two steps: the task learning step and the task adaption

step, which is described in the following.

• Task learning step: NT tasks are sampled from the task distribution T . Based on

each task i, a provisional update is performed by

wi
k+1 ← wk − γ1∇wk

J i(wk), (2.11)

where wk denotes the network weights at iteration k, γ1 denotes the inner learning

rate, J i(·) denotes the loss function evaluated using the data of task Ti. By the

end of this step, NT sets of updated weights are obtained as w1
k+1, . . . ,w

NT
k+1.
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• Task adaption step: The updated performance of the NT networks are evaluated

and the initial network weights wk are optimized through a second order differen-

tiation, given by

wk+1 ← wk + γ2∇wk

[
1

NT

NT∑
i=1

J i
(
wk + γ1∇wk

J i(wk)
)]
, (2.12)

where γ2 denotes the outer learning rate. In (2.12), the true updated weights wk+1

is obtained, which becomes the initial weights of the next training iteration.

In Ch. 3 and Ch. 4, meta-learning is employed to improve the convergence rate of

the proposed DL algorithms.

2.3 Related Technologies

This section introduces the fundamental principles of the related technologies used in

this thesis, including CS, SDMA, and RIS.

2.3.1 Compressed Sensing

CS is a signal reconstruction approach, which guarantees an exact or an approximate

signal recovery when the number of samples is below the minimum Nyquist rate [63].

The fundamental principles of CS rely on two concepts, namely sparsity and the RIP

condition. The sparsity of a signal is defined as the number of non-zero elements under

a certain domain, such as the spatial or the temporal domain, and the RIP condition

states that the measurement matrix must preserve the distance between two signals to

a large extent.

Let s ∈ CN×1 defines the signal of interest and Φ ∈ CN×N defines the sparsifying

basis, the sparse representation of s is computed by

x = Φs, (2.13)
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where the sparsity of x is denoted by K << N . Based on this sparsity, CS theory claims

that only M < N measurements of x is required to obtained a full reconstructed. The

compressed signal is formulated by

y = Ψx = ΨΦs = Θs, (2.14)

where y denotes the compressed signal, Ψ ∈ CM×N denotes the measurements matrix,

and Θ ∈ CM×N denotes the sensing matrix. The formulation in y is a set of underdeter-

mined linear systems, hence solving s based on y is generally impossible. Fortunately,

CS theory guarantees that a full reconstruction of s is possible as long as s is sparse and

Ψ satisfies RIP.

Definition 1. Restricted Isometry Property (RIP): The matrix Ψ is said to satisfy RIP

of order K if there exists ϵ > 0 such that, for any vector x of sparsity K,

1− ϵ ≤ ||Ψx||22
||x||22

≤ 1 + ϵ. (2.15)

However, the RIP condition is computationally expensive to verify, but it can be

achieved with a high probability simply by selecting Ψ as a random matrix, such as

Gaussian matrices, Bernoulli matrices, and any matrices with independent and identi-

cally distributed (i.i.d.) entries.

Given the compressed signal y and the measurement matrix Ψ that satisfies RIP, the

signal recovery of the sparse signal x is achieved by solving the following optimization

problem:

argmin
x

||y −Ψx||22, subject to ||x||0 = K. (2.16)

In Ch. 3, CS is utilized to design the MUD algorithm for grant-free NOMA systems,

where the sparsity constraint is satisfied by assuming sporadic user activity and the RIP

condition is satisfied by enforcing it as a loss function of the neural network.
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2.3.2 Spatial Division Multiple Access

SDMA is a MA technique designed on the basis of MIMO networks. In contrast to tra-

ditional cellular networks, where the BS radiates power in all directions, SDMA utilizes

the spatial location of each user to design the beamformers. To be specific, by equipping

the BS with multiple antennas, an additional spatial degree of freedom is introduced and

can be exploited to reduce or even eliminate the multi-user interference.

The optimal SDMA scheme, known as DPC, was proposed in [71]. However, due to

the excessive encoding and decoding, DPC exhibits expensive computational complex-

ity, which motivated various suboptimal designs [72–74]. For instance, the opportunistic

SDMA was proposed in [72] which studied the user scheduling problem under random

beamforming and partial CSI and the proposed scheme demonstrated asymptotic opti-

mality. The proposed designs in [73] and [74] utilized ZF beamforming with a semi-

orthogonal user selection (SUS) algorithm, which also achieved asymptotic optimality.

Recently, the integration of NOMA and SDMA has also been investigated. For

instance, the closed-form expression of the outage probability of NOMA-SDMA sys-

tems was derived and analyzed in [75]. In [76], the author studied the design of NOMA

beamforming in SDMA systems and proposed two strategies for demonstrating the trade-

off between the system performance and the complexity. In Ch. 4, an adaptive NGMA

system is designed, where SDMA and NOMA users are simultaneously served with the

same time and frequency resources.

2.3.3 Reconfigurable Intelligent Surface

A RIS composes of a large number of low-cost reflecting elements that can proactively

reconfigure the propagation of incident signals. This technique can be especially bene-

ficial in dense urban areas, where LoS links are often blocked by various obstacles such

as trees and buildings. As shown in Fig. 2.2, consider a multi-user network, where the

direct links between the users and the BS are obstructed. By employing a RIS on the

facade of a building, LoS links can be successfully established through signal reflection
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Figure 2.2: Illustration of RIS-enabled wireless communications.

from the BS to the blocked users.

To formulate the received signal in a RIS-aided downlink network, let K, M , and

N denote the number of users, the number of antennas at the BS, and the number

reflecting elements of the RIS, respectively. The RIS-user link and the BS-user link

of user k are denoted by hHR,k ∈ C1×N , and hHB,k ∈ C1×M , respectively. The BS-RIS

link is denoted by by HBR ∈ CN×M . The phase shift of the RIS is denoted by θ =

[θ1, . . . , θn, . . . , θN ], where θn ∈ [0, 2π). Thus, the diagonal phase-shifting matrix is

expressed as Θ = diag(β1e
jθ1 , . . . , βne

jθn , . . . , βNe
jθN ), where βn ∈ [0, 1] denotes the

amplitude reflection coefficient.

Hence, the signal received by user k is derived as

yk =
(
hHB,k + hHR,kΘHBR

) K∑
k=1

wkxk + nk, (2.17)

where wk denotes the beamforming vector of user k and nk denotes the AWGN.

Hence, by intelligently adjusting the phase shift of each RIS element, the commu-

nication channels can be beneficially manipulated to enhance various performance tar-

gets [77], including spectral efficiency, energy efficiency, sum rate, and user fairness.

Benefiting from the low-cost meta-materials [78], RIS-enhanced networks can achieve
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lower hardware cost and power consumption compared to MIMO networks, which rely

on a large number of RF chains.

In Ch. 5, the sum rate maximization problem in RIS-aided NOMA systems is investi-

gated. In Ch. 6, the sum rate maximization problem in multi-RIS enhanced NOMA-D2D

networks is studied.



Chapter 3

Joint User Activity and Data

Detection in Grant-Free NOMA

using Generative Neural

Networks

3.1 Introduction

In this chapter, the MUD problem in uplink grant-free CD-NOMA networks is inves-

tigated, where both user activity and the transmitted signals need to be detected and

extracted based on the superimposed signal. Owing to the recent advancement in AI-

based signal recovery techniques [79, 80], the proposed AI-enabled MUD framework

demonstrates superior detection accuracy compared to conventional MUD approaches.

The main contributions are as follows:

• The MUD problem in grant-free CD-NOMA systems is addressed based on gener-

ative neural networks such that signal recovery can be performed regardless of the

number of available orthogonal resources in the system.

34
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Figure 3.1: Illustration of a typical frame-based uplink grant-free CD-NOMA
system.

• Exploiting the uncorrelated user behaviors in MUD data, a low-complexity gen-

erative network architecture is designed, which consists of a small number of 1x1

convolutional layers. By removing the fully-connected layers, the input latent

dimension can be increased to achieve more accurate signal recovery with lower

additional computational cost.

• To replace the exhaustive sparsity approximation procedures in most MUD algo-

rithms, a closed-form user sparsity estimator is formulated. The estimator can be

applied as an add-on technique to MUD algorithms since it only requires informa-

tion about the received signals and the noise level, both of which are easy to obtain

in practice.

• The extensive simulation results show that the proposed GenMUD is able to

improve detection accuracy compared to conventional methods and the proposed

sparsity estimator demonstrates high accuracy under various channel conditions

and has neglectable impact on the support detection accuracy.
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Table 3-A: List of main notations.

Notation Description Notation Description
K Number of users λmk Spreading code of user k on sub-carrier m
M Number of sub-carriers xk Intended signal of user k
T Number of time slots (TSs) gmk Channel gain of user k over sub-carrier m
S User sparsity z Latent vector

3.2 System Model

An uplink grant-free CD-NOMA system with K users and one BS is considered. Without

loss of generality, all users and the BS are assumed to be equipped with a single antenna.

The main notations are listed in Table 3-A.

By performing channel coding and modulation, the transmitted symbol xk by user

k is spread onto M orthogonal sub-carriers by an unique spreading sequence λk =

(λ1k, λ2k, ..., λMk)
T ∈ CM . Particularly, the overloaded CD-NOMA system is considered,

i.e., M < K, where only a small proportion of users are actively transmitting signals at

a given TS. For inactive users, their transmitted symbol is treated as zero. Hence, the

signals received at the BS over sub-carrier m can be expressed individually as

ym =
K∑
k=1

gmkλmkxk + nm, m = 1, 2, ...,M , (3.1)

where gmk denotes the channel gain of user k transmitted over sub-carrier m and nm ∼

CN (0, σ2) denotes the Gaussian noise with noise power σ2. The Rayleigh fading channel

model is adopted whose channel gains are independent and identically distributed (i.i.d.)

complex Gaussian random variables, i.e., gmk
i.i.d.∼ CN (0, 1), ∀m, k. To simplify the

expression, the received signal vector y = (y1, ..., yM )T can be expressed as

y = Hx+ n, (3.2)

where x = (x1, ..., xK)T is the transmitted signal vector, H denotes the M ×K channel

matrix whose entries are hmk = gmkλmk, and n = (n1, ..., nM )T is the Gaussian noise

vector.
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3.2.1 Frame-Wise Joint Sparsity Model

Generally, users transmit data in consecutive TSs and remain active or inactive through-

out the time frame [27] [81], as shown in Fig. 3.1. Motivated by the temporal correlations

in user activity, the system is extended from a single transmission to a multiple trans-

mission model, known as the frame-wise joint sparsity model. Given a time frame of

length T , i.e. T consecutive TSs, the common sparsity support S is defined as

supp(x(1)) = supp(x(2)) = · · · = supp(x(T )) ≜ S, (3.3)

where supp(x(t)) = {k | x(t)k ̸= 0, k ∈ {1, ...,K}}. The number of active users during each

transmission is defined as S = |S|, which is referred to as the sparsity of the system. The

length of the time frame is restricted to be shorter than the channel coherence time, so

that the channel matrix H remains unchanged throughout the entire time frame. Thus,

the formulation of the signals received over the T consecutive TS is given by

Y = HX+N, (3.4)

where Y = [y(1), ...,y(T )] ∈ CM×T , X = [x(1), ...,x(T )] ∈ CK×T and N = [n(1), ...,n(T )] ∈

CM×T . The evaluation of channel estimation methods is outside the scope of this chapter

and our results can serve as a theoretical system performance benchmark. Hence, perfect

CSI is assumed to be available at the BS.

3.2.2 Problem Formulation

Based on (3.4), the MUD problem becomes a 2-dimensional CS problem, where the goal

is to estimate the signal matrix X given the channel matrix H and the received signal

matrix Y. The optimization problem is formulated as

(P1) : min
X
||Y −HX||22, subject to ||X||0 = ST. (3.5)



Chapter 3. Joint User Activity and Data Detection in Grant-Free NOMA using
Generative Neural Networks 38

Existing signal recovery methods consist of two major approaches, namely convex

optimization and greedy algorithms. Convex optimization methods find suboptimal solu-

tions to (3.5) by replacing the ℓ0 regularization with a ℓ1 constraint [82]. This type of

technique has the advantages of high recovery accuracy and theoretical performance

guarantees at the cost of heavy computational complexity and high sensitivity to noise.

Greedy algorithms identify the sparse supports and perform signal detection iteratively

until the termination criteria are met [83]. They have lower complexity than convex

optimization methods, but usually require a large number of measurements for exact

recovery and are sensitive to noise.

It has been shown that deep learning-based recovery algorithms provide even lower

computational complexity than greedy algorithms while achieving higher recovery accu-

racy [35]. In particular, generative networks have been recently studied in solving CS-

based image recovery problems, which demonstrated significant performance gain com-

pared to conventional techniques. Moreover, unlike typical neural networks which use

the received signals as the inputs, generative networks use arbitrary noise as the inputs,

hence the same network architecture can be used for different input signal dimensions. In

terms of the considered communication system, the same neural network can be employed

regardless of the number of sub-carriers in the system, which introduces more flexibility

in implementation. Hence, this chapter aims to investigate the designs of generative

neural networks for solving MUD problems.

3.2.3 Performance Metrics

To achieve a thorough performance evaluation, four distinct performance metrics are

adopted, namely mean squared error (MSE), symbol error rate (SER), positive detection

rate (Pd), and false alarm probability (Pfa). Let x̂
(t)
k denotes the recovered signal of user

k in TS t and x̃
(t)
k denotes the recovered symbol based on x̂

(t)
k , the performance metrics

are formulated as follows:

• MSE: MSE is defined as the average squared error loss between the recovered signal
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and the true signal of all users, which is computed as

MSE =
1

KT

K∑
k=1

T∑
t=1

|x(t)k − x̂
(t)
k |

2. (3.6)

• SER: SER is defined as the ratio of the incorrectly recovered symbols to all symbols

transmitted by the active users, which is given by

SER =
1

ST

∑
k∈S

T∑
t=1

1{x(t)k ̸= x̃
(t)
k }. (3.7)

• Pd: Pd is defined as the ratio of the number of correctly detected active users to

the total number of active users, which can be given by

Pd =
1

ST

∑
k∈S

T∑
t=1

1{x̃(t)k ̸= 0}. (3.8)

• Pfa: Pfa is defined as the ratio of the number of inactive users who is detected as

active to that of the total inactive users, given by

Pfa =
1

(K − S)T
∑
k/∈S

T∑
t=1

1{x̃(t)k ̸= 0}. (3.9)

3.3 Generative Networks for Multi-User Detection (Gen-

MUD)

In this section, the offline model-agnostic meta-learning (MAML)-based training proce-

dure of generative networks [79] is introduced and the network architecture is outlined,

followed by the proposed GenMUD framework and the designed sparsity estimator.
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3.3.1 Problem Reformulation

In existing deep learning-based MUD algorithms, the signal received at the BS is used

as the input of the neural network. Hence, the dimension of the received signal has to

be identical in training and in application due to the fixed network architecture. For

instance, in the considered network, the dimension of the received signal is (M × T ),

where M is the number of sub-carriers and T is the length of the time frame. Therefore,

if the number of sub-carriers varies during application, separate neural networks need to

be trained and stored at the BS, which leads to excessive computational and memory

cost.

In contrast to conventional neural networks, the generative neural network learns a

mapping from the latent space to the space of all possible transmitted signals, which is

formulated as

X = Gθ(z), (3.10)

where z represents a point in the latent space of arbitrary dimensions and Gθ represents

a generative neural network, also known as a generator. Since the dimension of z can be

arbitrary, the same neural network can be employed in systems with a varying number

of sub-carriers, hence motivating the design of generative neural network-based MUD

frameworks.

Hence, the generative neural network solves (3.5) by searching for the particular point

z such that the neural network Gθ maps ẑ to the optimal solution X in (3.5). It leads

to the following reformulated MUD problem:

(P2) : min
z
||Y −HGθ(z)||22, subject to ||Gθ(z)||0 = ST. (3.11)

To achieve the optimal solution ẑ in (3.11), gradient descent is initiated starting from
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a randomly sampled point z ∼ N (0, I) through the following update equation:

ẑ← ẑ− α∂||Y −HGθ(z)||22
∂z

, (3.12)

where α indicates the learning rate. However, it usually requires hundreds or even

thousands of gradient descent steps until (3.12) converges. Fortunately, model-agnostic

meta-learning (MAML) [70] can be employed in the training phase to further optimize

this optimization procedure. As demonstrated in the simulations, the number of gradient

descent steps can be reduced to as few as 20 iterations.

To formulate MAML in the context of MUD, the distribution of tasks is denoted by

ptask(T ), in which each task Ti describes the optimization problem of finding the optimal

ẑi that approximates the target signal matrix Xi. Thus, MAML is employed by training

the network weights θ against the measurement error over all tasks, denoted by LG,

through a second order differentiation, which is formulated as

min
θ
LG, for LG = ETi∼ptask(T )

[
||Yi −HiGθ(ẑi)||22

]
, (3.13)

where ẑi is the output of task Ti after iteratively performing the gradient descent steps

in (3.12). It is worth pointing out that, the second order differentiation in (3.13) is

performed by back-propagating through the gradient descent steps of all ẑi. Additionally,

to further increase the convergence rate, the same optimization procedure is applied to

the learning rate α.

However, the network may exploit (3.13) and quickly approach small loss by mapping

all Gθ(ẑ) into the null space of H, which leads to divergence. To address this problem,

an additional loss is designed to enforce the RIP condition in the CS theory. The RIP

loss is given by

LH = EX⋆,X′

(∣∣∣∣∣∣∣∣HX⋆ −HX
′
∣∣∣∣∣∣∣∣
2

−
∣∣∣∣∣∣∣∣X⋆ −X

′
∣∣∣∣∣∣∣∣
2

)2
 , (3.14)
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where X⋆ and X
′
are the samples of the signal in different stages of the optimization

process. Specifically, the RIP loss is computed as an average over three pairs of signals,

namely the true signal and the initial random signal before executing (3.12), the true

signal and the optimized signal after executing (3.12), the initial random signal and the

optimized signal of (3.12).

The training algorithm of the generative network, as illustrated in Algorithm 1, is

described as follows: In each iteration, the received signal Yi of each task Ti is first

measured based on the true signal Xi, the channel matrix Hi, and the random noise ni;

Then, for each task Ti, an initial latent variable is sampled according to the Gaussian

distribution and J gradient steps are performed using (3.12) to obtain the optimized

latent variable ẑi and the corresponding signal recovery Gθ(ẑi); By calculating the mea-

surement loss LG and the RIP loss LH as an average over all tasks, the network weights

θ and the learning rate α are updated through a second order differentiation over the J

gradient steps; The previous procedures are repeated until convergence.

Algorithm 1 Generative Network Training Algorithm

Input: Number of training tasks Nd, training data {Xi}Nd
i=1, channel matrix {Hi}Nd

i=1,
generator Gθ, number of latent update steps J

Output: Trained generator Gθ̂, optimized learning rate α̂
Initialize θ, α

1: repeat
2: for i = 1 to Nd do
3: Measure the signal Yi ← HiXi + ni
4: Sample ẑi ∼ N (0, I)
5: for j = 1 to J do
6: ẑi ← ẑi − α ∂

∂ẑ i
||Yi −HGθ(ẑi)||22

7: end for
8: end for
9: LG = 1

Nd

∑Nd
i=1 ||Yi −HGθ(ẑi)||22

10: Compute LH using (3.14)
11: Update θ ← θ − ∂

∂θ (LG + LH)
12: Update α← α− ∂

∂α(LG + LH)
13: until reaches the maximum training steps
14: Return Gθ̂, α̂
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Algorithm 2 GenMUD Algorithm

Input: Received signalY, channel matrixH, pre-trained generatorGθ̂, number of latent
update steps T , optimized learning rate α̂

Output: Reconstructed symbols X̃
1: Sample ẑ ∼ N (0, I)
2: for t = 1 to T do
3: ẑ← ẑ− α̂ ∂

∂ẑ ||Y −HGθ̂(ẑ)||
2
2

4: end for
5: Final signal reconstruction X̂ = Gθ̂(ẑ)

6: Initialize symbol reconstruction X̃ = 0K×T
7: for t = 1 to T do
8: Order the users in terms of the magnitude of the recovered signal, i.e., x̂

(t)
(1) ≥

x̂
(t)
(2) ≥ · · · ≥ x̂

(t)
(K)

9: Update X̃ by mapping the signals of the first S users in the ordered list to the

nearest symbol, i.e., x̃
(t)
(s) = {x̂

(t)
(s) mapped to the nearest symbol}, s = 1, . . . , S

10: end for
11: Return X̃

3.3.2 GenMUD Framework

Algorithm 2 illustrates the proposed GenMUD framework. Having obtained the trained

generator Gθ̂ and the optimized learning rate α̂ from Algorithm 1, MUD is achieved by

executing (3.12) for J iterations starting from a random latent variable to obtain the

optimized latent variable and the corresponding signal recovery, which corresponds to

line 1-5 of Algorithm 2. Since neural networks output continuous numbers, the recovered

signals need to be further mapped to valid modulation symbols, represented by lines 6-10

of Algorithm 2. To be specific, in each TS, the signals are sorted in descending order of

magnitude and the S signals with greater magnitudes are each mapped to the nearest

constellation symbol. The rest (K − S) signals are treated as (0 + 0j), which represents

the inactive users.

3.3.3 Network Architecture

Standard generative neural networks [80] are mainly designed for image data to extract

spatial correlations and hidden structures. To be applied to MUD data which lack

representative features, larger input dimensions are required to achieve greater learn-
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Figure 3.2: Architecture of the developed neural network.

ing capability. However, the use of fully-connected layers in conventional generative

networks causes the network sizes to increase dramatically with the input dimensions,

leading to high computational complexity. Moreover, since the considered model assumes

independent user behaviours, i.e., the active status of one user does not influence the

active/inactive state of any other user. Hence, the large kernel sizes used in convolu-

tional neural network (CNN)-based networks [80] introduce redundant network parame-

ters when applied to MUD data. Therefore, 1x1 convolutions are employed to construct

a low-complexity generative network, which is tailored specifically for the considered

MUD problems.

The detailed network architecture is described as follows. Based on theK×2T output

dimension, which corresponds to [ℜ(X),ℑ(X)], the input dimension is chosen as K×4T

to improve the network learning capability. Three one-dimensional (1D) convolutional

layers are employed, each using a kernel size of 1× 1. LeakyReLU activation and batch-

normalization are employed after each convolutional layer except the last one, which

employs the tanh activation function to scale the outputs to [-1, 1]. The architecture of

the proposed network is illustrated in Fig. 3.2.

The proposed architecture has three main differences compared to standard genera-

tive networks [79, 80]:

• Large input dimensions: For generative neural networks, larger input dimen-

sions are proved to improve the learning capability of the network at the cost of

computational complexity [84]. Small latent dimensions are preferred in traditional
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image CS problems because image datasets usually exhibit strong inter-correlations

and can be compressed to smaller latent dimensions without much information loss.

However, in the considered system model, users are expected to enter the communi-

cation system independently, causing zero correlation among the row of the signal

matrix X. Moreover, the signals transmitted by the active users are assumed to

be independent in each TS. The lack of predictable features causes the generative

networks to require a larger latent dimension. Given the considered model, the

latent dimension is chosen to be twice the size of the output, since the network

also needs to be adaptable to a different number of sub-carriers.

• No fully-connected layers: Fully-connected layers scale badly with input sizes,

hence are computationally expensive for solving the considered MUD problems. In

the proposed network, the input layer is followed directly by a convolutional layer

to reduce the additional complexity cost due to the increase in the input dimension.

• 1x1 convolutional layers: Considering the independent user behaviours, any

spatial convolutions should be avoided among the users. In particular, all the 2D

convolutional layers are replaced with 1x1 1D convolutional layers, such that the

output of the resulting network does not exhibit any inter-user correlation.

3.3.4 Complexity Analysis

In both the training algorithm and the GenMUD algorithm, the majority of the com-

putational complexity arises from the latent updates step, corresponding to lines 5-7 in

Algorithm 1 and lines 2-4 in Algorithm 2. In each latent update step, the computa-

tional complexity mainly consists of the multiplication complexity of
(
H×Gθ̂(ẑ)

)
and

the forward propagation complexity of Gθ̂(ẑ). The multiplication has a complexity of

O(MKT ). Then, for the 1× 1 convolutional network with an input dimension of 4KT

and an output dimension of 2TK, the complexity is derived as O(KTL+nHKL2), where

nH and L denotes the number of hidden layers and the number of 1x1 kernels in each

layer, respectively. Without loss of generality, it is assumed that all convolutional layers
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have the same number of kernels. Hence, the total complexity of the J latent update

steps is derived as O(J(MKT +KTL+nHKL
2)), which constitutes the computational

complexity of the training algorithm and the GenMUD algorithm.

To demonstrate the complexity benefits of the designed network architecture, the deep

convolutional generative adversarial network (DCGAN) [80] is considered as a baseline

model. In terms of the MUD data, consider a DCGAN that compose of a fully connected

layer and nH 1D convolutional layers. Each convolutional layer consists of L kernels

of size sk × 1 and has a stride of 2. Therefore, the computational complexity of the

considered DCGAN is O
(
4K2TL+ nHL

2sk(⌊K−sk
2 ⌋+ 1) + 2KTLsk(⌊K−sk

2 ⌋+ 1)
)

=

O
(
K2TL+ nHL

2sk⌊K−sk
2 ⌋+KTLsk⌊K−sk

2 ⌋
)
, which is significantly larger than that

of the designed network.

3.3.5 Sparsity Estimator

The proposed GenMUD framework, along with many existing MUD algorithms, relies

on the knowledge of sparsity prior to user detection. However, the exact sparsity is

difficult to retrieve in practical systems, which makes sparsity estimation a challenging

topic in MUD problems. Recently, some MUD algorithms are proposed with sparsity-

blind strategies, including approximation algorithms for sparsity built inside the MUD

algorithms [27] and stopping criteria of greedy algorithms with no prior knowledge of

user sparsity [81]. Unfortunately, these sparsity approximation methods do not apply to

other MUD frameworks.

By inspecting the equation (3.4) of the system model, a straightforward observation

is that the power of each received signal is directly proportional to sparsity and inversely

proportional to SNR. It raises the question of whether a closed-form relationship between

the received signal, the sparsity, and the SNR can be formulated. Unfortunately, the

randomness in noise and channel gain makes a direct formulation impossible. However,

since the distribution of noise and channel gain is known, it is reasonable to suspect that

the power of the received signals can also be modelled as a random variable with mean
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Table 3-B: Network and algorithm configurations.

Parameter Value Parameter Value

Total number of users, K 200 SNR 20 dB
Number of sub-carriers, M 100 Initial latent learning rate, α 0.01
Number of active users, S 40 Network learning rate 0.0001
Number of time slots, T 7 Task batch size 32

and variance expressed as a function of related quantities, namely sparsity. Based on

extensive experiment results and data analysis, a sparsity estimator is formulated as

Ŝ = E
[

τ

2(τ + 1)
||y||22

]
, (3.15)

where τ is SNR in its linear scale and y is the M × 1 signal vector received in a single

TS. In terms of a frame-wise model of length T , the estimator is formulated as

Ŝ =
1

T

T∑
t=1

τ

2(τ + 1)
||y(t)||22. (3.16)

The estimation accuracy is evaluated by the normalized error (En), given by

En =
|S − Ŝ|
S

. (3.17)

3.4 Simulations

Unless otherwise stated, the configurations of the communication system and the network

training parameters are listed in 3-B. It is worth pointing out that the SNR value is fixed

to 20 dB and the sparsity is fixed to S = 40 in all training sessions, where the simulation

results are produced under various SNRs and sparsity levels.

The transmitted signals are modulated by Quadrature Phase Shift Keying (QPSK).

The codebook is designed as a random Toeplitz matrix [85] such that RIP is satisfied

and CS can be implemented to ensure full signal reconstruction with a high probability.
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Figure 3.3: MSE versus SNR based on OMP, DyCS, BPDN, Oracle LS and
the proposed GenMUD.

3.4.1 Benchmark Methods

In this section, the MUD performance of the proposed GenMUD algorithm is inves-

tigated and compared to several existing solutions: 1) Oracle least squares (LS) algo-

rithm, the widely used MUD performance upper bound, is chosen as the optimal solution

since it performs LS estimation based on perfect knowledge of the sparse support.; 2)

Orthogonal matching pursuit (OMP) [83], a greedy algorithm; 3) Basis pursuit de-noising

(BPDN) [82], a convex optimization technique; 4) DyCS [25], a state-of-the-art MUD

method based on dynamic CS.

3.4.2 MSE Performance

Fig. 3.3 compares the MSE performance of all considered methods, OMP, DyCS, BPDN,

Oracle LS, and the proposed GenMUD, under different SNRs. It can be observed that the

proposed GenMUD outperforms OMP and DyCS under all SNR values, which indicates

a consistent and accurate signal detection performance for all considered values of SNR.

Compared to BPDN, the proposed GenMUD demonstrates increasing performance gain

as SNR increases from 0 dB to 10 dB. Moreover, GenMUD achieves almost the same MSE

as Oracle LS between 0 dB and 8 dB, indicating the highly accurate support detection
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Figure 3.4: SER versus SNR based on OMP, DyCS, BPDN, Oracle LS and
the proposed GenMUD under S = 40 active users and M = 100
sub-carriers.

of GenMUD.

3.4.3 SER Performance

To investigate the symbol detection accuracy, Fig. 3.4 illustrates the SER performance

of the considered algorithms under different SNRs. In the simulations. It can be noticed

that the proposed GenMUD algorithm outperforms OMP and DyCS significantly in

terms of SER over the whole range of SNR. In comparison to the BPDN approach,

GenMUD shows increasing performance gain as SNR increases from 0 dB to 14 dB.

Moreover, GenMUD demonstrates near oracle performance when SNR is lower than 8

dB and is the only method other than LS that achieves an SER lower than 1× 10−3.

By comparing the MSE and the SER performance of the considered methods in

Fig. 3.3 and Fig. 3.4, an interesting insight is that the SER performance gain of GenMUD

compared to OMP, DyCS, and BPDN is more significant than its MSE performance gain

over these methods. This observation implies that, although the signals recovered by

GenMUD are not precisely accurate, they are generally very close to the true signals and

can be mapped to true symbols with higher accuracy than the other methods. Moreover,
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Figure 3.5: Positive detection rate (Pd) versus SNR based on OMP, DyCS,
BPDN, Oracle LS and the proposed GenMUD.

the neural network of GenMUD is trained at a fixed SNR of 20 dB but still demonstrates

substantial performance gain compared to the conventional methods over other SNR

values, indicating a strong generalization capability to tolerant noise variations.

3.4.4 Positive Detection Rate (Pd) Performance

Fig. 3.5 illustrates the positive detection rate, Pd, versus SNR. The number of active

users is S = 40 and the number of sub-carriers is M = 100. Results show that the

proposed GenMUD achieves the highest Pd among all methods, except for oracle LS

which assumes perfect knowledge of the sparsity support. DyCS and BPDN achieve near

100% accuracy after SNR reaches 14 dB and 18 dB, respectively, whereas the proposed

GenMUD achieves nearly 100% detection accuracy immediately after SNR achieves 10

dB. In other words, as SNR decreases from 20 dB to 10 dB, GenMUD demonstrates

a consistent near-optimal detection accuracy, whereas other methods all suffer from

observable growth in detection errors.

3.4.5 False Alarm Rate (Pfa) Performance

Fig. 3.6 compares the performance of the false alarm probability, Pfa, against SNR

among the considered methods. It can be noticed that the proposed GenMUD achieves
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Figure 3.6: False alarm probability (Pfa) versus SNR based on OMP, DyCS,
BPDN, Oracle LS and the proposed GenMUD.

Figure 3.7: SER comparison of OMP, DyCS, BPDN, Oracle LS and the pro-
posed GenMUD versus different number of active users under 6
dB SNR.

the lowest Pfa compared to OMP, BPDN and DyCS, and approaches zero Pfa as SNR

increases beyond 10 dB. The consistent results in Fig. 3.5 and Fig. 3.6 validate that the

proposed GenMUD is capable of accurately identifying active users from inactive users

for all SNRs.

Fig. 3.7 illustrates the influence of user sparsity on SER performance under SNR =
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Figure 3.8: Normalized error (En) versus number of time slots of the pro-
posed sparsity estimator under different numbers of sub-carriers
and SNRs.

6 dB. For all the methods, the SER performance degrades as the number of active

users increases, since the detection difficulty increases. However, the proposed GenMUD

exhibits consistently lower SERs than OMP, DyCS and BPDN throughout the range

of SNR. Given that the proposed neural network is trained under S = 40 active users,

the consistent performance gains of the proposed method compared to its counterparts

imply that the network has precisely captured the underlying relationships between user

activity and the received signals.

3.4.6 Sparsity Estimation Performance

Fig. 3.8 depicts the normalized error, En, performance against frame length T of the

proposed sparsity estimator in (3.16). Results are plotted for a different number of sub-

carriersM and SNRs. Among all system settings, the sparsity estimation demonstrates a

maximum normalized error of 0.05, which indicates a generally low estimation error. As

the frame length increases from 1 to 50, En of the proposed estimator decreases gradually

from around 0.05 to below 0.01, indicating an inverse relationship between estimation

error and the number of TSs T , which is a valuable insight for practical applications. To

be specific, in practical scenarios, the BS can perform an online update of the estimated
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Figure 3.9: Detection probability (Pd) and false alarm probability (Pfa) versus
SNR of the proposed GenMUD with known sparsity and estimated
sparsity.

sparsity as new signals are received to preserve the low estimation error. It is also

observed that there is little increase in En as the communication environment degrades,

i.e., as M decreases from 100 to 50 and SNR decreases from 10 dB to 0 dB, which

demonstrates the robustness of the proposed estimator to the varying environment.

To further investigate the influence of the sparsity estimator on MUD, Fig. 3.9 illus-

trates the Pd and Pfa performance of the proposed GenMUD with known sparsity and

the estimated sparsity. It can be observed that the proposed GenMUD with the sparsity

estimator achieves almost identical Pfa performance as when sparsity is known for all

values of SNR. If the SNR is smaller than 6 dB, the sparsity estimator can be employed

with no impact on Pd performance. For SNR values greater than 6 dB, the Pd perfor-

mance difference between known and estimated sparsity is unnoticeable. Hence, it can

be concluded that the proposed sparsity estimator provides an accurate approximation

and has a neglectable influence on support detection performance.
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3.5 Summary

In this chapter, a generative neural network-based MUD (GenMUD) framework was pro-

posed. By identifying the uncorrelated user activity relationships, the proposed genera-

tive network was designed based on only 1x1 convolutional layers and no fully connected

layers to achieve higher learning capability at a low additional network complexity cost.

Moreover, a sparsity estimator was designed based on the received signal and the SNR

level, both of which are easy to obtain in practical systems. This estimator can be

employed as an add-on utility to existing MUD algorithms for realizing sparsity blind

MUD. Simulation results showed that the proposed GenMUD method provided better

detection performance compared to conventional MUD approaches in terms of SER,

detection probability and false alarm probability. Experiments on the sparsity estimator

proved the low estimation error and demonstrated the negligible impact of the estimator

on MUD performance under various communication settings. In the next chapter, the

critical resource allocation problem in downlink NOMA systems will be investigated and

an adaptive NGMA scheme will be developed to jointly serve SDMA and PD-NOMA

users.



Chapter 4

Adaptive NGMA Scheme for

Energy-limited Networks: A Deep

Reinforcement Learning

Approach

4.1 Introduction

In this chapter, an adaptive NGMA scheme is proposed, which serves OMA and PD-

NOMA users with the same orthogonal time and frequency resource. Based on this

scheme, the long-term power-constrained sum rate maximization problem is formulated,

where the beamforming, the power allocation, and the user clustering are jointly opti-

mized. In particular, a spatial correlation-based user clustering algorithm is proposed

to transform the mixed-integer optimization problem into a continuous one. Then, a

TRPO-based resource allocation algorithm is designed to solve the formulated long-term

optimization problem, which demonstrates fast and stable training performance. The

main contributions are outlined as follows:

55
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Table 4-A: List of main notations.

Notation Description Notation Description
K Number of users pk Transmit power of user k
N Number of antennas sk Intended signal of user k
T Number of time slots (TSs) σϕ Angular standard deviation
M Number of clusters Gm Set of users in cluster m
w̄k Normalized beamformer of user k αm

k,l Decoding order between user k,l

Pmax,t Maximum power at TS t λk,m Cluster allocation of user k
Pmax Maximum power over T TSs θk Nominal angle of user k

• To embrace the complementary benefits of the conventional SDMA and PD-NOMA

schemes, an adaptive NGMA scheme is proposed, in which users are adaptively

allocated to SDMA or PD-NOMA clusters to share the same orthogonal resources.

• The long-term sum rate maximization problem is investigated, where the power

allocation, the beamforming, and the user clustering are jointly optimized. To

transform the mixed-integer problem, a spatial correlation-based clustering algo-

rithm is proposed based on the spatially correlated channels in the practical sys-

tems.

• A DRL-based resource allocation scheme is designed, where the TRPO learning

algorithm is employed to ensure a fast and stable training process.

• Simulation results show that the proposed clustering method outperforms the chan-

nel condition-based method in terms of sum rate. Results also demonstrate the

sum rate gain of the proposed NGMA scheme against the conventional SDMA and

PD-NOMA schemes.

4.2 Network Model

4.2.1 Spatial Model

As illustrated in Fig. 4.1, a downlink MISO multi-user network is considered, where a

N -antenna BS serves K single-antenna users. The locations of the BS and the users are

represented in a 2-dimensional Cartesian coordinate system, where the BS is located at
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User 1
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User 2

Decode user 1's 
signal

1

K

2

Decode user 2's 
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Decode user K's 
signal

Antenna direction
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Multi-antenna 
base station

NOMA Cluster

SDMA Cluster

User starting 
location

Decode and subtract 
user 2's signal

N

Figure 4.1: Illustration of the proposed adaptive NGMA-MISO downlink net-
work. Users are grouped into clusters, where the users in the
multi-user clusters employ SIC for decoding.

the origin with coordinates [0, 0] and the coordinates of user k are denoted by [ck,x, ck,y].

A coverage area of D2 meters for the BS is considered. Users are assumed to enter the

area by travelling through the main roads, which is represented by the four starting

locations at [D2 , 0], [−
D
2 , 0], [0,

D
2 ], and [0,−D

2 ], respectively. After entering the coverage

area, the mobility of each user is modelled as a random walk with fixed step size and an

equal probability of travelling to one of the adjacent coordinates inside the coverage area.

A nominal angle θk is defined for each user k, which is computed as the anti-clockwise

angle deviation from the antenna direction to the LoS path between user k and the BS.

The antenna direction is considered to be along the positive x-axis. Hence, the nominal

angle θk of user k is formulated as θk = tan(
ck,y
ck,x

) ∈ (−π, π). The main notations are

listed in Table 4-A.

4.2.2 Channel Model

The downlink channel vector between the BS and user k is denoted by hHk ∈ C1×N .

To simplify the analysis, it is assumed that |hH1 | ≥ |hH2 | ≥ · · · ≥ |hHK |. The path loss

between the BS and user k is formulated as Lk = C0dk
−αpl , where dk denotes the LoS
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distance between user k and the BS, C0 denotes the path loss intercept, and αpl denotes

the path loss exponent. Since the practical wireless communication environment has a

finite number of scattering clusters, transmission channels are often spatially correlated,

such that some spatial directions carry stronger signals than other directions. Therefore,

a practical system is considered in this chapter, such that the received signal at the BS

is the superposition of a large number of multipath components, where each multipath

component reaches the BS from a particular angle similar to the nominal angle of the

user. More specifically, this practical channel model follows the spatially correlated

Rayleigh fading model, which is distributed as follows:

hk ∼ CN (0,Rk), (4.1)

where the covariance matrix Rk advocates the local scattering model with Gaussian

angular distribution [86]. The entries of Rk are given by

[Rk]i,j =
Lk√
2πσϕ

∫ +∞

−∞
ej2πdH(i−j) sin(θk+δ)e

− δ2

2σ2
ϕ dδ, (4.2)

where dH represents the antenna spacing, δ ∼ N (0, σϕ) describes the Gaussian dis-

tributed random deviation from the nominal angle, and σϕ denotes the angular standard

deviation.

4.2.3 Adaptive NGMA

As illustrated in Fig. 4.2, conventional SDMA schemes rely on multi-user beamforming at

the transmitters to eliminate the multi-user interference at the receivers, while the con-

ventional PD-NOMA schemes utilize power domain multiplexing at the transmitters and

SIC decoding at the receivers to improve the spectrum efficiency. Note that both schemes

utilize the amplitude (power) and phase difference. This work aims to integrate them

into one scheme. As a unified model, the proposed adaptive NGMA scheme employs both

multi-user beamforming and power domain multiplexing at the transmitters. According

to the user clustering outcome, the receivers either directly decode the intended signal
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(a) SDMA.
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(b) PD-NOMA.
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(c) NGMA.

Figure 4.2: Block diagrams of the transmitter and the receiver in different
transmission schemes, where sk is the intended signal, pk is the
power allocation, and wk is the normalized beamforming vector
of user k: a) A SDMA scheme; b) A PD-NOMA scheme; c) The
proposed NGMA scheme.

or employ SIC for decoding. Hence, the conventional SDMA and PD-NOMA schemes

can be viewed as special cases of the proposed NGMA scheme. Moreover, in the pro-

posed NGMA scheme, users can be adaptively allocated to PD-NOMA or SDMA clusters

based on the knowledge of the CSI to embrace the complementary benefits of the con-

ventional SDMA and PD-NOMA schemes, which can be used in any scales of networks,
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e.g., K < N,K ≈ N,K > N , etc. The parameters for the user clustering and SIC

decoding in the proposed NGMA scheme are defined as follows:

4.2.3.1 User clustering

The transmission scheme allocated to each user is represented by the user clustering

outcome, where the users in the single-user clusters employ SDMA and the users in the

multi-user clusters employ PD-NOMA with a pre-defined SIC decoding order among

the cluster members. The total number of clusters is denoted as M , constrained by

1 ≤ M ≤ N . The set of users allocated to cluster m ∈ M ≜ {1, 2, . . . ,M} is denoted

by Gm, where Gm ∩ Gn = ∅, ∀m ̸= n ∈ M and G1 ∪ G2 ∪ · · · ∪ GK = K are the clustering

constraints that ensures no empty clusters and each user is allocated to only one of

the clusters. Note that SIC is an interference-limited technique such that assigning a

large number of users to one cluster can lead to severe decoding error propagation [87].

Therefore, a practical system of a maximum of two users per cluster is considered, i.e.,

|Gm| ≤ 2,∀m ∈M.

4.2.3.2 Decoding order

The decoding order between user k and user i in clusterm is denoted by a binary variable

αmk,l ∈ {0, 1}, ∀l ̸= k ∈ Gm,m ∈ M. In particular, αmk,l = 0 indicates that, in cluster m,

user k will employ SIC to decode user l’s signal and remove it from the received signal,

and αmk,l = 0 indicates otherwise. Given the two-user cluster setup, the decoding order of

each cluster is in the ascending order of channel gain, i.e., αmk,l = 1 if k > l and αmk,l = 0

if k < l.

4.2.4 Signal Model

The signal intended for user k ∈ K ≜ {1, 2, . . . ,K} is denoted by sk and the beam-

forming vector for transmitting sk is denoted by wk ∈ CN×1 =
√
pk wk, where pk

and wk denote the allocated transmit power and the normalized beamforming vector,

respectively. Hence, the signal vector x ∈ CN×1 transmitted by the BS is formulated as
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x =
∑K

k=1wksk.

On the receiver side, the SDMA users directly decode their intended signals by treat-

ing all other users’ signals as noise, hence the signal received by a SDMA user k is given

by

ySDMA
k = hHk wksk︸ ︷︷ ︸

Desired signal

+
∑

j∈K/{k}

hHk wjsj︸ ︷︷ ︸
Inter-beam interference

+ n︸︷︷︸
noise

. (4.3)

The achievable rate of the SDMA user k is derived as

RSDMA
k = log2

1 +
|hHk wk|2∑

j∈K/{k}
|hHk wj |2 + σ2k

 , (4.4)

where σ2k denotes the AWGN variance.

Since the PD-NOMA users decode the received signals based on a pre-defined SIC

decoding order, the signal received by a PD-NOMA user k in cluster m, where Gm =

{k, l}, is formulated as

yPD-NOMA
k = hHk wksk︸ ︷︷ ︸

Desired signal

+ hHk wlsl︸ ︷︷ ︸
SIC signal

+
∑

j∈K/{k,l}

hHk wjsj︸ ︷︷ ︸
Inter-cluster interference

+ n︸︷︷︸
noise

. (4.5)

The achievable rate of the PD-NOMA user k in cluster m is derived as

RPD-NOMA
k =


log2

(
1 +

|hH
k wk|2∑

j∈K/{k,l}
|hH

k wj |2+σ2
k

)
, if k > l

log2

(
1 +

|hH
k wk|2

|hH
k wl|2+

∑
j∈K/{k,l}

|hH
k wj |2+σ2

k

)
, if k < l.

(4.6)
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By utilizing the decoding order coefficient αk,l ∈ {0, 1}, (4.7) can be simplified into

RPD-NOMA
k = log2

1 +
|hHk wk|2

αmk,l|hHk wl|2 +
∑

j∈K/{k,l}
|hHk wj |2 + σ2k

 . (4.7)

To simplify the expressions, by combining (4.3) and (4.5), the received signal of

SDMA/PD-NOMA user k in cluster m can be formulated as

yk = hHk wksk︸ ︷︷ ︸
Desired signal

+
∑

l∈Gm/{k}

hHk wlsl︸ ︷︷ ︸
SIC signal

+
∑

j∈K/Gm

hHk wjsj︸ ︷︷ ︸
Interference

+ n︸︷︷︸
noise

, (4.8)

where the SIC signal in (4.8) becomes zero if user k is a SDMA user, since Gm/{k} = {}.

Similarly, by combining (4.4) and (4.7), the achievable rate of user k in cluster m is

given by

Rk = log2

1 +
|hHk wk|2∑

i ̸=k,i∈Gm

αmk,i|hHk wi|2 +
∑

j∈K/Gm

|hHk wj |2 + σ2k

 . (4.9)

4.2.5 Problem Formulation

The objective is to maximize the total transmission sum rate over T transmission TSs

by jointly optimizing the beamforming matrix W(t) = [w1(t), . . . ,wK(t)] ∈ CN×K and

the user clustering strategy Gm(t), ∀m ∈ M of each TS t = 1, . . . , T . To optimize

the clustering strategy, it is reformulated into a binary user allocation matrix Λ(t) =

[λ1, . . . ,λK ]T ∈ ZK×M , where λk,m(t) = 1 indicates that user k is allocated to cluster

m in TS t and λk,m(t) = 0 indicates otherwise. Since each user can only be allocated to

one of the clusters, the user allocation matrix is constrained by
∑

m∈M λk,m(t) = 1, ∀k ∈

K, t = 1, . . . , T . As one of the critical performance targets of NGMA systems, low

energy consumption can be achieved by enforcing a long-term average power constraint

Pmax [88, 89]. Hence, the BS is allowed to coordinate the power consumption among the
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TSs to enhance the long-term total sum rate subject to the QoS constraints. Finally,

the sum rate maximization problem is formulated as follows:

(P1) : max
{W(t),Λ(t)}

∑T

t=1

∑
k∈K

Rk(t), (4.10a)

s.t. Rk(t) ≥ Rmin,∀k, (4.10b)∑
k∈K
|wk(t)|2 ≤ Pmax,t, (4.10c)∑T

t=1

∑
k∈K
|wk(t)|2 ≤ Pmax, (4.10d)∑

m∈M(t)
λk,m(t) = 1, ∀k, t, (4.10e)∑

k∈K
λk,m(t) ≤ 2, ∀m, t, (4.10f)

where (4.10a) indicates the optimization objective, i.e., the transmission sum rate; (4.10b)

denotes the minimum QoS constraint; (4.10c) represents the instantaneous transmit

power constraint; (4.10d) represents the long-term total transmit power constraint; (4.10e)

indicates that each user is allocated to only one of the clusters, and (4.10f) describes the

constraint on the size of each cluster. Due to the integer-valued parameter Λ(t) and the

total transmit power constraint in (4.10d), problem (P1) is indeed a long-term mixed-

integer programming problem, which is non-trivial to be directly solved by standard

convex optimization algorithms.

To tackle this challenging problem, the proposed optimization algorithm first trans-

forms the binary user clustering variablesΛ(t) into a continuous-valued clustering thresh-

old, by identifying the characteristics of the spatially correlated channels. Then, a DRL-

based resource allocation algorithm is employed to jointly optimize the instantaneous

beamforming, the power allocation, and the clustering threshold, with respect to the

long-term transmit power constraint.
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4.3 DRL-based Resource Allocation for Adaptive NGMA

In this section, a DRL-based learning algorithm is designed to solve the long-term sum

rate maximization problem in (P1). Firstly, it is demonstrated that the binary clustering

variable can be represented by a single nominal angle threshold, which is continuous-

valued. Then, the proposed DRL-based resource allocation scheme based on the TRPO

learning algorithm is introduced.

4.3.1 Problem Reformulation

DRL is an efficient machine learning algorithm for maximizing the long-term rewards

of time-varying environments. However, (P1) cannot be directly tackled by DRL algo-

rithms, due to the mixed-integer variables. To address this problem, the binary cluster-

ing variables Λ(t) are transformed into continuous clustering variables, by exploiting the

spatially correlated channel model and the superiority of PD-NOMA under correlated

channels [18, 90, 91].

In the proposed system model, the spatially correlated channel model is employed,

where the channel covariance matrix in (4.2) is formulated based on the nominal angle

parameter θk ∈ [−π, π] of each user k, which is defined as the LoS angle between user

k and the antenna direction. Therefore, users with similar nominal angles are likely

to have strongly correlated channel vectors. Moreover, if the nominal angles of user k

and user m satisfies θk + θm = 2π, their channel covariance matrices are the same, i.e.,

Rk = Rm. This is because the nominal angle is the input of a sine function. Hence, a

regularized nominal angle θ∗k = tan(
ck,y
|ck,x|) ∈ [−π/2, π/2] is defined for each user k, such

that Rk = Rm if and only if θ∗k = θ∗k for any user k and m. To this end, instead of

formulating a complicated channel correlation metric, the channel correlations between

any two users can be evaluated based on the direct difference between their regularized

nominal angles. Here, a threshold β(t) ∈ [0, π] is proposed to control the nominal angle

differences within all clusters at TS t, i.e., |θ∗k(t)−θ∗l (t)| ≤ β(t),∀k, l ∈ Gm(t), ∀m ∈M(t).
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Algorithm 3 User Clustering Algorithm Based on Nominal Angle Threshold

Input: Regularized nominal angle θ∗ = [θ∗1, . . . , θ
∗
K ], nominal angle threshold β

1: Initialize Λ = 0K,N ,M = 1,
2: for k ∈ K do
3: if

∑N
m=1[Λ]k,m = 0 then

4: Allocate user k, i.e., [Λ]k,M = 1

5: Find the candidates Ck := {i | |θ∗i − θ∗k| ≤ β,
∑N

m=1[Λ]i,m = 0, i ∈ K/{k}}
6: Denote i∗ := max(Ck)
7: Pair user k with user i∗, i.e., [Λ]i∗,M = 1
8: end if
9: if M < N then

10: Update M ←M + 1
11: else
12: break
13: end if
14: end for

The clustering algorithm based on β(t) is described as follows: 1) Initialize the user

allocation matrix as a zero matrix, i.e., Λ(t) = 0K,N ; 2) Allocate user 1 to cluster 1, i.e.,

λ1,1(t) = 1; 3) Find the set of candidates C1 = {i | |θ∗i (t)− θ∗1(t)| ≤ β(t),
∑N

m=1[Λ]i,m =

0, i ∈ K/{1}} to be paired with user 1, where C1 = {} indicates a SDMA cluster; 4)

Since each cluster can contain at most 2 users1 and PD-NOMA is advantageous under

large path loss differences, user 1 is paired with the user of the weakest channel gain in

C1, i.e., λmax(C1),1 = 1; 5) Repeat steps 2-4 for users 2, . . . ,K if they have not yet been

allocated to a cluster.

The pseudocode of the proposed clustering algorithm is illustrated in Algorithm 3.

The algorithm terminates when the number of non-empty clusters exceeds the number

of antennas. Hence, if any user has not been allocated to a cluster after the algorithm

terminated, the sum rate of the corresponding user will be regarded as zero. This

situation is likely to happen in overloaded systems, i.e., K > N , with a poorly chosen

β. Moreover, after the algorithm terminates, the zero columns in Λ(t) are discarded to

reduce its dimension to (K ×M), where M corresponds to the number of non-empty

clusters.

1The proposed clustering scheme can be extended to systems with unbounded cluster size by allocating
all candidates to the corresponding cluster.
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By representing the user allocation matrix Λ(t) with the nominal angle threshold

β(t), (P1) can be reformulated into

(P2) : max
{W(t),β(t)}

∑T

t=1

∑
k∈K

Rk(t), (4.11a)

s.t. Rk(t) ≥ Rmin,∀k ∈ K, (4.11b)∑
k∈K
|wk(t)|2 ≤ Pmax,t, (4.11c)∑T

t=1

∑
k∈K
|wk(t)|2 ≤ Pmax. (4.11d)

Now that both W(t) and β(t) are continuous-valued variables, we can employ on-policy

DRL algorithms to solve the long-term joint optimization problem in (P2).

4.3.2 Markov Decision Process (MDP)

To solve (P2) with DRL, it needs to be transformed into a MDP, which is defined as a

tuple (S,A,P, r, γ). Here, S and A are the state space and the action space, respectively.

P : S ×A×S → [0, 1] is the Markov transition probability, r : S ×A → R is the reward

function, and γ is the discount factor. Given a state st, the agent chooses an action at

according to a policy π : S → A and the objective of the agent is to find the optimal

policy π∗ that maximizes the expected return E[
∑∞

t=0 γ
tr(st,at)].

In the proposed NGMA model, the BS acts as the agent, who makes decisions on

beamforming and user clustering, and the adaptive NGMA system acts as the environ-

ment, which contains information about channel information and user locations. The

aim of the BS is to maximize the total sum rate over the T TSs while ensuring the

constraints in (4.11b), (4.11c), and (4.11d). The key elements of MDP in terms of the

proposed NGMA model are described as follows:

4.3.2.1 State

The state at TS t is defined as st = [c(t),hH(t), P (t), t]. It consists of the user coordinates

c(t) = [cx,1(t), cy,1(t), . . . , cx,K(t), cy,K(t)], the channel vectors hH(t) = [hH1 (t), . . . ,hHK(t)],
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the remaining power P (t) at the BS, and the timestamp t. The state space has a dimen-

sion of (2K + 2KN + 1).

4.3.2.2 Action

The action at TS t is defined as at = [W(t), β(t)], which consists of the beamforming

vectors W(t) = [w1(t), . . . ,wK(t)] and the nominal angle threshold β(t). The action

space has a dimension of (2KN+1). Before executing the action, the agent first scales the

beamforming vector, subject to
∑

k∈K |wk(t)|2 ≤ min(P (t), Pmax,t). This ensures that

the requested transmit power does not exceed the remaining power and the instantaneous

power constraint in (4.11c) is enforced.

4.3.2.3 Transition probability

The probability of transitioning into a future state st+1 depends on the action at and the

state st of the current TS. Specifically, the state transition of the user coordinates c(t+1)

is modelled as a 2-dimensional random walk based on the current coordinates c(t), where

each user has an equal probability of moving to one of the adjacent coordinates within

the coverage area. The state transition of the remaining transmit power P (t + 1) is

controlled by the beamforming vector W(t) through a deterministic power consumption

formula, i.e., P (t+ 1) = P (t)−
∑

k∈K |wk(t)|2, where P (0) = Pmax.

4.3.2.4 Reward

At TS t, the instantaneous reward is computed as the total sum rate if all QoS require-

ments are satisfied. If the sum rate of any user is below the minimum QoS, the instanta-

neous reward is computed as the sum of QoS deficiency of all users. Hence, the reward

function at TS t is formulated as

rt(st,at) =


∑

k∈KRk(t), if (4.11b) is satisfied,

∑
k∈K min(Rk(t)−Rmin, 0), otherwise.

(4.12)
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Note that, if the remaining power at the BS is zero, i.e., P (t) = 0, the total sum rate

of the system is regarded as zero. Hence, the instantaneous reward is equal to the QoS

deficiency, i.e.,
∑

k∈K min(Rk(t)−Rmin, 0), which indicates that the power consumption

constraint in (4.11d) is enforced.

4.3.3 TRPO Learning Algorithm

Since the conventional on-policy DRL algorithms, such as the DDPG algorithm, utilizes

gradient descent to improve the policy network π, their performance is extremely sen-

sitive to the choice of step size. A large step size can lead to divergence and a small

step size may cause the algorithm to stuck in local optima. Moreover, as the neural

network gets deeper and wider, a small change in the policy parameters may result in a

large difference in the learning outcome, which causes severe instability in the training

process. To address this issue, the TRPO algorithm proposed in [92] specified a trust

region, measured by the Kullback–Leibler (KL) divergence, around the current policy,

which indicates the maximum distributional distance between successive policies.

Let ω denotes the parameters of the policy network π, i.e., πω ≡ π, the theoretical

TRPO update equation at training episode k is given by

ωk+1 ← argmax
ω

E
s,a

[
πω(a|s)
πωk

(a|s)
·Aπk(s,a)

]
, s.t. KL(πω(s)||πωk

(s)) ≤ δ, (4.13)

where Aπk : S × A → R denotes the advantage function, KL denotes the average KL-

divergence and δ denotes the radius of the trust region, which can be interpreted as the

learning rate. In particular, the advantage function is estimated through the generalized

advantage estimator (GAE), which is given by

ÂGAE
t =

∞∑
l=0

(γλ)l (rt + γV (st+1)− V (st)) , (4.14)

where γ is the discount factor of the MDP, λ ∈ [0, 1] is the exponential weight discount,

and V π : S → R denotes the value function. In the proposed algorithm, the value
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function is approximated through a linear network with a time-varying feature vector as

described in [93].

However, since it is difficult to directly compute (4.13), the TRPO algorithm utilizes

a few approximations. First, Taylor expansion is employed to approximated (4.13) by

ωk+1 ← argmax
ω

gT (ω − ωk), s.t.
1

2
(ω − ωk)

THKL(ω − ωk)) ≤ δ, (4.15)

where g denotes the policy gradient, which is computed based on the estimated advantage

Âπ(s,a) and HKL = ∂2

∂2ω
KL(ω||ωk)|ωk

. Then, the problem in (4.15) can be analytically

solved by the methods of Lagrangian duality, yielding the following solution:

ωk+1 ← ωk + ηj

√
2δ

gTH−1
KLg

H−1
KLg, (4.16)

where η ∈ (0, 1) is the back-tracking coefficient and j ∈ Z+ is the smallest possible

value that satisfies the KL-divergence constraint. Moreover, to reduce the complexity in

evaluating the matrix inverse, i.e., H−1
KL, the conjugate gradient algorithm is employed

to find ẑ that solves HKLz = g for z = H−1
KLg. Hence, by substituting ẑ into (4.16), the

closed-form TRPO update equation is finally derived as

ωk+1 ← ωk + ηj
√

2δ

ẑTHKLẑ
ẑ. (4.17)

Fig. 4.3 demonstrates the proposed resource allocation algorithm for adaptive NGMA

systems and Algorithm 4 illustrates the pseudocode of the TRPO training algorithm.

The policy network consists of the input layer, a batch-normalization layer, five fully-

connected hidden layers with ReLU activation functions, and the output layer with the

linear activation function.
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Figure 4.3: Flow diagram of the proposed TRPO-based resource allocation
scheme for apative NGMA systems.

Algorithm 4 TRPO Algorithm for Resource Allocation in Adaptive NGMA

Input: initial policy parameters ω, length of time frame T , KL-divergence constraint δ,
maximum number of line search steps Nline

1: for k = 1, . . . ,max episode do
2: Initialize the NGMA environment
3: for t = 1, . . . , T do
4: Observe states st and sample actions at ∼ πωk

(st)
5: Execute at and compute reward rt using (4.12)
6: Transition to next state st+1 and store (st,at, st+1, rt) in the trajectory D
7: end for
8: Based on the collected trajectory D, compute the estimated state-value Vϕk

(s)

and advantage Âk(s,a)
9: for j = 1, . . . , Nline do

10: Based on Vϕk
(s) and Âk(s,a), compute proposed update ωk+1 using (4.17)

11: if KL(ω||ωk) ≤ δ then
12: break
13: end if
14: end for
15: end for
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Table 4-B: Network and algorithm configurations.

System parameters Values Algorithm parameters Values
Bandwidth 1 MHz Batch size 64
Number of TSs T = 10 KL-divergence constraint δ = 0.02
Maximum power Pmax = 10 dBm Neurons per layer 400
Noise spectral density -120 dBm/Hz NN layers 5
Minimum QoS 0.1 Mbps/Hz Maximum line search steps Nline = 20

4.3.4 Complexity Analysis

In the prediction stage, the algorithm performs one forward propagation of the policy

network πω to obtain the actions based on the environment. Letmπ,i denotes the number

of neurons in layer i of the policy network and Lπ denotes the total number of layers. The

complexity of one forward of the policy network is derived as O(
∑Lπ−1

i=1 mπ,i mπ,i+1),

where mπ,1 = 2KN + 2K + 1 and mπ,Lπ = 2KN + 1 are the input and the output

dimensions of the policy network, respectively.

In the training stage, the algorithm performs both forward and backward propagation

of the policy π and one forward propagation of the state-value network Vϕ. Since the

complexity of forward and backward propagation are the same, the total complexity

induced by the policy network is O(2
∑Lπ−1

i=1 mπ,i mπ,i+1). The state-value network Vϕ

is a linear network, which maps the states to a single number, hence the complexity of Vϕ

is O(2KN + 2K + 1). Finally, the total algorithm complexity during the training stage

is derived as O(4KN + 4K + 2 + 2
∑Lπ−1

i=1 mπ,i mπ,i+1), where mπ,1 = 2KN + 2K + 1

and mπ,Lπ = 2KN + 1.

4.4 Numerical Results

4.4.1 Simulation Settings

A 40 m2 outdoor space is considered, where the BS is located at the centre of the square

area, defined as the origin of the plane, i.e., (0, 0). Each trajectory begins when the users

enter the area from one of the four starting points: {(−20, 0), (20, 0), (0,−20), (0, 20)},

which can be interpreted as the main roads. After entering the area, the mobility of each
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user is modelled as a random walk with a step size of 5 m between consecutive TSs to

one of the adjacent coordinates in the coverage area and the minimum distance between

the user and the BS is 5 m. Each trajectory consists of T = 10 TSs. Unless otherwise

stated, the system parameters and the algorithm parameters are provided in Table 4-B.

4.4.2 Baseline Methods

Three baseline methods are considered, namely SDMA, PD-NOMA, and NGMA with

semi-orthogonal clustering (NGMA∗), which are described as follows:

• SDMA: In SDMA, each cluster consists of only one user, i.e.,M = K, and each user

decodes their intended signals by treating all other users’ signals as interference.

• PD-NOMA: In PD-NOMA, all users are allocated to the same cluster, i.e. M = 1

and G1 = K, with the same beamforming vector. The SIC order is determined in

the ascending order of channel gains, where the signal of the user with the weakest

channel gain is decoded first and the signal of the user with the strongest channel

gain is decoded last.

• NGMA with semi-orthogonal clustering (NGMA∗): In NGMA∗, the clustering algo-

rithm proposed in [94] is employed, where the channel orthogonality threshold is

learned as a continuous variable to select the cluster heads. The rest of the users

are each paired with a cluster head to achieve the lowest channel orthogonality

within clusters.

4.4.3 Algorithm Convergence

Fig. 4.4 illustrates the convergence of the TRPO algorithm as the network architecture,

the batch size, and the learning rate varies. For instance, the legend (nn = 50× 4, bs =

64, lr = 0.1) describes a neural network that consists of 50 neurons per hidden layer with

4 hidden layers, where the batch size and learning rate are 64 and 0.1, respectively. It

can be observed that the deeper network with 50 neurons per layer and 4 hidden layers

outperforms the wider network with 100 neurons per layer and 2 hidden layers throughout
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Figure 4.4: Episodic reward versus the number of episodes under different net-
work architecture and batch sizes.

the whole training stage. In other words, under similar network complexity, a deeper

network demonstrates better learning performance compared to a wider network since it

represents a more complex and non-linear function. In terms of the batch size, a smaller

batch size, such as 16, not only leads to slower training due to the small amount of data

the network is trained with but also results in a suboptimal learning performance to that

of a larger batch size of 64. Finally, learning performance under different learning rates is

compared. Owing to the trust region technique, increasing the learning rate from 0.01 to

0.1 can greatly increase the convergence rate without suffering from strong fluctuations

in the learning process. In practical scenarios, a stable and fast learning performance

can greatly reduce the computational and time cost of model training.

Fig. 4.5 illustrates the convergence of the TRPO algorithm under different trans-

mission schemes, namely, the NGMA scheme, the NGMA∗ scheme, the SDMA scheme,

and the PD-NOMA scheme. It can be noticed that the TRPO algorithm demonstrates

stable convergence under all four transmission schemes. The sum rate of the PD-NOMA

scheme has the fastest convergence rate since the algorithm only needs to optimize one

beamforming vector for all users. However, the PD-NOMA scheme achieves the lowest
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Figure 4.5: Episodic reward versus the number of episodes in SDMA, PD-
NOMA, and NGMA systems under K = 4 users and N = 4 anten-
nas.

sum rate among all schemes, because the user channels are not always correlated and

they will suffer from strong inter-cluster interference due to the uncorrelated channels.

By jointly designing the beamforming vectors of each user, the SDMA scheme can effec-

tively reduce or even eliminate the inter-user interference for users with uncorrelated

channels, hence achieving a higher sum rate compared to the PD-NOMA scheme. How-

ever, a large performance gap can be noticed between the proposed NGMA schemes

and the SDMA scheme, since it is difficult to design beamforming vectors that eliminate

the inter-user interference under a limited number of antennas and strongly correlated

channels. By adaptively employing PD-NOMA and SDMA for different users in the

same system, the NGMA scheme can exploit the complementary advantages of the two

conventional schemes without suffering from their individual drawbacks, hence yielding

significant performance gain. Finally, by comparing the results of the proposed NGMA

to the NGMA∗ scheme, where the former scheme performs spatial correlation-based clus-

tering and the later scheme performs channel correlation-based clustering, an observable

sum rate gain is achieved by the proposed NGMA scheme, which indicates that the chan-

nel correlations can be effectively interpreted by spatial correlations in the considered
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Figure 4.6: Sum rate versus the number of antennas under SDMA, PD-
NOMA, NGMA∗ and NGMA schemes with 4 users.

network and, by additionally considering the channel gain differences during clustering,

the proposed clustering method can further enhance the system sum rate.

4.4.4 Impact of Number of Antenna

Fig. 4.6 illustrates the sum rate performance of the adaptive NGMA scheme compared

to the baseline methods in a 4-user network, where the number of antennas ranges from

2 to 12. First, it is observed that the PD-NOMA and the SDMA systems demonstrate

similar sum rate performance when there are 2 antennas at the BS. Then, as the number

of antennas increases, the SDMA system starts to outperform the PD-NOMA system

because it can better utilize the increasing spatial degree of freedom to design dedicated

beamforming that reduces the multi-user interference. However, the SDMA system is

outperformed by the NGMA system for all values of N , which indicates that PD-NOMA

can still achieve higher sum rates than SDMA in certain cases, e.g., when the 4 users

have strongly correlated channels. Among two NGMA systems, namely the proposed

NGMA with spatial correlation-based clustering and the NGMA∗ system with channel

correlation-based clustering, the proposed NGMA system exhibits a generally higher sum
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rate performance than NGMA∗, which confirms the performance gain of the proposed

clustering scheme compared to the benchmark technique. To further investigate the

influence of the channel model on the proposed spatial correlation-based method, results

are provided for different values of angular standard deviation, where a larger angular

standard deviation leads to a lower channel correlation. When σϕ = 20 and N = 2,

the proposed NGMA system experiences performance loss compared to NGMA∗, which

is caused by the weak channel correlations due to the limited number of antennas and

a large angular standard deviation. At σϕ = 10, which is a reasonable value of an

urban cellular network, the proposed NGMA system achieves an enhanced sum rate

performance than NGMA∗, where the performance gap further increases as the number

of antennas increases, due to the increase in the channel correlations.

4.5 Summary

An adaptive NGMA scheme was proposed in this chapter to exploit the complemen-

tary benefits of OMA and PD-NOMA under diverse channel conditions. To solve the

sum rate maximization problem, a spatial correlation-based clustering algorithm was

proposed and a TRPO-based resource allocation algorithm was designed to jointly opti-

mize beamforming, power allocation, and user clustering, subject to a long-term power

constraint. Simulation results verified the sum rate gain of the NGMA scheme against

the SDMA and the PD-NOMA baselines. Moreover, the proposed clustering method

achieved comparable sum rate performance to the channel correlation-based baseline with

increasing performance gain as the spatial correlation in the channel model increases.

Having studied the critical problems in the uplink and downlink NOMA systems, the

next chapter will investigate the integration of NOMA with emerging 6G technologies,

such as RIS, to further enhance spectral efficiency.



Chapter 5

Comparisons between DL and

DRL on the Optimization of

RIS-assisted NOMA Systems

5.1 Introduction

In this chapter, the design of RIS-aided downlink MISO-PDNOMA systems is inves-

tigated. In conventional ZF precoding-based PD-NOMA, the strong/weak users are

defined as the users with stronger/weaker channel conditions. Since weak users often

suffer from strong multi-user interference, they usually demand a significant amount of

transmit power to meet the minimum QoS requirements. Hence, in systems with diverse

QoS requirements, users with weak channel conditions and high QoS requirements may

suffer from outages. To address this issue, a QoS-based PD-NOMA clustering method

is proposed to enhance resource efficiency under the ZF precoding scheme. By defining

the weak users as the low QoS users, less transmit power is required to ensure their QoS

requirements and more transmit power can be allocated to the strong users to enhance

the overall transmission sum rate. To investigate the resource allocation problem in

77
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the proposed system, the sum rate maximization problem is formulated by jointly opti-

mizing the RIS phase shift and the BS power allocation. The problem is formulated

from both short-term and long-term aspects, where DL and DRL are employed to solve

both problems and their performance is compared through simulation results. The main

contributions of this chapter can be summarized as follows:

• An RIS-enhanced PD-NOMA downlink framework is proposed, where a QoS-based

PD-NOMA clustering scheme is employed to improve the resource efficiency by

maximizing the QoS deviation within the clusters. A sum rate maximization prob-

lem is formulated by jointly optimizing the RIS phase shift and the BS power

allocation from both short-term and long-term prospects.

• A meta-learning based DL algorithm is utilized to achieve a fast convergence rate at

a low algorithm complexity. In particular, the proposed neural network is trained

to output the optimized power allocation for any RIS phase shifts. Then the phase

shift is optimized in an online manner, where MAML is employed to reduce the

number of iterations required for the phase shift optimization.

• A DDPG-based optimization algorithm is invoked to learn the continuous phase

shift and power allocation under the time-varying environments. A QoS-aware

reward function is formulated to maximize the long-term transmission sum rate

while ensuring the instantaneous QoS requirements, subject to the long-term trans-

mit power constraint. In particular, a transmit power-based penalty term is

designed to regulate the power consumption, by deducting the total reward when

the long-term transmit power constraint is violated.

• Simulation results show that the implementation of RIS can induce approximately

5% to 25% sum rate gain as the number of RIS elements increases from 8 to 64, in

both PD-NOMA and OMA systems. Moreover, it also shows that the performance

difference between DL and DRL is negligible for the short-term optimization, while

for the long-term optimization, DRL achieves a higher sum rate than DL, especially
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Table 5-A: List of main notations.

Notation Description Notation Description
K Number of users pl,s, pl,w Transmit power
M Number of antennas sl,s, sl,w Intended signals
T Number of time slots (TSs) θn Phase shift n
N Number of RIS reflecting elements α Path loss exponent
wl Beamformer of cluster l

Figure 5.1: Illustration of the downlink RIS-assisted MISO-PDNOMA system.

in power-constrained scenarios.

5.2 Network Model

5.2.1 System Model

As illustrated in Fig. 5.1, we consider a downlink MISO system with one BS and K users.

The BS is equipped with M antennas and each user is equipped with a single antenna.

We consider a dense urban area, where no line-of-sight (LoS) link exists between the BS

and the users. To enhance the wireless services, a RIS is deployed on the facade of a

particular building where the LoS link exists between the RIS and the BS, as well as

between the RIS and the users. The RIS consists of N reflecting elements, whose phase

shift can be adjusted by a controller. The main notations are listed in Table 5-A.
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5.2.2 Channel Model

The channels between the BS and the users compose of the non-LoS BS-user links and

the reflecting LoS links from the BS to the RIS, denoted as BS-RIS links, and from the

RIS to the users, denoted as RIS-user links. The BS-user links are modelled as Rayleigh

fading channels and the LoS links are modelled as Rician fading channels. Then, the

path loss of user k is modelled as PLk = d−αk where dk denotes the distance, calculated

in meters, between user k and the BS, and α denotes the path loss exponent.

5.2.3 PD-NOMA Signal Model

In this subsection, we formulate the signal model based on PD-NOMA and introduce

the proposed QoS-based clustering method.

5.2.3.1 Signal model

To implement PD-NOMA, the BS groups the users into several clusters and utilizes

power-domain multiplexing to superimpose the signals of all users in the same cluster [8].

To ensure the SIC decoding accuracy, it is assumed that each cluster is formed by two

users, denoted as the strong user and the weak user. In contrast to the conventional

user clustering algorithms, the proposed system defines the strong user as the user with

a higher QoS requirement and the weak user as the user with a lower QoS requirement.

Details of the proposed clustering method will be discussed in a later section. Here, the

signal model is first formulated.

According to the principles of PD-NOMA, the signals of the users in the same cluster

are multiplexed in the power-domain before transmission. Let pl,s and pl,w denote the

transmit power of the strong user and the weak user in the l-th cluster, the BS transmits

the following superimposed signal to users in the l-th cluster:

xl =
√
pl,ssl,s +

√
pl,wsl,w, (5.1)

where sl,s and sl,w denote the signals intended for the strong user and the weak user,
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respectively.

The signal received at each user is a composition of the signals from the direct BS-

user link and the reflecting BS-RIS-user link. In particular, for a user in the l-th cluster,

the RIS-user link and the BS-user link are denoted by hHR,l,i ∈ C1×N , and hHB,l,i ∈ C1×M ,

respectively. The BS-RIS link is denoted by by HBR ∈ CN×M . The phase shift of

the RIS is denoted by θ = [θ1, . . . , θn, . . . , θN ], where θn ∈ [0, 2π). Thus, the diagonal

phase-shifting matrix is expressed as Θ = diag(β1e
jθ1 , . . . , βne

jθn , . . . , βNe
jθN ), where

βn ∈ [0, 1] denotes the amplitude reflection coefficient. For simplicity, unit amplitude

coefficients are assumed, i.e., βn = 1,∀n.

Hence, the signal received by a user in the l-th cluster can be expressed as

yl,i =
(
hHB,l,i + hHR,l,iΘHBR

)K/2∑
l=1

wlxl + nl,i, (5.2)

where wl denotes the beamforming vector of the l-th cluster and nl,i denotes the AWGN,

modelled as nl,i ∼ CN
(
0, σ2

)
. For instance, the signal received by the strong user in the

l-th cluster is expressed as

yl,s =
(
hHB,l,s + hHR,l,sΘHBR

)
wl

(√
pl,ssl,s +

√
pl,wsl,w

)
+
(
hHB,l,s + hHR,l,sΘHBR

) K/2∑
j=1,j ̸=l

wjxj + nl,s,
(5.3)

where
(
hHB,l,s + hHR,l,sΘHBR

) K/2∑
j=1,j ̸=l

wjxj is the inter-cluster interference induced by the

transmission to other clusters and
(
hHB,l,s + hHR,l,sΘHBR

)
wl
√
pl,wsl,w is the intra-cluster

interference imposed by the transmission to the weak user of the same cluster.

The low-complexity ZF precoding technique is employed to eliminate the inter-cluster

interference. For simplicity, the combined channel of a user in the l-th cluster is denoted

by hHl,i = hHB,l,i+hHR,l,iΘHBR, where i = {s, w}. Moreover, the combined channel matrix

of all strong users is denoted as HH
s = [hH1,s;h

H
2,s; . . . ;h

H
K/2,s] ∈ CK/2×M . Hence, the
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normalized ZF precoding matrix, denoted by W = [w1, . . . ,wl, . . . ,wK/2] ∈ CM×K/2, is

formulated as

W = Hs

(
HH
s Hs

)−1
Λ, (5.4)

where Λ = diag( 1
λ1
, . . . , 1

λK/2
) is a diagonal matrix, introduced for column power nor-

malization such that |wl|2 = 1,∀ l = 1, . . . ,K/2. The corresponding ZF precoding

constraints are expressed as follows:


hHj,swl = 0, ∀j ̸= l, j = 1, . . . ,K/2,

hHj,swl = 1
λl
, j = l.

(5.5)

To decode the intended signal from the multiplexed signal, each strong user employs

SIC by first decoding the signal of the weak user. The decoded signal of the weak user

is then subtracted from the received signal, so that the signals of the strong users can

be decoded without any intra-cluster interference. The weak users, however, directly

decode the signals without SIC. Therefore, the received SINR of the strong user in the

l-th cluster is given by

γl,s =

∣∣∣hHl,swl
√
pl,ssl,s

∣∣∣2
σ2

=
pl,s
λlσ2

. (5.6)

Since the weak user decode the intended signal under both inter-cluster interference

and intra-cluster interference, the received SINR of the weak user in the l-th cluster is

derived as

γl,w =
|hl,wwl|2pl,w

|hl,wwl|2pl,s +

∣∣∣∣∣hl,w K/2∑
j=1,j ̸=l

wjxj

∣∣∣∣∣
2

+ σ2

. (5.7)



Chapter 5. Comparisons between DL and DRL on the Optimization of RIS-assisted
NOMA Systems 83

5.2.3.2 QoS-based clustering scheme

As shown in (5.7), when both the ZF precoding and the SIC decoding techniques are

employed in PD-NOMA, the weak users suffer from both the inter-cluster and the intra-

cluster interference, thus resulting in low SINR and low achievable rate compared to

the strong users, who are served in an interference-free manner. Conventional clustering

methods allocate users by exploiting the difference between their channel conditions.

However, when users have different QoS requirements, a user with a weak channel con-

dition may acquire a high QoS, which is challenging to achieve due to the multiuser

interference. Moreover, due to the low SINR, a great amount of transmit power has

to be allocated to the weak user to fulfil the QoS. Hence, it is more sensible to assign

users with lower QoS requirements as the weak users to improve resource efficiency and

enhance the system sum rate. Therefore, a QoS-based clustering scheme is proposed,

which assigns the users with higher or lower QoS requirements as the strong or weak

users, respectively.

The objective of the QoS-based clustering method is to maximize the minimum QoS

deviation among all clusters. The clustering problem can be formulated as

max min
l=1,...,K/2

(Rl,sQoS −R
l,w
QoS), (5.8)

where Rl,sQoS and Rl,wQoS denote the QoS requirements of the strong and the weak users

in the l-th cluster, respectively. To achieve the maximal QoS deviation, a simple but

optimal clustering method is proposed as follows:

Proposition 1. Assuming that K is an even number and all users are ordered in terms

of their QoS requirements, i.e., the k-th user has the k-th highest QoS requirement, the

optimal solution to (5.8) is achieved by assigning the k-th user and the (k+K/2)-th user

into the same cluster, for all k ≤ K/2.

Proof. See Appendix A.1.
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5.3 Short-term Optimization Problem

In this section, the short-term optimization problem is formulated and a meta learning-

enabled DL algorithm is proposed that jointly optimizes both power allocation and RIS

phase shifts, subject to the QoS requirements.

5.3.1 Short-term Problem Formulation

The short-term optimization goal is to maximize the total transmission sum rate for a

single TS, subject to the maximum instantaneous transmit power constraint, which is

denoted by Pmax. The optimization variables are the phase shifts θ = [θ1, . . . , θn, . . . , θN ]

of the RIS, as well as the power allocation vector P = [Ps,Pw] of the BS, where Ps =

[p1,s, . . . , pK/2,s] and Pw = [p1,w, . . . , pK/2,w]. The short-term optimization problem is

formulated as follows:

max
θ,P

R =
∑K/2

l=1
(Rl,s +Rl,w) (5.9a)

s.t. Rl,i ≥ Rl,iQoS,∀l,∀i ∈ {s, w} (5.9b)∣∣∣ejθn∣∣∣ = 1,∀n (5.9c)∑K/2

l=1
(pl,s + pl,w) ≤ Pmax (5.9d)

where Rl,i = Bl log2(1+γl,i) denotes the sum rate achieved by the user in the l-th cluster

and Rl,iQoS denotes the minimal QoS requirement of the user. Here, (5.9b) represents the

minimum transmit rate constraint. (5.9c) denotes the unit modulus constraint of each

RIS element and (5.9d) qualifies the instantaneous transmit power constraint of the

BS. Due to the non-convex constraint (5.9c) and the non-concave objective function,

the optimization problem cannot be directly solved by conventional approaches. To

address this issue, DL is employed to tackle this non-convex joint optimization problem

by employing DL.
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5.3.2 DL-based Resource Allocation Scheme

The main idea of DL is to extensively train a neural network such that, given any inputs

that follow the same distribution as the training data, the outputs of the network achieve

minimal loss. A conventional design is to construct a neural network that outputs all

optimization variables, i.e., the RIS phase shift and the power allocation. However, this

design will result in a large input space that consists of all channel information and

QoS information. In particular, all channel matrices contribute an input dimension of

(2K ×N + 2K ×M + 2N ×M), leading to exceedingly expensive computational costs.

Moreover, the phase shift and the power allocation have vastly different value ranges and

distributions, which greatly increase the training difficulty.

Remark 1. Optimizing the phase shift requires the knowledge of all channels among

the BS, the RIS, and the users. However, the optimization of the power allocation only

requires the information of the combined channel.

Since the combined channel of all users provides sufficient channel information for

optimizingP, the neural network can be designed to input the combined channel, denoted

byH = [h1,s,h1,w, . . . ,hK/2,s,hK/2,w] and output the optimized power allocation P. The

real and the imaginary parts of the combined channel H contribute (2K ×M) to the

input dimension, which is significantly smaller than the input dimension of the intuitive

design. Hence, the neural network Gη is formulated as follows:

P = Gη(H(θ),RQoS ,Lpath), (5.10)

whereH(θ) denotes the combined channel calculated using the phase shift θ, RQoS ∈ RK

denotes the QoS requirement vector, and Lpath ∈ RK is the path loss vector. The phase

shift θ is optimized separately using a gradient descent algorithm. Two optimization

algorithms are connected in an alternating structure, by using the output of the other

algorithm as the input.

In contrast to the conventional alternating optimization approach, the neural network
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Gη is trained to output the optimized power allocation for any given RIS phase shift.

Hence, for a given trained Gη, the optimized pair of θ and P can be obtained by solely

performing the optimization on θ. To improve the convergence rate of the phase shift

optimization algorithm, MAML, a meta-learning technique, is employed in the network

training phase.

5.3.3 MAML-based Training Algorithm

Meta-learning, also known as learning-to-learn, refers to a ML technique that aims to

improve the convergence rate of learning algorithms, by feeding them with experience

over multiple training episodes [95]. MAML is able to optimize the model parameters

such that a few gradient steps will produce a maximally effective performance on a new

task [70].

As demonstrated in [79], MAML can be employed to reduce the number of gradient

descent steps required to optimize the inputs of the neural network. In the proposed

model, the network inputs consist of the combined channel matrix, which is directly

affected by the phase shift θ. Thus, optimizing the phase shift is equivalent to optimizing

the input of the network. Moreover, the gradient descent steps on θ are performed by

back-propagating through the weights of Gη. Hence, MAML can be employed to train

Gη such that a small number of gradient steps is sufficient to optimize the phase shift.

Then, the loss function needs to be formulated. Since the optimization targets of θ

and P are the same, they share the same loss function, denoted by L(θ,η), where η is

the weights of the neural network Gη. The loss function consists of two parts, the total

sum rate and a penalty term for enforcing the QoS requirements, which is formulated as

follows:

L(θ,η) = −w1

K/2∑
l=1

∑
i=s,w

Rl,i(θ,η) + w2

K/2∑
l=1

∑
i=s,w

max

(
Rl,i(θ,η)−Rl,iQoS , 0

)
, (5.11)

where Rl,i(θ,η) denotes the sum rate calculated using θ and η, and max

(
Rl,i(θ,η) −
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Figure 5.2: Illustration of the MAML-based training framework.

Rl,iQoS , 0

)
indicates the QoS deficiency of user i in the l-th cluster. The weights w1 and

w2 are tuned during training.

Suppose θ needs to be optimized in J gradient steps, the gradient descent update in

the j-th gradient step of the p-th training episode can be formulated as

θ(j) ← θ(j−1) − γθ
∂

∂θ(j−1)
L(θ(j−1),η(p−1)), (5.12)

where γθ denotes the phase shift learning rate, η(p−1) denotes the neural network weights

obtained in the previous training episode. In order to satisfy the phase shift constraint

in (5.9c), the entries of θ are clipped to [0, 2π) after each update. Based on (5.12), the

loss function after completing the J gradient steps is therefore L(θ(J),η(p−1)), where

θ(J) is the optimized phase shift. Then, the neural network Gη is optimized to minimize

L(θ(J),η(p−1)) through the following update formula

η(p) ← η(p−1) − γη
∂

∂η(p−1)
L(θ(J),η(p−1)), (5.13)

where γη denotes the network learning rate.
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To employ MAML, (5.13) is calculated by implicitly performing the second order

differentiation with respect to the loss function L(θ(J),η(p−1)) and back-propagating

through the J phase shift optimization steps in (5.12). Moreover, MAML is performed

on the phase shift learning rate γθ against the loss function L(θ(J),η(p−1)) to reduce the

need for further hyper-parameter tuning. The update equation of γθ can be derived in

the same way as in (5.13).

As shown in Fig. 5.2, each training epoch can be divided into two stages, correspond-

ing to the inner and the outer MAML steps:

1. Phase shift optimization (inner step): The initial phase shift is sampled according

to a random uniform distribution, i.e. θ(0) ∼ U(0, 2π). In the j-th gradient loop,

the corresponding power allocation P(j) based on θ(j) is obtained using (5.10).

Then, θ(j) is optimized with respect to the loss function L(θ(j),η), as in (5.12).

After repeating (5.12) for J iterations, the final optimized phase shift is denoted

as θ(J).

2. Power allocation optimization (outer step): After completing J gradient descent

loops, the current optimal power allocation P(J) can be computed using θ(J)

and (5.10). Then, the network weights η are updated according to (5.13), by

backpropagating through all J gradient descent iterations.

The pseudocode of the training algorithm is presented in Algorithm 5, where lines

2-8 correspond to the phase shift optimization and lines 9-11 correspond to the power

allocation optimization. To apply the trained network to new datasets, the phase shift

optimization procedure only needs to be executed for J times, after which the optimized

phase shift θ(J) and the corresponding power allocation P(J), are the solutions to the

joint optimization problem in (5.9).
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Algorithm 5 Meta-learning Based Training Algorithm

Input: Channel matrixH, QoS vectorRQoS , user locations, neural network Gη, number
of phase shift update steps J

Output: Trained neural network Gη̂
Initialize η

1: repeat
2: for each episode do

3: Initialize phase shift θ1, ..., θN
iid∼ U(0, 2π)

4: Calculate path loss vector Lpath

5: for j = 0 to J − 1 do
6: Obtain power allocation P(j) = Gη(H(θ(j)),RQoS ,Lpath)
7: Calculate loss function L(θ(j);η)
8: Update phase shift using (5.12)
9: end for

10: Given the optimized phase shift θ(J), calculate the optimized power allocation
P(J) = Gη(H(θ(J)),RQoS ,Lpath)

11: Calculate loss function L(θ(J),η) using the optimized phase shift
12: Update network weights using (5.13)
13: end for
14: until reaches the maximum training steps
15: Return Gη̂

5.3.4 Convergence Analysis

According to [96], a MAML algorithm finds an ϵ-first-order stationary point in O(1/ϵ)

iterations for any ϵ > 0, given a sufficient number of learning samples. The convergence

theorem was then extended to the multi-step MAML algorithms in [97]. Both theorems

were built on several assumptions on the loss function, one of which requires the loss

function to be smooth. In the proposed model, the loss function L(θ(J),η) contains a

non-smooth penalty term which represents the QoS requirements of individual users. To

be specific, the penalty term max

(
Rl,i(θ,η) − Rl,iQoS , 0

)
is non-differentiable at point

(θ∗,η∗), where Rl,i(θ
∗,η∗) = Rl,iQoS , which causes the loss function to be non-smooth at

this particular point. More importantly, the adopted MAML algorithm carries out inner

gradient descent steps on the network input space, rather than on the model weights,

which is significantly different to conventional MAML techniques. This MAML variant

was proposed recently in [79] and its theoretical convergence has not been explored yet.

Here, two main challenges of the convergence analysis are discussed. First, the min-
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imum QoS requirements must be enforced by adding a non-smooth penalty term to

the loss function. Although the neural network can be successfully trained using sub-

gradients, the conventional smoothness-based convergence theorems are violated. Sec-

ondly, the inner and the outer loops in the nested optimization path have different

optimization variables. This type of MAML algorithm has been implemented in several

research contributions [79, 98], however, no analytical results were provided to support

the convergence. Due to the difficulty in proving the algorithm convergence, extensive

experiments are provided in Sec. 5.5.1 to verify the convergence of the proposed algorithm

under various training configurations.

5.3.5 Complexity Analysis

In this section, the asymptotic computational complexity of the MAML-based DL algo-

rithm is discussed. Since the online optimization complexity is at most the complexity

of one offline training episode, the analysis will be focused on deriving the offline com-

plexity. In particular, asymptotic complexity is derived in terms of three important

model variables: the number of users (K), the number of reflecting elements (N), and

the number of BS antennas (M).

The complexity of the proposed DL algorithm is dominated by three parts: 1) the

forward and backward propagation of the neural network; 2) the calculation of the loss

function; 3) the gradient descent of the phase shift. The computational complexity of

the forward and backward propagation of the same neural network is identical, hence,

without loss of generality, the complexity of the forward propagation is derived. In

the proposed DL algorithm, the neural network inputs the combined complex-valued

channel matrix, the QoS requirement vector and the path loss vector, then outputs

the power allocations of all users. Thus, the input dimension is (2KM + 2K) and

the output dimension is K. It is assumed that the number of neurons in each hidden

layer is independent of the variables of interest. Moreover, the first and the last hidden

layers are assumed to be the conventional fully-connected layers, whose operations are 2-
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dimensional matrix multiplications. Therefore, by denoting α0 as the number of neurons

in the first hidden layer, the complexity associated with the input layer can be derived

as O(α0(2KM + 2K)) = O(KM). Similarly, the complexity associated with the output

layer can be derived as O(K). Hence, the complexity of one forward propagation or one

backward propagation is O(KM) + O(K) = O(KM). In each training episode of the

proposed DL algorithm, the neural network undergoes J+1 forward and J+1 backward

propagation operations, hence, the complexity associated with the neural network in a

single training episode is O(JKM).

Then, additional complexity is induced when calculating the loss function, i.e. (5.11).

Trivially, the complexity of (5.11) is dominated by the calculation of the individual user’s

combined channel vector hHl,i, of which the complexity is O(NM). Therefore, since the

combined channel is computed for each user, the total complexity induced by calculating

the loss function is O(NKM). Finally, the complexity of the gradient descent algorithm

for optimizing the phase shift is equal to O(JN).

To sum up, the offline training complexity of the DL algorithm is derived asO(Nep(JKM+

NKM +JN)), where Nep denotes the total number of training episodes before reaching

convergence. Hence, the online application complexity is O((JKM +NKM + JN)).

5.4 Long-term Optimization Problem

In this section, the long-term optimization problem is formulated and the proposed

DDPG-based DRL algorithm is introduced.

5.4.1 Long-term Problem Formulation

The short-term problem, formulated in the previous section, is subject to an instan-

taneous transmit power constraint, which assumes that all transmit power at the BS

should be consumed for the considered one-time-slot transmission. However, in practice,

the transmission generally involves multiple TSs and requires a long-term strategy. To
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investigate this problem, an average transmit power constraint over multiple transmis-

sion TSs is considered. To satisfy the instantaneous QoS requirements, the BS has to

coordinate the transmit power of different TSs. Accordingly, the long-term problem is

formulated as follows:

max
θ,P

∑T

t=1
R(t) =

∑T

t=1

∑K/2

l=1
(Rl,s(t) +Rl,w(t)) (5.14a)

s.t. Rl,i(t) ≥ Rl,iQoS(t), ∀l,∀i ∈ {s, w},∀t (5.14b)∣∣∣ejθn(t)∣∣∣ = 1,∀n,∀t (5.14c)

1

T

∑T

t=1

∑K/2

l=1
(pl,s(t) + pl,w(t)) ≤ Pmax (5.14d)

where Rl,i(t) = Bl log2(1+ γl,i(t)) denotes the sum rate achieved by the users in the l-th

cluster at the t-th TS and Rl,iQoS(t) denotes the minimal QoS requirement of the users in

the l-th cluster at the t-th TS. Then, (5.14b) defines the QoS requirement constraints,

(5.14c) defines the phase shift constraint of the RIS, and (5.14d) specifies the average

transmit power constraint of the BS, which indicates that farsighted network evolution

has to be considered instead of only striking the current benefits.

In addition to the non-convex constraint (5.14c), the formulated problem has a long-

term power constraint (5.14d), which introduces correlations among the solutions of

different TSs and cannot be directly solved by either traditional convex-based techniques

or conventional DL algorithms. As an algorithm that is designed to maximize long-term

rewards, DRL is employed to tackle the formulated problem. In particular, the DDPG

algorithm is employed since it is capable of learning continuous states, i.e., the channel

information and the QoS requirements, and actions, i.e., the RIS phase shift and the

power allocation.
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5.4.2 DRL-based Resource Allocation Scheme

In the proposed reinforcement learning algorithm, the BS acts as the agent, who controls

the power allocation of each user, as well as the phase shift adjustments of the RIS. In

each TS, the BS first observes the states, denoted by st, which include the channel

information, the QoS requirements, the path loss, and the remaining transmit power,

denoted by Pmax,t. In particular, Pmax,t is formulated as follows:

Pmax,t = TPmax −
∑t−1

j=1

∑K/2

l=1
(pl,s(j) + pl,w(j)) (5.15)

= Pmax,t−1 − (pl,s(t− 1) + pl,w(t− 1)) , (5.16)

where Pmax is the average transmit power constraint and Pmax,0 = TPmax. Then, the

BS carries out a set of actions, denoted by at, to adjust the RIS phase shift and to

assign the transmit power for each user. The state space is denoted as S and the action

space is denoted as A. Then, the relationship between the states and the actions can

be represented by a policy function µϕ : S → A, parameterized by ϕ. The actions are

assessed through a reward function r(st,at). Finally, to determine the optimal policy µ∗ϕ

that maximizes the long-term reward, an objective function is formulated as follows:

µ∗ϕ = argmax
ϕ

∑
t

κt r(st, µϕ(st)), (5.17)

where κt ∈ [0, 1] denotes the discount factor, which is utilized to prevent an infinite sum

of rewards. For simplicity, the long-term reward can be represented by an action-value

function, denoted by Q(st,at), where Q(st,at) =
∑

t κt r(st,at). Hence, the equation

in (5.17) can be simplified into

µ∗ϕ = argmax
ϕ

Q(st,at), (5.18)

where at = µϕ(st).
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Figure 5.3: Illustration of the DDPG framework.

5.4.3 DDPG-based Training Algorithm

The DDPG algorithm [99] is deployed as the training algorithm since both the state

space and the action space is high-dimensional and continuous-valued. In the DDPG

algorithm, two neural networks, known as the actor and the critic networks, are trained

to approximate the optimal policy function µ∗ϕ and the action-value function Q(s, a),

respectively.

As illustrated in Fig. 5.3, the actor network is updated based on the outputs of the

critic network, following (5.18), and the critic network is updated using the temporal

difference loss. To prevent the data from being highly correlated, the DDPG algorithm

utilizes the experience replay technique. To be specific, in the exploration stage, new

training data is generated by interacting with the environment and the data samples

are stored in an experience buffer. Then, in the exploitation stage, random samples

are obtained from the buffer to train the actor and the critic networks. Algorithm 6

illustrates the pseudocode of the adopted DDPG training algorithm. The state space,
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Algorithm 6 DDPG-based Phase Shift and Power Allocation Optimization Algorithm

Input: Critic network Qψ, actor network µϕ, length of time frame T , empty replay
buffer D
Construct target parameters ϕtarg ← ϕ and ψtarg ← ψ

1: repeat
2: for t = 1, . . . , T do
3: Observe states st and select actions at = clip(µϕ(st) + ϵ,−1, 1), where ϵ ∼ N
4: Execute at and obtain reward rt
5: Observe next state st+1 and store (st,at, st+1, rt) in replay buffer D
6: Randomly sample a batch B∗ = {(st,at, st+1, rt)} from D
7: Compute yt = rt + κtQψ(st+1, µϕ(st+1))
8: Update critic network with gradient

∆ψ
1

|B∗|
∑

(st,at,st+1,rt)∈B∗

(Qψ(st,at)− yt)2

9: Update actor network with gradient

∆ϕ
1

|B∗|
∑

st∈B∗

Qψ(st, µϕ(st))

10: Perform soft updates on target parameters by

ϕtarg ← ρϕtarg + (1− ρ)ϕ

ψtarg ← ρψtarg + (1− ρ)ψ

11: end for
12: until reaches the maximum training steps
13: Return ϕtarg and ψtarg

action space, reward function, and the neural networks are defined as follows:

5.4.3.1 State space

The state space consists of all environment parameters that may affect the agent’s deci-

sions. In terms of our model, the state space consists of all channel information in the

current TS, the transmit power available at the beginning of the TS, the current QoS

requirements and the path loss of all users. At the t-th TS, the state vector is defined as

st = [Pmax,t,h1,s(t),h1,w(t), . . . ,hK/2,s(t),hK/2,w(t),RQoS ,Lpath]
T . (5.19)
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5.4.3.2 Action space

The action space consists of two parts: the phase shift θn(t) of each RIS element and the

power allocation pl,i(t) of each user. Note that the value of pl,i(t) may varies significantly,

which can cause unstable learning phase. To address this issue, we further represent the

power allocation as pl,i(t) = αl,i(t)Pmax/T , where αl,i(t) ∈ [0, 1] and Pmax/T can be

interpreted respectively as the power allocation factor and the average maximum power

of individual TSs. Hence, the action vector of the t-th TS is defined as

at = [θ(t), α(t)]. (5.20)

5.4.3.3 Reward function

The reward function consists of the system sum rate, a QoS constraint term, and a

transmit power constraint term. The QoS constraint term follows the formulation in the

DL loss function, i.e., (5.11). The transmit power constraint is calculated as the absolute

value of the difference between the average power consumption and the average power

constraint. The use of absolute value helps to prevent excess power consumption, while

encouraging the agent to allocate all transmit power available. The reward function is

formulated as

rt = w1

K/2∑
l=1

∑
i=s,w

Rl,i + w2

K/2∑
l=1

∑
i=s,w

max(Rl,i −Rl,iQoS , 0)

+ w31T (t)

∣∣∣∣∣Pmax − 1

T

∑T

j=1

∑K/2

l=1
(pl,s(j) + pl,w(j))

∣∣∣∣∣, (5.21)

where 1T (t) is an indicator function, which returns one if t = T and zero otherwise. w1,

w2, and w3 are tuning parameters to be adjusted in training.

5.4.3.4 Neural Networks

The architectures of the critic and the actor networks are described as follows. The actor

network is a fully-connected network, which consists of two layers. Note that the counting
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index starts from the first hidden layer up to the output layer. The first layer in the

actor network is a dense layer of 1024 neurons, followed by a ReLU activation function.

The second layer is another dense layer of 1024 neurons with the tanh activation function

that outputs the actions in the range [-1, 1]. Then, the outputs are scaled to their desired

ranges.

The critic network is a three-layer network, where the actions and the states are

processed separately through two dense layers, each of 1024 neurons, followed by the

ReLU layers. The outputs are concatenated before feeding to a dense layer of 1024

neurons with the ReLU activation. Then, the final layer outputs a real number as the

approximation for the action-value function. It is worth pointing out that, before the first

dense layers in both actor and critic networks, a batch-normalization layer is inserted to

increase the convergence rate and to ensure the stability of the training process.

5.4.4 Convergence Analysis

Inspired by the success of DQN [100, 101], DDPG is developed by extending the deter-

ministic policy gradient (DPG) algorithm [102] with non-linear neural networks to better

approximate the policy functions and the action-value functions, which can be especially

beneficial in high-dimensional problems. The DPG algorithm is guaranteed to converge

since the gradient of the cumulative reward with respect to the policy parameters ϕ

has been proved to exist. However, this convergence is only compatible with a function

approximator of Q(s, a) that is linear of the policy features.

Remark 2. The use of non-linear neural networks implies that the convergence of DDPG

is not guaranteed.

In general, the convergence of DRL algorithms depends heavily on the accuracy

of the function approximator, because a function can be approximated to greater or

lesser degrees by using more or less complex polynomials for approximation. Hence, the

convergence of the proposed DRL algorithm is verified based on extensive simulation

results, as shown in Sec. 5.5, where the results demonstrate that the DRL algorithm is
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Table 5-B: DL simulation configurations.

Parameter Value
Number of MUs, K 4

Number of BS antennas, M 16
Path loss exponent 3

Noise power spectral density -169 dBm/Hz
Bandwidth, Bl 4 MHz

Training batch size 128
Testing batch size 1,000

Network learning rate, γη 0.0001
Phase shift initial learning rate, γθ 0.3

Phase shift update steps, J 5
Maximum training episode 10,000

able to converge under various hyper-parameter values.

5.4.5 Complexity Analysis

The DRL algorithm does not have an offline training phase, hence, the online learning

complexity of the DRL algorithm is derived in terms of two factors: the neural network

complexity and the loss function complexity.

The DRL algorithm utilizes four neural networks, namely, the actor network, the

critic network, the target actor network and the target critic network. In particular, two

types of neural network architectures are adopted, corresponding to the actor and critic

networks. The actor network inputs the states, which consist of three channel matrices, a

QoS requirement vector, the path loss vector, and the remaining transmit power. Hence,

the input dimension of the actor network is (2KM + 2KN + 2MN + 2K + 1). The

actor network then outputs the actions, which consist of both the phase shift and the

power allocation vectors, leading to an output dimension of (N + K). Therefore, the

asymptotic complexity of the actor network isO(2KM+2KN+2MN+2K+N+K+1) =

O(KM +KN +MN).

The complexity of the critic network can be derived similarly. To be specific, the critic

network inputs both the states and the actions, then outputs a real number, resulting

in a total complexity of O(2KM + 2KN + 2MN +K +N +K + 2) = O(KM +KN +
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MN). Combing the complexity of the actor and the critic network, the overall network

complexity is derived as O(KM +KN +MN), after omitting the simpler terms.

The complexity of the loss function can be obtained following the results of the

DL algorithm, that is, O(NKM). Hence, given Nep number of training episodes, the

asymptotic complexity of the DRL algorithm is derived as O(NepNKM).

5.5 Numerical Results

In this section, simulation results are provided to evaluate the sum rate maximization

performance of the DL and the DRL algorithms in the proposed RIS-assisted PD-NOMA

downlink systems. Users are assumed to travel in a 10x10 square area, where the BS

is located at a corner of the area and a RIS is randomly located within the area. As

the baseline model, OMA deploys the ZF precoding based on the channels of each user

and the BS transmits signals without superposition coding. After receiving the signal,

each user directly decodes the intended signal by considering all other users’ signals as

interference.

5.5.1 Short-term Optimization with DL

This subsection presents the simulation results of the proposed MAML-based DL algo-

rithm for solving the short-term optimization problem, as formulated in (5.9). The

simulation configurations are presented in Table 5-B unless otherwise stated.

5.5.1.1 Convergence of DL

The convergence of the DL algorithms mainly depends on the values of the training

parameters. To evaluate the convergence of the proposed DL algorithm, we illustrate

the loss function values as the number of training iterations increases, using different

batch sizes and different learning rates, as shown in Fig. 5.4. It can be observed that, as

the batch size increases from 32 to 128, the loss function values decrease at a faster rate

and converge more steadily to a lower value. Moreover, when the learning rate is 0.0001,
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Figure 5.4: Training loss versus the number of training iterations for different
batch sizes and learning rates.

we notice that fewer iterations are required for the loss function values to converge,

compared to the case when the learning rate is 0.00001. Hence, in consideration of the

stability and the computational efficiency, we adopt a batch size of 128 and a learning

rate of 0.0001 in the subsequent simulations.

5.5.1.2 Sum rate versus the number of RIS elements

In Fig. 5.5, it can be observed that the PD-NOMA system with the proposed QoS-based

clustering scheme outperforms the conventional OMA system by around 4 dBm/Hz of

sum rate, without the enhancement of RIS. In both PD-NOMA and OMA systems, the

deployment of RIS induces approximately 5% to 25% sum rate gain as the number of

reflecting elements ranges from N = 8 to N = 64. Higher performance gain can be

attained by increasing the number of RIS elements, however, the cost of optimization

complexity and deployment increases as well.
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Figure 5.5: Sum rate versus the number of reflecting elements N for PD-
NOMA and OMA cases, given 20 dBm BS transmit power.

Figure 5.6: Sum rate versus total transmit power at BS for PD-NOMA and
OMA cases, given N = 16 reflecting elements.

5.5.1.3 Sum rate versus BS total transmission power

Fig. 5.6 illustrates the sum rate performance between OMA and PD-NOMA systems as

the BS power varies between 0 dBm and 30 dBm. It can be observed that the PD-NOMA
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Table 5-C: DDPG simulation configurations.

Parameter Value
Number of MUs, K 4

Number of BS antennas, M 4
Path loss exponent 3

Noise power spectral density -169 dBm/Hz
Bandwidth, Bl 1 MHz

Batch size 128
Actor learning rate 0.0001
Critic learning rate 0.001
Discount factor, κt 1.0

Exploration noise standard deviation 0.05
Number of steps per episode, T 10
Number of maximum episodes 10,000

system outperforms the OMA system for all values of BS transmit power, given the same

number of users. It can also be noticed that the PD-NOMA system with 4 users achieves

a higher sum rate than the OMA system with 6 users when the BS power is less than

15 dBm. Moreover, as the number of users increases, the sum rate of the PD-NOMA

systems increases by a larger amount compared to the sum rate of the OMA systems.

5.5.2 Long-term Optimization with DRL

This subsection demonstrates the simulation results of the DDPG-based DRL algorithm

when applied to the long-term optimization problem, as formulated in (5.14). The DRL

configurations are presented in Table 5-C unless otherwise stated. In particular, the

discount factor is set to 1.0 because the length of each episode is finite, hence there is

no risk of infinite rewards.

5.5.2.1 Convergence of DRL

To investigate the convergence of the adopted DDPG algorithm, experiments are con-

ducted based on different batch sizes and critic learning rates, where the results are

illustrated in Fig. 5.7. Since the performance of the DDPG algorithms is strongly deter-

mined by the approximation accuracy of the critic function, the discussions are focused

on the impacts of the critic learning rates. From Fig. 5.7, it can be noticed that the

rewards increase and converge as the number of training episodes increases, demonstrat-
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Figure 5.7: Episode rewards of the DRL algorithm versus the number of train-
ing episodes, under different batch sizes and critic learning rates.

ing that all agents have successfully learned to improve their policies for achieving higher

rewards. In particular, as the batch size increases from 64 to 256, the rewards increase

more steadily to a higher value. Moreover, as the learning rate increases, the rewards

increase at a faster rate. However, different learning rates do not have a noticeable

impact on the reward after convergence. Hence, a batch size of 128 and a critic learning

rate of 0.001 is adopted in the subsequent experiments to achieve higher rewards at a

faster convergence speed.

5.5.2.2 Sum rate versus the number of RIS elements

Fig. 5.8 illustrates the sum rate performance of the DRL algorithm as the number of

RIS elements increases from N = 4 to N = 16. It can be observed that, under both

PD-NOMA and OMA models, the sum rate is improved by a significant amount after

the implementation of RIS. Moreover, as the number of RIS elements increases, the

sum rate continues to rise, demonstrating the benefits of employing RIS for sum rate

improvement. Results also show that the proposed PD-NOMA systems achieve a higher

sum rate compared to the traditional OMA systems. More importantly, without the aid
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Figure 5.8: sum rate versus the number of RIS elements, under Pmax = 10
dBm BS power and M = 4 BS antennas.

of RIS, the proposed PD-NOMA system can outperform RIS-assisted OMA systems by

a substantial amount of sum rate.

5.5.3 DL versus DRL

This subsection investigates the sum rate difference between DL and DRL when both

are applied to the short-term and the long-term problems, respectively. The computa-

tional complexity of the two algorithms is compared to further illustrate the performance

difference. To solve the short-term problem with DRL, the algorithm considers it as a

long-term problem that consists of only one TS, i.e., T = 1. To solve the long-term prob-

lem with DL, the algorithm decomposes it into several individual short-term problems

and solves them separately, where the total transmit power of each TS is the average

transmit power in the long-term problem. Then, the long-term sum rate of DL is calcu-

lated as the total sum rate of all the obtained short-term solutions.
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Figure 5.9: Sum rate of DL and DRL versus BS transmit power in PD-NOMA
and OMA systems, for the short-term optimization problem.

5.5.3.1 Short-term optimization performance

The training configurations of the DL algorithm follow Table 5-B. The configurations of

the DRL algorithm follow Table 5-C, except for the bandwidth, which is set to 4 MHz.

The number of RIS elements is N = 4 for both methods. Fig. 5.9 illustrates the sum rate

performance of both methods as the BS transmit power varies from 5 dBm to 20 dBm. It

can be observed that DL and DRL achieve similar transmission sum rates in all scenarios,

where the data rate of both approaches grows linearly with the BS transmit power. It can

also be observed that PD-NOMA provides significant performance gain against OMA

and the deployment of RIS has enhanced the system sum rate by a substantial amount

in both PD-NOMA and OMA systems.

Fig. 5.10 compares the system sum rate given different clustering methods, namely,

the proposed QoS-based clustering scheme and the conventional channel condition-based

clustering scheme. Simulations are performed with M = 24 antennas at the BS and

Pmax = 20 dBm maximum transmit power. It can be noticed that the proposed QoS-

based method outperforms the conventional channel condition-based approach and the
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Figure 5.10: Sum rate of DL and DRL versus the number of users under the
QoS-based or channel-based clustering schemes, when solving the
short-term optimization problem.

performance gain of the QoS-based method further increases as the number of users

increases. It implies that the QoS-based clustering scheme allows for a more resource-

efficient power allocation strategy, where a higher system sum rate can be achieved

compared to the baseline method given the same amount of transmit power.

Combining the observations from Fig. 5.9 and Fig. 5.10, it can be noticed that there is

a negligible sum rate difference between DL and DRL for the short-term optimization in

PD-NOMA and OMA systems, with or without the RIS. Hence, to further illustrate the

performance difference between DL and DRL, we compare the computational complexity

of the two approaches later in this subsection.

5.5.3.2 Long-term optimization performance

In Fig. 5.11, the long-term optimization performance of DL and DRL is studied by

comparing their total sum rates versus total transmit power over 10 consecutive TSs,

whereM = 4 and K = 4. To illustrate the long-term performance difference between DL

and DRL, a power-constrained scenario, is considered, where the total transmit power is
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Figure 5.11: Sum rate of DL and DRL versus total transmit power when solv-
ing the long-term optimization problem in PD-NOMA systems.

insufficient to fulfil all QoS requirements in certain TSs. Note that, if at least one QoS

requirement is unsatisfied, the sum rate of the corresponding TS is deducted to 0 dBm.

From Fig. 5.11, a noticeable performance gap between DL and DRL solutions is

observed, which becomes more significant as the transmit power decreases. This is

because, to solve the long-term problem, the DL method needs to decouple the problem

into individual TSs, where each of them is treated as a short-term problem. Hence,

due to the limited transmit power, the DL solutions are more likely to fail the QoS

requirements compared to the DRL solutions, which are obtained by optimizing the

power consumption of each TS. Moreover, as the number of RIS elements increases from

N = 4 to N = 16, the performance difference between the two methods is reduced

because the transmission sum rate is improved and more users’ QoS requirements can

be fulfilled given the same total transmit power.
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5.5.3.3 Computational Complexity Comparison

Comparing the computational complexity between DL and DRL is not straightforward,

because DL offloads the majority of the complexity to the offline training stage, whereas

DRL is based on the online training. However, in practical scenarios, the available

computational resources are more sufficient for offline training than those for online

training. Therefore we compare the complexity of DL and DRL with a particular focus

on the online training stage.

For both DL and DRL, the computational complexity of the long-term optimization

is T times the computational complexity of the short-term optimization, where T denotes

the number of TSs. Therefore, the analysis is focused on comparing the computational

complexity of the short-term optimization between DL and DRL. As derived in the

Sec. 5.3.5 and 5.4.5, the online computational complexity of DL and DRL for the short-

term optimization are O(JKM +NKM + JN) and O(NepNKM), respectively, where

J denotes the number of phase shift optimization iterations in the DL algorithm and

Nep denotes the number of training episodes before the DRL algorithm converges. It

is worth noting that the practical values of Nep, are significantly larger than all the

other variables. For instance, when K = N = M = 4, the DL algorithm converges

for J = 5, whereas the DRL algorithm converges for Nep ≈ 10, 000. The sufficiently

large values of Nep cause DRL to have much higher computational complexity than DL

during the online training stage. As a result, although DL and DRL demonstrated a

similar sum rate for the short-term optimization, DL is superior due to the relatively

low computational complexity.

5.5.3.4 Overall comparisons between DL and DRL

Having compared the short-term sum rate performance, the long-term sum rate per-

formance, and the computational complexity between DL and DRL, it can be con-

cluded that, compared to DRL, DL achieves a slightly lower sum rate but yields signifi-

cantly lower online training complexity. Hence, DL is preferred when the computational
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resources are limited. By contrast, when there are sufficient computational resources,

DRL is preferred because it achieves a higher transmission sum rate, especially when

solving the long-term optimization problems due to the advantage of coordinating the

transmit power among the TSs.

5.6 Summary

In this article, a QoS-based clustering method is proposed to improve resource efficiency

in RIS-assisted PD-NOMA systems. The sum rate maximization problem was formulated

by jointly optimizing the RIS phase shift and the BS power allocation. The optimization

problem was formulated from both short-term and long-term prospects. Both DL and

DRL techniques were employed to solve the formulated problems. The DL algorithm

adopted a low-complexity network architecture and utilized MAML to improve the con-

vergence rate in the application. The DRL algorithm utilized a transmit power-based

penalty term in the reward function to regulate the power consumption, such that the

average transmit power constraint can be satisfied. Simulation results demonstrated that

the proposed QoS-based PD-NOMA scheme achieved a higher sum rate compared to the

conventional channel condition-based PD-NOMA and OMA schemes. It also revealed

that the implementations of RISs significantly improved the achieved system sum rate.

Moreover, we noticed that DRL achieved a higher transmission sum rate than DL, espe-

cially for the long-term problems. In terms of the algorithm complexity, DL was superior

as a low-complexity solution compared to DRL. Overall, DL is preferred when the com-

putational resources are scarce and DRL is preferred to achieve a higher transmission sum

rate given sufficient computational resources. The work of this chapter demonstrated the

spectral enhancement of employing a RIS in PD-NOMA systems. To further investigate

the integration of RIS and PD-NOMA, the next chapter will study the implementation

of multiple RISs in PD-NOMA systems for enhancing D2D communications.



Chapter 6

Multi-Agent Resource Allocation

in NOMA-Enhanced Multi-RIS

Aided D2D Networks

6.1 Introduction

By providing proximity communication for paired mobile users, D2D communication has

been recognized as one of the promising technologies to enhance network capacity and

alleviate traffic burdens in wireless networks. However, as the number of D2D equipment

increases, the severe co-channel interference greatly limits the spectral efficiency, which

can be addressed by the SIC technique of PD-NOMA. Moreover, as a low-cost spectral

enhancement technique, RISs can be easily deployed in the environment to establish

LoS links for enhancing signal strength and configure the wireless signals for interference

reduction. Hence, in this chapter, a PD-NOMA-enhanced multi-RIS aided D2D commu-

nication network is investigated, where the sum rate maximization problem is formulated

by jointly optimizing RIS phase shifts, PD-NOMA power allocations, and sub-channel

assignments for D2D receivers. Based on the time-varying channels, a multi-agent hybrid

110
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action DRL (MAHA-DRL) algorithm is designed for resource allocation, where each D2D

transmitter (DT) and each RIS controller act as an agent and the challenging hybrid

action space is addressed by utilizing MP-DQNs. The main contributions are outlined

as follows:

• A PD-NOMA-enhanced multi-RIS aided D2D underlaying cellular network is pro-

posed, where each DT can communicate with multiple D2D receivers (DRs) simul-

taneously through PD-NOMA transmission. To maximize the long-term sum rates

of DRs, the resource allocation problem is formulated by jointly optimizing D2D

channel assignments, PD-NOMA power allocations, and RIS phase shifts, subject

to a time-varying channel model.

• The high-dimensional long-term optimization problem is addressed by constructing

a multi-agent DRL-based resource allocation algorithm. In particular, each DR and

each RIS controller act as an agent, who are trained in a CTDE structure.

• MP-DQN is employed for each agent to directly incorporate the hybrid discrete-

continuous action space while exploiting the correlations between the discrete

actions and the continuous actions.

• Simulation results verify the stable convergence of the proposed MAHA-DRL algo-

rithm under various network scenarios. Results also illustrate the sum rate enhance-

ment capability of PD-NOMA compared to OMA when applied to D2D networks.

Moreover, the implementations of multiple RISs also introduce significant sum rate

improvements in both PD-NOMA-based and OMA-based networks, compared to

those without RIS.
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Table 6-A: List of main notations.

Notation Description Notation Description
I Number of cellular users k pkd,i, p

k
i Transmit power allocation

N Number of RISs xd,i, xi Intended signals
D Number of D2D groups vdk,v

i
k Sub-channel assignments

T Number of time slots (TSs) Hk
b,i, H

k
d,j Combined channel gain

K Number of sub-channels θn,m Phase shift m of RIS n
M Reflecting elements per RIS πk

d,1, π
k
d,2 Decoding order of D2D receivers

Q Number of sub-surfaces per RIS

iCUE

nRIS

d,2DR
dDT

d,1DR

Non-LoS Direct Link LoS Reflect Link

 Base Station

D2D group d

Figure 6.1: Illustration of the PD-NOMA-enhanced multi-RIS aided D2D net-
work underlaying cellular networks.

6.2 Network Model

6.2.1 System Model

Consider a downlink D2D communication underlaying cellular network, which consists of

D D2D groups, one BS, and I cellular users (CUEs), as illustrated in Fig. 6.1. Without

loss of generality, the DTs, the DRs, the BS, and the CUEs are all assumed to be

equipped with a single antenna. To avoid severe co-channel multi-user interference,

each D2D group d consists of one DT and DRs, denoted by DTd, DRd,1, and DRd,2,

respectively. Hence, the set of D2D transmitters is denoted as DT = {DT1, . . . , DTD}

and the set of D2D receivers is denoted as DR = {DR1,1, DR1,2, . . . , DRD,1, DRD,2}.

Moreover, the set of CUEs is denoted as I = {1, . . . , I}. The total bandwidth, denoted
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by W , is divided into K orthogonal sub-channels, denoted by K = {1, . . . ,K}, where

each sub-channel occupies a bandwidth of ∆B Hz. Furthermore, the DTs, DRs, and

CUEs are considered to be mobile equipment, travelling randomly during T time slots

(TSs). The main notations are listed in Table 6-A.

As shown in Fig. 6.1, the direct links between the DTs and the DRs, and between the

BS and the CUEs are blocked by obstacles such as buildings or trees. To address this

issue, N RISs are deployed to assist the transmission, where LoS links can be established

between the RIS and all other equipment, including the BS, the CUEs, the DRs, and

the DTs. Each RIS composes of M reflecting elements (REs), which are divided into Q

sub-surfaces. Within each sub-surface, the phase shifts of all reflecting elements are the

same.

6.2.2 Channel Model

To avoid co-channel interference, each CUE is considered to occupy one of the K orthog-

onal sub-channels and each channel can be assigned to only one of the CUEs. Hence,

the combined channel from the BS to CUE i over sub-channel k at TS t is formulated as

Hk
b,i(t) =

∑
n∈N

gHn,k,i(t)Θn(t)fb,k,n(t) + hb,k,i(t), (6.1)

where gHn,k,i(t) ∈ C1×M denotes the channel between RIS n and CUE i over sub-channel

k at TS t, Θn(t) = diag(βejθn,1 , . . . , βejθn,M ) ∈ CM×M denotes the phase shifting matrix

of RIS n at TS t, fb,k,n(t) ∈ CM×1 denotes the channel between the BS and RIS n over

sub-channel k at TS t, and hb,k,i(t) ∈ C denotes the channel between the BS and CUE

i over sub-channel k at TS t. All RISs are assumed to have unit amplitude coefficients

and continuous phase shifts, i.e., β = 1, θn,m ∈ (0, 2π], ∀m = 1, . . . ,M . The path loss is

modelled as L−α for all transmissions, where L denotes the transmission distance and α

denotes the path loss exponent.

Similarly, in D2D group d, the combined channel between transmitter DTd and
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receiver DRd,j is formulated as

Hk
d,j(t) =

∑
n∈N

gHn,k,d,j(t)Θn(t)fd,k,n(t) + hd,k,d,j(t), (6.2)

where gHn,k,d,j(t) ∈ C1×M denotes the channel between RIS n and receiverDRd,j over sub-

channel k at TS t, fd,k,n(t) ∈ CM×1 denotes the channel between transmitter DTd and

RIS n over sub-channel k at TS t, and hd,k,d,j(t) denotes the channel between transmitter

DTd and receiver DRd,j over sub-channel k at TS t. The transmission channels between

the BS and DTs/DRs, and between the DTs and the CUEs can be derived in a similar

manner. Hence, the detailed formulation will not be discussed here. In terms of the

notations, Hk
b,d,j(t) denotes the combined channel between the BS and receiver DRd,j

over sub-channel k in TS t, Hk
b,d(t) denotes the combined channel between the BS and

transmitter DRd over sub-channel k in TS t, and Hk
d,i(t) denotes the combined channel

between transmitter DRd and CUE i over sub-channel k in TS t.

Moreover, the practical time-varying channels are considered [103], where the first-

order Gaussian Markov channel model is adopted to formulate the small-scale fading

components. Let h(t) denote a small scale fading channel at TS t, the channel at TS

(t+ 1) is formulated as

h(t+ 1) = ϵ · h(t) +
√

1− ϵ2 · u(t+ 1), (6.3)

where u(t + 1) is a random sample following the distribution of h(t). Hence, ϵ = 1

represents the stationary scenario and ϵ < 1 represents the mobility scenario. In the

considered network, all non-LoS direct links are modelled as Rayleigh fading channels

and all LoS reflect links are modelled as Rician fading channels.

6.2.3 Signal Model

In each D2D group, PD-NOMA is employed so serve the DRs with the same orthogonal

resource. In particular, let xd,1(t) and xd,2(t) denote the signals intended for receiver
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DRd,1 and receiver DRd,2 in TS t, the superimposed signal transmitted by transmitter

DTd over sub-channel k is formulated as
√
pkd,1(t)xd,1(t) +

√
pkd,2(t)xd,2(t), where p

k
d,1(t)

and pkd,2(t) indicate the transmit power allocated to receiver DRd,1 and receiver DRd,2,

respectively. Meanwhile, the signal intended for CUE i is denoted by xi(t) and v
i
k(t) ∈

{0, 1} denotes the sub-channel assignment variable of CUE i on sub-channel k at TS

t. In particular, vik(t) = 1 indicates that sub-channel k is assigned to CUE i at TS t

and vik(t) = 0 indicates otherwise. Similarly, vdk(t) denotes the sub-channel assignment

variable of D2D group d over sub-channel k. Hence, the signal received by CUE i over

sub-channel k is formulated as

yki (t) = vki (t)H
k
b,i(t)

√
pki (t)xi(t)︸ ︷︷ ︸

Desired signal

+
∑
d∈D

vkd(t)H
k
d,i(t)

(√
pkd,1(t)xd,1(t) +

√
pkd,2(t)xd,2(t)

)
︸ ︷︷ ︸

D2D interference

+ ζk︸︷︷︸
Noise

.
(6.4)

For D2D group d, the signal received by receiver DRd,1 over sub-channel k in TS t is

formulated as

ykd,1(t) = vkd(t)H
k
d,1(t)

√
pkd,1(t)xd,1(t)︸ ︷︷ ︸

Desired signal

+ vkd(t)H
k
d,1(t)

√
pkd,2(t)xd,2(t)︸ ︷︷ ︸

SIC signal

+
∑
i∈I

vki (t)H
k
b,d,1(t)

√
pki (t)xi(t)︸ ︷︷ ︸

CUE interference

+
∑
d̸̆=d

vk
d̆
(t)Hk

d̆,d,1
(t)
(√

pk
d̆,1

(t)xd̆,1(t) +
√
pk
d̆,2

(t)xd̆,2(t)
)

︸ ︷︷ ︸
D2D interference

+ ζk︸︷︷︸
Noise

,

(6.5)

where ζk indicates the AWGN over sub-channel k with variance σ2.

To decode the superimposed signal, SIC needs to be employed by the DRs, where

πkd,1(t) and πkd,2(t) denote the decoding order of receiver DRd,1 and receiver DRd,2 on

sub-channel k at TS t, respectively. Without loss of generality, it is assumed that receiver
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DRd,2 employs SIC to decode and subtract the signal of receiver DRd,1 from the received

signal, i.e., πkd,1(t) < πkd,2(t), where receiver DRd,1 directly decodes its intended signal by

treating the signal of DRd,2 as interference. To ensure the accuracy of SIC, the following

decoding constraint must be preserved:

|Hk
d,2(t)|2pkd,1(t)

I2,ind,2 (t) + Ioutd,2 (t) + Icd,2(t) + σ2
≥

|Hk
d,1(t)|2pkd,1(t)

I2,ind,1 (t) + Ioutd,1 (t) + Icd,1(t) + σ2
, (6.6)

where I2,ind,2 (t) = |Hk
d,2(t)|2pkd,2(t) and I2,ind,1 (t) = |Hk

d,1(t)|2pkd,2(t) denote the intra-group

interference at receiver DRd,2 and receiver DRd,1, respectively. Moreover, Ioutd,2 (t) =∑
d̸̆=d v

k
d̆
(t)|Hk

d̆,d,2
(t)|2(pk

d̆,1
(t)+pk

d̆,2
(t)) and Ioutd,1 (t) =

∑
d̸̆=d v

k
d̆
(t)|Hk

d̆,d,1
(t)|2(pk

d̆,1
(t)+pk

d̆,2
(t))

denote the inter-group interference at receiver DRd,2 and receiver DRd,1, respectively.

Nonetheless, Icd,2(t) =
∑

i∈I v
k
i (t)|Hk

b,d,2(t)|2pki (t) and Icd,1(t) =
∑

i∈I v
k
i (t)|Hk

b,d,1(t)|2pki (t)

denote the CUE interference at receiver DRd,2 and receiver DRd,1, respectively. To sim-

plify the expression in (6.6), let F kd (2, 1)(t) denotes the SIC condition of D2D group d

on sub-channel k at TS t, which is given by

F kd (2, 1)(t) = |Hk
d,2(t)|2(Ioutd,1 (t)+I

c
d,1(t)+σ

2)−|Hk
d,1(t)|2(Ioutd,2 (t)+I

c
d,2(t)+σ

2) ≥ 0. (6.7)

Hence, F kd (2, 1)(t) ≥ 0 indicates that the SIC condition is satisfied and F kd (2, 1)(t) < 0

indicates otherwise. Finally, the SINR of receiver DRd,1 over sub-channel k is given by

γkd,1(t) =
|Hk

d,1(t)|2pkd,1(t)
I2,ind,1 (t) + Ioutd,1 (t) + Icd,1(t) + σ2

. (6.8)

Since receiver DRd,2 employs SIC to decode and subtract the signal of DRd,1 before

decoding its own signal, the SINR of receiver DRd,2 is computed as

γkd,2(t) =
|Hk

d,2(t)|2pkd,2(t)
Ioutd,2 (t) + Icd,2(t) + σ2

. (6.9)
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For the cellular network, the SINR of CUE i over sub-channel k is formulated as

γki (t) =
|Hk

b,i(t)|2vki (t)pki (t)
IkD,i(t) + σ2

, (6.10)

where IkD,i(t) =
∑

d∈D |Hk
d,i(t)|2vkd(t)(pkd,1(t)+pkd,2(t)) denotes the aggregated interference

at CUE i imposed by the transmissions of all D2D groups on sub-channel k at TS t.

Then, the data rates of receiver DRd,1 and DRd,2 are given by

Rd,1(t) = ∆B log2(1 + γkd,1(t)), (6.11)

and

Rd,2(t) = ∆B log2(1 + γkd,2(t)), (6.12)

respectively. Similarly, the data rate of CUE i is computed as

Ri(t) = ∆B log2(1 + γki (t)). (6.13)

6.2.4 Problem Formulation

The aim is to maximize the sum rate of all DRs, by jointly optimizing the channel

assignments of D2D groups, i.e., v = [v11(1), . . . , v
K
D (T )]T , the power allocations of

DRs, i.e., p = [p11,1(1), p
1
1,2(1), . . . , p

K
D,1(T ), p

K
D,2(T )]

T , and the phase shifts, i.e., Θ =

{Θ1(1), . . . ,ΘN (T )}. Since the optimization problem is focused on the resource alloca-

tion of D2D communications, random sub-channel assignments of CUEs are considered

and the power allocation of each CUE is considered as the minimum transmit power that

satisfies the QoS requirement. The sum rate maximization problem in the considered

PD-NOMA-enhanced multi-RIS aided D2D network is formulated as follows:
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(P1) : max
v,p,Θ

1

T

∑T

t=1

∑
d∈D

(Rd,1(t) +Rd,2(t)) (6.14a)

s.t.
∑
k∈K

vkd(p
k
d,1(t) + pkd,2(t)) ≤ pkdmax, ∀d,∀t, (6.14b)

Ri(t) ≥ Rminc , ∀i,∀t, (6.14c)

Rd,j(t) ≥ Rmind ,∀d,∀t,∀j ∈ {1, 2}, (6.14d)∑
k∈K

vkd(t) = 1, ∀d,∀t, (6.14e)

∑
d∈D

vkd(t) ≤ Kd, ∀d,∀t, (6.14f)

Fd(u, v)(t) ≥ 0, if πd,u(t) > πd,v(t),∀u, v ∈ {1, 2}, ∀d,∀t, (6.14g)

where pmaxd denotes the instantaneous maximum transmit power at transmitter DTd in

each TS, Rminc denotes the minimum QoS requirement of each CUE, and Rmind denotes

the minimum QoS requirement of receiver DRd. Hence, (6.14b) indicates the transmit

power constraints; (6.14c) and (6.14d) specify the minimum QoS constraints of all CUEs

and D2D groups, respectively; (6.14e) and (6.14f) denote the sub-channel assignment

constraints, which indicate that each D2D group is assigned to one of the sub-channels

and each sub-channel can be occupied by at most Kd D2D groups; (6.14g) specifies the

SIC constraint for ensuring successful SIC decoding outcomes.

Unfortunately, (P1) is NP-hard and is non-trivial to be directly solved by conven-

tional approaches. Moreover, due to the mobile DTs and DRs, and the time-varying

channels, the communication environment is highly dynamic, which may not be fully

exploited by conventional techniques. To address this NP-hard time series problem, a

DRL-based resource allocation framework is proposed.



Chapter 6. Multi-Agent Resource Allocation in NOMA-Enhanced Multi-RIS Aided D2D
Networks 119

6.3 MAHA-DRL Algorithm for Resource Allocation

6.3.1 Multi-Agent DRL

As a major research interest of ML, RL learns an action selection policy, known as an

agent, in a trial-and-error manner through continuous interactions with the unknown

dynamic environment. The goal of the agent is to learn an optimal policy π∗ which

can maximize a long-term discounted reward. However, in complex networks involving

a great variety of optimization parameters, a single agent may not be powerful enough

to learn the joint optimal actions. By jointly training multiple agents, each of which

is assigned a dedicated optimization task, the learning complexity can be offloaded and

distributed to individual agents, such that the overall performance can be enhanced.

Hence, the idea of multi-agent RL (MARL) is inspired [104]. MARL can be modeled as

a Markov Game (MG), which is defined as a tuple (C,S, (Ai)i∈C ,P,R, (πi)i∈C), where C

denotes the set of agents and C = |C| > 1. The main components of MG are described

as follows:

• A = A1 × · · · × AC : The joint action space which is composed of the action space

of all agents. In particular, the joint action of all agents in TS t is denoted as a(t).

• S: The state space that consists of the observed environmental status, where s(t)

denotes the state in TS t.

• π(S) → A: π denotes the joint policy of all agents. In particular, π(a|s) =∏
i∈C πi(ai|s), where πi(ai|s) represents the probability of agent i choosing action

ai after observing state s, such that
∑

ai∈Ai
πi(ai|s) = 1, ∀s ∈ S.

• P(S ×A× S)→ R: P denotes the transition probability function, where P(s(t+

1),a(t), s(t)) is interpreted as the probability of transitioning into state s(t + 1)

after executing the joint action a(t) in state s(t).

• R(S ×A)→ R: R indicates the reward function, where R(a(t), s(t)) is interpreted

as the immediate reward obtained by executing the joint action a(t) in state s(t).
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For solving the sum rate maximization problem in the considered multi-RIS aided

D2D network, a total of (N +D) agents are deployed, which consist of N RIS agents for

optimizing the phase shifts andD D2D agents for optimizing the sub-channel assignments

and the power allocations. The key components of the multi-agent framework for solving

(P1) are described as follows:

• State space: Both D2D and RIS agents require the information of all channel links

and the previous actions, which is expressed as

sn(t) = {hb,i(t),gn,i(t), f b,n(t),hd,d̆(t),g
D
n,j

(t), fd,n(t),hb,d,j(t),h
D
b,d(t),hd,i(t),

v(t− 1),p(t− 1), θn,1(t− 1), . . . , θN,Q(t− 1)}, (6.15)

where hb,i(t) = {hb,1,1(t), . . . , hb,K,I(t)} is the set of channels between the BS and

all CUEs, g
n,i
(t) = {g1,1,1(t), . . . ,gN,K,I(t)} is the channels between the RISs and

the CUEs, f b,n(t) = {fb,1,1(t), . . . , fb,K,N (t)} is the channels between the BS and

the RISs, hd,d̆(t) = {h1,1,1,j(t), . . . , hD,K,D−1,j(t)} is the channels among the D2D

groups, gD
n,d

(t) = {gD1,1,1(t), . . . ,gDN,K,D(t)} is the channels between the RIS and

the DRs, fd,n(t) = {f1,1,1(t), . . . , fD,K,N (t)} is the channels between the DTs and

the RISs, hb,d,j(t) = {hb,1,1,j(t), . . . , hb,K,D,j(t)} is the channels between the BS

and the DRs, hDb,d(t) = {hDb,1,1(t), . . . , hDb,K,D(t)} is the channels between the BS

and the DTs, and hd,i(t) = {h1,1,1(t), . . . , hD,K,I(t)} is the channels between the

DTs and the CUEs, where j ∈ {1, 2} indicates the index of the DRs in each D2D

group. Moreover, v(t− 1) denotes the channel assignments at TS (t− 1), p(t− 1)

denotes the power allocation in D2D group d at TS (t− 1), and θn,q(t− 1) denotes

the phase shift of sub-surface q on RIS n at TS (t− 1).

• Action Space: The D2D agents and the RIS agents have distinct action space. In

particular, the action space of each D2D agent consists of the sub-channel assign-

ment and the power allocations, which constitute a hybrid discrete-continuous
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action space, given by

AD2D =

{(
k, pkd,1(t), p

k
d,2(t)

)
s.t. pkd,j ∈ AD2D, cts, k ∈ K

}
, (6.16)

where AD2D, cts denotes the action space of power allocations. Then, the joint

action of all D2D agents is expressed as aD(t) = {aD1 (t), . . . ,aDD(t)}, where aDd (t) ∈

AD2D indicates the hybrid action taken by D2D agent d. The action space of each

RIS agent is also hybrid. In particular, a discrete variable wn,q(t) ∈ {−1, 1} is

defined, known as phase shift adjustment direction, which specifies whether the

phase shift of sub-surface q on RIS n should increase or decrease compared to

the phase shift in the last TS. Then, a continuous phase shift variable θ̆n,q(t) is

determined, which specifies the amount of phase shift adjustment compared to last

TS. Therefore, the phase shift at TS t is computed based on the following equation:

θn,q(t) = θn,q(t− 1) + wn,q(t)θ̆n,q(t). (6.17)

Thus, the hybrid action space of RIS agent n is given by

ARIS =

{(
wn,q(t), θ̆n,q(t)

)
s.t. wn,q(t) ∈ {−1, 1}, θ̆n,q(t) ∈ [0, π]

}
. (6.18)

Finally, the joint action of all RIS agents at TS t can be expressed as aR(t) =

{aR1 (t), . . . ,aRNQ(t)} and the joint action of all agents at TS t is given by

a(t) = {aD(t),aR(t)}. (6.19)

• Reward : Since the aim is to maximization the sum rate of DRs, subject to the
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constraints in (P1), the instantaneous reward of D2D agents at TS t is defined as

rD(t) =



∑
d∈D

∑
j∈{1,2}

(Rd,j(t)−Rmind ), if all constraints are satisfied

U
∑
d∈D

∑
j∈{1,2}

|(Rd,j(t)−Rmind )|, otherwise,
(6.20)

where U denotes the number of D2D groups that fail to meet the constraints. For

the RIS agents, the instantaneous reward is computed as the reward gain compared

to the network without RISs. Let rD
′
(t) denotes the reward achieved without the

assistance of RIS, the reward of RIS agents is formulated as

rR(t) = rD(t)− rD′
(t). (6.21)

Remark 3. The carefully designed reward function for D2D agents is defined as

the difference of the sum data rate of the D2D groups compared to the minimum

data rate requirements, while that for the RIS agents is defined as the difference

in sum rate between multi-RIS aided networks and conventional networks without

RISs. Thus, as stated in [105], the proposed reward functions can provide useful

guidance for the agents to improve their policy, thus achieving a higher convergence

rate.

6.3.2 MAHA-DRL Algorithm

The proposed MAHA-DRL algorithm integrates the multi-agent framework with the

MP-DQN network to accommodate hybrid action space in multi-agent scenarios. To be

specific, each agent consists of two networks, a policy network that outputs the associated

continuous actions of each possible discrete action and a MP-DQN that outputs the Q

values of all pairs of discrete and continuous actions, where the Q value can be interpreted

as the goodness of choosing the given pair of actions in the given state. The multi-agent

training algorithm adopts a CTDE structure, as illustrated in Fig. 6.2. During the

training process, each agent observes the current state and computes all pairs of discrete
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Figure 6.2: Flow diagram of MAHA-DRL algorithm based on CTDE training
scheme.

and continuous actions using the policy network. Then, the actions are fed to Q-network

to obtain all Q values. The optimal action pair that achieves the highest Q value is

selected and uploaded to the central unit. After receiving the actions from all agents,

the joint action is constructed and is executed in the environment, where a reward and

the next state are obtained. The current state, the joint action, the reward, and the

next state are stored in an experience replay buffer at the central unit. Then, the neural

networks are trained by sampling mini-batches of data from the experience replay buffer.

The main principles of the proposed MAHA-DRL algorithm are discussed as follows.
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6.3.2.1 MP-DQN

The main challenge in the considered framework is the hybrid action space. In con-

ventional DRL algorithms, the action space is either discrete, such as DQN [101] or

continuous, such as TRPO [92]. The implementation of DRL with hybrid action space

has recently emerged as a new research direction, where agents can exhibit more flexible

and complex behaviors [106–108]. The existing solutions consist of two main approaches:

transform the hybrid action space into a continuous one [108], or optimize the discrete

and the continuous actions in an alternating manner [107]. However, both approaches

do not fully exploit the correlations between discrete actions and continuous actions. For

instance, continuous actions are often computed based on the decisions of the discrete

action. To address this issue, the P-DQN framework [109] was introduced, in which the

Q network inputs all continuous actions to calculate the Q value of each discrete action.

This technique, however, introduces unnecessary correlations between the Q values of

different pairs of actions. Hence, the MP-DQN network was recently proposed [110],

which calculates the Q value of each individual pair of discrete and continuous actions

separately as a mini-batch of data, such that the Q value gradient of a particular pair of

actions is independent of that of the other pairs of actions.

In contrast to the conventional DQN framework, where the Q-network inputs the

state and outputs the Q values of all actions, the Q-network in the MP-DQN framework

inputs the state as well as |Adis| pairs of discrete and continuous actions, and outputs the

Q values of each pair of actions. To achieve this without introducing excess correlations

among the actions, all |Adis| continuous actions are concatenated as a vector, denoted by

ãcts ∈ R|Adis|. Then, define a total of |Adis| basis vectors, where basis vector k is given

by ek = (0, . . . , 1, . . . , 0), such that [ek]i = 0, ∀i ̸= k. The continuous action vector ãcts

is multiplied with each of the |Adis| basis vectors to form |Adis| product vectors, each

of which represents a continuous action. Together with the state, a mini-batch of size

|Adis| is constructed as the inputs to the Q-network. For each input, also referred to as
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a pass, in the mini-batch, the Q-network outputs |Adis| Q values, which is formulated as


Q(s, ·, ãctse1;w)

...

Q(s, ·, ãctse|Adis|;w)

 =


Q1,1 Q1,2 . . . Q1,|Adis|

...
...

. . .
...

Q|Adis|,1 Q|Adis|,2 . . . Q|Adis|,|Adis|

 , (6.22)

where Q(·) denotes the Q-network, w denotes the network weights, and Qi,j denotes the

Q value computed for action pair j in pass i. Only the diagonal entries of the output

contain useful information and are used in the action selection process. In terms of the

proposed framework, a sub-channel assignment and the power allocation over the selected

sub-channel form a pair of discrete and continuous actions of a D2D agent, i.e., a total of

K passes are required. Similarly, a phase shift adjustment direction and the adjustment

amount constitute the action pair of a RIS agent, i.e. a total of 2 passes are required.

Generally, in the MAHA-DRL framework, the Q network of agent c, regardless if it is a

D2D agent or a RIS agent, is denoted as Qc(s(t), a
dis
c (t), ãctsc (t)ek;wc), parameterized by

wc, and the deterministic policy network that outputs the continuous actions is denoted

as πc(s(t);wπ,c), parameterized by wπ,c.

6.3.2.2 Exploration and Exploitation

Due to the hybrid action space, different exploration strategies need to be designed for

the discrete and the continuous actions, respectively. All discrete actions are selected

according to the ϵ-greedy strategy. The ϵ-greedy based action of agent c is expressed as

ãdisc (t) =


argmax
adisc ∈Adis

Qc(s(t), a
dis
c (t), ãctsc (t)ek;wc), with probability 1− ϵ,

sample adisc (t) ∼ Adis, with probability ϵ,

(6.23)

where ϵ ∈ (0, 1). Based on the selected discrete action, the exploration on the continuous

action is conducted by adding a stochastic noise, generated by the Ornstein-Uhlenbeck



Chapter 6. Multi-Agent Resource Allocation in NOMA-Enhanced Multi-RIS Aided D2D
Networks 126

(OU) process, through the following equation:

ãctsc (t) =
[
actsc (t) +N (0, 1)

]acts
0

, (6.24)

where acts denotes the maximum value of the continuous action.

After all agents have selected their actions, the joint action a(t) is constructed. Then,

by performing the joint action in the environment, the instantaneous reward r(t) and

the next state s(t + 1) are received as the feedback. The tuple (s(t),a(t), r(t), s(t + 1))

is stored in the experience replay buffer as potential training samples.

To update the neural networks, a mini-batch of B tuples are sampled from the replay

buffer. For each agent c, the objective of the policy network πc is to minimize the Q

value, hence the policy loss function is formulated as

L(wπ,c) = −
∑

adisc ∈Adis

Qc

(
s(t), adisc (t), πc(s(t);wπ,c);wc

)
. (6.25)

For the Q-network, the objective is to minimize the difference between the estimated

Q value and the target Q value. In particular, the target Q value is given by

yc(t) = r(t) + τ max
adisc ∈Adis

Q

(
s(t+ 1), adisc (t+ 1), πc(s(t+ 1);wπ,c);wc

)
. (6.26)

Hence, the Q-network loss function of agent c is formulated as

L(wc) =
1

2

(
yc(t)−Qc

(
s(t), ãdisc (t), π(s(t);wπ,c);wc

))2

. (6.27)

Furthermore, to achieve a stable training process, the soft update technique is employed.

To be specific, two target networks are constructed, namely the target Q-network and

the target policy network. These two target networks are parameterized by w−
c and w−

π,c

and share the same structures as the Q-network and the policy network, respectively. In
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Algorithm 7 MAHA-DRL Training Algorithm

Input: Maximum episodes E, maximum steps in each episode T , discounted factor τ
Output: The joint policy a
1: Initialize network weights: wc, wπ,c
2: Initialize target network weights:w−

c ← wc, w
−
π,c ← wπ,c

3: for e = 1, 2, . . . , E do
4: Initialize/reset the environment
5: for t = 1, 2, . . . , T do
6: for D2D group d = 1, . . . , D do
7: Obtain the joint sub-channel assignment k and power allocation (pkd,1, p

k
d,2)

using (6.23) and (6.24)
8: end for
9: for RIS n = 1, . . . , N do

10: for Sub-surface q = 1, . . . , Q do
11: Obtain the phase shift adjustment direction wn,q and adjustment amount

θ̆n,q using (6.23) and (6.24)
12: end for
13: end for
14: Construct joint actions a(t), obtain reward r(t) using (6.21), and observe next

state s(t+ 1)
15: Store tuple (s(t),a(t), r(t), s(t+ 1)) in the experience replay buffer
16: Sample B tuples (si,ai, ri, si+1) from the experience replay buffer
17: For each agent, update weights wc and wπ,c by minimizing the loss functions

(6.27) and (6.25), respectively
18: Update weights w−

c and w−
π,c according to (6.28)

19: end for
20: end for

each training episode, after the networks are updated, the target networks are adapted

through the following equations

w−
c ← ιQw + (1− ιQ)w−

c ,

w−
π,c ← ιπwπ,c + (1− ιπ)w−

π,c,

(6.28)

where 0 < ιQ ≪ 1 and 0 < ιπ ≪ 1 denote the soft update coefficients. The pseudocode

is presented in Algorithm 7. In particular, lines 4-13 present the decentralized execution

process and lines 14-17 present the centralized learning process.
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6.3.3 Complexity Analysis

The computational complexity of the MAHA-DRL algorithm during training mainly

comprises of two parts, namely the policy optimization process and the action selection

process. Let |S| denotes the dimension of the state space in (6.15) and |A| denotes

the dimension of the action space in (6.16) and (6.18). Since |A| = K for D2D agents

and |A| = 2 for RIS agents, |A| = O(K) is considered. Without loss of generality, it

is assumed that each of the Q-networks and the policy networks consists of one fully-

connected hidden layer of µ neurons. Hence, the complexity of the policy network is

O (µ|S|+ µ|A|). Similarly, the complexity of a MP-DQN is O (|A| × (µ|S|+ 2µ|A|)).

Thus, the total complexity of the action selection procedure of one agent can be derived

as O
(
µ|S||A|+ 2µ|A|2 + µ|S|+ µ|A|

)
. The complexity due to activation functions are

neglected and the complexity of forward and backward propagation are regarded as

equivalent. Considering a total number of (D+NQ) agents, the complexity of each time

step is derived as O
(
(D +NQ)(µ|S||A|+ 2µ|A|2 + µ|S|+ µ|A|)

)
. Moreover, assuming

that the total number training episodes is E, the number of steps in each episode is

T , and the batch size is B, the total training complexity of the proposed MAHA-DRL

algorithm can be derived as O
(
ETB(D +NQ)(µ|S||A|+ 2µ|A|2 + µ|S|+ µ|A|)

)
.

6.4 Numerical Results

This section presents the simulation results of the MAHA-DRL algorithm when solving

the sum rate maximization problem in PD-NOMA-enhanced multi-RIS aided D2D net-

works. All CUEs, DRs, and DTs are considered to be randomly roaming within a specific

area of size 100 meters2, where the BS is located at the centre of the area with coordi-

nates (0, 0). At most 4 RISs are considered in the experiments and their coordinates are

(0, 40), (0,−40), (40, 0), and (−40, 0), respectively. The movement of each D2D group is

restricted to one of the quadrants. The directional random model [111] is employed to

model the movements of all CUEs, DRs, and DTs. For instance, the movement direction

and speed of CUE i is modelled as (θi + U(0, 2π)) and (45 + U(0, 15)) meters per second,
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Table 6-B: Network and algorithm configurations.

Parameters Values Parameters Values
Maximum power at DRs pmax

d = 20 dBm Batch size 64
Total bandwidth 10 MHz Discount factor τ = 0.9
Number of CUEs I = 2 Replay memory size 10000
Number of D2D groups D = 2 Q-network learning rate αQ = 0.1
Number of RISs N = 2 Policy network learning rate απ = 0.001
Number of sub-channels K = 2 Number of sub-surfaces per RIS Q = 4
Noise spectral density -174 dBm/Hz Number of REs per RIS M = 16

respectively, where θi indicates the angle with respect to the positive x-axis.

All neural networks consist of two fully-connected hidden layers of 512 and 128 neu-

rons, respectively. Each hidden layer is followed by the leaky ReLU activation function.

The Adam optimizer is employed to minimize the loss functions. The path loss exponents

of the BS-RIS, BS-CUE, RIS-CUE, RIS-DR, DT-RIS, and DT-DR links are set to 2.2,

3.5, 2.8, 2.6, 2.2 and 3.5, respectively. Unless otherwise stated, the network parameters

and the algorithm configurations are listed in Table 6-B.

6.4.1 Algorithm Convergence

Fig. 6.3 verifies the convergence behaviour of the proposed MAML-DQN algorithm for

maximizing the sum rate of PD-NOMA-enhanced multi-RIS aided D2D networks. The

convergence analysis is focused on the learning rates of the Q-networks, denoted by

αQ, and the learning rates of the policy networks, denoted by απ. By comparing the

results under αQ = 0.1, it can be observed that, as απ decreases from 0.1 to 0.001, the

learning process becomes more stable and converges to a higher sum rate. This result

indicates that the learning rate of the policy network should be smaller than that of the

Q-network to ensure a stable learning process and improved performance. Moreover, as

αQ decreases from 0.1 to 0.001, the achieved sum rate decreases significantly. Hence,

in the rest of the experiments, the learning rates are set to αQ = 0.1 and απ = 0.001,

respectively.

Fig. 6.4 illustrates the convergence of the proposed MAHA-DRL algorithm under

various D2D network scenarios, namely PD-NOMA with RIS, PD-NOMA without RIS,
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Figure 6.3: Episodic reward versus the number of episodes under PD-NOMA
transmission scheme.

Figure 6.4: Episodic reward versus the number of episodes under PD-NOMA-
based D2D networks and OMA-based D2D networks, with or with-
out the assistance of RISs.

OMA with RIS and OMA without RIS. All RIS-aided networks consist of 2 RISs. The

proposed algorithm demonstrates stable convergence in all considered networks, where

the sum rate of the PD-NOMA-based networks is significantly higher than that of the
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Figure 6.5: Sum rate versus the number of D2D groups under PD-NOMA-
based D2D networks and OMA-based D2D networks, with or with-
out the assistance of RISs.

OMA-based networks. During the early training stage, the sum rates of the RIS-aided

networks are similar to that of the conventional networks without RIS. Then, with exten-

sive learning and optimization, RIS-aided networks demonstrate increasing sum rate

gain compared to the non-RIS networks, which indicates the benefits of RIS in sum rate

enhancement in both PD-NOMA-based and OMA-based networks. Moreover, the sum

rates of all considered networks have similar convergence rates, which implies that the

training of additional RIS agents and phase shift variables has a neglectable impact on

the overall convergence rate.

6.4.2 Sum Rate versus Number of D2D Groups

Fig. 6.5 evaluates the sum rate performance of the PD-NOMA-enhanced multi-RIS aided

D2D networks. The number of sub-channels is K = 2 in both PD-NOMA-based and

OMA-based networks. It can be observed that, as the number of D2D groups increases

from D = 2 to D = 6, the PD-NOMA-based networks demonstrate increasing sum rate

gains compared to the OMA-based networks, by serving both DRs in each D2D group

with the same sub-channel to improve resource efficiency. Moreover, by intelligently con-
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Figure 6.6: Sum rate versus the number of REs under PD-NOMA-based D2D
networks and OMA-based D2D networks, with 2 RISs or no RIS.
Each RIS consists of Q = 2 or Q = 4 sub-surfaces.

figuring the incident signals to reduce the multi-user interference, while enhancing the

signal strength, the implementations of RISs introduce substantial sum rate improve-

ments in both PD-NOMA-based and OMA-based networks. Nonetheless, by comparing

the sum rates of PD-NOMA-based networks without RIS and that of the OMA-based

networks with RIS, it can be concluded that PD-NOMA demonstrates a more significant

sum rate enhancement than RISs when employed in the considered D2D networks.

6.4.3 Sum Rate versus Number of REs

Fig. 6.6 depicts the influence of the number of REs on the transmission sum rate in both

PD-NOMA-based and OMA-based networks, with or without the assistance of RISs. 2

RISs are employed in all RIS-aided networks, where the number of sub-surfaces on each

RIS varies from Q = 2 to Q = 4. It can be observed that the sum rate improvements of

RISs are more significant in PD-NOMA-based networks than in OMA-based networks,

which verifies the benefits of integrating PD-NOMA with RISs. However, due to the lim-

ited number of sub-surfaces on each RIS, the performance increment gradually decreases

as the number of REs increases. Hence, by increasing the number of sub-surfaces from
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Figure 6.7: Sum rate versus the number of RISs under PD-NOMA-based D2D
networks and OMA-based D2D networks, based on D = 2 or D =
3 D2D groups.

2 to 4, more degrees of freedom are introduced to the phase shift optimization, leading

to significant sum rate improvements in all networks.

6.4.4 Sum Rate versus Number of RISs

Fig. 6.7 illustrates the impact of the number of RISs on sum rates based on a different

number of D2D groups in PD-NOMA-based and OMA-based D2D networks. Specifically,

N = 0 indicates a network without RIS. When the network consists of 2 D2D groups,

the increase in sum rate becomes negligible after the number of RISs reaches 2. However,

when the network consists of 3 D2D groups, the sum rate continues to increase as the

number of RISs exceeds 2. Hence, it can be concluded that the deployment of multiple

RISs is beneficial for enhancing the transmission sum rate, especially in large-scale D2D

networks.
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6.5 Summary

In this chapter, the resource allocation problem of PD-NOMA-enhanced multi-RIS aided

D2D communication underlaying cellular networks is investigated. In particular, the sum

rate maximization problem is formulated by jointly optimizing phase shifts, power alloca-

tions, and sub-channel assignments, under a time-varying channel model. To address this

high-dimensional time-varying problem, a MAHA-DRL resource allocation framework is

designed, following a CTDE structure. Moreover, MP-DQN networks are employed to

directly manage the hybrid actions without any relaxation of the action space. Simu-

lation results verify the convergence of the proposed algorithm under different learning

rates and different network scenarios. Results also demonstrate the sum rate enhance-

ment of PD-NOMA compared to OMA in D2D networks, as well as the performance

gains of employing multiple RISs. In the next chapter, the summary and conclusion to

the thesis and possible future work will be provided.



Chapter 7

Conclusions and Future Works

7.1 Contributions and Insights

This thesis concentrates on the designs of NOMA-enhanced wireless networks, with a

particular focus on the implementation of AI-enabled optimization algorithms. The

following three aspects are presented in this thesis: 1) The fundamental NOMA principles

are studied, including the basic uplink and downlink NOMA transmission protocols and

the mathematical formulations of NOMA systems; 2) Two key optimization problems

of NOMA, namely user detection and resource allocation, are investigated with the

assistance of AI technologies; 3) The potential integration of NOMA with the emerging

technologies such as MIMO, RIS, and D2D communications. The main contributions

and insights are summarized and outlined as follows.

In Chapter 3, the MUD problem in uplink grant-free NOMA systems was investigated.

By exploiting the sporadic user activity patterns, CS theory was utilized to design the

MUD algorithm in overloaded systems. A generative neural network was employed to

learn the underlying relationships between the received signals and the transmitted sig-

nals. By assuming independent user behaviours, a carefully designed low-complexity

neural network was proposed and meta-learning was employed in the training process

135



Chapter 7. Conclusions and Future Works 136

to improve the convergence rate in the application. Moreover, a sparsity estimator was

provided to realize sparsity-blind MUD, which can be employed as an add-on technique

to existing MUD algorithms. Simulation results verified the outstanding signal recovery

accuracy and activity detection accuracy of the proposed MUD algorithm compared to

several conventional iterative MUD techniques, under different noise levels and user spar-

sity levels. Furthermore, the proposed sparsity estimator demonstrated robust activity

detection accuracy under different noise levels and showed a neglectable impact on MUD

accuracy.

In Chapter 4, by exploiting the performance advantages of NOMA and OMA in differ-

ent network scenarios, an adaptive NGMA framework was proposed. In particular, users

were allocated to NOMA or OMA clusters by considering all users’ channel information.

The NOMA power allocation, user clustering, and beamforming were jointly optimized

for maximizing the transmission sum rate, subject to a long-term total power constraint.

To transform the mixed-integer problem, a spatial correlation-based clustering algorithm

was proposed, where the user clustering can be determined based on a continuous-valued

nominal angle threshold. Then, a DRL-based resource allocation scheme was designed,

where the TRPO algorithm was employed to ensure training stability. As shown in

the simulation results, the proposed TRPO algorithm demonstrated stable convergence

under large learning rates, which indicates a fast and stable training process. Compared

to NOMA and OMA systems, the proposed adaptive NGMA achieved significant sum

rate gains under a different number of antennas, which indicates the limitations of pure

NOMA or OMA systems in diverse wireless environments.

In Chapter 5, the integration of NOMA and RIS in multi-antenna networks was

studied, where the optimization performance of DL and DRL was investigated and com-

pared. The RIS was deployed to establish LoS links between the BS and the blocked

users and NOMA is employed to serve multiple users with the same orthogonal resources

simultaneously. To enhance resource efficiency, a QoS-based NOMA clustering strategy

was proposed, where users with higher/lower QoS are defined as the strong/weak users.
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The resource allocation problem in the considered network was investigated by designing

a sum rate maximization problem, where RIS phase shifts, NOMA power allocations,

and BS beamforming were jointly designed. To strike a thorough comparison between

DL and DRL, the sum rate maximization problem was formulated with instantaneous

transmit power constraints and long-term total power constraints, respectively. A meta-

learning enabled DL algorithm and a DDPG-based DRL algorithm were proposed to

solve the resource allocation problems. The extensive simulation results illustrated the

sum rate improvement of NOMA systems compared to OMA systems, as well as the per-

formance gains of RIS in both NOMA and OMA systems. Moreover, by comparing the

results of DL and DRL, a similar sum rate performance was observed in the short-term

problem, whereas DRL achieved a higher sum rate in the long-term due to the capabil-

ity of maximizing long-term rewards. However, based on the complexity analysis, DL

demonstrated lower algorithm complexity compared to DRL, which indicates that DL

is more advantages in solving instantaneous problems and DRL is preferred for solving

long-term problems at the cost of higher training complexity.

In Chapter 6, the integration of NOMA, RIS, and D2D communication underlaying

cellular networks were investigated. In contrast to the conventional D2D pairs, the D2D

transmitters in the proposed network can communicate with multiple D2D receivers

through the same orthogonal resource by utilizing NOMA transmission. To further

enhance the signal strength, multiple RISs were deployed to assist the transmissions of

both D2D groups and the cellular networks. The sum rate maximization problem was

designed by jointly optimizing RIS phase shifts, NOMA power allocations, and D2D

sub-channel assignments. To address the high-dimensional mix-integer action space, the

MP-DQN technique was integrated with the MADRL framework, where the DRs and the

RIS controllers served as the agents. The training algorithm utilized a CTDE structure.

Simulation results verified the convergence of the proposed MAMP-DQN algorithm under

various learning rates and in different network scenarios. Results also illustrated that

NOMA-enhanced D2D networks outperformed OMA-based D2D networks in terms of
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sum rate. Also, the implementation of multiple RISs introduced significant sum rate

improvement, especially in the NOMA-based networks, which indicates the merits of

integrating NOMA with RIS in D2D networks.

7.2 Future Works

7.2.1 Extensions of Current Works

In this subsection, the potential extensions of the current works in this thesis are

described in the following.

7.2.1.1 Imperfect CSI

The current works on NOMA in this thesis have relied on the perfect CSI assumption,

which is difficult to realize in practical communication systems. Additional pilot signals

are required to achieve an accurate channel estimation, which may reduce the spectral

efficiency. In terms of MUD, the imperfect CSI may significantly degrade detection

accuracy. Moreover, many NOMA protocols demand perfect CSI at the transmitters to

determine the optimal resource allocation strategies, which may cause severe signalling

overhead. However, the requirement of channel feedback can be relaxed in power-domain

NOMA, since a few bits of feedback is sufficient for resource allocation tasks such as power

allocation. Hence, it is important and necessary to study the impact of imperfect CSI on

the performance of NOMA systems, as well as the designs of advanced NOMA systems

with strong robustness to imperfect CSI.

7.2.1.2 Simultaneously Transmitting and Reflecting (STAR) RISs

In a RIS-aided network, both the transmitter and the receiver have to be on the same

side of the RIS. This results in a half-space coverage of RIS and limits the flexibility of

RIS deployment. To address this issue, the concept of STAR-RIS was proposed in [112].

STAR-RISs can realize a full-space coverage by simultaneously reflecting the signal on

the same side of the RIS and transmitting the signal into the other side of the RIS. The
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full space coverage is especially beneficial in NOMA-enhanced systems because users

will have more diverse channel conditions. The differences in channel conditions can be

exploited by NOMA to further enhance the spectral efficiency. Hence, the integration of

STAR-RIS and NOMA is a valuable research extension to my existing works.

7.2.2 Promising Future Directions on AI-aided NOMA Systems

In this subsection, some promising future directions in terms of AI-aided NOMA systems

are discussed.

7.2.2.1 End-to-End Channel Estimation and MUD Framework in NOMA

Systems via DL

User activity detection and channel estimation for active users are often coupled, espe-

cially in grant-free NOMA systems. Hence, the research of NOMA-MUD is shift-

ing towards a more general framework that jointly designs channel estimation and

MUD [113, 114], where the user activity is carried out during channel estimation, followed

by signal detection. By utilizing multiple neural networks, the joint channel estimation,

user activity detection, and signal detection can be designed in an end-to-end structure.

Owing to the superior performance of the DL-based channel estimation designs and the

DL-based MUD designs, the end-to-end framework is expected to further improve the

MUD accuracy as well as the channel estimation accuracy, hence is a valuable research

topic.

7.2.2.2 DRL-enabled Age of Information (AoI) Optimization in NOMA Sys-

tems

The research contributions of NOMA in terms of resource allocation mostly aim to

maximize the system’s spectral efficiency or energy efficiency. Recently, a new metric,

namely AoI, has received extensive research interest for characterising information time-

liness and freshness in ubiquitous wireless networks. Moreover, as a spectral efficiency

enhancement technique, NOMA has been envisioned as a promising technique to reduce



Chapter 7. Conclusions and Future Works 140

AoI [115]. Nonetheless, the optimization AoI is often modelled as a scheduling problem,

in which DRL has been considered a favourable solution. Motivated by this, the imple-

mentation of DRL for AoI optimization in NOMA systems is another promising research

direction.



Appendix A

Proof in Chapter 5

A.1 Proof of Proposition 1

For simplicity, the QoS subscript is removed and the ordered QoS requirements of K

MUs is denoted as R1 ≤ R2 ≤ · · · ≤ RK . For K = 4, the QoS requirements satisfies

min((R3 −R1), (R4 −R2)) ≥ min((R3 −R2), (R4 −R1)), (A.1.1)

and

min((R3 −R1), (R4 −R2)) ≥ min((R2 −R1), (R4 −R3)). (A.1.2)

Hence, intuitively, Proposition 1 is the optimal solution to (5.8) when K = 4. Then,

proof by induction is employed to prove Proposition 1 for all even values of K.

It is further assumed that ∃K ′ > 0 where Proposition 1 is the optimal solution to (5.8)

for K = K ′. Then, if Proposition 1 can be proved to be optimal for K = K ′ + 2, it

can be concluded, based on the principles of mathematical induction, that this is the

optimal solution for all even and positive values of K. The ordered QoS requirements of
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the K ′ + 2 MUs is denoted as

R1 ≤ · · · ≤ RK′/2 ≤ Rn1 ≤ · · · ≤ RK′ ≤ Rn2 . (A.1.3)

The minimum QoS difference achieved by Proposition 1 is

Dn1,n2 = min

(
(RK′/2+1 −R1), · · · , (RK′ −RK′/2), (Rn2 −Rn1)

)
. (A.1.4)

Without loss of generality, an alternative clustering method that pairs MU n2 with

MU m, m < n1, is considered. Based on the assumption made earlier, the optimal

solution to cluster the rest K ′ MUs follows Proposition 1. Therefore, the minimum QoS

achieved by this clustering method is

Dm,n2 = min

(
(RK′/2+1 −R1), · · · , (RK′/2+m−1 −Rm−1),

(RK′/2+m −Rm+1), · · · , (RK′−1 −RK′/2), (RK′ −Rn1), (Rn2 −Rm)

)
. (A.1.5)

Two clustering schemes can be compared by computing the difference between Dn1,n2

and Dm,n2, given by

Dn1,n2 −Dm,n2 =

min

(
(RK′/2+m −Rm), · · · , (RK′−1 −RK′/2−1), (RK′ −RK′/2), (Rn2 −Rn1)

)

−min

(
(RK′/2+m −Rm+1), · · · , (RK′−1 −RK′/2), (RK′ −Rn1), (Rn2 −Rm)

)
.

(A.1.6)

Based on (A.1.3), (RK′/2+m′ − Rm′) ≥ (RK′/2+m′ − Rm′+1) for all m′. Similarly,

since RK′/2 ≤ Rn1 and Rn2 > RK′ , it can be derived that Dn1,n2 −Dm,n2 > 0. Hence,

this alternative clustering method is suboptimal to Proposition 1. The similar proof
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can be derived for all m > n1. Therefore, Proposition 1 is the optimal solution when

K =M + 2, and thus for all even and positive values of K.
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