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A B S T R A C T

Accurate determination of fuel properties of complex mixtures over a wide
range of pressure and temperature conditions is essential to utilizing alter-
native fuels. The present work aims to construct cheap-to-compute machine
learning (ML) models to act as closure equations for predicting the physical
properties of alternative fuels. Those models can be trained using the database
from MD simulations and/or experimental measurements in a data-fusion-
fidelity approach. Here, Gaussian Process (GP) and probabilistic generative
models are adopted. GP is a popular non-parametric Bayesian approach to
build surrogate models mainly due to its capacity to handle the aleatory and
epistemic uncertainties. Generative models have shown the ability of deep
neural networks employed with the same intent. In this work, ML analysis is
focused on two particular properties, the fuel density and diffusion, but it can
also be extended to other physicochemical properties. This study explores the
versatility of the ML models to handle multi-fidelity data. The results show
that ML models can predict accurately the fuel properties of a wide range of
pressure and temperature conditions.

1. Introduction1

Fossil fuels have been playing a major role in energy supply and liquid fossil fuels have2

dominated the energy use in transport, which will continue to be so for many decades to3

come, especially for sectors that are difficult to decarbonise [1, 2]. With the pressing needs of4

decarbonisation and sustainable energy utilisation, renewable fuels and biofuels are becoming5
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Nomenclature

Abbreviations

ANN Artificial neural network

CFD Computational Dluid Dynamics

CN Cetane number

EMD Equilibrium Molecular Dynamics

EoS Equation of State

FAME Fatty acid methyl ester

GANs Generative Adversarial Networks

GP Gaussian Process

MD Molecular dynamics

ML Machine learning

MLPNNs Multilayer Perceptron Neural Net-
works

NARGP Nonlinear autoregressive multifidelity
Gaussian Process

NEMD Nonequilibrium Molecular Dynamics

NIST National Institute of Standards and Tech-
nology

OMEs Oxymethylene Dimethyl Ethers

TraPPE Transferable Potential for Phase Equi-
libria

VAE Variational auto-encoders

Greek letters

� Residual penalty parameter

� A vector of hyper-parameters


 A generic property

� Entropy regularization parameter

� Expected value

� A vector of parameters

� Density

� Standard deviation

� A potential noisy

Latin letters

x; y Input and output vectors

cv Coefficient of variation

C Number of atoms of carbon

D Diffusion coefficient

f Gaussian function

g Mapping function

K Covariance matrix

k A kernel function

l Correlation length

n Dimension of the input and output

Ns Number of samples

P Pressure

p Probability distribution

Pc Critical pressure

T Temperature

t Time

Tc Critical temperature

z Latent variable

increasingly important [3, 4]. For instance, synthetic fuels like Oxymethylene Dimethyl Ethers6

(OMEs) have shown high potential for low-carbon transport applications due to their capacity to7

avoid soot formation [5]. However, the physicochemical properties of these fuels must be known8

for their rapid integration into current infrastructures for storage, transport and direct injection9
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in combustion engines. This represents a significant challenge, due to the fact that practical10

fuels are often composed by complex mixtures and vary widely in their chemical compositions11

depending on the production source and process [3]. For example, petroleum diesel is a complex12

mixture involving molecules with carbon chains that typically contain between 9 and 25 carbon13

atoms per molecule. To simplify the complex chemical compositions of these fuels, surrogate14

models have been used to represent the chemical composition and combustion characteristics in15

practical applications [6, 7]. In addition, modern combustion engines have to operate at high16

pressure conditions in order to improve the energy conversion efficiency. Fuel properties at extreme17

conditions such as high pressure and high temperature conditions, are very difficult to measure and18

predict [5], leading to an additional challenge.19

Accurate determination of fuel properties of complex mixtures over a wide range of pressure20

and temperature conditions is essential to adapt the system operation to alternative fuels. In21

recent years, molecular dynamics (MD) simulations have been used to predict the physicochemical22

properties of practical fuels including transport properties at supercritical conditions [8]. By using23

equilibrium molecular dynamics (EMD) and nonequilibrium molecular dynamics (NEMD), Yang24

et al [9, 10] predicted the viscosity and thermal conductivity of alkanes (n-decane, n-undecane25

and n-dodecane). Kondratyuk et al [11, 12, 13] performed a serial of MD simulation to study the26

viscosity of hydrocarbons (1-methylnaphthalene, methylcyclohexane and 2,2,4-trimethylhexane)27

in high pressure conditions up to 1000 MPa. Caleman et al [14] tested the capacity of existing28

force fields on prediction of properties (density, enthalpy of vaporization, surface tension and29

heat capacity etc) of organic liquids. Although MD simulations provide molecular details that can30

be potentially used to accurately predict fuel properties, they are generally expensive in terms31

of computational costs (CPU time and memory). In addition, MD predictions also need to be32

validated against experimental measurements, which can be even more costly especially at extreme33

conditions. Accordingly, it is not feasible to establish complete and detailed fuel property databases34

consisting of a wide range of pressure and temperature conditions using either MD simulations or35

experiments.36
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Machine learning has great potentials to discover the relation between inputs and outputs in37

a thermodynamic system directly from the data of complex systems [15] and for predicting the38

properties of materials based on their composition [16]. ML can be a powerful tool to predict39

fuel properties from chemical compositions of the fuel mixture and/or chemical structures of the40

fuel molecules. Several works have been devoted to designing ML models capable of predicting41

complex fuels properties from experimental data. In this regard, ML models obtained accurate42

predictions of cetane number (CN) compared to experimental data [17, 18, 19]. A satisfactory43

ML approach for modeling the CN of biodiesel based on four operating conditions given by44

iodine volume (IV), carbon number, double bounds, and saponification value was proposed [20].45

Recently, an artificial neural network (ANN) was applied to predict and identify the underlying46

links between the fuel properties and the octane number (ON) [21]. Moreover, ML models were47

tuned with evolutionary algorithms to predict the CN of biodiesel as a function of its fatty acid48

methyl ester (FAME) profile [22, 23]. The predictability, i.e. the ability to predict, of the ML49

approaches also can be improved by using different optimization algorithms for the training and/or50

hyperparameter search such as teaching-learning based optimization (TLBO), backpropagation,51

Quasi-Newton and particle swarm optimization (PSO) [24, 25, 26]. Also, ML models have been52

used for modeling the kinematic viscosity of diesel-derived fuels as a function of their FAMEs53

profiles [27, 28, 29]. In the last years, Multilayer Perceptron Neural Networks (MLPNNs) have54

been successfully built to estimate the physicochemical characteristics of biodiesel [30, 31, 32, 33]55

combining different parameters of model inputs. Furthermore, ML models based on state variables56

such as temperature and pressure showed high potential to obtain physicochemical properties of57

biodiesel/diesel fuels more accurately [34, 35, 36]. In particular, ML models have been developed58

to predict thermodynamic properties such as critical pressure and temperature, vapor pressures,59

and densities of pure fluids [37]. Moreover, approaches combining MD simulations and ML have60

been applied to modeling the diffusion of pure liquids [38, 39]. Following the same context, a ML61

approach based on support vector regression (SVR) was proposed by [40] for predicting the PVT62

properties of pure fluids (H2O, CO2, and H2) and their mixtures, where the training database is63
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provided by the National Institute of Standards and Technology (NIST) and MD simulations. Also,64

an ML approach was proposed to assess the macroscopic Engine Combustion Network (ECN)65

Spray-A characteristics and predictions of fluid properties for the thermodynamic states found in66

such conditions [41]. Yet, from our knowledge, little work has been dedicated towards exploring the67

thermodynamic properties of practical fuels combining MD simulations and ML models. ML can68

be a powerful tool to predict fundamental fuel properties directly from the chemical compositions of69

the fuel mixture by using databases from MD simulations or available experimental measurements.70

The aim of the study was to demonstrate and validate a ML-MD methodology to predict71

fundamental properties of liquid fuels. In this approach, the ML models are built from data provided72

by MD simulations, while a combination of MD and NIST data is used for model assessment and73

validation. This study is the first attempt of using ML models with Gaussian process regression74

[42] and probabilistic conditional generative learning [43, 44] for the property predictions of75

single-compounds. The ML analysis is focused on fuel density in this study as one of fundamental76

properties of liquid fuels, though it can easily be extended to other physicochemical properties77

of relevance for practical applications like diffusion coefficient, viscosity, conductivity or surface78

tension.79

The rest of the paper is organized as follows. Section 2 presents the ML models and the80

molecular dynamics simulation methodology. Section 3 describes the ML results for typical fuel81

surrogates of diesel. Finally, Section 4 concludes the study with recommendation for further82

investigations.83

2. Methodology: Building Machine Learning Models to Describe Physicochemial Properties84

In order to reduce energy consumption and pollutant formation, supercritical combustion85

has been increasingly explored in the context of high pressure internal combustion engines and86

rocket engines [45]. Specifically, in supercritical conditions, the devices operate with pressures87

and temperatures higher than the critical values, which implies that physicochemical properties88

of fluids are quite different from those at liquid conditions [46]. In such scenarios, the design of89
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devices become more complex, specially due to limitations of replicating flow and combustion in90

controlled laboratory environments. In order to cope with these challenges, computational models91

can provide adequate tools for obtaining more accurate predictions of state variables and increase92

cycle performance in transcritical conditions.93

From a computational fluid dynamics (CFD) perspective, combustion models are built upon94

the combination of solid and reliable physico/chemical principles with closure models, typically95

describing physicochemical properties of the fuels and their mixtures using approaches that nor-96

mally entail uncertainties. The use of numerical simulations for practical applications encompass a97

wide range of conditions, resulting in different fundamental problems depending on the nozzle98

geometry, engine architecture or thermodynamic conditions. A good example is the database99

from the Engine Combustion Network [47] for which different sprays for diesel- and gasoline-like100

conditions are investigated. For instance, pressure can go from sub-atmospheric to 2,000 bar, and101

temperatures from cold to highly preheated conditions. In that context, having accurate values for102

macroscopic fuel characteristics and properties over such wide variety of spatial and time scales103

is one of the main challenges for physically-driven methods. That is particularly more dramatic104

for modern compounds depicting complex chemical compositions, and simplified surrogate fuels105

[48] are employed to estimate the properties of the original compounds. That allows the systematic106

use of controlled experiments and, also, Molecular Dynamics simulations [49, 50]. Indeed, here107

our focus lies on using ML models to leverage such type of simulations when obtaining liquid108

fuel physicochemical properties. Those properties are generally expressed as functions of local109

thermodynamic conditions like pressure and temperature, which motivate to refer to closure models110

such as the Equations of State (EoS). In general, the EoS is embedded in complex CFD simulations111

resulting in divergence or numerical oscillations when used with traditional methods based on112

tabular and interpolation schemes [51]. It is worth to remark that we are seeking for models capable113

of describing physicochemical properties over a wide range of flow conditions and we expected to114

observe abrupt changes around critical conditions.115
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We built two different ML models, namely Gaussian Processes (GP) [42] and a probabilistic116

conditional generative approach [44]. We train both in a supervised learning fashion using data117

produced with expensive MD simulations. Therefore, we rely on their ability to learn from a118

small amount of data and their capacity of extrapolation. Moreover, we also want to take into119

consideration the unavoidable uncertainties arising from limited information (epistemic) and from120

noisy data (aleatoric).121

GPs have become popular due to its success on being a proxy for physics-based high-fidelity122

models in different applications [52, 53, 54, 55, 56, 57]. Another well proved ML approach are the123

so called generative models that explore existing low-dimensional structures capable of explaining124

high-dimensional data introducing probabilistic latent variables.125

In the remainder of this chapter, we present a brief description of both ML models for a generic126

property 
(P ; T ) function of pressure and temperature, along with the corresponding training127

algorithms. For the training of the models, we assume the availability of, potentially expensive,128

dataset comprising input/output pairs {(P ; T )i; 
i i = 1; :::; n} generated by an implicit mapping129

g characterizing the macroscopic thermodynamic relation between the property and the state130

variables:131


 = g(P ; T ; �): (1)

The role of g here is played by upscaling MD simulations or, to a less extent, by experimental132

available data. The vector � denotes potential noisy and is often considered a random. In order133

to keep a compact notation, we refer to the above dataset as D = (x; y), with x ∈ R2n and134

y ∈ Rn vectors containing inputs and outputs. We intentionally do not use the word surrogate to135

designate any of the two ML models to avoid misleadings. In the combustion technical literature,136

it is employed to refer to compounds with simpler compositions to replace complex fuels in137

experimental or numerical analysis.138
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2.1. Gaussian process regression139

A GP is an infinite collection of random variables, in which any finite number of such variables140

depict a joint Gaussian distribution [42]. In line with Bayesian estimation, to approximate g we141

assign a GP zero mean prior f (x) , i.e., f ∼ GP (f ð0; k(x; x′;�)), where k is a kernel parametrized142

by a vector of hyper-parameters � to be learned from D and engenders a symmetric positive-definite143

n× n covariance matrixKij = k(xi; xj;�). Instead of choosing the squared exponential form of the144

kernel as usual [42], here, we test some forms of covariance matrix belonging to the Matern family.145

More specifically, we employ the Mayern 3/2 covariance matrix given as146

k(r) = �2
0

1 +
ø

6
ðrð
l

1

exp
0

−
ø

6
ðrð
l

1

(2)

with r = x − x′ denoting the distance between different inputs. The hyper-parameters are the147

standard deviation �, and the correlation lengths l = {l1; l2;… ; lnk}, and nk denotes the dimension148

of input r. Hence, the hyper-parameters vector reduces to � = {l;�}.149

We do not follow a fully Bayesian approach, and obtain the vector of hyper-parameters � by150

maximizing the marginal log-likelihood of the model, i.e.151

logp(
ðx;�) = −1
2

logðKð − 1
2

TK−1
 − n

2
log2�: (3)

using a conjugate gradient descend method.152

The final goal of the regression is obtaining a predictive model for 
 , which means to compute153

its value for an untested state x∗ [53]154

�∗(x∗) = k∗nK−1y (4)

and155

�2
∗(x∗) = k∗∗ − k∗nK−1kT∗n (5)
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wherek<n = [ k.x<; x1/; § ; k.x<; xn/] andk<< = k.x<; x</. The predictions are computed using the156

posterior mean� <, and the uncertainty associated with that predictions is quanti�ed through the157

posterior variance� 2
<. It is worth to mention that in absence of noisy in the training data, the later158

represents epistemic uncertainty due to lack of data.159

2.2. Probabilistic conditional generative model160

Now, we explore a probabilistic conditional generative approach [43, 44], that integrates161

variational auto-encoders (VAE) [58] and generative adversarial networks (GANs) [59]. Moreover,162

it employs a probabilistic perspective that enables to take into consideration noisy and limited data163

from the beginning. It is also capable of dealing with high-dimensionality of inputs and outputs,164

what is not explored here due to the speci�c aspects of our needs.165

The �nal goal is to build probabilistic neural networks that follow a conditional probability166

density functionp.
 ð.P ; T/;D/ learnt from the data. So, the surrogate model can deploy accurate167

values for the property
 by estimating the expectationE.
 ð.P ; T/;D/, and also, to quantify the168

uncertainty associated with that prediction in CFD calculations.169

The main ingredient for this approach is the introduction of a vector of latent random variables170

aiming at seeking for a hidden low dimensional structure for explaining the data structure. In a171

formal abstract perspective, such latent variables allow us to express the conditional probability172

associate to the dataD, not included in the expression to keep the notion clear,p.
 ðP ; T/, as an173

in�nite mixture model through174

p.
 ðP ; T/ =
Ê

p.
; zðP ; T/ dz =
Ê

p.
 ðP ; T ;z/ p.zðP ; T/ dz (6)

wherep.zðp; T/ is a prior distribution on the latent variables. The above hierarchical mathematical175

ansatz, despite being very elegant and rigorous, has to be approximated [44], where a regularized176

adversarial inference framework is proposed and detailed. The �nal result is a generator model177


 = f � .p; T ;z/ parametrized by vector� , like trained deep neural networks. In conjunction178

with p.z/, the statistics of
 can be characterized. More speci�cally, we can compute its low179
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order statistics via Monte Carlo sampling. It is important to remark that the predictions with the180

identi�ed probabilistic generator, that, in present context, plays the role of a proxy for obtaining181

macroscopic thermodynamic properties of mixtures for pressures and temperatures not contained182

in D, is negligible when compared to MD simulations. The mean and variance of the predictive183

distribution at a new point.p<; T</ are computed as184

� 
 .P
<; T</ = E[
 ðP<; T<; z] ù

1
N s

N sÉ

i=1

�
f � .P<; T<; zi /

�
(7)

185

� 2

 .P<; T</ = Var[
 ðP<; T<; z] ù

1
N s

N sÉ

i=1

�
f � .P<; T<; zi / * � y.P

<; T</
� 2

; (8)

wherezi í p.z/, i = 1;§ ; N s, andN s corresponds to the total number of samples.186

At this point, it is important to clarify that the predictive uncertainty encoded inz is due to187

noise in the Molecular Dynamics computations originated by numerical approximations and to the188

potential small amount of data employed in the training process. Therefore, it encapsulates aleatoric189

and epistemic uncertainties.190

Later, we explore the versatility of the probabilistic ML model employing the fusion of data191

produced by MD with experimental data obtained for supercritical behavior of the mixture.192

2.3. Physicochemical properties prediction in EMD simulation193

In this study, all MD simulations are performed in Gromacs package [60] with Transferable194

Potentials for Phase Equilibria (TraPPE) force �eld [61]. United-atom molecular description is used195

in order to reduce the computational cost. Before simulation, 1000 molecules are distributed in a196

box with relatively large edge length of 14 nm to avoid atom's overlap. After energy minimisation,197

a 2 ns simulation is performed with time setup of 1fs in isobaric-isothermal NPT (�x the number198

of atoms, pressure and temperature of the system) ensemble by using Parrinello-Rahman method199

[62] to maintain the pressure. Then 1ns NVT (�x the number of atoms, volume and temperature200

of the system) simulation is followed for production run. The temperature is controlled by velocity201
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Figure 1: E�ect of the system size on density prediction.

rescale. The �xed bond length in TraPPE force �eld is achieved by using LINCS algorithm [63].202

The density and di�usion is calculated in NVT simulation.203

The di�usion coe�cient ( D) can be obtained from the linear �ttings of mean square displace-204

ment (MSD ) of molecules:205

MSD .t/ = êðr i .t/ * r i .0/ð2ë (9)

D.t/ =
1
6

d
dt

êðr i .t/ * r i .0/ð2ë (10)

wherer i .t/ is the position of thei th particle at timet, angle bracket indicates the ensemble average206

over all the particles in the system.207

The number of fuel molecules and simulation time in our simulation is setup according to208

previous studies. For example, Yang et al. [64] used 250 molecules with 2ns simulation time in209

transport property prediction of n-alkanes, and Kondratyuk et al. [65] used 1000 molecules in210

modelling branched alkanes running in EMD simulation of 1 ns. Figure 1 depicts the e�ect of the211

system size on the n-dodecane density prediction. As we can see 1000 molecules are su�cient to212

achieve convergence of the density prediction at an a�ordable computational cost.213

3. Results and discussion214
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Here, we demonstrate the performance of the proposed methodology. Despite alternative215

fuels can be very complex mixtures consisting of hundreds of compounds, we consider single-216

component alkanes CnH2n+2, so reliable data for model assessment and validation can be used.217

In general, realistic fuels are usually described by surrogate models [8] because of availability of218

validated chemical mechanisms and experimental measurements. The data to train our ML models219

consist of properties of a family of alkanes, ranging from normal to supercritical conditions. More220

speci�cally, we construct ML models to characterize density dependency on some operational221

conditions in which data is not available. As mentioned before, in order to take into consideration222

unavoidable uncertainties, we approximate the conditional probabilityp.
 ðx; � /, with x being the223

input vector with components pressurep, temperatureT and chemical composition. Moreover,224

it is worth mentioning here that for simplicity we consider as the input that characterizes the225

chemical compositions the number of atoms of carbonC in the molecule of the pure compounds, a226

categorical variable. However, parameters from the EMD used to characterize the physicochemical227

properties of the fuel molecule can be used. Also, for the GP learning model, the hyper-parameters228

vector reduces to� = ^ l; � ` , and for the generative model� represents the vector of parameters of229

the deep neural networks� . The latent variablez is embedded in the input vectorx. We employ a230

one-dimensional latent space with a standard normal prior,p.z/ í N .0;1/.231

The pure compounds considered are n-octane, n-nonane, n-decane, n-dodecane, and n-232

hexadecane, operating from high-pressure nozzle to supercritical chamber environment conditions.233

The dataset used to build the ML models consists of 1200 density values. Speci�cally, the there are234

240 values of the density for each compound, computed at a regular temperature grid withinT Ë235

[320;900]K, varying by 20K, and at the speci�c pressures values:P = ^3;4;6;8;10;20;100;150`236

MPa. It is worth remarking that in this dataset we included density values for supercritical regions,237

more speci�cally values above the critical temperature (Tc) of the compounds, being the critical238

values for n-octane (Tc = 569:32K ), n-nonane (Tc = 594:55K ), n-decane (Tc = 617:7K ), n-239

dodecane (Tc = 658:1K ), and n-hexadecane (Tc = 722K ), which replicate engine-like conditions240

.241
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In the learning process, 80% of the data points are selected randomly to training the ML models.242

The remaining 20% are used to validating them. Moreover, the training data set is organized in three243

subsets with 10%, 50%, and 100% of data available to train the models. The aim here is to evaluate244

the convergence and impacts of constructing the ML models in a small data regime. Accuracy is245

measured using the distance between the expected values predicted with the ML models and the246

predictions computed with the MD simulations. We check this accuracy computing theL 2 mean247

relative error (L 2* MRE )248

L 2* MRE =
1
N

NÉ

i=1

0
� i * ‚� i

� i

1 2

(11)

where� i is the density computed with MD simulations,‚� i is the expected ML output andN is the249

number of test samples. Also, we compute the coe�cient of determination (R2-score) metric [66]250

R2 = 1 *

³ N
i=1 ß � i * ‚� i ß2

2
³ N

i=1 ß � i * � ß2
2

(12)

where� = 1
N

³ N
i=1 � i is the mean density of test samples. TheR2-score metric represents the251

normalized error, allowing the comparison between ML models trained by di�erent data sets, with252

values close to 1 corresponding to the ML models best accuracy, whileL 2* MRE is a common metric253

used to check the accuracy of ML models during the optimization process.254

We obtain the GP regression model of Eq. (1) via maximizing the marginal log-likelihood255

of Eq. (3) using the Mattern 3/2 kernel function, as that shown in Eq. (2). Also, we have used256

the gradient descend optimizer L-BFGS [67] using randomized restarts to ensure convergence257

to a global optimum. The GP learning model was implemented in GPy: Gaussian Process (GP)258

framework written in python [68].259

On the other hand, to construct the generative learning model, we departed from the architecture260

proposed and validated by Yang and Perdikaris [44]. More speci�cally, the conditional generative261

model is constructed using fully connected feed-forward architectures for the encoder and generator262

networks with 4 hidden layers and 100 neurons per layer, while the discriminator architecture263
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Figure 2: Schematic view of the conditional generative model.

has 2 hidden layers with 100 neurons per layer. A schematic view of the conditional generative264

model is depicted in Figure 2. The neural networks are constructed by combining try-and-error265

and Hyperopt algorithm [69] to search for the hyperparameters that give the lowestL 2* MRE . All266

activation uses a hyperbolic tangent non-linearity. The models are trained for 50,000 stochastic267

gradient descent steps using the Adam optimizer [70] with a learning rate of10*4 , while �xing a268

two-to-one ratio for the discriminator versus generator updates. Furthermore, we have also �xed the269

entropy regularization and the residual penalty parameters to� = 1:5and� = 0:5, respectively. The270

proposed model was implemented in TensorFlow v2.1.0 [71], and computations were performed271

in single precision arithmetic on a single NVIDIA GeForce RTX 2060 GPU card.272

We also explore some alternatives versions of the above described ML models by proposing273

fusion with experimental data and the use of multi-�delity formulations.274

3.1. ML results for typical fuel surrogates275
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Table 1
Gaussian Process training accuracy.

Train data L 2* MRE R2-score

10 % 6:2805 • 10*2 0:8538
50 % 4:7438 • 10*2 0:9976
100 % 2:7272 • 10*2 0:9991

Table 2
Generative model training accuracy.

Train data L 2* MRE R2-score

10 % 4:9316 • 10*2 0:9359
50 % 2:8989 • 10*3 0:9983
100 % 2:1409 • 10*3 0:9990

Tables 1 and 2 show the coe�cient of determination (R2-score) andL 2 mean relative error,276

respectively, for GP and the probabilistic conditional generative models. The accuracy metrics are277

computed with the test samples. We observe that they are not satisfactory in the small training data278

scenario, with 10% of training data. R2-scores for the GP and conditional generative models in279

this speci�c training scenario are 0.8538 and 0.9359, respectively. For a data richer situation, with280

50% of training data, we observe that the models return good predictions with R2-score higher than281

0:99. Also, we observe that the conditional generative model returns better predictions than the282

GP model in a small data scenario, with an accuracy ofL 2* MRE = 2:8989 • 10*3 while the GP283

accuracy isL 2* MRE = 4:7428 • 10*2 . Finally, with 100% of the training data, we can see that the284

surrogate models return excellent predictions with R2-score very near1:0 and mean relative errors285

lower than 0.03%.286

As a further illustration of the performance of such approaches to predict the density, we plot its287

values for n-octane, n-dodecane, and n-hexadecane densities with respect to temperature for the ML288

models trained with 50% of the dataset, since this training scenario returns the best relation between289

accuracy and computational cost. Figure 3 shows the n-octane density predictions at the pressures290

equal to 3, 10, and 100 MPa. We can observe that at 3MPa the GP model fails to deliver good291

results around the transcritical region, while the generative model provides robust predictions with292
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 3: n-Octane predictions with the GP (top) and probabilistic conditional generative models
(bottom) at the pressures 3, 10, and 100 MPa.

uncertainties bounds that capture the data. The predictive uncertainty of the proposed approaches293

re�ects limited data for training the models, the epistemic uncertainty. We can also note that both294

models perform well at 10 and 100 MPa, wherein the density dependency on the temperature has295

a smooth behavior.296

Also, the n-dodecane and n-hexadecane densities are depicted along with temperature in297

Figures 4 and 5. We observe that the ML models return robust predictions at three di�erent298

pressures. Besides, it is noted that the GP model returns larger uncertainty bounds at high pressures,299

speci�cally at density points not used in the training process.300

We also validate how the proposed ML technology perform in an extrapolation scenario. We301

validate them for the n-heptane, a fuel not used for building the models. In order to do that, instead302

of employing data provided by ML computations, we use an experimental database furnished by the303

National Institute of Standards and Technology (NIST). Figure 6 shows that at 3 MPa and liquid304

condition the ML model returns good predictions of the n-heptane density behavior, with small305

uncertainties. However, at supercritical conditions (Tc = 540:13K ), the GP model returns density306

predictions far from satisfactory. Also, we note that the generative model has uncertainty bounds307
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 4: n-Dodecane predictions with the GP machine learning model (top) and conditional generative
machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 5: n-Hexadecane predictions with the GP machine learning model (top) and conditional generative
machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

able to capture the thermophysical property. TheL 2 mean relative error between the NIST dataset308

and the expected values predicted by the GP and conditional generative models are7:1697 • 10*2
309

and2:0838•10*2 , respectively. We can also note that at higher pressure where the density behavior310

is smooth, the models present better predictions, with the GP model showing larger uncertainties311

bounds and the generative model returns smaller uncertainty bounds. Moreover, theL 2 mean312
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