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Research question/s/problem
This thesis seeks to capture subtle and nuanced gestural interaction in digital musical 

instruments while preserving richness and flexibility in their musical output.

Context/theory
The emergence of digital technologies has broadened the affordances of musical 

instruments, yet some of their traditional properties do not seem to fully manifest in 

digital musical instruments (DMIs). In particular, this thesis seeks to capture subtle 

and nuanced gestural interaction while preserving richness and flexibility in the 

musical output. There exist examples of DMIs that capture gestural interaction with a 

high degree of subtlety but a limited variety in the sonic output (e.g., using an acoustic 

signal to control a digital resonator); or instruments that have very rich sonic outputs 

but limited (or complex to achieve) subtle control (e.g., using high-dimensional gesture-

sound mappings). This thesis explores artificial intelligence approaches that preserve 

both qualities: subtlety in the gestural capture and richness in the sonic output while 

maintaining a manageable degree of control (e.g., intentionality in the performance).

In DMIs, the gestural interface and the sound generator are separated by a digital 

mapping layer, whereas in acoustic instruments, the sound generator (an acoustic 

resonator) is usually part of the gestural interface. Much has been written in the NIME 

literature about ‘expressive’ mappings or interfaces [1][2][3][4]. [5] argue against this 

notion of expression as a “quantity in the interface”, which they understand is rooted 

in the western paradigm of instrumental music (e.g., virtuosity in the performance of 

acoustic instruments). Moreover, calling an instrument expressive by its configuration, 

hardware or software is problematic if we assume being an instrument is becoming 

one by its intra-action, inter-action, and in general, relationship with the performer 

and the environment [6][7][8]. Furthermore, [5] critique puts into focus the 

experimental practices in which the meaning (or lack of meaning) of the performance 

lies outside the instrument and performer. Perhaps a more adequate characterisation 

of the affective potential of musical instruments is that of ‘control intimacy’ by [9]. 

Control intimacy is subtle musical control of an instrument: the instrument “must 

respond in consistent ways that are well matched to the psychophysiological 

capabilities of highly practiced performers” [9]. [9] also refers to the performer’s 
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‘micro-gestural movements’ and how these are translated to the sound. Similarly, [10] 

refers to ‘micro-diversity’ as a measure of “how much a performer can turn a piece 

into her own or, consequently, how much two performances of the same piece can 

differ” [10].

As aforementioned, subtlety is a natural characteristic of many acoustic musical 

instruments: physical reality is continuous, as opposed to a discrete sample triggering, 

as we observe in many DMIs. Virtuoso performers of acoustic instruments have fine 

control of the sound produced through their gestures in their musical instruments, and 

might expect the same from DMIs. Furthermore, subtlety might be not only a means of 

control but also a means of exploration of the instrument, as in material-oriented 

practices [7]. The common element between those two practices is the emergence of 

tacit or implicit knowledge in the performer. Tacit knowledge describes that knowledge 

that we know but cannot tell [11], also referred to as know-how or procedural 

knowledge. It is the implicit knowledge that is highly situated and resists articulation 

and codification [12]. In this regard, [13] argues that tacit knowledge is more likely to 

emerge in acoustic instruments than in DMIs due to the lack of “natural mapping 

between gesture and sound” [13] in the latter. Furthermore, in DMIs, he argues, “the 

physical force becomes virtual force; it can be mapped from force-sensitive input 

devices to parameters in the sound engine, but that mapping is always arbitrary” [13]. 

On the contrary, [14] speaks of ‘ergotic interfaces’ where the energy continuum 

between the performer’s gesture and the instrument’s sonic output is simulated if the 

signals produced by the system are in scale and shape with the energy fed into the 

system. That ‘natural’ scaling implies that the mapping is not entirely arbitrary, as [13] 

argued. Moreover, it also implies that a subtle variation in the gesture will result in a 

corresponding subtle variation in the sonic output.

In this context, enactivism puts the focus on the “necessary and close link between 

perception and action” [15]. From this perspective, [15] consider how musicians build 

their mental model of a complex system’s dynamics (in this case, the musical 

instrument) using prior knowledge of integrated sensorimotor experiences. [15] 

implement these ideas using acoustic sensing to capture the gestural interaction. In 

their instrument PebbleBox [15], a microphone is embedded in a foam-padded 

container full of polished rocks. The performer can, for example, put her hand in the 

box and stir the stones. The acoustic signal captured by the microphone is passed 

through a model that extracts two control parameters for a granular synthesis system. 

The PebbleBox is an example of an instrument that captures gesture with its nuances 

and subtleties; however, since much of the transduction from gesture to sound occurs 
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in the acoustic domain, there is not much flexibility or variety in the sonic output. 

Using [10]’s [10] terminology, the PebbleBox has a high micro-diversity (performance 

nuances) but a low mid- (performance contrasts) and macro-diversity (stylistic 

flexibility).

Other DMIs are more versatile and richer in their sonic outputs. For instance, digital 

keyboards have more dimensions of control (one pitch and velocity per key), which 

enables them to play in different contexts or styles. However, those dimensions are 

independent, which might not always be desirable. Namely, three independent 

parameters are captured in the Yamaha WX7 wind MIDI controller: breath pressure, 

lip pressure and fingering configuration. Nevertheless, experienced woodwind 

performers complained that the complex behaviour of a wind instrument was not well 

represented [1] since the airflow through the reed of a single-reed instrument is a 

function of the pressure across the reed. In other words, the three variables (breath 

and lip pressure, fingering configuration) were independent in the WX7 controller but 

cross-coupled in acoustic single-reed instruments [16]. Contrarily, coupling too many 

dimensions might result in a control space too difficult to navigate, where the 

performer might not be able to perform with intentionality, or intentionality might be 

too complex to achieve.

The existent approaches for capturing gestural expression in DMIs struggle to find a 

balance between subtlety in the interaction and richness and flexibility in the sonic 

output. In this context, this thesis seeks to capture subtle and nuanced interaction 

without constraining the flexibility and variety of the sonic output, while keeping a 

‘navigable’ control space for the performer.

Methods
We propose the sensor mesh as an interface that captures gesture with its nuances 

and subtlety, yet without constraining the sonic output’s richness. To capture the 

nuances in the gesture, the sensor mesh will hypersample the gesture with dozens of 

vibration sensors spread across the digital musical instrument’s interaction surface. 

Each sensor will ‘look’ at the gesture from a slightly different perspective. 

Nevertheless, dealing with a large number of signals is challenging from the point of 

view of embedded and real-time systems. The sensor mesh will be connected to a 

selected embedded platform, which currently affords eight channels of 16-bit analogue 

inputs and outputs sampled at audio rate. More than one embedded board could be 

used to process the signals from the sensor mesh, effectively dividing the sensor mesh 

into sub-meshes. However, this approach implies communicating in real-time across 
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boards to deal with the interaction as a ‘whole’. Moreover, by processing each sensor 

signal independently, there is no meaning extracted from the gesture. The sensor mesh 

should be able to interpret these signals as projections of a high-dimensional gestural 

interaction and effectively act as a bottleneck of interaction.

Rather than processing the sensor’s signals individually, a more interesting approach 

(and the one I will follow in this thesis) is the usage of deep learning techniques to 

reduce the dimensionality of the signals. Since, as aforementioned, the sensors record 

the same interaction from different perspectives, and due to the high sampling rate, 

the signals will be notably redundant. Nonetheless, the dimensionality reduction is not 

trivial (e.g., downsampling) since the gesture should be understood as a ‘whole’ rather 

than as independent perspectives of a single event. In addition, it should be noted that 

the signals will have a strong time dependency due to their vibrational nature, 

however, long analysis windows can not be used for their analysis due to the stringent 

real-time requirements. I presume that a significant effort in this thesis will be 

reducing the dimensionality of these signals and finding efficient deep learning 

techniques1 to interpret these gestures while keeping their subtleties and nuances.

Using artificial intelligence to forge the sensor mesh’s physical-digital integration is 

not only sensible from the point of view of dimensionality reduction but also to avoid 

the encoding of musical theory in the system. In systems where the interaction is 

explicitly mapped, a particular set of gestural input parameters might be associated 

with a pitch. There is no ambiguity in the sonic output: that set of parameters will 

always correspond to the same note. However, in acoustic musical instruments, an 

ambiguous input might result in an ambiguous output, and performers may ‘push the 

instruments to their limits’. In a system where the coupling between gestural input and 

sonic output is not explicit, different performers performing the same exact gestures 

might interpret the sonic output differently. A non-explicit mapping opens the 

instrument to interpretation.

Carrying out a deep learning model’s inference step in an embedded platform is 

challenging not only from the point of view of compiling libraries and frameworks from 

source but also due to the computational limitations of the environment. Most artificial 

intelligence used in audio and music involves the usage of large datasets and very 

intensive models. In a resource-constrained real-time environment, these premises 

change: the model needs to be as small and efficient as possible to be able to predict 

the next sample in time. Moreover, common deep learning frameworks such as 

PyTorch [17] or Tensorflow [18] need to be compiled from source for the processor’s 
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architecture, which is not trivial due to version mismatches. Moreover, PyTorch does 

not have any optimisations for the selected embedded platform processor.

Expected outcomes
From the Doctoral Consortium, I hope to get some feedback on my conceptual 

approach to the question of subtlety and flexibility in digital musical instruments. I am 

halfway through my first year, so my methods are still not well-defined. I would 

appreciate suggestions especially on how to evaluate the ‘degree’ of subtlety of the 

instrument, as well as its output richness. My contributions to the Doctoral Consortium 

are, at this point, limited to literature suggestions.
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