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1 Introduction

The study of scattering amplitudes has played a central rôle in the development of string

theory since its very beginning. In the seventies and the eighties it was instrumental in

showing that superstring theories provide perturbative gravitational models that, at loop
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level, are free of ultraviolet divergences and anomalies. The analysis of string amplitudes

was also crucial in the discovery of D-branes and in the development of the web of dualities

among different superstring theories. It is, then, not surprising that this field continues

to be under intense study. Recently, there has been renewed interest in several aspects of

string perturbation theory in the RNS formalism, with particular focus on contributions

beyond one loop: for example, higher-loop diagrams with Ramond external states were

discussed in refs. [1, 2]; further, refs. [3–5] focused on the off-shell extension of amplitudes,

studying various situations where this is necessary; finally, refs. [6, 7] derived an explicit

result for the D6R4 term in the type-IIB effective action, checking the predictions following

from S-duality and supersymmetry. Another interesting approach to the point-like limit

of closed string amplitudes as a ‘tropical’ limit was discussed in [8]. For recent reviews on

multiloop string amplitudes, with a more complete list of references, we refer the reader

to [9, 10].

Two themes in particular have been at the center of much important progress in

our understanding of string interactions: the study of the mathematical properties of the

world-sheet formulation of string amplitudes, and their relation to the effective actions

describing the light degrees of freedom present in the theory. In this paper, we touch on

both these aspects by studying in detail the open string degeneration limits of two-loop

amplitudes described by a world-sheet with three borders and no handles. In particular, we

expand upon the results of [11]: starting from the Neveu-Schwarz (NS) sector of the open

superstring partition function in the background of a constant magnetic field strength, we

derive the Euler-Heisenberg effective action for a gauge theory coupled to scalar fields in

the ‘Coulomb phase’. The idea of using string theory to investigate effective actions in

constant electromagnetic fields has a long history, and was studied at one loop in [12–

14], with some results for the bosonic theory at two loops given in [15]. In our analysis

we find exact agreement between calculations in field theory and string theory, in the

infinite-tension limit, for the two-loop correction to the effective action. Furthermore, we

find that the correspondence holds not just for the whole amplitude, but we can precisely

identify the string origin of all individual one-particle irreducible (1PI) Feynman diagrams

contributing to the effective action. In order to do so, on the string theory side we need

to use appropriate world-sheet super-moduli, respecting the symmetry of the Feynman

graphs, while on the field theory side we need to use a version of the non-linear gauge

condition introduced by Gervais and Neveu in [16], modified by dimensional reduction to

involve the scalars also, and given here in eq. (5.10).

On the formal side, it is advantageous to use the formalism of super Riemann sur-

faces [9, 17–21], in which the complex structure is generalized to a super-conformal struc-

ture, with local super-conformal coordinates (z|θ). We follow this approach by constructing

the two-loop amplitude in the Schottky parametrization, since there is a close relationship

between Schottky super-moduli, in particular the ‘multipliers’, and the sewing parameters

of plumbing fixtures. This in turn relates the bosonic world-sheet moduli to the Schwinger

parameters associated to the propagators in Feynman graphs, which provides the ideal

framework for studying the connection between string integrands and field theory Feyn-

man diagrams. In the bosonic case, it is possible to describe genus h Riemann surfaces
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as quotients of the Riemann sphere (with a discrete set of points removed) by a discrete

(Schottky) group, freely generated by h Möbius transformations. Heuristically, quotient-

ing the Riemann sphere by a Möbius transformation has the effect of cutting out a pair

of circles and gluing them to each other along their boundaries. Schottky groups arose

naturally in the early treatment of multi-loop string amplitudes [22–27] and remained use-

ful [18, 28–32] even after alternative methods of analysis were found. In the supersymmetric

case, higher genus super Riemann surfaces are similarly generated by quotienting the super

manifold CP1|1 (with a discrete set of points removed) by a discrete group, generated by

h ‘super-projective’ OSp(1|2) transformations.

As is well known, the presence of a constant background field strength in the space-

time description of the amplitudes translates on the world-sheet side into the presence of

non-trivial monodromies along either the a or the b cycles of the Riemann surface. It is thus

not surprising that the amplitudes we are interested in involve super 1|1-forms (sections

of the Berezinian bundle) with twisted periodicities, also known as Prym differentials.

The bosonic counterparts of these objects was discussed, in the Schottky parametrization,

in [33], and their periods along the untwisted cycles appear in any string amplitude where

the fields have non-trivial monodromies [15, 34–36]. We extend these past results in two

directions: first we generalise the twisted period matrix to the supersymmetric case; then

we must calculate the supersymmetric version of the twisted determinant to sufficiently

high order in the complete degeneration limit, so as to obtain the gauge theory Feynman

graphs with multiple gluon propagators. In order to do this, we introduce an alternative

formulation of the twisted super-determinant in terms of an integral along a Pochhammer

contour, and we show that this simplifies drastically its perturbative evaluation in the

Schottky parametrization.

The main result of this paper is to show how the two-loop 1PI Feynman diagrams listed

in figure 1 arise from the degeneration limits of the superstring result. The graphical nota-

tion for the field propagators is explained in detail in appendix C; here we note in particular

that we are using two different types of edges to denote gluons, depending on whether they

are polarized parallel or perpendicular to the plane of the background field. We note also

that some of the graphs (those in figures 1i–1l) include vertices with an odd number of

scalars: these vertices arise because of the non-vanishing scalar vacuum expectation val-

ues (to which these graphs are proportional); these diagrams appear automatically in the

string calculation, and they appear on the field-theory side as a result of having imposed

the gauge condition of Gervais and Neveu [16] before dimensional reduction. Our investi-

gation is thus also a contribution to a long-standing program aimed to use string theory to

gain insights into field-theory amplitudes, which was started in ref. [37] in the language of

dual models, and generalized to the superstring framework in [38]. The practical usefulness

of string theory as an organizing principle for tree-level gauge-theory amplitudes was first

noticed and applied in [39, 40]. At genus one, several results are available in the literature:

they include the derivation of the leading contribution to the Callan-Symanzik β-function

of pure Yang-Mills theory in [41], as well as a general analysis of one-loop scattering ampli-

tudes in [42–46]. This was later used to calculate the one-loop five-gluon amplitude in QCD

for the first time in [47]. String theory also inspired many developments in the world-line
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 1. Two-loop 1PI vacuum Feynman graphs in Yang-Mills with adjoint scalars with VEVs.

The dotted edges signify Faddeev-Popov ghosts, and the plain edges symbolize scalars, the helical

edges denote gluons polarized parallel to the plane of the background magnetic field and the wavy

edges indicate gluons polarized perpendicular to the background magnetic field.

approach to perturbative quantum field theory (QFT), starting with the work of Strassler

in [48], with subsequent progress in [49, 50], summarized in [51], and more recently, for

example, in [52, 53]. Bosonic strings were also used to compute Yang-Mills renormaliza-

tion constants at one loop in [54], and one-loop off-shell gluon Green’s functions in [55].

At the two-loop level much less is known: explicit QFT amplitudes with only scalar fields

were obtained from bosonic strings in [56] and [57, 58]. Two-loop amplitudes with gluons,

however, have proved difficult to study with this technology [59–61]. Our analysis here

marks significant progress in this direction, showing that the prescriptions discussed in [11]

are indeed sufficient to derive from string theory all the bosonic two-loop 1PI gauge-theory

diagrams listed in figure 1.

The structure of the paper is as follows. In section 2 we describe the D-brane setup in

which our calculations are carried out. In section 3 we recall the integration measure for the

NS sector of open superstrings in the super Schottky parametrization and explain how to

modify it in order to accommodate our background. In section 4 we expand the measure in

powers the Schottky multipliers, and then we identify the appropriate parametrizations to

describe the two degenerations of the Riemann surface which are relevant for our purposes:

the symmetric degeneration leading to the diagrams with the topology of figures 1a–1l,

and the incomplete degeneration, leading to diagrams with only two field-theory propaga-
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tors and a four-point vertex, depicted in figures 1m–1r. An analysis of the various factors

contributing to the string amplitude, arising from different world-sheet conformal field the-

ories, then enables to unambiguously identify each diagram in the field-theory limit. In

section 5 we obtain and discuss the Lagrangian for the world-volume QFT in the appro-

priate non-linear gauge, and we use it to compute example Feynman diagrams. Finally,

in section 6.1 we compare our string-theory and QFT calculations, and in section 6.2 we

discuss the differences between the present calculation and the analogous calculation using

the bosonic string. In appendix A we discuss super-projective transformations and the

super Schottky group, in appendix B we give the calculation of the twisted (Prym) super

period matrix, and in appendix C we list the values of all of the Feynman graphs in figure 1

with our choice of background fields.

2 The string theory setup

We consider a stack of N parallel d-dimensional D-branes embedded in a D-dimensional

Minkowski space-time, where, as usual, D = 10 for type II theories and D = 26 for bosonic

string theory. When d < D − 2, and provided the string coupling gs is small, so that

gsN � 1, this configuration can be described in terms of open strings moving in flat space

and being supported by the D-branes. We will work generically in the ‘Coulomb phase’

where the D-branes are spatially separated from each other in the directions perpendicular

to their world-volumes. Furthermore, on each of the D-branes we switch on a uniform U(1)

background field in the {x1, x2} plane, with a field strength tensor given by

FAµν = BA (ηµ1η2ν − ηµ2ην1) , (2.1)

where BA is a constant ‘magnetic’ field on the A-th brane (thus A = 1, . . . , N). The

positions of the D-branes in the transverse directions will be labelled by Y A
I , with I =

d, d + 1, . . . ,D − 1. Such a D-brane configuration is depicted from various viewpoints in

figures 2 and 3. A string stretched between branes A and B will have squared length

Y 2
AB =

D−1∑
I=d

(Y A
I − Y B

I )2, (2.2)

and will receive a classical contribution mAB to its mass from the elastic potential energy

associated with the stretching of the string, given by

mAB = T YAB =
YAB
2πα′

, (2.3)

where T is the string tension and α′ the related Regge slope. These strings will also be

charged under the magnetic fields BA and BB, with the sign of the charge depending on

their orientation. Open strings that start and end on the same D-brane are uncharged and

their mass is independent of Y A
I . For generic values of Y A

I , this configuration breaks the

symmetry of the world-volume theory from U(N) to U(1)N .

The theory describing open strings supported by this D-brane configuration is free [12,

13]. The constant background magnetic fields on the D-brane world-volumes manifest
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...

...

Y 1
I

Y 2
I

Y A
I

xI

FAµν

F 2
µν

F 1
µν

Y N
I

FNµν

xµ

...

...

Figure 2. A stack of of spatially separated D-branes with constant gauge fields on their world-

volumes, connected by open strings ending on three different branes, in a double-annulus configu-

ration.

xIY 2
I

DN
(d−1)

Y N
J

Y A
I

D1
(d−1)

D2
(d−1)

DA
(d−1)

Y 1
IY N

I

Y 1
J

Y 2
J

Y A
J

xJ

Figure 3. A two-dimensional section of the space transverse to the D-branes, which therefore

appear as points, connected by a web of open strings.

themselves in the world-sheet picture by altering the boundary conditions of string coor-

dinates in the magnetized plane. On the double cover of the surface, this gives twisted

boundary conditions, or, in other words, non-trivial monodromies, to the zero modes in

the two magnetized space directions. To describe this setup, we will use the conventions

of section 3 of ref. [11], which we summarize below.

To begin with, let us briefly consider the spectrum of low-lying string excitations. In

the bosonic case, the world-sheet theory, in a covariant approach, comprises D embedding

coordinates Xµ and the ghost system (b, c). The holomorphic components of these fields
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admit the mode expansions

b(z) =
∑
n∈Z

bnz
−n−2, c(z) =

∑
n∈Z

cnz
−n+1, ∂zX

µ = −i
√

2α′
∑
n∈Z

αµn z
−n−1. (2.4)

In the presence of constant abelian background fields, the theory remains free, but string

coordinates in directions parallel to the magnetized plane acquire twisted boundary condi-

tions and must be treated separately. Considering strings ending on branes A and B, it is

convenient to introduce the combinations Z±AB = (X1
AB ± iX2

AB)/
√

2. These combinations

diagonalize the boundary conditions and yield the mode expansions

∂zZ
±
AB = −i

√
2α′

∑
n∈Z

α±n±εAB z
−n−1±εAB , (2.5)

where we defined

tan(πεAB) ≡ 2πα′(BA −BB) . (2.6)

After canonical quantization, the modes introduced above satisfy standard commutation

relations, except for magnetized directions, where one finds[
α+
n+εAB

, α−m−εAB
]

= (n+ εAB)δn+m . (2.7)

As usual in covariant quantization, not all states in the Fock space obtained by acting with

the creation modes on the SL(2,R)-invariant vacuum |0〉 are physical: we need to select

only the states belonging to the cohomology of the world-sheet BRST charge

QWB =

∮
dz

2πi
c

(
− 1

4α′
∂XM∂XM + (∂c)b

)
. (2.8)

In the bosonic theory, the lowest-lying physical state is a tachyon |k〉 ≡ c1|k, 0〉, with

mass-shell condition k2 = −m2 = 1/α′. The next mass level comprises (D + 2) massless

states, which will be the focus of our analysis in the field theory limit: one finds two

unphysical states, two null states, and (D− 2) physical polarization states appropriate for

massless gauge bosons. A crucial ingredient of our analysis is the mapping between these

string states and the space-time states in the limiting quantum field theory: as noticed for

instance in chapter 4 of [62], the action of the worldsheet BRST charge (2.8) on the (D+2)

massless states mirrors the linearized action of the space-time BRST charge for the U(N)

gauge symmetry: in particular, the states created by world-sheet ghost oscillators, c−1|k〉
and b−1|k〉, behave as the spacetime ghosts C and C. Acting with the αM−1 oscillators, on

the other hand, generates d states along the D-brane, and ns = D − d states associated to

the ns directions transverse to the D-brane, representing respectively the d polarisations of

the gauge vectors (including two unphysical ones), and ns adjoint scalars. To be precise,

the world-sheet BRST charge QWB acts as

QWB b−1|k〉 =
√

2α′k · α−1|k〉 ; QWB α
M
−1|k〉 =

√
2α′kMc−1|k〉 ; QWB c−1|k〉 = 0 ,

(2.9)

while the linearised space-time BRST transformation δB acts as

δB(C
a
) ∼ ∂ ·Qa ; δB(Q a

µ ) ∼ ∂µC a ; δB(Q a
I ) ∼ 0 ; δB(C a) ∼ 0 , (2.10)

– 7 –
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where a is an adjoint index, Q a
µ and Q a

I stand for a gluon mode and a scalar, depending

on whether XM is parallel or perpendicular to the D-brane, and kM = {kµ, 0}.
This simple relation between world-sheet and space-time states is preserved in pertur-

bation theory, when the string coupling is switched on and non-linear terms in the BRST

operators must be taken into account. This is expected, since, in a perturbative analy-

sis, fields propagating between interaction vertices are free. In practice, we will test this

statement by calculating a string diagram with the world-sheet topology of a degenerating

double-annulus, and identifying the contributions coming from the various massless states

listed above, as they propagate through the diagram. We will show that each contribu-

tion matches the gauge theory result, where the corresponding space-time fields propagate

in the matching edge of the relevant Feynman diagram, provided that the gauge used in

field theory is the nonlinear Gervais-Neveu gauge, introduced in [16]. In this way, we can

identify individual Feynman diagrams in the target field theory directly at the level of the

string amplitude, picking a specific boundary of the string moduli space, and identifying

the string states as they propagate along the degenerating surface.

A similar analysis holds also in the superstring case. In the RNS formalism one needs

to introduce the extra world-sheet fields ψµ, β and γ, that are the partners under world-

sheet supersymmetry of the ∂Xµ, b and c fields mentioned above. The monodromies for

these new fields will be the same as those of their partners, except for a possible extra sign,

which is allowed for fields of half-integer weight, and distinguishes the Ramond from the

Neveu-Schwarz sectors. In this paper we will focus on the Neveu-Schwarz contributions: the

analysis of the states at the first mass level, above the tachyonic ground state |k〉, parallels

that of the bosonic case. The only difference is that the relevant modes are ψ−1/2, β−1/2

and γ−1/2: in the superstring partition function, the low energy limit will be performed by

focusing on the contributions of states with half-integer weight.

3 The superstring partition function for the NS sector

From the world-sheet point of view, the interaction among D-branes is described by the

string vacuum amplitude (the partition function) with boundaries, as depicted in figure 2.

The case of two magnetized D-branes, corresponding to a one loop-amplitude, has been

well studied [12–14, 63]. Here we will focus on planar world-sheets, and most of what

we will say in this section applies to surfaces with (h + 1) borders, corresponding to h-

loop open superstring diagrams, but restricted to the NS sector, where the super-Schottky

formalism described in ref. [30] can be used. In particular, as discussed in section 2, we

consider parallel magnetized D-branes that can be separated in the directions transverse to

their world-volumes. As a consequence, and as depicted in figure 4 for a (two-loop) surface

with three boundaries, the partition function depends on two set of variables: the relative

distances among D-branes, and the magnetic field gradients between pairs of D-branes.

To be precise, let us label the (h + 1) world-sheet borders with i = 0, 1, . . . , h. Then

we can label the D-brane to which the i-th border is attached with the integer Ai, with

Ai ∈ {1, . . . , N}, and Ai ≤ Ai+1. To get the full amplitude, we will have to sum over the

– 8 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
6

Ai’s. Having fixed A0, . . . , Ah, we can take the A0-th brane as a reference and define

diI = Y A0
I − Y Ai

I (I = d, . . . ,D − 1) ,

tan(πεi) = 2πα′ g (BA0 −BAi) . (3.1)

The variables εi thus form an h-dimensional vector, which we will denote by ~ε; similarly,

the variables diI , which have dimension of length, form ns h-dimensional vectors, which we

will label ~dI . The classical mass of the string stretching between the A0-th brane and the

Ai-th brane is then given by

m2
i =

1

(2πα′)2

D−1∑
I=d

(diI)
2. (3.2)

Notice finally that, for h = 2, as depicted in figure 4, we make a slight variation in this

notation by flipping the sign of the second component of the two-dimensional vectors ~ε and
~dI , which will be useful to take full advantage of the extra symmetry at two loops.

The string partition function in this setup can be written as follows. For our purposes,

it is useful to keep separate the contributions of the different conformal field theory sectors,

which leads to the expression

Zh(~ε, ~d) = N (~ε )
h

∫
dµh Fgh(µ) F

(~d )
scal(µ) F

(~ε )
‖ (µ) F⊥(µ) . (3.3)

Here N (~ε )
h is a field-dependent normalization factor, to be discussed in section 4.4, and we

denoted the contributions of the world-sheet ghost systems b, c and β, γ by Fgh, that of the

string fields XI , ψI perpendicular to the D-branes by F
(~d )
scal, while the contribution of the

fields along the D-branes has been separated into sectors parallel (F
(~ε )
‖ ) and perpendicular

(F⊥) to the magnetized directions. Finally, µ denotes collectively the supermoduli: here

we use the super-Schottky formalism, reviewed in appendix A, where the supermoduli are

the sewing parameters eiπςiki
1/2 (with ςi ∈ {0, 1}) and the fixed points (ui|θi), (vi|φi) of h

super-projective transformations i = 1, . . . , h. Note that we explicitly associate with each

Schottky multiplier ki the phase ςi associated with the NS spin structure around the bi
homology cycle. In this parametrization the measure dµh reads [30]

dµh =

[√
(v1 − u1)(u1 − v2)(v2 − v1)

dv1du1dv2
dΘv1u1v2

] h∏
i=1

dki eiπςi

k
3/2
i

dui dvi
vi − ui

, (3.4)

where we denote superconformal coordinates in boldface, and the notation vi−ui indicates

the supersymmetric difference

vi − ui ≡ vi − ui + θiφi . (3.5)

The square parenthesis in eq. (3.4) takes into account the super-projective invariance of

the integrand, which allows us to fix three bosonic and two fermionic variables. Θv1u1v2 is

the fermionic super-projective invariant which can be constructed with three fixed points,

– 9 –
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defined in refs. [20, 64], and given explicitly in eq. (A.12). If we specialize eq. (3.4) to h = 2

we find

dµ2 = eiπ(ς1+ς2) dk1

k
3/2
1

dk2

k
3/2
2

du2 dΘv1u1v2

v2 − u2

√
(u1 − v2)(v2 − v1)

v1 − u1
. (3.6)

Let us now examine in turn the various factors in the integrand of eq. (3.3). The ghost

contribution is independent of both the magnetic fields and the D-brane separations, so we

can use the result of ref. [30], which reads

Fgh(µ) =
(1− k1)2 (1− k2)2(

1 + eiπς1k
1/2
1

)2(
1 + eiπς2k

1/2
2

)2∏
α

′ ∞∏
n=2

(
1 + knα

1 + eiπ~ς· ~Nαk
n− 1

2
α

)2

. (3.7)

In eq. (3.7), the notation
∏′
α means that the product is over all primary classes of the super

Schottky group: a primary class is an equivalence class of primitive super Schottky group

elements, i.e. those elements which cannot be written as powers of another element; two

primitive elements are in the same primary class if one is related to the other by a cyclic

permutation of its factors, or by inversion. The vector ~Nα has h integer-valued components,

and is defined as follows: the i-th entry counts how many times the generator Si enters in

the element of the super Schottky group Tα: more precisely, we define N i
α = 0 for Tα = 1

and N i
α = N i

β ± 1 for Tα = S±1
i Tβ . Finally, also ~ς is a vector with h components, with the

i-th component denoting the spin structure along the bi cycle, as noted above.

In fact, we need to be more precise about the notation in eq. (3.7), because the half-

integer powers of kα could indicate either of the two branches of the function. The notation

is to be understood in the following way: when the spin structure is ~ς = 0, we define the

eigenvalue of the Schottky group element Tα with the smallest absolute value to be −k1/2
α ,

see eq. (A.16). In particular, we take k
1/2
i to be positive1 for i = 1, . . . , h. This corresponds

to the fact that spinors are anti-periodic around a homology cycle with zero spin structure

(see, for example, ref. [65]). Furthermore, we expect the partition function to be symmetric

under the exchange of the homology cycles b1, b2 and b−1
1 · b2 (depicted in figure 5), and

one can verify that k1/2(S−1
1 S2) is always positive whenever k

1/2
1 and k

1/2
2 have the same

sign. Our convention puts all three multipliers on the same footing. Note that k
1/2
α is not

in general positive when Tα is not a generator: for example, the eigenvalues of Tα = S1S2

are positive when the spin structure is zero, so that k1/2(S1S2), as computed in eq. (A.25),

is negative.

The scalar contribution to eq. (3.3) depends on the separation between the D-branes

in the transverse directions, as shown in figure 3. We can write F
(~d )
scal as a product over

the super Schottky group, capturing the non-zero mode contribution, times a new factor

Y(µ, ~d ), as

F
(~d )
scal(µ) = Y(µ, ~d)

∏
α

′ ∞∏
n=1

(
1 + eiπ~ς· ~Nα k

n−1/2
α

1− knα

)ns
. (3.8)

The explicit form of Y can be found by repeating the calculation performed in ref. [66]

for the bosonic theory, and replacing the period matrix τ with the super-period matrix τ

1This convention is the opposite to the one used in [11].
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(Y A
I , B

A)

(Y B
I , B

B) (Y C
I , B

C)

(ε1,d1
I) (ε2,d2

I)

Figure 4. The double annulus world-sheet, with three boundaries labeled with i = 0, 1, 2 attached

to three D-branes, with Chan-Paton factors A, B, C. The relative positions and background field

strengths of branes B and C with respect to brane A determine the masses and the twisted boundary

conditions, as described in the text.

discussed in appendix A.2.2. We find

Y(µ, ~d) ≡
ns∏
I=1

exp

(
−
~dI · τ · ~dI

2πiα′

)
. (3.9)

It is instructive, and useful for our later implementation, to consider explicitly the h = 2

case. Let the i = 0, 1, 2 borders of the world-sheet be on the D-branes labelled by A,

B and C, respectively. As mentioned above, it is useful in this special h = 2 case to

define the i = 2 component d2
I with the opposite sign with respect to eq. (3.1), so we

have d1
I = Y A

I − Y B
I and d2

I = Y C
I − Y A

I . By so doing, we can then define an additional

(redundant) quantity, describing the displacement between the D-branes attached to the

i = 1 and i = 2 borders, as d3
I = Y B

I − Y C
I . Now the three distances diI for i = 1, 2, 3

are on an equal footing, reflecting the symmetry of the world-sheet topology, and we have

d1
I + d2

I + d3
I = 0 (see figure 4). One may easily verify that the product over the ns

transverse directions in eq. (3.9) evaluates to a function of the squared masses m2
i , defined

as in eq. (3.2). One finds

Y(µ, ~d) = exp
[
2πiα′

(
m2

1 τ11 +m2
2 τ22 + (m2

3 −m2
1 −m2

2) τ12

)]
. (3.10)

Finally, let us turn to the contribution of the world-sheet fields Xµ, ψµ along the world-

volume direction of the D-branes. In absence of magnetic fields, the result can be found in

ref. [30] and it reads

F
(0)
gl (µ) =

[
det(Im τ )

]−d/2∏
α

′ ∞∏
n=1

(
1 + eiπ~ς· ~Nα k

n−1/2
α

1− knα

)d
. (3.11)

In the presence of constant background gauge fields, F
(0)
gl gets modified, since string co-

ordinates along the D-branes are sensitive to such backgrounds. The relevant modifica-

tion to the bosonic theory was derived in ref. [15]. Using the techniques described in

refs. [15, 33, 67], it is possible to generalize this construction to the Neveu-Schwarz spin

structure of the RNS superstring [11]. The result is that switching on the background fields

– 11 –



J
H
E
P
0
6
(
2
0
1
5
)
1
4
6

amounts to multiplying F
(0)
gl by a factor, as

F
(0)
gl (µ) −→ F

(~ε )
gl (µ) = R(µ,~ε ) F

(0)
gl (µ) , (3.12)

where, assuming the background fields to be non-zero only in one plane, we have

R(µ,~ε ) = e−iπ~ε·τ ·~ε det(Im τ )

det(Im τ~ε)

∏
α

′ ∞∏
n=1

[(
1 + eiπ~ς· ~Nα k

n−1/2
α

1− knα

)−2

(3.13)

×
(
1 + eiπ(2~ε·τ+~ς )· ~Nα k

n−1/2
α

)(
1 + e−iπ (2~ε·τ+~ς )· ~Nα k

n−1/2
α

)(
1− e2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) ]
.

The matrix τ~ε is the supersymmetric analogue of the twisted (or Prym) period matrix, the

bosonic version of which was computed with the sewing method in [33, 35]. Its calculation

in outlined in appendix B.2.

Inspecting eq. (3.13), we see that F
(~ε )
gl can be factorized as the product of a term F

(~ε )
‖ ,

capturing the contribution along the magnetized plane, times an ε-independent term F⊥
arising from the unmagnetized directions. In the field theory limit, F

(~ε )
‖ will generate the

contributions of gluons polarized in the plane of the background field, while F⊥ will give

rise to gluons polarized in the transverse directions. Explicitly, we have

F⊥(µ) =
[

det(Im τ )
]− d−2

2
∏
α

′ ∞∏
n=1

(
1 + eiπ~ς· ~Nα k

n−1/2
α

1− knα

)d−2

, (3.14)

F
(~ε )
‖ (µ) =

e−iπ~ε·τ ·~ε

det(Im τ~ε)

∏
α

′ ∞∏
n=1

(
1 + eiπ(2~ε·τ+~ς)· ~Nα k

n−1/2
α

)(
1 + e−iπ (2~ε·τ+~ς)· ~Nα k

n−1/2
α

)(
1− e2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) .

(3.15)

Focusing now on the h = 2 case, we can use super-projective invariance to fix three bosonic

and two fermionic moduli. A convenient gauge choice in the super Schottky formalism is

to specify the positions of the fixed points, given in terms of homogeneous coordinates2 on

CP1|1, as

|u1〉 = (0, 1|0)t , |v1〉 = (1, 0|0)t , |u2〉 = (u, 1|θ)t , |v2〉 = (1, 1|φ)t , (3.16)

with (0 < u < 1), which leads to

Θv1u1v2 = φ , v2 − u2 = 1− u+ θφ ,

√
(u1 − v2)(v2 − v1)

v1 − u1
= 1 . (3.17)

Implementing this projective gauge fixing in eq. (3.3), we can finally express the h = 2

partition function as

Z2(~ε, ~d) = eiπ(ς1+ς2)

∫
dk1

k
3/2
1

dk2

k
3/2
2

du

y
dθ dφFgh(µ) F

(~ε )
‖ (µ) F⊥(µ) F

(~d )
scal(µ) , (3.18)

where we defined

y ≡ (u1,v1,u2,v2) = 1− u+ θφ , (3.19)

in terms of the bosonic super-projective invariant built out of four points, (z1, z2, z3, z4),

see eq. (A.13).

2The relation between the super-conformal and homogeneous coordinates is given in eq. (A.5).
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4 Taking the field theory limit

4.1 Expanding in powers of the multipliers

We are interested in computing the α′ → 0 limit of the integrand of the superstring am-

plitude. In this limit, we expect massive string states to decouple, so that one is left with

the massless spectrum. Possible contributions from the tachyon ground state cancel after

GSO projection in the superstring case, or should be discarded by hand in the bosonic

case. It is in principle non trivial to take this limit before integration over (super) moduli,

since this requires constructing a map between the dimensionless moduli of the (super) Rie-

mann surface and the dimensionful quantities that arise in the computation of field theory

Feynman diagrams. This task is considerably simplified in the Schottky parametrization,

where, as discussed for example in ref. [11], the contributions of individual string states can

be identified by performing a Laurent expansion of the integrand of the string partition

function in powers of the multipliers. One finds a correspondence between the order of

expansion and the mass level of the string, and furthermore, within each mass level, one

can track individual states by tracing the origin of each term to a specific factor in the

string integrand.

The main difference between the bosonic string and the RNS superstring is that for the

latter, which we discuss here, the expansion is in powers of k
1/2
i rather than ki, as is already

apparent from our discussion in section 3. More precisely, since the measure of integration

contains a factor k
−3/2
i , a term proportional to k

(n−3)/2
i corresponds to a contribution from

a state belonging to the n-th mass level circulating in the i-th string loop (where n = 0

corresponds to the tachyonic ground state). Therefore, all terms with n > 1 acquire a

positive mass squared, m2 = (n− 1)/(2α′), and decouple in the limit α′ → 0. We conclude

that it is necessary to expand the various factors in the integrand of eq. (3.18) only up to

terms of order ki
1/2, in order to get the complete massless field theory amplitude.

This task is made possible by the fact that the multipliers of only finitely many super-

Schottky group elements contribute at order k
1/2
1 k

1/2
2 . The reason is that the leading-

order behaviour of the multiplier kα = k(Tα) is related in a simple way to the index N i
α

introduced in section 3: one may verify that

k1/2(S±1
i Tα) = O(k

1/2
i k1/2

α ) , (4.1)

unless of course the left-most factor of Tα is S∓1
i . Thus, for every super Schottky group

element Tα not in the primary class of an element in the set {S1,S2,S1S2,S
−1
1 S2}, the

multiplier k
1/2
α vanishes faster than k

1/2
i for ki → 0. This enables us to easily compute

expressions for all the factors in eq. (3.3), up to the relevant order.

Let us begin with Fgh, defined in eq. (3.7). One immediately sees that the expansion

of the infinite product starts at O(k
3/2
i ), and the numerator of the first factor can similarly

be dropped. Fgh becomes simply

Fgh(µ) =
(
1− 2 eiπς1k

1/2
1

)(
1− 2 eiπς2k

1/2
2

)
+O(ki) . (4.2)
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Next, we compute F⊥, defined in eq. (3.14). Using the expressions for the multipliers

k1/2(S−1
1 S2) and k1/2(S1S2), given in eq. (A.25), we find

F⊥(µ) =
[

det(Im τ )
]− d−2

2

[
1 + (d− 2)

(
eiπς1k

1/2
1 + eiπς2k

1/2
2

)
(4.3)

+ (d− 2)

(
y

u
− y + d− 2

)
eiπ(ς1+ς2)k

1/2
1 k

1/2
2

]
+O(ki) .

The expansion of the determinant of the super period matrix is given in eq. (A.33), and,

substituted here, leads to the factor

[
det(Im τ )

]− d−2
2 =

[
4π2

log k1 log k2 − log2 u

] d−2
2

(4.4)

×
[
1 + (d− 2)

y

u
θφ

eiπς1k
1/2
1 log k1 + eiπς2k

1/2
2 log k2

log k1 log k2 − (log u)2

]
+O(ki) .

Notice that logarithmic dependence on (super) moduli must be retained exactly: indeed, as

shown in ref. [11] and discussed here in section 4.3, it will turn into polynomial dependence

on Schwinger parameters in the field theory limit.

The expansion of the factor F
(~ε )
‖ , also given in eq. (3.14), is more intricate, as well as

more interesting, because of the dependence on the external fields. Writing

F
(~ε )
‖ (µ) =

e−iπ~ε·τ ·~ε

det(Im τ~ε)
R̂(µ,~ε ) , (4.5)

where R̂ is the background-field dependent factor of the infinite product appearing in

eq. (3.15), we see that we can separately expand the three factors. The determinant of

the twisted super period matrix is by far the most intricate contribution. It is discussed in

appendix B, and a complete expression with the exact dependence on the fields, through ~ε,

is very lengthy. We will see in section 4.3, however, that in the field theory limit we must

expand in powers of the components of ~ε as well: at that stage, we will be able to write a

completely explicit expression also for det(Im τ~ε). The exponential factor in the numerator

of eq. (4.5) can be computed using the expression for τ in eq. (A.32), and is given by

e−iπ~ε·τ ·~ε = k
−ε21/2
1 k

−ε22/2
2 u−ε1ε2

[
1 +

y

u
θφ
(
eiπς2k

1/2
2 ε21 + eiπς1k

1/2
1 ε22

)]
+O(ki) . (4.6)

Finally, the remaining factor in F
(~ε )
‖ is given by

R̂(µ,~ε ) = 1 + eiπς1k
1/2
1 g+

12 + eiπς2k
1/2
2 g+

21 (4.7)

+ eiπ(ς1+ς2)k
1/2
1 k

1/2
2

[
g+

12g
+
21 − 2 θφ

y

u
(ε1g

−
12 + ε2g

−
21)

− 1

2

((
y − y

u

)
g+

12g
+
21 +

(
y +

y

u

)
g−12g

−
21

)]
+O(ki) ,
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where we defined the factors

g±ij = kεii u
εj ± k−εii u−εj . (4.8)

The last required ingredient is F
(~d )
scal, defined in eq. (3.8). Combining eq. (3.10) with

eq. (A.32), we get

Y(µ, ~d ) = k
α′m2

1
1 k

α′m2
2

2 uα
′(m2

3−m2
1−m2

2) (4.9)

×
[
1− 2α′

y

u

(
eiπς1k

1/2
1 m2

2 + eiπς2k
1/2
2 m2

1

)]
+O(ki) .

The remaining, mass-independent, factor in F
(~d )
scal in eq. (3.8) is easily expanded, getting

F
(0)
scal(µ) = 1 + ns

(
eiπς1k

1/2
1 + eiπς2k

1/2
2

)
+ ns eiπ(ς1+ς2)k

1/2
1 k

1/2
2

(
y

u
− y + ns

)
. (4.10)

This completes the list of the factors in eq. (3.18). It is now straightforward to combine

them, and expand the resulting polynomial in k
1/2
i to the relevant order. Before proceeding,

however, we must consider more carefully our choice of variables in view of the field theory

limit.

4.2 A parametrization for the symmetric degeneration

In order to go beyond the specification of the mass states circulating in the string loops,

and identify the contribution of individual Feynman diagrams in the field theory limit,

we must refine our parametrization of (super) moduli space. Let us now, in particular,

concentrate on Feynman diagrams with the symmetric topology depicted in the first two

lines of figure 1. While individual Feynman diagrams will not be symmetric under the

exchange of any two lines when the propagating states are different, we expect that, when

summing over all states at a given mass level, the result should be fully symmetric, since

there are no features distinguishing the three propagators at the level of the world-sheet

geometry. This symmetry requirement will guide our choice of parametrization for the

region of moduli space close to this degeneration, along the lines already discussed in

ref. [11].

It is clear that the parametrization in terms of the bosonic moduli k
1/2
1 , k

1/2
2 and

u ≡ 1 − y + θφ will not be sufficiently symmetric, since the first two chosen moduli are

multipliers of super-Schottky group generators, while the third one is a cross-ratio of the

fixed points. To present the integration measure in a sufficiently symmetric way, we must

parametrize it to be symmetric under permutations of the super-Schottky group elements

S1, S2 and S−1
1 S2. The reason for this is that the homology cycles b1, b2 and (b−1

1 · b2) lift

to these super-Schottky group elements on the covering surface CP1|1 − Λ, and any two

of b1, b2 and (b−1
1 · b2) (along with the appropriate choice of a-cycles) constitute a good

canonical homology basis (see figure 5a). Our choice of S1 and S2 as the generators is

arbitrary, so, in order to preserve modular invariance, the measure must be parametrized

to display the symmetry under permutations of S1, S2 and S−1
1 S2. To reinforce this point,

note that any other homology cycle built out of b cycles will intersect itself, as is the case

for example for the (b1 · b2) cycle, depicted in figure 5b.
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b1 b2

(b−1
1 · b2)

(a)

(b1 · b2)

(b)

Figure 5. Two types of homology cycles on the double annulus.

A natural way to symmetrize the measure is to use the multiplier of S−1
1 S2 as the third

bosonic modulus, instead of u. Defining −eiπς3k
1/2
3 to be the eigenvalue of S−1

1 S2 with the

smallest absolute value, so that k3 is the multiplier of that super Schottky group element,

one can compute k
1/2
3 using eq. (A.24). It is related to y implicitly through

y =
(1− k1)(1− k2) + θφ

[(
1 + eiπς1k

1/2
1

)(
1 + eiπς2k

1/2
2

)(
1 + eiπ(ς1+ς2)k

1/2
1 k

1/2
2

)]
1 + k1k2 + k

1/2
1 k

1/2
2

(
k

1/2
3 + k

−1/2
3

) .

(4.11)

In these definitions, ς3 is the spin structure around the b3 ≡ b−1
1 · b2 homology cycle, and

therefore it is given simply by ς3 = ς1 + ς2 (mod 2). k
1/2
3 is then positive, just as k

1/2
1 and

k
1/2
2 are.

As discussed in ref. [11], the field theory limit becomes particularly transparent if

one factors the three multipliers ki in order to assign a parameter to each section of the

Riemann surface that will degenerate into an individual field theory propagator. This is

done by defining

k
1/2
1 =

√
p1
√
p3 k

1/2
2 =

√
p2
√
p3 k

1/2
3 =

√
p1
√
p2 , (4.12)

where
√
pi is defined to be positive. In analogy to the discussion of ref. [11], each pi will

be interpreted, in the field theory limit, as the logarithm of the Schwinger proper time

associated to a propagator.

For bosonic strings, the discussion leading to eq. (4.12) was sufficient to construct a

symmetric measure of integration, prepared for the symmetric degeneration in the field

theory limit. In the present case, instead, one must also worry about fermionic moduli:

our current choice of θ and φ as moduli will not yield a symmetric measure, since they are

super-projective invariants built out of the fixed points of S1 and S2 only. In order to find

the proper Grassmann variables of integration, we take advantage of the fact that we are

allowed to rescale θ and φ with arbitrary functions of the moduli, since such a rescaling

automatically cancels with the Berezinian of the corresponding change of integration vari-

ables. Such a rescaling of course leaves the integral invariant, but it can be used to move

contributions between the various factors of the integrand, in such a way that individual

factors respect the overall exchange symmetry of the diagram, as we wish to do here. In

order to find a pair of odd moduli invariant under permutations of S1, S2, S−1
1 S2, we
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proceed as follows. Define

θ̂ij = cij Θviuiuj , φ̂ij = cij Θviuivj , (4.13)

for (ij) = (12), (23), (31). For the factors cij we make the choice

c12 =
[
eiπς3(1 + q1q2)(1− q1q3)(1− q2q3)

]−1/2
, (4.14)

with c23 and c31 obtained by permuting the indices (123), and where u3 and v3 are the

fixed points of the transformation S−1
1 S2. In eq. (4.14), we have introduced the symbols

qi, i = 1, 2, 3, defined by3

q1 = eiπς2√p1 , q2 = eiπς1√p2 , q3 = eiπς3√p3 . (4.15)

With this choice for cij , one can check that

eiπς3 dθ̂12 dφ̂12 = eiπς1 dθ̂23 dφ̂23 = eiπς2 dθ̂31 dφ̂31 , (4.16)

so that the Grassmann measure of integration has the required symmetry.

It is not difficult to rewrite the various objects computed in section 4.1 in terms of the

new variables, and expand the results to the required order in pi. In order to do so, we use

θφ = q3(1 + q1q2) θ̂12φ̂12 +O(pi) , (4.17)

as well as

u = p3

[
1 + θ̂12φ̂12(q3 − q1 − q2 + q1q2q3)

]
+O(p1, p2, p

2
3) . (4.18)

With these results, it is straightforward to verify the symmetry of the full string integrand.

In particular, we find that the product of the two-loop measure of integration times the

ghost factor is given by

dµ2 Fgh(µ) =

3∏
i=1

[
dpi

p
3/2
i

1− eiπςik
1/2
i√

1 + pi

]
dθ̂12dφ̂12

1√
1 + p1p2p3

(4.19)

=

3∏
i=1

[
dpi
q3
i

]
dθ̂12 dφ̂12 (1− q1q3 − q2q3 − q1q2) +O(pi) ,

where the contribution of the spin structure to dµ2 in eq. (3.6) has been absorbed in

dθ̂12 dφ̂12. Similarly, the contribution of the orbital modes defined in eq. (4.7) becomes

R̂(µ,~ε ) = 1 +
{
q1q2 (pε11 p

−ε2
2 − p−ε11 pε22 )

[
1− θ̂12 φ̂12 q3(ε1 − ε2)

]
+ cyclic permutations

}
+O(pi) . (4.20)

3Note that the spin structures of q1 and q2 are swapped compared with what one might expect. This,

however, is reasonable, because the qi defined in this way factorize the NS sewing parameters eiπςi k
1/2
i as

follows: eiπς1 k
1/2
1 = q1q3, eiπς2 k

1/2
2 = q2q3, eiπς3 k

1/2
3 = q1q2.
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Here, and in the rest of this section, we understand ‘cyclic permutations’ to mean cyclic

permutations of the indices (1, 2, 3) for pi, qi, εi and m2
i , where ε3 ≡ −ε1− ε2.4 The indices

of θ̂12 φ̂12, on the other hand, are not permuted.

In order to reconstruct the full contribution of fields in the directions parallel to the

magnetized plane, we still need the other factors appearing in eq. (4.6). The exponential

factor takes the form

e−iπ~ε·τ ·~ε = p
−ε21/2
1 p

−ε22/2
2 p

−ε23/2
3

[
1−1

2
θ̂12φ̂12

(
q1 (ε21−ε22−ε23)+q1q2q3 ε

2
1+cycl. perm.

)]
+O(pi) .

(4.21)

The last factor in eq. (4.6) is the twisted determinant det(Im τ~ε), whose calculation is

described in appendix B. The result for generic values of u is a lengthy combination of hy-

pergeometric functions, which however simplifies drastically in the limit we are considering

here, where u, proportional to p3, is small.

In this limit (B.33) reads

det(Im τ~ε)=
1

4π2
Γ(−ε1)Γ(−ε2)Γ(−ε3)

{
p
ε1/2
1 p

ε2/2
2 p

ε3/2
3 (ε1 p

−ε1/2
1 + ε2 p

−ε2/2
2 + ε3 p

−ε3/2
3 )

+ θ̂12φ̂12

[
q1 (p

ε1/2
1 p

−ε2/2
2 p

−ε3/2
3 + p

−ε1/2
1 p

ε2/2
2 p

ε3/2
3 ) p

ε1/2
1 ε2ε3 + cycl. perm.

]
+ θ̂12φ̂12 q1q2q3 p

−3ε1/2
1 p

−3ε2/2
2 p

−3ε3/2
3

×
[
p2ε1

1 p2ε2
2 pε33 (2ε23−ε1ε2)+p3ε3

3

(
2ε3(p2ε1

1 ε2+p2ε2
2 ε1)−pε11 p

ε2
2 ε1ε2

)
+cycl. perm.

]}
+ (εi ↔ −εµ) +O(pi) . (4.22)

Next, we need the contribution of the untwisted gluon sector, given in eq. (4.3). In the

current parametrization it reads

F⊥(µ) =
[

det(Im τ )
]−(d−2)/2[

1− (d− 2)(q1q3 + q2q3 + q1q2)
]

+O(pi) , (4.23)

where the determinant of the period matrix, given by eq. (A.33), becomes

det(Im τ ) =
1

4π2

{
log p1 log p2 + log p2 log p3 + log p3 log p1 (4.24)

− 2 θ̂12φ̂12

[
(q1 − q1q2q3) log p1 + cycl. perm.

]}
+O(pi) .

Finally, we need the ingredients for the scalar sector, given above in eq. (4.9) and eq. (4.10).

The mass contribution takes the form

Y(µ, ~d ) = p
α′m2

1
1 p

α′m2
2

2 p
α′m2

3
3

[
1 + α′ θ̂12φ̂12

(
q1 (m2

1 −m2
2 −m2

3) (4.25)

+ q1q2q3m
2
1 + cycl. perm.

)]
+O(pi) ,

while the mass-independent factor is given by

F
(0)
scal(µ) = 1 + ns (q1q3 + q2q3 + q1q2) +O(pi) . (4.26)

This completes the list of ingredients needed for the analysis of the symmetric degeneration

of the surface. We now turn to the calculation of the α′ → 0 limit.
4Recall that, in the h = 2 case, we define ε2 with the opposite sign with respect to eq. (3.1), to exploit

the symmetry of the worldsheet.
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4.3 Mapping moduli to Schwinger parameters

The last, crucial step needed to take the field theory limit is the mapping between the

dimensionless moduli and the dimensionful quantities that enter field theory Feynman di-

agrams. This α′-dependent change of variables sets the space-time scale of the scattering

process and selects those terms in the string integrand that are not suppressed by pow-

ers of the string tension. The basic ideas underlying the choice of field theory variables

have been known for a long time (see for example ref. [68]), and were recently refined for

the case of multi-loop gluon amplitudes in ref. [11]. The change from bosonic strings to

superstrings does not significantly affect those arguments: in the present case we will see

that integration over odd moduli will simply provide a more refined tool to project out

unwanted contributions, once the Berezin integration is properly handled.

Following ref. [11], we introduce dimensionful field-theoretic quantities with the change

of variables

pi = exp

[
− ti
α′

]
, εi = 2α′gBi +O(α′

3
) , i = 1, 2, 3 . (4.27)

These definitions make it immediately obvious that terms of the form p c εii must be treated

exactly, as we have done. On the other hand, terms proportional to high powers of εi
are suppressed by powers of α′ in the field theory limit, which is the source of further

simplifications in our final expressions.

For completeness, we give here the results for the various factors in eq. (3.3) as Taylor

expansions powers of qi (that is, in half-integer powers of pi), but with the field- and

mass-dependent coefficients of the leading terms worked out exactly. Beginning with the

contribution of gluon modes perpendicular to the magnetic fields, F⊥(µ), we find

F⊥(µ) =

[
(2πα′)2

∆0

]d/2−1{
1 + (d− 2)

[
q1q2 + q2q3 + q3q1 (4.28)

−α′ θ̂12φ̂12
1

∆0

(
t1 q1+t2 q2+t3 q3+(d−3)(t1+t2+t3) q1q2q3

)]
+O

(
(α′)2, pi

)}
≡
[

(2πα′)2

∆0

]d/2−1 ∞∑
m,n,p=0

qm1 qn2 q
p
3 F̂

(mnp)
⊥ (ti) ,

where we defined

∆0 = t1t2 + t2t3 + t3t1 , (4.29)

which we recognize as the first Symanzik polynomial [69] of graphs with the topology of

those in the first two lines of figure 1, expressed in terms of standard Schwinger parameters.

The result for the contribution of gluon modes parallel to the magnetic field is more

interesting, as one begins to recognize detailed structures that are known to arise in the

corresponding field theory. Multiplying eq. (4.20) by eq. (4.21), and dividing by eq. (4.22),
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one finds

F
(~ε )
‖ (µ) =

(2πα′)2

∆B

{
1 + 2

[
cosh

(
2g (B1t1 −B2t2)

)
q1q2

− α′ θ̂12φ̂12
1

∆B

sinh(gB1t1)

gB1
cosh

(
g (2B1t1 −B2t2 −B3t3)

)
(q1 + q1q2q3)

+ cycl. perm.

]
+O(α′

2
) +O(pi)

}
(4.30)

≡ (2πα′)2

∆B

∞∑
m,n,p=0

qm1 qn2 q
p
3 F̂

(mnp)
‖ (ti, Bi) ,

where

∆B =
cosh[g(B1t1 −B2t2 −B3t3)]

2g2B2B3
+ cycl. perm. (4.31)

Using the fact that B1 + B2 + B3 = 0, one can verify that ∆B can be understood as the

charged generalization of the first Symanzik polynomial for this graph topology, and indeed

for vanishing fields ∆B tends to ∆0. It is then easy to see that F
(~ε )
‖ (µ), in the same limit,

reproduces F⊥(µ) with the replacement d− 2→ 2, as expected.

The contribution from the D-brane world-volume scalars can be obtained combining

eq. (4.25) and eq. (4.26). One finds

F
(~d )
scal(µ) = e−t1m

2
1 e−t2m

2
2 e−t3m

2
3
[
1 + ns(q1q2 + q2q3 + q3q1) (4.32)

+ α′ θ̂12φ̂12

(
(m2

1 −m2
2 −m2

3) q1 − (ns − 1)m2
1 q1q2q3 + cycl. perm.

)]
+O(pi)

≡
3∏
i=1

[
e−tim

2
i
] ∞∑
m,n,p=0

qm1 qn2 q
p
3 F̂

(mnp)
scal (ti,mi) ,

where one recognizes the exponential dependence on particle masses, each multiplied by the

Schwinger parameter of the corresponding propagator, which is characteristic of massive

field-theory Feynman diagrams. Note that the masses m2
i appearing in eq. (4.32) arise via

symmetry breaking from the distance between D-branes, and therefore represent classical

shifts of the string spectrum: below, for brevity, we will often call ‘massless’ all string states

that would be massless in the absence of symmetry breaking.

The final factor, including the integration measure and the contribution from the

ghosts, can be read off eq. (4.19), and can be organized as

dµ2 Fgh(µ) =

3∏
i=1

[
dpi
q3
i

]
dθ̂12 dφ̂12

∞∑
m,n,p=0

qm1 qn2 q
p
3 F̂

(mnp)
gh . (4.33)

The complete integrand of eq. (3.3) is the product of F⊥ from eq. (4.28), F‖ from eq. (4.30),

Fscal from eq. (4.32) and dµ2 Fgh from eq. (4.33). In the proximity of the symmetric

degeneration, it can be organized in a power series in terms of the variables qi, as we have
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done for individual factors. We write

dZsym
2 (µ) =

3∏
i=1

[
dpi
q3
i

e−tim
2
i

]
dθ̂12 dφ̂12

(2πα′)d

∆
d/2−1
0 ∆B

×
∞∑

m,n,p=0

qm1 qn2 q
p
3 F̂(mnp)(ti,mi, Bi) . (4.34)

It is now straightforward to extract the contribution of massless states, which is contained

in the coefficient F̂(111)(ti,mi, Bi). For bosonic strings, one had to discard the contribution

of the tachyonic ground state by hand: in this case, one can simply implement the GSO

projection and observe the expected decoupling of the tachyon. We now turn to the analysis

of this point.

4.4 The symmetric degeneration after GSO projection

Starting with the expression in eq. (4.34), we can now describe more precisely the connec-

tion between the powers of the multipliers and the mass eigenstates circulating in the loops.

For the symmetric degeneration, we now see that the power of pi corresponds to the mass

level of the state propagating in the i-th edge of the diagram. Indeed one observes that

dpi

p
3/2
i

(p
1/2
i )n = − 1

α′
dti e−

n−1
2α′ ti , (4.35)

and one recognizes that dti e−
n−1
2α′ ti is a factor one would expect to see in a Schwinger-

parameter propagator for a field with squared mass m2 = n−1
2α′ . In particular, if n = 0,

then the state propagating in the i-th edge will be a tachyon, and will have to be removed

by the GSO projection.

A cursory look at F‖ in eq. (4.30), F⊥ in eq. (4.28), Fscal in eq. (4.32) and dµ2Fgh

in eq. (4.19), would suggest that tachyons can propagate simultaneously in any number of

edges of the diagram: indeed, we can find terms proportional to
∏
i dpi/q

3
i times 1, q1, q1q2,

q1q2q3, . . ., which correspond respectively to three, two, one or no edges with propagating

tachyons. A closer inspection shows, however, that the nilpotent object θ̂12φ̂12 multiplies

only terms with an odd number of factors of qi, a property which is preserved when we

multiply terms together. Since the Berezin integral over dθ̂12dφ̂12 picks out the coefficient

of θ̂12φ̂12, it follows that, after carrying out the Berezin integration, each term must contain

an odd number of factors of qi.

As a consequence, after Berezin integration and truncation of the integrand to O(p0
i ),

eq. (4.34) will be written as a sum of four terms, proportional to
∏3
i=1 dpi/p

3/2
i multiplied

by the factors

q1 = eiπς2√p1 , q2 = eiπς1√p2 , q3 = eiπς3√p3 , q1q2q3 =
√
p1p2p3 . (4.36)

The first three terms in eq. (4.36) carry the contributions of tachyons propagating in

loops: since we wish to excise tachyons from the spectrum, we need to implement a GSO

projection in such a way that these three terms vanish. This is achieved by simply averaging
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the amplitude over the four spin structures (ς1, ς2) ∈
{

(0, 0), (1, 0), (0, 1), (1, 1)
}

; one clearly

sees that the first three terms in eq. (4.36) vanish while the fourth term is independent of

~ς and thus unaffected. Therefore the GSO-projected amplitude is free of tachyons while

the massless sector is intact, as desired.

We are now in a position to take the field theory limit for the symmetric degeneration.

The only missing ingredient is the normalization factor N (~ε )
h introduced in eq. (3.3). It is

given by

N (~ε )
2 =

C2

cos(πε1) cos(πε2)
, (4.37)

where Ch is the normalization factor for an h-loop string amplitude in terms of the d-

dimensional Yang-Mills coupling gd, calculated in appendix A of ref. [68]. For h = 2 it is

given by

C2 =
g2
d

(4π)d
(α′)2

(2πα′)d
. (4.38)

The denominator in eq. (4.37) arises from the Born-Infeld contribution to the normalization

of the boundary state (see for example ref. [70]). It does not contribute to the field theory

limit, since cos(πε1) cos(πε2) = 1 + O(α′2), after expressing the twists εi in terms of the

background field strengths via eq. (4.27).

Applying the GSO projection to eq. (4.34), and using dpi/pi = −dti/α′, we finally find

that the QFT limit of the partition function can be represented succinctly by

Zsym
2,QFT(mi, Bi) =

g2
d

(4π)d

∫ 3∏
i=1

dti e−tim
2
i

1

∆
(d−2)/2
0 ∆B

× lim
α′→0

[
− 1

α′

∫
dθ̂12 dφ̂12 F̂(111)(ti,mi, Bi)

]
, (4.39)

where the limit on the second line is finite after Berezin integration. In order to see that,

and in order to give our results as explicitly as possible, we define (for simplicity we omit

the arguments of the functions f)

f
(mnp)
gh =

−
1
α′ ∂θ̂12∂φ̂12F̂

(mnp)
gh if m+ n+ p is odd ,

F̂
(mnp)
gh if m+ n+ p is even ,

(4.40)

and similarly for f
(mnp)
‖ (ti, Bi), f

(mnp)
⊥ (ti) and f

(mnp)
scal (ti,mi). With our definitions, one

easily sees that

f
(000)
gh = f

(000)
‖ = f

(000)
⊥ = f

(000)
scal = 1 . (4.41)

Performing the Berezin integration is then a simple matter of combinatorics, and one finds

Zsym
2,QFT(mi, Bi) =

g2
d

(4π)d

∫ 3∏
i=1

dti e−tim
2
i

1

∆
(d−2)/2
0 ∆B

(4.42)

×
[
f

(111)
‖ (ti, Bi) + f

(110)
‖ (ti, Bi) f

(001)
⊥ (ti) + (25 more terms)

]
.
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We can read off the various terms in the integrand by picking the coefficients of the appro-

priate factors of qi from F‖ in eq. (4.30), F⊥ in eq. (4.28), Fscal in eq. (4.32) and dµ2 Fgh

in eq. (4.19), and then selecting the coefficient of θ̂12 φ̂12, divided by α′. We find

f
(111)
‖ =

2

∆B

sinh(gB1t1)

gB1
cosh

[
g(2B1t1 −B2t2 −B3t3)

]
+ cycl. perm. ,

f
(110)
‖ f

(001)
⊥ =

2

∆0
(d− 2) t3 cosh

[
2g(B1t1 −B2t2)

]
,

f
(001)
‖ f

(110)
⊥ =

2

∆B
(d− 2)

sinh(gB3t3)

gB3
cosh

[
g(2B3t3 −B1t1 −B2t2)

]
,

f
(111)
⊥ =

1

∆0
(d− 2) (d− 3) (t1 + t2 + t3) , (4.43)

f
(110)
gh f

(001)
‖ = − 2

∆B

sinh(gB3t3)

gB3
cosh

[
g(2B3t3 −B1t1 −B2t2)

]
,

f
(110)
gh f

(001)
⊥ = − 1

∆0
(d− 2) t3 ,

f
(110)
gh f

(001)
scal = m2

3 −m2
1 −m2

2 ,

f
(110)
scal f

(001)
‖ =

2

∆B
ns

sinh(gB3t3)

gB3
cosh

[
g(2B3t3 −B1t1 −B2t2)

]
,

f
(110)
scal f

(001)
⊥ =

1

∆0
(d− 2)ns t3 ,

f
(110)
‖ f

(001)
scal = 2 (m2

1 +m2
2 −m2

3) cosh
[
2g(B1t1 −B2t2)

]
,

f
(110)
⊥ f

(001)
scal = (d− 2)(m2

1 +m2
2 −m2

3) ,

f
(111)
scal = (ns − 1)(m2

1 +m2
2 +m2

3) .

The other terms in the integrand can be obtained from the above by cyclic symmetry.

We conclude by noting that eq. (4.42) does not give the complete 2-loop contribution to

the vacuum amplitude with this topology, since the string theory calculation distinguishes

the three D-branes where the world-sheet boundaries are attached. This is reflected in the

integration region over the Schwinger parameters ti, already discussed in ref. [15]: they are

not integrated directly in the interval 0 < ti <∞, as would be the case in field theory, but

they are ordered, as 0 < t3 < t2 < t1 <∞. In order to recover the full amplitude, with the

correct color factors and integration region, one must sum over all possible attachments

of the string world-sheet to the D-branes, effectively summing over the different values

of the background fields Bi and masses m2
i . In the absence of external fields, this sum

amounts just to the introduction of a symmetry and color factor; for non-vanishing Bi, it

reconstructs the correct symmetry properties of the amplitude under permutations.

4.5 The incomplete degeneration

In the last three sections, 4.2, 4.3 and 4.4, we have given the tools to compute the field

theory limit of the partition function in the vicinity of the symmetric degeneration, see fig-

ure 6a: our final result is summarized in eq. (4.42). The field theory two-loop effective

action, however, includes also the Feynman diagrams with a quartic vertex depicted in the

last two lines of figure 1.
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(a) (b) (c)

Figure 6. The symmetric (figure 6a), incomplete (figure 6b), and separating (figure 6c) degenera-

tions of the two-loop vacuum amplitude.

The main feature of vacuum graphs with a four point vertex, which drives the cor-

responding choice of parametrization for the neighborhood of moduli space depicted in

figure 6b, is the fact that such graphs have only two propagators, each one encompassing a

complete loop, and furthermore they are symmetric under the exchange of the two loops.

It is natural therefore to associate to each propagator a Schwinger parameter linked to

the Schottky multiplier of the corresponding string loop. The fact that there are no fur-

ther Schwinger parameters implies also that the third bosonic modulus must be integrated

over its domain except for a small region around each boundary. We therefore call the

configuration depicted in figure 6b the incomplete degeneration.

To compute the field theory limit for the incomplete degeneration, we must retrace our

steps back to section 4.1, where the various factors in the partition function were expressed

in terms of ki and u (or y). We then relate the multipliers to Schwinger parameters as

ki = e−ti/α
′
, (i = 1, 2) , (4.44)

and replace εi according to eq. (4.27).

As may be expected from the simplicity of the target graph, the string partition func-

tion simplifies drastically when the α′ → 0 limit is taken in this way. One finds for example

that the determinant of the (twisted) period matrix reduces to

[
det(Im τ )

]−1
=

(2πα′)2

t1t2
+O

(
(α′)3

)
(4.45)[

det(Im τ~ε)
]−1

= (2πα′)2 gB1

sinh(gB1t1)

gB2

sinh(gB2t2)
+O

(
(α′)3

)
,

while the hyperbolic functions appearing in the field theory limit arise in a direct way from

combinations like

kε11 u
ε2 + k−ε11 u−ε2 = 2 cosh(2gB1t1) +O(α′) , (4.46)

kε11 k
ε2
2 u

ε1+ε2 + k−ε11 k−ε22 u−ε1−ε2 = 2 cosh
(
2g (B1t1 +B2t2)

)
+O(α′) .

The resulting expressions are very simple because, with no Schwinger parameter associated

to u, factors of the form u± εi do not contribute to the field theory limit. This is what

makes it possible to perform the integration over the third bosonic modulus, and over the

two fermionic moduli: indeed, in the parametrization considered here, the entire partition
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function can be written explicitly, in the α′ → 0 limit, in terms of just three simple integrals

over the non-degenerating coordinates of super-moduli space. After GSO projection, one

finds

dZinc+sep
2 (µ) =

(2πα′)d

(α′)2

2∏
i=1

[
dti e−tim

2
i gBi

t
d/2−1
i sinh(gBiti)

]
du dθ dφ (4.47)

×
{

1

y

(
d− 2 + 2 cosh(2gB1t1) + ns − 2

)(
d− 2 + 2 cosh(2gB2t2) + ns − 2

)
−
[
d− 2 + 2 cosh

(
2g(B1t1 +B2t2)

)
+ ns

]
+

1

u

[
d− 2 + 2 cosh

(
2g(B1t1 −B2t2)

)
+ ns

]}
+O(e−ti/α

′
, α′) .

As the notation suggests, eq. (4.47) in principle contains contributions from both the incom-

plete and the separating degenerations, and we now turn to the problem of disentangling

them. We also see that in order to complete the calculation one just needs to deter-

mine three numerical constants, given by the following integrals over the non-degenerating

super-moduli,

I1 =

∫
M̂1|2

du dθ dφ
1

y
, I2 = −

∫
M̂1|2

du dθ dφ , I3 =

∫
M̂1|2

du dθ dφ
1

u
. (4.48)

To determine the domain of integration M̂1|2 in eq. (4.48), and to identify the different

degeneration limits, note that the separating, symmetric and incomplete degenerations all

come from the region of super-moduli space in which the two Schottky multipliers k1 and

k2 are small. In this limit, we can think of super moduli space as a 1|2-dimensional space

parametrized by (u|θ, φ). The separating degeneration corresponds to the limit y → 0,

while the symmetric degeneration corresponds to the limit u → 0, and the incomplete

degeneration comes from the region of super moduli space interpolating between the two

limits. As pointed out in refs. [21, 71], however, this simple characterization must be

made more precise, in particular with regards to the choice of parameters near the two

degenerations.

First of all, we note that the first term in braces on the right-hand side of eq. (4.47),

proportional to the integral I1, dominates in the limit y → 0, and we expect it to represent

the contributions of the one-particle reducible (1PR) Feynman diagrams, which we neglect.

We can then concentrate on the evaluation of the integrals relevant for our purposes, which

are I2 and I3 in eq. (4.48). They can be calculated using Stokes’ theorem for a super-

manifold with a boundary (see section 3.4 of [71]), since the integrands are easily expressed

as total derivatives. We write

−du dθ dφ ≡ dν2 , ν2 = −u dθ dφ , (4.49)

du

u
dθ dφ ≡ dν3 , ν3 = log(u) dθ dφ .

These expressions mean that the corresponding integrals are localized on the boundary of

M̂1|2, which consists of two loci associated with the two distinct ways in which the double
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annulus world-sheet can completely degenerate: the symmetric degeneration of figure 6a,

and the separating degeneration of figure 6c.

To use Stokes’ theorem, it is important to characterize precisely the 0|2-dimensional

boundary of the super-moduli-space region over which we are integrating. More precisely,

we need to find bosonic functions of the worldsheet moduli ξi(u, θ, φ), defined near the

boundaries of M̂1|2, such that the vanishing of ξi defines a compactification divisor Di.

Such functions are called canonical parameters in section 6.3 of [21]. It is important to

note that, for singular integrands such as those of I1 and I3, it is not sufficient to define

the canonical parameter ξ up to an overall factor, which may include nilpotent terms. For

example, if we attempt to rescale ξ = (1 + θφ)ξ′, then log ξ = log ξ′ + θφ, so that the

Berezin integral
∫
dθ dφ log ξ does not coincide with

∫
dθ dφ log ξ′.

In the small-u region, the proper choice of the canonical parameter ξsym is dictated by

our parametrization of the symmetric degeneration: we must take ξsym = p3, as defined

in eq. (4.12), in order to properly glue together the two regions. Although p3 and the

cross-ratio u vanish at the same point, they are related by a non-trivial rescaling at leading

order in the multipliers. Indeed

u =
p3

1 + p3
(1 + θφ) +O(k

1/2
i ) , (4.50)

which affects the Berezin integral of eq. (4.49), as discussed above. Note that, not having

introduced a parametrization for the separating degeneration, we would not have a similar

guideline in the small-y region. Furthermore, the fact that the corresponding field theory

diagram needs to be regulated,5 in order to make sense of the vanishing momentum flowing

in the intermediate propagator, introduces an ambiguity also in the field theory result.

With this choice of parametrization, we can now use Stokes’ theorem to determine

the values of I2 and I3. Taking ξsep = y as a canonical parameter for the separating

degeneration, we find

I2 = lim
ε→0

[ ∫
y=ε

ν2 −
∫
p3=ε

ν2

]
, (4.51)

= lim
ε→0

[
−
∫
dθ dφ (1− ε+ θφ) +

∫
dθ dφ

ε

1 + ε
(1 + θφ)

]
= 1 ,

where we used
∫
dθ dφ θφ = −1. Similarly

I3 = lim
ε→0

[ ∫
y=ε

ν3 −
∫
p3=ε

ν3

]
, (4.52)

= lim
ε→0

[∫
dθ dφ (1− ε+ θφ)−

∫
dθ dφ log

[
ε

1 + ε
(1 + θφ)

]]
= 0 .

Inserting these results into eq. (4.47), discarding the separating degeneration, and intro-

ducing the overall normalization given in eq. (4.38), we obtain our final expression for the

5Notice that, in the gauge we use, this Feynman diagram would not automatically vanish in a U(N)

theory, as the 3-point vertices contain also terms proportional to the symmetric color tensor dabc.
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contribution of diagrams with a four-point vertex to the field-theory effective action. It is

given by

Z inc
2,QFT(mi, Bi) =

g2

(4π)d

∫ ∞
0

2∏
i=1

[
dti e−tim

2
i gBi

t
d/2−1
i sinh(gBiti)

]
(4.53)(

d− 2 + 2 cosh
(
2g(B1t1 +B2t2)

)
+ ns

)
.

In order to identify the contributions of individual Feynman diagrams to eq. (4.53), we can

retrace the steps of the calculation and assign each term in our result to the appropriate

world-sheet conformal field theory, as we did for the symmetric degeneration in eq. (4.42).

We find that we can rewrite eq. (4.53) as

Z inc
2,QFT(mi, Bi) = − g2

(4π)d

∫ ∞
0

2∏
i=1

[
dti e−tim

2
i gBi

t
d/2−1
i sinh(gBiti)

] (
f11
‖ + f11

⊥ + f11
scal + f11

gh

)
, (4.54)

where here the superscripts denote the powers of k
1/2
i (i = 1, 2) from which the coefficients

were extracted, and we have omitted the arguments of the functions f for simplicity. The

precise identification is

f11
‖ = −2 cosh

(
2g(B1t1 +B2t2)

)
f11
⊥ = −(d− 2) , f11

scal = −ns , f11
gh = 0 .

(4.55)

A few remarks are in order. First of all we note that f11
gh vanishes; this corresponds to the

fact that, in the infinite product in Fgh(ki, η) in eq. (3.11), n ranges from 2 to ∞, not from

1 to ∞ as in the case of Fgl and Fscal. As a consequence, there is no term proportional to

k1/2(S1S2) in the partition function for the ghost systems. We will see that this corresponds

to the fact that there is no quartic ghost vertex in the associated Yang-Mills theory. Next,

we note that all terms associated with the four-point vertex diagram are not factorizable

into the product of two contributions, proportional to k
1/2
1 and k

1/2
2 respectively. If, on

the other hand, we had traced the origin of the terms associated with the separating

degeneration, and proportional to the integral I1, we would have found that the factor

multiplying 1/y in eq. (4.47) can be written as(
f10
‖ + f10

⊥ + f10
scal + f10

gh

)(
f01
‖ + f01

⊥ + f01
scal + f01

gh

)
. (4.56)

This means that no contributions arise from the Schottky group elements S1S2 and S−1
1 S2,

which would imply a genuine correlation between the two loops. Rather, as expected, these

terms are simply the product of factors rising from individual disconnected loops. Finally,

we note that the result I3 = 0 is crucial in order to recover the correct field theory limit:

indeed, as will be verified in the next section and shown in appendix C, no field theory

diagram yields hyperbolic functions with the parameter dependence displayed on the last

line of eq. (4.47). We see once again that the field theory limit, once the contributions

of individual diagrams have been identified, provides non-trivial checks of the procedures

used to perform the integration over super-moduli.
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5 Yang-Mills theory in the background field Gervais-Neveu gauge

In order to make a precise comparison between string theory and field theory at the level

of individual Feynman diagrams, as was done in a simple case in ref. [11], we need a precise

characterization of the field-theory Lagrangian we are working with, including gauge fixing

and ghost contributions. In principle, this presents no difficulties, since our target is a U(N)

Yang-Mills theory, albeit with a rather special gauge choice. There are however a number

of subtleties, ranging from the special features of the background field framework, to issues

of dimensional reduction, and to the need to break spontaneously the gauge symmetry in

order to work with well-defined Feynman diagrams in the infrared limit, which altogether

lead to a somewhat complicated and unconventional field theory setup. We will therefore

devote this section to a detailed discussion of the field theory Lagrangian which arises from

the field theory limit of our chosen string configuration.

The first layer of complexity is due to the fact that the string theory setup naturally

corresponds to a field theory configuration with a non-trivial background field. In general,

such a background field breaks the gauge symmetry: in our case, since we are working

with mutually commuting gauge fields with constant field strengths, and we have a string

configuration with separated D-brane sets, one will generically break the U(N) gauge

symmetry down to U(1)N . We will have to adjust our notation to take this into account.

Notice also that our background fields break Lorentz invariance as well, since only certain

polarizations are non-vanishing. As a consequence, the polarizations of the quantum field

will also be distinguished as parallel or perpendicular to the given background.

Furthermore, it is interesting to work in a generic space-time dimension d, and we will

find it useful to work with massive scalar fields giving infrared-finite Feynman diagrams. We

will therefore work with a d-dimensional gauge theory obtained by dimensional reduction

from the dimension D > d appropriate to the string configuration. This yields ns = D − d
adjoint scalar fields minimally coupled to the d-dimensional gauge theory, and we will

choose our background fields such that these fields acquire a non-vanishing expectation

value, giving mass to some of the gauge fields.

Finally, as suggested originally in ref. [45], and recently confirmed by the analysis of

ref. [11], covariantly quantized string theory picks a very special gauge in the field theory

limit: a background field version of the non-linear gauge first introduced by Gervais and

Neveu in ref. [16]. This gauge has certain simplifying features: for example at tree level

and at one loop it gives simplified color-ordered Feynman rules which considerably reduce

the combinatoric complexity of gauge-theory amplitudes [45]. Only at the two-loop level,

however, the full complexity of the non-linear gauge fixing becomes apparent. One effect,

for example, is that the diagonal U(1) ‘photon’, which ordinarily is manifestly decoupled

and never appears in ‘gluon’ diagrams, in this case has non-trivial, gauge-parameter de-

pendent couplings to SU(N) states, and the decoupling only happens when all relevant

Feynman diagrams are summed.

In what follows, we adopt the following notations: we use calligraphic letters for

matrix-valued u(N) gauge fields, and ordinary capital letters for their component fields;

we use M,N, . . . = 1, . . . ,D for Lorentz indices in D-dimensional Minkowski space before
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dimensional reduction, and µ, ν, . . . = 1, . . . , d for Lorentz indices in the d-dimensional

reduced space-time; finally, I, J, · · · = 1, . . . , ns indices enumerate adjoint scalars, and

A,B, . . . = 1, . . . , N indices enumerate the components of u(N) vectors and matrices. In

this language, AM will denote the D-dimensional classical background field, QM the cor-

responding quantum field, while C and C are ghost and anti-ghost fields.

We will now proceed to write out the quantum lagrangian (including gauge-fixing and

ghost terms) in terms of matrix-valued fields. We will then comment on the form taken

by various terms in component notation, which is more directly related to the vertices

appearing in diagrammatic calculations.

5.1 The u(N) Lagrangian

We begin by constructing the D-dimensional Yang-Mills Lagrangian, which, in the presence

of a background gauge field, depends on the combination AM + QM . The field-strength

tensor FMN can be expressed in terms of the covariant derivative of the quantum field with

respect to the background field, DM = ∂M + i g[AM , · ], as

FMN (A+Q) = − i

g

[
DA+Q
M ,DA+Q

N

]
= FMN (A) + DMQN −DNQM + i g

[
QM ,QN

]
, (5.1)

where FMN (A) is the field strength tensor for the background field only, while DA+Q
M is

the covariant derivative with respect to the complete gauge field. The classical Lagrangian

for the quantum gauge field Q can then be written as

Lcl = Tr

[
DMQNDNQM −DMQNDMQN + 2 i gFMNQMQN

+ 2 i gDMQN
[
QM ,QN

]
+

1

2
g2
[
QM ,QN

][
QM ,QN

]]
, (5.2)

where Tr here denotes the trace over the u(N) Lie algebra, and we have removed terms

independent of Q, as well as terms linear in Q, because they are not relevant for our

effective action calculation.

In anticipation of the string theory results, we now wish to fix the gauge using a

background field version of the non-linear gauge condition introduced by Gervais and Neveu

in ref. [16], setting

G(A,Q) = DMQM + i γ gQMQM = 0 , (5.3)

where γ is a gauge parameter. The gauge-fixing Lagrangian Lgf is then given by

Lgf = −Tr
[(
G(A,Q)

)2]
= −Tr

[
DMQMDNQN + 2 i γ gDMQMQNQN − γ2g2QMQMQNQN

]
. (5.4)

Notice that the overall covariant gauge-fixing parameter which would appear in front of

eq. (5.4) has been set equal to one. Note also that this gauge fixing modifies not only the

gluon propagator, as expected, but also the three- and four-gluon vertices. In particular,

the symmetric nature of the quadratic term in the gauge-fixing function G will generate
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Feynman rules involving the symmetric u(N) tensors dabc, which in turn will induce spu-

rious couplings between gluons and u(1) photons.

Finally, we need the Lagrangian for the Faddeev-Popov ghost and anti-ghost fields,

C and C. It is defined as usual in terms of the gauge transformation of the gauge-fixing

function, as

Lgh = Tr
[
C δCG(A,Q)

]
, (5.5)

using C as parameter of the gauge transformation. The result is

Lgh = 2 Tr
[
− CDMDMC + i gDMC [QM , C]
− i γ g C

{
QM ,D

MC
}

+ γ g2 C
{
QM , [QM , C]

}]
. (5.6)

This completes the construction of the pure Yang-Mills Lagrangian in D dimensions; next,

we want to dimensionally reduce it to d dimensions. The reduction splits the D-dimensional

gauge fields (both classical and quantum) into a d-dimensional field and ns ≡ D−d adjoint

scalars, according to

{AM} →
{
Aµ ,

1

g
MI

}
, {QM} → {Qµ ,ΦI} , (5.7)

with µ = 0, . . . , d−1 and I = 1, . . . , ns, and we have assumed that the classical background

scalars take on constant values MI , which we will use to spontaneously break the gauge

symmetry and give masses to selected components of the gauge field. Similarly, since

we are neglecting the dependence of the fields on the reduced coordinates, the covariant

derivative splits into a d-dimensional covariant derivative and a pure commutator with the

background scalar fields, as

{DM} →
{
Dµ ≡ ∂µ + i g[Aµ, · ], i [MI , · ]

}
. (5.8)

Indeed, the D-dimensional d’Alembertian differs from the d-dimensional one by a mass

term: for any field X,

DMDMX = DµD
µX +

[
MI , [MI , X]

]
. (5.9)

Notice that in this section we work with the metric η = diag(+,−, . . . ,−). However, when

summing over reduced dimensions, our summation convention does not include the negative

signature of the metric, and must be understood simply as a summation over flavor indices

I. With these conventions, the gauge condition in eq. (5.3) becomes

DµQµ + i γ gQµQµ − i [MI ,Φ
I ]− i γ gΦIΦ

I = 0 . (5.10)

When these further changes are implemented in the Lagrangian, a number of non-trivial

interaction vertices are generated. It is then useful to organize the dimensionally-reduced
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Lagrangian as a sum of terms with different operator content. One can write

LQ2 = Tr
[
Qµ
(
DνD

νQµ + 4i gFµρQρ +
[
MI , [MI ,Qµ]

])]
,

LΦ2 = Tr
[
− ΦIDνD

νΦI − ΦI
[
MJ , [MJ ,ΦI ]

]]
,

LCC = Tr
[
− 2 CDµD

µC − 2 C
[
MJ , [MJ , C]

]]
,

LQ3 = −2 i gγ Tr
[
DµQµQνQν

]
− 2 i gTr

[
DµQν [Qµ,Qν ]

]
,

LQΦ2 = 2 i gγ Tr
[
DµQµ ΦIΦ

I
]

+ 2 i gTr
[
DµΦI [Qµ,ΦI ]

]
,

LCCQ = 2 i gTr
[
DµC[Qµ, C]

]
− 2 i γ gTr

[
C
{
Qµ,DµC

}]
, (5.11)

LΦQ2 = −2 γ gTr
[
[MI ,Φ

I ]QµQµ
]
− 2 gTr

[
[MI ,Qµ][ΦI ,Qµ]

]
,

LΦ3 = 2 γ g
[
[MI ,Φ

I ]ΦJΦJ
]

+ 2 gTr
[
[MI ,ΦJ ][ΦI ,ΦJ ]

]
,

LΦCC = 2 gTr
[
[MI , C][ΦI , C]

]
− 2 γ gTr

[
C
{

ΦI , [MI , C]
}]
,

LQ4 = g2
(
ηρµηνσ − (1− γ2)ηρνησµ

)
Tr[QµQνQρQσ] ,

LQ2Φ2 = −2 g2 Tr[ΦIQµΦIQµ] + 2(1− γ2)g2 Tr[ΦIΦ
IQµQµ] ,

LΦ4 = g2 Tr[ΦIΦJΦIΦJ ]− (1− γ2)g2 Tr[ΦIΦ
IΦJΦJ ] ,

LCCQ2 = 2 γ g2 Tr
[
C
{
Qµ, [Qµ, C]

}]
,

LCCΦ2 = −2 γ g2 Tr
[
C
{

ΦI , [Φ
I , C]

}]
.

As is typical in cases of broken symmetry, the Lagrangian in eq. (5.11) displays a variety

of interactions, and is considerably more intricate than the combination of eqs. (5.2), (5.4)

and (5.6). In order to compute Feynman diagrams, and to compare with the string theory

calculation, it is useful to write down an expression for the Lagrangian in terms of compo-

nent fields as well. In order to do so, we now assume that the matrices Aµ andMI are all

mutually commuting: we can then pick a basis of u(N) in which they are diagonal. In this

basis, we write

MI = diag{mA
I } , Aµ = diag{AAµ } , A = 1, . . . , N . (5.12)

Similarly, we write the quantum matrix fields as

[Qµ]AB =
1√
2
QABµ , [ΦI ]

AB =
1√
2
φABI

[C]AB =
1√
2
cAB, [C]AB =

1√
2
cAB, (5.13)

all satisfying XAB = (XBA)∗, since u(N) matrices are Hermitian; the factors of 1/
√

2

ensure that the matrix element fields are canonically normalized. Notice that, thanks to

diagonal form of the classical field Aµ, the covariant derivative Dµ does not mix matrix

entries. Indeed, defining

AABµ ≡ AAµ −ABµ , (5.14)

one can write

[DµX]AB = (∂µ + i g AABµ )XAB, (5.15)
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where indices on the right-hand side are not summed. In particular, the covariant derivative

of diagonal entries reduces to the ordinary derivative. Motivated by this, we can define

a covariant derivative Dµ acting directly on matrix entries, as opposed to u(N) elements.

Suppressing the A,B indices on the derivative symbol, we write

DµX
AB = (∂µ + i g AABµ )XAB −→ [DµX]AB = DµX

AB. (5.16)

Note that Dµ is a derivation, obeying the Leibnitz rule

Dµ(XY )AB = (DµX
A
C)Y CB +XA

B(DµY
CB) , (5.17)

so it can be partially integrated in any integrand with contracted color indices. Treating

the mass matrices in a similar way, we define

mAB
I ≡ mA

I −mB
I , m2

AB ≡
ns∑
I=1

(mAB
I )2. (5.18)

This implies

[MI , X]AB = mAB
I XAB,

[
MI , [MI , X]

]
AB

= m2
AB XAB , (5.19)

where again on the right-hand side the indices A and B are fixed and not summed. As an

example, the term quadratic in Φ in eq. (5.11) can be written in component notation as

LΦ2 = −1

2
φABI DµD

µφBA,I − 1

2
φABI m2

ij φ
BA,I (5.20)

= −1

2

N∑
A=1

φAAI ∂µ∂
µφAA,I −

N∑
1≤A<B

[
(φABI )∗DµD

µφAB,I +m2
AB|φABI |2

]
,

which is the correctly normalized quadratic part of the Lagrangian for N massless real

scalar fields φAA, and 1
2N(N − 1) complex scalars φAB, A < B, with mass |mAB|. To give

a second example, the gauge-fixing condition in component notation reads

DµQABµ + i γ g QACµ Qµ,BC − imAB
I φABI − i γg φAI,Cφ

CB
I = 0 , (5.21)

where C is summed over but there is no summation over A or B. Note that after dimen-

sional reduction and spontaneous symmetry breaking the gauge fixing has become more

unconventional from the d-dimensional point of view, involving scalar fields as well as gauge

fields, and mass parameters.

We conclude this section by giving the explicit expression for the background field

that we will be working with. We choose it so that, for each A, the abelian field strength

FAµν = ∂µA
A
ν − ∂νA

A
µ is a U(1) magnetic field in the {x1, x2} plane. A possible choice,

already employed in ref. [11], is

AAµ (x) = x1ηµ2B
A −→ FAµν = fµνB

A, (5.22)

where we defined the antisymmetric tensor

fµν = ηµ1ην2 − ην1ηµ2 . (5.23)
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We now turn to the evaluation of selected two-loop vacuum diagrams, contributing to the

effective action, which we can then compare with the corresponding expressions derived

from string theory. Preliminarily, we collect useful expressions for the relevant coordinate-

space propagators in the presence of the background field.

5.2 Propagators in a constant background field

The quantum field theory objects that we wish to compute, in order to compare with

string theory results, are two-loop vacuum diagrams contributing to the effective action,

and computed with our chosen background field, eq. (5.22). At two loops, these diagrams

can be computed in a straightforward manner in coordinate space, directly from the path

integral definition of the generating functional,

Z[JABµ , ηAB, ηAB, JABI ] =

∫
[DQABµ DcAB DcAB DφABI ] (5.24)

×exp

[
i

∫
ddx

(
L[QABµ , cAB, cAB, φABI ]

+JABµ QµBA + cBAηAB + ηABcBA + JABI φBAI
)]
,

where Jµ, JI , η and η are matrix sources for the fields in the complete Lagrangian L. The

only non-trivial step is the computation of the quantum field propagators in the presence

of the background field: diagrams are then simply constructed by differentiating the free

generating functional with respect to the external sources. For a background field of the

form of eq. (5.22), the solution is well-known for the scalar propagator (see, for example,

ref. [15]): we briefly describe it here, and discuss the generalization to vector fields.

For scalar fields, the propagator in the presence of the background in eq. (5.22) can be

expressed in terms of a heat kernel as

GAB(x, y) =

∫ ∞
0
dtKAB(x, y; t) , (5.25)

where, defining BAB ≡ BA −BB, one can write

KAB(x, y; t) =
1

(4πt)d/2
e−

i
2
gBAB(x1+y1)(x2−y2)−tm2

AB
gBABt

sinh(gBABt)

× exp

[
1

4t
(xµ − yµ) Σµν(gBABt)(xν − yν)

]
. (5.26)

In eq. (5.26), we have introduced the tensor

Σµν(gBABt) =
gBABt

tanh(gBABt)
η‖µν + η⊥µν , (5.27)

where the projectors ηµν‖ and ηµν⊥ identify components parallel and perpendicular to the

background field, and are given by

ηµν‖ = fµρfρ
ν = δ1

µδ1
ν + δ2

µδ2
ν , ηµν⊥ = ηµν − ηµν‖ . (5.28)
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The propagator GAB(x, y) in eq. (5.25) satisfies(
D(x)
µ Dµ

(x) +m2
AB

)
GAB(x, y) = −i δd(x− y) , (5.29)

where we noted explicitly the variable on which the derivatives act. In fact, covariant

derivatives act on a propagator with color indices (AB) as

D(x)
µ GAB(x, y) ≡

[
∂

∂xµ
+ i gAABµ (x)

]
GAB(x, y) ,

D(y)
µ GAB(x, y) ≡

[
∂

∂yµ
− i gAABµ (y)

]
GAB(x, y) . (5.30)

For real scalar fields, or vanishing backgrounds, one recovers the well-known expression for

the scalar propagator as a Schwinger parameter integral,

GAB
0 (x, y) ≡ lim

BAB→0
GAB(x, y) =

∫ ∞
0

dt
e−tm

2
AB

(4πt)d/2
exp

[
(x− y)2

4t

]
. (5.31)

Ghosts fields are scalars, and they share the same propagator. For gluons, on the other

hand, the background field strength Fµρ enters the kinetic term, given in the first line of

eq. (5.11). The propagator must then satisfy[
ηµρ
(
D(x)
σ Dσ

(x) +m2
AB

)
+ 2 i g FABµρ

]
GAB,ρν(x, y) = i δνµδ

d(x− y) . (5.32)

To diagonalize this equation, one can introduce the projection operators

(P±)ρσ =
η
‖
ρσ ± fρσ

2
, (P⊥)ρσ = η⊥ρσ , (5.33)

satisfying

(P+ + P− + P⊥)µν = ηµν (P+ − P−)µν = fµν . (5.34)

It is then easy to show that the function

GAB,σα(x, y) = −ησα⊥ GAB(x, y)− P σα+ GAB+ (x, y)− P σα− GAB− (x, y) (5.35)

satisfies eq. (5.32), provided the functions GAB± (x, y) satisfy[
D(x)
µ Dµ

(x) +m2
AB ± 2 i gBAB

]
GAB± (x, y) = −i δd(x− y) . (5.36)

Eq. (5.36) simply gives a scalar propagator with a mass shifted by the appropriate back-

ground field. It’s easy therefore to write the solution for the complete gluon propagator

explicitly as

GABµν (x, y) = −
∫ ∞

0
dt
[
η⊥µν + η‖µν cosh(2gBABt) + fµν sinh(2gBABt)

]
KAB(x, y; t) . (5.37)

Note that this can be written also in the more compact and elegant form

GABµν (x, y) = −
∫ ∞

0
dt
[
e−g t F

AB
αβ Sαβ1

]
µν
KAB(x, y; t) , (5.38)
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where Sαβ1 are the Lorentz generators in the spin one representation appropriate for gauge

bosons, [
S αβ

1

]
µν

= −i (δαµδ
β
ν − δ

α
νδ
β
µ) . (5.39)

The propagator in eq. (5.38) naturally generalizes to other representations of the Lorentz

group, simply changing the form of the generators. The spin one-half case, where Sαβ1/2 =

i[γα, γβ ]/4, will be useful for example when studying the gluino contribution to the effective

action in the supersymmetric case.

5.3 Selected two-loop vacuum diagrams

We will now illustrate the structure of the field theory calculation of the effective action

by outlining the calculation of a selection of the relevant two-loop diagrams. A complete

list of the result for all 1PI diagrams depicted in figure 1 is given in appendix C.

We begin by considering the ghost-gluon diagram given by the sum of eq. (C.7) and

eq. (C.8), which we denote by Hb(BAB,mAB). The relevant interaction vertex, involving

ghost, antighost and gluon fields, arises from the sixth line in eq. (5.11), and may be written

explicitly in component language using eq. (5.13). Upon integrating by parts, it can be

rewritten as

LccQ =
i g√

2

[
(δBCδDEδFA − δBEδFCδDA)Dµc

AB Qµ,CDcEF

− γ(δBCδDEδFA + δBEδFCδDA) cAB Qµ,CDDµc
EF
]
. (5.40)

Sewing two copies of this vertex together to obtain the desired diagram, one first of all

observes that terms linear in the gauge parameter γ, which involve double derivatives of

scalar propagators, cancel out upon contracting color indices. Next, one notices that some

of the color contractions lead to a non-planar configuration, which would correspond to an

open string diagram with only one boundary. We are not interested in these contributions,

since the corresponding diagram is built of propagators which are neutral with respect to

the background field, and does not contribute to the effective action. Furthermore, we

do not expect to obtain this diagram from our string configuration, since we start with

a planar worldsheet. Discarding non-planar contributions, one finds that the remaining

planar terms can be written as

Hb(BAB,mAB) = −g2 1 + γ2

4

∫
ddx ddy

[
D(x)
µ GAB(x, y)D(y)

ν GBC(x, y)Gµν,CA(x, y)

+ (ABC)↔ (CBA)
]
. (5.41)

Inserting the expressions for the scalar and gluon propagators given by eq. (5.25) and

eq. (5.38), one can immediately rewrite eq. (5.41) in terms of covariant derivatives of the

heat kernels K. These, in turn, can be written as

D(x)
µ KAB(x, y; t) =

Σµρ(gB
ABt) + i t FABµρ

2 t
(xρ − yρ)KAB(x, y; t) , (5.42)

D(y)
ν KBC(x, y; t) = −Σνσ(gBBCt)− i t FBCνσ

2 t
(xσ − yσ)KBC(x, y; t) ,
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where Σ(gBt) is defined in eq. (5.27). The integrand in eq. (5.41) is then proportional to

the product of three heat kernels, which we write as

3∏
i=1

Ki(x, y; ti) = exp

[
1

4
(xµ − yµ)Σµν(xν − yν)

] 3∏
i=1

e−tim
2
i

(4πti)
d
2

gBiti
sinh(gBiti)

. (5.43)

In eq. (5.43) we have simplified the notation by using a single index i = 1, 2, 3 in place of

the pairs of color indices (AB), (BC), (CA), respectively. Furthermore, we have defined

Σµν =
∑3

i=1 Σµν(gBiti)/ti, and we have taken advantage of the fact that the complex

phases in each Ki(x, y; ti) cancel due to the fact that
∑3

i=1Bi = 0. At this point one

sees that the integrand in eq. (5.41) is translationally invariant, depending only on the

combination z = x − y. We can then, for example, replace the integral over x with an

integral over z while the integral over y gives a factor of the volume of spacetime, which

we will not write explicitly. One needs finally to evaluate the gaussian integral∫
ddz zρzσ exp

[
1

4
zµ Σµν z

ν

]
= −2 (Σ

−1
)ρσ
∫
ddz exp

[
1

4
zµ Σµν z

ν

]
. (5.44)

Note that taking the inverse of Σµν is trivial because it is a diagonal matrix, which can be

written as

Σµν = ∆0 η
⊥
µν

3∏
i=1

1

ti
+ ∆B η

‖
µν

3∏
i=1

gBi
sinh(gBiti)

, (5.45)

where ∆0 and ∆B were defined in eq. (4.29) and eq. (4.31) respectively, while η⊥µν and η
‖
µν

are given in eq. (5.28). One finds then

∫
ddz exp

[
1

4
zµ Σµν z

ν

]
= −i (4π)d/2 ∆

1−d/2
0 ∆−1

B

3∏
i=1

sinh(gBiti)

gBiti
t
d/2
i . (5.46)

Putting together all these ingredients, one may evaluate eq. (5.41). Using the symmetry

of the Schwinger parameter integrand under the exchange t1 ↔ t2 one can write

Hb(Bi,mi) = −i
g2

(4π)d
1 + γ2

2

∫ ∞
0

3∏
i=1

dti
e−t1m

2
1−t2m2

2−t3m2
3

∆
d/2−1
0 ∆B

[
d− 2

∆0
t3 (5.47)

+
2

∆B

sinh(gB3t3)

gB3
cosh(2gB3t3 − gB1t1 − gB2t2)

]
,

which can be directly matched to the string theory result.

We conclude this section by briefly describing the calculation of two further Feynman

diagrams, which arise in our theory because of the pattern of symmetry breaking and

dimensional reduction. First of all, there are diagrams, like eq. (C.12), with the same

topology as eq. (C.8), but with an odd number of scalar propagators, and vertices propor-

tional to the scalar vacuum expectation values mij , characteristic of the broken symmetry

phase. The relevant vertex can be found by expanding LΦQ2 from eq. (5.11) in terms
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of the component fields defined in the eq. (5.13). Upon relabeling the indices and using

mCB
I +mBA

I +mAC
I = 0, it reads

LQ2φ =
g√
2

[
(1 + γ)mCB

I − (1− γ)mAC
I

]
φAB QBCµ Qµ,CA. (5.48)

Labeling this diagram as Hd(BAB,mAB), we find for it the coordinate space expression

Hd(BAB,mAB) =
g2

4

[
(1− γ)mCB

I − (1 + γ)mAC
I

][
(1− γ)mAC

I − (1 + γ)mCB
I

]
×
∫
ddx ddy GAB(x, y)GBCµν (x, y)Gµν,CA(x, y) , (5.49)

where we neglected non-planar contributions, and we used mBC
I = −mCB

I . Manipulations

similar to those leading to eq. (5.47), simplified by the absence of derivative interactions,

yield the result

Hd(Bi,mi) = − i

(4π)d
g2

2

[
(1 + γ2)m2

3 − 2 (m2
1 +m2

2)
]

(5.50)

×
∫ ∞

0

3∏
i=1

dti
e−t1m

2
1−t2m2

2−t3m2
3

∆
d/2−1
0 ∆B

[
d− 2 + 2 cosh(2gB1t1 − 2gB2t2)

]
,

where we relabeled double indices as was done for eq. (5.47).

Finally, we briefly consider a diagram with a quartic vertex: the figure-of-eight scalar

self-interaction shown in eq. (C.20), which we label Ei(Bk,mk). The relevant interaction

term in the Lagrangian comes from LΦ4 in eq. (5.11) and can be written as

Lφ4 =
g2

4

[
δKIδLJ − (1− γ2)δILδJK

]
φABK φBCL φCDI φDAJ , (5.51)

which immediately gives

Ei(Bk,mk) = i
g2

4

[
δKIδLJ−(1−γ2)δILδJK

] ∫
ddx

[
GDA(x, x)GBC(x, x) δACδ

IJδLK

+GCD(x, x)GDA(x, x)δDBδ
LIδJK

]
.

(5.52)

Contracting flavor indices we get, as expected, the product of two one-loop integrals,

Ei(Bk,mk) = i
g2

(4π)d

[
1− 1− γ2

2
(1 + ns)

]
ns

∫ ∞
0

2∏
i=1

[
dti

t
d/2−1
i

g Bi e−tim
2
i

sinh(gBiti)

]
. (5.53)

The diagrams in eqs. (5.1)–(C.19) can be calculated similarly. One easily sees that all these

results, and those for the remaining diagrams, given in appendix C, are directly comparable

with the ones obtained from the field theory limit of the string effective action.
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6 Discussion of results

6.1 Comparison between QFT and string theory

We have now assembled all the results that we need to establish and verify a precise

mapping between the degeneration limits of the string world-sheet and the 1PI Feynman

diagram topologies in the field theory limit. Furthermore, as announced, we can trace

the contributions of individual string states propagating in each degenerate surface, and

these can be unambiguously mapped to space-time states propagating in the field theory

diagrams. This diagram-by-diagram mapping allows us in particular to confirm that co-

variantly quantized superstring theory6 naturally selects a specific gauge in the field theory

limit, and the gauge condition is given here in eq. (5.3).

More precisely, our string theory results for the symmetric degeneration are given

in eq. (4.42) and eq. (4.43). A careful inspection shows that these results reproduce all

the Feynman diagrams in the first two lines of figure 1, which are listed in eqs. (C.3)

through (C.14) in appendix C, with the choice γ2 = 1. Similarly, our string theory results

for the incomplete degeneration are given in eq. (4.54) and eq. (4.55), and one may verify

that one recovers all Feynman diagrams in the last two lines of figure 1, given in eqs. (C.15)

through (C.20). It is easy to identify each term in eq. (4.42) with a particular Feynman di-

agram: for example, the term f111
⊥ in eq. (4.43) matches the diagram resulting in eq. (C.3),

in which all three lines correspond to gluons that are polarized in directions perpendicular

to the external magnetic field; on the other hand, the term f001
‖ f110

⊥ , plus its cyclic per-

mutations, matches the result of eq. (C.4), in which one line carries a gluon polarized in

the plane parallel to the magnetic field, while the other two gluons are polarized in the

directions perpendicular to the magnetic fields. One may easily continue through the list,

identifying the other available combinations of gluons, ghosts and scalars. In a similar vein,

one can associate individual Feynman graphs to each term in eq. (4.54): for example, f11
‖

corresponds to eq. (C.15), f11
⊥ to eq. (C.17), while f11

scal gives the diagram with two scalar

propagators given in eq. (C.20). Note also that diagrams with a quartic vertex where

the two propagators come from different sectors, such as for example eqs. (5.1), (C.18)

and (C.19), all vanish for γ2 = 1, so it comes as no surprise that no contribution of this

kind arises on the string theory side.

We finally note that we can also characterize the contributions to all 1PI Feynman

diagrams according to the Schottky multiplier they originate from. As an example, consider

the infinite product over the Schottky group which arises from the determinant of the non-

zero modes of the Laplacian, appearing in eq. (3.11). Tracing the gluon contributions to

different Feynman diagrams back to that product, one may verify that all terms appearing

in 1PI diagrams originate from at most one value of the index α in the product. More

precisely, gluon contributions in eq. (4.42) come from Tα = {S1,S2,S
−1
1 S2}, and if, say, a

factor of k
1/2
1 =

√
p1
√
p3 comes from the infinite product, then the necessary factor of

√
p2

must come from elsewhere in the amplitude. On the other hand, all terms in eq. (4.54)

6On the other hand, it has been shown in refs. [72, 73] that light-cone quantization of string theory

results in quantum field theory amplitudes computed in a light-cone gauge.
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come from Tα = S1S2. This is not surprising from a world-sheet point of view: in fact,

one may recall from figure 5 that S1S2 corresponds to a homology cycle which passes

around both handles with a self-intersection between them, and furthermore this is the

only Schottky group element with this property which survives in the field theory limit.

We see that this homological property is directly related to the graphical structure of the

resulting Feynman diagram.

6.2 Comparison with bosonic string theory

It is interesting to compare our results with the field theory limit of the bosonic string

effective action which was studied in refs. [15, 35, 67]. This comparison was discussed also

in [11], but we are now in a position to make a more detailed analysis.

Bosonic strings are clearly a simpler framework, since the world-sheet is an ordinary

two-dimensional manifold, and not a super-manifold: one can then use the techniques

applying to ordinary Riemann surfaces, and specifically the (purely bosonic) Schottky

parametrization discussed in detail for example in ref. [11]. At two loops, one can use the

SL(2,R) invariance of the amplitude to choose the fixed points of the two Schottky group

generators as

η1 = 0 , ξ1 =∞ , η2 ≡ u , ξ2 = 1 . (6.1)

The two-loop partition function can then be written as

Z2(~ε, ~d ) =

∫
dk1 dk2 du

k2
1 k

2
2 (1− u)2

Fgh(µ)F
(~ε )
‖ (µ)F⊥(µ)F

(~d )
scal(µ) , (6.2)

where µ denotes the set of bosonic moduli, µ = {k1, k2, u}, and one may compare with

the corresponding two-loop superstring expression, given in eq. (3.18). Note that the

integration variable u is equal to the gauge-fixed value of a projective-invariant cross ratio of

fixed points, u = η1−η2
η1−ξ2

ξ1−ξ2
ξ1−η2 . The various factors in eq. (6.2), already discussed in [11, 15],

are given by

Fgh(ki, u) = (1− k1)2 (1− k2)2
∏
α

′ ∞∏
n=2

(1− knα)2,

F
(~ε )
‖ (ki, u) = e−iπ~ε·τ ·~ε [det(Im τ~ε)]

−1
∏
α

′ ∞∏
n=1

(
1− e2πi~ε·τ · ~Nα knα

)−1 (
1− e−2πi~ε·τ · ~Nα knα

)−1
,

F⊥(ki, u) = [det(Im τ)]−(d−2)/2
∏
α

′ ∞∏
n=1

(1− knα)−d+2, (6.3)

F
(~d )
scal(ki, u) =

ns∏
I=1

e
~dI ·τ ·~dI/(2πiα′)

∏
α

′ ∞∏
n=1

(1− knα)−ns .

Here τ is the period matrix of the Riemann surface, whose expression in the Schottky

parametrization can be found, for instance, in eq. (A.14) of [31]. Similarly, τ~ε is the twisted

period matrix, the bosonic equivalent of τ~ε, computed here in appendix B.

The most obvious difference between the measures in eq. (3.18) and eq. (6.2) is the

occurrence of half-integer powers of the multipliers in the former. In the bosonic string,
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the mass level of states propagating in the i-th loop increases with the power of ki, whereas

in the superstring it increases with the power of k
1/2
i . Necessarily, the propagation of a

massless state must correspond to terms of the form dki/ki = d log ki in the integrand, so

tachyons propagating in loops correspond to terms of the form dki/k
2
i in the bosonic theory

and dki/k
3/2
i in the superstring, as seen explicitly in eq. (6.2) and in eq. (3.18), respectively.

These tachyonic states must be removed by hand in the bosonic theory, whereas they are

automatically eliminated from the spectrum of the superstring upon integrating over the

odd moduli and carrying out the GSO projection.

The identification of the symmetric degeneration proceeds in the same way for the two

theories: in particular, the symmetry of figure 6a leads to the choice of the parameters pi,

defined by eq. (4.12). The cross-ratio u can then be written as

u =
(1 + p1)(1 + p2) p3

(1 + p3)(1 + p1p2p3)
, (6.4)

and the integration measure takes the symmetric form

dk1

k2
1

dk2

k2
2

du

(1−u)2
(1−k1)2(1−k2)2 =

dp1

p2
1

dp2

p2
2

dp3

p2
3

(1−p2p3)(1−p1p3)(1−p1p2) . (6.5)

It is interesting to note that in the field theory limit a number of contributions arise in

slightly different ways in the two approaches. As an example, let us consider the twisted

determinant of the period matrix for the bosonic string. To lowest order in ki, it is given

by a combination of hypergeometric functions with argument u, in a manner similar to

what happens for its supersymmetric counterpart. In the neighborhood of the symmetric

degeneration, the hypergeometric functions can be expanded in powers of p3, and the

bosonic string determinant reduces to

det(Im τ~ε) =
1

4π2(α′)2

[
∆B − 2α′p3 cosh

(
g (2B3t3 −B1t1 −B2t2)

) sinh(gB3t3)

gB3

+O
(
p1, p2, p

2
3; (α′)2

)]
, (6.6)

where ∆B is defined in eq. (4.31). We note that the term proportional to p3 in eq. (6.6)

receives a contribution from the series expansion of the hypergeometric functions, and

contributes to Feynman diagrams with a gluon polarized parallel to the magnetic field

propagating in the leg parametrized by t3.

For the superstring, the situation changes: one needs to keep terms only up to order

qi, which implies that all the hypergeometric functions appearing in the expression for

the supersymmetric twisted determinant can be replaced by unity. Since the first-order

term in the expansion of the hypergeometric functions is crucial in order to get the correct

coefficient of p3 in eq. (6.6), and in turn to match the field theory diagrams, it is necessary

that terms proportional to q3 arise from the nilpotent contributions to det(Im τ~ε). This is

indeed what happens: expanding the supersymmetric twisted determinant in powers of qi
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one finds

det(Im τ~ε) =
1

4π2(α′)2

[
∆B − 2α′q3 θ̂12φ̂12 cosh

(
g(2B3t3 −B1t1 −B2t2)

)sinh(gB3t3)

gB3

+O
(
q1, q2, q

2
3; (α′)2

)]
. (6.7)

To be precise, we note that terms proportional to p3 and q3 θ̂12φ̂12 in det(Im τ~ε) and

det(Im τ~ε), respectively, also receive contributions from sources other than the ones we

have discussed, specifically from factors of the form uniεi/2, with ni integers. It is easy to

see, however, that these contribute in the same way in the two cases, since in the bosonic

case we have

uniεi/2 = p
niεi/2
3

(
1 +

niεi
2

p3

)
+O(p1, p2, p

2
3) , (6.8)

while in the superstring case we get

uniεi/2 = p
niεi/2
3

(
1 +

niεi
2

q3 θ̂12φ̂12

)
+O(q1, q2, q

2
3) . (6.9)

As a consequence, and as required, when all of the other factors are inserted, the coefficient

of p1p2p3 in the bosonic string measure is the same as the coefficient of q1q2q3 θ̂12φ̂12 in

the superstring measure, and the same field theory amplitude is obtained for the massless

sectors of the bosonic and supersymmetric theories.

The terms computed in section 4.5, which correspond to field theory diagrams with

the topology of the diagrams in the bottom two rows of figure 1, as well as 1PR graphs,

also appear in the bosonic theory. In fact, one gets once more an expression of the form of

eq. (4.47) in the field theory limit, but the integrals I1, I2 and I3 get replaced by

Ĩ1 =

∫ 1

0

du

(1− u)2
, Ĩ2 =

∫ 1

0
du , Ĩ3 =

∫ 1

0

du

u2
. (6.10)

When using the bosonic string, the integral Ĩ3 has to be discarded by hand, either by

arguing that it corresponds to tachyon propagation, or by explicitly matching to the field

theory result. In the case of the superstring, on the other hand, the correct result emerges

automatically, provided a consistent integration procedure in super-moduli space is fol-

lowed. The complete answer for the four-point vertex diagrams emerges in both cases from

the terms proportional to I2 = Ĩ2 = 1. As in the superstring case, the contribution Ĩ1 is

related to the separating degeneration.
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A Super Schottky groups

In this appendix we discuss the super-Schottky parametrization of super moduli space in

the Neveu-Schwarz sector, and we compute some relevant geometric quantities in this

parametrization. Bosonic Schottky groups are discussed, for example, in section 2 of

ref. [11]: here we focus only on the supersymmetric case.

A.1 Super-projective transformations

Super-projective transformations are automorphisms of the super-Riemann sphere CP1|1,

which is defined in terms of homogeneous coordinates in C2|1 by the equivalence relation

(z1, z2|θ) ∼ (λz1, λz2|λθ) for non-zero complex λ, where the bosonic coordinates z1 and z2

are not allowed to vanish simultaneously. To fix the superconformal structure, we introduce

a skew-symmetric quadratic form, using a bra-ket notation 〈u|v〉 defined by7

〈u| = (u2,−u1, θ) , |u〉 = (u1, u2|θ)t , (A.1)

satisfying 〈u|v〉 = −〈v|u〉. This bracket is related to the super-difference between two

points, z−w, defined in eq. (3.5), as follows: if |z〉 = (λ1z, λ1, λ1ψ)t, and |w〉 = (λ2w, λ2,

λ2θ)
t, for λ1, λ2 6= 0, then

〈w|z〉 = λ1λ2(z−w) = λ1λ2(z − w − ψθ) . (A.2)

The group of transformations which preserves the skew-symmetric quadratic form is the

group OSp(1|2), which can be realised by GL(2|1) matrices of the form

S =

 a b α

c d β

γ δ e

 , (A.3)

where the five even and four odd variables are subject to the two odd and two even con-

straints, (
α

β

)
=

(
a b

c d

)(
−δ
γ

)
, ad− bc− αβ = 1 , e = 1− αβ , (A.4)

so that the group has dimension 3|2.

We can define a map from homogeneous coordinates to superconformal coordinates by

f : {(z1, z2|θ)t | z2 6= 0} → C1|1, (z1, z2|θ)t 7→ f
(
(z1, z2|θ)t

)
≡ (z1/z2|θ/z2) . (A.5)

7Notice that 〈u|v〉 = −〈u,v〉 where 〈u,v〉 is the skew-symmetric quadratic form introduced in eq. (5.54)

of ref. [21].
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Then, any other map of the form f ◦ S, with S an OSp(1|2) matrix, also defines supercon-

formal coordinates. Recall [75] that two C1|1 charts (z|θ) and (ẑ|θ̂) belong to the same

superconformal class whenever Dθẑ = θ̂ Dθθ̂, where

Dθ ≡ ∂θ + θ∂z (A.6)

is the super derivative which satisfies D2
θ = ∂z. In particular, we can cover CP1|1 with

two superconformal charts z1 = f
(
(z1, z2|θ)t

)
and z2 = (f ◦ I)

(
(z1, z2|θ)t

)
, where I is the

OSp(1|2) matrix

I =

 0 −1 0

1 0 0

0 0 1

 . (A.7)

In general, one can find an OSp(1|2) matrix taking two given points |u〉 = (u1, u2|θ)t

and |v〉 = (v1, v2|φ)t to |0〉 ≡ (0, 1|0)t and |∞〉 ≡ (1, 0|0)t ∼ I|0〉 respectively; one such

matrix is

Γuv =
1√
〈v|u〉


u2 −u1 θ

v2 −v1 φ

u2φ−v2θ√
〈v|u〉

v1θ−u1φ√
〈v|u〉

√
〈v|u〉 − θφ√

〈v|u〉

 . (A.8)

We can further stipulate that a point |w〉 = (w1, w2|ω)t be mapped to a point equivalent to

(1, 1|Θuwv)t, where now there is no freedom in choosing the fermionic co-ordinate, which

is therefore a super-projective invariant built out of the triple {|u〉, |v〉, |w〉}. The image

of |w〉 under Γuv is then

Γuv |w〉 =
1√
〈v|u〉

(
〈u|w〉, 〈v|w〉

∣∣∣∣ θ〈w|v〉+ φ〈u|w〉+ ω〈v|u〉+ ωθφ√
〈v|u〉

)t

. (A.9)

A general dilatation of the superconformal coordinates corresponds to the OSp(1|2) matrix8

P(ε) =

 ε 0 0

0 ε−1 0

0 0 1

 , (A.10)

which has |0〉 and |∞〉 as fixed points. Note that for |ε| < 1, |0〉 is an attractive fixed point

and |∞〉 is a repulsive fixed point.

We may use such a dilatation to scale the bosonic coordinates of Γuv|w〉 as desired,

obtaining for example

P

(√
〈v|w〉√
〈u|w〉

)
Γuv|w〉 ∼

(
1, 1

∣∣∣∣ θ〈v|w〉+ ω〈u|v〉+ φ〈w|u〉+ θωφ√
〈u|v〉〈w|u〉〈v|w〉

)t

, (A.11)

which gives us an explicit expression for the odd super-projective invariant Θz1z2z3 , as

Θz1z2z3 =
ζ1〈z3|z2〉+ ζ2〈z1|z3〉+ ζ3〈z2|z1〉+ ζ1 ζ2 ζ3√

〈z2|z1〉〈z3|z2〉〈z1|z3〉
, (A.12)

where zi = (zi|ζi), as in eq. (3.4) of [64] and eq. (3.222) of [20].

8Note that the same symbol P was used in eq. (4.10) of ref. [11] for a square root of this definition.
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As with projective transformations, super-projective transformations preserve cross-

ratios of the form

(z1, z2, z3, z4) ≡ 〈z1|z2〉 〈z3|z4〉
〈z1|z4〉 〈z3|z2〉

=
(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
; (A.13)

one must keep in mind, however, that the simple relations between the three possible

cross ratios that can be constructed with four points are modified by nilpotent terms. For

example, one finds that

(z1, z2, z3, z4) + (z1, z3, z2, z4)− (z1, z3, z2, z4)1/2 Θz1z3z2 Θz1z4z2 = 1 , (A.14)

which can be checked quickly by noting that the left-hand side is OSp(1|2)-invariant, so

that one can fix 3|2 parameters, for example by choosing |z1〉 = |0〉, |z2〉 = |∞〉, and

|z4〉 = (1, 1|φ)t.

With these ingredients, it is now easy to construct a super-projective transformation

with chosen fixed points and multiplier: using Γuv to map a pair of points |u〉 and |v〉 to

|0〉 and |∞〉 respectively, one easily verifies that the transformation

S = Γ−1
uv P(−eiπςk1/2) Γuv (A.15)

has |u〉 as an attractive fixed point and |v〉 as a repulsive fixed point. Here k, for which

we take |k| < 1, is called the multiplier9 of the super-projective transformation S.

The bracket notation has the benefit of allowing us to write S as

S = 1l +
1

〈v|u〉
[(

1 + eiπςk
1
2
)
|v〉〈u| −

(
1 + e−iπςk−

1
2
)
|u〉〈v|

]
, (A.16)

which satisfies
〈S(z)|u〉
〈S(z)|v〉

= k
〈z|u〉
〈z|v〉

. (A.17)

A.2 The super Schottky group

Taking the quotient of CP1|1 by the action of S, defined in eq. (A.16), is equivalent to

the insertion of a pair of NS punctures at |u〉 and |v〉, which are then sewn with a sewing

parameter related to k. To see this, recall that sewing of NS punctures at P1 and P2

is defined by taking two sets of superconformal coordinates, say (x|θ) and (y|ψ), which

vanish respectively at the two points, (x|θ)(P1) = (0|0) = (y|ψ)(P2), and then imposing

the conditions [9]

xy = −ε2, yθ = εψ , xψ = −εθ , θψ = 0 . (A.18)

Now, let |x〉 and |y〉 be homogeneous coordinates satisfying f|x〉 = (x|θ) and f|y〉 = (y|ψ),

where f is the map defined in eq. (A.5). If we make the identification

|x〉 ∼
(
P(ε) ◦ I

)
|y〉 , (A.19)

9The sign eiπς is related to the spin structure: see the discussion between eq. (3.7) and eq. (3.8) for the

conventions.
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where P and I are defined in eq. (A.10) and eq. (A.7), respectively. Then, by acting on both

sides with f, we get (x|θ) ∼ (−ε2/y
∣∣ εψ/y), which can easily be found to satisfy eq. (A.18).

Let us take (z|ζ) to be a superconformal coordinate on CP1|1, with (z|ζ)(P1) = f|u〉 and

(z|ζ)(P2) = f|v〉. Recall that the super-projective transformation Γuv defined in eq. (A.8)

simultaneously maps |u〉 and |v〉 to |0〉 and |∞〉, respectively. Then if |x〉 = Γuv◦f−1◦(z|ζ)

and |y〉 = I−1 ◦ Γuv ◦ f−1 ◦ (z|ζ), we have that (x|θ) = f|x〉 and (y|ψ) = f|y〉 are local

superconformal coordinates which vanish at P1 and P2 respectively, since I−1|∞〉 = |0〉 and

f|0〉 = (0|0). As a consequence, we can perform a NS sewing by making the identification

in eq. (A.19) using these expressions for |x〉 and |y〉, and we find that we need to impose

an equivalence relation on (z|ζ): we have Γuv ◦ f−1 ◦ (z|ζ) ∼ P(ε)◦ I◦ I−1 ◦Γuv ◦ f−1 ◦ (z|ζ),

or to put it differently,

(z|ζ) ∼ fS f−1 (z|ζ) , S ≡ Γ−1
uv ◦P(ε) ◦ Γuv . (A.20)

This is what we wanted to show, with S matching the definition in eq. (A.16), as long as

we identify ε = −eiπςk1/2, so the NS sewing parameter is directly related to the Schottky

group multiplier. Topologically, this sewing has the same effect (at least on the reduced

space CP1) as cutting out discs around u and v and identifying their boundaries, so this

quotient adds a handle to the surface, increasing the genus by one.

To build a genus-h SRS, we may repeat this sewing procedure h times, choosing h

pairs of attractive and repulsive fixed points ui = (ui|θi), vi = (vi|φi), and h multipliers

ki, for i = 1, . . . , h. The super-Schottky group Sh is the group freely generated by

Si = Γ−1
uivi P

(
− eiπςik

1/2
i

)
Γuivi , i = 1, . . . , h . (A.21)

We then subtract the limit set Λ (the set of accumulation points of the orbits of Sh)

from CP1|1, and we quotient by the action of the super Schottky group. this leads to the

definition

Σh = (CP1|1 − Λ)
/
Sh . (A.22)

Note that the fixed points must be sufficiently far from each other, and the multipliers

sufficiently small, to allow for the existence of a fundamental domain with the topology of

CP1|1 with 2h discs cut out. The fixed points ui, vi and the multipliers ki are moduli for

the surface, but for h ≥ 2 we can use the OSp(1|2) symmetry to fix 3|2 of these: in our

conventions, we take |u1〉 = |0〉, |v1〉 = |∞〉, |v2〉 = |1, 1|Θu1v2v1〉, so the super-moduli

space M̂h has complex dimension 3h− 3|2h− 2.

To build multi-loop open superstring world-sheets in a similar way, we should start

with the super-disc D1|1 which can be obtained by quotienting CP1|1 by the involution

(z|θ) 7→ (z∗|θ), so that RP1|1 becomes the boundary of the disk. A super-projective

map will be an automorphism of D1|1 if it preserves RP1|1, so we should build the super

Schottky group from super-projective transformations whose fixed points ui, vi are in R1|1

and whose multipliers ki are real. If we quotient D1|1−Λ by h of these, then we will get a

SRS with (h+ 1) borders and no handles. The moduli space M̂open
h of such SRSs has real

dimension 3h− 3|2h− 2. In the case of h = 2 surfaces, we use the OSp(1|2) symmetry to

write the fixed points as in eq. (3.16).
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A.2.1 Multipliers

Every element Sα of a super Schottky group is similar to a matrix of the form

P
(
− eiπ~ς· ~Nα k1/2

α

)
, (A.23)

as in eq. (A.10), for some k
1/2
α . We can find k

1/2
α by setting the spin structure around the

b-cycles to zero, ~ς = ~0, then using the cyclic property of the supertrace.10 This leads to a

quadratic equation, with roots

k1/2
α = −

1 + sTr(Sα)±
√(

sTr(Sα) + 1
)2 − 4

2
, (A.24)

one root being the inverse of the other. We then pick k
1/2
α to be the root whose absolute

value satisfies |k1/2
α | < 1. With this choice, we can expand the k

1/2
α in powers of k

1/2
i : for

h = 2, using the fixed points in eq. (3.16), we find

k1/2(S1S2) = −y k1/2
1 k

1/2
2 +O(ki) = −(u1,v1,u2,v2) k

1/2
1 k

1/2
2 +O(ki)

k1/2(S−1
1 S2) =

y

u
k

1/2
1 k

1/2
2 +O(ki) = −(v1,u1,u2,v2) k

1/2
1 k

1/2
2 +O(ki) , (A.25)

where y was defined in eq. (3.19). Note that k1/2(S−1
1 S2) can be obtained from k1/2(S1S2)

by swapping the attractive and repulsive fixed points of S1 in the cross-ratio, as might be

expected.

A.2.2 The super period matrix

The super abelian differentials are an h-dimensional space of holomorphic volume forms,

i.e. sections of the Berezinian bundle, defined on a genus-h SRS. They are spanned by Ωi,

i = 1, . . . , h, which can be normalized by their integrals around the a-cycles, according to

1

2πi

∮
ai

Ωj = δij , (A.26)

while their integrals around the b-cycles define the super period matrix

1

2πi

∮
bi

Ωj ≡ τij . (A.27)

Here ai and bi are closed cycles on the SRS which are projected to the usual homology

cycles on the reduced space. The Ωi’s can be expressed in terms of the super Schottky

parametrization as in eq. (21) of ref. [30]. In our current notation

Ωi(z|ψ) = dz
∑
α

(i)
Dψ log

〈z|Tα|ui〉
〈z|Tα|vi〉

= dz
∑
α

(i)
[
〈z|Φ Tα |ui〉
〈z|Tα|ui〉

− 〈z|Φ Tα |vi〉
〈z|Tα|vi〉

]
, (A.28)

10Recall that the supertrace of a GL(2|1) matrix M = (Mi
j) is given by sTr(M) = M1

1 +M2
2 −M3

3.
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where dz = (dz | dψ), the sum
∑(i)

α is over all elements of the super-Schottky group which do

not have S±1
i as their right-most factor, Dψ is the superconformal derivative Dψ = ∂ψ+ψ∂z,

and finally Φ is the matrix

Φ =

 0 0 1

0 0 0

0 −1 0

 . (A.29)

The matrix Φ has the property that, if f |z〉 = (z|ψ), then

Dψ〈z| = 〈z|Φ , (A.30)

and furthermore for |w〉 = (w, 1|ω)t and |z〉 = (z, 1|ψ)t the map (z|ψ) 7→ (〈w|z〉|〈w|Φ|z〉)
is superconformal. The super period matrix can be computed as

τij =
1

2πi

[
δij log ki − (j)

∑
α

(i) log
〈uj |Tα|vi〉〈vj |Tα|ui〉
〈uj |Tα|ui〉〈vj |Tα|vi〉

]
. (A.31)

The sum is over all elements of the super Schottky group which do not have S±1
j as their

left-most element or S±1
i as their right-most element. It is not difficult to compute the

leading terms of the super period matrix in the small-ki expansion. For h = 2, using the

fixed points in eq. (3.16), we find

2πi τ =

(
log k1 − 2 θφ y

u eiπς2 k
1/2
2 log u

log u log k2 − 2 θφ y
u eiπς1 k

1/2
1

)
+O(ki) (A.32)

so that

4π2 det(Im τ ) = log(k1) log(k2)− log(u)2 (A.33)

− 2 θφ
y

u

(
eiπς2 k

1/2
2 log k1 + eiπς1 k

1/2
1 log k2

)
+O(ki) .

This completes our review of the super Schottky parametrization. Our next task is to

introduce twisted boundary conditions corresponding to external background gauge fields.

B Twisted determinants

B.1 The twisted determinant on a Riemann surface

The world-sheet theory of strings becomes ‘twisted’ in a number of contexts: for example,

on orbifolds [76], in electromagnetic fields [13, 14, 77] or when an open string is stretched

between a pair of D-branes which have a velocity [78] or are at an angle [79] with respect

to each other. If we appropriately pair up the string space-time coordinate fields Xµ

as complex coordinates (for example, in our case, by setting Z± = (X1 ± iX2)/
√

2),

then, in these backgrounds, the world-sheet fields ∂Z± are described by non-integer mode

expansions on the upper-half plane, as in eq. (2.5). This means that, on the double of the

world-sheet,11 ∂Z±(z, z) is no longer a single-valued field but rather has a monodromy,

changing by a factor of e±2πiε as it is transported counter-clockwise around z = 0.

11The double of the upper-half plane is the complex plane, see figure 7.
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Σ

Σ∗

Σ

Figure 7. Recall that the double of a Riemann surface Σ is defined by taking two copies of

Σ, replacing the charts on one copy with their complex conjugates, and identifying corresponding

points on the boundaries of the two copies [24].

Figure 8. The same string diagram can be computed as an open string vacuum multi-loop diagram,

or, in a T-dual setup, as a tree-level interaction between closed strings emitted from D-branes at

angles.

Computing multi-loop amplitudes in these backgrounds is complicated, because it is

not easy to use the sewing procedure when states propagating along plumbing fixture belong

to a twisted sector. We must use, instead, the approach of [67]. This takes advantage of

the fact that, although the ∂Z± fields have non-trivial monodromies along the a-cycles of

the double world-sheet, the monodromies along the b-cycles are trivial. Therefore, the idea

is to build the double world-sheet by sewing along the b cycles, and then to perform the

modular transformation swapping the a and b cycles with each other, in order to obtain

the partition function expressed in terms of the Schottky moduli which are appropriate for

the world-sheet degeneration we are interested in.

From a more physical point of view, we are using the fact that, in a different region of

moduli space, the string diagram can be described as a tree-level interaction between three

closed strings being emitted or absorbed by the D-branes (see figure 8). In terms of closed

string moduli, the string partition function is given by [67]

Z(Fi) =

[ h∏
i=0

√
det(1−G−1Fi)

] ∫
[dZ]cl

h Rh(qi,~ε) . (B.1)

The pre-factor is just the Born-Infeld lagrangian for the background fields on the D-branes,

divided by
√
G because all of the background-field independent factors are included in the

measure [dZ]cl
h .

The factor Rh(qi,~ε ), which is dependent on both the world-sheet moduli and the

background field strengths, has a simple form, so long as it is expressed in terms of the

closed string Schottky moduli; in particular, these include the multipliers of a Schottky

group whose 2h Schottky circles are homotopic to the b cycles of the world-sheet, instead

of the a cycles which we have been using so far. Denoting the multiplier of element Tα of
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this Schottky group as qα, we have

Rh(qi,~ε ) =

∏
α
′∏∞

n=1(1− qnα)2∏
α
′∏∞

n=1(1− e−2πi ~Nα·~εqnα)(1− e2πi ~Nα·~εqnα)
, (B.2)

where the notation
∏′
α was defined after eq. (3.7).

The modular transformation that swaps the a and b cycles, necessary to switch between

the open string and the closed string channels, acts non-analytically on the Schottky group

multipliers.12 We need to rewrite eq. (B.2) in terms of the open string moduli, so the

following strategy is used: Rh(qi,~ε ) is re-expressed in terms of functions which transform

in simple ways under modular transformations, the modular transformations are carried

out, and finally the results are re-expressed in terms of the open string Schottky moduli,

allowing us to investigate the field theory limit. This analysis was performed in [33, 35]

and the results are summarized in section 2 of [15]. Assuming without loss of generality

that εh 6= 0, the result is that

Rh(qα,~ε ) = Rh(kα,~ε · τ) e−iπ~ε·τ ·~ε det(Im τ)

det(Im τ~ε)
, (B.3)

where τ is the period matrix computed in the open string channel, while τ~ε is the twisted

period matrix, defined by eq. (3.24) of [67] as

(τ~ε )ji =


1

2πi

∫ Sj(w)
w Ω~ε·τi (z) e

2πi
h−1

~ε·~∆(z) j 6= h 6= i

S~ε·τh −1

S~εh−1
j = i = h ,

0 otherwise ,

(B.4)

where

S~εi ≡ e2πiεi . (B.5)

The Prym differentials Ω~ε
i appearing in the integrand in the first line of eq. (B.4) are (h−1)

one-forms with trivial monodromies along the a cycles and twists along the b cycles. More

precisely, they obey

Ω~εi
(
Sj(z)

)
= S~εj Ω~εi(z) , (B.6)

and they are regular everywhere. Assuming again that εh 6= 0, they can be expressed as in

eq. (3.11) of [67],

Ω~εj(z) = ζ~εj (z)−
1− S~εj
1− S~εh

ζ~εh(z) j = 1, . . . , h− 1 . (B.7)

In eq. (B.7), the ζ~εi are a basis of one-forms which are holomorphic everywhere, except at

some arbitrarily chosen base point z0. They can be computed in the Schottky parametriza-

12This is easy to see in the h = 1 case, where the open string multiplier k is related to the annulus period

τ via k = e2πiτ , and similarly the multiplier in the closed string channel, q, is related to the torus period

τ cl via q = e2πiτ
cl

. The two periods, in turn, are related by τ cl = −1/τ , so that (log q)(log k) = 4π2.
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tion as in eq. (3.15) of [67],

ζ~εi (z) =

[
S~εi
∑
α

(i)
e2πi~ε· ~Nα

(
1

z − Tα(ηi)
− 1

z − Tα(ξi)

)
(B.8)

+ (1− S~εi )
∑
α

e2πi~ε· ~Nα
(

1

z − Tα(z0)
− 1

z − Tα(aαi )

)]
dz ,

where the first sum is over all Schottky group elements which do not have Si as their

right-most factor, and the second sum is over all Schottky group elements. ηi and ξi are

the attractive and repulsive fixed points of the generator Si, respectively; note that the

dependence on z0 cancels out when the ζ~εi are combined as in eq. (B.7); furthermore, we

defined

aαi =

{
ηi if Tα = TβS

`
i with ` ≥ 1

ξi otherwise .
(B.9)

The other object appearing in the integrand in the first line of eq. (B.4) is the vector of

Riemann constants, or Riemann class; it can be expressed in the Schottky parametrization

as in eq. (A.21) of [31],

∆i(z) =
1

2πi

[
− 1

2
log ki + iπ +

h∑
j=1

(j)
∑
α

(i) log
ξj − Tα(ηi)

ξj − Tα(ξi)

z − Tα(ξi)

z − Tα(ηi)

]
, (B.10)

where the second sum, (j)
∑

α
(i), is over all elements of the Schottky group which have

neither S±1
j as their left-most factor nor S±1

i as their right-most factor. Owing to the

transformation properties of ∆i(z), one finds that

∆i(z) = ∆i(z0)− h− 1

2πi

∫ z

z0

ωi , (B.11)

where ωi are the abelian differentials, defined for example in eq. (A.10) of [31]. It is easy

to check that the integrand of the first line of eq. (B.4) has twists along the a cycles and

trivial monodromies along the b cycles, so that it does not depend on the choice of the

integration limit w.

For simplicity, from now on we focus only on the case h = 2, which yields

det[Im τ~ε] =
1

2πi

S~ε·τ2 − 1

S~ε2 − 1

∫ S1(w)

w
Ω~ε·τ (z) e2πi~ε·~∆(z) , (B.12)

where Ω~ε is the sole component of the Prym form for h = 2. Instead of explicitly evaluating

the integral over z in eq. (B.12), it is possible to find an alternative expression for det(Im τ~ε)

in the following way. We begin by constructing a set of matrices Dij(~ε ), defined in eq. (3.14)

of [67] as integrals of Prym differentials. For each i, j = 1, . . . , h − 1, Dij(~ε ) is a space-

time rotation matrix, while the i, j indices refer to world-sheet homology cycles. Using the

complex space-time coordinates in which the background fields are diagonal, the matrix

Dij(~ε ) is also diagonal, with two non-trivial entries Dij(±~ε ). In particular, for h = 2, since
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ξ1 η1 η2 ξ2

a1 a2a1 a2

γP

Figure 9. The Pochhammer contour γP = a2a1a2
−1a1

−1.

γP

η1 η2

Figure 10. Our Pochhammer contour (figure 9) can be deformed arbitrarily close to four copies

of the line interval [η1, η2] ⊆ R, with each copy on a different branch of the Prym form Ω̃~ε.

there is only one independent Prym differential, one also has only one independent matrix

D(±~ε ). It is given by

D(~ε ) ≡ 1

2πi

(S~ε1 )−1

1− S~ε2

∫
γP

Ω̃~ε, (B.13)

where γP ≡ a2a1a2
−1a1

−1 is the Pochhammer contour shown in figure 9, and Ω̃~ε is the

Prym differential which has trivial monodromies around the b cycles and monodromies

S~εi around the a cycles. Ω̃~ε can be expressed in the Schottky representation thanks to a

relation derived in [67], given by eq. (3.28) of that reference. In the case h = 2, it becomes

simply

Ω̃~ε(z) =
e2πi~ε·~∆(z) Ω~ε·τ (z)

(τ~ε)11
=

1− S~ε·τ2

1− S~ε2

e2πi~ε·~∆(z) Ω~ε·τ (z)

det(Im τ~ε)
(B.14)

where the second equality is obtained by writing (τ~ε)11 in terms of det(Im τ~ε), using

eq. (B.4). Note that γP crosses each boundary of the worldsheet once in each direction, so

it starts and ends on the same branch of Ω̃~ε, and the integral in eq. (B.13) is well-defined.

Now we can use eq. (B.7), eq. (B.8) and eq. (B.10) to get an expression for Ω̃~ε(z), via

eq. (B.14). To this end, we can expand Ω̃~ε(z) as a power series in ki, and verify that, to

first order, it has poles only at the Schottky fixed points. At this order, we are then free

to deform the Pochhammer contour through the Schottky circles and arbitrarily close to

the line interval [η1, η2], as in figure 10. The integral can now be written as∫
γP

Ω̃~ε = (1− S~ε1 )(1− S~ε2 )

∫ η2

η1

Ω̃~ε +O(k2
i ) . (B.15)

Inserting eq. (B.15) and eq. (B.14) into eq. (B.13), we now find a relation between the

quantity D(~ε ) and det(Im τ~ε), as reported in eqs. (4.13)–(4.15) of [67],

D(~ε ) = − 1

2πi

1− (S~ε1 )−1

1− S~ε2

1− S~ε·τ2

det(Im τ~ε)

∫ u

0
e2πi~ε·~∆(z) Ω~ε·τ (z) +O(k2

i ) . (B.16)
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Next, we can exploit the relationship between D(~ε ) and D(−~ε ) given by eq. (3.21) of [67];

for h = 2 it can be stated as13

D(~ε )−D(−~ε ) = −2 i
sin(πε1) sin(πε1 + πε2)

sin(πε2)
. (B.17)

This simple expression for the antisymmetric part of the function D can be found [36] by

cutting between the Schottky circles to get a simply-connected fundamental domain for Σh,

then using Stokes’ theorem to integrate Ω̃~ε ∧ Ω̃−~ε, which vanishes since it is a (2, 0) form.

Inserting eq. (B.16) in eq. (B.17), we can finally use the fact that det(Im τ~ε) is even under

the substitution ~ε 7→ −~ε, as follows from eq. (B.3). We can then solve for the determinant,

to find

det(Im τ~ε) =
1

4π

e−iπ(ε1+ε2)(1−S~ε·τ2 )

sin
(
π(ε1+ε2)

) ∫ u

0
e2πi~ε·~∆(z) Ω~ε·τ (z) + (~ε→ −~ε ) +O(k2

i ) , (B.18)

which provides a simple route to the calculation of the twisted determinant to first order

in the multipliers.

B.2 The twisted determinant on a super Riemann surface

We now turn to the supersymmetric generalization of eq. (B.18), which will be needed to

compute the superstring partition function in our chosen background. As a starting point,

we backtrack slightly, and write down an expression for the bosonic twisted determinant

of the period matrix, which can be obtained by the same procedure leading to eq. (B.16),

but without using eq. (B.15) to deform the integration cycle. We write

det(Im τ~ε) =
1

4π

e−iπ(ε1+ε2)(1−S~ε·τ2 )

sin
(
π(ε1+ε2)

)
(1−S~ε1)(1−S~ε2)

∫
γP

e2πi~ε·~∆(z) Ω~ε·τ (z)+(~ε→ −~ε ) . (B.19)

To proceed, we must replace ∆i(z) and Ω~ε with their supersymmetric counterparts, ∆i(z)

and Ω~ε respectively. Furthermore, we must replace the period matrix τ with the super-

period matrix τ in the phases e2πi(~ε·τ)i , and we must carry out the integration over a

Pochhammer contour γP = a2a1a
−1
2 a−1

1 on the super Riemann surface. The result is the

same as in eq. (B.19), where the individual ingredients have been supersymmetrized.

The integrand will now be locally of the form dz f(z|ψ). One can, as usual, carry out

the dψ integral, simply by picking out the coefficient of ψ in the integrand. The integral

is then reduced to an ordinary line integral over a Pochhammer contour γP in the reduced

space of the SRS. As in section B.1, we are free at this point to expand the integrand as

a power series in ki, and deform γP as in eq. (B.15). This yields

det(Im τ~ε) =
1

4π

e−iπ(ε1+ε2)(1− S~ε·τ2 )

sin
(
π(ε1 + ε2)

) ∫ u

0
∂ψ
[
e2πi~ε· ~∆(z|ψ)Ω~ε·τ (z|ψ)

]
+ (~ε→ −~ε ) +O(ki) . (B.20)

13To get this from eq. (3.21) of [67], we have to put εh = −ε2; the relative sign occurs because our a2 and

b2 homology cycles have opposite orientation.
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Now we need to define the objects appearing in eq. (B.20). The Prym differentials Ω~εi
we used to compute det(Im τ~ε) are holomorphic one-forms; the natural analogues on SRSs

are holomorphic volume forms: sections of the Berezinian bundle. Just as holomorphic

differentials can be written locally as dz ∂zf(z), sections of the Berezinian bundle can

be written locally as dzDψ f(z|ψ), which is a combination invariant under changes of

superconformal coordinates [21]. More specifically, we can write eq. (B.8) for ζ~εi as

ζεi (z) = dz
∂

∂z

{
S~εi
∑
α

(i)
e2πi~ε· ~Nα log

[
z − Tα(ηi)

z − Tα(ξi)

]
(B.21)

+ (1− S~εi )
∑
α

e2πi~ε· ~Nα log

[
z − Tα(z0)

z − Tα(aαi )

]}
.

To find the corresponding volume forms, we replace the expressions inside the logarithms

with their natural superconformal analogues, and replace dz ∂z 7→ dzDψ. This yields

ζ~εi (z|ψ) = dzDψ

{
S~εi
∑
α

(i)
e2πi~ε· ~Nα log

[
〈z|Tα|ui〉
〈z|Tα|vi〉

]
+ (1− S~εi )

∑
α

e2πi~ε· ~Nα log

[
〈z|Tα|z0〉
〈z|Tα|ai〉

]}
= dz

{
S~εi
∑
α

(i)
e2πi~ε· ~Nα

[
〈z|ΦTα|ui〉
〈z|Tα|ui〉

− 〈z|ΦTα|vi〉
〈z|Tα|vi〉

]
(B.22)

+ (1− S~εi )
∑
α

e2πi~ε· ~Nα
[
〈z|ΦTα|z0〉
〈z|Tα|z0〉

− 〈z|ΦTα|ai〉
〈z|Tα|ai〉

]}
,

where we used Φ defined in eq. (A.29), |z0〉 is an arbitrary base point, and

|aαi 〉 =

{
|ui〉 if Tα = TβS

`
i with ` ≥ 1 ,

|vi〉 otherwise .
(B.23)

It is now possible to write down a basis of (h−1) holomorphic volume forms Ω~ε
j(z), with the

expected monodromies, using the analogue of eq. (B.7), and noting that the dependence

on the base point |z0〉 cancels out. They are given by

Ω~ε
j(z|ψ) = ζ~εj(z|ψ)−

1− S~εj
1− S~εh

ζ~εh(z|ψ) , j = 1, . . . , h− 1 . (B.24)

We can calculate Ω~ε
j(z|ψ) as a series expansion in powers of k

1/2
i ; then, as usual, truncating

to finite order, we only need to include finitely many terms in the sum in eq. (B.22). In

particular, restricting ourselves to h = 2, and since we only need terms of order ki
1/2, the

required super Schottky group elements are

Tα ∈
{
Id,S±1

1 ,S±1
2 , (S1S2)±1, (S−1

1 S2)±1, (S1S
−1
2 )±1, (S2S1)±1

}
. (B.25)
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Using the fixed points given in eq. (3.16), we can compute Ω~ε(z) ≡ Ω~ε
1(z) to the required

accuracy, obtaining

Ω~ε(z|ψ) = dz

{
− (1− S~ε1)S~ε2 θ

(1− S~ε2 )(u− z)
+

(1− S~ε1)φ

(1− S~ε2)(1− z)
(B.26)

+
[S~ε1(1− S~ε2)u− (S~ε1 − S~ε2 − S~ε1 S~ε2 u+ u)z + z2(1− S~ε2)]ψ

(1− S~ε2)(u− z) z (1− z)

+ eiπς1 k
1/2
1

[
− (1− S~ε1)S~ε1 (S~ε2 θ − φ)

(1− S~ε2) z
+

(1− S~ε1)(S~ε2 θ − uφ)

S~ε1(1− S~ε2)u

]
+ eiπς2 k

1/2
2

[
− S

~ε
2(1− S~ε1) θ

u− z
+
S~ε2(1− S~ε1 u)φ

u− z
− (S~ε1 − u) θ

S~ε2 u (1− z)

− S
~ε
2(1− S~ε1 u) θ φψ

(u− z)2
− (S~ε1 − u) θ φψ

S~ε2 u (1− z)2
− (1− S~ε1)φ

S~ε2 (1− z)

]
+ eiπ(ς1+ς2) k

1/2
1 k

1/2
2

[
S~ε1 S~ε2 [φ− S~ε1 uφ− (1− S~ε1) θ]

z

+
S~ε2 [(1− S~ε1) θ − φ+ S~ε1 uφ]

S~ε1 u
− (u− S~ε1) θ − (1− S~ε1)uφ

S~ε1 S~ε2 u

+
S~ε1[u θ − S~ε1 θ − uφ (1− S~ε1)]

S~ε2 u z
+

(1− S~ε1)S~ε1 (1− u) θ

(1− S~ε2)u (1− z)

− (1− S~ε1)S~ε1 (1− u)φ

(1− S~ε2)S~ε2 u (1− z)
− (1− S~ε1)S~ε1 S~ε2 (1− u) (S~ε2 θ − φ)

(1− S~ε2) (u− z)

− (1− S~ε1)S~ε1 S~ε2 (1− u) θ φψ

(1− S~ε2) (u− z)2
− (1− S~ε1)2(1 + S~ε1) (1− u) θ φψ

S~ε1 (1− S~ε2)u (1− z)2

+
(1− S~ε1) (1− u)(uφ− S~ε2 θ)
S~ε1 (1− S~ε2)S~ε2 (1− z)u

+
(1− S~ε1) (S~ε2)2 (1− u) θ

S~ε1(1− S~ε2)u (u− z)

+
(1− S~ε1)S~ε2 (1− u) θ φψ

S~ε1(1− S~ε2) (u− z)2
− (1− S~ε1)S~ε2 (1− u)φ

S~ε1 (1− S~ε2) (u− z)

]
+O(ki)

}
,

where S~εi is defined in eq. (B.5).

In our calculation of the twisted super period matrix, the Prym differential appears

not with monodromies ~ε, but (~ε · τ ); therefore to compute Ω~ε·τ (z) we need to replace S~εi in

eq. (B.26) with S~ε·τi . Using τ from eq. (A.32), we find

S~ε·τ1 = e2πi(~ε·τ )1 = kε11 u
ε2

(
1− 2ε1eiπς2k

1/2
2

y

u
θφ

)
+O(ki) , (B.27)

S~ε·τ2 = e2πi(~ε·τ )2 = kε22 u
ε1

(
1− 2ε2eiπς1k

1/2
1

y

u
θφ

)
+O(ki) .

To supersymmetrize the Riemann class ∆i(z), we need to replace the cross-ratios in

eq. (B.10) with super-projective invariant cross-ratios, the Schottky fixed points ηi, ξi with

the super fixed points ui = (ui|θi), vi = (vi|φi), and finally the base point z with z = (z|ψ).
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We find then

∆i(z) =
1

2πi

{
− 1

2
log ki + iπ +

h∑
j=1

(j)
∑
α

(i) log
〈vj|Tα|ui〉
〈vj|Tα|vi〉

〈z|Tα|vi〉
〈z|Tα|ui〉

}
. (B.28)

Setting h = 2 and using the fixed points given in eq. (3.16), at order O(k
1/2
i ) we find

∆1(z) =
1

2πi

{
− 1

2
log k1 + iπ − log z + eiπς2k

1/2
2 (1− u)

[
ψθ + θφ

u(1− z)
+
θφ− ψφ
u− z

]
− eiπ(ς1+ς2) k

1/2
1 k

1/2
2

1− u
uz

[
(1− z) θψ + (u− z)ψφ

]}
+O(ki) ,

∆2(z) =
1

2πi

{
− 1

2
log k2 + iπ + log

1− z
u− z

+
1

u− z
θψ +

1

1− z
ψφ (B.29)

+ eiπς1k
1/2
1

1

uz

[
(u− z) θψ + z(1− u) θφ+ u(1− z)ψφ

]
− eiπ(ς1+ς2) k

1/2
1 k

1/2
2

(1− u)2

u

(
1

u− z
θψ +

1

1− z
ψφ

)}
+O(ki) .

Using these expressions, it is easy to compute the phase exp
(
2πi~ε ·∆(z)

)
to the desired

order. We have thus assembled all the ingredients needed to compute the twisted deter-

minant det(Im τε): we take Ω~ε·τ
1 (z|ψ) from eq. (B.26), the phases S~ε·τi from eq. (B.27), we

compute e2πi~ε·∆(z|ψ) from eq. (B.29), and finally we insert the results into eq. (B.20). The

final expression is a linear combination of integrals of the form

π

sin
(
π(ε1 + ε2)

) ∫ u

0
dz

zn1−ε1 (1− z)n2+ε2

(u− z)−n3+ε2
≡ u1+n1+n3−ε1−ε3

(−1)1+n1+n3
I(n1, n2, n3) , (B.30)

with integer values of ni. The relevant integrals can be expressed in terms of standard

hypergeometric functions by changing the integration variable according to z = tu, giving

I(n1, n2, n3) = Γ(1 + n1 − ε1) Γ(1 + n3 − ε2) Γ(−1− n1 − n3 + ε1 + ε2) (B.31)

× 2F1(−n2 − ε2, 1 + n1 − ε1; 2 + n1 + n3 − ε1 − ε2;u) ,

and the identity Γ(x)Γ(1−x) sin(πx) ≡ π was used. We can finally write the determinant as

det(Im τ~ε) =
1

4π2

2∑
p,q,r=−2

1∑
i,j,n=0

Aijn;pqr

(
eiπς1k

1/2
1

)i(
eiπς2k

1/2
2

)j
(θφ)n I(p, q, r)

+ (~ε↔ −~ε ) +O(ki) . (B.32)

The necessary coefficients, Aijn;pqr = Aijn;pqr(kl, εm, u), for i, j, n ranging from 0 to 1, are

listed in a Mathematica notebook which we have included as supplemental material.14 As

14Twisted determinant coefficients.nb.
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an example, at lowest order in ki, we find

4π2 det(Im τ~ε) = k
ε1/2
1 k

−ε2/2
2 u−ε1(kε22 u

ε1 − 1) I(−1,−1,−1) (B.33)

+ k
−ε1/2
1 k

−ε2/2
2 uε3+1(kε22 u

ε1 − 1) I(1,−1,−1)

+ k
−ε1/2
1 k

−ε2/2
2 uε3

[
kε22 u

ε1 − kε11 u
ε2 + u

(
(k1u)ε1(k2u)ε2 − 1

)]
I(0,−1,−1)

− θφ ε2 uε3 k−ε1/21 k
−ε2/2
2 (kε11 u

ε2 − 1)(kε22 u
ε1 − 1)I(0,−1,−1)

+ (~ε↔ −~ε ) +O(k
1/2
i ) ;

where, as before, ε3 = −ε1−ε2. We note that, when rewriting det(Im τ ) in the parametriza-

tion in eq. (4.12), appropriate for the symmetric degeneration depicted in figure 6a, all

hypergeometric functions can be replaced by unity to the relevant accuracy.

C Feynman diagrams

We list here all the two-loop one-particle-irreducible planar Feynman diagrams obtained

from the vertices in eq. (5.11). To compare easily with the string theory results, we will

order the results by their color indices. In other words, we will list all diagrams whose

propagators have three chosen color indices A, B and C; all such diagrams come from

the field theory limit of the world-sheet whose boundaries are on the D-branes labelled by

the indices A, B and C. One should then sum the diagrams, weighted appropriately, over

A ≤ B ≤ C, where we write

BBA = B1 , BAC = B2 , BCB = B3 , (C.1)

m2
AB = m2

1 , m2
CA = m2

2 , m2
BC = m2

3 .

We draw the Feynman diagrams with the following conventions for the propagators

= gluon modes polarized parallel to the background field,

= gluon modes polarized perpendicular to the background field, (C.2)

= Faddeev-Popov ghosts,

= scalars.

The relevant Feynman diagrams then give the following results.

= −(3− γ2)
(d− 2)(d− 3)

2

g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

t1 + t2 + t3
∆0

, (C.3)

= −(d− 2)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆B

{
sinh(gB3t3)

gB3
(C.4)

×
[
(1− γ2) cosh(gB2t2 − gB1t1) + 2 cosh(2gB3t3 − gB2t2 − gB1t1)

]
+ cycl. perm.

}
,
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= −(d− 2)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆0

{[
2t3 +

1− γ2

2
(t1 + t2)

]
(C.5)

× cosh(2gB1t1 − 2gB2t2) + cycl. perm.

}
,

= − g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆B

{
sinh(gB3t3)

gB3
(C.6)

×
[
2 + (1−γ2) cosh(2gB1t1− 2gB2t2)

]
cosh(2gB3t3−gB2t2−gB1t1) + cycl. perm.

}
,

= (1 + γ2)
d− 2

2

g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

t1 + t2 + t3
∆0

, (C.7)

= (1 + γ2)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆B

{
sinh(gB3t3)

gB3
(C.8)

× cosh(2gB3t3 − gB1t1 − gB2t2) + cycl. perm.

}
,

= −(d− 2)ns
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆0

{[
t3 +

1− γ2

4
(t1 + t2)

]
+ cycl. perm.

}
,

(C.9)

= −2ns
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

1

∆B

{
sinh(gB3t3)

gB3
(C.10)

× cosh(2gB3t3 − gB1t1 − gB2t2)

+
1− γ2

4

(
sinh(gB1t1)

gB1
cosh(gB3t3 − gB2t2) + (1↔ 2)

)
+ cycl. perm.

}
,

=
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

{
d− 2

2

[
(1 + γ2)m2

3 − 2(m2
1 +m2

2)
]

+ cycl. perm.

}
,

(C.11)

=
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

{[
(1 + γ2)m2

3 − 2(m2
1 +m2

2)
]

(C.12)

× cosh(2gB1t1 − 2gB2t2) + cycl. perm.
}
,

=
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

(m2
1 +m2

2 +m2
3) , (C.13)

= (1− ns)
3− γ2

2

g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆B

(m2
1 +m2

2 +m2
3) , (C.14)
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= − g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

(C.15)

×
{

2 cosh(2gB1t1 + 2gB2t2)− 1− γ2

2

[
2 cosh(2gB1t1 − 2gB2t2)

+ 4 cosh(2gB1t1) cosh(2gB2t2)
]}]

+ cycl. perm. ,

= 2 (1− γ2) (d− 2)
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

(C.16)

× cosh(2gB1t1) + cycl. perm.

]
,

= −
{

(d− 2)− 1− γ2

2

[
d− 2 + (d− 2)2

]}
(C.17)

× g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

+ cycl. perm.

]
,

= 2ns (1−γ2)
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

cosh(2gB2t2)+ cycl. perm.

]
,

(C.18)

= ns (1− γ2)(d− 2)
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

+ cycl. perm.

]
,

(C.19)

= −ns
[
1− 1− γ2

2
(1 + ns)

]
(C.20)

× g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

+ cycl. perm.

]
.

In all cases, adding cyclic permutations means summing two additional copies of the in-

tegrand with the replacements (B1, B2, B3;m2
1,m

2
2,m

2
3) 7→ (B2, B3, B1;m2

2,m
2
3,m

2
1) and

(B3, B1, B2;m2
3,m

2
1,m

2
2). Note that the gauge choice γ2 = 1 greatly simplifies many of

these diagrams: for example, the second lines of eq. (C.4) and eq. (C.6), the third line of

eq. (C.10) and the third and fourth lines of the eq. (C.15) all vanish in this gauge. In fact,

the last example is a special case of the fact that both propagators in the diagrams with

quartic vertices must have the same polarization, precisely when γ2 = 1, which corresponds

to the fact that k
1/2
1 and k

1/2
2 must be taken from the same CFT sector in string theory.
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