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Identifying Cover Songs Using Information-Theoretic
Measures of Similarity

Peter Foster, Student Member, IEEE, Simon Dixon, and Anssi Klapuri

Abstract—This paper investigates methods for quantifying
similarity between audio signals, specifically for the task of cover
song detection. We consider an information-theoretic approach,
where we compute pairwise measures of predictability between
time series. We compare discrete-valued approaches operating
on quantized audio features, to continuous-valued approaches.
In the discrete case, we propose a method for computing the
normalized compression distance, where we account for correla-
tion between time series. In the continuous case, we propose to
compute information-based measures of similarity as statistics
of the prediction error between time series. We evaluate our
methods on two cover song identification tasks using a data set
comprised of 300 Jazz standards and using the Million Song
Dataset. For both datasets, we observe that continuous-valued
approaches outperform discrete-valued approaches. We consider
approaches to estimating the normalized compression distance
(NCD) based on string compression and prediction, where we
observe that our proposed normalized compression distance with
alignment (NCDA) improves average performance over NCD, for
sequential compression algorithms. Finally, we demonstrate that
continuous-valued distances may be combined to improve perfor-
mance with respect to baseline approaches. Using a large-scale
filter-and-refine approach, we demonstrate state-of-the-art per-
formance for cover song identification using the Million Song
Dataset.

Index Terms—Audio similarity measures, cover song identifica-
tion, normalized compression distance, time series prediction.

I. INTRODUCTION

N THE field of music content analysis, quantifying sim-

ilarity between audio signals has received a substantial
amount of interest [1]. Owing to the proliferation of music in
digital formats, there exists potential for applications using
music similarity techniques, in a wide range of domains. At
the level of individual tracks, these domains span audio finger-
printing [2], cover song identification [3], artist identification
[4], [5] and genre classification [6]. Applications can be distin-
guished according to their degree of specificity [1], referring
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to the level of granularity required for retrieving audio tracks
from a collection, given a query track. For example, in audio
fingerprinting, the required specificity is high, since the set
of possible tracks corresponding to a particular recording is
typically small, in relation to the data set. In contrast, genre
classification requires low specificity, since the set of tracks
sharing a common genre is potentially large, in relation to the
data set.

A cover song may be defined as a rendition of a previously
recorded piece of music [7]. Cover song identification is deemed
to have mid-level, diffuse specificity, since cover songs may
differ from the original song in various musical facets, including
rhythm, tempo, melody, harmonization, instrumentation, lyrics
and musical form. Correspondingly, cover song identification
remains a challenging problem [3].

In this work, we investigate methods for cover song identifi-
cation that are based on quantifying pairwise predictability be-
tween sequences. From a music-psychological perspective, the
significance of intrinsic predictability in musical sequences has
been reflected on by Meyer [8], who considers the possibility of
using Shannon’s information theory [9] to quantify predictive
uncertainty. Statistical learning is implicated in forming musical
expectations [10]; a successful approach to modelling expecta-
tions in response to an unfolding stream of musical events in-
volves estimating sequential statistical models and computing
information-theoretic measures of predictive uncertainty [11].
As exemplified in [12], an information-theoretic approach ad-
mits a rich conceptual framework for quantifying predictive un-
certainty in musical sequences. For our own purposes in cover
song identification, we seek to establish if an information-the-
oretic approach might be useful for determining pairwise simi-
larity between tracks.

Based on our previous work [13], we consider an infor-
mation-theoretic approach to quantifying similarity between
feature vector sequences. One possible approach based on
the non-Shannon information measure of Kolmogorov com-
plexity [14], the normalized compression distance (NCD)
[15], quantifies similarity between two strings in terms of
joint compressibility. The NCD has been applied successfully
across a range of problem domains [15]-[18], including music
content analysis [19]-[24]. For our chosen task of cover song
identification, we interpret the NCD as a measure of pairwise
predictability. Using our information-theoretic framework,
we compare the NCD to alternative predictability measures
based on Shannon information. We provide an evaluation
of competing information-theoretic approaches and identify
issues concerning their implementation. This paper extends our
previous work [13] as follows: Firstly, we examine a larger
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set of distance measures and estimate distance measures by
predicting discrete-valued sequences. Further, we incorporate
the Million Song dataset (MSD) [25] into our evaluations.
Finally, we investigate combining distance measures using both
our considered datasets.

The remainder of this paper is organized as follows:
Section II discusses related work on audio-based cover song
identification and methods for determining musical similarity.
Section III introduces the pairwise similarity methods eval-
uated in this work. Section IV describes our experimental
procedure. Finally, in Sections V and VI we present results and
conclusions.

II. RELATED WORK

A. Musical Similarity

Methods for characterizing similarity between sequences of
audio features can be distinguished based on whether the tem-
poral order of features is discarded or retained [1]. In the former
so-called ‘bag-of-features’ approach, a widespread method in-
volves estimating distributions of features obtained from time-
frequency representations of musical audio [5], [26]-[31]. The
bag-of-features approach is unable to model the temporal as-
pect of music, in which rhythmic, harmonic and melodic ob-
jects exhibit sequential structure and in which repetition and
variation are of importance [32]. Casey and Slaney [33] em-
phasise the role of sequences for music similarity applications,
whereas Aucouturier et al. [29] discuss the relative limitations
of the bag-of-features approach in a comparison of musical and
non-musical audio modelling. Sequential approaches have been
utilized in music structure analysis, for identifying repeated and
contrasting sequences and their boundaries within a single piece
of music [34], in addition to cover song identification.

B. Cover Song Identification

Owing to the importance of tonal content in determining
whether a song is a cover of another, recent cover song iden-
tification approaches typically extract representations of the
tonal content using chroma features [35], [36]. Chroma features
quantify energy distributions across octave-folded bands, using
pitch classes in the chromatic scale to map frequency bands to
chroma bins.

A variety of cover song identification approaches are based
on aligning feature sequences. A widespread approach involves
using dynamic programming to determine an optimal set of
feature vector insertions, deletions and substitutions, obtained
from a similarity matrix. Following Foote’s [37] method of ap-
plying dynamic time warping (DTW) to a similarity matrix con-
structed from spectral energy features, Gomez and Herrera [38]
propose a DTW approach using chroma features. Serra et al.
[7] propose to compute binarized similarity matrices, substi-
tuting DTW with an alternative local alignment approach. The
cross-recurrence approaches proposed by Serra et al. [39] ex-
tend the notion of similarity matrices considered in the pre-
ceding investigations, in that time-lagged chroma vectors are
combined to form higher-dimensional temporal features. In an
alternative approach, Serra et al. [40] utilise the previously de-
scribed method of representing chroma features in combina-

tion with non-linear time series prediction techniques, using the
cross-prediction error as a measure of similarity.

Using a signal processing approach, Ellis and Poliner [41]
determine component-wise cross-correlation maxima as a mea-
sure of similarity between chroma features. Jensen [42] com-
putes the Euclidean distance between two-dimensional autocor-
relations of chroma sequences. More recently, Bertin-Mahieux
[43] proposes a key-invariant approach based on applying the
two-dimensional Fourier transform to chroma sequences.

An alternative approach involves computing similarities
between discrete-valued representations of musical content.
Tsai et al. [44] apply DTW to discrete-valued sequences, using
spectral peak-picking for predominant melody extraction.
Bello [45] and Lee [46] perform chord estimation with hidden
Markov models, using mappings of model states to chords.
The resulting sequences are then aligned using DTW. Martin
et al. [47] heuristically select chroma bin maxima to determine
triads, before locally aligning sequences. We may consider
DTW-based approaches, the string-based heuristic evaluated
in [47] and the cross-correlation approach evaluated in [41] as
alignment techniques, in the sense that they may be used to
maximise pairwise correlation between sequences.

With particular regard to this work, a number of approaches
are based on applying the NCD to discrete-valued sequences.
Using symbolic musical representations directly, Cilibrasi et al.
[20] apply hierarchical clustering to pairwise distances between
pieces of music, performing an analysis of clusters with respect
to musical genres, musical works and artists. Li and Sleep apply
the NCD to genre classification of symbolic musical represen-
tations [19] and musical audio [21].

For audio-based cover song identification, Ahonen [23]
obtains discrete-valued representations of frame-based chroma
features by applying a hidden Markov model (HMM) to per-
form chord transcription. Predicted chord sequences are then
converted to a differential representation, before computing
pairwise distances between tracks using the NCD based on dif-
ferent compression algorithms. Ahonen [48] further proposes
to compute multiple discrete-valued representations using ad-
ditional HMMs and by computing chroma differentials, before
averaging separately obtained pairwise distances using the
NCD based on prediction by partial matching (PPM) [49]. In
addition, Ahonen [50] investigates chroma-derived represen-
tations which are compressed using Burrows-Wheeler (BW)
compression [51]. Bello [24] applies the NCD to recurrence
plots computed on individual tracks, as a measure of structural
similarity between pieces of music. Finally, Tabus et al. [52]
proposes a similar approach to Ahonen based on quantizing
chroma-derived representations, observing that an alternative
compression-based similarity measure outperforms the NCD.
Additionally, Silva et al. [53] propose a measure of structural
similarity based on video compression, observing superior per-
formance using an alternative compression-based measure. Our
work extends the above investigations, in that we examine and
propose the use of alternative information-theoretic similarity
measures to the NCD. Furthermore, we perform an extensive
comparison of methods for estimating the NCD and related
similarity measures, while proposing approaches which do not
require quantizing audio features.
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A number of recent investigations are concerned with cover
song identification using large-scale music collections con-
taining millions of tracks. For such collections, it is typically
infeasible to perform computationally expensive pairwise
comparisons between a query and every track in the collection.
Casey et al. [54] compute Euclidean distances between win-
dowed chroma sequences. Pairwise similarity is then quantified
as the number of distances falling below a threshold. Such an
approach may be combined with locality-sensitive hashing [55]
for retrieval with sub-linear time complexity, with respect to
a single query. Using a similar approach, Bertin-Mahieux and
Ellis [56] propose to identify salient ‘landmark’ chroma vectors
in individual tracks by applying a thresholding scheme. Identi-
fied landmark vectors are then encoded as an integer, thus the
collection may be represented as a lookup table. Given a query,
the same authors envisage that obtained results are re-ranked
using a computationally expensive approach, as proposed by
Khadkevich and Omologo [57]. In this work, we apply such
a filter-and-refine approach [58], using information-theoretic
similarity measures in the refinement stage.

C. Information-Theoretic Methods

Information-theoretic similarity measures between time se-
ries have been proposed in a variety of domains. The idea of
jointly compressing two discrete-valued sequences is due to
Loewenstern et al. [59] in the context of nucleotide sequence
clustering. By parsing sequences using the Lempel-Ziv (LZ) al-
gorithm [60], Ziv and Merhav [61] propose a method for com-
paring sequences by compressing one sequence using a model
estimated on the other sequence. An alternative approach is con-
sidered by Benedetto et al. [62] for building language trees,
where sequences are jointly compressed. Cilibrasi ef al. [63]
motivate their approach of jointly compressing sequences as an
approximation of the normalized information distance [15].

III. APPROACH

We denote with X = (x1,%X2,.-.,%Xn), Y
= (y1,¥2,-.-,¥m) two multivariate time series, each
representing a sequence of feature vectors extracted from a
piece of musical audio. If we assume that both X, Y consist of
independent and identically distributed realizations generated
respectively by stochastic processes X, Y, one possible means
of quantifying dissimilarity between time series involves the
Kullback-Leibler (KL) divergence, defined as

Diwoxllov) = [ pxwos (pX(“)) du

py(u)

Q)

where px (u), py (u) denote the probability density of obser-
vation u emitted by X, Y, respectively. Viewed in terms of
Shannon information and taking the logarithm to base 2, recall
that the KL divergence quantifies the expected number of ad-
ditional bits required to represent observations emitted by in-
formation source X, given an optimal code for observations
emitted by information source Y. The KL divergence has been
widely used in conjunction with a ‘bag-of-features’ approach
for low-specificity music content analysis tasks [1].

To account for temporal structure in musical audio, we may
use the NCD as a measure of musical dissimilarity between se-

quences of quantised feature vectors [21], [23], [52]. Given two

strings © = (21,%2,..-,2n), ¥ = (Y1,¥2,.-.,Yar), the NCD

is defined as

max{C(zy) — C(x), C(yz) — C(y)}
max{C(z),C(y)}

NCD(z,y) = 2)
where C{(-) denotes the number of bits required to encode a
given string, using a compressor such as the LZ algorithm [60].
Similarly, C'(zy) denotes the number of bits required to encode
the sequential concatenation of strings x, y. The NCD is an ap-

proximation of the normalized information distance (NID) [15],
defined as

K(z,y) — min{K(x), K(y)}
max{K (z), K(y)}

NID(z,y) = 3)
where the uncomputable function K(-) denotes algorithmic
information content (AIC), also known as Kolmogorov com-
plexity. The AIC of a given string is the length in bits of the
shortest program which outputs the string and then terminates
[14]. Similarly, K (x,y) denotes the length of the shortest
program which outputs x, y, in addition to a means of distin-
guishing between both output strings [14]. Thus, AIC quantifies
the number of bits required to represent specified input strings,
under maximally attainable compression. Furthermore, the
NID characterizes dissimilarity using the transformation under
which input strings most closely resemble each other [15].

We are interested in examining the performance of the NCD
as an approximation of the NID, where the choice of compressor
determines the feature space used to compute similarities [64]
in the NCD. Furthermore, note that the choice of sequential con-
catenation in C'(xy) to approximate K (x, y) represents an addi-
tional heuristic [15]. In the following sections, we describe our
contribution: We first consider in Section III-A the NID from the
perspective of Shannon information, using which we propose a
modification to the NCD in Section I1I-B. We then propose alter-
native prediction-based measures of similarity in Section III-C.
We detail our approach of applying such measures to contin-
uous-valued sequences in Section III-D.

A. Quantifying Time Series Dissimilarity Using Shannon
Information

We approach the problem of quantifying dissimilarity
from the perspective of Shannon information. We assume
finite-order, stationary Markov sources X, Y. We denote with
X1.n the sequence of discrete random variables (X7, ..., Xx)
emitted by source X at times 1,...,N. We denote with
H,(X), H,(X,Y), H,(X|Y) the entropy rate, joint entropy
rate and conditional entropy rate, respectively defined as

Hu(X) = lim_ %H(Xl,Xg, LX) @)
Hu(X.Y) = lim %H((Xl,Yl),(XQ,YQ),...,(Xn,Yn))

(5)

H,(X|Y) = Hu(X,Y) - Hu(Y). (6)

The entropy rate H,(X) defined in (4) quantifies the average
amount of uncertainty about X,,, while accounting for depen-
dency between X,, for all n. Analogously, the joint entropy
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rate H,(X,Y’) defined in (5) quantifies the average amount
of uncertainty about the pair (X,,,Y;) emitted by sources
X, Y, while in addition accounting for correlation between the
sources. For the conditional entropy rate H,,(X|Y") we have
) 1
H,(X|Y)= lim —H(Xy, Y1) — H Y1) (7

n—oo N

= lim lII(AXVI:n,lYl:n)- (8)
n—oo N
From (8) we may interpret H,, (X |Y") as quantifying the average
amount of uncertainty about a given emission X,,, while taking
into account dependency between observations emitted by X
and given knowledge of observations emitted by Y.
For N observations emitted from source X, up to an ad-
ditive constant the expectation E[K (X;.n5)] may be approxi-
mated using the entropy [65],

E[K(X.n)] = H(X1.N). )
Using (4), (5), we assume further approximations

E[K(Xi.n)] ~ NH,(X)
E[K(X1.n,Yi.n)] & NH,(X,Y)

(10)
(an

where E[K (X1.n, Y1.n )] denotes the expected value of K (-, )

for N observations emitted from sources X, Y. In terms of

Shannon information, following [66] we use (6) and estimate

the NID as

max{H,(X|Y), H,(Y|X)}
max{H,(X), H,(Y)}

NID(X,Y) ~ (12)

B. Normalized Compression Distance with Alignment

As given in (12), the NID utilizes the joint entropy rate
H,(X,Y), which accounts for correlation between sources.
In contrast, the approach of compressing sequentially con-
catenated strings to estimate K (x,y) may be inadequate for
compressors based on Markov sources, since correlation is
not accounted for [66]. To address this possible limitation, we
propose the normalized compression distance with alignment
(NCDA), defined as

C({z,y)) — min{C(z),C(y)}
max{C(z), C(y)}

where {a, b) performs alignment as a means of maximizing cor-
relation between integer-valued strings a, b. We generate equal-
length strings by padding the shorter of the two strings with the
most common value of the longer string. Then, we determine the
lag which maximizes cross-correlation between strings, before
circularly shifting b using the obtained lag value. Finally, we in-
terleave strings. We motivate our choice of cross-correlation by
considering that cross-correlation may be computed efficiently,
as a series of inner products. Hence, our choice of cross-corre-
lation is pragmatic; an alternative approach might involve min-
imizing NCDA with respect to all lags, or aligning strings using
an alternative algorithm.

NCDA(z,y) = (13)

C. Predictive Modelling

As previously described, the NCD and NCDA rely on de-
termining the number of bits required to encode strings, using

a specified compression algorithm. As an alternative approach,
we consider the relation between predictability and compress-
ibility [67], [68] and perform sequence prediction. We illustrate
our approach for the case of discrete-valued observations. First,
recall that the entropy rate H,(X) is given as

Hy(X)= lim —~ 3 Py(ern)log Px(ern)  (14)

n—o0
21, CA"

where Px (1.,) denotes the probability of observing Xy.,, =
1., With 21.,, € A™ according to the alphabet .A. We may
interpret the quantity — log Px (x1.,,) as the number of bits re-
quired to represent uy.,, assuming an optimal code. H,,(X)
thus quantifies the expected number of bits required to represent
a single observation emitted by X, while accounting for depen-
dency between observations. Assume that we have an empirical
estimate ]5X of the distribution Px, based on finite observa-
tions x1.v. Following [69], we estimate H,,(X) using average
log-loss Z(I:’X, 21.v ), defined as

R 1 N
UPx,z1.n) = -~ log Px (z1.n) (15)

N
—% (log Py (1) + ; log Px (xiéb'ml))
(16)

where Px(xi |z1.,—1) denotes the estimated probability of ob-
serving x;, given preceding context 1.;_1. Using (16), we thus
compute average log-loss by evaluating the likelihood of obser-
vations x1.;_1 under the estimated distribution 15X, which we
may conceive of as performing a series of predictions based on
increasingly long contexts zj.;_1. Since PX is an estimate of
Px, the described process is termed self-prediction [40].

We denote with Py (x1.,) the probability of observing 1.y,
from source Y. A measure of disparity between sources X, Y
is the cross entropy rate 1 (X,Y),

) 1
HY(X,Y)=lim —= Y Px(1.n)log Py (z1.)

nee Z1.nEA"

(17)
quantifying the expected number of bits required to represent
observations emitted by source X, given an optimal code for
source Y. We estimate H,; (X,Y") by computing the average
log-loss ¢ (Py, x1.n) based on iterated prediction, where Py de-
notes an estimate of Py based on observations y1.3s. Since Py,
Px represent disparate sources, the described process is termed
cross-prediction [40]. Analogous to the NCD, as a symmetric
distance between sources X, Y based on cross entropy, we com-
pute the quantity

HX(X,Y)+ H}(Y,X)
H,(X) + H,(Y)

DX(X,Y) = (18)
where in (18) the denominator serves as a normalization factor,
analogous to the denominator in (2) and where we use self-pre-
diction to estimate H,,(X), H,(Y).

To obtain a prediction-based estimate of the NID in (12), we
may estimate H,(X), H,(Y) again using self-prediction. Fur-
thermore, we estimate the conditional entropy rate H,, (X|Y)
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YiMm X1:N XN

Estimate model Estimate model YiMm Estimate model

' Model ; Model ; Model

Xim N Xim N N Xim . N

orecast features [ orecast features [ orecast features o

= F t feat = F t feat = F t feat
nl = €nt1 1 = €nt1 1 = €pt1
Xn+1 Xn+1 Xn+1

(a) Cross-prediction

(b) Self-prediction

(c) Conditional self-prediction

Fig. 1. Evaluated prediction strategies. Sequences X1.n, ¥1.a serve as model inputs, observation context x1., forms basis of prediction X,, 1. Quantity €,41

denotes prediction error.

using the distribution px‘y, referring to the estimated distribu-
tion of observations emitted by X, given knowledge of obser-
vations ;.ps emitted by Y. Analogous to self-prediction and
cross-prediction, we define the quantity é(ﬁx‘y, Z1.N,Y1-M)»

f(px\y, T1:N, th)

N
1 fas A
=N <10g PX\Y(l’l |y1;1\4)+;log PX‘y(;L’i';l‘,l:i,h yle)> .
(19)

We refer to the process used to compute (19) as conditional
self-prediction.

D. Continuous-Valued Approach

The quantities described in Section III-C may be computed
using quantised feature vectors [21], [23], [31], [52]. As an al-
ternative, we propose an approach requiring no prior quanti-
sation. As used in [40], in our approach we utilise non-linear
time series prediction. In contrast to [40], we are concerned with
evaluating distance measures which we compute as statistics of
prediction errors. Therefore, we use a comparatively straightfor-
ward nearest-neighbors approach. Given the sequence of feature
vectors C, consider first the process of time-delay embedding
[70], which yields the vector sequence S€, whose elements s&
are defined as

sy

= vec(e,, Clr—1)rs---s C(r—d+1)7—)- (20)

According to (20), each element s§ aggregates fea-

ture vector ¢, along with its preceding temporal context
(Cr—1)r>-+++C(r—d+1)r)- The amount of temporal context
is controlled by parameters d, 7, respectively referred to as
embedding dimension and time delay. Operator vec denotes
vectorization.

Our method of predicting features is based on determining
nearest neighbors in time-delay embedded space. We first il-
lustrate our method for the case of cross-prediction, depicted
schematically in Fig. 1(a). Given sequence yy.ps, we denote
with X, 5 the estimated successor of sequence xy.44%—1,

€2y

Xtth = Yao@)+h

where h denotes the predictive horizon (how far into the future
we predict), and where we define ¢(t) as

argmax corr(sy ,sX)

kE[d..M—h)

qt) = (22)

with corr(syY , sX) denoting the sample Pearson correlation co-

efficient between vectors sy, sX. We motivate use of correla-
tion coefficients as an alternative to the Euclidean distance, fol-
lowing [71].

Depicted schematically in Fig. 1(b), to perform self-predic-
tion we set Y = X. Since features may be slowly-varying,
when forming prediction X, we disregard observations in the
immediate past of time step f. Thus we define

Xith = Xy (t)+h (23)

with ¢’(¢) defined as

arg max
k€[d..N—h],|k—t|>R

qt) = corr(syX, sX) 24)

and where R denotes the radius below which observations are
disregarded.

Finally, to perform conditional self-prediction, we use
both time-delay embedded spaces s¥, sX. Given predictions
Yq(t)+h> Xq'(+)+h- respectively obtained using cross-prediction
and self-prediction, we compute the linear combination

Xith = Ya)+h0 + Xg ()4 (1 — ). (25)
Similar to the approach given in [72], in (25) for weighting co-
efficient o we use

o = 1\/ISEself
- NISEself + 1\/ISEcross

(26)

where MSE 1.0, MSEga1t respectively denote cross-prediction
and self-prediction mean squared errors. Fig. 1(c) depicts con-
ditional self-prediction schematically.

Given the sequence of predictions X;.n, we denote with €,
the rescaled prediction error, whose ith component ¢; ,, is given
by

Tin

2

— Tin

27N

€in =

8

where s; denotes the sample variance of the ¢th component
(x1.n): inx1.y. We contrast our approach with the component-
wise normalized mean squared error (NMSE) based on cross-
prediction used in [40], which may be applied as an alternative
measure of dissimilarity between time series. Our approach is
based on assuming that the prediction error may be represented
using a normally distributed random variable Z with samples
€1.~. Using the samples, we estimate the prediction error en-
tropy H(Z) parametrically. In the case of self-prediction, we
assume the approximation H(Z) ~ H,(X); analogously in the
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case of cross-prediction and conditional self-prediction, we as-
sume respective approximations 1 (Z) ~ H; (X,Y), H(Z) =~
H,(X]Y'). Assuming normality, we estimate H(Z) using the
equation
1 9k

H(Z) = ilog (27e)" | 2| (28)
where ¥ denotes the sample covariance of Z. In our contin-
uous-valued approach, using the prediction methods depicted
in Fig. 1, we thus estimate information-based measures as sta-
tistics of the prediction error sequence. We then substitute the
obtained quantities in (12) and (18) to obtain continuous-valued,
prediction-based analogues of the NID and distance D*.
The continuous-valued, prediction-based approach contrasts
with our discrete-valued, prediction-based methods previously
described in Section III-C and our discrete-valued, compres-
sion-based method described in Section III-B.

IV. EXPERIMENTAL METHOD

We first evaluate our proposed methods using a set of 300
audio recordings of Jazz standards!. We assume that two tracks
are a cover pair if they possess identical title strings. Thus, we
assume a symmetric relation when determining cover identities.
The equivalence class of tracks deemed to be covers of one an-
other is a cover set. The Jazz data set comprises 97 cover sets,
with average cover set size 3.06 tracks.

Furthermore, we perform a large-scale evaluation based on
the MSD [25]. This dataset includes meta-data and pre-com-
puted audio features for a collection of 10 Western popular
music recordings. We use a pre-defined evaluation set of 5236
query tracks partitioned into 1726 cover sets?, with average
cover set size 3.03 tracks. Following [43], for each query track,
we seek to identify the remaining cover set members contained
in the entire 10° track collection.

A. Feature Extraction

For the Jazz dataset, as a representation of musical harmonic
content, we extract 12-component beat-synchronous chroma
features from audio using the method and implementation
described in [41]. Assuming an equal-tempered scale, the
method accounts for deviations in standard pitch from 440 Hz,
by shifting the mapping of FFT bins to pitches in the range of
+0.5 semitones. Following chroma extraction, beat-synchro-
nisation is achieved using the method described in [73]. First,
onset detection is performed by differencing a log-magnitude
Mel-frequency spectrogram across time and applying half-wave
rectification, before summing across frequency bands. After
high-pass filtering the onset signal, a tempo estimate is formed
by applying a window function to the autocorrelated onset
signal and determining autocorrelation maxima. Varying the
centre of the window function allows tempo estimation to in-
corporate a bias towards a preferred beat rate (PBR). The tempo
estimate and onset signal are then used to obtain an optimal
set of beat onsets, by using dynamic programming. Chroma

Thttp://www.eecs.qmul.ac.uk/~peterf/jazzdataset.html
2http://labrosa.ee.columbia.edu/millionsong/secondhand

features are averaged over beat intervals, before applying
square-root compression and normalizing chroma features with
respect to the Euclidean norm. Based on our previous work
[13], we evaluate using a PBR of 240 beats per minute (bpm).
The MSD includes 12-component chroma features alongside
predicted note and beat onsets [74], which we use in our evalu-
ations. In contrast to the beat-synchronous features obtained for
the Jazz dataset, MSD chroma features are initially aligned to
predicted onsets. Motivated by our choice of PBR for the Jazz
dataset, we resample predicted beat onsets to a rate of 240 bpm.
We then average chroma features over resampled beat intervals.
Finally, we normalize features as described for the Jazz dataset.

B. Key Invariance

To account for musical key variation within cover sets, we
transpose chroma sequences using the optimal transposition
index (OTI) method [7]. Given two chroma vector sequences
X, Y, we form summary vectors hx, hy by averaging over
entire sequences. The OTI corresponds to the number of cir-
cular shift operations applied to hy which maximizes the inner
product between hx and hy,

OTI(hx, hy) = arg max hx - circshift(hy, 1) (29)
where circshift(hy,i) denotes applying i circular shift op-
erations to hy. We subsequently shift chroma vectors Y by
OTI(hx, hy) positions, prior to pairwise comparison.

C. Quantisation

For discrete-valued similarity measures, we quantize chroma
features using the A-means algorithm. We cluster chroma fea-
tures aggregated across all tracks, where we consider codebook
sizes in the range [2..48]. To increase stability, we execute the
K -means algorithm 20 times. We then select the clustering
which minimizes the mean squared error between data points
and assigned clusters. The described quantisation method
performs similarly to an alternative based on pairwise sequence
quantisation; for a detailed discussion we refer to our previous
work [13].

D. Distance Measures

We summarize the distance measures evaluated in this work
in Table I, where for each distance measure, we list our estima-
tion methods.

We utilise the following algorithms to compute distance mea-
sures by compressing strings: Prediction by partial matching
(PPM) [49], Burrows-Wheeler (BW) compression [51] and
Lempel-Ziv (LZ) compression [60], implemented respectively
as PPMD3, BZIP24 and ZLIBS. In all cases, we set parameters
to favour compression rates over computation time. To obtain
strings, following quantisation we map integer codewords to
alphanumeric characters.

We use the described compression algorithms to determine
the length in bits of compressed strings and compute NCD,

3http://compression.ru/ds/
http://bzip2.org
Shttp://zlib.org
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TABLE I
SUMMARY OF EVALUATED DISTANCE MEASURES

Distance measure  Definition  Estimation method
NCD Eqn. 2 String compression (LZ, BW, PPM) Discrete prediction (LZ, PPM)
NCDA Eqn. 13 String compression (LZ, BW, PPM)  Discrete prediction (LZ, PPM)
DX Eqn. 18 Discrete prediction Continuous prediction
Djs Eqn. 31 Normalised symbol histograms
NID Eqn. 12 Continuous prediction

NCDA distances. In a complementary discrete-valued ap-
proach, we use string prediction instead of compression. Using
average log-loss, we compute NCDA using the formula
é(f:?X.Y), (@, ) — min{f(ﬁ’x, z), Z(PY» y)}
ma‘x{é(PX7 QL’)7 é(PY7 y)}

(30)

where Z(P< x,v), {,y)) is the average log-loss obtained from
performing self-prediction on the aligned sequence (z,y). We
compute a prediction-based variant of NCD analogously by pre-
dicting sequentially concatenated strings without performing
any alignment. In addition, we use cross-prediction to estimate
distance measure D>, as defined in (18). We perform string pre-
diction using Begleiter’s [69] implementations of PPMC and
LZ78 algorithms.

Note that the KL divergence given in (1) is non-symmetric.
In our evaluations, we observed that computing a symmetric
distance improved performance; based on KL divergence, we
compute the Jensen-Shannon divergence (JSD) Djs(px ||py ),
defined as

Djs(px|lpy) = Dxu(px|lpa) + Dxi(py||pa) 3D
where p 4 denotes the mean of px, py,
1
pa = = (px +pv). (32)

2

As a baseline method, we compute the JSD between symbol
histograms normalized to sum to one.

We evaluate continuous-valued prediction using time-delay
embedding parameters h ¢ {1,4}, d € {1,2,4}, 7
€ {1,2,4,6}, setting the exclusion radius in (24) to B = 8
based on preliminary analysis using separate training data. We
compute distance measure D* using cross-prediction to esti-
mate the numerator in (18). In a complementary approach, we
estimate the NID using conditional self-prediction to estimate
the numerator in (12). For D* and NID, we use self-prediction
to estimate the denominator in (18), (12), respectively.

Finally, to compensate for cover song candidates consistently
deemed similar to query tracks, we normalize pairwise distances
using the method described in [75]. We apply distance normal-
ization as a post-processing step, before computing performance
statistics.

E. Large-scale Cover Song Identification

For music content analysis involving large datasets, algo-
rithm scalability is an important issue. The approaches in this
work by themselves require a linear scan through the dataset for
a given query, which may be infeasible for large datasets. We
use a scalable approach for our evaluations involving the MSD.
Following [57] and similar to the method proposed in [76],

we incorporate our methods into a two-stage retrieval process.
By using a metric distance to determine similarity in the first
retrieval stage, we allow for the potential use of indexing or
hashing schemes, as proposed in [54], [58]. We then apply non-
metric pairwise comparisons in the second retrieval stage.

In the first stage, we quantize as described in
Section IV-C and represent each track with a normalized
codeword histogram. Given a query track, we then rank each
of the 10° candidate tracks using the L1 distance. To account
for key variation, for each candidate track we minimise L1
distance across chroma rotations. We then determine the top
L = 1000 candidate tracks, which we re-rank in the second
stage using our proposed methods. After both retrieval stages,
we normalize pairwise distances as described in Section [V-D.
We report performance based on the final ranking of all 108
candidate tracks, across query tracks.

F. Performance Statistics

As used in [24], we quantify cover song identification accu-
racy using mean average precision (MAP), based on ranking
tracks according to distance with respect to queries. The MAP
is obtained by averaging query-wise scores, where we may in-
terpret each score as the average of precision values at the ranks
of relevant tracks, where relevant tracks in our case are covers
of the query track. Following [24], we use the Friedman test [77]
to compare accuracies among distance measures. The Friedman
test is based on ranking across queries each distance measure
according to average precision. We combine the Friedman test
with Tukey’s range test [78] to adjust for Type I errors when
performing multiple comparisons.

As a subsidiary performance measure, for each query we
compute the precision at rank r, with r & {5,10,20}. We
subsequently average across queries to obtain mean precision
at rank 7.

G. Combining Distance Measures

To determine if combining distance measures improves cover
song identification accuracy, we obtain pairwise distances as
described in Section IV-D. We denote with d¥ ; the pairwise
distance between the ith query track and the jth result candidate,
obtained using the kth distance measure in our evaluation. We
transform dﬁ ; by computing the inverse rank d ij’

ko _ k-1
d';; =1 —rank(d; ;) (33)

where rank(di?’ ;) denotes the rank of df ; among all distances
obtained with respect to query track 4, given the kth distance
measure. We apply this transformation to protect against out-
liers, while ensuring that distance decreases rapidly for track
pairs deemed highly similar, for decreasing distance. Note that
since our distance transformation preserves monotonicity and
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Fig. 2. Effect of codebook size and distance measure on mean average precision (MAP). Results displayed for Lempel-Ziv (LZ), Burrows-Wheeler (BW) and
prediction by partial matching (PPM) algorithms in subfigures (a)—(c), (e)—(g), for Jazz and MSD datasets respectively. Subfigures (d), (h) display results for
Jensen-Shannon divergence baseline (JSD), for Jazz and MSD datasets respectively.

MAP itself is based on ranked distances, performance of un-
mixed distance measures is uninfluenced by this transforma-
tion. Finally, we combine distances d’ ﬁj, d'{"; by computing
a weighted average of distances pooled using max and min
operators,

i ' T8 + min{d’5;, d'75}(1 - )
where we vary g in the range [0, 1]. We motivate our approach
on the basis that we may interpret inverse ranks as estimated
probabilities of cover identities, furthermore the operators max
and min have been proposed as a means of combining proba-
bility estimates for classification [79]. In forming a linear com-
bination, we evaluate the utility of max pooling versus min
pooling. An alternative approach based on straightforward av-
eraging did not yield any performance gain.

max{d (34)

H. Baseline Approaches

In addition to the JSD and cross-prediction NMSE baselines,
we include an evaluation of the method and implementation de-
scribed in [41] based on cross-correlation. As a random base-
line, we sample pairwise distances from a normal distribution.

V. RESULTS

A. Discrete-Valued Approaches Based on Compression

In Fig. 2(a)—(c), we examine the performance of discrete-
valued NCD and NCDA distance measures, combined with LZ,
BW and PPM algorithms and based on the Jazz dataset. For
the LZ algorithm, NCDA yields a relative performance gain of
38.6%, averaged across codebook sizes. In contrast, for PPM,
with the exception of small codebook sizes in the range [2..8],

NCDA yields no consistent improvement over NCD, however
averaged across codebook sizes we obtain a mean relative per-
formance gain of 11.0%. Finally, the effect of using NCDA is
reversed for BW compression, where performance decreases by
an average of 21.8%.

Examining results for the MSD in Fig. 2(e)—(g), we observe
similar qualitative results for LZ and BW algorithms. Forthe LZ
algorithm, NCDA yields an average relative performance gain
of 10.1%, whereas for BW compression we observe an average
relative performance loss of 6.5%. In contrast to the Jazz dataset,
for PPM we observe an average relative performance loss of
1.5%.

For both datasets, NCDA appears to be most advantageous
combined with LZ compression, whereas BW yields the least
advantageous result. Note that BW compression is block-based
in contrast to LZ and PPM compressors, both of which are
sequential. We attribute this observation to performance dif-
ferences among compressors, since the assumptions made in
Section III-B rely on assuming Markov sources. Noting differ-
ences in relative performance gains between datasets, following
[57] we further conjecture that chroma feature representation in-
fluences the performance of the evaluated distance measures.

We examine the performance of JSD between normalized
symbol histograms, as displayed in Fig. 2(d), (h). Surprisingly,
for the Jazz dataset and for K > 8, JSD outperforms compres-
sion-based methods, with maximum MAP score 0.289 obtained
for K = 48. This result is contrary to our expectation that NCD
approaches should outperform the bag-of-features approach, by
accounting for temporal structure in time series. In contrast, for
the MSD and for optimal K, both NCD and NCDA outperform
JSD across all evaluated compression algorithms. We attribute
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TABLE II
MEAN AVERAGE PRECISION SCORES FOR DISTANCES BASED ON CONTINUOUS PREDICTION. IN EACH SUBFIGURE, PARAMETERS A, 7, d DENOTE
PREDICTIVE HORIZON, TIME DELAY AND EMBEDDING DIMENSION, RESPECTIVELY. RESULTS DISPLAYED IN SUBFIGURES (A)—(C), (D)—(F)
FOR JAZZ AND MSD DATASETS, RESPECTIVELY.
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Fig. 3. Effect of codebook size and distance measure on mean average preci-
sion (MAP). Results obtained using string prediction approach, displayed for
Lempel-Ziv (LZ) (subfigures (a), (c)) and prediction by partial match (PPM)
(subfigures (b), (d)), for Jazz and MSD datasets respectively.

this disparity to differences in dataset size, where for the Jazz
dataset the problem size may be sufficiently small to amortize
advantages of using NCD, NCDA compared to JSD.

B. Discrete-Valued Approaches Based on Prediction

In Fig. 3, we consider the performance of distance measures
based on string prediction. For the Jazz dataset, comparing log-
loss estimates of NCD and NCDA using the LZ algorithm, aver-
aged across codebook sizes NCDA outperforms NCD; we ob-
tain a mean relative performance gain of 105.1% (Fig. 3(a)).
For the PPM algorithm, although NCD maximizes performance
(MAP 0.140), we obtain a mean relative performance gain of
19.3% using NCDA over NCD (Fig. 3(b)). Importantly, for both

PPM compression, we obtain MAP 0.329. For the MSD and
using LZ compression, in contrast to the Jazz dataset we observe
a mean relative performance loss of 1.8% when comparing D>
with NCDA. For both LZ and PPM, NCDA compared to NCD
yields mean relative performance gains of 17.6% and 24.0%,
respectively.

C. Continuous-Valued Approaches

Table II displays the performance of continuous-valued
prediction approaches. Note that for d = 1, parameter 7 may
be set to an arbitrary integer following (20). We consider
results obtained for the Jazz dataset (Table II(a)—(c)). Using
conditional self-prediction to estimate the NID, maximized
across parameters /2, d, 7 we obtain MAP 0.346. In comparison,
cross-prediction distance D> yields MAP 0.454. As a baseline,
we determine the cross-prediction NMSE, where maximizing
across parameters we obtain MAP 0.459. Table II(a)—(c) dis-
plays performance against evaluated parameter combinations.
Examining results for the MSD in Table II(d)—(f), we obtain
qualitatively similar results with maximum MAP values 0.0303,
0.0498 and 0.0499 for NID, D* and NMSE, respectively.
For both datasets, we observe that increasing the value of d
consistently improves performance. In contrast, we observe no
such effect for parameters 7, h.

D. Summary of Results and Comparison to State of the Art

Fig. 4(a), (b) displays the result of significance testing as
described in Section IV-F, where we assume 95% confidence
intervals and where we maximise across evaluated parameter
spaces. Table III displays a corresponding summary of MAP
scores. As baselines we include Ellis and Poliner’s cross-corre-
lation approach [41], in addition to randomly sampled pairwise
distances. For the MSD, when used without any further refine-
ment method, our filtering stage based on normalized codeword
histograms yields MAP 0.0056.

For both Jazz dataset and MSD, we observe that contin-
uous-valued approaches based on cross-prediction consistently
outperform discrete-valued approaches. Moreover, with the ex-
ception of NCD combined with PPM-based string compression
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TABLE III
SUMMARY OF MEAN AVERAGE PRECISION SCORES. FIRST THREE ROWS DENOTE COMPRESSION BASED APPROACHES. INTERVALS
ARE STANDARD ERRORS. ‘RANDOM’ DENOTES SAMPLING PAIRWISE DISTANCES FROM A NORMAL DISTRIBUTION

Dataset Jazz MSD
Method NCDA NCD NCDA NCD
PPM 0.220 £ 0.021  0.249 £ 0.021 | 0.0460 + 0.0024  0.0487 £ 0.0025
BW 0.143 £ 0.016  0.220 £ 0.019 | 0.0428 + 0.0023  0.0480 + 0.0024
LZ 0.196 £ 0.019  0.168 £ 0.017 | 0.0457 + 0.0024  0.0438 £ 0.0023
PPM; DX 0.329 £ 0.022 0.0428 + 0.0022
LZ; D% 0.288 £ 0.021 0.0415 + 0.0022
JSD 0.289 + 0.022 0.0412 4+ 0.0023
D> (continuous) 0.454 £+ 0.024 0.0498 + 0.0025
NID (continuous) 0.346 £ 0.023 0.0303 + 0.0020
NMSE (continuous) 0.459 £ 0.023 0.0499 + 0.0025
Ellis and Poliner [41] 0.465 £+ 0.024 0.0404 + 0.0023
Random 0.026 £ 0.004 0.0006 + 0.0001
D* & NMSE (cont.) 0.496 0.0516 + 0.0025
D* & NID & NMSE (cont.) 0.432 0.0463 + 0.0024

Mean rank of average precision Mean rank of average precision
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Fig. 4. Mean ranks of average precision scores obtained using Friedman test.
Error bars indicate 95% confidence intervals obtained using Tukey’s range test
[78]. Higher mean ranks indicate higher performance. Results displayed for Jazz
and MSD datasets in subfigures (a) and (b), respectively, with results for com-
bined distances displayed in subfigures (c) and (d).

and for the MSD, using continuous-valued cross-predic-
tion significantly outperforms discrete-valued approaches.
For approaches based on string compression, we note that
using NCDA with BW compression significantly decreases
performance with respect to NCD. Similarly, using NCDA
decreases MAP scores for PPM. Although we do not observe
a significant performance gain using NCDA over NCD for
LZ compression, performance improves consistently across
datasets. For the Jazz dataset, we observe that the JSD baseline
significantly outperforms the majority of string-compres-
sion approaches. In contrast, for the MSD the majority of
string-compression approaches significantly outperform the

JSD baseline. Whereas PPM with distance D* consistently
outperforms all discrete-valued approaches for the Jazz dataset,
PPM with compression-based NCD consistently outperforms
all discrete-valued approaches for the MSD and significantly
outperforms the JSD baseline.

In a comparison of continuous-valued approaches, we ob-
serve that cross-prediction using either distance D* or NMSE
competes with cross-correlation for the Jazz dataset. In contrast,
the same cross-prediction approaches significantly outperform
cross-correlation for the MSD.

Examining continuous-valued approaches further, for both
Jazz dataset and MSD, we observe a significant disadvantage
in using our conditional self-prediction based estimate of NID,
over cross-prediction based distances D* and NMSE. The rela-
tively poor performance of NID for the MSD suggests a limita-
tion of our prediction approach when used with MSD chroma
features. However, considering results for both datasets sug-
gests that cross-prediction yields more favorable results than
conditional self-prediction generally.

To facilitate further comparison, we consider the approaches
proposed by Bertin-Mahieux and Ellis [43], Khadkevich and
Omologo [57], who report MAP scores of 0.0295, 0.0371, re-
spectively. Based on such a comparison, we obtain state-of-
the-art results. Note that the stated approaches do not report any
distance normalization procedure as described in Section IV-D.;
we found that normalization improves our results: For the Jazz
dataset and using normalized distances, we obtain MAP scores
0.425, 0.314, 0.332 for NMSE, D>, NID, respectively. For the
MSD and using normalized distances, we obtain MAP scores
0.0340, 0.0174, 0.0216, for NMSE, D>, NID, respectively.

E. Combining Distances

Finally, using the method described in Section IV-G, we
combine distances obtained using continuous-valued predic-
tion. Fig. 5 displays MAP scores against mixing parameter
3, for Jazz dataset and MSD. We consider the combinations
D*&NMSE, D*&NMSE&NID, the latter combination
which we evaluate with respect to optimal 5 for the former
combination.

Compared to using the baseline NMSE alone, across all 5 and
for both datasets we observe that combining NMSE with D*
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Fig. 5. Mean average precision for combinations of distances, in response to
parameter 3. Results displayed for Jazz dataset and MSD in subfigures (a) and
(b), respectively.

TABLE IV
MEAN PRECISION AT RANK 7, FOR APPROACHES BASED ON
CONTINUOUS-VALUED PREDICTION

Dataset Jazz MSD
T 5 10 20 5 10 20
D* 0.185 0.113  0.065 | 0.0276 0.0146  0.0077
NID 0.133  0.075 0.045 | 0.0147 0.0082  0.0044
NMSE 0.193  0.116 0.067 | 0.0270 0.0141  0.0075
D* & NMSE 0.213  0.123  0.070 | 0.0288 0.0150 0.0079
D* & NID & NMSE | 0.168 0.101 0.063 | 0.0265 0.0146 0.0076

improves performance: For the Jazz dataset, we observe max-
imal MAP score 0.496, corresponding to a gain of 8.1%. For the
MSD, we observe maximal MAP score 0.0516, corresponding
to a gain of 3.4%. We observe no performance gain by further
combining NID estimates with NMSE and D>, obtaining max-
imal MAP scores 0.432 and 0.0463 respectively for Jazz dataset
and MSD. Additional evaluations revealed no performance gain
using normalized distances.

Table III summarizes MAP scores; in Fig. 4(c), (d) we test
for differences in performance among combinations of distances
based on continuous-valued prediction. Compared to using the
baseline NMSE alone, combining NMSE with D> significantly
improves performance for both the Jazz dataset and MSD. In ad-
dition, Table IV reports performance in terms of mean precision
at ranks r. Matching previous observations, for Jazz dataset and
MSD, the combination of NMSE and D* consistently outper-
forms remaining combinations. At rank r = 5, relative to the
NMSE baseline, we obtain a performance gain of 10.0% for the
Jazz dataset and 6.7% for the MSD.

VI. CONCLUSIONS

We have evaluated measures of pairwise predictability be-
tween time series for cover song identification. We consider al-
ternative distance measures to the NCD: We propose NCDA,
which incorporates a method for obtaining joint representations
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of time series, in addition to methods based on cross-predic-
tion. Secondly, we attend to the issue of representing time se-
ries: We propose continuous-valued prediction as a means of
determining pairwise similarity, where we estimate compress-
ibility as a statistic of the prediction error. We contrast methods
requiring feature quantisation, against methods directly appli-
cable to continuous-valued features.

Firstly, the proposed continuous-valued approach outper-
forms discrete-valued approaches and competes with evaluated
continuous baseline approaches. Secondly, we draw attention
to using cross-prediction as an alternative approach to the
NCD, where we observe superior results in both discrete and
continuous cases for Jazz cover song identification, and for
the continuous case for cover song identification using the
Million Song Dataset. Thirdly, using NCDA, we are able to
mitigate differences in performance between evaluated discrete
compression algorithms. We view the previous three points as
evidence that using information-based measures of similarity,
a continuous-valued representation may be preferable to dis-
crete-valued chroma representations, owing to the challenge of
obtaining discrete-valued representations. Further, NCD may
yield suboptimal performance compared to alternative distance
measures.

We argue that due to the ubiquity of time series similarity
problems, our results are relevant to application domains ex-
tending beyond the scope of this work. Finally, in the context of
cover song identification, we have demonstrated state-of-the-art
performance using a large-scale dataset. We have shown that our
distances based on continuous-valued prediction may be com-
bined to improve performance relative to the baseline.

For future work, we aim to evaluate alternative time series
models to those presently considered. To this end, further inves-
tigations might involve causal state space reconstruction [80] or
recurrent neural networks such as the long short term memory
architecture [81]. For future work, we aim to evaluate ensemble
techniques for combining distances in greater detail.
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