NetSHa: In-network Acceleration of LSH-based
Distributed Search

Penghao Zhang*, Heng Pan*, Zhenyu Li, Penglai Cui, Ru Jia, Peng He, Zhibin Zhang, Gareth Tyson, and
Gaogang Xie

Abstract—Locality Sensitive Hashing (LSH) is widely adopted to index similar data in high-dimensional space for approximate nearest
neighbor search. Demanding applications (e.g. web search) mean that LSH must exhibit low response times and high throughput. To
achieve this, they tend to load balance between multiple machines. However, as the scale of concurrent queries and the volume of data
grow, large numbers of index messages are required. Hence, the network is a key bottleneck. To address this gap, we propose NetSHa,
which exploits the computational capacity of programmable switches. Specifically, we introduce a heuristic sort-reduce approach to
drop potentially poor candidate answers while preserving search quality. Then, NetSHa aggregates good candidate answers from
different index messages when transmitting them. Through this, it reduces the network communication cost. Furthermore, we introduce
a best-effort replacement mechanism to improve its concurrency. We implement NetSHa on a Barefoot Tofino programmable switch
and evaluate it using 7 real-world datasets. The experimental results show that NetSHa reduces the packet volume by 4 ~ 10 times
and improves the search efficiency by least 3x in comparison with typical LSH-based distributed search frameworks.

Index Terms—Local sensitive hashing, distributed search, in-network computation.

1 INTRODUCTION

EAREST neighbor (NN) search, also known as similarity
Nsearch, involves retrieving the most similar item(s) to
a given query. It has played an important role in a vari-
ety of applications, such as recommendation systems [2],
natural language processing [3] and sequence matching [4].
In such systems, low delay and high responsiveness are
a must. Despite this, NN search is often applied to data
that is processed as multi-dimensional vectors, leading to
high computational costs. This has led to approximate nearest
neighbor (ANN) algorithms [5], [6] that strive to improve the
performance of similarity search in high dimensional space.

In this paper, we focus on one particularly well-known
approach to ANN: Locality Similarity Hashing (LSH) [7],
widely recognized as one of the most effective methods [8].
Using this approach, a family of hash functions are carefully
designed such that similar data items (in high-dimensional
space) can be allocated to the same buckets with a high
probability. Thus, the system need only check a relatively
small number of buckets to locate similar items (rather than
querying the whole dataset).

LSH has garnered a wealth of attention from both in-
dustry and academia, particularly for data-intensive appli-
cations, e.g. web search [9], [10]. Thus, there are a number

o Penghao Zhang, Heng Pan, Zhenyu Li, Penglai Cui, Ru [ia, Zhibi Zhang
are with the Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100190, China (e-mail: zhangpenghao@ict.ac.cn, pan-
heng@ict.ac.cn, zyli@ict.ac.cn, cuipenglai20b@ict.ac.cn, jiaru@ict.ac.cn,
zhangzhibin@ict.ac.cn). Corresponding author: Zhenyu Li.

e Peng He is with ByteDance Inc. (e-mail: hepeng.0320@bytedance.com).

o Gareth Tyson is with the Queen Mary University of London (e-mail:
g.tyson@qmul.ac.uk).

o Gaogang Xie is with the Computer Network Information Center, Chinese
Academy of Sciences (e-mail: xie@cnic.cn).

*Co-first authors.
The preliminary shorter version [1] of this paper appeared at IEEE INFOCOM
2021.

of implementations of LSH functions, such as MinHash [11]
for Jaccard distance, E2LSH [12] for Euclidean distance and
SimHash [13] for Angular distance. Researchers have also
put forward variants of LSH such as Ternary Locality Sen-
sitive Hashing (TLSH) [14] and Entropy LSH [15] to further
improve efficiency. Regardless, as datasets have increased
in size (e.g. billions of images for reverse lookups [16])
it has become infeasible to execute LSH on a single ma-
chine. Consequently, there have been recent attempts to
implement high-performance LSH-based distributed search
systems [17], [18], [19] within clusters of servers.

The distribution of LSH across a cluster poses a number
of challenges though, most notably related to increased
network communication costs [20]. For instance, let us con-
sider query processing in an LSH-based distributed search
system. When a query arrives, it must first interrogate a
set of servers. In return, each server may generate multi-
ple candidate answers. These candidate answers are then
collected together (again via network communication) for
further processing, such that the final top-K answers are
compiled. As a result, it is necessary for the distributed
answers to be transmitted to one centralized server. This
will lead to network congestion (or “incast”) which hurts
performance. Our experimental results (see Table 2) confirm
this significant overhead due to network communications.
Although recent efforts aim at balancing load between dif-
ferent servers [17], [21], these methods reduce the network
overhead only on end systems (a.k.a at the server side),
while the network itself just blindly forwards candidate
answers. However, we also find that the network, rather
than the servers, can become the bottleneck for delivery high
performance search.

To address this challenge, we propose NetSHa, a system
that exploits the computational capacity of programmable
switches (i.e. P4 [22]) to reduce the network costs of LSH

and improve performance. NetSHa utilizes switches to re-
duce and aggregate candidate answer packets during their
transmission. As a result, through multiple network hops
(switches), the volume of packets can be significantly re-
duced. This alleviates the network bottleneck, which in
turn reduces the network latency and enables the system to
support increased concurrent queries. It is also noteworthy
that NetSHa (at the network side) is complementary with
prior optimizations on server side [17], [21], such that they
can cooperatively improve the system efficiency.

To enable this, we propose a simple extension to the
Internet Protocol (IP) and design novel scheduling algo-
rithms in programmable switches to efficiently aggregate
index messages. Furthermore, NetSHa proposes a heuris-
tic sort-reduce approach that can filter out poor candi-
date answers on programmable switches while preserving
the search quality. Due to the limited on-chip memory of
programmable switches, we further introduce a best-effort
replacement mechanism so that NetSHa can accelerate more
concurrent query tasks. Note that NetSHa also works on
a hierarchy of programmable switches. NetSHa has been
implemented on Barefoot Tofino switches [23]. We evaluate
NetSHa across 7 real-world datasets and show that NetSHa
reduces the packet volume by about 4 ~ 10 and im-
proves the search efficiency by over 3, in comparison with
software-based TLSH [14] and Layer-LSH [17] distributed
search frameworks. In addition, multi-stage switches can
cooperatively achieve better performance improvements,
showing NetSHa’s high scalability.

To the best of our knowledge, we are among the first
to exploit in-network computation to accelerate LSH-based
distributed search. To sum up, our contributions are three-
fold:

e We propose an in-network computing paradigm for
distributed search, and develop NetSHa which uti-
lizes programmable switches to improve search effi-
ciency.

o We design a heuristic sort-reduce approach to reduce
poor candidate answers, while preserving search
quality. We also develop a scheduling algorithm for
packets aggregation on programmable switches. In
addition, we propose a best-effort replacement mech-
anism to improve the concurrency of NetSHa.

e We implement NetSHa on programmable switches
and extensively evaluate it with different datasets.
The results demonstrate NetSHa'’s efficiency.

This paper builds on our prior work [1], where we pre-
sented the basic in-network answer reduction and aggrega-
tion scheme. Here, we expand our analysis of the scalability
of NetSHa (relevant to multi-stage switches), the adopted
“best-effort” concurrency mechanism, as well performing
more experiments using larger real-world datasets.

The rest of the paper is structured as follows. Section 2
presents the background and motivation, whereas Section 3
describes the design of NetSHa. We discuss the practicality
of NetSHa in Section 4 and evaluate it in Section 5. Sec-
tion 6 surveys related work, and we conclude the paper in
Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we first briefly review LSH, and then present
a typical LSH-based distributed search system and its query
processing, highlighting potential performance problems.
We finally introduce in-network computation that underlies
our approach.

2.1 Overview of LSH

LSH is widely recognized as one of the most effective
methods to index similar items in high dimensional space.
It is described as follows.

Definition 1. Let D(p, q) denote the distance of point p and q.
A hash function family H = {h : R* — U} is (Py, P, 71,
ro)-sensitive, if for any p,q € R?, they satisfy two conditions:

(1)if D(p,q) < r1, then Pr{h(p) = h(q)] = Pi;

(2)if D(p,q) = r2, then Prih(p) = h(q)] < Pa.

For any one d-dimensional point p € RY, it can be
hashed to a value v € U through a LSH function h € H.
This hash function holds two properties. First, two similar
points can be hashed to the same value with a high probabil-
ity of at least P if their distance in the d-dimensional space
is less than or equal to r;. Second, two dissimilar points
have a low probability of at most P, to be hashed to the
same value if their distance is farther than or equal to 5.
Obviously, a useful LSH function should enable 7 < 7y
and P, > P,. Some common LSH families have been
proposed based on different types of “distance”, such as
MinHash for Jaccard distance, E2LSH for Euclidean distance
and SimHash for Angular distance.

Generally speaking, for a d-dimensional point p € R?, k
(d > k > 0) LSH functions (i.e. h1, ha, ..., hi) are randomly
selected to respectively perform hash computation so that
k values are generated. Then the generated hash values are
concatenated to form a k-dimensional vector that represents
the signature of point p, denoted as S(p) = (h1(p), h2(p),
<.y hi;(p)). In addition, L (L > 1) hash tables are generated,
each of which is equipped with k£ LSH functions. Then point
p obtains a k-dimensional vector signature for each hash
table. As a result, it finally can contain L signatures (i.e.
S1(p), S2(p), -, Sr(p)). It is clear that the more signatures
point p has, the higher probability it is indexed by another
similar item.

LSH is typically conducted in two phases. The first phase
is data pre-processing. The target of this phase is to insert
data into hash tables. Specifically, one data item needs to
be projected into a k-dimensional signature through k& LSH
functions for the i-th (1 < i < L) hash table. Based on the
signature, the item is inserted into the corresponding bucket
in the i-th hash table. Finally, this data item is inserted
into all the hash tables. The second phase is data querying.
Similar to pre-processing, a query first needs to figure out
its signatures by using the same LSH functions. With these
signatures, it then locates its buckets in the hash tables,
where the candidate answers are. It then evaluates these
candidate items to obtain the final answers.

2.2 LSH-based Distributed Search System

To achieve high throughput and low response times, there
have been recent attempts to distribute LSH across multi-
ple machines. Most LSH-based distributed search systems
adopt two main approaches: MapReduce and Active Dis-
tributed Hash Tables (Active DHT). Both frameworks pro-
cess data in the form of (Key, Value) pairs. MapReduce is a
simple computation model based on two user-defined func-
tions (Map and Reduce), while Active DHT is a distributed
store that enables real-time data processing.

These LSH-based distributed search systems are de-
ployed clusters that store hash tables and data contents
(e.g. images, videos, text). Each hash table associates a (Key,
Value) pair to each data item, where the Key is the signature!
of this data and the Value is the pointer (or data ID) to its
contents. These (Key, Value) pairs are stored over distributed
servers so that the pairs with the same Key are located in the
same or nearby machines.? When a query arrives, the search
system computes its signature and interrogates a set of hash
tables located in different servers. Therefore, a set of can-
didate answers are generated, i.e. (QueryID, Results) pairs.
These must then be transmitted to a centralized agent. The
tasks of the agent is to combine and rank these candidates
to obtain the final answers.

Performance bottlenecks. One query may generate a large
set of candidate answers from different servers. These candi-
dates must be transmitted to the centralized agent(s). In ad-
dition, a useful distributed search system must support tens
of millions of concurrent queries (e.g. imagine performing
search on a popular website). As a result, network conges-
tion is inevitable, which in turn will have a deleterious effect
on performance. For example, our experiments show that
network communication accounts for about 25 ~ 30% of the
overhead per query in our small distributed experiment (see
Section 5.2). For larger scale experiments, the percentage
will be even higher. Thus, we believe that there are signifi-
cant benefits to be gained by reducing network communication
overheads for LSH-based search systems.

23

There are various ways to reduce network communication.
A straightforward solution is to encapsulate multiple can-
didate answers into one packet at the server side. While
this approach can reduce overheads, it offers little benefit if
candidate answers are on different servers.

Recently, many network switches have become able to
provide computational capacity. This allows tasks to be
offloaded to network devices (from end-servers). There are
many examples of these programmable switches, e.g. Bare-
foot Networks’” Tofino switch (a.k.a P4 switches [22]). P4
switches have a flexible parser and a match-action forward-
ing engine, allowing programmers to dynamically configure
the switch to perform diverse control functions. To process
packets at high speed, the architecture of P4 switches have
two multi-stage pipelines: ingress and egress. Each pipeline
stage has a fixed amount of time to process packets in

In-Network Computation

1. This signature is computed by the specific LSH functions associ-
ated with this hash table.

2. Considering the accuracy of LSH, similar data items may be
located in different servers.

3

memory (TCAM and SRAM). Moreover, the switch supports
certain Boolean and arithmetic operations using a set of
ALUs.

We argue that this offers a powerful foundation for
streamlining LSH performance. Thus, we propose Net-
SHa, an in-network computing approach that exploits the
computational capacity of programmable switches to re-
duce the cost of network communication. Specifically, Net-
SHa offloads candidate query answer reduction and ag-
gregation onto programmable switches. We choose this
approach for three reasons. First, programmable switches
are very common today. In modern data centers, pro-
grammable switches have been widely deployed. Second,
programmable switches provide a friendly programming
environment — programmers can use high-level program-
ming languages to customize the logic of hardware. And
third, programmable switches connect to servers directly,
and they can “see” the distributed candidate query answers.
As we will see later in this paper that by offloading some
computation tasks onto programmable switches, both the
network communication overhead and the processing time
on the agent are significantly saved because of reduced
packet volumes as well as the improved quality of answers
that are sent to the agent. The rest of the paper present
NetSHa, built upon the capabilities of P4 switches.

3 DESIGN OF NETSHA

In this section, we first present a high-level overview and
discuss the challenges of NetSHa. We then describe the
specifics of NetSHa in detail.

3.1 Overview of NetSHa

Overall, NetSHa follows the architecture of a typical LSH-
based distributed search systems. We propose two key
groups of optimizations using in-network computation:
(i) answer reduction, and (ii) answer aggregation. Figure 1
shows the framework of NetSHa. Next, we briefly describe
these optimizations.

Primer. Logically, NetSHa utilizes one programmable
switch to connect to multiple servers, each of which may
contain multiple candidate answers for the same query.
These candidate answers are encapsulated in IP packets
and transmitted to the agent server via a shared switch.
We posit that we can exploit this shared switch to analyze,
reduce and aggregate candidate answers. We illustrate how
NetSHa achieves this in Figure 1. For every incoming packet
from a server, NetSHa parses its data pairs (detailed in
Section 3.3), and then identifies its query IDs. For the same
query candidate answers, they will be dispatched to the
same (logical) register (a.k.a on-chip memory), and operated
on by NetSHa as follow.

Candidate answer reduction. NetSHa offloads part of the
reduction task from the agent server to the programmable
switch. Specifically, NetSHa checks each candidate answer
and decides whether its distance to the query is small
enough (i.e. similar to the query). Candidate answers with
a small distance will be transmitted to the agent, while the
others should be preserved in the register (for further com-
parison) or dropped directly. Consequently, poor quality

_____________________ N

|
|
[H

answers
L

Agent server

Server 1 | SW|tch data plane
LSHbuckets P1| [<ayy, di1>, ***, <ain,) regy (gs) 4
div] S P Py
e“’e’ T I regy (o)
k <@y, dy1>, **, <@z P] —
@ oy e C
. 5 : |
Server3 ' (o |
} re
LS buckets | P3] |[<@s1, d31>, -, <as, & (q") !
™ ds>] |
I .
_________________ _

Fig. 1. The framework of NetSHa. In this figure, P; refers to an answer packet from server i while ¢; represents the i-th query. A slot (rectangle)
with white color means empty. The slots with the same color carry candidate answers for the same query.

answers will be removed on the switch, which can alleviate
the computation load of the agent server and improves the
search efficiency.

Aggregating answer packets. Candidate answers, which
should be transmitted to the agent server, will be aggregated
into one or more packets based on a customized protocol
(see Section 3.3). Furthermore, NetSHa aggregates those
candidate answers belonging to different queries into one
packet. This answer aggregation can significantly reduce in-
cast traffic> and reduce the 1/O cost of the agent servers.

Summary. In short, on receiving a query request, NetSHa
selects the servers to be interrogated for the query. Then
each selected server returns candidate answers. Next, these
candidate answers are passed to the centralized agent (via
the network) in order to produce the final answer list. Any
switches that observe answers for the query, perform in-
network reduction and aggregation. In this way, NetSHa
reduces communication cost and improves the search effi-
ciency.

3.2 Challenges

NetSHa has to overcome five challenges as follows:

1) First, programmable switches are originally de-
signed for network packet forwarding. NetSHa
must enable point-to-point communication between
distributed servers and centralized agents without
affecting regular network functions (Section 3.3).

2) Second, though each candidate answer associates
a distance value to refer to its similarity with the
query, it is hard to define “poor quality” candidate
answers for answer reduction. Thus, we need a
way to quantify this so that programmable switches
do not drop global-scope good answers, while also
removing poor quality answers (Section 3.4).

3) Third, a programmable switch aggregates candidate
answers by maintaining a status and data structure
for each query task. However, the memory of pro-
grammable switches is limited. This means a pro-
grammable switch cannot conduct aggregation for
many tasks simultaneously. NetSHa must employ
effective scheduling to conduct aggregation so that
it can be deployed in high throughput and high
concurrency distributed environments (Section 3.5
and Section 3.6).

3. Packets are from multiple input ports to one output port.

4) Fourth, answer aggregation on the programmable
switches should improve the throughput of the
system, but should also improve the response time
for end-users. Thus, we must find the right balance
between throughput and latency (Section 3.7).

5) Fifth, it is not necessarily feasible that all servers
connect to one switch running NetSHa, or that all
traffic is routed through this switch. To this end,
NetSHa should support multi-stage switches that
are widely adopted in data centers (Section 3.8).

The remainder of this sections describes how we address
the aforementioned challenges.

3.3 Network Protocol Extension

To support answer aggregation on programmable switches,
NetSHa performs a simple extension of the Internet Proto-
col (IP), so that the programmable switches can efficiently
distinguish candidate answer packets. For simplicity, we
refer to this as the NetSHa protocol. Figure 2 shows the
packet format. We use the reserved bit in the IP Type of
Service (ToS) field to identify NetSHa packets (i.e. packets
that contain candidate answers).

Reserved TQSl
IP| || UDP |NetSHa protocoll

| ETH |
\—v—/
L2/L3 forwarding

y

[Query ID[NUM

A data pair‘w\,‘» v
| Data ID| distance |Data ID | distance | --- |

iy
NUM data pairs
Fig. 2. Packet format in NetSHa.

NetSHa protocol packet. A NetSHa packet, whose IP ToS
reserved bit* is set to 1, is encapsulated as a User Datagram
Protocol (UDP) message. This is widely used for customized
protocols in data center networking [24], and does not affect
the traditional IP network. A NetSHa message consists of
two portions: (i) NetSHa header and (ii) its payload. The

4. Distributed search systems are always deployed in data centers so
that we can customize packets and reuse some reserved bits without
affecting regular packets.

NetSHa header contains Query # (1 byte), which refers to
the number of queries its payload contains. For each query,
it contains Query ID, NUM and an array of data pairs. The
Query ID has 4 bytes and is used to identify the query, while
NUM has 2 bytes and indicates the number of answers (data
pairs) for the query encapsulated in the packet. Each data
pair is composed of a 4 byte data ID (a.k.a answer ID) and
a distance value (8 bytes), denoted by (a;, d;). The distance
value is used to measure how far away the answer data is
from the query data. A standard Ethernet packet can contain
up to 1,500 bytes, so one NetSHa packet is able to carry up
to 120 candidate answers.

Note that the programmable switches will only inter-
cept and process NetSHa protocol packets, whereas other
packets will be forwarded directly. Thus, NetSHa does not
affect regular network functions. Note that the switch parser
needs to parse the packets to extract the data pairs for
subsequent comparison.

3.4 Answer Reduction

To restate, the primary mission of the agent server is to
receive candidate answers from one or more servers, re-
order them and select the Top-K answers. This process is
known as “answer reduction”, which consumes significant
computational resources on the agent server. As the scale
of the distributed search system increases, the agent server
inevitably becomes a bottleneck.

To this end, NetSHa offloads the reduction task from
the agent server to the network by using programmable
switches to drop poor quality answers. This offloading is
feasible since programmable switches can “see” all candi-
date answers that will arrive at the agent server and utilize
the distance value associated with each answer to decide
their quality. This is in contrast to individual servers, which
only have a local perspective. Nevertheless, it is challeng-
ing to identify poor candidate answers which should be
dropped on programmable switches.

Basic approach. The basic solution to address the above
challenge is to set up a threshold (I') for each query in
the switch. All candidate answers whose distance value
is larger than the threshold, should be dropped directly.
Otherwise, they should be forwarded to the agent server
for further processing. Obviously, the threshold parameter
is crucial. To this end, we count the number of answers for
the same query that the switch receives, and forward the
first K candidate answers to the agent server directly, while
recording the worst answer among them. Here, K is the
number of answers that should be returned to users by the
agent server (i.e. the top-K answers). Thus we can determine
the value of K ahead of time. Here, we can use the distance
value of the worst answer to configure the threshold, 7'
The candidate answers, whose distances are smaller than
T, are aggregated and transmitted to the agent server (see
Section 3.5).

Though this basic approach is straightforward, its effi-
ciency is low. In the worst case, it does not reduce any
poor candidate answers if the first K answers received at
the switch contain the globally worst ones. In other words,
the worst answer is used to configure the threshold.

distance
small » large
p GA slots g PA slots
(2) Forward good [A \ I .
answers
Register ;
[\ A

(1) Insert and sort

: (3) Update worst distance

[<a1y, d11>, <@gy, dip> ***, <@y, d1s>]

Candidate answers

Fig. 3. Overview of the sort-reduce approach.

Sort-reduce approach. To address the above shortcomings,
NetSHa proposes a sort-reduce approach to reduce poor
candidate answers while preserving search quality. This is
done using registers of switch’s memory. Specifically, we
associate with each query a logical register that is similar to
an array and contains limited slots (i.e. array entries). It is
worth noting that, as we will describe in Section 4, a logical
register spans over multiple physical registers in the switch,
in order to allow multiple read and write operations on the
logical register in one pipeline stage. To ease the descrip-
tion, registers in this paper refer to logical registers unless
otherwise specified. A logical register contains several slots
to store its corresponding candidate answers, where smaller
sequence number slots store better candidate answers (see
Figure 3). With this basis, NetSHa divides the slots of each
register into two parts: good answer (GA) and poor answer
(PA) slots. Each register has p GA slots and ¢ PA slots.

When a batch of candidate answers for one query ar-
rives, NetSHa will insert them into the corresponding reg-
ister based on their distance values and also keep the order
property. If all GA slots are occupied, NetSHa will perform
an aggregation operation for the GA slots (see Section 3.5),
send the p GA answers (the local top-p answers) to the
agent server and update the worst answer it sent (e.g. the
threshold T' in Figure 3). Otherwise, it begins to process
the next batch of candidate answers. The above iteration
will stop when K answers for the query have been sent to
the agent server. At this moment, we can safely clear all
the remaining candidate answers in the registers for this
query as they are useless to send to the agent. NetSHa then
resets the threshold 7" as the largest distance value among
the answers that have been sent to the agent.

NetSHa then moves to the second stage, where g is set
to 0 — we do not need PA slots anymore because we now
have the threshold 7'. The subsequent answers with distance
values larger than T are dropped because they are worse
than the top-K answers that have been sent. Those with
distance values less than 7°, on the other hand, are inserted
into the register for the corresponding query. The answers in
the register will be sent to the agent when it is full or when
the timer expires (see Section 3.7). The pseudo-code for the
above sort-reduce approach is listed in Algorithm 1.

The highlight of our sort-reduce approach is to utilize
PA slots to store poor answers (till now) and avoid the
drawback of the basic solution. This ensures that the first
K answers sent to the agent server do not involve the
globally bottom-g answers (the ¢ worst answers), where ¢
is the number of PA slots. Considering the limited memory

of programmable switches (e.g. tens of megabytes on-chip
memory), we assume K > (p + ¢q). For a register with a
fixed size (i.e. p + q is fixed), a smaller g results in a lower
reduction efficiency. In the extreme case where ¢ = 0, our
sort-reduce approach will degenerate into the basic solution.
A larger ¢, on the other hand, will degrade the effect of
answer aggregation described in Section 3.5 as p (the size
of GA slots) becomes smaller. Our experimental results in
Section 5 confirm this intuition.

To implement ordered candidate answer insertion into
the register, we borrow ideas from Bubble Sort [25] to
achieve our sort-based mechanism (denoted as Slot_Sort()
in Algorithm 1). Specifically, for each input candidate an-
swer ay, it should check the corresponding register slots
(see Figure 3) from right to left. In other words, the last
slot in PA, which stores the current worst answer, should be
considered first. If the slot is empty, a, will be inserted di-
rectly. Otherwise, a; needs to be compared with the answer
stored in the slot (denoted as a;). If the distance of a; is
larger (i.e. a; is worse), a, will be backed up first, and then
replaced by a;. In this case, we need to find a proper slot
for a,, where its distance is larger than the answer in the
left slot but smaller than that in the right one. If the distance
of ay is larger, a; moves to the next slot left until it finds a
proper slot to be inserted into. The complexity of the above
insertion is thus O(n), where n is the number of the slots (i.e.
n = p + q). We will detail how to implement this algorithm
on programmable switches in Section 4.

Theoretical analysis. Next, we discuss the theoretical ben-
efits brought from the answer reduction. Let us consider d
servers and one agent. Each server returns n locally sorted
optimum candidate answers for one query, while the agent
finally selects the top-K answers from the n x d candidates.
NetSHa filters out the globally worst answers via answer
reduction. The best case for the answer reduction is that the
threshold is configured as the distance of the globally (k+1)-
best answer. In this case, (n X d—k) candidate answers would
be reduced. For the worst cast, the threshold is configured
as the distance of the globally (¢ + 1)-worst answer. This
is because NetSHa allocates ¢ PA slots to store and hide
globally bottom-g answers. In other words, it can reduce
q answers at least. As to the overhead, NetSHa needs to
insert candidate answers in the correct order into the reg-
isters to configure the threshold; the worst-case complexity
of this insertion operation is O(n). Once the threshold is
configured as the distance of the observed worst answer, the
insertion operations will no longer happen. Instead, NetSHa
directly utilizes the threshold to filter out the subsequent
worse answers on the fly, whose overhead is low. As such,
the overhead introduced by NetSHa is negligible; our exper-
iments also confirm it (see Table 3).

3.5 Aggregation in Programmable Switches

We next present another major component of NetSHa —
the aggregation of multiple candidate answers into one or
several packets on the programmable switches. The aggre-
gation aims to decrease the volume of transmitted packets.
Indeed, the answer aggregation can mitigate network con-
gestion (i.e. in-cast traffic) and reduce the I/O cost of the
agent server.

Algorithm 1: SORTREDUCE(g, 1, n, p, K)

Input: g, a candidate answer
Input: r, a register
Input: n, the number of slots in r
Input: p, the number of GA slots
Input: K, the number of top answers the agent
should return to users.
if r.k < K then
// rk: the number of packets that have been sent
pos < Slot_Sort(a, 1, n);
/ /Insert a and get the insertion position pos
if pos = 0 then
// register r is full
if (K —r.k) > p then
Send(r, p); // Send all the answers in GA
slots
r.k « (r.k+p);
Set(r, p, r.T);
// Update r.T with the worst distance

else

Send(r, K - r.k);

// Send the top (K - r.k) answers in GA
slots

rk+ K;

Set(r, K-rk, r.T);

Clear(r);

// Clear all the remainder candidate
answers in r

else

if a.d > r.T then

Drop(a); // Drop subsequent worse answers
directly

else
pos < Slot_Sort(a,r,n);
if pos = 0 then

L Send(r, n);

return;

Input packets

any=<ay, di> Dispatch & Insert
Register 1 Register m
p GAslots q PA slots p GA slots q PA slots
" - A < ,—)\—‘
14

any; | ang; | angz| - e | ANy | @Nm2 | ANz [-+ m

Select&Aggregéié'*—_,\“,‘/ :

NetSHa payload . | any | ang| - |anm1 anmy| -+ |

Fig. 4. Overview of the answer aggregation.

Overview of answer aggregation. NetSHa aggregates can-
didate answers on programmable switches (see Figure 4).
The switches receive a batch of input packets from dis-
tributed servers, parses their carried candidate answers
and dispatches them into registers. NetSHa then performs
answer reduction. Next, NetSHa aggregates the stored can-
didate answers into one or more NetSHa packets (if the an-

NetSHa packet header
| Query ID | NUM | Data pairs

Comparing

D ; . ,
States States States ®-{---

data pair 1 || data pair 1 data pair 1

data pair 2 || data pair 2 data pair 2

data pair 3 data pair 3

data pair 4
Register 1 Register 2 Register n

Fig. 5. The data structure for packet aggregation in programmable
switches.

swers need to be sent). Finally, these packets are transmitted
to the agent server.

Register data structure. The switch performs the
lightweight packet aggregation using registers (see Fig-
ure 5). To achieve the aggregation task, the switch initializes
and maintains a global “two-dimensional array” based on
its registers. Each register stores two types of data: states
and data pairs. The states record a Query ID for identifying
a specific query, and a counter for denoting the number
of carried data pairs in this register. Data pairs (candidate
answers) are the results of the corresponding query.

When a NetSHa packet enters the switch, it will select
one register to insert its data pairs to. Our existing imple-
mentation adopts a linear search to determine the register.
If there is already one register with the same Query ID,
the packet appends its data pairs to the tail of the register
until it is full. And the insertion follows our heuristic sort-
reduce approach (Section 3.4). Otherwise, NetSHa first finds
an “empty” register and inserts the data pairs in the packet,
and then sets the register states, including the corresponding
Query ID and counter value. Once a register is full, NetSHa
will send the data pairs in GA slots to the agent following
the sort-reduce approach, and reset the states correspond-
ingly.

Basic register replacement. The number of registers in a
switch determines how many aggregation tasks (queries) it
can perform in parallel. Unfortunately, for financial reasons,
the number of registers is limited. This means that a NetSHa
packet with a new Query ID cannot be processed if all
registers are occupied. To address this problem, we adopt a
replacement strategy in order to select an appropriate register.

This strategy is a weight-based selection mechanism. Put
simply, the register that has carried the most data pairs,
will be selected if all registers are occupied. As shown in
Figure 6, a NetSHa packet visits the registers one by one.
It compares its Query ID with that of the register. If they
are identical, the register is returned. Otherwise, it will
traverse all registers to record the first “empty” register
and update the register with the carried data pairs. If an
“empty” register is found, this register will be returned. Oth-
erwise, the register with the most carried data pairs will be
selected (called the replacement register). This procedure is
illustrated in Algorithm 2. To avoid losing data, if a register
is replaced, it must first aggregate its existing data pairs,

MAX DP
register

Equal QIDY
register

NULLQID Y 5
register

GM
Packet QID : : Linear search
A qip A ap A qp A ap
Counter Counter Counter Counter
States States States
data pair 1 || data pair 1 data pair 1
data pair 2 data pair 2

Register 1 Register 2 Register n

Fig. 6. The register selection for the input NetSHa packet. QID is short
for query ID and GM refers to global maximum value; DP is short for
data pair; > represents the selection priority.

construct a NetSHa packet via modifying one current input
packet header and padding its payloads. After the checksum
has been recalculated and updated by the switch, this packet
will be transmitted to the agent. Following this, the register
can be cleared and used for the next incoming NetSHa
packet. We note that, besides the basic replacement strategy,
there are alternative approaches to select an appropriate
register (e.g. a time-to-expiration mechanism). We leave
exploring these alternatives to our future work. It is also
noteworthy that we do not adopt a bypassing-forwarding
(BF) mechanism that directly forward the candidate answer
packets when there is no empty register available. The
reason is that while this mechanism avoids register replace-
ment, poor answers carried by the bypassing-forwarding
packets cannot be reduced by switches, degrading the ef-
ficiency of in-network processing. Our experiments also
confirm this.

Algorithm 2: WEIGHTSELECTION(g, R, n)

Input: g, the arrival query id

Input: R, a vector of registers

Input: n, the number of registers in R

Output: a selected register

weight < 0;

slot, <+ NULL;

slot, < NULL;

fori=0ton —1do

if R[i].q == q then
L return R[i];

if R[i].g == -1 && slot, == NULL then
| slote < R[il;

if R[il.w > weight then
slot, < R[i];
weight < R[A].w

if slot, # NULL then
L return slot.;

return slot,;

3.6 Concurrency of NetSHa

In the worst case when there is no register available, NetSHa
directly forwards the answer packets from servers to the
agent without any reduction or aggregation. That said, Net-
SHa does not degrade the overall concurrency of the search
system (measured by the number of query tasks that can
be “run” simultaneously). Nevertheless, the available on-
chip memory that NetSHa can use impacts the performance
improvement by our approach.

The weight-based selection mechanism that we propose
in the last subsection enables the switches to replace query
tasks. Yet it does not decide whether a new query task
needs to trigger the replacement. For example, considering
tens of millions of concurrent query tasks, it is possible that
some tasks are replaced out even if they were only recently
inserted into the registers.

| Register 1| [Register 2| .. |Register n |
T v

<= threshold

NetSHa packet-----------

Fig. 7. A best-effort replacement mechanism.

To fix this issue, NetSHa introduces a “best-effort” mech-
anism (see Figure 7). More specifically, it utilizes a counter
to record how many times register replacements have been
triggered. As long as it exceeds a threshold value, H, the
subsequent replacement operations will not be triggered.
The corresponding answer packets are forwarded directly
without reduction and aggregation; these will be processed
by the next switch or the agent. Note that the counter will
be reset back to 0 once there is an available register (i.e. no
longer be used by any query task). As the threshold affects
the number of query tasks that can be potentially accelerated
by NetSHa, we define \ = H + #registers as the concurrency
parameter (\) of NetSHa. A larger A means more tasks can
be accommodated by a switch for answer reduction and
aggregation at the cost of possibly more caching misses due
to frequent replacements. On the other hand, a smaller \
may reduce the benefits of NetSHa because poor answers
carried by newly arrived packets for other query tasks
cannot be reduced by the switch. We evaluate the impact
of A on the performance gain in Section 5.8.

3.7 Achieving Low Response Time

NetSHa aggregates packets in programmable switches,
however, this must be balanced against response time. Natu-
rally, the longer the packet is retained within the switch, the
longer the response time is. To address this challenge, we
equip each register with a timer.’> Once the timer expires,
NetSHa must construct an aggregated packet for the query
task that this register holds, regardless whether the number
of data pairs reaches the threshold.

5. Timer is a very common component in programmable switches.

8

An implementation challenge here is that programmable
switches cannot generate new packets by themselves. Con-
sequently, the candidate answers in the register cannot
be aggregated and transmitted even when its timer ex-
pires if there is no input packet. To address this chal-
lenge, NetSHa leverages packet recirculation, a feature of
programmable switches, to let one packet always traverse
the switch pipeline. Specifically, packet recirculation enables
one packet, which has already passed through the switch
pipeline, to re-enter the pipeline. Thus, NetSHa can cap-
ture and clone the traversed packet® for aggregating and
transmitting candidate answers if there is no available input
packets. It is noteworthy that at most one recirculation
packet is needed for a register, and the packet payload
can be empty — it is used only for triggering the answer
aggregation if needed. Thus, the overhead is very limited.
For example, for a packet with 64 bytes and 100K registers,
it only consumes 6.4MB bandwidth at most, which is very
small compared to the 3.2Tbps [23] throughput of switches.
Note that recirculating packets in programmable switches
has been used in many works [26].

3.8 NetSHa with Multi-stage Switches

Recall that a programmable switch parses and identifies
NetSHa packets for reducing poor candidate answers while
other packets are forwarded directly. Good answers are
selected and aggregated into new NetSHa packets that are
transmitted to the agent server. Thus, both the input and
output of the switch is NetSHa packets. This means that
NetSHa can easily be extended to multiple switches.

Data center Net
Y 4
NetSHa NetSHa/ """ » NetSHa
e { SW1 |- -+ [SW2] fffff [SW3 |-
. - a12,az3 as3

de1.. g A

P Ngaean 2N
[51][52] (53] (s s) Cos) (reem)

Fig. 8. NetSHa with multiple switches. SW refers to a programmable
switch while S represents a server. a;; denotes the j-th candidate
answer from the i-th server.

Figure 8 shows an example of how switches can work
together without requiring explicit coordination. Each ToR
(Top of Rack) switch” runs NetSHa to reduce candidate an-
swers. For example, SW1 reduces poor candidate answers
from server S1 (aj1,...,a1,) and S2 (as1,...,a2,) While the
good answers (a12 and ag;) are aggregated and transmitted
to the agent. Finally, SW3, which connects to the agent, fur-
ther filters out poor answers from the network (i.e. SW1 and
SW2 ToR switches) and its local servers (S5 and S6). This
example highlights that switches do not need to negotiate
with each other—they can run NetSHa independently.

This brings two benefits: (i) it does not require packets
to be routed to a specific switch so that packets with candi-
date answers are reduced and aggregated on the fly; and
(i) through multi-stage switches deployed with NetSHa,

6. The original packet will continue its recirculation after the clone.
7. Though we here only consider ToR switches, it equally applies to
other types of switches.

the quality of the candidate answers arriving in the agent
server can be improved. Intuitively, multi-stage switches
collectively provide more on-chip memory available for use
by NetSHa. The poor answers that are not reduced by the
switches in earlier stages can be further captured by those
in the late stages for further reduction and aggregation. Be-
sides, switches in the later stages may have a better coverage
of answer servers, leading to more precisely reduction of
poor answers.

4 PRACTICAL CONSIDERATIONS
In this section, we discuss several aspects of NetSHa’s

practicality.

Logical register 2

data pair 1 [| data pair 1 data pair 1 |Register 1

p GA slots

data pair p

data pair p

data pair p Register p
arasts| 55 R res
S Register p+q

Fig. 9. Mapping between logical registers and physical registers.

Programming restrictions. Note that programmable
switches have a number of restrictions, particularly in terms
of physical register access. Indeed, one physical register in
a stage can only be read and written once per packet pro-
cessing, which makes it difficult to deploy our algorithms
(e.g. Slot_Sort) that may require multiple read and write
operations of the answer slots. To overcome this barrier, we
adopt a virtual memory mapping mechanism. Note that a
query task is associated with a logical register with p GA
slots and g PA slots. We map each slot to one physical
register. That said, a logical register spans over p+¢ physical
registers (see Figure 9). For a query, we hash the query ID
into a specific value, k, and use all the k-th slots of the p + ¢
physical registers to form its logical register. In doing so,
we can perform multiple read-write operations on a logical
register in one stage.

= threshold
|Aggregation & reduction table Iﬁ °

A
Reserved bit
Header 151 Reserved bit v

| Parser |ﬂ>| IP ToS table F—2%—»{ L2 switch table

IP packets
Egress table L3 IP table

Fig. 10. Data flow graph in programmable switches.

IP packets

Switch pipeline processing. Most modern programmable
switches adopt a multi-table pipeline model to process pack-
ets (this is supported by Barefoot Tofino switches). Using
the open programming interfaces, developers are able to
customize the switch pipeline and configure the pipeline
tables. NetSHa relies on such switches. Figure 10 presents
the pipeline processing of the programmable switches for
answer reduction and aggregation. Specifically, the pro-
grammable switch receives IP packets from physical ports

9

and parses them into a vector of header fields based on
its pre-configuration state automata. Next, it configures a
table (IP ToS Table) to identify NetSHa packets whose IP ToS
reserved bit is 1. For the NetSHa packets, they need to jump
to the Aggregation & Reduction table for further processing
(for answer reduction and aggregation). The other packets,
whose IP ToS reserved bit is 0, are viewed as regular packets
and subsequently forwarded as normal.

We use a pre-programmed matching rule in the Aggre-
gation & reduction table. The table only contains one rule
that will process all packets that enter this table. The table
rule has a wildcard match pattern while its action behavior
is customized via composing a few action primitives. Specif-
ically, it first performs a hashing operation to obtain a query
ID, and then uses it to locate the logical register. Finally,
it runs our Slot_Sort algorithm to reduce bad candidate
answers, and further aggregates good candidate answers.
We have implemented NetSHa with the above pipeline in
Barefoot Tofino switches (3.2 Tb/s).

Search quality. We emphasize that NetSHa does not change
any functional properties of the LSH family. Instead, it only
relies on common LSH functions (i.e. TLSH functions) to
compute similar data items. Therefore, NetSHa preserves
the theoretical basis of its adopted original LSH functions
in terms of search quality. As a result, NetSHa can achieve
the same search quality as typical LSH-based search. This is
also confirmed by our experiments (see Section 5.6).

Fallback . NetSHa can also fall back to the case where
candidate answer packets are directly forwarded without
answer aggregation and reduction via manipulating flow
table rules to change their pipeline processing paths.

Coexistence with regular network functions . NetSHa does
not affect regular network functions (e.g. forwarding) as it
only operates on NetSHa packets. Other regular packets are
forwarded as normal. NetSHa can also adjust the register
resources it uses, in order to guarantee that regular network
functions operate as usual.

Benefits of NetSHa . NetSHa offloads the computational
load from agent servers to programmable switches. This
offloading is both feasible and beneficial as programmable
switches are wildly available in data centers. Indeed, there
are often free computational resources on programmable
switches [27], [28] , which can be leveraged for in-network
computation. As we will show through experiments that
such a offloading reduces the packet volumes and improves
the search efficiency. As a further benefit, it has also been
shown that offloading some computational tasks from the
server to the network can improve power-efficiency [29].

Query server selection. In a typical LSH-based distributed
search framework, for a new query task, the agent needs to
first compute and select those servers that may store candi-
date answers to avoid answer search on useless servers (i.e.
those holding answers far from the query). Other than con-
ventional solutions that adopt a software-based approach
on agent servers, NetSHa also offloads this task to pro-
grammable switches via a table-lookup mechanism in order
to facilitate the selection of servers on the fly. That said, this
offloading enables hardware-based implementation of the
query server selection.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate NetSHa. As a baseline, we
compare it against two alternative solutions: (i) Layered-
LSH [17], a conventional distributed MapReduce-based
variant of the LSH algorithms; and (i)) A software-based
TLSH [14] algorithm implementation for generic platforms.
Different from the layered-LSH that uses conventional LSH
functions, the TLSH adopts a ternary matching mechanism
to accelerate the identification of similar answers on indi-
vidual servers. NetSHa uses the same mechanism as TLSH
on servers.

5.1 Evaluation Methodology

Testbed Setup. We evaluate NetSHa on a testbed with
6 servers, each of which is equipped with 32 cores of
Intel(R) Xeon(R) E5-2682 CPU @ 2.5GHz, 256GB RAM with
Ubuntu 16.04 and Linux kernel 4.15.0-132. All servers are
directly connected to a Barefoot Tofino switch (3.2 Tbps).
Additionally, we run 4 virtual machines (VMs) on each
physical server where each VM monopolizes 4 CPU cores
and occupies 32GB memory.

Workload and datasets. The experiments involve four dif-
ferent types of datasets.

o Random. This dataset is constructed by sampling
points from the normal distribution, N¢(0, 1) with
d = 100. The dataset contains 200M data points. The
queries are generated by adding a small perturbation
to the positive distribution N%(0, o) with ¢ = 0.3. In
total, we generate 10M queries. This type of dataset
has been used in many LSH experiments [14], [17],
thus we also use it to solve the (c, 7)-NN problem
with ¢ = 2. The expected distance for each query to
its closest data point is » = 0.5, and there is a high
probability that the data point is within the distance
e

o Text. We use three real-world text datasets: Wiki [30],
Enron [31] and Glove [32]. For the Wiki dataset, we
use the English Wikipedia corpus of July 2019 for
calculating the corresponding TF-IDF vectors. The
Wiki dataset contains 200M data points. In addition,
we use two larger datasets, Enron and Glove, where
both of them contain about 1000M data points. Enron
originates from a collection of emails, while each
Glove data item consists of 100-dimensional word
feature vectors extracted from Tweets. For the three
text datasets above, we generate 10M queries with
d = 100.

o Image. We adopt two image datasets. One is a Corel
image collection [17] where we directly use the 32-
dimensional color histogram extracted from each im-
age to obtain 210M data points. The other is a larger
Deep [33] dataset, which contains deep neural codes
of natural images obtained from the activations of a
conventional neural network. This generates 1,000M
256-dimensional data points with 10M queries.

e Audio. The audio [34] dataset consists of 192-
dimensional audio feature vectors extracted using
the Marsyas library from the DARPA TIMIT audio

10

speed dataset. It consists of 1,000M data points and
10M queries.

For each experiment, we use the above datasets to eval-
uate NetSHa and report the average along with the 95%
confidence intervals values if possible. In each run, we issue
10M queries randomly selected from the query set of the
used dataset. The default system parameters are listed in
Table 1, where we use 100 registers with each having 12 slots
in total and 8 slots for GA (p) on each switch. By default, the
agent will return the top 50 answers (i.e. K = 50).

TABLE 1
The default setup of the system parameter.

of registers | #ofslots | p | K
100 12 8 [50

Evaluation roadmap. We are particularly interested in five
aspects: (i) the network overhead in typical LSH distributed
search systems (Section 5.2); (ii) the performance improve-
ment of NetSHa compared to the baselines (i.e. layered
LSH [17] and TLSH [14]) (Section 5.3); (iii) the effect of
each major component, i.e. reduction and aggregation (Sec-
tion 5.4); (iv) the impact of parameters (Section 5.5); (v) the
search quality (e.g. the recall rates) of NetSHa (Section 5.6);
(vi) the scalability (Section 5.7) and the concurrency (Sec-
tion 5.8) of NetSHa.

5.2 Network Overhead

We have previously argued that the overhead of network
communication seriously affects the performance of exist-
ing search systems. Before continuing, we briefly wish to
confirm this assumption. Thus, we deploy the Layered-
LSH [17] and the software-based TLSH [14] in our testbed.
For transport, we use UDP and evaluate each solution. We
measure the processing time for each query, which includes
four parts: the server selection time at the agent server®,
search processing time (i.e. hash bucket matching) on the
distributed servers, network communication time and the
processing time at the agent server (for candidate answer
sorting). The total processing time for a query, ¢, is the inter-
val between the agent beginning to operate a query task and
returning Top-K answers. The server selection time ¢y, and
the processing time of the agent (¢1) are recorded locally on
the agent; the search processing time on a distributed server
1 is the time interval between the query arrival time and the
sending time of its corresponding answers (denoted by st;).
Finally, the network communication time is estimated as
t —tg —t1 — max{st; }, where m is the number of distributed
servers. em

Table 2 reports the query time distribution (average
over all queries) for individual queries, confirming that
the network does contribute significantly to the overall
query processing time. Specifically, the network contributes
25 ~ 30% of total processing time. We also note the network
contributes more for TLSH than that in Layered-LSH. This is
because TLSH optimizes the hash buckets matching process
at the server side. This lowers the processing time on the

8. Note that NetSHa also offloads this task onto programmable
switches.

TABLE 2
Average query time distribution (%) and the average query time (us) for
individual queries.

D oo | S O i
Layered || 1524 33.76 2676 24.24 2.97
Random TLSH 14.64 28.81 30.37 26.18 1.49
NetSHa 7.14 56.89 18.69 17.28 0.53
Layered 14.61 31.86 2795 2558 2.58
Wiki TLSH 13.51 28.63 30.17 27.69 1.32
NetSHa 7.12 62.39 1426 16.23 0.45
Layered 19.84 34.27 2354 2235 2.87
Enron TLSH 19.19 27.68 2826 24.87 1.43
NetSHa 6.67 56.13 17.78 19.42 0.55
Layered 14.99 32.17 2833 2451 2.93
Glove TLSH 1438 2749 3126 26.87 1.49
NetSHa 6.63 546 18.69 20.08 0.54
Layered 18.32 3249 2557 23.62 3.24
Corel TLSH 17.05 28.97 2857 2541 1.93
NetSHa 9.73 58.17 16.64 15.46 0.67
Layered || 1597 3284 2657 24.62 3.57
Deep TLSH 15.2 27.86 3053 2641 1.84
NetSHa 8.72 5247 1625 22.56 0.73
Layered || 16.87 3213 2734 23.66 291
Audio TLSH 14.43 29.11 30.27 26.19 1.76
NetSHa 8.75 5572 16.64 18.89 0.7

distributed servers, which means that a larger proportion of
the delay is attributed to the network. Thus, for distributed
search systems with optimized servers, the network is in-
deed one of the major performance bottlenecks. To have
an overview of NetSha's performance, we also report the
average query time and the distribution over the four parts
in the table. We can observe that the query time for NetSha
is much lower than the two baselines. Next, we detail the
evaluation of NetSHa.

5.3 Evaluating NetSHa

Next, we evaluate NetSHa and compare it with the two
baselines. The setup is the same as Section 5.2. This set of
experiments uses the default parameters shown in Table 1.

>
7
7
7
X /
5 7

>

Dataset

Fig. 11. The total processing time for 10M queries.

Figure 11 presents the experimental results. NetSHa
achieves significant performance improvements compared
with the two baselines (for all datasets). This is because the
programmable switches drop poor answers and aggregate
answer packets, thereby reducing the packet volumes and
network congestion. Fewer packets imply shorter queues
on the switch and agent, fewer I/O calls on the agent, and
lower processing time on the agent.

Thus, answer reduction and aggregation not only benefit
the network but also the agent. To better highlight the pro-
cessing improvements on the agent, we count the number of

11

%)

(
Ay
8

o N
o o,

v,
/
g
/
g
%

Ay

R % 3
ZANRR ANGK| ZANRR
Random Wiki Enron

o

Glove Corel

Dataset

Normalized packet

N
[&;]

o

[0

D

he)

P\

Z B

S Y

o

Fig. 12. The number of packets (normalized with the Layered solution)
that the agent received.

packets that the agent receives when executing 10M queries
as a proxy for the I/O and processing overhead on the agent.
Figure 12 reports the results where we use the number of
received packets in the Layered LSH as the baseline. We
see that the number of packets is greatly reduced in NetSHa
compared to Layered and TLSH. Figure 13 further examines
how this impacts the processing time at the agent. We see
that the processing time at the agent is in proportion to the
number of received packets, and can be reduced by about
80% using NetSHa.

In summary, NetSHa reduces the packet volume by
about 4~10x and improves the search efficiency by over
3x compared with TLSH and Layered LSH. By reducing
the packet volume to the agent and dropping poor answers
in the switch, our approach reduces both the network com-
munication overhead and the processing time in the agent.
Besides, NetSHa also adopts a TLSH-like method to achieve
fast answer search on individual servers, which reduces
the processing time on distributed servers (compared with
the Layered-LSH solution). Furthermore, a typical query
task often needs to first compute and select those servers
that may store similar candidate answers, in order to avoid
answer search on useless servers. While both Layered-LSH
and software-based TLSH solutions adopt a software imple-
mentation on the agent for the above server selection task,
NetSHa offloads this task to programmable switches for
facilitating fast selection of servers on the fly. In summary,
as also showed in Table 2, the significant improvement
on search efficiency by NetSHa is owned to the reduction
of processing time related to the server selection, network
communication and final answer processing on the agent.

710
o g = =
E Z
E 6] g
2 /
£ 4] %
2 .
2 7
2 _ 7
8 SN
£ 1%\g 5 N
Random Wiki Enron Glove Corel Deep Audio

Fig. 13. The processing time of the agent server.

Next we show how NetSHa performs with different
query workloads (i.e. different levels of network utilization).
To this end, we scale up the query rates by utilizing multiple
CPU cores for query generation (see Figure 14). Specifically,
the baseline query rate (QueryRate = 1.0) is the case when

NetSHa only uses one core to generate query requests.
To increase the query rate, we multiply the number of
cores that take part in query generation. As expected, a
higher query rate results in (slightly) lower performance
improvement. This is because a higher query rate results
in more cache misses because of more frequent register
replacements. Figure 15 further compares NetSHa with the
two baselines under different query workloads in the the
Deep dataset’. Other than NetSHa, both Layer-LSH and
TLSH are insensitive to the query rate because they do not
have the issue of cache miss. Nevertheless, even with high
query rates, the improvement of NetSHa is still significant.

10
> 8 : s TAsEs 4
2 & == A — = :‘2‘2‘*
) v —.zi== T
g 61 *‘E‘=:===‘”‘" O e e
= PR N —
=4l [4 -‘®-- Random - @ - Wiki
% -4A -Enron -v -Glove
= 2 | -4 -Corel Deep

Audio
0 T T T T
0.0 1.0 2.0 3.0 4.0 5.0

Normalized Query Rate

Fig. 14. Total processing time of NetSHa for 10M queries under different
query rates.

,\;g: Z/A Layered TLSH NetSHa | -
=y 7 7 7
I
3: % Zx é

1.0 2.0 3.0
Normalized QueryRate

by
=}

Fig. 15. Total processing time of three solutions under different levels of
network utilization with the Deep dataset.

5.4 Breakdown Analysis

The above confirms that NetSHa achieves better search per-
formance compared with the baselines (TLSH and Layered
solutions). We then dissect the role played by NetSHa’s
two key components: answer reduction and aggregation.
We again adopt the experimental setup in Table 1. In this
set of experiments, we use Baseline to refer to the solution
where both components are disabled, i.e. the programmable
switch only forwards packets; Baseline+agg to refer to the
solution where the programmable switch also performs
answer aggregation; NetSHa uses both components.

Figure 16 shows the number of packets the agent server
receives when adopting the three solutions. We find that
the answer aggregation can reduce the number of answer
packets to 40% of the Baseline, while answer reduction can
further half the number of packets. Figure 17 depicts the
impact of these two components on total processing time.
We see they both reduce the processing time. Note that

9. Due to space limitations, we omit the results with other datasets as
the results are similar.

100 Y77/ Baseline A\ Baseline+agg B8 NetSHa
7 v

Cdrel Auaio

Random Wiki

Glove

Dataset

Enron Déep

Normalized packet (%)
[$)])
o

Fig. 16. The number of packets (normalized with the Baseline solution)
that the agent received.

24
w18
[0}
E2
©
5 6 |
= g
0 INN\MO! h ol
Random Wiki Enron Glove Corel
Dataset

Fig. 17. The impact of the two components (answer reduction and
aggregation) on total processing time.

the time reduction by the answer aggregation is due to the
reduced packet volume, while the time savings introduced
by the answer reduction comes from both reduced packet
volume and the dropping of poor answers.

5.5

The performance of NetSHa is naturally impacted by the
choice of system parameters. Hence, we next discuss the
impact of the parameters: (i) the number of (logical) reg-
isters, (if) the capacity of each register (register slots), and
(iif) the number of GA slots in each register on the perfor-
mance. The number of registers decides how many queries
the switch can simultaneously process, while the register
capacity affects the amount of packets it can process and
store. The number of GA slots decides the efficiency of the
reduction process and the number of candidate answers that
can be aggregated. Note that a negative correlation exists
between these three parameters, as the memory size of a
programmable switch is constant.

The memory size of each switch in our experiments
is restricted to 200 slots (register slots x #register). We
first vary the number of registers and the capacity of each
register to examine their relationship. Note that we fix GA
slots in each register to 8 (i.e. p = 8). Figure 18 plots the
results. We see that the larger the capacity of each register
is, the smaller the total processing time is. Nevertheless, the
marginal benefits reduce as we increase the number of slots
of each register beyond 12.

Next, we examine the relationship between the number
of registers and the number of GA slots in each register in
Figure 19. In this set of experiments, we fix the capacity of
each register to 12 slots. The total processing time becomes
smaller as we increase the number of GA slots from a
small value. However, when we increase the number of GA
slots beyond 10, the total processing time increases. This is

Impact of System Parameters

T T T T T 14 70 T

—s—R=50 —c— R=50 ‘
—e—R=100 —o— R=100 | '2
—+—R=200 —=—R=200 [;,

—sl-R=50 - R=50
—e—R=100 —— R=100
x—R=200 —— R=200

604

Packets (%)

8

s -
Total Time (s)
Packets (%)

Total Time (s)

T —0
16

T
] 4 8 12 16 20 10 A

Register Slots

s 1
Register Slots

(1) Random dataset (2) Wiki dataset

70 T T , T — 12 70 T T , T — 12
—=—R=50 —o— R=50 —=—R=50 —o— R=50
_ 60 —e—R=100 —o—R=100 [10 _ _ 604 —e—R=100 —oR=100 [10 __
Q) - A R= 2 Q e R= A R= ()
ol o —Re200 R0 [5 2 £ 1 _—*—R=200 ——R=200 [5 2
2 NG 18 2 N g
L N 6 E L =1 6 F
] N =) s $ e —— 5
S I R O B I N L8
. | | | |
20 S 3 812 = 20 3 . g2 .
10 T T T T +—+0 10 T T T . —+0
o 4 8 12 16 20] 4 8. 12 16 20
Register Slots Register Slots

(3) Enron dataset (4) Glove dataset
14 70

T T T T — 16 70 T T ; T T . , . . — 14
| —m—R=50 —o— R=50 | —=—R=50 —o— R=50 | |—=—R=50 —o— R=50
= —e—R=100——R=100 [14 . _ %] | —*—R=100 ——R=100 [2 __ _ 607~ +—R=100 —>—R=100 | 12 _
g e Re200 - Re200 [, 2 Rl R0 - R0 [0 2 R 1 200 o Re200 [2
%) 2 i I I : i \
2 E&: ‘ ‘ ‘ E ﬁ 40 §\\ _—ts E ﬁ 20 \ s E
&) = 8 NN = & E
& a0 S a 304 Y s ——— N % P — s 8
]] i °
| [~ i e - L2
304 b 204 T ta 20 L4
I |
20 T ; + T t 4 10 T T T T 2 10 b | I I 2
0 20] 4 6 20 2] 20

8 12 16
Register Slots

(5) Corel dataset

8 12 1
Register Slots

(6) Deep dataset

8 12 16
Register Slots

(7) Audio dataset

Fig. 18. The tradeoff between the number of registers and the capacity of each register (register slots). R refers to the amount of registers in the
switch. Note that each subfigure has two y axises. The left y-axis represents the percentage of the packets that the agent receives (black line),

while the right y-axis refers to the total processing time (red line).

0
o

Ta—R=50 = R=50

T T T
76 {-——————#— R=50 —0— R=50

®
S

[12 78] | “a— Re5e —o— Res@ |12 TaR=50 —— R=50
w0 \\ —e— R100 o R-100| P —e—R=100——R=100 ["4 _] O —*—Rel00 o R0 70] —e—R=100 ——R=100 | "
9 N\ R=200 —~— R=200| @ X 704 A —4—R=200-—-—R=200 f12 & § \\\ —a— R=200 —*— R=200 B T eoq \+ R=200 ——R=200 |- 12 &
g { 2 = \[[=200 = R=200 1 £ N
g = \ 8 g £ Fog 2% $ g 8o NS 10
fy 40 1 r6 ': ﬁ 504 — 9 L8 ': f) 40 1 ré ': ﬁ 40 8 ':
g 30 4 2 g £ g 30 4 g E 3
L 40 re o 2 30 - ‘ re o
204 2 FrY B [4 20 4 2 20 - | 4
10 —to 20 = 2 10 —+o 10 1l
) 2 ° a 8 12 0 2) 12
GA Slots
(1) Random dataset (2) Wiki dataset (3) Enron dataset (4) Glove dataset
70 T T T 12 14 80 T T T 16
Ta—R=50 —o— R=50 7] e R=50 —c—R=50
_ 80— ——+—R=100 ——R=100 [10 __ 70 e Re100 o R=100 [
S N R=200 = R=200 [, & F %7 oo R0 R0 2T
Q -~ ~ N ~
2 E gosoq- 2 se] \\\ Lo &
S £ 2w NN s E
© T 8 8 1 \;}j [8
& 04— 2 o &] S ¢ B
- 30 4 ~ K
204 e 20] [4
| | | 20 4
10 T T T 0 T T T 2 10 | . i 2
) 4 8 12 %) 4 8 12 2] 4 8 12
GA Slots GA Slots GA Slots

(5) Corel dataset

(6) Deep dataset

(7) Audio dataset

Fig. 19. The tradeoff between the number of registers and the number of GA slot in each register. R refers to the amount of registers. Similar to

Figure 18, each subfigure also has two y-axises.

because too many GA slots leave a very limited number of
slots available for PA, and thus will decrease the efficiency
of the answer reduction.

10
= V7 Forwarding R\ Replacing
— 8
[0)
E s
'—
T 4
© 2
0 4 (N A&
Random Wiki Enron Glove Corel Deep Audio
Dataset

Fig. 20. The total processing time for 10M queries: comparison of our
register replacement strategy with the bypassing-forwarding mecha-
nism.

Next, we compare the register replacement strategy
adopted by NetSHa with the bypassing-forwarding (BF)
mechanism. Figure 20 shows the result. Note that we in-

crease the query rate (QueryRate = 4.0) to simulate a heavy
workload. Indeed, our replacement strategy outperforms
the BF mechanism because it can reduce and aggregate an-
swers more, thereby mitigating the performance bottleneck.

Finally, we evaluate the extra overhead introduced by
NetSHa due to the sort and insertion operations in extreme
scenarios (i.e. low or no answer reduction). To simulate
such scenarios, we implement two variants of NetSHa: the
first variant sorts candidate answers and insert the input
answer in the correct order but without any reduction (i.e. all
answers are sent to the agent.); the second variant further
disables sort and insertion operation. Then we record the
total processing time of 10M queries by these two vari-
ants. The difference between their processing time thus
corresponds to the overhead introduced by the sort and
insertion operations. Table 3 shows the results for different
datasets. We can observe that the extra overhead is indeed
marginal, which is below 390ms. The reason is that the sort
and insertion operations are only needed before we get the

threshold for filtering out subsequent poor results. We argue
that such overheads are reasonable, considering the benefits
brought by NetSHa.

TABLE 3
The extra overhead introduced by NetSHa in 10M queries (ms).

Datasets [| Random | Wiki
A(ms) || 3591 | 3416

[Enron [Glove [Corel [Deep | Audio
[3133 | 3463 | 3789 | 3843 | 3612

5.6 Search Quality

Next, we need to verify that the search quality is not
degraded. The experimental setting is the same as those of
the previous experiments.

TLSH
N

Recall (%)

Dataset
(a) Recall

©
(9]

©
o

F1-score (%)
8

3y
3
Glove Corel Dee Audio

Dataset
(b) F1-score

Fig. 21. The search quality of the three solutions

N

z
Enron

@©
o

Figure 21 compares the search quality of the three so-
lutions. The search quality is measured by the recall rates
(see Figure 21(a)) and Fl-score (see Figure 21(b)). For both
the recall rate and the Fl-score, NetSHa achieves similar
search quality (exceeding 90%) to the baseline distributed
search implementations. This is because NetSHa does not
break any functional properties of the LSH family. Instead,
it only accelerates them. Thus, the search quality of NetSHa
is identical to that of the LSH functions it adopts. In this set
experiments, NetSHa adopts TLSH functions to search for
candidate answers on the server side, so its search quality is
the same as TLSH.

5.7 Scalability of NetSHa

As described before, NetSHa also works on multi-stage
switches so that it can be easily deployed in data center
networks. To verify this, we use one Barefoot Tofino switch
to simulate multiple programmable switches, each of which
uses the default system configuration (see Table 1). Specif-
ically, we divide the on-chip memory of the switch into
multiple groups, each of which corresponds to one logical
switch and performs the answer reduction and aggrega-
tion tasks independently. Consequently, when one logical
switch outputs NetSHa packets, these packets might be

14

recirculated'® back to the physical switch pipeline and enter
the next logical switch for further answer reduction and
aggregation. That said, six switches use 6 x on-chip memory
of that in one switch.

--®- Random --@:- Enron
-¥-- Deep

\,

- A~ Glove

(o))
1

Total time (s)
@

I
|

2 4
Switches
(a) The total processing time for 10M queries.

< 1004 “,‘\ --m-- Random --@-- Enron
= RN --A-Glove -v-Deep
L o

o

g

= 90

@

N

T 85

£

1S

O 80 T
z 1 2 4 6

Switches
(b) The number of output NetSHa packets.

Fig. 22. The performance of NetSHa when varying the number of
switches. In Figure 22 (b), we normalize the output NetSHa packets of
each switch with the that of the first switch.

In this experiment, we vary the number of logical
switches from one to six, and evaluate the performance of
NetSHa using the different datasets. Note that we omit the
Wiki and Corel dataset due to their relatively small sizes.
Figure 22(a) shows that the processing time is significantly
reduced when increasing the number of switches!!. We
observe that it can achieve up to 30% improvements. This
is because multiple switches cooperatively drop more poor
answers, thereby reducing the overall system workload.
Again, we can see from Figure 22(b) the number of packets
decreases with more switches. In summarize, multi-stage
switches do improve the system efficiency cooperatively.
Nevertheless, using multiple switches does not offer linear
speed-up. The reason involves two aspects. First, the per-
formance improvement by NetSHa stems from answer ag-
gregation and answer reduction. In the simulated pipelined
multi-switch environment, the first switch aggregates can-
didate answers as far as possible so that the subsequent
switches cannot perform much further aggregation. Second,
the first switch also filers out many poor answers. Conse-
quently, the subsequent switches can only drop a few poor
answers.

5.8 Concurrent Parameter of NetSHa

Recall, in Section 3.6 we designed a “best-effort” replace-
ment mechanism to increase NetSHa’s concurrency. This

10. This is achieved by the built-in recirculation operation of the
Tofino switch.

11. Note that the network latency between the simulated logical
switches can be ignored. This is because we use a chip instruction (i.e.,
recirculation) provided by Tofino switches to simulate the multi-switch
environment.

relies on a concurrency parameter, \. We next evaluate the
impact of this parameter.

124 | - ®--Random - ® - Wiki
10 3 -A--Enron -¥ -Glove

7 | - #-Corel Deep
8,

21— ; ; ‘ ‘ ; ; ; ;
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32
concurrent parameter A
(a) The total processing time varying with \.

—
o

nefe

[AEr

1

Total Time (s)
Q@
(<
el

N
L

3

> o

~105- - ® -Random - @ - Wiki

o - A -Enron -w -Glove

G 10074 2 - 4% -Corel Deep

Q g5 S | Audio |

° i \“‘f'j : i i ey 2
g 904 | '\\:\‘,\;\\‘ ! ;_/,/f:‘*’ *
© : : N YR 52 sl : |
g 851 i i i 3"" i

o

z

0+— ‘ ‘ ‘ ‘ ‘ ‘ ‘ :

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32
concurrent parameter A

(b) The number of packets that the agent received.

Fig. 23. The performance of NetSHa varying the value of \. In Figure 23
(b), we normalize the number of packets with that in A = 0.

TABLE 4
The ptimal X under different query rates.

QueryRate(#query=1M) 1.0 2.0 3.0 4.0

optimal A 016 020 020 024
QueryRate(#query=10M) 1.0 2.0 3.0 4.0
optimal A 016 020 020 024

We first take the default parameter configuration and
vary the value of A. Figure 23(a) shows the total time for
processing 1M concurrent queries'?, while Figure 23(b) plots
the number of packets that the agent received. We see that
a larger value of A does result in better performance. This
is intuitive, as the increased concurrency allows for higher
throughput. Nevertheless, we also find that the benefit
is reduced as we increase the value of A beyond about
0.16, due to increased cache misses. We also examined the
optimal A under different query rates, which were varied
as in Figure 14. The results are summarized in Table 4.
We see that the optimal A is positively correlated with the
query rate within limits. Note that the optimal A value
cannot keep increasing because a large A value would lead
to frequent register replacements (cache misses) which will
in turn degrade the performance. Based on our results, we
recommend initializing A with an empirical value (e.g. 0.2),
and then adjust it based on the query rate.

6 RELATED WORK

Nearest neighbor search. Nearest neighbor (NN) search has
attracted much attention over the last decade, and serves
as the foundation of many applications. It is particularly

12. We vary X from 0 to 0.32. The interval is 0.04.

15

important in data mining applications for web platforms,
e.g. for event detection, sequence matching and data re-
trieval. Previous works have focused on developing novel
data structures, such as cover tree [35], k-tree [36] and k-
means tree [37] to partition the input datasets so as to prune
the search space. However, these methods do not work well
in high-dimensional data [38]. Hence, approximate nearest
neighbors (ANN) search has been used extensively [5], [6],
where exact answers are not essential.

Locality sensitive hashing. Locality Sensitive Hashing
(LSH) is widely recognized as one of the most effective
methods for ANN [39]. A variety of LSH approaches have
been designed for different scenarios, such as MinHash [11]
for Jaccard distance, E2LSH [12] for Euclidean distance and
SimHash [13] for Angular distance. To guarantee high recall,
these LSH functions need to generate a number of hash
tables, which consumes a large amount of memory [8]. Thus,
some variants of LSH have been proposed to address the
memory expansion problem [9], [15], [40], [41]. The key idea
is that if similar items are not in the same bucket, they
are likely allocated to other “nearby” buckets in the hash
table, such that they only need to interrogate those “nearby”
buckets. Some other LSH variants (e.g. TLSH [14]) have also
been proposed to accelerate similar item matching.

Distributed LSH. For large-scale web applications, LSH is
required to handle very large datasets. This means that LSH
running on single host cannot work well, e.g. in terms of pre-
cision, recall and delay [42]. Consequently, there have been
recent attempts to enable efficient distributed search [19],
[43]. There are a variety of well-known implementations.
Some are built upon general-purpose distributed frame-
works (e.g. MapReduce) [44], [45], [46]; however, these are
not optimized for LSH-based search. This makes it necessary
to translate LSH functions into their programming models,
increasing system complexity. To address this gap, some re-
searchers have designed distributed frameworks specifically
for LSH-based search, e.g. LoSHa [18] and Layer-hash [17].
Since the network constitutes a key bottleneck in distributed
search [20], some approaches have also been proposed to
balance load between different servers [21] or reduce the
number of network calls [17] in order to reduce the network
burden. Despite this, these optimizations focus on the end
systems (server side), and it is possible that the transmitted
data volume (even after using these optimizations) still
exceeds the forwarding capacity of the network, given the
ever-growing data scale and volume of concurrent queries.
As such, in this paper, we have turned our efforts to the
network itself and have leveraged programmable switches
for computational offloading from the agent server. That
said, NetSHa is complementary to the above mentioned
optimisation studies.

Network incast. In data centers, network incast widely
exists in many-to-one communication patterns [47], [48].
A large amount of prior works have been proposed to
address this problem by reducing the queuing delay and
packet losses on switches. To this end, researchers have
designed new congestion control algorithms [49], opti-
mized application-level data transfer patterns [50] and made
switch-level modifications [51]. In contrast, NetSHa consid-
ers this problem from another perspective. We reduce the

transferred traffic volume by offloading some tasks from the
host side to the network.

In-network computation. With the rise of SmartNICs and
programmable switch-ASICs (e.g. Tofino [23]), in-network
computation can be used to offload certain application-
specific primitives onto network devices [52]. For example,
NetCache [53] uses the network to quickly reply with cached
values; Beamer [54] implements a load balancer on network
devices; AcclTCP [55] offloads some TCP tasks to Smart-
NICs; NetEC [56] offloads erasure coding to programmable
switches; DAIET [57]; SwithML [28] and ATP [27] aggregate
distributed deep learning model gradient updates on pro-
grammable switches. In contrast to these prior works, we
have exploited in-network computation capacity to acceler-
ate distributed search for the first time.

7 CONCLUSION

In this paper, we have designed and implemented Net-
SHa, a system to accelerate LSH-based distributed search
with in-network computation. As a key design requirement,
NetSHa does not change the architecture of the traditional
distributed search system. Rather, it utilizes the compu-
tational capacity of programmable switches to reduce the
communication cost while maintaining search quality. To
this end, NetSHa uses a customized packet format, and
performs answer reduction and answer aggregation on pro-
grammable switches, in order to reduce the communication
overhead. NetSHa has been implemented for the Barefoot
Tofino switch. Extensive experiments, with various types
of datasets, have shown that NetSHa accelerates search
performance, while maintaining search quality. A prominent
feature of NetSHa is that it is complementary to prior
optimizations in the distributed search research community
and thus can work with them together.

REFERENCES

[1] P. Zhang, H. Pan, Z. Li, P. He, Z. Zhang, G. Tyson, and G. Xie,
“Accelerating Ish-based distributed search with in-network com-
putation,” in International Conference on Computer Communications,
2021.

[2] A.S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news per-
sonalization: scalable online collaborative filtering,” in Proceedings
of the 16th international conference on World Wide Web. ACM, 2007,
pp- 271-280.

[3] D.Ravichandran, P. Pantel, and E. Hovy, “Randomized algorithms
and nlp: Using locality sensitive hash functions for high speed
noun clustering,” in Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL'05), 2005, pp. 622—
629.

[4] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and
A. M. Phillippy, “Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing,” Nature biotechnology,
vol. 33, no. 6, p. 623, 2015.

[5] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-
aware locality-sensitive hashing for approximate nearest neighbor
search,” Proceedings of the VLDB Endowment, vol. 9, no. 1, pp. 1-12,
2015.

[6] J.Li, X. Yan, J. Zhang, A. Xu, J. Cheng, J. Liu, K. K. Ng, and T.-
c. Cheng, “A general and efficient querying method for learning
to hash,” in Proceedings of the 2018 International Conference on
Management of Data. ACM, 2018, pp. 1333-1347.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbors: to-
wards removing the curse of dimensionality,” in Proceedings of the
thirtieth annual ACM symposium on Theory of computing. ACM,
1998, pp. 604-613.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

16

Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in
high dimensional nearest neighbor search,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of data.
ACM, 2009, pp. 563-576.

J. Gan,]J. Feng, Q. Fang, and W. Ng, “Locality-sensitive hashing
scheme based on dynamic collision counting,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data. ACM, 2012, pp. 541-552.

J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, “Dsh: data sensitive
hashing for high-dimensional k-nnsearch,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 1127-1138.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” Journal of Computer and
System Sciences, vol. 60, no. 3, pp. 630659, 2000.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proceedings of the twentieth annual symposium on Computational
geometry. ACM, 2004, pp. 253-262.

M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proceedings of the thiry-fourth annual ACM sympo-
sium on Theory of computing. ACM, 2002, pp. 380-388.

R. Shinde, A. Goel, P. Gupta, and D. Dutta, “Similarity search
and locality sensitive hashing using ternary content addressable
memories,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 375-386.

R. Panigrahy, “Entropy based nearest neighbor search in high
dimensions,” in Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm. Society for Industrial and Ap-
plied Mathematics, 2006, pp. 1186-1195.

Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “Srs: solving c-
approximate nearest neighbor queries in high dimensional eu-
clidean space with a tiny index,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 1, pp. 1-12, 2014.

B. Bahmani, A. Goel, and R. Shinde, “Efficient distributed locality
sensitive hashing,” in Proceedings of the 21st ACM international
conference on Information and knowledge management. ACM, 2012,
pp. 2174-2178.

J. Li, J. Cheng, F. Yang, Y. Huang, Y. Zhao, X. Yan, and R. Zhao,
“Losha: A general framework for scalable locality sensitive hash-
ing,” in Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ~ACM, 2017,
pp. 635-644.

G. Andrade, A. Fernandes, J. M. Gomes, R. Ferreira, and
G. Teodoro, “Large-scale parallel similarity search with product
quantization for online multimedia services,” Journal of Parallel and
Distributed Computing, vol. 125, pp. 81-92, 2019.

H. Li, S. Nutanong, H. Xu, F. Ha et al., “C2net: A network-
efficient approach to collision counting Ish similarity join,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 3, pp.
423-436, 2018.

Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat, “Load-balancing
in distributed selective search,” in Proceedings of the 39th Inter-
national ACM SIGIR conference on Research and Development in
Information Retrieval. ACM, 2016, pp. 905-908.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese ef al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87-95,
2014.

“Barefoot networks,” https:/ /barefootnetworks.com/products/
brief-tofino/.

Y. Li, I. Liu, Y. Yuan, D. Chen, A. Schwing, and]. Huang,
“Accelerating distributed reinforcement learning with in-switch
computing,” in ISCA, 2019.

“Bubble sort,” https://en.wikipedia.org/wiki/Bubble_sort, 2020.

T. Qu, R. Joshi, M. C. Chan, B. Leong, D. Guo, and Z. Liu, “Sqr: In-
network packet loss recovery from link failures for highly reliable
datacenter networks,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP). IEEE, 2019, pp. 1-12.

C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. M.
Swift, “Atp: In-network aggregation for multi-tenant learning,” in
NSDI, 2021.

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling
distributed machine learning with in-network aggregation,” in
NSDI, 2021.

[29]

[30]
[31]

[32]

(33]

[34]

(35]

[36]

(37]

[38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

(47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,
“The case for in-network computing on demand,” in Proceedings
of the Fourteenth EuroSys Conference 2019, 2019.

“Wiki dataset,” https:/ /dumps.wikimedia.org/enwiki/
20190701/, 2019.

“Enron dataset,” https://p4.org/p4-spec/docs/PSA-v1.1.0.
html/, 2021.

“Glove dataset,” https:/ /nlp.stanford.edu/projects/glove/, 2021.
“Deep dataset,” https:/ /yadi.sk/d/I_yaFVqchJmoc, 2021.
“Audio dataset,” http://www.cs.princeton.edu/cass/audio.tar.
gz, 2021.

A. Beygelzimer, S. Kakade, and]. Langford, “Cover trees for
nearest neighbor,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 97-104.

K. He and]. Sun, “Computing nearest-neighbor fields via
propagation-assisted kd-trees,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition. 1EEE, 2012, pp. 111-118.

M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration.” VISAPP (1), vol. 2, no.
331-340, p. 2, 2009.

C. Bohm, S. Berchtold, and D. A. Keim, “Searching in high-
dimensional spaces: Index structures for improving the per-
formance of multimedia databases,” ACM Computing Surveys
(CSUR), vol. 33, no. 3, pp. 322-373, 2001.

A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in VIdb, vol. 99, no. 6, 1999, pp. 518-529.
Y. Zheng, Q. Guo, A. K. Tung, and S. Wu, “Lazylsh: Approximate
nearest neighbor search for multiple distance functions with a
single index,” in Proceedings of the 2016 International Conference on
Management of Data. ACM, 2016, pp. 2023-2037.

Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen, “Sk-Ish: an
efficient index structure for approximate nearest neighbor search,”
Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 745-756, 2014.
J. Wang, H. T. Shen, J. Song, and]. Ji, “Hashing for similarity
search: A survey,” arXiv preprint arXiv:1408.2927, 2014.

O. Durmaz and H. S. Bilge, “Fast image similarity search by
distributed locality sensitive hashing,” Pattern Recognition Letters,
2019.

A. Stupar, S. Michel, and R. Schenkel, “Rankreduce—processing
k-nearest neighbor queries on top of mapreduce,” Large-Scale
Distributed Systems for Information Retrieval, vol. 15, 2010.

C. Zhang, F. Li, and]. Jestes, “Efficient parallel knn joins for
large data in mapreduce,” in Proceedings of the 15th international
conference on extending database technology. ACM, 2012, pp. 38-49.
J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Presented as part of the 10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12),2012, pp.
17-30.

Y. Chen, R. Griffit, D. Zats, and R. H. Katz, “Understanding tcp
incast and its implications for big data workloads,” University of
California at Berkeley, Tech. Rep, 2012.

M. Chowdhury, M. Zaharia, J. Ma, M. L. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4,
pp- 98-109, 2011.

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion
control for tcp in data-center networks,” IEEE/ACM transactions on
networking, vol. 21, no. 2, pp. 345-358, 2012.

Y. Yang, H. Abe, K.-i. Baba, and S. Shimojo, “A scalable approach
to avoid incast problem from application layer,” in 2013 IEEE 37th
Annual Computer Software and Applications Conference Workshops.
IEEE, 2013, pp. 713-718.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctep),” in Proceedings of the ACM SIGCOMM 2010 Conference,
2010, pp. 63-74.

Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,
“The case for in-network computing on demand,” in Proceedings
of the Fourteenth EuroSys Conference 2019, 2019, pp. 1-16.

X. Jin, X. Li, H. Zhang, R. Soulé,]J. Lee, N. Foster, C. Kim,
and L. Stoica, “Netcache: Balancing key-value stores with fast in-
network caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 121-136.

V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless data-
center load-balancing with beamer,” in 15th {USENIX} Symposium

[55]

[56]

[57]

17

on Networked Systems Design and Implementation ({(NSDI} 18), 2018,
pp- 125-139.

Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “Acceltcp: Ac-
celerating network applications with stateful {TCP} offloading,”
in 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), 2020, pp. 77-92.

Y. Qiao, X. Kong, M. Zhang, Y. Zhou, M. Xu, and J. Bi, “Towards
in-network acceleration of erasure coding,” in Proceedings of the
Symposium on SDN Research, 2020, pp. 41-47.

A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in
Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
2017, pp. 150-156.

Penghao Zhang is currently a Ph.D candidate
at the Institute of Computing Technology, Chi-
nese Academy Sciences. He received his B.S.
degree in Computer Science from Hunan Uni-
versity, Changsha, China, in 2017. His research
interests include programing switch, packet clas-
sification and SDN policy anomaly detection.

Heng Pan received the PhD degree in computer
science from University of Chinese Academy
Sciences in 2018. He is an assistant professor
at the Institute of Computing Technology, Chi-
nese Academy Sciences. His research interests
include SDN/NFV, distributed system and in-
network computation.

Zhenyu Li received the BS degree from Nankai
University in 2003 and the PhD degree in Grad-
uate School of Chinese Academy of Sciences
in 2009. He is a professor at the Institute of
Computing Technology, Chinese Academy Sci-
ences. His research interests include Internet
measurement and Networked Systems.

Penglai Cui is currently a Ph.D candidate at
the Institute of Computing Technology. He re-
ceived his B.S. degree in Computer Science and
Technology from University of Chinese Academy
of Sciences, Beijing, China, in 2018. His re-
search interests include in-switch computation,
distributed machine learning system, and pro-
grammable switch.

Ru Jia is currently a PhD candidate at the
institute of Computing Technology, Chinese
Academy of Sciences. She received her B.S.
degree in Computer Science from Dalian Uni-
versity of Technology, Dalian, China, in 2015.
Her research interests include software packet
processing, Network Function Virtualization.

Peng He received the PhD degree from Uni-
versity of Chinese Academy Sciences in 2014.
He is currently a Software Engineer with
ByteDance Inc. His research interests include
high-performance packet processing algorithms
and network function virtualization.

Zhibin Zhang received the PhD degree in Grad-
uate School of Chinese Academy of Sciences in
2007. He is a associate professor at the Institute
of Computing Technology, Chinese Academy
Sciences. His research interests include Big
data, machine learning algorithms and systems.

Gareth Tyson received the PhD degree from
Lancaster University in 2010. He is a senior
lecturer at Queen Mary University of London.
His research interests include Internet measure-
ments, content distribution, and the future Inter-
net.

Gaogang Xie received the PhD degree in com-
puter science from Hunan University in 2002. He
is a professor at the Computer Network Informa-
tion Center, Chinese Academy of Sciences. His
research interests include Internet architecture,
SDN/NFV, and Internet measurement.

18

