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Abstract

Wearable technologies are becoming an increasingly popular platform for

healthcare services due to their wide range of clinical applications in the era

of remote, decentralised, and personalized patient care. The flexibility of wear-

ables and sensing technologies have led to a wide range of applications, includ-

ing gait monitoring, motion tracking, and circadian rhythm assessment. Several

evidence supports the use of wearable devices in multiple disease monitoring,

diagnosis and treatment, prevention and rehabilitation. In this thesis, we con-

sider the suitability of using these novel wearable and sensing devices in order

to detect early cognitive impairment.

Within this thesis, we have conducted 3 studies on healthy participants, and

participants with dementia and Mild Cognitive Impairment (MCI). Having the 3

sample groups are significant and bring credence to an argument that wearables

can play a role in detecting early sign of cognitive impairment. At first, we

needed to investigate the reliability of using wearables in detecting changes in

HRV through different conditions. Then, the dementia group were significant

for investigating the link between HRV and cognitive function, and lastly the

MCI group to investigate if wearables can detect the early signs of cognitive

impairment.

Firstly, we have conducted a pilot study of young healthy participants. We

investigated the reliability of the state-of-the- art wearable sensing devices in

detecting autonomic nervous system reactions to stress. We employed photo-

plethysmogram (PPG) sensors to collect HRV before, during and after the cog-

nitive test. Finding showed a significant difference in HRV before and during

the cognitive test.

Secondly, using data available from the UK Biobank data, a large, population-

based study containing more than 500,000 participants recruited from across the

UK. we investigated the relationship between heart rate variability (HRV) and

cognitive performance in several cognitive domains. We first explored the HRV

parameters of dementia patients in comparison with controls of the same age

group, and then assessed the strength of the association between HRV and cog-

nitive impairment in these two groups.

Lastly, we used off-the-shelf HRV monitor device to assess whether real-

time measures of HRV can be used as an early indicator of cognitive decline in

individuals with MCI who still have intact cognitive abilities relative to healthy

controls. Our findings showed reduced HRV indices is associated with MCI



participants. This suggests that the autonomic dysfunction represented by HRV

is detectable in baseline conditions using PPG sensors.

In conclusion, this thesis has investigated wearable sensing techniques to-

wards assessing cognitive function in patients with MCI and dementia. Within

this thesis, different studies demonstrated the feasibility of using wearables to

collect real-time HRV could be used as an early indicator of cognitive decline in

individuals with MCI.
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CHAPTER 1

Introduction

This introductory chapter presents the motivation, which will

direct us to research questions, and the contributions of this

thesis. Finally, we will present an outline of the thesis.

Wearable health monitoring technologies have attracted an increasing inter-

est in the past few years [2; 3]. Much of that interest was driven not only by the

rapidly expanding demand for the ubiquitous, continuous, and pervasive moni-

toring of vital signs, but also by the state-of-the-art technological advancement

in sensor technology and wireless communications. Wearable and biosensors

devices are no longer limited to fitness trackers that track ones steps, calories

burned, and sleep status; they also monitor vital physiological signs including

Heart Rate Variability (HRV), glucose levels, blood pressure, and oxygen lev-

els. Wearables have been widely adopted in several fields such as healthcare,

education, military, and fire protection. The market value for wearable medical

devices was USD 29.76 billion in 2019 and is expected to grow to USD 195.57

billion by 2027, with an annual growth rate of 26.4% during the forecast period

[1].

14



Chapter 1 Introduction

Figure 1.1: Wearable medical devices Market size from 2016 to 2027 (Data
Source: [1])

Wearable health monitoring applications are among the fastest expanding

segments on the wearable technology market because of the growing demand

to monitor chronic diseases and ageing populations[4]. Moreover, the pandemic

has led to a significant increase in the demand for remote health monitoring sys-

tems. The COVID-19 pandemic has brought forward the need for advancement

in patient monitoring systems, with manufacturers focusing on increasing pro-

duction to meet the growing demand for health monitoring devices including

pulse oximeters, blood glucose, cardiac, and temperature monitoring devices.

Consequently, this led to increased adoption of digital pervasive health moni-

toring. For instance, Philips Biosensor BX100 received a clearance from the U.S.

Food and Drug Administration (FDA) for its wearable biosensor to help man-

aging confirmed and suspected COVID-19 patients in hospitals. The biosensor

helps clinicians in detecting risk to help with the early intervention and improve

care for patients in lower acuity care areas [5].

There is growing body of evidence of the potential benefits of healthcare

wearables. To begin with, they offer a reliable real-time, non-invasive continu-

ous monitoring along with their ability to store and share health records. Next,

wearables provide users with feedback that allows them to make necessary mod-

ifications to their daily routines or behaviour [6]. Finally, since wearables facil-

itate remote monitoring, this can result in significant cost savings to healthcare

[7]. Wearable health monitoring devices can be especially beneficial to patients

with chronic conditions [8], individuals with cardiovascular risks [9], and ageing

populations [10]. Moreover, continuous and real-time monitoring through wear-

able devices promises to improve the current care of people with dementia in

several aspects.

Page 15



Chapter 1 Introduction

Most of the state-of-the-art sensing-based dementia care focuses on early de-

mentia detection as well as quantitative evaluation of therapeutic interventions

for cognitive care[11; 12]. Early detection and intervention to delay the onset

of dementia are beneficial for patients and their caretakers and for reducing

the prevalence of dementia [13]. Mild cognitive Impairment (MCI) can be an

early stage and a feature of predementia in Alzheimer’s disease (AD). However,

the diagnosis of MCI is not yet fully developed [14]. Employing wearable and

biosensors devices to collect user’s physiological parameters can significantly

help with the early detection of AD. For instance, gait has been shown to be a

non-invasive biological biomarker of cognitive function [13; 15]. However, contin-

uous and real-time sensing-based inference and prediction to prevent cognitive

impairment are still an open research.

1.1 Motivation

This dissertation is primarily motivated from a research perspective and at-

tempted to focus on wearables and sensing technologies and their potential

future applications in dementia care. Due to the gradual increase in life ex-

pectancy, the prevalence of dementia and Alzheimer’s disease has dramatically

increased [16]. This fact raises some critical questions about the economic fea-

sibility of traditional dementia care programmes approach. Until now, there is

no proven pharmacological or non-pharmacological intervention that can cure

dementia or stop its progression. Accordingly, there is an urgent need to develop

more coordinated solutions to provide high-quality and patient-centred health

services for patients with dementia.

It is generally believed that the possibility of reversing anatomic and phys-

iologic changes such as neuronal death reduces drastically as the disease pro-

gresses, emphasising the importance of early cohort detection and patient strat-

ification in any future clinical investigations [17]. Early detection of the cog-

nitive impairment has been shown to enable interventions which slow down

the progression of the disease such as physical activity interventions [18] and

pharmaceutical interventions [19]. A significant body of research suggests that

cognitive, sensory, and motor changes may occur several years before clinical

signs of dementia [20]. While clinically valid, current cognitive assessment for

diagnosing neurodegenerative diseases is frequently less effective in detecting

the decline in its early stages [17]. Moreover, theses assessments are subjective

and require a continuous attention of the administrator which limit the type

and amount of data points captured [21].

The diagnosis of MCI and dementia based on clinical features alone is of-

ten challenging and relatively unreliable [22]. As a result, current research

Page 16



Chapter 1 Introduction

is focusing on the identification of biomarkers that aid in the early detection

of neurodegenerative diseases such as MCI. The use of wearables and digital

biomarkers has had a particular influence on neurology, where there is a sig-

nificant unmet need for objective and non-invasive biomarkers [23]. Wearables

and biosensors devices provide an opportunity to maintain consistent data col-

lection in real-world environments across longer periods of time. Furthermore,

they can be used to monitor progression of the condition through non-invasive

assessments. Advancements in wearables and sensing technologies have created

numerous opportunities for researchers to investigate the possibility of detecting

early cognition changes in older adults. Currently, a number of wearable-based

biomarkers are being tested for feasibility and reliability in dementia and clin-

ical outcome assessments [17]. Moreover, numerous studies employed wearable

and sensing technologies to monitor daily activities of older adults and detect

behavioural changes [24].

It is important to examine whether biomarkers other than traditional cog-

nitive assessment could be utilised to successfully predict dementia in its early

stages. If effective, it would give a low-cost and simple technique to screening

for dementia at the pre-clinical stage, allowing for the development of relevant

interventions to delay its clinical manifestations. As a result, current research

tries to identify prodromal biomarkers for the early identification of dementia.

This would help addressing the significant need to accelerate patient diagnoses

and empower clinician and individuals to take timely action.

1.2 Research Questions

The intent of the proposed research study is to answer the main question:

How suitable are wearables and sensing technologies for

detecting cognitive impairment in people with MCI using

Heart rate variability?

It is not easy to answer this question due to the multitude of wearable de-

vices, various sensors technology, as well as their rapid development. Different

approaches have been taken to address this question. Starting from exploring

the reliability of wearables devices in capturing the differences in HRV before,

during, and after the cognitive assessment towards a more generalised concep-

tualisation of the problem is taken. Finally, multiple techniques in identifying

individuals with MCI are presented.

Page 17



Chapter 1 Introduction

Firstly, we should assess the current State-of the-Art in Wearable Technolo-

gies for persons with MCI and dementia.

RQ 1 What is the current State-of the-Art in Wearable Technologies

for persons with MCI and dementia ?

Secondly, we should assess the reliability of wearables devices in capturing the

differences in HRV before, during, and after the cognitive assessment.

RQ 2 what is the reliability of wearables devices in capturing the dif-

ferences in HRV before, during, and after the cognitive assessment?

and after aspects of the reliability of wearables devices in capturing the differ-

ences have been considered, it should be explored how is the association between

HRV and cognitive performance. to answer the question:

RQ 3 Is there a significant correlation between HRV derived from

wearables and cognitive performance using wearables technology?

Then and after exploring the relationship between HRV and cognitive perfor-

mance, we will explore to assess the relationships between HRV and cognitive

performance in Dementia patients.

RQ 4 Will measures of HRV amongst dementia patients be lower

relative to controls?

RQ 5 How strong is the association between HRV and cognitive

function among older group?

Finally, to investigate whether wearable sensors can offer reliable, non-invasive

techniques to identify MCI patients from healthy controls by measuring HRV

as a novel physiological biomarker

RQ 6 Will wearable biosensor devices be a useful tool for assessing

physiological changes associated with MCI?

Different approaches have been taken to address these research questions.

At first we have conducted a comprehensive review to answer the first research

question (RQ 1) which is what is the current State-of the-Art in Wearable Tech-

nologies for persons with MCI and dementia? we investigated to date into the

use of wearable technologies to support people living with MCI and with de-

mentia. In order to answer the second and the third research questions (RQ

2&3) regarding the reliability of wearables devices in capturing the differences

in HRV before, during, and after the cognitive assessment and the correlation

between HRV derived from wearables and cognitive performance using wear-

ables technology, we conducted a pilot study to assess the reliability of wearable

Page 18



Chapter 1 Introduction

sensing technologies.

Moreover, to answer the fourth and fifth research questions (RQ 4& 5) re-

garding the association between HRV and cognitive function among dementia

group, we have used data from UK biobank to analyse the link between HRV

and cognitive function in older group with dementia.

At last, we have conducted a study on people with MCI. We have collab-

orated with Join dementia research organisation to recruit the participants in

order to answer the last research questions (RQ 6) regarding the usability of

wearable biosensor devices for assessing physiological changes associated with

MCI.

1.3 Contributions and Thesis structure

The objective of this dissertation is to explore and investigate the potential

of wearables and sensing technology toward early detection of cognitive de-

cline among people with MCI and dementia. This work will test the feasibility

of using HRV wearable based as a biomarker in order to detect disorders in

the Autonomic Nervous System (ANS), identifying potential opportunities for

clinical intervention. At first, we explored and built the foundation of this dis-

sertation by providing A Review on the use of wearable devices for dementia

assessment, monitoring and cognitive intervention, next we tested the feasibility

of using sensing technology to assess the changes in HRV. Further, we tested

the association between dementia and HRV in people with dementia. Lastly,

we investigated the feasibility in detecting cognitive declining in group of MCI

patients using Physiological Sensing technology.

Chapter 2: A Review on the use of wearable devices for dementia

assessment, monitoring and cognitive intervention. To answer RQ 1,

this review, we present a comprehensive overview of the investigations to date

into the use of wearable technologies to support people living with MCI and

with dementia and the resulting benefit to their well-being. We assess the role

of wearables in three broad categories: in the assessment of the presence of

dementia symptoms, their role as an assistive technology, and their role as a

cognitive intervention. We also review the use of wearables in combination

with non-wearable technologies or alone and the potential to monitor multiple

parameters at once using a single wearable. We detail the limitations of wearable

technologies, identify the unmet needs and challenges in the implementation of

wearables-based interventions, and propose the required next steps to improve

the outcomes of people living with dementia using wearable technologies.
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Chapter 3: Detecting Autonomic nervous system reactions using

HRV. To answer RQ 2 and RQ 3, chapter 3 investigates the reliability of

the state-of-the-art wearable sensing devices in detecting autonomic nervous

system reactions to stress, and the associations between cognitive performance

and HRV in young healthy participants in order to detect the autonomic ner-

vous system reactions using wearable sensors. The pilot study presented result

from utilising the CorSense devices to collect sensing data.Then, It has been dis-

cussed how data obtained from sensors can be used to assess ANS reactions. As

main contribution, this chapter evaluates the reliability of wearables devices in

capturing the differences in HRV before, and during the cognitive test. Further,

it asses the relationship between short-term HRV and cognitive performance on

multiple cognitive tests using wearable based device.

Chapter 4: Association between cognitive performance and HRV in

individuals with dementia. To answer RQ 4 and RQ 5, Chapter 4 ties to-

gether findings from the previous exploratory chapter. Here, we discuss the

experiment design and the findings of ultra-short term (10 sec) HRV measures

from UK Biobank, and it’s association with cognitive function in Dementia pa-

tients. Further, we discusses the findings of using machine learning classifiers

to predict cognitive performance in individuals with dementia.Then, We evalu-

ated the data, and presented the results. Finally, a discussion of the results is

presented. As main contribution, this chapter proved the significant difference

in HRV time-domain parameters between dementia and Healthy individuals.

Further, Results showed that ML was able to to estimate cognitive performance

using only HRV data. The results indicated that high HRV was associated with

better performance on tasks involving executive function, processing speed, and

working memory.

Chapter 5: Association between cognitive performance and HRV in

individuals with MCI. To answer RQ 6, This chapter presents a study on

using wearable sensing to help identifying individuals at higher risk of Demen-

tia. We investigated whether wearable sensors can offer reliable, non-invasive

techniques to identify MCI patients from healthy controls by measuring HRV

as a novel physiological biomarker.Further analysis was performed to test the

association between HRV parameters and cognitive status controlling for both

age and gender. Finally, a discussion of the results is presented.As main con-

tribution, this chapter shows that RMSSD, SDNN, and HF measures can be

used to reliably distinguish MCI patients from healthy controls with Average

accuracy of 76.5%.
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1.4 Associated publications

Portions of the work detailed in this thesis have been presented in national and

international scholarly publications, as follows (journal publications highlighted

in bold):

• Chapter 3: Detecting Cognitive Decline in Early Alzheimer’s Patients Us-

ing Wearable Technologies was published in 2020 IEEE International

Conference on Healthcare Informatics (ICHI). [25].

• Chapter 4:Machine Learning approach to Predict Cognitive Performance

using HRV. some of the work was presented at the 2022 2nd Inter-

national Conference on Computing and Information Technology

(ICCIT) [26].

• Chapter 6: Accepted for publication in the IEEE journal of transla-

tional engineering in health and medicine

1.5 Submitted for Publications

• Chapter 2.1: A Review on the use of wearable devices for dementia as-

sessment, monitoring and cognitive intervention was submitted to ACM

Transactions on Computing for Healthcare

• Chapter 5: some of the work was submitted for publication in 2022 IEEE-

EMBS International Conference on Biomedical and Health In-

formatics (BHI).
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CHAPTER 2

Background and Literature Review

This chapter presents background reading and extensive lit-

erature on wearables for dementia and its relation to HRV.

This chapter covers in-depth information about HRV, and its

analysis using machine learning techniques. It covers the pos-

sibility of wearable sensor technologies to be used for detection

of cognitive decline and for dementia patients. It outlines

what wearable technologies are now available, as well as what

sensing options are available within wearables and how these

can be used to capture physiological changes. It discuss the

The neurovisceral integration Model and how it links HRV to

Cognitive Function.

2.1 A Review on the use of wearable devices for

dementia assessment, monitoring and cogni-

tive intervention

In this section, we assess the role of wearables in three broad categories: in

the assessment of the presence of dementia symptoms, their role as an assistive

technology, and their role as a cognitive intervention. We also review the use

of wearables in combination with non-wearable technologies or alone and the
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potential to monitor multiple parameters at once using a single wearable. We

detail the limitations of wearable technologies, identify the unmet needs and

challenges in the implementation of wearables-based interventions, and propose

the required next steps to improve the outcomes of people living with dementia

using wearable technologies.

2.1.1 Introduction

Dementia, a set of syndromes associated with a decline in cognitive functioning,

affects approximately 50 million people globally, with nearly 10 million new

cases diagnosed every year [27]. In the United Kingdom, 850,000 individuals are

currently living with dementia, and approximately 225,000 individuals develop

dementia each year [28]. Dementia also has a huge economic impact, with the

global annual cost to the health and social care sector estimated to exceed $817
billion [29].

The extent of the decline in cognitive function associated with dementia

varies from mild to severe. In severe cases, individual abilities become pro-

gressively worse in one or more measured dimensions, including memory, recall,

decision-making and emotional disturbances [30]. Mild cognitive impairment

(MCI) is a defined period which may occur between normal aging and dementia

when decrements in cognitive function are not severe enough to interfere with

everyday life but do impact instrumental activities of daily living (e.g., taking

medication, using transportation) [31]. Early recognition and monitoring of

MCI is important as it can give individuals and their families the opportunity

to put appropriate interventions in place to delay the onset of dementia and

have important discussions with the individual about their preferences on their

care moving forward. For this reason, assessment of the use of wearables from

detection of MCI onward have been included in this review. As MCI progresses

to dementia, the cognitive decline becomes severe enough to interfere with daily

life activities, such as eating and grooming. Some individuals may also develop

behavioural and psychological symptoms of dementia (BPSD), which include

apathy, depression, irritability, anxiety, agitation, and wandering [32]. BPSD

can affect daily functioning and is associated with decreases in quality of life

and for these reasons, the potential use of wearables to manage these symptoms

has been included here [33].

As stated, dementia is an overarching term used to describe an individual

experiencing progressive cognitive decline. Within this bracket are four com-

mon subtypes of dementia; Alzheimer’s disease (AD), Vascular dementia, Lewy

body dementia and Frontotemporal dementia, which each have their own distin-

guishing features and clinical presentations. The differences between the clinical
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presentations of these subtypes may warrant stratification of wearable devices

as some may appear more useful for some subsets of dementia than others.

Although people living with dementia may present with varying clinical man-

ifestations, common symptoms include loss of memory, language and communi-

cation difficulties, apraxia, agnosia, and disruption of executive functioning [34].

These cognitive, behavioural, and language impairments predispose people liv-

ing with dementia to gait disorders which are associated with falls, fall-related

injuries, and even mortality [35]. Monitoring individuals on an on-going ba-

sis will measure overall deterioration and detect development of gait disorders

and therefore predict likelihood of such injuries, enabling people living with

dementia and carers to put measures in place to reduce risk. Early detection

of symptoms of cognitive decline allows the opportunity for early intervention

before symptoms progress to severe cognitive deterioration. Because dementia

has a tremendous impact on affected individuals, their families, and the health-

care system, it is clear that solutions are needed to support earlier diagnosis,

monitor identified dementia, and better support both diagnosed individuals and

their caregivers.

Across different medical specialties, there have been ongoing investigations

and proposals into the use of novel technologies to improve and support patient

diagnosis and monitoring. Within dementia care, these assistive technologies

can be broadly divided into non-wearable and wearable solutions.

Non-wearable technologies include passive infrared sensors, cameras, motion

sensors, or pressure sensors which can be integrated into individuals’ homes

and used to monitor aspects such as walking speed, night-time wandering, sleep

patterns and gait [27]. However, non-wearable technologies are limited due to

their fixed placement and associated costs and additionally could be seen to be

invasive solutions given their placement in the individual’s home.

In contrast to the limitations listed above, wearable technologies are typically

small, portable, digital solutions which can be kept on the individual and easily

removed as needed. Common examples include wrist or ankle bracelets, and

further examples are discussed in detail below. They may be used to monitor

a variety of parameters not limited to heart rate, sleep and waking cycles, gait,

level of exercise, emotional disturbances, location and more and as they are kept

on the individual themselves, they offer the opportunity to monitor throughout

the day, not just when the individual is in their home. They often also allow

for the opportunity to monitor multiple parameters at once, such as heart rate,

gait, location and sleep. Given these features and benefits, they may address any

concerns associated with non-wearable technologies and may encourage better

patient uptake than the alternative.

The potential of non-wearable technologies has not been discounted in this
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review and many studies into novel technologies have investigated the combined

use of wearable and non-wearable solutions to build a comprehensive picture of

the patient and their well-being as well as compensating for the limitations of

using only one particular technology. For example, people living with dementia

might use a wearable bracelet or ankle piece to monitor heart rate, tempera-

ture and movement alongside non-wearable motion and pressure sensors within

the home to monitor changes in sleeping patterns or to gait. These combined

approaches are discussed later in this review.

There may also be some benefits to wearable technologies over other mon-

itoring devices such as smartphones. Smartphones usually come with built -in

pedometers, GPS tracking and accelerometers and there are a vast number of

apps developed for such types of monitoring. However, smartphones require

users to have some baseline understanding of their use and require the user to

continue to be able to use the technology. They may also be considerably larger

than a wearable device such as a wristband and then require the user to carry

these around with them. A wearable device removes the need to remember to

carry the monitor throughout the day and doesn’t require understanding of the

technology itself.

Method

Literature Search Strategy

The initial literature search was conducted in August 2019, and the search was

updated in November 2021. We searched several databases (IEEE Xplore, ACM

Digital Library, Web of Science, Google Scholar, PubMed). Titles, abstracts,

and texts were searched for the following keywords/terms: ((dementia) AND

wearable), ((IoT) AND dementia), ((health) AND dementia), ((mobile health)

AND dementia), wristband AND dementia, ((Alzheimer’s disease) AND wear-

able), ((AD) AND wearable), ((mild cognitive impairment) AND wearable) and

((MCI) AND wearable). Identified papers were then grouped into the following

categories:

• Wearables for assessment and monitoring symptoms of dementia

• Wearables for assisting individuals with dementia in daily life

• Wearables that support cognitive interventions

Eligibility Criteria

The following inclusion criteria were used: enrolment of individuals diagnosed

with MCI or with dementia in any stage of the disease; publication between
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2009 and 2021; and use of at least one wearable technology. All included papers

were published in English.

This review examined three fundamental questions: (1) what the wearable

technologies can do; (2) which wearables were used and whether they were

used alone or with other ambient sensors (i.e., non-wearables); and (3) what

type of support the wearables provided in relation to dementia (assessment and

monitoring, or intervention).

2.1.2 Review of wearables for assessment and monitoring

symptoms of dementia

Many different techniques exist to diagnose cognitive change or MCI. These

techniques include neuropsychological tests, neuroimaging techniques and labo-

ratory testing. Several computerized cognitive tests are also available to assess

mental status. Some of these computerized tests, such as the Cantab Mobile,

Cognigram, Cognivue and Automated Neuropsychological Assessment Metrics,

have been approved by the U.S. Food and Drug Administration and hold real

value in their clinical use, particularly in light of recent shifts in healthcare

practices, as they can be administered remotely and still provide the same clin-

ically relevant results [36]. A computerised approach has several benefits over

traditional in-person testing including cost- and time- savings, accuracy and

standardisation of recorded responses, and allows for quick and simple com-

parison of an individual’s successive test results. Tests can be administered by

health professionals following limited training or self-administered. However,

unfamiliar technology can be intimidating to older adults, and this can deter

them from completing these tests [28].

Wearables present as a potential solution to limitations to traditional and

computerised testing or simply be a potential alternative when the former are

not possible to perform. Further, the wearable could be used as an adjuvant to

the aforementioned testing methods, providing further insight to the person’s

wellbeing.

Incorporating a wearable into a person’s life is a small daily adjustment and

the continuous recording and monitoring of information provides a valuable in-

sight for their healthcare professional. By giving the individual the choice to use

the wearable, it provides the opportunity to include the individual in the de-

velopment of their care plan and thereby empowers them. Another instance in

which a wearable could be used is in the monitoring of BPSD, a condition affect-

ing some people with dementia which causes disturbed perceptions, thoughts,

moods, or behaviours [37]. Solutions that promote more accurate diagnoses and

a deeper understanding of BPSD patterns and triggers are urgently needed and
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could be furthered with the use of a wearable device. A summary of the studies

that have used wearable sensors to determine and assess cognitive change or

impairment is presented in Table 2.1, however this is not an exhaustive list.

The studies present an attempt to harness wearables as a potential method

of monitoring the elderly population and identifying early the initial signs of

the development of MCI and/or dementia itself. Some approaches use only a

wearable [30] [33] [34] while several others combine the use of a wearable with

passive non wearable technologies that can be integrated into the home [31],

[32]. While all studies aimed at the determination and assessment of cognitive

decline, the parameters measured varied. Tan et al. measured features such as

forgetfulness, physical activity and sleep quality [32] while Cinaz et al. opted

to measure reaction times. [34] The assessment of different parameters such as

reaction times [34], task completion [33], forgetfulness [32] and gait and walking

speed [30] were also used to attempt to differentiate between normal, healthy

individuals and those who may have early signs of dementia, thereby showing

the use of wearables as stratification tools in this field. The range of parame-

ters investigated across studies is useful to review to understand the range of

monitoring which can be achieved by a wearable. Further, we can deduce that

monitoring more than one parameter would be a useful approach to take to

expand understanding of patient well-being.

There were some limitations identifiable in these studies such as Chen et al.

[31] who conducted their study on early detection of MCI using a wristband

and home-based non-wearable technologies; however, the study was conducted

over the limited time period of two months. Their conclusion of sleep state

variability being a reliable measure of detecting MCI in older adults is therefore

contestable and further investigations should be taken.

A sound conclusion to draw from the list of studies presented is that wearable

technologies do appear to consistently present as a reliable option of detecting

and assessing presence of cognitive decline, whether used alone or in combi-

nation with non-wearables. However, further research may be warranted into

determining the most appropriate features and/or parameters to be measured

which will allow the optimal parameters for monitoring to be selected, to the

benefit of both the individual and the managing physician.

Limitations in dementia assessments

As above, several papers assess the use of wearable technologies in assessing

the presence of dementia by monitoring behavioural and psychological changes

and show promise in differentiating between healthy subjects and those with

MCI or early-stage dementia. Traditional tests—such as the Montreal Cogni-
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tive Assessment [29]—can be impracticable because they must be administered

in clinical settings and with the recent challenges associated with the COVID-19

pandemic, face-to-face appointments in a clinical setting are limited and long

delays are common. Wearable technologies can provide a practical alternative

to assess cognitive changes because they offer a high level of accuracy in mea-

suring speed and time of response to a given task with a level of sensitivity not

possible in standard neurocognitive assessments. They provide an alternative

which could potentially be set-up at home by an allied healthcare professional

rather than a managing physician and therefore additionally remove the need

for a formal set-up with a consultant. Wearables can assess cognitive changes

amongst older adults, including those with amnestic MCI and AD and it has

been shown to be possible through use of wearable sensors which detect physical

responses to movement-based requests [38].

An important distinction to draw is that traditional testing is a method of

directly monitoring cognitive decline and contrastingly, wearables present as a

method to indirectly monitor. For example, wearables may monitor a physical

behaviour which is shown to change as a patient experiences cognitive decline.

For this reason, wearables can be said to provide a sound indication of the

presence of cognitive decline or change, rather than a definitive diagnosis and

perhaps present as a potential method of screening the elderly population before

more formal, direct testing is carried out.

Early detection of cognitive impairment can be captured by continuous be-

havioural monitoring through traditional or novel testing methods which evalu-

ate cognitive capacity. For instance, forgetfulness is recognised as an important

indicator in cognitive decline. Studies conducted may measure forgetfulness by

integrating multimodal devices into individual homes to detect the number of

times individuals miss a medication dose or forget their wallet upon leaving the

house [39].

Continuous monitoring of physical activity can also provide important in-

sights into cognitive decline. For instance, Suzuki et al [40] estimated cognitive

functioning in older adults by observing their gait. Using acceleration and angu-

lar velocity sensors attached to the waist to calculate the walking speed, stride

and walking variability, the authors were able to build an accurate formula to

estimate the Mini Mental State Examination score. While change in gait has

been proven to be an indicator of early-stage dementia and cognitive decline,

it is worth noting that gait impairments are also a sign of normal aging and,

as such, gait changes should be considered on a case-by-case basis. Moreover,

while gait-impairments have been linked to dementia-related cognitive decline,

a more comprehensive assessment would be to assess dual-tasking, such as an

individual walking and also performing another task, in individuals who have
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been shown to have MCI. One study took this approach to assess gait impair-

ment in Parkinson’s disease (PD) by combining use of a wearable device with a

commonly used stepping in place test. It concluded combining the two gave a

more comprehensive picture of the individual’s ability and stage of disease and

proposed this to be a new method for evaluating dual-task deficits in PD [41].
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Table 2.1: Wearables for the determination and assessment of cognitive decline
or impairment

Authors Year Objective(s) Wearable Device(s) Domain

Arai et
al [42]

2021 To detect signs of
dementia by focus-
ing on events that
occur in daily life

Wearable Sensors
attached to indi-
vidual and other
ultra-small sensors
attached to differ-
ent objects in the
house

Behavioural
changes

Suzuki
et al
[40]

2020 To use walking in-
formation obtained
from wearables to
estimate cognitive
function.

Wearable Acceler-
ation and angular
velocity sensor to
capture the walking
speed, stride and
walking variability.

Behavioural
changes

Chen et
al [43]

2019 To determine
presence of MCI
in seniors who
live alone and to
categorize individ-
uals into positive
and negative MCI
groups by mon-
itoring mobility,
self-care, leisure
activity, sleep qual-
ity, and risk of
depression

Wearable and
in-home sensor
system to capture
sleep and monitor
activities.

Sleep moni-
toring

Tan et
al [39]

2018 To assess the feasi-
bility of continuous
monitoring using
multi-modal wear-
able sensors and to
distinguish between
MCI, people living
with dementia and
healthy subjects

Heart rate and
daily pedometer
wearables along
with other passive
sensors, such as
motion, door, bed,
medication box and
key sensors, placed
in the elderly’s
home.

Physical
activity
monitoring
, adherence
to medica-
tion, and
behavioural
changes

Zhou et
al [38]

2017 To use wearable
sensors to examine
the feasibility, accu-
racy and reliability
of an instrumented
trail-making task
to identify motor
cognitive decline
amongst older
adults.

Ankle band wear-
able sensor at-
tached to an
individual’s leg to
track ankle motion.

Ability
changes

Cinaz et
al [44]

2011 To develop reac-
tion time tests that
can be conducted
throughout every-
day life using wear-
ables to detect and
monitor MCI and
dementia

Wrist band acceler-
ation sensor placed
at the wrist to mea-
sure wrist move-
ment.

Ability
changesPage 31
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2.1.3 Review of wearables for the detection and monitor-

ing of people with BPSD

BPSD affects up to 90% of all people living with dementia [45]. BPSD may

cause gait changes, agitation, depression, apathy, aggression, sleep problems,

and wandering [46]. Although no pharmacological treatment is approved for

BPSD, several psychotropic medications, such as antipsychotics, mood stabiliz-

ers and antidepressants, are regularly used to treat these symptoms [47]. How-

ever, treatment with antipsychotic medications has been linked to increased

morbidity and mortality in people with dementia [48]. With this in mind and

the associated issues described here, BPSD should be determined and monitored

with measures put in place to reduce risks to the diagnosed individual.

The studies summaries in 2.2 assess the use of wearables in monitoring de-

mentia and associated risk by monitoring behavioural changes, agitation, gait

and falls, indicators of BPSD. The studies again use wearables alone or in com-

bination with non-wearable technologies to monitor at-risk individuals.

Gait changes are one symptom that can be detected by wearable sensors

[49], [50], [51]. Walking patterns in people living with dementia tend to no-

tably vary from healthy individuals, with a distinct difference in step length

and timing [43]. Wearables can facilitate the measurement of spatial and tem-

poral gait parameters such as velocity, stride length and speed velocity, stride

length and speed, and these measures can become biomarkers of gait impairment

[52],[53],[54] .

Detection of other BPSD symptoms, such as agitation, is also feasible using

wearables. Agitation can be exhibited via physical behaviours, such as irregular

limb movements, or verbal behaviours, such as raising one’s voice. Monitor-

ing physical and behavioural changes via postural orientation, movement and

voice in real environments can be achieved with accelerometers, gyroscopes, sole

sensors, pressure sensors and microphones. Moreover, those sensors may be in-

tegrated with other ambient sensors, such as video cameras, motion sensors and

door sensors to build a more complete view of the patient in their home envi-

ronment and allow detection of cognitive decline [28],[35],[38],[45],[49],[55],[56].

In doing so, the needs of the patient can be evaluated in real-time and should

the patient be seen to be progressing into the later stages of disease, appropriate

interventions can be put in place by their practitioner in a timely way to ensure

the people living with dementia continued wellbeing and safety.

Falls and fall-related injuries are more common in people living with de-

mentia than in healthy peers [57]. Wearables are useful for fall detection be-

cause of their accuracy, privacy and lightweight portability relative to cameras

[58; 59; 60]. Schwenk et al [60] revealed that using wearable sensors led to
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higher accuracy than using conventional fall risk measures in predicting falls

among people with dementia.

Combined monitoring evidently affords useful and comprehensive informa-

tion about the individual and can be collected through use of multiple monitors.

Goerss et al. (2020) combined the use of a wrist and ankle wearable device with

a home video recording system and augmented real-time observation by a pri-

mary carer [51]. This approach aimed to investigate how early detection of the

development of challenging behaviours would be possible and how this could be

used as a prognostic indicator. The study was implemented in a nursing home,

where such interventions and monitoring may be put in place with more ease

than in the patient home. While this study focussed on changes in gait and

increased levels of agitation, a second study (Rawtaer et al [61]), also combined

the use of wearable and non-wearable technologies to monitor forgetfulness. A

wearable wristband combined with home-based motion sensors and medication

box sensors were used to monitor the individual’s ability to remember key points

of their day. An important finding from this study was that 80% of individuals

were happy to have motion sensors installed in their home and they did not find

these to be as invasive as to object to their use [61].
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Table 2.2: Wearables for the assessment of behavioural and psychological symp-
toms of dementia (BPSD)

Authors Year Objective(s) Wearable De-
vice(s)

Domain

Khan et
al [56]

2021 To examine the pre-
dictive ability of this
multimodal sensor
data to replicate a
common behaviour
clinical documentation
tool, the Pittsburgh
Agitation Scale

Empatica E4
wristwatch

Behavioural
changes

Favela
et al
[62]

2020 To evaluate the pro-
gression of BPSD using
activity trackers

Fitbit wrist-
watch

Behavioural
changes

Goerss
et al
[51]

2020 To investigate the
automatic detection of
challenging behaviours
in people living with
dementia living in
nursing homes via
long-term acceleromet-
ric recordings.

Hand and an-
kle bracelet
to measure
accelerometric
motion scores,
Video recording
in the home

Behavioural
changes -
presence of
agitation,
and Changes
to gait

Rawtaer
et al
[61]

2020 To establish the feasi-
bility and acceptabil-
ity of using sensors in
the homes of senior cit-
izens to unobtrusively
detect changes in be-
haviours.

Wearable wrist-
band to mea-
sure pedometer
and heart rate
PIR motion sen-
sors Medication
box sensors

Behavioural
changes,
forgetful-
ness, Sleep
monitoring,
and Physi-
cal activity
monitoring

S. Khan
[63]

2019 To use multi-modal
sensor data to subse-
quently build predic-
tive models for agita-
tion detection in peo-
ple living with demen-
tia

Empatica E4
wristband,
Pressure mats
to collect sleep
data, Motion
sensors and
door sensors to
monitor move-
ment. and video
cameras.

Behavioural
changes

Wu-Lin
Chen et
al [64]

2018 To develop a warning
system for elderly be-
havioural differences.

Wearable
glasses for
acceleration,
angular velocity
to identify daily
movements,
actions and
locations.

Behavioural
changes,
Movement
monitoring,
and Location
monitoring

Kikhia
et al
[65]

2018 To assess sleep and
stress patterns for peo-
ple with BPSD us-
ing sensors in nursing
home settings.

Philips’s sensor
bracelet (GSR
accelerome-
ters, skin and
environment
temperature)

Sleep and
stress detec-
tion
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2.1.4 Review of wearables used in assisting individuals

with dementia in daily life

Wearables that assist people living with dementia can address several pressing

health needs such as supporting daily functioning and activities, promoting

physical functioning and social interaction, enabling self-monitoring of health

status, and improving treatment adherence. As demonstrated in Tables 2.1

and 2.2, there are a variety of wearable devices on offer which can be selected

specifically to meet the individual’s requirements and support those living with

dementia and MCI. In this section, we categorize the wearable technologies

that assist people living with dementia according to their uses for physical and

physiological activity monitoring and for localization and navigation.

Wearables for Physical and Physiological Activity Monitoring

To date, several studies have focused on continuous monitoring for people living

with dementia, and notably focus on monitoring of daily routines and recogni-

tion (Table 2.3). By providing reliable long-term assessments about individual

health and well-being (e.g., daily activities and physical ability), continuous

monitoring can ensure patient safety, provide people living with emergency as-

sistance and support when necessary, and offer unobtrusive assessment of disease

progression. Deviations from what is interpreted as being the norm for each in-

dividual provide valuable and tailored insights into their overall well-being, in a

much more comprehensive way than what could be achieved through face-to-face

assessment with a practitioner.

Monitoring of activities on a continuous basis may help identify changes to

an individual’s behaviour or changes to their physiological wellbeing and thereby

create the opportunity for early intervention. Continuous monitoring can also

benefit the individual by alerting them to take their medication or alerting others

if the individual has potentially had a fall. In addition, wearables investigated

for this purpose can measure multiple parameters at once to evaluate physical

health [66; 67; 68] and physiological status, including heart rate, temperature,

sleep patterns and stress levels [69][70][71] meaning they can provide a compre-

hensive picture of patient well-being without the need to use multiple devices.

In the literature, sensors have been mounted on different areas of the body (e.g.,

wrist, legs, ankles, arms) to monitor activity and recognize patterns. A variety

of wearable devices is important to give individuals the choice to pick one which

works well for them. For some, the need to wear the sensor on the body could

be considered intrusive and, in some cases, may impact the uptake of wearables

among the target older population but the research seems to show good adher-

ence and acceptance which could be due to the wearable being a familiar item
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such as a watch or wristband. With the same point in mind, wearables need

to be developed with their end user in mind and have considerations made for

weight, size, cost and be expertly developed for ease of use.

Table 2.3 outlines studies conducted with the use of a single wearable device

without combination with a non-wearable solution and each assesses the scope

of the wearable to allow for activity and wellbeing monitoring in individuals

with dementia and MCI and largely the wearable device of preference was a

wristband or wristwatch, with the exception of a wearable chest pin [72] and

wearable pouch / bag [73].

The wearables were used to monitor a variety of physiological parameters

including sleep patterns, stress levels, heart rate and temperature. In several

instances, they were also used as location devices alongside monitoring other

parameters [66],[74]. While these types of monitoring can support the individ-

ual on a day-to-day basis, they also provide a comprehensive picture for the

managing physician to review at and between appointments and also have been

shown to support the individual’s carers. Aljehani et al. [75] developed an iOS

app in which the carer could remotely monitor the individual by tracking their

GPS location and reviewing their heart rate through use of an Apple watch.

Another group [59] used the wearable to detect stress levels throughout the day

to provide carers with pin-pointed times which the individual with dementia

perceived to be the most stressful, allowing the carers to make mindful changes

to these times to support the person. Finally, Chun Fang et al. used a similar

wearable to recognise daily activities such as eating, drinking and walking to

alert caregivers when abnormal activities occurred. [76]

As previously discussed, there are four common subtypes within the over-

arching term of ‘dementia’, each with their own distinguishing clinical features.

Individuals between these subsets may require different levels and types of sup-

port so a defined diagnosis is paramount. Ardle et al [13] have investigated the

potential of a single wearable device to differentiate between dementia disease

subtypes through analysis of gait through use of seven gait characteristics. They

drew the conclusion that this method could be used with moderate accuracy to

differentiate between subtypes. These findings could indicate a potential use of

a wearable device to be used as an informing component in the initial diagnosis

of dementia, alongside traditional testing methods to ensure the most accurate

diagnosis is reached.

Importantly, the ease of use and comfort of the wearable device needs to be

considered. A recent study shown in 2.3used a wearable device located on the

lower back to monitor gait and mobility [76]. The placement of the device in

this study is not optimal as it would not be comfortable for the individual. Not

only would it be perceived as invasive to the individual and impact on their
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overall contentedness, it would also impact on adherence to wearing the advice.

However, a similar type of device was used by Xie et al [? ] to both assess

gait and memory in diagnosed individuals. In this case the wearable used the

same technology but used as a wristband instead, meaning a less invasive type

of wearable for the individual.

Table 2.3: wearable technology for activity and well-being monitoring

Authors Year Objective(s) Wearable Device(s) Domain

Mulas et

al [76]

2021 To verify the feasibil-

ity of wearable inertial

sensors in a clinical set-

ting to screen gait and

functional mobility

Inertial wearable lo-

cated in the lower

back.

Gait and

Mobility

assessment

Ardle et

al [13]

2020 To assess whether a

single accelerometer-

based wearable could

differentiate demen-

tia disease subtypes

through gait analysis.

Accelerometer-based

wearable fixed to the

skin above the fifth

lumbar

Gait assess-

ment

Xie et al

[77]

2019 To characterize gait

disorders in patients

with amnestic mild

cognitive decline and

determine the asso-

ciation between the

performance of the

gait function and

cognition.

Inertial-sensor-based

wristband

Gait and

memory

assessment

Chun

Fang et

al [74]

2018 To monitor elderly

people constantly and

send alerts to the

caregiver every time

abnormal activities

occurred.

Smartwatch (ac-

celerometer, gyro-

scope, Bluetooth) to

monitor location.

Wellbeing

monitoring

Aljehani

et [75]

2018 To track and find peo-

ple with AD and track

their heart rate.

Apple Watch Location

monitoring
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Table 2.3: wearable technology for activity and well-being monitoring

Authors Year Objective(s) Wearable Device(s) Domain

Tabakis

et al [66]

2017 To monitor people liv-

ing with dementia’ lo-

cations, heart rate, and

sleep.

Wristband (9-axis mo-

tion tracking plus sen-

sors)

Heart rate,

Sleep and

location

monitoring

Alhassan

et al[70]

2017 To develop an appli-

cation to track and

inform people living

with mild AD about

their daily activities

and provide some as-

sessments.

Empatica E4 wrist-

band.

HR moni-

tor, activity

reminders,

and activ-

ities recall

assessments.

Stavrop-

oulos et

al [78]

2017 To monitor dementia

symptoms using a

framework that in-

tegrates a variety of

sensors with interdisci-

plinary methods such

as image and audio

analysis.

Wristband to mea-

sure accelerometer

movement, physical

activities, electroder-

mal activity, wearable

camera, and ambient

sensors

Physical

activity,

and Sleep

monitoring

Merilahti

et al [67]

2016 To analyse whether

physical status is

correlated with the

rhythm of diurnal

activities and sleep

patterns measured

with wearable sen-

sors in nursing home

residents.

Wristband Sleep moni-

toring
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Table 2.3: wearable technology for activity and well-being monitoring

Authors Year Objective(s) Wearable Device(s) Domain

Lutze et

al [71]

2015 To help the elderly

in four dimensions;

communication, ori-

entation, localization,

detection of health

hazards and detection

of fluid intake.

Smartwatch - ac-

celerometer, gyrometer

and magnetometer

Location

monitoring,

Assessment

of fluid in-

take, Safety

monitoring

to detect

falls, and

physical

activity

monitoring

Sun et al

[72]

2014 To design a wearable

that works as a data

collection hub. It in-

cludes a number of ap-

plications to evaluate

diet and physical activ-

ities and sedentary be-

haviour and to assist

the elderly and blind.

Chest pin (two wide-

angle cameras, UV

sensor to detect

indoor/outdoor en-

vironments, 3-axis

accelerometer, gyro-

scope, magnetometer

for motion/orientation

measurements, a prox-

imity sensor to track

hand movements in

GPS)

Evaluation

of diet,

physical ac-

tivities and

sedentary

behaviours.

Barreto

et al [73]

2014 To create a remote

monitoring system for

people living with de-

mentia suffering from

Alzheimer’s disease by

providing environmen-

tal conditions and lo-

cation of the people

living with dementia.

Wearable pouch

(3-axis accelerometer

for physical activity

and fall detection,

temperature and

humidity sensors,

GPS).

Monitoring

for envi-

ronmental,

temperature;

and humid-

ity changes;

location,

Patient

movements,

including

falls
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Wearable Technology for Localization and Navigation

The disorientation associated with dementia can make navigating on a daily

basis very challenging [79]. Many studies have focused on developing solutions

to locate people living with dementia and alert their caregivers to abnormal

activities. Using wearable technologies may reduce the time needed to locate

these people living with dementia. Moreover, using wearables may increase the

independence, autonomy and freedom of some people living with dementia in

early to moderate stages of dementia and, consequently, lower caregiver burden

[80]. Table 2.4 summarizes studies that used wearables for location monitoring,

assisting navigation and monitoring safety, in addition to the several studies

shown in Table 2.3 which demonstrate use of location monitoring technologies

in combination with physiological and wellbeing monitoring. Some research

carried out included the use of novel technologies developed for localisation and

navigation (Table 2.4) in mind, for instance a wearable belt to facilitate route

navigation [81] or adapted shoes to track location [82]. However, a significant

portion of the studies looked into the use of a wearable wristband, for instance

one study investigated [83] acquiring real-time information on patient location

with results showing 94.7% accuracy overall in monitoring steps. This suggests

that instead of developing new technology and devices, there is certainly the

potential to utilise existing technologies for alternative purposes to yield positive

results. Further to this point, a patient would be more likely to adhere to the

use of a wearable if the piece was familiar to them in the first place, for instance

a watch. as this requires little change to daily routine. While the studies

investigating the use of a wearable camera [84],[85] showed positive results and

the people living with dementia were receptive to the use of the device, wearing

a camera is quite an adjustment to make and it remains to be determined if

these results can be replicated outside of the clinical study.

Table 2.4: wearable technology for localization, navigation, and safety

Authors Year Objective(s) Wearable Device(s) Domain

Kolako-

wski et

al [86]

2020 To introduce a lo-

calization system sup-

porting people with

cognitive impairment

and their caregivers

Wearable tags worn by

monitored users or at-

tached to the localized

objects

Location

monitoring

Su et al

[87]

2018 To track the path of

the elderly with de-

mentia in an indoor en-

vironment.

Bracelet (accelerome-

ter sensor, gyroscope

sensor, Bluetooth).

Location

monitoring
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Table 2.4: wearable technology for localization, navigation, and safety

Authors Year Objective(s) Wearable Device(s) Domain

Li et al

[88]

2017 To improve the spatial

memory ability of peo-

ple living with mci.

Radio frequency iden-

tification bracelet.

Spatial navi-

gation train-

ing

Bhargava

et al [89]

2017 To help outdoor local-

ization of people liv-

ing with ad by propos-

ing a low-cost wireless

sensor networks (wsn)

system, comprising a

single wearable device

and a cloud gateway.

Wearable activity

tracker to measure

individual acceleration

and orientation.

Location

monitoring

, Safety

monitoring,

and alerting

carers upon

detection of

abnormal ac-

tivities such

as fall or

wandering.

Mendoza

et al [90]

2017 To develop a track-

ing system that helps

caregivers in a nursing

home locate people liv-

ing with and if they

wander off.

Wearable device con-

nected to a belt for lo-

calization.

Location

monitoring

Hadwen

et al [91]

2017 To build an energy-

efficient wristband

tracker for people

living with dementia

Wristband (accelerom-

eter and magnetome-

ter) to estimate loca-

tion and assist with the

dynamic GPS.

Location

monitoring

Kashimo-

to et al

[92]

2016 To provide the elderly

with the visual cues to

assist with simple daily

navigational tasks.

Wearable eyeglasses

(camera, GPS tracker,

accelerometer, gyro-

scope, step detector

sensors and Bluetooth

headset) to provide

visual cues.

Location

monitoring

Huang et

al [80]

2015 To locate people living

with dementia using a

low-cost and easy-to-

maintain device.

Wristband embedded

with near field commu-

nication tag.

Safety moni-

toring
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Table 2.4: wearable technology for localization, navigation, and safety

Authors Year Objective(s) Wearable Device(s) Domain

Oh et al

[82]

2015 To assist with self-alert

and location tracking

for AD people living

with dementia.

Wearable shoes Location,

and Safety

monitoring

Yonesaka

et al [84]

2014 To help caregivers and

people living with de-

mentia find lost objects

together.

Wearable camera at-

tached to the chest

Finding lost

objects

Shin et al

[83]

2014 To improve their

health and safety.

Smartwatch - GPS, ac-

celerometer, illumina-

tion sensor

Location,

Safety, and

Physical

activity

monitoring

2.1.5 Review of wearables that supports cognitive inter-

vention

Cognitive interventions intended to help with memory impairment can be cate-

gorized into stimulation, training, and rehabilitation [89]. Several studies have

indicated the potential value in improving memory functioning as many aspects

of memory remain fairly intact in the early stage of dementia [93].

Interventions which focus on cognitive stimulation can involve activities such

as reality orientation therapy and reminiscence therapy. Reality orientation

therapy presents individuals with orientation information such as time and place

and information about themselves in order to give them a greater understanding

of their current surroundings. Reminiscence therapy encourages individuals to

recall and connect with their memories. Both therapies are considered to be

valuable in making people living with dementia feel content and less isolated

leading to improved overall quality of life.

Training-based interventions can focus on different aspects of cognition, in-

cluding memory and executive functioning, and involve a series of tasks to im-

prove or maintain an individual’s normal functionality. Tasks can include learn-

ing something new or playing a game with someone else. Rehabilitation-based

interventions adopt an individualized approach to encourage people living with

dementia and their caregivers to work together with healthcare providers to de-

fine specific goals and establish plans to overcome cognitive impairments such as
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completing typical daily tasks effectively or continuing to make decisions about

their lives and care.

A few studies have used wearable devices (Table 2.5) to improve cognitive

skills in people living with dementia by reviewing past events to retain memories.

Wearable cameras, for instance, can enhance memory by capturing images from

daily life and using these images to help people living with dementia recall their

old memories [94; 95; 96]. Research into the use of wearable technologies for

cognitive interventions (Table 2.5) used an array of types of devices, with one

study looking at the use of a sonic device. The study utilised a wearable sonic

device in the form of a necklace that plays songs that help trigger memories

and provide context in people living with AD [97]. These subtle cues provided

by the auditory signals provide a non-invasive and simple way of stimulating

the individual, and should the individual not experience any memory recall, the

simple nature of playing music is inoffensive and unlikely to upset the individual.

Another study, Boyd et al. [98], sought to assess the potential of a tracking

app paired with a wearable eye-tracking device which worked by displaying

images to the individual through the app, using the eye tracking device to

assess cognition. The app allowed this reminiscence therapy to be tailored to

the individual in a cost-effect way. Of an important note, the app and wearable

device in this instance were co-created with people living with dementia and

their carers. The subsequent conclusion drawn by the researchers that there

were no barriers to use identified and that there was a general ease of use

associated with the app and the device is therefore reliable, as individuals being

included in the development process will have ensure that the device met the

needs of the end-user.

The studies presented in 2.5 concluded strong user acceptance of new tech-

nologies into patient lives, particularly when these are integrated early when

individuals are diagnosed with MCI rather than dementia. Furthermore, some

groups conclude that wearables have increased patient quality of life through

enabling memory recall [97] and stimulating meaningful discussion with others

[94].

Silva et al [99] compared participants with mild AD who had been randomly

assigned to one of three memory training strategies: using a wearable camera to

capture images of their daily activities, using paper and pencil for a cognitive

training program based on pencil-and-paper tasks to practice motivation, atten-

tion and memory, or using a personal written diary that required people living

with dementia to write down their daily activities. Findings indicated that the

wearable camera group had better autobiographical memory performance on a

standardized autobiographical memory assessment measure compared with the

other two groups.
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Several studies acknowledged potential limitations to the use of wearable

devices among older adults, and one study subsequently evaluated uptake and

acceptance of wearable devices such as cameras. This study found that older

adults could adequately use the cameras and were able to integrate their use

into their lives [97].

Table 2.5: wearable technology for cognitive intervention

Authors Year Objective(s) Wearable Device(s) Domain

Boyd et

al [98]

2021 Investigate the use of

a tracking app and

paired wearable de-

vice to support person-

alised reminiscence

Eye-tracking wearable

device

Reminiscence

therapy

Gelonch

et al [96]

2019 To evaluate the ac-

ceptability of lifelog-

ging wearable camera

in older adults diag-

nosed with mild cogni-

tive decline

Wearable camera Memory

prosthesis

Druga et

al [97]

2017 To create a wearable

device that can func-

tion as an auditory

cueing system for peo-

ple living with memory

concerns

Wearable sonic device Memory

prosthesis

Critical Analysis of the State-of-the-art

We have presented an up-to-date and comprehensive review of current research

in the field of wearable technologies and dementia. In addition to reporting

the range of possible uses for wearables to detect and monitor cognitive change

and behavioural and psychological symptoms, this review provided a discussion

of current wearables that support cognitive interventions in dementia. This

work is an important contribution in understanding how wearables can support

the needs of people living with dementia and their caregivers. There are two

significant considerations which should be taken into account when considering

the use of a wearable device. The first is deciding which parameters should be

measured and what benefit the information will provide. By choosing to monitor
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multiple parameters, for instance location, heart rate and sleeping patterns, the

managing physician can gain a more comprehensive picture of the individual’s

overall well-being. It also gives caregivers the opportunity to monitor an at-risk

individual’s location remotely and therefore will provide them with a degree of

respite. The approach has been taken by many of the studies discussed here

and results are more definitive as compared to monitoring just one parameter.

The second consideration follows the same thread whereby the decision needs

to be made on if to use the wearable device in combination with non-wearable

technologies, again with the aim of benefitting the individual as well as their

physician and the carer. Again, several studies as discussed here have used

this approach to cover off the limitations of a selected individual wearable and

provide further oversight on the individual’s condition and well-being.

A core theme across studies was that wearable devices which were familiar

items, in particular a wristwatch, were particularly well-received by the study

population and were not perceived to be invasive. The incorporation into the

individuals’ lives was quite straight-forward and adherence, over-all, was high.

Another important conclusion from Boyd et al. was that by including patients

in the discussions and the development of a wearable device, the device was

much better received, and adherence is high. Co-creating solutions for individ-

uals with dementia and their carers is of paramount importance to creating a

solution fit for purpose. By gathering real patient insights and being informed

on what matters most to those people, researchers can ensure the end product

is optimised for use. Despite the useful findings in this review, there are several

limitations. First, the accuracy of the methods used, and their applications are

often not comparable across studies. Studies tend to identify or detect differ-

ent sets of activities using different algorithms or approaches. Consequently,

there is an urgent need for a standard approach to activity monitoring and

its evaluation. Second, the lack of standardization in the placement of wear-

able sensors on the body can result in different measurements. For instance,

in Table 4 summarising publications into the use of wearables in localisation,

navigation and safety, the placement of wearables varies greatly including use

in belts, shoes, wristbands, on the chest and glasses. As above, from a prac-

ticality and ease of adoption viewpoint, the wristband would seem to be the

most appropriate option to move forward with as it does not require significant

change to an individual’s typical attire and is potentially something that can be

adopted by all patient candidates. In comparison, not all people wear glasses or

belts or would feel comfortable wearing something on their chest. Third, user

acceptance of wearables also represents a challenge. Often, this relates to the

ease of use of the device. Factors that can contribute to ease of use include

the design of interfaces, the physical design, the device’s weight and its battery
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consumption. These parameters shape the acceptance among people living with

dementia a given that the group are older and so less likely to be receptive to

new technology unless it is easy to use and does not require much maintenance

or additional thought, so an optimal balance among these parameters should

be met to avoid rejection related to negative perceptions [97]. Finally, security

and privacy remain concerns in the use of wearable devices. For example, pa-

tient privacy is a challenge associated with wearable cameras. Piasek et al [100]

identified a number of factors that must be considered when using life-logging

technology to assess dementia including the risk of exposing everyday private

details of people living with dementia and the damage to people living with

dementia’ self-confidence from knowing about the vast amount of detail they

can no longer recall. Piasek et al [100] partially solved this issue by providing a

privacy button that allowed people living with dementia to stop recordings dur-

ing private or intimate moments. This awareness of and sensitivity to patient

privacy is an important consideration to be applied to the real-world application

of wearables.

Given the usefulness of employing wearables to detect dementia in its early

stage, along with their ability to support people living with dementia, we be-

lieve that longitudinal, and larger-population studies are needed to understand

the full benefits of wearables for the well-being of older adults. Large longitudi-

nal studies can account for inter-patient variability and document changes over

time, which can help to identify points of intervention. For future research to be

effective, we also contend that collaboration between health professionals and

computer scientists should be encouraged to enable the design of innovative clini-

cal trials that continuously assess people living with dementia. As several digital

biomarkers, such as walking speed, sleeping routine and physiological parame-

ters, have been tested to evaluate cognitive decline, these collaborations might

make it possible to investigate which digital biomarker(s) are most strongly cor-

related with cognitive decline, and help to support the development of targeted

technology that support older adults are various stages in their lives.

Moreover, we have discussed and drawn comparisons to traditional testing

and computerised testing, both of which have their own merits and drawbacks.

It should be noted that while wearables are becoming an increasingly useful

tool in a clinician’s arsenal to detect and diagnose dementia, other methods of

testing still have their place and can be used concurrently to build a complete

patient picture. In this way, the patient remains at the centre of the treatment

and management regime. This ensures the best possible care and most accurate

diagnosis is delivered.

With progressive cognitive decline, people living with dementia will naturally

engage less and less with their care plan and this responsibility often shifts to
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their carers. A potential with the use of wearables is that it gives individuals

with MCI and early-stage dementia the ability to opt in to this particular care

plan and as the wearable will be in place for a number of years, it gives the people

living with dementia some responsibility and input back which is important for

patient confidence and overall well-being.

Wearables Research Challenges and Questions

Future research could focus on the comparative analysis of existing applications

of wearables. Since current studies use different sets of activities, algorithms, or

approaches in assessing the function of wearables in the management of demen-

tia, a standard protocol in evaluating wearables should be proposed. Studies

on user acceptance, ease of use, user interface, physical design and structure of

wearables can also be conducted to evaluate how people living with dementia

perceive the use of wearables and additionally, surveys on what people living

with dementia perceive their needs and the gap in wearable technology can be

carried out to ensure the patient voice is heard. Larger population studies and

clinical trials on the use of wearables are also encouraged to gain broader under-

standing on the advantages of using wearables in the management of symptoms

and in preserving cognitive function among people living with dementia.

One area investigated by just one research group (Ardle et al. [13]) was the

potential to use wearable devices to stratify patients diagnosed with dementia

into one of the four subtypes of dementia. With the understanding that each

of these subgroups has a different and distinct clinical manifestation, correct

subtyping could ensure the most appropriate care is provided for the individual.

It would be useful to investigate further the use of wearable devices for this

purpose in tandem with general monitoring of various selected parameters as

discussed.

2.2 Heart rate variability as a potential biomarker

for dementia detection

It is vital to understand the involvement of the Autonomic Nervous System

(ANS) when describing physiological variables such as HRV, since the ANS in-

fluences every organ in the human body. The nervous system is divided into

the Central Nervous System (the brain and spinal cord) and the Peripheral Ner-

vous System. The peripheral nervous system is divided into sensory and motor

components. The sensory component transmits nerve impulses from peripheral

organs to the central nervous system. To perform an action, the motor com-
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ponent transfers impulses from the CNS to the peripheral organs. The motor

component is also known as the ANS.

The ANS is composed of two subsystems: the sympathetic and parasym-

pathetic nervous systems. Both systems control vital bodily functions such as

breathing, heart contractions, and digestion. The SNS mobilises energy while

the PNS functions conserve energy and restore somatic equilibrium. The SNS

and the PNS innervate the heart and are accountable for heart rate acceleration

and deceleration, respectively. The parasympathetic signals are relayed through

the vagus nerve, which normally promotes the resting cardiac autonomic bal-

ance, nullifying the sympathetic system [101]. Individual differences in cogni-

tive performance have been associated with the two branches of the ANS. Both

increased sympathetic nervous system (SNS) activity and decreased parasym-

pathetic nervous system (PNS) activity have been linked to increased risk of

cognitive impairment [102]. Several researchers have linked parasympathetic

withdrawal to impaired cognitive performance among people with Alzheimer’s

disease (AD) and mild cognitive impairment (MCI). [103].

The ANS has been linked both directly and indirectly to various physiological

processes related to cognitive performance[104]. This concept is supported by

several theoretical frameworks that examine the link between HRV and cognitive

function. Among these is the neurovisceral integration model, which proposes

that both the parasympathetic nervous system (PNS) and cognitive function

are regulated by an overlapping collection of neuronal structures [105]. Another

theory that supports the brain-heart connection is the polyvagal theory [106],

which describes similar theoretical frameworks and highlights the importance of

autonomic activity, particularly in the vagus nerve. This theory describes the

functions of the vagus nerve in detail, since it mediates all communications be-

tween the heart and the brain. These findings suggest a significant link between

cognitive performance and HRV that has crucial consequences for physical and

mental health.

2.2.1 Heart Rate Variability

HRV measures the time variation between successive heartbeats. This variation

is controlled by the ANS. Conventionally, heartbeats signals are obtained with

either of two widely used methods to measure the cardiac cycle: electrocar-

diography (ECG) and photoplethysmography (PPG). For years, ECG has been

used as the dominant cardiac monitoring system to detect any abnormalities.

By placing electrodes on the skin, ECG can record the heart’s electrical activity

over a period of time. PPG is a non-invasive tool using light-based technology
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Figure 2.1: Hierarchy of the human nervous system

to measure volumetric variations in blood circulation. Heart rate variability

(HRV) is a physiological measure of autonomic function. Low vagally mediated

HRV has been linked to a range of anxiety symptoms and neurodegenerative

diseases.

HRV is considered one of the most rapidly obtainable and noninvasive real-

time tools for assessing the autonomic system [38]. Recently, it has become a

strong focus of psychophysiological research because HRV is an index of the

parasympathetic nervous system [107]. This is especially interesting given the

parasympathetic nervous system’s involvement in many aspects of psychophysi-

ology, including self-regulation mechanisms associated with cognitive, affective,

social, and health issues [106][104]. In addition, the sensitivity of HRV to both

physiological and psychological changes has popularised its use [108]. HRV mea-

surements have been used in the treatment of multiple diseases and to monitor

many health metrics.

HRV has been widely used in clinical research as a non-invasive and effective
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method to assess autonomic function. Furthermore, many studies have reported

an existing association between cognitive function and parasympathetic HRV

indices in AD patients [109]. Several studies show a significant correlation be-

tween participants’ performance on cognitive tasks and HRV among different

groups [110] [111][112][113][114][115][116].

Analysis of Heart Rate Variability

Typical ECG data includes a set of QRS complexes. The resulting period be-

tween adjacent QRS complexes resulting from sinus node depolarisations is

known as the (N-N) (normal-normal) interval. HRV is the measurement of

the variability in the NN intervals. Three primary classes of signal processing

techniques are used to analyse HRV: the time domain, the frequency domain,

and non-linear methods. Many factors affect the analysis of HRV, including

the length of HRV measurement, the time of measurement, and other stan-

dards based on the suggestions of the Task Force[107].The gold standard for

short-term HRV assessment is 5 minutes [117]

Time Domain Methods

Time domain refers to beat-to-beat variations in the time between successive

heartbeats. Time domain methods are the simplest to implement. Time do-

main analyses cover multiple statistical parameters. The simplest time domain

parameters that can be calculated include the mean NN interval and the mean

heart rate. Other parameters can be calculated, such as the standard deviation

of the NN intervals (SDNN), which is known to reflect total cardiac variability

and thus the joint sympathetic and parasympathetic modulation of HRV. The

predominant source of variation in short-term 5-minute recordings is parasym-

pathetically mediated. Nonetheless, in longer-term recordings, SDNN readings

are substantially linked to lower frequency rhythms. Another commonly used

statistical variable obtained from interval differences is RMSSD, the root mean

square of successive differences between normal heartbeats, which more nar-

rowly represents parasympathetic activity only. Reduced HRV in time domain

parameters has been linked by various studies to lower cognitive function in

general and specific cognitive domains [102]. A brief of the most used HRV

time-domain measures can be found in 2.6.

Page 50



Chapter 2 Background and Literature Review

Table 2.6: Time Domain Parameters

PARAMETER Unit DESCRIPTION
SDNN ms standard deviation of normal NN intervals
SDRR ms standard deviation of normal RR intervals
SDANN ms Standard deviation of the average NN intervals
RMSSD ms Root mean square of squared differences between

each heartbeat
PNN50 % Percentage of adjacent RR intervals that vary by

more than 50 ms

Frequency Domain Methods

The power spectrum of HRV analysis in the frequency domain represents an es-

timate of the power spectrum of the RR interval time series. Power spectral den-

sity (PSD) analysis can be performed using a parametric or non-parametric ap-

proach. In parametric approaches, the signal is modelled using an autoregressive

(AR) model, while non-parametric estimation typically includes a fast Fourier

transform (FFT) or periodogram computation. The Task Force of the European

Society of Cardiology and the North American Society of Pacing and Electro-

physiology [117] divided heart rate (HR) oscillations into ultra-low-frequency

(ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF)

bands .For short-term recordings of 2 to 5 minutes, two critical frequency do-

main parameters obtained from spectral analysis are widely used: the High-

Frequency band (HF), and the Low-Frequency band (LF). The HF (0.15-0.40

Hz) reflects parasympathetic or vagal activity in the heart; it is highly associated

with RMSSD. The HF-HRV analysis is the most frequently reported parameter

in dementia studies [102]. Another common component is the Low-Frequency

band (LF) (0.04 - 0.15 Hz), which reflects a combination of sympathetic and

vagal effects. A summary of the most-used HRV frequency-domain indices can

be found in 2.7.
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Table 2.7: Frequency Domain Parameters

2.2.2 The Neurovisceral Integration Model: Linking HRV

to Cognitive Function

Thayer and Lane [105; 104] have proposed the neurovisceral integrated model

(NIM) of the heart-brain connection, which asserts that HRV is controlled by

the prefrontal and limbic regions. They offer a model in which a set of neural

structures that regulate physiological, behavioural, emotional, and cognitive re-

sponses can be indexed via peripheral indices such as HRV. They conclude that

the central autonomic network (CAN) is an integral component of a complex

internal regulation system by which the brain controls visceromotor, neuroen-

docrine, and behavioural responses. The CAN consists of several regions, such

as the medial prefrontal cortex (mPFC), nucleus ambiguus (NA), anterior cin-

gulate cortex, insula, and orbitofrontal cortex. All of these areas are mutually

related, allowing information to flow bidirectionally between lower and higher

brain levels. They clearly play roles in controlling human behaviour by connect-

ing the prefrontal cortex, physiological reactions, and the autonomic response

via the NA and vagus nerve activities that govern the sinoatrial node.

Thayer et al. [104] have identified an association between stress, HRV, and

cognitive impairment, hypothesising that HRV measures key aspects of pre-

frontal brain activity. Their argument is based on neuroimaging data indicating

that the CAN’s primary output is mediated by preganglionic sympathetic and
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parasympathetic neurons, which primarily affect the heart via the stellate gan-

glia and the vagus nerve. Thus, a growing body of evidence suggests that high

HRV is associated with improved neuropsychological performance, whereas low

HRV is linked to worse neuropsychological performance. As a result, HRV has

emerged as a key biomarker for autonomic function. High HRV indicates better

autonomic function. in contrast, Lower HRV is associated with a higher risk

of mortality and cardiovascular events. Studies show that low HRV is related

to risk factors that precipitate declining cognitive function, such as depression,

hypertension, and diabetes.

2.2.3 Findings Supporting HRV and Cognitive Function

Interaction

Neuroimaging research provides further evidence for the association between

HRV and cognitive function. Cognitive functions such as general arousal[118],

orientation/alerting [119], and emotion regulation [120] have been tied to auto-

nomic changes. A study conducted by Raskin et al. [121] on 48 male Michigan

State University students highlights the relationship between HRV and atten-

tion by accounting for the components of attention (respiration and heart rate).

These researchers randomly assigned their study population into one of four cat-

egories: the heart rate estimation group, light count group, light tone group, and

light group. This study aimed to elicit the respiratory and heart rate changes

associated with participants’ concentration on external and internal stimuli.

Their results show that participants who were directed to focus on the stimuli

recorded a lower HRV. Consequently, they concluded that HRV is linked to cog-

nitive (executive) function, secondary to a decline in HRV with concentration

on external or internal stimuli.

Hansen et al. [122] conducted a study to shed light on the relationship

between HRV and working memory and sustained attention. Their group eval-

uated 53 Royal Norwegian Navy sailors by administering tests for working mem-

ory and continuous performance tasks. The participants completed these tasks

as the authors monitored their heart rate and HRV. Their results indicate that

the group with high HRV outperformed the group with low HRV on all as-

sessments. A correlational analysis of the data shows that resting HRV was

positively correlated with cognitive performance. These findings align with the

neurovisceral integration model, which links prefrontal cortex activity to HRV.

Luque-Casado et al. [123] performed a study to investigate the connection

between HRV and cognitive performance. Their study population was selected
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based on physical fitness level and categorised as either low-fitness or high-

fitness, depending on physical characteristics and anthropometry. These twenty-

eight male students from the University of Granada in Spain were subjected to

three tasks: duration discrimination, psychomotor vigilance, and temporal ori-

entation tasks. These researchers discovered that the high-fitness group reacted

more quickly on the psychomotor vigilance task and had a higher HRV, whilst

the low-fitness group had a lower HRV. Therefore, they concluded that HRV

can be used to measure cognitive function. Additionally, Gianaros et al. [124]

assessed HRV by exploring neural activity among 93 adults preoccupied with

a working memory task, using a Position Emission Tomography (PET) scan.

These researchers unveiled a correlation between high-frequency HRV and the

anterior cingulate cortex in their participants. The anterior cingulate cortex is

related to cognitive functions such as attention, emotion, and decision-making.

The neurovisceral integration model hypothesises that HRV predicts an in-

dividual’s ability to adapt to changing circumstances [125]. Therefore, the exec-

utive function of individuals with low HRV is affected more than the executive

function of individuals with high HRV. Hansen, Johnsen, and Thayer [104] di-

vided participants into low-HRV and high-HRV groups based on their median

scores on baseline HRV recordings. These study subjects were randomly further

grouped into either threat or non-threat groups. Participants in the threat group

were warned that they would be shocked using electrodes placed on their fingers

and that the intensity of the shock would be increased subsequently. However,

these participants were not actually subjected to the shock. Participants from

the high-frequency HRV group outperformed their counterparts when there was

no threat of stress. The performance of the high-frequency HRV group changed

little with the introduction of a stressor. However, the low-frequency HRV

group experienced a significant impact on their cognitive performance with the

introduction of a stressor.

On the contrary, Dupuy et al. [126] concluded that evidence is lacking for

a linkage between the cardiac PNS and executive function, after studying 11

male trainees in athletics. These participants were subjected to Stroop tasks

and treadmill tests that had been graded while their HRV was being measured.

2.2.4 Evaluating the Association Between HRV and Cog-

nitive Function in Patients with Dementia

Age-related neurocognitive diseases such as MCI and dementia share risk factors

with cardiovascular diseases [127]. HRV is a common diagnostic tool for assess-

ing the cardiac autonomic system; it has been linked to several diseases, such

as cardiovascular disease and dementia. A reduction in HRV is attributed to
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decreased activity in vagus innervation to the heart and is considered an indica-

tion of autonomic dysfunction. Autonomic dysfunction in dementia is thought

to be caused by the combined effects of ageing and neurodegeneration in the

telencephalic tissues, as well as in the hypothalamus and brainstem [128]. In

fact, autonomic dysfunction may constitute an early indicator of dementia, as

deterioration in the insular cortex and brainstem occurs early in the develop-

ment of this disease. Several studies have shown that dementia patients have

autonomic dysfunction, using clinical autonomic tests [129] or HRV analyses

[130].

Duschek et al. [131] link cardiac vagal tone to emotional and cognitive con-

trol by eliciting a connection between high-frequency HRV and the parasym-

pathetic effect on the heart. These parasympathetic influences are crucial for

individual adaptation to changing environmental stimuli. Thayer et al. [132]

postulate that cardiovascular and autonomic dysfunction worsen cognitive func-

tion. Thus, a reduction in vagal tone may indicate an inability to appropriately

respond to changing environmental stimuli, which limits an individual’s ability

to generate responses that are situation-appropriate and to avoid inappropri-

ate responses. Furthermore, Heathers [133] links the poor cognitive function

seen in dementia to lower low-frequency HRV (under PNS and SNS control).

Heathers considers cognitive domains such as memory and language. Lower

high-frequency HRV (a reflection of vagal modulation) was linked to poor global

cognitive functionality.

Acharya et al. (2006)[134] and Collins et al. [135] have linked low high-

frequency HRV to an increased risk of developing cognitive impairment. These

authors hypothesise that low high-frequency HRV affects cognition through as-

sociated damage to white matter in patients with dementia and Alzheimer’s

disease. A cross-sectional study by Silva et al. found autonomic dysfunction

in dementia patients who had been evaluated using HRV. These authors com-

pared and contrasted 97 relevant materials on dementia and HRV. Their results

indicate an effect size that was negative. According to their study, this negative

effect size suggests a correlation between dementia and MCI.

Table 2.8 gives a brief review of the literature on HRV and cognitive perfor-

mance.
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Table 2.8: A brief review of research examining HRV and cognitive performance.

Title Objectives Participants
HRV Pa-

rameters
Main Results

Kim et

al., 2006

[136]

To assess the associ-

ation between HRV

and cognitive im-

pairment in disabled,

community-dwelling

women aged 65 and

older

311 physi-

cally disabled,

community-

dwelling

women aged

65 and older

Time and

Frequency

domain

(2-hr am-

bulatory

ECG)

Reduced high-

frequency power,

indicative of de-

creased parasympa-

thetic activity, was

associated with 6.7

times greater odds of

cognitive impairment

Britton

et al.,

2008

[137]

To investigate the

link between de-

creased HRV and

cognitive perfor-

mance among

middle-aged peo-

ple in the general

population.

5375 UK

males and

females. mean

ages (55,61)

Time and

Frequency

domain (5

min supine

resting

ECG)

No consistent associ-

ations were found in

men or women.

Shah et

al.,2011

[110]

Is HRV associated

with memory per-

formance in Middle-

Aged Men

416 middle-

aged male

twin mean age

55

Frequency

domain (

24-hr am-

bulatory

ECG)

Lower frequency

spectra of HRV

are associated with

verbal, but not vi-

sual, learning and

memory.

Frewen

et al.,

2013

[138]

To assess the re-

lationship between

HRV and cognitive

performance, in older

adults.

4,763 partic-

ipants mean

age (61.7 ±
8.3) , (55 %)

female.

Time and

Frequency

domain (two

5-min supine

resting

ECG)

Reduced HRV is sig-

nificantly associated

with lower cognitive

performance among

older adults aged 50

and older.

AlHazzouri

et al.,

2014

[139]

To determine the

cross-sectional as-

sociation between

HRV and cognitive

function in a cohort

of elderly Mexican

Americans.

869 Mexican

Americans

(mean age,

75 years; 59%

women)

6 minutes

supine ECG.

Reduced HRV is as-

sociated with worse

performance in gen-

eral cognitive func-

tion
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Table 2.8: A brief review of research examining HRV and cognitive performance.

Title Objectives Participants
HRV Pa-

rameters
Main Results

Mahinrad

et al.,

2016

[140]

To examine the

cross-sectional and

longitudinal rela-

tionships between

10-second HRV and

various areas of cog-

nitive performance

among older people

at risk of cardiovas-

cular disease.

3583 partici-

pants (mean

age 75). 3.2

year follow-up

Time do-

main (10

seconds

supine

ECG)

Lower baseline HRV

was linked to worse

performance in reac-

tion time. Individu-

als with lower HRV

experienced a greater

decrease in process-

ing speed over the

follow-up period.

Alhazzouri

et al.,

2017

[115]

To investigate the

longitudinal asso-

ciation between

HRV and cogni-

tive performance

among middle-aged

individuals

2118 partici-

pants (57.7 %

female, 42.2

% Black) with

a mean age

(45.3) years.

Time do-

main (10-s

supine rest-

ing ECG)

lower SDDN is as-

sociated with worse

executive function

among middle-aged

adults.

Schaich

et al.

2020

[141]

To investigate the

relationship between

HRV and cognitive

performance in a

multi-ethnic cohort

of aging adults.

3018 partici-

pants; mean

age (59.3)

years

Time do-

main (10-s

supine fast-

ing resting

ECG)

Higher HRV is gen-

erally associated

with better cognitive

performance in this

multi-ethnic cohort

of aging adults
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2.3 Summary

The primary question of this thesis is how suitable wearables are for detecting early

cognitive impairment. As has been shown, wearables are already widely used in re-

search projects as a potential tool for monitoring the elderly population and identifying

initial signs of the development of MCI and/or dementia itself. Wearables have been

used for the continuous monitoring of physical activity, which can provide impor-

tant insights into cognitive decline. Through this review, it is evident that wearables

present a valid option for assisting in the diagnosis and management of both dementia

and MCI. Wearables evidently can serve many functions, such as assessing cognitive

decline, monitoring symptoms, and serving as an assistive technology or cognitive in-

tervention for memory impairment. However, a gap remains in research in this area,

whereby comprehensive comparative analysis of datasets and further collection of data

on the use of wearables would be useful for improving and expanding the use of wear-

ables in this field and potentially within other patient groups as well.

Digital biomarkers are a data type that has been digitally captured and used as

health and disease indicators. Resting heart rate, HRV, accelerometery, electrodermal

skin activity, and skin temperature, for example, can all be used to determine an indi-

vidual’s infection status or predict whether or not they will become infected following

exposure. As a result, employing wearables to detect biomarkers may be the first step

in recognising illnesses before symptoms appear. Several studies have investigated var-

ious biomarkers for application in diagnosing and assessing neurodegenerative disease

and MCI using wearable and sensor solutions. Moreover, many wearable devices mea-

sure HRV, which is a well-established indicator for autonomic function, with a higher

HRV indicating more robust autonomic regulation.
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CHAPTER 3

Detecting Autonomic nervous system reactions using

HRV: A pilot Study

In this chapter, we investigated the reliability of the state-of-

the-art wearable sensing devices in detecting autonomic ner-

vous system reactions to stress, and the associations between

cognitive performance and HRV in young healthy participants.

The pilot study discuss result from employing the CorSense

devices to collect sensing data. Then, we evaluate the data,

and present the results. Last, a discussion of the findings is

presented.

Aging populations pose a considerable challenge for health systems. As the

world’s old population grows, so does the demand for healthcare services. Wear-

able technologies are a promising solution that offer continuous, objective, non-

invasive monitoring to elderly. Physiological and autonomic biometrics data

such as heart rate, HRV, blood pressure, and body temperature, as well as

sleep, blood oxygen saturation, and physical activities, are the most frequently

measured data using wearable sensors. Some evidence [142] promotes the use of

HRV measurement as a method for measuring cardiovascular autonomic func-

tion in ANS studies. Multiple studies suggest that irregularities in cardiac

rhythm associated with autonomic dysfunction may be related to cognitive im-
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pairment.

Wearables can continuously monitor HRV as a measure of neurovisceral in-

tegration and ANS balance/imbalance during everyday activities, offering in-

sights into a variety of situations, including activities of daily life, preventive

medicine, and behavioural assessments, to aid in continuous clinical care. HRV

has been presented as a realistic and reliable quantitative marker of ANS activ-

ity in response to stress. It sheds light on humoral, neuronal, and neurovisceral

processes in health and illnesses of the brain, body, and behaviour. However, it

has not been properly addressed in the digital age. Consequently, this chapter

focuses on the first research question: How suitable are current state-of-the-art

wearable devices to be applied for detecting HRV changes and its association to

cognitive performance in everyday setting?

3.1 Study Aim and Hypotheses

The purpose of this study was to explore the suitability of wearable devices

in terms of collecting sensing data to examine the involvement of the ANS in

cognitive functioning. We evaluated the ANS reactions before, and during a

cognitive challenge. Then, we assessed the influence of the cognitive stressor

on HRV. We examined the relationship between HRV and cognitive function

in young adults using wearable sensors in order to evaluate the reliability of

wearable sensors in detecting changes in HRV.

The aims of this study were:

1. To assess the reliability of wearables devices in capturing the differences

in HRV before, during, and after a cognitive challenge.

2. To assess the correlation between short-term HRV, using wearable based

device, and cognitive performance on multiple cognitive tests.

Regarding the, the first objective following sub-hypotheses are derived:

• Hypothesis 1-0: There are no differences between HRV before and during

the cognitive challenge, induced by mental stress.

• Hypothesis 1-1: There are differences between HRV before and during the

cognitive challenge, induced by mental stress.

Regarding the, the second objective following sub-hypotheses are derived:

• Hypothesis 2-0: There is no relationship between cognitive performance

and HRV.

• Hypothesis 2-1: There is a relationship between cognitive performance

and HRV.

Page 61



Chapter 3 Detecting Autonomic nervous system reactions using HRV: A pilot
Study

3.2 Design of the study

Independent Variables (IV)

1. Cognitive challenge

We used CNS Vital Test Signs test battery that has been proven to increase

the Sympathetic Nervous System (SNS) activity producing measurable

physiological responses. This is to test the first objective that sensing

devices are able to identify changes in physiological signals such as HRV

induced by stress.

Dependent Variables (DV)

1. Autonomic measure (HRV)

HRV is a measure of the ANS activity. HRV was measured using CorSense

HRV monitor, a wearable device that uses pulse detection using a gold-

standard 500 hertz multiwave sensor array. RR interval data of the HRV

was exported using the EliteHRV app.

2. Cognitive Performance

Cognitive performance was assessed using CNS Vital Signs (CNS-VS)

(CNS Vital Signs LLC, Morrisville, NC). The CNS-VS is a computer-based

neuropsychological battery that includes various tests to evaluate differ-

ent types of cognitive domains including attention, memory, and executive

functioning. In the study, we employed the basic test of the CNS-VS of

the neurocognitive status. The test we used consists of seven neuropsycho-

logical tests that produce results in 11 cognitive domains. Time needed

to complete the total battery is approximately 30 to 40 minutes.

3.2.1 Participants and procedure

We have recruited 10 healthy young participants from Queen Mary University of

London (mean age=28.6 years, SD=2.50, age range=20–33; 5 males, 5 females)

via university mailing lists. All subjects were instructed to abstain from alcohol,

caffeine, and exercise for 24 hours before measurements. Prior to the study,

participants were introduced to the experiment, and the study rationale. They

were given the consent form to sign and a demographic questionnaire to fill in.

Participants were seated with no music background and natural lighting in the

room. HRV was measured using CorSens which is a finger-based device. We

put on sensors and tested recording accuracy. Then, we recorded baseline HRV

for 6 minutes. We analysed only the last 5 minutes for stabilization purposes.

We determined 5 minutes based on the recommendation by the guidelines of
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the European Society of Cardiology and the North American Society. After

that, participants started to perform the test tasks. Data were downloaded and

saved for each participant. A general overview of the procedure is shown in 3.1.

Ethical approval was obtained from Queen Mary Ethics of Research Committee

(QMREC2188). All participants provided written informed consent prior to

study completion.
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Figure 3.1: Steps of the Proposed Experiment
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3.2.2 Data Collection and management

Physiological data in form of HRV was collected using CorSense HRV monitor

devices.

Heart Rate Variability

Analysis of HRV is widely used as a standard non-invasive powerful tool for

assessing autonomic nervous functions. Its sensitivity to both physiological and

psychological changes has popularized its use. For this study, we collected short

term HRV using Elite HRV CorSense (Figure 3.2). Participants were asked to

slip their finger in the device for 6 minutes before, during and after the test.

We used both time and frequency domain for the HRV analysis. Both time

domain and frequency domain HRV indices have been found to provide useful

information on ANS modulation in studies. For example, time domain metrics

of standard deviation, coefficient of variance, and mean successive difference,

have a positive correlation with vagal tone.

Figure 3.2: Corsense Placement

3.3 Results and Analysis

Data sets were exported and artifacts in RR interval data were removed with

standard elite HRV app. The RR interval sets were analysed using Kubios HRV

2.2 for time, and frequency domain. Kubios HRV is a well-recognized software

and most commonly used for electrocardiogram analysis. It supports other data

formats such as RR and IBI. For the analysis of this study, we considered only

the HRV measurement that is reliable for short term measurement since we only

recorded 5 minutes of HRV. From the time domain, we considered Mean RR,

STDRR, RMSSD, PNN50 (%), and from the frequency domain we considered

(LF/HF ratio), LF (Hz), HF (Hz), LF (log), HF (log), LF (normalized.) HF

(normalized).
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Objective One

Paired samples t-test was used to assess differences between HRV before and

during the cognitive challenge. Different HRV indices were examined in order to

determine which components changed significantly under stress. The results are

in 3.1. The result showed a significant statistical difference in the normalized

HF and LF/HF parameters (P <0.05). Hence, we used these two measurements

to test for correlation with different cognitive domains.

Table 3.1: Paired samples T-tests

Heart Rate Variability (HRV) P-VALUE t-value
Mean RR 0.9647 0.045
STDRR (ms) 0.2247 −1.303
RMSSD (ms) 0.6775 −0.430
Lower Frequency (LF) 0.5222 0.666
High Frequency (HF) 0.2082 1.356
Very Low frequency (VLF) 0.6713 0.439
High Frequency normalised (HFnu) 0.02607 2.659
LF/HF 0.02868 −2.601

The power of the normalized HF component is considered as an index of

modulation of the parasympathetic branch of the ANS, and likewise, the LF/HF

ratio has been widely employed as an HRV index of sympathovagal balance be-

tween the 2 branches of the ANS. From the boxplot below we can clearly see that

during the cognitive test, HF has decreased which implies that parasympathetic

activity has decreased. These results suggest that the decrease of parasympa-

thetic activity is associated with stress related to the cognitive task.

Figure 3.3: High Frequency before and during the cognitive test

On the other hand, the increase in LF/HF ratio could mean an increased

activity of the SNS. Our findings suggest that increased sympathetic associated

with the cognitive task can be captured using wearable devices 3.4.

Page 66



Chapter 3 Detecting Autonomic nervous system reactions using HRV: A pilot
Study

Figure 3.4: LF/HF before and during the cognitive test

Objective Two

The second objective was to assess the correlation between cognitive perfor-

mance and HRV. As mentioned above, for the cognitive performance we used a

computerized battery known as CNS Vital Signs. It consists of 7 tests that assess

different cognitive domains: verbal and visual memory, finger tapping, symbol

digit coding, the Stroop test, a test of shifting attention, and the continuous

performance test. Based on these tests, seven cognitive domain scores were cal-

culated: memory, psychomotor speed, processing speed, reaction time, complex

attention, cognitive flexibility, executive functioning, and also the neurocogni-

tion index (NCI), a global cognitive measure. Each participant completed all

seven tests.

Normality tests

Generally, the Q-Q plot (quantile-quantile plot) are used to check for normality

visually. The Q-Q plots below indicate normal distribution of our variables of

interest. Figures 3.5and 3.6show QQ plots for some of the cognitive tests.

Figure 3.5: QQplot for composite memory
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Figure 3.6: QQplot for Complex attention

Most of the plotted points are well distributed on the line indicating that

the cognitive test variable was normally distributed.

Shapiro-Wilk W Test:

We also used Shapiro-Wilk W test to assess normality. All cognitive tests were

normally distributed (p-value >0.05) (Table3.2).

Table 3.2: Shapiro-Wilk normality test for different cognition Domains

VARIABLE P-VALUE
Composite memory 0.06431
Psychomotor Speed 0.2245
Reaction Time 0.1396
Executive Function 0.538
Processing Speed 0.843
Cognitive Flexibility 0.3764
Complex Attention 0.5099

Pearson’s correlation test was used to identify a relationship between cogni-

tive performance and HRV. We evaluated associations between HRV and differ-

ent cognitive tests at baseline and during the test. Results show no significant

correlation for each parameter, at either time point. Table 5.3 shows the result

of the associations between HRV and seven different cognitive test scores.

HRV has been widely used as a biomarker to yield some insights into the

activi- ty of the ANS associated with stress. The majority of previous re-

search has assessed the association between HRV and cognitive function in a

cross-sectional and older adult setting. One of the studies on aging showed a

cross-sectional relationship between HRV (measured using SDNN and frequency

domain parameters) and performance on the Montreal Cognitive Assessment
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Table 3.3: Pearson’s correlation test for the association between HRV and dif-
ferent cognitive domains

Baseline During test
HRV Cognitive test P-Value Correlation P-Value Correlation
HFnu Composite memory 0.945 −0.025 0.167 −0.473
LF/HF Composite memory 0.924 0.0349 0.242 0.407
HFnu Psychomotor Speed 0.830 −0.078 0.220 −0.425
LF/HF Psychomotor Speed 0.609 0.185 0.189 0.452
HFnu Reaction Time 0.769 −0.107 0.216 −0.429
LF/HF Reaction Time 0.602 0.188 0.252 0.400
HFnu Executive Function 0.187 0.454 0.877 0.056
LF/HF Executive Function 0.148 −0.491 0.780 −0.102
HFnu Processing Speed 0.589 0.195 0.584 −0.198
LF/HF Processing Speed 0.640 −0.169 0.586 0.197
HFnu Cognitive Flexibility 0.193 0.449 0.999 0.0004
LF/HF Cognitive Flexibility 0.169 −0.471 0.906 −0.043
HFnu Complex Attention 0.136 0.506 0.974 0.012
LF/HF Complex Attention 0.119 −0.525 0.846 −0.070

(MOCA), a test of global cognitive domain [138]. To date, most studies showed

changes of HRV in response to stress induced by several methods. Particularly,

low parasympathetic activity, which is characterized by a decrease in the HF

and an increase in the LF. In short, higher HRV has been associated with bet-

ter cognitive performance, and a lower HRV has been associated with decreased

performance on cognitive tests. However, the association between HRV and

cognitive performance in young healthy cohort is still mostly unexplored.

The aim of this study was to evaluate the reliability of wearables devices

in capturing the differences in HRV before, and during a cognitive test, and to

assess the relationship between short-term HRV, using wearable-based device,

and cognitive performance on multiple cognitive tests. This is a pilot study to

verify the feasibility of implementing the same setting but for MCI and demen-

tia patients. Even though the study was conducted on healthy participants,

we needed to present evidence of wearable capabilities and their capacity to

identify variations in physical data in healthy participants. Our first hypothesis

suggested that participants’ HRV would be affected by stress, particularly a

reduction in some HRV parameters, and that this reduction could be captured

using wearable sensors. To test the above-mentioned hypothesis, we used paired

samples t-test to compare HRV before and during the cognitive challenge in the

sample study. The result showed the reliability of wearable in detecting changes

in the ANS through differences in HRV.

Our second hypothesis proposed that there is an association between short-

term HRV, using wearable-based device, and cognitive performance on multiple
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cognitive tests in young healthy participants. However, we did not find any

significant association between HRV and the cognitive performance, at either

time point. This finding potentially could be due to the limited number of

participants since our study was based only on 10 young participant. Future

research should consider our limitations mentioned above using different and

larger sample size. In conclusion, findings from the current study suggested

that wearables can be a reliable tool in detecting changes in HRV induced by

stress.

3.4 Conclusion and Takeaways

In this section, we utilised wearables in order to identify difference in heart rate

variability before and during the cognitive tests. We found significant differ-

ences in some HRV parameters before and during a cognitive task. This finding

suggest that wearables can be used to monitor HRV and are able to detect dif-

ference during in HRV induced by stress. However, this study showed that there

was no relationship between cognitive performance and HRV. This could be due

to the very limited number of participants or a true lack of association, as sev-

eral studies demonstrated no relationship between HRV and cognitive function

in middle-aged men and women.

Page 70



Part IV

HRV in Individuals with

Dementia

71



CHAPTER 4

Association between cognitive performance and HRV in

individuals with dementia

This chapter extends the findings from the earlier exploratory

chapter. Here, we discuss experiment design and findings of

ultra-short term (10 sec) HRV measures from the UK Biobank,

and the association with cognitive function in patients with

dementia.

4.1 Overview and Related Work

Dementia is a neurological disease that leads to deterioration in cognitive func-

tion, which impairs memory, social interaction, and daily tasks[27]. Cognitive

functioning comprises multiple mental abilities which underlie how people learn,

think, solve problems, and make decisions. It is a general term that describes

several domains including executive function, memory, and attention. The neu-

rodegenerative disease can range from mild to severe, and its progression may

lead to the development of autonomic dysfunction. Autonomic dysfunction de-

velops when the nerves that regulate involuntary and unconscious actions such

as heart rate, and blood pressure, are damaged. Furthermore, autonomic dys-

function was found to be 6 times more common in people with mild cognitive

impairment (MCI) than in people without cognitive impairment [135]. While

HRV declines with age, it is an indication of autonomic dysfunction when it

declines rapidly [143].
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HRV is normally calculated using long-term (24 hours) or short-term (<

5 min) ECG recordings. Long-term measurements can provide detailed infor-

mation during different physical states such as activity and rest. Despite the

advantages of long-term measurements, they are time-consuming, expensive,

and require special expertise which might limit their application. Conversely,

measuring HRV from a 10-second ECG recording is more practical and easier to

apply in daily practice. It has been suggested that a 10-second HRV may predict

5-minute cardiac vagal tones accurately [144] and has a comparable predictive

value for cardiac mortality in older participants [145].

An association between cognition and HRV has been shown in large groups

of seniors as well as smaller samples of people with MCI and dementia [130;

141; 102; 146; 147; 148]. From this perspective, HRV can be a promising phys-

iological correlate of cognitive function. Low HRV is an indicator of autonomic

dysfunction and has been associated with worse cognitive function [149]. In

contrast, people with higher HRV levels have greater control over a variety of

cognitive domains including memory [139], the executive function [138], and

faster processing speed [140]. The association between HRV and autonomic

dysfunction in dementia patients is still debatable, with some research finding a

significant difference between dementia and control groups [136; 128] and others

finding non-significant results [150]. However, the identification of biomarkers

that could help identify disease development in the pre-clinical stage should

allow for earlier intervention and possibly prevent the occurrence of clinical un-

favourable phenomena [129]. Consequently, we looked at cross-sectional and

prospective relationships between HRV and cognitive performance in a group of

older adults.

The hypotheses of this study are as follows:

Hypothesis 1 (H1): Measures of HRV amongst dementia patients will be

lower relative to age-matched control participants.

Hypothesis 2 (H2): There is a strong positive association between HRV

and cognitive function among older group.

4.2 Study design

UK Biobank is a large-scale biomedical database and research resource with

over 500,000 participants recruited during years 2006–2010 from around the UK.

Participants were asked to come to an assessment centre to fill out a computer-

based questionnaire about their lifestyle, general health, and medical history.

Other measures taken include weight, height, blood pressure, blood and urine

samples. In 2014, data such as imaging and resting 12-lead ECG data were

collected. The first 4,000 participants’ data was released at the end of 2015
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which increased to 25,000 participants by the middle of 2018. By 2022, 100,000

people will have been screened, with 10,000 of them having repeat scans 2–3

years later [151].

4.3 ECG Data

44,446 ECG data files were downloaded from the UK Biobank. Each file contains

information about the participants such as ID, date and time of the observation

and the raw data of the 12-lead ECG signal at rest,. Raw ECG data were stored

in XML files (Extended Markup Language). We developed a python script to

read the XML files, perform signal processing in order to extract the important

features such as QRS complex and then HRV features as explained in figure4.1.

Figure 4.1: Data Processing

4.3.1 Detection of R Peaks and RR Intervals

The accurate extraction of R peaks and RR intervals is a significant stage in the

acquisition of the HRV data. The higher the accuracy of R peak identification,

the lower the error in the R–R interval time series and subsequent HR variability

analysis. Therefore, R peaks must be correctly identified in the ECG data, and

any missing or incorrect peaks must be corrected. Additionally, ECG signals can

be affected by different forms of noise and artifacts during the recording process

[152]. This may influence the signal quality which impacts the process of QRS

detection process [153]. Several methods have been proposed for improving QRS

and R-wave detection [154]. We have used Pan and Tompkins algorithm [155],

this algorithm is the most commonly used method to extract the QRS complex

from the ECG signals.

The purpose of the pre-processing stage is to improve the overall quality

of the ECG signal so that it can be analysed and measured more precisely.

In Pan-Tompkins algorithms, a number of steps are needed for QRS detection

such as filtering data for noise removal, a derivative operation to detect the

high slopes that differentiate the QRS complex from other waves. The signal

is then squared to obtain positive values, emphasising large differences between

the QRS complexes and supressing all the small differences coming from other
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waves, and then moving window integration [152]. The algorithm process is

presented in Figure 4.2. RR intervals are defined as the time elapsed between

two successive R waves of the QRS complexes of the ECG signal. Therefore,

after the detection of the R peaks, we now can convert the peaks index to

intervals time series (RR) by finding the difference between RR intervals.

Figure 4.2: The Pan-Tompkins algorithm

Figure 4.3: Raw ECG before the data processing

Figure 4.4: R peaks Detection after the data processing

4.3.2 HRV analysis

HRV is the variation in the time interval between each heartbeat. HRV is recog-

nised as a significant biomarker of the activity of autonomic function and as one

of the most significant methods of analysing the activity of the autonomic ner-

vous system (ANS). HRV analysis can be calculated from ECG in three main

ways: time-domain (statistical measures), frequency- domain (also known as

spectral analysis), and non-linear metrics. As the duration of ECG recording

can influence HRV analysis, the Task Force of the European Society of Cardi-

ology and the North American Society of Pacing and Electrophysiology (1996)
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established a set of gold standards in terms of ECG durations. Duration of

HRV measurements can be 24 hours, short-term (5min), or ultra-short-term (<

5min) [117].

However, more recent studies have challenged the 5 min gold standard with a

shorter duration of ECG recordings such as 10s, 30s, and 60s. Munoz et al.[156]

recently investigated the reliability of ultra-short and short HRV recordings in

a large population (N = 3,387). The authors evaluated ultra-short 10s, 30s,

and 120s recording using time-domain indices (SDNN and RMSSD) and com-

pared them with the 5min gold standard measurements. They concluded that

a recording of 120s is considered an accurate measure of RMSSD. Moreover,

even the standard ECG duration (single 10s) yielded an accurate RMSSD mea-

surement. For SDNN, the authors recommended either a 30s or multiple 10s

ECGs. Therefore, and due to the short duration of the ECG recordings (10

seconds), we used the RMSSD of the time-domain indices. Time domain values

are calculated directly from the measurement of RR intervals.

4.3.3 Reliability of our data processing method

We compared the accuracy of the HRV metrics calculated through Kubios soft-

ware to the HRV metrics calculated with our method. The latter achieved a

99.6% accuracy compared to the Kubios method. Details can be found in Table

4.1.

Table 4.1: Time Domain Parameters

PARAMETER Unit Kubios software Our work

Mean RR (ms) 801 801
Mean HR (bpm) 75.00 74.97
Min HR (bpm) 73.01 72.64
Max HR (bpm) 78.00 77.92
SDNN (ms) 19.5 19.64
RMSSD (ms) 10.3 10.5

Among available ECG data, we found 18 patients with dementia files. There

were more than 41,938 ECG files for healthy controls. In order to analyse this

unbalanced dataset, we adapted the bootstrapping technique, which is a re-

sampling technique used to estimate statistics on a population by sampling a

dataset with replacement. We sampled 18 observations 40,000 times and then

computed the overall mean and variance of these observations while controlling

for age and gender. Then we sampled 18 random participants from that distri-

bution. We assumed normality since we know that repeated sampling for large

data set i.e., 40,000 would result in a normal distribution by the Central Limit
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Theorem.

4.3.4 Participants

HRV recordings were carried out in 18 participants with dementia (M = 65.09,

SD = 9.22) and 18 healthy participants (M= 65.64, SD = 7.0). Of the UK

Biobank participant included, 76.1% were identified as male.

Figure 4.5: Age distribution

4.4 Statistical Analysis

A statistical power analysis was performed for sample size estimation, using the

G*Power software [157]. A total sample of 18 people would be needed to detect

large effects (d =.93 with 85% power for an independent-groups comparison

with alpha at .05. Similarly, Quintana [158] recommended a minimum sample

size of 18 to achieve a large effect size with a statistical power of 85% based

on a meta-analysis of more than 250 HRV effect sizes. Therefore, our proposed

sample size of N= 18 should be sufficient to test hypothesis 1 of this study. To

test hypothesis 2 of the study, multiple logistic regression was used to model

the associations between HRV and cognition by calculating odds ratio (OR),

which quantifies the strength of the association between HRV and cognition,

and 95% confidence intervals (CI). All statistical analyses were performed using

R statistical software (version 1.2.5019; R Foundation for statistical computing,

Vienna, Austria).
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4.5 Results

Two HRV parameters were included to assess the difference of HRV values

between dementia and healthy controls. An independent-samples t-test was

conducted between HRV (RMSSD) in both groups, patients with dementia and

healthy control. As predicted, there was a significant difference in RMSSD be-

tween the control group (M=5.06, SE=0.11) and the patient group (M=3.94,

SE=0.33); t(24)=3.1, p= 0.004. These results suggest that the patient group

have lower HRV (RMSSD) values than the control group. Next, another independent-

samples t-test was conducted between HRV (SDNN) in the control group (M=

122.6, SE=0.19) and the patient group (M= 110.77, SE=0.34); t(26.9)=0.3,

p= 0.73. There was no significant difference between the groups in the SDNN

parameter.

Table 4.2: Time Domain Parameters

control RMSSD patient RMSSD control SDNN patient SDNN

5.121456435 5.673804 141.2748 213.77
4.397651966 3.176803 72.3624 23.88
4.413328127 2.373975 73.38738 9.62
5.264274745 1.534714 161.8136 3.48
5.368560263 5.275253 178.7765 190.72
5.302251527 5.031875 167.787 136.13
4.837586384 5.807301 108.2116 302.56
5.634988531 2.030776 231.0695 18.31
5.220581636 4.319087 155.2159 78.53
4.599310986 3.178054 86.85706 33.33
3.570377903 4.804758 20.87584 115.92
5.510579494 6.579015 204.9147 423.11
4.998709062 2.791778 125.8209 10.62
5.014998347 6.173119 127.7642 287.16
5.446556167 2.376764 192.671 8.49
5.400756739 2.645465 184.3811 22.59
5.309865004 4.549446 169.0121 89.37
5.437438825 3.386422 190.9903 26.21
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Figure 4.6: HRV(RMSSD) feature in dementia and control groups

Figure 4.7: HRV(SDNN) feature in dementia and control groups

Figure 4.8: Boxplots of sampled control variates for each of the HRV featuers
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4.6 Logistic regression analysis and Odds Ratio

We created a variable called ispatient that takes values of 0 or 1 to indicate the

absence or presence of dementia, respectively. Logistic regression was used to

analyse the relationship between the predictor variables: age, gender, RMSSD

and mean RR. The results indicated that RMSSD are significant predictors

of dementia. The other three predictors age, gender, and mean RR were not

significant predictors of dementia. We evaluated the odds ratios (ORs) of the

HRV indices for the likelihood of being a patient with dementia. For RMSSD,

the odds ratio was 0.086 (95% CI 0.007- 0.676, p ¡ 0.05) meaning that, we expect

to see 8.6% with higher odds of dementia prevalence for every one unit increase

of RMSSD.

4.7 Discussion

The overall objective of this study was to test the hypothesis that reduced HRV

is associated with prevalent cognitive impairment in patients with dementia. We

analysed HRV from short-term ECG data in the UK Biobank. An independent-

samples t-test was conducted between HRV (RMSSD) first in

both groups, patients with dementia and healthy control. Results showed a

signif- icant difference in RMSSD between the control group (M=5.06, SE=0.11)

and the patient group (M=3.94, SE=0.33); t(24)=3.1, p= 0.004. These results

suggest that patients with dementia have lower HRV(RMSSD) values than the

control group. Logistic regression was performed to analyse the relationship

between the predictor variables: age, gender, RMSSD and mean RR, and the

odds of being a patient with dementia. Findings revealed that RMSSD and

dementia are correlated and that people with higher RMSSD have increased

risk of developing dementia. A one-unit increase in RMSSD was associated

with an increase in likelihood of being a dementia patient of 0.086 (P<0.05).

The degree of the correlation differed between HRV metrics, suggesting that

one HRV measure may be a stronger predictor of cognitive decline than oth-

ers. RMSSD, an indicator of short-term fluctuations in heart rate mediated by

parasympathetic activity, was found to be more closely related to cognitive im-

pairment than SDNN, a measure of long-term fluctuations in heart rate caused

by sympathetic and parasympathetic nervous system activity. The findings of

this research are consistent with previous studies showing decreased parasympa-

thetic activity in patients with Alzheimer’s disease. [198; 136]. Decreased HRV

indexes was found to be associated with all types of dementia when compared

to controls [159; 136].
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4.8 Conclusions and Takeaways

In this study, we used the UK Biobank data to study the appropriate ultra-short

term HRV parameters measures to detect cognitive decline in patients with de-

mentia. We used ECG data to calculate R peaks and find the RR intervals.

Later, we calculated time-domain HRV parameters. We performed several sta-

tistical analyses to investigate the reliability of employing HRV as a biomarker

to detect dementia. RMSSD showed a significant difference between dementia

patients and control group. Moreover, the findings of logistic regression analysis

demonstrated a consistent association between lower HRV, with higher odds of

being a patient with dementia.
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Machine Learning Approach to Identify Individuals with

Dementia Using HRV

In this chapter, we discusses the findings of the use of ma-

chine learning classifiers to predict cognitive performance in

individuals with dementia.Then, we evaluated the data, and

presented the results. Lastly, a discussion of the findings is

provided.

5.1 Overview and Related Work

Cognitive function is a broad term that applies to multiple mental abilities

involved in knowledge acquisition, information manipulation, and reasoning.

Cognitive functioning comprises multiple cognitive domains, such as memory,

language, attention, and executive functions [160]. Proper cognitive function-

ing is a vital component of performing everyday activities. Various aspects

can influence the physiological decline of cognitive functions, or in a specific do-

main, such as aging process and neurodegenerative diseases [161; 162]. Cognitive

functioning deteriorates in the presence of autonomic dysfunction [104; 132] .

Within this perspective, HRV can be a promising physiological link of cognitive

function.

Several studies have investigated the association between HRV and some

cognitive domains, such as executive function, memory, attention, language and

cognitive domain in general. An executive function and global cognitive func-
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tion are the most researched domain of HRV [163]. A correlation between HRV

and global cognitive performance was reported with low HRV related to poorer

performance [139; 140]. Moreover, several research have investigated the corre-

lation between executive functions and HRV [164; 140; 165]. Lower HRV was

associated with lower performance on activities requiring executive functioning.

Other cognitive domains such as memory, language, attention, and process-

ing speed were investigated as well. research works investigated the association

between HRV and memory where Individuals with higher HRV had better capa-

bility to control over memory and a better skills to suppress unwanted memories

[139; 166]. According to Frewen et al.[138] lower HRV is associated with lower

language performance. The same can be found in attention [167] and process-

ing speed [141]. Low HRV was associated with worse performance in specific

cognitive domains.

Machine learning (ML) has been proven useful and reliable in many appli-

cations and has been successfully used in numerous classification problems. In

healthcare, the most common use of machine learning algorithm is to predict

what treatment protocols are likely to be effective on a patient based on various

patient variables and the treatment context [168]. It has been used in a num-

ber of other applications such as image and speech detection, and stock market

trending. During the past few decades, machine learning techniques have been

increasingly applied to assist medical diagnosis because of their classification ca-

pability. ML has proven reliable and shown its usability in a variety of disease

diagnoses. In cardiovascular disease, machine learning has played a significant

role in the detection and prediction. Qibin et al. [169] introduced a basic but

highly predictive method in which both wavelet transform and autoregressive

modelling were used to classify ECG. Later, they used ECG features for the

classification of one of five common arrhythmias using a Support Vector Ma-

chine (SVM) machine learning algorithm with a Gaussian kernel. This method

achieved test set classification accuracies of 100%. Moreover, machine learning

have been utilized in several cancer classification research such as breast cancer

[170] [171][172], lung cancer [173] [174][175], prostate cancer [176].

Furthermore, machine learning techniques were used for the Identification of

Cognitive Tasks using physiological parameters such as HRV, and Electrodermal

Activity (EDA). Posada-Quintero et al. [177], tested four machine learning clas-

sification tools: k-nearest neighbor classifier (KNN), support vector machines

(SVM), decision trees, and discriminant analysis (DA) to classify the cogni-

tive task a participant is performing based on the participant’s physiological

reactions (HRV, EDA). These classifiers reached an accuracy of 66%, 62% 62%

respectively.

The general aim of this study is to use machine learning models for the Iden-

Page 83



Chapter 5 Machine Learning Approach to Predict the performance of
Cognitive Test based on HRV

tification of Cognitive performance based on heart rate variability. Particularly,

this study tries to explore classification models based on the differences and

similarities in the effects of different cognitive task have in the HRV.

Hypothesis 1 (H1): We hypothesize that machine learning techniques

could be used as a predictor of cognitive performance using Heart rate variabil-

ity.

5.2 Methods

5.2.1 HRV Data

XML files were generated by the Cardio Soft Version 6 system which includes

ECG information at rest were downloaded from UK Biobank. Standard 10-

second ECG recordings were obtained. We developed software based on the

most widely algorithm proposed by Pan and Tompkins [155] to detect the R

peaks of every heartbeat of the ECG signal. To derive the time domain pa-

rameters we used statistical methods; the Root Mean Square of the Successive

Differences (RMSSD) and the standard deviation of normal-to-normal R-R in-

tervals (SDNN) in the 10-second ECG recording period.

5.2.2 Cognitive Data

At the UK Biobank assessment centre, participants completed a 15-minute com-

puterised battery to assess their cognitive function. The battery was produced

for this UK Biobank study and it did not require supervision by researchers[16].

In 2014, participants completed online assessments in their own homes. Brief de-

scriptions of the tests are provided below. Most of these tests are computerised

versions of well validated cognitive tests [178], whilst the tests of reasoning and

reaction time are novel to UK Biobank.

1. Trail Making Test (TMT) A and B:tests used to assess cognitive flexibility,

processing speed, and executive functions. These tests were introduced

in follow-up tests in 2014-2015. For TMT A, participants were asked

to connect numbers consecutively. For TMT B, tests were similar but

participants were also asked to connect letters and numbers by alternating

between these in an ascending sequence (1-A, 2-B, 3-C.. and so on). We

used the time taken to complete these tests in our analysis.

2. Fluid Intelligence Test: a test used to assess verbal and numerical reason-

ing. Participants were given 13 questions (multiple choice) and had two

minutes to complete as many as possible. In our analysis, we used the

number of questions answered correctly within two minutes.
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3. Symbol Digit Substitution Test: a test used to assess processing speed, also

introduced at follow-up testing at home in 2014-2015. This test involves

matching numbers to symbols. The number of accurate symbol-number

matches made in 60 seconds was used in our analysis.

4. Numeric Memory Test :a test used to assess working memory. Participants

were shown a two-digit number for a brief period of time. The number then

disappeared, and later, participants were instructed to enter the number

in reverse order. Each time the participant remembered the digits in the

reverse order correctly, this two-digit number became one digit longer. We

used the maximum number of digits correctly remembered in the reverse

order for our analysis.

5. Reaction Time: UK Biobank developed a Go/No-Go test to evaluate re-

action time. A video demonstration was provided to participants before

to the start of the test. Participants were shown two cards with symbols

on them side by side on the screen for each trial. The two cards either

had matching or different symbols on them. When the cards matched,

participants were told to push a button-box on the desk in front of them

as quickly as possible. When the cards were different, the participant was

to do nothing until the cards disappeared and a new pair appeared after

a short interval.The score is the mean time, in milliseconds, to press the

button-box

6. Tower Rearranging: an altered version of One-touch Tower of London test.

The test was utilised to assess planning abilities, which are frequently con-

sidered as a component of executive function. Participants were given a

display (display A) with three pegs and three different coloured hoops hung

from the pegs. Another display was located beneath Display A. (display

B). Display B contained three pegs and the same three coloured hoops as

display A, but the hoops were set in different locations.The participant’s

job was to calculate the number of steps required to make display A seem

like display B. The number of moves necessary for each item could be any-

where between one and six. The score was the number of items answered

correctly in 3 minutes

5.3 Statistical Analysis

We used Heart Rate Variability (HRV) signals to predict the performance of

the cognitive test of different cases. The variables we used as a predictors are:
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Time Domain parameters, Age, BMI, smoking, and Alcohol intake frequency.

We considered 7 cognitive tests for each case, namely:

Table 5.1: Cognitive Tests

Test Field

Trail Making A Duration to complete numeric path trail
Trail Making B Duration to complete alphanumeric path trail
Fluid Intelligence Fluid intelligence score
symbol digit substitution Number of symbol digit matches made correctly
Numeric Memory Maximum digits remembered correctly
Reaction Time Mean time to correctly identify matches
Tower Rearranging Number of puzzles correct

To predict the performance of each test, we categorized the performance of

each test to have a classification problem. We considered two different cases.

First, two categories of poor and high performance. Second, three categories

of poor, mediocre, and high performance. To convert the scores to categorized

labels, we used the percentiles of each test score so that the number of samples

in all categories is equal and the classification is balanced. Moreover, we only

included participants older than 65 which resulted in around 13000 samples.

5.4 Machine Learning Models

We used SKLearn library for our analysis. In particular, we used Linear sup-

port vector machine (SVM), k-Nearest neighbours (KNN), Linear Discriminant

Analysis (LDA), Decision Trees, Random Forest, and Extra Trees. Before feed-

ing these models with the data, we normalized the data with standardscaler,

i.e., we made the features zero-mean and unit variance. In order to evaluate the

results, we used 10-fold cross-validation. This means that we split the data to

training (90%) and testing set (10%), train the model on the training set and

find the accuracy (and other metrics on the test set). We repeat the explained

process (splitting, training, and testing) 10 times by considering another 10%

of the data as the test set. In the end, we will have 10 test accuracy for each

trial. The mean of these results gives us a good estimate of the performance of

the models, and the standard deviation of these results gives us an estimate of

the reliability of the results. Below are the accuracy (max accuracy reached of

10 folds) of different models:
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Table 5.2: Max accuracy of 10-fold cross validation for the case of 3 categories.

SVM KNN LDA DT RF ET
Trail making A 0.55 0.5 0.58 0.83 0.58 0.67
Trail making B 0.67 0.58 0.55 0.45 0.55 0.58
Fluid intelligence 0.57 0.62 0.62 0.43 0.69 0.50
Symbol digit substitution 0.82 0.55 0.73 0.58 0.55 0.55
Numeric memory 0.75 0.64 0.55 0.64 0.64 0.75
Reaction time 0.62 0.43 0.50 0.43 0.57 0.50
Tower rearranging 0.64 0.42 0.58 0.42 0.58 0.64

Table 5.3: Max accuracy of 10-fold cross-validation for the case of 2 categories

SVM KNN LDA DT RF ET
Trail making A 0.82 0.73 0.91 0.75 0.83 0.64
Trail making B 0.82 0.64 0.73 0.82 0.75 0.73
Fluid intelligence 0.77 0.77 0.77 0.71 0.79 0.64
Symbol digit substitution 0.73 0.73 0.75 0.64 0.67 0.82
Numeric memory 0.55 0.67 0.58 0.75 0.82 0.73
Reaction time 0.79 0.57 0.71 0.71 0.79 0.64
Tower rearranging 0.73 0.82 0.82 0.67 0.73 0.73

5.5 Discussion

This study sought to evaluate the possibility of machine learning techniques

to predict the cognitive performance based on ECG recordings. We tested the

performance of KNN, SVM, LDA, DT, RF and Extra Trees machine learning

methods. In our analysis, we used supervised learning since we are training a

subset of the data from the known classes and evaluating them on the other

data along with a prediction. The predictive model was assessed based on

max accuracy reached of 10 folds. We categorized the performance of each

test considering two different cases. First, two categories of poor and high

performance. Second, three categories of poor, mediocre, and high performance.

The performance of the well-established machine learning algorithms achieved

satisfactory results ranging from 75 to 91

When categorising cognitive performance into 3 categorise, the DT and SVM

have reached maximum accuracy of 82%, and 83%, in detecting the Symbol

digit substitution test and Trail Making Test A performance respectively. Ad-

ditionally, SVM and LDA have reached maximum accuracy of 73%, and 75%,

in detecting the Symbol digit substitution test and numeric memory test per-

formance respectively. Whilst, when categorising cognitive performance into 2

categorise, Linear discriminant analysis has reached a maximum accuracy of

91%, in detecting the Trail Making Test A performance. Then, SVM and RF

reached a maximum accuracy of 82% and 83% in classifying Trail Making Test
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A performance. RF and ET reached a maximum accuracy of 82% in predicting

the performance of Numeric memory test and the Symbol digit substitution

test.

Classifiers reached a high accuracy in detecting TMT A and B, symbol digit

substitution, and numeric memory test which is a widely used test to assess

executive function (EF), processing speed, and working memory. Several studies

showed that poor performance on measures of executive function, such as the

trail making tests indicate impairment in EF [179]. Furthermore, Trail making

test was used along with wearable technology as a tool to differentiate cognitive

impairment participants among older adults, including those with MCI and AD

[38]. In fact, several studies have noted that executive function is impaired in

the prodromal stage of AD [180] and MCI [181]. Moreover, higher performance

on measures of processing speed, and working memory were associated with

higher HRV levels[166] and processing speed [140].

5.6 Conclusions, and Takeaways

In this study, we used UK Biobank data to investigate the relationship between

HRV parameters and cognitive performance from different cognitive domain.

We employed well-established machine learning classifiers to predict the cogni-

tive performance. Results showed that ML was able to to estimate cognitive

performance using HRV data. The results indicated that high HRV was associ-

ated with better performance on tasks involving executive function, processing

speed, and working memory.
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CHAPTER 6

Association between cognitive performance and HRV in

individuals with MCI

This chapter sheds light on the use of wearables for identify-

ing individuals at higher risk of Dementia. We investigated

whether wearable sensors can offer reliable, non-invasive tech-

niques to identify MCI patients from healthy controls by mea-

suring heart rate variability (HRV) as a novel physiological

biomarker.Further analysis was performed to test the associa-

tion between HRV parameters and cognitive status controlling

for both age and gender. Lastly, a discussion of the findings

is presented.

6.1 Overview

Mild Cognitive Impairment (MCI) is a stage of cognitive decline that occurs

between the expected cognitive decline associated with healthy aging and the

decline seen in dementia. Individuals with MCI experience memory loss or other

cognitive domain losses such as language deficits whilst they still maintain their

ability to independently perform in daily living activities. MCI is recognized as

an important public health problem as a dementia risk[182]. The rate at which

those diagnosed with MCI progress to dementia is 3 to 5 times higher than for

those with normal cognition [183; 184] with 12% rate of annual progression in the

general population and up to 20% in populations that are at higher risk [182].
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Dementia is still diagnosed primarily on clinical signs. Biomarkers, on the other

hand, are being increasingly recognised as having a significant role to play[185].

Biomarkers and digital biomarkers for dementia can be a promising approach

for early-stage pathological diagnosis of dementia since they help objectively

assess pathological sequences and disease progression.

Heart rate variability (HRV) is the measure of variations in the time between

each heartbeat. This variation is controlled by the autonomic nervous system

(ANS). HRV is considered as a valid and reliable diagnostic tool of autonomic

regulation, including activation of the parasympathetic and sympathetic nervous

systems [186]. Both systems are important for modulating many vital functions,

including respiration and cardiac contractility. Low HRV is associated with

emotional dysregulation, worse cognitive performance and is a well-established

biomarker of cardiovascular disease [143]. HRV analysis provides an accurate,

real-time, and non-invasive way to assess autonomic functioning and as such has

been widely used in clinical research.

Conventionally HRV is obtained using one of the two widely used methods

to measure the cardiac cycle which is electrocardiography (ECG), and photo-

plethysmography (PPG). For years, ECG has been used as dominant cardiac

monitoring and to detect any abnormalities. However, until now, ECG haven’t

been improved to the point where they can offer the user with flexibility, porta-

bility, and convenience. Whilst. PPG is a non-invasive tool uses light-based

technology to measure the volumetric variations of blood circulation. PPG has

proven to be a viable alternative to traditional HR monitoring when measured at

rest [187].The usage of PPG sensors has increased due to non-invasiveness, ease

of use, cost effectiveness, and it can be easily integrated into wearable wrist and

finger-worn devices [188][189]. PPG sensors are typically attached to the fin-

gers because of the large amplitude that may be achieved as compared to other

places. However, adopting PPG-based monitoring approaches can have some

limitations such as inaccuracy in tracking PPG signals during everyday routine

activities and light physical exercises. In fact, many studies have demonstrated

that PPG – based devices are accurate and reliable for HRV during resting

conditions [190][191]. Specifically, PPG signal or pulse rate variability (PRV)

acquired from the finger were the most similar to heart rate variability [192].

An association between HRV and cognitive function has been demonstrated

in large cohorts of older patients as well as in smaller samples of subjects affected

by dementia [146]. The first study to establish a correlation between HRV and

cognitive functions emphasized changes in HRV based on the type or complexity

of the cognitive task [193; 194]. On the basis of this work, several theories were

developed to explain the link between HRV and cognitive functioning including

the Neurovisceral Integration Model [104], which suggests that the brain areas
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engaged in cognitive and emotional functions are also involved in the regulation

of autonomic function.

Within this perspective, HRV can play a significant role as a non-invasive

and real-time accurate way to assess autonomic regulation. Several studies

have demonstrated the predictive value as well as the clinical application of the

HRV as a biomarker. Reduced HRV is considered to be a predictor for general

mortality [195] and cognitive performance [149]. Furthermore, higher HRV was

found to be associated with better cognitive performance, and a lower HRV

has been associated with cognitive impairment [102]. Thus, measurement of

HRV may add important information to an assessment of older adults’ cognitive

function.

The present study will use off-the-shelf HRVmonitor devices to assess whether

real-time measures of HRV can be used as an early indicator of cognitive de-

cline in individuals with MCI who still have intact cognitive abilities relative to

healthy controls. We hypothesise that HRV indices will be lower among indi-

viduals with MCI relative to healthy controls. If these patterns emerge, it may

be possible to identify biomarkers that could help in the detection of the disease

in the preclinical stage which could facilitate an earlier intervention and early

access to medical treatments to slow down the progression of the disease[196].

6.2 Related Work

Our previous pilot study [25], demonstrated the feasibility of using wearables to

assess relationships between autonomic and cognitive functioning. Here we re-

cruited 10 (five males and five females) healthy young participants (M age=28.6

years, SD=2.50). We wanted to prove that wearable and sensors devices have

the ability to identify and record physical data and do so reliably. A statisti-

cally significant difference was observed in the frequency-domain HRV measure

HFnu measured prior to the Stroop test and that measured during it. The re-

duced HFnu during the test indicates the decreased parasympathetic activity

during stress. Moreover, the LF/HF ratio significantly increased throughout the

test implying an increase in the relative predominance of sympathetic nervous

system activity during the test.

6.3 Methods and Analysis

6.3.1 Participants

A statistical power analysis was performed for sample size estimation, using the

G*Power computer software [157]. A total sample of 18 people would be needed
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to detect large effects (d =.8 with 85% power for an independent-groups com-

parison with alpha at .05. Participants were 21 individuals with MCI and 21

healthy controls (MAge=72.95 years, SD=5.86, Range=62–87; 14 male 28 fe-

male) recruited from Join Dementia Research (JDR). JDR is a service managed

by the National Institute for Health Research in partnership with Alzheimer’s

Society, Alzheimer’s Research UK, and Alzheimer Scotland. It allows people

to register their interest in taking part in dementia research. JDR has showed

benefits in terms of increased research recruitment efficiency. It facilitated ac-

cess to research for both public and researchers[197]. Since its inception in early

2015, JDR has more than 50,000 volunteers and there have been over 60,000

enrolments onto dementia studies, that’s an increase of 12,000 in 2022 only.

More than 1750 researchers from 296 National Health Service, universities, and

research institutions have registered. [198].

Participants were eligible for the present research if they were aged 60-90

and had a diagnosis of MCI (for the MCI group). Exclusion criteria included

a diagnosis of a neurological condition or a Mini-Mental State Examination

Score (MMSE)<24. Participants with current alcohol or substance misuse, a

history of cardiovascular conditions including stroke, ischemic attack, and other

types of irregular rhythm disturbances, including atrial fibrillation and other ar-

rhythmias were also excluded. Ethical approval was obtained from Queen Mary

Ethics of Research Committee (QMERC20.210) B. All participants provided

written informed consent prior to study completion. A copy of consent form,

participant’s information sheet, and questionnaire can be found in the appendix

B.

Figure 6.1: Age and Gender distribution of the participants

6.3.2 Data Collection

Data collection including questionnaire and HRV was carried out in a quiet

room, between 8:30 a.m. and 12:00 p.m. since HRV can be affected by changes

in circadian rhythm, hormonal shifts, and acute stressors throughout the day.

Subjects were asked to eat a light breakfast and were asked to abstain from
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smoking and drinking any caffeine-containing beverages including tea and cof-

fee for 2 hours prior to the assessments, and to refrain from drinking alcohol in

the 12 hours prior to assessments. HRV was assessed for 6 minutes at rest, com-

prising a 1-minute stabilization period followed by 5 minutes of actual readings,

in line with the recommendations of the Task Force of The European Society of

Cardiology and The North American Society of Pacing and Electrophysiology

[107]. included in the models.

We used the CorSense finger-worn device which has been proven to be a

very accurate consumer-grade HRV monitor. The CorSense has been internally

validated with accuracy equivalent to a 5-lead ECG/EKG, the gold standard

for HRV detection, with less than 3% variation across multiple subjects with

differing skin tones. CorSense measures heart rate variability through pulse

detection using a gold-standard 500 hertz multiwave sensor array that conve-

niently and comfortably slips over participant’s finger. We have used Elite HRV

Smartphone Application app to read the data and Kubios HRV 3.3.1 (Kubios

Oy, Kuopio, Finland) software to analyse the data [199; 200].

6.3.3 Statistical analysis

Numerical data were expressed as mean ± standard deviation (SD) and median

with interquartile range (IQR). Categorical data were expressed as frequency

and percentages. The significance of difference of numerical data between

two groups was assessed using parametric unpaired t-test or non-parametric

Wilcoxon rank sum test based on the fulfilment of unpaired t-test assumptions

(normality and equal variances). The significance of differences in categorical

variables between groups was assessed using Chi-square test or Fisher’s exact

test. Multiple linear regression models were performed to assess the association

between individual HRV parameter as an outcome and cognitive status as the

independent variable, adjusting for age and gender. Age was dichotomized using

the median value before being included in the models.

Moreover, we ran a logistic regression analysis using measures significantly

different between MCI patients and healthy controls to predict health status

of each participant. This model included age, gender, mean RR, ln(SDNN),

ln(RMSSD), and ln(HF) as predictor variables, and grouping variable (MCI vs.

healthy control) as an outcome variable. We ran a 10-fold cross-validation to

compute model prediction accuracy. Individuals were initially classified into

MCI/healthy groups based on a threshold of 0.5, which means that all individ-

uals with predicted probability of MCI over 0.5 were classified as MCI patients,

and individuals with predicted probability of MCI below 0.5 were classified

as healthy controls. Sensitivity and specificity indices were calculated for this
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threshold value and receiver operating characteristic (ROC) curve was created

for each value of the threshold All statistical analysis was conducted in R soft-

ware (version 4.1.2; R Foundation for Statistical Computing, Vienna, Austria)

[201].

6.3.4 Results

The mean age of MCI subjects was significantly greater than that of healthy

subjects (74.9 ± 5.43 vs. 71± 5.75 years). As depicted in Table 6.1, the cognitive

status was not associated with gender, smoking status, physical activity, or ed-

ucational level (p = 0.513, 0.488, 0.739, and 0.564, respectively). Regarding the

time domain parameters, the mean RR time was significantly different between

healthy and MCI subjects (920 ± 90.2 vs. 898 ± 195.4 ms, respectively). For the

time-domain indices, both SDNN and RMSSD were significantly lower in MCI

subjects compared with healthy subjects (p = 0.014 and 0.004, respectively).

Of the frequency-domain parameters, only HF showed a statistically significant

difference between the two groups (p = 0.055). Differences in other indices,

including VLF, LF, and LF/HF ratio, between healthy and MCI subjects were

not statistically significant.

Figure 6.2: RMSSD in MCI and controls group

Figure 6.3: SDNN in MCI and controls group

Different linear models were built to test the association between HRV pa-

rameters as dependent variables and cognitive status as the independent vari-

able controlling for both age and gender. Cognitive status was significantly
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Table 6.1: Pearson’s correlation test for HF nz and composite memory

Healthy

n = 21

MCI

n = 21
p-value

Age, years
Mean (SD) 71 (5.75) 74.9 (5.43) 0.029a
Median (IQR) 71 (66-74) 76 (72-77)

Gender, n (%)
Female 15 (71.4%) 13 (61.9%) 0.513b
Male 6 (28.6%) 8 (38.1%)
Smoking status, n (%)
Non-smoker 21 (100%) 19 (90.5%) 0.488c
Smoker 0 (0%) 2 (9.5%)
Physical activity, n (%)
Not active 6 (28.6%) 7 (33.3%) 0.739b
Active 15 (71.4%) 14 (66.7%)
Education level, n (%)
School 4 (19%) 6 (28.6%) 0.564b
Undergraduate 8 (38.1%) 5 (23.8%)
postgraduate 9 (42.9%) 10 (47.6%)
Mean RR, ms
Mean (SD) 920 (90.2) 898 (195.4) 0.639d
Median (IQR) 933 (886-978) 873 (760-1003)
SDNN, ms
Mean (SD) 37.6 (18.8) 26.5 (15.8) 0.014 e
Median (IQR) 31.6 (24.2-44) 22.3 (15.8-34.5)
RMSSD, ms
Mean (SD) 46.1 (23.4) 30.5 (25.7) 0.004e
Median (IQR) 44.4 (28.3-59) 19.1 (15.2-35.4)
VLF, ms2
Mean (SD) 40.1 (46.4) 56.2 (68.7) 0.485e
Median (IQR) 22.5 (12.7-54.9) 28.8 (16.4-78.6)
LF, ms2
Mean (SD) 477 (594) 289 (242) 0.672e
Median (IQR) 187.2 (106.7-622.6) 213.5(121.4-419.7)
HF, ms2
Mean (SD) 450 (461) 310 (544) 0.055e
Median (IQR) 310.7(117-741) 151.4(64.4-264.3)
LF/HF
Mean (SD) 1.3 (1.06) 1.91 (1.66) 0.229e
Median (IQR) 1.03 (0.53-1.64) 1.6 (0.77-2.54)

a Unpaired t-test, b Chi-square test, c Fisher’s Exact test, d Welch Unpaired t-test, e Wilcoxon rank sum test.
IQR: interquartile rang, SD: standard deviation, ms: milliseconds
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associated with ln(SSDN) and ln(RMSSD) but was not significantly associated

with mean RR after adjusting for sex and age. The MCI subjects had approxi-

mately 35% and 43% reduction in SDNN and RMSSD, respectively, compared

to healthy subjects controlling for age and gender. Out of the frequency domain

parameters, cognitive status was only significantly associated with ln(HF) after

adjusting for gender sex and age. The MCI subjects showed approximately 58%

reduction in HF compared with healthy subjects (p=0.012).

Figure 6.4: RMSSD in MCI and controls group

Figure 6.5: SDNN when controlling for age and gender

Prediction accuracy for the logistic regression using 10-fold cross-validation

was 76.5%. Specificity of the full model was 0.8571, while sensitivity was 0.8095.

Highest accuracy of the model was achieved at a threshold of 0.5. ROC curve

showing classification performance at values of all thresholds is presented in

6.6. We use the ROC curve to find classification threshold that has the best

sensitivity and specificity at the same time. All points in the curve are different

classification thresholds. The one where both sensitivity and 1-specificy are the

highest at the same time is our best threshold, in this case is 0.5.
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Figure 6.6: ROC curve for every value of classification threshold.

6.4 Discussion

Several studies have investigated different biomarkers in order to diagnose and

assess neurodegenerative disease and MCI using biosensors. However, these

biomarkers are not ideal solutions for healthcare systems, because they are ex-

pensive, time-consuming, and invasive [202]. Furthermore, several attempts

have been made to develop biomarkers for the diagnosis of MCI [203; 204]. Yet,

there is still considerable scope for improvement in terms of accessibility, re-

liability, and validity of these biomarkers. To our knowledge, only one study

has investigated the feasibility of using biosensor device in patients at risk for

dementia. The participants were divided into three groups: 24 healthy controls,

6 had subjective cognitive deterioration, and 3 were amyloid-positive (one with

pre-clinical AD, one with pre-clinical Lewy-Body Dementia, and one with mild

cognitive impairment)[192].

In this study, we explored differences between HRV in MCI group and in

healthy controls, as measured using a PPG sensor. We investigated the feasibil-

ity of employing sensors to distinguish between MCI participants and healthy

participants. Our primary hypothesis was supported as we observed significant

differences between subjects with MCI and cognitively normal controls. Con-

ventional time-domain and frequency-domain measureshave been used for HRV

analysis in this study. There was a significant difference in three HRV indices

(RMSSD, SDNN and HF) between the two groups. Our findings show reduced

HRV indices, suggesting lower parasympathetic activity is associated with MCI

participants. This suggeststhat the autonomic dysfunction represented by HRV

is detectable in baseline conditions using PPG sensors. Our findings demon-

strate that real-time measures of HRV could be used as an early indicator of

cognitive decline in individuals with MCI. These findings could be valuable to

researchers and clinicians considering using HRV measurement for evaluating

neurodegenerative disease in a large population.
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Overall, the individual regression results and logistic regression analysis show

that RMSSD, SDNN, and HF measures can be used to reliably distinguish

MCI patients from healthy controls. Average accuracy of 76.5% is high and a

classification threshold of 0.5 yields high sensitivity and specificity. Area under

the ROC curve shows that the test has a very good diagnostic accuracy [205].

Previous studies have shown that MCI is related to a dysregulation and changes

in HRV [130][206]. This is related to a dysfunction of the autonomic nervous

system. Altered function of the autonomic nervous system is also related to

worse cognitive performance in the absence of dementia [102]. This knowledge

has the potential to contribute to the diagnosis of MCI and other cognitive

deficits. However, it has not been applied this way before. Our study is the first

one to show that using biosensors to measure HRV can be relatively reliably

to distinguish cognitively normal healthy controls from MCI patients. Because

HRV can be measured in a matter of minutes, the knowledge that we present

here might be particularly useful and, in the future and provided that more

studies on the topic are conducted, contribute to a battery of tools used to

diagnose MCI.

This study also has limitations that are worth mentioning, the study in-

cluded a sample of predominantly white older adults (more than 81% of the

participants are white), so our findings may not apply to other populations.

Furthermore, we had a majority of female participants, which may have pre-

vented us from detecting differences in HRV due to gender. However, gender

differences in HRV have been reported to disappear after the age of 50 years

[207]. Moreover, the HRV measured from the participants who were already

diagnosed with MCI and it’s worth mentioning that HRV can be considered as

a biomarker for already-diagnosed MCI and that does not necessarily imply that

it’s a useful biomarker for as-yet-undiagnosed MCI. Further, it is known that the

within-subject variability in short-term measured HRV (5-15min) could be very

high [208]. In fact, the coefficient of variation for such measurements can vary

between 1-100%. There are several factors that might influence intraindividual

HRV reliability, such as stress, taking part in a pharmacological intervention, or

belonging to a clinical population [208; 209]. On the other hand, short term HRV

measurements have a number of advantages, as they can be conducted quickly

and are relatively easy to analyze, but they can also be performed in a highly

controlled environment. This could alleviate some of the concerns related to high

within-subject variability. Other than that, strategies exist to improve HRV re-

liability, such as reminding individuals to avoid irregular respiration [210], or

using specific measures that are less prone to individual variability in HRV, such

as time-domain measurements, as opposed to frequency-domain measurements

[211], or taking HRV measures at rest. Given that HRV is less reliable in clin-
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ical populations, using measures to improve such reliability in MCI patients is

especially important and could improve the sensitivity, specificity, and accuracy

of distinguishing MCI patients from healthy controls. Finally, since HRV relia-

bility is specific to a measured population, further studies in patients with MCI

need to be conducted that would aim specifically at investigating reliability of

HRV measurements in this population.

6.5 Conclusion

Overall, our study demonstrated that healthy participants have higher HRV

indices comparedto older adults with MCI using sensors technologies. SDNN,

RMSSD, and HF were significantly lower in MCI subjects compared with healthy

subjects. Findings obtained in our study have clinical importance with regard

to using HRV wearable-based data in order to predict MCI. It was a control

study and limited and therefore further studies would be needed but this is a

very good indication that HRV PPG sensors technologies have potential as a

non-invasive early marker to detect those at higher risk of having MCI. Future

studies should extend these findings by including individuals with Alzheimer’s

disease to investigate whether HRV could be a useful diagnostic screening tool

at MCI stage of dementia by following up with the participants and identify

MCI patients who underwent HRV testing at baseline, and who developed de-

mentia. Moreover, more studies are needed to evaluate the predictive value of

HRV in the progression of cognitive decline and how this links to the likelihood

of dementia conversion.
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Machine Learning Approach to Identify Individuals with

Mild Cognitive Impairment Using HRV-Wearable Based

Data

The previous chapter has revealed that employing wearable

sensors can offer reliable, non-invasive techniques to distin-

guish MCI patients from healthy controls. In this chapter,

we are interested in the use of machine learning models for

early identification of MCI by employing wearable-based data.

We employed conventional machine learning classifiers and

ensemble techniques to help identifying individuals at higher

risk of MCI. We discuss how machine learning can aid an

early diagnosis of MCI.

7.1 Overview

Machine learning (ML) has increased the possibilities of remote monitoring and

diagnosis using the data from wearable devices. The ML techniques involve

various steps such as pre-processing, feature selection, training on the labelled

dataset, and testing to verify its accuracy and competency. Several studies uti-

lized wearables and other sensing technologies for monitoring older people’s daily

activities and identify behavioural changes. These studies showed that contin-
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uous monitoring in smart environments helps an early detection of functional

impairments [24]. Recent research has shown that machine learning algorithms

can accurately classify images of AD, MCI, and healthy people [212; 213; 214].

Machine learning can offer a significant help in neurodegenerative disease

research, including detecting the onset of the disease [215; 216; 217], measuring

it’s severity [217; 218], and improving differential diagnosis between MCI and

AD and between dementia sub-types [219; 220; 221]. ML has been used with

different data including neuroimaging [216; 217; 222; 223], HRV [177; 22], speech

and eye tracking [224; 225], and genetic data [226; 227]. Numerous biomarkers

have been suggested to assist practitioners in verifying the diagnosis of demen-

tia related to AD; these biomarkers, such as tau PET, however, are not ideal

alternatives for healthcare since they are costly, time-consuming, and invasive

[28]. Lately, there have been several attempts to establish a biomarker guideline

for the diagnosis of MCI [203], but there are still areas for improvement in terms

of accessibility, reliability, and validity of these biomarkers.

Digital biomarkers have emerged as an interesting new tool for developing

and supporting precision medicine and aiding clinical trials as digital devices

have begun to be integrated into the medical scene. Theses biomarkers are

physiological and behavioural data that are collected by digital devices such as

wearables. The collected data are used to explain, impact, and predict health

outcomes. Wearables offer non-invasive, continuous, and real-time health moni-

toring of targeted biomarkers. Furthermore, COVID-19 has increased the neces-

sity for remote assessment in older persons, who are at higher risk of infection

and are urged to employ social distancing measures in particular, but the im-

portance of dementia diagnosis and treatment has not changed. Wearable de-

vices can collect physical, emotional, and chemical data such as heart rate and

vital sign, electrodermal activity, tears, saliva, or sweat. Several studies are

using wearable sensors along with other devices (home-based devices, smart-

phones) to remotely assess neurophysiological, motor, functional, cognitive and

affective digital biomarkers in disorders such as AD and epilepsy [228; 229].

At present, it is unclear whether employing wearables and sensing technolo-

gies for detecting changes in autonomic function is a cost effective and reliable

technique to test individuals at risk for AD. Moreover, it is unknown if using

sensors may hold promise for monitoring longitudinal changes over time in indi-

viduals at risk of cognitive deterioration. The goal of our study is to investigate

if utilizing wearables and sensing technologies to gather HRV data in people at

risk for dementia is feasible, and if these physiological data might be linked to

cognitive function. We propose a machine learning approach for predicting MCI

from healthy controls. Indeed, there is a tremendous opportunity to leverage

machine learning technologies in the healthcare industry. However, it is one of
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the most complex fields [230] and one of the most challenging, especially in the

areas of diagnosis and prediction [231].

7.2 Methods

7.2.1 Participants

Participants were 21 individuals with MCI and 21 age-matched healthy con-

trols (mean age = 72.95 years, SD=5.86, Range=62–87; 14 male 28 female)

recruited from Join Dementia Research (JDR). JDR is a service managed by

the National Institute for Health Research in partnership with Alzheimer’s So-

ciety, Alzheimer’s Research UK, and Alzheimer Scotland. It allows people to

register their interest in taking part in dementia research. JDR has showed ben-

efits in terms of increased research recruitment efficiency. It facilitates access

to research for both the public and researchers [197] [217]. Since its beginning

in early 2015, JDR has more than 50,000 volunteers and there have been over

60,000 enrolments in dementia studies, which is an increase of 12,000 in 2022

only. Participants were eligible for the present research if they were aged 60-90,

and had a diagnosis of MCI (for the MCI group). Exclusion criteria included a

diagnosis of another neurological condition or a Mini-Mental State Examination

c (MMSE) score ¡ 24. Participants with current alcohol or substance misuse,

a history of cardiovascular conditions including stroke, ischemic attack, and

other types of irregular rhythm disturbances, including atrial fibrillation and

other arrhythmias were also excluded. Ethical approval was obtained from the

Queen Mary Ethics of Re- search Committee (QMERC20.210). All participants

provided written informed consent prior to study completion.

7.2.2 Pre-processing and Feature selection

Data were processed before training. Categorical values were encoded into a

bi- nary variable. Continuous variables were log-transformed and normalised.

Feature selection was performed to automatically select a subset of features that

is most relevant to the task, reduce the dimensionality of feature space and com-

putation time, as well as to enhance the accuracy of optimization methods by

ignoring redundant, irrelevant or noisy features [252]. Irrelevant features can be

a noise and degrade the performance of a classifier. By reducing the dimension

of the features this risk can be mitigated. Therefore, Sequential Forward Selec-

tion (SFS) was performed in order to determine the best feature subset to gain

the highest classification accuracy. Stratified 10-fold cross-validation was con-

ducted for each classifier. Stratification ensures that the proportion of samples
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for each class is preserved in the fold during the cross-validation. The following

metrics were used: accuracy, sensitivity, and specificity.

First, each model was cross validated on features splitted between frequency

(VLF, LF, HF, LFnu, HFnu, LF/HF) and time domain (MeanRR, SDNN,

RMSSD). Secondly, training was conducted using features with time and fre-

quency domain combined and with best accuracy at dimension size k at 17

(all features), 8, 4, and 1. The selected features based on SFS results at k=8

were (age, SDNN, RMSSD, VLF, LF, HF, LFnu, smoker), at k=4 (MeanRR,

SDNN, VLF, smoker), and at k=1 (MeanRR), respectively. The dimension was

reduced using Sequential Forward Selection (SFS) as explained above. We used

Conventional machine learning classifiers were used for the study. The chosen

classifiers were Multi-layered Perceptron (MLP), K-Nearest neighbours (KNN),

Decision tree (DT), Random Forest (RF), Latent Discriminant Analysis (LDA),

Support Vector Machine (SVM), and Logistic Regression Model (LRM).

7.3 Results

The results of the classifiers trained on time and frequency domain features are

shown in table 7.1. The classifiers struggled to learn from frequency-domain

features. The majority of the classifiers scored lower than baseline (random)

of 50% (Fig. 7.1). On the other hand, the classifiers were able to perform

better using time-domain features. With an accuracy of 72%, a sensitivity of

86.7%, and a specificity of 58.3% the best results were achieved using Support

Vector Machine (SVM). The combination of the two domains was hypothesised

to improve the performance of the classifiers. The results can be seen in Table

7.2. All methods had an improved accuracy compared to time-domain features

alone, except for SVM which had the same result as the frequency domain. The

single model with the highest accuracy was Latent Discriminant Analysis, with

an accuracy of 73.5%, sensitivity of 81.7%, and specificity of 66.7%, at k=4 for

the number of dimensions. Interestingly, most of the classifiers performed best

at feature dimension size of k=4 (Figure 7.2),demonstrating the positive effect

of conducting feature selection. The features selected at k=4 were (’MeanRR’,

’SDNN’, ’VLF’, ’smoker’). The selected features were indeed a combination of

time and frequency domain, which shows the importance of using both domains.

Moreover, it is known that smoking increases the risk of having dementia. The

selection of smoking indicators aligns with this fact. Area under curve (AUC)

for receiver operating characteristics (ROC) curve for each model compared be-

tween time features, frequency features, and time-frequency combined features

can be seen in Appendix B. Finally, an ensemble model was created using the

top four classifiers (MLP, SVM, LDA, LRM) at k=4. The ensemble model had
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the best overall accuracy with 80% accuracy, 86.7% specificity, and 71.7%. The

confusion matrix shows the actual predicted values using this model. The model

gives 35 correct predictions and 8 wrong predictions with 80% accuracy Fig. 7.2.

Figure 7.1: Accuracy of classifiers trained with frequency vs. time domain
features.

Figure 7.2: The confusion matrix of ensemble model at 4 features.

7.4 Discussion

Machine learning can offer a significant help in neurodegenerative disease, in-

cluding detecting the onset of the disease [117; 216; 217], measuring its severity

[217; 218], and improving differential diagnosis between MCI and AD, and be-

tween dementia subtypes [219; 220; 221]. ML have been used with different

data including neuroimaging [216; 217; 222; 223], HRV [177; 22], speech and eye

tracking [224; 225], and genetic data [226; 227]. Numerous biomarkers have been

suggested to assist practitioners in verifying the diagnosis of dementia related to

AD; These biomarkers such as tau PET, however, are not ideal alternatives for

healthcare since they are costly, time-consuming, intrusive, and radiational [28].

Lately, there have been several attempts to establish a biomarker guideline for
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Table 7.1: 10-FOLD CROSS VALIDATION RESULTS

Accuracy
KNN DT RF LDA SVM MLP LRM

Frequency Domain 0.41 0.39 0.45 0.57 0.48 0.43 0.56
Time Domain 0.68 0.62 - 0.67 0.72 0.64 0.62

Specificity
KNN DT RF LDA SVM MLP LRM

Frequency Domain 0.45 0.5 0.5 0.667 0.550 0.350 0.600
Time Domain 0.95 0.617 - 0.663 0.867 0.667 0.583

Sensitivity
KNN DT RF LDA SVM MLP LRM

Frequency Domain 0.400 0.500 0.433 0.483 0.433 0.517 0.533
Time Domain 0.417 0.617 0.717 0.583 0.633 0.667

Table 7.2: 10-fold cross validation results for each classifiers at different feature
dimension after using SFS

Accuracy
KNN DT RF LDA SVM MLP LRM Ensemble

K=17 0.650 0.535 0.635 0.640 0.550 0.575 0.640 0.665
K=8 0.690 0.550 0.590 0.655 0.715 0.645 0.680 0.725
K=4 0.605 0.685 - 0.735 0.655 0.705 0.730 0.800
K=1 0.595 0.560 - 0.570 0.640 0.665 0.570 0.595

Specificity
KNN DT RF LDA SVM MLP LRM Ensemble

K=17 0.683 0.517 0.717 0.717 0.683 0.617 0.633 0.717
K=8 0.667 0.550 0.667 0.650 0.717 0.650 0.700 0.750
K=4 0.750 0.650 - 0.667 0.700 0.700 0.667 0.867
K=1 0.683 0.567 - 0.700 0.767 0.767 0.700 0.817

Sensitivity
KNN DT RF LDA SVM MLP LRM Ensemble

K=17 0.650 0.550 0.567 0.583 0.450 0.550 0.667 0.583
K=8 0.733 0.550 0.533 0.667 0.733 0.650 0.667 0.667
K=4 0.467 0.717 - 0.817 0.617 0.717 0.800 0.717
K=1 0.533 0.567 - 0.467 0.533 0.567 0.467 0.883
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the diagnosis of MCI [28], but there are still areas for improvement in terms of

accessibility, reliability, and validity of these biomarkers. We believe that ML-

based predictive models using wearable sensors will improve our understanding

of MCI and dementia and provide a more accurate and precise definition of it.

Our study demonstrated the performance of supervised machine learning

methods in predicting dementia patients using HRV features. We evaluated

several ML classifiers using both time- and frequency- domain features. Our in-

vestigation showed that among ML-based classification algorithms, SVM classi-

fier outperformed the other algorithms with an accuracy of 73.5% in predicting

MCI patients. SVM is one of the most commonly used supervised classifiers in

the field of pattern recognition and has been widely adopted in many neurode-

generative disease [232]. Furthermore, an ensemble model was created using

four classifiers (MLP, SVM, LDA, LRM) to improve the robustness and accu-

racy of the classification model. The accuracy of the ensemble model had the

best overall accuracy with 80%, 86.7% specificity, and 71.7% sensitivity. By

using the ensemble model, sensitivity, specificity, and overall accuracy has im-

proved which indicates that he ensemble-based classifier performs better than

individual classifiers.

Our research yielded two significant findings about HRV. The first is that

HRV indices measured using wearable devices could be a potential biomarker

in the early diagnosis of MCI. The use of wearable devices may eventually help

clinicians and researchers to detect autonomic dysregulation associated with

early dementia pathology in a non-invasive and cost-effective manner. The sec-

ond finding is that ensemble ML conventional classifiers can boost performance

even with a small dataset of 42 patients. We demonstrated, using supervised

machine learning techniques, that HRV data collected via a wearables could

be a potentially reliable approach to monitor cognitive changes associated with

preclinical dementia. The results are promising as it showed the performance of

conventional machine learning methods in predicting dementia patients using

Heart Rate Variability (HRV) features.

Recently, machine Learning methods have shown efficacy in the field of HRV

analysis [233; 234]. In this work, we only tested a very shallow network approach

(multi-layer perceptron), so it will be interesting to use a much deeper network,

although, more data will be crucial for the successful training of such a model.

Furthermore, different methods for ECG signal processing have been proposed.

Some work used data from adjacent epochs in predicting the label of the current

epoch [234]. As feature engineering is crucial especially for conventional machine

learning methods, more complex algorithms to improve signal processing can be

useful [235].
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7.5 conclusion

In this research work we have investigated a new approach for the automated

classification of MCI from HRV wearable-based data. Our findings are of clini-

cal importance with regards to assisting practitioners in diagnosis of MCI. We

have used both conventional and ensemble classification models to distinguish

patients with MCI from healthy controls based on HRV indices collected using

wearable device. Further studies with a larger sample size and longer follow-up

period are required to investigate this relationship further and to expand upon

these preliminary findings. This may assist in explaining the potential of wear-

ables and sensing technologies in the early identification of MCI and dementia

in general.
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CHAPTER 8

Conclusions

The potential of wearable and physiological sensing technolo-

gies was investigated in this dissertation to answer the ques-

tion: How suitable are wearables and sensing technologies

for detecting cognitive impairment in people with MCI us-

ing HRV? The key research contribution of this thesis which

advance the state-of-the-art in employing wearables to mon-

itor and detect cognitive impairment using HRV parameters

are presented below. The research questions are discussed in

light of the findings of previous studies.

8.1 Summary of contributions

This thesis has investigated wearable sensing techniques towards assessing cog-

nitive function in patients with MCI and dementia. In the pilot study, cognitive

function was assessed by means of HRV monitored by wearable technologies.

In the second part of the thesis, HRV was assessed in patients with dementia.

The data used in this study were accessed through the UK Biobank. Here, we

confirmed the association between HRV and cognitive function in patients with

dementia. In the third part of the thesis, we assessed the feasibility of using

wearables in detecting cognitive decline in MCI patients.

As mentioned previously in section 1.3, detailed descriptions of methods and

results can be found in the corresponding chapters. What follows is a summary

of our contributions to the field:
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What is the current state of the art in wearable technologies for per-

sons with MCI and dementia?

This question was addressed in Chapter 2,We presented a comprehensive overview

of the investigations to date into the use of wearable technologies to support

people living with MCI and with dementia and the resulting benefit to their

wellbeing. We assessed the role of wearables in three broad categories: in the

assessment of dementia symptoms, their role as an assistive technology, and

their role as a cognitive intervention. We also reviewed the use of wearables in

combination with non-wearable technologies and the potential to monitor mul-

tiple parameters at once using a single wearable. We detailed the limitations

of wearable technologies, identified the unmet needs and challenges in the im-

plementation of wearables-based interventions, and proposed the required next

steps to improve the outcomes of people living with dementia using wearable

technologies. Overall, we have presented an up-to-date and comprehensive re-

view of current research in the field of wearable technologies and dementia. In

addition to reporting the range of possible uses for wearables to detect and mon-

itor cognitive change and behavioural and psychological symptoms, this review

provided a discussion of current wearables that support cognitive interventions

in dementia. This work is an important contribution in to understanding of

how wearables can support the needs of people living with dementia and their

caregivers.

What is the reliability of wearables devices in capturing the differ-

ences in HRV before, during, and after a cognitive assessment? Is

there a significant correlation between HRV derived from wearables

and cognitive performance?

This question was addressed in Chapter 3, we conducted a pilot study to address

the above research questions. The main focus of our research was to investi-

gate whether HRV features derived from wearable devices could be utilised to

distinguish different levels of stress. Moreover, we investigated the association

between short-term HRV measured using wearable-based device and cognitive

performance on multiple cognitive tests. We discussed how data obtained from

sensors can be used to assess ANS reactions. The hypothesised observations

were partly confirmed, and statistical differences were shown in HRV before

and during the cognitive test. We concluded that wearable and sensing tech-

nologies could be used as a reliable tool to monitor HRV and are able to detect

difference in HRV under different stress conditions. However, the study did

not show a relationship between cognitive performance and HRV in our sample.

This could be due to the very limited number of participants (n=18) or due to

the study sample characteristic – young and healthy participants. Our findings
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are consistent with results from similar studies [236].

Will measures of HRV amongst patients with dementia be lower rela-

tive to healthy controls? How strong is the association between HRV

and cognitive function among older groups?

This question was addressed in Chapter 4. The data used in this study were

accessed through the UK Biobank. We firstly developed a python script to read

the ECG files, perform signal processing, extract the important features such

as QRS complex, and finally extract HRV features. Later, we compared the ac-

curacy of our HRV metrics to the one calculated through Kubios software. Our

method achieved a 99.6% accuracy comparing to the Kubios method. Find-

ings of the study showed that reduced HRV was significantly associated with

cognitive impairment in dementia patient. Specifically, groups of patients with

dementia had lower HRV(RMSSD) values than the control group. Overall, the

results are consistent with earlier research that investigated the relationship be-

tween HRV and cognitive function in patients with dementia. Decreased HRV

indexes were previously associated with all types of dementia [237; 238; 146; 239]

.

What is the feasibility of using wearable biosensor devices for assess-

ing physiological changes associated with MCI?

This question was addressed in Chapter 6, Here, we investigated the feasibility of

employing a wearable device to distinguish between participants with MCI and

healthy controls using HRV. Our primary hypothesis was supported as we ob-

served significant differences in subjects with MCI compared to cognitively nor-

mal controls. Conventional time-domain and frequency-domain analyses have

been used for HRV analysis in this study. There was a significant difference

between the two group on three HRV indices (RMSSD, SDNN, HF). Our find-

ings showed reduced HRV indices, suggesting lower parasympathetic activity

in participants with MCI. Overall, individual regression results and logistic re-

gression analysis showed that RMSSD, SDNN, and HF measures can be used

to reliably distinguish MCI patients from healthy controls. Average accuracy of

76.5% was high and a classification threshold of 0.5 yielded high sensitivity and

specificity.
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8.2 Future work

Despite potential benefits of wearables in healthcare, significant challenges and

important limitations remain and prevent the widespread adoption and further

use of wearable technology in medical practice and in dementia studies. one

of the main limitations is the lack of standards and regulations. Therefore,

a standard protocol in evaluating wearables should be proposed since current

studies use different sets of activities, algorithms, or approaches in assessing the

function of wearables in the management of dementia.

Studies on user acceptance, ease of use, user interface, physical design and

structure of wearables can also be conducted to evaluate how people living with

dementia perceive the use of wearables. Additionally, surveys on how people

living with dementia perceive their needs and how they imagine bridging the

gap in wearable technology can be carried out to ensure the patient voice is

heard. Larger population studies and clinical trials on the use of wearables

are also encouraged to gain broader understanding of the advantages of using

wearables in the management of symptoms and in preserving cognitive function

among people living with dementia.

One area investigated by just one research group [13] is the potential to use

wearable devices to stratify patients diagnosed with dementia into one of the

four subtypes of dementia. With the understanding that each of these subgroups

has a different and distinct clinical manifestation, correct subtyping could ensure

the most appropriate care is provided for each individual. It would be useful to

investigate further the use of wearable devices for this purpose in tandem with

general monitoring of various selected parameters as discussed.

This work serves as a starting point in studying the feasibility of using wear-

ables to detect cognitive decline. Future studies should include individuals with

Alzheimer’s disease to investigate whether HRV could be a useful diagnostic

screening tool at the MCI stage of dementia. This could be done in the UK

Biobank by identifying MCI patients with available HRV data who later devel-

oped dementia.
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APPENDIX A

Appendix

The following pages contain material used during the MCI study (Chapter 4).

The material comprises:

1. Ethics approval letter

2. Consent form (sample export)

3. Participant Information Sheet

4. Participant Questionnaire
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APPENDIX B

Appendix

The following pages contain material used during the MCI study (Chapter 6).

The material comprises:

1. Ethics approval letter

2. Consent form (sample export)

3. Participant Information Sheet

4. Participant Questionnaire
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G. Chico, N. Cerulla, P. Lafarga, P. Radeva, and M. Garolera,

“Acceptability of a lifelogging wearable camera in older adults

with mild cognitive impairment: a mixed-method study,” BMC

Geriatrics, vol. 19, no. 1, p. 110, 2019. [Online]. Available:

https://doi.org/10.1186/s12877-019-1132-0

[97] S. Druga, P. Maes, and A. Rieger, “Motif: A wearable sonic cueing device

for memory support and cognitive intervention,” Proceedings - Interna-

tional Symposium on Wearable Computers, ISWC, vol. Part F1305, pp.

180–185, 2017.

[98] K. Boyd, R. Bond, A. Ryan, D. Goode, and M. Mulvenna, “Digital rem-

iniscence app co-created by people living with dementia and carers: Us-

ability and eye gaze analysis,” Health Expectations, vol. 24, no. 4, pp.

1207–1219, 2021.

[99] A. R. Silva, M. S. Pinho, L. Macedo, and C. J. A. Moulin, “A critical

review of the effects of wearable cameras on memory.” Neuropsychological

rehabilitation, vol. 28, no. 1, pp. 117–141, jan 2018.

[100] P. Piasek, K. Irving, and A. F. Smeaton, “Exploring Boundaries

to the Benefits of Lifelogging for Identity Maintenance for People

with Dementia,” Int. J. Mob. Hum. Comput. Interact., vol. 7, no. 4,

Page 144

https://doi.org/10.1186/s12877-019-1132-0


pp. 76–90, oct 2015. [Online]. Available: http://dx.doi.org/10.4018/

IJMHCI.2015100105

[101] R. C. Schaaf, T. Benevides, E. I. Blanche, B. A. Brett-Green, J. P.

Burke, E. S. Cohn, J. Koomar, S. J. Lane, L. J. Miller, T. A. May-

Benson, D. Parham, S. Reynolds, and S. A. Schoen, “Parasympathetic

functions in children with sensory processing disorder,” Frontiers

in Integrative Neuroscience, vol. 4, no. MARCH 2010, mar 2010.

[Online]. Available: /pmc/articles/PMC2839854/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2839854/

[102] G. Forte, F. Favieri, and M. Casagrande, “Heart Rate

Variability and Cognitive Function: A Systematic Review,”

Frontiers in neuroscience, vol. 13, p. 710, jul 2019. [On-

line]. Available: https://www.ncbi.nlm.nih.gov/pubmed/31354419https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/

[103] K. Y. Liu, T. Elliott, M. Knowles, and R. Howard, “Heart rate

variability in relation to cognition and behavior in neurodegenerative

diseases: A systematic review and meta-analysis,” Ageing Research

Reviews, vol. 73, no. December 2021, p. 101539, 2022. [Online]. Available:

https://doi.org/10.1016/j.arr.2021.101539

[104] J. F. Thayer, A. L. Hansen, E. Saus-Rose, and B. H. Johnsen, “Heart rate

variability, prefrontal neural function, and cognitive performance: The

neurovisceral integration perspective on self-regulation, adaptation, and

health,” Annals of Behavioral Medicine, vol. 37, no. 2, pp. 141–153, 2009.

[105] J. F. Thayer and R. D. Lane, “A model of neurovisceral integration in emo-

tion regulation and dysregulation.” Journal of affective disorders, vol. 61,

no. 3, pp. 201–216, dec 2000.

[106] S. W. Porges, “Orienting in a defensive world: mammalian modifica-

tions of our evolutionary heritage. A Polyvagal Theory.” Psychophysiology,

vol. 32, no. 4, pp. 301–318, jul 1995.

[107] M. Malik, J. T. Bigger, A. J. Camm, R. E. Kleiger, A. Malliani,

A. J. Moss, and P. J. Schwartz, “heart rate variability: Stan-

dards of measurement, physiological interpretation, and clinical use

Task,” European Heart Journal, vol. 17, pp. 354–381, 1996. [On-

line]. Available: http://cardiocrusaders.com/assets/files/pdf/research{ }
articles/hrv{ }standards{ }of{ }measurement.pdf

Page 145

http://dx.doi.org/10.4018/IJMHCI.2015100105
http://dx.doi.org/10.4018/IJMHCI.2015100105
/pmc/articles/PMC2839854/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839854/
/pmc/articles/PMC2839854/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839854/
https://www.ncbi.nlm.nih.gov/pubmed/31354419 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/
https://www.ncbi.nlm.nih.gov/pubmed/31354419 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/
https://doi.org/10.1016/j.arr.2021.101539
http://cardiocrusaders.com/assets/files/pdf/research{_}articles/hrv{_}standards{_}of{_}measurement.pdf
http://cardiocrusaders.com/assets/files/pdf/research{_}articles/hrv{_}standards{_}of{_}measurement.pdf


[108] C. d. A. Faria, H. V. D. Alves, and H. Charchat-Fichman, “The most

frequently used tests for assessing executive functions in aging,” Dementia

& Neuropsychologia, vol. 9, no. 2, pp. 149–155, 2015.

[109] M. Alice, D. V. Toledo, L. Fernando, and J. Jr, “Cardiac autonomic mod-

ulation and cognitive status in Alzheimer ’ s disease,” pp. 11–17, 2010.

[110] A. J. Shah, S. Su, E. Veledar, J. D. Bremner, F. C. Gold-

stein, R. Lampert, J. Goldberg, and V. Vaccarino, “Is heart rate

variability related to memory performance in middle-aged men?”

Psychosomatic medicine, vol. 73, no. 6, pp. 475–482, 2011. [On-

line]. Available: https://www.ncbi.nlm.nih.gov/pubmed/21715297https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC3307789/

[111] J. E. Richards and B. J. Casey, “Heart Rate Variability During Attention

Phases in Young Infants,” Psychophysiology, vol. 28, no. 1, pp. 43–53,

jan 1991. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/

10.1111/j.1469-8986.1991.tb03385.xhttps://onlinelibrary.wiley.com/doi/

abs/10.1111/j.1469-8986.1991.tb03385.xhttps://onlinelibrary.wiley.com/

doi/10.1111/j.1469-8986.1991.tb03385.x

[112] T. Bazelmans, E. J. H. Jones, S. Ghods, S. Corrigan, K. Toth,

T. Charman, and S. J. Webb, “Heart rate mean and variability as a

biomarker for phenotypic variation in preschoolers with autism spectrum

disorder,” Autism Research, vol. 12, no. 1, pp. 39–52, jan 2019. [Online].

Available: https://doi.org/10.1002/aur.1982

[113] A. L. Hansen, B. H. Johnsen, and J. F. Thayer, “Vagal influ-

ence on working memory and attention,” International Journal of

Psychophysiology, vol. 48, no. 3, pp. 263–274, 2003. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167876003000734

[114] K. J. Mathewson, M. K. Jetha, I. E. Drmic, S. E. Bryson, J. O.

Goldberg, G. B. Hall, D. L. Santesso, S. J. Segalowitz, and L. A.

Schmidt, “Autonomic predictors of Stroop performance in young

and middle-aged adults,” International Journal of Psychophysiology,

vol. 76, no. 3, pp. 123–129, 2010. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0167876010000504

[115] A. Zeki Al Hazzouri, T. Elfassy, M. R. Carnethon, D. M. Lloyd-Jones,

and K. Yaffe, “Heart Rate Variability and Cognitive Function in

Middle-Age Adults: The Coronary Artery Risk Development in Young

Adults,” American Journal of Hypertension, vol. 31, no. 1, pp. 27–34, jul

2018. [Online]. Available: https://doi.org/10.1093/ajh/hpx125

Page 146

https://www.ncbi.nlm.nih.gov/pubmed/21715297 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307789/
https://www.ncbi.nlm.nih.gov/pubmed/21715297 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307789/
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8986.1991.tb03385.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8986.1991.tb03385.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8986.1991.tb03385.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1991.tb03385.x https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8986.1991.tb03385.x
https://doi.org/10.1002/aur.1982
http://www.sciencedirect.com/science/article/pii/S0167876003000734
http://www.sciencedirect.com/science/article/pii/S0167876010000504
http://www.sciencedirect.com/science/article/pii/S0167876010000504
https://doi.org/10.1093/ajh/hpx125


[116] J. P. H. Tan, J. E. Beilharz, U. Vollmer-Conna, and E. Cvejic,

“Heart rate variability as a marker of healthy ageing,” International

Journal of Cardiology, vol. 275, pp. 101–103, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167527318319259

[117] H. F. Jelinek, D. J. Cornforth, and A. H. Khandoker, “Task Force of

The European Society of Cardiology and The North American Society

of Pacing and Electrophysiology,” ECG Time Series Variability Analysis:

Engineering and Medicine, pp. 1–12, 2017.

[118] L. C. Mead and S. S. Stevens, “Handbook of Experimental Psychology,”

The American Journal of Psychology, vol. 65, no. 1, p. 117, 1952.

[Online]. Available: https://scholar.google.com/scholar{ }lookup?title=
Handbook+of+experimental+psychology{&}author=DB+Lindsley{&}
publication{ }year=1951{&}

[119] E. N. Sokolov, “The orienting response, and future directions of its

development,” The Pavlovian Journal of Biological Science, vol. 25, no. 3,

pp. 142–150, jul 1990. [Online]. Available: https://link.springer.com/

article/10.1007/BF02974268

[120] O. P. John and J. J. Gross, “Individual Differences in Emotion Regulation.

- PsycNET,” 2007. [Online]. Available: https://psycnet.apa.org/record/

2007-01392-017

[121] D. C. Raskin, H. Kotses, and J. Bever, “Autonomic indicators of

orienting and defensive reflexes,” Journal of Experimental Psychology,

vol. 80, no. 3 PART 1, pp. 423–433, jun 1969. [Online]. Available:

/record/1969-12322-001

[122] A. L. Hansen, B. H. Johnsen, J. J. Sollers, K. Stenvik, and J. F. Thayer,

“Heart rate variability and its relation to prefrontal cognitive function:

The effects of training and detraining,” European Journal of Applied

Physiology, vol. 93, no. 3, pp. 263–272, dec 2004. [Online]. Available:

https://pubmed.ncbi.nlm.nih.gov/15338220/

[123] A. Luque-Casado, M. Zabala, E. Morales, M. Mateo-March, and

D. Sanabria, “Cognitive Performance and Heart Rate Variability: The

Influence of Fitness Level,” PLoS ONE, vol. 8, no. 2, feb 2013.

[124] P. J. Gianaros, F. M. Van Der Veen, and J. R. Jennings, “Regional

cerebral blood flow correlates with heart period and high-frequency

heart period variability during working-memory tasks: Implications for

the cortical and subcortical regulation of cardiac autonomic activity,”

Page 147

http://www.sciencedirect.com/science/article/pii/S0167527318319259
https://scholar.google.com/scholar{_}lookup?title=Handbook+of+experimental+psychology{&}author=DB+Lindsley{&}publication{_}year=1951{&}
https://scholar.google.com/scholar{_}lookup?title=Handbook+of+experimental+psychology{&}author=DB+Lindsley{&}publication{_}year=1951{&}
https://scholar.google.com/scholar{_}lookup?title=Handbook+of+experimental+psychology{&}author=DB+Lindsley{&}publication{_}year=1951{&}
https://link.springer.com/article/10.1007/BF02974268
https://link.springer.com/article/10.1007/BF02974268
https://psycnet.apa.org/record/2007-01392-017
https://psycnet.apa.org/record/2007-01392-017
/record/1969-12322-001
https://pubmed.ncbi.nlm.nih.gov/15338220/


Psychophysiology, vol. 41, no. 4, pp. 521–530, 2004. [Online]. Available:

https://pubmed.ncbi.nlm.nih.gov/15189475/

[125] J. F. Thayer and R. D. Lane, “Claude Bernard and the heart–brain

connection: Further elaboration of a model of neurovisceral integration,”

Neuroscience & Biobehavioral Reviews, vol. 33, no. 2, pp. 81–88, 2009.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0149763408001255

[126] O. Dupuy, M. Renaud, L. Bherer, and L. Bosquet, “Effect of functional

overreaching on executive functions,” International Journal of Sports

Medicine, vol. 31, no. 9, pp. 617–623, 2010. [Online]. Available:

https://pubmed.ncbi.nlm.nih.gov/20544582/

[127] K. Yaffe, E. Vittinghoff, M. J. Pletcher, T. D. Hoang, L. J. Launer, R. A.

Whitmer, L. H. Coker, and S. Sidney, “Early adult to midlife cardiovascu-

lar risk factors and cognitive function,” Circulation, vol. 129, no. 15, pp.

1560–1567, 2014.

[128] J. Idiaquez and G. C. Roman, “Autonomic dysfunction in neu-

rodegenerative dementias,” pp. 22–27, 2011. [Online]. Available:

http://dx.doi.org/10.1016/j.jns.2011.02.033

[129] G. Femminella, G. Rengo, K. Komici, P. Iacotucci, L. Petraglia,

G. Pagano, C. De Lucia, V. Canonico, D. Bonaduce, D. Leosco, and

N. Ferrara, “Autonomic Dysfunction in Alzheimer’s Disease: Tools for

Assessment and Review of the Literature,” Journal of Alzheimer’s disease

: JAD, vol. 42, jun 2014.

[130] P. Nicolini, M. M. Ciulla, G. Malfatto, C. Abbate, D. Mari, P. D. Rossi,

E. Pettenuzzo, F. Magrini, D. Consonni, and F. Lombardi, “Autonomic

dysfunction in mild cognitive impairment: Evidence from power spectral

analysis of heart rate variability in a cross-sectional case-control study,”

PLoS ONE, vol. 9, no. 5, 2014.

[131] S. Duschek, M. Muckenthaler, N. Werner, and G. A. Reyes del Paso,

“Relationships between features of autonomic cardiovascular control and

cognitive performance,” Biological Psychology, vol. 81, no. 2, pp. 110–117,

2009. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0301051109000520

[132] J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, “The

relationship of autonomic imbalance, heart rate variability and

cardiovascular disease risk factors,” International Journal of Cardiology,

Page 148

https://pubmed.ncbi.nlm.nih.gov/15189475/
http://www.sciencedirect.com/science/article/pii/S0149763408001255
http://www.sciencedirect.com/science/article/pii/S0149763408001255
https://pubmed.ncbi.nlm.nih.gov/20544582/
http://dx.doi.org/10.1016/j.jns.2011.02.033
http://www.sciencedirect.com/science/article/pii/S0301051109000520
http://www.sciencedirect.com/science/article/pii/S0301051109000520


vol. 141, no. 2, pp. 122–131, 2010. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0167527309014879

[133] J. A. J. Heathers, “Sympathovagal balance from heart rate variability:

an obituary,” Experimental Physiology, vol. 97, no. 4, pp. 556–

556, apr 2012. [Online]. Available: http://doi.wiley.com/10.1113/

expphysiol.2011.063867

[134] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri,

“Heart rate variability: A review,” pp. 1031–1051, dec 2006. [Online].

Available: https://pubmed.ncbi.nlm.nih.gov/17111118/

[135] O. Collins, S. Dillon, C. Finucane, B. Lawlor, and R. A. Kenny,

“Parasympathetic autonomic dysfunction is common in mild cognitive

impairment,” Neurobiology of Aging, vol. 33, no. 10, pp. 2324–2333, oct

2012. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/22188719/

[136] D. H. Kim, L. A. Lipsitz, L. Ferrucci, R. Varadhan, J. M. Guralnik,

M. C. Carlson, L. A. Fleisher, L. P. Fried, and P. H. Chaves, “Association

between reduced heart rate variability and cognitive impairment in older

disabled women in the community: Women’s Health and Aging Study I,”

Journal of the American Geriatrics Society, vol. 54, no. 11, pp. 1751–1757,

nov 2006. [Online]. Available: /pmc/articles/PMC2276586/?report=

abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276586/

[137] A. Britton, A. Singh-Manoux, K. Hnatkova, M. Malik, M. G. Marmot,

and M. Shipley, “The association between heart rate variability and

cognitive impairment in middle-aged men and women. The Whitehall

II cohort study,” Neuroepidemiology, vol. 31, no. 2, pp. 115–

121, 2008. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/

18667838https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527026/

[138] J. Frewen, C. Finucane, G. M. Savva, G. Boyle, R. F. Coen, and

R. A. Kenny, “Cognitive function is associated with impaired heart rate

variability in ageing adults: the Irish longitudinal study on ageing wave

one results,” Clinical Autonomic Research, vol. 23, no. 6, pp. 313–323,

2013. [Online]. Available: https://doi.org/10.1007/s10286-013-0214-x

[139] A. Zeki Al Hazzouri, M. N. Haan, Y. Deng, J. Neuhaus, and K. Yaffe, “Re-

duced heart rate variability is associated with worse cognitive performance

in elderly Mexican Americans,” Hypertension, vol. 63, no. 1, pp. 181–187,

jan 2014. [Online]. Available: /pmc/articles/PMC4045649/?report=

abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045649/

Page 149

http://www.sciencedirect.com/science/article/pii/S0167527309014879
http://www.sciencedirect.com/science/article/pii/S0167527309014879
http://doi.wiley.com/10.1113/expphysiol.2011.063867
http://doi.wiley.com/10.1113/expphysiol.2011.063867
https://pubmed.ncbi.nlm.nih.gov/17111118/
https://pubmed.ncbi.nlm.nih.gov/22188719/
/pmc/articles/PMC2276586/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276586/
/pmc/articles/PMC2276586/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276586/
https://www.ncbi.nlm.nih.gov/pubmed/18667838 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527026/
https://www.ncbi.nlm.nih.gov/pubmed/18667838 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527026/
https://doi.org/10.1007/s10286-013-0214-x
/pmc/articles/PMC4045649/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045649/
/pmc/articles/PMC4045649/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045649/


[140] S. Mahinrad, J. W. Jukema, D. van Heemst, P. W. Macfarlane,

E. N. Clark, A. J. M. de Craen, and B. Sabayan, “10-Second

heart rate variability and cognitive function in old age,” Neurology,

vol. 86, no. 12, pp. 1120 LP – 1127, mar 2016. [Online]. Available:

http://n.neurology.org/content/86/12/1120.abstract

[141] C. L. Schaich, D. Malaver, H. Chen, H. A. Shaltout, A. Z. A.

Hazzouri, D. M. Herrington, and T. M. Hughes, “Association of heart

rate variability with cognitive performance: the multi-ethnic study of

atherosclerosis,” Journal of the American Heart Association, vol. 9, no. 7,

p. e013827, apr 2020. [Online]. Available: https://www.ahajo

[142] N. Singh, K. J. Moneghetti, J. W. Christle, D. Hadley, V. Froelicher, and

D. Plews, “Heart rate variability: an old metric with new meaning in the

era of using mhealth technologies for health and exercise training guidance.

part two: prognosis and training,” Arrhythmia & electrophysiology review,

vol. 7, no. 4, p. 247, 2018.

[143] M. A. Almeida-Santos, J. A. Barreto-Filho, J. L. M. Oliveira, F. P. Reis,

C. C. da Cunha Oliveira, and A. C. S. Sousa, “Aging, heart rate vari-

ability and patterns of autonomic regulation of the heart,” Archives of

Gerontology and Geriatrics, vol. 63, pp. 1–8, mar 2016.

[144] R. M. Hamilton, P. S. Mckechnie, and P. W. Macfar-

lane, “Can cardiac vagal tone be estimated from the

10-second ECG?” International Journal of Cardiology, vol. 95,

no. 1, pp. 109–115, may 2004. [Online]. Available: http://

www.internationaljournalofcardiology.com/article/S0167527303003565/

fulltexthttp://www.internationaljournalofcardiology.com/

article/S0167527303003565/abstracthttps://

www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-

5/abstract

[145] M. C. d. Bruyne, J. A. Kors, A. W. Hoes, P. Klootwijk, J. M. Dekker,

A. Hofman, J. H. van Bemmel, and D. E. Grobbee, “Both Decreased

and Increased Heart Rate Variability on the Standard 10-Second

Electrocardiogram Predict Cardiac Mortality in the Elderly: The

Rotterdam Study,” American Journal of Epidemiology, vol. 150, no. 12,

pp. 1282–1288, dec 1999. [Online]. Available: https://academic.oup.com/

aje/article-lookup/doi/10.1093/oxfordjournals.aje.a009959

[146] V. P. da Silva, B. R. Ramalho Oliveira, R. G. Tavares Mello, H. Moraes,

A. C. Deslandes, and J. Laks, “Heart Rate Variability Indexes in

Page 150

http://n.neurology.org/content/86/12/1120.abstract
https://www.ahajo
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
http://www.internationaljournalofcardiology.com/article/S0167527303003565/fulltext http://www.internationaljournalofcardiology.com/article/S0167527303003565/abstract https://www.internationaljournalofcardiology.com/article/S0167-5273(03)00356-5/abstract
https://academic.oup.com/aje/article-lookup/doi/10.1093/oxfordjournals.aje.a009959
https://academic.oup.com/aje/article-lookup/doi/10.1093/oxfordjournals.aje.a009959


Dementia: A Systematic Review with a Quantitative Analysis,” Current

Alzheimer Research, vol. 15, no. 1, pp. 80–88, may 2017. [Online].

Available: https://pubmed.ncbi.nlm.nih.gov/28558638/

[147] M. S. Kim, J. H. Yoon, and J. M. Hong, “Early differentiation of dementia

with Lewy bodies and Alzheimer’s disease: Heart rate variability at mild

cognitive impairment stage,” Clinical Neurophysiology, vol. 129, no. 8, pp.

1570–1578, aug 2018.

[148] American Psychiatric Association, Diagnostic and Statistical Manual

of Mental Disorders. American Psychiatric Association, may 2013.

[Online]. Available: https://psychiatryonline.org/doi/book/10.1176/

appi.books.9780890425596

[149] M. F. Elias and R. V. Torres, “The Renaissance of Heart Rate Variability

as a Predictor of Cognitive Functioning,” American Journal of Hyperten-

sion, vol. 31, no. 1, pp. 21–23, 2018.

[150] L. M. Allan, S. R. J. Kerr, C. G. Ballard, J. Allen, A. Murray, A. T.

McLaren, and R. A. Kenny, “Autonomic function assessed by heart rate

variability is normal in Alzheimer’s disease and vascular dementia.” De-

mentia and geriatric cognitive disorders, vol. 19, no. 2-3, pp. 140–144,

2005.

[151] T. J. Littlejohns, C. Sudlow, N. E. Allen, and R. Collins, “UK

Biobank: Opportunities for cardiovascular research,” pp. 1158–

1166, apr 2019. [Online]. Available: /pmc/articles/PMC6451771/https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC6451771/

[152] M. V. D. Mr. Hrishikesh Limaye, “ECG Noise Sources and Various Noise

Removal Techniques: A Survey,” International Journal of Application

or Innovation in Engineering & Management, vol. 5, no. 2, pp. 2319–

4847, 2016. [Online]. Available: http://www.ijaiem.org/Volume5Issue2/

IJAIEM-2016-02-25-22.pdf

[153] M. D’Aloia, A. Longo, and M. Rizzi, “Noisy ECG Signal Analysis for

Automatic Peak Detection,” Information, vol. 10, no. 2, p. 35, jan 2019.

[Online]. Available: http://www.mdpi.com/2078-2489/10/2/35

[154] M. M. Benosman, F. Bereksi-Reguig, and E. G. Salerud, “STRONG

REAL-TIME QRS COMPLEX DETECTION,” Journal of Mechanics in

Medicine and Biology, vol. 17, no. 8, dec 2017.

Page 151

https://pubmed.ncbi.nlm.nih.gov/28558638/
https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
/pmc/articles/PMC6451771/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451771/
/pmc/articles/PMC6451771/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451771/
http://www.ijaiem.org/Volume5Issue2/IJAIEM-2016-02-25-22.pdf
http://www.ijaiem.org/Volume5Issue2/IJAIEM-2016-02-25-22.pdf
http://www.mdpi.com/2078-2489/10/2/35


[155] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,”

IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp.

230–236, 1985.

[156] M. L. Munoz, A. Van Roon, H. Riese, C. Thio, E. Oostenbroek, I. Westrik,

E. J. De Geus, R. Gansevoort, J. Lefrandt, I. M. Nolte, and H. Snieder,

“Validity of (Ultra-)Short recordings for heart rate variability measure-

ments,” PLoS ONE, vol. 10, no. 9, pp. 1–15, 2015.

[157] F. Faul, E. Erdfelder, A. G. Lang, and A. Buchner, “G*Power 3: A

flexible statistical power analysis program for the social, behavioral,

and biomedical sciences,” in Behavior Research Methods, vol. 39, no. 2.

Psychonomic Society Inc., 2007, pp. 175–191. [Online]. Available:

https://link.springer.com/article/10.3758/BF03193146

[158] D. S. Quintana, “Statistical considerations for reporting and planning

heart rate variability case-control studies,” Psychophysiology, vol. 54,

no. 3, pp. 344–349, mar 2017. [Online]. Available: http://doi.wiley.com/

10.1111/psyp.12798

[159] S. J. Wang, K. K. Liao, J. L. Fuh, K. N. Lin, Z. A. Wu, C. Y. Liu, and

H. C. Liu, “Cardiovascular autonomic functions in alzheimer’s disease,”

Age and Ageing, vol. 23, no. 5, pp. 400–404, 1994.

[160] M. D. Lezak, D. B. Howieson, D. W. Loring, H. J. Hannay, and J. S.

Fischer, “Neuropsychological assessment, 4th ed.” New York, NY, US,

pp. xiv, 1016–xiv, 1016, 2004.

[161] D. L. Murman, “The Impact of Age on Cognition,” Sem-

inars in hearing, vol. 36, no. 3, pp. 111–121, aug 2015.

[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27516712https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC4906299/

[162] T. Shany-Ur and K. P. Rankin, “Personality and social cognition in neu-

rodegenerative disease,” Current opinion in neurology, vol. 24, no. 6, pp.

550–555, dec 2011. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/

22002077https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808271/

[163] G. Forte, F. Favieri, and M. Casagrande, “Heart Rate Variability and Cog-

nitive Function: A Systematic Review,” Frontiers in neuroscience, vol. 13,

p. 710, jul 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/

31354419https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/

[164] S. L. Mann, E. A. Selby, M. E. Bates, and R. J. Contrada, “Integrating

affective and cognitive correlates of heart rate variability: A structural

Page 152

https://link.springer.com/article/10.3758/BF03193146
http://doi.wiley.com/10.1111/psyp.12798
http://doi.wiley.com/10.1111/psyp.12798
https://pubmed.ncbi.nlm.nih.gov/27516712 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906299/
https://pubmed.ncbi.nlm.nih.gov/27516712 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906299/
https://pubmed.ncbi.nlm.nih.gov/22002077 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808271/
https://pubmed.ncbi.nlm.nih.gov/22002077 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808271/
https://pubmed.ncbi.nlm.nih.gov/31354419 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/
https://pubmed.ncbi.nlm.nih.gov/31354419 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637318/


equation modeling approach,” International Journal of Psychophysiology,

vol. 98, no. 1, pp. 76–86, 2015.

[165] L. S. Colzato and L. Steenbergen, “High vagally mediated resting-state

heart rate variability is associated with superior action cascading,” Neu-

ropsychologia, vol. 106, pp. 1–6, 2017.

[166] B. L. Gillie, M. W. Vasey, and J. F. Thayer, “Heart Rate

Variability Predicts Control Over Memory Retrieval,” Psychological

Science, vol. 25, no. 2, pp. 458–465, dec 2013. [Online]. Available:

https://doi.org/10.1177/0956797613508789

[167] P. F. Granello, D. Ph, C. T. Dollarhide, and D. Ed, Heart Rate

Variability and Cognitive Function : Connecting Autonomic Functions

to Sustained Attention , Working Memory , and Counselor Trainees ’

Cognitive Performance Dissertation Presented in Partial Fulfillment of

the Requirements for the Degree of Doc, 2019. [Online]. Available: http:

//rave.ohiolink.edu/etdc/view?acc{ }num=osu1563448201927916

[168] S. I. Lee, S. Celik, B. A. Logsdon, S. M. Lundberg, T. J. Martins,

V. G. Oehler, E. H. Estey, C. P. Miller, S. Chien, J. Dai, A. Saxena,

C. A. Blau, and P. S. Becker, “A machine learning approach to integrate

big data for precision medicine in acute myeloid leukemia,” Nature

Communications, vol. 9, no. 1, pp. 1–13, dec 2018. [Online]. Available:

www.nature.com/naturecommunications

[169] Z. Qibin and Z. Liqing, “ECG feature extraction and classification using

wavelet transform and support vector machines,” in Proceedings of 2005

International Conference on Neural Networks and Brain Proceedings, IC-

NNB’05, vol. 2, 2005, pp. 1089–1092.

[170] A. Bharat, N. Pooja, and R. A. Reddy, “Using Machine Learning algo-

rithms for breast cancer risk prediction and diagnosis,” in 2018 IEEE 3rd

International Conference on Circuits, Control, Communication and Com-

puting, I4C 2018. Institute of Electrical and Electronics Engineers Inc.,

oct 2018.

[171] P. P. Sengar, M. J. Gaikwad, and A. S. Nagdive, “Comparative study of

machine learning algorithms for breast cancer prediction,” in Proceedings

of the 3rd International Conference on Smart Systems and Inventive Tech-

nology, ICSSIT 2020. Institute of Electrical and Electronics Engineers

Inc., aug 2020, pp. 796–801.

Page 153

https://doi.org/10.1177/0956797613508789
http://rave.ohiolink.edu/etdc/view?acc{_}num=osu1563448201927916
http://rave.ohiolink.edu/etdc/view?acc{_}num=osu1563448201927916
www.nature.com/naturecommunications


[172] M. Shalini and S. Radhika, “Machine Learning techniques for Prediction

from various Breast Cancer Datasets,” in 2020 6th International Confer-

ence on Bio Signals, Images, and Instrumentation, ICBSII 2020. Insti-

tute of Electrical and Electronics Engineers Inc., feb 2020.

[173] D. Reddy, E. N. Hemanth Kumar, D. Reddy, and Monika, “Integrated

Machine Learning Model for Prediction of Lung Cancer Stages from Tex-

tual data using Ensemble Method,” in 1st IEEE International Conference

on Advances in Information Technology, ICAIT 2019 - Proceedings. In-

stitute of Electrical and Electronics Engineers Inc., jul 2019, pp. 353–357.

[174] A. Dekker, C. Dehing-Oberije, D. De Ruysscher, P. Lambin, A. Hope,

K. Komati, G. Fung, S. Yu, W. De Neve, and Y. Lievens, “Survival pre-

diction in lung cancer treated with radiotherapy: Bayesian networks vs.

support vector machines in handling missing data,” in 8th International

Conference on Machine Learning and Applications, ICMLA 2009, 2009,

pp. 494–497.

[175] M. I. Faisal, S. Bashir, Z. S. Khan, and F. Hassan Khan, “An Evaluation of

Machine Learning Classifiers and Ensembles for Early Stage Prediction of

Lung Cancer,” in 2018 3rd International Conference on Emerging Trends

in Engineering, Sciences and Technology, ICEEST 2018. Institute of

Electrical and Electronics Engineers Inc., feb 2019.

[176] H. Wen, S. Li, W. Li, J. Li, and C. Yin, “Comparision of Four Machine

Learning Techniques for the Prediction of Prostate Cancer Survivability,”

in 2018 15th International Computer Conference on Wavelet Active Media

Technology and Information Processing, ICCWAMTIP 2018. Institute

of Electrical and Electronics Engineers Inc., jan 2019, pp. 112–116.

[177] H. F. Posada-Quintero and J. B. Bolkhovsky, “Machine learning models

for the identification of cognitive tasks using autonomic reactions from

heart rate variability and electrodermal activity,” Behavioral Sciences,

vol. 9, no. 4, 2019.

[178] C. T. Gualtieri and L. G. Johnson, “Reliability and validity of a

computerized neurocognitive test battery, CNS Vital Signs,” Archives

of Clinical Neuropsychology, vol. 21, no. 7, pp. 623–643, 2006.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0887617706000837

[179] P. W. Burgess, N. Alderman, J. Evans, H. Emslie, and B. A. Wilson,

“The ecological validity of tests of executive function,” Journal of the

International Neuropsychological Society, vol. 4, no. 6, pp. 547–558, 1998.

Page 154

http://www.sciencedirect.com/science/article/pii/S0887617706000837
http://www.sciencedirect.com/science/article/pii/S0887617706000837


[180] P. Chen, G. Ratcliff, S. H. Belle, J. A. Cauley, S. T. DeKosky,

and M. Ganguli, “Cognitive tests that best discriminate between

presymptomatic AD and those who remain nondemented,” Neurology,

vol. 55, no. 12, pp. 1847–1853, dec 2000. [Online]. Available:

http://www.neurology.org/cgi/doi/10.1212/WNL.55.12.1847

[181] L. Traykov, N. Raoux, F. Latour, L. Gallo, O. Hanon, S. Baudic,

C. Bayle, E. Wenisch, P. Remy, and A. S. Rigaud, “Executive

functions deficit in mild cognitive impairment,” Cognitive and Behavioral

Neurology, vol. 20, no. 4, pp. 219–224, dec 2007. [Online]. Available:

http://journals.lww.com/00146965-200712000-00003

[182] S. T. Farias, D. Mungas, B. R. Reed, D. Harvey, and C. DeCarli,

“Progression of Mild Cognitive Impairment to Dementia in Clinic-

vs Community-Based Cohorts,” Archives of Neurology, vol. 66, no. 9,

pp. 1151–1157, sep 2009. [Online]. Available: https://doi.org/10.1001/

archneurol.2009.106

[183] R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos,

and E. Kokmen, “Mild cognitive impairment: clinical characterization and

outcome.” Archives of neurology, vol. 56, no. 3, pp. 303–308, mar 1999.

[184] K. Yaffe, R. C. Petersen, K. Lindquist, J. Kramer, and B. Miller, “Subtype

of mild cognitive impairment and progression to dementia and death.”

Dementia and geriatric cognitive disorders, vol. 22, no. 4, pp. 312–319,

2006.

[185] M. Pais, L. Martinez, O. Ribeiro, J. Loureiro, R. Fernandez,

L. Valiengo, P. Canineu, F. Stella, L. Talib, M. Radanovic, and

O. V. Forlenza, “Early diagnosis and treatment of Alzheimer’s

disease: new definitions and challenges,” Revista brasileira de psiquiatria

(Sao Paulo, Brazil : 1999), vol. 42, no. 4, pp. 431–441, aug 2020.

[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31994640https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC7430379/

[186] M. R. Carnethon, S. H. Golden, A. R. Folsom, W. Haskell, and D. Liao,

“Prospective investigation of autonomic nervous system function and the

development of type 2 diabetes: The atherosclerosis risk in communities

study, 1987-1998,” Circulation, vol. 107, no. 17, pp. 2190–2195, may

2003. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/12695289/

[187] M. Bolanos, H. Nazeran, and E. Haltiwanger, “Comparison of Heart Rate

Variability Signal Features Derived from Electrocardiography and Photo-

Page 155

http://www.neurology.org/cgi/doi/10.1212/WNL.55.12.1847
http://journals.lww.com/00146965-200712000-00003
https://doi.org/10.1001/archneurol.2009.106
https://doi.org/10.1001/archneurol.2009.106
https://pubmed.ncbi.nlm.nih.gov/31994640 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430379/
https://pubmed.ncbi.nlm.nih.gov/31994640 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430379/
https://pubmed.ncbi.nlm.nih.gov/12695289/


plethysmography in Healthy Individuals,” in 2006 International Confer-

ence of the IEEE Engineering in Medicine and Biology Society, 2006, pp.

4289–4294.

[188] N. Sviridova and K. Sakai, “Human photoplethysmogram: new insight

into chaotic characteristics,” Chaos, Solitons & Fractals, vol. 77, pp. 53–

63, 2015.

[189] J. Li, A. R. Sankar, and P. A. S. Beulet, VLSI Design: Circuits, Systems

and Applications: Select Proceedings of ICNETS2, Volume V, ser. Lecture

Notes in Electrical Engineering. Springer Singapore, 2018. [Online].

Available: https://books.google.co.uk/books?id=vCdFDwAAQBAJ

[190] G. Lu, F. Yang, J. A. Taylor, and J. F. Stein, “A comparison of photo-

plethysmography and ECG recording to analyse heart rate variability in

healthy subjects.” Journal of medical engineering & technology, vol. 33,

no. 8, pp. 634–641, 2009.
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[232] A. M. Tăuţan, B. Ionescu, and E. Santarnecchi, “Artificial intelligence

in neurodegenerative diseases: A review of available tools with a focus on

machine learning techniques,” Artificial Intelligence in Medicine, vol. 117,

no. February, 2021.

[233] R. V. Sharan, S. Berkovsky, H. Xiong, and E. Coiera, “ECG-Derived Heart

Rate Variability Interpolation and 1-D Convolutional Neural Networks for

Page 161

https://pubmed.ncbi.nlm.nih.gov/28824534 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545969/
https://pubmed.ncbi.nlm.nih.gov/28824534 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545969/
https://doi.org/10.1371/journal.pone.0201056
https://doi.org/10.1186/s12883-017-1010-3
https://pubmed.ncbi.nlm.nih.gov/30405904 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199467/
https://pubmed.ncbi.nlm.nih.gov/30405904 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199467/
https://doi.org/10.1038/s41551-018-0305-z


Detecting Sleep Apnea,” in 2020 42nd Annual International Conference

of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020,

pp. 637–640.

[234] T. Wang, C. Lu, G. Shen, and F. Hong, “Sleep apnea detection from a

single-lead ECG signal with automatic feature-extraction through a mod-

ified LeNet-5 convolutional neural network.” PeerJ, vol. 7, p. e7731, 2019.

[235] J. N. McNames and A. M. Fraser, “Obstructive sleep apnea classification

based on spectrogram patterns in the electrocardiogram,” in Computers

in Cardiology 2000. Vol.27 (Cat. 00CH37163), 2000, pp. 749–752.

[236] R. Wood, B. Maraj, C. M. Lee, and R. Reyes, “Short-term heart rate

variability during a cognitive challenge in young and older adults.” Age

and ageing, vol. 31, no. 2, pp. 131–135, mar 2002.

[237] G. D. Femminella, G. Rengo, K. Komici, P. Iacotucci, L. Petraglia,

G. Pagano, C. De Lucia, V. Canonico, D. Bonaduce, D. Leosco, and

N. Ferrara, “Autonomic dysfunction in Alzheimer’s disease: Tools for as-

sessment and review of the literature,” Journal of Alzheimer’s Disease,

vol. 42, no. 2, pp. 369–377, 2014.

[238] K. Kasanuki, E. Iseki, H. Fujishiro, S. Ando, H. Sugiyama, M. Kitazawa,

Y. Chiba, K. Sato, and H. Arai, “Impaired heart rate variability in pa-

tients with dementia with Lewy bodies: Efficacy of electrocardiogram as a

supporting diagnostic marker.” Parkinsonism & related disorders, vol. 21,

no. 7, pp. 749–754, jul 2015.

[239] Y. C. Cheng, Y. C. Huang, and W. L. Huang, “Heart rate variability

in patients with dementia or neurocognitive disorders: A systematic

review and meta-analysis,” pp. 16–27, dec 2022. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/33287558

http://www.ncbi.nlm.nih.gov/pubmed/33287558

	List of Figures
	List of Tables
	I Motivation and Introduction
	Introduction
	Motivation
	Research Questions
	Contributions and Thesis structure
	Associated publications
	Submitted for Publications


	II Foundation
	Background and Literature Review
	A Review on the use of wearable devices for dementia assessment, monitoring and cognitive intervention
	Introduction
	Review of wearables for assessment and monitoring symptoms of dementia
	Review of wearables for the detection and monitoring of people with BPSD
	Review of wearables used in assisting individuals with dementia in daily life 
	Review of wearables that supports cognitive intervention

	Heart rate variability as a potential biomarker for dementia detection
	Heart Rate Variability
	The Neurovisceral Integration Model: Linking HRV to Cognitive Function
	Findings Supporting HRV and Cognitive Function Interaction
	Evaluating the Association Between HRV and Cognitive Function in Patients with Dementia

	Summary


	III Exploration
	Detecting Autonomic nervous system reactions using HRV: A pilot Study
	Study Aim and Hypotheses
	Design of the study
	Participants and procedure
	Data Collection and management

	Results and Analysis
	Conclusion and Takeaways


	IV HRV in Individuals with Dementia
	Association between cognitive performance and HRV in individuals with dementia
	Overview and Related Work
	Study design
	ECG Data
	Detection of R Peaks and RR Intervals
	HRV analysis
	Reliability of our data processing method
	Participants

	Statistical Analysis
	Results
	Logistic regression analysis and Odds Ratio
	Discussion
	Conclusions and Takeaways

	Machine Learning Approach to Identify Individuals with Dementia Using HRV
	Overview and Related Work
	Methods
	HRV Data
	Cognitive Data

	Statistical Analysis
	Machine Learning Models
	Discussion
	Conclusions, and Takeaways


	V HRV in Individuals with MCI
	Association between cognitive performance and HRV in individuals with MCI 
	Overview
	Related Work
	Methods and Analysis
	Participants
	Data Collection
	Statistical analysis
	Results

	Discussion
	Conclusion

	Machine Learning Approach to Identify Individuals with Mild Cognitive Impairment Using HRV-Wearable Based Data 
	Overview
	Methods
	Participants
	Pre-processing and Feature selection

	Results
	Discussion
	conclusion


	VI Conclusions and Future Work
	Conclusions
	Summary of contributions
	Future work


	VII Appendix and Bibliography
	Appendices
	Appendix
	Appendix
	Bibliography


