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Abstract 

In patients with major traumatic injuries, early intervention can be lifesaving. However, 

identifying high-risk patients can be difficult, and judgement errors may compromise 

optimal care. Prediction models can be used to augment clinical judgment. The aim of the 

thesis was to assess whether Bayesian Networks (BN), which are causal probabilistic 

models able to fuse knowledge and data, can augment clinical judgment in pre-hospital 

trauma care. The thesis focuses on decisions relating to Trauma Induced Coagulopathy 

(TIC), a difficult to diagnose condition that is central to resuscitation decisions, and 

haemorrhage.  

To assess decision making, thematic analysis of interviews with expert clinicians was 

performed. The interviews revealed that situational recognition is key to effective decision 

making, and uncertain information results in difficult decisions. An example of uncertainty 

was evident in clinician’s decisions to activate the major haemorrhage protocol. In such 

decisions, the predictive performance of an existing BN model (“ED TIC BN”) was not 

significantly different to native clinical judgement (at equal specificity, sensitivity = 

clinicians: 86% vs BN: 96%, p = 0.13).  

The ED TIC BN risk prediction model was updated for pre-hospital use to enable earlier 

decision support, and the PH TIC BN performed better than any other TIC model. The 

impact of the pre-hospital model on decision-making was analysed in a prospective, 

multicentre study. The discriminative performance of the BN was not significantly 

different from clinical assessment. The performance of clinical assessment did not improve 

after decision support information. However, there was evidence of the positive influence 

of the PH TIC BN on clinical assessment and increased ease of decision making.  

This thesis advances the understanding of impact analysis in pre-hospital decision support 

after injury. The knowledge generated will be used to design subsequent trials to assess the 

impact of decision support on patient and health system outcomes.  
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INTRODUCTION 

1.1 Scope of the chapter 

In this introductory chapter, the context in which pre-hospital medical providers make 

decisions about injured patients is described. The chapter starts with a description of the 

societal impact of trauma before progressing to the pathophysiology and contemporary 

management of haemorrhage, shock and Trauma induced coagulopathy (TIC). Next, 

theories of human decision making and how decisions can be improved with the use of 

appropriate support are discussed. A critical appraisal of the existing prediction models 

for major bleeding and trauma induced coagulopathy describes why so few models are 

in regular clinical use. The potential of machine learning in medicine is discussed, along 

with the strengths of a type of model called Bayesian Networks (BN). Finally, a BN 

developed to predict the risk of trauma induced coagulopathy in the Emergency 

Department is described.  

1.2 Aim 

The aim of his chapter is to establish the context in which clinical decision support 

models may augment decision making and improve outcomes after injury.   
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1.3 Trauma 

 The epidemiology of trauma  

“Every day the lives of more than 14 000 people are cut short as a result of an injury”1 

The World Health Organisation estimates that 5 million people die from physical injury 

each year and this number is predicted to increase.2, 3 In 2016 injury was the 9th leading 

cause of death, by 2030 road traffic injuries alone will be the 7th highest cause of death. 

Injury encompasses acts of violence, road traffic collisions (RTCs), burns, drowning, 

falls, and poisonings.4 Amongst these suicides, homicides and RTCs are the leading 

causes of injury and account for 50% of all injuries globally. The physical, mental, and 

financial costs of these injuries not only affect the injured individual but also have a 

detrimental, and sometimes devastating, impact on the families and communities 

affected. In part, this is because the majority of patients survive their injuries, but many 

survivors of trauma are left permanently disabled. As trauma disproportionally affects 

the young, injury causes many years of living with a disability.5 This demand on the 

health care system is represented in Figure 1.  

In high-income countries, trauma is often the leading cause of death in young people.6 

In England and Wales, trauma causes more deaths in the 15-44 year old age group than 

any other disease.7 The Trauma and Audit Research Network (TARN) collects injury 

data from participating hospitals in the United Kingdom (UK). This data demonstrates 

that transfer of blunt force energy such as a road traffic collision causes the majority of 

injury leading to hospitalisation in the UK. Between 2008 and 2016, a blunt mechanism 

of injury was responsible for 96% of all TARN submissions. The remaining 4% are due 

to penetrating injury.8  
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Figure 1: Graphical representation of the global demand on the health sector 

caused by injuries. Adapted from the World Health Organisation. Injuries and violence: the facts 

2014.1 Image reproduced under the cretive commons licence Licence: CC BY-NC-SA 3.0 IGO.  

One notable trend in the demographics of trauma patients is an increasing number and 

proportion of elderly patients. In 2008, 22% of patients submitted to TARN were over 

64 years old, but by 2016, this number had risen to 42% in the same hospitals. Over time 

TARN has engaged with a higher proportion of hospitals in the UK, such that the exact 

proportion of injured patients over 64 years old may even be closer to 50% in 2016.8  

This marked increase likely reflects both an ageing population and perhaps, more 

importantly, a heightened recognition of severe injury in the elderly. For example, the 

proportion of patients in the TARN database registered as injured by falling from less 

than two meters has grown at a similar rate.9  

While a rise in elderly trauma represents a national trend, there are notable regional 

variations within the UK. In urban areas such as London, there is increasing penetrating 

injury due to interpersonal violence with knives.10, 11 The Office for National Statistics 

recorded a 20% rise in offences involving the use of stabbing implements in the year 

ending in March 2017.12 The peak incidence of knife injuries occurs in patients aged 

between 16-24 years old.12  

It is vital to understand the epidemiology of trauma to provide appropriate systems of 

care to patients. For example, the mechanism of injury is related to the proportion of 

One billion 

injuries require 

health care each 

year

Five million 

deaths
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patients requiring an operation. In a series of 160,000 patients submitted to TARN 

between 2014 and 2016, 43% of penetrating and 2% of blunt injured patients required 

urgent surgery.13 Operations in this context are time-critical and delay to surgery 

increases the risk of death from haemorrhage. Therefore, regions with high proportions 

of penetrating injury need to ensure access to early surgery.  

 Systems of trauma care 

The aim of a trauma system is to save lives and to return injured patients to a quality of 

life as close as possible to their pre-injury status. To achieve these aims requires intricate 

co-ordination of multiple resources. A trauma system is thus an integrated, and 

systematic structure which provides a multidisciplinary response to injured patients 

from the point of injury to rehabilitation.14 Different configurations of trauma systems 

have developed across the world, varying by geography, technology, resources and 

politics.15  

Regardless of the specific trauma system, inclusive systems provide the same four key 

phases: pre-hospital care, reception and resuscitation, definitive care and rehabilitation. 

For severely injured patients, care may start at the scene of injury or a patient may go 

directly to hospital without treatment. In-hospital care includes the emergency 

department, radiology, operating theatres, intensive care and the wards. Following 

discharge, patients may continue to access care from therapists, their primary care doctor 

and attend outpatient appointments at the trauma centre.  

Established inclusive trauma systems concentrate patients and resources at a few high-

volume trauma centres. The resultant high volume is associated with improvements in 

the delivery of care and outcomes for severely injured patients, including a reduction in 

mortality.8, 16-18  

In this thesis, the research concerns two specific trauma systems: the civilian Trauma 

System in England and the deployable British Military Trauma System. 
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 The trauma systems in England  

The provision of trauma care changed in England in 2012. Following multiple reports 

of regional variability and deficiencies in the standards of trauma care,19-21 the country 

is now organised into 17 Trauma Networks, containing 27 Major Trauma Centres. Each 

Trauma Network is a collaboration of services providing trauma care in a geographical 

area. These providers include pre-hospital services, the Major Trauma Centres (MTC), 

other hospitals receiving trauma admissions (known as Trauma Units), and 

rehabilitation services. MTCs provide specialised care for patients with major trauma. 

A patient is said to sustain major trauma when their injury is life-threatening or life-

changing due to long-term disability. 

The objective of a trauma system is to get the right patient, at the right hospital, at the 

right time, receiving the right care.22 Trauma systems have developed “major trauma 

triage tools” to help differentiate patients at high risk of severe injuries. These tools are 

used by pre-hospital crews to help decide on the most appropriate hospital facility for 

each patient. In general, patients identified as high risk are taken directly to an MTC. 

Exceptions to this rule are if the transfer time exceeds 45 minutes or if the patient has 

an immediately life-threatening condition. In these instances, ambulances are directed 

to take patients to the nearest Trauma Unit (TU) for stabilisation. In circumstances 

where the facilities of the TU are insufficient to manage the patient’s injuries, patients 

will be transferred to the MTC within their Trauma Network after initial assessment and 

resuscitation.23 This is called a secondary transfer, which may also occur if an injured 

patient presents directly to a TU.   

 The British Military Trauma System 

The Operational Care Pathway is military doctrine, prescribing the structure and 

delivery of the military trauma system.24, 25 The UK Defence Medical Services (DMS) 

is the organisation coordinating and delivering care during training and operations. 

There are many similarities between the civilian and military trauma systems. The 

ultimate goal of both systems is to save lives and rehabilitate the injured. The four 

critical phases of care are the same in both systems: pre-hospital care, reception and 

resuscitation, definitive care and rehabilitation. The military trauma system is one 
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complete system, providing care from the point of wounding (Role 1) to rehabilitation 

(Role 4) often across several countries.  

The military trauma system is organised to meet a series of key objectives. The 10/1/2/2 

rule stipulates that within 10 minutes of injury, the casualty should receive enhanced 

first aid. This immediate care is initially delivered by military first-aiders and then by 

trained military medical personnel. Within 1 hour, the casualty should receive Enhanced 

Field Care often provided by a doctor or senior nurse; this is Role 1 care. Forward 

medical evacuation takes casualties from close to the point of wounding to forward 

surgical facilities known as Role 2. The forward surgical facilities provide a damage 

control surgery capability, ideally within one hour but within 2 hours at the longest. A 

patient may pass further along the in-country trauma system to Role 3, which is a more 

substantial medical treatment facility with higher capacity and capability. This final part 

of the 10/1/2/2 rule aims to deliver in-theatre surgery and diagnostics within 2 hours. 

Strategic casualty evacuation takes casualties from the Role 3 hospital and delivers them 

to the UK at the Royal Centre for Defence Medicine in Birmingham. Following hospital 

discharge onward rehabilitation is provided by the Defence Medical Rehabilitation 

Centre.  

The last large-scale deployment of the British Military Trauma System ended in 2014 

with the end of combat operations in Afghanistan.26 As with results from civilian trauma 

systems8, 17, 18 analysis of the probability of survival within the military trauma system 

saw improvements year-on-year. Throughout the conflict, the injury severity score, 

measured by the New Injury Severity Score (NISS), associated with a 50% chance of 

survival rose from a score of 33 to 60 (Figure 2).27 

 The pre-hospital phase of care 

1.3.5.1 Delivery and organisation of pre-hospital care 

Pre-hospital emergency care (PHEC) denotes care before hospital arrival. There are 

many similarities between Civilian and Military PHEC. One important common factor 

is the numerous types of care provider. In the civilian major trauma system, a patient 

may initially receive care from by-standers acting as good Samaritans. The ambulance 
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service is usually summoned via an emergency call to 999, and statutory pre-hospital 

care is delivered by ambulance trusts staffed by emergency technicians and paramedics. 

Supporting the ambulance response, Air Ambulance Services transport specially trained 

pre-hospital clinicians to the scene of the injury. These Helicopter Emergency Medical 

Services (HEMS) typically attend the most severely injured and time-critical cases. 

Their dual-role is to expedite delivery of experienced medical personnel to the scene 

and to convey patients to hospital as quickly as possible.  

 

Figure 2: The predicted probability of survival by New Injury Severity Score for 

each year. Shaded regions indicate the 95% CIs for the predicted values obtained from a logistic 

regression model.27 

In the military pre-hospital trauma system, immediate care is dependent on operational 

and tactical constraints. The level of care provided to a casualty is dependent on the 

threat posed by the tactical situation and the risk to the care providers’ safety. Within 

the DMS, medical pre-hospital emergency care providers are distinguished by levels 

according to the NHS Skills for Health structure (Table 1).28 

Table 1: Defence Medical Services levels of Pre-hospital Emergency Care 

Level 7-8 Consultants and registrars with specialist pre-hospital training 

Level 5-6 Any doctor, senior nurses and paramedics 

Level 4 Combat medical technicians 

Level 1-3 First aiders  
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Tasking of medical assets is usually reported by radio to a Patient Evacuation and Co-

ordination Centre (PECC). Immediate response teams or Medical Emergency Response 

Teams (MERT) provide forward medical evacuation. The medical staffing and 

evacuation platform varies by operation. During the conflicts in Iraq and Afghanistan, a 

consultant in Anaesthesia or Emergency Medicine, a flight nurse and two paramedics 

staffed the MERT. These conflicts provided MERT in CH47 helicopters. By the end of 

the conflict in Afghanistan, the MERT was capable of delivering pre-hospital 

anaesthesia, blood transfusions and a limited repertoire of life-saving surgical 

interventions; all while simultaneously transporting the patient to hospital.29  Future 

conflicts are predicted to be less amenable to this level of medical sophistication.30  

 

Figure 3: Comparison of the space to provide medical care in two medically fitted 

helicopters. Left: Military; inside the Chinook (CH47), photograph from Greaves26, Right: Civilian; 

inside the AW169 helicopter used by Air Ambulance Kent, Surrey and Sussex photograph authors’ own 

1.3.5.1 Opportunities and challenges of pre-hospital trauma care 

PHEC provides a unique set of opportunities and challenges. Pre-hospital practitioners 

are the first step in the chain of survival for an injured patient. For some patients with 

life-threatening injuries, early intervention is the key to saving lives. In the military 

context application of tourniquets to bleeding extremities as part of PHEC leads to 

increased survival after blast injury.31 The care delivered soon after injury sets the 

patient along a trajectory that can either mitigate or exacerbate the deleterious effects of 

trauma. Effective pre-hospital care may not only save lives for time-critical patients but 

also reduce the financial and biological cost of injury to the patient and the entire trauma 

system. 
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Pre-hospital medicine is often characterised by difficult decision-making; whether to 

stay on scene to perform medical interventions and thereby delay transport to definitive 

care, or to minimise interventions and move patients to definitive care as quickly as 

possible. Colloquially, this is known as the “stay and play” vs “scoop and run” 

predicament. Amongst well-developed healthcare settings, there are notable differences 

in the way pre-hospital care is organised. In part, these differences reflect differing 

attitudes to the effectiveness of pre-hospital interventions on patient outcome. 

In the United States (US), very few pre-hospital systems incorporate physicians. 

Broadly, the US model prioritises rapid patient transport to hospital in both civilian and 

military systems of care. This approach is supported by a body of research,  including 

articles demonstrating increased survival in patients moved rapidly to hospital by 

methods of transport without medical capabilities.32, 33 In the UK, by contrast, Air 

Ambulance services provide medical care with physicians often present as part of the 

service. The senior decision-making provided by experienced pre-hospital doctors may 

help to improve survival by identifying and treating time-critical injuries. Determining 

which paradigm of pre-hospital medical care affords the best chance of survival is an 

area of ongoing research.34, 35 

Dr John Holcomb, a US trauma surgeon with extensive military experience, recently 

described the need to move critical interventions such as non-compressible haemorrhage 

control forward of the hospital. Holcomb established that the median time to a 

haemorrhagic death in Houston, Texas, was 1.65 hours. Meanwhile, the median time to 

definitive surgical control of bleeding was 2.1 hours.36 He argued that by placing 

specific haemorrhage control interventions forward of the hospital, a higher proportion 

of injured patients could be treated and may survive (Figure 4).  

It is not possible to give a definitive verdict on whether “stay and play” or “scoop and 

run” is better. Most likely, the optimum strategy depends on the patient, their injuries 

and involves a combination of providing urgent care while transporting the patient 

expeditiously to a hospital. Deciding how much medical care should be provided pre-

hospital requires a prediction by the treating clinician of the patient’s specific risks and 

available therapies.  
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Figure 4: Relationship between the rate of death and time in 55,537 fatalities of 

motor vehicle collisions in the US. Modified from Holcomb36. Green star; time to deliver pre-

hospital intervention, Yellow star; time to emergency department intervention, Red star; time to operating 

room definitive haemostasis. 

1.4 Haemorrhage, shock and coagulopathy 

 Clinical significance 

Each year 1.5 million people die from haemorrhage after traumatic injury.37 Despite a 

concerted effort, bleeding remains the principal cause of preventable death in both 

civilian and military environments.38, 39 Bleeding is responsible for half of the all of the 

early deaths from trauma, i.e. within the first 24 hours of injury. Globally, haemorrhage 

accounts for 75 million years of life lost per year, and those who survive the initial 

haemorrhagic insult have poor functional outcomes.40, 41   

Severe blood loss causes haemorrhagic shock. This shock causes inadequate oxygen 

delivery to organs, cells and ultimately mitochondria.42 If bleeding continues 

unchecked, the result is death. The median time to death from haemorrhage is 
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approximately two hours.43, 44 The magnitude and duration of inadequate cellular 

perfusion may be related to the subsequent pathological effects.45 In particular, shock is 

associated with multiple organ dysfunction syndrome (MODS)46 and trauma induced 

coagulopathy (TIC).47  

TIC is a multidimensional failure of the coagulation system resulting from a 

combination of tissue injury and shock.48-50 Roughly a quarter of severely injured trauma 

patients have laboratory-based evidence of TIC and 51 death occurs in 50% of those who 

develop TIC.52 A high burden of morbidity is also associated with TIC such as 

exacerbation of bleeding, increased multiple organ dysfunction, prolonged intensive 

care stays and increased thromboembolic events.53-56 57 

 Pathophysiology  

Shock is a state in which the oxygen demands of respiring tissues are greater than 

oxygen supply.37 At the cellular level, inadequate oxygen delivery leads to anaerobic 

metabolism, accumulation of cellular by-products, the release of damage associated 

molecular patterns (DAMPs) and activation of inflammatory pathways. Once cells have 

consumed their stored energy (adenosine triphosphate), homeostasis fails, and cell death 

occurs. At a tissue level, critical hypoperfusion of organs results in organ dysfunction. 

For the brain and myocardium, dysfunction results in cerebral anoxia, arrhythmias, and 

death within a few minutes.37  

The role of the vascular endothelium is key in linking hypoperfusion with coagulopathy. 

In shock states, there is endothelial cell activation and shedding of the endothelial 

glycocalyx.58, 59 This endotheliopathy is associated with coagulopathy, MODS and 

mortality.60, 61 Dissolution of the protective glycocalyx layer liberates heparin and 

exposes blood constituents to the endothelial cells and surface linked proteins such as 

thrombomodulin. A result of endotheliopathy is altered coagulation haemostasis.61  

TIC is the clinical manifestation of an endogenous multi-factorial and multi-mechanistic 

failure of the coagulation system, exacerbated by improper resuscitation techniques.62 

Brohi describes Acute Traumatic Coagulopathy (ATC) as an early endogenous process 

mediated by the protein C pathway in response to tissue injury and hypoperfusion.63, 64 
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Dilution, hypothermia and acidosis all cause an iatrogenic coagulopathy.65 However, 

there are a wide range of alternative hypothesized mechanisms for TIC. The range of 

mechanisms is likely due to global research efforts to date selecting a multitude of 

coagulopathy phenotypes and studying patients which vary in their presentation.62  

The evidence supports the need for both tissue injury and tissue hypoperfusion to cause 

TIC. There is no widespread agreement on the precise mechanisms, and the following 

hypotheses have all been implicated: increased activated protein C52, 54, 63, 66, 67, clotting 

factor depletion68, 69, abnormalities in fibrin generation70, DAMPS and cross-talk with 

inflammation71, 72, increased fibrinolysis and fibrinogenolysis73, 74, a controversial 

fibrinolysis shut down theory75, 76, platelet dysfunction with loss of platelet 

aggregation77-80, endotheliopathy81, 82 and disseminated intravascular coagulopathy with 

a fibrinolytic phenotype.83-88 

Trauma induces multiple biochemical and physiologic changes, and despite numerous 

studies reporting differences in coagulation parameters between trauma patients and 

uninjured controls, it is unclear whether some of these differences may be “normal” after 

trauma. Fundamentally, it is not clear whether ATC is an aberrant pathological response 

or an evolutionary selected adaptive response. The intended benefit of this adaptive 

response may be to maintain tissue perfusion during haemorrhagic shock and mitigate 

the resultant multiple organ failure.62  

Whether this process is adaptive or maladaptive remains an ongoing debate. Some 

believe there is evolutionary benefit from processes which may restore perfusion in 

shocked states and avoid organ failure. Whereas, others believe it is a purely 

pathological phenomenon which does not have an evolutionary selection benefit.62 

Regardless, patients that develop TIC are at a high risk of death and need to be identified 

early and managed appropriately.  

 Why is it potentially useful to predict patients at risk of haemorrhage, shock 

and coagulopathy pre-hospital? 

Good judgement and sound decision-making are essential to safe and effective clinical 

practice. Early recognition of patients with substantial haemorrhage, shock or 
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coagulopathy after injury is thus critical to improving patient outcome. There are 

multiple decisions which are informed by an awareness of the patient’s physiological 

response to injury . Once a pre-hospital clinician identifies a patient as high risk, they 

can choose to deliver a range of interventions aimed at repaying the oxygen debt and 

preserving homeostasis.  

The concept of minimising the time to delivery of a critical intervention is well 

recognised throughout medicine. Studies in stroke89, acute myocardial infarction and 

sepsis90 demonstrate improvement in outcome with shorter intervals to therapy. In 

trauma, treatment delays are associated with increased mortality. This relationship is 

observed in civilian trauma patients undergoing laparotomy91, combat casualties  

arriving at a medical facility92, 93, and time to receiving blood products.94 In bleeding 

patients every minute delay in receiving blood products is associated with a 5% increase 

in the odds of death.94  

The prompt availability of blood products is an essential component of ‘Damage 

Control’ interventions. However, there are many logistical steps in preparing blood 

components for transfusion. Hospitals have Major Haemorrhage protocols designed to 

minimise these delays in emergencies. Nevertheless, effective activation of these 

protocols depends on early identification of bleeding patients, which is difficult. 

1.4.3.1 Why specifically predict trauma induced coagulopathy pre-hospital 

Patients that develop TIC have poorer outcomes than those that maintain normal 

coagulation (see 1.4.1). Injured patients at high-risk of poor outcome should be managed 

according to the principles of damage control resuscitation.95 This includes the 

prioritisation of control of bleeding, delivery of oxygen to the cells, and maintaining 

haemostatic resuscitation.96 Effective DCR results in earlier correction of TIC, reduction 

in the total volume of blood products used and decreased exposure to potential harm 

from the blood products.97, 98 

By providing clinician users with accurate risk estimates (probabilities) at the point of 

care, a TIC prediction model aims to improve their situational awareness and thereby 

support earlier, better informed and personalized treatment decisions. Augmenting the 
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early recognition of patients with TIC by AI-systems therefore allows clinicians to co-

ordinate the appropriate trauma system response. For high-risk patients pre-hospital, the 

right response includes appropriate triage of the patient to a specialised major trauma 

centre and mobilisation of resources within the receiving hospital. These steps reduce 

the delays to treatment and may improve patient and system outcomes.  

 Making a diagnosis 

1.4.4.1 Contemporary diagnosis of haemorrhage and hypovolaemic shock 

The diagnosis of haemorrhage is fundamental to the management of an injured patient. 

Quantifying the degree of blood loss is a clinical consideration made for every trauma 

patient (CHAPTER   2). Yet making an accurate diagnosis when bleeding is occult, 

remains challenging. Diagnosis of bleeding is especially challenging in environments 

with minimal diagnostic aids such as pre-hospital care.  Clinicians are liable to both 

over-triage and under-triage. In a multicentre study in the US, trauma surgeons in the 

Emergency Department only identified one-third of patients requiring the highest level 

of blood transfusion.99  

Traditional courses like the American College of Surgeons’ Advanced Trauma Life 

Support (ATLS) Course, teach doctors to recognise the degree of blood loss using vital 

signs (Table 2).100 101 The classical theory suggests that steady derangement in vital 

signs correlates with the degree of blood loss. In reality, the relationship between the 

degree of blood loss and vital sign derangement is far more variable and less predictable. 

Thus, the diagnosis of hypovolaemic shock using ATLS’s vital sign thresholds is 

inaccurate. Analysis of large databases of trauma patients demonstrates the 

inaccuracy.102-106 In one prospective study, systolic blood pressure had a sensitivity to 

detect haemorrhage of only 26%.107  

Part of the fallibility of “simple” vital sign thresholds is the individual variation in 

human physiology. Multiple homeostatic responses are trigged during shock and include 

an initial phase of tachycardia and vasoconstriction followed by a second phase of reflex 

bradycardia and vasodilation.108 Humans have evolved multiple mechanisms to 

compensate for blood loss and maintain homeostasis for as long as possible. When these 
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mechanisms are overwhelmed, decompensation occurs, and the vital signs become 

precipitously deranged as blood flow plummets.109 The individual variation in the ability 

to compensate for blood loss means that flow cannot be reliably inferred from traditional 

vital sign measurements.  

Table 2: ATLS Classes of haemorrhagic shock 

 I II III IV 

     

Blood Loss* (mL) Up to 750 750-1500 1500-2000 >2000 

Blood Loss (%) Up to 15 15-30 30-40 >40 

Pulse Rate (per minute) <100 100-120 120-140 >140 

Blood pressure Normal Normal Decreased Decreased 

Pulse pressure Normal Decreased Decreased Decreased 

Respiratory Rate (per minute) 14-20 20-30 30-40 >35 

Urine output (mL/hour) >30 20-30 5-15 Negligible 

Mental status 
Slightly 

anxious 

Mildly 

Anxious 

Anxious, 

confused 

Confused, 

lethargic 

*Blood loss volume for a male patient weighing 70kg 

Scrutinising the changes over time of a patient’s heart rate does not appear to improve 

diagnostic accuracy either. A study of three pooled datasets reported that 41% of trauma 

patients with major haemorrhage did not respond with a tachycardia. In this study, 

almost all the bleeding patients became hypotensive within 30 minutes of monitoring. 

Contrary to classical teaching, on the onset of hypotension had no clear correlation with 

a trend of increasing tachycardia.106  

To determine the degree of blood loss, England’s National Institute for Health and 

Clinical Excellence (NICE) guidelines recommend assessing a patient’s response to a 

fluid bolus.110 Following a fluid bolus, a patient's haemodynamic status can be said to 

either respond, not-respond, or transiently respond. The inference is drawn that non-

responders and transient responders are actively bleeding.111  

Expert approaches to make a diagnosis of haemorrhage combine a range of clinical and 

point of care diagnostic tests.112 In Chapter two, these strategies are thoroughly 

discussed. In brief, clinicians combine information from the mechanism of injury to 



Chapter 1 - Introduction 

 

30 

search for the site of potential bleeding, assess subtle patient parameters such as the 

patient's higher cognitive function, and qualitative signs such as pallor, clamminess and 

venous guttering. Pre-hospital these may be the only methods used to diagnose blood 

loss. Some pre-hospital services use point of care diagnostics like blood lactate.113, 114 

Once the patient arrives in hospital, a range of additional tests including imaging 

technique such as X-ray, Ultrasound and Computed Tomography, are available to 

support decision making.  

Two recent technological advances show promise in improving the accuracy of the 

classical vital signs to haemorrhagic shock. Non-invasive microcirculatory imaging 

quantifies blood flow within the microcirculation. This technique has demonstrated that 

two patients with the same systemic systolic blood pressure may have significantly 

different perfusion of their microvasculature.115, 116 Another recent technology-enabled 

device is the Compensatory Reserve Index (CRI). The CRI analyses plethysmography 

waveforms using a machine learnt algorithm trained on healthy volunteers with 

simulated hypovolaemia. CRI is designed to quantify the degree of cardiovascular 

compensation at a given time by measuring changes in the pattern of blood flow 

waveforms. As blood loss progresses vasoconstriction increases and this can be 

observed with the CRI device. Still, in a development phase, early research suggests the 

CRI measurements are more sensitive to changes in circulating volume than the classical 

vital signs.117, 118 Both microcirculatory imaging and the CRI require further 

investigation to establish their clinical utility.  

1.4.4.2 Contemporary diagnosis of trauma induced coagulopathy 

Traditionally TIC was diagnosed if conventional laboratory tests exceed given 

thresholds. The literature contains multiple thresholds to classify TIC (see 7.5.4). Some 

of the most frequently used cut-offs included 50% prolongation of Prothrombin Time 

(PT) or partial thromboplastin time (PTT).55 This definition of coagulopathy came from 

the guidance on coagulopathy of any cause. There are numerous problems with this 

approach. First, PT and aPPT are performed on platelet-poor plasma and require 30-60 

minutes to process. The cell-based model of haemostasis emphasises the importance of 

the platelet.119 For rapidly bleeding patients results do not reflect the contemporary 

coagulation function120, and the endpoint of the test is the start of clot formation. 
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In an important study in 2010, Frith et al. noted that the threshold values used to classify 

patients with TIC were arbitrary, and the relationship between cut-off value and clinical 

outcome was unknown.121 In a multicentre study of over 3500 patients, the authors noted 

that patients arriving in hospital with a prothrombin time ratio (PTr) > 1.2 had 

significantly higher mortality and transfusion requirements.121 In doing so, the authors 

defined a clinically meaningful threshold value.  

In a study of a London MTC, the median time for PT results to be available to clinicians 

was 78 minutes (IQR 62-103).122 Point of care coagulation assays that measure INR are 

often used in the community to guide anticoagulation dosing. These devices offered an 

attractive method to reduce the time to clotting results. Unfortunately, the accuracy of 

these devices to detect TIC has been deemed insufficient.122 With studies suggesting a 

lack of correlation with laboratory results in the presence of haemorrhage and 

anaemia.122, 123  

Viscoelastic haemostatic assays (VHA) also known as functional coagulation analysers 

such as rotational thromboelastometry (ROTEM®, Tern International GmbH, Munich, 

Germany) and thromboelastography (TEG® Hemoscope, Niles, IL), have several 

advantages over conventional coagulation tests (CCT).124 These tests can be used to 

provide relatively fast point of care coagulation testing. Additionally, VHA are whole 

blood assays and with added activators and inhibitors can assess different stages of clot 

homeostasis. Using ROTEM, Davenport et al., demonstrated that the primary functional 

disorder of TIC was a loss of clot strength.122 In a prospective study of 300 trauma 

patients, an ExTEM clot amplitude at 5 minutes less than 36mm was more sensitive than 

PTr >1.2 for identifying patients with coagulopathy and receiving a massive blood 

transfusion.122, 125 Other studies have used VHA to establish diagnostic thresholds for 

the hyperfibrinolysis of TIC.126 Although the sensitivity of VHA assays to detect 

clinically important fibrinolysis is low.   

VHA diagnostics are improving in usability and portability.127 However, there are still 

no VHA devices in use for the pre-hospital diagnosis of TIC. Several novel devices are 

in development that aim to provide accurate and portable pre-hospital testing of 

coagulation.128-130 There are also ongoing research efforts to establish the reliability of 
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current devices amongst the additional environmental challenges encountered pre-

hospital; such as engine vibration on helicopters.127 131, 132 

In summary, making a diagnosis of TIC at the time treatment decisions have to be made 

is difficult. Laboratory results from conventional coagulation tests describe only some 

of the clotting abnormalities and are not available early enough to guide therapy.122, 133 

Thromboelastometry is more useful but requires sensitive hardware that makes it 

unsuited to use in austere or mobile care settings. Current practice, therefore, relies on 

blind, empirical protocols or expert clinical opinion, and the ability to accurately and 

objectively tailor treatment decisions to individual risks is awaited. 

 Pre-hospital management of haemorrhage, shock and coagulopathy 

Damage control resuscitation (DCR) is the overarching treatment strategy designed to 

limit the pathological effects of shock and coagulopathy.134-136 The central tenets of 

modern DCR are prioritisation of early haemorrhage control while maintaining 

haemostatic resuscitation.111 Guidelines from the Eastern Association for the Surgery of 

Trauma and NICE expands these principles into further objectives: avoid hypothermia, 

minimise blood loss with early haemorrhage control during transport and initial 

evaluation, target low-normal blood pressure before definitive haemostasis, minimise 

crystalloid use, use major haemorrhage protocols, avoid delays to surgical or 

angiographic haemostatic, transfuse blood products that optimise haemostasis, obtain 

functional laboratory measures of coagulation and give pharmacologic adjuncts to 

promote haemostasis.110, 137 The use of DCR is associated with improved outcomes in 

appropriately selected patients.137  

DCR starts pre-hospital and often continues several days following the injury. DCR can 

be considered in four phases: pre-surgery, initial surgery, restoration of physiology and 

definitive surgery. In the physiologically deranged patient surgery is limited to 

haemorrhage control and contamination containment with abbreviated surgical 

techniques.134, 138-140 After initial damage control surgery (DCS) the aim is to repay the 

oxygen debt and return physiological haemostasis before definitive surgery. In the pre-

surgery phase improved survival in high risk patients is associated with control of 
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haemorrhage, early haemostatic blood transfusion and rapid transport to an appropriate 

facility. 31, 36, 141-143 

This thesis is about the decisions made early after injury within the pre-surgery phase 

of DCR. The following chapters explore how clinicians recognise patients that require 

DCR and whether these decisions can be supported with decision support aids. The 

recognition of appropriate patients is the first step in instigating DCR.  

1.4.5.1 Pre-hospital blood transfusion 

Pre-hospital transfusion has its origins in World War 1.144, 145 Pre-hospital transfusions 

continued to be used by military doctors in conflicts such as Vietnam.146 However, there 

was no widespread use of pre-hospital blood transfusion in civilian practice until 

renewed recognition that earlier transfusion of bleeding patients may be related to 

improved patient outcomes. The British Military was amongst the first to re-introduce 

pre-hospital blood transfusion.147 The British Defence Medical Services added a blood 

transfusion capability to the Medical Emergency Response Team (MERT) during the 

conflict in Afghanistan in July 2008. Civilian practice followed and in March 2012, 

London's Air Ambulance started to carry blood pre-hospital. Each pre-hospital service 

developed its own protocolised transfusion triggers.147, 148 

The hypothesis that pre-hospital blood or blood products leads to improved patient 

survival is an area of active research.149 Much of the current evidence, from both military 

and civilian settings, is retrospective and while largely supportive of the hypothesis, has 

unavoidable methodological risk of bias.93, 150-157 Recently two randomised controlled 

trials sponsored by the Department of Defense reported their findings with conflicting 

results. PAMPer158 and COMBAT159 both ostensibly asked the same question: Did two 

units of plasma given pre-hospital reduce mortality? PAMPer demonstrated lower 

mortality in the group receiving plasma vs standard care in 501 trauma patients 

transported by air (23% vs 33%; p=0.03).142 Whereas, COMBAT saw no difference in 

mortality between those treated with plasma and those randomised to normal saline and 

transported by ground ambulance (15% vs 10%; p=0.37).160 Several causes for the 

observed difference have recently been proposed and include differences in patient 

selection, mechanism of injury and time to definitive treatment.161-164 In England, the 
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ongoing Re-PHILL trial also aims to establish the relationship between pre-hospital 

blood and patient outcomes.165 

The mixed results of well-conducted clinical trials have not changed the practice of 

many pre-hospital services who continue to transfuse blood and blood products in 

critically shocked patients. Blood transfusion is not risk-free. Risks include infections 

transmitted by the transfusion, immune-mediated complications and transfusion-related 

cardiac overload. As a result of these risks, logistic and financial costs, transfusion is 

restricted to patients most likely to benefit from the treatment.  

1.4.5.2 Major Haemorrhage Protocols 

A Major Haemorrhage Protocol (MHP) is a key facet of the haemostatic principle of 

DCR, and its use is associated with improved survival.96, 98, 166-173  An MHP is a multi-

modal package of care that provides standardised elements of medical treatment to 

patients with life-threatening haemorrhage after injury. MHPs are designed to 

streamline balanced blood product delivery to bleeding patients and allow DCR to begin 

before the availability of laboratory results.  

An MHP includes the activation criteria to trigger the protocol, the major transfusion 

protocol (which is a predefined ratio of blood components for transfusion), haemostatic 

adjuncts, instructions for the reversal of anticoagulants and prevention of hypothermia, 

and team communication strategies. The purpose of combining and protocolising these 

elements of care is to ensure critical components are brought together rapidly and 

reproducibly. For example, it takes 30 minutes to thaw Fresh Frozen Plasma (FFP); a 

vital component of a blood transfusion in trauma. An MHP facilitates transfusion of FFP 

rapidly bypassing multiple routine steps. The rate-limiting steps for transfusion of FFP 

include taking the blood sample, sending it to the laboratory for coagulation testing, 

interpretation of the result by a clinician, requesting FFP, thawing FFP and finally 

delivery and administration to the patient. The delays associated with this process lead 

to clinical deterioration and could be fatal. 

The components and the triggers to activate an MHP vary depending on the 

institution.174 It is the triggers for MHP activation that are of most relevance to the 
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research within this thesis. Current triggers for activation usually consist of three main 

criteria: vital signs, laboratory data, and physician discretion.175 NICE guidelines 

recommend the physician clinically assess the extent of traumatic haemorrhage using a 

combination of the mechanism of injury, patient physiology, anatomical injury pattern 

and the patient's response to initial resuscitation. These elements and how expert 

clinicians combine these factors are explored in chapter 2.  

In inclusive trauma systems, pre-hospital clinicians can activate the receiving major 

trauma centre’s major haemorrhage protocol before the patient arrives at the hospital. 

When this happens, blood is made ready for transfusion, senior decision-makers 

assemble to receive the patient and radiology, and operating theatres are put on standby. 

Inappropriate activation wastes finite resources, has a financial cost and potentially 

draws resources and personal away from other duties.  

1.4.5.3 Tranexamic Acid 

Tranexamic Acid (TXA) is a synthetic amino acid derivative that inhibits plasminogen 

activation by blocking the lysine-binding site and so inhibits fibrinolysis. The use of 

TXA in trauma has been demonstrated to reduce mortality when given to patient 

suspected of bleeding early after injury in both civilian and military populations.176-180 

In the large multi-centre CRASH-2 trial, all-cause mortality and death from 

haemorrhage were significantly reduced in patients that received TXA (Relative Risk 

0.91 and 0.85 respectively). Some argue that the beneficial effects of TXA’s inhibition 

of plasmin are additional to reduced fibrinolysis. Plasmin has pro-inflammatory activity. 

Benefit from TXA may be derived from its anti-inflammatory effects and subsequent 

reduction in multiple organ dysfunction.181, 182. Whatever the precise mechanism of 

benefit, there is a clear signal that giving the drug earlier increases its effectiveness.179, 

183 The key to early administration is giving the drug in the pre-hospital phase. 184, 185  

Theoretical concern about increased thromboembolic events with the use of TXA does 

not appear to be borne out in large clinical trials.186 Despite this evidence, many 

clinicians remain concerned on a theoretical and mechanistic basis. These clinicians 

believe in patients who do not have evidence of hyperfibrinolysis, TXA must increase 
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the risk of thromboembolism.187 Proponents of this argument advocate reserving TXA 

for only those patients with diagnostic evidence of hyperfibrinolysis.188  

1.4.5.4 Summary: management of bleeding and coagulopathy in pre-hospital trauma 

care 

Early identification of patients who require pre-hospital damage control resuscitation 

remains challenging. The pre-hospital environment provides few diagnostic adjuncts 

and short times from injury to assessment. Yet trauma systems that can provide early 

intervention stand poised to achieve some of the most significant gains for patients.   

Analysis of current practice suggests that clinicians both over-triage and under-triage.99 

In doing so, clinicians expose some patients to unnecessary risks and deprive others that 

stand to benefit from treatment. Situations arise in which it is difficult for the pre-

hospital doctor to assess a patient’s intravascular volume status, their bleeding rate, the 

duration of their bleeding and hence the urgency of treatment.101 Consequently, 

clinicians are forced to make high-stakes decisions under considerable time pressure 

with incomplete information. These are difficult decisions. 

1.5 Decision making and decision support 

 Decision making  

There are multiple models to explain how humans make decisions. Early theorists 

believed that decision-making required the generation of two or more alternative 

options. This was followed by rational comparison to select the option with the highest 

utility. Modern theorists reject these earlier beliefs. Modern theories such as Kahneman 

and Tversky’s Heuristics and Biases (HB)189 and Klein’s Naturalistic Decision Making 

(NDM)190 provide differing explanations about how we make decisions.  

Kahneman and Tversky’s Nobel prize-winning theory is rooted in behavioural 

economics and supported by laboratory experiments. The HB theory assists in the 

understanding of decision making by considering that two metaphorical ‘modes’ of 
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thinking occur in everyday decisions: System 1 and System 2. System 1 thinking is the 

intuitive, rapid decision making used for most of the decisions we make. It is ‘fast and 

frugal,’ uses heuristics and is prone to reproducible errors and biases. System 2 thinking 

describes the slower, logical and more demanding analytical processes we use when 

confronted with a difficult problem. System 2 thinking is slower, taxing and generally 

avoided if a System 1 response is sufficient. These modes do not operate in isolation 

and many decisions are made from a blended process. Nevertheless, the two system 

model is useful in understanding decision making and in generating hypotheses about 

predictable errors in human decision making.191  

1.5.1.1 Naturalistic Decision Making 

Klein’s NDM theory originates from the observation of master chess players and the 

realization that that experts perform better in real world scenarios than might be 

predicted by the HB theory.192, 193 Supporting data is collected from the real world 

observation of professionals in the military, emergency services and safety critical 

industries. Like pre-hospital clinicians these professionals, make high stakes decisions 

characterised by uncertainty, dynamism, competing goals and time constraints. The 

application of NDM theory has informed several industries including influencing 

military training doctrine. In part, NDM’s application focuses on decision requirements 

and the development of technology to support decision making.194 

1.5.1.2 Recognition-Primed Decision Model 

Central to NDM is the concept of a Recognition-Primed Decision (RPD). RPD describes 

how an expert’s experience is used to form patterns that influence decisions.194 An 

expert will approach a familiar situation and recognise patterns. If the pattern is familiar 

the expert typically selects a successful action based on their prior experience. 

Recognition involves assessing relevant cues, expected outcomes, plausible goals, and 

selection of the typical action to achieve the desired goal. (Figure 5) 
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Figure 5: Schematic of recognition-primed decision making195 

NDM theory includes the rapid mental simulation of a potential plan. This act of 

simulation provides the expert with an assessment of the likelihood of the desired goal 

being achieved with the selected action plan. If necessary, the plan can be modified, or 

another plan considered before it is implemented. Where no action plan satisfies the 

mental simulation step (dashed line Figure 5) the decision maker re-considers whether 

the situation is familiar. If it is not familiar, more information is sought, and the situation 

is re-assessed until a decision can be made. Klein describes the RPD model as a blend 

of intuition (HB’s System 1) and analysis (System 2).194   

Klein demonstrated that fire fighters faced with challenging scenarios used RPD 

strategies 80% to 90% of the time.194 This observation has recently been replicated in 

healthcare. In a study of anaesthetists faced with difficult airway management situations, 
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91% of the decisions were recognition primed.196 In this study of airway decisions 

anaesthetists characteristically made a direct link between familiar cues and action 

generation. The first action the anaesthetists considered was usually the action they 

implemented.197 

To reinforce pattern recognition ‘double loop learning’ can be used. Double loop 

learning is a process where past assumptions are questioned by reflecting on a previous 

decision and then retesting that decision.198 In healthcare, medical simulation training 

utilises the double loop learning concept. Trained personnel that have engaged in double 

loop learning are thought to be better primed to make the decision.  

1.5.1.3 Example of Recognition-Primed Decision making in Trauma  

The following example is used to illustrate the application of RPD to pre-hospital trauma 

decision making. The example describes the processes of cue perception, goal setting, 

expectations considered and action selection in the management of a patient with a 

tension pneumothorax after a fall (Figure 6). The example is simplified for clarity and 

appears sequential, but it is important to note RPD emphases the nearly simultaneous 

assessment of actions. 
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Figure 6: An example of Recognition-Primed Decision making in the management 

of a tension pneumothorax. Adapted from Klein.195 

 

1.5.1.4 Heuristics & Biases and Naturalistic Decision Making: similar but different 

HB and NDM share the belief that intuitive judgements are automatic and effortless.  

However, HB is sceptical of the value of intuitive judgment whereas NDM embraces 

expert intuition. The key difference is their stance on the origin of intuition. NDM 

attempts to explore intuition by eliciting the cues that are apparent to the experts (and 

elusive to novices). Whereas, HB research has focused on the use of simplifying 

heuristics as the basis of intuition and the tendency to systematic bias.  

HB researchers often compare expert decision making to algorithms and advocate for 

the replacement of human judgement with formal models. The origins of this approach 

started with Paul Meehl in the 1950s.199 NDM researchers are typically sceptical of 

attempts to formalise decision making with universal structures on complex 
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problems.200 The application of NDM involves elicitation of key decision making cues 

and dissemination of those cues.  

Both Kahneman and Klein agree that the quality of an intuitive decision is dependent 

on the ability of the decision maker to learn the regularity of their environment.200 Where 

an environment is too uncertain to learn how cues relate to outcomes, decision making 

has a higher probability of being flawed.  

Both HB and NDM theories provide insights into how decisions are made by pre-

hospital clinicians. The theories also suggest where and how decision support may alter 

decision making. This is key when considering the application of decision support in 

medicine.  

 Decision making under uncertainty in medicine  

Classical diagnostic decision making in medicine follows hypothetico-deductive 

reasoning. Clinicians start with a broad range of potential diagnoses. They update their 

hypothesis and narrow down on the probability of the patient having a given diagnosis 

by using information from the history, examination and investigations.201 As discussed 

above most medical practice is not laboriously analytical (System 2) as classically 

described, but rather effortless (RPD / System 1). Yet, most medical error is believed to 

stem from errors of decision making.202 

Uncertainty is a key feature of difficult decisions. Uncertainty increases the likelihood 

of a medical error. When clinicians make high-stakes decisions with uncertain 

information, under time or emotional pressure, the resultant errors can have devastating 

effects on patient outcomes.  

Uncertainty describes a situation in which it is not possible to quantify the probabilities 

of alternative outcomes.203 Quantification of the probabilities of alternative outcomes 

provides an assessment of risk. Moving from uncertainty to risk allows clinicians to 

make analytical decisions on prognosis and future management. For example, when a 

pre-hospital clinician is on their way to a patient, they have little useful information. 

Initially, there are too many unknowns to make a diagnosis; thus, a diagnosis of 
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pneumothorax for patient that has fallen is uncertain. When the clinician arrives at the 

patient’s side, she rapidly gathers information and starts to recognise the patterns. With 

more information she is able to quantify the probability that the patient has a 

pneumothorax. At that point that risk can be used to estimate the benefit of a given 

intervention such as a thoracostomy.  

Moving from uncertainty to risk is possible when informative evidence is gathered and 

synthesised. Sometimes the evidence may be conflicting, or the relative importance of 

a particular factor is difficult to put into context of the other information. In these 

scenarios, it is not clear how best to combine the evidence. The result is marked 

individual variation as personal biases influence assessment.200 In these situations, an 

unbiased process which accurately combines the various inputs to produce an overall 

summary of risk may assist the decision-maker. 

 Clinical decision support tools 

Clinical decision support tools (CDST) combine multiple inputs and produce an output 

summarising the influence of the inputs. The aim is to provide clinicians with 

information to make informed and improved decisions.204 At the heart of a CDST is a 

mathematical function or model whose purpose is to combine the inputs in an 

appropriately weighted manner.205 To define the weights of the inputs, algorithms are 

usually trained on prior data.  

Simple clinical scoring systems, often derived from regression methods, are the most 

frequently used CDST in medicine. Examples of simple clinical scores include the 

Apgar score206 and the Nottingham Prognostic Index207. However, conditions with 

multiple influential variables require complex models, which offer more precise 

quantification of an outcome than simple clinical scoring systems. Recent advances in 

computational methods provide the opportunity to develop precise models that allow 

risk, and subsequent treatment decisions, to be tailored to the individual patient.208 A 

credible CDST must include an interface that is useable in the relevant clinical setting, 

and present results in a way that can be interpreted by the clinician. It should equip the 

user with the facility to perform evidenced-based analysis of individual patients,209 

improving decision accuracy to that exhibited by the most experienced practitioner. The 
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CDST should inform therapeutic decision-making at critical points in the treatment 

pathway and should also enhance overall clinical situational awareness. By supporting 

the correct interpretation of the clinical situation, decisions on the most appropriate 

action have a much higher chance of being correct too.210  

1.5.3.1 Prognostic model research 

Prognostic models combine multiple predictors to provide a likelihood of a patient 

having a particular outcome (endpoint) from a given state of health (start point) over a 

specific time interval.205 Prognostic models ought to undergo a rigorous process of 

research before they can be safely implemented in healthcare.211, 212 The purpose of the 

development process is to demonstrate a model’s accuracy, generality and effectiveness 

(Figure 7).213  

 

Figure 7: Position of key steps in model development along translational pathways. 

Adapted from Cooksey report and Steyerberg205  (made available for use and re-use through the Open 

Government License doi:10.1371/journal.pmed.1001381.g003) 

The first step is model development.214 In development, an important and difficult 

clinical decision is identified along with the identification of the prognostic inputs. Next 

follows an initial training phase where the model learns the relationships between the 

variables using a dataset of training patients. Next, the performance of the model is 

quantified in the development set of patients; internal validation. Key performance 

metrics include discrimination and calibration.215 A model that performs well in internal 

validation should undergo external validation. External validation tests whether the 

result of the model can be generalised. The patients in the external validation dataset 
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should ideally be fully independent in time and place to the development population.216 

Relatively few models in healthcare get this far in the development process.217  

Only when changes in clinical management are made based on a model’s prediction can 

the model be said to have influenced patient outcomes. Before asserting that a model 

has clinical utility, it should undergo one final research step. This final step is an 

assessment of the model's impact on health outcome and potential cost-effectiveness.218 

Impact studies take an externally validated model and test the model prospectively in 

the real world. These studies can be challenging to do, time-consuming, and potentially 

expensive. Accordingly, very few models ever undergo a clinical impact study. In a 

review of 84 prognostic models published in six major journals between 2006-2009, 61 

described development, 21 validation and only 2 provided evidence of an impact 

study.205 

Despite an apparent lack of impact studies, there are hundreds of models in use in 

healthcare every day around the world. The next section will describe a selection of 

published models for decision support in major bleeding and coagulopathy. 

1.6 Clinical decision support tools for haemorrhage and coagulopathy 

Early initiation of a DCR strategy reduces delays and improves survival (see 1.4.3). 

Many models have been created to assist with the early identification of patients that 

require large volume blood transfusion. There are relatively fewer examples of models 

to support the identification of patients with TIC. The following description of published 

models is included to serve as relevant benchmarks for comparison to the model 

analysed in this thesis.   

 Decision support for haemorrhage  

Several systematic reviews have identified multiple models to support the identification 

of patients that require major haemorrhage protocol activation.219 An extensive review, 

published in 2016, describes 36 models each with markedly different performance 

despite often sharing the same input variables.220 The systolic blood pressure (SBP) was 
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the most common input variable (31/36 models) and results of blood or radiology 

investigation were used in just under half (15/36 models). Few of the models had been 

externally validated (11/36), and no impact studies were identified. Most of the models 

identified are intended for in-hospital use only.220  

A selection of the most commonly cited models and models that highlight a particular 

area of interest to the research within this thesis are now discussed (Table 3). 

1.6.1.1 The Assessment of Blood Consumption score: in-hospital model 

The Assessment of Blood Consumption (ABC) score221, 222 is a well-known and highly 

cited score endorsed by the American College of Surgeons’, Massive Transfusion in 

Trauma Guidelines.223  

The ABC  model has been used to identify high-risk patients for inclusion into a large 

clinical trial.224 It has been externally validated at least ten times.99, 222, 225-232 The model 

was derived from expert consensus and is an example of a non-weighted score designed 

for rapid use at the bedside. The ABC has just four input variables, and the presence of 

each is worth one point.  

A retrospective comparison performed in 2018, between the ABC score and clinician 

judgement, provides some insight into the score’s potential impact. The study of 3421 

patients demonstrated that the ABC score over triaged patients (higher number of false 

positives) compared to clinicians. For the use of 5 units of PRBCs in 24 hours, the 

clinicians had a positive predictive value of 65% vs the ABC score’s 34%.  

Approximately half of the clinician MTP activations took place after the patient had left 

the ED. In these later MTP activations, the ED ABC score was positive in 81%. The 

authors infer that the use of the score would lead to a 35-minute reduction in MTP 

activation but extra blood product wastage.233 The study does not report the true number 

of major haemorrhage patients, and so no sensitivity comparison is possible.  

The score has been used to guide pre-hospital transfusion152 and early warning to the 

receiving trauma centre.234 An abstract that details the adaption of the ABC score for 

pre-hospital use is instructive as it highlights the necessity of a model to fit into the 



Chapter 1 - Introduction 

 

46 

clinical workflow. To operationalise the score pre-hospital a significant addition to the 

clinical practice of the flight nurses was required. The nurses were trained to conduct 

Focused Abdominal Sonography in Trauma (FAST) examinations during transport.235  

Without a FAST examination, the ABC score cannot be used as it is one of the four 

input variables. A pre-hospital ABC score was calculated using the same standard ABC 

score variables.  

1.6.1.2 Trauma Associated Severe Haemorrhage Score 

The Trauma Associated Severe Haemorrhage (TASH) Score236 is one of the most cited 

massive transfusion prediction scores and has been externally validated seven times.99, 

225-228, 231, 237 It is a weighted-clinical score derived using a regression technique and is 

more complicated to calculate than many haemorrhage scores. It requires in hospital 

laboratory and imaging data. The score was developed and validated in a cohort of 6044 

patients from the German Trauma registry entered between 1993-2003. Interestingly, 

the score was re-trained on a more contemporary set of patients to adjust the weighting 

of individual variables in 2011.237 The TASH score is designed for use in the Emergency 

Department. The score often has very high discrimination when multiple models are 

compared.226, 228 The score requires a blood gas and FAST examination. As such, it may 

not be able to output a risk score in a useful time frame. The TASH score is the only 

score known to perform better than clinicians in a prospective study of bleeding trauma 

patients (AUROC 0.72 vs 0.62; p = 0.01).99 

1.6.1.3 Mina Score 

A model devised by Mina, et al. in 2013 used a different approach to many of the scores 

published. This score uses the least absolute shrinkage and selection operator (LASSO) 

technique to develop the model. The LASSO technique combines variable selection with 

regularisation, i.e. weighting the variables. LASSO is commonly implemented in 

machine learning approaches. The resulting model has complex variable weighting, and 

the authors recommend the model is used within a mobile application (“an app”) to 

perform the prediction.238 Given 44 potential input variables, the LASSO technique 

selected four influential factors; MOI, HR, SBP and BD. The model does not require 
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dichotomisation of the input variables and so does not suffer from the loss of predictive 

power that dichotomisation causes.239 

The model was developed and internally validated on retrospective data from one 

institution, and the model's output is the risk of activating the MTP. The model does not 

predict the volume of blood transfused or the amount of blood a patient requires. Instead, 

the model is trained to predict the decision to activate an MTP. An external validation 

was performed with the prospectively collected PROMMTT study patients.240 In 

external validation the model’s predictive accuracy was assessed in five different critical 

haemorrhage definitions. The model’s discriminative performance dropped in this 

external validation from AUROCs 0.97 to ~0.70.231 One reason for this decrease in 

performance is the PROMMTT study included only patients that had at least one unit of 

blood transfusion. However, the Mina score was trained using a dataset in which 96% 

of the population did not activate the MTP. Additionally, this external validation tested 

a clinically more useful outcome: the volume of blood transfusion a patient received. In 

combination, these two factors result in a different impression of the model’s 

performance.   

1.6.1.4 Shock Index 

The Shock Index (SI) is the simplest of all models. It is merely the ratio of heart rate to 

systolic blood pressure. There is no consensus for the optimal threshold value to define 

a “positive SI” although >0.9 is the most commonly used.241 In some populations SI 

outperforms the ABC score without the technical skill required for a FAST scan.229 Four 

studies assess the utility of Shock Index to predict transfusion pre-hospital.242-245 At a 

cut off of >1.0 SI is straightforward to calculate and has reasonable specificity 

(specificity 83%, sensitivity 57%).244 This makes the test a useful rule of thumb to 

consider ruling out the need for massive transfusion but lacks the performance to aid 

decision making substantially.   

1.6.1.5 Code Red 

The “Code Red” score was developed in London to identify seriously injured patients 

who required transfusion on arrival at the hospital.148 The score was developed using 
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expert knowledge, rather than data, and has three binary elements; suspicion or evidence 

of active bleeding, SBP <90 mmHg, and no haemodynamic response to a fluid bolus. 

The authors state that with the code red score, an experienced pre-hospital provider can 

accurately predict which patients will require blood products with a 91% positive 

predictive value (PPV).  

Code red has been externally validated in Scotland, but similar to the original 

development study only code red positive patients are included in the analysis, so no 

specificity metrics are known.246 The development and validation have further 

methodological issues that make the actual value of the score unknown. For example, 

there is no way of knowing whether the clinicians in the development study strictly 

applied the code red score to achieve the 91% PPV. In the Scottish validation study, a 

third of patients who triggered the code red were not hypotensive; one of the three 

scoring variables. It is not clear what additional diagnostic value is gained by the 

addition of two criteria above the clinical diagnosis of an expert. It is also unclear how 

generalisable the model’s performance is when it is reliant on expert clinical diagnosis. 

The extent of framing bias in which the in-hospital transfusion of blood is influenced by 

the prior pre-hospital “code red” declarations is unknown.  Pragmatically the model has 

become redundant as the practice of giving fluid boluses pre-hospital is no longer 

supported.  

1.6.1.6 Red Flag 

Red Flag247 is a logistic regression derived score developed in France for bluntly injured 

patients. It is a bespoke pre-hospital non-weighted clinical score. The model’s inputs 

include shock index, pre-hospital point of care haemoglobin measurement and pre-

hospital intubation. The authors used a split sample development and validation 

approach, i.e. the external validation was a temporal validation from the same database. 

The score is limited it is application to blunt injury only and has no geographical external 

validation.  
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1.6.1.7 McLaughlin Score 

Several models have been derived from the recent conflicts in Iraq and Afghanistan. 

Three models arose from US databases; McLaughlin248, Larson249 and Schreiber250. The 

MASH score251 was developed from a British military cohort.  

The McLaughlin is the highest cited of these scores. It is a non-weighted simple clinical 

score with four input variables; HR>105, SBP <110, pH <7.25, and haematocrit <32%. 

The model is trained only on patients that received blood. A bespoke military model 

reflects a need for models to be specifically developed in the patient population they are 

intended for. Differences in the mechanism of injury and patient demographics between 

civilian and military patients cause variability in model performance between patient 

populations. 

1.6.1.8 MASH Score 

The MASH score is the most recently developed score for military casualties.251 It has 

been developed in an attempt to improve on the performance of other military models.  

The score is intended to “rule in” patients that need a massive blood transfusion, using 

only those variables available within the first few minutes of patient arrival to a medical 

treatment facility. The rule is designed to be clinically acceptable with input variables 

selected with regression methods after approval in a Delphi study.252 The resultant 

model is an unweighted score with 13 input variables relating to injury, physiology and, 

unusually, previous treatment, e.g. pre-hospital blood transfusion.  The score is 

temporally validated but not fully externally validated. In temporal validation, the score 

performed with high discrimination (AUROC = 0.93)   
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 Summary of decision support for haemorrhage 

Over 40 distinct models have been developed to assist decision making in major 

haemorrhage. The models vary in their methodological design, complexity, input 

variables, training population, development and validation sizes, intended location of 

use, the definition of the outcome and performance. The sheer volume of effort and 

different approaches is indicative of the need for accurate decision support in 

haemorrhage and the absence of agreement so far on the best model. 

For pre-hospital decision support on haemorrhage several models cannot be applied as 

they require variables which are not available in the pre-hospital environment. For 

example, a score that depends on known laboratory values or radiology results does not 

produce useful results pre-hospital.  

Despite the academic endeavour to develop and validate these models, there is no 

published prospective evaluation of their impact on clinical care. Therefore, their effect 

on decision making, resource use and patient outcome is unknown. Notably the NICE 

guidelines for major trauma concluded that there was insufficient evidence to support 

the use of any of these tools.253 

All of these models share a challenging limitation as a result of the data available for 

model development. Haemorrhage decision support models trained on trauma registry 

or clinical trial datasets include the volume of blood the patient received. However, there 

is an important distinction to be made between the volume of blood a patient received 

and the volume of blood they required. It is far harder, but yet more clinically useful, to 

quantify how much blood a patient requires. As a result of training models from trauma 

registry data, the models predict an outcome of a clinical decision for a treatment, rather 

than the underlying pathological state. In other words, the models predict the volume of 

blood transfused rather than the volume of blood the patient has lost. As medical practice 

changes over time, a model which provides a guide on what treatment was previously 

given is less informative than a model that reflects what the patient requires. 

The ideal model will be accurate, easy to use, and provide an early prediction. The model 

should not dichotomise variables and will therefore need to use modern computational 
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techniques. The model must be clinically acceptable. In this setting, a model which 

prioritises sensitivity (i.e. reducing the number of false-negative results) has greater 

utility than higher specificity (less false positives). The benefit of higher sensitivity is a 

result of the relative costs of the two false results. Most clinicians would argue that the 

risk of delaying or entirely missing a patient who required an early transfusion is higher 

than the financial and logistic costs associated with mobilising blood products 

unnecessarily. In an austere environment with limited resources, this benefit may carry 

more cost and be less desirable.   
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 Table 3: Features of eight Major Haemorrhage decision support tools 

 ABC TASH Mina SI (PH) Code Red Red flag McLaughlin MASH 

         

Publication Year 2009 2006 2013 2011 2016 2018 2008 2018 

Intended Location  IH IH IH PH PH PH Military IH Military IH 

Internal validation (n) 596 6044 13961 n/a 126 3675 396 1186 

External validation (n)* 5147 5147 1245 535 53 2999 596 No 

Impact study performed retrospective No No No No No No No 

AUROC in external 

validation 
0.76 0.89 ~0.70 0.77 unknown 0.83 0.85 unknown 

Major haemorrhage definition 
10 PRBCs 

in 24 hrs 

10 PRBCs 

until ICU 

admission 

# 
10 PRBCs 

in 24 hrs 

1 in hospital 

PRBC or 

haemorrhagic 

death 

^ 
10 PRBCs in 

24 hrs 

6 PRBCs in 

4 hours or 

10 PRBCs 

in 24 hrs 

AUROC; Area under the receiver operating curve, IH; In hospital, PH; Pre-hospital, PRBCs; packed red blood cells  

* the largest or most representative external validation has been selected where multiple external validations have been performed. Temporal external validations 

were not considered true external validations and have not been included. 

# the external validation tests the model using 5 definitions of major haemorrhage; 10 PRBC units in 24 hours, Resuscitation Intensity score ≥ 4, critical 

administration threshold, 4 units PRBCs in 4 hours; and 6 units PRBCs in 6 hours 

^ Multiple definitions used: transfusion in ED, or transfusion  4 PRBC in the first 6 h, or lactate 5 mmol/L, or immediate haemostatic surgery, or interventional 

radiology or death from haemorrhagic shock. 
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 Decision support for trauma induced coagulopathy 

In contrast to the numerous haemorrhage decision support models, coagulopathy 

prediction has received relatively less attention. To date, there is one in hospital and two 

pre-hospital prediction models for TIC. A further model discussed at 1.6.3.4 includes 

TIC but has been developed to predict patients in need of DCR.254  

1.6.3.1 Cosgriff Score 

The Cosgriff Score was the original coagulopathy prediction score.255 It was developed 

in 1997 from a hospital registry of 58 patients. All the patients received >10units of 

PRBCs in 24 hours and had a GCS >8. Cosgriff classified patients as coagulopathic if 

they had twice the normal Prothrombin Time (PT) and Partial Prothrombin Time (PPT). 

With this classification of coagulopathy, 27/58 patients were coagulopathic. The model 

is a non-weighted clinical score derived using regression. The score’s four input 

variables are pH < 7.10, temperature < 34oC, injury severity score (ISS) > 25, and SBP 

< 70mmHg. The model was the first to demonstrate that coagulopathy may be 

predictable from clinical information. (Table 4)  

The model has flaws which reduce its ability to support real time decision making. One 

of these flaws is the inclusion of ISS as an input variable. The ISS can only be calculated 

once all the patient's precise anatomical injuries are known.256 The ISS has 2000 coded 

injuries and is typically calculated by trained research staff with the aid of the scoring 

manual, days after the patient’s admission. The authors speculate that clinicians will be 

able to estimate the ISS. However, the ISS is not a score that clinicians regularly use. 

As a result, the accuracy of clinical estimation is unknown. Regardless of the practicality 

of calculating the score, the model did not separate the patients into two clinically 

distinct risk groups. Regardless of their coagulopathy prediction included patients had 

high rates of transfusion and mortality. The non-coagulopathic group had a mortality 

rate of 42%. This lack of clinical risk stratification is due to the patient selection criteria. 

These fundamental flaws in the model’s development result in a model that cannot be 

used to support decisions and has not been incorporated into clinical practice. The model 

has not been externally validated. 
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1.6.3.2 The Coagulopathy of Severe Trauma (COAST) score 

In 2011 Mitra, et al. published the coagulopathy of severe trauma (COAST) score.257 In 

2019 the COAST score was incorporated into practice and used by the Queensland 

Ambulance Service.258 the COAST score is used to support decisions about giving TXA 

and identifying patients for the PATCH trial (NCT02187120).259  

The COAST score offers many advantages over the previous Cosgriff score. COAST is 

derived from a large representative sample of trauma patients and is designed to identify 

patients with coagulopathy using variables available pre-hospital. COAST is a simple 

weighted score developed using regression. The development of the score did not 

exclude patients with known causes of coagulopathy. For example, patients on oral 

anticoagulation or liver disease were not excluded. The model has two continuous 

variables (SBP and Temperature) which are dichotomised in the COAST score. The 

other input variables are patient entrapment, chest decompression and abdominal or 

pelvic content injury. The maximum score is seven.  

The pre-hospital diagnosis of abdominal or pelvic content injury is a clinical diagnosis 

and therefore requires specific attention as it is prone to error. The authors report a 75% 

sensitivity and 95% specificity for the pre-hospital staff’s diagnosis of injury. This re-

enforces that there is a group of patients with occult abdominal and pelvic injuries. These 

patients with occult injury, are at risk of being underscored by the COAST score.  

A COAST score >2 is classified as positive. For the prediction of coagulopathy in the 

internal validation cohort a threshold >2 results in a sensitivity of 70% and specificity 

of 84%. The 40/100 patients that were false negatives had lower ISS, less need for urgent 

surgery, lower mortality and a higher proportion of isolated severe head injury. 

Nevertheless, these false negative patients still received large volumes of blood 

transfusion and had a mortality of 28%. While the false negative patients appear to have 

a different and potentially less severe injury pattern, they are still at high risk of death. 

A model that appears to systematically underscore less severely injured patients might 

have poor calibration. Unfortunately, the authors do not report calibration and so full 

evaluation of the model is not possible. 

https://clinicaltrials.gov/ct2/show/NCT02187120?term=NCT02187120&rank=1
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The authors published a small external validation in 2019 using 133 patients from a 

trauma centre in Belgium.260 The Belgian dataset did not have exactly the same variables 

as the development dataset, and so the validation uses one different input variable: chest 

decompression was replaced by major chest injury as suspected or diagnosed pre-

hospital. Unusually, in external validation, the model performed with better sensitivity 

and specificity than in development. A larger external validation ought to be performed 

before the performance of the model is demonstrated to be generalisable. Nevertheless, 

the study hints towards the ability to separate groups of pre-hospital trauma patients 

using a simple clinical score. The clinical impact remains unknown. 

1.6.3.3 The Prediction of Acute Coagulopathy of Trauma (PACT) Score 

Most recently Peltan et al. published the Prediction of Acute Coagulopathy of Trauma 

(PACT) score.261 The authors sought to improve on the predictive accuracy of the 

COAST score. The PACT model is a more complex weighted clinical score derived 

using logistic regression. Their approach to develop and validate the model is 

methodologically strong. The publication conforms to the 2015 TRIPOD guidelines 

which facilitates transparent critique of the model.211  

Some of the methodological strengths of the PACT model include i) using a mixture of 

data-driven and clinical knowledge methods to select predictor variables, ii) multiple 

imputation of missing variables, iii) use of a majority rules algorithm to balance 

overfitting with predictor variable selection, iv) mitigation of overfitting by using an 

assessment of model optimism with bootstrapping, v) sensitivity analysis to classify 

patients with TIC, vi) a large development dataset and vii) an independent external 

validation cohort.  

The authors developed the model using data from 1963 severely injured patients in the 

Oregon Trauma Registry. An external validation was conducted using 285 patients. 

These patients were part of another prospective study and all attended the Harborview 

Level 1 trauma centre. Criteria for inclusion into the validation cohort were similar to 

the development cohort. Patients in the validation cohort were more severely injured by 



Chapter 1- Introduction 

56 

 

ISS and were included if they had a blunt injury and received at least a unit of PRBCs 

within 24 hours of injury.   

The PACT model (www.pactscore.com) input variables are age, pre-hospital 

cardiopulmonary resuscitation (CPR), intubation, pre-hospital GCS, shock index, and 

non-vehicular injury mechanism. The model’s performance was sustained in the 

external validation cohort and appeared to perform better than the COAST score. The 

authors set an operating threshold which optimised both sensitivity and specificity. At 

the selected cut-off the model identified 97% of patients without coagulopathy and 22% 

of those patients with coagulopathy.  

The PACT model has been well developed using appropriate statistical techniques. 

Importantly, the authors ensured they developed their model in the type of population 

for its intended use. The patient population is a severely injured cohort rather than an 

unselected trauma population. In the unselected trauma population, the vast majority of 

the patients will have very low risk of coagulopathy and the discrimination of a model 

may appear very high.  

1.6.3.4 TICCS 

The Trauma Induced Coagulopathy Clinical Score (TICCS)262 was developed as a 

simple clinical score for paramedics to use on scene. The TICCS score predicts risk of 

requiring DCR. To classify which patients require DCR, the authors used a range 

clinical states; acute traumatic coagulopathy, haemorrhagic shock, massive transfusion 

or requirement for a haemorrhage control intervention. The input variables were selected 

based on knowledge rather than being statistically driven. In contrast to any other TIC 

score, TICCS provides an input variable that accounts for the clinical impression of the 

patient’s injury severity by the treating clinicians. It is not clear how the weights of the 

input variables were selected. 

Development was performed in a prospective study using data from 82 patients. 

Inclusion criteria into the development population was “severe trauma” and is not 

further expanded. The model has been externally validated twice but only to assess the 

http://www.pactscore.com/
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performance of the model for the prediction of major haemorrhage.263 264 The ability of 

this model to identify patients that require DCR or have TIC, outside of the development 

cohort, is unknown.  

Table 4: Features of four acute traumatic coagulopathy decision support models 

 

 
Cosgriff COAST PACT TICC 

     

Publication Year 1997 2011 2016 2014 

Intended 

Location  
IH PH PH PH 

Development 

Cohort 

description 

GCS>8 & 

received > 10 

PRBC in 24hrs 

1993-1995 

1 x Level 1 

Trauma centre, 

USA 

ISS>15, or 

immediate 

surgery, ICU or 

death 

2006-2008 

1 x Level 1 

Trauma centre, 

Australia 

severely injured* 

Excluded iTBI 

2008-2012 

Multicentre (44) 

USA 

severely injured 

2012-2013 

Single Centre 

Belgium 

Development (n) 58 1680 1963 82 

Internal 

validation (n) 
n/a 1225 

Bootstrap from 

development 
n/a 

External 

validation (n) 
n/a 133 285 no 

Impact study 

performed 
no no no no 

AUROC in 

external 

validation 

n/a 
0.94 

(CI: 0.88 - 0.99) 

0.80 

(CI 0.72 - 0.88) 
no 

TIC definition 
PT AND PPT 

>2x normal 

INR > 1.5 OR 

aPTT >60 

INR > 1.5 on 1st 

ED sample 
Not only TIC^ 

GCS; Glasgow Coma Scale, PRBC; Packed red blood cells, PT; Prothrombin Time, PPT; Partial 

Prothrombin Time, INR; International Normalised Ratio, ICU; Intensive care unit, ISS; Injury 

severity score, iTBI; isolated Traumatic Brain Injury. 

* Severe injury was defined as death prior to discharge; admission directly to the ICU or operating 

room from ED; or transfer from the initial ED to another state-certified trauma centre ICU or 

operating room. 

^ Model trained to identify patients for DCR. Coagulopathy was one criterion for DCR. TIC 

classified using ROTEM, INR (>1.3) and fibrinogen (<1.5 gL-1) measurements. ROTEM 

measurements to classify TIC were 20% derangements in ROTEM ExTEM clotting time, clot 

formation time, maximum clot firmness and maximum lysis. 
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1.6.3.5 Individual parameters to predict coagulopathy and transfusion pre-hospital 

A noteworthy analysis was conducted by David et al.265 The purpose of this study was 

to assess the individual relationship of a given variable to one of two outcomes; TIC and 

massive transfusion. In a retrospective cohort of 485 trauma patients from a French 

trauma system the authors identify the most discriminatory variables to predict 

coagulopathy. These variables were ISS (AUROC: 0.84), pre-hospital fluid volume 

>1000ml (AUROC: 0.80), Vasopressor administration (0.75) and shock index 

(AUROC: 0.72). This study highlights similar predictor variables included in other 

models and reflects similar findings from a distinct trauma system. 

 Summary of decision support of trauma induced coagulopathy 

Prediction of trauma induced coagulopathy has been a research goal for over 20 years. 

Over that time the methods used to develop the models have become more rigorous and 

model performance has improved. The intended use of TIC prediction models has 

shifted towards improving patient selection into clinical trials and away from identifying 

which patients should undergo TIC treatment.266, 267  

There are several possible reasons for the move towards stratifying patients for research 

rather than treatment, the foremost of which is a lack of predictive accuracy of the 

current models.266 Part of the reason for suboptimal performance is likely due to the 

reliance on regression models and conversion into simple clinical scores. Forcing 

continuous variables into binary options reduces predictive power by up to a third.268 

Statisticians responsible for the TRIPOD statement, agree that “categorising continuous 

predictors produces models with poor predictive performance and poor clinical 

usefulness.”268 They make the further important point that not only is categorisation 

statistically inefficient, but it is unnecessary and biologically implausible.268 All the 

models to predict TIC categorise their continuous variables.  

There are other methodological concerns with regression derived scores which impact 

their performance. None of the models used non-linear relationships (such as fractional 

polynomials or restricted cubic splines) or evaluated interaction terms between 
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variables. It is unlikely that all the relationships are truly linear and unrelated to each 

other. Another assumption of regression, which these models violate, is that the 

variables are normally distributed in the population. As a result of these assumptions 

and violations the models lose predictive power. On a practical level, simple clinical 

scores cannot produce meaningful risk stratification if an input is unknown. For 

example, a GCS score without the voice component is not a useful metric. Imputation 

methods are possible, but unlikely to provide a solution to missing data in a simple 

clinical score when used prospectively.269 

Finally, the models are ostensibly designed to predict TIC. However, they have been 

developed and validated to predict the result of a coagulation test. INR, PT and 

aPPT/PPT are measurements of clot formation time. They are incomplete measurements 

and do not assess biologically important processes such as fibrinolysis. As such there 

are multiple threshold values of these laboratory tests used to classify coagulopathy (see 

7.5.4). Using these measures does not identify the true state of the coagulation system.  

Models developed to predict these test results compound measurement error and reduce 

the clinical utility of these models. It is not the INR that is important, rather it is knowing 

the true underlying state of the coagulation system that provides an opportunity for 

intervention and improved patient outcome. 

 The lack of impact studies for decision support 

Sections 1.6.1 and 1.6.3 detail the development and validation of 12 decision support 

models for haemorrhage and TIC. Together these publications have thousands of 

citations yet not a single model has undergone a comprehensive impact study. An impact 

study quantifies the effect of a model on decision making and patient outcomes in 

clinical practice using a comparative design.218, 270 Without an impact study it is 

impossible to know what the effects of a model will be on patient or system outcomes.271, 

272 There are several aspects to consider in an impact analysis: i) was the performance 

of the prediction rule preserved in clinical practice? ii) was the realised impact more or 

less than the potential impact (recommended decisions compared to actual decisions)? 

and iii) overall did the model impact patient care? 
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The gold standard for impact studies is to cluster randomise clinicians into a group with 

the prediction model and compare to a standard care group. Such trials are often 

expensive and time consuming. However, when they are conducted, they can uncover 

unexpected effects and provide necessary information about how to implement decision 

support successfully.  

Well conducted impact studies produce useful information. For example an impact study 

of nearly 800 surgeons in the USA demonstrated an unexpected result.273 The study 

intervention was a model to predict operative risk.  Surgeons were randomised into two 

groups; with and without the model. In the study the surgeons were given four clinical 

vignettes and asked to give their likelihood of recommending an operation. The study 

demonstrated a difference in the perception of the risk associated with an operation 

between the groups. Despite this difference the rate of proposed surgical intervention 

was the same between the two groups. The authors inferred that while the risk calculator 

only gave information relating to the risk of surgery, the surgeons were making a parallel 

adjustment of their perception of non-operative risk. This unintended and off target 

change had the effect of neutralising the impact of the model in the decision for surgery. 

Impact studies have also demonstrated that the strategy used to communicate the advice 

of a CDST influences the clinical effect. This point is illustrated by two prospective 

impact studies that examined the use of a post-operative nausea and vomiting (PONV) 

risk score. In the first study, the risk score was given as a percentage. In this study the 

rate of anti-emetic prescriptions increased but the rate of PONV did not change.274 In 

the second study the risk score was given to clinicians as a treatment recommendation. 

In this study the rate of PONV decreased in the intervention group.275 Together these 

studies suggest a directive approach (instructing the clinician to administer a treatment) 

may have a greater impact on patient outcome than the theoretically more satisfying 

assistive approach.  

It is clear that the introduction of decision support into clinical practice is a complex 

intervention. Impact studies can be expensive and time consuming but provide necessary 

information to assess the clinical utility of decision support. Without an impact study 

the clinical effect of a decision support tool will be little more than a guess.  
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1.7 Machine learning in medicine 

 The rise of machine learning 

In 1965 Gordon Moore, a co-founder of Intel, predicted that every two years the number 

of transistors on a microchip would double and the price of computers will be halved.276 

His prediction, now realised as Moore’s Law, underpins the dramatic increases in speed 

and accessibility of computational power. The dramatic advances in computing 

performance effect nearly every element of modern society; from art to justice, 

transportation to communication and business to medicine.277 278 

 

Figure 8: Histogram of the number of articles in the US national Library of 

Medicine, National Centre for Biotechnology Information (Pubmed.gov) by year. 

Articles were identified with the search term "Machine Learning". The search was performed 8 th April 

2020  

The 2017 the British Government commissioned an external review to establish the 

likely impact of digital technology on the NHS in the next 20 years. The report was 

published in 2019 and specifically addressed advances in genomics, digital medicine, 

robotics and artificial intelligence.279 Known as the Topol review after the senior author,  
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the review concludes that medicine is in a unique position with massive data being 

generated through electronic patient records, medical imaging, biosensors and 

smartphone applications. It is these large datasets that provide the substrate for artificial 

intelligence to make vital inferences. This combination of sensing hardware, digitally 

readable information and powerful computation will pave the way for more rationale, 

efficient and personalised healthcare.  

The Topol report defines Artificial Intelligence (AI) as the science of “getting 

computers to do tasks that would normally require human intelligence”.279 The concept 

of AI is not new with its roots in the 1950s (Figure 8).280 A key element of Artificial 

Intelligence is machine learning. The Topol report borrows a definition of machine 

learning (ML) from a Royal Society publication: “Machine learning is a branch of 

artificial intelligence that allows computer systems to learn directly from examples, data 

and experience”.281 

The boundaries between machine learning and statistics are blurred. The approaches 

might be better view on a spectrum. ML relies heavily on computational power in a way 

that statistics does not. Traditional statistics relies on small samples and strong 

assumptions about the data. In the purist forms, machine learning is able to learn from 

data in ways that traditional statistical approaches cannot. Many statistical techniques 

such as regression modelling, require assumptions about how variables are distributed 

and related to one another. For example, regression methods assume input variables are 

normally distributed, independent and have equal variance. When these assumptions are 

violated, the resultant models have reduced predictive performance. Machine learning 

methods are not constrained in the same manner and there is no need to restrict the 

number of variables. Interactions and non-linear relationships between variables can be 

easily identified with machine learning, in ways that are prone to human bias with 

traditional statistical techniques.282 
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 Algorithms: the language of machine learning  

Machine learning is driven by algorithms. Algorithms are the set of rules a computer 

follows to solve a problem. As well as increased data and computational power, the 

performance of algorithms has improved in the last 10 years. With increased ability to 

learn from data, machines have surpassed human ability in some applications. Figure 9 

demonstrates the improvement of machine classification of images over time. By 2016 

machine learning had exceeded human image classification.  

 

Figure 9: Results of the ImageNet challenge, error rate of image classification by 

year. Blue line denotes machine performance. Magenta line denotes human performance.283  

There are many distinct algorithms used for machine learning. This diversity is 

representative of the wide range of data types, structures and relationships which require 

different analytical approaches. Broadly, algorithms can be grouped in two ways: their 

learning style and by similarity of form and function. An algorithm’s learning style can 

be supervised, unsupervised or through reinforcement. Supervised learning requires the 

data to be labelled by a human and is the most common approach used in medicine. The 

machine learning community consider regression to be an example of a supervised 
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learning technique. Supervised learning algorithms build a mathematical model from 

training data containing both the required inputs and outputs. Once the model has been 

constructed, it can be used to determine the unknown outputs of new input data.  

Unsupervised learning does not have human labels on the training data. Instead the 

algorithms learn statistical relationships between input data and subsequently label 

similar data points. Clustering is a common example of unsupervised learning. The third 

learning style is reinforcement learning, in which, algorithms are trained to optimise a 

reward outcome. For example an algorithm trained to play “Breakout”, an Atari 

computer game, was trained to optimise its score by hitting bricks with a ball. Notably 

the algorithm quickly exceeded the performance of the human expert.284 

Within the different broad categories of algorithms (supervised, unsupervised and 

reinforcement) there are many different algorithms, each with their own strengths and 

weaknesses (Figure 10). Deciding which algorithm to use depends in part on the size, 

quality and nature of the data and also how the results of the algorithm will be 

implemented.285  

 

Figure 10: A mind map of algorithms grouped by similarity Bayesian Networks are 

highlighted in red as the central machine learning method used in this thesis. 
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 Application of machine learning to medicine  

The most celebrated examples of the application of machine learning in medicine relate 

to the use of deep neural networks (DNN) in image classification. Radiology286, 287, 

pathology288, fundoscopy289, 290, dermatology291, 292, endoscopy293 and echocardiogram 

interpretation294 all produce images that can be interpreted with machine learning. In 

recent years programmers have started to compare their algorithms with the 

performance of doctors.  

The comparison of man versus machine in medicine is often overly reductionist on the 

part of the human. For example, a comparison of four radiologists to a 121-layer 

convolutional neural network in detecting pneumonia from chest x-rays put the 

performance of the machine ahead of the clinicians.295 An important caveat is that 

radiologists do not simply assess a chest X-ray for one diagnosis. Neither do they 

perform interpretation of radiological images in a vacuum of patient information. 

Furthermore, while the neural network performed well, the discriminatory ability was 

not high enough for the machine to be employed autonomously (AUROC = 0.76).  

Another approach, rather than man versus machine, is the assistive model of human and 

machine integration. This type of study was used recently to assess the impact of a DNN 

for fracture identification on X-rays. Using a DNN trained in part by information from 

orthopaedic specialists, emergency medicine clinicians improved their diagnostic 

accuracy of wrist fracture detection from 81% to 92%.296  

Machine learning models that do not display perfect accuracy can still be useful. A 

randomised controlled trial (RCT) in a simulated setting demonstrated a deep learning 

algorithm was able to “read” an acute CT head scan 150 times faster than the radiologists 

(1.2 seconds compared to 177 seconds). If speed is the chosen performance metric, then 

computers will always outstrip human performance. The algorithm’s diagnostic 

accuracy was measurably inferior but may still have a role in triage or screening for 

subsequent human assessment.297 
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The Topol report recognised that the application of machine learning to medicine will 

change the way medicine is practiced in the next 20 years. As these examples have 

demonstrated there are several likely relationships for humans and machines. For tasks 

that computers can do rapidly and efficiently machines will replace humans. In tasks 

which are predominately straight forward for machine learning but have occasionally 

difficult cases, machines may filter for human assessment. In very complex or high risk 

situations that require human judgement computers will augment human activities.  

 Application of machine learning to haemorrhage and coagulopathy 

A review of machine learning in predicting trauma outcomes was undertaken by authors 

at the US Army Combat Casualty Care research programme in 2017.298 The review 

identified 65 studies of which 12 were on the prediction of morbidity, shock or 

haemorrhage. There were no applications of ML to the prediction of TIC. For the 

prediction of haemorrhage the studies included an ANN for the prediction of transfusion 

in the ED299, analysis of continuous vital signs300  301 and machine enhanced analysis of 

diagnostic tests such as plethysmography118, 302-304, FAST305 and doppler.306  

Since the review was published, a study employing an ensemble algorithm called 

SuperLearner was applied to a cohort of trauma patients enrolled in an observational 

study. The algorithm identifies and autonomously selects the key input variables from 

the dataset. SuperLearner builds models to optimise prediction for a given output using 

different autonomously selected algorithms. Amongst the numerous outcomes this study 

describes, the prediction of coagulopathic trajectory was the weakest reported (AUC 

0.48-0.88).307 

The Compensatory Reserve Index (CRI) is a device built on a machine learning 

application and has progressed well along the developmental pathway (Figure 7).118 

The CRI uses a machine learning technique called feature selection to quantify changes 

in arterial waveforms using non-invasive photoplethysmography. CRI’s feature 

selection assesses over 200 data points from one arterial waveform. Comparing the 

shape of the waveform to training data of simulated shock, the CRI is able to produce a 

quantification of the degree of compensation to shock. The CRI measuring device is 
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little more than an oxygen saturation probe. The authors have demonstrated the CRI to 

be more sensitive to blood loss then traditional vital signs.303, 308 In a prospective 

observational study of 89 trauma patients at a single level 1 trauma centre, the CRI was 

more accurate in the prediction of haemorrhage than SBP (AUROC 0.81 and 0.62 

respectively).107 Further work is required to see if this performance is can be generalised 

to other populations and what the impact of the device is on medical care.  

 Limitations of machine learning for haemorrhage and coagulopathy 

Many of the successful applications of machine learning both in health care and other 

wider fields use deep learning approaches.309 Deep learning is best performed when the 

training data is very large, so called “big data”. Big data refers to data that is collected 

often without a strict experimental design. Big data has proliferated in the last 5 years 

due to the ease of acquisition, storage and interconnectivity between devices.281, 310 The 

storage of hundreds of thousands of images, each with vast numbers of pixels, has 

enabled powerful deep learning approaches to assist image recognition.  

The volume of data from trauma patients to develop machine learning tools does not 

compare; it is substantially smaller. Novel methods of machine reading electronic health 

records are proposed. In the future such approaches may generate large volumes of data 

for trauma patients.311 However, at present these methods are in their infancy. Datasets 

for developing models to assess coagulopathy and bleeding rely on highly structured, 

and expensive recording methods such as cohort studies and clinical trials.  

Another important consideration for the application of machine learning approaches to 

medical practice is a balance between interpretability and accuracy of prediction. As 

machine learning techniques become more complex, the ability to interpret how the 

model arrived at a given output is increasingly opaque.312 Healthcare providers unable 

to understand how a prediction has been generated are required to place their trust in the 

prediction. High profile machine learning failures, such as IBM Watson for oncology, 

erode trust in nascent technology.313 Similarly, in a market with substantial financial 

rewards, doctors are quick to point out where machine learning approaches are failing 

or unsafe.314, 315  
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Systematic errors of machine prediction have a greater potential for harm than a single 

doctor’s error. Whether rigorous regulatory processes will be enough to gain medical 

professional’s trust in the technology remains to be seen. Governments around the world 

are devoting resources into improving the rigor of increasingly complex medical device 

regulation. 279 

Just like the traditionally derived decision support tools discussed in 1.5.3, machine 

learning approaches are not able to demonstrate their clinical utility simply by 

demonstrating high predictive performance with AUROC values. Problems with bias in 

training datasets limiting generalisability, for example, are well documented in many 

fields of machine learning.277 Algorithms must undergo clinical impact studies in 

precisely the same fashion as traditional clinical decision support tools before their 

clinical worth can be determined.316, 317 Examples of impact studies of machine learning 

in healthcare do exist290, 293, 318 but are far from common place.  

1.8 An introduction to Bayesian Networks  

 Bayesian philosophy and Bayes Theorem 

Bayesian statistics are a fundamentally different approach to the well-known frequentist 

statistical methods advanced by Fisher, Pearson and Neymar.319 At its core, Bayesian 

philosophy believes uncertainty must be described by quantification using probability. 

The degree of belief of a rational agent can be used to measure the likelihood of an 

uncertain event.320 This is a radically different concept of uncertainty compared to 

frequentist philosophy. Frequentists see the probability of an unknown event as random 

and its likelihood can be determined by measuring its frequency in a set of 

experiments.321  

Bayesian statistics precisely apply mathematical reasoning to uncertain situations. 

Bayes theorem incorporates the prior belief of the probability of an event and calculates 

how that prior belief should be updated to account for new evidence.322 This process is 

known as Bayesian Inference. Initial beliefs are known as the prior probability and the 
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updated belief is the posterior probability. These conditional probabilities are expressed 

in Bayes Theorem: 

This Theorem relates the probability of variable A given (or conditioned on) a variable 

B.  In trauma this theorem could be used to represent the probability of a patient bleeding 

given a low systolic blood pressure measurement. Where there are few inputs to a 

problem Bayes theorem is straightforward to calculate. However, when there are 

complex problems with multiple influential variables the calculations become more 

elaborate and time-consuming to perform. 

 Bayesian Networks 

Bayesian Networks (BN) are a machine learning application of Bayes Theorem. BNs 

are causal probabilistic models. A causal model describes the causal mechanisms of a 

system. Causal modelling provides thorough insight into risk by modelling cause and 

effect relationships. Causal models prevail over over-simplistic statistical approaches 

which neglect key influential variables.320 A probabilistic model quantifies the 

uncertainty in the prediction as a probability. Probabilistic models are distinct from 

classification models.  

The purpose of a BN is to determine the likely values of an unknown variable. For 

example, whether a patient is likely to be bleeding given four vital sign observations 

and their mechanism of injury. This calculation is performed with Bayes’ Theorem and 

executed using commercial software packages such as Agena Risk.323  

As described in 1.7.1 advances in computational methods provide the opportunity to 

develop complex models for outcomes with multiple influential variables. BNs provide 

a framework for combining multiple sources of information, including existing 

knowledge and individual patient characteristics, to accurately compute individualised 

risk estimates and even the likely effect of a therapeutic intervention. 
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1.8.2.1 Components 

BNs consist of two parts (Figure 11). The first is a network structure which graphically 

describes the model's causal relationships. The network is graphed using a directed 

acyclic graph (DAG) in which nodes represent uncertain variables.324 Arcs link the 

variables and represent probabilistic dependencies between variables. The second 

component of a BN is a set of parameters that describes the strength of the influences 

between variables. These parameters are known as the conditional probability 

distributions.320  

BNs are flexible and both the structure of the DAG and the parameters that link the 

variables can be constructed in different ways. BNs can be developed purely from the 

data or “by-hand” (using experts to elicit knowledge) or via a combination of these two 

methods. Variables can be both continuous or discrete and may be directly measurable 

or unmeasurable.  

BN are developed using reasoning pathways consistent with clinical understanding.  

This permits difficult to characterize physiological states to be incorporated, such as 

hypoperfusion. Portrayal of these latent variables allows a coherent arrangement of the 

directly observed values. This gives the end-user information about how the prediction 

is calculated and increases the model’s generalisability to groups of patients beyond the 

training dataset.  

1.8.2.2 Strengths of Bayesian Networks  

Bayesian networks have advantages over more commonly used clinical decision support 

tools such as regression based models.320 One of the most significant advantages of a 

Bayesian Network is the ability to combine domain expertise with data. Using experts, 

prior knowledge can be incorporated into BNs either by their influence over the network 

design and causal relationships or by assigning probabilities to relationships using 

published literature and their experience. Combing expert knowledge and data, produces 

accurate models.325  



Chapter 1- Introduction 

71 

 

 

Figure 11: A simplified fragment of a Bayesian Network. The green nodes denote 

measurable indicators (evidence) of hypoperfusion. The grey hypoperfusion node is an example of an 

indirectly measurable (latent) node. The red node is the outcome of interest. The blue variable is a parent 

of the grey variable. Arrows demonstrate the direction of the causal relationships. 

As the combination of knowledge and data can be simply represented as the BN’s 

graphical structure, it is easy to explain and interpret the model’s assumptions. With a 

transparent structure, clinical credibility can be established. It is possible that this 

transparency may subsequently enhance clinician trust and uptake of the model into 

clinical practice.  

BN are able to model complex problems where a multitude of related variables interact, 

often in nonlinear relationships. BN models are less susceptible to violations of 

statistical assumptions common with logistic regression models. For example, in a BN 

model collinear variables do not produce the same degree of model instability seen with 

collinearity in regression models. 

The causal structure of BNs also permits causal inferences to be made in a way that is 

not possible with other machine learning techniques.326 This allows BNs to model causal 

interventions, and to reason both diagnostically and prognostically.327 
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In pre-hospital care, decision making under uncertainty due to missing or unknown 

information is common. With BNs, any subset of the input variables can be used for 

evidence. The BN will update the probability of all unknown variables when 

information from any variable is entered.  

Finally, Dynamic Bayesian Networks provide the ability to make models that reflect 

decision making that is not static. For example, a clinician making a prediction of a 

disease may change their impression of the likelihood of that disease overtime as 

increasing information becomes available. In the context of trauma, a familiar example 

would be a pre-hospital physician who recognises a patient with low blood pressure after 

a fall from height. She may consider the cause of shock to be either blood loss or a spinal 

injury. Over time if the patient’s observations become increasingly tachycardiac and 

hypotensive the clinician is more likely to believe the patient is bleeding and hence the 

probability of hypovolaemia as the cause of shock is increases. In hospital, following a 

positive FAST scan, the clinical team believe the patient has intra-abdominal bleeding 

with a high probability and rapidly move the patient for an urgent laparotomy. This 

example illustrates the evolving nature of medical decision making over time. Dynamic 

BNs can model this series of time dependent decisions in a way static prediction models 

cannot.  

1.8.2.3 Limitations of Bayesian Networks 

BNs are mathematically complex and their development is time-consuming compared 

to purely data-driven techniques such as neural networks. Often the most time-

consuming element of building a Bayesian Network is determining the graphical 

structure and key variables for a given problem. This is because BNs are causal models 

and the relationship of the variables must be arranged in such a way that the causal 

relationships are respected. Some problems have very clear model structures whereas 

for other problems it may not be clear which variables represent cause or effect. 

Furthermore, it may not be clear whether a particular variable is involved in a causal 

relationship at all.328 Hence, defining the network structure can be difficult and is subject 

to potential bias from the domain experts. 
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It may also be difficult for domain experts to express their knowledge in format that is 

compatible with a probability distribution. This may be due to inexperience with 

Bayesian methodology. Additionally, the task of estimating the probability of rare 

events is difficult.328  

1.8.2.4 Examples of Bayesian Networks in medicine 

Bayesian Networks have been developed to aid decision making in medicine for over 

20 years.329 They have been applied to problems of diagnosis, prognosis and treatment. 

Kyrimi et al. identified 47 examples of medical BNs327, ranging from anticoagulant 

prescription decisions330 to the diagnosis of ventilator associated pneumonia.331 The 

most highly used applications of Bayesian networks are in identifying gene regulatory 

networks from time course microarray data332, and the identification of breast cancer by 

combining patient risk factors with mammograms.333  

Reflecting a similar situation to the lack of impact studies discussed in section 1.6.5, 

Kyrimi’s review did not identify any studies describing prospective external validation 

or impact studies for medical Bayesian Networks.334 

1.9 The Perkins-Yet “ED TIC BN” 

 ED TIC BN model development  

Perkins and Yet developed a Bayesian Network to predict TIC within the first 10 

minutes of hospital care.335-338 The clinical decision support tool is designed to be used 

in the Emergency Department (ED). The BN requires routine clinical information that 

is readily gained during a standard Advanced Trauma Life Support (ATLS) patient 

assessment process. The model’s casual structure was developed using the “by hand” 

method. It is derived from evidence in published literature (Figure 12). The conditional 

probability distributions were trained using patient data from 600 patients in a civilian 

international, multicentre, prospective cohort study called the Activation of Coagulation 

and Inflammation in Trauma (ACIT).339 
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Figure 12: Directed acyclic graph of the Perkins-Yet Bayesian Network for 

prediction of trauma induced coagulopathy in the emergency department. Five latent 

variables (dark red nodes) are causally related to the outcome variable coagulopathy. The model uses 14 

evidence measurements (white nodes) to compute the likelihood of coagulopathy. Fluid, volume of 

prehospital resuscitation crystalloid administered; GCS, Glasgow Coma Scale; HR, heart rate; MOI, 

mechanism of injury; SBP, systolic blood pressure; Temp, temperature.  

In developing the model the authors undertook the following key steps: classifying 

coagulopathy, perfusion and tissue injury status; establishing the clinical relevance of 

coagulopathy; and developing an evidence framework which allows users of the model 

to explore the evidence underlying the causal structure (Figure 13). The model was 

trained using AgenaRisk software (Agena, London, UK).323 

Classification of a coagulopathy is challenging as discussed in 1.4.4.2. The authors 

performed a three-step process to classify patients with coagulopathy. First, they 

identified patients with an INR >1.2. Next, they separately performed patient clustering 

through AgenaRisk using an Expectation Maximisation Algorithm. This algorithm used 

all the available data points in the model to predict which coagulopathy group a patient 

belonged to. Data points included ROTEM measures of clotting function, lactate 
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measurements and the patient’s injuries. Where the coagulopathy labels of the INR and 

clustering procedures agreed patients were given this label. Where there was 

disagreement between the two processes, three experts agreed on a label.  

 

Figure 13: Example of the evidence browser developed by Yet accessible at 

www.traumamodels.com340 

 

http://www.traumamodels.com/
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 ED TIC BN predictor variable definitions 

Domain knowledge (rather than a data driven process) was used to select predictors 

(evidence) for the causal mechanisms described in the model’s DAG (Figure 12). The 

14 variables were selected as they were known to be routinely generated during a 

standard ATLS primary survey (Table 5).  

Table 5: Definitions and states of predictor variables in the ED TIC BN 

Predictor Variable 
Type of 

Node 
Definition 

   

Heart rate Continuous Heart rate, beats per minute 

Systolic blood pressure Continuous Systolic blood pressure, mmHg 

Temperature Continuous Body temperature, oC 

Haemothorax Boolean Suspected based on examination or CXR findings 

FAST result Boolean Intra-abdominal peritoneal fluid identified 

Unstable pelvic fracture Boolean Suspected based on examination or PXR findings 

Long bone fracture Boolean 
Suspected fracture of femur, tibia or humerus or 

traumatic amputation proximal to ankle or elbow 

Glasgow coma score Ordinal GCS on admission or before intubation 

Lactate Continuous Admission arterial or venous blood gas analysis 

Base deficit Continuous Admission arterial or venous blood gas analysis 

pH  Continuous Admission arterial or venous blood gas analysis 

Mechanism of Injury Boolean Blunt or penetrating 

Energy of injuring mechanism Boolean High or low energy1 

Volume of fluid administered Continuous Volume of crystalloid or colloid fluid given, mL 

FAST, Focused abdominal sonography in trauma; CXR, Chest X-ray; PXR, Pelvic X-ray; GCS, 

Glasgow coma score 

 
1The energy associated with injuring mechanism was defined as  

1) high energy: high-velocity GSW; fall >20 feet (6 m); pedestrian or cyclist versus vehicle >20 

mph; road traffic collision with mechanical entrapment, ejection from vehicle or death in 

same passenger compartment; entrapment under a train or vehicle; crush injury; blast injury 

2) low energy: stab; low-velocity GSW; and blunt injury excluding injuries above 
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 ED TIC BN model validation 

The ED TIC BN model was validated using an external dataset of 491 patients. The 

patients used for external validation were separated by time from the development 

patients (373 patients) and two different hospitals (118 patients). Performance of the 

model was accessed in three main domains; discrimination using AUROC, calibration 

using graphical description and accuracy using the Brier score. In external validation 

the BN had excellent prognostic performance (Figure 14), was accurate (Brier Score 

0.06 (0.05-0.08), and well calibrated (Figure 15). The BN provided greater accuracy 

than any individual predicting factor and had comparable accuracy to laboratory tests of 

coagulation but within shorter timescales. In addition, the BN is able to maintain the 

accuracy of its predictions with up to one third of predictor information missing.337 

 

Figure 14: ROC curves for the validation of the prognostic performance of the 

Perkins-Yet ED TIC BN in patients recruited to the ACIT study. ROC curves show the 

relationships between true-positive and false-positive TIC predictions. The red dotted line marks the 

recommended operating point of the prediction at 90% sensitivity.337 
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Figure 15: The ED TIC BN calibration plot. The plot shows the relationship between ideal 

(dashed line) and observed (solid line) predicted values in the development cohort. The rug plot along the 

x axis denotes observation frequency. The circles with 95% confidence intervals indicate observed 

frequencies by decile of predicted probability in 10% bounds of predicted risk. Error bars denote the 95% 

CI.  

 ED TIC BN application  

The authors rendered an interactive interface of the model at www.traumamodels.com. 

With this interface users can enter patient information to compute the patient’s risk of 

TIC. The graphical output of the model was not optimised at the time of hosting the 

webpage. Nevertheless, the model is usable and accessible by anyone with internet 

access.  
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 ED TIC BN impact analyses 

Mossadegh and Kyrimi describe their research to assess the impact of the ED TIC BN 

in their respective PhD theses.327, 341 The research aimed to assess the performance of 

the ED TIC BN in real world conditions. The assessment was approached in three 

graduated steps.  

First, Mossadegh demonstrated that all 14 of the input variables for the model were 

available with a median of 15 minutes (IQR 12-20 minutes) in a series of 67 

prospectively observed trauma responses. Additionally, all data, except the blood gas 

measurements, were available within 6 minutes (IQR 4-11 minutes). Predictions 

generated at an earlier time, without the blood gas variables, were highly correlated ( 

= 0.944) to the final prediction with the full dataset.  

The authors subsequently performed a series of experiments to assess the impact of the 

ED TIC BN on decision making. Initially they assessed hypothetical decision making 

and followed this up with a prospective real-world evaluation.  In the first experiment, 

they conducted interviews with clinicians using 10 standardised clinical vignettes. The 

study was designed to assess the impact of decision making with and without the ED 

TIC BN. They enrolled 32 clinicians and demonstrated that use of the ED TIC BN 

appropriately reduced risk prediction when coagulopathy was not present. The study 

demonstrated that trust in the tool was associated with clinical experience. Junior staff 

were more likely to trust the tool than senior clinicians.  

In the second part of their study they prospectively assessed the impact of the ED TIC 

BN on real world decision making. Nested within this study, the authors also performed 

a prospective external validation to measure the tool’s performance. For this study 

researchers observed the initial management of 61 trauma patients in the ED. Ten 

minutes after the patient arrived, researchers asked the trauma team leader to give their 

prediction of coagulopathy. Concurrently, the ED TIC BN’s prediction was calculated. 

The model’s prediction was initially blinded from the trauma team leader, until after the 

patient had left their care. Blinding of model’s prediction was performed to ensure the 
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model’s prediction could not influence care, as the impact of the tool is incompletely 

understood.   

Once the patient had left the ED, the trauma team leader’s 10-minute risk prediction was 

compared to the model’s computed prediction. Importantly, and similar to the clinical 

vignette study, the results showed that addition of the ED TIC BN result appropriately 

reduced coagulopathy prediction when no coagulopathy was present. In patients with 

coagulopathy the model did not alter the already appropriately high clinical 

predictions.341 In addition in this relatively small sample, the external validation 

demonstrated high discriminatory performance (AUROC 0.98, 95% CI 0.95–1.0). 

 

Figure 16: Boxplots demonstrating clinician’s prediction of coagulopathy at three 

time points. ED; 10 minutes into the trauma call, Before; before the clinician was told the ED TIC BN 

prediction once the patient had left ED, After; after the clinician was told the ED TIC BN prediction once 

the patient had left ED. Y axis: clinical prediction quantified using a 7-point Likert scale. Left figure; 

patients without TIC. Right figure; patients with TIC. Figure from Mossadegh’s PhD Thesis.341 

 Summary of the development, validation and preliminary impact analysis 

of the ED TIC BN 

The ED TIC BN is a hand built causal probabilistic model trained and validated on 

highly structured data from a prospective cohort study. The strong performance metrics 

in retrospective internal-external validation, were reproduced in a small real-world 

prospective external validation. As the model reliably produces results long before 
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laboratory diagnostics, it has the potential to influence decision making in the ED. 

Encouragingly, initial impact studies suggest the model is able to support clinician’s 

assessment of risk. 

 What remains unknown  

Despite the model’s promise, several aspects of its ability to support decisions remain 

unknown. For example, it is not known what proportion of trauma patients pose difficult 

decisions and may benefit from decision support. Nor, whether clinicians will be able 

to integrate the model’s output into their decisions. Ultimately, for the BN model to have 

clinical impact clinicians will need to adjust their decision making and model augmented 

decisions need to improve health outcomes. To address these questions, sequential 

impact analysis is required. Early impact analysis will ascertain important information 

such as the size of any effect of the model on health outcomes. More definitive impact 

analysis requires an RCT of trauma patients treated with and without the assistance of 

the model. Until the RCT is performed, the full impact of the model on clinical care 

remains unknown.   

It is well understood that in patients with major traumatic injuries, early intervention can 

be lifesaving (see 1.4.3). It is not known, however, whether decision support used earlier 

after injury could have a more significant impact than in-hospital decision support. Nor, 

whether a novel pre-hospital BN model could retain the predictive performance of the 

ED model. Practical considerations about whether clinicians can readily capture a pre-

hospital model’s inputs and integrate the model’s output into their decisions need 

addressing before impact studies can be considered. Finally, like the ED TIC BN, the 

impact of a PH TIC BN would need detailed assessment in an RCT randomising 

clinicians to the model or not. The definitive trial’s endpoints should assess patient 

outcomes, clinician decision making and health system considerations such as resource 

use, and cost. 
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1.10 Aims and objectives of thesis 

The aim of this thesis is to assess the impact of Bayesian Networks on decision making. 

The thesis focuses on decisions in pre-hospital trauma relating to major haemorrhage 

and trauma induced coagulopathy. The thesis is divided into the following aims:  

• Describe how pre-hospital clinicians make decisions relating to bleeding and 

coagulopathy after injury and understand the conditions that may make 

decisions difficult. (CHAPTER   2, p84) 

• Assess the potential impact of the ED TIC BN to improve recognition of major 

haemorrhage (CHAPTER   3, p120) 

• Develop and assess the performance of a BN for pre-hospital TIC and major 

haemorrhage prediction (CHAPTER   4, p145) 

• Assess the impact of the pre-hospital BN on the clinical assessment of TIC and 

major haemorrhage (CHAPTER   5, p169) 

• Understand how uncertainty in clinical diagnosis affects modelling 

performance (CHAPTER   6, p206) 

• Systematically review the knowledge that determines the casual relationships 

of the TIC BN (CHAPTER   7, p216) 
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1.11 Summary 

Trauma is a leading cause of death in young people, and bleeding is the leading cause 

of preventable death. Haemostatic dysfunction is common after injury, and patients with 

coagulopathy have high rates of morbidity and mortality. Coagulopathic patients require 

more blood products, surgery, and longer in critical care.342-344 There are therapeutic 

strategies for TIC, and the earlier these interventions are applied, the greater the 

benefit.92, 345-347 Clinicians’ judgement is needed to identify patients that may benefit 

from high-risk treatment strategies. The assessment of this risk is especially difficult in 

the pre-hospital environment, which lacks the accurate diagnostic adjuncts found in 

hospitals. There are no reliable PH diagnostic tests for TIC. Simple scoring systems to 

predict TIC have been developed but are either methodologically flawed255 or not 

accurate enough to be clinically useful.257, 261, 266 Current practice, therefore, relies on 

blind, empirical protocols and expert opinion.  

Many decision support tools have been developed for the diagnosis of major 

haemorrhage and TIC, but very few have been validated, and none have undergone 

prospective impact analysis. Improvements in computing power and data collection 

have enabled the development of powerful machine learning techniques. Bayesian 

Networks are a machine learning implementation of Bayes Theorem. By using sound 

probabilistic laws, BNs can combine knowledge and data. BNs could be useful for pre-

hospital clinical decision support as they reason under uncertainty, and their predictions 

are explainable. 

A BN to predict TIC has been developed, validated and undergone initial impact 

assessment. The ED TIC BN is an accurate, well calibrated model that can adjust 

clinician’s prediction of risk. The extent to which the ED model is generalisable to the 

pre-hospital environment is unknown. Further research is required to develop a PH TIC 

BN, assess a novel model’s ability to alter decisions, and improve outcomes. 

The next chapter explores how decisions about major bleeding and TIC are currently 

made pre-hospital without decision support. 
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PRE-HOSPITAL DECISION MAKING IN 

TRAUMA: DESCRIBING THE CURRENT 

PROCESSES AND THE CHALLENGES  

2.1 Scope of the chapter 

This chapter explores how decisions are made and what challenges easy decision-

making in pre-hospital trauma care. An interview study of expert pre-hospital clinicians 

is used to understand how decisions about bleeding and trauma induced coagulopathy 

are made. In depth exploration and understanding of the issues are elicited using a 

qualitative methodology. The chapter highlights the significance of clinical uncertainty 

and discusses both the opportunities and challenges for pre-hospital clinical decision 

support.  
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2.2 Introduction 

Decisions in pre-hospital trauma care are characterised by rapidly changing 

circumstances, high levels of uncertainty and high stakes consequences. To make a 

decision, clinicians assess multiple sources of information. The available information 

differs in accuracy, reliability and usefulness. When information is uncertain, 

conflicting or missing, decisions are difficult and the ability to logically compare the 

utility of alternative courses of action is lost.  

Trauma induced coagulopathy (TIC) and major haemorrhage are two interconnected 

phenomena that occur in severely injured trauma patients.50 There is an increasing 

number of effective management strategies for both conditions. These strategies are 

often only effective when high-risk patients are identified early and rapidly treated.142, 

348 (see 1.4). Clinical identification of high-risk trauma patients in-hospital is difficult 

and has been demonstrated to have poor accuracy.99  

An observational study in 2015, demonstrated that trauma surgeons at 10 level 1 trauma 

centres in the USA were unable to accurately identify patients with major haemorrhage. 

In 966 patients that received at least one unit of blood transfusion, the surgeons had a 

66% sensitivity and 64% specificity. The surgeons falsely predicted two incorrect major 

haemorrhage patients for every correct prediction. The surgeons were more likely to 

predict major bleeding in patients who were younger, had sustained penetrating trauma, 

were more severely injured, had higher heart rates, and had lower systolic blood 

pressures.99 These findings are important to this thesis for several reasons; first, it 

demonstrates the degree of uncertainty present in trauma; second, it highlights several 

patient factors that clinicians have learnt to associate with high risk. Third, it highlights 

that there is no equivalent pre-hospital evidence.  

Despite over five decades of experience with clotting abnormalities after injury,349, 350 

identifying patients with TIC remains an uncertain clinical practice. There are no 

published studies that attempt to establish the clinical accuracy of the diagnosis of TIC, 

or pre-hospital blood transfusion. Relative to in-hospital decisions, pre-hospital 

decisions are complicated by having fewer diagnostic aids, challenging environmental 
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conditions and less time from injury to assessment for the patient’s physiological 

response to evolve.  

The study presented in this chapter seeks to understand the factors that make decisions 

difficult among pre-hospital clinicians. The limitations of the classical approach to the 

diagnosis of haemorrhage is discussed in section 1.4.4.1. What makes decisions around 

the diagnosis and treatment of major bleeding and TIC particularly challenging in the 

pre-hospital environment is not well understood. Increasing our understanding of the 

causes of difficulty, provides an opportunity to evaluate where an intervention to support 

clinical decision making, such as a decision-support model may add value and how it 

may integrate into the clinical workflow.  

This study seeks to identify the challenges that experienced pre-hospital doctors face in 

making critical decisions and identify barriers to the integration of a decision-support 

tool. The study will provide an assessment of the pre-hospital deployment terrain and 

the processes and culture which may potentially affect decision-support integration.  

 Qualitative Research 

The analytical method in this chapter originates from a distinct philosophical position 

in contrast to latter chapters within the thesis. Historically, the sciences are conducted 

in a positivist and post-positivist theoretical framework with quantitative methods. 

Increasingly, it is recognised that some questions are better suited to qualitative 

analytical approaches which have their foundations in a constructivist epistemology. 

Research questions that concern “the meaning which people attach to actions, decisions, 

beliefs and values"351 are the type of questions that can be addressed with a 

constructivist or interpretivist approach. Data gathered from questions about human 

thoughts are commonly narrative and contain considerable complexity. Qualitative 

analytical approaches can provide an in-depth insight into this type of data.352 

Accordingly, a qualitative approach is used in this chapter to derive detailed and 

interpreted insights into how experts make decisions.  
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2.3 Aim 

The two main aims of this chapter were to understand how pre-hospital decisions about 

bleeding, coagulopathy and transfusion are made by expert clinicians and additionally, 

what makes these decisions difficult. A secondary aim was to explore how probabilistic 

decision support may integrate into the pre-hospital clinical environment. 

2.4 Methods 

 Reporting guidelines 

Enhancing the QUAlity and Transparency Of health Research (EQUATOR) network 

(http://www.equator-network.org) is an international organisation to improve the 

quality and transparency of research. EQUATOR compile a database of reporting 

guidelines to help further this aim. For qualitative studies, EQUATOR's most recently 

recommended guideline is the SRQR.353 SRQR consists of 21 standards to guide the 

reporting of qualitative research, which was followed to facilitate critical appraisal of 

the study.  

 Qualitative approach and research paradigm 

This study poses the follow questions:  

1) How do pre-hospital clinicians make decisions about bleeding, transfusion and 

TIC? 

2) What makes these decisions difficult?  

3) How might probabilistic decision support integrate into the pre-hospital clinical 

environment? 

To answer these questions requires a qualitative analytical approach. There is no single 

accepted way of performing qualitative research. Multiple methodological frameworks 

exist within qualitative research. Well-known examples include Grounded Theory 

http://www.equator-network.org/
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which assumes the researcher has no pre-conceived ideas on the research area and might 

be employed to identify underlying theoretical explanations. Phenomenology is another 

well described method which can be used to help to discover abstracted essences of 

specific lived experiences. Some authorities suggest quality in qualitative research is 

achieved by consistently adhering to the philosophical starting point of a given 

methodology.351 Equally, other authors encourage methods associated with a range of 

philosophical positions. These authors believe the quality of a study is enhanced by 

taking multiple philosophies.354  

The design and analysis of this study, uses a Qualitative description approach.355-357 The 

aim of qualitative description research is to provide a detailed description of the 

concepts under investigation in an easily understood language.358 This approach does 

not constrain the analysis to one particular paradigm or guiding theory.359 As the 

approach is free from any one theoretical framework, it therefore avoids inappropriate 

theoretical complexity. Broadly speaking, qualitative description approach focuses the 

analysis on the description given by the participants and the research “strives to stay 

close to the surface of the data”.357 The approach uses a combination of literal 

descriptions and is coupled with analysis which involves interpretation of the 

participants ascribed meaning.360 In an applied health services research context, 

qualitative description provides a method of addressing the specific a priori research 

questions while also allowing for de novo data to arise and be incorporated. 

In a qualitative descriptive approach, the role of the researcher in the interpreting the 

data is specifically acknowledged. It is accepted that there are many interpretations of 

reality. The output of this qualitative analysis is a subjective interpretation which is 

strengthened and supported by reference to verbatim quotations from participants.360 

The study design does not seek a replicable objective reality but rather an account that 

most of the researchers and participants involved can agree on.358 The ultimate aim is to 

gain an “inside or emic knowledge” and learn how the participants “see their world”.360 

In this study, an empathic neutrality position has been taken. This empathic neutrality 

approach acknowledges that insights from the researcher will be used during data 

interpretation but maintains a non-judgemental stance.351 
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 Researcher characteristics 

In qualitative studies, the characteristics of the researcher, influence the research 

findings. Reflexivity is the term given to this circular relationship between cause and 

effect.351 In this study, a stance of "empathic neutrality” was adopted. Empathic 

neutrality recognises that there is value-mediated by the researcher on the findings of 

the study. The empathic neutrality approach aims to make assumptions explicit. For the 

purpose of making assumptions clear, the researcher’s characteristics, education and 

relationships with the participants are described.  

I am a white British male. I attended Medical School in London and am now a General 

Surgery Registrar training in London. I have basic pre-hospital emergency experience 

in a military context and no subspecialty pre-hospital training in a civilian context. I 

conducted this study as part of a doctoral research degree at the Centre for Trauma 

Sciences, Blizard Institute, Queen Mary, University of London. I am employed by the 

UK Ministry of Defence. There are no other sources of funding for this study. All the 

participants in the study are known to me on a professional basis. I am influenced by the 

works of Kahneman (Heuristics and Biases, HB) and Klein (Naturalistic Decision 

Making, NDM) in the critical analysis of decision making. 

In the course of this study, I was advised by Colonel Nigel Tai; Consultant Trauma 

Surgeon and my primary PhD supervisor, Professor Julia Williams; academic paramedic 

with interests in pre-hospital research and qualitative methodology and Dr Suzie Kellet; 

an anaesthetist with an interest in decision making. I was assisted in the transcription of 

the interviews and initial data analysis stages by Dr Rahul Bagga, an academic junior 

doctor.  

 Study Setting 

The study was conducted at two Air Ambulance sites; London’s Air Ambulance (LAA) 

and Air Ambulance Kent, Surrey and Sussex (AAKSS). Both organisations are in the 

South of England and provide a constant physician and paramedic response to critically 

injured patients. While there are many similarities between the two services there are 
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also some important differences. LAA provides care within an urban major trauma 

network whereas AAKSS serves a larger geographic area with a lower population 

density and greater distances to major trauma centres. Patients treated by LAA have a 

relatively shorter pre-hospital phase of care and are more commonly transported by road 

rather than air. LAA typically treats a younger population more frequently injured by a 

penetrating mechanism injury.  

 Sampling strategy and participants 

The study used a purposive sampling strategy.360 Purposive sampling is a non-

probability sampling strategy in which the researcher selects participants that they 

believe will have the necessary experience to answer the study question. Purposeful 

sampling of a highly informed group is known to provide "rich, accurate and helpful 

information" about a specific question.361  

Currently practising pre-hospital consultants of at least five years continuous pre-

hospital experience were approached from the two participating organisations; LAA and 

AAKSS. The researcher invited participants that were known to have an academic 

interest in haemorrhage or TIC and are thus considered experts. Participants were not 

selected on the basis of their interest in decision making. Participants were invited to 

participate by e-mail. Participants were selected for interview based on their availability 

during the sampling period. No invitations were declined. The purpose of sampling 

participants from two separate institutions was to understand commonalities as well as 

differences between both the individuals and the institutions. Participants were given a 

number to maintain their anonymity and the sites will now be referred to as site A and 

site B.  

 Ethical issues pertaining to human subjects 

Approval for the study was granted by the Health Research Authority as part of the 

EmPHATTIC study; IRAS 200742 and was reviewed and sponsored by Queen Mary, 

University of London. The EmPHATTIC study did not require REC approval. A 
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participant information leaflet and a consent form were given to all participants and 

written consent was obtained before the start of the study. 

 Data collection methods, instruments and technologies 

The study used semi-structured interviews.362 Interviews were conducted between 

December 2018 and January 2019. The interview guide and questions are found in 

Appendix A. The interview questions were informed by discussion between the 

researcher and the primary supervisor. All of the interviews were conducted face-to-

face at the Air Ambulance headquarters by the primary researcher. The interviews were 

electronically recorded using a Snowball ICE microphone (Blue Microphones, Newark, 

USA) to the voice memo application (version 2.0 Apple Inc., Cupertino, USA). 

Interview audio recordings and transcripts were stored on a password-protected 

computer. 

During and immediately after the interviews, notes were made on the immediate 

impressions of the participants' responses. These notes were referred back to in the 

analysis phase. Notes were also made during the transcription and analysis phases, 

which informed the formation of themes. 

The recordings were transcribed verbatim. Transcription was achieved in a two-step 

process; first, the audio file was uploaded to Trint (Trint Ltd, London, UK) a 

commercially available voice-to-text software. In the second step, the automated text 

transcript was checked for errors by two researchers (MM and RB) using the original 

audio recording. The checked transcripts were imported to NVivo Version 12 for Mac 

(QSR International Pty Ltd, Doncaster, Australia), a data management software, to 

facilitate data analysis.   

 Data processing and analysis 

Data processing and analysis was approached in six phases.363 Phase 1 was data 

familiarisation. This occurred through reflection of notes and re-reading of the interview 

transcripts. Phase 2 was the inductive generation of initial codes within the interview 
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transcripts. Initial open data coding was performed independently by two coders (MM 

and RB). Open coding was followed iteratively by focused coding to refine ideas and 

develop themes. An iterative process of constant comparison for code development and 

refinement was employed.  

In this context a code identifies a feature of interest within the data that is the “most 

basic segment, or element, of the raw data or information that can be assessed in a 

meaningful way regarding the phenomenon”.363 Coding is the process of ascribing 

codes to the interview transcripts and coders are the analysts that perform this task. 

Phase 3 followed competition of the first cycle of iterative coding and a search for 

themes across the data set was performed.364, 365 Initial themes were reviewed in phase 

4 following discussion with RB and a third researcher (SK). In reviewing the initial 

themes attention was given to the proposed theme’s internal homogeneity and external 

heterogeneity and the adequacy of the themes to answer the study questions. During this 

phase two additional themes were generated, two original themes were merged, and one 

theme refined and re-named. A subsequent round of coding took place where refinement 

of codes was achieved using a common codebook between coders. Differences of 

opinion relating to the most appropriate code for an interview excerpt was settled by 

discussion between coders. Where a difference in opinion remained the third coder made 

the final decision.366 In phase 5 the themes were defined and named. Finally phase 6 

involved writing the chapter. 

Both thematic analysis and a count of the frequency of the codes were undertaken. 

Thematic analysis was performed first. Using a combination of thematic and frequency 

analysis facilitated an analysis which quantified, analysed and reported emergent 

patterns within the data.363, 367 An analysis of the frequency of codes was performed by 

a simple count of each code in every interview.  The result was tabulated under the 

heading ‘frequency’. The number of interviews which the codes were identified in was 

recorded and tabulated under ‘interview’.  
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 Techniques to enhance trustworthiness 

Respondent validation is a process that seeks to verify the accuracy of the data in the 

study. It is a process to ensure the researcher’s interpretation of the interviews correctly 

reflects the participant’s view.351 In this study, transcribed interviews were returned to 

the participant with the coded text annotated. The interviewee was asked to validate the 

accuracy of transcription and raise any unintentional discrepancies in the coded 

interpretation of their interview. Participants were sent the first complete iteration of the 

codes without the broader themes. Participants were not asked to validate the final 

version of the coding structure.   

2.5 Results 

A total of 10 interviews were undertaken; four participants from site A and six from site 

B. There were nine male participants, reflecting the male preponderance of pre-hospital 

clinicians at both sites. Participants 6 and 7 were Anaesthetists and the other participants 

worked in Emergency Medicine. The average pre-hospital experience of participants 

was longer at site A (median 16 years site A vs. 9 years site B). Individual participant 

characteristics have not been detailed due to the risk of participant identification.  

Interviews lasted a median of 30 (IQR 28-35) minutes. Once eight interviews had been 

conducted further data gathering provided diminishing returns. The final two interviews 

(interviews 9 and 10) did not provide additional themes or sub-themes. In addressing 

the aims of this study open coding of the interview transcripts produced over 140 initial 

codes. These codes were refined iteratively between the three coders, and overarching 

themes were generated inductively. The themes identified are recognition-primed 

analysis, uncertainty, imperfect decision analysis and clinician autonomy (Figure 17).  

A frequency of codes analysis is provided in tables 7-10. These tables demonstrate the 

relationship between the data codes and the main themes as well as the frequency of 

theme, sub-theme and code reporting across the data set. 
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Before addressing how participants made decisions about bleeding and TIC, participants 

were first asked whether the decisions were important. All 10 participants agreed that 

making a diagnosis of major bleeding and the decision to transfuse blood were critical 

parts of their initial patient assessment. Only two participants said that they consciously 

considered whether a patient had TIC.  

“[the assessment of bleeding] is a key consideration and really what my 

primary survey is trying to establish, in the pre-hospital setting, is 

identifying obvious signs of, or potential for, bleeding.” Dr 1 

Accordingly, participants provided detailed descriptions of the overt analytical 

processes used to establish a diagnosis of major bleeding. Descriptions about when to 

start a blood transfusion and whether a patient was at risk of TIC were less precise and 

demonstrated lower levels of agreement between participants. 

 

Figure 17: Connections between themes identified by thematic analysis. The top row 

of boxes denotes the three study questions, the middle row the overarching themes and the bottom row 

the subthemes. 
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Question 1: How do senior doctors make decisions about bleeding, coagulopathy 

and the need for blood transfusion in the pre-hospital environment?   

When making decisions, it was clear that participants attend to information or cues from 

multiple sources. Many of the cues participants reported are well described elsewhere 

(see 1.4.4). This section focuses on insights that are less well described.  

The methods used to make a decision are complex and can be understood using concepts 

from Naturalistic Decision Making (NDM) (see 1.5.1.1). Experienced clinicians used 

learnt patterns to select, interpret and synthesise key cues to make decisions. Decisions 

were also influenced by guidelines and psychological pressure. These influences were 

variable depending on the decision maker.  

 Theme 1: Recognition primed analysis 

2.5.1.1 Information selection, interpretation & synthesis  

Participants described seeking out familiar patterns starting from the initial job 

description.  

“I mean part of the assessment probably starts before you even get to the 

scene … knowing what job you're going to …  knowing your mechanism or 

what the alleged mechanism is that starts you thinking” Dr 8 

Once participants arrive at the patient’s location, they use multiple cues to update their 

perception of the risk of major injury.  

“A lot of the surrogates that we use to identify bleeding … are not 

particularly sensitive and so you need to add as many layers to the picture 

as possible, it's almost like pieces of a puzzle that allows you to then stand 

back and look at the whole picture once you've got each piece" Dr 6 

Participants at both sites agreed some indicators were more predictive of life-threatening 

haemorrhage than others. One of the two sites teach their clinicians to identify a set of 

eight indicators they believe are strongly predictive of life-threatening haemorrhage. 

These factors are collectively referred to as the “hateful eight” (Table 6).  
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Table 6: The hateful eight; factors suggestive of major haemorrhage 

Factor suggestive of major bleeding Type of Factor Source 

   

Pale Qualitative Visual inspection 

Clammy Qualitative 
Visual inspection / 

palpation 

Apparent air-hunger (change in respiratory pattern) Qualitative Visual inspection 

Venous collapse Qualitative Visual inspection 

Hypotension (low volume or absent peripheral pulses) Qualitative Palpation 

Low or falling end tidal CO2 
Quantitative / 

trend 
Electronic monitoring 

Tachycardia or relative bradycardia Quantitative Electronic monitoring 

Altered mentation Qualitative Inspection 

Cues relating to how the patient was injured influenced how participants interpreted the 

patient’s injuries and the cause of abnormal physiological observations. It is this 

information interpretation that is termed here as Recognition-Primed Analysis (Table 

7). This novel term describes an analytical step within RPD. First cues and information 

are gathered and then analysed in a primed-recognition phase before decisions are made. 

This analysis may have elements of System 2 cognition or may be automatic.  

“doing the primary survey, I'd like to say that I'm always aware of the colour 

of their skin, and those sorts of things, but I'm probably not. Though 

sometimes it is obvious that someone looks very pale and you pick up those 

cues, but it's not always the case.” Dr 1 

For example, recognition-primed analysis is used to avoid what participants called 

“haemorrhage mimics”. Using the mechanism of injury, amongst other cues, primes the 

decision maker to search for specific injuries. This search is to avoid mis-diagnosing a 

patient as hypovolaemic due to bleeding. The search for alternative diagnoses is an 

analytical cognitive step. 

“If you’re to avoid an exsanguination mimic, you need to establish that 

they've had a mechanism of injury consistent with some injuries and you’ve 

found those injuries. Because you could have all of that physiology [hateful 

eight] … and not have any injuries… that's where it goes wrong; people just 

look at the physiology.” Dr 10 
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The use of point of care testing differed between the two sites.  Participants at site A 

used point of care lactate measurement and ultrasound imaging to influence their 

decision making.  Participants at site B did not use these tools and expressed uncertainty 

about their value.  

“I really like the lactate, because I think it just gives me that extra dimension 

for those patients where I'm either on the fence or the patient doesn't, to my 

external assessment, declare themselves one way or the other.” Dr 3 

“We don't currently do … blood gas testing but … I've always tried to think 

… if I could take the gas now what [would] the values be? … I hope that I 

transfuse patients who have a big base deficit or high lactate. … until the 

machines get a bit better I'm not sure they're going to add a lot to our 

clinical armamentarium.” Dr 5 

These different views demonstrate differing methods to cope with uncertainty. Dr 3’s 

view expresses the desire to gather more information. This strategy is well recognised 

within NDM (Figure 5). Whereas Dr 5’s hypothesising relies on her experience and 

ability to match patterns. The quality of Dr 5’s judgement is also dependent on the 

regularity of her environment and ability to learn within it.  

The diagnosis and management of TIC was less clearly described by most participants. 

Some participants said they consciously assessed the patient’s risk for TIC. These 

participants anchor their diagnosis of TIC on criteria such as the degree of tissue injury 

and duration of shock. Iatrogenic causes of coagulopathy such as dilution of clotting 

factors with crystalloids were also discussed. For the majority of participants that 

reported a non-formalised method of assessing TIC, the same broad contributing factors 

were reported.  

“There are groups though where you think, you know, that it [TIC] is going 

to be a problem. … [for example] those patients with multiple tissue 

injuries… on scene it probably doesn't feature in what you're actually 

cerebrating, but you know that that patient is going to get into trouble, and 

getting into trouble, includes trauma induced coagulopathy.” Dr 8 

Some participants felt the question of how to manage TIC pre-hospital was misdirected. 

These clinicians believed that TIC was a consequence of other processes such as 
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hypoperfusion and that the aim of management should be to minimise the factors that 

drive TIC. Many thought TIC was best managed in hospital with ready access to blood 

and blood products, whole blood coagulation diagnostics and surgical haemorrhage 

control. Thus, rapid transport into hospital was deemed beneficial.  

2.5.1.2 Experience 

The influence of experience was discussed throughout the interviews. Participants 

described a rapid intuitive decision-making process that was linked to having a body of 

experience. Experience changed the way clinical information was interpreted and 

synthesised. Commonly, participants described changes in opinion about when to start 

a blood transfusion. 

“…one of the things that has evolved is that previously I would have been 

more swayed by physiology and perhaps less so by the findings on the 

primary survey and perhaps increasingly, I’ve moved slightly in the opposite 

direction” Dr 2 

Experience is necessary to appropriately interpret cues even when they have been 

highlighted as important such as the “hateful 8”. These cues are likely to have 

considerable inter-individual variation in measurement.  

“The breathing issue is something that unless you’ve seen a lot of people in 

this pre-hospital phase often by the time those patients get to hospital, 

they’ve declared themselves” Dr 8 

The diversity of prior clinical experience may also be responsible for differences in 

opinion between base specialities. An example here contrasts an Emergency Physician 

and an Anaesthetist both practicing pre-hospital medicine at the same Air Ambulance 

site: 

“I'm comparing to my colleagues who are less cautious in giving blood 

products, I think that my threshold is relatively high to give blood products 

to these patients.” Dr 5 

“I think I have less of less of an existential angst about giving blood than 

some of my colleagues.” Dr 6 
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2.5.1.3 Rules, guidelines and evidence  

In pre-hospital medicine, standard operating procedures (SOPs) are regularly used to 

standardise medical provision. For pre-hospital blood transfusion, SOPs include criteria 

on when to start a transfusion. In discussing triggers for blood transfusion, most 

participants made reference to their SOP. This senior group of clinicians suggested that 

they were not rigidly adherent to SOPs.  

Alongside the formal SOPs, several participants described loose self-generated ‘rules’ 

that influenced their decisions.  

“If you've got a blood pressure that looks within a reasonable range (and 

essentially that is something in the 100 plus range) then it just lowers your 

clinical suspicion that this person has bled to a point that they're going to 

need blood products. It's not an absolute rule.” Dr 2 

Other sources of information such as standard training courses were not referenced in 

the interviews. Academic research was frequently mentioned to support the participant’s 

standpoint. Equally, the limitations of this evidence-base were acknowledged. Evidence 

was often described as insufficiently precise to assist in decision-making.  

“We just still don't really know whether giving plasma is going to help them, 

whether packed cells are going to help… we know that these patients will 

be okay for a period of time, quite how long that is… I'm not sure anyone 

knows … there's good evidence for [permissive hypotension] for penetrating 

trauma, we know that… it's more difficult for blunt trauma.” Dr 4 

2.5.1.4 Internal and external pressure  

Four participants described how their decision making was affected by either internal 

pressure, or the anticipation of external post-hoc scrutiny. When asked how the presence 

of bleeding changes management one participant replied: 

“I think it makes you more stressed. Sometimes it focuses you a bit more … 

but, whether you feel it or not, there’s an increased level of stress.” Dr 9  
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Post-hoc scrutiny occurs during formal retrospective reviews of patient management. 

Anticipation of this clinical governance process appears to influence decision making 

for some participants.  

“it seems to be almost a like a badge of honour for bringing [a patient] in 

and having avoided giving them the blood but actually their physiology is 

deranged, and they need the volume replacement” Dr 6 

Such comments suggest that the decision making amongst pre-hospital clinicians is not 

uniform. In some interviews there appeared to be a tension between what the participant 

believed to be best practice and what they believed their peers would construe as best 

practice post-hoc. Faced with this tension, some participants appeared to make to 

decisions to fit in with the wider group’s expectations while others were content to do 

what they thought was right. 

2.5.1.5 Section summary  

This section addressed how experienced pre-hospital doctors make decisions about 

bleeding, blood transfusion and TIC. Decision making is a complex process that can be 

understood through the lens of NDM. The theme recognition-primed analysis is novel 

term to address a cognitive step before decisions are made. Patient situations provide 

cues which influence the search for familiarity and pattern recognition. Experienced 

practitioners believe that some cues are more important than others and have begun to 

teach these cues within clinical communities.  

There were differences in opinion over the utility of point of care testing, the need to 

address TIC pre-hospital and blood transfusion thresholds. Guidelines and research 

evidence appeared to have little effect on influencing the decisions of senior decision 

makers. For some participants these decisions were made amongst feelings of stress.  
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Table 7: Codes relating to recognition-primed analysis theme 

Sub-Theme Code 
Interviews, 

n 

Frequency, 

n 

    

 Information selection (cues)   

Information 

selection, 

interpretation 

& synthesis 

Mechanism of injury 10 20 

Physical signs of injury (including hateful eight) 10 40 

Visual and non-quantitative signs of bleeding 9 43 

Quantitative signs and diagnostic devices suggestive of 

bleeding 
3 6 

Using trends and anticipating trajectory 8 18 

Autonomic response to injury 5 9 

Factors associated with TIC  9 32 

Information interpretation   

Develop a differential diagnosis 8 24 

External factors such as time and distance 6 16 

Individual patients respond differently  6 10 

Assessment of critical hypoperfusion 5 9 

Primacy of the primary survey 6 14 

Information synthesis   

Combining information to make a decision 9 51 

Expectation prior to patient assessment  5 9 

Experience 

Influence of experience 9 34 

Interpretation of signs changes with experience 6 9 

Clinical culture 2 5 

Rules, 

guidelines 

and evidence 

Rule based decision making 7 16 

Example of following an SOP or protocol 5 12 

Internal & 

external 

pressure 

Internal pressures and stress 4 9 

Post hoc scrutiny 3 4 
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Question 2: What makes decisions about bleeding, coagulopathy and transfusion 

difficult for expert clinicians? 

Difficult decisions were characterised by uncertainty and imperfect decision analysis. 

First, the influence of uncertainty in creating difficult decisions is discussed before 

moving on to insufficient analysis of decisions. 

 Theme 2: Uncertainty 

All of the participants at one point in their interview, identified their own feelings of 

uncertainty as a barrier to making decisions. Their uncertainty could be split into two 

sub-themes. There was uncertainty surrounding both the patient’s diagnosis and the 

benefit of a given intervention (Table 8). This combined uncertainty precluded effective 

prognostication, which in turn affected several key pre-hospital decisions. 

2.5.2.1 Uncertain diagnosis 

Participants reported situations in which they lacked confidence in the pre-hospital 

information. Most often this uncertainty was related to the inaccuracy of physiological 

observations to accurately portray the patient’s true state.  

“it would be lovely to remove some of the complicating factors or some of 

the unanswered questions and I guess, in my head, I'd love to know how well 

the [patient’s] tissues are being perfused.” Dr 9 

Patients injured with high energy blunt mechanisms often have multiple injuries and 

maybe lacking obvious cues such as external haemorrhage. Participants highlighted this 

group of patients as difficult to diagnose due to the uncertainty of the cause of their 

abnormal physiological observations.  

“this guy had classical signs of bleeding according to the books and ATLS: 

tachycardia, low blood pressure, and pallor... But ultimately, he wasn't 

bleeding.” Dr 7 
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The diagnosis of TIC presented more uncertainty amongst participants than the 

diagnosis of major haemorrhage. The absence of pre-hospital TIC diagnostics was a 

commonly reported reason for an inability to make an accurate diagnosis. Participants 

also thought that clinical cues were less reliable for the diagnosis of TIC than major 

haemorrhage.  

“I don't know how I would assess it [TIC] to be honest because there aren't 

the same clinical markers [as major bleeding]. You can hunch it, but if you 

were to say: is this person coagulopathic? Much more difficult to say with 

any degree of certainty, to objectively assess or make a judgement on that.” 

Dr 4 

2.5.2.2 Uncertain intervention effect 

Between participants there was variability on the intended outcome of pre-hospital 

blood transfusion. While most agreed on the short-term benefits, the longer-term 

benefits were more uncertain.  

“I'm not sure anybody knows this as fact, but there's this worry that by 

having that period of having under resuscitated [a patient], you set in chain 

a load of things that are going to cause them difficulty in the future; be that 

coagulopathy or multi-organ dysfunction.” Dr 2 

Participants agreed that for patients close to or in hypovolaemic cardiac arrest, a blood 

product transfusion should be started immediately. However, outside of this group, 

participants did not clearly articulate or agree on the point at which blood products 

should be given.  

“[the benefit of transfusion] is balanced against not wanting to overshoot, 

push that pressure up, lose that clot and get active ongoing haemorrhage.” 

Dr 6 

Patients that appeared to have a moderate, rather than immediately life threatening, 

degree of bleeding presented participants with difficult decisions. For these patients, 

participants were often unable to identify which patients would benefit from transfusion. 

As a result, there was a variable reliance on either gestalt or reversion to SOPs to make 

a decision. In patients where the benefit of a blood transfusion was uncertain, 
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participants agreed that the risks of under-transfusion were greater than the harms of an 

unnecessary transfusion.  

There was more uncertainty amongst the participants about treating TIC. Some 

participants felt they had limited or no options to treat TIC pre-hospital.  

“Outside the hospital, how does it [TIC] change management? Again, it 

doesn't really. I don't have the bits and pieces to a) evaluate properly if the 

patient has [TIC] and b) to more bespokely manage it.” Dr 6 

Similar to the uncertain future benefit of transfusing hypotensive patients, was a concern 

that TIC may not be an active clinical problem in the pre-hospital environment.  

“I think it's very hard to be motivated or clinically steered when something 

you're asking about we don’t really see. … It may be argued that we could 

turn off [TIC] and that we should be turning it off earlier. If that's the case, 

then I think we would probably need some academic evidence that that 

coagulation [dysfunction] is present [pre-hospital] and we need to measure 

it to turn it off a bit later.” Dr 10 

2.5.2.3 Section summary  

In this section, uncertainty was identified as a central factor causing difficult decision 

making. Uncertainty originated from an inability to make a confident diagnosis, and not 

knowing whether an intervention would be beneficial for a particular patient. 

Uncertainty reduced effective situational awareness, prognostication and management 

planning. The section highlighted particularly challenging groups of patients and the 

uncertainty connected with using examination findings to diagnose major haemorrhage 

and TIC. Without specific diagnostics and therapies many participants felt it was not 

useful to consider TIC pre-hospital.  
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Table 8: Codes relating to uncertainty theme 

Sub-Theme Code 
Interviews, 

n 

Frequency, 

n 

    

Uncertain 

diagnosis 

Few pre-hospital diagnostic aids for major 

bleeding or TIC 
10 31 

Haemorrhage mimics can confuse diagnosis (e.g. 

head injury) 
8 22 

Difficult to prognosticate 8 19 

Need to compile information and make a global 

assessment  
8 9 

Differentiating minor bleeding from major 

bleeding 
7 13 

Haemodynamic assessment maybe misleading 6 17 

Fallibility of haemodynamic parameters 6 16 

Clinical examination is not 100% accurate 6 7 

Individual patient variability 5 15 

Clinical unknowns for your patient (e.g. extent of 

their injury) 
4 12 

No clinical signs of TIC pre-hospital 3 4 

Uncertain 

intervention 

effect 

Immediate effect of a given intervention   

Benefit of transfusion (includes clotting, oxygen 

delivery, perfusion, pre-load) 
9 52 

Risks of transfusion (includes dilution, increased 

BP, immunological effects, BBV, VTE, metabolic)  
5 17 

Weighing up benefit and harm 9 16 

TXA and haemorrhage control mitigates TIC 7 10 

Recognition of threshold variation between 

clinicians when to start transfusion 
5 7 

Future effect of a given intervention    

Transfusion mitigates future pathological states 

(e.g. TIC / MODS) 
6 8 

Code red ensures skilled personal are there 6 11 

Blood transfusion improves patient’s physiological 

state in moderate bleeding patients  
3 3 

No perceived effect of a given intervention   

Limited options to treat TIC pre-hospital 8 16 

TIC does not change initial management 7 12 

No evidence for treatment of TIC pre-hospital 4 8 

Rapid transport to hospital is key 4 6 

BBV; Blood borne virus, BP; Blood Pressure, MODS; Multiple organ dysfunction syndrome, TIC; 

Trauma induced coagulopathy, VTE; Venous thromboembolism 
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 Theme 3: Imperfect Decision Analysis 

This section addresses the interviewees’ awareness of decision-science. The section 

highlights examples of incomplete decision awareness, cognitive biases and the 

educational challenges present in a pre-hospital environment. It is proposed that  

decision making inattention contributes to difficult decisions by constraining effective 

learning. 

2.5.3.1 Decision awareness  

This experienced group of doctors were honest and reflective in their interviews. 

Perceived short comings in their own clinical abilities were discussed openly. In 

contrast, participants rarely discussed how they arrived at decisions. There were only 

three mentions of decision awareness throughout the interviews.  

“… a lot of the assessment actually happens in the first few seconds and 

then there is the more formal examination and the rest of it follows… I think 

this is a bit about blink theory … experienced clinicians will make a 

judgment very very quickly … then you try to reinforce that with your full 

formal assessment of the patient, probably try to work out whether your gut 

reaction was the right one, because I guess, sometimes it isn't.” Dr 8 

Another participant reflected on decisions that were made automatically and influenced 

by experience:   

“… I think it's gut feel and because of that it's not always particularly 

sensitive and sometimes we get it wrong.” Dr 6 

Both of the quotes reflect that decisions are influenced before all of the available 

information in processed. After which evidence is sought to re-enforce the initial “gut-

reaction” which puts clinicians at risk of anchoring bias. The quotes also both suggest 

that the initial reaction is most often correct.  

The final mention of decision awareness advocates for increasing conscious analysis to 

improve the accuracy of decisions.  
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"I don't think it's okay to say it all goes in, and it doesn't matter why we think 

they're shocked, but they're shocked. No, you have to consciously bring it to 

the front of your mind, and you will get it right more of the time. Dr 9 

This final quote demonstrates an understanding that decision-making could be 

developed with more attention. This view could be developed to enable clinicians to 

continue to consider the best option rather than stopping at the first option that could 

work.  

Associated with the more common lack of attention to decision awareness, participants 

had difficulties articulating the factors which affected some of their decision-making. 

These difficulties were particularly overt when the decisions required a more nuanced 

balance of perceived risks and harms. For example, when participants were asked 

whether or not they would transfuse a patient when the benefit was uncertain, they 

unanimously agreed that the risks of under-transfusion were greater than the harm of 

exposure to an unnecessary transfusion.  

“In the case of uncertainty… I'm going to give it [blood] to them... and I 

think that’s because of our patient group. Most the time, the chance of them 

bleeding is higher than the chance of just having impact brain apnoea or an 

alternative, and I think also that we're quite good at excluding other 

causes.” Dr 5 

Several decision awareness related problems are apparent from this quote. First, from 

an RPD point of view it is clear their experience influences their decision. If this is 

acknowledged they may be able to avoid the bias of generalising to the patient group 

rather than the individual, which is prone to error. Second, the belief that their decision 

making is quite good may not be accurate, and likely represents a confidence bias.  

Throughout the interviews there are examples of deficits in decisions awareness. There 

were examples of decision making susceptible to biases of anchoring, availability, 

framing or substitution. Sometimes the risk of bias was explicitly stated but more often 

the bias did not seem apparent to the participant.  

“Because we carry blood and because you've got a solution. You can make 

the patient fit your solution. But that patient may not be bleeding.” Dr 8 
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“I mean part of the assessment, really in your head, probably starts before 

you even get to scene because you, kind of, know what job you're going to 

or briefly what job you're going to I think.” Dr 8  

 Several participants demonstrated deferred decision making, possibly as a mechanism 

to cope with uncertainty. Typically, responses with deferred decision making advocated 

for therapy to start in hospital rather than pre-hospital. Conflation of two concepts was 

also noted.  

“When you're looking at someone, and you're evaluating them for bleeding 

you're feeling the pulse, you're looking at the blood pressure, you're looking 

how sweaty they are, how pale they are, there's almost a checklist in your 

head that's ticking off little boxes as you go, whereas for coagulopathy, 

we've obviously got no good kit that gives us a clear answer.” Dr 6 

This example appears to conflate increased uncertainty in the diagnosis of TIC 

compared to bleeding by the observation of clinical signs with the lack of point of care 

diagnostics. Initially the explanation appears to offer a rational basis for the decision. 

However, it more likely represents the increased comfort the clinician has for decisions 

about transfusion for bleeding than for TIC.  

2.5.3.2 Decision evaluation and incomplete follow up 

Effective decisions evaluation requires a shift in approach from evaluating a decision 

based on the clinical outcome, to evaluating that decision based on the information 

available at the time the decision was made. This includes recognising the various biases 

which may have influenced the decision at the time, regardless of the clinical outcome.  

In general terms, clinical medicine spends little time on effective decision analysis. This 

contributes to decisions that are difficult.   

2.5.3.3 Section Summary 

Contributing to the difficulty in decision making was imperfect decision analysis. The 

deficit in awareness of decision theory manifest as a difficulty in articulating decision 

reasoning. In turn this is making decisions more difficult for the participants. Numerous 

examples of decision making biases were present throughout the interviews.  
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Table 9: Codes relating to imperfect decision analysis theme 

Sub-Theme Code 
Interviews, 

n 

Frequency, 

n 

    

Decision 

Awareness 

Automatic decision making 7 20 

Evidence of framing bias 5 6 

Evidence of substitution bias 2 3 

Incomplete 

feedback 
The decision is judged on clinical outcome   2 2 

Decision 

evaluation 
Suggestion of flawed decision evaluation  3 5 

 

Question 3: How might probabilistic decision support integrate into the pre-

hospital clinical environment? 

Participants were not directly asked how they believed decision support would integrate 

into the clinical environment. Instead, a series of questions regarding their view of 

probabilistic treatment thresholds was used to elicit their beliefs. The theme 

encapsulating the individual codes was called clinician autonomy and cognition.  

 Theme 4: Clinician autonomy and cognition  

This section describes how threats to clinician autonomy, limitations of human cognition 

and beliefs about decision support create barriers to the introduction of probabilistic 

decision support. Sub-themes which describe the potential barriers were clinician’s 

acceptance of risk, preference for Gestalt and a psychological phenomenon known as 

reactance.   

2.5.4.1 Acceptance of risk 

Participants expressed difficulties with trusting outputs from decision support instead 

believing their own intuitive decision processes were more reliable.  
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“if I have a test … that is 100 percent accurate … and I did that test and it 

comes out on the side of do something, I would be remiss not to give it due 

consideration. But because I'm a clinician there may be a one in 50 

incidence where I think ‘do you know what, I'm not going to do that.’ But 

probably 49 times out 50, if the test supports my clinical picture then I will 

go along with that.” Dr 3 

Associated with this, participants demonstrated significant cognitive exertion in their 

evaluation of probability and risk. Most participants asked for more clarity on the 

questions and several openly expressed the discomfort of uncertainty. Several 

participants were unable to articulate their decision-making processes in probabilistic 

terms. This difficulty may stem from a lack of insight into how heuristic based decisions 

are made. Not all participants displayed this discomfort and some participants were able 

to integrate hypothetical probabilistic decision support information into their decisions.  

“when you think ‘this patient is potentially not that bad’ and actually your 

[probabilistic] model, with 80% or above certainty, says ‘we've ruled this 

out, they're definitely not coagulopathic’. That would really change our 

decision making.” Dr 4 

2.5.4.2 Preference for gestalt 

During the interviews the majority participants expressed a preference for using their 

own heuristic approach to making a diagnosis. The concept of Gestalt originates from 

psychology and suggests that the nature of a unified whole is not understood by 

analysing its parts.368 In healthcare the term gestalt refers to a heuristic approach by 

which a diagnosis and treatment plans are formed often within seconds.99, 369 Commonly 

participants expressed views consistent with the belief that making a heuristic based 

decision was less risky. No participant discussed data, or the need for evidence, that 

measured the quality of their heuristic based decision making 

2.5.4.3 Reactance 

Within the context of the clinical uncertainty discussed in section 2.5.2, participants 

were conflicted about how useful additional data would be. Several participants 

expressed the view that additional test results would make decisions more complex and 
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thus more difficult. Several factors may explain this view. First, adding an unfamiliar 

piece of information into an already complex decision will initially require additional 

cognitive processing. Second, some reactance may be occurring. Reactance is “an 

unpleasant motivational arousal that emerges when people experience a threat to or loss 

of their free behaviours."370 Perhaps clinicians’ perceive an erosion into their 

professional autonomy when requested to consider using a tool to augment their decision 

making.  

2.5.4.4 Section summary 

This section discussed three concepts that need to be considered for the introduction of 

probabilistic decision support into the clinical environment. Concerns regarding risk and 

trust, a preference for Gestalt and displays of reactance all represent potential barriers 

to the integration of decision support.  

Table 10: Codes relating to clinician autonomy and cognition theme 

Sub-Theme Code 
Interviews, 

n 

Frequency, 

n 

    

Acceptance 

of risk 

Discussion of risk 8 13 

Preference to over triage rather than false negative 4 6 

Preference 

for gestalt 

Suggestion of over anticipation or pre-decision 9 14 

Evidence of preference for gestalt  8 24 

Gestalt versus tools (diagnostics or electronic 

decision support) 
5 8 

Stated importance of first impressions 3 4 

Reactance 
Suggestion of adverse psychological reaction to 

clinical decision support  
4 5 

 

 Summary of results 

This study posed three research questions and generated four themes. The themes drew 

on NDM theory to explore how decisions are made, highlighted uncertainty and 
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imperfect decision analysis to describe what makes decisions difficult and finally 

reflected on a potential conflict between clinician autonomy and decision support.   

Subthemes were used to group codes and to add detail to the analysis. To provide a 

broad overview, the subthemes have been summarised as either representing a challenge 

or an opportunity for the introduction of a CDST (Table 11). Allocation to either the 

challenge or an opportunity category was made by assessing the balance of data from 

the interviews. Where the data equally represented a challenge and an opportunity, both 

are indicated. Participants reported that identifying patients at risk of TIC was a 

challenge pre-hospital. The potential ability to quantify uncertainty around the diagnosis 

of TIC is therefore viewed as a strong opportunity. 

2.6 Discussion 

This study provides key insights into the context, opportunities and challenges for 

deployment of a decision support tool in pre-hospital trauma care. Detailed interviews 

with expert clinicians were explored using thematic analysis and four themes were 

identified. How pre-hospital clinicians make decisions is complex and involves the 

interpretation and synthesis of specific cues and experience. The recognition-primed 

analysis theme helps to understand this process. What makes decisions difficult is 

uncertainty and imperfect decision analysis. Not all management decisions are difficult 

for the bleeding patient. However, the management of TIC is shrouded in uncertainty. 

Finally, threats to clinician’s autonomy, difficulty thinking probabilistically and 

participants’ preference for gestalt are all identified as potential barriers to the 

introduction of probabilistic decision support. This section discusses the implications of 

the results of each question. 
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Table 11: Summary of challenges and opportunities for decision support to 

augment decision making in pre-hospital decisions about major bleeding and 

trauma induced coagulopathy 

 

Themes and sub themes Challenge Opportunity                Explanation  

 

Recognition-primed analysis 

Information selection, 

interpretation & synthesis 
 

A CDST will focus attention on key cues 

and effectively combine information. Expert 

cues can be integrated into the CDST 

Experience x 

Experienced clinicians maybe reluctant to 

incorporate advice from a CDST but if 

effectively integrated better decisions may 

be possible  

Rules and guidelines  CDST can be integrated into existing rules  

Internal & external pressure  
Objective assessment provided by CDST 

can offload clinicians’ emotional burden  

Uncertainty  

Uncertain diagnosis  
Quantification of uncertainty is a key benefit 

of CDST. Especially relevant for TIC 

Uncertain intervention effect      No effect 

The current CDST has no influence on the 

effect of the intervention. Improved 

situational awareness may improve 

intervention selection 

Imperfect decision analysis  

Decision Awareness x 

Deficits in decision awareness and 

probability handling make the integration of 

a CDST challenging. The tool is likely to 

increase attention to decision awareness and 

this is likely to be beneficial 

Incomplete feedback      No effect CDST will not increase feedback  

Decision evaluation  
A CDST prediction will allow decisions to 

be evaluated retrospectively with an 

objective anchor 

Autonomy  

Acceptance of risk x 
Clinicians may perceive their risk ownership 

changes either way with a CDST 

Preference for gestalt x  Conflicts with purpose of CDST 

Reactance x  Drives clinicians away from a CDST 
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 How do senior doctors make decisions about bleeding, coagulopathy and 

the need for blood transfusion in the pre-hospital environment?   

Decision making requires a complex process of information selection, interpretation and 

synthesis. In making decisions about bleeding and TIC, pre-hospital clinicians 

encounter significant complexity. They are forced to process large volumes of 

information. Much of that information is noisy and lacks specificity. To cut through this 

information fog, experts have identified cues used to make their judgements. The 

“hateful eight” is a set of cues that demystifies expert intuition and helps to transfer 

expert’s tacit knowledge to other clinicians.200 Although a useful process, some 

uncertainty remains. To the non-expert it is unclear how these pieces of information (or 

variables) should be prioritised during synthesis. Uncertainty arises from multiple 

interacting variables with intricate and non-linear relationships and a limit on the amount 

of information that can be kept in the working memory.371  

Decisions made under uncertainty are often influenced by subconscious biases. Such 

decisions are prone to high degrees of variation between, and even within, 

individuals.372 In this respect a prognostic model maybe able to improve decision 

making. Prognostic models combine multiple predictors to assess risk (see 1.5.3). 

Models can be trained on previous patient data and if an appropriate model is used 

complex non-linear relationships can be learnt from the data. Using a model has the 

potential to rationalise the combination of variables and remove unhelpful human bias. 

Identifying the experts’ key cues is also important from a modelling perspective. If 

modelling techniques are used that are open to interrogation it is possible to compare 

the model’s inputs with the expert’s. This process of comparison is potentially useful to 

both parties. The model’s validity can be assessed by experts and the expert’s decision 

making can be examined by data processed through a model. Additionally, the use of a 

decision support tool can lead to better training by clearly defining what cues matter. If 

decision support can improve the quality of the priming and clinicians make the right 

decision more often, the CDST will increase the chance of learning the ‘right’ lesson 

from experience. 
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Examples from outside of healthcare demonstrate how decision support can be 

effectively used to focus attention to the information that matters. There are examples 

of model’s useful application in high-risk industries such as military pilots373 and 

nuclear power plant operators.374 In an RPD framework the purpose of the decision 

support tool is to improve situational awareness and lead to better decisions.375 This 

situational awareness revolves around the diagnosis of a problem or recognising when 

there is high risk of a problem occurring in the near future.  

 What makes decisions about bleeding, coagulopathy and transfusion 

difficult for expert clinicians? 

Clinical uncertainty and the fallibility of human decision making are central to 

understanding the current ability of expert clinicians to make pre-hospital decisions. 

Uncertainty related to both the diagnosis and the benefit of a given treatment. In 

considering how decision support may integrate into the clinical environment it is 

important to note that the participants did not universally regard TIC diagnosis and 

treatment decisions as essential to pre-hospital practice. In contrast participants believed 

that judgements on major bleeding were essential. The apparent lack of prioritisation of 

TIC is not unexpected given the multiple uncertainties involved. Using Klein’s RPD 

model (Figure 5) it can be seen that the four aspects of recognition fail in the context of 

decisions on TIC. There is both a lack of useful cues and uncertainty in regard to the 

plausible goals. Consequently, the actions to take are also uncertain. In this situation 

Klein advocates that the decision maker seeks more information.  

Introducing a probabilistic decision support tool maybe one method to provide more 

information and quantify the uncertainty. Of course, at this stage, clinicians will still be 

left uncertain of the most appropriate course of action. Nevertheless, an accurate 

decision support tool will increase situational awareness. This in turn supports the 

correct interpretation of the clinical situation, selecting appropriate goals and ultimately 

increases the likelihood of selecting an appropriate action.210  

While not specifically explored in the interviews, it can be inferred that clinicians 

experience significant cognitive exertion under conditions of uncertainty. One potential 
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benefit of a decision support tool is to cognitively de-burden clinicians. An accurate 

CDST may decrease cognitive effort by enabling the rapid synthesis of multiple cues. 

However, some participants were concerned that adding another data point from a 

CDST into the clinical milieu will inadvertently increase cognitive exertion. Both 

perspectives remain valid and require a well conducted trial to assess the impact of a 

model on cognitive load.  

The theme imperfect decision analysis draws attention to a lack of emphasis on learning 

from decisions. The difficulty analysing decisions objectively is not unique to pre-

hospital doctors. Often in medicine, retrospective review of activity as occurs in a 

morbidity and mortality meeting (M&M) can be judgemental rather than exploratory in 

nature. Such meetings are abound with inherent biases and often focus on the outcome 

rather than the decision.376, 377 Examples of these biases are the natural tendency to avoid 

disagreeing with those we like and agree with those with authority.378 Attendees at a 

M&M meeting may lack the ability, or knowledge of the available tools to assist in the 

construction of a narrative of events.379-381 Without this narrative the decision points of 

a specific clinical management approach cannot be identified.  

This awareness gap represents an opportunity to improve decision making quality. 

Training in decision analysis, may help develop insight. This in turn will enrich the case 

review process by more accurately and methodically identifying sources of risk and 

error. The use of standard tools and processes to support clinicians in evaluating their 

decisions would improve decision quality by improving the quality of priming and 

learning the ‘right’ decision from the experience. 

In the present study the knowledge deficit in decision analysis is revealed in the 

difficulties the participants experienced in describing how they made their decisions. 

This issue has important consequences for the integration of new tools or ways of 

working. Specifically, it generates difficulty for participants to compare their heuristic 

decision to a probabilistic decision.  

The perception that intuitive decisions (gestalt) are more reliable than probabilistic 

supported decisions, illustrates the difficulties inherent in incomplete understanding of 
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decision making. Lack of an analysis framework makes it difficult to create one’s own 

internal database of the reliability of our decisions. The result is often a tendency to 

overestimate the reliability and quality of our decisions.369 Thus, the validity of our 

intuitive judgments cannot be assessed by our subjective confidence. 

In a collaboration between Kahneman and Klein, they described the environmental 

conditions required for effective learning from previous decisions. They posited that for 

intuitive judgements to be reliable there must be stable relationships between objectively 

identifiable cues and subsequent events.200 Both the objectivity of identifiable cues and 

the ability to know the true subsequent event sequence are threatened in pre-hospital 

medicine. As a result, years of experience and effective learning is required to develop 

skilled intuitions. A CDST provides a method to faithfully combine cues and event 

outcomes to consistently assist this learning process.  

 How might probabilistic decision support integrate into the pre-hospital 

clinical environment? 

The introduction of algorithms to replace, filter or assist human judgment often elicits a 

hostile response. The barriers to integration of decision support identified in this study 

have also been highlighted elsewhere. Challenges include issues with understanding, 

trust and the threat to autonomy.382 Where practitioners feel more isolated, by virtue of 

working in smaller teams they may value their autonomy more than those working in 

larger teams.   

 Limitations 

Within qualitative research, approaches to demonstrate the quality of the research and 

methodological rigor continue to be debated. The concepts of validity and reliability, 

familiar in quantitative studies, are commonly replaced with principles of credibility, 

dependability, confirmability and transferability in qualitative research.383 These 

principles were developed in the 1980s and remain useful today.360 The detailed 

description of the methods given at section 2.4 aim to address these four principles and 



Chapter 2 - Difficult decisions 

118 

 

demonstrate the steps taken to ensure methodological rigor. The degree to which the 

researcher has influenced the analysis is left to the reader to decide. This critical 

appraisal is facilitated, in part, by the inclusion of the characteristics of the researcher 

(see 2.4.3).  

The study included 10 participants. Justifying the sample size in qualitative research is 

not possible using power calculations.351 An argument runs that further interviews may 

lead to new themes. In this way, it is difficult to conclude that data saturation has 

occurred.351 However, in the current study it became apparent that fewer new concepts 

were generated with the later interviews, such that each new interview provided few 

new codes and no further themes. In this respect the study reached inductive thematic 

data saturation.384 Sampling was purposive although all the participants worked in Air 

Ambulance organisations that had a pre-hospital blood transfusion capability. Other Air 

Ambulance organisations in the UK are currently involved in a randomised controlled 

trial to assess the benefit of pre-hospital transfusion.165 Clinicians in these organisations 

may have expressed differing views to the participants involved in this study.  

The study’s first question addresses how decisions are made about bleeding and TIC 

pre-hospital. To answer this question requires introspection of cognition. This is a 

challenging process as experts accumulate large bodies of knowledge though 

experience. Their perception and cognitive skills can be difficult to verbalise when they 

are not performing the task in a real-world environment. To address this Klein described 

a formal interview technique known as critical decision method (CDM) to elicit detailed 

information from experts using a series of probes.385 The semi-structured interview 

technique undertaken in this study did not use the CDM method and future studies in 

this area may benefit from adopting that approach.  
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2.7 Conclusion 

A vital starting point to develop a CDST has been to understand the current decision-

making process and assess whether a problem exists. Pre-hospital clinicians make 

decisions on bleeding, transfusion and TIC which are recognition-primed thus heavily 

influenced by experience and subject to variable degrees of clinical uncertainty. 

Improved understanding of the decision-making processes has provided a theoretical 

perspective of how decision support tools may reduce some of the risks of bias.  

The information derived from this study has provided key insights into the opportunities, 

challenges and role of decision support for major haemorrhage and TIC. The next 

chapter will examine the ability of a TIC clinical decision support tool to reduce clinical 

uncertainty and improve decision making. 



Chapter 3 - The value of CDST 

120 

 

  

THE VALUE OF CLINICAL DECISION SUPPORT  

3.1 Scope of the chapter 

The purpose of this chapter is to understand the potential clinical value of a Bayesian 

Network TIC prediction model. In the previous chapter, difficult decisions were related 

to uncertainty and it appeared that clinicians favoured a heuristic decision-making 

approach. This chapter quantifies the predictive accuracy of native clinical judgement 

in the assessment of major haemorrhage protocol activation using a retrospective study 

design. The performance of a Bayesian Network (BN) decision support model is applied 

to the same patients. This comparison between clinical judgement and the BN model 

provides an insight into the model’s potential value to augment clinical decisions. A 

sensitivity analysis is performed at two clinical thresholds of decision making.  

3.2 Introduction  

 Impactful decision support 

Clinical decision support tools (CDST), with prediction models at their core, have the 

potential to improve patient care.199 Yet few CDST have proven useful enough to be 
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implemented in clinical practice (see 1.5.3.1).218 It is a long path from model 

development to improving patient care, in which multiple criteria must be satisfied 

(Figure 18).  

 

Figure 18: Schematic of the critical steps required for a clinical decision support 

tool to improve patient outcome. The figure demonstrates uncertainty identified in Chapter 2 

following patient injury. This uncertainty contributes to difficult decisions. Each logical step (blue box) 

towards the outcome must be satisfied to ensure the tool has clinical impact. Dashed blue line denotes a 

change in the assessment of risk given the use of a prediction model. Enquiry into the step in the yellow 

box is the focus of this chapter. 

Initially, decision support should be directed towards a clinical problem with uncertainty 

that stands to benefit from decision support. The degree of uncertainty associated with 

clinical decision making will, of course, vary considerably according to clinical context. 

Nonetheless those decisions where information is constrained by resource issues (lack 

of clinical experience, absence of sophisticated investigations or sufficient time to 

muster these adjuncts) are those where clinical decision support tools might add most 

value.  

Subsequently, decision support must inform decision-making at a critical point in the 

treatment pathway. The CDST should readily enable the user to perform an evidence-
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based analysis of individual patients. The CDST must improve the decision accuracy in 

the intended use population. Once the user receives the additional information, they 

must have the ability to decide between two or more actions. The user must act on the 

advice of the CDST, and that alternative action must improve an element of care. The 

benefit can be realised at a patient, treatment centre or health-system level.  

Each link in the chain from model development to improved patient outcome (Figure 

18) requires careful design and assessment. Some of these elements have well-

established methodologies.213,390 For example, external validation is a well-recognised 

step to assess the performance of a model in a population outside its development 

cohort.205 Yet techniques to evaluate other steps such as the “model is used” and “action 

is taken” are not well established.  

This chapter addresses the “model improves decision” step (yellow box Figure 18). To 

assess whether a model improves a decision requires an understanding of the baseline 

clinical performance.  

 Clinical use of bleeding clinical decision support models 

Very few studies in major haemorrhage modelling address this performance gap 

between the tool and the clinician.99, 233 Assessing the gap in prediction accuracy 

between clinicians and a prediction model is necessary to understand whether the model 

has the potential to improve clinical decision making.  

There are over 40 published models to identify patients with major bleeding (see 1.6.1). 

None of these models are compared to the performance of native clinical judgement 

during their development and validation. In the UK, bleeding decision support models 

are not in regular clinical practice. The NICE guidelines specifically warn against using 

these models.110 In the USA, the ABC score is the most widely cited and endorsed for 

the prediction of massive haemorrhage.  
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 Assessment of the TIC BN to predict major haemorrhage 

The ED TIC BN model has been developed to risk stratify patients for TIC (see 1.9). 

For TIC the model has been validated both internally and externally. In external 

validation, the model's excellent discrimination and calibration were maintained. TIC 

and major bleeding are interrelated in trauma. But it is not known to what extent the ED 

TIC BN could be used to predict patients at risk of bleeding. Furthermore, it is unknown 

if using the model to predict bleeding, rather than TIC, would have superior accuracy to 

native clinical decision making.  

3.3 Aims and Hypotheses 

 Aims 

3.3.1.1 Aim 1: Evaluate performance of clinicians to predict patient need for MHP 

activation. 

3.3.1.2 Aim 2: Compare performance of the ED TIC BN to native clinical judgement 

to predict patient need for MHP activation. 

3.3.1.3 Aim 3: Find the optimal operating thresholds for the ED TIC BN implemented 

to predict the need for MHP activation. 

3.3.1.4 Aim 4: Compare the predictive performance of both native clinical judgement 

and the ED TIC BN to a well-known major haemorrhage prediction model.  

 Hypotheses 

3.3.2.1 Hypothesis 1: Native clinical predictions regarding which patients warrant 

MHPA are inaccurate, and reduce decision making performance. 

3.3.2.2 Hypothesis 2: The ED TIC BN has better predictive accuracy than native 

clinical judgement in identifying patients that required MHPA. 
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3.3.2.3 Hypothesis 3: The ED TIC BN and clinical judgement have better predictive 

accuracy than the ABC score in identifying patients that required MHPA. 

3.4 Methods 

 Study Design 

A retrospective study was performed comparing the real-world predictive accuracy of 

clinicians to a hypothetical decision made by the ED TIC BN. The original clinical 

decision for major haemorrhage protocol activation (MHPA) was identified in a sample 

of trauma patients enrolled in ACIT; a prospective observational cohort study.339  

 Patient sample 

All patients were recruited to the ACIT study at the Royal London Hospital (RLH) 

between January 2008 and August 2013. Patients are eligible for inclusion in ACIT if 

they receive an in-hospital trauma team response, present directly from the scene of the 

injury, and are admitted within 2 hours of their injury. They are excluded if they are less 

than 16 years old, have burns more than 5% total body surface area, are anticoagulated, 

have a known bleeding diathesis or received over 2000mls of intravenous crystalloid 

pre-admission. Patients are retrospectively excluded if they decline consent. ACIT was 

approved by the National Research Ethics Committee of participating countries and 

written informed consent was obtained for all participants. Prediction modelling using 

patient data is a specific aim in the ACIT protocol and is thus granted ethical approval.   

 Data recording 

For patients in ACIT, clinical management is conducted as usual with additional blood 

sampling on admission and throughout acute haemorrhage. The ACIT study 

prospectively collects multiple data points on each enrolled patient including patient 

demographics, mechanism of injury, admission vital signs, treatment administered and 



Chapter 3 - The value of CDST 

125 

 

outcome. Injuries were described using the Abbreviated Injury Scale (AIS)386 and Injury 

Severity Score (ISS).256 Patients are observed until hospital discharge or death.  

 Study setting 

The Royal London Hospital (RLH) is a large urban academic Major Trauma Centre 

(MTC) in East London. The hospital functioned as an MTC with dedicated trauma 

resources throughout the study period.22 During the study period activity at the hospital 

increased with an average of 1500-2000 trauma activations a year, of which 

approximately 25% had an ISS >15.170 Trauma patients in the ACIT study arrive at RLH 

by one of three methods; i) self-presentation, ii) Ground Ambulance or iii) Air 

Ambulance. Clinicians on the Air Ambulance can activate the MHP pre-hospital.  

 Clinical activation of the major haemorrhage protocol 

Senior physicians working at the RLH or LAA were responsible for MHPA. The clinical 

guideline for MHPA suggests activation with a systolic blood pressure less than 

90mmHg, poor response to initial fluid resuscitation and suspicion or evidence of active 

haemorrhage.170 These guidelines were not mandatory and clinicians could chose to 

activate the MHP if they believed the patient would benefit. MHPA could be requested 

either pre-hospital or in the emergency department (ED). Activation was recorded at any 

time until the patient left the ED. The time of MHPA was not recorded. Clinicians were 

blind to the model’s predictions. 

 The ED TIC BN model  

The development and validation of the ED TIC BN model are described in section 1.9. 

The model uses 14 measurements identified in a standard ATLS primary survey to 

calculate a probability. In this study, the probabilities are reported as percentages. The 

14 input variables are: mechanism of injury, energy of the injury, pre-hospital crystalloid 

volume, heart rate, systolic blood pressure, temperature and GCS on ED arrival, 

haemothorax suspected or identified on chest x-ray, abdominal bleeding suspected or 
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identified on FAST scan, long bone injury or an unstable pelvic fracture, lactate, base 

excess and pH (Figure 12).  

3.4.6.1 From prediction model to decision rule 

The output of the ED TIC BN is a probability. To facilitate a direct comparison of the 

model and the clinicians' decisions, the ED TIC BN prediction tool was converted into 

a decision rule. The tool’s output was dichotomised by selecting an operating threshold. 

The operating threshold defines the value at which a decision is made. In this case the 

decision is whether or not to activate the MHP. A binary decision rule was consequently 

created converting TIC probability to MPHA.  

No a priori assessment of the model’s ability to predict MHPA was performed. The 

operating threshold of a 10% probability of TIC was chosen for MPH activation. This 

is the threshold used by Perkins and Yet to identify TIC with a 90% sensitivity (Figure 

14). A post hoc sensitivity analysis was conducted in which the operating threshold of 

the ED TIC BN (i.e. the probability at which the model was dichotomised) was varied.  

 The Assessment of Blood Consumption (ABC) score  

The ABC score is a popular massive haemorrhage prediction model (see 1.6.1.1).221 The 

model was derived from expert consensus and has four input variables. The presence of 

each is worth one point. The variables are penetrating mechanism, positive FAST, 

arrival SBP of 90 mm Hg or less, and arrival heart rate at least 120 bpm. A score of 

greater or equal to 2 is used as the operating threshold of this test. The ABC score has 

been included in this study to provide a comparison with clinical judgement and the ED 

TIC BN.  

 Appropriate major haemorrhage protocol activation definition  

There is no recognised definition that characterises a decision to activate the MHP as 

appropriate or not. However, such a definition can be construed in terms of attributes 

related to patient outcome or indirect measures such as markers of therapeutic need (e.g. 
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metrics concerning burden of trauma or physiological disturbance). Need can also be 

inferred from a patient’s consumption of therapy. This assumes that transfusion is 

accurately matched to a patient’s need and patients are not over or under-transfused. 

Despite the risk inherent in such assumptions, there is good clinical concordance 

between the requirement for transfusion and likelihood of death in trauma patients. The 

risk of death increases in proportion to the degree of transfusion.  

Stanworth et al. made the distinction between patients that receive at least 4 units 

PRBCs in 24 hours (major haemorrhage) and patients that receive 10 units 

PRBCs/24hours (massive haemorrhage). So defined, major haemorrhage patients have 

double the risk of death (25%) compared to patients who get less than four units, with 

massive haemorrhage patients exposed to a mortality risk of 33%.387 In choosing 

markers that retrospectively denote appropriate activation of a major haemorrhage 

protocol, it was decided to apply these readily-available labels of haemorrhage to service 

two clinically relevant definitions as appropriate MHPA activation. 

3.4.8.1 Definition one; Major Haemorrhage: MHPA deemed appropriate if patients 

receive more than or equal to four units of packed red blood cells within 24 

hours of injury.  

Definition one allows an assessment of performance in patients with less severe 

bleeding. In Chapter 2 clinicians reported that not all decisions were difficult but patients 

with less severe bleeding represented a difficult group of patients. These patients 

therefore represent a population of interest to assess the potential benefit of decision 

support.  

3.4.8.2 Definition two; Massive Haemorrhage: MHPA deemed appropriate if patients 

received more than or equal to ten units of packed red blood cells within 24 

hours of injury  

OR  

Patients who died due to uncontrolled haemorrhage  
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Despite its limitations this massive haemorrhage definition is the most commonly used 

definition of massive haemorrhage (Table 3). Using this same standard facilitates 

comparison with other studies.  

 Statistical methods 

Categorical variables are expressed as frequency and percentage and analysed with 

Fisher's exact test. The normality of continuous variables was assessed using Q-Q plots 

and the Shapiro-Wilk test. Non-normally distributed data are expressed as the median 

and interquartile range (IQR) and were analysed with the Mann-Whitney U-test. 

Sensitivity and specificity were calculated in the standard manner. Confidence intervals 

for sensitivity and specificity are calculated with the Clopper-Pearson method. Accuracy 

was calculated as the overall probability that a patient will be correctly classified. 

McNemar’s test was used to compare the sensitivity and specificity between the models 

and clinical judgement.  

Youden’s index was calculated as (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑦 − 1). The index has a 

range of 0 to 1 and gives equal weight to false positive and false negative values. A 

perfect test has no false positives or false negatives and has a value of 1. The index can 

be defined for each point along a ROC curve. The maximum value of Youden’s index 

was used as a criterion to select the optimum cut-off point in relation to both sensitivity 

and specificity.388 To compare model performance of correlated data, DeLong's non-

parametric comparison was used.389 

Statistical analysis and figure development were performed using SPSS 26 (IBM, 

Armonk, New York, USA), Prism 8 (GraphPad Software, San Diego, California, USA) 

and R statistical software (R Foundation for Statistical Computing; www.r-project.org 

version 3.6.0). 

http://www.r-project.org/
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3.5 Results 

During the study period, 858 eligible patients were enrolled in ACIT. In the first 24 

hours after injury 161/858 (19%) received at least 4units PRBCs, and 49/858 (6%) 

received 10units or more. The cohort was 82% male, 79% sustained a blunt MOI and 

had a median injury severity score of 13 (IQR 5-25). Five patients had a cause of death 

attributed to uncontrolled haemorrhage and received less than 10 units of PRBCs (Table 

12).  

Table 12: Patient characteristics, outcomes and model scores 

  
Total 

population 

0-3 units  

PRBCs 

4-9 units 

PRBCs 

≥10 units 

PRBCs 

n (%) 858 697 (81) 112 (13) 49 (6) 

Patient Characteristics 

Age, years 36 (24-51) 35 (24-49) 47 (30-63) 38 (24-55) 

Male gender 703 (82) 580 (83) 91 (78) 32 (73) 

Blunt 679 (79) 545 (78) 92 (82) 42 (86) 

SBP, mmHg1, 2 132 (114-149) 135 (120-151) 101 (80-130)3 91 (66-113)3 

Lactate, mmol/L1, 4 2.2 (1.3-3.5) 1.9 (1.2-2.9) 3.4 (2.3-6.0) 7.5 (4.7-12.6) 

Injury Severity Score5 13 (5-25) 10 (4-20) 33 (22-38) 30 (25-45) 

In hospital mortality 83 (10) 28 (4) 27 (24) 28 (57) 

PRBCs / 24 hrs, units 0 (0-1) 0 (0-0) 5 (4-7) 14 (11-22) 

Native clinical judgement  

MHPA in either PH or ED  152 (18) 33 (5)  77 (69) 42 (86) 

MHPA in PH phase only  111 (13) 26 (4) 51 (46) 34 (69) 

Model scores     

ED TIC BN probability6  1 (0-5) 1 (0-2) 19 (6-38) 58 (29-73) 

ABC score7 0 (0-1)  0 (0-1)8 1 (1-2)8 2 (1-2)8 

1 At the time of ED arrival 

Missing data   2 38 missing SBP data, 3 More missing SBP data in the ≥10 PRBC group than 

  4-9 PRBC group (31% vs 11% p = 0.002), 4 47 missing lactate data, 5 42 missing 

  ISS data, 6 858,  7 41 missing ABC score data, 8 More data is missing 0-3units  

  (2%), 4-9units (11%) and ≥10 units (31%). By comparison to the lower unit group 

  there is more missing data at each higher unit group: all p < 0.001) 
 

ABC; Assessment of Blood Consumption, ED; Emergency Department, MHPA; Major 

Haemorrhage Protocol Activation, SBP; Systolic Blood Pressure, PRBC; Packed Red Cell Volume, 

PH; Pre-hospital 



Chapter 3 - The value of CDST 

130 

 

There was no missing information for clinical activation of the major haemorrhage 

protocol. The ED TIC BN was calculatable in all patients in the study. The ABC score 

could not be calculated in 41/858 (5%) of the patients due to a missing variable in one 

of the four elements of the score. The most commonly missing variable was the ED 

arrival SBP in 38/41 patients. 

 The accuracy of native clinical judgment  

Clinicians activated the major haemorrhage protocol in 152/858 (18%) of patients.  The 

majority of MHP activations (111/152 (73%) occurred pre-hospital. Performance 

metrics for appropriate MHPA are given in Table 13 and Table 14.  

For the first definition (four or more units of PRBCs) clinicians had a sensitivity of 

119/161 (74%) and an over-triage rate (1-specificity) of 33/697 (5%). For the pre-

hospital activations clinical judgement had a sensitivity of 53% and an over-triage rate 

of 4%.  

For the second definition (10 or more units of PRBCs) clinical judgement had a 

sensitivity of 42/49 (86%) and an over-triage rate of 110/809 (14%). For the pre-hospital 

activations clinical judgement had a sensitivity of 69% and an over triage rate of 10%.  

Table 13: Classification table of clinical judgement, the ED TIC BN and the ABC 

score for two definitions of  appropriate MHPA 

 4 PRBCs <4 PRBCs 10PRBCs <10 PRBCs 

Clinicians     

yes 119 33 42 110 

no 42 664 7 699 

ED TIC BN     

yes 121 59 47 118 

no 40 638 2 691 

ABC Score1     

yes 53 43 20 76 

no 81 640 14 707 

1ABC scores do not add to 858 due to missing data 
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 Comparison of the ED TIC BN to native clinical judgement 

For the first definition of appropriate MHPA, at the default ED TIC BN operating 

threshold of 10%, there was no statistical difference between the ED TIC BN and native 

clinical judgement in sensitivity (74% vs 75%, p = 0.87) however, clinicians were more 

specific (95% vs 92%, p = 0.002). For the second definition, despite the improved 

sensitivity of the model this did not reach statistical significance (86% vs 96% p = 0.13). 

At the second definition clinicians remained more specific than the model (86% vs 85%, 

p = 0.02).   

Table 14: Diagnostic test results for two definitions of appropriate MHPA 

 4 PRBCs 10PRBCs 

 Clinicians 
ED TIC 

BN1 

ABC 

Score 
Clinicians 

ED TIC 

BN1 

ABC 

Score2 

       

Sensitivity, % 74 84 40 86 96 59 

Specificity, % 95 89 94 86 86 90 

Positive Predictive Value, % 78 63 55 28 29 21 

Negative Predictive Value, % 94 96 89 98 100 98 

Accuracy, % 91 88 85 86 86 89 

1 ED TIC BN at optimised operating points using Youden’s index for optimisation 
2Data were only available for 34/49 patients  

 Optimisation of the ED TIC BN operating threshold  

The ED TIC BN’s output is a probability which can be dichotomised at any point 

between 0-100%. Adjustment of the operating threshold of the ED TIC BN changes the 

relationship between sensitivity and specificity. For the first definition of appropriate 

MHPA Youden’s index was maximised at an operating threshold of 5.4%. At this 

operating point the ED TIC BN was more sensitive than clinicians (74% vs 84%, p = 

0.01) and less specific (95% vs 89%, p < 0.001).  

For the second definition of appropriate MHPA the same approach was used. At a 

threshold of 12.5% Youden’s index was maximised. At this operating point the ED TIC 
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BN has a sensitivity of 96% and a specificity of 86%. This threshold has been labelled 

Operating Point 2 in Figure 19. Two further threshold values are used to illustrate the 

trade-off between sensitivity and specificity; the original threshold used in section 3.5.2 

(10%, labelled Operating Point 1), and a threshold value selected with the same 

sensitivity as observed with clinical judgement (16%, labelled Operating Point 3). This 

third value was chosen to assess whether specificity could be improved relative to 

clinical judgement whilst maintaining sensitivity.  

At operating point 2 there is no statistical difference between clinical judgement and the 

ED TIC BN in sensitivity (86% vs 96%, p = 0.13). At this operating point clinical 

judgement is no longer more specific than the model (86% vs 86%, p = 0.68). The 

overall diagnostic accuracy of the ED TIC BN at operating point 2 is 86%. Moving the 

threshold value to operating point 3 did not change these relationships with sensitivity 

(86% vs 88%, p = 0.13) or specificity (86% vs 89%, p = 0.09).  

 

Figure 19: Changes in operating threshold of the ED TIC BN in patients receiving 

10unit PRBCs (A) Receiver operating characteristic curve of the ED TIC BN. Arrows point to the 

position on the ROC curve at which the test is dichotomised. Operating points (OP) 1, 2 and 3 are at ED 

TIC BN probability thresholds of 10, 12.5% and 16% respectively. OP 1 is the original operating point 

used in model derivation, OP 2 the maximal point of Youden’s index and OP 3 is fixed on the same 

sensitivity as observed clinical judgement. (B) Diagnostic accuracy of clinical judgement and the ED TIC 

BN at three operating points. Clinical judgement and OP 1 are statistically different. No other comparisons 

between clinical judgement and the ED TIC BN are significantly different. The Bars denote 95% CI.  
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 Comparison of clinical and model errors 

The model and clinicians produced the same classification in 783/858 (91%) and 

741/858 (86%) of patients in definition 1 and 2 of appropriate MPHA respectively. At 

the 4unit PRBCs definition, clinicians did not activate the MHP in 42 patients that 

received 4units of PRBCs (Table 13). In the clinician, false-negative patients, 19/42 

were identified as MHP patients by the model at the original operating point. On the 

other hand, there were 40 false-negative patients classified by the ED TIC BN. In the 

ED TIC BN false negatives, 17/40 were correctly identified by the clinicians. 

At the 10unit definition of appropriate MHPA, there were seven clinician false negative 

patients. All seven of these patients were correctly classified by the ED TIC BN at 

operating point 2. Conversely, there were two false-negative ED TIC BN patients and 

one of these patients was correctly identified by the clinicians.  

 The performance of the ABC score relative to native clinical judgement and 

the ED TIC BN 

To compare the performance of the models across all potential operating points ROC 

curve analysis was undertaken (Figure 20). The ROC curves demonstrate that the ED 

TIC BN had a greater area under the curve at both definitions of appropriate MHPA; 

definition one ED TIC BN AUROC: 0.92 vs ABC score AUROC: 0.78, p <0.001; 

definition two ED TIC BN AUROC: 0.95 vs ABC score AUROC: 0.84, p = 0.001. The 

dichotomous clinical judgement is demonstrated as a single point with error on these 

figures. The point sensitivity and specificity of clinical judgement appears to largely 

outperform the ED TIC BN at the first definition of appropriate MHPA (Figure 20A) 

but is less sensitive and specific than the ED TIC BN at the second definition of MHPA 

(Figure 20B).  
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Figure 20: Comparison of the discrimination performance of the ED TIC BN and 

ABC Scores (A) Definition one of appropriate MHPA (B) Definition two of appropriate MHPA. Blue 

and black dashed lines represent the ROC curves for the ED TIC BN and ABC score models. The yellow 

circle represents the sensitivity and specificity of clinical judgement. Bars denote 95% CI.  

3.6 Discussion  

 Key findings 

As there is no agreed definition of ‘appropriateness’ of MHPA, available surrogate 

markers of haemorrhage were used. Using transfusion volume as a proxy for therapeutic 

need this study described the performance of clinical judgement and two models, in 

predicting the likelihood of appropriate MHPA. Clinical judgement exhibited good 

specificity with moderate sensitivity. Three quarters of MHPA occurred pre-hospital 

and pre-hospital activations were also characterised by high specificity and moderate 

sensitivity. In most circumstances the study did not identify a difference in performance 

between clinicians and the ED TIC BN. However, the ED TIC BN was shown to be 

more accurate than the ABC score. These encouraging findings represent the first 

assessment of the ability of the ED TIC BN to predict haemorrhage.  

Compared to clinical judgement the ED TIC BN performed well in the prediction of 

clinically relevant haemorrhage. There were minimal differences between clinical 
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judgement and the ED TIC BN in haemorrhage prediction. The main difference is at the 

lower severity of appropriate MHPA where clinical judgement is marginally more 

specific than the ED TIC BN. At the higher severity definition clinical judgement and 

the ED TIC BN were not different.  

The ED TIC BN produced a probabilistic output that was highly discriminant between 

different patient groups. This ability of the ED TIC BN model to accurately discriminate 

provides users with an ability to optimise performance for different patient groups.  

 Implication of findings 

To consider the implications of the study’s findings the generalisability of the included 

patient population will first be assessed. In a multicentre review of mortality in trauma 

haemorrhage 484 patients from 22 UK hospitals were included.387 Between the present 

study and this national review, key metrics such as the 4 and 10 unit mortality were 

similar (4unit: 27% vs 24% and 10unit: 38% vs 53%). The number of units of PRBCs 

in the first 24 hours (4unit: 7units vs 5units and 10unit: 15units vs 14units), relative 

proportion of massive haemorrhage to major haemorrhage patients (3:1 vs 2.3:1) and 

arrival physiological observations are similar. Importantly, in both studies, the number 

of units of blood transfusion was proportional to the rate of in-hospital mortality. The 

similarity of patient groups between the two studies increases confidence of the 

representativeness of the patient sample in this study.  

The generalisability of clinicians’ expertise should also be considered. This study was 

conducted with clinicians at the Royal London Hospital. It is well documented that 

trauma patient volume varies between MTCs in the UK.13 It is not known whether 

increased patient volume leads to improved clinical judgement. If the performance of 

clinical judgement is reduced outside the busiest trauma centres, decision support may 

be more impactful than demonstrated in the present study. 
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3.6.2.1 The performance of Clinical Judgement, the ED TIC BN and the ABC score 

By comparison to other studies the clinicians in this present study perform extremely 

well. Two previous studies compare a CDST to clinicians in bleeding patients. The first 

study by Pommerening et al. is a prospective analysis of clinicians.99 In 10 US level one 

trauma centres surgeons had a 66% sensitivity and 64% specificity for patients requiring 

10 units PRBCs. Clinicians in this present study have an 86% sensitivity and specificity 

for the same end point. One important difference is the entry criteria into the two studies. 

In Pommerening’s study all included patients had at least one unit of PRBCs whereas 

this present study is a study of all several injured trauma patients; many of whom receive 

no blood at all. It appears harder to separate patients that have some bleeding than 

patients with no bleeding.  

Another possible explanation for the difference between studies is the time when the 

clinical judgement was made. In the Pommerening study clinicians were asked to make 

their decision at 10 minutes. In this present study clinicians could make their decision 

at any time while in the ED. It is likely that the addition of time and diagnostic adjuncts, 

like cross sectional imaging, improves clinical decision making.  

The Pommerening study also examines the performance of common major haemorrhage 

models. The study suffers from missing data and was only able to calculate model scores 

in 486/1245 (39%) of the eligible population. Using a comparison of ROC curves the 

study demonstrates no difference between clinical judgement and the ABC and 

McLaughlin scores (AUROC 0.62, 0.63 and 0.66 respectively). The study reports that 

clinical judgement was less accurate than the TASH score (0.62 vs 0.72, p = 0.01). For 

comparison, the AUROC for clinical judgement, the ED TIC BN and the ABC score in 

the present study are 0.86, 0.95 and 0.84. Thus, it appears both clinicians and the models 

perform better in this current study. 

The second study to compare clinicians and a major haemorrhage model, reports the 

positive predictive value (PPV) for patients receiving >5units PRBCs. In this 

retrospective study, clinical judgement and the ABC score have 73% and 34% PPV 

respectively. Unfortunately, sensitivity and specificity were not reported and cannot be 
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calculated from the summary data presented. The authors conclude that ABC driven 

activation of the MHP would result in earlier activation at a cost of a seven-fold higher 

blood product wastage.233 Differences in study design and haemorrhage prevalence 

make it difficult to compare performance between studies. Notably, the general 

relationship between the PPV of clinical judgement and the ABC score is the same in 

both studies, i.e. clinical judgement had a higher PPV.  

What this second study adds is an understanding of the influence of a CDST on the time 

to MHPA. The study suggests, ABC activated MHP would reduce time to activation by 

35 minutes compared with physician judgment.233 An accurate model that was able to 

reduce the time to MHPA would have considerable clinical utility. It has been shown 

that delays to the arrival of blood products is associated with decreased survival.94 From 

recent direct observation of the ED TIC BN the model provides its most accurate 

prediction at 15 minutes from the time of patient arrival in the ED (see 1.9.5). The 

median time to MPHA activation in the Motameni study was 37 minutes (IQR 26-52 

minutes). Unfortunately, in this present study, the time of MHPA was not documented. 

If MHPA in our setting is similar, to the Motameni study the majority of ED TIC BN 

activated MHP would be faster than clinician activation.  

3.6.2.2 The potential of the model to support clinical decisions 

Having established that clinical judgement could be improved with respect to activation 

of major haemorrhage protocols, the next step is to evaluate the value that the ED TIC 

BN model might add to the decision-making process. As the ED TIC BN’s accuracy is 

less than 100%, analysis of human and model errors maybe able to identify systematic 

errors to guide the use of the model. In this study clinical judgement and the ED TIC 

BN categorised patients in the same direction in 86-91% of cases. In cases of 

disagreement neither the model nor the clinician were more likely to be ‘right’.  

The Youden index derived “optimisation” of the operating point of the ED TIC BN 

created CDSTs that were more sensitive and less specific than clinical judgement. It is 

important to note that Youden’s index gives equal weight to sensitivity and specificity. 

In clinical practice the trade-off between false negatives and false positives may not be 
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given equal weight. In a clinical problem like major bleeding the majority of the patients 

do not have the disease; there is a class imbalance. Increasing the sensitivity of a test 

and reducing the number of false negatives may benefit some patients but comes at a 

cost of over-triage. With the class imbalance seen in this problem, small decreases in 

specificity proportions lead to greater raw numbers of over-triaged patients. 

Unnecessary activation of the MHP will have costs in terms of wasted resources, 

potential harm to patients that won’t derive therapeutic benefit and disruption of the 

normal activities within a major trauma centre.  

The potential to improve clinical decision making is not only dependent on the value 

ascribed to each of the sensitivity and specificity issues but also the way clinicians 

interact with the model. It is not apparent how clinicians might behave in cases of 

disagreement between clinical judgement and the model. In a series of experiments 

conducted by Mossadegh, she identified that the direction of change (e.g. from a position 

of low risk to high risk) and the seniority of the clinician influence the likelihood that 

the clinician will change their decision given the model’s output (see 1.9.5). 327, 341  

3.6.2.3 Military and austere value of the ED TIC BN 

The ED TIC BN has clinical value in the austere or military setting. First, it may enable 

less experienced clinicians to perform with an accuracy that is not significantly different 

to expert clinicians. Second, by changing the operating threshold for the ED TIC BN, a 

trauma system would be able to prioritise either the test's sensitivity or specificity. For 

example, a need to prioritise specificity may be desirable during resources shortages. In 

a military context adjusting the operating threshold creates a decision rule which is 

adaptable in real time. This provides flexibility for senior policymakers while ensuring 

tactical level decisions remain unburdened by unnecessary complexity. 

3.6.2.4 ED TIC BN vs ABC Score 

The ED TIC BN has demonstrated superior predictive performance in this study than 

the ABC score. The ED TIC BN was not trained to predict major haemorrhage but is 

able to effectively risk stratify bleeding patients. The simplicity of the ABC score 
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adversely affects its predictive performance and it offers little opportunity to augment 

the clinical judgement demonstrated in this study.  

 Strengths and Limitations 

3.6.3.1 Strengths 

By using data collected from a prospective observational study the quality of the data is 

high. In addition, this study’s retrospective design provides a large number of patients 

to be analysed. This allows rare outcomes like massive haemorrhage to be studied in the 

sample population. High quality and volume of data has demonstrated the uncertainty 

of MHPA in patients treated at the Royal London Hospital.   

The study uses two clinically relevant definitions of major haemorrhage. As noted in 

previous research387 the volume of blood transfusion was positively correlated with 

mortality. In this study patients that received 0-3, 4-9 or 10 or more PRBC units 

correlated with in-hospital mortalities of 4%, 24% and 57% respectively. It is vitally 

important that a decision support tool is able to discriminate, and risk stratify patients in 

this middle group. Using only the historical definition of Massive Transfusion, here 

definition two, would ignore a group with a 1 in 4 risk of death.  

The definitions of appropriate MHPA reflect the delivery of blood and blood products 

within the hospital’s MHP. The RLH's MHP includes the immediate delivery of four 

units of both PRBCs and Fresh Frozen Plasma (FFP) and subsequently if a second pack 

is required 6 PRBCs, 6 FFP, two cryoprecipitate and one pool of platelets. As such, a 

patient that receives all of the PRBCs in the first pack has been classified as a major 

haemorrhage patient, and a patient that receives all of the PRBCs in both packs is 

classified as a massive haemorrhage patient. 

3.6.3.2 Limitations 

This study has limitations that can be considered in three domains; the study design, the 

clinical application, and the modelling execution.  
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The study’s retrospective design predisposes it to common biases. For example, there 

are more missing ABC scores amongst patients with the highest mortality. This may 

represent a systematic selection bias and casts questions over the performance of the 

ABC model in the highest risk group. Another problem is the lack of important variables 

such as the time of MHPA. This variable would be particularly helpful to understand 

whether the ED TIC BN model could be used in a timely fashion to assist decision 

making.  

There are limitations associated with the patient population in the study. The data from 

this study all comes from a single centre and was collected several years ago. The ACIT 

study population is also a subset of trauma patients. In a study from the same institution 

4% of all trauma patients activated the MHP.170 In the ACIT patient population, the rate 

of MHPA is 18%. This suggests that the ACIT population is a more severely injured 

sample of patients compared to the general trauma population. These factors affect the 

generality of the study’s findings to a broader trauma population.  

Despite these limitations, the retrospective design has provided a large quantity of high-

quality data. The higher severity of trauma patients has provided more high-risk patients 

which has allowed the study to assess the performance in the patients of most interest. 

The data has allowed the study to effectively assess the hypotheses within these common 

limitations of retrospective research.  

The next area of limitation is the clinical validity of the study. This concerns the 

appropriateness of the definitions chosen. An appropriate definition of critical bleeding 

early after injury remains an area of active research with no currently accepted 

consensus.390 The definition of massive transfusion of 10 units of PRBCs in 24 hours 

has been criticised as arbitrary, subject to survivor bias, and neglectful of transfusion 

rate early after injury.391 To address these concerns, this study used two definitions of 

appropriate MHPA. These definitions have provided a pragmatic sensitivity analysis 

based on previously accepted definitions.  

Newer research tools are gaining traction that are designed to identify bleeding patients 

at risk. Tools such as the Critical Administration Threshold (CAT)391 and the 
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Resuscitation Intensity (RI)392 have been proposed to define the population at risk more 

appropriately. These newer methods simultaneously account for modern balanced 

transfusion practice.390 Recognition of the value of these newer methods to identify the 

high risk patient groups is developing. The benefit of this changing approach has been 

demonstrated in the recent re-interpretation of a high profile trial.164 By changing how 

high risk bleeding patients were defined in the trial the authors were able to improve the 

clinical validity of the study results. Using a technique such as the CAT or RI to define 

MHPA may enhance the analysis of future research like the present study.  

Defining appropriate activation of an MHP is complex as it is a multifaceted judgement. 

It requires the accurate identification of high-risk patients, as just discussed. But it also 

requires a multidimensional decision about what constitutes appropriate (or justified) 

use of the MHP. These dimensions include impacts on the patient but also the health 

care system. For example, what is appropriate in one healthcare setting may not be 

appropriate in another. If resources are limited, then wastage of blood and blood 

products maybe given more weight when the patient benefit is less certain. This study 

is not able to address this complex utility decision.  

Another area of clinical validity to consider is the range of processes an MHP includes. 

As discussed in section 1.4.5.2 a major haemorrhage protocol (MHP) is not purely a 

massive transfusion protocol. Other elements of an MHP include rapid assembly of 

senior decision-makers and access to haemorrhage control strategies. It is possible that 

a clinician activated the MHP to gain rapid access to expertise or facilities, without the 

need for large volumes of blood transfusion. For example, with an isolated extremity 

injury temporary haemorrhage control may be achieved with a tourniquet. The physician 

may still trigger the MHP for rapid surgical repair. However, this patient may not need 

large volumes of blood transfusion once haemorrhage control is achieved. In this study, 

this isolated extremity injury scenario will make clinicians' decision accuracy appear 

poorer. This is because accuracy of appropriate MHPA has been measured by a 

transfusion volume. This definition of appropriate MHPA does not consider other 

factors such as the speed of decision making or patient transport to the operating room. 

This overall impact of this effect on the study is unknown.  
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The third area of limitation pertains to the modelling approach. The ED TIC BN model 

has been used to predict major haemorrhage. The model was not developed for this 

outcome and has not been trained to make this prediction. While TIC and major 

haemorrhage are intricately linked a model trained specifically to predict major 

haemorrhage may perform more accurately. Equally, the volume of blood a patient 

requires, and the volume they receive are not necessarily the same. It is difficult to 

quantify "unnecessary" transfusion. 

The ideal modelling approach would quantify the amount of blood the patient has lost 

as a continuous variable. This outcome is preferred over an approach which models a 

clinical decision. This is because the decision of how much blood to give a patient will 

contain error and practice may evolve over time (see 2.5.2). An approach that models 

how much blood the patient has lost, therefore models a physical property of the patient. 

This theoretically superior modelling approach requires an outcome (blood loss) that is 

much harder to measure.  

The last modelling limitation concerns the study data. In this study 519/858 (60%) of 

the patients were also used to developed the ED TIC BN. The effect of using this 

development data to assess model performance is an over-estimation of the ED TIC 

BN’s performance. A more appropriate method would only use patients from a 

population other than the model development population. Reassuringly, there was very 

little difference in the performance of the ED TIC BN model between the development 

and validation cohorts (see 1.9.3).  
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 What remains unknown 

This study is unable to comprehensively explain how the tool will influence decision 

making in the real world. Comparing clinicians and the ED TIC BN in parallel as 

described here, does not address the interaction of the clinician with the model. The five 

key steps in blue boxes in Figure 18 have not been addressed in this study.  

Evidence suggests with accurate models clinical prediction can be improved when 

clinicians and a model are combined.393 However, only an impact analysis can determine 

whether the use of the model is better than usual care.  For example, it is not obvious 

what the clinician will do in cases were they disagree with the model’s classification. 

Previous studies have identified complex interactions between clinicians and a CDST. 

In a study of a CDST for chest pain triage in an emergency department, clinicians and 

the CDST disagreed in 26% of patients. Interestingly, in cases where the clinicians 

disagreed or did not use the CDST, physicians' decisions were less efficient and less 

safe. The disagreements commonly arose when physicians overruled the CDST's 

recommendations.218  

Future studies on the ED TIC BN should assess the interaction between the clinicians 

and the CDST. Assessment of the key steps in Figure 18 is necessary to understand the 

clinical utility of the model. The resultant accuracy of supported decisions is dependent 

on understanding the human-CDST interaction. Key to understanding the human-CDST 

interaction and resultant impact of the model on clinical practice is ensuring the model 

is assessed in the intended population. In this study it was possible to quantify the 

performance of clinicians in the pre-hospital environment (Table 12) but not the models. 

To understand the impact of pre-hospital decision support studies should be conducted 

in the pre-hospital environment.  

  



Chapter 3 - The value of CDST 

144 

 

3.7 Conclusion 

This chapter has quantified the predictive accuracy of native clinical judgement and a 

BN in decisions about major haemorrhage protocol activation. The study has several 

important findings. First, it has provided evidence of a clinical problem that stands to 

benefit from decision support. Second, it has applied the ED TIC BN to decisions about 

blood transfusion and assessed its performance. Until this point there had not been a 

demonstration of the clinical utility of TIC prediction. Third, the study demonstrates 

that expert clinical judgement and the ED TIC BN model are broadly similar, especially 

at the more severe definition of appropriate MHPA. The chapter has moved a step closer 

towards understanding the ED TIC BN’s clinical impact. 

The study noted 73% of clinical MHPAs were made pre-hospital. Native clinical 

judgement pre-hospital also exhibited only moderate sensitivity and good specificity. 

As the majority of decisions around major bleeding are made pre-hospital, and earlier 

intervention maybe related to better patient outcomes, the value of BN decision support 

pre-hospital warrants further analysis. Future, prospective pre-hospital analysis will 

assess whether a BN could usefully augment decision making pre-hospital and reduce 

the intrinsic biases of retrospective research.  

The next chapter takes the existing ED TIC BN and assesses how it might perform when 

modified for pre-hospital use. 
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PUSHING FORWARDS: FROM EMERGENCY 

DEPARTMENT TO PRE-HOSPITAL DECISION 

SUPPORT 

4.1 Scope of the chapter 

This chapter examines the feasibility of adapting the ED TIC BN model for TIC 

prediction in the pre-hospital environment. From the previous chapter, it was apparent 

that the majority of decisions for activation of the major haemorrhage protocol were 

made pre-hospital. These decisions contain errors and decision support may provide an 

opportunity to improve patient outcomes. Supporting decisions pre-hospital requires 

models that are designed to function in this environment. This chapter, first, assesses the 

variables available in the pre-hospital setting; second, adapts the emergency department 

TIC BN to a pre-hospital TIC BN; third, assesses the plausible performance of the 

adapted PH TIC BN using an existing trauma patient registry and fourth compares the 

performance of the PH TIC BN to two previously published PH TIC models.  
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4.2 Introduction 

The modern management of major haemorrhage and TIC emphases early intervention 

(see 1.4.5). An effective way to shorten the time between injury and intervention is to 

initiate treatment before a patient arrives in hospital.36, 185 A barrier to early intervention  

arises when high risk patients are difficult to identify. Chapter 2 demonstrated that 

decisions around major haemorrhage and TIC are made difficult by clinical uncertainty 

and imperfect decision evaluation. These conditions reduce the accuracy of native 

clinical judgement as demonstrated in Chapter 3. Errors in critical decisions, such as 

delayed recognition of a high-risk patient or failure to provide a beneficial therapy, can 

have profound consequences. Working on the premise that faster access to appropriate 

treatment improves outcomes in trauma (see 1.4.3), this thesis aims to support decision 

making at the earliest opportunity after injury. Clinical Decision Support Tools (CDST) 

offer an opportunity to overcome barriers to early intervention by reducing uncertainty 

and improving decision making.  

The ED TIC BN described in section 1.9, was developed and validated for use as a 

CDST in-hospital in the Emergency Department. The ED TIC BN has 14 input variables 

obtained during an ATLS primary survey (Figure 12). The relative lack of diagnostic 

aids pre-hospital and earlier post-injury physiology is likely to lead to a deterioration in 

the model’s performance. It is not known whether the predictive accuracy of the ED TIC 

BN is sufficiently maintained when used with pre-hospital information to augment 

decision making. This chapter will examine the potential for transformation of the ED 

TIC BN to a PH TIC BN.  

As discussed in Chapter 1, BNs have several valuable features, such as incorporation of 

domain knowledge and the ability to model complex non-linear variable relationships 

(see 1.8.2.2). These features may enable a BN model to outperform models which rely 

on traditional statistical techniques. Once a PH TIC BN model has been constructed this 

chapter will assess the performance of the PH TIC BN compared to published PH TIC 

models. 
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4.3 Aims and Hypotheses 

 Aims 

4.3.1.1 Aim 1: Identify the set of variables available for pre-hospital model use  

4.3.1.2 Aim 2: Assess the performance of the adapted PH TIC BN  

4.3.1.3 Aim 3: Compare the adapted PH TIC BN to other published PH TIC models 

 Hypotheses 

4.3.2.1 Hypothesis 1: Not all 14 variables for the ED TIC BN are available pre-hospital 

4.3.2.2 Hypothesis 2: Performance of a PH TIC BN, using the same model structure 

and parameters as the ED TIC BN, is sufficiently maintained to warrant further 

clinical examination 

4.3.2.3 Hypothesis 3: Performance of the resultant PH TIC BN is superior to other 

published models 

4.4 Methods 

This chapter follows the guidance of the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement.394 The 

TRIPOD statement aims to improve the reporting of development, validation and 

updating studies of prediction models.  

 Availability of input variables for a PH TIC BN 

The variables available for a PH model were established by observation of care at LAA 

and AAKSS. Pre-hospital blood gas analysis is not currently performed by either Air 

Ambulance service. During this research, clinicians at AAKSS judged the feasibility of 

performing blood gas analysis between the point of injury and arrival in hospital. A 
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portable blood gas analyser (epoc® Blood Analysis System (Siemens, Camberley, UK)) 

was used during this assessment.  

Additionally, representatives of Air Ambulance services in the UK were asked in May 

2020 whether their service had access to blood gas analysis. Respondents were members 

of an online group of currently practicing pre-hospital care clinicians. 

 Defining the PH TIC BN  

Following observation of the potentially available model inputs, a new PH TIC BN was 

defined. The PH TIC BN model retained the same structure and parameters as the ED 

TIC BN (see 1.9). Only the input variables changed between PH and ED models. The 

PH model’s input variables were either retained, modified or removed from the original 

ED model. The decision to retain, modify or remove an input variable, depended on the 

pre-hospital availability of that variable.  

 Study design to assess PH TIC BN performance  

To assess the performance of the PH TIC BN, the model’s discrimination, calibration 

and accuracy is assessed in a cohort of ACIT study patients. These performance methods 

are discussed in 4.4.8. 

The ACIT database does not record the PH clinician’s injury assessment and diagnosis. 

Instead, ACIT only contains the final injury diagnosis on hospital discharge. This 

presents a problem on how to validate the PH TIC BN model. The PH TIC BN uses 

inputs concerning the presence of Haemothorax, Abdominal Bleeding, Open Long Bone 

Fracture and Unstable Pelvic Fracture, diagnosis of which is supported by investigations 

that are not available to the pre-hospital clinician. Therefore, for the purposes of this 

study, assumptions that a particular injury input would have been amenable to accurate 

PH diagnosis had to be made. It was assumed that PH clinicians encountering an ACIT 

patient later logged as having unstable pelvic fracture and/or long bone fracture would 

been able to make these diagnoses accurately, as the clinical signs associated with these 

diagnoses are usually overt. For haemothorax and intra-abdominal bleeding, clinical 
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signs may be less obvious to the PH clinician and for that reason a higher threshold of 

documented injury severity was applied. As such, it was assumed that patients with chest 

or abdominal injuries later coded as Abbreviated Injury Scale (AIS)386 ≥3, and whose 

free-text description of the injury was consistent with the presence of haemorrhage, 

would have had displayed sufficient clinical evidence of the presence of these injuries 

to make the diagnosis. Therefore, these input variables (Haemothorax and abdominal) 

have been assumed to be accurately diagnosed when AIS≥3 and have been entered into 

the model in this study.  

To evaluate the potential for overfitting, the performance of the PH TIC BN was also 

assessed in a cohort of patients that were not used in the development of the original ED 

TIC BN model. This external validation cohort was the same group of patients 

previously used to externally validate the ED TIC BN.338  

 Study population  

To assess model performance, the same cohort of patients from the ACIT study as used 

in CHAPTER   3 was used again. A full description of the study setting, and patient 

characteristics are provided at 3.4. The ACIT study prospectively collects multiple 

patient data points at several time points. These data points include patient 

demographics, mechanism of injury, injuries sustained, vital signs, treatment 

administered and outcome. Pre-hospital vital signs are collected in ACIT and were not 

used in the development or validation of the ED TIC BN.  

 Comparison of the PH TIC BN to other models 

There are two published prediction models for PH TIC: the Coagulopathy of Severe 

Trauma (COAST) Score257 (see 1.6.3.2) and the Prediction of Acute Coagulopathy of 

Trauma (PACT) Score261 (see 1.6.3.3). The models differ in their modelling approach, 

complexity, inputs, outcome classification and predictive performance. (Table 4 and 

Table 15). 
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Table 15: Input variables and characteristics of the pre-hospital Trauma Induced 

Coagulopathy prediction models 

 
COAST           PACT PH TIC BN 

Input variables 

      

Demographics      

  Age Decade   

Vital Signs      

SBP, mmHg 
<100 or 

<90 
HR/SBP ≥1 Yes/no SBP Cont. 

Temperature, oC 
<35 or 

<32 
GCS 3-15 HR Cont. 

    Temperature, oC Cont. 

    GCS 3-15 

Mechanism of injury      

     Energy 
High / 

low 

 
Causes vehicular 

entrapment 
Yes/no Non-vehicular Yes/no MOI 

Blunt / 

pen. 

Suspected injuries       

 
Abdominal or 

pelvic injury 
Yes/no   Long bone # Yes/no 

     Unstable pelvic # Yes/no 

     Haemothorax Yes/no 

Investigations    
Abdominal 

bleeding 
Yes/no 

    Lactate Cont. 

Treatments received      

  
Chest 

decompression 
Yes/no Intubation Yes/no 

Pre-hospital 

Crystalloid 
Cont. 

   CPR Yes/no   

   

Model characteristics   

Number of variables 5 6 12 

Model design Simple score Logistic regression Bayesian Network 

Scoring Integers (0-7) Integers (0-400) Probability (0-1)  

Model application Paper form  Online calculator Online interface 

SBP, Systolic blood pressure; GCS, Glasgow Coma Scale; HR, Heart Rate; CPR, Cardiopulmonary 

resuscitation; MOI, Mechanism of injury; #, Fracture; Cont., Continuous; Pen., Penetrating. 
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The COAST and PACT models were applied to patient data in this study using the 

originally published model descriptions. The COAST and PACT scores can be readily 

applied to the data. The PH TIC BN requires either the original rendering of the BN in 

AgenaRisk software323 or an online model calculator available at 

www.traumamodels.com. 

 Outcome classification 

In common with much of the TIC literature, the three models differ in their classification 

of TIC (Table 30). The COAST score classified TIC as INR > 1.5 OR aPTT > 60 

seconds. The PACT score classified TIC as an INR > 1.5. Models trained to predict 

diagnostic test results, rather than the underlying pathological condition, compound 

errors. To mitigate against additional error, the ED TIC BN classified patients as 

coagulopathic using a threefold approach; coagulopathic patients had an INR >1.2395 

AND were identified as coagulopathic by an expectation maximisation (EM) clustering 

algorithm.396 The EM algorithm grouped patients into two clusters using the patient’s 

clinical, laboratory, and thromboelastometry profiles.335 If the INR and EM clustering 

methods produced conflicting results, a third step was performed. In the deciding step, 

an expert review was performed using all the available patient information.338  

In this study, a patient’s coagulopathy status is classified using the threefold method 

established by Perkins and Yet.338 

 Handling and substitution of input data 

Simple scores and logistic regression models require a complete set of input variables 

to perform in the manner they were developed and validated. Bayesian Networks are 

not constrained to complete case analysis and will provide outcome calculations without 

a full set of input variables. Therefore, the COAST score and PACT score required 

complete-case analysis to calculate their predictive performance. An a priori decision 

was made to calculate the prognostic performance of the COAST and PACT models 

under two conditions. First, a complete-case analysis was performed. Second, model 

http://www.traumamodels.com/
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performance was re-calculated without the most common missing variable. This 

secondary analysis was performed to assess for evidence of selection bias resulting in 

poor performance due to missing data. A final assessment of predictive performance 

was compared for patients that had a complete set of input variables for the PH TIC BN. 

Missing data imputation was not performed for any model.  

The ACIT database does not contain all of the variables required for the COAST, PACT 

or PH TIC BN scores. These missing variables were pragmatically approximated 

according to the rules in  

Table 16. 

 Statistical methods 

The normality of continuous variables was assessed using Q-Q plots and the Shapiro-

Wilk test. Numerical data are reported as median (IQR) and categorical data as 

frequency (n) and percentage (%). Statistical significance was set as a 2-tailed P value 

of <0.05. 

4.4.8.1 Model performance: calibration 

Predictive performance was assessed in terms of calibration and discrimination. 

Calibration refers to how closely the predicted risk of TIC agrees with the observed TIC 

risk. A calibration plot was generated by comparing the average observed frequencies 

(y-axis) to the average predicted probability (x-axis) of the outcome. This was assessed 

for each decile of predicted risk. A smoothed curve was fitted to the data to assist with 

visualisation of the relationship using a regression technique (Locally estimated 

scatterplot smoothing; LOESS).397 Using this method, perfect predictions are plotted on 

the ideal line, described with an intercept of 0 and a slope of 1. The intercept relates to 

calibration-in-the-large and compares the mean of all predicted risk with the mean 

observed risk. The slope provides information on whether the model under- or over-

estimates risk across the range of model predictions. Hosmer-Lemeshow tests were not 

conducted as calibration plots are preferred.  
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Table 16: Rules of approximation for variables from ACIT database to pre-

hospital TIC prediction models 

 
Pre-hospital variable in 

prediction model 

Available in 

ACIT data  
Method of approximation 

COAST 

SBP, mmHg    

Temperature, oC x Substituted ED arrival temperature  

Vehicular entrapment x 
Assumed when time from injury to ED >1.5hrs 

and appropriate mechanism of injury  

Abdominal or pelvic injury x Assumed if AIS abdomen or pelvic injury ≥31  

Chest decompression x Assumed if diagnosis of tension pneumothorax1  

PACT 

HR/SBP ≥1   

Age   

GCS   

MOI non-vehicular    

CPR x 
Assumed if PH or ED observations demonstrate 

cardiac arrest  

Intubation   

PH TIC BN 

 SBP   

 HR   

 GCS   

 Energy   

 MOI   

 Long bone # x Assumed if long bone fracture coded1 

 Unstable pelvic # x Assumed if unstable pelvic fracture coded1  

 Haemothorax x 
Assumed if AIS chest ≥3 and haemothorax 

coded1  

 Abdominal bleeding x 
Assumed if AIS abdomen ≥3 and injury 

consistent with bleeding coded1  

 Lactate x Substituted first in-hospital lactate  

Pre-hospital crystalloid   

1For the purposes of model calculations injuries were assumed to be apparent to pre-hospital 

clinicians if the injury was coded at the final diagnosis.  

SBP, systolic blood pressure; GCS, Glasgow Coma Scale; HR, heart rate; CPR, cardiopulmonary 

resuscitation; MOI, mechanism of injury; #, fracture 
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4.4.8.2 Model performance: discrimination 

Discrimination is the ability of the model to distinguish between patients who do and 

do not develop TIC. Discrimination can be visually assessed from a stratified histogram 

of predictions. This histogram was implemented as a rug plot nested within the 

calibration plot. Discrimination is calculated as the concordance statistic (c-statistic) 

which for a binary outcome is the same as the AUROC. The AUROC was calculated 

using Hanley’s method.398 A c-statistic of 0.5 represents chance, and a value of 1 is 

perfect discrimination. AUROCs were reported with 95% Confidence Intervals. 

Correlated data was present when ROC curves were generated from two or more models 

applied to data from the same individuals. To compare model performance of correlated 

data, DeLong's non-parametric comparison was used.389 Hanley’s method398 was used 

for model comparisons of independent data.  

4.4.8.3 Model performance: overall measures - Brier scores 

In addition to calibration and discrimination, measures of overall model performance 

were used. The Brier score (BS) quantifies the overall accuracy of a probability model 

by taking an average of the errors of prediction from each patient.399 The BS has a range 

of 0 (no error between prediction and outcome) and 1 (worst possible model). The Brier 

skill score (BSS) is a modification of the BS which divides the BS by the average 

probability of the event occurring. The BSS gives the improvement in using the model 

compared to predicting the average outcome. The BSS has a range from - ∞ to 1. 

Negative numbers demonstrate a worse prediction than the average probability, and a 

score of 1 is the perfect model. The 95% confidence interval of the BS and BSS are 

calculated using bootstrapping.  

4.4.8.4 Model performance: overall measures - net benefit 

Calibration and discrimination describe the predictive performance of a model, but do 

not provide any insight into the clinical consequences of miscalibration or imperfect 

discrimination. Decision Curve Analysis (DCA) is a novel method used to assess the 

potential population impact of a prediction model.400 DCA estimates whether clinical 
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decisions from a model would do more good than harm i.e. the model’s net benefit. Net 

benefit is calculated by weighing improved patient outcome against the harm to patients 

that cannot derive benefit. Net benefit requires a clinical judgement on the relative 

importance of benefits against harms.  

Mathematically, DCA relates the number of true-positives (TP) predictions to the 

number of false-positive (FP) predictions at a given operating point or outcome risk 

threshold. The difference between TP and FP is then weighted by the factor that 

determines the value of a FP relative to a false negative (FN). This factor acts as an 

“exchange rate” between the errors of FP and FN and allows harm and benefit to exist 

on the same scale: net benefit.401 

𝑛𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  
𝑇𝑃

𝑁
−

𝐹𝑃

𝑁
∗ (

𝑝𝑡

1 − 𝑝𝑡
) 

Where 𝑁 is the total sample size and 𝑝𝑡 is the operating point or threshold probability 

used to classify patients into risk categories for decision making. Notably benefit and 

harm are not included explicitly in this function, but are included implicitly in the 

rationale selection of 𝑝𝑡, reflecting the harm and benefit of intervention.402  

For example, a PH TIC model may recommend patients should undergo damage control 

resuscitation (DCR) at a threshold of 𝑝𝑡 = 0.10. Above this value all patients receive 

DCR. Using the net benefit equation allows a weighted calculation of harm to benefit at 

this threshold or exchange rate. Harm is the magnitude of the side effects of patients that 

unnecessarily receive DCR (FP) and benefit is the magnitude of improvement due to 

DCR for patients with TIC (TP). Net benefit can be calculated for any 𝑝𝑡 from 0 to 1, to 

assess the relative harm or benefit at each given probability threshold.  

In this study, the relationship of net benefit to 𝑝𝑡 was plotted graphically as a decision 

curve at all values of 𝑝𝑡.400 The decision curve plot can be viewed as a sensitivity 

analysis over a range of exchange rates between benefit and harm. With a given 𝑝𝑡 the 

curve displays the net benefit of using the model at that threshold. The decision curve 

was used to plot the net benefit of the PH TIC BN and two default strategies: a strategy 
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to treat everyone and a separate strategy to treat no one.400 The strategy or model with 

the highest net benefit at a given 𝑝𝑡 offers the greatest clinical value at that threshold.401  

4.4.8.5 Statistical computation and figure development 

Statistical analysis and figure development were performed using SPSS 26 (IBM, 

Armonk, New York, USA), Prism 8 (GraphPad Software, San Diego, California, USA) 

and R statistical software (R Foundation for Statistical Computing; www.r-project.org 

version 3.6.0). “pROC” package version 1.16.2 was used to compare ROC curves.403 

Packages used to create the calibration plots and calculate Brier scores included “ggplot 

2” version 3.3.0404 and “rms” (Regression Modelling Strategies) version 5.1-4.405 The 

decision curve analysis was created with the “rmda” (Risk Model Decision Analysis) 

version 1.6 package.402 The BN was computed by AgenaRisk software (Agena, London, 

UK).323   

  

http://www.r-project.org/
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4.5 Results 

 Available variables in the pre-hospital environment for a PH TIC BN 

Of the original 14 input variables the PH TIC BN retained three, modified eight and 

removed three. The mechanism of injury, the energy associated with the injury and the 

PH crystalloid volume were retained. Of the eight modified input variables four were 

modified from ED to PH measurements: heart rate, systolic blood pressure, GCS and 

lactate.  

Notably, the use of point of care (POC) lactate measurements was variable between Air 

Ambulance services.114 One of the two observed sites in this study used POC lactate. 

However, the use of PH lactate measurement at this site was intermittent. During the 

period of observation, 15% of AAKSS patients had a POC lactate measured.406  

The other four modified variables were the suspected injury variables. The ED TIC BN 

model utilized imaging to support the diagnosis of bleeding and fractures. These 

imaging modalities are not routinely available pre-hospital. For the PH model, variables 

relating to chest, abdominal, pelvic and long bone injuries have been modified to rely 

on clinical diagnosis alone.  

Temperature was not routinely measured in trauma patients pre-hospital and was 

removed. Base deficit (BD) and pH were also removed. The decision to remove  BD 

and pH followed clinical evaluation of a portable blood gas analyser at AAKSS. 

Clinicians reported the device took too long to operate, was prone to device errors, and 

was not easy to operate PH. In addition, clinicians at every Air Ambulance service in 

the UK responded to the survey. Only four of the 22 Air Ambulance services had access 

to blood gas analysis.  The resultant PH TIC BN model consists of a maximum of 11 

input variables (Figure 21).  
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Figure 21: Directed acyclic graph of the pre-hospital trauma induced coagulopathy 

Bayesian Network. The bright red variable represents the predicted outcome. Dark red variables 

represent the five latent causal factors. The white input variables (evidence) represent predictors 

associated with the causal factors. Evidence variables have changed from Figure 12 to variables available 

in the pre-hospital environment. PH, pre-hospital; GCS, Glasgow Coma Scale; HR, heart rate; MOI, 

mechanism of injury; SBP, systolic blood pressure; Temp, temperature.  

 Study Population and data availability 

The study population is described in section 3.5, Table 12 and Table 17. The study 

included 858 patients, of which 82% were male, median ISS was 13 (IQR 5-25), and 

92/858 (11%) had TIC. Despite the approximation methods, some variables had large 

proportions of missing data (Table 17). 
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Table 17: Missing data and summary of scoring variables for pre-hospital TIC 

prediction models 

 Pre-hospital variable Missing data Cohort values 

 

COAST 

 SBP mmHg, n (%)1 91 (11) 

0, 634 (74) 

1, 41 (5) 

2, 92 (11) 

 Temperature (oC1) 346 (40) 

0, 433 (50) 

1, 78 (9) 

2, 1 (0) 

 Vehicular entrapment, n (%) 6 (1) 64 (8) 

 Abdominal or pelvic injury, n (%) 26 (3) 147 (17) 

 Chest decompression, n (%) 26 (3) 25 (3) 

PACT 

 HR/SBP ≥1, n (%) 327 (38) 84 (10) 

 PACT Age, median (IQR) 3 (0) 4 (2–5) 

 PACT GCS, median (IQR) 41 (5) 0 (0, 3) 

 MOI non-vehicular, n (%) 1 (0) 613 (71) 

 CPR, n (%) 0 12 (1) 

 Intubation, n (%) 1 (0) 307 (36) 

PH TIC BN    

 SBP (mmHg), median (IQR) 91 (11) 128 (111, 142) 

 HR (bpm), median (IQR) 297 (35) 87 (73, 101) 

 GCS, median (IQR) 41 (5) 15 (12,15) 

 Energy – low, n (%) 36 (4) 584 (68) 

 MOI – blunt, n (%) 0 679 (79) 

 Long bone fracture, n (%) 0 196 (23) 

 Unstable pelvic fracture, n (%) 26 (3) 79 (9) 

 Haemothorax, n (%) 0 116 (14) 

 Abdominal bleeding, n (%) 26 (3) 81 (9) 

 Lactate (mmol/L), median (IQR) 47 (6) 2.2 (1.3-3.5) 

 PH crystalloid (ml), median (IQR) 11 (1)  0 (0-250) 

1The COAST. score categorises this variable. The cohort values are reported as “model value, n (%)” 

Bpm, beats per minute; SBP, Systolic blood pressure; GCS, Glasgow Coma Scale; HR, Heart Rate; 

CPR, Cardiopulmonary resuscitation; MOI, Mechanism of injury; #, Fracture; PH, Pre-hospital. 
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 Performance of the PH TIC BN 

4.5.3.1 Discrimination 

In the complete patient sample (n=858) the 11 variable ‘full PH TIC BN’ exhibited 

reduced discrimination compared to the ED TIC BN (AUROCs: 0.92 (0.90-0.95) vs 

0.94 (0.93-0.96), p = 0.03). In turn, the 10 variable ‘no lactate PH TIC BN’ had reduced 

discrimination compared to the full PH TIC BN (AUROCs: 0.90 (0.87-0.93) vs. 0.92 

(0.90-0.95), p = 0.004) (Figure 22).  

Overfitting, as assessed by inappropriate model optimism, was not demonstrated in the 

full PH TIC BN: AUROC external patient population (n=341) = 0.95 (0.91-0.99) vs 

internal validation cohort (n=517) = 0.90 (0.87-0.95), p=0.29. 

 

Figure 22: Discrimination performance of three variants of the Trauma Induced 

Coagulopathy Bayesian Network in 858 patients from the ACIT study. The receiver-

operating characteristic (ROC) curves show the relationships between true-positive and false-positive TIC 

predictions in the original full ED BN (black line), the full PH BN (blue line), and no lactate PH TIC BN 

(red line). AUROC; Area under the receiver-operating characteristic curve, BN; Bayesian network, CI; 

Confidence interval, PH; Pre-hospital, ED; Emergency department.  
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4.5.3.2 Calibration 

With both 10 and 11 input variables the PH TIC BN calibration plots have intercepts 

and slopes close to 0 and 1 respectively (Figure 23). In the no lactate PH TIC BN 

(Figure 23B) the model underestimates the probability of TIC at 5% to 65% risk and 

overestimates risk above 65%. 

Figure 23: 

Calibration plots for 

the pre-hospital 

trauma induced 

coagulopathy 

Bayesian network. 
The calibration plot 

demonstrates the 

relationship in 858 ACIT 

patients between perfect 

(dashed line) and observed 

(solid line) predicted 

values in  
(A) full PH TIC BN  
(B) no lactate PH TIC BN.  

 
The rug plot at the bottom 

of each figure stratifies the 

distribution of predicted 

probabilities.  

 

Circles with 95% 

confidence intervals 

represent deciles of 

patients grouped by 

predicted probability. 
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4.5.3.3 Overall performance measures – Brier Score 

The PH TIC BN models had good overall accuracy. Degradation in overall model 

accuracy is demonstrated between the two versions of the PH TIC BN but not between 

the ED TIC BN and the full PH TIC BN. The Brier skill scores for the ED TIC BN, full 

PH TIC BN and no lactate PH TIC BN are 0.41 (0.32-0.50), 0.41 (0.32-0.50) and 0.31 

(0.23-0.39) respectively.  

4.5.3.4 Overall performance measures – net benefit 

 

Figure 24: Decision curve showing net benefit for treating trauma induced 

coagulopathy in trauma patients. The net benefit of the full and no lactate PH TIC BN models 

are demonstrated against the default strategies of treat all and treat none. At any given threshold the model 

with the higher net benefit is the preferred model.  

 

At all threshold probabilities the net benefit of using either PH TIC BN is greater than 

the default strategies. For example, if a threshold probability of 8% is used to designate 

an individual at high risk of TIC, the net benefit using of the full PH TIC BN over a 

strategy of treat all patients equates to five per 100, additional high-risk patients treated 

without increasing the number treated unnecessarily. When compared to a treat none 

strategy the model confers a benefit of eight per 100 additional patients treated. 
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 Performance of the PH TIC BN relative to other PH models 

Using complete case analysis for the COAST and PACT scores, the full PH TIC BN 

had significantly better discriminative ability than either the COAST (p=0.049) or 

PACT (p<0.001) scores (Figure 25). Removing the primary missing variable from the 

COAST and PACT scores and re-running the calculations resulted in poorer 

performance of both models (Table 18). The no lactate PH TIC BN was not significantly 

better than the full COAST score (p= 0.08) but was better than the full PACT score 

(p<0.001).  

When model comparison was restricted to only include cases with full input variables 

for all three models only 293/858 (34%) patients remained. Under these conditions only 

13/293 (4%) of patients had TIC. As a result, the true performance of the models became 

more uncertain: full TIC BN PH AUROC 0.85 (0.73-0.96), COAST 0.74 (0.58-0.89) 

and PACT 0.81 (0.73 to 0.90) and the models were not statistically different.  

 

Figure 25: Discrimination performance pre-hospital TIC models in 858 ACIT 

patients. The ROC curves show the relationships between true-positive and false-positive TIC 

predictions in the full PH BN (blue line), the full COAST score (yellow line), and the full PACT score 

(magenta line). AUROC, area under the receiver-operating characteristic curve; CI, confidence interval.  
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Table 18: Discriminative ability of pre-hospital trauma induced coagulopathy 

models  

 
Full  

PH TIC 

BN 

No lactate 

PH TIC 

BN  

Full 

COAST 

score 

No temp 

COAST 

score  

Full  

PACT 

score 

PACT 

score  

       

n 858 858 452 743 526 814 

AUROC 0.92 0.90 0.82 0.81 0.78 0.74 

95% CI 0.90-0.95 0.87-0.93 0.71-0.92 0.75-0.86 0.72-0.84 0.69-0.80 

PH; Pre-hospital, TIC; Trauma induced Coagulopathy, BN; Bayesian Network, SI; Shock index, 

AUROC, Area under the receiver-operating characteristic curve; CI, Confidence interval. 

4.6 Discussion 

 Key Findings 

The existing ED TIC BN can be adapted for use in the PH environment. The potential 

performance of this novel 11 variable PH TIC BN has been validated: it has an AUROC 

of 0.92 (0.90-0.95), is well calibrated, has good overall performance and has net benefit 

over two default treatment strategies. The predictive performance of the PH TIC BN 

was significantly better than other published models.   

 Interpretation of results 

Removal of input variables from the ED TIC BN leads to degradation in the resultant 

model’s performance. However, if the pragmatic assumptions made to calculate the 

performance of the PH TIC BN in his study are correct, the model appears to be 

promising and warrants further evaluation.  

There are important caveats that arise from the assumptions made to calculate 

performance. As highlighted previously, the blood gas variables (BGV) (base deficit, 

lactate and pH) have the greatest impact on the ED TIC BN’s result.338 However, due to 

the features of a BN, Perkins demonstrated removal of all three BGV had minimal 
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impact on the model’s performance. This finding is true when all other variables in the 

model are unchanged (BN with BGV AUROC: 0.95 (0.93–0.98) vs BN without BGV: 

AUROC 0.94 (0.91–0.98), p = 0.286). In this present study, not only are the BGV 

removed, but other variables are modified. The combination of removing key variables 

and modifying other variables has degraded the performance. 

The full PH TIC BN has a better performance than the version of the model without 

lactate. As observed, only 15% of PH trauma patients at one of the two studied Air 

Ambulance sites had POC lactate measurement and only 4/22 Air Ambulance sites have 

access to POC lactate. In patients that do undergo PH lactate measurement, it is not clear 

whether a lactate obtained sooner after injury conveys the same amount of information 

than a lactate result obtained later. There is little available evidence to accept or refute 

this premise.114 In this study, the ED lactate was substituted for the missing PH lactate. 

The impact of this substitution on the model's performance is not apparent.  

4.6.2.1 The value of decision analytic results 

With traditional performance metrics, it is possible to know a model’s discrimination, 

calibration and overall accuracy results but not whether these values were sufficient to 

justify clinical use. For example, suppose there is a major bleeding model which predicts 

risk from 40-90%. This model has good discrimination and calculates higher predicted 

risk for bleeding patients. However, the model does not produce risk low enough to 

change clinical practice as clinicians decide to treat all patients with a risk greater than 

40%. This threshold is a manifestation of the clinicians’ judgement of the relative trade-

off between errors of commission and omission. Variation amongst clinicians, patients 

and situations will influence which decision threshold is the most appropriate in a given 

situation.  

DCA has some notable limitations. First, DCA assumes all treated patients will accrue 

the same benefit if they have the disease and suffer the same harm if treated without the 

disease. Second, DCA assumes that the threshold probability accurately summarises the 

costs and benefits of the intervention.402 
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 Strengths and limitations 

This study has assessed the feasibility and validated a BN model for PH TIC prediction. 

In a patient cohort of over 850 patients, the findings suggest that PH prediction of TIC 

is possible. The study is strengthened by adherence to the TRIPOD statement. The 

methods used to validate the model and report the study findings are consequently 

robust.  

For example, model performance has been assessed in a group of patients external to 

the original development cohort. This step addresses the risk of overfitting. Overfitting 

of models results in exaggerated optimism of performance.216 Overfitting occurs when 

a model function too closely fits a limited set of data points. In such cases, any noise in 

the data is misinterpreted as a signal.407 Overfitting is best appreciated when the model 

is judged using an external dataset to the model development set. 

Additionally, by comparing the PH TIC BN's performance against other existing 

prediction models in the same data set, the performance of the new model is 

contextualised. This useful comparison step is rarely undertaken in model validation 

studies.408 

4.6.3.1 Limitations 

The performance of the PH TIC BN was calculated using the same parameters as the 

ED TIC BN model. This study did not re-learn (or re-calibrate) the parameters of the 

model. Ideally the node probability tables, that describe the conditional probability 

relationships between variables in the model, should be re-learnt from data. Re-learning 

these parameters would account for the differences in the variables meaning between 

the ED and PH TIC BN models. For example, some variables in the PH TIC BN were 

measured at an earlier time point (Lactate, SBP, HR, Temperature, and GCS) but the 

probability distributions used for these variables were learnt from in-hospital data. In 

the case of the lactate variable, re-learning requires a dataset with PH lactate which was 

not available in this study. Re-learning the parameters may have improved the predictive 

performance of the model. 
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Substitutions in this study will also have impacted on the COAST and PACT models’ 

performance. Four of the five COAST input variables required substitution as well as 

one of the six PACT variables. In this present external validation, COAST deteriorated 

from its previous small (n=133) external validation AUROC = 0.94 (0.88 - 0.99)260 to 

0.82 (0.71-0.92) and PACT from its prior external validation AUROC = 0.80 (0.72 - 

0.88) 261 to 0.78 (0.72-0.84). Additionally, testing all three models against the outcome 

definition of just one of the models, will likely have degraded the performance of the 

other two models.  

The impact of the missing data also affected the external validation and comparison of 

the three PH TIC models. For example, DeLong's method of correlated ROC curve 

comparison requires paired model values for each patient. For example, if missing data 

resulted in a patient, n, having a model prediction for the PH TIC BN model but not the 

COAST score, the models' performance cannot be compared for that patient. Missing 

data in the full COAST model reduced the number of patients available for paired 

analysis from 858 to 452. Fewer patients led to a wider confidence interval, which in 

turn affected the statistical comparison. In this manner, missing data in the COAST 

model affected the calculated performance of the 'no lactate PH TIC BN' model during 

their comparison; the 'no lactate PH TIC BN' model's discrimination changed from an 

AUROC = 0.90 (0.87-0.93) to AUROC = 0.88 (0.80-0.96). This impacted the no 

significant difference result between these two models (p= 0.08) and severely limited 

final comparison of the models using full case analysis for all models.  

Another important limitation of this study relates to the way in which the pre-hospital 

injuries were coded. In this study an assumption was made that injuries above a certain 

severity threshold would be apparent to the clinician. However, the validity of this 

assumption is not known. As noted by the COAST authors, patients with occult injuries, 

are at risk of being underscored by any PH model reliant on injury information. The 

ability of the CDST user (in this case the pre-hospital clinicians) to accurately diagnose 

injuries pre-hospital requires further investigation.    
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 What remains unknown 

This study design was selected to assess the feasibility and scope the likely performance 

of a PH TIC BN. This was a necessary step to understand the predicted model 

performance before undertaking further research. However, this study does not advance 

the understanding of the real world impact of the model. It is unclear if the PH TIC BN 

will still perform more accurately than other models when used prospectively. It is 

unknown whether the PH TIC BN will influence clinical decisions and ultimately how 

changes in clinical decisions influence patient and health system outcomes. To gain 

insights into the potential of the model to augment decision making and thus understand 

the model’s impact, prospective clinical evaluation is required.  

4.7 Conclusion 

This chapter aimed to identify the set of variables available for pre-hospital TIC 

prediction and 11 variables have been described. The performance of the PH TIC BN 

demonstrates that an individual’s risk of TIC can be accurately predicted from clinical 

information in the pre-hospital environment. The PH TIC BN performs better than any 

published PH TIC prediction model and therefore warrants further prospective 

evaluation.  

The next chapter assesses the real-world pre-hospital performance of the PH TIC BN. 

The chapter seeks to understand how the model will impact a clinician’s risk assessment. 



Chapter 5 - The EmPHATTIC Study 

169 

 

  

THE EMERGENCY PRE-HOSPITAL 

ARTIFICIAL INTELLIGENCE IN TRANSFUSION 

AND TRAUMA INDUCED COAGULOPATHY  

(EMPHATTIC) STUDY  

5.1 Scope of the chapter 

This chapter describes the prospective multicentre ‘Emergency pre-hospital artificial 

intelligence in transfusion and trauma induced coagulopathy’ (EmPHATTIC) study. 

The EmPHATTIC study is a Phase I Impact Study of the PH TIC BN on pre-hospital 

decision making. The study focuses on the ability of the PH TIC BN to influence two 

pre-hospital decisions: is the patient at risk for trauma induced coagulopathy (TIC)? And 

will the patient receive a blood transfusion within four hours of injury?  
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5.2 Introduction  

A pre-hospital healthcare professional has the opportunity to start therapy and 

potentially improve patient outcomes early after injury. This early treatment relies on 

the ability to identify patients most likely to benefit from the intervention. (see 2.5.2 and 

3.5.1) However, errors in decision making may lead to harm from either unnecessary 

treatment or delays in care. Errors such as these have profound consequences, yet 

important decisions are frequently based on incomplete information and uncertain risks. 

(see 2.5.1, 2.5.2 and 2.5.3)  

TIC is the clinical manifestation of an endogenous multi-factorial and multi-mechanistic 

failure of the coagulation system, exacerbated by improper resuscitation techniques. (see 

1.4) The diagnosis of TIC is challenging pre-hospital. (see 2.5.2.1) Coagulation assays 

in the pre-hospital environment (such as POC INR) have no proven benefit in the 

diagnosis or management of TIC.122, 123 Viscoelastic haemostatic assays provide more 

information than CCTs, but are not yet widely available for pre-hospital use. (see 

1.4.4.2) Beside diagnostic assays, mathematical TIC prediction models have been used 

to risk-stratify patients. (see 1.6.3) Unfortunately, neither TIC nor major haemorrhage 

prediction models are yet accurate enough to guide treatment decisions.266  

Modern computational methods present an opportunity to develop powerful clinical 

decision support tools (CDST). CDSTs have the potential to augment clinical decision 

making and improve patient care.310 Such models require careful development and 

validation in the target patient population. But model validation is not sufficient to 

provide evidence of a model’s clinical impact. (see 4.5.3) Without impact studies, the 

efficacy of a new CDST is unknown. Therefore, to introduce CDSTs safely into clinical 

practice requires impact studies.271 

Very few studies describe the impact of CDSTs in clinical practice.267 Compared to 

model development and validation, impact studies are difficult to conduct and 

expensive. These costs may be justified if there is evidence that the CDST might 

improve decision making in the target population. When performed well, impact studies 
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can provide real world data on CDST performance. Such studies can provide insights 

that guide the tool’s implementation into clinical practice. (see 1.6.5)  

Currently no pre-hospital CDSTs for major haemorrhage or TIC have undergone impact 

analysis. Accordingly, most of the major haemorrhage and TIC CDST’s remain research 

tools only. The real-world clinical impact of decision-support in this field is unknown.  

 A Bayesian Network model for pre-hospital TIC prediction 

The previous chapter demonstrated that the PH TIC BN was able to predict a patient’s 

risk of developing TIC using only pre-hospital clinical information. In a patient database 

evaluation of the PH TIC BN, the model had excellent predictive performance; 

discrimination AUROC = 0.92 (0.90 - 0.95), excellent calibration, good overall accuracy 

(BSS = 0.41 (0.32-0.50) and provided theoretical net benefit. Notably, the PH TIC BN 

performed better in the target population than the other published PH TIC prediction 

models (CHAPTER   4).  

However, before the PH TIC BN model can be recommended for use in clinical practice, 

there are several unanswered questions. The conditions required for a model to have 

clinical use were outlined in 3.2.1. Using this approach, the key remaining questions 

about whether the PH TIC BN is likely to be useful, have been summarised in Table 19.  
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Table 19: Remaining questions to assess the impact of the PH TIC BN and the 

required study design 

Remaining questions 

Answerable 

without affecting 

patient care 

  

Does the PH TIC BN inform decision-making at a critical point in the treatment 

pathway? 
Yes 

What is the reliability of data capture for the model’s inputs? Yes 

Is the model’s output interpretable by the user? Yes 

Will clinicians use the PH TIC BN given a choice? Yes* 

Does the PH TIC BN enable the user to perform an accurate analysis of 

individual patients’ risk? 
Yes 

Does the PH TIC BN maintain predictive accuracy when used 

prospectively and outside the limitations of the training dataset?  
Yes 

Can the model accurately predict the risk of TIC and need for PH 

blood transfusion? 
Yes 

What is the difference in predictive performance between the model 

and native clinical decisions? 
Yes 

Can the PH TIC BN alter clinicians’ situational awareness, risk perception and 

decision making? 
Yes 

Does the PH TIC BN positively impact care? No 

*  while aspects of this question can be assessed without affecting patient care, evaluating the uptake of the model in clinical practice 

may be best achieved outside of the research environment  

 

The purpose of the present study is to address the key outstanding questions safely. To 

answer these questions requires a prospective study design. However, prospective use 

of the PH TIC BN may unexpectedly alter its predictive performance. By blinding 

clinicians to the model’s output during patient care, many of the unanswered questions 

can still be addressed while minimising inadvertent patient harm. There are obvious 

drawbacks to a study design that blinds clinicians to the model’s output during patient 

care. Such a study cannot address fundamental questions of whether the model improves 

the health system or patient outcomes or whether clinicians will use the model given a 

choice. To answer these questions will require future endeavours. Nevertheless, a 

stepwise approach to impact analysis aligns with the phased process suggested by the 

International Diagnosis and Prognosis Prediction group (IDAPP).409  
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 Phases of impact analysis studies 

Phase I, of the IDAPP’s four-phase approach, is the ‘exploratory phase’. The 

exploratory phase aims to determine whether the CDST is ready for full impact analysis. 

Assessment includes checking the CDST’s inputs and output variables are sensible and 

comprehensible and re-checking the model’s predictive abilities. By the end of the 

exploratory phase, the CDST should be finalised. Phase II, ‘preparation phase’ aims to 

define the CDST’s delivery mode, study design, assess the acceptability of the CDST 

and feasibility of the impact study. Phase III, ‘experimental phase’ is when the 

effectiveness of the CDST on clinically relevant outcomes is undertaken. The final 

phase, ‘long-term implementation phase’ evaluates the translation of the CDST from a 

research setting into regular clinical practice.  

5.3 Aims and Hypothesis 

 Aims 

5.3.1.1 Aim 1: Prospectively assess the impact of the PH TIC BN model on pre-

hospital clinicians’ predictive performance to identify patients at risk of TIC 

and patients that will receive blood transfusion early after injury.  

5.3.1.2 Aim 2: Compare the predictive performance of the PH TIC BN and expert 

clinical judgment to determine the risk of TIC and receipt of blood transfusion 

early after injury 

5.3.1.3 Aim 3: Assess the reliability of data capture for the model’s inputs  

5.3.1.4 Aim 4: Explore the influence of the PH TIC BN on the clinician-reported 

difficulty in decision making 
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 Hypotheses 

5.3.2.1 Hypothesis 1: There is no difference in clinicians’ discriminative performance 

before vs after receiving information from the PH TIC BN in identifying 1) 

patients at risk of TIC and 2) patients receiving a blood transfusion 

5.3.2.2 Hypothesis 2: There is no difference between clinicians and the PH TIC BN in 

identifying 1) patients’ risk of TIC and 2) patients receiving a blood transfusion  

5.3.2.3 Hypothesis 3: All 11 PH TIC BN variables can be reliably captured by the time 

of the pre-hospital primary survey 

5.3.2.4 Hypothesis 4: There is no difference in clinicians’ degree of self-reported 

decision difficulty before vs after receiving information from the PH TIC BN 

5.4 Methods 

 Study Design 

The EmPHATTIC study was a prospective real-world phase I impact study conducted 

at two Air Ambulance sites. The study assessed the ability of the PH TIC BN to alter 

clinical judgement. Clinicians were asked for their prediction of a patient’s risk of TIC 

or receiving a blood transfusion. Clinicians were also asked to report how difficult they 

found these predictions. To elicit clinician’s predictions, interviews were conducted 

after each patient treatment episode on return to the headquarters using a standardised 

interview template (Appendix B: EmPHATTIC interview questions).  

Clinicians’ risk predictions were recorded at three different times: first, after the primary 

survey (Time Point 1); second, after the patient handover in the ED (Time Point 2); and 

finally, following the additional information of the PH TIC BN (Time Point 3) (Figure 

28). All pre-hospital clinicians that attended the patient were eligible for interview. 

When more than one clinician’s response was available, the mean value of the 

clinicians’ responses was applied.  
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The PH TIC BN was used to compute predictions of the risk of TIC and the receipt of 

blood transfusion. Input variables for the PH TIC BN were entered from the information 

available immediately after the primary survey. Clinicians were given the model’s 

prediction once they were no longer responsible for patient decisions (Time Point 3). 

Comparisons were made between the predictive accuracy of clinicians with and without 

the PH TIC BN information and between native clinical judgement and the PH TIC BN. 

Decisions were stratified by subjectively reported decision difficulty. The study enrolled 

clinicians for six months from the 07/01/2019. 

 The Pre-hospital trauma induced coagulopathy Bayesian network 

Development and validation of the PH TIC BN are described in CHAPTER   4. The 

following sections describe how the model was used as a CDST in the EmPHATTIC 

study. 

5.4.2.1 Predictor variables in the PH TIC BN model 

In order for the PH TIC BN to guide decision making early after injury, the model needs 

to be used directly after the HEMS clinician’s primary survey. To assess the feasibility 

of early model use the acquisition of each of the 11 input variables was analysed. 

The PH TIC BN has up to 11 input variables (Table 15). Input variables for the PH TIC 

BN were collected by the pre-hospital care clinicians and entered into the model by the 

Primary Investigator (PI) using the model’s web interface (www.traumamodels.com). 

The PI and the clinicians were not aware of the patients’ coagulation status at the time 

of PH TIC BN use.  

Pre-hospital lactate measurement differed between the two Air Ambulance sites. LAA 

did not perform pre-hospital lactate measurement. Whereas, AAKSS advised its 

clinicians to measure the lactate in patients with a high clinical suspicion of bleeding 

using the Xpress Lactate device (Nova Biomedical, Waltham, Massachusetts, USA) 

http://www.traumamodels.com/


Chapter 5 - The EmPHATTIC Study 

176 

 

5.4.2.2 Design of the clinical decision support tool’s output 

The PH TIC BN’s output is a probability. The probability describes the patient’s 

likelihood of having TIC when they arrive in the ED. The clinical implication of the raw 

probability value is unlikely to be evident to the end-user of the model. To assist with 

comprehensibility, a visual presentation of the model’s output was produced. The figure 

includes five risk categories (Figure 26). The width of each risk category represents the 

proportion of patients within the risk category. The proportions were derived from the 

858 patients used in the CHAPTER 4 validation cohort.  

 

Figure 26: The PH TIC BN’s output scale. The width of each of the five risk categories is 

proportional to the frequency of patients in the validation patient cohort with that risk prediction. The categories 

represent very low risk (dark green), low risk (light green), medium risk (yellow-green), high risk (orange), very high 

risk (red).  

The output scale demonstrates 60% of the validation cohort had less than a 2% risk of 

TIC. The next four categories represent the risk of TIC in 60-69%, 70-79%, 80-89% and 

≥90% of the validation cohort. The scale allows rapid visualisation of a patient’s risk to 

help contextualise the clinical implications of the PH TIC BN result. 

The categories are arbitrarily divided into five risk groups. The medium-risk group 

contains the risk thresholds for two methods to potentially dichotomise the PH TIC BN 

model’s output. The first method uses Youden’s index, which is maximised at a 

probability threshold of 10.8%. The alternative strategy if model dichotomisation was 

desired is to pick a probability threshold that produces the desired test sensitivity. For 

example, a 90% sensitivity occurs at a probability threshold of 6.6%. Both of these 
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potential operating point values (10.8% and 6.6%) lie in the 4-12% medium risk 

category. The scale in Figure 26 rapidly communicates that patients with similar 

probabilities to these two thresholds place a patient in the top 70% risk of TIC of trauma 

patients.  

5.4.2.3 Prediction of blood transfusion  

To enable the PH TIC BN to predict blood transfusion, the model’s TIC output was 

converted into blood transfusion volumes. Continuous blood volume prediction was 

unfeasible due to the relatively low number of patients receiving a blood transfusion in 

the validation population (Table 12). Therefore, clinically relevant categories of blood 

transfusion were sought.  

The lack of clinical utility in the traditional definition of massive transfusion (≥10units 

of PRBCs in 24 hours) has been previously discussed (see 3.6.3.2). To better reflect the 

early requirement for transfusions in bleeding patients, a shorter time interval was 

required. The interval chosen for the EmPHATTIC study was selected from an ongoing 

Delphi study seeking to gain consensus on a new definition of critical bleeding. This 

study suggests >4 units of PRBCs transfused within 4 hours of injury represents critical 

bleeding. A recent external validation of the Mina haemorrhage prediction model (see 

1.6.1.3) used similar cut-offs.231 

The amount of PRBCs patients received within 4 hours was assessed in the validation 

cohort. Validation cohort patients were split into three clinically relevant categories of 

PRBC [0, 1-4 or >4units] (Table 12). The distribution of PH TIC BN probability scores 

was assessed in each of the three transfusion categories for patients in the validation 

cohort (Figure 27). 
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Figure 27: Distribution of PH TIC BN probability by the number of packed red 

blood cell units transfused within 4 hours of injury in the validation cohort 

patients. Tukey box and whiskers plot 

A supervised learning algorithm was used to define the probability thresholds in the PH 

TIC BN output. The algorithm described which probability thresholds of the PH TIC 

BN were most closely associated with patients that received three categories of PRBC 

transfusion [0, 1-4 or >4units]. The algorithm optimised the relationship of the PH TIC 

BN output probability to the PRBCs unit categories using the Minimum Description 

Length Principle. This discretisation algorithm was run using the “Optimal Binning” 

function of SPSS 26 (IBM, Armonk, New York, USA).410 Clinicians in the 

EmPHATTIC study were told the category of PRBC predicted by the PH TIC BN using 

the threshold values derived from this optimal binning algorithm (Table 20). 

Table 20: Lower and upper PH TIC BN probability thresholds to define the 

number of transfused packed red blood cells within four hours of injury 
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 Study population 

The study population consisted of pre-hospital consultants, registrars and paramedics 

from Air Ambulance Kent, Surrey and Sussex (AAKSS) and London’s Air Ambulance 

(LAA).  

5.4.3.1 Inclusion criteria 

Pre-hospital doctors and paramedics who conveyed a patient to the hospital and 

provided written informed consent were included. Patients’ were not enrolled into the 

study. Enrolled healthcare practitioners were asked for their predictions about adult (≥16 

years old) trauma patients taken by AAKSS to either Kings College Hospital, Brighton 

and Sussex University Hospital, Southampton or St George’s Hospital, or taken by LAA 

to the Royal London Hospital.   

5.4.3.2 Exclusion criteria 

Clinical encounters in which the pre-hospital clinicians did not remain with the patient 

until hospital admission were excluded. Clinicians were not asked to provide predictions 

for pregnant patients, those under 16 years old, patients with known bleeding diatheses 

including anticoagulant therapy (excluding 75mg Aspirin once a day) and patients with 

a greater than 12-hour interval between injury and clinical team arrival.  

 Study Protocol 

During the study design in 2017, the Medicines and Healthcare products Regulatory 

Agency (MHRA) advised blinding clinicians to the model’s results. The intention was 

to protect patients from potential harm. To blind clinicians and still assess model impact 

interviews were conducted following a patient treatment episode.  

On returning to the air ambulance headquarters, clinicians were interviewed by the PI. 

Clinicians were asked for their prediction of the patient’s probability of developing TIC 

by the time they arrived in the ED and receiving a blood transfusion within four hours 
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of injury. The interviews asked clinicians to recall their predictions of risk at two times: 

immediately following the primary survey (Time Point 1) and immediately following 

the patient handover in ED (Time Point 2). The patient’s PH TIC BN prediction was 

calculated by the PI using the online model interface. The PH TIC BN’s output was 

shown to the clinician using the linear scale (Figure 26) and category of blood 

prediction (Table 20). After this additional information clinicians were asked for their 

updated prediction of risk (Time Point 3) (Figure 28). 

  

Figure 28: Clinical and study timelines Dashed arrows indicate the relationship between the 

clinical timeline and study time point questions.  

Up to three clinicians were enrolled for each patient treatment episode. The typical 

clinical team consisted of a consultant, a registrar and a paramedic. To test the impact 

of the PH TIC BN in patients most likely to represent difficult decisions interviews were 

targeted to the most severely injured patients. High-risk patients were preferentially 

selected on the premise that a useful CDST is most likely to impact difficult decisions.  

Clinician interview responses and anonymised patient data were collected and managed 

using the REDCap (Research Electronic Data Capture) (Vanderbilt, Nashville, USA) 

electronic data capture tool hosted at Queen Mary University of London.411 Patient 

follow up data were abstracted from the receiving hospitals by the Air Ambulances as 

part of their standard clinical governance processes and added to the EmPHATTIC 

REDCap database. Hospital follow up data was retrieved and recorded to assess the 
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patient’s true disease state and outcomes. Follow up data included a patient’s hospital 

discharge injury diagnosis, laboratory coagulation results and the first 24 hours of blood 

transfusion requirements.  

 Outcome classification 

The classification method used in the development and validation datasets of the TIC 

BN models was not possible in this clinical dataset. The previous classification utilised 

rich coagulation data gathered for the ACIT study. With this detailed data, an 

unsupervised clustering algorithm divided patients into normal or abnormal coagulation 

groups. The EmPHATTIC clinical dataset did not contain the same depth of coagulation 

assessment as the ACIT research study. As a result, TIC was classified as present when 

the admission prothrombin time ratio was greater than 1.2.395 Where ROTEM values 

were available, thresholds of ExTEM CA5 ≤40mm, FibTEM CA5 <10mm and 

Maximum Lysis >15% were additionally used to classify TIC.412 In cases of 

disagreement between these two laboratory test results, expert review of the patients 

was undertaken. Two TIC experts independently reviewed the clinical, laboratory, and 

thromboelastometry data of each discrepant case and applied the final coagulation status 

label. If no in-hospital coagulation parameters were available, the patient was excluded 

from further analysis.  

 Sample size  

The study’s sample size was intended to assess the impact of the model on clinicians’ 

ability to identify patients at risk of TIC. Obuchowski’s 2004 method413-415 was used to 

calculate the number of patients required to detect a difference between clinicians with 

and without the PH TIC BN. Clinicians in this study were considered together as one 

predictor. Accordingly, the sample size calculation was only concerned with the number 

of patients required.  

The sample size required is determined by a comparison of two paired ROC curves: 

clinical judgement with the PH TIC BN vs clinical judgement without the PH TIC BN. 
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The null hypothesis states there is no difference in performance. There is no empiric 

data available to estimate the native or supported predictive performance of clinicians 

in the pre-hospital diagnosis of TIC. The sample size calculation was therefore 

performed based on plausible estimated values. There is data to estimate the 

performance of the PH TIC BN on its own (4.5.3.1).  

The estimated values are as follows: clinical predictive performance without the PH TIC 

BN was estimated to have an AUROC of 0.80; clinicians with the model would improve 

to an AUROC of 0.90; the correlation coefficient between the predictors was estimated 

at 0.6 for both patients with and without TIC; the ratio of normal coagulation to TIC 

patients was estimated at 4. Setting  = 5% and  = 20% the sample size required is 85 

patients with the disease and 340 without the disease.  

Given the time available for data collection and the number of severely injured patients 

treated by each air ambulance service, it was deemed unlikely that 425 patients would 

be attainable by one researcher. Despite the possibility of an underpowered study, 

valuable research outputs were anticipated from this exploratory study design regardless 

of the sample size.  

 Statistical Methods 

The predictive performance of clinical judgement and the PH TIC BN were calculated 

using calibration, discrimination, and overall performance metrics when the outcome 

was binary. These methods were previously described in section 4.4.8. The predictive 

performance of clinical judgement and the PH TIC BN on the categorical data relation 

to blood transfusion was assessed using overall classification accuracy and agreement 

analysis using Cohen’s unweighted kappa () statistic.416 Overall classification accuracy 

was calculated as 
∑ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑ 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
. Cohen’s  assessed the level of 

agreement between the actual volume of blood received and the predicted volume.  

The normality of continuous variables was assessed using Q-Q plots and the Shapiro-

Wilk test. For calculations relating to subjective decision-making difficulty, Wilcoxon’s 
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matched-pairs signed-rank test was used to compare continuous non-parametric data 

from the same observer and patient at different study time points. The Mann-Whitney 

U test was used to compare continuous independent non-parametric data. Numerical 

data are reported as median (IQR) and categorical data as frequency (n) and percentage 

(%). Statistical significance was set as a 2-tailed P value of <0.05. 

5.4.7.1 Statistical computation and figure development 

Statistical analysis and figure development were performed using SPSS 26 (IBM, 

Armonk, New York, USA), Prism 8 (GraphPad Software, San Diego, California, USA) 

and R statistical software (R Foundation for Statistical Computing; www.r-project.org 

version 3.6.0). The R packages were used “pROC” version 1.16.2403, “ggplot 2” version 

3.3.0404, “rms” (Regression Modelling Strategies) version 5.1-4.405 The BN’s 

predictions were computed using the online interface at www.traumamodels.com.  

 Ethics 

The EmPHATTIC study protocol and supporting documentation was submitted via 

IRAS 200742 for Research Ethics Committee (REC) approval. Given the nature of the 

study, the REC confirmed ethical approval was not required (REC reference 

18/LO/2038). The study was sponsored by QMUL and gained prior approval from the 

Health Research Authority (HRA).  

 Patient and Public Involvement  

The study protocol was presented at the Patient and Public Involvement meeting hosted 

by the South East Coast Ambulance Service on the 4th July 2018. The EmPHATTIC 

study outline was presented, and group discussions were facilitated. The attendees of 

the meeting were supportive of the study as it represented no harm to patients.  

 Funding 

The study received no external funding.  

http://www.r-project.org/
http://www.traumamodels.com/
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5.5 Results 

 Baseline characteristics of clinicians and patients 

A total of 51 clinicians were enrolled in the study, of which 21 were consultants, 14 

registrars and 16 paramedics. The study included 194 complete patient-based interviews 

regarding 140 patients, of which 135 patients had in-hospital coagulation data, leaving 

184 interviews for final analysis. The 184 interviews were conducted with a consultant 

in 56/184 (30%), a registrar in 75/184 (41%) or a paramedic in 53/184 (29%).  

The patients had a median age of 31 years (IQR 23 - 47 years), median ISS of 17 (IQR 

9 - 34) and 75% were male. Consistent with a selection towards the most injured 

patients, 26/135 (19%) had TIC and 62/135 (46%) received packed red blood cells 

within 4 hours of injury (Table 21). In patients with TIC, the relative risk of death was 

55.0 (95% CI 7.5 - 402). The median PH TIC BN prediction was 6.6% (range 0.31% to 

85%). There were a similar number of patients in each risk category (Figure 29).  

 

Figure 29: Histogram of PH TIC BN trauma induced coagulopathy prediction in 

risk categories communicated to clinicians  
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Table 21: Characteristics of patients included in the EmPHATTIC Study 

 
Missing 

data (n) 

Total 

Population 

(n=135) 

Normal 

Coagulation 

(n=109) 

Coagulopathy 

(n=26) 

P-

valuea 

  

Patient Characteristics  

Age, years  1 31 (23, 47) 33 (23, 48) 27 (23, 45) 0.521 

Male gender 0 101 (75) 87 (80) 14 (54) 0.006 

Air Ambulance site 1 0 70 (52) 57 (52) 13 (50) 0.833 

Injury to HEMS arrival, mins 0 32 (21, 44) 34 (22, 47) 29 (20, 35) 0.034 

Injury to ED arrival, mins  1 88 (65, 114) 85 (66, 114) 101 (63, 115) 0.527 

Injury severity score 3 17 (9, 34) 13 (9, 25) 38 (29, 45) <0.001 

Mortality 0 14 (10) 1 (1) 13 (50) <0.001 

Pre-hospital PRBC transfusion  1 38 (28)  20 (18) 18 (69) <0.001 

PRBCs within 4 hours, units 1 0 (0, 4.0) 0 (0, 1.8) 6.5 (3.0, 12.0) <0.001 
      

Pre-hospital Primary Survey 

Respiratory rate, bpm 9 20 (16, 25) 18 (16, 25) 22 (14, 28) 0.747 

Heart rate, bpm 1 95 (80, 116) 91 (80, 110) 109 (56, 140) 0.143 

Systolic blood pressure, mmHg 1 118 (91, 132) 120 (99, 139) 82 (52, 178) <0.001 

Glasgow coma scale 0 15 (9, 15) 15 (13, 15) 5 (3, 14) <0.001 

Blunt mechanism of injury 0 90 (67) 69 (63) 21 (81) 0.108 

Low energy of injury 0 78 (58) 71 (65) 7 (27) <0.001 

Suspected haemothorax 0 34 (25) 26 (24) 8 (31) 0.465 

Suspected abdominal bleeding 0 35 (26) 28 (26) 7 (27) 0.897 

Suspected long bone fracture 0 29 (22) 21 (19) 8 (31) 0.199 

Suspected unstable pelvic fracture 0 6 (4) 4 (4) 2 (8) 0.371 

Any PH crystalloid  1 12 (9) 7 (6) 5 (19) 0.054 

Pre-hospital lactate measured 0 15 (11) 12 (11) 3 (12) >0.999 

Pre-hospital lactate 120 2.3 (1.5, 3.7)  2.2 (1.5, 3.2) 3.7 (0.7, 3.8) n/a 
      

ED Arrival Blood Gas 

pH 27 7.3 (7.2, 7.4) 7.3 (7.2, 7.4) 7.1 (7.0, 7.2) <0.001 

Lactate, mmol/L 25 3.7 (2.1, 5.6) 2.8 (1.9, 4.7) 6.5 (4.0, 13.5) <0.001 

Base Deficit, mEq/L 32 4 (0.5, 8.8) 2.8 (0.2, 5.1) 9.5 (6.9, 16.5) <0.001 
      

Admission coagulation assays 

PTr 2 1.1 (1.0, 1.2) 1.1 (1.0, 1.1)  1.3 (1.3, 1.4) <0.001 

APTT (seconds) 25 24 (21, 28) 23 (21, 28) 31 (27, 41) <0.001 

Fibrinogen (g/L) 16 2.5 (2.1, 2.9) 2.5 (2.2, 2.9) 1.9 (1.4, 2.4) <0.001 

Platelet count (x109/L) 7 238 (190, 280) 251 (201, 296) 178 (111, 231) <0.001 

ExTEM CA5 (mm) 95 41 (32, 45) 42 (34, 48) 31 (26, 35) 0.001 

FIBTEM CA5 (mm) 97 11 (7, 13) 12 (10, 14) 7 (4, 9) <0.001 

ExTEM Maximum Lysis (%)  102 6 (3, 8) 6 (4, 8) 3 (0, 30) 0.158 

Data presented as number (%) or median (IQR). a P-value is the comparison between normal coagulation 

and coagulopathy groups. ED, Emergency Department; SBP, Systolic Blood Pressure; PRBC, Packed Red 

Blood Cells; CA5, Clot Amplitude at 5 minutes; MCF, Maximum Clot Firmness; INR, International 

Normalised Ratio; APTT, Activated Partial Thromboplastin Time;  
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5.5.1.1 Differences between air ambulance patient populations 

Air Ambulance site 1 accounted for 21 of the interviewed clinicians, and 112/184 (61%) 

of the included interviews. Differences in patients’ characteristics between the two study 

sites were present. Patients at site 1 were younger (27 years (20 – 40 years) vs 35 years 

(27 – 51 years), p = 0.002), more likely to have sustained a penetrating mechanism of 

injury (46% vs 21%, p = 0.005), had shorter times from injury to HEMS arrival (25 

minutes (19 – 34 minutes) vs 37 minutes (30 – 57 minutes), p < 0.001) and shorter times 

from injury to ED arrival (77 minutes (56 – 104 minutes) vs 101 minutes (73 – 123 

minutes), p = 0.002). Differences were present in methods of patient transport from the 

scene of injury to ED; site 1 transported 77% of their patients by road vs 39% from site 

2, p <0.001.  

There were no differences between the sites in the patients’ ED arrival HR, SBP, 

temperature, pH or lactate or in the proportion of patients who underwent pre-hospital 

intubation and ventilation, major haemorrhage protocol activation, blood transfusion or 

administration of TXA. 

5.5.1.2 Trauma induced coagulopathy classification 

TIC classification was complicated by incomplete coagulation assay results. In 95 

patients, there were no ROTEM data available. By far the most common cause for 

missing coagulation data was the assay not being run during the routine clinical care. In 

these 95 patients, their coagulation status was classified based on the admission 

prothrombin time ratio alone. In the remaining 40 patients, ROTEM data and 

prothrombin time ratio resulted in the same classification for 35 of the patients. The 

remaining five patients underwent expert review, of which 3/5 were classified as 

coagulopathic. One of the five cases for expert review required a third expert to reach 

agreement on the patient’s classification designation.  
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 Impact of the PH TIC BN on pre-hospital clinicians’ predictions of the risk 

of TIC 

5.5.2.1 Changes in clinician’s risk predictions of TIC  

The ability of clinical judgement to predict which patients would develop TIC on arrival 

to the ED varied between the time points. Immediately after the pre-hospital primary 

survey (time point 1), the performance of clinical judgement can be described with 

discrimination = 0.83 (0.74 – 0.92), calibration intercept = -1.19 (-1.73 -  -0.65), 

calibration slope = 0.97 (0.50 - 1.44), and overall accuracy, given by the Brier skill score 

of 0.00 (-0.41 - 0.30). At time point 2, clinical judgment displayed a non-significant 

increase compared to TP1 in discrimination to 0.87 (0.80 – 0.95), p = 0.216. After 

clinicians were given the PH TIC BN results (time point 3), their discriminative 

performance remained largely unchanged; however, calibration and overall accuracy 

improved (Table 22 and Figure 30). 

Table 22: Predictive performance of clinical judgement in identifying patients at 

risk of trauma induced coagulopathy 

 Time Point 1 Time Point 2 Time Point 3 

    

Discrimination 0.83 (0.74, 0.92) 0.87 (0.80, 0.95) 0.88 (0.80, 0.95) 

Calibration intercept -1.19 (-1.73, -0.65) -0.93 (-1.47, -0.40) -0.79 (-1.38, -0.21) 

Calibration slope 0.97 (0.50, 1.44) 1.16 (0.69, 1.63) 1.01 (0.58, 1.45) 

Brier skill score 0.00 (-0.41, 0.30) 0.18 ( -0.17, 0.44) 0.27 (-0.05, 0.51) 

 

5.5.2.2 Performance of the PH TIC BN in predicting TIC  

When used with data generated during the pre-hospital primary survey, the PH TIC 

BN’s discriminative ability to identify patients at risk of TIC was 0.87 (0.79 – 0.95). 

The PH TIC BN’s calibration intercept was 0.37 (-0.14 – 0.89), slope 1.11 (0.66 – 1.55), 

and overall model accuracy (BSS) was 0.34 (0.19 – 0.48) (Figure 30). 
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Figure 30: Predictive performance of clinical judgement and the PH TIC BN in 

identifying patients at risk for trauma induced coagulopathy.  
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Figure 30 (previous page): Predictive performance of clinical judgement and the 

PH TIC BN in identifying patients at risk for trauma induced coagulopathy.  

A) Discriminative performance of clinical judgement at three time points illustrated with 

ROC curves. B) Brier skill score of clinical judgement at three time points. C) 

Calibration plot of the PH TIC BN and D), E), and F) Calibration plots of clinical 

judgement at study time points 1, 2 and 3.  

Time point 1: immediately following the primary survey, solid yellow line; Time point 2: following 

patient handover off in the Emergency department, dashed yellow line; Time point 3: following PH TIC 

BN information, blue line. Brier skill score displayed with 95% confidence interval. The rug plots in 

figures C, D, E and F stratifies the distribution of predicted probabilities. Circles with 95% confidence 

intervals represent deciles of patients grouped by predicted probability.  

AUROC, area under the receiver operating characteristic; BN, Bayesian network; TIC, trauma induced 

coagulopathy; TP, time point. 

 Impact of the PH TIC BN on pre-hospital clinicians’ predictions of the need 

for blood transfusion  

5.5.3.1 Changes in clinician’s risk predictions of any blood transfusion  

At time point 1, clinicians were able to identify patients that would receive any PRBC 

transfusion within four hours of injury with good discrimination 0.89 (0.84 – 0.95) and 

calibration. At time point 2, clinical discrimination had improved non-significantly 

compared to time point 1 to 0.92 (0.88 – 0.97), p=0.113. Following model information, 

the clinicians’ ability to discriminate between patients that would receive PRBC 

transfusion was unchanged compared to ED handover (p>0.99) (Table 23 and Figure 

31). 

Table 23: Predictive performance of clinical judgement in identifying patients at 

risk for blood transfusion within the first four hours of injury 

 Time Point 1 Time Point 2 Time Point 3 

    

Discrimination 0.89 (0.84, 0.95) 0.92 (0.88, 0.97) 0.93 (0.88, 0.98) 

Calibration intercept 0.34 (-0.12, 0.80) 0.12 (-0.38, 0.63) 0.47 (-0.07, 1.01) 

Calibration slope 1.21 (0.74, 1.69) 1.48 (0.91, 2.03) 1.63 (0.96, 2.30) 

Brier skill score 0.47 (0.33, 0.60) 0.57 (0.44, 0.70) 0.58 (0.43, 0.72) 
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5.5.3.2 Performance of the PH TIC BN in predicting any blood transfusion  

Immediately after the primary survey, the PH TIC BN’s discriminative ability to predict 

any PRBC transfusion within four hours of injury was 0.89 (95% CI 0.83 – 0.95). The 

PH TIC BN’s calibration intercept was 2.34 (1.91 – 2.77), slope 1.27 (0.87 – 1.67), and 

overall model accuracy given by the BSS was -0.04 (-0.26 – 0.15).  

 

 

 

 

 

 

 

 

Figure 31 (next page): Predictive performance of clinical judgement and the PH 

TIC BN in identifying patients at risk for blood transfusion within the first four 

hours of injury.  

A) Discriminative performance of clinical judgement at three time points illustrated with 

ROC curves. B) Brier skill score of clinical judgement at three time points. C) 

Calibration plot of the PH TIC BN and D), E) and F) Calibration plots of clinical 

judgement at study time points 1, 2 and 3.  

Time point 1: immediately following the primary survey, solid yellow line; Time point 2: following 

patient handover off in the Emergency department, dashed yellow line; Time point 3: following PH TIC 

BN information, blue line. Brier skill score displayed with 95% confidence interval. The rug plots in 

figures C, D, E and F stratifies the distribution of predicted probabilities. Circles with 95% confidence 

intervals represent deciles of patients grouped by predicted probability.  

AUROC, area under the receiver operating characteristic; BN, Bayesian network; TIC, trauma induced 

coagulopathy; TP, time point. 
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Figure 31: Predictive performance of clinical judgement and the PH TIC BN in 

identifying patients at risk for blood transfusion  
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5.5.3.3 Prediction of blood transfusion within clinically useful categories  

Clinicians were asked to quantify the volume of blood they believed the patient would 

receive before (TP2) and after (TP3) they received additional PH TIC BN information. 

Two patients had incomplete categorical blood prediction data and were removed from 

further analysis. At TP2 clinicians had an accuracy of 66% and Cohen’s  = 0.473 (95% 

CI 0.356 - 0.589). At TP3 classification accuracy improved to 69% and Cohen’s  = 

0.502 (95% CI 0.384 - 0.619) (Table 24).  

Table 24: Confusion matrix of clinician classification of blood transfusion within 4 

hours of injury before and after PH TIC BN information 

 

PRBC received, units 

0 1-4 >4 

PRBC predicted, units     

Clinicians without 

PH TIC BN  

(TP2) 

0 50 3 0 

1-4 22 23 13 

>4 1 6 15 

     

Clinicians with 

PH TIC BN  

(TP3) 

0 58 5 0 

1-4 15 19 13 

>4 0 8 15 

Results in green represent correct predictions, results in black are prediction errors. TP, Time point. 

Visual analysis of the distribution of the PH TIC BN’s probability output demonstrated 

reasonable discrimination between categories of blood transfused (Figure 32A). 

However, the PH TIC BN under-estimated the volume of blood transfused (Figure 31C 

and Figure 33A). Clinicians appeared to display better discrimination and calibration 

than the model (Figure 31D and Figure 32B).  
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Figure 32: Distribution of blood transfusion predictions by categories of red blood 

cells transfused 4 hours after injury. A) PH TIC BN model B) clinical judgement. 

Tukey box and whiskers plot  

Using the information available at TP1, the PH TIC BN predicted blood transfusion 

volumes with accuracy = 66% and Cohen’s  = 0.410 (95% CI 0.296 – 0.5) (Table 25).  

Table 25: Confusion matrix demonstrating the predictive performance of the PH 

TIC BN to classify blood transfusion within 4 hours of injury 
 

PRBC received, units 

0 1-4 >4 

PRBC predicted, units     
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0 69 15 2 

1-4 4 16 22 
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 Comparison between clinical judgement and the PH TIC BN immediately 

after the primary survey  

5.5.4.1 Prediction of patients at risk of TIC  

At TP1 there was no significant difference between the discriminative ability of the 

clinicians or the PH TIC BN to predict TIC (Clinicians: 0.83 (0.74 – 0.92) vs PH TIC 

BN: 0.87 (0.79 – 0.95), p = 0.330). Overall calibration given by the calibration intercept, 

was further from the ideal value of 0 in clinicians compared to the PH TIC BN 

(clinicians: -1.19 (-1.73 – -0.65) vs PH TIC BN: (0.37 (-0.14 – 0.89)). Similarly, 

clinicians’ BSS value was further from perfect than the PH TIC BN (clinicians: 0.00 (-

0.41 – 0.30) vs PH TIC BN: 0.34 (0.19 – 0.48)). 

5.5.4.2 Predication of any blood transfusion  

At TP1 there was also no statistical difference in the ability of the model to discriminate 

between patients that would receive any blood transfusion between clinicians and the 

PH TIC BN (clinicians: 0.89 (0.84 – 0.95) vs PH TIC BN: 0.89 (0.83 – 0.95) p = 0.874). 

However, clinicians appeared better calibrated. The PH TIC BN underestimated the 

probability of transfusion overall: calibration intercept clinicians: 0.34 (-0.12 - 0.80) vs 

PH TIC BN: 2.34 (1.91 – 2.77). Overall model accuracy was better for clinical 

judgement with a BSS 0.47 (0.33 – 0.60) vs PH TIC BN -0.04 (-0.26 – 0.15).  
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Figure 33: Comparison between discriminative ability between clinical judgement 

and the PH TIC BN. A) Trauma induced coagulopathy B) Blood prediction 

 Completeness of input data capture for the PH TIC BN 

Immediately after the primary survey, all PH TIC BN input variables had 100% data 

acquisition except for energy of injury, SBP, and lactate. For one patient, the energy of 

the injury was unknown. In 4/135 (3%) patients, the SBP measurement was either 

unrecordable or unreliable. In the 15/135 (11%) of patients in which pre-hospital lactate 

was measured, only one measurement was available immediately post primary survey. 

In the other 14 patients, the measurement was taken before patient transport from the 

scene or en-route to the hospital. Lactate was measured 75 minutes (66 – 90 minutes) 

after injury, 18 minutes (12 – 34 minutes) after the primary survey and 36 minutes (23 

– 48 minutes) before arrival in the hospital.  

 Influence of the model on decision difficulty  

When clinicians reported how difficult it was to identify patients with TIC, a wide range 

of responses were collected. Overall, clinicians found the decision harder in patients 

with TIC (median difficulty 5.0 (IQR 1.3 – 7.0) vs without TIC 2.5 (IQR 1.0 – 6.0), p = 

0.033). In paired analyses, the model statistically reduced decision difficulty both 
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overall (difficulty before model 2.5 (IQR 1.0 - 6.0) vs difficulty after the model 2.0 (IQR 

0.5 - 5.0), p <0.0001) and in the cohorts of patients with and without TIC (Figure 34). 

 

Figure 34: Clinician’s self-reported difficulty scores in the prediction of TIC by 

clinician type. A) Difficulty stratified by the presence of TIC. B) Difficulty stratified 

by the presence of TIC and the grade of the clinician. C) Difficulty before and after the 

PH TIC BN model information. D) Difficulty in patients with TIC before and after the 

PH TIC BN model. E) Difficulty in patients without TIC before and after the PH TIC 

BN model.  
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5.6 Discussion 

 Key Findings 

Clinical predictive performance did not significantly improve when supplemented with 

information from the PH TIC BN. However, there was evidence of a positive influence 

of the PH TIC BN on clinical judgement. The use of the PH TIC BN was associated 

with small improvements in the calibration and overall accuracy of clinical TIC 

prediction. However, the PH TIC BN’s blood prediction output had suboptimal 

calibration with a systematic underprediction of blood transfusion.  

Pre-hospital clinicians were better at identifying high risk patients at the end of the pre-

hospital phase of care compared to the beginning. When performance was directly 

compared between the PH TIC BN and clinicians, it appeared that there was no 

difference in predictive performance immediately after the primary survey.  

In this first prospective multicenter study of the PH TIC BN, all but one of the model’s 

input variables were consistently generated during the primary survey. Pre-hospital 

lactate measurement was only available for 11% of the study’s patients, and this missing 

data point led to a decrease in the PH TIC BN’s predictive accuracy. The remaining key 

finding relates to the difficulty of decision making. Clinicians found decisions about 

patients with TIC harder, and despite little change in absolute values, decisions after 

decision support were less difficult. 

 Impact of the PH TIC BN of clinical judgement 

This study’s aim was to assess the impact of the model on clinical judgement. The null 

hypothesis relating to this study aim is accepted: there is no difference between 

clinicians’ discriminative performance before or after augmentation with PH TIC BN 

information. The small differences in discriminative performance between TP2 and TP3 

mean that failure to reach the required sample size has not affected this conclusion.  
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The failure to improve clinicians’ predictive performance should be interpreted within 

the limitations of the study design. The impact of the model on clinical judgment was 

not assessed contemporaneously. The delay between generating a BN prediction and 

assessing augmented clinical judgment with the BN introduced a major confounder. 

Clinicians’ predictive performance improved overtime without model augmentation. 

Effectively, this study assessed the impact of the model’s prediction immediately after 

the primary survey on clinical judgement at the point of handover in the ED. This result 

may be more precisely interpreted thus: for expert pre-hospital clinicians, a prediction 

based on information from the start of the pre-hospital phase of care, does not augment 

clinical judgement when assessed at the end of pre-hospital care.  

To improve future Bayesian Networks, the improvement in clinical performance over 

time is a useful finding. Ongoing patient observation may enable clinicians to identify 

influential cues from trends in a patient’s physiology and their response to treatment. 

Such cues are not currently included in a single time point BN. These dynamic variables 

warrant investigation as additional inputs for inclusion in future models.  

 Difference between clinicians and the PH TIC BN 

The study was not powered to detect a difference between clinical judgement and the 

model at time point 1, and thus, the finding of no difference may be underpowered. 

Nevertheless, the suggestion that the performance of the PH TIC BN may not be 

significantly different from clinical judgement at TP1 is an important finding. The 

clinical impact of a model is user and situation dependent. For example, the ability of a 

model to perform at the level of expert clinicians would be useful to those with less 

medical training. In austere environments such as mountain rescue or military contexts, 

such a model could support first responders. In these austere contexts increasing the 

prognostic performance of first responders could improve resource husbandry and 

patient triage within the whole trauma system. 

It is also noteworthy, that there was no difference between the model and clinicians’ 

performance at identifying patients that would receive blood transfusion. It is 

particularly remarkable because pre-hospital clinicians were responsible for pre-hospital 
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transfusion and consequently, they were responsible for part of the assessed outcome of 

blood transfusion within 4 hours of injury. Put a different way, pre-hospital clinicians’ 

blood transfusion predictions were guaranteed to be correct in the 20% of patients that 

they gave a pre-hospital transfusion to. The PH TIC BN was not able to influence the 

outcome of blood transfusion in the same way and so its similar performance is a useful 

finding. 

 Data availability 

The majority of the input data required for the PH TIC BN’s computation is available 

early after injury. The lack of pre-hospital lactate in the majority of patients is the one 

exception. As the EmPHATTIC study only used data generated during routine care and 

clinicians previously discussed their uncertainty about the value of lactate measurement, 

(see 2.5.1.1) it is apparent why much of the data was missing. It is also known from 

previous work that missing lactate data reduces the discriminative ability of the model 

(Figure 22). Future research is needed to investigate whether incorporating a pre-

hospital lactate measurement into a model adds sufficient value to clinicians to justify 

the time measurement takes. Alternative approaches to determine a patient’s perfusion 

status which are less logistically burdensome than measuring lactate would be desirable.    

 The role of the PH TIC BN in modifying the perception of difficult decision 

making 

Decision support tools should address difficult decisions. The EmPHATTIC study 

found that patients with TIC were more challenging to predict than patients with normal 

coagulation. Somewhat surprisingly, the use of the model statistically reduced the 

degree of difficulty felt by clinicians in making decisions. The absolute reduction in 

difficulty after the model’s prediction was small, and this is likely to be due to ongoing 

uncertainty. Clinicians were not informed of their patient’s coagulopathy status after 

receiving the model’s information. Thus, if the clinician disagreed with the model’s 

prediction, they were left unsure whether to trust their initial prediction or the model’s.  
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The interplay between decision difficulty and CDST design would be a valuable area to 

explore. A CDST that explains the impact of each variable on how the prediction is 

made might aid clinician’s trust in the model. Increased understanding of the model’s 

reasoning might reduce decision difficulty and free up clinician’s cognitive 

“bandwidth”. A study of the speed and quality of clinicians’ decisions would be required 

to assess the impact of cognitive de-burdening. 

 Strengths and limitations 

5.6.6.1 Strengths 

The EmPHATTIC study was conducted with an exploratory intent. EmPHATTIC has 

provided insights into requirements for an interface between the model and the 

clinicians, evaluated the performance of the PH TIC BN and studied the design features 

in order to assess the potential impact of a CDST in the pre-hospital environment. These 

insights have been gained while maintaining patient safety. For example, the 

EmPHATTIC study has illustrated the approximate effect of the PH TIC BN on 

clinician’s predictive performance. Such knowledge will be used to inform future 

sample size calculations for impact studies in phases II and III.  

EmPHATTIC is the first study to prospectively assess the impact of a decision support 

tool of clinical judgement in pre-hospital trauma. The study demonstrated the input 

variables to the model were sensible, and the novel output scale was comprehensible to 

the user. The study aimed to include a sample of severely injured trauma patients to 

assess the PH TIC BN in its intended use population. This goal was met and is reflected 

by the inclusion of patients that received a pre-hospital blood transfusion (25%) and had 

TIC (20%). The study also enrolled over 50 clinicians from two air ambulance sites. By 

quantifying the performance of native clinical judgement, the study enabled the 

contextual determination of the PH TIC BN’s performance. The multicentre study 

design also provided an assessment of the PH TIC BN in predominately both urban and 

rural pre-hospital systems and in patients with a mixture of mechanisms of injury, 

demographics and time from injury to assessment.  
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5.6.6.2 Limitations 

Several factors limit the study. The most significant limitation results from the blinding 

of clinicians to the PH TIC BN result while treating a patient. This design led to an 

inability to assess the impact of the model on clinical decisions and the potential for 

recall bias. While the assessment of clinician’s predictive performance is informative, 

changes in patient and health system outcomes depend on changes in clinicians’ 

behaviour. Arguably the most important research question is whether the alternative 

action (prompted by the prediction of the CDST) improve outcome (final box Figure 

18). This question requires a different study design with measurements at clinician, 

trauma system and patient levels of both processes and outcomes.  

Another important group of limitations concerns the laboratory outcomes chosen to 

benchmark the PH TIC BN and clinicians. The previous method (see 4.4.6) used to 

classify patients as coagulopathic was not possible in this clinical dataset. VHA is 

unusual in regular clinical practice at present; as a result, the majority of patients in this 

study are classified based on their prothrombin time ratio (PTr) alone. This leads to 

compounded errors as the PTr does not perfectly predict TIC. Future study designs will 

benefit from collecting complete coagulation data on each patient to ensure a 

comprehensive assessment of clotting status.  

The second limitation connected with the PH TIC BN’s output concerns prediction of 

transfusion requirement. There are conceptual issues as to whether the modelling goal 

is prediction of requirement or prediction of therapy. Prediction of the former i.e. the 

underlying physiological state of hypoperfusion (due to blood loss) is a superior aim in 

a modelling paradigm that uses causal relationships. However, transfusion requirement 

is linked to hypovolaemic state which is very challenging to objectively identify. 

Instead, a surrogate centred around blood transfusion has been used. This surrogate is 

associated with clinical error (over and under transfusion), data recording errors, and 

compounded by the logistic challenges in delivering the desired blood products to a 

bleeding patient. 
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As such, changes in clinical practice over time may be responsible for the 

underprediction of blood by the PH TIC BN seen in EmPHATTIC. The patients in the 

PH TIC BN’s training dataset were treated between January 2008 and August 2013. The 

use of blood and blood products has undoubtedly changed during this period.417 Blood 

transfusion now may be more liberal compared to a decade previously.  

There are other contentious issues around the classification of clinically significant 

volumes of blood transfusion. This study considers three groups of PRBCs transfusion 

volumes within four hours of injury, but this is an arbitrary threshold. Tools such as the 

Critical Administration Threshold391 and the Resuscitation Intensity392 may account 

more appropriately for modern balanced transfusion practice.390 However, the clinical 

use of these tools is minimal, and these newer concepts still rely on clinicians decisions 

to transfuse patients rather than identifying the need for therapy. Until hypovolaemia 

due to blood loss can be more accurately measured, a patient’s need for blood 

transfusion will continue to be substituted for a prediction based on what patients in the 

training dataset received.  

In the short term, adjusting the PH TIC BN’s calibration for blood prediction provides 

a simple solution to improve blood prediction. Future BN modelling approaches may 

benefit by relating blood requirement as a child node to tissue perfusion, (Figure 21) 

rather than directly translating the prediction of TIC into the likelihood of blood 

transfusion.  

The last notable limitation is the study’s sample size. Due to limited time to collect 

patient data and the time involved in collecting follow up data from five MTCs, only 

135 patients were analysed. This resulted in what would have been an underpowered 

estimate of the impact of the PH TIC BN on the clinical judgement of TIC. However, 

as the measured effect size was much smaller than anticipated, the sample size needed 

to find a difference would have needed to be much larger.  

Additionally, and against the original intent, clinician interviews were rarely conducted 

with each of the three members of the clinical team. This precluded analysis of the 

differential effect of the model on each group of clinicians (paramedic, registrar and 
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consultant). This information was lost primarily due to the duration of each interview 

and the competing interests of the clinical team in preparing for their next mission. In 

EmPHATTIC, each patient generated 1.4 clinician responses on average. Some 

authorities believe that the aggregation of information in groups results in decisions that 

are better than of any one individual.418 It is feasible that averaging clinicians’ 

predictions improved the measured performance of “clinical judgement”. Future studies 

may benefit from direct clinician data entry, rather than relying on interviews to elicit 

clinician’s predictions. This would allow a detailed analysis of the impact of the model 

on clinicians with differing levels of experience and training.  

 The EmPHATTIC results in context  

There is a decrease in the performance of the PH TIC BN when comparing the result of 

the internal-external validation in CHAPTER   4 and the prospective external validation 

in this current study. In EmPHATTIC the PH TIC BN has reduced discrimination in the 

prediction of TIC (AUROC: 0.92 (0.90 – 0.95) vs 0.87 (0.79 – 0.95), p = 0.298), less 

precise calibration (intercept 0.09 (-0.19 – 0.36) vs 0.37 (-0.14 – 0.89)) and reduced 

overall accuracy (BSS: 0.41 (0.32 – 0.50) vs 0.34 (0.19 – 0.48). Although the 

discrimination comparison is not significant, the general trend across all the 

performance metrics suggest there is a degradation in performance. There are several 

plausible explanations for this result that require further investigation.  

One possibility is the results of CHAPTER   4 overestimate the model’s performance. 

This could be due to overlap between the development and internal-external validation 

patient cohorts, with subsequent optimistic assessment of performance. Also, the 

assumptions relating to the reliability of pre-hospital diagnosis in CHAPTER   4 may 

be incorrect. If clinicians are less accurate in their diagnosis than previously assumed, 

the model will appear to perform better. The reliability of pre-hospital clinical diagnosis 

requires further analysis. Alternatively, the seemingly reduced performance of the PH 

TIC BN in the EmPHATTIC study may simply be due to the small number of patients 

and wide confidence intervals.  



Chapter 5 - The EmPHATTIC Study 

204 

 

The EmPHATTIC study joins a limited group of studies that aims to both assess a 

model’s real-world impact on clinical judgement and improve reporting and 

transparency through adherence to reporting guidelines. A recent systematic review 

explored the application of AI to medical imaging; arguably the most developed area of 

medical AI. The systematic review compiled studies comparing expert clinicians to deep 

learning algorithms. The study found just two published randomised clinical trials and 

eight ongoing trials. Of 81 non-randomised clinical trials, only six were prospective real-

world studies. The study found the median number of expert clinicians used as a 

comparison was 4 (IQR 2-9) and between the studies, there was less than 50% adherence 

to 12 of 29 TRIPOD items. The authors conclude that the risk of bias in the majority of 

published studies is high and the conclusions are often overstated.419  

 What remains unknown  

The EmPHATTIC study was a phase I impact study in which clinicians were blinded to 

the PH TIC BN’s prediction during pre-hospital treatment. As a result, important 

questions about the impact of the PH TIC BN on clinical decision making and patient 

and health system outcomes remain unknown. Furthermore, the EmPHATTIC study did 

not present a CDST to clinicians. Instead, inputs and outputs of the PH TIC BN were 

communicated to clinicians by a third party familiar with the model. 

The clinical impact of a CDST depends on a clinician’s decision to use the model and 

reception to its outputs in considering an alternative clinical decision. Future questions 

remain on how to incorporate the PH TIC BN into a CDST effectively. The goal is to 

seamlessly integrate the CDST into the clinical workflow, without adding burden to the 

clinicians. The model’s output must also be presented to clinicians in such a way that 

the user can understand the clinical relevance. Ease of the CDST’s use, the clinician’s 

understanding of the output and her trust in the model’s recommendation will all affect 

its impact and have not yet been assessed.   

It is not clear whether the current version of the PH TIC BN can meaningfully augment 

decision making amongst expert pre-hospital clinicians. As these clinicians demonstrate 

improved predictive performance with time spent treating and managing their patient’s 
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conditions.  The model’s predictive performance could be improved by changing the 

inputs. Variables which may hold substantial signal include metrics that encompass 

physiological trends and response to treatments such as blood transfusion. The model’s 

performance may also improve with technology that can accurately measure perfusion 

status, rather than employing standard descriptors of shock status such as heart rate and 

blood pressure.  

5.7 Conclusion 

The EmPHATTIC study is the first prospective multicenter impact study of decision 

support on pre-hospital TIC prediction and blood transfusion in trauma. It is also the 

first study to quantify the predictive performance of clinical judgement in these areas.  

The PH TIC BN did not improve clinician’s predictive performance at the end of the 

pre-hospital care phase but may be more influential immediately after the primary 

survey. The model may also be of use to non-expert first responders in austere 

environments.  

Future studies are needed to address fundamental unanswered research questions. Phase 

II and III impact studies should assess whether this decision support improves outcomes. 

Such studies will require a CDST for clinicians to directly interact with the model and 

unblinding of clinicians to the model’s prediction during patient care. Given the results 

of the EmPHATTIC study and re-interpretation of current MHRA regulations, a future 

trial design which randomises clinicians to CDST support or not during patient care is 

now a realistic possibility.  

The next chapter explores the reliability of pre-hospital injury diagnosis to understand 

potential limitations to the performance of the model.  
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THE RELIABILITY OF PRE-HOSPITAL INJURY 

DIAGNOSIS   

6.1 Scope of the chapter  

This chapter explores the reliability of pre-hospital injury diagnosis. A retrospective 

study is performed to compare clinicians’ pre-hospital injury diagnosis with the patient’s 

final injury diagnosis on hospital discharge. The chapter explores whether errors in pre-

hospital injury diagnosis account for the decrease in performance of the PH TIC BN 

seen in the EmPHATTIC study.  

6.2 Introduction  

Prediction models that incorporate injury information are dependent on the accuracy of 

injury diagnosis for optimal model performance. In the EmPHATTIC study 

(CHAPTER   5), the performance of the PH TIC BN was inferior to the performance 

of the same model validated retrospectively (CHAPTER   4). The deterioration in 

model function may be due to a decrease in accuracy of the model’s input variables.  



Chapter 6 - PH injury diagnosis 

207 

 

In CHAPTER   4, the performance of the PH TIC BN was approximated by making 

assumptions about the accuracy of pre-hospital injury diagnosis. These assumptions 

were required as the patient database used to calculate the model’s performance did not 

include pre-hospital injury diagnosis. CHAPTER   4 assumed that injuries in the chest 

and abdomen were reliably diagnosed when the Abbreviated Injury Scale (AIS) was ≥3 

(see 4.4.3). The chapter also assumed unstable pelvic fractures would be accurately 

diagnosed. Little published data is available to support these assumptions. 

Overconfidence in the ability to accurately diagnose injuries pre-hospital may have led 

to inflated approximations of the PH TIC BN’s performance.  

6.3 Aims and Hypothesis 

 Aims 

6.3.1.1 Aim 1: Assess the reliability of pre-hospital injury diagnosis for important 

predictor variables in the PH TIC BN model  

6.3.1.2 Aim 2: Assess whether severe injuries are more accurately diagnosed 

6.3.1.3 Aim 3: Identify factors which lead to deterioration in diagnostic accuracy 

 Hypotheses 

6.3.2.1 Hypothesis 1: Pre-hospital injury diagnosis is sensitive and specific  

6.3.2.2 Hypothesis 2: Severe injuries have increased diagnostic accuracy compared to 

less severe injuries  

6.3.2.3 Hypothesis 3: Decreased consciousness is associated with decreases in 

diagnostic accuracy  
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6.4 Methods 

A review of all patients conveyed to the Royal London Hospital by London’s Air 

Ambulance (LAA) between 30/09/2017 and 22/04/2018 was undertaken. Two databases 

were compared to evaluate the accuracy of pre-hospital injury diagnosis. The first 

database contained the AIS injury scores from the pre-hospital diagnosis and the second 

database contained the AIS injury scores from the patient’s hospital discharge diagnosis.  

The pre-hospital injury diagnosis is coded for all patients assessed by LAA, using only 

information obtained during the pre-hospital phase of care. PH AIS scores are generated 

within 24 hours of a patient’s assessment as part of a routine clinical governance process. 

The pre-hospital medical documentation (patient report form) is reviewed by a group of 

PH doctors, including at least one pre-hospital consultant. The AIS scores are entered 

into the database by a PH clinician reading the patient report form and scoring the injury. 

The PH clinician uses the AIS handbook to score the injuries and every diagnosed injury 

is recorded in the PH database. The AIS scores are agreed between the clinicians before 

finalisation.  

The final diagnosis injury AIS scores were generated on patient discharge by trained 

trauma coding administrative staff. The final injury score was generated using the 

patient’s electronic notes and included information derived from imaging and intra-

operative findings. This injury data is stored in a locally maintained hospital database. 

Both databases coded the patient’s injuries using the 2005 abbreviated injury score 

(AIS) system.420  

Injuries were assessed in three pertinent body regions; chest, abdomen and pelvis. 

Injuries were classified as correctly diagnosed pre-hospital when within one AIS score 

of the final diagnosis. A tolerance of one point on the AIS scale was arbitrarily selected 

to reflect the clinical significance of injuries two AIS points apart.256 Performance 

metrics were evaluated in the standard way. A subgroup analysis of all patients with a 

hospital discharge diagnosis of AIS ≥3 was performed to assess whether increasing 

injury severity was associated with improved diagnostic accuracy.  
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Patient records were matched between databases using an anonymised unique identifier 

in both databases. Only patients underwent the rapid review process and could be 

matched between databases were included. This work was conducted as a service 

evaluation and registered with the Barts Health NHS Trust Clinical Effectiveness Unit.  

To investigate the effect of reducing Glasgow Coma Scale (GCS) on the risk of missed 

injuries, patients were grouped into three clinically relevant groups of GCS (<15, <8, 

3). The baseline risk was calculated in patients with a GCS of 15, as the risk of a missed 

injury as a proportion of all patients with an injury. Risk in each GCS group were 

calculated relative to the baseline risk (i.e. patients with a GCS =15). Each GCS group 

was compared to the reference group with Fisher’s exact test.  

6.5 Results 

During the study period, 688 trauma patients were attended by LAA and 177 met the 

study's eligibility criteria (Figure 35). Patients were typically young men, injured by a 

blunt mechanism of injury and had a median final ISS of 9 (Table 26). 

 

Figure 35: Patient flow diagram. LAA; London’s Air Ambulance, RLH; Royal 

London Hospital, ISS; Injury severity score 

LAA Attended

(n=688)

Conveyed to different hospital (n=391)

Did not survive to hospital (n=80)

Non-traumatic injuries (n=14)

Missing Data

Predicted ISS (n=16)

Final ISS (n=10)

Conveyed to RLH 

(n=217)

RLH Trauma

(n=203)

Study Population

(n=177)
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Table 26: Characteristics of patients included in the study 

  
Missing 

data 

Total 

population 

   

n  177 

Age, years, median (IQR) 1* 29 (20-42) 

Male gender, n (%) 0 149 (84) 

Blunt, n (%) 0 111 (63) 

Pre-hospital ISS, median (IQR) 0 4 (2-10) 

Hospital discharge ISS, median (IQR) 0 9 (1-17) 

Suspected head injury pre-hospital n (%) 1 38 (21) 

Initial pre-hospital GCS 46 15 (14-15) 

GCS, Glasgow coma scale; ISS, Injury severity score; IQR, Interquartile range 
*does not include 12 approximated ages  

Overall, pre-hospital injury diagnosis had a sensitivity and specificity of 62% and 93% 

respectively. In total, 51/177 (29%) patients had one or more errors of pre-hospital 

injury diagnosis. Pre-hospital diagnostic error was more commonly due to an under-

appreciation of injury severity, rather than over diagnosis. The pre-hospital diagnosis of 

chest injuries was the most sensitive (77%) and pelvic injury the least sensitive (35%). 

Specificity decreased from 96% in the pelvis to 90% in the chest. Subgroup analysis of 

patients with an AIS equal to or greater than three did not result in improved diagnostic 

accuracy (Table 27). 

The proportion of missed injuries in patients with a normal GCS was 19/40. An inverse 

association was observed between the GCS and the risk of underscored pre-hospital 

injuries (Figure 36). However, none of the comparisons to the reference group 

(GCS=15) were significant at p<0.05 level. No association was found between the time 

of the shift (day or night) and the proportion of errors in pre-hospital diagnosis 

(p=0.867). 
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Table 27: Pre-hospital reliability of injury diagnosis 

 

  Chest  Abdomen Pelvis 

    

All patients    

Patients with a final diagnosis AIS ≥1, n (%) 57 (32) 30 (17) 15 (8) 

Performance of clinical judgement    

Patients with any error, n (%)  24 (14) 24 (14) 16 (9) 

Final AIS - PH AIS, median (IQR)1  0 (-2, 2.75) 2 (-2, 2) 2 (-2, 3) 

Sensitivity, % (95% CI) 77 (64, 88) 48 (29, 67) 35 (14, 62) 

Specificity, % (95% CI) 90 (84, 95) 93 (88, 97) 96 (91, 98) 

Positive Predictive Value (95% CI) 77 (66, 86) 58 (41, 74) 46 (25, 69) 

    

Patients with an AIS ≥3    

Patients with a final diagnosis AIS ≥3, n (%) 31 10 10 

Performance of clinical judgement     

Sensitivity, % (95% CI) 68 (49, 83) 40 (12, 74) 30 (7, 65) 

Specificity, % (95% CI) 97 (92, 99) 99 (96, 100) 99 (96, 100) 

Positive Predictive Value (95% CI) 81 (63, 91) 67 (29, 91) 60 (22, 89) 

 

Analysis of diagnostic errors in patients with AIS ≥3 

Under-scored injury, n (%) 3 (10)  4 (40) 0  

Missed Injury, n (%) 6 (19) 2 (20) 7 (70) 

Over-scored injury, n (%) 4 (13) 1 (10) 0 

Injury suspected but none present, n 0 1 2 

1 In patients with more than 1 AIS score between the final and pre-hospital diagnosis. When positive 

the (final AIS – PH AIS) value demonstrates an underdiagnosis of injury pre-hospital.  

AIS, Abbreviated injury score; PH, Pre-hospital 
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Figure 36: Relative risk of missed injury by the patient’s initial pre-hospital 

Glasgow coma scale. Risk of missed injury is relative to diagnostic performance in patients with a 

GCS = 15. Missed injuries are all PH injuries diagnoses ≥2 AIS scores lower than the patient’s injury 

diagnosis on hospital discharge. Thick bar, median relative risk value; whiskers, interquartile range of 

relative risk. GCS, Glasgow Coma Scale. GCS 15 group (reference group) includes 71 injuries, GCS <15, 

36 injuries, GCS < 8, 15 injuries, and GCS = 3, 9 injuries. None of the reducing GCS groups are 

statistically different from the reference group. 

6.6 Discussion 

This study explores whether errors in pre-hospital injury diagnosis account for the 

decrease in performance of the PH TIC BN seen in the EmPHATTIC study. When 

averaged across the chest, abdomen and pelvis, the sensitivity of pre-hospital clinical 

diagnosis was approximately 50%. Surprisingly, in patients with more severe injuries, 

there was no improvement in diagnostic accuracy. Thus, previous assumptions made in 

4.4.3 about increased diagnostic performance with more severe injuries led to an 

overestimation of the PH TIC BN’s performance.  
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 Diagnostic accuracy and factors associated with reduced performance 

Similar diagnostic accuracy statistics have been reported in other pre-hospital systems.  

In a sample of 433 trauma patients, clinicians from the Swiss helicopter emergency 

medical service missed 56% of abdominal injuries, 52% of pelvic injuries and 31% of 

chest injuries. The proportion of missed injuries was lower in head injuries (7%), femur 

fractures (10%) and tibia/fibula fractures (16%).421 A study from SAMU in Paris 

demonstrates that difficulty in accessing the depth of penetrating injuries. In 153 patients 

with a penetrating thoracic injury pre-hospital physicians under triaged 42% and over 

triaged 30% of patients for the presence of an invasive thoracic wound.422 Equally the 

difficulty in using pre-hospital clinical signs to diagnose raised intracranial pressure 

accurately has been studied. Closely mirroring the findings from this study, pre-hospital 

clinicians from AAKSS demonstrated relatively low sensitivity (48%) but high 

specificity (91%) in the diagnosis of raised ICP.423 

Factors associated with missed injury are not well studied in the pre-hospital literature. 

The related research from in-hospital studies associates missed injuries with reduced 

consciousness,424, 425 the severity of the patient’s injuries,426, 427 and the time of day.428 

Factors such as the clinician’s experience, degree of fatigue, and presence of multiple 

patients, may be related to missed injuries. Further research is required to establish the 

relationship between these factors and missed injuries.  

 Implication of variable uncertainty for Bayesian Network modelling 

Kyrimi and colleagues have developed a method to model the uncertain causal 

relationships present in medical Bayesian Networks.429 They propose generally 

applicable and reusable medical reasoning patterns, named medical idioms. Idioms have 

a natural logic that mimics human reasoning process. Medical idioms represent essential 

reasoning steps in a patient’s condition, diagnosis, prediction and management. The 

method extends to the uncertainty of diagnostic tests or patient reported symptoms, 

termed the Manifestation reliability idiom. The Manifestation reliability idiom explicitly 

describes how interpretation of signs, symptoms and tests are fallible. The effect is to 

accurately incorporate the clinical uncertainty pervasive in real world medical practice.    
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 Implication of reduced input certainty for model performance 

In the desire to develop decision support early after injury, the increased uncertainty of 

pre-hospital injury diagnosis is an important limiting factor. Differences exist between 

PH and ED access to effective imaging and POC investigations. Additionally, 

compensatory mechanisms make early clinical assessment challenging and occult 

injuries may present with overt physiological disturbance.308 As a result, it appears pre-

hospital injury diagnosis is more prone to error than ED diagnosis.421  

Where previous ED modelling is accurate (see 1.9) a reduction in the precision of the 

PH TIC BN’s input variables will limit its performance. Thus, until reliable input 

variables can be entered into a pre-hospital model, it’s performance will be inferior to 

in hospital modelling.  

 Study limitations 

Several limitations are present in this study. The first limitation stems from the use of 

AIS scores. There are potential errors of transcription of AIS scores from clinical 

information into the databases. For example, in a study of pelvic injuries from the same 

institution (LAA), the pre-hospital sensitivity and specificity of pelvic fracture were 

better than the current study (0.69 and 0.81 respectively).427 Notably, this study did not 

use AIS, but rather a binary classification of pelvic fracture: yes/no. In the present study, 

pre-hospital injuries were rarely given an AIS code of 3 or more, particularly with 

injuries to the abdomen. The reason for this is unclear. The assumed problem is pre-

hospital underdiagnosis of the injury. However, an alternative explanation might be 

difficulty with the translation of the clinical injury diagnosis to the AIS scores. A lack 

of familiarity with the dictionary of scores, especially at the higher severity grades, 

maybe a source of measurement error in this study.  

Another limitation is a result of the degree of specificity of the AIS used in this study. 

While each injury is given an AIS code, in the pre-hospital database, only the severity 

code is recorded (the post dot number). For example, AIS codes for a flail chest and 

haemothorax are 450209.3 and 442200.3. If a clinician suspected a flail chest and the 
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patient’s final diagnosis was a haemothorax (without flail chest) this study would 

inappropriately classify the pre-hospital diagnosis as correct; as the pre-hospital and 

final injury scores have the same severity score of 3. The effect of this limitation is an 

overestimation of the ability of pre-hospital clinicians to diagnose injuries when only 

matching injury severity has been assessed. 

Second, by analysis of patients only brought to the Royal London Hospital, it is 

uncertain whether a selection bias has been introduced, which may affect the 

generalisability of the findings to other MTCs. Third, the small sample size predisposes 

the analysis to statistical error. For this reason, minimal statistical analysis has been 

conducted on the data. This precludes useful techniques such as multivariable analysis 

to assess the factors associated with reduced clinical performance. A larger dataset 

would provide more confidence in such statistical analysis. 

6.7 Conclusion 

The pre-hospital clinical diagnosis of injuries of the chest, abdomen and pelvis is 

specific but not sensitive. Furthermore, severe injuries were not identified more 

accurately than less severe injuries. Reduced reliability of injury diagnosis pre-hospital, 

compared to in-hospital, has implications for pre-hospital models that rely on these 

inputs. Specifically, models that rely on clinical diagnosis can be expected to have 

inferior performance compared to models supported by accurate diagnostic adjuncts.   

The next chapter systematically reviews the literature to ensure the causal relationships 

modelled by the BN represent the best structuring of knowledge, and consequently the 

best chance of accurate predictive performance.  
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A SYSTEMATIC REVIEW OF THE CAUSES OF 

TRAUMA INDUCED COAGULOPATHY 

7.1 Scope of the chapter 

This chapter outlines the knowledge required for a Bayesian Network (BN) to predict 

trauma induced coagulopathy (TIC). The chapter systematically reviews the literature 

to determine the causes of trauma induced coagulopathy and assesses the evidence that 

supports these causal relationships. The evidence presented in each study is assessed 

using a modified form of Bradford Hill’s criteria for causation. Each included study’s 

risk of bias is quantified. The synthesised evidence is presented in tabulated and 

narrative forms.  

7.2 Introduction  

TIC is a post-injury disease state that encompasses disorders of coagulation and 

inflammation and is characterized by impairments in clot formation, breakdown, and 

overall haemostasis. TIC effects severely injured trauma patients and is associated with 
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poor patient outcomes and increased resource requirements. (see 1.4) Advancing the 

understanding of TIC is therefore of utmost importance, and improvements in the 

management of TIC are likely to have substantial impact on reducing early trauma 

deaths due to haemorrhage and late deaths due to organ failure. 

 

Fundamental to the practice of medicine, is the understanding of the causes that are 

necessary or sufficient to produce a disease. Through knowledge of these causal 

relationships, clinicians can make a range of useful inferences. For example, prediction 

of what will happen enables diagnosis and prognosis; controlling what happens enables 

targeted treatment; and noting what has happened enables construction of 

explanations.430, 431 

 

However, distinguishing causal from non-causal associations requires careful appraisal 

of available experimental, empirical, and mechanistic evidence.432 To assist this 

analysis, Hill’s seminal paper in 1965 suggested several aspects of an association to 

consider when judging causation (Bradford Hill criteria).433 Since publication Hill’s 

criteria have been modified and updated.434 These criteria provide a guide to 

systematically evaluate whether there is evidence to support a causal relationship. It is 

worth noting that these guidelines are not intended to be used simply as a checklist to 

establish causation but rather as a guide to critical appraisal of the evidence.  

The aims of this review are to determine the causes of trauma induced coagulopathy and 

to identify, synthesise and assess the evidence that supports these causal relationships. 

This study is not intended to review the mechanistic causes of TIC, although where 

relevant to the discussion of the causes of TIC, the proposed mechanisms are briefly 

outlined. It is hoped that the review of the evidence will not just assist the development 

of future BN structures but also assist clinicians and researchers select patients at high 

risk of TIC.  
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7.3 Aims 

7.3.1.1 Aim 1: Identify the causes of trauma induced coagulopathy 

7.3.1.2 Aim 2: Assess the evidence that supports each causal relationships and each 

study’s risk of bias 

7.3.1.3 Aim 3: Synthesise the evidence  

7.4 Methods 

This systematic review was conducted in line with the recommendations of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.435 

The review protocol was registered with the International prospective register of 

systematic reviews (PROSPERO); registration number CRD42017057482.  

 Data sources and search strategy 

Relevant publications were identified by an electronic search of the MEDLINE and 

EMBASE databases using a combination of the terms “trauma” and “coagulopathy”. 

Searches were limited to English-language. The last search was performed on 01 

January 2017. Two authors (M.M. and Z.P.) independently screened the search output 

for potentially relevant citations, and then assessed the full text of all identified citations 

for eligibility. Divergence was resolved by consensus with a third independent reviewer 

(R.D.). The reference lists of relevant articles were searched manually for additional 

relevant studies. 

 Study selection 

Original studies that describe possible causes of TIC and provide evidence of the 

relationship with TIC, were included. A revised structure of Bradford Hill’s criteria for 

causation was used to identify relevant evidence (Table 28).433, 434 Studies were 
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excluded if they: i) did not clearly define the outcome of interest (TIC); ii) only reported 

methods to diagnose or treat TIC, with no description of potential causal mechanisms; 

iii) did not report original evidence; or iv) were published in abstract form only. 

 

Table 28: A revised structure of Bradford Hill’s criteria for causation  

Criterion Description 

  

Strength (effect size) 
A strong association is more likely to have a causal 

component than a modest association. 

Consistency (reproducibility) 
A relationship is observed repeatedly by different persons 

in different samples. 

Specificity 
A factor influences specifically a particular outcome or 

population with no other likely explanation. 

Temporality 

The effect occurs after the cause which may include a delay 

if there is an expected delay between the cause and 

expected effect. 

Biological gradient 

The outcome increases monotonically with increasing dose 

of exposure or according to a function predicted by a 

substantive theory. 

Plausibility A plausible mechanism between cause and effect is helpful. 

Coherence 
A causal conclusion should not fundamentally contradict 

present substantive knowledge, like laboratory findings. 

Experiment 
Causation is more likely if evidence is based on randomised 

experiments. 

Analogy 
For analogous exposures and outcomes an effect has 

already been shown. 

Derived from references 433, 434  

 Risk of Bias assessment 

Two reviewers (M.M. and Z.P.) independently assessed the risk of bias in included 

studies. Studies were assessed according to predefined criteria (Table 29) using an 

adapted framework proposed by Altman436 for observational and in-vitro studies, the 

Cochrane risk of bias tool437 for randomised controlled trials, and an adapted version of 

SYRCLEs risk of bias tool for animal studies.438 Each criterion was graded as low, 

unclear, or high risk of bias. Results between reviewers were compared and 

disagreements resolved by discussion. A summary score was calculated for each study 

by adding one point for each criterion graded as low risk of bias (score range is 0-7 for 
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randomised control trials, 0-9 for observational studies and 0-7 for experimental 

studies). 

 

Table 29: Criteria for assessing Risk of Bias 

 Criteria 

 

Observational studies, adapted from Altman436 

 

Selection bias (Patient Sample) 

1. Eligibility criteria 

2. Baseline characteristics of sample 

3. Representative sample from a relevant population 

4. All eligible patients included 

Measurement Bias (Outcome) 

5. Coagulopathy appropriately defined 

6. Outcome assessed on admission 

Measurement Bias (Causative Factor) 

7. Causative factors defined 

8. Causative factors measured accurately 

Confounding 

9. Adjustment for confounding 

 

Randomised Controlled Trial, Cochrane risk of bias tool 437 

 

Selection Bias 

1. Appropriate sequence generation 

2. Allocation concealment 

Performance bias 

3. Blinding of participants and personnel 

Detection bias 

4. Blinding of outcome assessment 

Attrition bias 

5. Incomplete outcome data 

Reporting bias 

6. Selective reporting 

Other bias 

7. Other sources of bias 

 

Animal studies, adapted from SYRCLEs risk of bias tool 438 

 Selection Bias 

 1. Appropriate sequence generation 

 2. Baseline characteristics of sample described 

 3. Allocation concealment 

 Performance Bias 

 4.  Blinding 

 Detection Bias 

 5. Blinding of outcome assessment 

 Attrition Bias 

 6. Incomplete outcome data 

 Other bias 

 7. Other sources of bias 
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 Data extraction 

Two reviewers (M.M. and Z.P.) independently extracted data using a standardized data 

collection form. The following predefined data was extracted from each study: i) study 

identifiers (first author, year of publication); ii) essential study data (study design, 

sample size, study population, country of origin); iii) coagulopathy definition; iv) 

potential causal factors investigated; v) evidence to support causality (Bradford Hill 

criteria). 

 Qualitative evidence synthesis 

Information from each study was stratified according to the potential causal factors of 

TIC identified. Studies within each causal group were then sub-grouped according to 

study design (Human observational, human experimental or animal experimental). The 

evidence for a causal relationship between each factor and TIC was then systematically 

evaluated according to a modification of Bradford Hill’s criteria for causation (Table 

28).433, 434 Results from each study were tabulated and summarised in a narrative. A 

quantitative summary of results was not possible due to the methodological and clinical 

heterogeneity between included studies. 

7.5 Results  

 Search Results 

The search identified 3222 unique citations, of which 427 were potentially relevant. 

Overall, 168 studies were included in the evidence synthesis (Figure 37). One hundred 

ninety three studies were excluded because of an ineligible study type: abstract only 

(99), not original studies (94). A further, 66 studies were excluded as they did not 

measure coagulation (15) or did not describe a cause of coagulopathy (51).  
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Figure 37: PRISMA flow diagram 

 Study characteristics 

Eighty-nine human observational studies (50 prospective, 36 retrospective, 3 unclear), 

19 human experimental studies and 56 animal studies were included. Two articles 

describe two distinct studies each. In addition, we included evidence from four 

systematic reviews and two in-silico modelling studies (Figure 37). Included studies 

originated from 22 countries, with approximately half published within the last five 

years of the search period (mode 2013, range 1974-2016) and nearly half (78/163) of 

the studies originate from US research institutions.  
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Human observational studies originated from 20 countries, and selected trauma patients 

according to: age (44 studies), mechanism of injury (10 studies), time since injury (29 

studies), injury severity (29 studies), specific injuries i.e. head injury (26 studies), 

admission physiology (26 studies), trauma system response (44 studies), treatment 

administered (24 studies), and survival time (11 studies). The most common exclusion 

criteria were a known bleeding diathesis or pre-injury anticoagulation treatment (48 

studies). The average sample size of human observational studies was 150 (range: 11 to 

8724) patients. The average incidence of TIC in study populations was 0.24 (Range: 

0.03 to 0.65) 

 

Included human experimental studies comprised twelve in-vitro blood studies, two in-

vivo studies and two randomised control trials. The average sample size for in-vitro 

blood experiments was 11 (range: 6-45), in-vivo experiments 13 (range 9-16) and RCTs 

26 (range 18-34) patients.  

 

The majority of animal studies were randomised controlled trials (37 studies). Other 

study designs included: the development of animal models to investigate TIC (7 

studies), non-randomised controlled experiments (6 studies), and exploratory 

experiments with no control group (4 studies). The primary aim of these animal studies 

was either to investigate the pathophysiology of TIC (35 studies), or to test a therapeutic 

(19 studies). These studies featured five different animal species. The majority were 

porcine (26 studies) or rat (22 studies) models, but mouse (2 studies), rabbit (2 studies), 

and sheep (2 studies) models were also used. The average sample size was 24 (range: 6 

to 256) animals. 

 

 Risk of bias 

The risk of bias assessment, including the grading of individual criteria and summary 

score, for each included study are tabulated in Appendix C and summarised below. 
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The majority of human observational studies had a low risk of bias in the following 

domains: representativeness of the patient sample (87/87, 100%), eligibility criteria 

reported  (81/87, 93%), baseline characteristics described (69/87, 79%), coagulopathy 

defined (70/87, 80%), causative factors defined (72/87, 83%) and causative factors 

accurately measured (65/87, 75%). A high risk of bias was present in a number of studies 

because of the timely measurement of coagulopathy (50/87, 57%), inclusion of all 

eligible patients (36/87, 41%), and controlling confounding (7/87, 8%). The median 

summary score for human observational studies was 7 (IQR: 5.5-7) out of a maximum 

of 9. 

The risk of bias of the human experimental studies varied by the type of study. The 12 

in-vitro human blood experiments were well conducted with a low risk of bias; median 

summary risk of bias score 7 out of 7. The two in-vivo experiments had higher risk of 

bias both scoring 2 out of 7 and the RCTs scored 5 and 6 out of 7. 

Most animal studies had a low risk of bias for appropriate sequence generation (37/44, 

81%), baseline characteristics described (50/54, 93%), blind outcome assessment 

(41/44, 93%), incomplete outcome data (44/54, 82%), and other sources of bias (45/54, 

83%). Of the 44 controlled animal studies, 34 (77%) had a high risk of bias because 

there was no blinding of investigators, and the reporting in 39 (89%) studies was unclear 

as to whether allocation to groups was adequately concealed. The median summary 

score for animal studies was 5 (IQR: 4-5) out of a maximum of 7. 

 Definitions of TIC 

Human studies used multiple definitions of coagulopathy (Table 30). The most common 

coagulation measures used were: conventional coagulation tests such as International 

Normalised Ratio (INR), Prothrombin Time (PT), Partial Thromboplastin Time (PTT), 

activated Partial Thromboplastin Time (aPPT), Thrombin Time (TT) and Quick Value  

(80 studies); viscoelastic tests such as ROTEM, TEG, or Sonoclot (13 studies); clinical 

evidence of pathological bleeding (4 studies). The majority of studies used more than 

one coagulation measure to classify TIC (51/89, 57%) for example 8 studies used the 

DIC score to classify coagulopathic patients. Additionally, between studies, there was 
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variability in the threshold used to define abnormal coagulation for each coagulation 

measure. For example, INR was the most commonly used coagulation measure (49 

studies), with seven different thresholds used to define TIC (range: >1.1 to >1.6). 

Table 30: Methods used to classify coagulopathic patients in human observational 

studies 

Tests used to 

classify 

coagulopathy  

Number 

of 

studies 

Thresholds  

   

INR 49 > 1.1; >1.2; >1.3; >1.4; >1.5; >1.6; above normal 

PT 29 

>12.9; >13.3; >13.4; >13.5; >14.2; >14.6; >1; above reference 

range; >3-6s longer =1, >6s = 2 (DIC scoring); > 1.5x normal; x2 

normal  

APPT 27 >35; >36; >38; >40; >45; >59; >60; >1.2 x normal; > 1.5x normal 

PTT 18 
>29; >34; >34.4; >38; >38.4; >60; x2 normal; above reference 

range 

Quick Value 9 Quick value <70% used by all studies 

TEG 7 R>8; K>3; alpha <55; MA<51; LY30>3% 

ROTEM 6 

ExTEM CT >20% normal; ExTEM CFT >20% normal; ExTEM 

MCF <20% normal; ExTEM Ly30 > 1%/Cl30 < 95%; MCF 

FibTEM <20% normal; ExTEM CA5 <36mm; Max Lysis >15%; 

Max Lysis >20% 

Other tests of 

coagulation 
4 

Tests included: Endogenous thrombin potential; Ethanol Gelation 

test; Consumptive Coagulopathy Grade; Euglobulin; bleeding 

time; Thrombin Time 

Macroscopic 

evidence of 

coagulopathic 

bleeding  

4  

APPT, Activated partial thromboplastin time; CFT, Clot formation time; CT, Clotting time; DIC, 

Disseminated intravascular coagulation; INR, International normalised ratio; LY30, Lysis at 30 

minutes; MA, Maximum amplitude; MCF, Maximium clot firmness; PT, Prothrombin time; PPT, 

Partial prothrombin time; ROTEM, Rotational thromboelastometry; TEG, thromboelastography. 

 

The in vitro, in vivo and animal experimental studies defined TIC as a significant change 

in coagulation measures compared to baseline measurements or a control group. 

Coagulation measures used in these experiments included conventional coagulation 

tests (48 studies); viscoelastic tests (51 studies); and bleeding time (8 studies). 
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 Causal factors driving Trauma induced coagulopathy 

Seven possible causes of TIC are described in the included studies: hypoperfusion, 

tissue injury, acidaemia, hypothermia, haemodilution, brain injury, and type of fluid 

infused. These factors frequently co-exist and are related to characteristics of the injury, 

degree of physiological derangement, and subsequent resuscitation interventions. 

Evidence supporting a causal relationship between the driving factor and TIC is 

presented in Appendix D (Table 34 - Table 40) and qualitatively described below. 

7.5.5.1 Hypoperfusion  

Systemic tissue hypoperfusion following trauma appears to be a principal cause of an 

early endogenous coagulopathy. The predominant cause of tissue hypoperfusion after 

trauma is haemorrhagic shock but tension pneumothorax, cardiac tamponade and central 

nervous system injury may occasionally contribute.439 Observational studies of 

heterogeneous trauma populations, from a wide spectrum of geographic and 

socioeconomic settings, repeatedly demonstrate a strong correlation between systemic 

markers of tissue hypoperfusion and acute coagulation dysfunction. These markers 

include heart rate,440 systolic blood pressure,255, 257, 440-445 lactate,444, 446 and base 

deficit.54, 395, 440, 442, 444, 445, 447-459 Furthermore, experimental animal models that combine 

trauma and haemorrhagic shock are able to consistently induce an endogenous acute 

traumatic coagulopathy.66, 395, 460-468 Many of these models carefully control for known 

exogenous confounders including hypothermia and haemodilution.66, 395, 461, 464, 465, 468 In 

addition, endogenous coagulopathy predominately appears in the presence of tissue 

hypoperfusion449-451, 469 and there is a clear dose-response relationship between the 

degree of tissue hypoperfusion and coagulation dysfunction.395, 445, 447-449, 470 Although 

tissue hypoperfusion alone can cause coagulation dysfunction, this seems to be greatly 

amplified when combined with some degree of tissue injury.395 

 

Tissue hypoperfusion appears to cause coagulopathy by activation of anticoagulant and 

fibrinolytic pathways.54, 444, 445, 449, 451, 460, 470 The mechanisms for these processes are not 

fully understood. There is some debate on the relative importance of the effects of 

thrombomodulin on thrombin,471 activation of protein C,54, 440, 444-446, 449, 451, 472 
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endothelial release of tissue plasminogen activator,473, 474 degradation of the endothelial 

glycocalyx,81, 446, 475 relatively reduced plasminogen activator inhibitor,476 dysregulated 

fibrin and fibrinogen metabolism,188, 457, 477 platelet microparticles,478 platelet 

dysfunction,78, 79, 477, 479, 480 and concurrent activation of the immune system.72, 82, 481 In 

parallel, coagulopathy is also commonly observed following other causes of systemic 

hypoperfusion such as severe sepsis,482 severe burns,483 and cardiac arrest.484-487 The 

similarity of these findings strongly supports a causal hypothesis between systemic 

tissue hypoperfusion and coagulopathy (Table 34). 

7.5.5.2 Tissue Injury 

Tissue injury activates the clotting cascade by exposing tissue factor to blood and 

producing thrombin.488, 489 By definition, all trauma patients have some degree of tissue 

injury. The extent depends on the mechanism of injury, the amount of energy 

transferred, and the proportion of the body involved. As no validated biomarker exists, 

the extent of tissue injury is commonly estimated using the Injury Severity Score (ISS). 

The ISS is an anatomical score that measures the overall severity of injured patients and 

was initially intended to predict mortality.256 There is a significant association between 

coagulopathy and the extent of tissue injury, as measured by ISS.54, 55, 255, 395, 442, 443, 445, 

447, 453-455, 457, 471, 490-494 Furthermore, there appears to be a dose-response relationship 

between ISS and the proportion of patients that develop a coagulopathy.55, 447, 493, 495 The 

components of the ISS that seem to contribute to this relationship are increasingly severe 

injuries to the head, chest, abdomen, and extremity AIS body regions, but not isolated 

face and external injuries.55, 441, 442  

 

Coagulation dysfunction appears far more likely to develop, however, when tissue 

injury is combined with tissue hypoperfusion.449, 450 Animal models support this 

observation: animals subjected to a combination of tissue injury and tissue 

hypoperfusion predictably develop an early coagulopathy, while coagulation remains 

normal in animals subjected to extra-cranial tissue injury alone.395 Although ISS is 

designed to reflect the extent of tissue injury, it may also act as a marker of the volume 

of blood loss and shock. This is a potentially important confounder when using ISS as a 

measure of tissue injury. 
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There are conflicting reports on whether specific injuries are associated with an 

increased risk of coagulopathy. Major pelvic fractures496, 497 and severe intra-abdominal 

haemorrhage498, 499 have been associated with a high risk of developing coagulopathy. 

These injuries may be markers of overall tissue injury severity or simply risk factors for 

haemorrhage and shock. An alternative view is coagulopathy is independent of the 

dominant region of injury when AIS is used to describe injuries.458 Thus, tissue injury 

appears to be an important initiator of coagulation and fibrinolysis, but alone, does not 

appear to cause coagulation dysfunction (Table 35). 

7.5.5.3 Acidaemia 

Acidaemia is defined as a blood pH less than 7.35. In injured patients, acidaemia is 

usually caused by lactic acidosis due to tissue hypoperfusion. Other potential causes 

include excess chloride administration, respiratory failure, and a lactic acidosis due to 

intense physical exertion. 

 

In observational studies there is a strong association between acidaemia and 

coagulopathy in trauma patients.255, 444, 500-503 In animal models, coagulopathy results 

from acidaemia (pH 7.1), caused by controlled haemorrhage and tissue 

hypoperfusion.504, 505 To separate the effects of acidaemia and tissue hypoperfusion on 

coagulation function experimental models have administered exogenous acid. In such 

studies, exogenous acid leads to impairments in coagulation in both animal models460, 

465, 504, 506 and human blood.507 In these experiments, worsening acidaemia impairs 

clotting function in a dose-dependent manner.508, 509 Notably, simply reversing 

acidaemia does not appear to correct the coagulopathy on its own.504-506, 510  

Mechanistic experiments suggest that the coagulation derangements produced by 

acidaemia are the result of increased fibrinogen consumption,506, 511, 512 increased 

fibrinolysis,508 and impaired coagulation protease and platelet function.506, 509 (Table 

36). 
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7.5.5.4 Hypothermia  

Hypothermia is defined as a core body temperature of less than 35°C.439 Following 

injury, hypothermia may be caused by an increase in heat loss resulting from 

environmental exposure, infusion of cold fluids, or the administration of anaesthetic 

drugs. In shocked patients, decreases in heat production may be due to reduced 

metabolism. 

 

Observational studies have identified a significant association between hypothermia and 

coagulopathy in trauma patients.255, 257, 440, 442, 500, 513 Using multivariable analysis, 

several studies have shown an independent association between hypothermia and 

TIC.255, 257, 440, 502, 514, 515 Hypothermia seems to inhibit coagulation function in a dose-

dependent516-518 and reversible manner.519  

 

Mechanistic studies suggest these changes may be the result of slowed enzyme 

activity,514, 516-518 delayed thrombin generation,512, 517, 520-523 decreased fibrinogen 

synthesis,521 and altered platelet function.514, 516, 518, 520 These mechanisms prolong 

clotting times but do not seem to affect the strength of formed clots.464, 467, 520 However, 

clinically significant effects of hypothermia on coagulation function are only observed 

at temperatures below 33°C.460, 518, 524 Above this temperature, mildly hypothermic 

trauma patients have similar coagulation function to patients with a normal body 

temperature.451, 525, 526 (Table 37) 

7.5.5.5 Dilution 

In hypovolaemic shock, intracellular and extracellular fluid shifts into the vascular 

compartment to expand plasma volume. The fluid shifts result in haemodilution. This 

dilution is compounded by resuscitation with intravenous crystalloid and synthetic 

colloid fluids. TIC is associated with haemodilution as measured by admission 

haemoglobin concentration,444 haematocrit,492 and the volume of pre-hospital fluid 

administered.440, 442, 454, 492, 527-529 There is a dose-dependent relationship between the 

degree of coagulation dysfunction and the volume of administered pre-hospital fluid.444, 

503, 528, 530  
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The degree of shock and haemodilution, however, are closely correlated and it is again 

difficult to separate the clinical effects of tissue hypoperfusion from those of 

haemodilution on coagulation function. The independent coagulopathic effects of 

haemodilution have been demonstrated in in-vitro human blood,464, 530-535 experimental 

animal models,465, 536-540 and a computer simulation model.541 As expected, 

administration of large volumes of intravenous fluid has a clear dilution effect on 

platelets and coagulation proteases. These mechanisms, in addition to a decrease in 

thrombin generation,535-537, 542 decreased fibrinogen levels,520, 536, 540, 543-545 increased 

fibrinolysis secondary to reduced antifibrinolytic factors,531 and reduced platelet 

function,535 prolong clot formation time and reduced clot strength. Experimental studies 

demonstrate that reversal of dilutional coagulopathy may be possible by administration 

of Fresh Frozen Plasma,536, 537, 542 Cryoprecipitate,535 fibrinogen,535, 546, 547 Prothrombin 

Complex Concentrate,536, 537, 546, 548 or recombinant Factor VIIa.464, 537, 540, 549 (Table 38) 

7.5.5.6 Brain injury  

Experiments to induce coagulopathy have used brain tissue since the 1830’s.550 Patients 

with traumatic brain injury (TBI) and coagulopathy have a nine fold increase in 

mortality and are 35 times more likely to have a poor prognosis than TBI patients 

without coagulopathy.551 However the causal relationship between isolated brain injury 

and coagulopathy remains an active area of research.552 Human observational studies 

over four decades have shown an association between TBI and the development of an 

acute coagulopathy.553-560 In a meta-analysis of 34 studies, one third of patients were 

coagulopathic after TBI.551  

 

Contention arises over the specificity of brain induced coagulopathy. Many authorities 

state that coagulopathy after TBI relies on tissue hypoperfusion450 and brain injury is no 

more a driver of ATC than any other tissue injury.55, 458, 494, 552 Proponents of this theory 

argue, a catecholamine surge after brain injury produces systemic vasoconstriction 

leading to systemic hypo-perfused tissue which drives TIC.561, 562 Another theory 

suggests when intracranial pressure rises, poor perfusion of the extensive capillary 

network within the brain parenchyma, may also drive a classical TIC. Conversely, some 
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data suggests the magnitude of traumatised brain is a more significant driver of 

coagulopathy than shock or hypoxia.452, 495 Several authors report a dose-response 

relationship between the severity of brain injury, as measured by clinical indicators (e.g. 

Glasgow Coma Scale441, 452, 456, 563-568) and imaging techniques (e.g. CT441, 456, 566, 568, 569), 

and the development of a coagulopathy.  

 

The mechanism of brain associated coagulopathy was classically ascribed to 

disseminated intravascular coagulation (DIC).559, 570-572 DIC was believed to occur due 

to overwhelming activation of coagulation by exposure of tissue factor, which is 

especially prevalent on the adventitial surface of cerebral vessels. The result according 

to some authorities is a DIC phenotype with high levels of fibrinolysis and thrombin 

production early after injury.83, 565, 573, 574 More recently platelet dysfunction,575, 576 

clotting factor depletion,577 microparticles derived from blood,578 and brain,579, 580 cells 

and S100A10 driven fibrinolysis581 have all been proposed as having  distinct 

mechanistic roles. 

 

Whether TBI induced coagulopathy is a separate pathophysiological process distinct 

from extra-cranial ATC is not clear. The literature contains mixed clinical evidence and 

limited experimental evidence. (Table 39) 

7.5.5.7 Hypertonic Crystalloid and Colloid Resuscitation 

In addition to the dilutional effect of fluid infusion on coagulopathy, certain specific 

fluids may exacerbate clotting dysfunction. Synthetic colloids (e.g. Dextran, Gelatine 

and Starch) and isotonic and hypertonic crystalloids have been shown in observational 

and experimental studies to have variable effects on clotting.582 A human observational 

study including nearly 2000 patients between 2002-2007 noted a pre-hospital 

colloid:crystalloid ratio 1:2 ratio was independently associated with worse clotting 

function.442 In recent years the use of synthetic colloids has all but gone from current 

resuscitation practice, due to a lack of evidence of survival benefit and potential harm 

associated with their use.583-585  
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The deleterious effects of synthetic colloids on clotting have been demonstrated over 

multiple molecular weights, formulations and dilutions.464, 535, 542, 544, 586-589 Study 

designs which compare the same volume of added fluid between synthetic colloids and 

isotonic crystalloids demonstrate additional coagulopathy especially at higher dilutions 

with colloids.590-592 For example in an RCT of 25 trauma patients, patients were 

randomised to receiving either a Gelatine colloid or an isotonic crystalloid. Patients in 

the colloid group had prolonged bleeding times.589 The effect of synthetic colloids on 

clotting are greater than can be explained by pure dilution. Colloids with a greater 

molecular weight have more profound effects on coagulation.593 Several plausible 

mechanisms have been suggested;  inhibited platelet function by interaction with 

vWF588 or blockade of the GIIb-IIIa fibrinogen receptor, impairment of fibrin 

polymerisation594, 595 and increased systemic concentration of tPA due to reduced 

hepatic uptake. 

 

Hypertonic crystalloids also exert an additional adverse effect on clotting. In a rare RCT, 

patients given a bolus of hypertonic saline had higher INRs on admission than patients 

given normal saline. In the hypertonic groups, the study found reductions in 

prothrombotic factors and increases in lytic factors.596 In-vitro, VHA assays demonstrate 

prolonged clot formation time, reduced clot propagation and increased time to maximum 

clot strength with hypertonic saline.597, 598 Amongst isotonic crystalloids, an RCT with 

18 patients found a balanced crystalloid was associated with an increased rate of fibrin 

generation compared to 0.9% NaCl.599 (Table 40) 

7.6 Discussion  

This systematic review identifies evidence that supports seven causes of TIC. Each 

causal factor is supported by evidence from more than one study design. This diversity 

supports Bradford Hill’s similarity criteria of causality but makes quantitative summary 

of the evidence impossible. The identified literature spans over 40 years, 20 countries, 

six species and countless definitions of coagulopathy. However, only three small RCTs 

in humans were discovered.  
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This study is a synthesis of existing evidence and so the strength of the results is limited 

by what has been published previously. It is not possible to conclusively state that the 

casual factors identified in this review are definitely causes of trauma induced 

coagulopathy. We have presented evidence that suggests a causal relationship rather 

than proves the relationship.  

 

Some of the causal factors are supported by a substantial quantity of studies. Despite the 

volume of evidence, and often considerable effort by the authors, many of the studies 

retain confounding between the casual factors. For example, in human observation or 

animal modelling it is difficult to identify the individual contributions to coagulopathy 

of tissue injury and haemorrhage.  

 

This review has determined the causes of trauma induced coagulopathy by identifying, 

synthesising and assessing the published evidence that supports these causal 

relationships. In doing so the study clinicians and researchers are able to make a range 

of useful predictions in the diagnosis, prognosis and treatment of injured patients.  

7.7 Conclusion  

Multiple study designs provide casual evidence for a combination of endogenous and 

iatrogenic drivers of Trauma induced coagulopathy. There is evidence to support seven 

causes of coagulopathy: hypoperfusion, tissue injury, acidaemia, hypothermia, dilution, 

brain injury and choice of resuscitation fluid. Through understanding these causal 

relationships, clinicians can make useful inferences regarding diagnosis, prognosis and 

treatment. In addition, the knowledge identified in this chapter can be used to structure 

future Bayesian Networks to predict trauma induced coagulopathy.
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CONCLUSION  

8.1 Summary of findings 

This thesis contributes to the understanding of decision support after injury.  

The thesis establishes the difficulty that pre-hospital clinicians face in the diagnosis of 

major haemorrhage and trauma induced coagulopathy, then demonstrates the potential 

value of decision support of a Bayesian Network model, before developing a novel 

Bayesian Network, which is subsequently assessed in a prospective impact study.   

Chapter One describes the significance of bleeding and coagulopathy after injury and 

the improved patient outcomes associated with early intervention. A discussion of 

modern theories of decision making and the complexities of identifying high-risk 

patients illustrates the niche for decision support approaches. A critical appraisal of the 

existing decision support models describes the lack of impact studies and why no TIC 

and major haemorrhage models have been adopted into regular clinical practice. 

Attention is turned to the improvements in data collection and computing power that 

have enabled the development of effective machine learning techniques such as 

Bayesian Networks. The introduction chapter ends with an explanation of the strengths 
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of BNs and describes the impressive predictive performance of an existing Emergency 

Department TIC BN.  

Chapter two identifies bleeding and coagulopathy after injury as challenges to decision 

making for pre-hospital clinicians. Pre-hospital clinicians use recognition-priming to 

make decisions about bleeding, transfusion and TIC and struggle to make decisions 

when faced with clinical uncertainty. Integrating probabilistic decision support into pre-

hospital care presents opportunities (attention to essential cues and improved situational 

awareness) and potential challenges (threats to autonomy, difficulty handling 

probability, and clinician’s apparent preference for gestalt).  

Chapter three illustrates the potential clinical value of the existing Emergency 

Department BN TIC model for major haemorrhage prediction. Within the context of the 

London inclusive trauma system, the majority of major haemorrhage protocol 

activations are initiated pre-hospital. A proportion of these clinical decisions are made 

in error. When compared for accuracy, native clinical judgement and the BN had few 

statistical differences in their predictive performance. However, the ED TIC BN was 

more accurate than another decision support model; the ABC score.  

Chapter four develops and validates a Bayesian Network model for the pre-hospital 

prediction of TIC and major haemorrhage. The PH TIC BN performance is only 

minimally degraded compared to the ED TIC BN and is more accurate than any other 

TIC model.  

Chapter five prospectively assesses the impact of the novel PH TIC BN on clinical 

judgement in a prospective, multicentre study. The finding of no improvement in the 

performance of clinical judgement after decision support, may have been influenced by 

the study’s design. Nevertheless, decision support was associated with small 

improvements in calibration, overall accuracy and ease of decision making. Notably, 

direct comparison of the model against expert clinical assessment was not different. This 

finding suggests the model may have utility supporting decision making in those 

providers with little medical training. The findings of this study will inform the design 
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of future randomised trials that aim to assess the model’s impact on patient and health 

system outcomes.  

Chapter six demonstrates inaccuracy in the pre-hospital clinical diagnosis of injuries. 

Clinical diagnosis is specific but not sensitive and the diagnosis of severe injuries is not 

found to be more reliable. The results in this chapter identify incorrect assumptions in 

Chapter 4 that led to over-inflated estimations of the prospective performance of the PH 

TIC BN observed in Chapter 5.   

Chapter seven systematically reviews the existing literature to ensure the causal 

relationships modelled by the PH TIC BN represent the best structuring of knowledge, 

and consequently, the best chance of accurate predictive performance. Seven causes of 

coagulopathy are identified: hypoperfusion, tissue injury, acidaemia, hypothermia, 

dilution, brain injury and choice of resuscitation fluid. The precise understanding of 

these causal relationships enables optimal development of the structure of future 

Bayesian Networks to predict TIC.  

8.2 Strengths and Limitations 

Throughout the thesis, the strengths and limitations of each study were discussed. What 

follows are strengths and limitations that have not been discussed and are shared 

between multiple sections of the thesis. 

 Strengths 

A key attribute of this thesis is the use of Bayesian Networks to compute risk 

predictions. BNs are flexible models that allow the incorporation of multiple pieces of 

information in a way that is causally structured. There are notable benefits of using BNs. 

For example, in some circumstances, causal models have better predictive performance 

than traditional machine learning approaches, which rely on associative inference.600 

But perhaps more importantly than small differences in predictive performance, BNs 

have readily explainable reasoning. Understanding the model’s reasoning may enhance 
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the user’s trust and increase the likelihood of the user incorporating the  prediction into 

their decision making.601 This is point is emphasised by the US National Artificial 

Intelligence Research and Development strategic plan: “trustworthy AI requires 

explainable AI”.602 By providing concise explanations that describe the most important 

chains of reasoning, clinicians may be more inclined to use BNs in their daily practice. 

However, we know like most healthcare prediction models, the majority of Bayesian 

Networks are never implemented in to regular clinical practice.334 The reasons for this 

lack of adoption are touched on in Chapter 2 when exploring the challenges to 

introduction of a probabilistic decision support. Further specific investigation is required 

to understand the likely adoption and subsequent utility of a BN based CDST in pre-

hospital trauma care.  

Another strength of this thesis is the adherence to the reporting standards of the TRIPOD 

statement.394 Multiple recent systematic reviews point to the incomplete reporting and 

imperfect study design of machine learning studies.419, 603 This thesis reports metrics 

that are often neglected, including calibration, performance compared to clinicians, and 

evaluation of other prognostic models in the same datasets. Perhaps most importantly, 

this thesis has examined model performance in real-world conditions that bear direct 

relevance to routine clinical practice, in a way many AI studies do not.604 The benefit of 

close adherence to the reporting guidelines includes the ability for meaningful critique 

and enhanced interpretation of the results. 

Finally, this thesis has engaged end-users in the process of defining the initial problem 

requiring decision support, developing a novel model and then assessing the likely 

impact of the model on clinical judgement. It joins a small group of studies that 

prospectively evaluate models in real world cases. The results of this thesis informs the 

design of future studies to assess the impact of decision support in trauma on patient and 

health system outcomes.    

 Limitations 

This thesis has moved towards an understanding of what impact a pre-hospital Bayesian 

Network model for the prediction of TIC and blood transfusion may have in practice. 
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However, despite real gains in knowledge, the impact of the model is not still fully 

understood. First, the thesis does not assess the impact of a complete CDST, but rather 

a model. The model is just one component of a CDST. Other elements include the 

interface between the model and the user. This interface must be easy to use and 

integrate well with the clinical workflow.605 Impact studies must assess the impact of 

the CDST on important outcomes. Integration, model comprehensibility, and model use 

are critical determinants of model impact. The ease of use and perceived benefit cannot 

be assessed until the CDST is finalised. 

Another limitation relates to how the model output is communicated to clinicians. The 

ultimate aim of decision support is to improve patient and health system outcomes. For 

changes in outcomes to be realised, a decision has to change. This thesis has mainly 

focused on changes in risk prediction with model information, rather than changes in 

decisions. The model’s output in this thesis provides both a probability value and 

stratifies patients into risk categories. Providing the output in this manner is intended to 

assist decision making while dividing risk into useful strata for clinicians to base their 

decisions. There are potential problems with this assistive approach. For example, the 

end-user may not understand the clinical implication of each risk category. 

Alternatively, the model output can suggest decisions or courses of action for each risk 

category. A problem with this directive approach is it removes the ability of the user to 

weigh the costs of wrong decisions and requires the same cost function to be applied to 

all situations by all users.606 This reduces the flexibility of the CDST and rather than 

augmenting decision making it forces decisions and erodes clinician’s autonomy.  

While the assistive approach allows for clinician judgment, a directive approach may 

have a greater effect on outcomes.218 Studies of decision support in postoperative nausea 

and vomiting suggest that more significant patient benefit may be achieved when 

treatment recommendations are given to clinicians rather than isolated predictions.274, 

275, 607 Thus the advantage of prediction over classification may be lost in some 

applications. The form of the output (assistive vs directive) is an integral aspect of the 

final CDST. The model’s output form, and the visual style in which that output is 

displayed to the user, have to be established before the impact of decision support can 

be definitively studied. This thesis does not consider these two options as mutually 
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exclusive. Future research should explore providing both probabilistic predictions and 

risk stratification for suggested therapeutic interventions.   

The final limitation is the failure of the thesis to consider competing risks. The limited 

literature on pre-hospital decision support illustrates some of the unintended 

consequences of using decision support. Perhaps most importantly for pre-hospital 

trauma care is the risk that using a CDST may add additional pre-hospital time and 

increase patient harm. In a rare RCT of decision support, a CDST that aimed to improve 

appropriate referral to specialist resources in older patient falls was studied. The trial 

noted a two-fold increase in the referral rate, with no improvement in patient outcome 

and a 10% longer job cycle compared to the control arm.608 Similar findings were noted 

in a simulated RCT. In this second RCT, nurses in the intervention arm were more 

adherent to pre-hospital guidelines but took twice as long as the control group.609 Such 

competing risks need to be studied with patient and health system centred outcome 

metrics. Clinicians are unlikely to adopt a CDST into routine practice until the overall 

utility is established.  

8.3 Avenues for future research 

Several additional questions have been generated while investigating the hypotheses 

within this thesis. The first two questions relate to model design and the last three 

questions concern CDST impact analysis: 

 Can the prediction of blood transfusion requirement be improved?  

The initial aim of predicting blood transfusion was simply to communicate risk within 

TIC risk categories. Blood transfusion, the need for damage control surgery and the risk 

of death are all readily understandable parameters that capture elements of a trauma 

patients’ clinical trajectory. However, as the research evolved, the ability to predict 

blood transfusion requirement emerged as a potentially desirable objective in its own 

right. This was especially germane amongst civilian pre-hospital and emergency 

clinicians and military clinicians and planners.  
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To predict the need for blood transfusion, using a Bayesian Network approach such as 

a treatment idiom429 requires casual reasoning. The outcome node “blood transfusion” 

could be modelled as child of hypovolaemia. Thus, the model would use the underlying 

state of hypovolaemia (due to blood loss) to predict transfusion requirement, rather than 

rely on the transfusion decisions made by clinicians on patients in a training dataset. 

A future model may benefit from incorporating information  gleaned from experts, as 

discussed in Chapter 2. For example, in Chapter 2 expert clinicians describe the cues 

they use to diagnose blood loss (“The Hateful Eight” Table 6). These signs could be 

included as evidence nodes for the hypovolaemia variable. The original parents of tissue 

perfusion (HR, SBP, Lactate and TIC) remain unchanged (Figure 38).  

 

Figure 38: Bayesian Network fragment for blood transfusion prediction. Latent 

variables (dark red nodes) are causally related to the two outcome variables blood transfusion and 

coagulopathy (bright red nodes). The evidence measurements (white nodes) include “The Hateful Eight” 

(see Table 6) which have been grouped together for simplicity. HR, heart rate; SBP, systolic blood 

pressure;  

Future research should explore the predictive performance of a BN that can give 

predictions at several times after injury. The ability to accurately predict the need for 

both pre-hospital blood transfusion and early in-hospital blood transfusion would be 

beneficial to multiple stakeholders. Using dynamic BNs, a single BN model could 
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generate predictions, that are updated, using data as it became available during the 

patient journey.  

A more ambitious modelling goal, identified by the end-users, is to predict the cause of 

shock after injury. Clinicians described uncertainty in their ability to differentiate 

between types of shock. Specifically, differentiating between haemorrhagic shock, that 

should be treated with blood transfusion, and “haemorrhage mimics”, i.e. all the other 

types of shock that do not benefit from transfusion. This goal is ambitious as it requires 

an appropriately labelled dataset to learn the relationships between variables.  

 Will inclusion of new variables improve the predictive performance of the 

models? 

In Chapter 5 clinicians demonstrated improved predictive performance at the end of the 

pre-hospital phase of care. This may be a result of clinicians updating their clinical 

judgement based on changes in vital signs or response to treatment. Updating the 

network with prognostically important variables should lead to an improvement in the 

model’s predictive performance. BNs can include dynamic variables (i.e. change over 

time) and produce predictions at more than one time point (Figure 39). The concept of 

adding new variables is straightforward. Once the causal structure for a target variable 

is defined, new evidence variables (e.g. the response dynamic response to blood 

transfusion) can be added to the causal chain.   

In the future, variables that may improve performance could be identified from literature 

searches and discussion with experts. For example, there is literature supporting the 

diagnostic value of serial lactate measurements,610 improvements in technology may 

detect blood loss more readily than traditional vital signs,304 and interviews with expert 

clinicians reveal important cues that are helpful in the diagnosis of a hypotensive patient. 

However, the chief limitation in the inclusion of such candidate variables is the 

requirement for training datasets that contain these variables of interest.
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Figure 39: Directed Acyclic Graph of a future Bayesian Network developed to predict pre-hospital and early in-hospital blood 

transfusion, incorporating evidence from two distinct times and potential new evidence variables
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Figure 39 (previous page) Directed Acyclic Graph of a future Bayesian Network 

developed to predict pre-hospital and early in-hospital blood transfusion, 

incorporating evidence from two distinct times and potential new evidence 

variables. The figure is produced in AgenaRisk software. The nodes represent outcome variables (red), 

evidence generated pre-hospital (yellow), evidence generated in hospital (blue), latent variables (white). 

The hateful eight have been grouped together for simplicity. HR, heart rate; SBP, systolic blood pressure; 

GCS, Glasgow coma scale; PH, Pre-hospital; ED, Emergency Department; CXR, chest x-ray; FAST; 

focused abdominal sonography in trauma; SBP, systolic blood pressure; BE, base excess.  

The proposed BN model in Figure 39 retains the basic causal structure as the previous 

models used in this thesis. Notably this model has two outputs: TIC and blood 

transfusion and two-time points PH and ED. The model has been updated by using new 

variables understood to be useful over the course of this thesis: first, it contains new 

types of input variables such as the compensatory reserve index, the Hateful Eight, and 

treatments administered; second, it uses inputs from two distinct time points and could 

include changes in variables (e.g. the change in the lactate); third, it incorporates clinical 

uncertainty in the pre-hospital clinical diagnosis of injury; fourth, it increases the 

granularity of injury descriptions to improve the description of total body injury; finally, 

the causal structure has been updated to include the causal factors identified in the 

systematic review in Chapter 7. Further modifications, such as modeling the need for 

blood transfusion as in Figure 38 may improve the predictive performance of the model. 

Training and assessing the performance of this model requires further research and 

development.  

 How can the CDST interface maximise ease of use to optimise adoption?  

The Technology Acceptance Model (TAM) states that innovations that are perceived as 

having value, and are easy to use, produce user attitudes that lead to intention to use the 

innovation and actual use.611 Much of the work in this thesis is about establishing the 

model’s value. The thesis does not address how to make the model easy to use. From 

the TAM statement it is clear that the ease of use is vital to a CDST. This is especially 

true in the time pressured context of pre-hospital trauma care. In this high stakes 

environment, the interface between the end-user and the model is critical for the 

successful integration of decision support into routine care.  
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A core requirement for a CDST is that it integrates data-handling and user interfaces 

with model computation and explanation. Data capture should be as unobtrusive as 

possible. At present, the data that powers the current models must be entered manually 

by a user, directly interacting with the interface. Short term goals that should be 

addressed include data entry that is optimised for a touch screen on ruggedised tablet 

platforms. On this platform users should interact with simple diagrams of anatomic 

injuries to enable facile data capture. In the medium term, the interface should leverage 

increasingly common technologies such as natural language processing and wireless 

data transfer from electronic devices such as heart rate monitors. Longer-term goals may 

include body-worn cameras to capture data such as pallor, HR, SBP or injury data that 

could be transferred to the model for predictions to be performed without any human 

interaction with the interface.  

While many of these objectives are engineering tasks that require regular interaction 

between stakeholders, important research questions remain relating to usability. These 

questions need prospective study designs to address them. Similarly, research efforts to 

address how best to communicate the model’s output to the user requires careful 

attention to lessons from behavioural psychology and prospective study to quantify 

clinical understanding. 

 What is the impact on patient and health system outcomes of predicting TIC 

and blood transfusion? 

The performance of the PH TIC BN model in this thesis meets that exhibited by 

specialist clinicians. However, there are unanswered questions about whether the model 

can augment clinical decision making and impact important outcomes. Definitive 

impact analysis on patient and health system centred outcomes requires a finalised 

CDST, which is not yet available. Meanwhile, the research questions suggested above 

may improve predictive performance of a model. Thus, the timings of model 

finalization, completion of CDST development and trialing via RCT needs to be staged 

and synchronised. Moving to an RCT with a suboptimal CDST wastes time and 

resources. On the other hand, needlessly iterating the CDST before clinical impact 
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studies are considered will delay a potentially useful model. Undoubtedly, a phase III 

impact study is required to assess the impact of decision support, but the criteria to 

identify precisely when to start that trial and what constitutes an acceptable level of 

optimization remains unclear.  

 What governs the outcome when AI and Humans disagree?  

Artificial Intelligence promises to analyse enormous quantities of data, identify patterns 

and provide the user with outputs that are impossible to attain by humans alone. As such, 

there is little doubt that AI will increasingly participate in medical decision making.279 

In an attempt to understand what future relationships with AI will take, Neves and Marsh 

described three simplified uses of AI in healthcare: AI replaces the human, AI filters for 

the human, and AI assists the human.612 The models depicted in this thesis fall into later 

of the three uses. Our AI aims to assist and augment human decision making. Taking a 

broad view of medical AI, Topol argues that humans should remain “in the loop” and 

that algorithms in medicine should not replace humans.310 

The assistance paradigm of AI requires a human-machine pairing. In this pairing, each 

agent (human and AI) may take one of several states. Although not directly 

demonstrated in the results of the experimental chapters, during the research two 

pertinent observations to AI-human pairing were noted. First, it was noted that when the 

AI - human pair agree, the behaviour may not change; as the clinician’s decision remains 

unchanged. Arguably, this pairing state in which both agents agree is the lens through 

which much of the promise of medical AI is viewed. 

The second observation pertains to what happens when the clinician disagrees with the 

decision support output. When the agents are discordant, the extent to which the 

clinician will allow the tool to modify behaviour appears to depend on several factors. 

Understanding what factors influence the decision outcome in agent discordance, sits 

within a broader theme. The wider research question encompasses how to integrate AI 

approaches into healthcare effectively.  
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Central to this issue is the need for the machine to be able to explain its reasoning, so-

called explainable AI. The AI-human pairing should be re-considered as a partnership. 

When both agents hold the same “view”, decision making is likely to be straightforward. 

But when the agents are discordant, perhaps the most critical factor that influences the 

outcome will be the machine’s ability to explain. The machine will need to have clear 

explanations that are easily interpretable to persuade the human agent to act differently. 

And it’s not just that single decision the human’s trust in the machine’s explanation is 

likely to influence longer-term device adoption as well.  

What constitutes an effective explanation? Elements of explanation through 

visualisation have been explored in this thesis and are addressed elsewhere.613 However, 

visualisations incompletely address effective explanation. If the aim is to persuade and 

change the perspective of a human agent, what is required is a diplomatic articulation of 

the explanation. Persuasion is a skill that all humans can relate to. A range of ideas come 

to mind when we consider what techniques we might employ to persuade a colleague to 

align with our position. Mostly these techniques require a conversation or at least 

interaction between the agents. Drawing on this human experience of explanation and 

persuasion is where others argue that explainable AI should learn from.  There is much 

to learn from the fields of philosophy, psychology, and cognitive science. Rich research 

over hundreds of years describes how humans define, generate, select, evaluate, and 

present explanations. These fields also discuss the associated cognitive biases and social 

expectations of explainations.614 The application of this rich theoretical work, to our 

specific decision support problem and the broader AI-human partnership requires 

further research.  

Of course, explanation and interpretability are not the only factors that govern the 

outcome of agent discordance. For example, there are suggestions, raised in this thesis, 

that the degree to which a clinician will change her decision also varies between 

individuals and contexts. A future research aim is, therefore, to map the factors that 

influence whether the human will reverse their decision given new evidence. Once the 

elements are better understood, attempts can be made to optimise them in favour of the 

human and AI partnership better co-operating.  
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This argument is predicated on the assumption that the AI performs better on average 

than the human. If the AI does not perform as well, or systematically performs less well 

in certain circumstances (e.g. a specific injury pattern), then persuasion of the human 

agent may cause harm. In this situation, analysis of the cause of divergence between 

clinicians and the AI could generate knowledge that can be used to inform model re-

design; this is especially germane in the application of Bayesian Networks.  

8.4  The next steps 

We plan further research to embed accurate AI risk prediction algorithms into a usable 

and useful clinical decision support systems to improve situational awareness and 

clinical decision-making. Since submission of this thesis, in November 2020, further 

work has been conducted to understand of the implementation stages. A scoping review 

has been performed to identify the benefits, barriers and facilitating factors for 

implementing medical BNs in healthcare.615, 616 Lessons learned from this literature 

review will be valuable in the implementation and clinical evaluation of the developed 

AI system. In addition, a scoping review of CDS adoption frameworks is being 

performed. The aim of this review is to explore the published literature and better 

understand the steps needed for translating an accurate AI model into a useful CDS 

system. 

In the immediate future, to extend the work on evaluating the AI System in the pre-

hospital environment we are planning a programme of work to evaluate a) AI system 

performance, b) user’s performance, c) patient impact, d) safety of the AI-system, and 

e) gain sufficient evidence of system performance to enable application for regulatory 

approval. To achieve these aims a stepwise process will be used to implement and 

evaluate the AI system. This will be performed across three studies. During the first two 

studies, the AI system will undergo iterative modifications, informed by the evidence 

generated, to optimize system performance.  

Study 1 will be similar to the EmPHATTIC study and will further examine 

implementation of an AI Risk Prediction and Decision Support System into a real-world 
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clinical setting in a prospective observational study. A step-wise process will be used to 

implement and evaluate the AI system. This will be performed in two phases, first an 

integration phase of the AI platform, followed by an early formative clinical evaluation 

phase of the AI system, using a prospective observational study to assess the system’s 

usability, efficiency, interpretability, explainability, trust, potential impact and safety. 

One major difference to prior work will be the use of the model by the clinical team 

rather than a researcher. During these phases, the AI system and the way it is used will 

undergo iterative modifications, informed by the evidence generated, to optimize system 

performance. The study is a bridge between the in-silico development and simulation 

studies of the prior effort and the clinical trial of the AI system in the proposed effort 

(Study 3). The study will be reported according to the DECIDE-AI guideline.617 

Study 2 examines usability and impact on clinical workflow of an AI Risk prediction 

system. The study will be a randomised, controlled simulation experiment with a 

crossover design. This study will move our research efforts into the military 

environment and will be conducted alongside the Royal Air Force (RAF) tactical 

medical wing’s Medical Emergency Response Team (MERT) training course (see 

1.3.5.1). In both arms of the experiment, the MERT team will be presented with a 

standardised and realistic clinical simulation of an injured casualty with non-

compressible haemorrhage. In the control simulation, the team will manage the case 

using standard care. In the intervention simulation, the team will manage the case using 

standard care augmented by the AI risk prediction system. Outcomes measured during 

the study will include key timings (time to administration of TXA, activation of the 

major haemorrhage protocol, initiation of blood transfusion), the number of errors, and 

the level of cognitive load participants experienced with key decisions. A human factors 

evaluation of the AI system will also be conducted in this study. This element of the 

study will assess human-system interaction and include a usability evaluation and an 

evaluation of the user’s perception of the AI systems’ interpretability, explainability, 

trustworthiness, and clinical value. 

Study 3 will assess the whether the AI Risk Prediction System can augment a treating 

clinician’s perception of an individual patient’s risk of adverse outcomes (situational 

awareness) and subsequent clinical decisions, compared to standard unassisted clinician 
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performance. The study design is a pragmatic, controlled before-and-after trial 

performed across the London Trauma System. The study protocol will be reported 

according to the guidelines for clinical trial protocols for interventions involving 

artificial intelligence.618 The study participants are the clinical decision-makers involved 

in the pre-hospital assessment and management of trauma patients. All clinicians 

working for LAA will be eligible for inclusion. In the intervention arm of the study, 

LAA clinicians will have access to the AI system in addition to standard care. The final 

version of the AI-system at the completion of Study 1 will be used in the trial with no 

further modifications of the system. The trial report will report the amount of missing 

input data and the effect on algorithm and clinician accuracy. The primary outcome 

measures are the accuracy of clinical judgement of the patient’s risk of mortality, TIC 

and haemorrhage.  

It is anticipated that this work will significantly advance the process of translating 

accurate AI prediction algorithms into useful and usable CDS systems so that the 

potential benefits of these digital healthcare technologies can be realised.  

8.5 Conclusion 

This thesis advances the understanding of the benefit and impact of pre-hospital decision 

support after injury. Engagement with the key users of the model has informed the 

development of a Bayesian Network for the prediction of blood transfusion and trauma 

induced coagulopathy in the pre-hospital arena. Unlike many studies, this research 

evaluated the impact of the model on clinical judgement in real world settings. The 

knowledge generated will be used to design trials that assess the impact of machine-

learning powered decision support tools, on both individual patient outcomes and across 

trauma systems.  
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Appendix A: Interview Guide and Questions  

Clinician Demographics 

• Base speciality 

• Years of pre-hospital consultancy  

Introduction 

I would like you to consider your approach to how you asses, and decide treatments for, trauma 

patients you see in your pre-hospital clinical role. I’m going to ask you about bleeding and 

trauma induced coagulopathy. Would that be alright? Thinking about bleeding first… 

Bleeding 

• Is it a fair assumption to suggest you assess a trauma patient for bleeding? 

• When do you start thinking about whether or not a patient might be bleeding?   

• What do you think are the most important clinical pieces of information you use to 

assess a patient’s severity of bleeding?  

• How does hypovolaemic shock change your management for a patient? 

• What is your intention when giving blood? 

• Can we discuss damage control resuscitation? 

• Do you think you practice DCR pre-hospital? 

• When do you think DCR becomes necessary pre-hospital? 

• What are the components of your Pre-hospital DCR? 

• What influences your decision to transfuse pre-hospital blood?   

• What is difficult about deciding if a patient needs a transfusion?  

• What do you consider a greater risk to a patient: under transfusion of a bleeding 

patient or unnecessary transfusion to a patient without significant blood loss?  
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OK thank you. Let’s move on to discuss Traumatic Coagulopathy: 

Trauma Induced Coagulopathy 

• Do you routinely assess for trauma induced coagulopathy? 

• What are the most important clinical pieces of information you use to assess a 

patient’s risk of developing coagulopathy?  

• What would you say might be difficult for a novice about deciding if a patient is 

coagulopathic? 

• How does your judgement of coagulopathy affect your treatment decisions? 

• Thinking about risk thresholds: what do you think is a clinically significant risk for 

treating coagulopathy? Let me explain what I mean by this question: NELA 

recommends for a patient with a risk of mortality greater than 10% there ought to be 

consultant led surgery, ICU post op bed etc… In our series of patients we found that 

mortality in non-coagulopathic patients is <5%, but is >50% in those who develop 

coagulopathy. At what risk threshold would you consider changing care? 

• What do you consider to be a greater risk to a patient:  

Missed identification of patient with coagulopathy or the potential side effects of 

haemostatic resuscitation in a patient with normal coagulation.  

• How important are these elements of care delayed recognition, no hospital pre-

warning, delayed treatment? 
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Appendix B: EmPHATTIC interview questions 

Please answer the following questions on a scale of 1 (no/easy) to 10 (yes/hard) as you believed 

at the specified timepoint.  

1. Time point 1: immediately after the initial patient assessment  

• Did you think this patient was coagulopathic? 

• Did you think this patient would need blood in the next 4 hours? 

 

2. Time point 2: immediately after handover in the Emergency Department 

• Did you think this patient was coagulopathic? 

• How easy was that prediction? 

• Did you think this patient would need blood in the next 4 hours? 

• Did you think this patient was coagulopathic? 

• How easy was that prediction? 

• Did you think this patient would need blood in the next 4 hours? 

 

3. Time point 3: Please answer these questions now you have the model’s results 

• Do you agree with the TIC prediction? 

• Do you agree with the transfusion prediction? 

• What (if any) decisions does the model’s additional information influence? 

• Do you think this patient was coagulopathic? 

• How easy was that prediction? 

• Do you think this patient would need blood in the next 4 hours? 

• How many PRBC units do you think they will receive in the next 4 hours? 

• Do you think this patient was coagulopathic? 

• How easy is that prediction? 
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Appendix C: Risk of Bias 

Table 31: Risk of bias in human observational studies 
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Aucar (2003) + - + - + ? - - - 3 

Auer (1978) + - + ? - - + - - 3 

Bredbacka (1994) + - + ? - ? + + - 4 

Brohi (2003) + - + - + + + + - 6 

Brohi (2007) + + + + - + + + - 7 

Brohi (2008) + - + + + + + + - 7 

Brown (2012) + - + + + + + + - 7 

Brown (2013) + + + ? + + + + + 8 

Cap (2011) + + + + + ? + + - 7 

Carrick (2005) + + + + + ? + + - 7 

Castelli (2014) + + + ? - - + + + 6 

Chandler (2010) - - + ? + + - - - 3 

Charbit (2016) + + + + + + + + - 8 

Cheddie (2013) + - + ? + + + + - 6 

Chhabra (2013) + + + ? + ? + - - 5 

Cohen (2007) + + + + + + + + - 8 

Cohen (2009) + + + + + + - ? - 6 

Cohen (2010) + + + + + + - ? - 6 

Cohen (2012) + + + + + + + + - 8 

Cohen (2013) + + + + + + + + - 8 

Cosgriff (1997) + + + + + ? + + - 7 

Davis (1996) + + + + + ? + + - 7 

de Oliveira Manoel (2015) + + + ? + - + - - 5 

Deras (2014) + + + + + + - - - 6 

Di Battista (2016) + + + ? + + + + + 8 

Dunbar (2009) - + + ? + + - ? - 4 

Engels (2011) + + + ? + + + + - 7 

Ferrara (1990) + + + + + ? + + - 7 

Floccard (2012) + + + + + + + + - 8 

Frith (2010) + + + - + ? + + - 6 

Genet (2013) + + + - + + + + - 7 
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Goodnight (1974) + + + ? - - + - ? 4 

Greuters (2011) + + + ? + + + + - 7 

Halpern (2008) + - + - + + - - - 4 

Hayakawa (2011) + + + ? + - + + - 6 

Hubetamann (2011) + + + ? - ? + + + 6 

Hulka (1996) + + + ? + - + + - 6 

Husari (2009) + + + + - + + + - 7 

Ireland (2011) + + + ? - ? + + - 5 

Jansen (2011) + + + + + + + + - 8 

Johansson (2011a) + + + - - + ? ? - 7 

Johansson (2011b) + + + ? + + + + - 7 

Johansson (2012a) + + + - + + - - - 4 

Johansson (2012b) + + + - + + + + - 7 

Johansson (2013) + + + - + + + + - 5 

Kapsch (1984) ? ? + ? ? + + ? - 3 

Kearney (1992) + - + + + - + - - 5 

Keller (2001) + - + + + ? + + - 6 

Khan (2014) + + + - + + + + - 7 

Kutcher (2013) + + + + + + + + - 8 

Lee (2014) + + + + - + + + - 7 

Lozance (1998) + - + + + - + + - 6 

Lustenberger (2010) + + + + + ? + + - 7 

Lustenberger (2013) + + + + + - + + - 7 

MacLeod (2014) + + + - + + + + - 7 

Maegele (2007) + + + + + ? + + - 7 

Matijevic (2014) + + + ? + + + + - 7 

May (1997) + - + + + + + + - 7 

Mitra (2011) + + + ? + + + + - 7 

Moore (2014) + + + + + - - ? - 5 

Neal (2014) + + + - + + + + - 7 

Nekludov (2007) + - + ? - - + + - 4 

Niles (2008) + + + + + ? + + - 7 

Ostrowski (2011) + + + - + + - - - 5 

Ostrowski (2012) + + + - - + + + - 6 

Peiniger (2012) + + + ? + ? + + - 6 

Raza (2013) + + + - + + + + - 7 

Rizoli (2011a) + + + + + + + + - 8 

Rizoli (2011b) + + + - + + - - - 5 

Schochl (2013) + + + - + + + + - 7 

Shaz (2011) + + + - + + + + - 7 

Sherren (2013) + + + + + ? + + - 7 

Simmons (2011) - + + - + ? + + + 6 

Sixta (2012) + + + + + ? + + - 7 

Talving (2009) ? + + + + ? + + - 6 

Tonglet (2014) + - + ? + + - - - 4 

Turtay (2010) + - + ? - ? + - - 3 

van der Sande (1978) - - + ? - - + + - 3 
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Wafaisade (2010a) + + + + + ? + + - 7 

Wafaisade (2010b) + + + ? + ? + + - 6 

Watts (1998) + + + + - + + + - 7 

White (2015a) + + + ? + + + + + 8 

White (2015b) + + + ? - + - - + 5 

Windelov (2014) + + + + + + - - - 6 

Wu (2014) + + + - + + + + - 7 

Xu (2013) + + + ? + - + + - 6 

Zehtabchi (2008) + + + - + ? + + - 6 

Lustenberger (2013) + + + + + - + + - 7 

MacLeod (2014) + + + - + + + + - 7 

Maegele (2007) + + + + + ? + + - 7 

Matijevic (2014) + + + ? + + + + - 7 

May (1997) + - + + + + + + - 7 

Mitra (2011) + + + ? + + + + - 7 

Moore (2014) + + + + + - - ? - 5 

Neal (2014) + + + - + + + + - 7 

Nekludov (2007) + - + ? - - + + - 4 

Niles (2008) + + + + + ? + + - 7 

Ostrowski (2011) + + + - + + - - - 5 

Ostrowski (2012) + + + - - + + + - 6 

Peiniger (2012) + + + ? + ? + + - 6 

Raza (2013) + + + - + + + + - 7 

Rizoli (2011a) + + + + + + + + - 8 

Rizoli (2011b) + + + - + + - - - 5 

Schochl (2013) + + + - + + + + - 7 

Shaz (2011) + + + - + + + + - 7 

Sherren (2013) + + + + + ? + + - 7 

Simmons (2011) - + + - + ? + + + 6 

Sixta (2012) + + + + + ? + + - 7 

Talving (2009) ? + + + + ? + + - 6 

Tonglet (2014) + - + ? + + - - - 4 

Turtay (2010) + - + ? - ? + - - 3 

van der Sande (1978) - - + ? - - + + - 3 

Wafaisade (2010a) + + + + + ? + + - 7 

Watts (1998) + + + + - + + + - 7 

White (2015a) + + + ? + + + + + 8 

White (2015b) + + + ? - + - - + 5 

Windelov (2014) + + + + + + - - - 6 

Wu (2014) + + + - + + + + - 7 

Xu (2013) + + + ? + - + + + 7 

Zehtabchi (2008) + + + - + ? + + - 6 

+ low risk of bias; - high risk of bias; ? unclear risk of bias; 
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Table 32: Risk of bias in human experimental studies 
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Bolliger, 2010 + + + + + + + 7 

Caballo, 2013 + + + + + + + 7 

Coats, 2006 + + + + + + + 7 

Darlington, 2012 + + + + + + - 6 

Delano, 2015 + + + + + + ? 6 

Dirkmann, 2013 + + + + + + + 7 

Engstrom, 2006 + + + + + + + 7 

Evans, 1996 ? ? ? + ? + + 3 

Gissel, 2016 + + + + + - + 6 

Howard, 2016 + + + + + + + 7 

Kettner, 2003 - - - - ? + + 2 

Schols, 2008 + + + - + + ? 5 

Smith, 2015 + + + + + ? - 5 

Sossdorf, 2009 + + + + + + + 7 

Whelihan, 2014 + + + + + + + 7 

Wolberg, 2004 + + + + + NR + 6 

+ low risk of bias; - high risk of bias; ? unclear risk of bias; NR, Not reported. 
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Table 33: Risk of bias in animal experimental studies  
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Castellino (2014) n/a - n/a n/a ? ? ? 0 

Chai (2013) + + + - + + + 6 

Chen (2016) ? - ? - + + ? 2 

Chesebro (2009) ? + ? ? + + + 4 

Cho (2009) n/a + n/a n/a + + + 4 

Darlington (2011) - + n/a - ? + + 3 

Darlington (2013) n/a + n/a n/a + ? + 3 

Darlington (2015) + + ? - + + + 5 

Dickneite (2009) + + ? ? + + - 4 

Dickneite (2010) - + - ? + + - 3 

Donahue (2014) n/a + n/a n/a + ? + 3 

Doran (2012) + + ? - + + + 5 

Duan (2014) - + - - + ? + 3 

Fries (2005) + + ? + + + - 5 

Fries (2006) + + ? + + + - 5 

Frith (2010) + + ? - + + + 5 

Fung (2013) - + - - + + + 4 

Grottke (2010) + + + + + + + 7 

Hagemo (2013) + + ? - + + + 5 

Harr (2011) n/a + n/a n/a + + + 4 

Hayakawa (2013) + + ? - + + + 5 

Hayakawa (2015) + + ? - + + + 5 

Heinius (2011) + + ? - - + + 4 

Iwamoto (2010) + + ? - + + + 5 

Kheirabadi (2007) + + ? - ? + + 4 

Kiraly (2006) + + + + + + + 7 

Klemcke (2005) + + ? + + + + 6 

Lesperance (2012) + + ? - + ? + 4 

Letson (2012) + - ? - + + - 3 

Letson (2016) + + ? - + + + 5 

Martini (2005a) + + ? - + + + 5 

Martini (2005b) + + ? - + + + 5 

Martini (2006) + + ? - + + + 5 

Martini (2006) + + ? - + + + 5 

Martini (2007) + + ? - + + + 5 
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Martini (2008) + + ? - + + + 5 

Martini (2013) + + ? - + + + 5 

Mohr (2013) + + ? - + + + 5 

Nishi (2013) + + ? - ? + + 4 

Park (2013) + + + - + + + 6 

Pawelczyk (2013) + + ? - + + + 5 

Pragst (2010) + + ? + + ? - 4 

Prat (2015) n/a + n/a n/a n/a - + 2 

Rezende-Neto (2014) + + ? - + + + 5 

Spronk (2015) + + + + + + + 7 

Tian (2015) n/a - n/a n/a + ? + 2 

Torres (2013) + + ? - + + + 5 

van Zyl (2016) ? + ? - + + + 4 

Watts (2015) + + ? - + + + 5 

White (2010) n/a + n/a n/a + + + 4 

White (2011) n/a + n/a n/a + + + 4 

Wohlauer (2012) n/a + n/a n/a n/a - - 1 

Xu (2015) + + ? - + + + 5 

Xu (2015) + + ? - + + + 5 

+ low risk of bias; - high risk of bias; ? unclear risk of bias; n/a, Not Applicable.  
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Appendix D: Synthesis of Supporting Evidence 

Table 34: Evidence supporting a causal relationship between Hypoperfusion and coagulopathy 
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Human Observational Studies 
        

Brohi, 2007449 PC SC, Civilian, all MOI Major trauma  208 PT, PPT + - + + 0 + 
  

Brohi, 2008451 PC SC, Civilian, all MOI Major trauma 208 PT, PPT + - + + 0 +   

Brown, 2012619 PC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 

12 hrs, not iTBI 
1877 INR + - + 0 0 0 

  

Brown, 2013620 PC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 

12 hrs, not iTBI ISS>15 
1216 INR + - + 0 0 0 

  

Cap, 2011452 RC MC, Military, all MOI iTBI 1609 INR + - + + 0 0 
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Charbit, 2016621 RC SC, Civilian, all MOI Admitted to trauma ICU 704 PTr, aPPTr + - + 0 0 0   

Cheddie, 2013455 RC SC, Civilian, all MOI BD >-2 28 INR + - + 0 0 0 
  

Cohen, 2007450 PC SC, Civilian, all MOI iTBI 39 PT, PPT + + a + 0 0 0 
  

Cohen, 2009622 PC SC, Civilian, all MOI All trauma patients  168 INR + + a + + 0 0 
  

Cohen, 201254 PC SC, Civilian, all MOI Highest TA 203 INR + - + + 0 0 
  

Cohen, 2013440 PC MC, Civilian, all MOI 
Blood transfusion within 

6hrs 
1198 INR, PTT + - + + 0 0 

  

Cosgriff, 1997255 PC SC, Civilian, all MOI >10u PRBC/24hr 58 PT, PTT + - + + 0 0 
  

Davis, 1996448 RC SC, Civilian, all MOI ABG within 1hr of arrival 2954 PT, PTT, Plats, Clinical + - + + 0 0 
  

Deras, 2014457 RC SC, Civilian, all MOI Admitted to ICU 663 PT, aPPT + - + 0 0 0 
  

Ferrara, 1990500 RC SC, Civilian, all MOI  
>12u PRBC/24hr, without 

head injury 
45 Clinical + - + + 0 0 

  

Frith, 2010395 RC MC, Civilian, all MOI TA 3646 PTr + - + + 0 0 
  

Hayakawa, 2011623 PC SC, Civilian, all MOI  ISS>8, survived >24hrs 57 PT, Plats + - + 0 0 0 
  

Jansen, 2011470 RC SC, Civilian, all MOI  
ISS>15, within 2hrs of 

injury 
71 INR + - + + 0 + 

  

Johansson, 2012b624 PC SC, Civilian, all MOI Full TA 80 INR, aPPT, ROTEM + - + + 0 + 
  

Kapsch, 1984447 PC SC, Civilian, all MOI Within 4hrs of injury 23 
PT, aPTT, euglobulin 

fibrinolysis, Plats 
+ - + + 0 + 

  

Kutcher, 2013625 PC SC, Civilian, all MOI Highest TA 163 INR, PPT + - + 0 0 0 
  

Lee, 2014458 PC MC, Civilian, all MOI 
Highest TA, AIS>2 in at 

least one region,  
462 INR, TEG + - + + 0 0 
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Lustenberger, 2010495 RC MC, Civilian, all MOI iTBI admitted to ICU 132 INR, aPTT, Plats + - + + 0 0 
  

Matijevic, 2014478 CC MC, Civilian, all MOI 
Blood transfusion within 

6hrs 
180 INR, aPTT + - + + 0 + 

  

Mitra, 2011257 RC & PC SC, Civilian, all MOI 
ISS > 15, or urgent surgery, 

or ICU or death 
2905 INR, aPTT + + a + + 0 0 

  

Neal, 2014503 RC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 

12 hrs, not iTBI 
1897 INR, clinical + + a + 0 0 0 

  

Raza, 2013445 PC SC, Civilian, all MOI TA 288 ROTEM  + - + + 0 + 
  

Schochl, 2013487 PC SC, Civilian, non-trauma 
Out of hospital cardiac 

arrest receiving CPR  
53 ROTEM + - + + 0 0 

  

Simmons, 2011453 RC 
MC, Military, GSW or 

Explosive MOI 
>9 PRBCs within 24hrs,  450 INR + - + 0 0 0 

  

Sixta, 2012454 RC SC, Civilian, all MOI Immediate laparotomy 1218 INR + + a + + 0 0 
  

Talving, 2009441 PC SC, Civilian, all MOI 
Admitted to ICU, AIS head 

>2 
436 INR, aPPT, Plats + + a + + 0 0 

  

Tonglet, 2014262 PC SC, Civilian, all MOI Severe trauma 82 INR, ROTEM + - + + 0 0 
  

Wafaisade, 2010a566 RC 
MC, Civilian, Blunt 

trauma 

German Trauma Registry, 

iTBI 
3114 PT, Plats + + a + 0 0 0 

  

Wafaisade, 2010b442 RC MC, Civilian, all MOI 
German Trauma Registry, 

ISS >15  
1987 PT, Plats + + a + 0 0 0 

  

White, 2015a626 CC SC, Civilian, all MOI admitted, survived >36hrs 95 INR, aPPT, TEG + - + + 0 + 
  

White, 2015b459 PC SC, Civilian, all MOI 
TA, admitted, survived 

>36hrs 
84 INR, aPPT, TEG + - + + 0 + 

  

Xu, 2013456 RC SC, Civilian, all MOI 
ISS>15, admitted to ICU 

<24hrs of injury 
223 INR, PPT, aPPT + + a + + 0 0 

  

Human Experimental Studies       
  

Nil            
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Animal Experimental Studies       
  

Chen, 2017627 
Controlled 

Trial 
Rat 

Controlled haemorrhage to 

MAP 40mmHg 
40 PT, aPTT, ROTEM + - + 0 0 + + + 

Chesebro, 200966 
Controlled 

Trial 
Mouse 

Controlled haemorrhage to 

MAP 35mmHg 
40 aPTT + + + 0 0 + + + 

Cho, 2009628 AMD Swine 
Controlled 60% TBV 

haemorrhage 
37 PT, TEG + - + 0 0 0 + + 

Darlington, 2011504 AMD Swine 
Controlled haemorrhage to 

MAP 30mmHg 
18 PT, aPPT, TEG + + + 0 - 0 0 + 

Darlington, 2013468 AMD Rat 
Controlled 40% TBV 

haemorrhage 
50 

PT, aPTT, ROTEM, 

Plats 
+ - b + + 0 0 + + 

Darlington, 2015629 RCT Rat 
Controlled 40% TBV 

haemorrhage 
63 PT, aPTT, ROTEM + - b + 0 0 + + + 

Doran, 2012630 RCT Swine 

Controlled 35%TBV 

haemorrhage + grade 4 liver 

injury 

24 PT + - + 0 0 0 + + 

Duan, 2014631 
Controlled 

Trial 
Swine 

Controlled haemorrhage to 

MAP 40mmHg 
22 INR, PT, ROTEM + - b + 0 0 + + + 

Frith, 2010395 RCT Rat 
Controlled haemorrhage to 

MAP 40050mmHg 
40 PT, aPTT  + + + 0 0 0 + + 

Fung, 2013632 
Controlled 

Trial 
Ovine 

Controlled 35% TBV 

haemorrhage 
14 PT, aPPT, ROTEM + + + 0 0 0 0 0 

Hagemo, 2013633 RCT Swine 
Controlled 45% TBV 

haemorrhage 
18 INR, ROTEM + + + 0 0 0 0 + 

Harr, 2011462 
No control 

group 
Rat 

Controlled haemorrhage to 

MAP 35mmHg 
6 ROTEM + - b + 0 0 + + + 

Iwamoto, 2010634 RCT Rat Controlled haemorrhage 24 Sonoclot + + + 0 0 0 + + 

Letson, 2012466 RCT Rat 
Controlled haemorrhage to 

35040mmHg 
68 PT, aPPT + + + + + 0 + + 

Letson, 2016477 RCT Rat 
Controlled haemorrhage to 

35040mmHg 
30 PT, aPPT, ROTEM + + + + 0 + + + 

Martini, 2005460 RCT Swine 
Controlled 35% TBV 

haemorrhage 
12 TEG 0 + + 0 0 + + + 
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Martini, 2006b635 RCT Swine 
Controlled 35% TBV 

haemorrhage 
18   + + + 0 0 + + + 

Martini, 2008520 RCT Swine 
Controlled 35% TBV 

haemorrhage 
24 PT, aPTT, TEG, ACT + - + 0 0 + + + 

Martini, 2013544 RCT Swine 
Controlled 60% TBV 

haemorrhage 
21 TEG + - + 0 + + + + 

Nishi, 2013636 RCT Rat 
Controlled haemorrhage + 

tail amputation 
18 Sonoclot + - + + 0 0 + + 

Park, 2013467 RCT Rat 
Uncontrolled haemorrhage 

0 Grade 3 splenic injury 
32 ROTEM + + + 0 0 0 + + 

Rezende-Neto, 2014481 RCT Rat 
Controlled 40% TBV 

haemorrhage 
24 ROTEM + + + 0 0 + + + 

Torres, 2013545 RCT Rat 
Controlled 40% TBV 

haemorrhage 
32 ROTEM + - + + 0 + + + 

van Zyl, 2016446 AMD Ovine 

Controlled haemorrhage of 

20% TBV (moderate) and 

30% TBV (severe) 

12 PT, aPTT, ROTEM + - b + + 0 + + + 

Watts, 2015539 RCT Swine 
Controlled 35% TBV 

haemorrhage 
24 PT, aPTT, TEG + - + 0 0 + + + 

White, 2010461 
Controlled 

Trial 
Swine 

Controlled haemorrhage to 

MAP 30mmHg 
23 PT, aPTT, TEG + - b + 0 0 0 + + 

White, 2011485 
No control 

group 
Swine 

Controlled haemorrhage to 

MAP 30mmHg 
17 PT, PTT, TEG + - b + 0 0 + 0 + 

Xu, 2015a637 RCT Rat 
Controlled haemorrhage to 

MAP 35mmHg 
25 PT, aPTT + - b + 0 0 + + + 

Xu, 2015b638 RCT Rat 
Controlled haemorrhage to 

MAP 30mmHg 
152 PT, aPTT + - b + + 0 + + + 

a Multivariable adjustment for confounding, b Combined tissue injury and haemorrhage model. 

ACT, Activated Clotting Time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, In Vitro; CPR, Cardio pulmonary resuscitation; 

GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated Traumatic Brain Injury; MOI, Mechanism of Injury; NS, 

Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; PT, Prothrombin Time; RC, Retrospective Cohort; 

RCT, Randomised controlled trial; TA, Trauma Activation; TBV, Total Blood Volume; TI, Tissue Injury; TT, Thrombin Time. 
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Table 35: Evidence supporting a causal relationship between tissue injury and coagulopathy 
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Human Observational Studies 
        

Brohi, 200355 RC SC, Civilian, all MOI 
Admitted by Helicopter 

emergency service 
1867 PT, aPTT. TT + - + + 0 0 

  

Brown, 2012619 PC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 12 

hrs, not iTBI 
1877 INR + - + 0 0 0 

  

Cap, 2011452 RC MC, Military, all MOI iTBI,  1609 INR + + + + 0 0 
  

Carrick, 2005557 RC 
SC, Civilian, Blunt 

Trauma 
iTBI, GCS <14 184 PT, PPT, Plats + - + + 0 0 

  

Cheddie, 2013455 RC SC, Civilian, all MOI BD >-2 28 INR + - + 0 0 0 
  

Chhabra, 2013568 PR SC, Civilian, all MOI 
iTBI, GCS <13, admitted 

neurosurgery 
208 PT, aPPT + - + + 0 0 

  

Cohen, 2009622 PC SC, Civilian, all MOI TA 168 INR + - + + 0 0 
  

Cohen, 2010639 PC SC, Civilian, all MOI TA 168 INR + - + 0 0 + 
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Cohen, 201254 PC SC, Civilian, all MOI Highest TA 203 INR + - + + 0 0 
  

Cohen, 2013440 PC MC, Civilian, all MOI Blood transfusion within 6hrs 1198 INR, PTT + + a + + 0 0 
  

Cosgriff, 1997255 PC SC, Civilian, all MOI >10u PRBC/24hr 58 PT, PTT + + a + + 0 0 
  

Davis, 1996448 RC SC, Civilian, all MOI ABG within 1hr of arrival 2954 
PT, PTT, Plats, 

Clinical 
+ - + + 0 0 

  

Deras, 2014457 RC SC, Civilian, all MOI Admitted to ICU 663 PT, aPPT + - + 0 0 0 
  

Dunbar, 2009640 CC SC, Civilian, all MOI 
Blood sample within 1hr of 

ED arrival  
42 INR, PT + - 0 0 0 + 

  

Floccard, 2012493 PC 
SC, Civilian, Blunt 

MOI 

Attend by SAMU, pre-

hospital blood sample 
45 PT, Plats + - + + 0 0 

  

Frith, 2010395 RC MC, Civilian, all MOI TA 3646 PTr + - + + 0 0 
  

Genet, 2013494 RC SC, Civilian, all MOI Full TA 80 INR, aPPT + - + + 0 0 
  

Hulka, 1996556 RC 
SC, Civilian, Blunt 

MOI 

Had CT brain, blood sample 

within 24hrs 
159 PT, PPT, Plats + - + 0 0 0 

  

Johansson, 2011a471 RC SC, Civilian, all MOI Full TA 80 INR, aPPT + - + + 0 0 
  

Johansson, 2011b641 RC SC, Civilian, all MOI Full TA 75 INR, aPPT + - + 0 0 0 
  

Johansson, 2012642 PC SC, Civilian, all MOI Full TA 80 INR, aPPT, ROTEM + - + + 0 + 
  

Johansson, 2013643 PC SC, Civilian, all MOI Full TA 80 INR, aPPT + - + + 0 + 
  

Kapsch, 1984447 PC SC, Civilian, all MOI Within 4hrs of injury 23 
PT, aPTT, euglobulin 

fibrinolysis, Plats 
+ - + + 0 + 

  

Khan, 2014644 RC MC, Civilian, all MOI  TA, received >3unit PRBC 106 ROTEM, PTr + - + 0 0 0   

Kutcher, 2013625 PC SC, Civilian, all MOI Highest TA 163 INR, PPT + - + 0 0 0 
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Lee, 2014458 PC MC, Civilian, all MOI 
Highest TA, AIS>2 in at least 

one region,  
462 INR, TEG + - + + 0 0 

  

Lozance, 1998563 RC SC, Civilian, all MOI iTBI 105 PT, PPT, TT, Plats + - + + 0 0 
  

Lustenberger, 2010495 RC MC, Civilian, all MOI iTBI admitted to ICU 132 INR, aPTT, Plats + - + + 0 0 
  

Lustenberger, 2013645 PC SC, Civilian, all MOI ISS >15 26 INR, aPTT, Plats + - + 0 0 + 
  

MacLeod, 2014646 PC SC, Civilian, all MOI TA, admitted for >24hrs 701 PT + - + + 0 0 
  

Maegele, 2007528 RC MC, Civilian, all MOI 
Entry into German Trauma 

Registry  
8724 Quick Test, Plats + - + + 0 0 

  

Matijevic, 2014478 CC MC, Civilian, all MOI Blood transfusion within 6hrs 180 INR, aPTT + - + + 0 + 
  

May, 1997647 RC 
SC, Civilian, Blunt 

Trauma 
iTBI, GCS <9 26 Pt, PPT + - + + 0 0 

  

Mitra, 2011257 RC & PC SC, Civilian, all MOI 
ISS > 15, or urgent surgery, 

or ICU or death 
2905 INR, aPTT + + a + + 0 0 

  

Moore, 2014188 PC SC, Civilian, all MOI ISS >15 180 INR, TEG + - + 0 0 0 
  

Neal, 2014503 RC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 12 

hrs, not iTBI 
1897 INR, clinical + + a + 0 0 0 

  

Nekludov, 2007573 PC 
SC, Civilian, Blunt 

Trauma 

iTBI, GCS<9, admitted to 

neuroICU 
11 

INR, bleeding time, 

Plats 
+ - + 0 0 0 

  

Niles, 2008490 RC SC, Military, all MOI Received a blood transfusion 391 INR + - + + 0 0 
  

Ostrowski, 2011648 PC SC, Civilian, all MOI Full TA 80 INR, aPPT, TEG + - + + 0 + 
  

Ostrowski, 201281 PC SC, Civilian, all MOI Full TA 77 INR, aPPT, TEG + - + 0 0 0 
  

Raza, 2013445 PC SC, Civilian, all MOI TA 288 ROTEM  + - + + 0 + 
  

Rizoli, 2011a69 PC SC, Civilian, all MOI ISS>15, no PH transfusion 110 INR, aPTT + - + 0 0 0 
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Rizoli, 2011b649 PC SC, Civilian, all MOI ISS>15, no PH transfusion 423 PT, Plats + - + 0 0 0 
  

Shaz, 2011492 CC SC, Civilian, all MOI TA  91 PT + - + 0 0 0 
  

Simmons, 2011453 RC 
MC, Military, GSW or 

Explosive MOI 
>9 PRBCs within 24hrs,  450 INR + - + 0 0 0 

  

Sixta, 2012454 RC SC, Civilian, all MOI Immediate laparotomy 1218 INR + - + + 0 0 
  

Talving, 2009441 PC SC, Civilian, all MOI 
Admitted to ICU, AIS head 

>2 
436 INR, aPPT, Plats + + a + + 0 0 

  

Tonglet, 2014262 PC SC, Civilian, all MOI Severe trauma 82 INR, ROTEM + - + + 0 0 
  

Turtay, 2010650 PC SC, Civilian, all MOI Unclear 50 INR, aPPT + - + + 0 0 
  

Wafaisade, 2010b442 RC MC, Civilian, all MOI 
German trauma registry, 

ISS>15 
1987 PT, Plats + + a + 0 0 0 

  

White, 2015a626 CC SC, Civilian, all MOI admitted, survived >36hrs 95 INR, aPPT, TEG + - + + 0 + 
  

White, 2015b459 PC SC, Civilian, all MOI 
TA, admitted, survived 

>36hrs 
84 INR, aPPT, TEG + - + + 0 + 

  

Windelov, 2014651 PC SC, Cilivian, all MOI TA, arterial cannula  210 ROTEM + - + 0 0 0   

Xu, 2013456 RC SC, Civilian, all MOI 
ISS>15, admitted to ICU 

<24hrs of injury 
223 INR, PPT, aPPT + - + + 0 0 

  

Human Experimental Studies 
        

Nil            
  

Animal Experimental Studies 
        

Chai, 2013652 RCT Rat 
Blast and full thickness burn: 

25% TBSA 
256 PT, aPPT + - + 0 0 0 + + 

Chen, 2017627 
Controlled 

Trial 
Rat 

Injury to bowel, liver, muscle 

and femur fracture 
40 PT, aPTT, ROTEM + - b + 0 0 + + + 
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Chesebro, 200966 
Controlled 

Trial 
Mouse Laparotomy 40 aPTT + - b + 0 0 + + + 

Cho, 2009628 AMD Swine Femur fracture 37 PT, TEG + - b + 0 0 0 + + 

Darlington, 2013468 AMD Swine 
Injury to bowel, liver, muscle, 

femur and laparotomy  
18 PT, aPPT, TEG + - b + + 0 0 + + 

Darlington, 2015629 AMD Rat 
Injury to bowel, liver, muscle 

and femur fracture 
50 

PT, aPTT, ROTEM, 

Plats 
+ - b + 0 0 + + + 

Duan, 2014631 
Controlled 

Trial 
Swine 

Injury to bowel, liver, femur 

and laparotomy 
22 INR, PT, ROTEM + - b + 0 0 + + + 

Frith, 2010395 RCT Rat 
Laparotomy and bilateral 

lower limb fractures 
40 PT, aPTT  + + + 0 0 0 + + 

Grottke, 2010538 RCT Swine Grade 3 blunt liver injury 18 PT, aPTT, ROTEM + - b + 0 0 + + + 

Hagemo, 2013633 RCT Swine 

Bilateral thigh high-energy 

GSW (femoral fractures and 

soft tissue injury) 

18 INR, ROTEM + - b + 0 0 0 0 + 

Harr, 2011462 
No control 

group 
Rat Laparotomy 6 ROTEM + - b + 0 0 + + + 

Hayakawa, 2013653 RCT Rat Exogenous Tissue Factor 18 PT + + + + 0 + 0 + 

Hayakawa, 2015654 RCT Rat Noble-Collip drum 18 PT + - + 0 0 + + + 

Klemcke, 2005549 RCT Swine Grade 5 liver injury  54 PT, aPPT, TEG + - b + + + + 0 + 

Prat, 2015655 AMD Swine 
Isolated blast: 400-kPa peak 

overpressure  
13 PT, aPTT, ROTEM 0 - 0 0 0 0 0 + 

Spronk, 2015540 RCT Swine Grade 3 blunt liver injury 28 PT, aPTT, ROTEM + - b + 0 + + + + 

van Zyl, 2016446 AMD Ovine 

Bilateral tibia fractures and 

pulmonary contusions 

(moderate), additional crush 

injury (severe) 

12 PT, aPTT, ROTEM + - b + + 0 + + + 

Watts, 2015539 RCT Swine Muscle contusion, laparotomy 24 PT, aPTT, TEG + - b + 0 0 + + + 
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White, 2010461 
Controlled 

Trial 
Swine 

Femur fracture, soft tissue 

injury 
23 PT, aPTT, TEG + - b + 0 0 0 + + 

White, 2011485 
No control 

group 
Swine 

Femur fracture, soft tissue 

injury 
17 PT, PTT, TEG + - b + 0 0 + 0 + 

Xu, 2015a637 RCT Rat Laparotomy 25 PT, aPTT + - b + 0 0 + + + 

Xu, 2015b638 RCT Rat 
Laparotomy and bilateral 

femur fractures  
152 PT, aPTT + - b + + 0 + + + 

a Multivariable adjustment for confounding. b Combined tissue injury and haemorrhage model.  

ACT, Activated Clotting Time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, In Vitro; CPR, Cardio pulmonary 

resuscitation; GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated Traumatic Brain Injury; MOI, Mechanism 

of Injury; NS, Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; PT, Prothrombin Time; RC, 

Retrospective Cohort; RCT, Randomised controlled trial; TA, Trauma Activation; TBV, Total Blood Volume; TI, Tissue Injury; TT, Thrombin Time. 
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Table 36: Evidence supporting a causal relationship between acidaemia and coagulopathy 
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Human Observational Studies 
        

Aucar, 2003501 PC SC, Civilian, all MOI 
Urgent surgical intervention; 

chest, abdo or extremity  
31 Clinical  + - + 0 0 0 

  

Cosgriff, 1997255 PC SC, Civilian, all MOI >10u PRBC/24hr 58 PT, PTT + + a + 0 0 0 
  

Davis, 1996448 RC SC, Civilian, all MOI ABG within 1hr of arrival 2954 
PT, PTT, Plats, 

clinical 
+ - + + 0 0 

  

Engels, 2011502 RC SC, Civilian, all MOI 
INR>1.3, arrived within 1hr 

of injury 
290 INR + + a + + 0 0 

  

Ferrara, 1990500 RC SC, Civilian, all MOI 
>12u PRBC/24hr, without 

TBI 
45 Clinical + - + 0 0 0 

  

Kashuk, 2010515 RC SC, Civilian, all MOI Required transfusion 61 INR, PTT, TEG + - + + 0 0 
  

Neal, 2014503 RC 
MC, Civilian, Blunt 

Trauma  

Shocked, transfused within 

12 hrs, not iTBI 
1897 INR, clinical + - + 0 0 0 

  

Niles, 2008490 RC SC, Military, all MOI Received a blood transfusion 391 INR + - + + 0 0 
  

Rizoli, 2011a69 PC SC, Civilian, all MOI ISS>15, no PH transfusion, 110 INR, aPTT + - + 0 0 0 
  



Appendix D: Supporting Evidence: Acidaemia - Chapter 7 

315 

 

Human Experimental Studies 
        

Dirkmann, 2013508 IV Healthy whole blood pH 7.1 and 6.9 10 ROTEM + + + + 0 + + 0 

Engstrom, 2006507 IV Healthy whole blood pH 7.2, 7.0, 6.8 6 ROTEM + + + + + + + + 

Gissel, 2016656 IV Healthy whole blood pH 7.0 7 ROTEM + + + 0 0 + + 0 

Animal Experimental Studies 
        

Cho, 2009628 AMD Swine 
Multi-modal coagulopathy 

model 
37 PT, TEG + - + 0 0 0 + + 

Darlington, 2011504 AMD Swine pH 7.1 18 PT, aPPT, TEG + + + 0 0 0 0 + 

Lesperance, 2012657 RCT Swine Lactic acidosis model 10 INR, ROTEM + - + 0 - 0 + + 

Martini, 2005b658 RCT Swine pH 7.1 24 PT, Bleeding time + + + 0 0 + + + 

Martini, 2006a506 RCT Swine pH 7.1 18 PT, PTT, TEG + + + 0 - + + + 

Martini, 2007b659 RCT Swine pH 7.1 12 PT, PTT, ACT, TEG + + + 0 0 + + + 

a Multivariable adjustment for confounding.  

ACT, Activated Clotting Time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, In Vitro; CPR, Cardio pulmonary 

resuscitation; GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated Traumatic Brain Injury; MOI, Mechanism 

of Injury; NS, Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; PT, Prothrombin Time; RC, 

Retrospective Cohort; RCT, Randomised controlled trial; TA, Trauma Activation; TBV, Total Blood Volume; TI, Tissue Injury; TT, Thrombin Time. 
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Table 37: Evidence supporting a causal relationship between hypothermia and coagulopathy 
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Human Observational Studies 
        

Cohen, 2013440 PC MC, Civilian, all MOI 
Blood transfusion within 

6hrs 
1198 INR, PTT + + a + + 0 0 

  

Cosgriff, 1997255 PC SC, Civilian, all MOI >10u PRBC/24hr 58 PT, PTT + + a + + 0 0 
  

Engels, 2011502 RC SC, Civilian, all MOI 
Arrived within 1 hr of 

injury 
2473 INR + + a + + 0 0 

  

Ferrara, 1990500 RC SC, Civilian, all MOI  
>12u PRBC/24hr, without 

head injury 
45 Clinical + - + 0 0 0 

  

Husari, 2009660 PC SC, Civilian, all MOI 
SBP <90, >2L of fluids 

<1hr, 4U PRBCs <6hrs 
27 PT, PPT, Plats + - + 0 0 0 

  

Ireland, 2011513 RC SC, Civilian, all MOI 
Major Trauma, temp within 

15mins ED arrival 
732 INR, PT, aPPT + - + 0 0 0 

  

Mitra, 2011257 RC & PC SC, Civilian, all MOI 
ISS > 15, or urgent surgery, 

or ICU or death 
2905 INR, aPTT + + a + + 0 0 

  

Wafaisade, 2010b442 RC MC, Civilian, all MOI 
German trauma registry, 

ISS>15 
1987 PT, Plats + - + 0 0 0 

  

Watts, 1998526 PC SC, Civilian, all MOI TA, ISS > 8 112 TEG + + a 0 + 0 + 
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Xu, 2013456 RC SC, Civilian, all MOI 
ISS>15, admitted to ICU 

<24hrs of injury 
223 INR, PPT, aPPT + - + 0 0 0 

  

Human Experimental Studies       
  

Darlington, 2012464 IV Healthy whole blood 34oC 9 TEG, PT, aPTT + + + 0 0 0 + + 

Dirkmann, 2013508 IV Healthy whole blood 33oC 10 ROTEM + + + 0 0 + + + 

Kettner, 2003516 

No control 

group, in-

Vivo 

Elective Intracranial 

surgery patients 
36oC, 34oC, 32oC 16 

PT, aPPT, TEG, 

Plats, closure time 
+ + + + 0 0 0 + 

Whelihan, 2014517 IV Healthy whole blood 27oC 8 TEG + + + + 0 + + + 

Wolberg, 2004518 IV Healthy plasma 
35oC, 33oC, 29oC, 25oC and 

23oC 
NR aPTT + + + + 0 + + + 

Animal Experimental Studies       
  

Cho, 2009628 AMD Swine 33oC 37 PT, TEG  + - + 0 0 0 + + 

Heinius, 2011661 RCT Rat 30oC for 1 hour 40 Clinical + + + 0 0 0 + + 

Iwamoto, 2010634 RCT Rat 33oC 24 Sonoclot + + + 0 0 0 + + 

Kheirabadi, 2007662 RCT Rabbit 34oC 14 PT, aPPT, BT, TEG + - + 0 0 0 + + 

Klemcke, 2005549 RCT Swine 32.5oC  54 PT, aPTT, TEG  + - + 0 0 0 0 + 

Martini, 2005b658 RCT Swine 32oC 24 PT, BT + + + 0 0 + + + 

Martini, 2007510 RCT Swine 32oC 12 TEG + + + 0 0 + + + 

Martini, 2008520 RCT Swine 32oC 24 
PT, aPTT, TEG, 

ACT 
+ + + 0 0 + + + 

Mohr, 2013525 RCT Swine 34oC 40 PT, ROTEM + + + 0 0 0 + + 
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Park, 2013467 RCT Rat 33-34oC 32 ROTEM + + + 0 0 0 + + 

Spronk, 2015540 RCT Swine 32.6 - 33.4 oC 28 PT, aPTT, ROTEM + - + 0 0 + + + 

a Multivariable adjustment for confounding.  

ACT, Activated Clotting Time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, In Vitro; CPR, Cardio pulmonary 

resuscitation; GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated Traumatic Brain Injury; MOI, Mechanism 

of Injury; NS, Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; PT, Prothrombin Time; RC, 

Retrospective Cohort; RCT, Randomised controlled trial; TA, Trauma Activation; TBV, Total Blood Volume; TI, Tissue Injury; TT, Thrombin Time. 
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Table 38: Evidence supporting a causal relationship between dilution and coagulopathy 
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Human Observational Studies 
        

Aucar, 2003501 PC SC, Civilian, all MOI 
Urgent surgical intervention; 

chest, abdo or extremity  
31 Clinical  + - + 0 0 0 

  

Brown, 2013620 PC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 12 

hrs, not iTBI ISS>15 
1216 INR + - + 0 0 0 

  

Cohen, 2013440 PC MC, Civilian, all MOI Blood transfusion within 6hrs 1198 INR, PTT + + a + + 0 0 
  

Engels, 2011502 RC SC, Civilian, all MOI 
INR>1.3, arrived within 1hr of 

injury 
290 INR + + a + + 0 0 

  

Hubetamann, 2011527 RC MC, Civilian, all MOI 
German trauma registry, 

ISS>15, transfused 
2702 Quick Test,  + - + 0 0 0 

  

MacLeod, 2014646 PC SC, Civilian, all MOI TA, admitted for >24hrs 701 PT + - + 0 0 0 
  

Maegele, 2007528 RC MC, Civilian, all MOI 
Entry into German Trauma 

Registry  
8724 Quick Test, Plats + - + + 0 0 

  

Neal, 2014503 RC 
MC, Civilian, Blunt 

Trauma 

Shocked, transfused within 12 

hrs, not iTBI 
1897 INR, clinical + + a + + 0 0 

  

Shaz, 2011492 CC SC, Civilian, all MOI TA  91 PT + - + 0 0 + 
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Sixta, 2012454 RC SC, Civilian, all MOI Immediate laparotomy 1218 INR + + a + + 0 0 
  

Wafaisade, 2010a566 RC 
MC, Civilian, Blunt 

trauma 
German Trauma Registry, iTBI 3114 PT, Plats + - + 0 0 0 

  

Wafaisade, 2010b442 RC MC, Civilian, all MOI 
German Trauma Registry, ISS 

>15  
1987 PT, Plats + - + 0 0 0 

  

White, 2015a626 CC SC, Civilian, all MOI admitted, survived >36hrs 95 INR, aPPT, TEG + - + 0 0 0 
  

Human Experimental Studies 
        

Bolliger, 2010531 

No Control 

group in -

vivo 

Patients undergoing 

coronary artery bypass 

surgery  

Dilution following off-pump 

coronary artery bypass surgery 
9 

PT, aPPT, INR, 

ROTEM 
+ + + + 0 + + + 

Caballo, 2013535 IV Healthy whole blood  30% and 60% Dilution 8 PT, aPTT, ROTEM + + + + + + + + 

Coats, 2006586 IV Healthy whole blood  40% Dilution 12 Sonoclot + + + 0 0 0 + + 

Darlington, 2012464 IV Healthy whole blood 40% Dilution 9 PT, aPTT, TEG + + + 0 + 0 + + 

Schols, 2008542 IV Healthy plasma 20%, 40%, and 60% Dilution 5 TEG + + + + + + + + 

Animal Experimental Studies 
        

Chen, 2017627 
Controlled 

Trial 
Rat 20% Dilution 40 PT, aPTT, ROTEM + - + 0 0 0 + + 

Cho, 2009628 AMD Swine 
60% TBV replacement with NS 

(3:1) 
37 PT, TEG + - + 0 0 0 + + 

Dickneite, 2009536 RCT Swine 
65-70% TBV replacement with 

colloid  
47 

Bleeding time, PT, 

aPTT 
+ + + 0 + + + + 

Dickneite, 2010537 
Controlled 

trial 
Swine 

65-70% TBV replacement with 

colloid 
21 

Bleeding time, PT, 

aPTT 
+ + + 0 + + + + 

Fries, 2005547 RCT Swine 
65% TBV replacement with 

colloid (1:1) 
14 PT, aPPT, ROTEM + + + 0 + 0 + + 

Fries, 2006546 RCT Swine 
65% TBV replacement with 

colloid (1:1) 
20 PT, aPPT, ROTEM + + + 0 + 0 + + 
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Grottke, 2010538 RCT Swine 
80% TBV replacement with 

colloid or crystalloid 
18 PT, aPTT, ROTEM + + + 0 + 0 + + 

Kheirabadi, 2007662 RCT Rabbit 

Crystalloid resuscitation 

(165ml/min) of uncontrolled 

haemorrhage 

14 PT, aPPT, BT, TEG + - + 0 0 0 + + 

Kiraly, 2006663 RCT Swine 
50% TBV replacement with 

colloid (1:1) 
20 PT, aPTT, TEG + - + 0 0 0 + + 

Klemcke, 2005549 RCT Swine 
35% TBV replacement with 

crystalloid (3:1)  
54 PT, aPTT, TEG + - + 0 + 0 + + 

Martini, 2006b635 RCT Swine 
35% TBV replacement with 

crystalloid (3:1) 
18  TEG + - + 0 0 + + + 

Martini, 2008520 RCT Swine 
60% TBV replacement with 

colloid (1:1) or crystalloid (3:1) 
24 

PT, aPTT, TEG, 

ACT 
+ - + 0 0 + + + 

Martini, 2013544 RCT Swine 
Crystalloid infused at 0.1, 0.25 

or 0.75 mL/min 
21 TEG + - + 0 0 + + + 

Nishi, 2013636 RCT Rat 
50% TBV replacement with 

crystalloid (1:1)  
18 Sonoclot + - + + 0 0 + + 

Pawelczyk, 2013664 RCT Rat 
50% TBV replacement with 

colloid (1:1) 
25 PT, TEG, Clinical 0 - 0 0 0 0 0 0 

Pragst, 2010548 RCT Rabbit 
70% TBV replacement with 

colloid (1:1)  
19 PT, BT + - + 0 + + + + 

Spronk, 2015540 RCT Swine 
30% TBV replacement with 

crystalloid 
28 PT, aPPT, ROTEM + - + 0 + + + + 

Torres, 2013545 RCT Rat 
40% TBV replacement with 

crystalloid (3:1) or colloid (1:1) 
32 ROTEM + - + 0 0 + + + 

Watts, 2015539 RCT Swine 
30% TBV replacement with 

crystalloid 
24 PT, aPTT, TEG + - + 0 0 0 + + 

Wohlauer, 2012665 No Control Rat 
50% Haemodilution with 

crystalloid (2:1) 
10 TEG 0 - 0 0 0 0 0 + 

a Multivariable adjustment for confounding.  

ACT, Activated Clotting Time; aPPT, Activated partial thromboplastin time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, 

In Vitro; CPR, Cardio pulmonary resuscitation; GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated 

Traumatic Brain Injury; MOI, Mechanism of Injury; NS, Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red 

Blood Cells; PT, Prothrombin Time; RC, Retrospective Cohort; RCT, Randomised controlled trial; ROTEM, Rotational thromboelastometry; TA, Trauma Activation; TEG, 

thromboelastography TBV, Total Blood Volume; TI, Tissue Injury;  
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Table 39: Evidence supporting a causal relationship between brain injury and coagulopathy 
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Human Observational Studies 
        

Auer, 1978554 Cohort SC, Civilian Brain injury admitted to ICU 30 PT, PPT, Plats + - + 0 0 0 
  

Bredbacka, 1994555 Cohort SC, Civilian, all MOI 
iTBI: admitted to neurosurg 

within 24hrs of injury  
20 Quick Score + - + 0 0 0 

  

Cap, 2011452 RC MC, Military, all MOI 
iTBI: head AIS >2, other AIS 

<3, transfused 
1609 INR + + a + + 0 0 

  

Carrick, 2005557 RC 
SC, Civilian, Blunt 

Trauma 
iTBI: GCS <14, other AIS <3 184 PT, PPT, Plats + - + + 0 0 

  

Castellino, 2014576 CC SC, Civilian, all MOI 
iTBI: head AIS >2, other AIS 

<3. SBP>90 
70 INR, PPT, TEG  + - + 0 0 + 

  

Chhabra, 2013568 PR SC, Civilian, all MOI 
iTBI: GCS <13, admitted 

neurosurgery 
208 PT, aPPT + + a + + 0 0 

  

Cohen, 2013440 PC MC, Civilian, all MOI Blood transfusion within 6hrs 1198 INR, PTT + - + 0 0 0 
  

de Oliveira Manoel, 

2015666 
RC 

SC, Civilian, Blunt 

trauma 

TBI = AIS >2, admitted within 

6 hours of injury  
345 

INR, aPPT, Plats, 

TEG 
0 - 0 0 0 0 

  

Di Battista, 2016560 PC MC, Civilian, All MOI  iTBI: GCS <13, other AIS <3 159 PT, aPPT, Plats + - + + 0 + 
  



 
Appendix D: Supporting Evidence: Brain Injury - Chapter 7 

323 

 

Genet, 2013494 RC SC, Civilian, all MOI Full TA 80 INR, aPPT + - + + 0 0 
  

Goodnight, 1974553 PC SC, Civilian, All MOI  
Brain tissue injury, ICU 

admission <12hrs 
26 

Quick score, aPPT, 

TT, Plats 
+ - + + 0 0 

  

Greuters, 2011667 RC SC, Civilian, All MOI 
iTBI: CT confirmed brain 

injury and other AIS <3 
107 INR, aPPT, Plats + - + 0 0 0 

  

Halpern, 2008559 RC MC, Civilian, All MOI  
Closed iTBI: head AIS >2, 

other AIS <3, coagulopathic  
542 PT + - + 0 0 0 

  

Hulka, 1996556 RC SC, Civilian, Blunt MOI 
Had CT brain, blood sample 

within 24hrs 
159 PT, PPT, Plats + - + 0 0 0 

  

Kearney, 1992668 CC SC, Civilian, All MOI 
Head injury, GCS <10, ICU 

admission 
41 PT, PPT, Plats + - + 0 0 0 

  

Keller, 2001564 RC SC, Civilian, Blunt MOI 
Age <16, GCS <15 at any time 

after injury 
53 INR, PT, PPT + - + + 0 0 

  

Lozance, 1998563 RC SC, Civilian, all MOI iTBI 105 PT, PPT, TT, Plats + - + + 0 0 
  

Lustenberger, 2010495 RC MC, Civilian, all MOI 
iTBI: head AIS >2, other AIS 

<3, admitted to ICU 
132 INR, aPTT, Plats + + a + + 0 0 

  

MacLeod, 2014646 PC SC, Civilian, all MOI 
TA, admitted for >24hrs, brain 

injury on CT scan 
701 PT + - + + 0 0 

  

May, 1997647 RC 
SC, Civilian, Blunt 

Trauma 
iTBI: GCS <9, other AIS <3 26 Pt, PPT + - + + 0 0 

  

Nekludov, 2007573 PC 
SC, Civilian, Blunt 

Trauma 

iTBI: GCS <9 other AIS <4, 

admitted to neuroICU 
11 

INR, bleeding time, 

Plats 
+ - + 0 0 + 

  

Peiniger, 2012567 RC 
MC, Civilian, Blunt 

Trauma 

iTBI: head AIS >2, other AIS 

<3, <14 yrs,  
200 

Quick value, PTT 

plat, 
+ + a + 0 0 0 

  

Talving, 2009441 PC SC, Civilian, all MOI Admitted to ICU, AIS head >2 436 INR, aPPT, Plats + + a + + 0 0 
  

Turtay, 2010650 PC SC, Civilian, all MOI Unknown 50 INR, aPPT + - + + 0 0 
  

van der Sande, 1978565 Cohort 
SC, Civilian, Blunt 

Trauma 
Unknown 150 Ethanol gelation test + - + + 0 0 

  

Wafaisade, 2010a566 RC 
MC, Civilian, Blunt 

Trauma 

iTBI: head AIS >2, other AIS 

<3 
3114 PT, Plats + + a + 0 0 0 
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Wu, 2014577 PC 
SC, Civilian, Blunt 

Trauma 

iTBI: Brain injury on CT, 

extracranial AIS <3, GCS in 

ED <13 

81 INR, aPPT, Plats + - + + 0 + 

  

Xu, 2013456 RC SC, Civilian, all MOI 
AIS head >2, ISS>15, admitted 

to ICU <24hrs of injury 
223 INR, PPT, aPPT + - + + 0 0 

  

Zehtabchi, 2008 558 PC SC, Civilian, all MOI 
iTBI: AIS head >2 or 

intracranial haematoma on CT  
276 INR, aPTT + - + 0 0 0 

  

Human Experimental Studies 
        

nil            
  

Animal Experimental Studies 
        

Castellino, 2014576 AMD Rat Blunt iTBI 45 TEG + + + 0 0 + + + 

Donahue, 2014575 AMD Rat Blunt iTBI U PT, aPPT, Plats, TEG + + + 0 + + 0 0 

Tian, 2015579 
Controlled 

study 
Mouse Fluid percussion iTBI  U Clotting time + + + + + + + + 

a Multivariable adjustment for confounding.  

ACT, Activated Clotting Time; aPPT, Activated partial thromboplastin time; AIS, Abbreviated Injury Scale; AMD, Animal model development; BD, Base Deficit; CC, Case-Control; IV, 

In Vitro; CPR, Cardio pulmonary resuscitation; GSW, Gunshot wound; HS, Haemorrhagic Shock; INR, International Normalised Ratio; ISS, Injury severity score; iTBI, isolated Traumatic 

Brain Injury; MOI, Mechanism of Injury; NS, Normal Saline; PC, Prospective Cohort; PH, Pre-hospital; Plat, Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; 

PT, Prothrombin Time; RC, Retrospective Cohort; RCT, Randomised controlled trial; ROTEM, Rotational thromboelastometry; TA, Trauma Activation; TEG, thromboelastography TBV, 

Total Blood Volume; TI, Tissue Injury; TT, Thrombin Time; U, Unknown. 
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Table 40: Evidence supporting a causal relationship between fluid type and coagulopathy 
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Human Observational Studies 
        

Wafaisade, 2010b442 RC MC, Civilian, all MOI 

German trauma registry, 

ISS>15, colloid to crystalloid 

ratio 

1987 PT, Plats + + a + 0 0 0 

  

Human Experimental Studies 
        

Caballo, 2013535 IV Healthy whole blood  
0.9% NaCl or RL or Plasma-

lyte or HES or 5% Albumin 
8 

PT, aPTT, 

ROTEM 
+ + + + + + + + 

Coats, 2006586 IV Healthy whole blood  

0.9% NaCl or Hartmann’s, 

Gelofusin or Haemacel or 

HES or Albumin 

12 Sonoclot + + + 0 0 + + + 

Darlington, 2012464 IV Healthy whole blood RL or Hextend 9 
PT, aPTT, 

TEG 
+ + + 0 + 0 + + 

Delano, 2015596 RCT 

Trauma patients with 

SBP 70 mmHg or 

SBP 71-90mmHg and 

HR >108bpm 

250 mL of 7.5% NaCl or 7.5% 

NaCl/6% Dextran 70 or 0.9% 

NaCl pre-hospital 

34 INR, PT, Plats + + + 0 0 + 0 + 

Ekseth, 2002590  IV Healthy whole blood 
0.9% NaCl or Ringer Acetate 

or 4% albumin or Dextran 70 

or 6% or 10% HES 
12 TEG + + + + 0 0 + + 
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Evans, 1996589 RCT 

Adult trauma patients 

requiring fluid 

resuscitation 

Haemaccel or RL until fully 

resuscitated 
25 

BT, PT, PTT, 

Plt 
+ + + 0 0 0 0 + 

Schols, 2008542 IV Healthy plasma 0.9% NaCl or Gelofusion 5 TEG + + + + + + + + 

Smith, 2015599 RCT 

Trauma patients either 

transfused, intubated or 

urgent haemorrhage 

control procedure 

0.9% NaCl or Plasma-Lyte A 

for first 24hrs 
18 

INR, aPPT, 

TEG 
+ + + 0 0 0 0 0 

Sossdorf, 2009588 IV Healthy whole blood 0.9% NaCl or HES 14 ROTEM + + + 0 0 + + + 

Tan, 2002597 IV Healthy whole blood 0.9% NaCl or 7.5% NaCl 10 TEG + + + + 0 0 + + 

Animal Experimental Studies 
            + 

Fung, 2012632 
Controlled 

trial 
Ovine 4% Albumin, NS, PRBCs 14  + - + 0 0 0 0 0 

Kiraly, 2006663 RCT Swine 0.9% NaCl or LR 20 
PT, aPTT, 

TEG 
+ + + + 0 + + + 

Martini, 2013544 RCT Swine Hextend or LR 21 TEG + + + 0 0 + + + 

Pawelczyk, 2013664 RCT Rat LR or whole blood 25 
PT, TEG, 

Clinical 
0 + 0 0 0 0 0 0 

Torres, 2013545 RCT Rat LR or Hextend 32 ROTEM + + + 0 0 + + + 

a Multivariable adjustment for confounding.  

aPPT, Activated partial thromboplastin time; BT, Bleeding Time; IV, In Vitro; ISS, Injury severity score; LR, Lactated Ringers Solution; 0.9% NaCl, Normal Saline; Plat, 

Platelets; PPT, Partial Prothrombin time; PRBC, Packed Red Blood Cells; PT, Prothrombin Time; RC, Retrospective Cohort; RCT, Randomised controlled trial; 

ROTEM, Rotational thromboelastometry; TEG, thromboelastography. 
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