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Abstract 
Pancreatic Ductal Adenocarcinoma (PDAC) affects approximately 8000 

people every year in the UK and is the fifth leading cause of cancer related 

death.  At a molecular level PDAC is characterized by a significant immune 

infiltrate. Tumour-associated macrophages (TAMs) infiltrate the tumour and 

contribute to a worse prognosis by promoting growth, metastasis and 

resistance to chemotherapy. TAMs are derived from circulating ‘classical’ 

CD14++ CD16- monocytes in the peripheral blood. Current work in murine 

models suggests targeting monocyte recruitment in PDAC can reduce TAM 

infiltration and disease burden therefore improving survival. This project aims 

to identify markers specific to monocytes from PDAC patients and to 

investigate their biological relevance and potential for therapeutic 

intervention. 

 

Gene expression and metabolomics analysis was carried out on classical 

CD14++ CD16- monocytes from locally advanced PDAC patients and age 

matched healthy donors. Transcriptomic profiling revealed a significantly 

altered gene expression profile in classical monocytes from patients and 

genes with the highest fold change difference were chosen for validation 

using qPCR. Validated gene targets were investigated further in vitro and 

large-scale gene expression analysis from pancreatic tumours assessed. 

 

The results from my work demonstrate that the gene expression profile of 

classical monocytes from PDAC patients is significantly different compared 

to healthy volunteers. Identification and validation of up-regulated genes and 

their biological relevance may represent a relevant novel novel biomarker or 

therapeutic strategyies to target monocytes and myeloid recruitment in 

cancer. 
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1.1 Myeloid cells 
 

Myeloid cells represent the major leukocyte population in the peripheral 

blood. Composed of circulating monocytes and granulocytes, these cells are 

derived from common progenitors in the bone marrow. Commitment to the 

monocyte or granulocyte lineage is under the control of distinct transcription 

factors and occurs before release into the peripheral blood  . blood. 

Monocytes and granulocytes are continuously delivered to many tissues 

types and play an important role in innate immunity as a first line of defence 

against pathogen invasion and responses to tissue injury (Miranda et al., 

2005).  

 

Upon activation monocytes are rapidly recruited to local tissues by 

chemokine signals where they are able to phagocytose pathogens and 

produce pro-inflammatory cytokines (Dolcetti et al., 2010, Chioda et al., 

2011). Once they have reached the tissue, monocytes are able to 

differentiate into macrophages or dendritic cells as required (Sica and 

Mantovani, 2012, Gabrilovich et al., 2012).  

 

Geissman et al., recently defined two waves of haematopoietic expansion; a 

‘primitive’ wave during embryonic development and ‘definitive’ wave later on 

(Gomez Perdiguero and Geissmann, 2013).  During the primitive wave of 

embryonic development, several types of resident macrophages originate in 

the yolk sac and form populations in privileged locations; these macrophages 

are named according to the tissue they reside in. For example, microglia 

reside in the brain (Hoeffel et al., 2012, Ginhoux et al., 2013) or the 

Langerhans cells within the skin (Chopin and Nutt, 2014), the Kupffer cells in 

the liver (Kawamoto and Minato, 2004) or osteoclasts in the bones (Rogers 

and Holen, 2011). These populations are self-renewing, maintained locally 

under normal homeostatic conditions. 

 



Introduction 

Page 28 of 239 

Monocytes provide a pluripotent circulating pool of progenitor cells for the 

‘definitive’ wave of re-population of tissue macrophages and dendritic cells 

as required under inflammatory conditions (Bird, 2012, Schulz et al., 2012).  
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1.1.1 Origins of monocytes 
 

Monocytes originate from haematopoietic stem cells in the bone marrow 

through a stepwise process of lineage differentiation and commitment, 

collectively called monopoesis (Yona and Jung, 2010). These advances in 

differentiation are tightly irreversible, regulated by environmental signals 

(Auffray et al., 2009, Swirski et al., 2009, Cortez-Retamozo et al., 2012). As 

shown in Figure 1.1 below. The early stages are very distinctive; from a 

common myeloid progenitor (CMP) and granulocyte-macrophage progenitor 

(GMP) (Akashi et al., 2000) these cells differentiate into the macrophage-

dendritic cell progenitor (MDP) (Fogg et al., 2006) which serves as a 

common precursor for monocytes, macrophages and dendritic cells (DCs) 

(Kawamoto and Minato, 2004). As the MDPs give rise to monocytes they are 

thought to lose their proliferative capabilities and can be subdivided into 

classified subsets (Geissmann et al., 2010b) as discussed later in chapter 

1.2.1.  
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Haematopoetic stem cells are produced in the bone marrow to provide 

progenitor populations of all lymphoid, myeloid and erythroid cells. They give 

rise to a population of daughter stem cells that have a loss of self-renewal 

capacity and progressive restriction of lineage options. Figure 1.1 below 

indicates the origins of cells derived from myeloid and lymphoid lineages 
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Figure 1.1 Haematopoetic cell origins 

Stages leading to the development of myeloid and lymphoid subsets in the 
peripheral blood. Adapted from (Ardavin et al., 2001, Auffray et al., 2009). 
Haematopoietic stem cells in the bone marrow give rise to multipotent 
myeloid and lymphoid progenitor. Haematopoetic stem cells are produced in 
the bone marrow to provide progenitor populations of all lymphoid, myeloid 
and erythroid cells. They give rise to a population of daughter stem cells that 
have a loss of self-renewal capacity and progressive restriction of lineage 
options. Common lymphoid progenitors (CMP) to produce cells of the 
lymphocyte lineage including B cells, T cells and natural killer cells. Common 
myeloid progenitors (CMP) form the megakaryocyte and erythrocyte 
progenitor to provide red blood cell and platelet populations. The CMP also 
provides granulocyte-monocyte progenitors (GMP). These have the ability to 
differentiate into neutrophils, basophils and eosinophils as well as providing 
the macrophage dendritic cell progenitors (MDP). MDPs are progenitors for 
the population of circulating monocytes. The intermediate and non-classical 
monocyte populations are thought to be sequentially derived from the 
classical monocyte populations. The classical monocytes give rise to 
inflammatory tissue macrophages and tissue monocyte derived dendritic 
cells.  
 

Transcription factors play an essential role during lineage commitment. PU.1 

is a member of the E26 transformation-specific (ETS) transcription factors. 

Over expression of PU.1 has been shown to increase myeloid cell 
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development (Rosa et al., 2007). PU.1 inhibits GATA-1 activity very early in 

myelopoeisis, thereby promoting differentiation away from the erythroid 

lineage (Zhang et al., 2000). Egr1, Maf-B, and c-MAF are transcription 

factors critical in promoting myeloid differentiation away from the granulocyte 

lineage (DeKoter and Singh, 2000). PU.1 enhances expression of ICSPB 

(interferon consensus sequence binding protein), which promotes monocyte 

development (Friedman, 2002). This tightly regulated internal cellular 

cascade of transcriptional control can be modified by external stimuli in the 

microenvironment (Varol et al., 2009). 
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1.2 Monocyte functions 
 

Monocytes form part of the mononuclear phagocyte system, a subset of 

white blood cells that circulate in the peripheral blood until receiving signals 

to differentiate (Auffray et al., 2009, Shi and Pamer, 2011). Monocytes are 

remarkably multipotent and play a critical role in inflammation, wound healing 

and resolution (Ziegler-Heitbrock, 2007).  

 

The ability of monocytes to mobilise from the bone marrow, circulate in the 

peripheral blood and traffic to distant tissue sites as required is a central 

factor in immune defences (Gordon and Taylor, 2005). One of the main 

functions of bloodstream monocytes is the capacity to mediate host anti-

microbial defences due to their ability to phagocytose pathogens. This is 

mediated by various cell surface scavenger receptor interactions with 

lipoproteins and signalling through immunoglobulin and complement 

receptors (Yarovinsky, 2014). Toll-like receptors are essential for myeloid cell 

activation and can recognise bacterial products (Takeda and Akira, 2007). 

Monocytes are also able to present antigens and secrete pro-inflammatory 

cytokines in particular IL-10, IL-6, IL-1, Tumour Necrosis Factor-alpha (TNF-

alpha) and IL-12 (Serbina et al., 2008).  

 

This notable multipotency however can act as a double edged sword when 

monocyte recruitment and differentiation promote inflammation where it is 

not required (Murray and Wynn, 2011). This is the case in cardiovascular 

disease when monocytes are known to contribute to atherosclerotic plaques 

(Saha et al., 2009, Woollard and Geissmann, 2010, Shalhoub et al., 2011, 

Gratchev et al., 2012), and in the case of several solid tumour types where 

monocytes are recruited to be polarised towards tumour promoting 

macrophage populations (Sica et al., 2008, Moses et al., 2009, Chioda et al., 

2011, Denardo et al., 2011, Shiao et al., 2011, Mahmoud et al., 2012, Tang 

et al., 2012). 

 

 

Commented [VV1]: Agreed! 

Commented [TH2]: I like this section. 
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1.2.1 Monocyte subsets and classification 
 

There is still no unifying consensus surrounding monocyte classification. The 

highly responsive and plastic nature of monocytes is advantageous in their 

reactivity; however, it presents challenges when trying to define phenotype 

and function. Investigations into monocyte heterogeneity have been hindered 

in the past by ambiguity over cell surface markers. Recently the classification 

of three circulating monocyte subtypes (Table 1.1) has been accepted 

(Ziegler-Heitbrock, 2007, Geissmann et al., 2010a, Zawada et al., 2011, 

Wong et al., 2012). In 1989, Ziegler Heitbrock first described the use of 

CD14 (a lipopolysaccharide receptor) and CD16 (Fragment crystallisable 

(Fc) Gamma receptor III) to characterise monocytes. 

 

 

The three monocyte subsets have been associated with differential 

expression of cell surface markers and functional abilities as I will further 

outline below. 
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1.2.1.1 Classical (CD14++ CD16-) monocytes 
 

The ‘classical’ CD14++ CD16- monocyte population subset is the most 

abundant, comprising around 80% of the monocytes found circulating in the 

peripheral blood in humans (Gordon and Taylor, 2005).  

 

Classical monocytes play an important part in mediating host immunity to 

invading pathogens. They are, in the first instance, defined by their cell 

surface expression of CD14. CD14 is a glycosyl-phosphatidyl inositol (GPI) 

phospholipid anchored membrane co-receptor that acts with Toll Like 

Receptor 4 and MD-2 to form a complex that detects pathogen-associated 

molecular patterns (PAMPS) (Simmons et al., 1989). The main identified 

ligand is bacterial lipopolysaccharide (LPS) (Kitchens, 2000, Moreno et al., 

2004). CD14 also recognises peptidoglycans, lipoteichonic acid and 

phospholipids on gram-positive bacteria (Scherberich and Nockher, 2000).  

 

Carman et al., implicated classical monocytes in regulation of leukocyte 

trafficking in the blood due to their selective expression of CD62L, a homing 

receptor for ligands expressed on endothelial cells (Mishra et al., 2012), as 

well as CD64, an Fc receptor required for binding IgG-type antibodies 

(Carman, 2008). Other markers to characterise classical monocyte have 

been described and are reviewed by Martinez et al., and summarised in 

Figure 1.2 (Martinez et al., 2009) 

 

Upon activation, classical monocytes are able to phagocytose invading 

pathogens (Flego et al., 2013). Classical monocytes are able to increase 

production of pro-inflammatory cytokines, in particular IL-10, TNF-alpha, 

NFkappaB (NfκB) and IL-6. The expression of pro-inflammatory cytokines 

occurs via the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway (Viriyakosol and 

Kirkland, 1995, van der Bruggen et al., 1999, Skrzeczynska-Moncznik et al., 

2008). In pancreatic cancer, monocyte expression of cytokines, including IL-

6 and IL-10, has been linked with the development of cachexia and a poorer 

prognosis (Carter and Tourtellotte, 2007, Moses et al., 2009, Steele et al., 

2013). 
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Classical monocytes selectively express CCR2 (chemokine C-C receptor 2), 

the receptor for CCL2 (chemokine C-C ligand 2, also known as monocyte 

chemoattractant protein (MCP-1)), and are recruited to the site of solid 

malignancies to contribute to the tumour promoting macrophage populations 

(Beatty et al., 2011, Denardo et al., 2011, Mitchem et al., 2012, Sanford et 

al., 2013).  

 

Interestingly, the total number of classical monocytes has been used as a 

biomarker in patients with stroke. An increase in CD14++CD16- classical 

monocytes in the peripheral blood correlates positively with the onset of 

stroke (Urra et al., 2009) and cardiovascular disease (Olivares et al., 1993, 

Heine et al., 2008).  

 

  



Introduction 

Page 37 of 239 

1.2.1.2 Non-classical (CD14dim CD16++) monocytes 
 

The non-classical monocytes express lower levels of CD14, but are strongly 

positive for CD16. The CD16 antigen is an anchored polypeptide expressed 

on the cell surface and is a low affinity receptor consisting of the Fc 

(Fragment, crystallizable) gamma RIIIA and Fc gamma RIIIb part. They form 

the receptor for the Fc portion for the immunoglobulin IgG. Upon IgG binding 

to the Fc receptor complex of CD16, downstream signalling cascades are 

activated that increase production of pro-inflammatory cytokines such as 

interleukin-1 and tumour necrosis factor alpha as well as increasing 

phagocytic capabilities (Scherberich, 2003). 

 

Non-classical monocytes are highly reactivemotile. Cros et al. (2010) 

observed, after adoptive transfer of non-classical monocytes, these cells 

‘crawled’ along the endothelium in contrast to their classical counterparts. 

The group used intravital microscopy to record the ‘patrolling’ the luminal 

side of endothelial blood vessels to rapidly extravasate and migrate to the 

site of immune reaction (Cros et al., 2010).  Ras homolog gene family, 

members C and F (RHOC and RHOF), Rho GTPases are significantly 

over-expressed in the CD14dimCD16++ subset linking them to the increased 

motility and rapid mobilisation into the bloodstream after exercise and 

infection (Ancuta et al., 2006, Frankenberger et al., 2012). 
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1.2.1.3 Intermediate (CD14+CD16++) monocytes 
 

The intermediate population of monocytes expresses both CD14 and CD16. 

This population has only been relatively recently identified as a subset 

(Ziegler-Heitbrock et al., 2010, Zawada et al., 2011). Intermediate monocytes 

have been shown to be pro-angiogenic by expressing Tie-2 the receptor for 

vascular growth factors angiopoetin-1 and -2 (Mazzieri et al., 2011).  

 

An increased intermediate monocyte population has been identified in 

patients with breast (Feng et al., 2011) and colorectal cancer (Schauer et al., 

2012). However, the reasons for this increase are not well understood. This 

CD14++CD16+ cell population expansion has been correlated with a positive 

outcome in cardiovascular diseases and other pathological settings, 

including sarcoidosis and asthma (Ancuta et al., 2004, Tacke et al., 2007, 

Saha et al., 2009, Subimerb et al., 2010, Rogacev et al., 2011).  

 

A recent investigation into human monocyte kinetics showed that, over time, 

an increase in intermediate monocytes occurs before an increase in non-

classical monocyte populations in the blood during and after pulmonary 

infection. This may suggest a sequential developmental relationship (Ziegler-

Heitbrock and Hofer, 2013, Frankenberger et al., 2013). 

 

The monocyte subsets have been classified by their differential cell surface 

expression of functional markers, transcriptomic profile and functional 

abilities in vitro. However, it is still under debate whether each subset 

represents a distinct cell type derived from the monocyte-dendritic cell 

precursor, or the same cells at different stages of differentiation.  In a bid to 

elucidate the mechanisms behind monocyte to macrophage differentiation 

and where the key to this responsiveness lies, several approaches are 

currently being used which are outlined in more detail below. 
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1.2.1.4 Fate mapping 
 

To define the origin and fate of monocytes during maturation and 

differentiation, fate mapping has been carried out in murine models (Schulz 

et al., 2012, Gomez Perdiguero and Geissmann, 2013). 

 

In humans, there are thought to be three monocyte subsets due to the recent 

discovery of the intermediate population. This has also been shown in the 

three subsets defined in mice (Auffray et al., 2009). The mouse equivalent of 

a classical monocyte can be defined by positive expression for Gr1+ and 

Ly6C+ (Auffray et al., 2009). Expression of Gr1+ and Ly6G+ can be used to 

define the equivalent non-classical population. These are defined as 

equivalent to the human classical and non-classical populations due to the 

conservation of expression of CCR2 and CX3CR1 across species. Work by 

Sunderkotter et al., characterised the Ly6Cmed monocytes and, based on the 

similarities in phenotype and function between man and mouse, classified 

them also as intermediate monocytes (Sunderkotter et al., 2004). This avoids 

confusion generated by dated nomenclature and classification of monocyte 

subsets as ‘inflammatory’ and ‘pro-inflammatory’ as reciprocal populations 

(Ziegler-Heitbrock, 2014). The corresponding human and mouse subsets are 

shown in Table 1.1 below. 

 

Human Mouse
Classical (CD14++ CD16-)  
CCR2hi CX3CR1lo CD163+ 

CD11b+ Gr1+ Ly6C++ 

CD43+ CCR2hi CX3CR1lo 

Intermediate (CD14++CD16+) 
CX3CR1hi CCR2lo CD163+ 

CD11b+ Gr1+ Ly6C++

CD43++ 

Non-classical (CD14dim CD16++) 
CX3CR1hi CCR2lo CD163- 

CD11b+ Gr1+ Ly6G+

CD43+ + CX3CR1hi CCR2lo 

Table 1.1 Markers used to classify monocyte subsets in humans and 
mice 

Table adapted from (Shi and Pamer, 2011, Ziegler-Heitbrock, 2014) 
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Selective expression of CCR2 on the LyY6C+ classical monocytes links their 

phenotype closely to their function. The CCR2-CCL2 interaction is important 

for monocytes to exit the bone marrow into the blood circulation (Qian et al., 

2011). CCR2-/- mice have significantly lower numbers of circulating Ly6C+ 

monocytes as a result of this exit block with respective accumulation in the 

bone marrow and spleen (Yona and Jung, 2010). It is suggested that this 

LyY6C+ population, similar to the classical monocytes forms a pool of short-

lived circulating progenitor cells supplying the Ly6C- population.  

 

To explore further whether the monocyte dendritic cell precursor (MDP) 

forms separate monocyte subsets, or monocytes at different stages of 

differentiation, a study was carried out by Yona et al., in 2013. In this study, 

mice were used that harbour a GFP reporter in the CX3CR1 locus. 

Constitutively expressing CX3CR1+ GFP+ positive Ly6C+ positive monocytes 

from the splenic reservoir were adoptively transferred into congenic wild type 

mice. After day 1, flow cytometry was used to show that the GFP+ cells in the 

blood were Ly6C+ CX3CR1 intermediate and, after day 3, the GFP+ CX3CR1 

expressing cells in the blood were Ly6C-. This data contributes to the 

hypothesis that Ly6C+ monocytes may form part of a developmental 

sequence in mice. In humans the corresponding non-classical monocytes 

might be formed from the precursor classical monocyte population (Yona et 

al., 2013). To further elucidate the differences and similarities between the 

monocyte subsets, one approach commonly used is transcriptome profiling. 
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1.3 Transcriptomic Profiling 
 

Transcriptomics refers to study of the transcriptome: ‘The complete 

complement of mRNA molecules generated by a cell or population of cells’ 

as defined in 1997 by Charles Auffray (Pietu et al., 1999). Transcriptomic 

networks are incredibly complex and the advent of novel technologies is 

leading to more ‘data-driven’ approaches to derive hypotheses. 

 

Gene expression microarrays are a reliable, robust and cost-effective way to 

gain a biological snapshot of gene expression. Microarray technology is 

based on a library collection of DNA probes attached to a solid surface, 

which hybridise to cDNA reverse transcribed from RNA samples. The levels 

of hybridisation are measured using fluorescence and converted to 

expression values (Martinez, 2009). 
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1.3.1 Transcriptomic profiling as a reflection of immune system 
activation 

 

Evaluation of immune cells in disease might include absolute numbers and 

relative subset proportions of cells and their distribution, as well as 

transcriptional state, secretory functions and proliferative ability 

(Chattopadhyay et al., 2014). Immune cells in the blood harbour a wealth of 

information after activation ex vivo and in their homeostatic state (Tuomela et 

al., 2013, Dolcino et al., 2014). A major limitation in studying immune 

mediated human disease is restricted access to the relevant tissue or cell 

type.  

 

Transcriptomic profiling of immune cells is expected to reflect the influences 

of environmental, genetic and cellular factors (Chaussabel et al., 2010). 

Easily accessible from blood samples they are valuable investigational tools. 

Past work analysing transcriptomic profiles in the peripheral blood immune 

cells from cancer patients used isolated PBMCs. In Pancreatic cancer an 

eight-gene signature was identified in circulating PBMCs from PC patients. 

These included SSBP2, Ub2b-RS, CASB, TBC1D8, ANX3A, ARG1 and 

ADAMTS20. These were shown to be efficacious in a small cohort of 

patients with a sensitivity of 83% and a specificity of 75% in a blinded subset 

of samples. The genes identified and genes were not shown to overlap with 

PBMCs from other inflammatory conditionsdifferent stimuli or pathogens 

suggesting they were PC specific (Baine et al., 2011). Gene expression 

signatures derived from profiling PBMCs can be linked to certain cell types 

but are not considered particularly accurate due to heterogeneous cell 

populations. 
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1.3.2 Transcriptomic profiling of human monocytes 
 

In 2007, qPCR was used to assess differential expression of known 

monocyte associated genes in both the classical (CD14++ and CD16-) and 

non-classical (CD14dim CD16+) population of human monocytes. The chosen 

gene list examined adhesion molecules, such as CD11b and CCR2, as well 

as scavenger receptors, such as CD163, CD14, macrophage receptor with 

collagenous structure (MARCO), which are now used as typical monocyte 

markers (Mobley et al., 2007).  

 

In 2009, three groups published data on transcriptomic profiles of human 

classical monocytes compared with non-classical monocytes. The first was 

(Zhao et al., 2009), the second (Ancuta et al., 2009) and the third merged all 

three data sets to produce overlapping validated gene lists (Martinez, 2009).  

 

Figure 1.2 below, indicates the top differentially expressed genes comparing 

monocyte subsets from available transcriptomic data. 
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Figure 1.21.2 Monocyte subset transcriptomic profiling reveals 
differentially expressed genes 

Identified genes that are more highly expressed in one monocyte subset 
compared with the others. A selection of validated top differentially 
expressed genes adapted from (Martinez, 2009, Zhao et al., 2009, Ancuta et 
al., 2009, Zawada et al., 2011). 
 

The three combined data sets confirm the distinct differences between these 

subsets. The results also suggest that the non-classical (CD14dim CD16++) 

monocytes appear to have a more advanced stage of differentiation due to 

their closer resemblance to more dendritic cell or macrophage transcriptomic 

profiles (Ancuta et al., 2009).  It was only in 2011 that the presence of the 

intermediate population (CD14++ CD16+) was confirmed using gene 

expression analysis, contradicting the dichotomised view held over the 

previous twenty years (Zawada et al., 2011).  

 

Building upon this data, work by Schmidl et al. (Schmidl et al., 2014)  profiled 

all three monocyte subsets to provide novel insights into metabolic profiles 
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and functional biological differences. As well as identifying the known subset 

specific features, they also identified differential promoter and enhancer 

regulatory elements corresponding to transcription factor activity of PU.1 and 

C/EBP beta. Gene ontology (GO) terms were enriched to show striking 

differences between the subsets for metabolic pathway genes. A significant 

number of genes involved in carbohydrate metabolism, especially the 

glycolytic pathway was up-regulated in the classical monocytes.  

 

The intermediate monocytes could be characterised by an increase in genes 

associated with antigen processing and presentation. The non-classical 

monocytes were more associated with the oxidative phosphorylation 

pathway, in particular the components of the mitochondrial respiratory chain 

complexes. These results were confirmed at protein level and suggest there 

is a metabolic bias across the monocyte subsets (Schmidl et al., 2014).  

 

When assessing the monocyte transcriptome under other conditions, there 

are three main approaches that are used. One approach, to reduce 

variables, is using a monocyte cell line known as THP-1. This human cell line 

derives from a 1-year-old infant with acute monocytic leukaemia. Although 

the cell line can be differentiated into macrophage-like cells using phorbol 

12-myristate 13-acetate (PMA), the cell line does not accurately represent 

primary human monocytes or macrophages or correspond to a particular 

monocyte subset (Qin, 2012). 

 

A common way to assess gene expression and monocyte function is to 

isolate healthy monocytes and treat them with different stimuli or pathogen, 

which represents a more closed system, to identify core genes and 

phenotypic changes (Tuomela et al., 2013). This has been utilised mainly in 

assessing the effects of bacterial or viral infections (Barker et al., 2005, 

Harun et al., 2013, Tan and Chu, 2013, Marangoni et al., 2014).  

 

Transcriptome profiling of human primary monocytes has been investigated 

in several inflammatory conditions, in particular cardiovascular disease, due 
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to their essential role in promoting atherosclerosis (Sivapalaratnam et al., 

2012, Maiwald et al., 2013).  

 

Gene expression profiling of peripheral blood monocytes from patients with 

Crohn’s coeliac disease identified a four-gene signature (c-REL, LPP, 

TNFAIP3, KIAA1109) that could be used to discriminate between patients 

with disease and healthy volunteers. This signature was even significant 

without the corresponding clinical data (Galatola et al., 2013). This result is 

promising in for the use of monocytes as indicators of disease presence or 

progression. 

 

The results of these studies give an outline of genes associated with the 

inflammatory response and differentiation, however there is no current 

published data expressing monocyte transcriptomes from patients with 

cancer. 
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1.3.3 Transcriptomic profiling and transcriptional regulation of 
monocyte to macrophage differentiation. 

 

 

Transcriptome profiling has supported the identification of differential 

monocyte subsets and provided useful insight into responses and biological 

processes. It has also been useful in understanding transcriptional regulation 

in monocyte to macrophage differentiation under normal conditions. 

 

 

In the past, a simplified model system of macrophage biology separated 

macrophage polarisation into two phenotypes, M1 and M2, in analogy to the 

Th1 / Th2 dichotomy of T cells (Gordon and Taylor, 2005). These two 

phenotypes were linked to the two polarising stimuli: LPS, or IL-4 and IL-13. 

Martinez et al. (and others) carried out transcriptomic profiling of this 

process, in 2006 and again in 2009, and expanded it to include moderately 

differentiated cells at an earlier time point of three days post-differentiation 

(Martinez et al., 2006, Martinez et al., 2009). This work indicated genes that 

were involved in early differentiation steps, thatsteps that had not been 

previously recognised. Pelegrin et al., built upon this by showing elegantly 

the plasticity of the macrophage phenotype and how macrophages can 

switch from one to the other phenotype (Pelegrin and Surprenant, 2009).   

 

In 2012, Beyer et al., similarly polarised macrophages and carried out RNA-

sequencing (RNA-Seq) analysis (Beyer et al., 2012). RNA-Seq technology 

offers a wider dynamic range and, in contrast to hybridisation microarray 

methods, RNA–Seq directly determines the cDNA sequence, as well as 

having the ability to distinguish between different isoforms. This means it is 

not limited to detecting transcripts corresponding to existing known genomic 

sequences (Wang et al., 2009). The study supported previous findings, and 

built upon these results. Due to the higher resolution given by RNA-seq data, 

novel M1-associated (TLR2, SLAMF7, CD120b) and M2-associated (CD93, 

CD226, CD1a and CD1b) cell surface markers were identified. 
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Transcriptional regulatory network profiling of monocyte to macrophage 

differentiation takes this analysis one step further to identify multiple 

transcription factors linked with gene expression. Although these networks 

are very complex, a recent study by Huber et al., (Huber et al., 2014) 

identified a chain of transcription factors in differentiation that appear to be 

key in modulation and drive downstream gene expression. This study 

discovered 4 core inducers of monocyte specific regulatory pathways SP11, 

CEBPA, IFR8 and MDNA. These inducers were shown to positively affect 

the expression of other key genes in monocyte development such as JUNB, 

FOS, MAF and EGR2.  

 

These models however only account for two extreme polarised macrophage 

phenotypic states, which we now know is an over-simplified model. 

Observations from macrophages in chronic inflammation, infections or 

cancer suggest a much broader repertoire of phenotypic regulation 

depending on environmental signals. A study published this year used 28 

different conditions to profile the macrophage transcriptome and extend the 

current model of macrophage polarisation and identify key genes associated 

with distinct stimuli (Xue et al., 2014). This work proves that monocyte to 

macrophage differentiation is not as simple as previously thought. 

 

The studies mentioned above derive macrophages from CD14+ cells. 

Contributing to this field, macrophages were derived from classical and non-

classical monocyte populations. Frankenberger et al., (2012) reported 

significant differences between derived macrophage population 

transcriptomic profiles and functions. The macrophages derived from the 

non-classical monocytes had a significantly increased ability to phagocytose 

opsonised E.coli. In terms of developmental biology this is an important 

finding as depletion of non-classical monocytes leads to a depletion of 

Kupffer cells in the liver, but not in other tissues suggesting there are 

differential progenitor subset population pools (Frankenberger et al., 2012).  
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The genes and associated phenotypes have been used as a basis of much 

of the understanding of macrophage functions and their role in inflammation 

and disease. Cell surface markers, for example, can be associated with 

tumour-associated macrophagesTAMs. In pancreatic cancer, expression of 

CD163 and CD204 in the tumour microenvironment can be linked to poorer 

survival (Kurahara et al., 2011). This expression correlates with infiltrating 

tumour-associated macrophages.  
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1.4 Circulating immune cells as biomarkers 
 

Using circulating immune cells is attractive for early detection of disease as 

they are accessible in the blood (Misek et al., 2007, Baine et al., 2011). The 

table below shows published changes in monocyte distribution in several 

inflammatory conditions. 

 

Disease Classical Intermediate Non-
classical

Reference

Tuberculosis 10% + 9% + 13% + (Castano et al., 
2011) 

Sepsis 9.5% + 12% + 6% + (Skrzeczynska 
et al., 2002) 

Stroke  3% + 3% - (Urra et al., 
2009) 

HIV 2.5% - 3% + 3%+ (Tippett et al., 
2011) 

Rheumatoid 
arthritis 

 5% +  (Rossol et al., 
2012) 

Abdominal 
aortic 
aneurysm 

 2.2% + 1.9% + (Ghigliotti et al., 
2013) 

Dengue Fever 12-18% - 9% +  (Azeredo et al., 
2010) 

 

Table 1.2  Monocyte subset distribution in disease 

Monocyte subset percentage changes as indicated in each disease. +/- 
indicate direction of change increase or decrease as compared with healthy 
donors. Table adapted from (Yang et al., 2014) 
 
 
Transcriptomic profiling of PBMCs in chronic pancreatitis and PDAC 

revealed an eight-gene predictor signature with sensitivity and specificity of 

83% and 75%, respectively, that was significantly associated with increased 

CA19-9 expression (Baine et al., 2011). PBMC profiling has also been used 

as a predictor of cancer presence in renal (Burczynski et al., 2005) and rectal 

cancer (Palma et al., 2013). Other studies indicate their reflection of immune 

responses by being able to predict drug-induced toxicity (Todorova et al., 

2012). 
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These studies, however, represent transcriptomic profiling of a mixed cell 

population. Mononuclear cells in the blood encompass monocytes, 

lymphocytes, dendritic cells and natural killer cells. Therefore the results 

gained are not cell type specific and differential distribution of each cell type 

could bias results.  Circulating monocytes represent a biomarker and 

monocytosis can be used as a clinicopathological factor in several 

inflammatory conditions. Elevated counts are seen in cardiovascular disease 

(Waterhouse et al., 2008), acute myocardial infarctions (Khan et al., 2012), 

chronic kidney disease (Heine et al., 2008) and coronary arterial disease 

(Afiune Neto et al., 2006). 

 

A recent study examining gene expression profiles in CD14+ peripheral blood 

monocytes identified a four-gene signature that could be used to differentiate 

patients with Crohn’s coeliac disease from healthy volunteers, without 

additional clinical data. Their sensitivity was higher than 95% in validation set 

(Galatola et al., 2013).  

 
 
Metabolite profiling of circulating immune cells could serve as a less invasive 

and more direct alternative to tissue biopsies. Recent work highlights the 

interactions between metabolism and inflammation. ‘Metabolomic’ profiling 

has been used for biomarker discovery in urine, plasma, metabolic and 

haematological disorders as well as endocrinopathies (Russell et al., 2013). 

A recent study in monocytes revealed marked differences between the 

monocyte subsets comparing metabolic gene signatures. The classical 

monocytes had a much higher level of genes associated with carbohydrate 

metabolism compared with the non-classical (Schmidl et al., 2014) 

 

Metabolomic analysis of urine can be used to identify prognostic markers in 

lung and bladder cancer (Jin et al., 2014, Mathe et al., 2014) and in serum of 

pancreatic cancer patients (Kobayashi et al., 2013). Metabolomic analysis 

can also be carried out on cells, and in pancreatic cancer has been used to 

profile responses of human cell lines to gemcitabine and other chemotherapy 
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agents (Spratlin et al., 2011, Ohmine et al., 2012). Current literature 

suggests metabolomic profiling of monocytes from humans with cancer has 

not been carried out and may represent an effective method to identify novel 

pancreatic cancer associated biomarkers in the peripheral blood. 
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1.5 Pancreatic ductal adenocarcinoma  
 

Pancreatic cancer is the 9th most common cancer in the United Kingdom, 

with an incidence of approximately 8,000 patients per year. Lack of 

symptoms until disease has advanced can often account for a delayed 

diagnosis (Dabizzi et al., 2011, Tokar and Walia, 2013). Due to late 

presentation with advanced disease and lack of therapeutic options, the 

incidence nearly matches the mortality of the disease; the 5-year survival 

rate in the United Kingdom is less than 3%. These statistics have not 

improved in the last 30 years (Coupland et al., 2012) highlighting the huge 

unmet clinical need in this disease.  

 

Current knowledge suggests that smoking, family history, diabetes and 

chronic pancreatitis are associated risk factors for the development of 

pancreatic adenocarcinoma (Elena et al., 2013). It is suggested that due to 

the links between chronic inflammation and neoplastic development, tumour 

growth and progression are likely to be influenced and contributed to by 

inflammatory cytokines and cells (Dafforn et al., 2004, Vermeulen et al., 

2009). However, the incidence for acute and chronic pancreatitis is much 

higher and inflammation does not solely explain development of the disease. 

 

Clinical presentation of pancreatic cancer can vary due to disease stage and 

tumour location (Huggett and Pereira, 2011). Patients with pancreatic cancer 

often present with common symptoms including jaundice, weight loss and 

epigastric pain. Blood tests can be used to determine the presence of tumour 

markers, such as carcino-embyronic antigen (CEA) or carbohydrate antigen 

19.9 (CA19.9) (Greer and Brand, 2011, Ballehaninna and Chamberlain, 

2013).  

 

A computed tomography (CT) scan is often the first test to visualise the 

disease (Rustagi and Farrell, 2014). The CT provides an estimation of 

tumour size and spread. To complement this approach endoscopic ultra-

sound is also utilised to guide fine needle aspirate (EUS-FNA) biopsies for 
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diagnostic cytology. Endoscopic retrograde cholangiopancreatography 

(ERCP) combines the use of an endoscope with fluorescent dye using x-ray 

to examine the biliary tract and pancreas (Dhir et al., 2014, Nikolaidis et al., 

2014). EUS-FNA together with ERCP has the advantage of gaining 

diagnostic material and being able to therapeutically intervene at the same 

time, for example insertion of a stent (De Angelis et al., 2014). 

 

Pancreatic cancer can be considered for surgical resection with curative 

intent if the tumour has not spread to distant metastatic sites or involved local 

structures such as coeliac axis or the superior mesenteric artery (Lall et al., 

2007). Once the tumour has progressed to become locally advanced or 

metastatic, palliative chemotherapy will be considered. Current first line 

regimens for locally advanced or metastatic pancreatic cancer are either 

single agent gemcitabine or combination therapies such as with Paclitaxel 

(Von Hoff et al., 2013) or Abraxane (Wang et al., 2009). Alternatively, 

FOLFIRINOX, a multi-drug combination of leucovorin, fluorouracil, irinotecan 

and oxaliplatin (Labianca et al., 2012), offers an improved median survival 

compared with single agent gemcitabine, however the toxicity is comparably 

increased. Therefore FOLFIRINOX is reserved for patients with a better 

performance status (Conroy et al., 2011, Gunturu et al., 2013). 

 



Introduction 

Page 55 of 239 

1.5.1 Pancreatic cancer development 
 

Pancreatic cancer progresses through a series of lesions known as 

pancreatic intraepithelial neoplasia in situ (PanIN). Arising in the pancreatic 

ducts, PanINs are characterised by columnar to cuboidal cells with 

architectural atypia that advances over the development from panIN-1 to 

panIN-3. PanIN-3 stage is characterised by severe cellular atypia and can be 

considered ‘carcinoma in-situ’ at this stage (Scarlett et al., 2011). These 

PanIN lesions have been integrated into a model of tumour progression that 

links cytological changes with the genetic mutations (Zamboni et al., 2013, 

Saiki and Horii, 2014). Early PanIN lesion formation is associated with 

telomere shortening and KRAS activation and progression associated with 

subsequent intermediate mutations, as shown in the figure below adapted 

from (Bardeesy and DePinho, 2002). 

 

 

 
Figure 1.3 Pancreatic cancer progression through PanIN lesions 
identification morphologically and associated genetic mutations. 

Images representative of PanIN lesion development from a healthy region in 
the normal pancreas. PanIN formation and development has been 
associated with gene expression mutations in the pancreatic cancer ductal 
cells. Images of human formalin fixed paraffin embedded tissue stained with 
haematoxylin. Figure adapted from (Bardeesy and DePinho, 2002). 
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The earliest identified oncogene in pancreatic cancer is KRAS, identified 

almost 25 years ago, in its mutated form KrasG12D (Smit et al., 1988). 

However, the presence of mutated KRAS alone is insufficient for 

progression, and further genetic alterations are required to drive the 

formation of PanIN lesions. Global genomic analyses recognise hundreds of 

differentially expressed genes in pancreatic cancer compared with healthy 

tissue (Jones et al., 2008, Biankin et al., 2012). 

 

Genetic mutation acquisition studies are unveiling a vast heterogeneity of 

genes. A large scale Australian consortium, as part of the International 

Genome Consortium is leading the way in identifying gene signatures 

associated with mutation processes and development. Using whole exome 

sequencing they identified some novel and some confirmed significantly 

mutated genes such as: KRAS, CDKN2A, TP53, BRCA2, SMAD4/DPCA and 

MLL3 (Biankin et al., 2012, Alexandrov et al., 2013). 
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1.5.2 The inflammatory tumour microenvironment in pancreatic cancer 
Relatively recently, the components of the inflammatory tumour 

microenvironment have been acknowledged as major players in neoplastic 

promotion and maintenance (Hanahan and Weinberg, 2011).  Infiltrating 

immune cells are an abundant component of solid tumours (Martinez et al., 

2009, Qian and Pollard, 2010, Brower, 2012) and are reported to influence 

the growth of tumours, neoangiogenesis and resistance to therapy (Bronte et 

al., 2006, Denardo et al., 2011). The complex balance between pro- and anti-

tumoral effects of immune cell infiltration is thought to create a chronic 

inflammatory microenvironment essential for tumour growth, progression and 

invasion (Hanahan and Weinberg, 2011, Balkwill and Mantovani, 2012, 

Candido and Hagemann, 2012). It is becoming increasingly important to be 

able to dissect these different cell types and examine their roles in the 

inflammatory microenvironment. 

 

Oncogene activation causes activation of transcription factors such as 

Nuclear Factor kappa Beta (NFκB), Hypoxia Inducible Factor 1-alpha (HIF-

1alpha) and STAT3 activation in tumour cells, which leads to production of 

inflammatory chemokines and cytokines. These signals recruit inflammatory 

immune cells to the tumour site (Mantovani et al., 2008, Balkwill and 

Mantovani, 2012). This creates a positive feedback promoting the 

development of cancer related inflammation and subsequent effects on 

invasion, metastasis, adaptive immunity and chemoresistance (Coussens 

and Werb, 2002, Allavena et al., 2011, Candido and Hagemann, 2012). 

The subsequent recruitment of certain immune cells to the site of the tumour, 

has been shown to promote tumour growth, metastases and resistance to 

therapy (Nosho et al., 2010, Hanahan and Weinberg, 2011, Mahmoud et al., 

2011, Tjomsland et al., 2011, Ruffell et al., 2012).  
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1.6 Peripheral blood monocytes in cancer progression 
 

Monocytes have been implicated in a diverse range of responses to solid 

tumours. In several solid cancer types, the presence of cancer has been 

shown to affect monocyte phenotype and is thought to ‘deactivate’ their usual 

functions (Pardoll, 2003, Mytar et al., 2008). In ovarian and gastric cancer, 

cell surface expression of co-stimulatory factors such as PD-L1 or PD-L2 

were affectedwere increased (Brooks et al., 2012, Zheng et al., 2014) 

leading to altered reduced adaptive immune activation by affecting cytotoxic 

T cell priming and activation. Increased expression of IL-10 by monocytes in 

cancer has also been linked with promoting immunosuppression, alongside a 

concurrent reduction in IL-12, IFN-gamma and TNF-alpha production (Sica et 

al., 2006). Deactivation of monocytes in the tumour microenvironment has 

also been linked to tumour-derived hyaluronan (HA), an important 

component of the extracellular matrix. HA has the ability to ligate CD44 and 

negatively regulate monocyte adhesive abilities (Mytar et al., 2003). 

 

Monocytes also play a role in angiogenesis. Depletion of monocytes in a 

murine model of glioma reduced tumour vascularity and therefore growth (De 

Palma et al., 2005). Tie-2 expressing monocytes are selectively recruited to 

spontaneous and orthotopic tumours and are reported to promote 

angiogenesis in a paracrine manner (Lewis et al., 2007). Evidence also 

exists for monocytes facilitating breast tumour primary pulmonary 

metastasis, due to the monocyte’s ability to promote extravasation of tumour 

cells in a vascular endothelial growth factor (VEGF) dependent manner (Qian 

et al., 2011). 

 

Monocytes in culture have been shown to increase the invasive capability of 

tumour cells in a tumour necrosis factor alpha (TNF-alpha) dependent 

manner (Baran et al., 2009). Since movement of tumour cells is crucial for 

invasion and the formation of metastasis, it was hypothesized that infiltration 

and subsequent production of TNF-alpha by monocytes may play a role in 

epithelial mesenchymal transition (EMT) dependent cancer progression.  
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1.6.1 Monocyte recruitment in cancer 
 

Certain chemokines and growth factors have been found at high levels in 

tumours and can influence survival, differentiation and recruitment of 

monocytes to the tumour site. Elevation of vascular endothelial growth factor 

(VEGF) and RANTES (CCL-5) is associated with monocyte recruitment in 

breast cancer (Elbarghati et al., 2008). 

 

Colony stimulating factor 1 (CSF1) and CCL2 (MCP-1) have been identified 

as major drivers in myeloid cell recruitment. Both can be produced by tumour 

cells, often as a result of oncogene activation (Mantovani et al., 2008). 

CSF1op/op mice deficient in the CSF1 gene show reduced neuroendocrine 

tumour development and decreased mammary metastases (Lin et al., 2002, 

Pyonteck et al., 2012). 

 

CCL2 can be produced by most nucleated cell types, in response to a range 

of microbial products or activation by pro-inflammatory cytokines (Conductier 

et al., 2010). CCL2 in humans has been found at higher levels in serum of 

pancreatic cancer patients in comparison to healthy donors (Monti et al., 

2003, Ancuta et al., 2006). There is evidence in mouse models that 

increased expression facilitates metastasis and increased monocyte 

infiltration, and therefore tumour-associated macrophage (TAM) recruitment 

in a murine mammary carcinoma model (Qian et al., 2011). 

 

The translational relevance of monocyte population abundance in PDAC 

patients was revealed in study of a cohort of chemotherapy naïve surgically 

resected patients (Sanford et al., 2013). This study found that decreased 

presence of classical monocytes in the peripheral blood was associated with 

a better survival in patients. The patient group with higher monocytes counts 

had a higher incidence of lymph-node positive tumours. The ratio of bone 

marrow to blood monocytes was also decreased in the PDAC patients. It is 

hypothesised that the monocytes are mobilised from the storage reservoir in 

the bone marrow in response to recruitment signals present in PDAC 
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patients, in particular CCL2. This interaction has been identified previously in 

several pre-clinical models (Beatty et al., 2011, Denardo et al., 2011, 

Leuschner et al., 2011, Mitchem et al., 2012). 
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1.6.2 Monocytes and their precursors provide tumour-promoting cell 
types 

 

The mononuclear phagocyte system has been implicated in several stages 

of tumour development, promotion and maintenance. 

 

1.6.2.1 Myeloid derived suppressor cells 
 

The early stages of myeloid cell development can be affected in chronic 

conditions like cancer or persisting inflammation. This can lead to the 

accumulation of stunted immature progenitor cells that have been suggested 

to have a myeloid bias (Wesolowski et al., 2013). Immature myeloid cells are 

continually generated in the bone marrow of healthy people. However, in 

some pathologies and cancer, this process is halted, and immature myeloid 

cells, also known as myeloid derived suppressor cells (MDSCs) are 

generated. These are a heterogenous population of cells and it is 

hypothesised that they are created to avoid an over-reaction by the immune 

system in cases of chronic inflammation. In humans MDSCs are 

characterised by positive expression of CD11b, CD15, CD45 and CD33 but 

they do not express MHC-Class II HLA-DR or CD14 (Bronte, 2009, Ostrand-

Rosenberg, 2010). 

 

In cancer the impact of MDSCs might be described in two stages; the first 

being abnormal myelopoeisis. A rapid accumulation of MDSCs in the blood 

in patients with pancreatic cancer (Marigo et al., 2010, Verschoor et al., 

2013). MDSCs are recruited to the tumour microenvironment and the second 

stage is characterised by active cell-cell interactions and cytokine production. 

MDSCs infiltrating the PDAC tumour and are thought to promote tumour 

growth by production of reactive oxygen species and inducible nitric oxide 

synthase (Wormann et al., 2013). MDSCs have also been shown to 

suppress anti-tumour responses in particular effector T cell priming and 

activation (Gabrilovich et al., 2012, Steele et al., 2013). MDSCs isolated from 

PDAC patients express higher levels of inhibitory co-stimulatory molecule 
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Programmed Death Ligand 1 (PD-L1) and reducing expression of CTLA4, 

thereby causing a marked reduction T- cell proliferation contributing to 

suppression of anti-tumour host responses (Basso et al., 2013). 

 

 

 

1.6.2.2 Macrophages 
 

An inflammatory reaction can range from a limited leukocyte infiltrate to an 

intense desmoplasia. The stromal element often surrounding pancreatic 

cancer contains a significant proportion of macrophages recruited from 

classical monocytes that can act as a barrier for anti-tumoural immune cell 

infiltration (Kraman et al., 2010, Watt and Kocher, 2013, Feig et al., 2013) 

and contribute to cancerous growth by expression of cytokines and 

angiogenic growth factors (Korc, 2007, Matsuo et al., 2012, Poggi et al., 

2014).  

 

Macrophage infiltration in pancreatic cancer negatively influences survival 

and prognosis (Beatty et al., 2011, Mielgo and Schmid, 2013, Steele et al., 

2013). Patients with CD204+ infiltrating macrophages are reported to have a 

higher incidence of peritoneal metastases and recurrence (Sugimoto et al., 

2014).  Macrophages can promote chemoresistance by up-regulating 

production of cytidine deaminase, the enzyme that catabolizes gemcitabine 

(Amit and Gil, 2013). Inhibition of macrophage recruitment in pancreatic 

cancer reduces tumour volume, enhances responses to chemotherapy and 

decreases metastasis (Mitchem et al., 2012). 

 
One of the challenges faced in evaluation of human tumour specimens is a 

lack of clear markers for mature macrophages. CD68, one of the most 

commonly used markers has shown to also be expressed on fibroblasts 

(Ruffell et al., 2012). It is therefore vital to further elucidate the phenotype of 

macrophage subsets in order to target the tumour promoting populations and 

avoid subsets with essential immune function.  
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1.6.2.3 Dendritic cells 
 
Monocyte derived dendritic cells (MoDCs) play a pivotal role in initiation and 

regulation of tumour specific immune responses (Varol et al., 2007). The 

number of infiltrating MoDCs is reported to be associated with a better 

prognosis in breast cancer (Pinzon-Charry et al., 2006) and it hypothesized 

that their ability to effectively present antigens to cytotoxic T cells is 

beneficial. 

 

In pancreatic cancer, literature focuses mainly on the role of DCs in 

immunotherapy. Pulsing with tumour antigens ex-vivo and infusing back into 

the patients has been shown to increased percentages of tumour infiltrating 

functional CD4 and CD8 cells thereby improving therapeutic effects (Tan et 

al., 2011, Lewinski et al., 2014).  
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1.7 Targeting monocytes in cancer 
 

Current pre-clinical investigations into monocyte abrogation as an anti-

cancer strategy have shown promising results in murine models of breast 

and pancreatic cancer (Denardo et al., 2011, Mitchem et al., 2012). 

Clodronate has been previously used in many tumour studies to dissect the 

impact of macrophages on tumour progression (Zeisberger et al., 2006). An 

elegant study by Ahn (Ahn et al., 2010) showed that using a neutralising 

antibody to CD11b inhibited disease recurrence in xenograft models, after 

animals received radiotherapy for tumour control. 

 

The potentially simplest way to prevent tumour associated macrophage build 

up within solid tumours is targeting their recruitment. The recruitment of 

myeloid cells may not only be induced by the presence of the tumour but 

also by subsequent chemotherapy treatment. Administration of paclitaxel 

(PTX), a standard chemotherapy drug in patients with breast cancer, to 

mammary epithelial cells in vitro induced production of macrophage 

recruitment factors including CSF1 associated with TAM infiltration (Denardo 

et al., 2011).  

 

Monocyte recruitment often depends on CCR2/CCL2 interactions and, 

accordingly, genetic deletion of either has been shown to reduce 

inflammation in a number of models (Abdi et al., 2004, Dewald et al., 2005, 

Lu and Kang, 2009). Extending these findings, Leuschner et al devised an 

elegant system interrupting this interaction, using lipid nanoparticles 

containing short interfering RNA against CCR2. The results showed efficient 

degradation of monocyte CCR2 mRNA and subsequently reduced TAM 

infiltration in an implanted lymphoma model (Leavy, 2011, Shantsila et al., 

2011, Leuschner et al., 2011). In parallel, using a CCR2 inhibitor significantly 

reduceding TAM recruitment in a murine model of pancreatic cancer 

(Mitchem et al., 2012).  
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In a murine syngeneic orthotopic model of pancreatic cancer Mitchem et al., 

also used inhibitors against CCR2 (Pfizer’s (PF-04136309) and CSF1R 

(Plexxicon’s PLX-3397, a bispecific inhibitor of c-FMS and c-KIT rTKs, and 

CSF1Ri PLS6134 containing GW2850) both individually and in combination. 

This model is relevant to human PDAC as it recapitulates the hepatic and 

peritoneal metastases successfully. Individually, monocyte recruitment was 

reduced within 4 days. Inhibition of CSF1R in combination with gemcitabine 

reduced peritoneal metastases and increased survival. CCR2 inhibition also 

normalised tumour vasculature and improved delivery of chemotherapeutic 

agents (Mitchem et al., 2012). 

 

Compared with chemotherapy alone, Denardo showed, in a spontaneous 

murine mammary carcinoma model, that the Plexxicon (PLX-3397) inhibitor, 

which targets CSFR1, cKit and PDGFR improved chemosensitivity and 

overall survival. Early pre-clinical results suggest the compound reduced the 

volume of primary tumours and the number of circulating tumour cells and, 

primary tumours and metastases (Denardo et al., 2011, Hume and 

MacDonald, 2012). These findings support the beneficial effects of 

combining current treatment regimes with agents that inhibit key TAM 

recruitment factors. Plexxicon currently investigates PLX-33978 in early 

phase clinical studies in several solid tumour types including metastatic 

breast cancer (NCT01004861 and NCT01596751). The results from these 

studies are eagerly awaited. 
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The challenges faced in classification and understanding differentiation do 

not undermine the role of the monocytes. Strategically located in the 

peripheral blood to reach any destination, monocytes complement and 

provide dendritic cells and macrophage populations. The ability of monocytes 

and their descendants to read local cues and control the initiation and 

resolution of inflammation, play a vital role in cancer development and 

promotion. Manipulation of monocytes and their favourable plasticity has 

considerable potential for therapeutic intervention in inflammation and 

cancer. 

 

 As a first step, however, characterization of monocytes in pancreatic cancer 

is expected to yield information about how they may phenotypically differ 

from those in healthy donors. Comparison of monocytes with tumour-primed 

monocytes or macrophages may identify potentially useful peripheral 

biomarkers or therapeutic targets. 
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Chapter 2.  Aims 
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The aims of this project wereare: 

 

• To investigate whether there are differences in distribution and gene 

expression and metabolic profiles between classical monocytes from 

patients with pancreatic ductal adenocarcinoma compared with 

healthy volunteers 

 

• To identify and examine whether these are suitable as potential 

therapeutic strategies in targeting monocytes in PDACTo validate 

identified targets in a larger cohort and publicly available gene 

expression databases 
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Chapter 3.  Materials and Methods 
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3.1 Blood sample preparation and monocyte isolation 

3.1.1 Patient clinical characteristics 

This study was performed with ethical approval (REC05/Q0408/65) and 

written informed consent was obtained from all patients (n=28). Patients 

were assigned unique identifiers for the purposes of anonymisation.  

 

Patients were selected that had a confirmed diagnosis of unresectable locally 

advanced or metastatic stage III-IV pancreatic ductal adenocarcinoma. 

Patients with stage III show cancer spread into the local major blood vessels, 

such as the superior mesenteric artery, the portal vein, the celiac axis or the 

common hepatic artery. The cancer may also have spread into the local 

lymph nodes. Patients with stage IV have a pancreatic tumour of any size 

that has spread to distant organs, such as the liver or lungs or invaded into 

the peritoneal cavity.  Patients were excluded retrospectively if they were 

subsequently found to have an alternative diagnosis. Blood was taken before 

the first cycle of the chosen chemotherapy regime, so all included patients 

were previously chemotherapy untreated. Healthy volunteers were selected 

with no major health concerns (n=28). Healthy volunteers for gene 

expression analysis were age matched to be 60 years (+/-10 years). 
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3.1.2 Sample handling and storage 

 

3.1.3 Plasma 

Blood was collected in anti-coagulant treated EDTA vacutainer tubes 

(Beckon Dickinson Cat #K2E), which prevent clotting. These were 

preferential over heparinized tubes due to the potential contamination by 

endotoxins, which may stimulate cytokine release in white blood cells. 

 

Whole blood in vacutainer tubes was transferred to 50ml falcon tubes and 

centrifuged at 1600rpm (440xg) for 6 minutes at 4°C. All subsequent 

centrifugation steps were also at 4°C and 10,000rpm. The plasma 

supernatant was collected and aliquot into 1.5ml Eppendorf tubes. The 

plasma was centrifuged for 5 minutes and supernatant was transferred to a 

new Eppendorf, avoiding the cell pellet. The plasma supernatant was 

centrifuged again for 3 minutes twice more and the supernatant removed 

each time, to be aliquot for storage at -80°C avoiding freeze thaw cycles. 
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3.2 Monocyte isolation 

3.2.1 Ficoll isolation peripheral blood mononuclear cells (PBMCs) 

Ficoll Hypaque  (GE Healthcare Cat #17-1440) solution was used to isolate 

PBMCs.  This solution is designed to produce a density gradient for cell type 

separation from whole blood during centrifugation. This technique is simple, 

has been widely used for the last 30 years and results in a high yield and 

good purity population of mononuclear cells.  

 

Fresh blood was diluted with room temperature PBS. 25ml of the diluted 

blood was slowly pipetted at a regular speed on top of 15ml of Ficoll 

Hypaque solution in a 50ml falcon tube without perturbing the blood-Ficoll 

interface. The sample tubes were centrifuged at 2600 rpm at 19°C for 30 

minutes without hard braking. 

 

After removing the supernatant, the layer containing PBMC was isolated by 

using a pipette to slowly and gently collect the cells, which were 

resuspended in cold PBS up to a volume of 50ml. The PBMCs were 

centrifuged at 1600rpm for 10 minutes at 4°C to remove any remaining Ficoll 

solution, the supernatant was discarded and PBMCs resuspended in 50ml 

PBS for centrifugation at 1000rpm for 10 minutes. The pellet was 

resuspended in monocyte culture medium RPMI-1640 (PAA Cat #E15840) 

supplemented with 0.01% β-mercaptoethanol (Invitrogen Cat #31350), 10% 

fetal bovine serum (FBS) (Gibco Cat #16500), 100u/ml penicillin and 

100μg/ml streptomycin (PAA Cat #P11010) at 37C in 5% CO2 or FACS 

buffer (PBS with 0.05% BSA (Sigma Aldrich Cat #A4503) and 2mM EDTA 

(Life Technologies Cat #AM9262)). 
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3.2.2 CD14+ magnetic bead isolation 

Monocytes were isolated using anti-CD14 antibody labelled with magnetic 

MicroBeads (Miltenyi Biotec Cat #130-050-201) for positive selection. The 

principle is based on cell isolation from a mixed population using specific 

binding of antibody bound magnetic particles to a particular cell surface 

antigen. In this experiment, the PBMCs were incubated with anti-CD14 

conjugated beads and passed through a column placed in a magnetic stand. 

Positively labelled CD14+ cells were retained in the column as the unlabelled 

fraction was washed out. The CD14+ monocytes were then eluted from the 

column by removing it from the magnetic stand and flushing through with 

buffer. The purity of the resulting population was checked using flow 

cytometry. 

 

This technique is simple and rapid and results in cell suspensions with a 

good viability (>95%) and purity (>96%). The magnetic particles are small 

and non-toxic so they do not saturate or activate epitopes.  

 

After Ficoll separation, PBMCs were counted and resuspended in the 

appropriate amount of assay buffer (PBS pH 7.2, containing 0.5% BSA and 

2mM EDTA at 80μl /1x10^7 cells according to manufacturers instructions). 

PBMCs were incubated at 4°C for 15 minutes in the presence of the CD14 

MicroBeads. PBMCs were washed with assay buffer and centrifuged for 10 

minutes at 1500rpm. 1000μl of assay buffer was added to the MS column 

(Miltenyi Biotec Cat #130-042-201) connected to the magnetic stand. 

 

The cell suspension was added to the column and unlabelled cells were 

collected as flow through into a 15ml falcon tube on ice below. The column 

was washed 3 times with 500μl assay buffer to remove any unbound cells. 

The remaining CD14+ bound fraction was flushed out of the column by 

adding 1000μl assay buffer then forcing the cells from the column using the 

provided syringe plunger. The number of CD14+ monocytes was counted 

and the purity checked by measurement of CD14 expression by flow 

cytometry (Fig 5.1). 
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3.2.3 Fluorescence activated cell sorting (FACS) 

 

Flow cytometry is commonly used for immunophenotyping of cells in the 

peripheral blood as it has the advantage of being able to rapidly measure 

several cellular characteristics using light emitted from specific fluorescent-

conjugated antibodies bound to cells and cellular parameters of size and 

granularity using light scattering. 

 

When the labelled cells pass the light source, the antibody-conjugated 

fluorochomes are excited to a higher energy state. As they return to resting 

state, the fluorochromes emit energy as light at a higher wavelength, which is 

detected by photomultiplier tubes. Using multiple antibody-conjugated 

fluorochromes that are excited by a similar wavelength, but with different 

emission wavelengths, allows detection of several cellular markers in the 

same sample. 

 

Using the Aria II, a combination of up to 12 colours can be used, allowing a 

high number of antibody variations to be tested. This flow cytometer can also 

be used to electrostatically sort cell populations as they form droplets in 

pressurized sheath fluid as they break away from the solid stream 

immediately after the moment of analysis. The principle is based on applying 

to each droplet a positive or negative charge. As the droplets pass between 

two charged plates they are attracted to the plate of opposite polarity and 

deflected into separate collection tubes. The Aria can collect up to 4 different 

cell population collection tubes. 

 

FACS is rapid and can be carried out in a closed aseptic environment to 

allow sorted cells to be kept sterile and used in culture. The purity and 

viability are high and the yields consistent. The use of CD14 and CD16 to 

define monocytes is well established and supported in the literature to define 

the three sub-populations (Cros et al., 2010, Ziegler-Heitbrock et al., 2010, 

Heimbeck et al., 2010). This gating strategy was chosen at the start of this 
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project, as defined by Heimbeck et al., in 2010, to be a simple standardized 

method for analysis. 

 

Samples used in this investigation were collected fresh on the same day to 

avoid an overnight incubation. Comparison studies by Affymetrix show that 

overnight storage of blood significantly alters the transcriptome compared to 

fresh PBMCs (according to the Affymetrix technical data sheet). 

 

Prior to FACS, the blood was treated with a red blood cell lysis buffer. This 

reduces the time spent by sorting to remove unwanted cells from the sort. 

The treatment with RBC lysis buffer has not been shown to detrimentally 

affect monocyte viability or gene expression (Mallone et al., 2011). This is 

also preferable to Ficoll treatment, which has also been shown to affect gene 

expression (Beyan et al., 2010, Martinez, 2012). 

 
FACS was chosen to isolate monocyte subsets for gene expression analysis. 

FACS was shown to have the highest purity and viability (>96% and >91% 

respectively) compared with positive or negative selection using magnetic 

beads. This is of extra importance when evaluating gene expression, as the 

presence of other leukocytes can affect the relative gene expression, 

introducing bias. 

 

To isolate monocytes using flow cytometry, peripheral venous blood samples 

(15-20ml) were taken from patients or age-matched healthy volunteers and 

processed within 24 hours.  Blood was transferred to 50ml falcon tubes and 

centrifuged at 1500 rpm for 3 minutes to remove plasma, which was then 

stored at -80°C (section 3.1.3). Erythrocytes were lysed using red blood cell 

lysis buffer (Beckton Dickinson Cat #555899). This buffer contains NH4Cl, 

and selectively affects the erythrocytes to take up excess water due to 

osmotic pressure, until the cell membrane becomes stretched to capacity 

and bursts. The whole blood was treated for 5 minutes in this buffer, 

centrifuged and the remaining cell pellet washed with 50ml PBS. The 

resulting cell suspension, containing mononuclear and lymphocytic cells, 

granulocytes and platelets, was centrifuged (5 minutes at 1600rpm/461xg) 
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and re-suspended in fluorescence activated cell sorting (FACS) buffer (PBS 

with 0.05% BSA (Sigma Aldrich Cat #A4503) and 2mM EDTA (Life 

Technologies Cat #AM9262). Cells were treated with Fc receptor blocking 

agent (eBioscience Cat #16-0161-86) 1:100 in FACS buffer for 10 minutes at 

4°C.  

 

Antibodies were diluted as shown below in Table 3.1 and incubated with cells 

at 4°C for 30 minutes before centrifugation (5 minutes at 1600rpm/461xg) to 

wash the cells and re-suspension in flow cytometric buffer for acquisition. 
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Antibody 
 
(Cat#) 

Fluorochrome Dilution Isotype 
Control 

Expressed on

CD14 
(558121) 

Pacific Blue 1:50 Mouse IgG2a, 
ĸ 

Monocytes 
Interfollicular 
macrophages, 
resident dendritic 
cells 

CD16 
(557744) 

PeCy7 1:100 Mouse IgG1 ĸ Natural Killer Cells 
Monocytes 
Macrophages 
Granulocytes 

HLA-DR 
Class II 
(560896) 
 

FITC 1:100 Mouse IgG2b 
ĸ 

B cells, activated T 
cealls and antigen 
presenting cells. 

CD19 
(555413) 

PE 1:25 Mouse IgG1 ĸ Expressed at all 
stages of B cell 
differentiation 

CD15 
(555402) 

PE 1:50 Mouse IgM ĸ Granulocytes. 

CD56 
(555516) 

PE 1:50 Mouse IgG1 ĸ Expressed on 
large granular 
lymphocytes and 
natural killer cells. 

NKp46 
(557991) 

PE 1:50 Mouse IgG1 ĸ Resting and 
activated natural 
killer cells. 

CD2 
(555327) 

PE 1:50 Mouse IgG1 ĸ T cells  
NK cells 

CCR2 
(558406) 

Alexa 647 1:40 Mouse IgG2b 
ĸ 

Classical 
monocytes 

Table 3.1 Multi-colour flow cytometry panel of antibodies used to sort 
monocytes from peripheral blood.  

All antibodies were ordered from Beckton Dickinson. The table shows the 
catalogue number, dilution, appropriate Isotype and expression on cell 
surface. 
 

The gating strategy used to isolate Monocyte populations using FACS can 

be seen in Figure 4.1. Flow cytometric acquisition was performed using 

FACS Aria II and the same operator carried out all sorting. Analysis was 

carried out using FlowJo 8.8.6 software. Sorted monocyte populations were 

collected into FACS buffer and centrifuged for 20 minutes at 13,000rpm 
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(15682xg). Cell pellets were resuspended in 350μl of RLT buffer (Qiagen 

micro kit component Cat #74004) for storage at -80°C. 

 

Monocyte population purity was verified using flow cytometry. Purity checks 

are carried out by re-acquiring 1000 cells to check expression on every 

sorted cell population and purity is expected to be above 95% (as shown in 

Figure 5.1). 
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3.3  Gene expression analysis 

3.3.1 RNA isolation 

An on-column solid phase RNA isolation kit using centrifugation and filter 

columns from the Qiagen RNeasy Micro kit (Qiagen Cat #74004) was used 

in this project. After lysing samples in the presence of guanidine salts, 

samples were passed through the filter using centrifugation and nucleic acids 

bind due to low pH and high salt concentration. At this stage, an on-column 

DNase treatment can be carried out to remove genomic DNA. The column 

was washed with ethanol to dry the membrane, and RNA eluted using water. 

This method is very quick and convenient, however must be optimised to 

prevent over-loading due to the fixed binding capacity and to prevent filters 

clogging with particulate material.  

 

RNA was isolated from monocytes according to manufacturer’s instructions.  

350μl of fresh 70% ethanol was added to the lysed cells in RLT solution and 

mixed well by pipetting. The sample mix was transferred to an RNeasy 

MinElute spin column and placed in a 2ml collection tubes to be centrifuged 

for 15 seconds at 10,000rpm (9279xg). The flow-through was discarded and 

350μl of RW1 buffer was added to the RNeasy MinElute column to desalt the 

filter prior to centrifuging again at 13,000rpm (15682xg) for 15 seconds. An 

additional on-column DNase I treatment step was included to eliminate 

potential genomic DNA contamination. The spin column was washed and 

dried with 80% ethanol, placed in a new 1.5ml labelled collection tube, and 

14μl of RNase-free water added directly to the centre of the membrane. The 

column was left to sit for 1 minute before centrifuging at 13,000rpm 

(15682xg) for 1 minute to collect the RNA eluate.  

 

RNA concentration was measured using a Nanodrop Spectrometer (Thermo 

Scientific Cat #ND1000). The ratio between the absorbance at 260 and 

280nm gives an indication about the purity of the nucleic acids. This ratio 

should be around 2 and if lower means there is protein contamination of the 

sample.  
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The RNA integrity was assessed with Agilent RNA 6000 Pico Kit  (Agilent 

Technologies Cat #5067-1513) using the Agilent Bioanalyser 2100 (Agilent 

Technologies) as per manufacturer’s instruction. The RNA integrity number 

(RIN) is calculated by the software to assign an integrity value to evaluate 

the degree of fragmentation. RNA is thermodynamically stable, however it is 

readily fragmented by the presence of RNase. Using electrophoretic 

separation, these shorter fragments can be detected by the software as 

signal between the 5S and 18S bands.  

 

Due to the limited RNA quantities isolated from monocytes from individual 

donors, the Nugen Ovation whole transcriptome amplification kit (Cat No 

#3302 Version 2) was used to increase cDNA yield suitable for hybridization 

on Affymetrix GeneChip as indicated in section 3.3.5.  
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3.3.2 Quantitative polymerase chain reaction (qPCR) 

 

3.3.3 cDNA synthesis 

 

Complementary DNA is a DNA copy synthesised from mRNA. cDNA is 

easier to work with in PCR reactions, as RNA is has a short half lifehalf-life 

and is very easily degraded. 

 

An in house cDNA synthesis protocol was used to generate cDNA. The 

reaction master mix was created using first strand buffer (1X Life 

Technologies Cat  # 18067017), dithiothreitol (10mM Life Technologies Cat 

#D1532), deoxynucleotide triphosphates (dNTPs) (0.5mM Promega Cat 

#U1240), random hexamers (12.5ng/µl Promega Cat #C1181), oligo dT 

15mers (6.25ng/µl Promega Cat #C1101) RNasin (1U/µl Promega Cat 

#N2111) and SuperScript (5U/µl Invitrogen Cat #18064-014). Required 

concentrations were given per sample reaction. 8.75µl of master mix was 

distributed per sample. 

 

RNA concentrations were normalised across samples and the appropriate 

volume was added to the master mix to ensure equivalent concentration in 

each sample. Distilled RNase free water was added to make up the volume 

to 20μl per sample reaction. Reactions were run in a thermal cycler for 10 

minutes at 25°C, 60 minutes at 42°C, 5 minutes at 90°C and cooled to 4°C. 

cDNA product was stored at -20°C until further use. 

 

3.3.4 qPCR 

 

Quantitative Polymerase chain reaction qPCR wasis used to determine the 

relative amounts of targeted genes by primer-driven amplification and 

subsequent quantification. The relative gene expression is was calculated by 

the threshold value determined by the number of cycles required to reach a 

defined DNA concentration in real time. 
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For each qPCR reaction, diluted cDNA corresponding to 5ng of total RNA 

was made up to 9µl using RNase free water. 10µl of 2X qPCR mix (Life 

Technologies Cat #4369016) and 1µl of Fam labelled target gene primer 

(Table 3.2) were added to each sample to create a final volume of 20µl. 

 

 

Reference: Symbol Name Amplicon Design 

Hs00327243_m1 
RASGEF1B RasGEF domain 

family, member 
1B 

67 E4-E5 

Hs00166165_m1  EGR2 Early growth 
response 2 66 E1-E2 

Hs00231780_m1 EGR3 Early growth 
response 3 91 E1-E2 

Hs00188486_m1  CD83 CD83 molecule 104 E3-E4 

Hs00198935_m1 

MARCO Macrophage 
receptor with 
collagenous 
structure 

122 E4-E5 

Hs01124179_g1  FOLR1 Folate receptor 1 
(adult) 116 E4-E5 

Hs03044361_m1  
CYBA Cytochrome b-

245, alpha 
polypeptide 

159 E4-E5 

Table 3.2 Primers for gene expression validation  

Primers were purchased from Applied Biosystems. The table shows the 
reference, gene symbol, gene name, amplicon and design. 
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3.3.5 Transcriptome amplification 

 

The Ovation Pico Whole Transcriptome Amplification kit (Nugen Cat #3302) 

was used to create cDNA for single primer isothermal amplification (SPIA). 

This type of amplification uses sensitive strand displacement methods to 

amplify the whole genome. This type of robust amplification can be carried 

out on samples with limited quantity RNA. 

 

Single stranded cDNA was generated using 50ng total input RNA using a 

primer mix containing a unique mixture of random and oligo dT primers 

across the whole transcript. The amplification step uses RNaseH to remove 

the RNA portion of the SPIA tag sequence, which reveals the binding site for 

the primer. DNA polymerase synthesizes cDNA in the 5’ direction, which 

displaces the existing strand and this process was repeated thus creating 

double stranded cDNA.  

 

The cDNA was purified using Agencourt RNAClean XP beads (Beckman 

Coulter Cat #A63987) and subsequent product was purified again for 

hybridisation using Qiaquick PCR purification (Qiagen Cat #28104) protocol, 

as recommended by Nugen. The purified, amplified cDNA product can be 

stored at -20°C at this stage. 
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3.3.6 Gene Chip hybridisation  

 

Fragmentation of the created cDNA and biotin labelling was carried out using 

labelling master mix from the Encore Biotin Labelling module kit (Nugen Cat 

#4200).  

 

Array hybridisation was carried out using the Affymetrix Hybridisation Wash 

and Stain kit (Affymetrix Cat #900720). Affymetrix Human U133 

GeneChipsGene Chips 2.0 plus were run at Barts Cancer Institute platform, 

with support from Tracy Chaplin-Perkins. 

 
Affymetrix Gene Chips are designed to measure the expression of particular 

genomic sequences using probes. Probes matching the target mRNA 

sequence exactly consist of hundred of short oligonucleotide strands (25-

mer). Once the RNA samples have been transformed and amplified into 

complementary DNA, it is fragmented and labelled with biotin, and these 

fragments are washed over the gene chip during hybridisation. These 

fragments bind to their specific complementary oligonucleotide sequences on 

the probes. A fluorescent dye is then washed over the chip, which binds to 

the biotin labels creating a ‘map’ of probe specific fluorescence intensity 

data, which can be used to infer to the expression levels of the relative 

abundance of specific mRNA sequences in the transcriptome. 
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3.3.7 Data Normalisation 

 

Scanned images and raw data were normalised using the GeneChip Robust 

Multi-Array average (GC-RMA) algorithm implemented in the Partek 

‘Genomics Suite’ analysis software (Partek Incorporated). The result was a 

spreadsheet with 54,000 lines (probe sets) and 8 columns.  The quantitative 

expression values are shown in log base 2 format. 

 

Gene Chip normalization was required to compare the relative levels of 

mRNA between samples. Robust Multi-array Average (RMA) is a 

normalisation procedure that corrects the background level of fluorescence 

intensity and normalises the probe level information. However, it does not 

take into account an inbuilt control on these gene chips designed to measure 

non-specific binding. Affymetrix gene chips contain between 11-20 probes at 

different locations across the gene chip, known as a probe set.  Each probe 

is designed to have a matched probe known as a ‘mismatch probe’ (MM 

probe) these differ to their paired ‘perfect match probe’ (PM probe) by one 

nucleotide at position 13 which should be incorrect for the target sequence. 

This allows the signal produced by the mismatch probe to be subtracted from 

the perfect match probe to define the true signal and therefore takes into 

account background noise produced by non-specific binding.  

 

RMA normalisation alone does not take the fluorescence intensity of the mis-

match probes into account. Therefore GeneChip RMA (GC-RMA) is used to 

account for the information provided by the mismatch probes for more 

accurate gene expression values. 
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3.3.8 Data analysis 

 

Data analysis was carried out using R labs at Barts Cancer Institute with 

support from Dr Raphael Zollinger. 

 

An independent filtering step was performed to remove probe sets below 

detection level (Affymetrix log2 fluorescence intensity 3.5) in all samples.  

Genes that were not considered to be differentially expressed have a lower 

than 2-fold change in mean expression between PDAC and healthy, were 

considered irrelevant and removed. A gene was classified as differentially 

expressed if the fold change between healthy and cancer was greater than 

or equal to 2 and the p-value of the t-test lower than or equal to 0.05. 
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3.4 In vitro cell culture 

3.4.1 Monocyte culture conditions 

 

Monocytes isolated from peripheral blood were cultured immediately in 

monocyte culture medium RPMI-1640 medium (PAA Cat #E15840) 

supplemented with 0.01% β-mercaptoethanol (Invitrogen Cat #31350), 10% 

fetal bovine serum (FBS) (Gibco Cat #16500), 100u/ml penicillin and 

100μg/ml streptomycin (PAA Cat #P11010) at a concentration of 1x10^6/ml. 

Monocytes were cultured at 37°C in 5% CO2. 

 

3.4.2 Monocyte stimulation conditions 

 

Monocytes in culture were plated at 1x10^6/ml. For whole cell lysates 

monocytes were plated in 1ml in a 6 well plate (9.5m2 growth area) and, for 

gene expression analysis, monocytes were plated in 200μl of monocyte 

culture medium. 

 

 

3.4.3 M-CSF and MEK inhibitor U0126 

 

Fresh Monocytes were plated and stimulated with human recombinant M-

CSF (100ng/ml Peprotech Cat #300-25) and treated with or without the 

presence of a MEK-1,-2 specific inhibitor (10μM Sigma Aldrich Cat #U012). 

Stimuli were added simultaneously and incubated 37°C in 5% CO2. 
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3.5 Immunoassays 

 

3.5.1 Mesoscale discovery 

 

Mesoscale Discovery Human Pro-Inflammatory 9-Plex Ultrasensitive Kit 

(Mesoscale Discovery Multi-spot assay system Cat #K15007C2) was used to 

determine cytokines in human plasma.  

 

Mesoscale discovery (MSD) multiplex arrays were used to profile these 

samples instead of traditional enzyme linked immunosorbent assay 

techniques (ELISA). The volume loaded into each well is reduced compared 

with ELISA as less sample is required to coat the bottom of the well, the 

sensitivity is much higher and multiple cytokines can be measured in the 

same sample.  

 

Plasma was prepared as above in section 3.1.3 and used straight from 

storage in -80°C avoiding freeze thawing. 

IL-2 IL-8 IL-12p70 IL-1β TNF-α 

IFN-ϒ IL-6 IL-6 GM-CSF  

Table 3.3 Pro-inflammatory cytokines multiplex analysis Mesoscale 
discovery plate. 
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MSD is a single-plex assay that allows the detection of multiple protein 

targets using specific spatially defined electrodes within a well. The Figure 

3.1 below indicates these principles. 

 

Figure 3.1 Principles behind the MSD assay 

Samples are added as well as specific labelled detection antibodies. Sample 
analytes bind to capture antibody electrode spots immobilised on the bottom 
of the well and labelled detection antibodies are recruited and bind to form a 
sandwich. The MSD buffer then provides the appropriate environment for 
electrochemiluminescence and the MSD plate is read inside an MSD Sector 
plate reading instrument. 
 

All reagents were brought to room temperature and calibrator solution was 

thawed on ice. Prior to the assay, the following solutions and standards were 

prepared. The diluted stock calibrator solution was prepared using 10μl of 

Pro-inflammatory 9-plex-calibrator blend in 990μl of Diluent 2. The highest 

calibrator point as shown below (STD-01) was prepared by adding 50μl of 

the previously diluted stock calibrator to 150μl of diluent 2 and subsequent 4-

fold serial dilutions were created to cover a range from 2500pg/ml to 

0.61pg/ml. Detection antibody solution was diluted 50X to create a 1X 

solution known as Diluent 3. Read buffer was diluted 2-fold in deionized 

water. 

 

Duplicate calibrator samples were run to create a standard curve with a wide 

dynamic range. The standard curve model uses the least squares fitting 

algorithm to calculate the concentration of analyte in the sample. 
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Standard Calibrator blend concentration 
[pg/ml] 

Stock 1000000 

Diluted Stock 10000 

1 2500 

2 625 

3 156 

4 39 

5 9.8 

6 2.4 

7 0.61 

8 0 

Table 3.4 Standard dilutions required to determine cytokine 
concentrations using MSD multiplex kit. 

 

The assay protocol was followed as per the manufacturer’s instruction at 

room temperature and 25μl of Diluent 2 was added to each well, the plate 

sealed and incubated for 30 minutes with vigorous shaking (300-1000rpm). 

25μl of undiluted plasma or calibrator solution was added into separate wells 

of the MSD plate, which was sealed and incubated for 2 hours with vigorous 

shaking. The plate was washed 3 times using PBS-T (PBS-Tween) before 

addition of 25μl of 1X Diluent 3 detection antibody to each well. The plate 

was sealed and incubated for 2 hours with vigorous shaking. The plate was 

washed 3 times using PBS-T and 150μl of read buffer added to each well 

before the plate was read immediately using the Sector Imager (Mesoscale 

Discovery). 
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3.5.2 Tissue immunofluorescence 

 

The principles behind immunofluorescent staining are similar to 

immunohistochemistry. The staining procedure used in this investigation 

was indirect as secondary antibodies are conjugated to fluorochromes. 

These are excited by laser and emit light at different wavelengths, which 

can be measured using a confocal microscope. This provides the advantage 

of measuring multiple markers simultaneously due to differing emission 

wavelengths enabling co-localisation of specific antigens. Counterstaining 

can also be used to identify cell nucleus using nuclear stain such as DAPI. 

 

Human pancreas samples were fixed in formalin and embedded into 

paraffin at 5μm thick. Slides were deparaffinised using Xylene (Fisher 

Scientific Cat #H/1800/15) and dehydrated through ethanol (Sigma Aldrich 

Cat #E7023). 

 

Xylene   2 x 5 minutes   

100% ethanol 2 x 5 minutes    

95% ethanol  2 x 2 minutes       

70% ethanol 2 x 2 minutes       

50% ethanol  1 x 2 minutes       

Distilled water  2 x 2 minutes   

 

Slides were immersed in 1X antigen unmasking solution (Vector Cat  #H-

3300) in distilled water and placed in a slide container with a loose fitting lid. 

This chamber was transferred into a large beaker containing water to jacket 

the slide container. The slides were heated in a microwave for 9 minutes at 

full power, before the slide container was removed and allowed to cool for 

15 minutes at room temperature. The slides were washed three times in 

PBS and a hydrophilic marker pen (Vector Cat #H4000) was used to mark a 

barrier around the sections. Sections were permeablised using 0.1% Triton-

X100 (Sigma Aldrich Cat #X100) in PBS for 5 minutes at room temperature 
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before being washed in PBS. Sections were quenched using 50nM 

ammonium chloride (NH4Cl) (Sigma Aldrich CAT #A4934) in PBS for 15 

minutes at room temperature. 

 

After quenching with NH4Cl as above, wash slides in PBS for three minutes 

and block for 30 minutes at room temperature in 2% BSA in PBS. Aspirate 

the blocking buffer and add the uncoupled primary antibody solution.  

 

Antibody Cat # Concentration Isotype
CD68 Abcam 

AB63896 
1:80 Rabbit IgG 

EGR2 Thermo 
Scientific PA1-
46019 

1:2500 Rabbit IgG 

EGR3 Cell Signalling 
2559 

1:750 Rabbit IgG 

 

Table 3.5 Primary and secondary antibodies used for 
immunohistochemical analysis in pancreatic tissue.  

 

Primary antibody solution was aspirated and the slides washed three times in 

PBS-T before a 1-hour incubation at room temperature with fluorescence 

labelled secondary antibody. The antibody solution was aspirated and the 

slides washed 3 times for 5 minutes and once in water before dehydration in 

100% isobutanol. The slides were then mounting in DPX containing DAPI 

(Life Technologies Cat #P-36931). 
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Chapter 4.  Monocytes, subset distribution 
and pro-inflammatory cytokine profiling 
in the peripheral blood.  
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4.1 Introduction 

 

The peripheral blood is an easily accessible non-invasive source for analysis 

of biomarkers of disease such as cells or molecules. Blood is taken routinely 

from patients with PDAC, assessing a number of parameters to evaluate 

patient suitability for systemic treatment and well being.  

 

Clinical blood test samples are subjected to automatic analysis using a flow 

cytometer. Monocytes make up 1-9% of blood leukocytes (Hubl et al., 1995). 

The monocyte concentration in the blood can be used as a helpful indicator 

of various inflammatory conditions or infection (Brew et al., 2004, Sasaki et 

al., 2006). A marked increase of monocytes in the peripheral blood is known 

as monocytosis. Monocytosis (>800 monocytes per microliter) has been 

shown to be associated with cardiovascular disease, stroke and sepsis as 

well as long standing chronic inflammatory conditions like rheumatoid 

arthritis and kidney disease (Maekawa et al., 2002, Waterhouse et al., 2008, 

Heine et al., 2008, Rogacev et al., 2011). A marked reduction in monocyte 

numbers is known as monocytopenia, which can point towards an 

immunodeficiency (Calvo et al., 2011). 

 

Acute monocytic leukaemia is a progressive malignant disease, where 

proliferation and production of monocytes is distorted and increased in the 

bone marrow, leading to more monocytes in the blood (Moore et al., 2013). 

Myelomonocytic leukaemia is a chronic malignant condition of the 

myelocytes and monocytes and also contributes to a higher number of 

circulating monocytes (Koike and Matsuda, 2013, Lachenaud et al., 2014).  

 

Pancreatic cancer is associated with significant inflammation (Steele et al., 

2013).  It is known that monocyte counts, levels of CCL2 (monocyte 

chemoattractant protein 1) and CRP levels are correlated in patients with 

acute pancreatitis (Rahman et al., 2004, Regner et al., 2008, Fu et al., 2012) 

and pancreatic cancer (Mitchem et al., 2012). Neoplastic tissue damage 

through hypoxia or necrosis combined with oncogene activation and pro-
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inflammatory cytokine signalling recruits monocytes to the tumour 

microenvironment. Once exposed to the tumour microenvironment they 

contribute to tumour-associated macrophageTAM infiltration and promote 

PDAC development as discussed previously. A recent study showed that an 

increase in the number of classical monocytes in the peripheral blood of 

pancreatic cancer patients is thought to be due to mobilisation of monocytes 

from the bone marrow in response to increased myeloid recruitment factor 

CCL2 signalling (Sanford et al., 2013).  

 

The identification of three distinct subsets of monocyte in the peripheral 

blood and the use of multi-colour flow cytometry allows the distribution to be 

examined. Extracellular expression of CD14 and CD16 are measured to 

differentiate between subsets. This study aims to investigate whether the 

presence of PDAC and its associated inflammatory response affects 

monocyte distribution in the peripheral blood of patients compared with 

healthy. 
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4.2 Aims: 

The aims of this chapter are to: 

• Examine absolute monocyte counts relative to the clinical 

characteristics of PDAC patients compared to normal levels 

• Identify whether pro-inflammatory cytokines in the plasma are affected 

by the presence of PDAC compared with healthy volunteers 

• Define and compare monocyte subset distribution in the peripheral 

blood of PDAC patients compared with healthy donors 
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4.3 Results 

4.3.1 Clinical Characteristics 

 

The numbers of healthy volunteers and patients with PDAC included in this 

project are summarised below in Table 4.1. . 

Total numbers Healthy PDAC
Healthy donors n=28 n=28 
    
Age   Mean SD
Healthy volunteers 61.8 3.6 
PDAC patients 65.7 7.9 
    
Sex   F M
Healthy volunteers 15 23 
PDAC patients 12 19 
    
Diabetes   Y N
Healthy volunteers 0 28 
PDAC patients 6 11 
    
Smokers   Y N
Healthy volunteers 1 27 
PDAC patients 12 5 

Table 4.1 Healthy volunteer and patient sample numbers and 
characteristics 

Results are expressed as the number of individuals in each category. The 
age matched healthy volunteers are represented for gene expression 
analysis only (n=11). Healthy volunteers for flow cytometry age range from 
22-65. PDAC patients with unknown diabetes status (n=119) unknown 
smoking status (n=110). 
 

The patient sample cohort represents similar sample size. The PDAC patient 

cohort however consisted of more smokers and patients with diabetes 

compared with the healthy volunteer group. 
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Blood test results were taken when each patient had their initial consultation 

after diagnosis, at the same time samples were taken for this project. Blood 

was taken in advance of any chemotherapy treatment so all included patients 

were previously untreated. The results are shown in Table 4.2 

 

  Normal PDAC

CA19.9 (units/mL) 0-35 1510.12 ± 1831.86 

Bilirubin (μmolM/L) 1-21 18.85 ± 20.6 

Alkaline phosphatase (x10^9/L) 30-300 251.52 ± 217.68 

Monocyte count (x10^9/L) 0.3-0.9 0.85 ± 0.73 

WBC count (x10^9/L) 4-11 9.46 ± 6.36 

 

Table 4.2 Differential blood count test results comparing PDAC patients 
with healthy range  

Differential blood counts for CA19.9, Bilirubin, alkaline phosphatase, 
monocyte counts and white blood cell counts. Normal ranges as used at 
Barts Hospital. PDAC patients (n=28) values expressed as mean ± SD. 
 

The range of CA19.9 in the blood of the PDAC patients was increased 

compared with the normal range and the patient values were spread over a 

large range (from 30 – 5678, mean ± SD 1510.12 ± 1831.86). The normal 

range for bilirubin presence in the blood is 1-21 μM/L in the blood and mean 

value in the PDAC patients was at the higher end of the normal range (mean 

± SD, 18.85mg/dL ± 20.6). The alkaline phosphatase mean expression level 

in the PDAC patients was also towards the top end of the normal range 

(mean ± SD 251.52 ± 217.68). 

 

Monocyte counts were within the normal range but towards the higher end 

(mean  ± SD 0.85 ±0.73) as were white blood cell counts (mean ± SD 9.46 ± 

6.36). 
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Each parameter was plotted against another to determine if any correlation 

between them could be identified. The table below shows the r-squared 

values as determined by this analysis. 

 

X-axis Y-axis r-squared p-value
Alkaline 
phosphatase 

White blood cell 
count 

0.2621 0.025 

Alkaline 
phosphatase 

Monocyte count 0.07351 0.2765 

Monocyte count White blood cell 
count 

0.1097 0.3197 

CA19.9 Alkaline 
phosphatase 

0.04382 0.3897 

CA19.9 White blood cell 
count 

0.01823 0.5815 

Bilirubin White blood cell 
count 

0.01823 0.5815 

CA19.9 Monocyte count 0.006079 0.751 
Bilirubin Monocyte count 0.006079 0.751 
Bilirubin Alkaline 

phosphatase 
0.004438 0.7928 

CA19.9 Bilirubin 0.0007397 0.912 
 

Table 4.3 Clinical parameter goodness of fit in PDAC patients 

Table expressing r-squared correlation co-efficient values as determined 
using GraphPad Prism. P-values <0.05 considered significant. Correlations 
ranked using p-value. 
 

These results show there is no statistical correlation between clinical blood 

test parameters in PDAC patients apart from a statistically significant 

increase in white blood cell count occurring at the same time as a rise in 

alkaline phosphatase levels (p<0.05). 
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4.3.2 Monocyte distribution is affected in the peripheral blood of PDAC 
patients compared to healthy donors. 

 

Monocyte counts for patients are assessed in the clinic routinely as part of 

their initial consultation and diagnosis. Although this is also assessed using a 

basic flow cytometer, the differential subsets are not quantified in the clinical 

tests. This can be done using a simple multi-colour panel to examine HLA-

DR, CD14 and CD16 expression whilst excluding other cell types present in 

the blood sample like B cells, T cells or natural killer cells. This type of 

investigation has not been published currently in pancreatic cancer patients. 

 

To examine monocyte subset distribution in PDAC patients compared with 

healthy donors, multi-colour flow cytometric analysis was used to define 

monocyte subset using cell surface expression of CD14 and CD16. Total 

monocytes in fresh peripheral blood were selected as HLA-DR positive and 

negative for a cocktail of lineage markers to exclude B and T cells as well as 

granulocytes, natural killer and dendritic cells. Classical monocytes were 

defined as expressing CD14++ CD16-, intermediate express CD14++ CD16+ 

and non-classical express CD14dim CD16++. The gating strategy used to sort 

the monocyte populations is shown below. 
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Figure 4.14.1 Monocyte subset definition using flow cytometry 

Monocyte and leukocyte populations were selected from this classic blood 
profile (4.1.A) using side and forward scatter properties measuring 
granularity and size respectively in a healthy volunteer. A gate was created 
around lymphocytes and monocytes avoiding granulocytes and cell debris. 
Figure 4.1.B was used to exclude cell doublets by plotting area versus width. 
In Figure 4.1.C, a negative lineage selection cocktail in the phycoerythrin 
(PE) channel against CD2, CD15, CD19, CD56 and NKp46 (Table 3.1) was 
used to exclude other peripheral blood cells.  (as indicated in table X above). 
The gate was placed around the Human Leukocyte Antigen class II (HLA-
DR) positive, PE negative population. Figure 4.1.D plots CD14 versus CD16 
to define the three populations as mentioned above (N-C non-classical, I 
intermediate, C classical). Figure 4.1.E shows representative CCR2 
expression exclusively on the classical monocyte population, and was used 
to define the interface between the subsets. 
  

N-C I 

C 
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Subsets were gated as shown in the methods. The three sub-populations 

were defined using CD14 and CD16 expression and positive expression for 

CCR2, exclusively in the classical CD14++ CD16- population. These gates 

are well characterised and published as standard strategy to identify 

monocyte sub-populations (Heimbeck et al., 2010, Pandzic Jaksic et al., 

2010, Shantsila et al., 2011, Ferrer et al., 2014). 

 

Monocyte subset definition is defined by the gated percentage of monocyte 

populations in gate from Figure 4.1.D as shown above of the HLA-DR+ 

lineage cocktail negative cells. Figure 4.2 shows a representative flow 

cytometric plot of a PDAC patient compared with a healthy volunteer. It can 

be seen that the distinctive shape of the dot plot is altered by the presence of 

cancer in these representative images.  
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Figure 4.2 Representative image of the change in Monocyte distribution 
comparing healthy donor blood with blood from a PDAC patient.  

Data shown as a representative flow cytometric plot (gated as such in Figure 
4.4.1.D) using CD14 and CD16 expression on HLA-DR positive cells and 
lineage cocktail negative population. Fresh blood sample after red blood cell 
lysis from one healthy volunteer (left) and one PDAC patient (right). 
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The calculated percentages of MHC Class II positive monocytes were plotted 

for 28 healthy donors and 20 PDAC patients. The results are expressed in 

Figure 4.3 below. 

 

 
 

Figure 4.3 Monocyte subset distribution in PDAC patients compared to 
healthy volunteers  

Quantification of the percentage of cells in each defined subset of the 
number of MHC-Class II HLA-DR positive cells. Figure A shows non-
classical monocyte population CD14dim CD16++. Figure 4.3.B shows the 
intermediate population CD14++ CD16+ monocytes. Figure 4.3.D shows the 
classical monocytes CD14++ CD16-. Figure 4.3.C shows the flow cytometric 
distribution from FlowJo analysis. X-axis - CD14 expression, Y-axis – CD16 
expression of HLA-DR positive cell populations in whole blood. Dot plot to 
delineate distribution of cellular populations per individual (median = 
horizontal line), Mann Whitney test was used to calculate p values).  
 

  

A B 

D C 
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The classical monocyte population is the most abundant in the peripheral 

blood making up approximately 80-90% of total monocytes (Hubl et al., 1995, 

Brew et al., 2004, Rogacev et al., 2011). In this patient cohort the median 

value does not appear to be affected by the presence of PDAC compared to 

healthy volunteers (meanmedian ± SD: PDAC 66% ± 11.2%; HV 70.85% ± 

10.7% respectively, using Mann-Whitney statistical test p<0.05). The 

intermediate population is increased in the peripheral blood of the PDAC 

patients compared to healthy (PDAC 4.2% ± 1.09%; HV 2.7% ± 1.32% 

respectively; p=0.0018) and the non-classical reduced compared to healthy 

volunteers (3.99% ± 2.30 and 8.7% ± 2.27 respectively p<0.0001).  
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4.3.3 Monocyte distribution and clinical characteristics 

 

Monocyte distribution in humans can be affected by not only the presence of 

cancer, but also by gender (Heimbeck et al., 2010). To examine whether this 

might affect the distribution of results for the pancreatic cancer patients, the 

monocyte percentage distribution profiles for the PDAC patients were plotted 

according to gender. 

 

 
Figure 4.44.4 Monocyte distribution profiling of patients according to 
gender 

Quantification of the percentage of cells in each defined subset of the 
number of MHC-Class II HLA-DR positive cells (4.4.A-C) Healthy volunteers 
males n=15) females (n=11)).  (4.4.D-F) PDAC patients (males (n=10) 
females (n=10)) monocyte distribution of non-classical monocytes CD14dim 
CD16++, Intermediate population CD14++ CD16+ monocytes, classical 
monocytes CD14++ CD16-. Dot plot to delineate distribution of cellular 
populations per individual (median = horizontal line), Mann Whitney test was 
used to calculate p values. 
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The results show no significant difference between monocyte subsets and 

gender in patients with PDAC or healthy volunteers. For other factors such 

as smoking and diabetes the numbers of patient we have this information for 

are small for and statistical significance cannot be reliably concluded. 
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4.3.4 Inflammatory cytokine profiling in the peripheral blood of PDAC 
patients compared to healthy shows significant increases in IL-2, 
IL-8 and TNF-alpha 

 

 

Blood was taken from patients with pancreatic ductal adenocarcinoma, 

collected into EDTA coated vacutainers to prevent clotting and the 

centrifuged to collect the plasma fraction. The Mesoscale Discovery human 

pro-inflammatory multiplex array was used to simultaneously measure 9 pro-

inflammatory cytokines present circulating in the peripheral blood. 

 

The table below shows the median, mean and standard deviation calculated 

from the results of the 9 pro-inflammatory cytokines profiling circulating in the 

blood of PDAC patients compared to healthy volunteers. 
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Cytokine Healthy  
Median 
Mean/SD 

PDAC
Median 
Mean/SD 

p-value

IL-6 0.321 
0.341±0.177 

1.270 
7.797±11.57 

0.1079 

IL-8 2.71 
2.98±1.502 

12.9 
30.39±34.06 

0.0353 (*)

TNF-alpha 3 
3.19±1.178 

6.212 
7.630±5.6 

0.0424 (*)

IL-2 0.188 
0.216±0.07 

0.483 
0.559±0.4269 

0.050 (*) 

IL-1beta 0.358 
0.383 ±0.3 

0.239 
0.234±0.38 

0.2925 

IFN-gamma 0.684 
0.637±0.18 

1.018 
1.41±1.007 

0.0612 

GM-CSF 0.225 
0.301±0.156 

0.5 
1.083±1.129 

0.0869 

IL-12p70 0.658 
0.718±0.478 

0.76 
21.78±36.98 

0.1261 

IL-10 0.798 
1.292±1.28 

3.33 
62.95±128.4 

0.1923 

 

Table 4.4 MSD profiling serum from healthy volunteers and PDAC 
patients. 

Human pro-inflammatory cytokine profiling array from Mesoscale Discovery. 
Healthy (n=7) and PDAC patients (n=15) p-value is calculated using 
unpaired t-test. Values are expressed as mean and median. 
 

The levels of pro-inflammatory cytokines IL-8, IL-2 and TNF-alpha were 

statistically significantly increased in the plasma of patients with PDAC 

compared to plasma from healthy volunteers. 
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Figure 4.5 below shows the individual data points for each volunteer or 

patient. The x-axis indicates healthy volunteer or PDAC patients, and the y-

axis shows measured cytokine concentrations in the plasma as measured in 

picograms per millilitre.  

 

 
Figure 4.54.5 Pro-inflammatory cytokine profiling of plasma from 
peripheral blood of PDAC patients and healthy volunteers 

A multiplex array was used to profile pro-inflammatory cytokines in plasma 
from PDAC patients and healthy donor blood. Panel shows IL-6, IL-8, TNF-
alpha, IL-12, IL-1β, IL-2, GM-CSF, IFN- γ and IL-10. Each square represents 
a single blood donor or patient (7 healthy and 15 PDAC patients). Statistical 
significance is calculated using an unpaired t-test,  * = significant values (*) 
p<0.05; n.s = non-significant.  
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These results show that the pro-inflammatory cytokine profile is affected in 

PDAC patients compared to healthy volunteers when comparing IL-2, IL-8 

and TNF-alpha. 
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4.4 Summary 

• The percentage distribution of classical monocytes does not appear to 

change in this cohort of PDAC patients compared with healthy 

volunteers. 

• The percentage distribution of non-classical monocytes in the 

peripheral blood of PDAC patients is significantly reduced compared 

with healthy volunteers and the intermediate monocyte population is 

significantly increased. These changes reflect monocyte distribution in 

other inflammatory conditions. 

• The levels of pro-inflammatory cytokines IL-2, IL-8 and TNF-alpha are 

statistically significantly increased in the serum of PDAC patients 

compared with healthy donors. 
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4.5 Discussion  

The intention of this chapter is to examine whether the presence of the 

tumour and associated inflammation has an effect on the distribution of 

monocyte subsets. To address this, available data derived from the 

differential blood counts was taken at the same time as samples from the 

hospital. The distribution of monocyte subsets in the patients compared with 

healthy volunteers was assessed and the presence of pro-inflammatory 

cytokines in the peripheral blood. 

 

CA19.9 is a tumour marker used in routine blood tests in pancreatic cancer 

patients and other benign biliary stricture diseases (Lin et al., 2014). CA19.9 

is increased in the PDAC patients compared with the normal range. A recent 

meta-analysis summarised the importance of CA19.9 in the diagnosis of 

pancreatic cancer as they pooled available data to determine sensitivity (0.80 

95%CI 0.77-0.82) and specificity (0.80 95% CI 0.78-0.82) (Huang and Liu, 

2014). CA19.9 levels could also serve as prognostic indicators in patients 

treated with radiotherapy due to correlating disease progression and 

expression (Shultz et al., 2014, Tzeng et al., 2014).  

 

Alkaline phosphatase (AP) is an enzyme often increased in hepatobiliary 

diseases. Blood tests for AP are used to detect liver damage and bile duct 

obstructions (Carr and Guerra, 2013, Casale et al., 2013). AP levels in the 

PDAC patients were at the higher end of the normal range. A higher level of 

expression in the blood is associated with a reduced median survival time in 

patients (Storniolo et al., 1999, Matsubara et al., 2010, Dua et al., 2013). 

 

Bilirubin is a substance found in bile, a breakdown product of haem 

catabolism. Blood tests for bilirubin are recommended in case of liver 

damage, bile duct blockage or jaundice, often a presenting symptom in 

patients with PDAC (Wang et al., 2013a). The mean level of bilirubin 

detected in these patients was at the top end of the normal range. Elevated 

bilirubin levels represent a significant prognostic factor in PDAC (Haas et al., 

2013). Using combination of CAa19.9 with raised bilirubin levels and CRP 
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can be a better predictor with higher sensitivity and specificity than individual 

markers (La Greca et al., 2012, Dumitra et al., 2013). 

 

Total white blood cell count (WBC) mean value in the PDAC patients was 

slightly raised compared to the normal range. WBC has not shown to be a 

significant prognostic indicator (Hamed et al., 2013, Pabinger et al., 2013). 

However patients with pancreatic carcinoma have been reported to have 

higher WBC than other periampullary cancers (Liang et al., 2013). 

 

The monocyte counts in PDAC patients were at the higher end of the normal 

range compared with healthy volunteers. Sanford et al., suggested monocyte 

counts in the blood of patients were higher than the healthy donors due to 

mobilisation from the bone marrow and showed this was associated with a 

poorer outcome (Sanford et al., 2013). This may be due to the small sample 

cohort in this investigation, it could also be linked to the patient selection as 

Sanford et al., used a mixed group of early and late stage pancreatic cancer 

and patients who had received chemotherapy. 
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4.5.1 Monocyte distribution changes in PDAC patients 

 

Flow cytometry is commonly used for immunophenotyping cells in the 

peripheral blood as it has the advantage of being able to identify numerous 

markers in the same sample. The use of CD14 and CD16 to define 

monocyte nomenclature is well established and supported in literature to 

define the three sub-populations (Cros et al., 2010, Ziegler-Heitbrock et al., 

2010, Heimbeck et al., 2010). This gating strategy was chosen at the start of 

this project as defined by Heimbeck et al., in 2010 to be a simple 

standardized method for analysis.  

 

Using percentage changes in monocyte distribution is a useful method to 

examine population skewing but bias may be introduced by the presence of 

other cell types. This is why the percentage of monocyte is worked out from 

the HLA-DR positive cell populations after excluding a number of other cell 

types using a negative lineage cocktail to remove B, T, NK cells and 

granulocytes. This ensures that the cells being included in this analysis are 

monocytes and change in distribution of other cell types does not affect 

subset percentages. 

 

It is argued that defining monocytes into individual subsets may be 

misleading as it is still unknown as to whether these are distinct cell 

populations or cells in transitional phases of maturation or differentiation. 

However due to their differential characterised abilities, analysis and 

enumeration in healthy and disease is still warranted. 

 

 Classical monocytes have been shown to decrease in percentage compared 

with other monocyte populations in sepsis (Poehlmann et al., 2009), 

Hepatitis B (Zhang et al., 2011), Dengue fever (Azeredo et al., 2010) and 

tuberculosis (Castano et al., 2011). The intermediate population has been 

shown to increase in all the above inflammatory conditions as well as heart 

failure (Barisione et al., 2010), rheumatoid arthritis (Rossol et al., 2012) and 

stroke (Urra et al., 2009). However in these studies the effects on the non-
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classical monocytes is variable, increasing in hepatitis, sepsis and dengue 

fever, but decreasing after stroke.  

 

In common with the inflammatory conditions, in patients with breast cancer, 

the intermediate monocyte population was reported to expand compared 

with healthy donors and this was suggested to correlate with the amount of 

CCR2 (MCP1) in the blood (Feng et al., 2011). In patients with colorectal 

carcinoma (CRC), the intermediate (CD14++ CD16+) monocyte population 

was also shown to expand compared to healthy donors (Schauer et al., 

2012).  

 

In human pancreatic cancer, monocyte counts were determined in a cohort 

of patients after surgical resection (Sanford et al., 2013). The number of 

classical monocytes in the peripheral blood was reported to increase in 

resected PC patients compared to healthy volunteers and this increase was 

inversely correlated with patient survival. It was hypothesised that the 

monocytes are being mobilized from the bone marrow to the blood in 

response to CCL2 signalling. Previous data in murine models indicated that 

inhibition or interruption of this CCR2-CCL2 interaction reduces the 

infiltration of monocytes into the tumours, therefore relieving 

immunosuppression and improving responses to chemotherapy (Mitchem et 

al., 2012). This approach may merit further investigation to evaluate potential 

clinical benefit.  

 

The results in this chapter showed that there appeared to be no significant 

differences in classical monocyte population percentage, a significant 

increase in the intermediate monocyte population and a concurrent decrease 

in the non-classical population in patients with PDAC relative to healthy 

controls. 

 

This data does not reflect the increase in classical monocytes as shown by 

Sanford et al. This could be due to several factors. First, the patients in this 

investigation have unresectable advanced disease, often with local invasion. 
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The cohort used in the Sanford study had resectable disease suitable for 

surgical intervention and therefore may have been detected at an earlier 

stage. Second, the patients in the Sanford study were not selected at the 

same stage of treatment or stratified before and after surgery, which may 

increase the patient numbers but does not provide a consistent cohort. 

Whereas the cohort used in this investigation was exclusively locally 

advanced non-resectable patients that have not undergone any therapy. 

 

This evidence suggests that either we cannot directly compare the results of 

both investigations; or it may suggest that monocyte mobilisation to the 

periphery might be an early event and may not be maintained as the PDAC 

progresses. Alternatively, it could suggest that the classical monocytes may 

form a pool of precursor cells for the other monocyte subsets as debated by 

Yona et al., in 2013 and their recent fate mapping experiments in murine 

models (Yona et al., 2013). 

 

There is also evidence in the literature that monocyte distribution can be 

affected by other factors. For example, exercise is reported to affect the 

distribution profile as the non-classical monocytes were hypothesized to be 

mobilized out of the blood stream after short bursts of activity without 

showing changes in gene expression (Frankenberger et al., 2012). The 

number of non-classical monocytes is also shown to be lower in females 

than males, for reasons that are unknown (Heimbeck et al., 2010). However, 

in that study, absolute counts rather than percentages of non-classical 

monocytes were reported. In contrast, monocyte distribution was not 

significantly altered by gender in healthy volunteers, or the PDAC patient 

cohort in the study reported here. 

 

To further this part of the investigation, single pro-inflammatory cytokines 

could be used to stimulate isolated peripheral blood mononuclear cells in 

vitro to identify if any of the above cytokines can modulate CD14 or CD16 

expression. However, this is a very narrow and simplistic view of the complex 

signalling mechanisms activated in PDAC.  
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Schauer et al. used an in vitro co-culture method to identify cell surface 

expression changes in CD14 and CD16 on healthy primary monocytes 

cultured with primary or metastatic CRC cell lines. This data showed that 

induction of intermediate monocyte was enhanced by culturing them with 

primary tumour cells rather than those from metastatic sites, which may 

relate back to the immunosuppressive milieu (Schauer et al., 2012). 

 

To build upon this, plasma from PDAC patients could be used to stimulate 

isolated PBMCs to determine whether this causes any effects on monocyte 

distribution. Using PBMCs instead of monocytes may provoke cells other 

than monocytes to release signalling molecules and may create a more ‘real’ 

reflection of the peripheral blood. As a further extension, the flow cytometric 

panel could be expanded to include other markers of monocyte 

differentiation such as CX3CR1 and CCR2,  
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4.5.2 Cytokine changes in the peripheral blood of PDAC patients 
compared with healthy volunteers 

 

Cytokine measurement is used routinely to assess the inflammatory 

responses and immune signalling capabilities in subjects. The Mesoscale 

Discovery platform multiplex array was used to assess the presence of 

cytokines in the plasma of PDAC patients compared with healthy volunteers. 

This assay was preferred to ELISA methods as MSD can measure multiple 

cytokines in the same sample. Also the MSD platform has a significantly 

higher sensitivity (0.6pg/ml compared to 6pg/ml for ELISA).  

 

In PDAC there are several published studies examining circulating factors in 

the plasma or serum of patients compared to healthy donors. The results 

gained by these investigations are variable, potentially due to discrepancies 

in sample sizes and patient groups containing untreated and treated 

patients. A large study carried out mass spectrometry using serum samples 

from a total of 333 PDAC patients, 144 patients with benign pancreatic 

conditions and 277 healthy controls. This study identified three biomarkers in 

the serum (CA19.9, CEA and osteoprotegrin (OPG) a member of the tumour 

necrosis receptor superfamily) with high sensitivity, specificity and the ability 

to distinguish pancreatic cancer from other solid tumours in the breast, lung 

or colon (Brand et al., 2011). 

 

Inflammation is strongly implicated in pancreatic cancer and for this reason 

the MSD pro-inflammatory cytokine panel was chosen, which measures 9 of 

the most common pro-inflammatory cytokines in an individual sample. 

Although the measure of cytokine using this method gives biological 

snapshot of certain cytokines, it may provide a useful indication of pre-

treatment systemic inflammation For a more complete analysis mass 

spectrometry based quantitative proteomics would provide a broader 

approach. Identification of prognostic useful biomarkers however would 

require a much larger sample size (Tonack et al., 2013, Wang et al., 2013b). 
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Alternative approaches to measure large numbers of analytes or cytokines in 

the blood, using bead based arrays on an ‘inflammation map’ from Myriad.  

 

The data in this chapter shows several cytokines are significantly increased 

in these PDAC patient plasma compared to healthy volunteers. These are IL-

2 (0.55±0.42 versus 0.21±0.07 respectively), IL-8 (2.98±1.5 versus 

30.39±34.06) and TNF-a (3.19±1.17 versus 7.63±5.6). 

 

IL-2 is an important cytokine in the development of T effector and regulatory 

cells. It plays an important role in the adaptive immune system to fight 

autoimmunity develop immunological memory (Cantrell and Smith, 1984, 

Grigorian et al., 2012). IL-2 in the plasma is increased in untreated PDAC 

patients in this cohort and is also reported in a previous study (Plate et al., 

1999). It is also increased in NSCLC cancer, which is associated with poorer 

outcome (Orditura et al., 2000).  IL-2 concentration values extrapolated from 

the standards in my cohort suggest the levels are below the limit of detection 

for this assay.  

 

IL-8 is a chemotactic cytokine with roles in neutrophil activation. In pancreatic 

cancer, IL-8 has been shown to promote tumour cell migration and the over-

expression of associated receptors CXCR1 and CXCR2 in PDAC cell lines 

and human tissue microarrays (Kuwada et al., 2003).   

 

TNF-alpha levels were increased in patients with post resection pancreatitis 

(Kilciler et al., 2008), breast cancer (Berberoglu et al., 2004) and 

gastrointestinal cancers (Bossola et al., 2000) compared with normal levels. 

This is also true for this dataset. TNF-alpha is an adipokine involved in 

immune regulation and systemic inflammation.  

 

IL-12, GM-CSF, IL-10, IL-6, IL-1 and IFN-γ are not significantly increased in 

this cohort of patients. Published data in PDAC suggests there is a strong 

link between IL-6 and related inflammation (Okada et al., 1998, Dhillon et al., 

2008, Gabitass et al., 2011, Wormann et al., 2013). Increased expression in 
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the blood has been linked with the development of cachexia (Martignoni et 

al., 2005) and correlated with poorer outcome (Waugh and Wilson, 2008). A 

recent study published in 2013 highlighted a clear link between increased IL-

6 and IL-1 expression and reduced PFS in patients undergoing gemcitabine 

therapy (Mitsunaga et al., 2013).  

 

Circulating levels of IFN-γ have been used previously to predict effects of 

adoptive T cell therapy in PDAC patients. In 2013, a group identified that 

levels correlated over time with therapy response (Ishikawa et al., 2013).  

 

The lack of GM-CSF was also surprising as several recent studies in murine 

models of PDAC have associated elevated levels with myeloid regulation 

through tumour derived and oncogenic Kras induced GM-CSF (Pylayeva-

Gupta et al., 2012) and subsequent promotion of tumour growth (Bayne et 

al., 2012).  There werewas however some patients with high levels of GM-

CSF, which indicates there may be heterogeneity in human populations 

compared with mouse. 

 

Pro-inflammatory cytokine expression can be affected by other factors, 

including medications. An example of this is the changes in TNF-a 

expression after administration of non–steroidal inflammatory agents 

(NSAIDs) (Page et al., 2010).  

  

A study comparing pro-inflammatory responses of PBMCs in advanced 

PDAC patients to healthy showed that stimulated monocytes from cachectic 

pancreatic cancer patients were primed to produce significantly higher levels 

of IL-6 when stimulated (10ug/ml LPS for 24h)(Moses et al., 2009). Another 

study showed that plasma cytokine levels and the ability of monocytes to 

produce pro-inflammatory cytokines such as TNF-alpha were affected by the 

presence of obstructive jaundice, a common symptom of pancreatic cancer 

(Puntis and Jiang, 1996). IL-6 and IL-8 levels in the blood are implicated as 

prognostic biomarkers (Chen et al., 2012), and are thought to have the ability 

to predict gemcitabine efficacy (Mitsunaga et al., 2013) in patients. 
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Targeting inflammation in PDAC is an attractive target in re-education of the 

immune system to improve immunosurveillance (Steele et al., 2013). 

However the presence of inflammatory cytokines in the blood is not a 

predictor of pancreatic cancer risk as shown in a large retrospective meta-

study compiled of several large-scale prospective cohort studies (Bao et al., 

2013). 

 

To build upon these results it would be interesting to increase sample 

numbers and to also include patients with acute and chronic pancreatitis. 

This might allow us to further dissect the inflammation or cancer related 

changes occurring in the peripheral blood. It would also be interesting to 

measure levels of monocyte chemoattractant molecules such as CCL2 and 

M-CSF determine if these correlate with monocyte distribution or counts in 

the PDAC patients. The confounding ability of a higher number of PDAC 

patients with a history of smoking or the presence of diabetes also warrants 

further investigation. 
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Chapter 5.  Gene expression profiling 
classical monocytes from patients with 
PDAC compared with healthy volunteers. 
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5.1 Introduction 

In the previous chapter significant changes in the distribution of monocytes in 

the peripheral blood of PDAC patients compared to healthy volunteers were 

identified. It is known that monocytes in the peripheral blood are incredibly 

responsive to exogenous signals they receive and this determines their 

function and phenotype (Gordon and Taylor, 2005, Auffray et al., 2009, Yona 

and Jung, 2010, Ma et al., 2014, Xue et al., 2014).  

 

The aim of this chapter is to examine the transcriptome of classical 

monocytes isolated from the peripheral blood of PDAC patients in 

comparison to monocytes from healthy volunteers. We hypothesised that 

changes in the classical monocyte subset potentially mirror those in the 

tumour microenvironment. The classical monocyte subset might – as 

outlined above – represent a cellular sensor of stress. The transcriptome 

holds a wealth of potential information about the inflammatory response, 

maturation or differentiation state of monocytes. The genomic stability of 

monocytes (Jie et al., 2012) compared to tumour cells makes them attractive 

for biomarker read-outs as the transcriptional changes may be more 

consistent in response to a particular stressor.  Also sampling blood cells 

provides an easier source of cells compared with the tumour cells, which are 

much less abundant in the peripheral blood. I would like to investigate initially 

whether monocytes in the blood of PDAC patients are ‘primed’ by the 

presence of the tumour and its associated inflammation. 

 

Classical monocytes (CD14++ CD16-) were chosen for this investigation, over 

the non-classical or intermediate populations, due to their prevalence in the 

peripheral blood and selective expression of chemokine receptor 2 (CCR2). 

CCR2 is the receptor for chemokine ligand 2 (CCL2 also referred to as 

Monocyte Chemoattractant Protein 1 (MCP1)), which is reported to be 

essential for the recruitment of classical monocytes in PDAC from the bone 

marrow into the peripheral blood (Sanford et al., 2013). Several recent 

studies have shown that targeting only this population of monocytes reduced 

tumour-associated macrophageTAM recruitment, tumour volume and 
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metastasis in murine models of solid cancer as mentioned in more detail in 

the iIntroduction (Section 1.6.2.2) (Leavy, 2011, Leuschner et al., 2011, 

Mitchem et al., 2012, Ino et al., 2014).  

 

Monocyte distribution in PDAC patients showed significant differences in the 

non-classical and intermediate subsets versus healthy controls. In contrast, 

the proportion of classical monocytes was unchanged in the PDAC patients 

compared with healthy volunteers. Transcriptome profiling of the classical 

population may allow the detection of differentially expressed genes involved 

in regulation of monocyte activation and differentiation in PDAC. In addition, 

by looking at the transcriptome of the classical and more stable subset I may 

reduce bias that is introduced by shifts in the population dynamics. Previous 

fate mapping data in murine models suggests that the intermediate and non-

classical monocytes may be derived from the classical monocytes, which 

acts as a pool of circulating progenitor cells. Profiling this population may 

reveal characteristics that help characterise the transition into non-classical 

and intermediate subsets. 

 

RNA was isolated from classical monocytes purified from the peripheral 

blood by FACSfluorescence assisted cell sorting (FACS). The monocyte 

transcriptome was evaluated in eight individual volunteers (three healthy and 

five PDAC patients) using Affymetrix Human Genome U133 2.0 plus arrays. 

This is a whole genome profiling technique that has been used in the past to 

reveal novel molecular targets and pathways. Over the last decade, this type 

of gene expression profiling has become a standard for biomarker and 

pathway discovery as well as pathological subtype differentiation.  

 

Outputs from the gene chip array analysis are reported as fluorescence 

intensities for each individual probe. Comparison of intensities between 

samples allows the relative gene expression changes to be quantified after 

gene chip normalisation and annotation. Fold changes for each individual 

gene are calculated; comparing healthy and PDAC can be used to rank the 

statistically significant differentially expressed genes. The created gene lists 
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can then be used to determine whether genes from particular pathways are 

enriched, increasing confidence in the biological relevance. 
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5.2 Aims 

The aims of this chapter are: 

▪ To evaluate the purity gained from sorting classical monocytes 

from peripheral blood for RNA isolation 
▪ To obtain and assess the quality of RNA isolated from the classical 

monocytes 
▪ To use Affymetrix Gene Chips analysis to identify differentially 

expressed genes comparing classical monocytes from PDAC 

patients with healthy volunteers. 
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5.3 Results 

5.3.1 High quality RNA can be isolated from classical monocytes 
obtained from sorting 

Classical CD14++ CD16- monocyte populations from healthy volunteers and 

PDAC patients were sorted from the peripheral blood for transcriptome 

analysis. For this type of analysis, it is essential that the RNA isolated is of 

good quality, to increase confidence of accurately representing the whole 

transcriptome. Classical monocytes were directly collected into FACS buffer 

after sorting, centrifuged and resuspended immediately in lysis buffer (RLT 

buffer from the Qiagen RNA isolation kit).  

 

Using the Aria flow cytometer and markers for HLA-DR, CD14 and CD16, the 

purity of the sorted cell populations was approximately 98%. Figure 5.1 

below is representative of the purity for each sorted monocyte subset. 
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Figure 5.15.1 Classical monocytes sorted using the Aria II purity check. 

Representative FlowJo cytometric plots showing the purity of classical 
monocytes isolated by FACS sorting. Gating strategy in Figures 5.1A-D as 
described in results section 4.3.2. Figure 5.1 E-G show the percentage purity 
of the sorted HLA-DR positive cells using the Aria II flow cytometer. Viability 
was assessed using the Beckman Coulter cell counter (89-97%). 
Representative shown of all samples used for gene expression. 
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RNA isolation was carried out using the Qiagen RNeasy Micro Kit as per 

manufacturer’s instructions with an on-column DNase treatment to reduce 

genomic DNA contamination. Figure 5.2 shows a representative image of the 

RNA quality for samples chosen for subsequent gene expression analysis by 

Affymetrix or quantitative PCR. This image (Figure 5.2) is generated by 

microcapillary electrophoresis using the Agilent Bioanalyser to calculate the 

RNA integrity values (RIN) to assess quality and fragmentation. 

 

 

 

 

 
 
 
 
 
 

Figure 5.25.2 Agilent Bioanalyser: Unfragmented RNA sample with 
calculated RNA integrity value of 9.4. 

Representative image (patient 515) showing the histogram produced by the 
Agilent Bioanalyser indicative of RNA with a calculated RIN number of 9.40. 
This is deemed good quality RNA for further analysis (RIN cut off  >8.5). X-
axis – nucleotides (nt). Y-axis-fluorescent units (FU). 
 

Only samples with a RIN >8.5 were selected for Affymetrix analysis. RNA 

was amplified using the Nugen whole transcriptome amplification kit (as 

described in Materials and Methods 3.3.5). The Encore module was used for 

Biotin labelling and fragmentation before hybridisation was carried out with 

support from Tracy Chaplin-Perkins (Centre for Haematology-Oncology, 

Barts Cancer Institute). 
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5.3.2 Gene Chip normalization 

RNA samples were converted to cDNA for hybridisation onto Affymetrix 

Human U133 2.0 plus Gene Chips. These chips represent up to 54,000 

transcripts from the human genome. The data output from this type of array 

is reported as fluorescence intensity per probe set. The figure below is a box 

plot showing the distribution of the fluorescence intensity for each gene array 

chip. 

 

To enable comparisons between different gene array chips, the fluorescence 

intensity values were normalised using Gene Chip Robust Multi-array 

Average (GC-RMA) using R-Lab software. The latter data was exported and 

converted to log2 values.  

 

 
Figure 5.35.3 Distribution of GC-RMA-normalised log2 values of 
Affymetrix Gene Chip U133 2.0 plus array.  

Fluorescence intensity values are normalised using gene chip robust multi-
array averaging using R-lab. 
 

After normalisation of this type in Figure 5.3, the log2 fluorescence intensity 

signals are observed to be equivalent with no distinctive outliers that need to 

be removed from this dataset. 
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Each gene chip represents transcriptomic analysis of a single patient sample 

and fluorescence intensity output values are given for each probe set on the 

gene chip. A probe set is the collection of probes present on the gene array 

that bind to and identify the presence of a single gene sequence. Each gene 

is represented by several probe sets. The relative fluorescence intensity 

comparing healthy samples with cancer samples is used to determine which 

genes (as represented by probe sets) increase or decrease in expression in 

patients. The change in expression intensity is calculated by taking the mean 

fluorescence value of one group of samples and dividing it by the other to 

give the fold change of that probe set.  An unpaired t-test is used to test if the 

fold changes are significant between healthy and cancer samples. This is 

carried out for approximately 54,000 probes and the results can initially be 

visualised using a volcano plot. 
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5.3.3 Gene expression data visualisation 

5.3.3.1 Volcano plot 

Probe set expression changes can be visualised by plotting the fold change 

versus the p-value as a volcano plot to show whether there is a bias in 

expression towards one group of samples compared to the other. The 

statistically significant probe sets (p<0.05) with a fold change higher than 2 

are included in Figure 5.4 below. 

 
Figure 5.45.4 Volcano plot showing the probe set expression profiles of 
classical monocytes from PDAC patients compared to healthy.  

Fold change is plotted against the x-axis and the p-value for statistical 
difference (unpaired t-test) on the y-axis. The solid black lines represent the 
cutoffcut-off values of a fold change >2 and p-value <0.05. Points shown in 
red are probe sets that are significantly increased in classical monocytes 
from PDAC compared to healthy volunteers. Points shown in blue are 
significantly decreased in classical monocytes from PDAC compared to 
healthy volunteers. 
 

The results of this output are shown below in Table 5.1. Using a greater than 

2 fold change there were 412 probesets showing increased expression in 

classical monocytes from PDAC patients compared to healthy volunteers. 
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There were 361 probesets that are decreased in PDAC patients (increased 

in healthy volunteers).  

 

Number of differentially expressed 
probe sets (p<0.05) 

Increase in classical monocytes 
from which group 

412 Increase in PDAC 
361 Increase in Healthy 
 

Table 5.1 Differentially expressed probe sets with a fold change higher 
than 2 comparing fluorescence intensity values between healthy 
volunteers and PDAC patients. 

 

As each gene is represented by more than one probe set, the probe sets 

were consolidated to remove all redundant probe sets that were not 

differentially expressed or do not represent a known gene. Table 5.2 gives 

the list of statistically significant differentially expressed genes (DEGs). 

 

Number of differentially expressed 
genes (p-<0.05) 

Increase in classical monocytes 
from which group 

242 Increase in PDAC 
280 Increase in Healthy 
 

Table 5.2 Differentially expressed genes with a fold change higher than 
2 comparing fluorescence intensity values between healthy volunteers 
and PDAC patients. 

 

In this dataset there were 242 genes whose expression was increased in 

classical monocytes from PDAC patients compared to healthy and 280 

genes that showed decreased expression. 

 

These results show a number of significant differentially expressed genes 

when comparing the transcriptional profile of classical monocytes from PDAC 

patients with those of classical monocytes from healthy volunteers.  
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5.3.3.2 Classical monocytes from PDAC patients have a significantly 
altered gene expression profile compared to healthy volunteers 

 

The top differentially expressed genes (DEGs) can be ranked using their fold 

change difference comparing healthy to PDAC patients. This is carried out to 

see which genes are the most up or down regulated. Figure 5.5 below uses a 

heat map to visualise the expression values for the top 25 DEGs in each 

group. Each column represents an individual donor and each row a gene. 
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Figure 5.55.5 Heat map showing the top 25 differentially expressed 
genes ranked by fold change that are increased and decreased 
comparing classical monocytes from PDAC patients with healthy 
volunteers.  

Heat map expression using top 25 statistically significant DEGS (p<0.05, 
FC>2) ranked by fold change comparing classical monocytes isolated from 
PDAC patients compared to healthy volunteers using fluorescence intensity 
expression derived from Affymetrix Human Gene Chip U133 2.0 plus arrays. 
The rows represent genes and the columns individual healthy volunteers 
(n=3) or PDAC patients (n=5). The differences between the groups are 
centred using the mean fluorescence intensity value and standardised by 
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dividing the samples by their standard deviation to create a uniform plot. 
Heat map created using R-Lab. 
 

The differentially expressed genes identified in this cohort of patients are 

very intriguing, however, particularly due to the small sample size, the 

biological relevance (or potential use as a PDAC monocyte signature) cannot 

be inferred without further validation. In the next chapter the top ranked 

differentially expressed genes will be examined using qPCR in an 

independent cohort of patients to confirm expression in a larger data set and 

therefore improve significance. 

 

The gene lists created from this investigation can be processed using 

software to identify whether genes associated with particular biological 

pathways are affected. 
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5.3.4 Ingenuity Pathway analysis 

 

Gene expression data were analysed using Ingenuity Pathway Analysis 

(IPA) software to elucidate whether the differentially expressed genes are 

reported to be involved in any particular known biological pathways. IPA is 

based on the Ingenuity Knowledge Base made up of functional annotations 

and biological or chemical interactions based on reported primary 

experimental data.  

 

This can be very useful tool for interpretation of gene lists by comparing them 

with the current literature base and providing information on the potential 

biological relevance of the genes in a gene list. Statistical significance can 

also be improved if a set of genes in a pathway is affected compared to 

individual genes. Individual genes can also be found in more than one 

pathway. 

 

IPA was used to define annotations for differentially expressed genes (FC>2, 

p<0.05) also including the fold change. Table 5.3 shows the functional 

groups of genes that are enriched in this dataset comparing classical 

monocytes from PDAC patients with healthy volunteers. 
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Table 5.3 Ingenuity Pathway Analysis derived from classical monocytes 
from PDAC patients compared with healthy donors. 

Molecules in each group are taken from the statistically significantly 
differentially expressed list of genes for classification (FC>2, p value<0.05). 
The DEGs were functionally annotated into the above pathways listed in the 
left column. The pathways are ranked by statistical significance in ascending 
order using p-values. p-values derived using Fishers exact test.  
 

The results in Table 5.3 suggest that there is an enrichment of differentially 

expressing genes involved in transcription and the development (and death) 

of mononuclear lymphocytes, also viral infection and expression of RNA.  

 

The identification of particular groups of genes can also be used to identify 

upstream regulators that may exert effects on that differentially expressed 

gene list. Table 5.4 shows stimuli that may induce expression of the 

differentially expressed genes as suggested by the literature based data in 

IPA comparing classical monocytes from PDAC patients with healthy 

volunteers. 
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Table 5.4 Upstream regulators identified which may affect expression 
ofidentified, which may affect expression of, identified differentially 
expressed genes in classical monocytes from PDAC patients compared 
with healthy donors.  

Absolute z-scores are defined as significantly increased or decreased when 
<2 or >2 respectively. Z-score calculated by assessment of literature-based 
effect the transcriptional regulator (TR) has on downstream genes. Predicted 
activation state of the TR is given a positive value of 1 when downstream 
gene activated and -1 when the gene is inhibited. Upstream regulators are 
also ranked in order of significance by their ascending p-values, 
 

Suggested upstream regulators identified in this cohort are based on 

experimental published data. The target molecules in this dataset had 

previously been shown in the literature to be downstream of the identified 

upstream regulators. The upstream regulators IL-3 and platelet derived 

growth factor (PDGF) were identified along with PURA, a transcription factor; 

lipopolysacccharide (LPS), expressed on bacterial cells walls; as well as 

Tumour Necrosis Factor (TNF); Nuclear Factor of activated T cells (NFAT); 

Mammalian target of rapamycin (MTOR) and TNF superfamily member 11 

(TNFSF11, RANKL). 
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This is a diverse list of upstream regulators that may potentially affect gene 

expression in classical monocytes in PDAC. To understand this further, the 

top differentially expressed genes will be validated in a larger cohort of 

patients using qPCR. The validated genes will then be tested in experiments 

to determine whether soluble factors present in the blood of patients or 

produced by the tumour cells may affect the expression of these genes. 
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5.4 Summary 

 

• Good quality RNA can be isolated from classical monocytes sorted 

from fresh peripheral blood. 

• Transcriptome profiling reveals significantly differentially expressed 

genes in classical monocytes from patients with PDAC compared with 

those from healthy volunteers. 

• Ingenuity Pathway Analysis points to functional enrichment of several 

pathways in classical monocytes from PDAC patients compared with 

healthy donors  
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5.5 Discussion 

Microarray hybridisation of mRNAs is widely used to examine transcriptomes 

across many cell types, diseases and physiological conditions. The data 

obtained using this method gives a snapshot of the biological processes 

taking place at the time the samples are taken. The intention of this part of 

the investigation was to determine whether classical monocytes from healthy 

volunteers and PDAC patients could be differentiated by their gene 

expression profiles. Although there are no gross changes in classical 

monocyte abundance in the peripheral blood, the results show that there are 

a significant number of differentially expressed genes in classical monocytes 

from PDAC patients compared to healthy volunteers. Pathway analysis 

shows several pathways are affected in these monocytes, which suggests 

these differentially expressed genes may have some importance in 

monocyte differentiation and transcriptional regulation.  

Careful consideration was given to the collection and processing of these 

samples at all stages of the process to ensure the sample quality and this will 

be discussed below. 

5.5.1 Cell sorting and RNA isolation 

FACS was chosen preferentially over the CD14 magnetic bead isolation for 

sorting of monocytes for gene expression analysis. This was due to the lack 

of subset definition using only CD14+ as a marker, and the presence of 

magnetic particles on positively selected cells. These particles, although they 

are small, and do not activate the epitope, bind to the monocytes, and may 

interfere with magnetic purification steps in the whole transcriptome 

amplification procedure. To improve the cell viability of sorted cells a marker 

such as DAPI or propidium iodide could be used to remove dead cells. 

The extraction of good quality RNA is crucial for downstream applications. 

Conventional methods used in the past isolate RNA by lysing the cells and 

separating nucleic acid from the debris. In the past this was carried out using 

guanidinium isothiocyanate-phenol-chloroform, as a single step technique 

where RNA is separated from DNA in aqueous phases. It was rapid but 
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laborious and generated waste chlorinated reagents. Advances in 

technology have led to simplified methods; an example is the use of 

magnetic particle separation, where nucleic acid in lysed samples incubated 

with magnetized cellulose particles is then separated using a magnetic field. 

However, this technique can also potentially result in contamination with 

magnetic particles. 

An on-column solid phase method was used for isolation in this investigation, 

as it is reliable and rapid. The micro kit from Qiagen was chosen due to the 

expected cell numbers and RNA yield.  

A cell number threshold was applied to ensure adequate amounts of RNA 

could be isolated from 50,000 sorted monocytes. All samples were amplified 

before hybridization using the Ovation whole transcriptome amplification 

(WTA) kit from Nugen. There are several published large-scale comparison 

studies to show that the Ovation whole transcriptome amplification procedure 

produces a consistent yield of cDNA regardless of RNA input. Early 

comparison studies identified correlation co-efficient comparing amplified and 

non-amplified material from as little as 25ng of RNA to be r=0.97 from as 

little as 1ng (Dafforn et al., 2004, Vermeulen et al., 2009). Another study 

compared four methods using picograms of RNA. The Nugen Ovation whole 

transcriptome amplification protocol was shown to preserve differentially 

expressed genes without introducing any substantial bias, did not co-amplify 

any contaminating genomic DNA if it was present and the most reproducible 

across operators and labs (Clement-Ziza et al., 2009). 

However, the above results are indicative only for RNA that is 

uncontaminated and has not been degraded. Consideration was given to the 

potential knowledge that contamination of samples with cellular proteins or 

lipids affects purity. Also, amplification of samples with poorer quality may 

not represent the sample accurately if fragmented. RNA integrity was 

calculated using the Agilent Bioanalyser and samples with a RIN higher than 

8.5 were used for Gene Chips. This is preferable over the 18S to 28S ratio 

as it is based on the interpretation of an algorithm of the electropherogram 
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measuring nucleotides to account for the presence or absence of RNA 

degradation.  
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5.5.2 Gene expression analysis 

These results show there are significant differences in the transcriptome 

profiles of classical monocytes isolated from PDAC patients compared to 

healthy volunteers. The gene array technique is widely accepted for the 

determination of differentially expressed genes and the resulting list can be 

used for subsequent pathway analysis. The gene expression results showed 

a total of 242 genes to be significantly increased (p<0.05 using unpaired t-

test) in classical monocytes in pancreatic cancer compared with healthy 

volunteers and 280 to be significantly decreased by a fold change of more 

than log2.  

Gene Chips are the most widely used and accepted method for large-scale 

gene expression profiling (Poukoulidou et al., 2011). However, they are 

limited to the genes represented on the array. The probes present on the 

chip can differ in their hybridisation properties and low abundance transcripts 

are potentially under-represented. This is not a major concern in this 

investigation as our interest is in known genes that are differentially 

regulated.  

The Affymetrix Gene Chip U133 Plus 2.0 was chosen due its representation 

of a large number of genes and widespread use with consideration for cost, 

its reliability. The initial results gained in this project generated a large 

amount of data so careful consideration was given to data handling. With 

results from approximately 54,000 probes, the potential for detection of false 

positives is high. For this reason it was important to be very stringent in our 

analysis of differentially expressed genes. Dr Raphael Zollinger at Barts 

Cancer Institute and bioinformatician Dr John Prime at MedImmune were 

consulted to ensure appropriate analysis approaches were used.  

A simple control in this type of analysis was to scramble the samples across 

groups and carry out the same investigation. Our analysis revealed no 

statistically significant differentially expressed genes, indicating that the 

identified DEGs were caused by the presence of the cancer. 
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Factors affecting gene expression in human cells have been widely 

discussed over the last few years. Specifically, for human peripheral blood 

cells, inter-subject variation can be affected by age, gender, ethnic 

background, nutritional status, metabolism and medical history (Fan and 

Hegde, 2005, Heimbeck et al., 2010). Intra-subject variation has also been 

investigated and can be affected by circadian rhythm and hormonal or 

diurnal variation or even exercise throughout the day (Whitney et al., 2003, 

Frankenberger et al., 2012). However, if genes demonstrate strong statistical 

regulation comparing PDAC patients with healthy then this supports further 

investigation into their biological relevance. 
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5.5.3 Developments in gene expression analysis 

RNA-Seq is a sequence-based method used to gain a quantitative snapshot 

of the transcriptome. It has advantages over gene expression microarrays in 

that it can also detect levels of transcripts and their isoforms to glean 

information on post-transcriptional modifications and individual splice 

variants. Due to its higher sensitivity, RNA-Seq offers wide dynamic 

detection range and a better detection of low abundance transcripts. As it 

does not rely on probe set detection methods, there are no issues with 

hybridisation to contend with and the technical reproducibility has been 

shown to be high. 

 

This technique, however, is relatively new and therefore still incurs a high 

cost, although this is reducing rapidly. There still remain logistical challenges 

in large amounts of data transfer, and technical challenges and the expertise 

required to analyse and interpret this type of data (Sokolova et al., 2014). 

 
To compare and contrast the technologies, Beyer et al., used a monocyte to 

macrophage differentiation model and ran Affymetrix gene chips and RNA-

Seq on the same samples. Their results showed high levels of correlation 

between microarray and RNA-Seq data for monocyte-derived macrophages. 

However they identified that the higher coverage provided by RNA-Seq was 

beneficial due to a better identification of transcripts identified as differentially 

expressed at a lower expression level (Beyer et al., 2012). Nevertheless this 

shows gene chip technology is still a valid approach for analysis. 
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5.5.4 Pathway analysis 

Ingenuity Pathway Analysis (IPA) is an established knowledge base derived 

from several trustworthy and large sources. Annotations and functions are 

curated by scientists and combined from sources including EntrezGene, 

OMIM, GWAS, RefSeq and Gene Ontology making it one of the most 

comprehensive and widely used databases available.  

The two most significant (p<0.05) pathways enriched in PDAC patients 

compared with healthy donors are transcription and the development of 

mononuclear leukocytes. This is may suggests that the presence of 

malignant disease may be inducing monocyte maturation or differentiation. 

This result could support the distribution changes observed in the flow 

cytometric profiling results demonstrated in the first results chapter. 

 

Another enriched functional annotated pathway, identified by the IPA 

analysis, was the cell death of blood cell;, this is interesting as it may suggest 

there are factors produced in PDAC patients affecting monocyte apoptosis or 

it could point to the processing method inducing cell death. Viral infection 

was also noted as significant in the IPA analysis. Access to the clinical data 

for these patients suggests there was no other viral or bacterial infection at 

the time blood was taken. Monocytes are incredibly responsive and this may 

potentially suggest that monocytes may have been responding to a minor 

infection. This could also be the result of a general inflammatory response in 

PDAC patients, which is in line with data showing mainly inflammatory 

molecules as top hits in biomarker studies (Okada et al., 1998, Farrow and 

Evers, 2002, Groblewska et al., 2007, Moses et al., 2009). 

 

IPA also can be utilised in identification of genes that have been identified to 

drive expression of certain genes or biological pathways. IL-3 is a 

haematopoietic cytokine with important roles in stem cell differentiation 

(Mroczko et al., 2005b) and is used ex vivo to expand enriched progenitor 

cells to generate sufficient numbers for transplant and abrogation of 

cytopenia (Filip et al., 2000). There is no current data on levels of IL-3 in 

PDAC patients. 
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Platelet derived growth factor (PDGF) plays a significant role in blood vessel 

formation. PDGF is  increased in pancreatic tumours, cholangiocarcinomas 

and ampullary adenocarcinomas (Su et al., 2001, Fjallskog et al., 2007). 

PDGF circulates in the blood and may be of more relevance to investigate 

further in this patient cohort. 

 

The data input into this IPA analysis for each gene was connected to its fold 

change comparing healthy versus cancer to improve functional annotations. 

However, when using IPA, it is important to consider that the pathways 

identified are based on experimental data that may not be relevant to the 

same cell type or condition. IPA also takes into account data from Affymetrix 

Gene Chip U133 2.0 plus as a standard reference set, which may bias 

statistical significance due to irrelevant genes that were not identified in my 

data set. It is reassuring however, that pathways associated with immune 

system were identified in immune cells under different conditions. 

Other techniques available include Gene ontology, Biocarta, KEGG and 

Ingenuity Pathway analysis programmes that can be used to confirm these 

findings. For GSEA however, unlike other pathway analysis, the entire probe 

set list with all values is used, instead of only inputting the differentially 

expressed genes. This reduces the bias that may be introduced by the 

original method of differential gene expression determination. 

Gene expression analysis inferences cannot be reliably made with a cohort 

of this size. To improve the statistical analysis it might be helpful to run 

Affymetrix gene chips for another batch of healthy volunteers and patients as 

a validation set to identify whether the top ranked differentially expressed 

genes are reproduced. The next chapter aims to validate the top differentially 

expressed genes in this cohort to gain further insight into the biological 

relevance.  
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Chapter 6.  Validation of identified 
differentially expressed genes. 
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6.1 Introduction 

 
Top statistically significant differentially expressed genes (DEGs) and 

pathways were identified in the previous chapter by comparing transcriptomic 

profiles from classical monocytes isolated from healthy volunteers compared 

with PDAC patients. These were defined as the genes with the highest 

ranked fold change comparing mean log fluorescence intensity.  

 

To confirm the significance of the identified genes, targeted gene expression 

analysis was carried out in the same samples to compare results across both 

platforms, and also in a validation cohort of new healthy volunteers and 

PDAC patients. 

 

Classical monocytes were sorted and RNA isolated from a further 9 healthy 

volunteers and 13 PDAC patients to validate targeted gene expression using 

quantitative polymerase chain reaction (qPCR). This technique is used for 

gene expression validation and will help determine whether the genes 

identified as significantly differentially expressed are upheld in a larger 

sample cohort, which will also increase statistical power. 

 

The top DEG from the Affymetrix data set was RAS guanine-nucleotide 

exchange factor 1B  (RASGEF1B). This family of nucleotide exchange 

factors stimulates intrinsic activity of GDP/GTP exchange to promote the 

formation of active Ras-GTP. RASGEF1B is a responsive gene to bacterial 

infections via interactions via toll like receptors 2,3 and 4 (Ferreira et al., 

2002).  

 

EGR2 and EGR3 are Zinc finger nuclear transcription factors with various 

roles in development and immune regulation (Li et al., 2012). Early growth 

response family members are essential for development of many cell types, 

particularly neural development (Svaren and Meijer, 2008) and activation of 

B and T cells, (Kishore et al., 2002, Shi et al., 2002, Droin et al., 2003, Park 

et al., 2007, Kearney et al., 2013)  
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CD83 is a cell surface Ig family member glycoprotein, expressed on B and T 

cells although it is better known for being a marker of mature monocyte 

derived dendritic cells. In pancreatic cancer, culturing human healthy 

dendritic cells with plasma from PDAC patients was shown to induce CD83 

gene expression. This was linked to a more mature antigen-presenting 

phenotype, with a better ability to generate specific T cells against the 

pancreatic cancer CEA antigen (Kalady et al., 2004). The number of CD83+ 

cells in the stromal compartment of pancreatic cancer is significantly 

increased compared to healthy pancreas tissue (Tjomsland et al., 2011). The 

presence of this gene could potentially be indicative of dendritic cell 

contamination or potential evidence of skewing towards a more dendritic like 

maturation phenotype of the monocytes in pancreatic cancer. 

 

Another interesting gene identified is Macrophage receptor collagenous 

structure gene (MARCO), codes for a macrophage scavenger receptor as 

identified to be increased in monocytes after challenge with endotoxins 

(Talwar et al., 2006). It MARCO is highly homologous with Scavenger 

receptor A (SR-A), a deficiency in which on macrophages in co-culture 

models has been shown to inhibit tumour cell migration and has beenis 

recognised as a potential target for novel therapy in cancer treatment (Neyen 

et al., 2013, Getts et al., 2014) 

 

Folate Receptor 1 (FOLR1) gene is a member of the folate receptor family 

that binds folic acid and its derivatives. It has been identified alongside 

FOLR2 and FOLR3 as down regulated in monocytes from patients with early 

onset coronary artery disease (Sivapalaratnam et al., 2012). Expression of 

folate receptor 2 on myeloid cells is a common characteristic on ‘M2’ 

alternatively activated macrophage phenotype. Folate receptor 1 has been 

identified as a target to reduce macrophage infiltration in glioblastoma 

multiforme, but there is no current evidence for FOLR1 in alternative 

activation (Puig-Kroger et al., 2009). 

 



 

Results  

Page 154 of 239 

Cytochrome B-245 alpha polypeptide (CYBA) has again been implicated in 

monocytes in cardiovascular disease. A negative association between this 

gene and superoxide producing NADPH oxidase release from peripheral 

blood mononuclear cells is thought to impact on leukocyte survival and 

adhesion ability (Macias-Reyes et al., 2008, Moreno et al., 2011). 

 

The top differentially expressed genes that are confirmed in this manner will 

then be investigated further for protein expression in the respective 

monocyte subsets by immunohistochemistry.qPCR. 
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6.2 Aims 

 

The aims of this chapter isare: 

• To confirm significantly differentially expressed genes by quantitative 

PCR in classical monocytes from PDAC patients and healthy 

volunteers. 

• To test qPCR validated targets further at protein level using 

immunohistochemistry of primary classical monocytes from PDAC 

patients or healthy volunteers. 
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6.3 Results 

6.3.1 qPCR validation of top differentially genes defined by Affymetrix 
analysis.  

 

In the previous chapter, gene expression analysis was carried out on 

classical monocytes from healthy donors and PDAC patients and the top 

DEGs in each group were identified. Table 6.1 displays the genes probed for 

validation using qPCR.  Interestingly, some of these genes have been 

previously implicated in myeloid cells function and biology, as discussed later 

in this chapter. 

 

Fold change in expression is calculated using the mean value for PDAC 

patients divided by the mean value of the healthy volunteers for each gene. 

Statistical significance is calculated using an unpaired students t-test 

(p<0.05). 
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Gene 
symbol 

Gene name Log2 of Fold 
change 

p-value 

RASGEF1B Guanine nucleotide exchange 

factor for Ras family proteins 

5.0368 0.004 

EGR3 Early Growth Response-3 4.5812 0.0022 

EGR2 Early Growth Response-2 3.2138 0.0240 

CD83 Cell surface marker expressed on 

monocyte derived dendritic cells 

2.8984 0.0374 

MARCO Macrophage Receptor with 

Collagenous Structure 

1.7149 0.0288 

FOLR1 Folate receptor 1 -2.7 0.00581 

CYBA Cytochrome B-245 -2.397 0.0071 

Table 6.1 Top differentially expressed genes as ranked using fold 
change increase or decrease in PDAC patients compared with healthy 
volunteers. 

The top ranked statistically significant DEGs that were chosen for validation 
using qPCR in the same samples and in a larger cohort. 
 
The top DEGs were assessed using qPCR in the original samples that were 

used for the Affymetrix analysis. Prior to the Affymetrix analysis, a small 

aliquot of RNA was reserved from the sample for this subsequent qPCR 

analysis. This aliquoted RNA sample was stored at -80°C and was not 

subject to the pre-amplification procedure required for Affymetrix 

hybridization onto the gene chips. The intention behind maintaining un-

amplified samples was to compare gene expression platforms, and to ensure 

differential gene expression is not affected by the amplification procedure. 

 

Figure 6.1 below, the black bars represent the Affymetrix fluorescence 

expression values (log2) and the white bars represent Delta Ct values for 

each gene as calculated by subtracting the Ct value of the sample gene from 

the Ct value of the reference gene. Figure 6.1 below shows the genes that 
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were significantly increased in classical monocytes from PDAC patients 

compared with healthy volunteers. 
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Figure 6.16.1 Comparison between Affymetrix fluorescence intensity 
values with Delta Ct values from qPCR in statistically significant DEGs 
that are increased in PDAC patients compared with healthy volunteers. 

Expression values for Affymetrix log2 probe fluorescence intensities are 
plotted as black bars (mean +/- SD) to be read on the left y-axis; Delta Ct 
qPCR values (Ct RPL34 reference gene minus Ct gene of interest) are 
plotted as white bars (mean +/- SD) to be read on the y-axis on the right 
side. Data represent the same number of healthy volunteers (n=3) and 
PDAC patients (n=5) for both gene expression platforms. p< 0.05 (*), p<0.01 
(**). 



 

Results  

Page 160 of 239 

 

 

 

 
 
Figure 6.26.2 Figure Comparison between Affymetrix fluorescence 
intensity values with Delta Ct values from qPCR in statistically 
significant DEGs that decrease in PDAC patients compared with 
healthy volunteers. 

Expression values for Affymetrix log2 probe fluorescence intensities are 
plotted as black bars (mean +/- SD) referring to the left y-axis; Delta Ct 
qPCR values (Ct RPL34 reference gene minus Ct gene of interest) are 
plotted as white bars on the y-axis on the right side. Data represent the same 
number of healthy volunteers (n=3) and PDAC patients (n=5) for both gene 
expression platforms. p< 0.05 (*), p<0.01 (**). 

 

Analysis using qPCR validated and confirmed DEG expression determined 

by Affymetrix in this cohort. This indicates the gene expression results across 

the platforms are comparable and the whole transcriptome amplification 

procedure used in the gene chip preparation has had no adverse effects on 

these differentially expressed genes. 
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6.3.2 Gene expression of the top differentially expressed genes in an 
independent validation cohort. 

6.3.2.1 Classical monocytes 
 

The aim of this validation experiment is to determine whether the statistically 

significant gene expression differences are maintained in a larger cohort of 

patients. This analysis will also increase subject numbers and therefore 

statistical power.  

 

Top DEGs identified by Affymetrix gene expression analysis were tested 

using qPCR. The original sample set as analysed by Affymetrix (n=3 healthy, 

n=5 PDAC) was used, as well as an additional validation cohort (n= 5 healthy 

and n=8 PDAC). The results below in Figure 6.3 show the Delta Ct values of 

the new cohort of PDAC patients (n=8) and healthy (n=5) volunteers 

combined with the original Affymetrix samples.  
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Figure 6.36.3 Gene expression profiles of classical monocytes from 
PDAC compared to healthy monocytes using qPCR for identified 
differentially expressed genes that increase in PDAC. 

RNA was isolated from sorted classical monocytes from the combined 
cohorts (n=8 healthy volunteers; n=13 PDAC patients). The analysis shows 
statistical significance is maintained for EGR2 and EGR3 gene expression 
only. Delta Ct values calculated by (Ct RPL34)-(Ct gene of interest). Data 
shown as a dot plot to represent individual gene expression values for health 
volunteer versus PDAC sample. The horizontal line represents median value. 
Statistical significance was calculated using Mann Whitney (p-values are 
<0.05). 
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Next, I analysed the genes that showed a decrease in expression in the 

Affymetrix analysis. Figure 6.4 outlines the qPCR gene expression results of 

these genes. Neither FOLR1 nor CYBA were differentially expressed 

between healthy volunteers and PDAC in this combined cohort. 

 

 
 

Figure 6.46.4 Gene expression profiles of classical monocytes from 
PDAC compared to monocytes from healthy volunteers using qPCR for 
identified differentially expressed genes that increase in PDAC. 

RNA was isolated from sorted classical monocytes from healthy volunteers 
(n=8) and PDAC patients (n=13). Delta Ct values calculated by (Ct RPL34)-
(Ct gene of interest). Data shown compares individual donors, horizontal line 
expresses median value and statistical significance calculated using Mann 
Whitney (significant p-values are <0.05).  
 

 

In summary, my validation results show that several of the top DEGs as 

identified by Affymetrix and validated by qPCR did not maintain significance 

in a larger cohort. The expression of Early Growth Response 2 gene (EGR2) 

and Early Growth Response 3 gene (EGR3) were increased in classical 

monocytes from PDAC patients compared with healthy donors and therefore 

warrant further investigation. 
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6.3.2.2 Non-classical monocytes 
 

To identify whether the gene expression changes represent an exclusive 

event in the most prevalent classical monocyte population, or is a 

characteristic of other patient monocyte populations, I carried out a qPCR for 

EGR2 and EGR3 expression on the corresponding non-classical monocyte 

populations from the same individuals. 

 

 
Figure 6.56.5 Gene expression measured using qPCR in the non-
classical CD14dim CD16++ monocyte population. 

RNA was isolated from sorted non-classical monocytes (CD14dim CD16++). 
The cells were obtained from the same healthy volunteers and PDAC 
patients as the classical monocytes used above for qPCR analysis. Delta Ct 
values were calculated by (Ct reference gene (RPL34) minus Ct gene of 
interest). Data shown represents individual donor (n=8 healthy and n=13 
PDAC), horizontal lines represent the median value and statistical 
significance calculated using Mann Whitney (p-<0.05). 
 
 

Although the statistical significance is not as strong as in the classical 

monocyte subset, qPCR shows a statistically significant increase in EGR2 

and EGR3 gene expression in the non-classical monocyte population. The 

data suggests the increase is not subset specific and potentially represents a 

general (systemic) myeloid response to PDAC. 
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6.4 Summary 

 

• Gene expression results are comparable for DEGs using qPCR 

and Affymetrix Gene Chip technologies 

• Gene expression for Zinc finger transcription factor family 

members EGR2 and EGR3 were confirmed to be significantly 

differentially upregulated in a larger cohort of PDAC patients and 

healthy volunteers in classical CD14++ CD16- 

• Gene expression for Zinc finger transcription factor family 

members EGR2 and EGR3 are also significantly differentially 

upregulated in non-classical CD14dim CD16++ monocytes 
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6.5 Discussion 

 

The primary aims of this section were to validate the Affymetrix results by 

qPCR, compare expression amongst a larger cohort and finally use 

measures to identify if mRNA expression translates into protein expression. 

 

Of the top DEGs determined using Affymetrix analysis in classical 

monocytes, only two genes EGR2 and EGR3 were confirmed as significantly 

differentially expressed in the validation sample cohort. In addition, the 

analysis also revealed that EGR2 and EGR3 are not exclusively up-regulated 

in classical monocytes but also in the non-classical CD14dim CD16++ 

monocyte population.  

 

However, the changes evaluated on gene expression level could be 

validated by immunohistochemistry. Whilst healthy volunteers do not show 

any EGR2 or EGR3 expression, increased expression of EGR2 and EGR3 in 

classical monocytes PDAC patients could be demonstrated. This is a novel 

finding that has not been identified in the literature in any myeloid cell type 

and cancer. 
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6.5.1 Gene expression validation 

 

Genes chosen for validation using qPCR showed the highest ranked fold 

change in the original cohort of patients, consisting of 3 healthy volunteers 

and 5 PDAC patients. qPCR validation for target genes is widely used (Chen 

et al., 2010, Wong et al., 2011, Wu et al., 2013, Italiani et al., 2014). qPCR 

offers the advantage of a focused screen across a large cohort of samples. 

 

Taqman offers microfluidics cards that can be customised with a limited 

number of targeted known genes to be run in the same sample. These are 

useful because the sample volume required is very small for a single 

experiment, the results are generated very quickly and the amplification 

system is efficient and sensitive.  

 

Bridging the middle ground between qPCR and large-scale microarrays is 

the NanoString nCounter Gene expression array. This works using a colour 

bar-coded system to digitally detect target specific probe pairs. The 

expression level of the gene is assessed by counting the coloured bar codes 

(Kulkarni, 2011). Compared to gene expression microarrays, the NanoString 

technology might be favourable as it is highly reproducible, does not require 

pre-amplification and can be used for small amounts of RNA however it is 

less representative of the whole transcriptome due to the targeted nature of 

the assay restricting the number of genes (Ullal et al., 2014) . 
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6.5.2 Evaluation of identified targets 

 

The results presented here showed that the gene expression trends for the 

top DEGs in the same samples were maintained across platforms and cDNA 

synthesis protocols, indicating they are comparable. However, all but two of 

the genes were not sustained as statistically significant in the independent 

cohort. This could be due to several factors, in particular the sample size and 

heterogeneity between patients. Gene expression as mentioned before can 

be affected by many variables within or inter patients. Gene expression in 

immune cells in the peripheral blood could be affected by a plethora of 

factors from minor infection (Wu et al., 2013), cardiovascular disease 

(Woollard and Geissmann, 2010, Sivapalaratnam et al., 2012) to exercise 

(Frankenberger et al., 2012) or diet and obesity (Gil et al., 2007). 

 

These genes all have interesting roles in immunity and cancer however, 

apart from EGR2 and EGR3 they were not confirmed to be increased in the 

classical monocytes from PDAC patients compared with healthy donors in 

the combined cohort.  qPCR primers were used from Applied Biosystems 

(Life Technologies) as they have the best coverage of the gene of interest. 

The company website provides for each primer the interrogated gene 

sequence to allow comparisons with the Affymetrix GeneChip probe sets.   

 

Protein expression is a more direct measure of biological processes and 

potentially more reflective of gene function than mRNA. However, 

transcriptional and post-transcriptional regulation, processing, differential 

splicing, stability and regulatory elements, translation and protein 

modifications all have the ability to modulate protein expression (Gautier et 

al., 2012). 

 

In circulating monocytes, a study was carried out to determine the correlation 

between mRNA and protein expression from Affymetrix gene chips to Mass 

Spectrometry (Guo et al., 2008). The results showed an overall significant 

positive correlation between expression of genes and the relative protein on 
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average. Studying both mRNA and gene expression is important and 

complementary and in combination can provide a more comprehensive 

understanding on gene function. To improve this analysis, quantification of 

positive cells comparing PDAC patients with healthy volunteers would need 

to be carried out. To further this, intracellular flow cytometry could be 

considered for quantifying or potentially the Image Stream Platform to 

visualise fluorescent staining. 

 

To investigate this further it would be helpful to examine whether the 

transcription factors are activated, this could be done by using nuclear 

translocation with immunofluorescence as a measure of activation, 

comparing monocytes from PDAC patients with healthy volunteers.  

 

 

6.5.3 Relevance of early growth responses in myeloid cells in cancer 

 

It is thought that EGRs may be important transcriptional regulators in myeloid 

cells. In early stage development of myeloid progenitors, EGR2 was shown 

to repress genes associated with neutrophil differentiation and to promote 

expression of genes associated with macrophage development such as PU.1 

and CEBP.  These are also able to induce expression of STAT3 and SOCS1, 

which are important to cytokine secretion and proliferation (Bradley et al., 

2008). These genes were not statistically significantly increased in the PDAC 

cohort compared to healthy using Affymetrix.  

 

Using a transcriptomic regulatory network (TRN) profiling map combined with 

gene expression data, Suzuki et al., identified EGR2 as a core transcription 

factor in human CD14+ monocytes (Suzuki et al., 2012).  EGR2 can 

positively regulated by SP1, CEBPA, and IRF8, key transcription factors in 

macrophage development and polarisation in physiological differentiation 

and disease (Lawrence and Natoli, 2011). Friedman also showed this in 

earlier work in 2002, hypothesising that EGR family members complex with 

the co-repressor Nab to maintain myeloid lineage fidelity (Friedman, 2002). 
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In parallel to my data Drexhage et al. demonstrated an increase in EGR3 

expression in classical monocytes from patients with schizophrenia 

(Drexhage et al., 2010). This potentially indicates that under stress, such as 

disease or cancer, monocytes do respond locally and this can be assessed 

systemically. 

 

The same group published the essential role of EGR3 as a transcription 

factor due to its binding ability to the promoter region of Triggering Receptor 

Expressed on Myeloid cells -1 (TREM-1). This binding was confirmed using 

Chromatin Immunoprecipitation (ChIP) and is thought to play a role in the 

ability of the monocytes to produces pro-inflammatory cytokines (Weigelt et 

al., 2011). TREM-1 activation induces expression of pro-inflammatory 

cytokines IL-8 and TNF-a (Golovkin et al., 2013), which were up-regulated in 

the blood of PDAC patients in the previous section 4.3.4. This expression 

has shown to be highest on the classical monocyte population compared to 

the intermediate and non-classical. (Poukoulidou et al., 2011) 

 

A study was carried out by Xue et al., this year whichyear that profiled the 

diversity of myeloid cell phenotypic responsiveness using a range of different 

stimuli, EGR3 was identified as part of a core transcriptional network in IL-4 

stimulated macrophages (Xue et al., 2014). 

 

Increased expression of EGR2 and EGR3 was also observed in non –

classical CD14dim CD16++ monocytes from the same patients. According to 

recent fate mapping work by Geissmann et al., as discussed in section 

1.2.1.4X, it is thought that the classical monocytes form a pool of circulating 

progenitor cells for the development of the more mature non-classical 

monocyte population. It is possible that the expression is maintained through 

development into non-classical monocytes, dendritic cells or macrophages. 

As a further experiment, these monocytes could be differentiated into 

macrophages in culture to assess whether the expression is maintained 

during differentiation. 
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The literature above mentions that EGR2 and EGR3 up-regulated under 

diverse and varied conditions, such as schizophrenia. As a consequence, the 

up-regulation may not be specific to cancer but may potentially be a general 

inflammatory reaction. It would be important to investigate whether the 

transcription factors are also increased in patients with chronic pancreatitis or 

other inflammatory conditions and infections. 

 

EGR2 and EGR3 gene and protein expression levels were significantly lower 

or non-existent in monocytes from healthy donors compared with PDAC 

patients. This suggests that the presence of PDAC and its associated 

inflammation is triggering an increase in expression of these transcription 

factors that may induce functional effects downstream, which will be 

examined in the next chapter.  
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Chapter 7.  EGR2 and EGR3 gene 
expression induction in classical 
monocytes from healthy volunteers. 
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7.1 Introduction 

 

In the previous chapter, EGR2 and EGR3 were confirmed as showing 

significantly increased gene expression in classical monocytes from PDAC 

patients compared with those from healthy volunteers. The lack of 

expression of these transcription factors in healthy volunteers suggests they 

may play a role in monocyte responses to the presence of pancreatic cancer; 

or represent a general stress response. However without further investigation 

these roles cannot be explored. Chronic smouldering inflammation produced 

by or in response to pancreatic cancer is reported to produce cytokines that 

recruit monocytes and promote macrophage differentiation in the tumour 

microenvironment (Balkwill et al., 2005, Sanford et al., 2013). 

 

A key regulator of monocyte to macrophage differentiation is macrophage 

colony simulating factor (also known as M-CSF or CSF1) (Lutter et al., 

2008). The corresponding CSF1 receptor (CSF1R) is expressed on 

macrophages, and, when phosphorylated promotes survival and 

differentiation (Chitu and Stanley, 2006). M-CSF has also been shown to 

promote myeloid cell recruitment to the tumour microenvironment (Sweet 

and Hume, 2003, Geissmann et al., 2010a, MacDonald et al., 2010, Hume 

and MacDonald, 2012). Inhibition of M-CSF in mouse models of pancreatic 

cancer reduces tumour infiltrating macrophage populations and improves 

responses to chemotherapy (Mitchem et al., 2012). M-CSF is increased in 

the serum of PDAC patients compared with healthy donors (Mroczko et al., 

2005a) and therefore represents a valid target for further investigation. 

 

Although there is very little available literature on the role of the Early Growth 

Response (EGR) family in monocytes, it is suggested that in haematopoietic 

progenitors, these transcription factors are important in directing 

differentiation towards the myeloid lineage (Krishnaraju et al., 1995, Gibbs et 

al., 2008). Studies on these cells have shown early growth response gene 

expression to be very responsive to M-CSF. The addition of M-CSF to the 

progenitor cells increased expression of early growth response genes 1,2 
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and 3, this expression was associated with improved survival and promotion 

of differentiation (Bradley et al., 2008).  

 

EGR3 was also identified in gene expression microarray data in patients with 

schizophrenia (Drexhage et al., 2010). Recognised as an inflammatory 

condition (Muller et al., 2012, Sommer et al., 2014). EGR3 was also 

significantly increased in classical monocytes from these patients compared 

with healthy volunteers. Drexhage et al, went on to report that EGR3 binds to 

the promoter region of Triggering Receptor Expressed on Myeloid cells 

(TREM1) using Chromatin Immunoprecipitation (Weigelt et al., 2011).  

 

Egr2 in murine myeloid cells has been associated with binding to the FIRE 

promoter element of the csf1r gene, implicating it further in monocyte to 

macrophage differentiation (Sauter et al., 2013). Gene expression data 

published by Martinez et al.(2009) also showed EGR2 to be significantly 

increased in human ‘M2’ like macrophages, indicating it may play a role in 

alternative macrophage activation (Martinez et al., 2009). Tumour-associated 

macrophages TAMs in PDAC are thought to represent macrophages with a 

more ‘M2’ like phenotype (Sica et al., 2006, Kurahara et al., 2011). 

 

The aim of this chapter is to explore the signalling cascade that may lie 

behind increased expression of EGR2 and EGR3 in classical monocytes 

from PDAC patients. 
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7.2 Aims: 

The aim of this chapter is: 

▪ To explore the M-CSF signalling cascade and it’s effect on gene 

expression of EGR2 and EGR3 in classical monocytes isolated from 

healthy donors 
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7.3 Results 

 

7.3.1 Early growth response gene expression can be induced in 
healthy monocytes by the addition of human recombinant M-CSF 
in a dose and time dependent manner 

 

Monocytes were isolated from healthy volunteer fresh peripheral blood using 

Miltenyi MACS separation columns and plated in serum free media. 

Monocytes were then stimulated with 100ng/ml recombinant M-CSF over a 

short time course 90 minutes before collection for RNA isolation and gene 

expression analysis using qPCR. 

 

 
 
Figure 7.17.1 qPCR gene expression of M-CSF treated classical 
monocytes over time.  

RNA was isolated from 2x106 classical monocytes freshly isolated from 
MACSs separation columns and with treatment with recombinant M-CSF 
(100ng/ml) over time. A) EGR2 gene expression and B) EGR3 gene 
expression relative to housekeeping gene RPL34 using the Taqman system. 
Data is representative of four individual healthy donors in individual 
experiments and bars represent the mean and SEM. p-values calculated 
using students t-test and significant results p<0.05.  
 

 

The addition of 100ng/ml M-CSF to healthy monocytes in vitro leads to 

statistically significant increase in EGR2 and an increase EGR3 expression 
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within 60 minutes. These results show the levels return to baseline however 

after 90 minutes. 

 

7.3.2 Early growth response gene expression induction is dependent 
on MEK/ERK signalling at gene expression  

 

It was also shown in haematopoietic progenitor cells that M-CSF induction 

was dependenting on MEK/ERK signalling. To test this in monocytes I used 

a specific MEK-1,2 inhibitor from Sigma (U0126).  

 

 
 

Figure 7.27.2 Specific MEK inhibition of M-CSF induced EGR2 and 
EGR3 after 60 minutes 

RNA was isolated from 2x106 classical monocytes freshly isolated from 
MACSs separation columns and with treatment with recombinant M-CSF 
(100ng/ml) alone or in combination with a MEK/ERK (Sigma) inhibitor U0126 
over time. A) EGR2 gene expression and B) EGR3 gene expression relative 
to housekeeping gene RPL34 was assessed using the Taqman system. Data 
is represented by three individual healthy donors in individual experiments 
and bars represent the mean and SEM. p-values calculated using students t-
test and significant results p<0.05. 
 

 

These results show a significant dose dependent inhibition of EGR2 

expression by MEK Inhibition of M-CSF induction in CD14+ monocytes. 

EGR3 is not significantly up-regulated by addition of M-CSF however 

constitutive expression can be reduced using the MEK-1,-2 inhibitor 

suggesting expression may also be downstream of the same pathway. 
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7.3.3 Downstream targets of Early Growth Response genes 2 and 3 

In order to determine whether activation of EGR2 and EGR3 affects 

downstream targets. Healthy monocytes were isolated and treated with 

recombinant M-CSF [100ng/ml] over 60 minutes with or without the presence 

of the MEK inhibitor U0126 (10μM). Primers were purchased to carry out 

qPCR for TREM1, thought to be a target of EGR3, and CSF1R, a known 

target of EGR2 (Sauter et al., 2013). 

 

 
Figure 7.37.3 Gene expression of CSF1R and TREM1 in M-CSF 
stimulated healthy monocytes 

RNA was isolated from 2x106 classical monocytes freshly isolated from 
MACSs separation columns and with treatment with recombinant M-CSF 
(100ng/ml) alone or in combination treatment with Sigma U0126 MEK/ERK 
inhibitor after 60 minutes. A) CSF1R gene expression and B) TREM1 gene 
expression relative to housekeeping gene RPL34 using the Taqman system. 
Data is expressed as the mean value of three individual healthy donors in 
individual experiments and bars represent the mean and SEM. p-values 
calculated using students t-test and significant results p<0.05. 
 

 

These results show increased expression of CSF1R with the addition of M-

CSF and a decrease with the addition of the MEK inhibitor at all 

concentrations. This is not reflected in the results for TREM1 expression. 
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7.4 Summary 

To summarise: 

• Haematopoietic growth factor M-CSF can induce expression of EGR2 

and EGR3 in healthy CD14+ monocytes 

• Induction of induced EGR2 and constitutive EGR3 expression can be 

inhibited by the use of a specific MEK-1,-2 inhibitor 

• CSF1R could be downstream of M-CSF/MEK/EGR2 pathway 
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7.5 Discussion 

 
This chapter aims to investigate the interaction between early growth 

response activation, upstream regulation and downstream targets. My first 

approach was to investigate the currently available literature on early growth 

responses and myeloid cells.  Although there is very little published on the 

roles of EGR2 and EGR3 in monocytes, exploration of other myeloid cell 

literature suggests M-CSF-1 may be of interest. 

 

Monocytes from four individual donors were plated in serum free media 

before treatment with M-CSF over time and at different concentrations. The 

results show an increase in expression of the early growth response genes, 

peaking at 60 minutes with a concentration of 100ng/ml of M-CSF. Previous 

work by Carter et al., and Bradley et al., suggest that induction of EGR 

expression using rM-CSF occurs at around 60 minutes and then expression 

levels drop and stay reduced over a longer time period of 24 hours (Carter 

and Tourtellotte, 2007, Bradley et al., 2008).  

 

Early growth responses in myeloid cells can also be induced by GM-CSF 

and IL-3 and are thought to be maintained from monocyte to macrophage 

differentiation (Carter and Tourtellotte, 2007). IL-3 was also identified in 

results section 5.5.2 as an upstream regulator by Ingenuity Pathway Analysis 

for the top differentially expressed genes derived from the Affymetrix 

GeneChip arrays. There is no current data on IL-3 elevated expression in 

PDAC. 

 

In haematopoietic progenitor cells, it was also reported that induction of 

EGR2 and EGR3 expression is potentially downstream of MEK/ERK 

signalling. Cytokine induced myeloid differentiation is also reported to be 

dependent on the MEK/ERK pathway (Miranda et al., 2005). To test this in 

monocytes, monocytes were incubated with 100ng M-CSF in the presence of 

a highly specific MEK-1,2 inhibitor (U0126 Sigma) in escalating doses. The 

results of this demonstrated that the increase in expression induced by M-
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CSF could be inhibited. This was also shown by Bradley et al., over the 

same time course in haematopoietic progenitors (Bradley et al., 2008). 

 

The link between MEK signalling and EGR expression was described only 

this year by Thiel et al. The EGR family promoters contain five individual 

serum response elements (SREs). These function as binding sites for the 

serum response factor and the ternary complex factor Elk-1. When Elk-1 is 

phosphorylated by MEK signalling, this leads to an increase in DNA binding 

activity of the ternary complex formation to the EGR family promoters and 

induces activation of the transcription factor (Thiel et al., 2014).  

 

 

 
Figure 7.47.4 Monocytes EGR2 and EGR3 expression is downstream of 
MEK signalling 

Addition of m-csfM-CSF to monocytes causes a significant increase in EGR2 
but not EGR3 expression. Addition of a MEK inhibitor to monocytes with M-
CSF abrogates the increase expression of EGR2 and reduces EGR3 
expression below baseline. Studies suggest CSF1R gene is downstream of 
EGR2 activation and TREM-1 downstream of EGR3.  
 

CSF1R and TREM1 are were thought to be downstream targets of EGR2 

and EGR3 respectively. These were examined at gene expression level by 

qPCR in the M-CSF and U0126 treated monocytes, CSF1R but not TREM-1 

was but were not shown to be dependent on early growth responses with M-

CSF stimulation. This may be due to the short time course used to measure 
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the increase in expression of the downstream effects and a longer time 

course should have been used. To determine over a range from 90 minutes  

up to 24 hours. Downstream target investigation in this project is hampered 

by the lack of a specific early growth response inhibitor; therefore any 

observed effects could not be linked directly to expression. To overcome this, 

small interfering RNA could be used to silence expression of EGRs in 

monocytes and the experiment repeated.  

 

To improve these results it would be beneficial to look at M-CSF activation 

over a longer time course and it would be vital to confirm the expression of 

early growth responses with M-CSF stimulation and specific MEK inhibition 

at the protein level. Phosphorylation of ERK could also be investigated using 

western blot or flow cytometry. 

 

Immunofluorescence or cellular fractionation western blotting would help to 

determine if the transcription factors have undergone nuclear translocation 

and are therefore activated. Chromatin Immunoprecipitation (ChIP) would be 

a useful tool to determine specific transcription factor binding to target genes. 

 

One of the challenges faced in interpretation of this data, and the relevance 

to PDAC, is that stimulation of monocytes with a single cytokine does not 

recapitulate the plethora of growth factors and signals produced by the 

tumour and surrounding stroma.  

 

Culturing monocytes in the presence of pancreatic cell line supernatant will 

allow investigation into whether the responses can be induced specifically in 

conjunction with soluble factors produced by the tumour cell lines 

themselves.  

 

One has to choose the respective cell lines carefully as Miapaca 2 for 

example is well described in the literature to overexpress M-CSF (Fung et 

al., 1976). A range of cell lines representing primary and metastatic sites 

could be considered. Although this experimental design might provide a 
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simplified model of activation, it would not take into consideration the factors 

and signalling molecules produced by the numerous infiltrating immune cells 

in PDAC tumours. One possibility would be to incubate healthy and PDAC 

monocytes with plasma from healthy volunteers and PDAC patients.  

 

Additionally, it would be insightful to measure functional aspects of monocyte 

activation or suppression under these circumstances by assessing factors 

such as pro-inflammatory cytokine production or phagocytic ability. 
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Chapter 8.  Monocytes in the peripheral 
blood as a reflection of myeloid cells 
within the tumour microenvironment in 
PDAC. 
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8.1 Introduction 

 

Monocytes are an attractive potential target for therapy due to their 

accessibility, relative plasticity and their potential contribution to development 

of tumour-associated macrophages. Once in the tumour, monocytes can 

further differentiate to macrophages, which can support development of an 

immunosuppressive microenvironment. 

 

Macrophages are part of the mononuclear phagocyte system, recruited 

almost entirely from circulating classical monocytes in the peripheral blood 

(Gordon and Taylor, 2005). Macrophages are often found in the stromal 

compartment of solid tumours including breast, ovarian, pancreatic and 

hepatocellular carcinomas (McGettrick et al., 2012, Feig et al., 2012, Wu and 

Zheng, 2012, Ruffell et al., 2012).  Unlike lymphocytes, they are reported to 

be less abundant  on the periphery of the tumour microenvironment (Feig et 

al., 2013, Watt and Kocher, 2013). Tumour associated macrophageTAM 

infiltration in PDAC has been reported to promote a poorer outcome by 

influencing invasion, suppression of immune responses and promotion of 

chemoresistance (Beatty et al., 2011, Mitchem et al., 2012, Sica and 

Mantovani, 2012, Sanford et al., 2013). 

 

One of the challenges in targeting tumour associated myeloid cells is a lack 

of tumour specific markers that differentiate between macrophages in the 

tumour microenvironment and healthy functional macrophages in the rest of 

the body. 

 

Carter and Tourtellotte (2007) investigating Egr1-4 expression in 

differentiation in mice suggested that myeloid cells maintain expression of 

Egr1, 2 and 3 into macrophage development (Carter and Tourtellotte, 2007). 

The aim of this chapter is to identify whether EGR2 and EGR3 expression in 

peripheral blood monocytes, as identified by the Affymetrix analysis, reflects 

the expression pattern in the myeloid compartment within the human PDAC 

tumour microenvironment.  



DIscussion 

 

Page 188 of 239 

8.2 Aims: 

 

• To examine expression of EGR2 and EGR3 in normal healthy 

pancreas compared with PDAC tissue 

• To identify whether this staining co-localises with a marker of tumour 

infiltrating macrophages  

• To utilise available gene expression data to identify if there is 

differential expression of EGR2 or EGR3 in pancreatic ductal 

adenocarcinoma and whether expression can be correlated with 

survival. 
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8.3 Results 

 

8.3.1 EGR expression on myeloid cells in the PDAC tumour 
microenvironment 

 

To further investigate specific macrophage expression of the Early Growth 

Response (EGR) genes, qualitative expression of EGR2, EGR3 and CD68, a 

pan-macrophage marker, were assessed using fluorescence-conjugated 

antibodies on formalin fixed paraffin embedded PDAC tissue. Analysis was 

focused on the stromal compartment of the tumour as this is where most 

macrophage infiltrate can be expected. 

 

Figure 8.1 below shows the appropriate isotype control antibodies for CD68 

(mouse IgG) and for the EGR2 and EGR3 antibodies (rabbit IgG) in tissue 

from a patient with pancreatic ductal adenocarcinoma. 
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Figure 8.1 Isotype control staining in PDAC tissue 

Appropriate isotype controls for rabbit IgG (green) and mouse IgG (red) were 
used to stain formalin fixed paraffin embedded tissue. DAPI was used for 
nuclear visualisation. Antigen retrieval was carried out for 9 minutes using 
Tris/EDTA buffer. Fluorescence conjugated antibodies. Anti-mouse IgG 
secondary conjugated 546 red, anti-rabbit IgG secondary conjugated 488 
green. Magnification (X40). Scale bar represents 25μM. 
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Figure 8.28.2 EGR2 co-localises with CD68 expression: confocal 
immunofluorescence staining of EGR2 (green) and CD68 (red) in PDAC 
tissue 

FFPE embedded PDAC tissue was stained for CD68 (Abcam 1:40) and 
EGR2 (Thermo Pierce 1:2500) in FFPE PDAC tissue. Tris/EDTA Antigen 
retrieval (9 minutes). Anti-mouse CD68 secondary conjugated 546 red, anti-
rabbit EGR2 secondary conjugated 488 green. DAPI was used for nuclear 
visualisation. Image representative of PDAC patients (n=3) Magnification 
(X40) Scale bar represents 25μM. Images taken using LSM 510 confocal 
microscope. White arrows indicate several of the CD68+ cells that also 
express EGR2. Co-localisation appears as yellow. The picture shows that 
CD68 co-localises with EGR2 expression. There is no other positive staining 
for EGR2 detectable in the PDAC tissue. 
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Figure 8.38.3 EGR3 does not co-localise with CD68: confocal 
immunofluorescence staining of EGR3 (green) and CD68 (red) in PDAC 
tissue 

CD68 (Abcam 1:40) EGR3 (Thermo Pierce 1:2500) in FFPE PDAC tissue. 
Anti-mouse CD68 secondary conjugated 546 red, anti-rabbit EGR3 
secondary conjugated 488 green. DAPI was used for nuclear visualisation. 
Tris/EDTA Antigen retrieval (9 minutes). Image representative of PDAC 
patients (n=3) Magnification (X40) Scale bar represents 25μM. Images taken 
using LSM 510 confocal microscope. White arrows indicate several of the 
CD68+ cells. It appears that few cells stain positive for EGR3 but this 
staining does not co-localise with CD68 expression. 
 

 

These representative images in Figures 8.2 and 8.3 show positive 

expression and co-localization of EGR2 in CD68+ cells in the PDAC tumour 

microenvironment from three patients and three healthy donorstumour 

adjacent normal sections. The absence of colocalisation between CD68 and 

EGR3 suggests that EGR3 is not expressed on tumour-associated 

macrophages in PDAC. Staining in healthy pancreatic tissue revealed no 

CD68 positive positive cell infiltration. 
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8.3.2 Early growth response expression in human pancreatic cancer 
tissue using gene expression microarray data from the 
Pancreatic Expression Database 

 

The aim of this section is to understand whether gene expression in 

monocytes can be used as a predictor for gene expression in the tumour 

microenvironment. The pancreatic expression database (PED) was created 

in 2007; at Barts Cancer Institute and is continuously updated. It is the 

largest collection of pancreatic data available for mining. Data is collected 

and stored from publicly available resources on pancreatic genomic, 

proteomic, microRNA, transcriptomic and methylomic profiles allowing users 

to search and compile their own analysis using the corresponding clinical 

data. The advantages of this type of data mining allow very specific research 

questions to be applied to the available data to obtain a focused, 

interpretable, annotated output. 

 

Gene expression of EGR2 and EGR3 were examined in 644 samples from 

the Barts PED representing bulk tissue, micro-dissected tumour, adjacent 

healthy pancreas or pancreatic ductal adenocarcinoma.  
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Figure 8.48.4 Gene expression results from 644 patients in the 
Pancreatic Expression Database  

Gene expression results calculated as mean fold change PDAC tissue 
divided by gene expression in normal healthy resected pancreatic tissue 
(n=644). Error bars represent standard deviation. 
 

The results showed a significant increase in both EGR2 and EGR3 

expression in PDAC (p<0.05) with fold changes of 5.88 and 5.33 

respectively. 

 

In collaboration with Dr Jianmin Wu at the Kinghorn Cancer Centre, 

University of New South Wales, expression of EGR2 and EGR3 were 

assessed in Andrew Biankin’s dataset published in Nature in 2012 (Biankin 

et al., 2012). This dataset accrued 159 clinical samples of pancreatic ductal 

adenocarcinoma without previous chemotherapy treatment. Biankin et al., 

carried out a detailed analysis identifying mutations, copy-number variations 

and core signalling pathways in that may be involved in pancreatic cancer 

development.  

 



DIscussion 

 

Page 195 of 239 

Figure 8.5 below represents the distribution of EGR2 and EGR3 gene 

expression over the 142 samples. 
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Figure 8.58.5 Expression distribution of EGR2 and EGR3 expression in 
pancreatic cancer patients 
Gene expression from whole tumour samples. GEX probe detection p-values 
were represented by coloured triangles in the row on the right. Green triangle 
indicates the p-values are lower than 0.01, the grey triangle indicates p-
values are between 0.01 and 0.05. The red triangle indicates the p values 
are higher than 0.05 and therefore non-significant. To inform cellularity 
thresholds and define the impact of stromal DNA content, Biankin et al 
sequenced different mixtures of germline DNA and cancer cell line and used 
these to compare sample purity. The purity of the samples is also 
represented by triangles in the left column. Green triangle indicates the 
sample was >40%, the grey triangle represents 20-40% and the red triangle 
<20%. 
 
The expression range for EGR2 is broad and the log2 transformed intensities 

range from 6.5-9. In contrast, EGR3 shows a smaller range of expression 

values. EGR2 and EGR3 were not identified as mutated genes in this cohort. 

A range of cut offs used were used to define high and low expression from 

10% low and 90% high, 15% v. 85%, 20% v. 80%, 25% v. 80%, 30% v. 70%, 

40% v. 60% and 50% v. 50% high and low respectively. 

 

Three endpoints were tested: Disease free survival (DFS), the length of time 

after a primary treatment the patient is symptom free; Overall Survival (OS), 

the time to death from any cause; and Disease Specific Survival (DSS,) time 

to death caused by pancreatic cancer. No clear associations were seen 

between high and low expression of EGR2 or EGR3 and DSS or OS.  
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Figure 8.68.6 Kaplan-Meier curve EGR2 expression and disease free 
survival.  

Clinical data is derived from Biankin et al., (Biankin et al., 2012). The X-axis 

represents cumulative survival and the y-axis survival time in months. The 

red line represents patients expressing higher levels of EGR2 compared with 

the green line representing lower expression. Logrank p=<0.05 considered 

statistically significant. Figure representative of 159 patients. 

 

EGR2 expression was significantly associated with DFS. The figure above 

shows the Kaplan Meier curve for EGR2 expression and disease free 

survival using a cut off value of 40%20% low expression and 860% high 

expression, and demonstrates association between EGR2 expression and 

later relapse. 
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8.3.3 Early growth response genes 2 and 3 expression in murine 
model of PDAC 

 

Colleagues in the Hagemann laboratory (Dr. Juliana Candido and Dr. 

Raphael Zollinger) are working on gene expression in a spontaneous well-

characterised murine model of pancreatic cancer. The ‘KPC’ model is a 

genetically engineered murine model of pancreatic cancer, developed by 

Hingorani et al., to faithfully recapitulate the spontaneous development of 

pancreatic intraepithelial neoplastic lesions that progress into ductal 

adenocarcinoma (Hingorani et al., 2003).  

 

The KPC model is derived by using a Cre recombinase under the control of 

the Pdx1 promoter, a gene only expressed in the pancreatic cells of 

endodermal origin. The mutations induced using a cre-lox system induce a 

mutated Kras (G12D) and P53 (R172H). This model is clinically relevant to 

human pancreatic cancer as the tumours have a dense stromal infiltrate and 

a moderately differentiated morphology.  

 

‘Clinical’ symptoms observed in the KPC model are cachexia, peritoneal 

ascites and metastatic spread (Olive et al., 2009). This model is widely used 

in pancreatic cancer research in pre clinical models of drug development and 

has vastly improved the understanding of mechanisms behind disease 

pathogenesis (Courtin et al., 2013). Affymetrix GeneChip microarrays 

(Mouse 1.0) were used to profile gene expression. 
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8.3.3.1 PDAC tissue 
 

To investigate whether Egr2 and Egr3 gene expression is affected in tumour 

lysates from KPC model compared with wild type. Affymetrix fluorescence 

intensity values were plotted for normal pancreas and untreated PDAC 

tissue. Figure X below indicated as indicated below in Figure 8.7. 

 

 
Figure 8.78.7 Egr2 and Egr3 gene expression in normal murine 
pancreas compared with KPC tumour bearing pancreatic tissue. 

Affymetrix fluorescence intensity values represent Gene expression of Egr2 
and Egr3 in whole pancreas lysates from normal wild type mice and 
untreated KPC pancreatic tumours. Y-axis represents Affymetrix 
fluorescence intensity values and X-axis sample origin. Each circle 
represents an individual mouse 
 

 

The results show an increase in gene expression of Egr2 and Egr3 in 

pancreatic cancer tumour tissue compared with healthy normal pancreas 

from wild type mouse. 
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8.3.3.2 Sorted cell populations 
 

To identify the source of expression changes in the microenvironment the 

myeloid cells (CD11b positive), other leukocytes (CD45 positive) and tumour 

cells (EpCam positive) were sorted and microarray profiling used to examine 

gene expression. 

 

 
Figure 8.88.8 Gene expression of Egr2 and Egr3 in sorted cell 
populations from KPC tumour bearing pancreas tissue lysates. 

Gene expression of Egr2 and Egr3 in tumour cells (EpCam+), macrophages 
(CD11b+), other leukocytes (CD45+) and all other cells sorted from whole 
pancreas tumours from KPC mice. Y-axis represents Affymetrix fluorescence 
intensity values and X-axis sample origin. Each circle represents an 
individual mouse. 
 

The result showed that Egr2 in the PDAC tumour microenvironment from 

KPC mice is more highly expressed in the macrophages compared to the 

tumour cells and other leukocytes. Egr3 however, is expressed more highly 

in the other leukocytes.  
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8.4 Summary 

 

• Expression of EGR2 but not EGR3 was observed on tumour 

infiltrating macrophages in pancreatic ductal adenocarcinoma 

• Gene expression analysis from whole pancreatic tumour tissues 

identifies a significant correlation between EGR2 expression in the 

tissue and improved disease free survival. 
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8.5 Discussion 

 

The aims of this chapter are to determine whether the expression of EGR2 

and EGR3 genes in monocytes are maintained in the tumour 

microenvironment in PDAC. Positive correlation of the expression patterns 

could strengthen the hypothesis that peripheral monocytes could potentially 

be used as a source of markers to assess the innate compartment in 

tumours.  

 

It is known that macrophage infiltration into the tumour microenvironment 

increases in pancreatitis and pancreatic cancer (Amit and Gil, 2013, Liu et 

al., 2013, Puolakkainen et al., 2014). However, there are no published data 

on EGR2 or EGR3 immunostaining in the human pancreas. In order to 

optimise the staining protocols for the antibodies effectively, classical 

monocytes from healthy volunteers and pancreatic cancer patients were 

used employed as negative and positive controls, respectively. These were 

then fixed and embedded in the same manner as the tissue. The antibody 

concentration that showed differential staining of cancer to healthy 

monocytes was chosen.  

 

The normal pancreatic tissue sections used in this project were isolated from 

patients undergoing surgical resection and therefore represent tumour–

adjacent normal tissue. To identify whether macrophages in the PDAC 

tumour microenvironment express EGR2 or EGR3, fluorescence-conjugated 

secondary antibodies we employed to stain for EGR2 or EGR3 in 

combination with nuclear stain DAPI and pan-macrophage marker CD68. 

Lack of staining showed that EGR3 is not present in the tumour 

microenvironment.  However, positive staining of EGR2 in the macrophage 

population suggests it is maintained during differentiation and within the 

tumour. 

 

It is well known that macrophages TAMs infiltrate the tumour at an early 

stage in tumour development and this has been reported to correlate with 
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outcome (Yoshikawa et al., 2012, Sugimoto et al., 2014). To improve these 

results it would be beneficial to utilize a marker of alternatively activated 

macrophages, for example, CD163 or CD204, which are commonly used to 

define activation state (Kurahara et al., 2011), because it has been reported 

that CD68 can sometimes be expressed on fibroblast cells within the breast 

cancer microenvironment (Denardo et al., 2011).  

 

To further investigate the relevance of EGR2 or EGR3 expression in 

pancreatic cancer I collaborated with Dr Jun Wang here at Barts Cancer 

Institute to utilise the Pancreatic Expression database. The results showed a 

significant increase in expression of EGR2 and EGR3 in PDAC patients 

compared with healthy volunteers. 

 

In order to determine whether the increase in expression could be used in 

translational research, in collaboration with Dr Jianmin Wu at the University 

of New South Wales in Australia gene expression of EGR2 and EGR3 were 

assessed in the data set published by Andrew Biankin (Biankin et al., 2012). 

This set contains survival and gene expression data from 159 whole tumour 

lysates from untreated PDAC patient who underwent resection surgery with 

curative intent. The results showed a significant correlation with disease free 

survival with EGR2 expression. Disease free survival is the length of time 

after the primary treatment that the patient survives without any symptoms 

and no disease or tumour progression can be detected.  

 

The patients with higher increased EGR2 expression have a longer disease 

free survival period before relapse, suggesting expression may have a 

protective effect. This is opposite of what we expected to see if the EGR2 

expression correlated with increased tumour infiltrating macrophages that 

promote tumour progression. 

 

There was, however, no significant association of expression of either EGR2 

or EGR3 when assessing DSS or OS. These patients however, were 
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surgically resectable suggesting a lack of local invasion or metastases and 

therefore an earlier stage of detection. 

 

This type of analysis used lysates from whole tissue tumour biopsies that 

represents a heterogeneous cell population; this may introduce bias in gene 

expression depending on leukocyte infiltration or the prevalence of stromal 

component in each biopsy.  

 

I then went on to examine whether gene expression would be affected in a 

murine model of pancreatic cancer. Colleagues in my lab isolated samples 

from sorted cell populations within the tumour as well as whole tissue 

lysates. The aim of this investigation is to determine which cell types in the 

tumour have higher expression. From analysis of the gene expression data, 

it is clear that the expression of both EGR2 and EGR3 is higher in the 

pancreatic cancer group (p<0.05). 

 

Additionally, tumours isolated from the KPC mice and cell populations sorted 

by flow cytometry provided tumour cells  (as defined by their expression of 

EpCam), tumour associated myeloid cells (CD11b) and ‘other’ leukocyte 

(CD45) cell compartment. The results show that Egr2 is higher expressed in 

tumour infiltrating myeloid cells and Egr3 expression can be attributed to 

other leukocytes. This data supports my immunofluorescent staining (Figure 

8.2) showing that EGR2 is expressed on the CD68 positive cells within the 

tumour microenvironment. 

 

Prior to the current understanding that macrophage polarisation results in a 

spectrum of phenotypes, transcriptomic classification was based around two 

polar activation states known as classically activated ‘M1’ and alternatively 

activated ‘M2’. Using these two classifications, it was reported that tumour 

associated macrophages bear a more similar phenotype to the alternatively 

activated or more ‘M2’ like macrophage (Sica et al., 2006). However it is now 

widely known that this classification is slightly over-simplified due to the 

plasticity in macrophage responses to environmental signals.  
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Martinez (Martinez, 2009) published data reporting gene expression changes 

in human monocyte to macrophage differentiation, which was a seminal 

article in identification of key regulatory genes in this process. CD14+ 

monocytes were isolated and macrophage differentiation was polarized 

towards two well characterised macrophage phenotypes: classically 

activated ‘M1’ macrophages (stimulation with LPS and interferon gamma) or 

‘M2’ (using IL-4 and IL-13). The results showed that they too had identified 

EGR2 in the ‘M2’ macrophage phenotype.  

 

These results suggest that EGR2 expression associated with alternative 

macrophage activation is maintained in macrophages in the pancreatic 

tumour microenvironment. EGR3 staining was identified on few cells within 

the PDAC tissue, however this may be due to expression coming another 

cell type (Li et al., 2011).  
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Monocyte mobilisation from the peripheral blood has been reported to be 

associated increased tumour associated macrophage recruitment to the site 

of the primary tumour in pancreatic cancer and with a poorer outcome and 

(Mitchem et al., 2012, Steele et al., 2013, Sanford et al., 2013).  

 

In several solid cancer types, including breast and pancreatic cancer, 

Monocytes have been shown to promote growth, facilitate metastasis and 

chemoresistance in pre clinical models of murine mammary and pancreatic 

cancer (Beatty et al., 2011, Brower, 2012, Amit and Gil, 2013, Deschenes-

Simard et al., 2013) as well as humans (Watt and Kocher, 2013, Shibuya et 

al., 2014). Inhibition of myeloid recruitment to tumours is also a proposed 

therapeutic strategy in reducing TAM infiltration and tumour volume 

(Leuschner et al., 2011, Mitchem et al., 2012, Sanford et al., 2013).  

 

My project aimed to investigate monocytes in pancreatic cancer by 

assessing the effects of the presence of pancreatic ductal adenocarcinoma 

on gene expression in classical monocytes. The hypothesis being tested was 

that systemic changes due to the presence of the tumour alter monocyte 

phenotype, which can be used as a marker of disease presence and 

potentially predict outcome or therapeutic response. As tumours show an 

enormous amount of genetic heterogeneity and plasticity, the more stable 

genome of stromal cells or immune cells would be far better suited for 

predictive analysis and potential targetting. 

 

The classical monocytes form the most abundant population in the peripheral 

blood and are selectively recruited to the tumour microenvironment by 

CCR2/CCL2 interactions. It is therefore of interest to determine if the 

monocytes are ‘primed’ by the presence of the tumour and whether any 

differences could be utilised as prognostic markers or valid targets for 

therapy. 

 
Patients were carefully chosen, and all had locally advanced stage III/IV 

confirmed pancreatic ductal adenocarcinoma. In human studies, when 
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working with primary cells, patient heterogeneity cannot be avoided but can 

be reduced by careful matching and exclusion of patient characteristics.  

Patients can also be excluded from the study retrospectively if their initial 

diagnosis had changed. Inclusion of patients who were suitable for resection 

or patients undergoing chemotherapy was avoided, in order to remove as 

much variability as possible. It was also necessary to match healthy 

volunteers by age for gene expression, to ensure that there was no bias 

being introduced by this characteristic. 

 

The first approach taken was to assess monocyte distribution in the 

peripheral blood of patients compared with healthy donors. Multi-colour flow 

cytometric analysis was used to assess cell surface expression of CD14 and 

CD16, markers used to classify monocyte subsets in the literature (Passlick 

et al., 1989, Ziegler-Heitbrock, 2007, Heimbeck et al., 2010, Frankenberger 

et al., 2012). This approach is widely used to profile monocyte responses 

under inflammatory conditions or infection (Sanchez-Torres et al., 2001, 

Nahrendorf et al., 2007, Pandzic Jaksic et al., 2010, Ozaki et al., 2012).  

 

Distribution profiling of classical monocytes did not yield a significant 

difference between healthy and PDAC nor did the absolute monocyte counts 

from the clinical data. This suggests that replenishment and differentiation of 

classical monocytes may be unaffected by the presence of PDAC. This 

contrasts with data reported by Sanford et al., which showed an increase in 

classical monocyte number. However, the patient cohort selected in my 

study represented a consistent untreated sample set at a later stage of 

diagnosis as opposed to the mixed stages or treated patients used by 

Sanford.  

 

The monocyte distribution shift observed in my work was similar to that 

reported in inflammatory conditions, such as rheumatoid arthritis and lupus 

(Scherberich, 2003, Zhang et al., 2010, Rossol et al., 2012). The concurrent 

increase in the intermediate monocyte population and decrease in the non-

classical population has also been reported in breast and colorectal cancers 
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(Feng et al., 2011, Schauer et al., 2012). The non-classical monocyte 

population is thought to be the most mature and to be derived from the 

classical monocytes via a sequential differentiation through the intermediate 

monocytes (Ancuta et al., 2009, Beyer et al., 2012). The results seen here 

could suggest an expansion in the intermediate population due to the 

presence of cancer associated inflammation and soluble factors such as 

CSF1 or CCL2 being produced by the tumour and its surrounding 

environment. Alternatively there may also be a block preventing 

differentiation from the intermediate to the non-classical population. It would 

be interesting to measure these factors in the blood of patients to determine 

if the levels may correlate with the monocyte distribution or macrophage 

infiltrate in the corresponding tumour histological biopsy samples 

 

Flow cytometric assessment of monocytes cultured under closed conditions 

in vitro, using plasma or tumour cell supernatants, would be beneficial here 

to further investigate which factors are producing these effects. To elucidate 

this metabolite or proteomic profiling from concurrent samples could be used 

to correlate expression with distribution changes or clinical counts.  

 

Access to the clinical data showed no correlation between monocyte counts, 

distribution or tumour markers. This suggests that, in this small cohort, 

monocytes might not be a useful clinical biomarker for tumour presence. A 

recent paper by Steele et al however showed a correlation between CRP 

count and monocyte presence in the peripheral blood, which might be 

reflected in a larger cohort of patients (Steele et al., 2013). 

 

With the advent of novel technologies, transcriptomic profiling is leading to 

more ‘data-driven’ approaches to derive hypotheses. This type of high 

throughput technology is becoming increasingly common and is helpful in 

understanding key regulators of biological function.  

 

Classical monocytes were collected from 3 healthy and 5 PDAC patients for 

analysis. RNA was isolated and, to gain a sufficient amount for Affymetrix 
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GeneChip analysis the cDNA was amplified using the Nugen Ovation kit. 

This has proved to be a robust and reliable amplification procedure with a 

good coverage of the whole transcriptome from very small quantities of RNA. 

Monocytes are prevalent in the blood, but small sample sizes taken from 

patients at the hospital due to requirements for other blood tests or 

chemotherapy, as well as sample processing steps, lead to a small starting 

volume of RNA. 

 

Affymetrix gene chips were chosen at the start of this project, as they are 

reliable, robust and cost-effective. The results of the gene expression 

microarrays yielded fluorescence intensity values for 54,000 probe sets on 

each array. Careful consideration was given to normalisation and data 

analysis methods, to ensure the top identified differentially expressed genes 

fit several criteria. Differentially expressed genes were increased by a fold 

change of more than 2 and were statistically significant (p<0.05). The 

resulting gene lists, as indicated in the second results chapter (Section 5.3), 

indicated there were 242 increased genes in PDAC and 280 genes 

increased in classical monocytes from healthy volunteers.  

 

When analysing a large number of probes, it is vital to be stringent, 

considering a high background noise level. This helps avoiding the inclusion 

of genes that might give false positive results. However, it also may exclude 

genes that are present at low abundance, as it cannot be assumed that small 

changes in expression are not important or that large differences are always 

important. 

 

Gene expression analysis of this kind presents several challenges. The 

results give an individual snapshot of expression, which is dynamic and 

transient (Fan and Hegde, 2005, Heimbeck et al., 2010). Homeostatic 

responses are not fixed or closed, increasing the time frame of experiments 

or repeated captures can improve this effect by accounting for these 

changes, although are not often financially feasible or practical.  
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To improve significance, the most straightforward method would be to 

increase the sample size,. Iin this particular experimental design, the addition 

of another group of patients with pancreatitis would help identification of 

monocyte responses associated with inflammation without the presence of a 

tumour to extricate tumour-specific responses. This would be useful although 

not black and white due to the inextricable links between cancer- promoting 

inflammation and vice versa. 

 

The top differentially expressed genes were then assessed using targeted 

qPCR in an expanded cohort of 9 healthy donors and 13 patients. These 

results showed significant increase in expression of two genes, interestingly 

from the same family of zinc finger nuclear transcription factors, early growth 

response genes 2 and 3 (EGR2 and EGR3). 

 

There is no published microarray data on monocytes from cancer patients, 

however, profiling results from pancreatic cancer patients identified an eight-

gene signature from a mixed group of peripheral blood mononuclear cells in 

the presence of cancer. As well as monocytes, this population also includes 

lymphocytes (Baine et al., 2011). It can be argued that PBMCs represent a 

highly variable and heterogeneous cell population. On the other hand it could 

also be said that this population is more representative of the immune cell 

landscape in the peripheral blood and is also easier to isolate as a 

population, as there is less risk of contamination or effects or activation 

caused by sample processing. Recent studies analysing transcriptomic 

profiles of a single type of human immune blood cells, compared with single 

cell analysis, showed that, even within the subset of a defined cell type, cells 

can be considered heterogeneous due to a spectrum of phenotypic states 

and responses under homeostasis (Wu et al., 2014, Streets et al., 2014). 

 

Data driven approaches generate large amounts of data however, when 

extrapolating genes of importance, it is important to consider that genes do 

not act alone, but participate in complex signalling pathways and networks. 

To determine whether differentially expressed genes could be associated 
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with a particular pathway or function, Ingenuity pathway analysis (IPA) was 

used. This analysis identified transcriptional regulation and development of 

mononuclear phagocytes as the top statistical pathways, which is consistent 

with assessment of monocytes. These results may also indicate that 

monocytes are encouraged to differentiate and that the transcriptional 

machinery for these processes is being switched on in patients with PDAC. 

 

To further understand biological relevance of the up-regulated genes, 

investigation is required into what effects activation of these genes may 

have. In this instance, the identified genes are transcription factors. EGR2 

and EGR3 were increased at gene expression level in a larger cohort of 

patients (n=13) compared with healthy donors. It would be helpful, however, 

to examine whether this increase is maintained at protein level using a 

western blot or intracellular flow cytometry. 

 

To advance our understanding of the role of EGR2 and EGR3 in monocytes, 

molecules that may play a role in induction of EGR2 or EGR 3 expression 

were investigatedopm. I showed that macrophage-colony stimulating factor 

could increase expression of EGR2. This expression could also be inhibited 

with the use of a specific MEK-1,-2 inhibitor suggesting potential upstream 

signalling pathway dependency of EGR2 in monocytes on MEK. To confirm 

this it would be useful to also check EGR2 expression at a protein level and 

assess phosphorylation of ERK after stimulation.  

 

Additional downstream effects of M-CSF signalling in the monocytes were 

investigated, however, specific inhibitors of the EGRs would be required to 

confirm EGR-dependent responses. The time course used may also require 

extension to measure the changes in gene expression and downstream 

responses over a longer time. To further investigate the downstream 

activation targets of EGR2 and EGR3 as transcription factors Chromatin 

Immunoprecipitation (ChIP) would be helpful as a future experiment. 

However ChIP is limited by the need to know what the transcription factor is 

thought to bind to, or the ability to sequence the resulting target.  
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Currently in the literature there are no pharmacological inhibitors of EGR2 or 

EGR3. RNA interference technology would be helpful in selectively reducing 

expression of EGR2 or EGR3 in a bid to determine the effects this has on 

monocyte function. After confirmation of knock down, parameters such as 

cytokine production, phagocytosis or monocyte to macrophage differentiation 

could be investigated. This was carried out by ZhengZheng et al., in T cells 

and identified of EGR2 specific roles in suppression of cytokine production 

namely IL-2 and anergy (Zheng et al., 2012). 

 

Macrophage-colony stimulating factor is a relevant upstream regulator in 

PDAC due to its known roles in myeloid differentiation and reported 

increased presence in pancreatic cancer (Bunger et al., 2011). However the 

use of one cytokine may not necessarily be representative of monocytes in 

the peripheral blood of cancer patients. To better exemplify the environment 

to which monocyte are exposed, it would be useful to culture the monocytes 

in the presence of plasma from PDAC patients compared with healthy 

donors or in the presence of pancreatic tumour cell line supernatants. 

 

 

To investigate whether monocyte expression of EGR2 or EGR3 would be 

maintained in the tumour microenvironment, immunofluorescence 

microscopy was used to examine co-localisation with CD68, a marker 

expressed on macrophages. EGR2 and CD68 appeared to co-localise in the 

tumour, but not normal tissue, supporting the potential of monocytes to 

reflect the macrophage compartment in the tumour. The presence of EGR2 

on the tumour-associated macrophages also supports the known roles of 

EGR2 in transcriptional regulation of monocyte to macrophage 

differentiation. EGR2 was also reported to be a marker of alternative 

macrophage activation by another transcriptomic profiling study (Martinez et 

al., 2009). Expression of EGR3 was seen on a few cells in the tumour 

microenvironment, however not on the cells expressing CD68, suggesting 

the EGR3 expression may not be maintained on tumour macrophages. 
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In collaboration with Dr Jianmin Wu at University of New South Wales 

University, the distribution of EGR2 and EGR3 gene expression was 

examined in a cohort of 159 clinical samples from patients with surgically 

resectable confirmed PDAC. This dataset was collected by Biankin et al., 

and published in 2012 examining copy number variations, mutations and 

enriched pathways in PDAC. These results showed a significant correlation 

between EGR2 expression and disease free survival in patients. This result 

is interesting as it was assumed that expression on macrophages in the 

tumour-microenvironment would negatively affect DFS. However, as these 

patient tumours were resectable, it cannot be excluded that EGR2 

expression may have different impact at different stages of disease. 

 

If technically possible, and if annotated samples could be made available, it 

would be interesting to determine whether the expression in the Biankin 

dataset or the samples in this investigation correlate between blood and 

tissue. It might also be attractive to examine the desmoplastic responses and 

other infiltrating immune cells from the same patients. 

 

To further this project, patient cohorts for Affymetrix microarray profiling 

should be expanded and also include patients with pancreatitis or other 

benign conditions of the pancreas. It would also be interesting to measure 

the concurrent effects on the intermediate and non-classical monocytes. It 

would also be desirable to include assays to address other changes between 

monocytes in PDAC patients compared with healthy. An example of this 

would be to measure cytokine production or phagocytic ability, to establish if 

monocyte function is changed by the presence of PDAC. 

 

The transcriptome profile of classical monocytes from patients with 

pancreatic cancer is significantly altered compared with that of healthy 

volunteers. The lack of expression of EGR2 and EGR3 genes in healthy 

volunteers requires further investigation to examine their potential as 

circulating biomarkers in pancreatic cancer.  

Commented [JC4]: Early stages not the same? 
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Further investigation into EGR2 and EGR3 in monocytes, showed that EGR 

gene expression is responsive to macrophage colony stimulating factor and, 

in combination with previous data on the roles of EGR2 in core transcription 

networking, implicates EGR2 in monocyte to macrophage differentiation. 

EGR2 is expressed on myeloid cells in the PDAC tumour compartment and 

gene expression in the tissue is associated with disease free survival. This 

could suggest that EGR2 is linked to a more alternatively activated tumour 

associated macrophage phenotype and that the monocytes in the peripheral 

blood reflect the myeloid cells within the tumour microenvironment.  

 

To summarise, further investigation remains into the functional roles of 

monocytes in pancreatic cancer and the biological relevance of sustained 

EGR2 expression in monocyte to macrophage differentiation in the tumour 

microenvironment of patients with pancreatic ductal adenocarcinoma. 

However, the work carried out during my thesis demonstrated changes in the 

expression profile of PDAC monocytes. Larger cohort study analysis are 

warranted and need to be aligned with the functional readout to determine 

the potential value as a systemic marker of immune response to PDAC 

disease. 
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