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Abstract

It has long been suggested that the mid-latitude atmospheric circu-
lation possesses what has come to be known as ‘weather regimes’,
loosely categorised as regions of phase space with above-average den-
sity and/or extended persistence. Their existence and behaviour has
been extensively studied in meteorology and climate science, due to
their potential for drastically simplifying the complex and chaotic
mid-latitude dynamics. Several well-known, simple non-linear dynam-
ical systems have been used as toy-models of the atmosphere in
order to understand and exemplify such regime behaviour. Never-
theless, no agreed-upon and clear-cut definition of a ‘regime’ exists
in the literature, and unambiguously detecting their existence in the
atmospheric circulation is stymied by the high dimensionality of the
system. We argue here for an approach which equates the existence
of regimes in a dynamical system with the existence of non-trivial
topological structure of the system’s attractor. We show using persis-
tent homology, an algorithmic tool in topological data analysis, that
this approach is computationally tractable, practically informative, and
identifies the relevant regime structure across a range of examples.
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1 Introduction

The discovery of the ‘butterfly effect’ (Lorenz, 1963) effectively ended the

idea that weather forecasting can be understood purely as the problem of

integrating a deterministic system forward in time. Instead, the problem of

accurate weather forecasting becomes one of determining, from a given initial

state, the likely trajectories of the atmosphere on its underlying attractor

(Slingo and Palmer, 2011). Similarly, the problem of producing reliable climate

projections can be understood as determining how, and to what extent, the

likelihood of traversing different trajectories changes in the presence of an

external forcing (Corti et al., 1999; Palmer, 1999; Woollings et al., 2010b).

As such, it becomes natural to ask whether the climate attractor exhibits

significant deviations from Gaussianity, since such deviations, even locally, may

strongly constrain the available trajectories. In other words, understanding the

‘shape’ of the attractor becomes a problem of great practical importance.

The study of local non-Gaussianity in the atmosphere has classically been

done under the guise of so-called weather (or circulation) regimes (Vautard,

1990; Michelangeli et al., 1995; Corti et al., 1999; Lorenz, 2006; Hannachi et al.,

2017). The basic idea1 is to determine a small number of dynamically rele-

vant large-scale flow patterns (the regimes) that dominate the low-frequency

variability and transition from one to another in an approximately Marko-

vian manner (Baur, 1951). We note that the use of the word ‘regime’ in this

paper should not be confused with usages associated with transitions induced

by changes in the system’s parameters, i.e., bifurcations. This concept of

atmospheric weather regimes has been most famously applied to study the cir-

culation of the wintertime Euro-Atlantic sector. Here, the dominant pattern

1The overview given here has been somewhat simplified. For example, the Markovian assumption
can be relaxed (Franzke et al., 2009; O’Kane et al., 2013), and regime systems can in principle
give rise to Gaussian statistics (Majda et al., 2006).
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of variability is a dipole pattern of pressure anomalies referred to as the North

Atlantic Oscillation (NAO) (Hurrell et al., 2003), shown in Figure 1. Knowing

whether the NAO is in its positive or negative phase gives a good first-order

approximation of winter weather in Europe and eastern North America, and

is one of several possible regime views of the Euro-Atlantic circulation. Strong

NAO events are frequently linked to extreme surface weather and increased

predictability, such as the European winter of 2019/2020, the warmest on

record to date (Hardiman et al., 2020). Simple dynamical systems such as the

Lorenz ‘63 system (Lorenz, 1963), the Charney-deVore (Charney and DeVore,

1979) and Lorenz ‘96 systems (Lorenz, 1996) have frequently been used to

illustrate or study the use of such atmospheric weather regimes (Palmer, 1999;

Charney and DeVore, 1979; Christensen et al., 2015).

Fig. 1 The positive (a) and negative (b) phases of the North Atlantic Oscillation (NAO),
the dominant pattern of variability in the Euro-Atlantic wintertime circulation. The pattern
is a dipole of atmospheric pressure anomalies, measured here as the first empirical orthogonal
function of geopotential height at 500hPa. The two phases can be viewed as one of several
possible ways to decompose the Euro-Atlantic circulation into distinct regimes.

However, despite being studied since the 1950’s (Baur, 1951), no clear-cut

and generally accepted definition of a regime exists. Most definitions found in
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existing studies, often stated only implicitly, are based either on density con-

siderations, where a regime corresponds to a region of above-average density

in phase space (‘clusters’) (Stephenson et al., 2004; Vautard, 1990; Straus,

2010), or some temporal persistence criteria, whereby a regime is a dynamical

phenomenon (e.g., a blocking anticyclone) with a clear lifecycle and a lifes-

pan exceeding some prescribed threshold (Mo and Ghil, 1987; Lorenz, 2006;

Franzke et al., 2008); some studies also combine the two (Grams et al., 2017;

Falkena et al., 2020). A comprehensive overview of many of these regime

methodologies can be found in Hannachi et al. (2017). When applied to

the Euro-Atlantic circulation, these approaches typically produce anywhere

between 2 and 7 regimes which are not, in general, easily comparable with each

other. The resulting ambiguity has led some to question whether meaningful

weather regimes really exist at all (Stephenson et al., 2004; Christiansen, 2007;

Fereday, 2017).

Besides the lack of agreement in the definition of regimes, existing

approaches suffer from two key technical problems. Firstly, the algorithms

involved often require essentially ad-hoc choices up front, such as the choice

of cluster number in K-means clustering algorithms, or temporal persistence

thresholds, which directly influence the output regimes. In such cases, an ‘opti-

mal’ number of regimes is often determined post hoc as the number which

maximises a chosen metric, such as the Bayesian information criterion (Falkena

et al., 2020). This adds an additional layer of complexity to analysis, since dif-

ferent choices of the validating metric may give different maxima and it can

be hard to motivate the choice of one metric over another (Christiansen, 2007;

Dorrington and Strommen, 2020). Secondly, and more seriously, the algorithms

involved typically scale very poorly with the dimension of the data set, the so-

called ‘curse of dimensionality’ (Radovanovic et al., 2010). This is particularly
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the case for more technical approaches based on computing exact solutions

of the flow (e.g., fixed-points and periodic orbits), approaches which might

be thought to offer potentially more robust candidate definitions of a regime.

In a state-of-the-art application of these concepts to atmospheric modelling,

Lucarini and Gritsun (2020) identified unstable periodic orbits (UPOs) cor-

responding to zonal and blocking events in a low resolution quasi-geostrophic

model, considerably extending earlier work by Itoh and Kimoto (1996). How-

ever, the dimensionality of this model still sits well below that of weather and

climate models, let alone the physical system itself. Since Majda et al. (2006)

showed that the fixed points of a truncated system do not necessarily cor-

respond to the regimes of the untruncated system, this represents a serious

obstacle towards using such techniques to define regimes in atmospheric data.

More problematically perhaps, UPOs and their stability are model features,

limited by the accuracy of their associated models and such analysis cannot

be directly applied to observational data.

We posit that the ‘curse of dimensionality’ represents a serious obstacle

to a more robust exploration of regimes in the atmospheric circulation, where

the dimensionality of the phase space is orders of magnitudes larger than the

number of measurements. Classical regime approaches circumvent the curse

primarily by only considering a single atmospheric variable, such as pressure

or zonal winds, and will often reduce the dimensionality even further using

empirical orthogonal function (EOF) decompositions. Such low-dimensional

projections of the circulation generally produce data sets where deviations from

Gaussianity, or metastability in the case of Hidden Markov Model approaches,

are extremely subtle and often not statistically significant (Stephenson et al.,

2004; Franzke et al., 2008; Dorrington and Strommen, 2020). On the other

hand, several studies suggest that, for example, the multimodal behaviour
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observed in the North Atlantic jet involves not just changes to zonal winds, but

the complex interplay between winds, pressure and temperatures (Novak et al.,

2015, 2017). We therefore consider it plausible that truly robust and unam-

biguous regime detection may require consideration of multiple dimensions of

data encoding several atmospheric variables at once. In other words, the regime

structure, which appears highly subtle in low-dimensional projections, may be

considerably more blatant in higher dimensions.

We propose that the emergence of the field of topological data analysis

(Carlsson, 2008) offers a new perspective on regimes, by bringing the attention

away from specific dynamical properties, such as density and temporal persis-

tence, and back to a more general consideration of the ‘shape’, i.e., the topology,

of dynamical systems. Persistent homology (Otter et al., 2017) is a technique

in topological data analysis that gives a principled way of studying the shape

of datasets such as point clouds, digital images or networks. Given a point

cloud, such as the one in Figure 2(b), one associates to it a nested sequence of

spaces (called a ‘filtration’), which are obtained by for instance thickening each

point with a ball of radius ϵ and then allowing ϵ to vary. Persistent homology

then gives a way to summarise how different types of topological invariants

describing the shape, such as the number of components of the thickened point

cloud, or the number of holes, evolve across the filtration (i.e., when varying

ϵ). We provide an informal overview of persistent homology in Section 3.1, and

a more technical, mathematical definition in Appendix A.

Many iconic topological features of dynamical systems, such as the two

holes in the Lorenz ‘63 system (cf. Figure 10), can effectively vanish in the

limit of infinitely many points, thus in our work it turns out to be crucial to

augment the standard filtration by taking into account not only the distance

between points, but also density. To do this, we associate to any dynamical
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system, a bifiltration of spaces, by considering nested sequences of spaces given

by varying both the density of points as well as distances between them: see

Figure 8. We then proceed to study non-trivial topological features of the

attractor, such as the number of connected components (i.e., well-separated

regions of points), and holes (e.g., as in Lorenz ‘63). This bifiltration thereby

gives a way of measuring the ‘regime structure’ in a robust and computationally

tractable way.

Fig. 2 A schematic of the pipeline we use to analyse topological features of dynamical
systems, here exemplified using the Lorenz ‘63 system. In step (b), the picture shows the
densest 80% of points from the attractor in (a). In step (c), the topological invariants are in
this case the two loops, identified and visualised here using persistent homology algorithms,
and the one connected component made up of all the points.

We argue that this topological perspective, comes with two decisive advan-

tages. Firstly, it provides a natural unifying framework for understanding

several disparate regime systems, thereby offering a potential resolution to

the ambiguity around lack of definitions. Secondly, its implementation in algo-

rithms largely sidesteps the aforementioned key technical problems. Crucially,
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since homological computations do not essentially depend on the dimen-

sionality of the data set being studied, our method avoids the ‘curse of

dimensionality’2 and is therefore particularly well suited to the analysis of

high-dimensional climate data. To justify these assertions, we will present a

highly flexible methodology, depicted in Figure 2, for detecting non-trivial

topological structure in an arbitrary dynamical system of potentially very high

dimensionality. By applying this methodology to a number of classic exam-

ples of regime systems (Lorenz ‘63, Lorenz ‘96, Charney-deVore and the North

Atlantic eddy-driven jet), we show that their non-trivial topology is a clear

unifying feature, and that the particular topological structure associated with

these systems captures well their most familiar features. By contrast, any

simplistic definition of a regime based on density and temporal persistence

invariably fails to account for one or more of these systems. This suggests that

regimes might be best understood as the results of varied attempts to capture

the non-trivial topology of the underlying attractor. In particular, non-trivial

topological invariants can be viewed as indicating the existence of regimes.

It is worth being clear up front that our method does not add further clarity

to the analysis of atmospheric data sets that are approximately Gaussian.

Rather, the anticipated benefit of our method is in its potential application

to very high dimensional atmospheric data, where structure may be more

clearly non-Gaussian. The fact that our method correctly identifies the relevant

structure in four well-studied cases means such exploratory applications to

high dimensional data can be carried out with more confidence. In particular,

our methodology paves the way for a more comprehensive exploration of the

‘shape’ of the atmospheric circulation.

2As will be seen, our preprocessing includes a step which suffers from the curse, but the
topological algorithms themselves do not. Potential improvements to our preprocessing will be
discussed.
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The potential of persistent homology as a tool for analysing dynamical sys-

tems was first suggested, among others, in Maletić et al. (2016), in which it was

demonstrated that persistent homology can locate the holes of the Lorenz ‘63

system: see also Charó et al. (2021). Of particular relevance is the recent work

of Yalnız and Budanur (2020), which uses persistent homology and UPOs in

order to obtain a simplified representation of chaotic dynamical systems, an

approach similar in spirit to our paper. Two recent applications of persistent

homology to the real atmosphere are Muszynski et al. (2019), which studies

‘atmospheric rivers’ using a combination of homology and machine learning,

and Tymochko et al. (2020), which used persistent homology to quantify a diur-

nal cycle in hurricanes. For a different application of topological ideas to ocean

modeling, we can also recommend Stanley (2019). There are several additional

lines of work, that have used methods from topology to study dynamical sys-

tems, such as Khasawneh and Munch (2016), and Kramár et al. (2016), to cite

a few.

Finally, a cautionary note on language. The use of the word ‘persistent’

in ‘persistent homology’ comes from the way in which topological features

that persist for a certain number of filtration values are considered to give

meaningful information. In particular, there is no obvious relationship with the

temporal persistence of regime states. To avoid ambiguity, in this manuscript

the word ‘persistence’ will always refer to topological persistence, while when

referring to temporal persistence of regime states, we will make use of the

qualifier ‘temporal’.

The paper is structured as follows. In Section 2 we provide details of

the dynamical systems used, including the observational atmospheric data. In

Section 3, we provide an informal introduction to persistent homology, and

we motivate the need for a bifiltration. The formal, mathematical definitions
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of the concepts underlying persistent homology are included in Appendix A;

readers willing to treat these formalities as a ‘black box’ should not find their

understanding of the paper otherwise compromised. In Section 4 we detail the

algorithmic procedure used to compute topological metrics: this Section can

be skipped without loss of continuity or basic understanding. The results of

applying this methodology to our suite of data sets is shown and discussed in

Sections 5 and 6, with conclusions and future directions in Section 7.

2 Data

We will be making use of four data sets: three data sets generated using

toy-models of the atmospheric circulation and one data set using actual atmo-

spheric data. All the data sets used have been frequently studied as examples

of regime systems, but the dynamics are strikingly different in each case. A

key goal of this paper is to show that our methodology gives the ‘right answer’

for these known cases. In this section we give a brief and informal overview of

the data sets we use: more detailed descriptions of the three toy-models used,

including defining equations, can be found in Appendix B.

2.1 Toy-models

We describe the toy-models in increasing order of dimensionality.

The first toy-model we consider is also the most well known, namely the

Lorenz ‘63 system. First introduced and studied in Lorenz (1963), it is a

chaotic dynamical system in three variables, essentially derived as a highly

simplified model of convection. It has also been re-derived as a toy-model of

the NAO (Molteni and Kucharski, 2019). The attractor, visualised in Figure

3(a), famously resembles a butterfly, and is usually viewed as having two



Springer Nature 2021 LATEX template

A topological perspective on weather regimes 11

Fig. 3 Visualisations of the four regime systems considered in their ambient phase space.
In (a) Lorenz ‘63, (b) Lorenz ‘96, (c) Charney-deVore (CDV), (d) the North Atlantic eddy-
driven jet (JetLat). See main text for details.

regimes corresponding to the two ‘wings’ Its regime behaviour has been exten-

sively studied (Palmer, 1994; Corti et al., 1999; Yadav et al., 2005). An

interactive simulation showing the evolution of this system can be found at

joshdorrington.github.io/L63 simulator/. Simply click on any point on the

attractor to animate a trajectory initiated at that point.

The second toy-model considered is the Charney-deVore (CDV) model, and

is defined using six variables. It was derived in Charney and DeVore (1979)

based on a severe spectral truncation of the barotropic vorticity equation in a

β-plane channel, and can be thought of as a crude model of large-scale mid-

latitude blocking dynamics. It exhibits multimodality, typically interpreted in

terms of two regimes corresponding to blocked and zonal flow. The attrac-

tor is visualised in Figure 3(c). An interactive simulation can be found at

joshdorrington.github.io/cdv simulator/. Simply click on any point on the

attractor to animate a trajectory initiated at that point. The nature of the

two regimes are discussed further in Section B.2.

joshdorrington.github.io/L63_simulator/
joshdorrington.github.io/cdv_simulator/
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Finally, we consider the Lorenz ‘96 model. It was introduced in Lorenz

(1996) as an idealized, chaotic model of the atmosphere which is of greater

complexity than the Lorenz ‘63 system (Karimi and Paul, 2010). It is defined

in our case by coupling eight variables Xk, k = 1, . . . , 8, interpreted as large-

scale modes of variability, with 32 variables Yj , j = 1, . . . 32, representing

small-scale modes of variability. Due to its interpretation of large-to-small

scale coupling, Lorenz ‘96 has been utilised in several studies looking at dif-

ferent ways to parameterise unresolved sub-grid scale variability in forecast

systems (Wilks, 2005; Christensen et al., 2015; Vissio and Lucarini, 2018;

Gagne II et al.). Its regime structure has been considered in, e.g., Lorenz

(2006) and Christensen et al. (2015), who both viewed it as having two

distinct regimes: these are discussed further in Section 5.3. A three dimen-

sional projection of the space to its first three EOFs is shown in Figure 3(b).

A considerably more illuminating visualisation of the complex behaviour of

this system, with the eight ‘large-scale modes’ suppressed, can be viewed

at http://youtu.be/rYnkHory39o, which animates multiple projections of the

32 dimensional space onto 4 randomly chosen dimensions. The behaviour is

qualitatively similar when large-scale modes are included.

In order to visualise the results we obtain, it is necessary to pick a three-

dimensional projection in the case of CDV and Lorenz ‘96. We use the first

three EOFs in each case, which explain around 98% of the variance for CDV

and around 80% for Lorenz ‘96. Furthermore, we found that our topologi-

cal method produces qualitatively identical results when using the first three

EOFs for CDV (as opposed to all six variables). For Lorenz ‘96, the work in

Christensen et al. (2015) showed that the regime variability is concentrated in

the first four EOFs, and here we found qualitatively identical results applying

http://youtu.be/rYnkHory39o
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our method to this four-dimensional truncation. To maintain maximal consis-

tency between our computations and our visualisations, we therefore present

results obtained using these truncations. However, we stress that these trun-

cations are carried out for visualisation purposes only: our methodology works

equally well using the full, raw data sets in each case.

2.2 Observational data: the North Atlantic jet

To represent real atmospheric data, we make use of so-called reanalysis data.

Actual observational data, whether from stations or satellite, are always

unevenly distributed in time and space and therefore contain gaps. Reanaly-

sis data fills in these gaps by blending observations with short-range weather

forecasts using data assimilation methods. Here we make use of ERA20C (Poli

et al., 01 Jun. 2016), which covers the period 1900-2010, motivated by the

desire to have as much data as possible. Because the period prior to 1979 suf-

fers from a lack of satellite data, we validated our results using ERA-Interim

(Dee et al., 2011), which covers the period 1979-2015. ERA-Interim data was

found to produce qualitatively similar results to ERA20C, and so is not shown.

The general suitability of ERA20C for regime-based studies has been com-

mented on in previous studies (Parker et al., 2019; Strommen, 2020), and

essentially relies on the fact that there is a long and consistent record of sur-

face observations in the Euro-Atlantic sector, which will be our area of interest.

The existence and properties of regimes in the wintertime Euro-Atlantic cir-

culation has been extensively studied, either through the prism of pressure

fields, typically geopotential height at 500hPa, or winds, in the form of zonal

winds at 850hPa (hereafter ua850). Studies based on pressure data (Vautard,

1990; Michelangeli et al., 1995; Dawson et al., 2012; Dorrington and Strommen,
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2020; Falkena et al., 2020) typically use clustering algorithms to classify dis-

tinct regimes. On the other hand, wind data is usually processed more directly

in order to capture the variability of the North Atlantic eddy-driven jetstream,

a relatively coherent stream of zonal winds. By measuring the location of the

maximum wind-speed of the jet, one can define the latitude of the jet on any

given day: the histogram of this jet-latitude index is visibly and robustly tri-

modal, suggesting the existence of three distinct regimes (Woollings et al.,

2010a). The differences between these two perspectives, which would a priori

be expected to be equivalent, can be reconciled by taking into account the

added variability coming from the speed of the jet, after which both pressure

and wind data suggest three very robust regimes (Madonna et al., 2017; Strom-

men, 2020). Applications to predictability have been studied in both contexts,

see, e.g., Cassou (2008) and Strommen (2020).

In this paper we will be focused on seeing how our framework views these

three jet regimes, and so define a data set we will refer to as ‘JetLat’. This will

be a 3-dimensional data set consisting of the daily jet latitude, and the daily

values of the first and second principal components of ua850 anomalies. Data is

always restricted to the North Atlantic region, defined by 15N-75N, 300E-360E,

and the winter season December-January-February (DJF). The jet latitude was

computed using the methodology of Parker et al. (2019), which also includes

a discussion of the jet in ERA20C. The JetLat data set is visualised in Figure

3(d).

We note again that the deliberate choice to use a data set which explicitly

contains the jet latitude, already known to be multimodal, is motivated by

the desire to validate our methodology against known regime systems before

applying it to less well-understood contexts. The question of locating these jet

regimes using unprocessed data (i.e., data not containing any prior knowledge
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of the jet-latitude index) will be discussed in the conclusions, in Section 7.

The results of applying our methodology to pressure data will be discussed in

Section 5.

3 Persistent homology for dynamical systems

Over the last 20 years, methods from the mathematical area of topology have

been increasingly used to study data analysis problems. In this section we

discuss how some of these methods can be used to study dynamical systems.

In topology one is interested in studying properties of shapes that do

not change when one continuously deforms the shape, for instance when one

squeezes or bends it. If one considers an annulus as in Figure 4, then no matter

how the annulus is bent or stretched, it will still be composed of one piece, and

have one loop. One says that the number of pieces and loops of a shape are

topological invariants. On the other hand, deformations that are not allowed

include cutting or gluing. If one was to cut the annulus in half, as illustrated

in Figure 4, one would break it into separate pieces with no loops. One can

think of these invariants as giving a very coarse description of the shape of a

space or of data.

(a) (b) (c)

Fig. 4 (a) An annulus, and (b) a shape obtained by continuously deforming the annulus,
which has the same number of pieces (components) and loops as the annulus. (c) A space
obtained from the annulus by a deformation that is not continuous, and thus with a different
number of pieces and loops.
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In particular, topological invariants often do not depend on the choice of of

parametrisation, coordinates, or ambient dimension, and thus they are inde-

pendent of many choices introduced during preprocessing steps. This is an

aspect that is crucial in our work. We caution the reader that the interpre-

tation of the topological invariants, thus what information they capture, and

whether they are coarse or not, is context-specific, and depends on the specific

application.

There are different ways to use topology to study data, see the survey

Carlsson (2008) for an overview. Persistent homology, which is the method

that we use in our work, is one of the standard techniques and has been very

successful in many applications. In the remaining part of this section we first

introduce persistent homology, and we then explain how it can be used to

study the specific types of dynamical systems that we study in our work. Here

we provide an informal description, while we provide rigorous definitions in

Appendix A. Readers keen for even more extensive background may consult

Otter et al. (2017) and references therein.

3.1 Persistent homology: informal overview

Given experimental data composed of points or vectors representing mea-

surements, together with a measure of similarity (e.g., given by proximity, or

correlation), in persistent homology one considers a thickening of the data

set at increasing similarity scales, see Figure 5 for an example. This process

yields a nested sequence of increasingly thickened spaces, which are collectively

called a ‘filtration’. One then analyses the evolution (so-called ‘persistence’) of

the number of components, holes (or, equivalently, loops), voids, and higher-

dimensional holes (which we call ‘topological features’) across the filtration.
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Fig. 5 (a) A set of points lying on a plane, with similarity given by proximity in the
Euclidean distance. (b) A filtration of nested spaces, called a ‘Vietoris–Rips complex’,
obtained by connecting points within a certain distance by an edge, and filling in result-
ing triangles. Barcodes describing how long the (c) components and (d) holes persist in the
filtration. We illustrate using a gray vertical dashed line, how we can read off information
from the barcodes: at filtration value 1.4 there are two components, since the dashed gray
line intersects two blue intervals in the barcode corresponding to the components, as well as
two holes, since the gray line intersects two purple intervals in the barcode for the holes.

The information captured by the filtration is therefore the information associ-

ated with continuously varying a free parameter (in this case the measure of

similarity).

The barcode is an algebraic invariant that summarises how the topological

features evolve across the filtration: the left endpoint of an interval in the

barcode (the horizontal lines in Figure 5(c) and (d)) represents the birth of

a feature (the smallest distance value at which a component or hole appears



Springer Nature 2021 LATEX template

18 A topological perspective on weather regimes

in the filtration), while its right endpoint, roughly, represents the death of

the same feature (the smallest distance value at which two components merge

or a hole is filled in): the difference between the death and birth is referred

to as the lifetime of the feature. When a feature is still ‘alive’ at the largest

thickening scale that one considers, the lifetime interval is by convention set as

an infinite interval. For instance, we can read off from Figure 5(c) that there

are two components that have significantly longer lifetimes than the others

(corresponding to the cluster of points forming a figure-eight on the left of the

figure, and the cluster of remaining points on the right), while from Figure 5(d)

we can infer that there are two holes that live much longer than the others,

which correspond to the two holes in the figure-eight cluster. We provide a

rigorous definition of holes and barcodes in Appendix A.

The interpretation of the intervals in the barcode that we have given here

is only one of the possible applications of persistent homology to the study

of data. In other types of applications, it might be the intervals of a certain

length, and not necessarily the longest ones, that encode significant informa-

tion, see for instance, Bendich et al. (2016); Bubenik et al. (2020). In particular,

the interpretation of the barcode is application specific. We discuss how we

interpret the barcode in our work in more detail in Section 4.4.

3.2 Computational complexity of PH

The theory behind (one-parameter) persistent homology is well-understood,

and amounts to standard linear algebra. Conversely, the computation of the

barcode is expensive, since the computational complexity can grow expo-

nentially in the size of the input data, in the worst case. To sidestep such

difficulties, in this work we use optimised algorithms, and sparsification tech-

niques, see also Section 4.2. We refer the reader to the survey Otter et al.
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(2017) for a detailed discussion of the computational complexity of the main

persistent homology algorithms.

The types of filtered spaces that we consider here rely on the computation

of distances between points, and such distances have computational cost that

is, in the worst case, linear in the dimension of the ambient space. Once the

distances are computed, the computational complexity of persistent homology

of these filtered spaces depends on the length of the input data, and, thus,

on the number of samples in time, but not on the dimension of the ambient

space3. Thus, a consequence that this has for our work is that adding variables

to our models increases the computational cost only by a linear function of

the dimension of the ambient space. This is one of the reasons that persistent

homology is so effective for the study of dynamical systems, especially in atmo-

spheric science where spaces are heavily undersampled and the dimensionality

of the phase space is often orders of magnitudes larger than the number of

measurements.

Experts in persistent homology will know that persistent homology com-

putations scale badly when increasing the homological dimension. Concretely,

the computational complexity4 is O(nk+1) in the worst case, where n is the

number of input points and k the homological dimension that we compute.

In this work we focus on the study of components and loops (k = 0, 1), so

we are unaffected by this exponential scaling. Higher-dimensional homology

corresponds to higher dimensional analogues of loops, which for dimension 2

can be interpreted as a ‘void’ (e.g., the void enclosed by a sphere) and for

dimensions ≥ 3 as higher-dimensional voids. We currently do not have obvious

3That is, it doesn’t matter if the data set consists of, e.g., 100 monthly samples of atmospheric
variables (x1, x2, x3), or 100 monthly samples of (x1, x2, x3, x4, x5, x6).

4For persistent homology this complexity is dominated by the building of the filtered Vietoris-
Rips complex.
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interpretations for what voids or higher-dimensional voids would mean for the

types of systems that we study.

3.3 Optimal representatives of cycles

Fig. 6 Two 1-cycles that are representatives for the same hole: (cyan, solid) an optimal
(i.e., minimal) representative, and (red, dashed) a not optimal one.

Given an interval in the barcode describing the lifetime of a component

or hole, we are interested in studying the points in the data that correspond

to such a component or hole. Such points are called ‘representatives’ for holes

in dimension 0 (i.e., components) and in dimension 1 (i.e., holes). We refer

the reader to Appendix A, and in particular Definition A.7 and the preceding

paragraph for a definition of p-dimensional holes and p-cycles.

Ideally, we want to be able to choose representatives that are easily

interpretable from a geometric point of view. For instance, we might want rep-

resentatives for 1-dimensional holes to have minimal length in a suitable sense,

see the illustration in Figure 6.

Thus, we are interested in representatives that satisfy some minimality

condition: for holes we compute optimal representatives (Dey et al., 2018) using

the software Persloop (Jyamiti Research Group, 2017), while for components,

we use representatives to find all the points in a component. We note that

finding optimal representatives for holes is a challenging problem; the software
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Persloop implements an algorithm that gives a heuristic approximation for

1-cycles in 3D, but which might fail to give meaningful 1-cycles on higher

dimensional data sets.

3.4 Multiparameter persistent homology

In many application problems, one might wish to study filtrations that depend

on more than one parameter. For instance, consider the point cloud in R2 in

Figure 7. If one were to consider only the points belonging to higher-density

regions, one could associate to these points a distance-based filtration, as

illustrated in Figure 5 and discussed in Section 3.1. Then, by computing the

persistent homology of such a filtration, one could read off from the barcodes

that the point cloud has a long-lived component, and a long-lived hole. For

such a data set, it might be difficult in practice to choose the right density

value, and therefore one would ideally wish to consider point clouds thresh-

olded at all possible density values, thus obtaining a bifiltration, as illustrated

in Figure 8. Note that in the same way that a filtration can be thought of as

a one-parameter family, a bifiltration is simply a two-parameter family, keep-

ing track of the information associated with continuously varying the two free

parameters (in this case the distance and density values).
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Fig. 7 A finite set of points in R2 for which a distance-based filtrations might fail to capture
interesting topological information.
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The theory of persistent homology does not generalise to filtrations that

depend on more than one parameter. In particular, there is no generalisation of

the barcode, as described in Section 3.1 and illustrated in Figure 5, for multifil-

trations. Finding appropriate ways to quantify the ‘persistence’ of topological

invariants, such as the number of components or holes, is currently one of the

most active areas of research in TDA, and several researchers have proposed

invariants that are computable, and capture in an appropriate sense what it

means for topological features to be ‘persistent’, see, for instance, Harrington

et al. (2019); Lesnick and Wright (2015); Vipond (2020). In Section 3.4.1 we

discuss one such approach.
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Fig. 8 A bifiltration obtained by decreasing density and increasing distance: given the finite
set X of points in R2 illustrated in Figure 7, and a density estimation, we consider subsets
X′ ⊂ X of points having density above a certain threshold. For each subset X′ of points
we then construct a distance-based filtration by taking balls with increasing radii centered
at the points. The yellow shading visualises the effect of placing a yellow disk of a given
distance value around each point.
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3.4.1 Barcodes along one-dimensional subspaces

In one approach to defining invariants for multiparameter persistence that are

suitable for applications, researchers study ways to restrict a bifiltration, such

as the one in Figure 8, to one-dimensional subspaces, and then study barcodes

along such restrictions (Lesnick and Wright, 2015; Biasotti et al., 2008).
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Fig. 9 Barcodes (the collection of blue intervals at the bottom of the figure) for holes along
restrictions to vertical lines of the bifiltration from Figure 8. The barcodes, for the holes, for
the first two lines are empty due to the lack of any holes. We note that the barcodes for the
components, which we are not depicting here, are not empty. The yellow shading visualises
the effect of placing a yellow disk of a given distance value around each point.

As illustrated in Figure 9, restricting oneself to points up to a specific

density threshold amounts to considering a filtration of spaces along a vertical

line in the bifiltration. By studying persistent homology of this filtration, we

are thus computing the barcode of the restriction of the bifiltration along this

line. More generally, one could consider lines with any slope in the 2-parameter

space, and then compute the barcode of the restriction of the bifiltration along
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this line. It is known that this process is robust in an appropriate sense only

for lines having positive slope, see the discussion in (Lesnick and Wright, 2015,

Section 1.5). In particular, here, if we consider filtrations for different density

threshold levels, we might observe intervals suddenly appearing or disappearing

in the corresponding barcodes. We provide a further example using the Lorenz

’63 system in Figure 11.

Lesnick and Wright implemented their methods (Lesnick and Wright, 2015)

in the software package RIVET (The RIVET Developers, 2020), which is

currently the only existing software package for the computation of multipa-

rameter persistent homology. Unfortunately, the current implementation in

RIVET is not memory-efficient enough for the types of data sets that we study

in our work, since if one is interested in computing barcodes to study the life-

time of loops, the software can only handle data sets of a few hundred points.

Thus, one main direction that we plan to pursue in future work, is to work

on optimisations of the computations implemented in RIVET. In particular,

in future work we plan to compute barcodes along restriction to lines with

positive slopes, to obtain a method that is robust.

3.5 Bifiltrations for dynamical systems

The need to consider not just a filtration of distances, as in the standard

method of one-parameter persistent homology, but a bifiltration of distance

and density, can be motivated here in two ways. Firstly, and most fundamen-

tally, the dynamical systems we are interested in are always continuous, and

so no two regions on the attractor can be fully disconnected from each other.

In fact, the connectedness of the attractor of a continuous dynamical system

can be proved mathematically, given a suitable definition of ‘attractor’ (Gob-

bino and Sardella, 1997), implying that persistent homology will never detect
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Fig. 10 In (a)-(c): the Lorenz ‘63 system visualised using 10000, 50000 and 1000000
timesteps respectively. In (d), the Lorenz ‘63 system using 1000000 timesteps, with colours
representing the density, as measured with the kernel density estimator.

more than one long-lived connected component from a generic sample of the

system. The second reason can be understood by considering the Lorenz ‘63

system. In Figure 10 we demonstrate a particular feature of the system, namely

that the size of the two iconic holes become smaller as one increases the sam-

ple size. This implies, somewhat paradoxically, that topological features may

become harder to detect the more points you have. If the size of the features

becomes comparable to the distance between consecutive points, then these

features may, practically speaking, become impossible to detect computation-

ally. These two observations suggest that a naive application of persistent

homology to a continuous dynamical system may easily fail to detect both

long-lived connected components and long-lived holes.
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The basic underlying problem is that in one-parameter persistent homol-

ogy one computes a filtration by increasing Euclidean distances between the

points, ignoring any variations in density. However, the regimes classically

identified with clustering methods typically correspond to regions of above-

average density, suggesting that the connected components we are interested

in should be relative to density. Furthermore, in the Lorenz ‘63 system, the

reason any generic sample of the attractor yields visually clear holes is the fact

that the regions of phase space close to the centre of the holes, i.e., near the

fixed points, are very low density regions. Therefore, the holes in the system

are only identified in data with respect to some chosen density threshold.

Persistent homology provides a solution to the problem of choosing a den-

sity threshold at which to study points: instead of trying to estimate the best

value for the density parameter, we consider a bifiltration of distance and den-

sity. An example of such a bifiltration was given in Figure 8. In Figure 11 we

illustrate this method for the Lorenz ’63 system. We note that the bifiltration,

and hence the corresponding topological properties that one observes, depend

on a choice of density estimation function.

As a final remark, it may be possible to achieve good results by extending

the filtration to other measures besides density. In particular, our tests suggest

that using phase space velocities can, in some situations, be equally useful.

Pre-filtering data based on phase space velocities has in fact been done in some

earlier regime studies (Toth, 1992; Straus et al., 2007b). Prior knowledge of the

system of interest might inform more particular choices. We note that the use

of a computationally costly measure of density may, to an extent, offset some of

the computational gains of persistent homology discussed in Section 3.2. The

use of computationally cheaper measures, such as phase space velocities, may
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Fig. 11 We illustrate how we use the bilfiltration to compute topological invariants on the
Lorenz ’63 system. a) Subsample of 20% densest points (left), of 60% densest points (middle)
and of 80% densest points (right). b) Barcodes for holes for each of the points clouds in a).
We note that the barcode for the subsample of 20% densest points is empty. c) Loops in the
point cloud that are representatives for the holes detected by the barcodes.

therefore be preferable for larger applications. For the context of this paper,

however, we will only consider density.

4 Computational methodology

We now describe the full algorithm that we perform to analyse a given data-

set sample, as outlined in the schematic Figure 2. The basic method is the

following:

(1) Normalise each dimension in the data set to have unit variance. Denote this

normalised data set by D.

(2) Estimate the local density of D at every point in phase space: Figure 2(a).

(3) Pick a percentage threshold P%. Select the sub-sample DP defined by the

upper P th density percentile of D, i.e. the P% densest points of D: Figure

2(b).
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(4) Compute persistent homology for DP and extract the topological features

of interest: birth/death times for each cycle detected; the points belong-

ing to each of the five longest-lived connected components; a topological

representative of each of the five longest lived loops: Figure 2(c).

(5) Repeat for values of P ranging from 10%, 20%, . . . , 100% and examine the

features that appear in the resulting bifiltration: Figure 2(d).

The essentially arbitrary choice to only show the 5 longest-lived cycles was

made to ensure visual tidiness in plots. For the data sets considered here, no

important information is lost by this restriction, though this will of course

not be true in general. Note that depending on the choice of parameters (see

Section 4.2), less than 5 cycles may be found. We also note that the normali-

sation in step 1 is important to ensure that interesting structure is not missed

purely by virtue of existing along a direction in phase space with smaller magni-

tudes, such as loops that appear as ‘squashed’ ellipses in the raw data. Finally,

in all our examples we use the percentage thresholds 10%, 20%, . . . , 100%. This

choice suffices to recover the main features of the systems we consider: appli-

cations to unknown dynamics may require finer thresholds. The methodology

presented here is therefore best understood as a technique that can be flex-

ibly adapted to new situations, much like classical one-parameter persistent

homology. Further details on the other steps now follow.

4.1 Density estimation

The primary method used was a kernel density estimator (KDE) with a Gaus-

sian kernel (Marron and Wand, 2007), computed using inbuilt functions of

the scipy python package (Virtanen et al., 2020), where we used the default

option of Scott’s Rule to determine the bandwidth. The bandwidth deter-

mines the minimal spatial scale of the features we compute. We are primarily
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interested in ignoring features occurring at scales comparable to the average

distance between points at consecutive timesteps, which we will informally

refer to as the ‘grid-scale’ of the data set. Using a KDE has two clear advan-

tages for topological applications. Firstly, it produces smooth estimates, which

avoids potential issues whereby outlier points remain even after a severe den-

sity threshold has been applied. Such outliers will often appear as spurious

long-lived connected components, effectively just adding noise to the analysis.

Secondly, KDE’s are well-suited to represent multimodality, a key feature we

want to capture.

A second, cruder method was also tested, which involved directly binning

the space and counting the datapoints in each bin. To facilitate the computa-

tions, this density estimate was carried out in the space spanned by the first

three EOFs, under the assumption that the resulting estimate would be accu-

rate for the scales we were interested in studying. A fixed number of 160d bins

were used in each case, where d is the dimension of the data set.

In our results, the KDE produced good results in all cases except for the

CDV system. As will be shown, the CDV system exhibits some very fine-

scale structure in the form of ‘thin’, low-density loops that emerge within

a larger, more chaotically-inhabited, low-density region. The Gaussian KDE

we used was found to smear away a lot of this structure, while the direct

binning method picked out these features easily. In the other data sets, both

the KDE and direct binning methods produce qualitatively similar results, but

the KDE exhibits a notably smoother estimate, as expected. For this reason,

results obtained using the KDE are shown for all data sets except CDV, where

the results obtained with direct binning are shown instead. It would clearly

be of interest to address the question of whether a more appropriate density
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estimation method (e.g. choice of bandwidth) might yield good results in all

cases, but this is left for future work.

4.2 Computation of persistent homology and

representative cycles

In the present work, we compute persistent homology using the Vietoris–Rips

complex (see Figure 5) and the python package Gudhi (Developers). Gudhi

takes as input both the data set and several user-specified input parameters,

the choice of which we now outline.

• max_edge: This parameter determines the maximal distance threshold to

consider in the filtration. Setting this as the maximal distance between any

two points in the data set guarantees that the filtration terminates (i.e.,

ends with a single connected component at the end), so this parameter can

always be chosen in a principled manner. Because all our data sets were

normalised, we were able to set max_edge = 5.0 for all data sets.

• min_pers: This parameter determines the minimal lifespan that a computed

homological cycle needs to attain in order to be included in the final output

from Gudhi. The choice of this parameter therefore determines the scales

of the topological features one wants to consider, similar to the choice of

bandwidth in the density filtration (cf. Section 4.1). While prior knowledge

of the spatial scales of the system can be used to inform the choice of this

parameter, the only downside in setting this parameter as very small is

an associated increase in computational cost. Because all our data sets are

normalised, we found that a parameter choice between 0.15 and 0.50 gave

good answers at low cost for all data sets. The higher value was used for

CDV, as the main features there exist at higher scales, while for systems

like JetLat, with subtler behaviour, the smaller value was used.
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• sparse: This parameter is internal to Gudhi’s algorithm, and determines the

extent to which the computed Rips complex is sparsened before computing

persistent homology. This was set to 0.7 for all data sets.

• pre_sparse: This parameter is fed in to the Gudhi sparsify_point_set

routine, which is used to perform a preliminary sparsification of the data

set prior to carrying out computations. The routine is built to sparsify data

sets in a way which does not change the topology, e.g., by replacing densely

connected regions with a sparser set of points covering the same region.

Because our data sets are always filtered by density prior to computation,

such a sparsification has no impact on our results, but allows the compu-

tations to be sped up significantly. In fact, for large data sets with a time

dimension exceeding 30000 timesteps, computations would typically run out

of memory and crash. Setting an appropriate value of pre_sparse, which

greatly reduces the number of points, was therefore crucial. In practice, we

set this value as the smallest positive number which would allow the compu-

tations to finish at a reasonable rate. A value of 0.05 was found to be suitable

for Lorenz ‘63, Lorenz ‘96, while 0.005 worked best for CDV. For the Jet-

Lat data set, where the total number of time-steps available is only around

10000, this sparsification step was not necessary and hence not carried out.

After computing the filtration and homology at a given density threshold,

the five longest-lived components and loops were identified. Explicitly deter-

mining the points belonging to each connected component can be done easily

using output from Gudhi, which gives the full filtration. By keeping track of

which points are linked up as the filtration radius grows, basic python code suf-

fices to determine all the components; the code used is freely available online

(see the Data Availability Statement).
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We note that obtaining a representative cycle of loops is significantly

harder, as discussed in Section 3.3.

4.3 Sensitivity to parameter choices

Several tests were carried out to determine the sensitivity of our results to

the parameter choices described in the previous section. A selection of density

thresholds for the different data sets were chosen at random, and standard

birth/death plots produced using Gudhi for the resulting filtered data sets.

It was found that the qualitative features of these birth/death plots did not

appreciably change in response to mild perturbations of the parameters, imply-

ing that the basic topological features, as summarized in our bifiltration plots,

do not depend sensitively on our choices. The size and location of connected

components was also found to be largely insensitive to such parameter changes.

On the other hand, the representatives of loops, as computed with Per-

sLoop, were found to exhibit sensitive dependence, in particular on the

pre_sparse parameter. A small perturbation of this parameter would often

lead to the software not terminating properly, or producing a very different

representative loop. A similar phenomenon was observed when keeping param-

eters fixed, but changing other aspects of pre-processing, such as the choice of

density filtering or the use of EOF data versus raw data. The reader should

therefore be cautioned that the representative cycles we show in our plots are

not to be viewed as reliable output from a stable algorithm. Rather, they are

included to demonstrate that the topological features seen in our bifiltration

plots can, in principle, be visualised in the data itself, and really do correspond

to the features one expects.
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4.4 Significance testing and topological non-triviality

In this paper, we take the stance that Gaussian distributions should be viewed

as having no interesting topological structure, in the sense of persistent homol-

ogy, and no meaningful regimes. Note that while it is possible for genuine

regime systems to produce Gaussian statistics in lower-dimensional projections

(Majda et al., 2006), we take the view that in such cases it should still be

possible to detect non-Gaussianity in the full, higher dimensional phase space.

Therefore, in order to assess whether features identified in our bifiltration

methodology are more than just sampling noise, we implemented the follow-

ing procedure. First we draw 10000 random samples from a three-dimensional

Gaussian distribution with unit variance. Secondly, we run this through our

methodology described at the beginning of Section 4. The maximal lifespans

of both the connected components and loops obtained at any of the density

thresholds were kept: the whole procedure is then repeated ten times and

the maximal lifespan obtained across all random draws is used as a measure

of noise. Specifically, features with a lifespan close to this value, of around

0.4, are likely to be noise coming from grid-scale sampling variability, while

features with a lifespan greatly exceeding this are likely to be indicative of sig-

nificant non-trivial homology. In the context of this paper, we therefore define

a dynamical system to have non-trivial topological structure if and only if

its distance-density bifiltration produces cycles with lifespans exceeding that

expected from Gaussian noise (i.e., lifespans exceeding 0.4, in the case where

the dimensions of the systems have been normalised).

When carrying out this procedure, the connected components in Gaussian

samples containing 3 or less points were not included, because one or two big

outlier points can easily produce very long-lived ‘components’. For consistency,

components with 3 or less points that are detected in any data set are always
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clearly marked in plots. Note that such outliers can also occur for filtered data

unless min_pers is large, since there may randomly be some points fractionally

closer to each other than any other points.

Finally, we note that because all our data sets are normalised prior to com-

puting homology, the unit variance Gaussian offers an appropriate comparison

for all the data sets that we consider.

5 Results

For each data set, we now produce a standard bifiltration plot summarising the

lifespans of persistent cycles across a range of density thresholds. In addition,

to visualise these topological features, particular density thresholds are hand-

picked for each data set and plotted, together with a visualisation of either the

connected components or the representatives of loops present at that threshold.

5.1 The Gaussian

As explained in Section 4.4, results from the unit variance Gaussian distribu-

tion are used to estimate the significance of features obtained for all other data

sets, since any definition of regimes should exclude a Gaussian from having

any. We therefore first present results for a randomly drawn sample of 10000

points from such a distribution. These are shown in Figure 12. As expected,

no non-trivial topological features are detected in this data set, with each

density threshold exhibiting only a single connected component (the red dot

at infinity) and some spurious outliers (the red stars) at the ‘grid-scale’. The

loops found (blue triangles) are all extremely close to the minimum persistence

choice, implying that these were only barely registered by the algorithm and

do not persist for notably longer than isolated outlier components.
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Fig. 12 A distance-density bifiltration of a unit variance Gaussian distribution. For each
density threshold on the x-axis, the lifespan of the 5 longest-lived connected components
(red dots if the component contains more than 3 points: red stars otherwise) and 5 longest-
lived loops (blue triangles) are plotted. The stippled line shows the largest lifespan obtained
across multiple Gaussian samples. The meaning of the min_pers parameter is explained in
Section 4.2.

The seeming change in behaviour at the 100% threshold, where no den-

sity filtering has been applied, is due to the existence of big outliers in the

raw sample. This is clearly seen in Figure 13, showing the Gaussian sample at

various thresholds. Because even an extremely mild density threshold imme-

diately removes the big outliers seen in Figure 13(a), the possible lifespan of

small components with 3 or less points drops dramatically from the 100% to

90% threshold. This is also why the longest-lived loops are found at the 100%

threshold. As is clear from Figure 13, these loops are just noise, and indeed any

representatives of these produced by PersLoop (not shown) are visually con-

firmed as such. Figures 13(b)-(d) also highlight the 3 longest-lived connected

components at each threshold. It can be seen that this yields one component

containing almost all points, and two components consisting of one or two
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Fig. 13 In (a): a random sample of a unit variance Gaussian distribution. In (b): the 70%
densest points of the sample; (c): the 40% densest points; (d): the 10% densest points. In
(b)-(d), points are coloured according to the connected component they live in: longest-lived
(pink colour), 2nd longest lived (blue colour) and 3rd longest lived (green colour). Points
belonging to components with 3 or less points have been made larger to aid visualisation.

points that simply happen to be fractionally further removed from the rest of

the point mass.

These observations already confirm that our methodology correctly identi-

fies the Gaussian as having no non-trivial topology at any density threshold.

The comparison of Figure 12 with the equivalent plots for other data sets, to

which we now turn, will make this even clearer.

5.2 Lorenz ‘63

Figure 14 shows the bifiltration plot of the Lorenz ‘63 system. This plot can

be understood by reference to Figure 15, which visualises the system, and



Springer Nature 2021 LATEX template

A topological perspective on weather regimes 37

Fig. 14 A distance-density bifiltration of the Lorenz ‘63 system. For each density threshold
on the x-axis, the lifespan of the 5 longest-lived connected components (red dots if the
component contains more than 3 points: red stars otherwise) and 5 longest-lived loops (blue
triangles) are plotted. The stippled line shows the largest lifespan expected from Gaussian
noise. The meaning of the min_pers parameter is explained in Section 4.2.

the longest-lived components/loops, at different thresholds. At low density

thresholds, as shown in Figure 15(d), there is just one connected component,

corresponding to the dense central region between the two wings. Because the

density is concentrated in this area, as seen in Figure 10(d), there is no trace

of the two wings until you move to higher thresholds. At the 60% threshold,

Figure 15(c), enough points are included for one of the wings to emerge, at

which point an extremely long-lived hole appears in the bifiltration plot: the

representative produced by PersLoop confirms that this corresponds to the

right wing. At the 70% threshold, the second wing also emerges, after which

one retains two long-lived holes for all further density thresholds. Figure 15(b)

confirms that the two holes found by Gudhi at this point correspond to the
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Fig. 15 In (a): a long integration of the Lorenz ‘63 system. In (b): the 80% densest points;
(c): the 60% densest points; (d): the 20% densest points. In (b) and (c), representatives of the
2 (respectively 1) longest-lived loops are overlain. The longest-lived loop is always in pink,
the 2nd longest in blue. In (d), the longest-lived connected component is marked in pink.

two holes in the wings. Note that the apparent asymmetry between the two

loops is due to sampling variability.

Two other points are worth observing in Figure 14. Firstly, besides the key

topological features coming from the wings, all other features have lifespans

at the min_pers threshold, implying that these features exist only at or below

the grid-scale of Lorenz ‘63. Secondly, these grid-scale features have lifespans

below what is expected from a Gaussian bifiltration, demonstrating that our

significance test has correctly classified these as noise. Furthermore, the lifes-

pans of the two loops, and one connected component, greatly exceed Gaussian

noise. The conclusion from our methodology is therefore that the Lorenz ‘63
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system has two significant holes, corresponding precisely to the two classical

regimes defined by the wings (Palmer, 1994), and is otherwise fully connected.

5.3 Lorenz ‘96

Fig. 16 A distance-density bifiltration of the Lorenz ‘96 system. For each density threshold
on the x-axis, the lifespan of the 5 longest-lived connected components (red dots if the
component contains more than 3 points: red stars otherwise) and 5 longest-lived loops (blue
triangles) are plotted. The stippled line shows the largest lifespan expected from Gaussian
noise. The meaning of the min_pers parameter is explained in Section 4.2.

Figure 16 shows the bifiltration plot for the Lorenz ‘96 system, which sug-

gests the existence of a considerable amount of significant topological structure.

The apparent complexity of this structure is consistent with the impression

obtained from animations of the dynamics (cf. Section 2.1), which show that

the system is made up of a number of interweaving loops and components.

Figure 17 shows some of this structure at different thresholds, though we

remind the reader that because the homological computations in this case were
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Fig. 17 In (a): a long integration of the Lorenz ‘96 system. In (b): the 50% densest points;
(c): the 20% densest points; (d): the 10% densest points. In (b) and (d), representatives
of the 3 longest-lived connected components are marked with colours, while in (c), the 3
longest-lived loops are overlain in colour. In all cases, the longest-lived feature is in pink,
the 2nd longest-lived in blue and the 3rd longest-lived in green.

done using a 4-dimensional EOF truncation, our 3-dimensional projections

necessarily obscure some of the features. We also note that, due to the limita-

tions of PersLoop, optimal loops were computed using the space spanned by

the first three EOFs only, which also leads to some minor distortions.

The characteristic looping behaviour of the system is already visible in

the unfiltered data set, Figure 17(a), reflecting the rotational symmetry in

the defining equations. The looping trajectories result in regions which, after

an appropriate density threshold is imposed, appear as holes in an otherwise

connected space, as in Figure 17(b). The most prominent loop appearing in

this manner is the one circling the full perimeter of the space, as seen in Figure



Springer Nature 2021 LATEX template

A topological perspective on weather regimes 41

17(c). Note that PersLoop identifies this loop as the 3rd longest-lived at the

20% threshold. The representatives found for the longest and 2nd longest-

lived loops are made to look particularly spurious due to the flattening of the

4th dimension, but are either way examples of the way in which PersLoop

sometimes produces representatives that are far from optimal. For very severe

density thresholds, such as the 10% threshold shown in Figure 17(d), the data

set splits up into distinct components, implying significant local variations in

density across the attractor.

Fig. 18 The two regimes A (blue) and B (red), as defined in Christensen et al. (2015),
marked in the space spanned by the first 3 principal components of Lorenz ‘96. The full data
set is shown in transparent black in the background.

To see how this topological structure relates to the more classical approach

to regimes in Lorenz ‘96, recall the approach taken by Lorenz (Lorenz, 2006),

further expanded on in Christensen et al. (2015), which the reader should

refer to for this discussion. In ibid, the dynamics are first projected onto the
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two-dimensional space spanned by the magnitudes of the concatenated princi-

pal component vectors [PC1, PC2], [PC3, PC4]. Two local peaks in temporal

persistence are identified in this space, clearly visible in Figure 7(c) of ibid,

and these are used to define two regimes denoted A and B. Regime A cor-

responds to the bottom right-hand corner of the concatenated space, which

is also where the density is concentrated (cf. subplot (a) of the same figure),

while regime B corresponds to a very low-density region in the top left-

hand corner. In Figure 18, points loosely corresponding to these two corners

of phase space have been marked, with the top left-hand corner defined by

|[PC1, PC2]| < 3, 14 > |[PC3, PC4]| > 10, and the bottom right-hand cor-

ner by 15 > |[PC1, PC2]| > 10, |[PC3, PC4]| < 5, where vertical lines denote

the vector magnitude5. This clearly suggests that regime A corresponds to

the densely populated loop around the outer perimeter, while regime B corre-

sponds to the low-density hole in the centre; we remind the reader again that

the squashing away of the fourth dimension gives the appearance of regime B

spilling out into the perimeter. In other words, the regimes diagnosed in Chris-

tensen et al. (2015) correspond to topological features of the system that are

detectable with persistent homology.

5.4 Charney-deVore

Figure 19 shows the bifiltration results for the CDV system: we remind the

reader that the computations are done using the space spanned by the first

three EOFs. The most notable features are a number of long-lived loops

that emerge at density thresholds between 50% and 90%. The existence of

such loops can already be seen by eye in the raw data set, shown in Figure

5We caution the reader that this subsetting was done using the raw PCs, as in Christensen
et al. (2015), but that Figure 18 uses normalised PCs.
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Fig. 19 A distance-density bifiltration of the CDV system. For each density threshold on the
x-axis, the lifespan of the 5 longest-lived connected components (red dots if the component
contains more than 3 points: red stars otherwise) and 5 longest-lived loops (blue triangles)
are plotted. The stippled line shows the largest lifespan expected from Gaussian noise. The
meaning of the min_pers parameter is explained in Section 4.2.

20(a). These loops correspond to low-dimensional, preferred trajectories shad-

owing unstable homoclinic orbits (Pomeau and Manneville, 1980), separated

by sparsely populated regions. The use of the direct binning method to esti-

mate density effectively highlights these loops, and the representatives found

by PersLoop, as in Figure 20(b) and (c), confirm that these are precisely the

long-lived loops identified in Figure 19.

In terms of connected components, the only threshold at which there

appears to be more than one connected component with at least four points is

the 20% threshold. However, manual inspection here reveals that this second

component in fact contains exactly four points, and can therefore be considered

as noise, as with the spurious components seen at the 40% and 90% thresholds.

Therefore, from the perspective of the bifiltration, CDV can be thought of as
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Fig. 20 In (a): a long integration of the CDV system. In (b): the 70% densest points; (c):
the 50% densest points; (d): the 20% densest points. In (b) and (c), representatives of the
2 longest-lived loops are overlain in colour, while in (d), the 2 longest-lived components are
marked in colour. In all cases, the longest-lived feature is in pink and the 2nd longest-lived
in blue.

a dense central region with low-density loops spiraling outward. This neatly

matches the dynamics one observes in numerical simulation, and the theoret-

ical understanding of the CDV system as chaotic transients bursting from a

weakly unstable near-equilibria.

In the classical perspective (Charney and DeVore, 1979), CDV has two per-

sistent regimes associated with orbits slowing as they enter the neighbourhood

of one of two fixed-points. One of these fixed points, associated with blocking,

is located close to the dense central region, while the other more zonally sym-

metric fixed point lies close to the back left corner, when viewed as in Figure

20, and the loops pass close to this region. The regime dynamics in CDV are
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asymmetrical, in that the blocked regime is quasistationary and experiences

almost deterministic evolution, while the zonal regime is characterised by tur-

bulent chaotic behaviour (Pomeau and Manneville, 1980). From this we can

understand why the quasistationary blocking state is associated with a con-

nected component, while the zonal state is not. Instead, the zonal regime can

be understood as a consequence of the many looping trajectories visiting a

common, disparate region of phase space.

5.5 The North Atlantic Jet

Fig. 21 A distance-density bifiltration of the JetLat data set. For each density threshold
on the x-axis, the lifespan of the 5 longest-lived connected components (red dots if the
component contains more than 3 points: red stars otherwise) and 5 longest-lived loops (blue
triangles) are plotted. The stippled line shows the largest lifespan expected from Gaussian
noise. The meaning of the min_pers parameter is explained in Section 4.2.

We finally test our method using the JetLat data set, capturing variabil-

ity of the North Atlantic eddy-driven jet. Figure 21 shows the result of the



Springer Nature 2021 LATEX template

46 A topological perspective on weather regimes

Fig. 22 In (a): the raw JetLat data set. In (b): the 70% densest points; (c): the 50%
densest points; (d): the 10% densest points. In (b)-(d), representatives of the 3 longest-lived
connected components are marked with colours. The longest-lived feature is in pink, the 2nd
longest-lived in blue and the 3rd longest-lived in green.

bifiltration computation, with Figure 22 visualising select thresholds. The only

evidence of non-trivial topology emerges when restricting to the 10% densest

points, at which point the data set splits cleanly into two connected compo-

nents, as shown in Figure 22(d). The lifespans of both components greatly

exceed anything expected from Gaussian noise, and their sizes are also consid-

erable, containing around 900 and 100 points each. Figure 23 shows composites

of zonal wind anomalies of ERA20C across all days belonging to these two long-

lived components, identifying the longest-lived one as the Central jet latitude

mode and the 2nd longest-lived as the Northern jet latitude mode.

Since one dimension of the JetLat data set contains the jet latitude index,

which is trimodal in and of itself, the a priori expectation might be that the
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Fig. 23 Composites of zonal wind anomalies at 850hPa for the ERA20C data set across all
winter days between 1900 and 2010 that (a) belong to the longest-lived JetLat component;
(b) belong to the 2nd longest-lived JetLat component.

data set should split into three connected components, not two. However, mak-

ing the density filtration finer did not change the result, suggesting this is a

robust outcome of our methodology. To understand why this happens, Figure

24 shows the JetLat probability distribution function (pdf), as computed using

the kernel density estimator. In panel (a), the raw data set is plotted with

colours indicating density, while in (b), density is plotted as a function of jet

latitude and PC1 (the first two dimensions of JetLat). In this latter panel,

the points corresponding to the two long-lived components at the 10% thresh-

old have been coloured in, with red being the longest-lived and blue the 2nd

longest-lived. While panel (a) already suggests that there are two, rather than

three, clearly marked peaks in density, panel (b) most clearly explains what is

happening. In and of itself, the jet latitude index is clearly trimodal, but the sit-

uation changes when it is extended out across multiple dimensions. While the
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Northern peak remains clearly separated from the Central peak, the Southern

peak becomes smeared out across the space spanned by the two principal com-

ponents, leaving it resembling a ‘shoulder’, rather than a clear peak. Because

our density thresholds amount to taking horizontal slices across this space,

the bifiltration is able to find the Central and Northern peaks, but not the

Southern. The implications of this are discussed in the next section.

Note that when computing a bifiltration using the first 3, 4 or 10 principal

components of geopotential height anomalies at 500hPa (Z500), the features

detected are all at the level of Gaussian noise. This was found to be the case

both when using data defined over the ‘jet domain’ 15N-75N, 300E-360E, and

when using the larger domain 30N–90N, 80W–40E more commonly used in

Z500-based studies (Straus et al., 2007a; Dawson et al., 2012). This is consis-

tent with the findings of Stephenson et al. (2004), namely that Z500 space is

close to Gaussian.

6 Discussion

6.1 Strengths and weaknesses of our methodology

The results in the previous section suggest that the bifiltration methodology

succeeds in identifying whether a data set has non-trivial topological structure

or not. In particular, it rejects a Gaussian distribution as having any, and

correctly detects the relevant structure for four examples of data sets generally

considered to have regimes. We further showed that the topological structure

encodes, in different ways, the regime behaviour. For Lorenz ‘63, the regimes

correspond to two holes; for Lorenz ‘96 to a loop and a hole; for CDV to a

dense, connected region and several loops emanating from this; and for JetLat,

to two dense, connected components. The four systems considered are thereby

clearly distinguished through their differing homology.
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Fig. 24 Visualising the pdf of the JetLat data set. In (a), the 3-dimensional data with
colours indicating the density, as estimated with a kernel density estimator. In (b), density
as a function of the two first dimensions of the JetLat data set, i.e. jet latitude and the
first principal component of ua850. In (b), points belonging to the longest-lived connected
component are coloured red, while points belonging to the 2nd longest-lived component are
coloured blue.

Besides scaling extremely well with the dimension of the data set, our

method has the desirable feature that it does not require ad hoc parameter

choices that directly influence the regime structure. This is essentially because

in our perspective, the regime structure corresponds to the non-trivial topo-

logical features of the attractor. Because the attractor itself is fixed, so are its

topological features, and our methodology simply provides a way of probing

these features. The various parameter choices we made in the implementation

of our methodology, outlined in Section 4, can be thought of as determining

how precisely one probes the topology. For example, using a different set of

density thresholds, or a different density estimator, amounts to probing the
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topology more or less finely. In particular, no assertion is ever being made

about a choice of parameters which is ‘optimal’, unlike in the case of, e.g.,

K-means clustering, where in many cases a choice of K has to be made and

justified at some point6.

The main apparent shortcoming of the methodology, besides the insta-

bilities associated with trying to compute optimal representatives of loops,

was the inability to identify three distinct regimes in the JetLat data set. As

explained in Section 5.5, this is due to the fact that, when viewed across multi-

ple dimensions, the Southern jet latitude mode appears less as a distinct peak

and more as an extended shoulder, which the horizontal density slices of our

filtration cannot easily capture. The obvious way to attempt to remedy this is

to consider slices with positive slope. As explained in Section 3.5, this is also

required to make the evolution of topological features continuous across the

bifiltration, implying that this is a natural way to improve our methodology

for stability reasons alone. We hope to examine this, using the RIVET soft-

ware (cf. Section 3.4.1), in future work. It has also been noted (Hazelton, 2003)

that Gaussian kernels can sometimes flatten peaks too much: a more thorough

examination of optimal density estimators for our data sets is for this reason

another avenue of future work.

While the failure to detect the Southern jet mode should probably be

viewed as a shortcoming, we would also suggest that this failure may shed

some light on a few curious features in the literature. Firstly, many studies

have tried to diagnose regimes in the Euro-Atlantic sector, and, depending on

the choice of input data, pre-processing steps and diagnostics, these studies

have suggested there may be anywhere between 2 and 7 regimes (see Hannachi

and Iqbal (2019), Dorrington and Strommen (2020), Dawson et al. (2012),

6In some cases, the physical existence of uniquely defined regimes is incidental to the application
at hand, and the need to fix K can then be sidestepped by assessing the robustness of the analysis
across a range of K-values: see, e.g., Amini and Straus (2019).
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Madonna et al. (2017), Falkena et al. (2020) and Grams et al. (2017) respec-

tively for examples of each number). While the ambiguity between the choices

3, 4 and 5 is at least in part due to the confounding influence of the jet

speed (Dorrington and Strommen, 2020), and the choice of 2 regimes usually

corresponds to the North Atlantic Oscillation dipole (Woollings et al., 2008;

Hannachi and Iqbal, 2019), the striking divergence in the number of regimes

across studies using similar techniques is still somewhat puzzling. Our results

suggest that one possible reason for this is that, depending on what angle one

views the Euro-Atlantic circulation from, different regimes may appear either

as clearly distinct peaks or more ambiguous and hard to detect shoulders. The

use of different spatial domains across different studies likely adds to this issue.

Secondly, in Strommen (2020), the ability of a numerical weather forecast

model to make skillful predictions of the Euro-Atlantic circulation was studied

from the perspective of the three jet latitude regimes. It was found that the

model was able to skillfully detect changes in the Northern mode compared

to the Southern and Central modes, but was not able to robustly separate

between the Southern and Central modes. In other words, from the perspective

of the forecast model, the jet appeared to behave as if it had 2, not 3, regimes.

By considering Figure 24(b), it is perhaps not surprising that an imperfect

model may struggle to reproduce the more subtle behaviour of the Southern

shoulder, and produce a cruder approximation of the pdf as having just two

peaks. A comparison between this figure and an equivalent one for model data

(not shown) does suggest the model has a notably flatter Southern peak.

6.2 Why a simpler definition of regime fails

We have shown that non-trivial topological structure, as measured with a

bifiltration of homology, provides a unifying way of understanding the main
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examples of non-linear dynamical systems generally considered as exemplifying

regime behaviour. Because this comes at the cost of introducing an extra level

of abstraction, it is reasonable to ask if a similar unification could be achieved

using the more common ways of understanding regimes, namely density peaks

(i.e., clustering) or temporal persistence. We will now show that, on the face

of it, no such simpler unification appears possible.

To see this, first notice that while for JetLat, the two regimes correspond

clearly to local maxima in density, both Lorenz ‘96 and CDV are examples

where the density of the two regimes are wildly different. For Lorenz ‘63, while

a bimodal pdf can be obtained by time-averaging (Corti et al., 1999), Figure

10(d) makes it clear that the regions defined by the two regimes (i.e., the two

wings) are, in the raw data set, not local density maxima. Hence a definition

of regimes as local density maxima/minima or clustering will invariably fail to

account for one of these systems.

Next, one might consider a criteria based on any of the closely related

concepts of temporal persistence, average residence times or phase space veloc-

ities7. However, also here one finds that the behaviour of the different systems

differs dramatically. In the Lorenz ‘63 system, temporal persistence peaks (and

velocities are smallest) at the dense region connecting the two wings, while

temporal persistence is in general minimal in the wings themselves, where

velocities peak; the exception being the extremely rare trajectories that pass

sufficiently close to either fixed point. On the other hand, for Lorenz ‘96, both

regimes correspond to peaks in temporal persistence/residence time, as men-

tioned already, while in CDV the two regimes are broadly asymmetric in terms

of their temporal persistence and velocities, with the blocking regime featur-

ing high temporal persistence/low velocities and the zonal regime favouring

7Phase space velocity here means the distance traversed in phase space between consecutive
time-steps. In particular, this is not the same as atmospheric velocities of, e.g., winds.



Springer Nature 2021 LATEX template

A topological perspective on weather regimes 53

low temporal persistence/high velocities. Even in the real atmosphere, the

behaviour does not appear to be uniform. Already in Woollings et al. (2010a),

where the jet latitude regimes were first presented, it was noted that the forcing

on the jet by transient eddies, thought to be a key driver in generating tempo-

ral persistence, appears to be operating similarly at all latitudes, not just at

the peaks of the trimodal distribution. In other words, the extent to which the

three jet latitude modes can be characterised as having higher-than-average

temporal persistence is ambiguous. This ambiguity is further supported by the

results of Faranda et al. (2017), which examined the closely related 4-regime

picture of the Euro-Atlantic. By computing a measure of both local temporal

persistence and local density, they locate the four regimes in distinct quadrants

of temporal persistence-density space, implying the regimes all have strikingly

different characteristics.

A simplistic definition of regimes based on temporal persistence, residence

times or velocities will, therefore, inevitably fail to capture the behaviour in one

or more of these systems. It is also clear from this discussion that the situation

cannot be salvaged by using a definition combining both notions. Hence it

seems, to these authors, not to be possible to find a definition of regimes,

using density or temporal persistence alone, that unifies all the systems we

considered. While an alternative definition of regimes based on fixed points,

UPOs or other ‘exact solution’ techniques might seem plausible, computing

such solutions is extremely computationally demanding, and state-of-the-art

techniques are only able to handle systems of significantly lower dimensionality

than existing climate models (Lucarini and Gritsun, 2020). More crucially,

these techniques are inherently model features, in that they rely on being able

to integrate the model dynamics. Given that models are known to exhibit

systematic biases in their regime structure (Fabiano et al., 2020), inferring
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conclusions about the real atmosphere based on results obtained from models

would require considerable care. It is therefore not currently clear how such

‘exact solution’ techniques can be applied to observational data sets.

Some readers may reasonably question whether it is in fact important

to have a unified framework for understanding regimes, and that the word

‘regime’ is perhaps best understood as a context-dependent phrase that cap-

tures a wide variety of ways to simplify complex, non-linear dynamics. Indeed,

it is possible that there exist dynamical systems that appear to exhibit regime

behaviour that cannot be accounted for by topological means. Nevertheless,

the fact that four very different systems do allow for such a topological char-

acterisation lends confidence to this being possible in a wide variety of cases.

Furthermore, we believe that the more ad hoc regime approach common in

atmospheric science - and the lack of any clear unifying framework - has in

general undermined confidence both in their practical usage and even their

existence (Stephenson et al., 2004; Christiansen, 2007; Fereday, 2017). The

existence of non-trivial topological structure underpinning four quintessential

examples found in the literature may help bolster confidence that the vari-

ous attempts to diagnose regimes in the atmosphere are really characterising

genuine features of the climate attractor.

7 Conclusions and further directions

In this paper we have argued that the unifying feature across the most well-

known examples of regime systems is their non-trivial topological structure. We

showed that, using persistent homology, one can compute topological invari-

ants which encode such non-trivial structure. By carrying out this computation

for four classical regime systems (Lorenz ‘63, Lorenz ‘96, Charney-deVore and
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the North Atlantic jet), we showed that the information encoded in these topo-

logical invariants captures the key features of each system associated with their

regimes. It was pointed out that these systems also exhibit widely differing

behaviour in terms of the density and temporal persistence of their regimes,

suggesting that no simple definition of regime structure based solely on these

notions is likely to be general enough to capture all of them.

These results justify our suggestion that the notion of a regime in a dynam-

ical system can be understood as the results of varied attempts to capture the

non-trivial topology of the underlying attractor. This approach can be obvi-

ously adjusted to relate to local regions of phase space only, to account for,

e.g., the Euro-Atlantic sector as a particular region in the larger climate attrac-

tor. Our methodology shows that besides being an approach which captures

a sufficiently wide variety of behaviour, it has the important quality of being

computationally tractable for the size of data sets typically used in meteorol-

ogy and climate science. Furthermore, far from being simply a mathematically

neat abstraction, we argue that this topological perspective on regimes offers

concrete practical benefits, for two main reasons.

To understand the first reason, it is helpful to recall, as discussed in the

introduction, that the raison d’être of regimes is to understand questions of pre-

dictability across multiple timescales. An overemphasis on properties related

to density (as in clustering methods) or temporal persistence may end up

obfuscating analysis, not only because regime systems can have a wide vari-

ety of behaviour with respect to these notions, but, crucially, because the

most salient information may be located in entirely different aspects of the

system. The CDV system is an instructive example in this regard. While its

classical regimes are associated with fixed points, the most striking impact

of these is the tight, looping behaviour it generates (cf. Figure 20). Knowing
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that the system is on such a narrowly defined trajectory provides significantly

more information than simply knowing that the system is in the vicinity of

a fixed-point. From a topological perspective, where no knowledge of fixed-

points is implicit, these loops are what stand out as the major feature of CDV,

implying that focusing attention on such features can highlight information

which is otherwise being overlooked. This potential of topological methods to

obtain efficient, simplified representations of chaotic dynamics was also noted

in Yalnız and Budanur (2020) using different ideas.

The second reason is the various technical benefits of persistent homology

algorithms. Unlike many existing algorithms for regime analysis, such as K-

means clustering, persistent homology is effectively non-prescriptive. That is,

the only parameters required for the algorithm are generic to the system, such

as a measure of the spatial scales of the system, as opposed to parameters that

explicitly influence the diagnosed regimes, such as the choice of K in K-means.

Homological techniques are therefore particularly well-suited to studying sys-

tems where prior knowledge of regime structure is less clear. The ability of

our technique to capture the regime behaviour associated to several classical

systems lends confidence in its ability to locate relevant structure in such con-

texts. In addition, the excellent scaling properties of homological algorithms

with the dimension of the data means that these algorithms are especially

beneficial when analysing very high dimensional data, such as climate data.

There are some important shortcomings to the methodology we have pre-

sented, which point to future work. The use of a kernel density estimator, which

scales poorly with dimension, to generate our bifiltration, is clearly undesir-

able and to some extent compromises the excellent scaling obtained from the

use of persistent homology. There are several possible avenues of investigation
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here, including the use of more optimal density estimators; estimating densi-

ties using low-dimensional projections (as we did with the CDV data); and

even direct Monte Carlo sampling techniques. It is also possible to use com-

putationally cheaper metrics in place of density when subsetting data. For

example, preliminary testing suggests that good results can be obtained by

only retaining points where the local phase space velocity is ‘small’, and there

is precedent for such an approach in the literature (Toth, 1992; Straus et al.,

2007b). The other key limitation is in the specific software used. As explained

in the main text, it would be ideal to replace the crude horizontal density

slices we used with more flexible slices of positive slope (cf. Section 3.4.1),

both to improve the stability of the bifiltration and to enable phenomena like

the southern jet latitude ‘shoulder’ to be clearly separated from the central

and northern peaks (cf. Section 6.1). This would require optimisation of the

algorithms used in software like RIVET. Improvements to software capable

of producing stable optimal representatives of homology classes (such as Per-

sLoop) will also be necessary in order to allow for confident visualisations of

any topological structure detected in atmospheric data.

The apparent subtlety of regime structure gleaned from low-dimensional

projections of the atmospheric circulation has been a longstanding source of

uncertainty and ambiguity. The topological perspective we present here does

not add further insight into such near-Gaussian data sets, as these would

be classified as being just a single connected component with no further

structure. Instead, if taken at face value, our perspective suggests that the

varied approaches to characterising Euro-Atlantic weather regimes are indica-

tive of non-trivial topological structure in the associated region of the climate

attractor. In fact, there are tantalising clues in the literature that genuinely

non-trivial loops in the attractor might be detectable when taking into account
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sufficiently many variables, and that such loops relate to the regime behaviour

of the Euro-Atlantic sector (cf. Novak et al. (2017), Figures 4 and 5). It is

the hope of these authors that persistent homology may be a tool capable of

detecting such topological features in the atmosphere using unprocessed, but

very high-dimensional, observational data.
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Appendix A Persistent homology

In this section we provide the definition of barcodes for the persistent homology

of a finite metric space with respect to the Vietoris–Rips complex. Most of the

material in this section only requires a linear algebra background (with the

https://github.com/KristianJS/BifiltPH
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exception of Proposition A.10 for which more advanced algebraic notions are

needed). We refer the reader to Otter et al. (2017, Section 4.1) and references

therein for alternative definitions of barcodes, as well as further details and

intuition on the concepts presented here.

Definition A.1. A simplicial complex K = (V,Σ) is given by a set V

together with a collection Σ of subsets of V satisfying that (i) {v} ∈ Σ for all

v ∈ V and (ii) if σ ∈ Σ and τ ⊂ σ, then τ ∈ Σ. We call the elements of

V the vertices of the simplicial complex, while the elements of Σ are called

simplices. A p-simplex is a simplex with cardinality p+ 1, and we say that

p is the dimension of such a simplex.

We note that what we call “simplicial complex” is usually called “abstract

simplicial complex” in the literature. Every simplicial complex with a finite

set of vertices can be realised as a subset of Euclidean space in a canonical

way, by identifying the vertices with the standard basic unit vectors, and one

can intuitively think of a simplicial complex as a subspace of Euclidean space

obtained by gluing together vertices, edges and higher dimensional simplices

along their common faces. In what follows we encourage the reader to keep this

intuition in mind, and to think of 0-simplices as points in Euclidean space, 1-

simplices as closed straight line segments, 2-simplices as triangle-shaped closed

convex subspaces, and so on.

Example A.2. Consider the simplicial complex with set of vertices V =

{a, b, c} and set of simplices Σ = {{a}, {b}, {c}, {a, b}, {b, c}}. We can realise

(V,Σ) as a subset of R3 by identifying the vertex a with the vector (1, 0, 0),

the vertex b with the vector (0, 1, 0) and the vertex c with the vector (0, 0, 1).
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The 1-simplex {a, b} is then identified with the straight line segment connect-

ing the points (1, 0, 0) and (0, 1, 0), while the 1-simplex {b, c} is identified with

the straight line segment connecting the points (0, 1, 0) and (0, 0, 1).

Definition A.3. Let (X, d) be a finite metric space, and let ϵ be a non-negative

real number. The Vietoris–Rips complex at scale ϵ is the simplicial com-

plex V (X)(ϵ) whose set of vertices is given by X, and such that σ ⊂ X is in

V (X)(ϵ) if and only if d(xi, xj) ≤ ϵ for all xi, xj ∈ σ.

Example A.4. Consider X = {x0, x1, x2, x3} with the following distances:

d(x0, x1) = 1, d(x0, x2) = 1, d(x0, x3) = 1.2, d(x1, x2) = 1.1, d(x1, x3) = 0.5

and d(x2, x3) = 0.6. We then have that V (X)(0.1) is a simplicial com-

plex with the four 0-simplices {x0}, {x1}, {x2} and {x3}, and with no higher

dimensional simplices. On the other hand, V (X)(1) is a simplicial complex

with the four 0-simplices {x0}, {x1}, {x2} and {x3} and the four 1-simplices

given by {x0, x1}, {x1, x3}, {x0, x2} and {x2, x3}. Further, V (X)(1.2) is the

simplicial complex with the four 0-simplices {x0}, {x1}, {x2} and {x3}, six

1-simplices {x0, x1}, {x0, x2}, {x0, x3}, {x1, x2}, {x1, x3} and {x2, x3}, four 2-

simplices {x0, x1, x2}, {x1, x2, x3}, {x0, x1, x3},{x0, x2, x3} and one 3-simplex

{x0, x1, x2, x3}. We provide an illustration for these simplicial complexes in

Figure A1.

As we see in Example A.4, as we increase the scale value we are adding

more and more simplices to the simplicial complex. In general, we have that if

ϵ ≤ ϵ′ then the set of simplices of V (X)(ϵ) is contained in that of V (X)(ϵ′).

Definition A.5. Let F2 be the field with two elements, and K = (V,Σ) a

simplicial complex. For each p = 0, 1, 2, . . . we define Cp to be the F2-vector

space with basis given by the p-simplices of K. Furthermore, we define linear
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Fig. A1 The Vietoris–Rips simplicial complexes from Example A.4.

maps dp+1 : Cp+1 → Cp for all p = 0, 1, 2, . . . as follows:

dp+1(σ) =
∑
τ∈Σp

s.t. τ⊂σ

τ ,

where σ is any p+ 1-simplex in K. We set d0 : C0 → 0 to be the map sending

every element of C0 to 0, where 0 denotes the zero vector space. The collec-

tion of vector spaces Cp and linear maps dp for p = 0, 1, 2, . . . is called the

simplicial chain complex of K.

Example A.6. We consider the Vietoris–Rips simplicial complex V (X)(1)

from Example A.4. We have that C0 is a vector space of dimension 4 with basis

given by the four 0-simplices {x0}, {x1}, {x2} and {x3}, while C1 is a vector

space of dimension 4 with basis given by the four 1-simplices {x0, x1}, {x1, x3},

{x0, x2} and {x2, x3}. Since there are no simplices of dimension 2 or higher,

Cp is the trivial vector space for p ≥ 2. The map d1 : C1 → C0 is defined as

follows: we have d1({x0, x1}) = {x0}+ {x1}, d1({x1, x3}) = {x1}+ {x3}, and

similarly d1({x0, x2}) = {x0}+{x2}, and d1({x2, x3}) = {x2}+{x3}. Keeping

the geometric intuition in mind, we can think of d1 as sending each closed

straight-line segment to the sum of the two points in its boundary. Furthermore,

we have that dp = 0 for any p ̸= 1.
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As one can easily compute, we have that dp ◦ dp+1 = 0 for all p, and

therefore the image of the map dp+1 is contained in the kernel of the map dp.

The elements of the image of dp+1 are called p-boundaries, while the elements

of the kernel of dp are called p-cycles. We note that one can more generally

define a simplicial chain complex for any field, but one would need to take care

of defining the maps dp differently, to ensure that the composition of any two

consecutive maps yields the zero map. In the computations that we perform

in this manuscript we use the field with two elements.

Definition A.7. Let p be a natural number. The pth simplicial homology

of a simplicial complex K is the F2-vector space Hp(K) = ker(dp)/im(dp+1).

One calls the rank of Hp(K) the pth Betti number of K, or alternatively,

the number of p-dimensional holes of K. We use the notation βp(K) to

denote the pth Betti number of a simplicial complex K, or simply βp when the

simplicial complex is clear from the context.

The pth Betti number thus measures the number of p-cycles that are not p-

boundaries. Intuitively, for p = 1, a cycle which is not a boundary corresponds

to a loop which doesn’t contain anything in its interior, in other words a hole.

For instance, for the Vietoris–Rips complex V (X)(1) from Example A.6, we

have that β1 = 1: we have that {x0, x1}+ {x1, x3}+ {x0, x2}+ {x2, x3} is in

the kernel of d1 and thus is a 1-cycle, however, it is not in the image of d2,

since there are no simplices of dimension 2 or higher. On the other hand, if we

consider the Vietoris–Rips complex V (X)(1.1), then we have that β1 = 0. Here

we again have that {x0, x1}+ {x1, x3}+ {x0, x2}+ {x2, x3} is in the kernel of

d1, but now it is also the 1-boundary of {x0, x1, x2}+ {x1, x2, x3}. We discuss

some of these computations in detail in the following example.
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Example A.8. We compute pth simplicial homology for the simplicial complex

in Example A.6. For p = 0, we have that H0(V (X)(1)) = C0/im(d1). The

map d1 has a 3-dimensional image spanned by {x0}, {x1}+ {x3} and {x0}+

{x1}+ {x2}. Thus, the quotient C0/im(d1) is 1-dimensional.

For p = 1, we have that H1(V (X)(1)) = ker(d1)/im(d2) ∼= ker(d1), since

d2 is the zero map. The kernel of d1 is 1-dimensional, and is spanned by

{x0, x1} + {x1, x3} + {x0, x2} + {x2, x3}. Furthermore, we have that the pth

simplicial homology vector space is zero-dimensional for p ≥ 2. Thus, we have

that the simplicial complex V (X)(1) has one 0-hole, one 1-hole, and no higher

dimensional holes. A choice of basis vector for H0(V (X)(1)) is given by [{x0}+

{x1}+{x2}+{x3}], while a generator for H1(V (X)(1)) is [{x0, x1}+{x1, x3}+

{x0, x2} + {x2, x3}], where the square brackets denote equivalence classes in

the respective quotient vector spaces. Intuitively, we can think of the generator

of H1(V (X)(1)) as consisting of the “loop” formed by gluing together the four

straight line segments corresponding to the 1-simplices along their common

boundary points.

Any map of simplicial complexes f : K → K ′, namely a map between

the sets of vertices sending simplices to simplices, induces a linear map

Hp(f) : Hp(K) → Hi(K
′) between the respective homology vector spaces.

Here we are interested in inclusion maps between Vietoris–Rips complexes

associated to a metric space X, at different scale values.

By computing simplicial homology of V (X)(ϵ) for any real number ϵ ≥ 0,

we obtain what is called a persistence module:

Definition A.9. A persistence module is a collection of F2-vector spaces

{Mϵ}ϵ∈R≥0
together with a collection of F2-linear maps ϕ(ϵ, ϵ′) : Mϵ → Mϵ′ for
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all ϵ ≤ ϵ′ in R≥0 such that

ϕ(ϵ′, ϵ′′) ◦ ϕ(ϵ, ϵ′) = ϕ(ϵ, ϵ′′)

whenever ϵ ≤ ϵ′ ≤ ϵ′′. The linear maps ϕ(ϵ, ϵ′) are called structure

morphisms.

Computing pth simplicial homology of the Vietoris–Rips complexes at all

scales, we obtain a persistence module given by {Hp(V (X)ϵ)}ϵ≥0, together

with the structure morphisms Hp(ιϵ,ϵ′) : Hp(V (X)(ϵ)) → Hp(V (X)(ϵ′)) for

all ϵ ≤ ϵ′ which are given by the linear maps induced by the inclusions

ιϵ,ϵ′ : V (X)(ϵ) → V (X)(ϵ′). While the p-th Betti numbers capture information

about the number of p-dimensional holes at each scale, and for instance the

number of connected components, or loops, for p = 0 or 1, respectively, pth

persistent homology also captures information about how the connected com-

ponents or loops change as we increase the scale parameter. More precisely,

one has that such a persistence module satisfies a finiteness condition, which

ensures that the following holds:

Proposition A.10. Let (X, d) be a finite metric space, and let V (X)(ϵ)

be the Vietoris–Rips complex of V at scale ϵ. The persistence module

({Hp(V (X)(ϵ))}ϵ≥0}, {Hp(ιϵ,ϵ′)}ϵ≤ϵ′) is finitely generated, and we have that

there exists an m ∈ N and unique (up to reindexing) intervals [bi, di) for

i = 1, . . . ,m such that

⊕
ϵ≥0

Hp(V (X)(ϵ)) ∼=
m⊕
i=1

I([bi, di)) . (A1)
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Here, for non-negative reals a < b, we denote by I([a, b)) an interval module,

namely a persistence module with

I([a, b))(ϵ) =


F2, ϵ ∈ [a, b)

0, otherwise

and the structure morphisms ϕϵ,ϵ′ are given by the identiy linear map whenever

a ≤ ϵ ≤ ϵ′ < b, and the zero map otherwise.

Remark A.11. We note that in Eq. A1 the direct sums of vector spaces are

endowed with additional structure that comes from identifications encoded by

the structure morphisms: these direct sums are graded modules over certain

monoid rings, and the finiteness condition is understood as being a condition on

these modules. We refer the reader to Corbet and Kerber (2018) and references

therein for more details.

We can understand the decomposition in Eq. A1 as follows: there exists a

choice of basis vectors at each scale value ϵ, such that we can represent the

information given by the homology vector spaces and linear maps between

them in a diagram consisting of disjoint intervals, called a barcode. For such

a choice of basis vectors, we say that x ∈ Hp(V (X)(ϵ)) is born at ϵ if it is

not in the image of Hp(ιϵ′,ϵ) for any ϵ′ < ϵ. Similarly, we say that 0 ̸= x ∈

Hp(V (X)(ϵ)) dies at ϵ′′, for ϵ′′ > ϵ if ϵ′′ is the smallest scale value so that

Hp(ιϵ,ϵ′′)(x) = 0.

In Figure 5 in the main text we provide an example of bar-

code: in purple we depict the barcode plot the persistence module



Springer Nature 2021 LATEX template

66 A topological perspective on weather regimes

({H1(V (X)(ϵ))}ϵ≥0, {H1(ιϵ,ϵ′)}ϵ≤ϵ′), and in blue the barcode for the persis-

tence module ({H0(V (X)(ϵ))}ϵ≥0, {H0(ιϵ,ϵ′)ϵ≤ϵ′), where X is the finite set of

points in Figure 5(a).

Example A.12. We consider again our running example, namely the

Vietoris–Rips complexes from Example A.4. We have that the decom-

position of ({H0(V (X)(ϵ))}ϵ≥0}, {H0(ιϵ,ϵ′)}ϵ≤ϵ′) consists of the intervals

[0, 0.5), [0, 0.6), [0, 1) and [0,∞). We can interpret each interval in the decom-

position as describing the lifetime of one connected component, with the left

enpoint representing the scale value at which it first appears, and the right end-

point represents the time at which it merges with another component: at scale 0

the Vietoris–Rips simplicial complex consists only of four 0-simplices, and thus

for ϵ = 0 we have four connected components. When we reach ϵ = 0.5 the com-

ponents corresponding to {x1} and {x3} merge, and thus as a result we have

that at this scale level there are only three connected components present. Sim-

ilarly, we have that at scale 0.6 two further components merge, and similarly

at scale value 1, leaving only one connected component.

For p = 1, the decomposition of ({H1(V (X)(ϵ))}ϵ≥0}, {H1(ιϵ,ϵ′)}ϵ≤ϵ′) con-

sists of a single interval [1, 1.1). Intuitively, this interval can be thought of

as describing the lifetime of the square formed by gluing together the four

1-simplices {x0, x1}, {x1, x3}, {x0, x2}, {x2, x3} as discussed in Example A.8.

The left endpoint of the interval is the lowest scale value at which the square

appears in the collection of Vietoris–Rips complexes, while 1.1 is the scale value

at which it is filled in by the two 2-simplices {x0, x1, x2} and {x1, x2, x3}.

An alternative way of depicting the intervals in the decomposition in Eq. A1

is what is called a persistence diagram plot: this is a two-dimensional scatter

plot in which each interval is represented by the point with coordinates given
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by its left and right endpoint. We note that in the barcode plot one needs to

choose an order to stack the intervals, while in the persistence diagram plot

one needs to choose a way to depict the multiplicity of the points.

Appendix B Description of toy-models

We give further details on the three toy-models used.

B.1 Lorenz ‘63

The Lorenz ‘63 system, first introduced and studied in Lorenz (1963), is a

chaotic dynamical system in three variables x, y, z defined by the equations

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

and represents a highly simplified model of Rayleigh-Bérnard convection. It

was also re-derived as a toy model of the NAO (Molteni and Kucharski, 2019).

The attractor famously resembles a butterfly, usually viewed as having two

regimes corresponding to the two ‘wings’; its regime behaviour has been exten-

sively studied (Palmer, 1994; Yadav et al., 2005). Here we use the standard

choice of constantzs σ, β and ρ, namely σ = 10, β = 8/3, ρ = 28. We generate

a timeseries of 20000 points by integrating the equations with a forward Euler

scheme at a timestep dt = 5 · 10−5.

B.2 Charney–DeVore

The Charney-deVore (CDV) model, first derived in Charney and DeVore

(1979), provided one of the first examples of multiple invariant measures in
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an atmospheric model, and can be thought of as a crude model of large-scale

midlatitude blocking dynamics. It is based on a severe spectral truncation of

the barotropic vorticity equation in a β-plane channel, as in Equation (B2),

where Ψ is a streamfunction, γh is an orographic profile and Ψ∗ is an external

forcing.

∂

∂t
∇2Ψ = −J(Ψ,∇2Ψ+ γh)− β

∂Ψ

∂x
− C(Ψ−Ψ∗) (B2)

While in Charney and DeVore (1979) the main focus is on a three-mode

truncation of the system, where a marginally less severe truncation keeping

three zonal and two meridional modes is applied, the p.d.e. reduces to the

six-equation o.d.e. system shown in Equation B3, containing quadratic non-

linearities and linear coriolis, orographic, and relaxation terms.

ẋ1 = γ̃1x3 − C(x1 − x∗
1)

ẋ2 = β1x3 − α1x1x3 − δ1x4x6 − C(x2 − x∗
2)

ẋ3 = −β1x2 − γ1x1 + α1x1x2 + δ1x4x5 − C(x3 − x∗
3) (B3)

ẋ4 = γ̃2x6 + ϵ · (x2x6 − x3x5)− C(x4 − x∗
4)

ẋ5 = β2x6 − α2x1x6 − δ2x3x4 − C(x5 − x∗
5)

ẋ6 = −β2x5 − γ2x4 + α2x1x5 + δ2x2x4 − C(x6 − x∗
6)

A parameter set where this model produces chaotic dynamics was found in

Crommelin et al. (2004), and we use those same parameters here (see ibid for

a full discussion of the constant values and meaning of each term in equation

B3). An interactive simulation showing the evolution of this system can be

found at joshdorrington.github.io/cdv simulator/.

joshdorrington.github.io/cdv_simulator/
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This system has been introduced as it exhibits multimodality (i.e., regimes)

in a model which is significantly more complex and more physically inter-

pretable than the Lorenz ‘63 system, and which also has particularly chal-

lenging phase-space structure. The regime dynamics are of Pomeau-Maneville

type (Pomeau and Manneville, 1980) in that they consist of long-lived quasi-

stationary periods in the vicinity of a weakly unstable fixed point, punctuated

by a ‘bursting’ behaviour and a transition to chaotic flow. These chaotic

transients shadow unstable homoclinic orbits radiating from the fixed point,

and so lend considerable structure to the model attractor, with a series of

strongly preferred looping trajectories. A timeseries of 20000 points was gen-

erated by integrating the equations with a forward Euler scheme at a timestep

dt = 2 · 10−4. In order to visualise the data in three dimensions, a truncation

of the six dimensional space is required. Because around 98% of the variance

is explained by the first three empirical orthogonal functions (EOFs), we use

these to define a truncated space. Homological computations were found to be

essentially unchanged when using the truncated space or all six dimensions,

so the truncated space is used in all computations.

B.3 Lorenz ‘96

The Lorenz ‘96 model was introduced in Lorenz (1996) as an idealized, chaotic

model of the atmosphere which is of greater complexity than the Lorenz ‘63

system (Karimi and Paul, 2010). It is defined in our case by coupling eight

variables Xk, k = 1, . . . , 8, representing large-scale variability with 32 vari-

ables Yj , j = 1, . . . 32, representing small-scale variability, using the following

equations:



Springer Nature 2021 LATEX template

70 A topological perspective on weather regimes

Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + F − hc

b

kJ∑
j=J(k−1)+1

Yj ; k = 1, . . . ,K,(B4)

Ẏj = −cbYj+1(Yj+2 − Yj−1)− cYj +
hc

b
Xint[(j−1)/J]+1; j = 1, . . . , JK.(B5)

Cyclic boundary conditions are then imposed: Xk+K = Xk, Yj+jK = Yj . The

parameters are chosen as in Christensen et al. (2015), which also discusses the

meaning of the different constants.

Due to the interpretation of the equations in terms of large-scale modes

coupled to small-scale modes, Lorenz ‘96 has been utilised in several studies

looking at different ways to parameterise unresolved sub-grid scale variability

in forecast systems (Wilks, 2005; Christensen et al., 2015; Vissio and Lucarini,

2018; Gagne II et al.). Its regime structure has been considered in, e.g.,

Lorenz (2006) and Christensen et al. (2015). The analysis of ibid also makes

it clear that the key regime variability is concentrated in the first four EOFs.

Computations are therefore always done using the subspace spanned by these.
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