
IEEE/ACM TRANSACTIONS ON NETWORKING 1

T-RACKs: A Faster Recovery Mechanism for TCP
in Data Center Networks

Ahmed M. Abdelmoniem, Member, IEEE, Brahim Bensaou, Senior Member, IEEE

Abstract—Cloud interactive data-driven applications generate
swarms of small TCP flows that compete for the small switch
buffer space in data-center. Such applications require a small
flow completion time (FCT) to be effective. Unfortunately, TCP
is myopic with respect to the composite nature of application data.
In addition it tends to artificially inflate the FCT of individual
flows by several orders of magnitude, because of its Internet-
centric design, that fixes the retransmission timeout (RTO) to
be at least hundreds of milliseconds. To better understand this
problem, in this paper, we use empirical measurements in a
small data center testbed to study, at a microscopic level, the
effects of various types of packet losses on TCP’s performance.
In particular, we single out packet losses that impact the tail end
of small flows, as well as bursty losses that span a significant
fraction of small TCP congestion windows, and show a non-
negligible effect of such losses on the FCT. Based on this, we
propose the so-called, timely-retransmitted ACKs (or T-RACKs),
a simple loss recovery mechanism that conceals the drawbacks
of the long RTO even in the presence of heavy packet losses.
Interestingly enough, T-RACKS achieves this transparently to
TCP itself as it does not require any change to TCP in the
tenant’s virtual machine (VM) or container. T-RACKs can be
implemented as a software shim layer in the hypervisor between
the VMs and the server’s NIC or in hardware as a networking
function in a SmartNIC. Simulation and real testbed results show
remarkable performance improvements.

Index Terms—Data-center, Cross Layer, Fast Recovery, TCP-
Incast, Timeouts, Testbed.

I. INTRODUCTION

The recent growth in data-center deployments worldwide is
reshaping how the Internet and its applications operate. New,
cloud-based, data-driven applications have emerged over the
past decade to harness the cost-effectiveness and scalability
afforded by cloud computing. For storing and processing large
data sets, most such applications rely on distributed program-
ming and data storage frameworks such as Hadoop, HDFS, or
Spark [1]. In such frameworks, master and aggregation nodes
often require data transfers from tens to hundreds of worker
nodes to build a result. Due to the stringent timing require-
ments of interactive applications, a data transfer that misses
a hard deadline because of excessive waiting for packet-loss
recovery returns a partial result (of lower quality). Hence, the
effectiveness of the application is not only correlated with the
average latency of data delivery but also with the latency at
the tail of the distribution. For example, in practice, the 90th%

Ahmed M. Abdelmoniem is currently with CS Department, Assiut Uni-
versity, Egypt and KAUST, Saudi Arabia. Most of his contribution to this
work was done while he was with CSE Department, HKUST, Hong Kong
SAR, PRC. His work was supported under Grant HKPFS PF12-16707. E-
mail: amas@cse.ust.hk

Brahim Bensaou is currently with Department of Computer Science and
Engineering, HKUST, Hong Kong SAR, PRC. E-mail: brahim@cse.ust.hk

of the flow completion times (FCT) can be anywhere between
two to four orders of magnitude worse than the median or the
average latency.

In small scale private data-centers, CPU resources are often
the bottleneck, and solutions that rely on task placement and
scheduling already exist (e.g., [2]). In contrast, public data-
centers seldom overload their server CPUs and usually have
abundant computing resources; yet, they often adopt high over-
subscription ratios in the network. As a result, network latency
becomes the main performance bottleneck [3]. This is typical
for many Internet-scale applications deployed on public (IaaS)
clouds such as Microsoft Azure or Amazon EC2.

Measurements in real production data-centers [4–8] have
shown over the years that the applications that produce small
traffic flows predominate and that incast congestion events
and excessive packet losses are frequent. To circumvent such
problems, large corporations such as Microsoft, Facebook, and
Google dedicate well-structured data-centers to deploying their
time-sensitive applications. Smaller-scale private data-centers
address the problem by deploying homogeneous custom-
designed TCP variants (e.g., DCTCP [6]) on all the VMs in
the data-center. In stark contrast, multi-tenant and public data-
centers, where many-to-one (or many-to-many) communica-
tion patterns predominate, are populated with a large variety
of versions of TCP with different behaviors in the face of
congestion [5, 9, 10]. As a direct consequence unfairness in
congestion resolution is inevitable and often leads to repeated
packet losses and a long-tailed latency distribution for small
flows. In particular, since commodity Ethernet switches are the
backbone of all intra-data-center communications, their small
buffer space can quickly be fully occupied by a few (large)
TCP flows.

This raises two issues: i) small flows do not last long enough
to be able to grab their fair share of the buffer from ongoing
large flows, as their TCP sending window cannot grow large
enough before a packet loss is experienced; ii) when a sudden
swarm of such small flows (usually co-flows) surges, while
the buffer is occupied by other flows, incast congestion loss
events become inevitable. In this case, a burst of correlated
packet losses from many such flows takes place. Bursty losses
with small congestion windows often leave an insufficient
TCP flight size to trigger TCP’s fast-retransmit and recovery
mechanism. As a consequence, small flows often experience
timeouts. The retransmission timeout (RTO), which is orders
of magnitude larger than the actual round-trip time (RTT),
contributes thus the lion’s share to the long FCT and number of
missed deadlines experienced by small flows in data-centers.

In this paper, we study the impact of RTO on the per-
formance of TCP applications in data-centers and propose a

IEEE/ACM TRANSACTIONS ON NETWORKING 2

simple mechanism to shield small TCP flows from the negative
effects of the RTO, without changing TCP. Our methodology
adopts a two-phased approach:

i) First, to fully understand the impact of the RTO on the
FCT of small flows, we conduct an empirical study of the
loss events in a small data-center, by examining the nature of
the recovery mechanism invoked by TCP for each segment
loss. To this end, we trace TCP traffic flows microscopically
at the socket-level in the Linux Kernel. Then by analyzing
the collected traces, we study the frequency of occurrence of
the two TCP loss recovery mechanisms (viz., RTO1 and Fast
Retransmit and Recovery (or FRR)) in relation to the TCP
window size. We show that tail-end losses and bursty losses
primarily cause RTOs, and while they have a less dramatic
effect on the latency of large flows, their impact on the per-
formance of small flows is tremendous. ii) Second, to prevent
RTOs from artificially inflating the actual loss recovery delays
of small flows intra-data-centers, and without modifying TCP2,
we propose, implement and study the performance of a new
mechanism to conceal the long retransmission timeout. This
mechanism forces TCP in the VM to go into the FRR mode
whenever a segment is estimated to be likely to experience
a timeout, long before it actually does. We implement the
resulting so-called T-RACKS in a real testbed and study its
performance with realistic traces3.

In the remainder, supported by an empirical study, we
show in Section II the dramatic impact of the RTO on the
performance of small flows. In Section III, we present the
proposed methodology and system design. In Section IV, we
discuss the packet-level simulation results in detail. Then, in
Section V, we present the experimental results from the testbed
deployment. We discuss important related work in Section VI.
Finally, we conclude the paper in Section VII.

II. PROBLEM AND MOTIVATION

Before we start discussing our empirical study of TCP and
presenting our solution, let us first shed some light on the
motives that led us to adopt such a non-traditional approach
by contrasting it against alternative methods. In particular,
while our approach is straightforward, it turns out to be very
effective because it relies first on fully understanding the large
number of incremental mechanisms that have been added over
the years to TCP.

Many alternative schemes proposed in the literature deal
with TCP congestion in data-centers in a classic Internet-
centric approach by invoking mechanisms such as RED. This
approach is flawed because of three major reasons: i) RED is
a mechanism that was designed for the Internet. Its goal is to
reduce the average queuing delay experienced by packets in
the huge routers’ buffer, which contributes a large proportion

1The minimum RTO is 200ms in Linux and 300ms in Windows
2Notice that in public data-centers, under the IaaS model, the operating

system and thus the protocol stack in the VM is under the full control of the
tenant and cannot be modified by the cloud service provider.

3An earlier version has been published in IEEE INFOCOM 2018 [11]. The
implementation, simulation and experimental code and scripts are publicly
available at http://ahmedcs.github.io/T-RACKs.

of the end-to-end delay and delay-jitter. In contrast, data-
centers use high-speed switches with small buffers; therefore,
the contribution of queuing delay to the total FCT is not
as dramatic as in the case of the Internet, regardless of the
buffer occupancy. And so, maintaining a small average queue
does not help the FCT. ii) With increasing link speeds in
modern data-centers, the interplay between propagation delay
and transmission delay is transformed, rendering the control
mechanisms valid for one no longer valid for the other. For
example, in data-centers with 1Gbps network interfaces, the
transmission time of a single IP packet of 1500 bytes is about
12 microseconds; the round trip time over a 600m path at
the speed of light is about 6 microseconds. So, there can
be at most one packet spread over a link between any two
adjacent interfaces in the network (e.g., server NIC, to ToR
port, ToR port, to Aggregation Port, ...). In contrast, with 40
Gbps network interfaces, it takes only 0.3 microseconds to
complete the transmission of an IP packet, yielding a possible
flight of up to 33 IP packets per hop. So early detection
and notification via buffer thresholds with the small buffers
that exist in the switches are ineffective, and excessive packet
losses are inevitable. iii) Packet losses in TCP per-se are
not the reason for these problems; excessive congestion is.
Packet losses are merely symptoms of congestion, so there
is no reason to try to curtail them completely as long as we
can control their frequency by recovering from losses fast.
In fact, curtailing packet losses completely results in a non-
competitive TCP behavior that yields poor performance in
heterogeneous TCP environments. For example, pitting TCP
Vegas against TCP New Reno, Cubic or DCTCP results in
poor performance for the former.

As a consequence, eliminating packet losses in data-center
networks while maintaining a high link utilization is not
helpful in reducing the FCT. Moreover, several measurement
studies [5, 9, 10] have been conducted on data-centers and
have shown that latency in such environments varies greatly.
Instead, we propose to pinpoint the true reason for increased
delays in data-centers and to tackle such reasons directly [11].
To this end, we aim to further understand the reasons behind
this behavior and so we deep-dive into the packet level
analysis of the flows and the TCP socket state variables at
a microscopic level to understand TCP behavior and its loss
recovery mechanisms.

An early work [12], based on data-center measurements,
found that the timeout mechanism is to blame for the long
waiting times and proposed the very simple yet effective
solution of reducing the RTOmin value for TCP in data-center
environments while using high-resolution timers to keep track
of delays at the microsecond-level. This approach actually
solves the problem, reduces the FCT, and mitigates TCP-incast
congestion effects. However, i) it requires the modification of
TCP, and as such it is inappropriate for public data-centers
where multiple tenants can upload their own version of the
OS; and, ii) there is no “magical” value of RTOmin that fits
all possible environments. For instance, a RTOmin that works
inside the data-center (e.g., between a web server and the
back-end database server) will lead to spurious timeout events
for Internet-facing connections (e.g., the connection between

http://ahmedcs.github.io/T-RACKs

IEEE/ACM TRANSACTIONS ON NETWORKING 3

Table I: TCP API Calls Intercepted by LossProbe Module
Function Call Description
tcp_set_state Handles and update TCP connection state
tcp_v4_do_rcv Handles the arrival of all types of TCP

segments
tcp_retransmit_skb Retransmits one socket buffer, where policy

decisions and retransmit queue state updates
are done by the caller

tcp_v4_send_check Computes a TCP checksum

the web administrator workstation and the server in the data-
center).

A. Impact of RTO on The FCT

In data-centers, partition/aggregate applications that gen-
erate small flows are challenged by the presence of small
buffers, large initial sending windows, inadequate RTOmin, or
slow-start exponential increase. This combination of hardware
and TCP configuration frequently leads to timeout events for
such applications. In particular, when the number of flows
they generate is large and roughly synchronized, incast-TCP
synchronized losses occur. As the loss probability increases
linearly with the number of flows [13], the flow synchroniza-
tion and the excessive losses lead to throughput-collapse for
small-flows.

To illustrate this, consider a simplified fluid-flow model with
N flows sharing a link of capacity C equally. Let B be the
flow size in bits and n be the number of RTTs it takes to
complete the transfer of one flow. The optimal throughput
ρ∗ can be simply approximated as the fraction of the flow
size to its average transfer time: ρ∗ = B

nτ+ BN
C

. That is, it
takes BN/C to transmit the B bits plus an additional queuing
and propagation delay of τ seconds for each of the n RTTs.
In practice, when TCP incast congestion involving N flows
results in throughput-collapse, the flow experiences one or
more timeouts and recovers after waiting for RTO. Then, the
actual throughput writes: ρ = B

RTO+n′τ′+ BN
C

, Typically n′ ≥ n
and τ′ ≥ τ. In addition, in data-centers, the typical RTT is
around 100µs, while existing TCP implementations impose a
minimum RTO (i.e., RTOmin) of about 100 to 200ms4. As a
consequence, in general large flows yield values of n′ such that
n′τ′ & RTO. In contrast, small flows only last a few RTTs,
therefore n′τ′ � RTO. And so, when a small flow experiences
a loss that cannot be recovered by 3-duplicate ACKs, it
systematically incurs a FCT that is orders of magnitude larger
than it should.

B. Analyzing TCP congestion recovery

To investigate why packet losses seem to affect large flows
only marginally, yet degrade the performance of small flows
dramatically, we collected and examined socket-level TCP
state information from a Websearch workload [6], in a small-
scale data-center testbed. First, we implemented a socket-level
monitoring module, named hereafter “LossProbe”, based on
KProbes/JProbes [14] in the Linux Kernel. Probes are dynamic
debugging tools which in our case, allow us to intercept
different TCP event handlers and API calls as listed in Table I

4Linux uses 200ms and Windows uses 300ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti

o
n

Loss size normalized to CWND

Samples=21835
Median=15.76
Mean=20.48
STDEV=9.09

(a) FR size rel. CWND size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti

o
n

Loss size normalized to CWND

Samples=7149
Median=31.56
Mean=32.25
STDEV=16.67

(b) RTO size rel. CWND size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti

o
n

Loss position normalized to CWND

Samples=21835
Median=73.50
Mean=19.33
STDEV=80.00

(c) FR position rel. CWND

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti

o
n

Loss position normalized to CWND

Samples=7149
Median=75.99
Mean=17.92
STDEV=81.40

(d) RTO position rel. CWND

Figure 1: (a-b) show the retransmission size relative to CWND while
(c-d) show the loss position relative to CWND.

Table II: TCP Socket-level State Info. logged by LossProbe Module
Data
Type

Variable Description

uint lost_out Count of lost packets
uint prr_out Count of pkts. sent during recovery
uint prr_delivered Count of pkts. delivered during recovery
uint prior_cwnd Congestion window at start of recovery
uint prior_ssthresh SSThresh saved at recovery start
uint total_retrans Count of retrans. for entire connection
uint retransmit_high Highest sequence # of retransmitted data
uint lost_retrans_low Lowest sequence # of retransmitted data
uint packets_out Count of segments currently in flight
uint retrans_out Count of packets retransmitted
int undo_retrans Count of undo-able retransmissions
int rcv_tstamp Timestamp of last received ACK
int lsndtime Timestamp of last sent data packet
int retrans_stamp Timestamp of the last retransmit
int recovperiod Duration of total recovery period
int maxrecovperiod Maximal recovery time experienced

where we log the target TCP socket-level state information.
The module works as follows:

1) Jprobe requires the address of the kernel function to
trace; hence the target TCP handlers of the events of
interest have to be identified from the Linux kernel source
code base [15]. For example, tcp_retransmit_skb is the
function called in the kernel to retransmit a TCP segment.

2) Then, a handler function is defined that will perform
certain actions upon entry of the traced function (e.g.,
print the debugging message when the target kernel
function is invoked). In the probe module, that function
is defined for convenience with the same name as the
original probed function (e.g., jtcp_retransmit_skb) and
jprobe calls it upon entering the original function.

3) The monitoring module is dynamically installed into
the kernel, and the probed workload (or experiment) is
invoked. Upon entry of the target functions, the jprobe
function defined in the module, is called to collect the
state information of interest and write them into an
RAM-buffer which in turn is flushed periodically and
asynchronously onto the file system to avoid stalling the
datapath artificially.

Since we do not have actual real world workload, we custom-
built a traffic generator, that replicate a Websearch work-

IEEE/ACM TRANSACTIONS ON NETWORKING 4

load [6] consisting of thousands of flows and collect mea-
surements on the data listed in Table II from all the servers in
our testbed5.

We summarize our findings in several figures to reflect
TCP’s behavior with respect to the mechanism invoked to
recover from packet losses (e.g. Fast Retransmit and Recovery
or Re-transmission Timeouts6). Fig. 1a shows the distribution
(on the ordinate) of the size of each retransmission (on the
abscissa) for the FRR-based recovery events. The size of
a retransmission is calculated by subtracting the sequence
number of the first segment from that of the last segment in
a single recovery round which is then normalized by the size
of the congestion window Cwnd7. Similarly, Fig. 1b shows
the same metric for RTO-based recovery events. Fig. 1c and
Fig. 1d show the distribution (on the ordinate) of the loss index
or position (on the abscissa) in case of FRR and RTO-based
recovery, respectively. The index points to the first retransmit-
ted segment (for several consecutive segments losses), relative
to Cwnd, when the segment was first transmitted (i.e., before
a loss is detected)8.

Analyzing these results, we can draw the following conclu-
sions: Fig. 1a suggests that FRR loss size is distributed over
the range of packets in the window with a positive skewness
towards the first few fractions of the window (i.e., probability
of losing more than 30% of the window is insignificant).
However, Fig. 1b shows that this is not the case for RTO,
which seems well distributed with positive skewness towards
the tail end of the window (i.e., the probability of losing more
than 30% of the window is significant). Also, we can see
that there are only a few RTOs far away from the tail; these
represent lost packets within the same congestion window.
Fig. 1c points out that losses at the tail of the window occur
with higher frequency for RTO events, however in the case of
FRR, the Cwnd is relatively large enough for TCP to receive
a sufficient number of duplicate Acks, which allows for Fast-
Recovery. Similarly, Fig. 1d clearly shows a similar trend
with higher frequency at the tail, however, in this case, Cwnd
is relatively small and hence, contains less in-flight packets
to allow for FRR, and eventually, RTO recovery occurs. To
elaborate, we see in Fig. 2 that typically Cwnd for the flows
that experience RTO is smaller than its counterpart for those
that recover via FRR.

In data-centers, the size of the pipeline is small: typically,
with an RTT of 100µs, a link of 1Gbps (respect. 10Gbps) can
accommodate 8.3 packets (respect. 83 packets). In conjunction
with shallow buffered switches, the nominal TCP fair share
during TCP-incast barely exceeds one packet per-flow, and
hence the occurrence of RTO is highly likely. This phe-
nomenon highlights how TCP’s performance can be degraded

5Code for the LossProbe module is publicly available at https://github.com/
ahmedcs/TCP_loss_monitor/

6Each figure shows the aggregate of all servers in the data-center.
7The bar for 0-10, refers to the probability that 0-10% of Cwnd is lost

while a bar for 90-100 refers to the probability that 90-100% of Cwnd is
lost

8A bar for 0-10, refers to the probability that a loss occurs for the first
0-10% of the segments in Cwnd; whereas, a bar for 90-100 refers to the
probability that the loss occurred in the last 90-100% of the segments of
Cwnd

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

CWND size

Fast Retransmit
RTO Retransmit

Figure 2: CDF of CWND at the transmission of the lost packet

when operating in small windows regime in a small buffer with
high-bandwidth low-delay environments like data-centers. The
effect on the FCT is more severe for small, time-sensitive
flows, that generally last only a few RTTs, but that are in
practice compelled to wait for 2 to 4 orders of magnitude
extra time due to the RTOmin rule.

III. SYSTEM DESIGN AND IMPLEMENTATION

T-RACKs design is based on the following observation:
packet losses are inevitable in TCP. So the key to reducing the
long latency and jitter is not to try and avoid losses completely
but instead try to avoid long waiting after the losses occur. In
achieving this, T-RACKS must also: (R1) improve the FCT of
latency-sensitive applications by expediting the transmissions
of small flows’ packets. (R2) be friendly to throughput-
sensitive large flows (i.e., it must not sensibly degrade the
throughput of large flows to satisfy the delay requirements of
latency-sensitive flows). (R3) be compatible with all existing
TCP versions (i.e., it must not impose modifications inside
the virtual machines, and if any are needed, they shall be
in the hypervisors, which are fully under the control of
the data center operator. It also must not require any extra
special hardware). (R4) Finally, the mechanism must be simple
enough to be easily deployable in real data-centers.

In this perspective, T-RACKs actively infers packet losses
by monitoring (in the hypervisor) per-flow TCP ACK numbers
and proactively triggers the FRR mechanism of TCP to take
action whenever and RTO is deemed to be likely to take place
in the near future. The goal is to help small TCP flows, that
would otherwise experience a timeout, recover fast via the
FRR instead of waiting for TCP’s RTOmin. The proposed
mechanisms intervene only when the loss is almost certain,
leading to a significant improvement of recovery times, and
hence the FCT. T-RACKS design relies on the following
arguments: i) all TCP versions adopt the FRR mechanism
as a way to detect and recover from losses fast. So, if the
FRR mechanism can be forced into action by the hypervisor,
regardless of the nature of the loss, the resulting system would
be transparent to the TCP protocol in the VM and would
require no changes to TCP in the VM; ii) TCP relies on
a small number of duplicate ACKs to activate FRR; however,
often (especially for small-flows), there aren’t enough packets
in flight to trigger duplicate ACKs. To achieve this, we propose
to use “spoofed” TCP ACK signaling from the hypervisor to
the VM. In this perspective, the hypervisor maintains a per-

https://github.com/ahmedcs/TCP_loss_monitor/
https://github.com/ahmedcs/TCP_loss_monitor/

IEEE/ACM TRANSACTIONS ON NETWORKING 5

flow timer β = α ∗ RTT + rand(RTT) to wait for the ACKs
before it triggers FRR with spoofed duplicate ACKs.

Note that, while finalizing our work, we realized the sim-
ilarity of our idea is similar in spirit to the so-called TCP
SNOOP protocol [16], which retransmits lost segments on
behalf of the communicating end-points to filter out bit-errors
in low-speed wireless networks. As such, TCP SNOOP also
could be applied in data-centers. However, it is expensive to
implement, as it requires buffering all sent segments at the
lower layers (e.g., link-layer or hypervisor), which requires
an ample buffer space in data-centers. T-RACKs, in contrast,
triggers the retransmissions from the actual TCP protocol in
the VM instead of buffering and retransmitting the packets
itself. It requires no packet buffering at all; it only relies on
memorizing a few state variables from the last segment, and
the final ACK received of each flow.

A. T-RACKs Algorithm

Algorithm 1: T-RACKs Packet Processing
1 /* Initialization */
2 Create an in-memory flow cache pool;
3 Create a flow table and reset flow information;
4 Initialize and insert NetFilter hooks (for the NetFilter

implementation);
Input: α # of RTTs to wait before retransmitting ACKs
Input: γ a threshold in bytes to stop tracking a flow as

small
Input: φ the dupACK threshold used by TCP flows
Input: t: the current local time counted in jiffies

5 Define x: the exponential backoff counter
6 Function Outgoing Packet Event Handler (Packet P)
7 f=Hash(P);
8 if SYN(P) or !f.active then
9 Reset Flow (f);

10 Extract TCP options (i.e, TStamp, SACK, etc);
11 Update the flow information and set f.active;

12 if DATA(P) then
13 Update flow info (i.e., last seq#, etc);
14 f.active_time = now();

15 Function Incoming Packet Event Handler (Packet P)
16 /* For ACKs: extract and update flow

information from incoming header */
17 f=Hash(P);
18 if f.long_lived then return ;
19 if ACK_bit_set(P) then
20 Extract required values (e.g., seq#, ack#, etc);
21 if New ACK then
22 Update flow entry and state information (e.g.,

RTT);
23 Update last seen ACK number from receiver;
24 Reset f.dupAck_Nr = 0;
25 Reset f.ACK_time = now();
26 if f.lastAckNo ≥ γ then f.long_lived = true ;
27 else
28 if Duplicate ACK then
29 f.dupAck_Nr ++;
30 /* Drop extra dup-ACKs */
31 if f.resent > 0 then Drop Dup ACK ;

32 Update TCP headers (i.e., TStamps, SACK, etc);

Algorithm 2: T-RACKs Timeout Handler
1 Create and initialize a timer triggere every 1 ms;
2 Function Timer Expiry Event Handler
3 for Flow (f) ∈ FlowTable do
4 β = α ∗ f .RTT + rand(f .RTT));
5 if !f.active or f.long_lived then Continue ;
6 T = MAX(f.ACK_time, f.active_time);
7 if now() - T ≥ β then
8 Resend last ACK #(φ − f .dupAck_Nr) times;
9 Set f.resent_time = now();

10 Set x = 2;
11 Continue;

12 if now()-f.resent_time ≥ (β � x) then
13 resend ACK one more time;
14 x = x + 1;
15 Continue;

16 if (now()-f.ACK_time) ≥ RTOmin then
17 stop T-RACKs recovery;
18 soft reset flow (f) recovery state;
19 Continue;

20 if (now()-f.active_time)≥1 then deactivate_flow(f) ;

The T-RACKs algorithm consists broadly of three major
functions: the first two are in charge of maintaining per-flow
state information on the server (hypervisor) on arrival and
departure of packets, shown in Algorithm 1 and the third
is a timer event handler described in Algorithm 2. In the
initialization in (lines 2−5) of Algorithm 1, an in-memory flow
cache pool is created to track new flow arrivals. This approach
speeds up flow objects creation. A hash-based flow table is
created and manipulated via the Read-Copy-Update (RCU)
synchronization mechanism to efficiently identify flow entries.
Other parameters and variables are set in this step, as well.
Before each TCP segment departure, T-RACKs performs the
following actions: i) in line 7, the packet is hashed using its 4-
tuple (source and destination IP addresses and port numbers),
and the corresponding flow is identified; ii) in lines 9− 11, if
this is an SYN packet or the flow entry is inactive (i.e., a new
flow), the flow entry is reset then TCP header info and options
are extracted to activate a new flow record; and iii) in lines
13 − 14, if this is a Data packet, then the lastsent sequence
number and time for this flow are updated.

Next, upon each TCP ACK arrival, the algorithm performs
the following actions: i) in lines 17 − 18, the flow entry
is identified using its 4-tuple; if the flow is large, it will
subsequently be ignored by T-RACKs. By doing so, the
complexity of the scheme is reduced; ii) in lines 22 − 26 if
the ACK sequence number acknowledges a new packet arrival,
the last seen ACK sequence number and time is updated. The
dupACK counter is reset. If the accumulated flow size exceeds
a threshold γ it is marked as a large flow (to be able to stop
tracking it); iii) in lines 29−31, if ACK number acknowledges
an old packet (i.e., if this is a duplicate ACK), then we drop
dupACKs if the flow is in recovery mode, otherwise increment
the number of dupACKs seen so far; iv) in line 32, we update
the TCP headers information of the ACK if necessary. We
discuss this part in more detail later in sec III-C.

Algorithm 2 handles the periodic global timer expiry events
and performs the following actions for all active non-large

IEEE/ACM TRANSACTIONS ON NETWORKING 6

Hypervisor

NIC

Flow# Scale

S1:D1 7

S2:D2 3

Receiver

S1:data S3:data

D1:FRACK D3:FRACK

Sender

S3:D3 5

S2:data

D2:FRACK
VM2 VM1VM3

S1-D1S2-D2S3-D3

Process
IN

P
re
_R
o
u
te

Ip
_r
cv

Process
OUT

P
o
st
_r
o
ut
e

Ip
_f
in
is
h

TO_timer_handler

D1:ACK D3:ACKD2:ACK

T-RACKs

Figure 3: T-RACKs System: consists of an end-host module that
tracks TCP flows incoming ACKs and generates FAKE
retransmitted ACKs upon T-RACKS timeout

flows in the table. In a typical implementation this timer lasts 1
ms and is processed regularly with the OS clock timer interrupt
(i.e., does not require the special high-resolution timers): i)
in lines 4 − 11, if no new ACK acknowledging new data has
arrived for β seconds since the last new ACK arrival, the flow
is deemed to be likely to experience a timeout in the future.
T-RACKs enters into action, spoofs an ACK using the last
successfully received ACK sequence number, and sends it to
the sending process or VM residing on the same end-host.
An exponential backoff mechanism is activated to account
for various dupACK thresholds set by the sender’s TCP or
OS. ii) In lines 13 − 15, if using timer β backed-off by the
number of retransmissions x of the spoofed ACK, does not
yield a recovery, i.e., the flow still did not receive a new ACK,
another spoofed ACK is created and sent to the corresponding
sender. To ensure T-RACKS is not sending spurious spoofed
dupAcks, the algorithm backs-off exponentially; i.e., after each
transmission of a spoofed Ack, timer β is doubled. iii) In
lines 17−19, if the backoff time approaches the RTOmin (i.e.,
200ms), we stop triggering Fast-Retransmit (by resetting the
soft state) and letting the sender’s TCP RTO timer handle the
recovery of this segment. iv) In line 20, if the inactivity period
exceeds 1 sec, flow (f) entry is hard reset.

B. T-RACKs System Implementation

Algorithm 1 relies on TCP header information of ACK
packets to maintain per-flow TCP state information. In this
paper, we only consider a lightweight end-host (hypervisor)
shim-layer implementation to achieve this9. This approach is
perfectly feasible even for production data-centers, because
the number of flows in a server in production data-centers
has been reported to be small in general not exceeding 30-
40 [6]. In addition, the number of flows tracked by T-RACKs
is further reduced on average by only tracking small-sized
flows, abandoning large flows whenever they grow to reach a
certain size threshold. The deployment of T-RACKs in data-
centers involves hashing the flows into a hash-based flow-table
using the 4-tuples (i.e, SIP, DIP, Sport and Dport) whenever

9We note that, in higher speed networks, T-RACKs could equally be
implemented as a networking function on smartNICs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

RTT variation (usec)

Fast Retransmit
RTO Retransmit

Figure 4: RTT variation between transmission time and time of
retransmission(i.e ∆RTT = RTTrt − RTTt)

SYNs packets arrive or a flow sends data after a long silence
period. For instance, referring to Figure 3, when VM1 on
the sender end-host established a connection with its peer (or
destination) VM on the receiving end-host, a new flow entry
(S2 : D2) is created in the table as shown in Fig.3. Also,
not shown in the Algorithm code, flow entries are cleared
from the table whenever a connection is closed (following
the TCP connection tear down FIN/FIN-ACK) or after a pre-
set inactivity time threshold is exceeded. The flow table could
track many relevant TCP-related per-flow state information,
however, for T-RACKs to perform the fast recovery function, it
needs to track a minimal set of TCP state variables (including
the highest ACK sequence number seen so far and the arrival
time of the most recent ACK).

The T-RACKs system uses a flow table to store and update
TCP flow information, including the last ACK number, the last
sent sequence number, the corresponding times, the RTT for
the flow measured using the TCP timestamp option, as well as
the optional TCP Sack information10 for each outgoing TCP
flow. T-RACKs intercepts the incoming ACKs and outgoing
Data to update the current state of each tracked small flow.
When packets are dropped by the network and the receiver
receives enough out of sequence Data to generate sufficient
dupACKs (real ones), the loss is recovered via FRR from the
VM without the intervention of T-RACKs. However, when
the receiver fails to receive enough Data segments to generate
enough real dupACKs to trigger FRR, then T-RACKs inter-
venes after a timer (1ms) by sending spoofed dupACKs (or
RACKs for retransmitted-ACKs) to the sender. Typically, the
sender would receive enough dupACKs and RACKs to trigger
FRR and retransmit the lost segment within a reasonable time
(in this case 1ms), long before the TCP RTO (200ms) is
reached.

C. Practical Aspects of T-RACKs System

T-RACKs System: is built upon a light-weight module at
the hypervisor layer tracking a limited per-flow state. In the
simplest case, it tracks TCP’s identification 4-tuple, per-flow
last ACK number, and the timestamp of the last non-dupACK
packet. The system in spirit is similar to recent works in [17,
18] that aim to enable virtualized congestion control in the

10Note that if TCP Sack is active, TCP’s response to duplicate ACKs
is different from the standard behavior, therefore we need to take this into
account to elicit a proper reaction.

IEEE/ACM TRANSACTIONS ON NETWORKING 7

hypervisor without cooperation from the tenant VM, however
these approaches require fully-fledged TCP state information
tracking and implementing full TCP finite-state machines in
the hypervisor including packet queuing. In contrast, T-RACKs
tries to minimize the overhead by tracking the minimal amount
of necessary information and implementing only a subset of
the retransmission mechanism while letting the VM do the
actual work of transmission and queuing.

Complexity: T-RACKs Complexity resides in its intercep-
tion of ACKs to update the last seen ACK information. Since,
it does not perform any computation on the ACK packets,
it does not add much to the load on the hosting server nor
to the latency11. This claim is supported by our observation
in our experiments on our data-center. A hash-based table
is used to track flow entries of active small flows. In the
worst case, when hashes collide, a linear search is necessary
within the linked-list. However, this worst case is rare due
to the small number of flows originating from a given end-
host. Typically, end-host CPUs can sustain rates of 60 Gbps
of packet processing. Hence, the little processing required
by the insertion of T-RACK state would not affect the TCP
throughput.

Spurious retransmissions: T-RACKs may possibly intro-
duce spurious retransmissions making in-network congestion
worse. However, this boils down to answering similar question
when choosing the correct RTO value in TCP. For this purpose,
we refer to a previous study [19], that mostly showed that
even when a relatively bad RTT estimator is used, setting
a relatively high minimum RTO, can help avoid many of
the spurious retransmissions in WAN transfers. This fact is
supported by a subsequent study [20] that shows significant
changes (or variance) in Internet delays. Recent works [21, 22]
show similar behavior within current data-centers. In our
testbed, we observed noticeable variation in the measured RTT.
To quantify this, we measured the difference in RTT values
collected at the time of the first transmission of a packet and
then at the time of fast retransmission or RTO retransmission.
From the collected data, a considerably large variation, ranging
from a few hundred microseconds at the ≈20th percentile to
a thousand microseconds at the ≈80th percentile, is observed
in the smoothed RTT at the TCP sockets, as shown in Fig. 4.
These variations can be mainly attributed to the beginning of
some heavy background traffic, imbalance introduced by load
balancing, or VM migrations, and so on. We note and agree
with the aforementioned works that observed packet delays
may not be mathematically nor stochastically steady. Hence
T-RACKs ACK RTO (β) calculation shown in Algorithm 1
strikes a balance between the rapid retransmission and the risk
of causing a spurious retransmission.

T-RACKs RTO β: in most of our experiments and
simulations, we choose a value for ACK RTO (β) to be (≥
10) times the dominant measured RTT in the data-center.
We believe, and the results show that this value achieves
a good tradeoff between not having many of the spurious
retransmissions and, at the same time not being too late

11ACKs is updated in some instances (e.g., to insert fake SACK block to
signify a small gap in the SACKed numbers. Otherwise RACK packets would
be ignored by TCP).

in recovering from losses. We further adopt the well-know
exponential back-off mechanism for subsequent ACK RTO (β)
calculations until either the loss is recovered or TCP’s default
RTO (i.e., RTOmin) is close enough to be reached.

Synchronization of retransmissions: Since T-RACKs
relies on a timer for ACK recovery, such timer may result in
the synchronization of retransmissions from different VMs on
different hosts leading to incast-like congestion. We studied
this behavior in a simulation, and the results show repeated
losses due to possible synchronized retransmissions. A viable
solution to de-synchronize such flows is to introduce some ran-
domness in the ACK RTO, ultimately resulting in fewer flows
experiencing repeated timeouts. We adopted this approach and
added a random delay in the calculation of the RTO β, as
shown above in the algorithms.

TCP Header manipulation: TCP does not accept any
packet with an inconsistent timestamp, hence the timestamps
are updated per ACK arrival with the local ji f f ies variable
to keep the consistency of timestamps whenever RACKs are
sent. For SACK-enabled TCP, fake SACK block information
needs to be inserted for incoming ACKs (with no SACK
blocks in TCP header) to indicate a small gap equal to
the minimum segment size (i.e., 40 Bytes) after the last
successfully acknowledged data.

Security Concerns: during FRR, to be able to maintain
its flight size and avoid timeout, TCP inflates the window
artificially by 1MSS for each received dupAck. This can be
exploited to launch ACK spoofing attack [23] on the senders.
RFC 5681 released in 2009 addressed this particular attack
and proposed implementing Nonce and Nonce-Reply as a
way of verifying the source of dupACKs. However, such a
solution would require the introduction of extra TCP headers,
prohibiting its deployment in real TCP implementations. In
T-RACKs, we address such attack by dropping dupACKS
whenever the ACK timer expires when entering a recovery
state. This approach is adopted to disable Cwnd artificial
inflation during recovery and, at the same time, prevents
external ACK spoofing (other than RACKs). Worth mentioning
also is that RACKs are generated from the hypervisor layer,
which is under the control of the trusted data-center operator.

TCP semantics: is conceptually violated since dupACKs
should reflect packets following the lost one being received
successfully. However, according to RFC 5681, the network
could replicate packets, and hence the RACKs could be treated
as replicated packets from within the network.

IV. SIMULATION ANALYSIS

In this section, we study the performance of T-RACKs to
verify if it can achieve its goals in small-scale and large-
scale simulation scenarios. We first conduct a number of
packet-level simulations using ns2 and compare T-RACKs
performance to the state-of-the-art schemes. (For brevity, we
refer to T-RACKs as RACK in the figures.)

A. Simulations in a Dumbell Topology

To study how TCP behaves in response to packet losses and
how likely it may recover quickly with the help of T-RACKs,

IEEE/ACM TRANSACTIONS ON NETWORKING 8

we conducted several packet-level simulation experiments to
cover a large variety of TCP and AQM combinations. We also
conducted simulation experiments using the congestion control
mechanisms code imported from the Linux kernel (i.e., New
Reno and Cubic). We use ns2 version 2.35 [24], which we have
extended with T-RACKs mechanism inserted as a connector
between nodes and their link in the topology setup. Besides,
we patched ns2 using the publicly available DCTCP patch.
We use in our simulation experiments link speeds of 1 Gbps
for sending stations, a bottleneck link of 1 Gb/s, low RTT of
100 µs, the default TCP RTOmin of 200 ms and TCP initial
window of 10 MSS. We use a rooted tree topology with a
single bottleneck at the destination and run the experiments
for 15 sec. The buffer size of the bottleneck link is set to 100
packets, which is more than the bandwidth-delay product in
all cases. We first designed two simulation scenarios:

1) CASE 1: Small flows.
2) CASE 2: Large flows coexisting with small flows.

In CASE 2, the ratio of small flows to large flows is set
to 3, and large flows send data for the whole duration of the
experiment. In both cases, a small flow sends a 14.6KB file
(i.e., 10 MSS) before it completes its transmission. Small flows
start with a random inter-arrival time that is drawn from an
exponential distribution with a mean equal to the transmission
time of one packet; this allows us to create clusters of small
flows that start almost simultaneously, to emulate incast traffic.
This process is repeated once every 3 sec, which gives five
rounds of incast traffic, during the simulation. In each round,
we randomize the order of the servers generating the flows
according to a uniform distribution. We study packet losses,
the likelihood of fast recovery, and recovery time. We first
study TCP newReno with Droptail, RED-ECN, and Random
Drop AQMs, and DCTCP covering the most common TCP
and AQM settings.

First, we run the experiments without T-RACKs for 20 and
80 flow traffic scenarios generated according to CASE 1 (i.e.,
containing only small flows). Figures 5a and 6a show the
average FCT for different schemes. It appears that the FCT is
significantly high for all-schemes exceeding 200ms for most
flows (more than ≈35% and ≈95% for 20 and 80 flows, respec-
tively). This result indicates that most flows are experiencing
RTOs. We repeat the same simulation, enabling T-RACKs on
the end-hosts, to mitigate the RTOs. Figures 5b and 6b show
the FCT for different schemes with T-RACKs for 20 and
80 flows scenario in CASE 1. The results show significant
improvement in the average FCT for the two scenarios for
all schemes. Specifically, T-RACKS could reduce the average
FCT range significantly for both 20 and 80 flows scenarios.
In the 20 flows scenario, at the 95th% (as highlighted by the
horizontal black line), the reduction in average FCT is up
to ≈15 times (i.e., from 200ms down to 13ms). In the 80
flows scenario, it reduces the FCT at the 95th% by ≈3 times
for DropTail and DropRand, by ≈8 times for RED-ECN and
DCTCP, respectively.

Now we conduct simulations for CASE 2, which introduces
large flows (i.e., background traffic) to CASE 1. This case is
used to study T-RACKs under stress. Figure 7a and Figure 7b

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(a) Without T-RACKs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(b) With T-RACKs

Figure 5: CDF of average FCT for CASE 1 with 20 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(a) Without T-RACKs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(b) With T-RACKs

Figure 6: CDF of average FCT for CASE 1 with 80 flows

show the results without and with T-RACKs for 20 flows
scenario. The results show a significant reduction in the
average FCT of small flows. In the 20 flows scenario, T-
RACKs reduces the average FCT on the 95th% by ≈1.6 time,
≈1.9 times, ≈14 times and ≈14 times for DropTail, DropRand,
RED-ECN, and DCTCP, respectively. Figure 8a and Figure 8b
show the results without and with T-RACKs for the 80 flows
scenario. In this scenario, T-RACKs can further improve the
performance, and it manages to reduce the average FCT at the
95th% by ≈14 times, ≈1.5 times, ≈1.4 times and ≈37 times
for DropTail, DropRand, RED-ECN, and DCTCP, respectively.
These results show that T-RACKs improves the performance
more in heavy load scenarios with background traffic.

B. Simulations in Data-center Topology

End-host based schemes are assumed by default to be
scalable. To verify this, we simulate T-RACKs on a larger scale
network with varying workloads and flow size distributions.

For this purpose, we conduct another packet-level simula-
tion using a spine-leaf topology with nine leaf switches and
four spine switches using links of 10 Gbps for end-hosts and
an over-subscription ratio of 512. We again examine scenarios
with TCP-NewReno, TCP-ECN, and DCTCP operating with
Droptail, RED, and DCTCP AQMs, respectively. We use a
per-hop link delay of 50 µs, TCP is configured with the
default TCP RTOmin of 200 ms and an initial window of 10
MSS. Persistent connections are used for successive requests.
Finally, buffer sizes on all the links are set to be equal to
the bandwidth-delay product between end-points within one
physical rack.

The flow size distribution for workload 1 (which represents
Websearch flow sizes distribution [6]) and workload 2 (which
represents datamining flow sizes distribution [9]) are shown in

12the typical over-subscription ratio in current production data-centers is in
range of 3 to over 20

IEEE/ACM TRANSACTIONS ON NETWORKING 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(a) Without T-RACKs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(b) With T-RACKs

Figure 7: CDF of average FCT for CASE 2 with 20 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(a) Without T-RACKs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

C
D

F

Average FCT (ms)

DropTail
DropRand
REDECN

DCTCP

(b) With T-RACKs

Figure 8: CDF of average FCT for CASE 2 with 80 flows

Fig 9a which capture a wide range of flow sizes. The flows
are generated randomly from any source host to any other
destination host with the arrivals following a Poisson process
with various average flow arrival rates to simulate different
network loads. Fig 9b shows the inter-arrival times distribution
for various traffic loads ranging from 30% to 90%.

We report the average FCT for small flows the average FCT
for all flows13 as well as the total number of timeout events
in each case. In the simulation, the T-RACKs threshold γ is
set to infinity (i.e., all flows are tracked including large flows).
The T-RACKs RTO, the timeout to trigger spoofed dupACKs,
is set to 10 times the measured RTT in this experiment. That
means if an ACK with the expected sequence number is not
delivered within 10 RTTs then RACK packets are spoofed to
trigger the FRR.

The average FCT for small and all flows, as well as the total
number of timeouts experienced by all flows for workloads
1 and workload 2 are shown in Fig. 10. Note that for both
workloads, the FCT of small flows is dramatically degraded
when they experience a timeout regardless of the TCP con-
gestion control version or AQM mechanism in operation. In
contrast, when T-RACKs is activated, it helps small flows the
most by improving their FCT as a by-product of reducing the
number of timeouts they experience. We also note that the
overall FCT decreases for all flows for two reasons: 1) the
threshold γ enables all flows to benefit from T-RACKs and
2) small flows finish quicker leaving network resources for
larger ones. We notice that for workload 2, with almost 80%
of the flows being less than 10KB and hence experiencing
lesser timeout events overall, DCTCP can improve the FCT.
This improvement is because DCTCP’s ability to regulate the
persistent queue length (i.e., there are few large flows to fill

13Flow sizes in the range [0-100KB] are considered to be small, flow sizes
in the range [100KB - 10MB] are considered to be medium and flows sizes
from 10MB and upwards are considered to be large flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1x106 1x107 1x108

C
D

F
 (

%
)

size (bytes)

Workload2
Workload1

(a) CDF of flow size

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

C
D

F
 (

%
)

Inter-arrival (usec)

load-30%
load-40%
load-50%
load-60%
load-70%
load-80%
load-90%

(b) CDF of inter-arrival time

Figure 9: Flow characteristics: (a) Actual Flow size distribution (b)
Inter-arrival times for various network load

the buffer, unlike in workload 1).

C. Sensitivity to Choice of T-RACKs RTO

In this experiment, we study the sensitivity of T-RACKs
to the value of the preset RACK RTO. For this purpose, we
repeat the last simulation by varying the value of the RTT
multiplicative factor α in the set [1, 5, 10, 50, 100]. We report
the average FCT of small flows and all flows in each case
for DropTail, RED, and DCTCP in Figure 11 for various
loads. From the figure, we can see that the FCT is greatly
affected by the choice of parameter α. Small values of α (i.e.,
1 and 5) show a relatively large FCT compared to the RTT,
which indicates that they tend to cause too many spurious
retransmissions that exacerbate congestion in the network. On
the other hand, excessively large values for α (i.e., 50 and 100)
tend to be too conservative and result in TCP flows recovering
later than they could. We can see in the three figures for all
loads a minimum FCT is achieved at or near a RACK RTO
of 10 RTTs.

V. LINUX KERNEL IMPLEMENTATION

In this section, we study the performance of T-RACKs
implementation as a loadable Linux kernel module using syn-
thetic workloads reproduced from the statistics of workloads
found in production data-centers [6, 9]. T-RACKs is a shim-
layer between the VMs (or TCP/IP stack) and the hypervisor
(or link-layer). We use the NetFilter framework [25], which
is an integral part of Linux kernel. The NetFilter hooks attach
to the data-path between the NIC driver and TCP/IP stack,
which imposes no modifications to the TCP/IP stack of the
host OS nor the guest OS. The module intercepts TCP packets
incoming to the host or its guests before it is handed to the
TCP/IP stack (i.e., at the post routing). First, the 4-tuples are
hashed, and the associated flow index is calculated via Jenkins
hash (JHash) [26]. Then, TCP headers are examined, and the
proper course of action is taken based on the flag bits (i.e.,
SYN-ACK, FIN, or ACK) following the logic in Algorithm 1.
Unlike SNOOP [16], the module does not employ any packet
queues to store the incoming packets, it only stores and
updates flow entry states (i.e., ACK No, arrival time and so
on). Also, unlike [12] T-RACKs does not need the fine-grained
high-resolution timers in the microsecond time-scale, therefore
the native OS Ji f f ies-based timer is used. T-RACKs uses a
single timer for all flows to handle per-flow RTO events. These

IEEE/ACM TRANSACTIONS ON NETWORKING 10

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(a) Small Flows: Average FCT

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(b) All Flows: Average FCT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20 30 40 50 60 70 80 90 100

T
im

e
o

u
ts

 (
#

)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(c) All Flows: Number of RTOs

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(d) Small Flows: Average FCT

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(e) All Flows: Average FCT

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80 90 100

T
im

e
o

u
ts

 (
#

)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(f) All Flows: Number of RTOs

Figure 10: Performance with network load in (30%, 90%) for workload 1 (top) and workload 2 (bottom)

 15

 20

 25

 30

 35

 40

 45

30 40 50 60 70 80 90

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(a) Small Flows: DropTail

 60

 70

 80

 90

 100

 110

 120

 130

30 40 50 60 70 80 90

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(b) Small Flows: RED-ECN

 50

 60

 70

 80

 90

 100

 110

 120

30 40 50 60 70 80 90

A
v
e

ra
g

e
 F

C
T

 i
n

 (
m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(c) Small Flows: DCTCP

Figure 11: Sensitivity to alpha variation in the range 1 RTT to 100 RTTs for Websearch scenario with DropTail AQM.

design choices make T-RACKs lightweight and help reduce
the server overhead.

Using 14 data-center servers equipped each with 6 NICs, we
built a small-scale testbed consisting of 84 virtual servers, each
virtual server is assigned a dedicated physical NIC. The servers
are interconnected via four non-blocking leaf switches and one
spine switch. The testbed is organized into four racks (rack 1,
2, 3, and 4). The servers are connected to leaf switches, and
leaf switches are connected to the spine switch via 1 Gbps
Ethernet links. The servers use Ubuntu Server 14.04 LTS with
Linux kernel 3.18, which has integrated a full implementation
of DCTCP. Unless otherwise stated, T-RACKs runs with the
default settings (i.e., The RTO and threshold γ of T-RACKs
is set to 4 ms and 100 KB, respectively). The RTO of 4 ms is
a reasonable 16 times (i.e., ≥10) the average RTT of ≈250µs
without queuing. We use our custom-built traffic generator to
run the experiments with realistic traffic workloads. The traffic
generator generates common workloads described in the liter-
ature (e.g., industrial-like Websearch [6], Datamining [9] or
institutional-like University and Private DC [27]). In addition,
we have deployed the iperf program [28] to emulate large
background traffic (e.g., VM migrations, backups) in some
scenarios. We use different scenarios to reproduce one-to-all

and all-to-all flows with or without background traffic. In the
one-to-all scenarios, randomly chosen clients in one rack send
random requests to any of all the servers in the data-center.
While in the all-to-all scenario, all clients in the data-center
send requests to randomly picked servers out of all the servers
in the data-center. If background traffic is introduced, we run
large iperf flows from all clients to all servers to evaluate T-
RACKs under sudden and persistent network load spikes. Like
before, we classify flows of size ≤ 100KB as small, [100KB-
10MB] as medium, and ≥ 10MB as large.

A. Experimental Results and Discussion

One-to-all Scenario without Background Traffic: we
report here the average FCT for small and all flows as well as
the number of small flows that missed a deadline of 200ms.

The traffic generator is deployed on every client running on
an end-host in the data-center and is set to randomly initiate
1000 requests to randomly chosen servers on any of the other
racks. In the Websearch workload, Figures 12a, 12b and 12c
show the average FCT and missed deadlines for small flows
and the average FCT for all flows, respectively. While, Fig-
ures 12d, 12e, and 12f, show the average FCT for small flows
in the Datamining, Educational, and private DC workloads,

IEEE/ACM TRANSACTIONS ON NETWORKING 11

 0

 2

 4

 6

 8

 10

 12

 14

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(a) Small Flows: Average with Errorbar

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

%
 o

f M
is

se
d

de
ad

lin
e

(>
=

20
0m

s)

Scheme

(b) Small Flows: Missed Deadlines

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(c) All Flows: Average with Errorbar

 0

 20

 40

 60

 80

 100

 120

 140

 160

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(d) Small Flows: Average (Datamining)

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(e) Small Flows: Average (Educational)

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(f) Small Flows: Average (Private DC)

Figure 12: Performance metrics of one-to-all scenario without background traffic for (a-c) Websearch, (d) Datamining, (e) Educational and
(f) Private DC workloads, respectively.

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

NetFPGA Switch 1 Gb/s

(a) The testbed topology (b) The actual testbed

Figure 13: Testbed setup of T-RACKs in small-scale cluster

respectively. From these figures, we make the following ob-
servations: i) for all workloads, T-RACKs helps small flows
regardless of the TCP version, on both the average FCT
and its variation, as indicated by the error bars. Compared
to Reno, Cubic and DCTCP, T-RACKs reduces the average
FCT of small flows by ≈ (34%,49%,19%) for Websearch,
≈ (18%,29%,−) for Datamining, ≈ (69%,−,35%) for Ed-
ucational and ≈ (−,−,22%) for Private DC workloads. We
notice that DCTCP improves the FCT over its Reno and
Cubic counterparts, and T-RACKs could improve their per-
formance in terms of missed deadlines in Websearch. The
average FCT, in certain cases of Educational and Private DC
workloads, shows a negligible increase of FCT with T-RACKs.
In these workloads, the network load is very light (as shown
by the small FCT without T-RACKs), and hence the added
overhead of deploying T-RACKs surpasses its performance
gains for these light workloads. ii) for Websearch workload,
T-RACKs reduces the missed deadlines for small flows by
≈ (55%,53%,35%) for Reno, Cubic, and DCTCP, respectively.
iii) T-RACKs slightly improves the overall average FCT. This
can be attributed to the fact that small flows are finishing
their transmission quicker, leaving some additional bandwidth

for medium and large flows. The improvement shown equals
≈ (16%,5%) for Reno and Cubic, respectively. In Figure 12c,
DCTCP with T-RACKs, shows a slight increase in average
FCT of all flow types for Websearch workload which has many
flows of medium size compared to other workload (Figure 9).
While DCTCP is designed for improving FCT of small flows
in DC environments, T-RACKs is designed to curb RTO events
to improve the FCT of small flows whose transmitted volumes
do not exceed the threshold γ. Hence, T-RACKs might be
adding a slight overhead due to the need to maintain the
flow table information for the medium and/or large flows.
This overhead may be mitigated by simply skipping state
maintenance for flows that exceed the threshold and become
long-lived. Moreover, the overhead for TCP variants, which
are designed for Internet (e.g., Reno and Cubic), is nearly
negligible relative to the large FCT of their long-lived flows.
One-to-all Scenario with Background Traffic: to put T-
RACKs under true stress, we run the same one-to-all scenario
with all-to-all background traffic. Figure 14a, Figure 14b and
Figure 14c show the average FCT and missed deadlines for
small flows as well as the average FCT for all flows for Web-
search and Figure 14d, Figure 14e and Figure 14f show the
average FCT for short flows for data mining, educational, and
private DC workloads, respectively. We observe the following:
i) T-RACKs can improve the average FCT of small flows
for all workloads regardless of the TCP congestion control
in use. As shown in the figures, compared to Reno, Cubic
and DCTCP, T-RACKs reduces the average FCT of small
flows by ≈ (38%,25%,7%) for Websearch, ≈ (11%,5%,3%)
for educational and ≈ (13%,13%,4%) for private DC work-
loads. The improvement is better for Datamining workload to
≈ (36%,67%,14%) since it includes a wider range of short
flows. ii) T-RACKs reduces the missed deadlines for short
flows of Websearch by ≈ (40%,33%,39%) for Reno, Cubic,

IEEE/ACM TRANSACTIONS ON NETWORKING 12

 0

 10

 20

 30

 40

 50

 60

 70

 80

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(a) Small Flows: Average FCT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

%
 o

f M
is

se
d

de
ad

lin
e

(>
=

20
0m

s)

Scheme

(b) Small Flows: Missed Deadlines

 0

 200

 400

 600

 800

 1000

 1200

 1400

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(c) All Flows: Average FCT

 0

 50

 100

 150

 200

 250

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(d) Average FCT (Datamining)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(e) Average FCT (Educational)

 0

 2

 4

 6

 8

 10

 12

 14

 16

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(f) Average FCT (Private DC)

Figure 14: Performance metrics of one-to-all scenario with background traffic for (a-c) Websearch, (d) Datamining, (e) Educational and (f)
Private DC workloads, respectively.

and DCTCP, respectively. iii) T-RACKs still improves the
overall average FCT by ≈ (7%,5%,2%) for Reno and Cubic,
and DCTCP respectively.
All-to-all Scenario without Background Traffic: we run
the all-to-all scenario where all clients initiate 1000 requests
each to any of all the servers in the data-center. Figure 15a,
Figure 15b, Figure 15c and Figure 15d show the average FCT
for short flows in Websearch, Datamining, Educational, Private
workloads, respectively. The network load is considerably
higher than the previous cases, given the more complex nature
of this all-to-all traffic. We can still see here that T-RACKs
can deliver significant improvements of up to 71% in the FCT
for all workloads.

In summary, the experimental results show the performance
gains achieved by T-RACKs, especially for small flows, that
constitute the lion’s share in data-centers traffic, with minimal
to no impact on the performance of larger flows. In particular:
• T-RACKs reduces the average and variance of FCT and

missed deadlines of small flows.
• T-RACKs can maintain its gains even if bandwidth-

greedy large flows hog the network.
• T-RACKs efficiently handles various workloads, regard-

less of the variant of TCP congestion controller.
• T-RACKs fulfilled its requirements with no assumptions

about nor any modifications to in-network hardware nor
the TCP/IP stack of the guest VMs.

VI. RELATED WORK

Several works have found, via measurements and analysis,
that TCP timeouts are the root cause of most throughput
and latency problems in data-center networks [12, 29–33].
Other works [34–44] analyzed the nature of incast events and

 0

 20

 40

 60

 80

 100

 120

 140

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

A
v
e
ra

g
e
 F

C
T
 w

it
h
 E

rr
o
rb

a
rs

 (
m

s)

Scheme

(a) Websearch

 0

 50

 100

 150

 200

 250

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

A
v
e
ra

g
e
 F

C
T
 w

it
h
 E

rr
o
rb

a
rs

 (
m

s)
Scheme

(b) Datamining

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

A
v
e
ra

g
e
 F

C
T
 w

it
h
 E

rr
o
rb

a
rs

 (
m

s)

Scheme

(c) Educational

 0

 2

 4

 6

 8

 10

 12

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

A
v
e
ra

g
e
 F

C
T
 w

it
h
 E

rr
o
rb

a
rs

 (
m

s)

Scheme

(d) Private DC

Figure 15: The average FCT of small flows in the all-to-all scenario
for (a) Websearch, (b) Datamining, (c) Educational and
(d) Private DC workloads, respectively.

packet drops in data-centers. They also found that severe incast
occurrences could lead to throughput collapse and longer
FCT. They show in particular that throughput collapse and
increased FCT are to be attributed to the data-center ill-suited
timeout mechanism. For example, [12] showed that frequent
timeouts could harm the performance of latency-sensitive
applications. Numerous solutions have been proposed. These
fall into one of four fundamental categories. The first mitigate
the consequence of the long waiting times due to RTO, by
reducing the default RTOmin to the 100 µs - 2 ms [12]. While

IEEE/ACM TRANSACTIONS ON NETWORKING 13

very useful, this approach affects the sending rates of TCP
by forcing it to cut CWND to 1; it relies on a static RTOmin

value, which can be ineffective in heterogeneous networks;
and it imposes modifications to TCP stack on tenant’s VM.
Our approach is fundamentally different in its enforcement of
RTOmin which allows for customized handling of Internet and
data-centers flows. Therefore, T-RACKs allows flows to have
different RTOmin which is easily imposed by the flow tables.

The second approach aims at controlling queue build-up at
the switches by relying on ECN marks to limit the sending
rate of the servers [6, 8], or by controlling the congestion
window [38] or receiver window [7, 47–49] of TCP flows.
Similar approaches deployed global traffic scheduler [50–54]
or tacked fine-grained sub-microsecond updates in RTT to
detect congestion [22]. All of these works achieved their
goals and have shown they could reduce the FCT of short
flows as well as achieving high link utilization. However, they
require modifications of either the TCP stack, or introduce a
completely new switch design, and are prone to fine-tuning of
parameters or sometimes require application-side information.
They also increase CPU utilization of the end hosts. [22] is
sensitive to traffic variations in the backward path. [55] is a
new congestion control for inter-DC traffic which is based
on characterizing the band-width and RTT of the bottleneck
path. While effective for high bandwidth-delay product (BDP),
its minutes-level measurements and the aggressive start can
exacerbate the problems in low BDP networks of data-centers.

The third approach is to achieve efficient sharing of network
resources or enforce flow admission control to reduce TimeOut
probability [29, 56–58]. [58] has proposed ARS, a cross-layer
system that can dynamically adjust the number of active TCP
flows by batching application requests based on the sensed
congestion state indicated by the transport layer. The last
approach, which is adopted in this paper due to its simplicity,
and feasibility, is to recover losses utilizing fast retransmit
rather than waiting for a long timeout. For instance, TCP-
PLATO [29] proposed changing TCP state-machine to tag
specific packets using IP-DSCP bits, which are preferentially
queued at the switch to reduce their drop-probability; enabling
dupACKs to be received to trigger FRR instead of waiting for
the timeout. Even though TCP-PLATO is effective in reducing
timeouts, its performance is degraded whenever tagged packets
are lost. In addition, the tagging may interfere with the opera-
tions of middle-boxes or other schemes, and most importantly,
it modifies the TCP state machine of the sender and receiver.

Similar to DCTCP, DCQCN [59, 60] and HPCC [61] was
proposed as an end-to-end congestion control scheme imple-
mented in custom NICs designed for RDMA over Converged
Ethernet (RoCE). Both DCQCN, and HPCC applies adaptive
rate control at the link-layer to throttle large flows relying on
Priority-based Flow Control (PFC) and RED-ECN marking,
and In-Network Telemetry (INT) information, respectively.
DCQCN, not only relies on PFC, which adds to network
overhead, it introduces the extra cost of the explicit ECN
Notification Packets between the end-points. HPCC requires
programmable NICs and relies on the timely availability of
the INT information which not only increases the packet size
by 42 bytes for each hop in the path but also is subject to

congestion, and contention with other traffic in the network.
More recent approaches have also identified the importance

of the timeout problem in data-center environments [62–64].
For instance, the authors in [62] proposed injects high-priority
packet after each window worth of packets. They infer the
network congestion by checking the sequences of the received
ACKs of high/low priorities. Consequently, they adjust the
sending window to reduce buffer occupancy and early detect
losses. However, this not only requires setting-up priority-
queues (if available) in the switches but also imposes extra
processing and communication overhead (esp., the congestion
window consists of typically few packets in data-centers).

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied packet losses and the impact
of various recovery methods on flow performance in data
centers. We then proposed T-RACKs, an efficient cross-layer
approach for timely recovery from losses. T-RACKs improves
the flow completion time of time-sensitive flows and helps
avoid throughput-collapse situations. T-RACKs is deployed
either at the sender-side or the receiver-side as a shim-layer
residing between the virtual machines and the network hard-
ware. Simulation and experimental results show that the flows
completion time is improved by up to an order of magnitude,
missed deadlines are reduced considerably, and a high-link
utilization is attained. T-RACKs is shown to be lightweight
and practical due to its minimal footprint on end-hosts. Also,
because it does not change TCP and work to any TCP flavor,
T-RACKs is very appropriate for multi-tenant public data-
centers. Finally, it would be interesting to investigate the
effectiveness of T-RACKs at scale by deploying it in cloud
environments such as AWS or Azure.

REFERENCES
[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster Computing with Working Sets,” in USENIX HotCloud, 2010.
[2] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling MapReduce Applications

Across Hybrid Clouds to Meet Soft Deadlines,” in IEEE AINA, 2013.
[3] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout, “It’s

time for low latency,” in USENIX HotOS, 2011.
[4] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, G. a.

Gibson, and S. Seshan, “Measurement and analysis of TCP throughput collapse in
cluster-based storage systems,” in USENIX FAST, 2008.

[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of
data center traffic,” in ACM IMC, 2009.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” ACM SIGCOMM
CCR, vol. 40, p. 63, 2010.

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion control for TCP
in data-center networks,” IEEE/ACM Transactions on Networking, vol. 21, 2013.

[8] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP in the datacenter,”
in USENIX NSDI, 2015.

[9] B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri, A. Maltz, P. Patel,
S. Sengupta, A. Greenberg, N. Jain, and D. A. Maltz, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM, 2009.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic
characteristics,” in ACM SIGCOMM, 2010.

[11] A. M. Abdelmoniem and B. Bensaou, “Curbing Timeouts for TCP-Incast in Data
Centers via A Cross-Layer Faster Recovery Mechanism,” in Proceedings - IEEE
INFOCOM, 2018.

[12] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and B. Mueller, “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” SIGCOMM CCR, vol. 39, p. 303, 2009.

[13] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the
TCP congestion avoidance algorithm,” ACM SIGCOMM Computer Communication
Review, 1997.

[14] M. H. Jim Keniston, Prasanna S Panchamukhi, “Kernel probes (kprobe),”
https://www.kernel.org/doc/Documentation/kprobes.txt.

[15] bootlin.com, “Elixir Cross Referencer,” https://elixir.bootlin.com/linux/latest/source.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[16] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable transport and
handoff performance in cellular wireless networks,” Wireless Networks, vol. 1, pp.
469–481, 1995.

[17] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown, I. Abraham,
and I. Keslassy, “Virtualized Congestion Control,” in ACM SIGCOMM, 2016.

[18] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and A. Akella,
“AC/DC TCP: Virtual Congestion Control Enforcement for Datacenter Networks,”
in SIGCOMM, 2016.

[19] M. Allman and V. Paxson, “On Estimating End-to-end Network Path Properties,”
SIGCOMM CCR, vol. 29, pp. 263–274, 1999.

[20] Y. Zhang and N. Duffield, “On the Constancy of Internet Path Properties,” in ACM
IMC, 2001.

[21] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis,” in ACM SIGCOMM, 2015.

[22] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based Congestion Control for
the Datacenter,” in ACM SIGCOMM, 2015.

[23] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Congestion Control
with a Misbehaving Receiver,” SIGCOMM Comput. Commun. Rev., vol. 29, no. 5,
pp. 71–78, Oct. 1999.

[24] NS2, “The network simulator ns-2 project,” http://www.isi.edu/nsnam/ns.
[25] NetFilter.org, “Packet Filtering Framework,” http://netfilter.org/.
[26] B. Jenkins, “A hash function for hash table lookup,”

http://burtleburtle.net/bob/hash/doobs.html.
[27] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics of Data

Centers in the Wild,” in ACM IMC, 2010.
[28] iperf, “The Bandwidth Measurement Tool,” https://iperf.fr/.
[29] S. Shukla, S. Chan, A. S.-W. Tam, A. Gupta, Y. Xu, and H. J. Chao, “TCP PLATO:

Packet Labelling to Alleviate Time-Out,” IEEE JSAC, vol. 32, no. 1, 2014.
[30] A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based Active Queue Manage-

ment for TCP Traffic in Data Centers,” in IEEE INFOCOM, 2019.
[31] A. M. Abdelmoniem, H. Susanto, and B. Bensaou, “Taming Latency in Data centers

via Active Congestion-Probing,” in IEEE ICDCS, 2019.
[32] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “Mitigating incast-tcp congestion

in data centers with sdn,” Annals of Telecommunications, vol. 73, no. 3, 2018.
[33] A. M. Abdelmoniem, H. Susanto, and B. Bensaou, “Reducing latency in multi-

tenant data centers via cautious congestion watch,” in International Conference on
Parallel Processing (ICPP), 2020.

[34] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding TCP
incast throughput collapse in datacenter networks,” in 1st ACM workshop on
Research on enterprise networking - WREN ’09, 2009.

[35] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP incast in data
center networks,” in IEEE INFOCOM, 2011.

[36] A. S.-W. Tam, K. Xi, Y. Xu, and H. J. Chao, “Preventing TCP Incast Throughput
Collapse at the Initiation, Continuation, and Termination,” in International Work-
shop on Quality of Service, 2012.

[37] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail : Reducing the
Flow Completion Time Tail in Datacenter Networks,” in ACM SIGCOMM, 2012.

[38] Jiao Zhang, Fengyuan Ren, Li Tang, and Chuang Lin, “Taming TCP incast
throughput collapse in data center networks,” in IEEE ICNP, 2013.

[39] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A. Qazi, “On the
coexistence of transport protocols in data centers,” in IEEE ICC, 2014.

[40] W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker, “Comprehensive understand-
ing of TCP Incast problem,” in IEEE Conference on Computer Communications
(INFOCOM), 2015.

[41] J. Zhang, F. Ren, L. Tang, and C. Lin, “Modeling and Solving TCP Incast Problem
in Data Center Networks,” IEEE TPDS, vol. 26, no. 2, pp. 478–491, 2015.

[42] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “HyGenICC: Hypervisor-based
Generic IP Congestion Control for Virtualized Data Centers,” in IEEE ICC, 2016.

[43] A. M. Abdelmoniem and B. Bensaou, “Enforcing Transport-Agnostic Congestion
Control via SDN in Data Centers,” in IEEE Local Computer Networks, 2017.

[44] A. M. Abdelmoniem, B. Bensaou, and V. Barsoum, “Incastguard: An efficient tcp-
incast mitigation mechanism for cloud networks,” in IEEE GLOBECOM, 2018.

[45] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “A Markov Model of CCN
Pending Interest Table Occupancy with Interest Timeout and Retries,” in IEEE
ICC, 2016.

[46] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “Leveraging the Pending Interest
Table Occupancy for Congestion Control in CCN,” in IEEE Local Computer
Networks (LCN), 2016.

[47] A. M. Abdelmoniem and B. Bensaou, “Reconciling Mice and Elephants in Data
Center Networks,” in IEEE CLOUDNET, 2015.

[48] A. M. Abdelmoniem and B. Bensaou, “Incast-Aware Switch-Assisted TCP Con-
gestion Control for Data Centers,” in IEEE GLOBECOM, 2015.

[49] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “SICC: SDN-based Incast
Congestion Control for Data Centers,” in IEEE ICC, 2017.

[50] M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is More : Trading
a little Bandwidth for Ultra-Low Latency in the Data Center,” in USENIX NSDI,
2012.

[51] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker,
“Deconstructing datacenter packet transport,” in ACM HotNets, 2012.

[52] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-agnostic
Flow Scheduling for Commodity Data Centers,” in USENIX NSDI, 2015.

[53] H. Susanto, A. M. Abdelmoniem, H. Jin, and B. Bensaou, “Creek: Inter many-to-
many coflows scheduling for datacenter networks,” in IEEE ICC, 2019.

[54] H. Susanto, B. L. Ahmed M. Abdelmoniem, Honggang Zhang, and D. Towsley,

“A Near Optimal Multi-Faced Job Scheduler for Datacenter Workloads,” in IEEE
ICDCS, 2019.

[55] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr:
Congestion-based congestion control,” Commun. ACM, vol. 60, no. 2, 2017.

[56] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: A cloud networking
platform for enterprise applications,” in ACM Symposium on Cloud Computing
(SoCC), 2011.

[57] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica,
“FairCloud: Sharing the Network in Cloud Computing,” ACM SIGCOMM CCR,
vol. 42, pp. 187–198, 2012.

[58] J. Huang, T. He, Y. Huang, and J. Wang, “ARS: Cross-layer adaptive request
scheduling to mitigate TCP incast in data center networks,” in IEEE INFOCOM,
2016.

[59] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar,
and M. Seaman, “Data Center transport mechanisms: Congestion control theory
and IEEE standardization,” in 46th Annual Allerton Conference on Communication,
Control, and Computing, 2008.

[60] M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar, “Stability analysis of
QCN,” ACM SIGMETRICS Performance Evaluation Review, vol. 39, no. 1, p. 49,
2011.

[61] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F. Kelly,
M. Alizadeh, and M. Yu, “HPCC: High Precision Congestion Control,” in ACM
SIGCOMM, 2019.

[62] C. Ruan, J. Wang, W. Jiang, G. Min, and Y. Pan, “PTCP: A priority-based
transport control protocol for timeout mitigation in commodity data center,” Future
Generation Computer Systems, vol. 102, pp. 619 – 632, 2020.

[63] Y. Xu, S. Shukla, Z. Guo, S. Liu, A. S. . Tam, K. Xi, and H. J. Chao, “RAPID:
Avoiding TCP Incast Throughput Collapse in Public Clouds With Intelligent Packet
Discarding,” IEEE JSAC, vol. 37, no. 8, pp. 1911–1923, 2019.

[64] J. Zhuang, X. Jiang, G. Jin, J. Zhu, and H. Chen, “PTCP: A Priority-Driven
Congestion Control Algorithm to Tame TCP Incast in Data Centers,” IEEE Access,
vol. 7, 2019.

Ahmed M. Abdelmoniem (Member ACM, IEEE,
USENIX) received his Ph.D. in Computer Science
and Engineering from Hong Kong University of
Science and Technology, Hong Kong in 2017 and
his B.Sc. and M.Sc. degree in Computer Science
from Assiut University, Assiut, Egypt, in 2007 and
2012 respectively. He is an Assistant Professor at
Assuit University, Egypt and a Research Scientist at
KAUST, Saudi Arabia. Formally, he held the posi-
tion of a Senior Researcher with Huawei’s Future
Networks Lab, Hong Kong. He was awarded the

prestigious Hong Kong PhD Fellowship from the Research Grant Council
(RGC) of Hong Kong in 2013 to pursue his PhD. He has published numerous
papers in top venues and journals in the areas of wireless networks, traffic
engineering and congestion control. His current research interests are in the
areas of optimizing systems supporting distributed machine learning and
cloud/data-center networking with emphasis on performance, practicality, and
scalability.

Brahim Bensaou (Senior Member, ACM, IEEE) re-
ceived an Engineering Degree in Computer Science
(with distinction) from the University of Science and
Technology Houari Boumediene of Algiers, Algeria
in 1982, and a DEA degree from University Paris XI
in Computer Science in 1988. He earned his Ph.D.
in Computer Science from the University Paris VI
in 1993. He is now a tenured faculty member in the
CSE department of the HKUST. Formerly, he held
positions of research assistant at France Telecom
Research labs, Research Associate at HKUST, and

Senior Member of Technical Staff at the National R&D Centre for Wireless
Communications in Singapore where he lead the strategic research group on
wireless networking. His research is in general centered around the Internet
communication and its performance (e.g., Congestion Control, Information-
centric Networks, Energy efficiency, Performance evaluation). As well as,
Wireless communications and mobile networks. He published more than 130
research papers in prominent conferences and journals, received numerous
research grants, supervised and graduated more than 20 postgraduate research
theses including both PhD and Master and holds 3 granted US patents, one
of which is licensed.

	Introduction
	Problem and Motivation
	Impact of RTO on The FCT
	Analyzing TCP congestion recovery

	System Design and Implementation
	T-RACKs Algorithm
	T-RACKs System Implementation
	Practical Aspects of T-RACKs System

	Simulation Analysis
	Simulations in a Dumbell Topology
	Simulations in Data-center Topology
	Sensitivity to Choice of T-RACKs RTO

	Linux Kernel Implementation
	Experimental Results and Discussion

	Related Work
	Conclusion and future work
	Biographies
	Ahmed M. Abdelmoniem
	Brahim Bensaou

