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Supervisor

Dr Constantinos Papageorgakis

June 27, 2022

Centre for Theoretical Physics

School of Physical and Chemical Sciences

Queen Mary University of London



This thesis is dedicated to my family,

for always being there for me in the hardest of times,

and helping me pursue my passions, no matter the distance.
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Abstract

In this thesis we aim to study a variety of problems in (super)conformal field theories

in various dimensions using both analytical and numerical techniques.

In the first chapter we hope to set the context in which this work appears by giving

an account of the main historical events, both in theoretical physics and computer

science which led up to this point, in a non-technical fashion.

In the second chapter we give a quick run-down of the prerequisite knowledge of

conformal field theories, which will play a pivotal role in all the succeeding chapters.

The third chapter will start the core part of thesis where we present our findings.

Here we will set up a novel algorithm using reinforcement learning (a subset of machine

learning) to study conformal field theories in two dimensions, but without the use of

Virasoro symmetry. A detailed description of the algorithms used will be presented

as well as the numerical results obtained for some minimal models such as the: Ising

model and the tri-critical Ising model. We also present numerical results for the free

boson on a circle.

The fourth chapter uses a prescribed free-field realisation to recover the structure

of 2D N = 2 superconformal algebras. We present two algorithms which can derive the

vacuum characters corresponding to these algebras. We calculate the vacuum characters

for the algebras with underlying symmetry Z3, Z4, Z6 and G(3, 1, 2) and explain their

importance through the 2D/4D duality.

In the fifth chapter, forming the last of the core chapters, we look at the AdS7/CFT6

correspondence. Using a specific 7D supergravity black hole solution with 3 equal

rotations and 2 equal charges, we determine its thermodynamic properties and establish

the metric on the boundary. Using this boundary metric we evaluate the partition

function of the circle reduced (2,0) theory on S5 in the large N and Cardy-like limit,

where we get the expected N3 scaling and match with the supergravity side.

In the final chapter we present a summary of results and an overview of the tools

used throughout the thesis. We conclude by justifying the use of numerical methods in

theoretical physics and argue that all of these methods should be used in conjunction.
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Chapter 1

Introduction

Just like experimental physicists rely on their instruments and apparatuses to make

measurements, theoretical physicists rely on a set of tools to extract physics from

certain mathematical models. One can reasonably continue this analogy further, as

the quality of the apparatus improves, so does the ability of the physicist to make

experimental observations (in most cases). This is very much the case in theory too,

where applying new and or more sophisticated techniques to existing problems might

make all the di↵erence. For this very reason the evolution of the subjects of mathematics

and physics has been very closely linked. While fundamentally mathematics exists as

a self contained subject, physics requires a medium to describe all that we observe

around us, and mathematics very much fits that bill. This means that while many

physical paradigm shifting ideas might start as empirical observations or ideas of a

non-quantitative nature, eventually they are translated into mathematical formulations

which serve to fit observations. Perhaps the most curious artifact of this relationship is

when this link is used in reverse, and new, but detached mathematical topics are applied

to existing physical theorems to extend and push the boundaries of our understanding

further using the intrinsic rigour and abstractness of mathematics. The vast unexplored

landscape of mathematics, and also numerical mathematics, a computational subarea

which we shall explore in great detail too, provide the desired metaphorical toolbox

where one can search for the next course-altering revelation to be found.

Perhaps one of the most fitting places to start the tale of the evolution of tools is

with calculus. Of course these days not using di↵erentiation or integration is almost

unimaginable, but these tools were developed initially by Sir Isaac Newton, Gottfried

Liebniz and Bernhard Riemann just to name a select few, and their development con-

tinued for centuries, being perfected even to this day. Building on these discoveries, the

work on statistical mechanics and thermodynamics in the 1870s by Ludwig Boltzmann

and James Clerk Maxwell, among others, left the physical community stunned. It

opened up a whole new world of analysing physical systems with enormous amounts of

degrees of freedom by looking at the dynamics statistically and considering microstates
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CHAPTER 1. INTRODUCTION

of the system and through that the entropy, and so much more. These foundations

would then inadvertently pave the way to our modern understanding of physics and

also a certain subset of data science called machine learning (ML). Continuing on the

trajectory we have started on leads us to the turn of the twentieth century which most

would agree hosted some of the largest paradigm shifts physics has ever seen. This

period saw the famous Solvay conferences which were devoted to the outstanding prob-

lems in physics and chemistry at the time. The participants whose names are widely

known these days, (and listing them would exhaust all the space available in the intro-

duction) have developed the tools which we already consider modern physics. This was

the time which saw the rise of quantum mechanics (QM), which describes particles as

probabilistic distributions, wave functions, previously unheard of. In addition to that,

in the first two decades of the twentieth century another set of the most important

physical theories was developed: Albert Einstein’s special and general theories of rela-

tivity (GR). It is almost impossible to say how significant the development of QM and

GR was to the world of science. These brand new ideas in theoretical physics allowed

for better predictions when comparing with experiments. They revolutionised the way

we thought about the structure of the atom, and its subatomic components. GR also

allowed us to explain the perihelion precession of the planet Mercury, which until that

point was unexplained.

The shiny new tools of QM and GR inspired people to start combining ideas and

making use of the link we described before. This resulted in the development of one

of the crown jewels of physics besides GR and the spiritual successor to QM, namely,

quantum field theory (QFT). It arose from many decades of work by brilliant physicists

trying to combine quantum mechanics and special relativity in a mathematically and

physically consistent way. It is one of the most prominent frameworks being used to

date and people are still trying to figure out its implications and predictions. Along

the same lines, coming from the extension of statistical mechanics, the similar subject

of statistical field theory (SFT) was discovered. Further analysis of SFTs led to the

classifications of the ones that arise from statistical systems and how they change when

one starts to coarse grain and look at the physics contained within the initial high energy

theory from the perspective of the low energy theory. This way of thinking inspired

the concept of the renormalisation group (RG) flows, which was pioneered by Kenneth

Wilson around the 1970s. It could describe flows which took theories away from critical

points, or back to critical points or even between critical points. These critical points

became a massive centre of interest in the realm of theoretical physics. The reason being

their very special properties, which include large amounts of invariances, or symmetries,

due to their scale invariance, which made them much easier to analyse than their non-

restricted counterparts. Theories which describe critical points of these SFTs or even

QFTs became known as conformal field theories (CFTs).
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CHAPTER 1. INTRODUCTION

One of the biggest ambitions in contemporary theoretical physics is to find the so-

called theory of everything, or grand unified theory. Our current best understanding

of the quantum world comes from a QFT description known as the Standard Model

of Particle Physics (SM). It describes the interactions between almost all the funda-

mental subatomic particles we currently understand that exist in nature, where these

interactions are mediated by gauge bosons, and are responsible for the strong, weak

and electromagnetic interactions. It is not all the subatomic interactions, because the

SM makes no mention of gravity or GR. Hence the ambition of unification was ignited

by trying to reconcile these two theories. The application of the quantum framework

to gravity leads to the appearance of divergences, which is not the worrisome part.

Infinities appear quite a lot in QFTs, but in the study of quantum gravity they cannot

be dealt with by standard renormalisation techniques employed in the study of QFTs.

Nevertheless this has not stopped the advance of physics into new realms where we

might find a solution. The last half a century saw the rise of supersymmetry, which

can be used to extend the existing Poincaré symmetry of QFTs and hence include

more particles which can describe the ones missing from the Standard Model. The

other novelty introduced was String Theory. These two together form the currently the

most investigated framework in theoretical physics besides the previously mentioned

quantum field theory. The novelty is that in String Theory particles are swapped with

one-dimensional string objects which can be closed or open — describing either gravi-

tational or other interactions —, and only take the shape of strings when observed at

high energies, while at low energies they recreate our well known world of particles.

These two were brought together to create superstrings, which decrease the spacetime

dimension these strings are required to live in (from mathematical and physical con-

straints) from 26 down to 10 dimensions. This is still quite a bit more than one would

find just strolling about at home, but methods of consistent dimensional reductions

could eventually lead the way to finding a promising theory out of the countless ones

String Theory o↵ers.

The appearance of these modern frameworks of physics inspired countless state-of-

the-art tools with which the implications and the physical contents can be analysed in

order to gain insight into what such constructions truly mean. Perhaps the most popu-

lar tool devised in recent years has been the AdS/CFT correspondence (also referred to

as the gauge-gravity duality) conjectured in 1997 by Juan Maldacena [5]. This is a type

of holographic duality which means that the information contained in a theory living

in the space is encoded in the theory on the boundary of this space. The actual duality

describes string theories, or M-theories (unifying superstring theory in 11D) in an anti-

de Sitter space with an attached spherical space being dual to a conformal field theory

living only on the AdS boundary. One such example of a duality is M-theory living on

AdS7 ⇥ S4 which is equivalent to the so-called (2, 0) theory [6]. This theory is a very
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CHAPTER 1. INTRODUCTION

special case of a superconformal field theory (CFTs which are also supersymmetric,

SCFTs) as it lacks a Lagrangian description. It is at this point in the trajectory of the

story where the work presented in this thesis enters the flow. Through the use of the

AdS/CFT correspondence and also the superconformal index [7, 8], which is another

tool one can use to analyse SCFTs, analogous to the vacuum characters of 2D CFTs,

one can infer the spectrum of these theories. Another device which has potentially only

gained significant traction in the analysis of SCFTs is the method of supersymmetric

localisation [9]. Its origins come from mathematics, perfectly fitting the reverse link

between mathematics and physics, and its potential is vast. In the successive chapters

we tell the story of the cross-applications of these formidable tools and the results they

managed to extract from open problems.

As it may be, during all the commotion caused by the impressive advances in

theoretical physics we overlooked the similar progress in a subject which has now grown

to be one of the most influential areas in the world — computer science, data science,

and eventually machine learning. While we were focused on the quantum revolution,

in the 1930s and 40s Alan Turing formulated the idea of the modern computer and

also built his famous Bombe machine which cracked the Enigma code in World War 2.

Building machines which could perform calculations as well as logical operations was a

huge breakthrough not only in computer science, but also the rest of the sciences. Even

the most simple of numerical methods the “brute force” method has become somewhat

within arms reach. In this method one would attempt to do a calculation in a straight

forward way without any (or moderate) simplifications, also known as the exhaustive

search. Also in the 1940s, started the area of machine learning (ML) when the first

mathematical foundations for neural networks were laid down by Walter Pitts and

Warren McCulloch [10]. The aim of ML being to create computer algorithms which

can make decisions without the prompt of a pre-written code. An example would be

classification algorithms, where the algorithm would build its own intuition on how to

discriminate between the classes, rather than using logic statements written by humans

in code. At the time, with the computing power available this would have been a dream,

but as we shall see, that dream will come very close to reality.

In the following decades, as people and corporations realised the power of computers,

their processing power has exploded exponentially. In 1965 an American engineer called

Gordon Moore based on empirical observations declared that the number of transistors

(related to processing power) doubles every year [11]. This as we saw turned out

to be very much the case and would lead to the rise of numerical computations in

science. In the branch of experimental physics the increase of computational power

was fast integrated, since processing and storing the large amounts of data arising from

experiments demanded it. Theoretical physics is a bit more stubborn, which is of course

due to the fact that an analytic solution to a problem is considered much more powerful
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CHAPTER 1. INTRODUCTION

than a numerical one. On the other hand numerical solutions to theoretical problems

have the opportunity to o↵er the insight to otherwise unapproachable problems. One

of these has been the emergent area of numerical relativity in the late 1980s and early

90s [12] which to this days shows much potential in analysing solutions to Einstein’s

equations. The outlook has been steadily improving for the application of numerical

approaches to theoretical physics arriving into the 21st century. As we established

before, the importance of CFTs is immeasurable and their analysis warrants all available

tools, and to that end the algorithm of numerical conformal bootstrap was born [13] in

2008. Using this one could constrain the parameters of CFTs.

Finally, we arrive at the re-ignition of machine learning and data science. The initial

problems of ML were that it demanded large amounts of memory and processing power.

Nowadays, power and memory which can already train machine learning algorithms

exists for anyone to use. This availability caused the subject to gain immense popularity

and be applied to an endless amount of subjects. In more recent years algorithms from

ML have begun to manifest in theoretical physics as well. Some recent interesting ones

include applications to the string landscape and vacua with di↵erent approaches [14,

15], among other inspiring works [16, 17, 18, 19]. This thesis aims to join the pioneering

works presented by the aforementioned applications of ML to theoretical physics, and

venture towards establishing new machinery in the world of conformal field theories.

1.1 Outline

The structure of this thesis might take an unorthodox format, nevertheless we aim to

present an overarching story connecting the works presented across three seemingly

unrelated chapters. The theme of developing and perfecting the tool set of theoretical

physics, both analytical and numerical, is the ultimate aim of this thesis. Each of the

chapters in this thesis contains enough information to be understood alone, and some

contain their own reviews and contextual introductions.

In Chapter 2 we aim to give a short summary of all the relevant information on

conformal field theories (CFTs) required to understand the research in this thesis. In

Sections 2.1-2.2 we describe the conformal algebra, which is relevant to all the topics

discussed later in the thesis. In Sec. 2.3 we introduce facts for CFTs in various

dimensions along with Sec. 2.4, where we focus more on the 2D crossing equations.

They will be relevant for Chapter 3. Sections 2.5-2.6 describe 2D algebras and focus

on Kac-Moody and vertex operator algebras, which will be used mostly in Chapter 4.

In Chapter 3 we introduce the use of reinforcement-learning (RL) techniques to the

conformal-bootstrap programme. We then move on to presenting a short recap of mod-

ern numerical bootstrap techniques in Sec. 3.3, which will then allow us to contrast it

with the RL algorithm. In Sec. 3.4 we present the theoretical background required to
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understand how RL algorithms work and also give detailed examples on how the algo-

rithm can be implemented and run in Sec. 3.4.4 and 3.4.5. We then demonstrate that

suitable soft Actor-Critic RL algorithms can perform e�cient, relatively cheap high-

dimensional searches in the space of scaling dimensions and OPE-squared coe�cients

that produce sensible results for tens of CFT data from a single crossing equation.

Later in this chapter we test this approach in well-known 2D CFTs, with particular

focus on the Ising and tri-critical Ising models in Sec. 3.5 and the free compactified

boson CFT in Sec. 3.6. We present results of as high as 36-dimensional (number of free

parameters) searches, whose sole input is the expected number of operators per spin

in a truncation of the conformal-block decomposition of the crossing equations. Our

study of 2D CFTs in this chapter uses only the global so(2, 2) part of the conformal

algebra, and our methods are equally applicable to higher-dimensional CFTs. When

combined with other, already available, numerical and analytical methods, we expect

our approach to yield an exciting new window into the non-perturbative structure of

arbitrary (unitary or non-unitary) CFTs.

In Chapter 4 we start by presenting a short literature review on the subject of

vertex operator algebras. Equipped with this knowledge, in Sec. 4.2 we aim to define

all relevant superconformal algebras which will form the backbone of our research. Sec.

4.3.1 serves as a guide to the recipe provided by [20] and we give a detailed step-by-step

guide showing how it can be implemented. Following closely the prescription of [20],

in Sec. 4.4-4.5 we will meticulously build from the ground up N = 2 and small N = 4

algebras using this novel free-field realisation. Now that we have the algebras in the

free-field representations at our disposal, in Sec. 4.7, we will introduce two algorithms

for calculating the vacuum characters for the previously introduced vertex operator

algebras. In addition to that we will also provide a source to download our codes

and use them. In sections 4.7.3-4.7.6 we brute-force evaluate the vacuum character

for N = 2 vertex operator algebras labelled by crystallographic complex reflection

groups G(k, 1, 1) = Zk, k = 3, 4, 6, and G(3, 1, 2). For Z3,4 and G(3, 1, 2) these vacuum

characters have been conjectured to respectively reproduce the Macdonald limit of

the superconformal index for rank one and rank two S-fold N = 3 theories in four

dimensions. For the Z3 case, and in the limit where the Macdonald index reduces to

the Schur index, we find agreement with predictions from the literature.

In Chapter 5 our aim is to generalise the work of [21] for the case of AdS7/CFT6.

In order to build up to that, we first introduce the concept of localisation. First

in Sec. 5.2.1-5.2.2 we present the mathematical background, and Atiyah-Bott-Berline-

Vergne Localisation. This serves as a mathematical framework for the physics analogue:

supersymmetric localisation. Sec. 5.3 serves as a toy example based on [22] in order

to show in simple terms the capabilities of the localisation procedure. From Sec. 5.4

we begin to present our findings, starting from the 2-equivalent charge, 3-equivalent

14
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rotation non-extremal black-hole solution in 7D gauged supergravity. In Sections 5.4.4-

5.4.5 we consider the supersymmetric and then the extremal limit and evaluate the

associated thermodynamic quantities. Away from extremality, the black-hole solution

becomes complex. The entropy is then given by the Legendre transform of the on-shell

action with respect to two complex chemical potentials subject to a constraint. In Sec.

5.5, at the conformal boundary of AdS7 we look at the dual background and evaluate

the corresponding partition function for the AN�1 6D (2,0) theory at large N in a

Cardy-like limit. This is carried out in Sec. 5.5.2, via a 5D N = 2 super Yang–Mills

calculation on S5. The gravitational on-shell action is found to be exactly reproduced

by the boundary partition function at large N .

In the final chapter we will start by briefly summarising all the major results which

were presented in each of the preceding chapters and commenting on the methodology

employed to arrive at the results, and also where applicable highlighting the shortcom-

ings and advantages of such an approach. In the ultimate section of this chapter we

will aim to further discuss what one can learn from applying such a variety of tools in

modern theoretical physics, and also to hypothesise where they might be heading to in

the future.
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Chapter 2

A Brief Review of Conformal

Field Theories

In what follows we assume some familiarity with the basic concepts of conformal field

theory. For a review of conformal field theory we refer the reader to the standard text-

book [23] and the recent overviews in [24, 25, 26], which summarise the more modern

perspective on CFTs above two dimensions. In Sec. 2.1-2.2 we state the fundamen-

tal constituents and properties of conformal symmetries and the conformal algebra in

diverse dimensions. Sec. 2.3 provides a general, but more in depth overview of useful

properties for CFTs in any spacetime dimension. In Sec. 2.4 we specialise the discus-

sion to 2D CFTs, which will be the main focus of the computations in the later parts

of this thesis. Some extra computations will be discussed later on in Sec. 3.2.

2.1 The Global Part of the Conformal Algebra

This is the part of the CFT algebra in two dimensions which makes contact with the

other dimensions. By this we mean that this part of the algebra exists analogously

in higher dimensions due to the fact that it is a global symmetry. There are four

fundamental parts of this global symmetry. The first two—rotations (Mµ⌫) and trans-

lations (Pµ)—actually form a subgroup which is the well-known Poincaré algebra or

the algebra of the Euclidean group depending on the signature of the space. The third

one is dilations (D), which scale distances. The ultimate part is the most mysterious,

called special conformal transformations (Kµ), but it can be imagined as an inversion

(xµ ! xµ

x2 ) followed by a translation, and then by another inversion. Formally one can

summarise their actions written in terms of space(-time) coordinates as:

Pµ = �i@µ

Lµ⌫ = �i (xµ@⌫ � x⌫@µ)
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D = xµ@µ

Kµ = i
�
2xµx

⌫@⌫ � x2@µ
�
. (2.1)

These generators obey the well-known commutation relations:

[D,Pµ] = Pµ

[D,Kµ] = �Kµ

[Kµ, P⌫ ] = 2 (�µ⌫D � iMµ⌫)

[K⇢,Mµ⌫ ] = i (�⇢⌫Kµ � �⇢µK⌫)

[P⇢,Mµ⌫ ] = i (�⇢⌫Pµ � �⇢µP⌫)

[Mµ⌫ ,M⇢�] = i (�µ⇢M⌫� + �⌫�Mµ⇢ � �⌫⇢Mµ� � �µ�M⌫⇢) . (2.2)

Using this algebra one could go down the usual representation theory route and start

classifying the representations of this algebra by the rotational subgroup and also the

dilation operator by assigning a spin and a conformal dimension to the representations.

While this is very important, we will mostly keep to discussing the function of the

algebra itself and just declare the spin and the dimension to be the usual eigenvalues

of the Cartans of the relevant rotation group and dilation operators.

As we mentioned before, this algebra is actually valid in any number of dimensions,

but we will stick to two dimensions specifically. We will make this manifest by explicitly

changing our coordinates to complex coordinates

z = x1 � ix2, z̄ = x1 + ix2, @z =
1

2
(@1 + i@2) , @z̄ =

1

2
(@1 � i@2) . (2.3)

It is important to note that in Euclidean signature these will obey that z⇤ = z̄, while

in Lorentzian signature they will take the form of independent real variables. The star

here means the usual complex conjugation. From here on we will find it most useful to

view z and z̄ as independent complex coordinates, with the constraint z⇤ = z̄ implying

a particular physical Euclidean slice.

Using this complex notation we can reparametrise our global algebra as

L+1 =
1

2

�
K1
� iK2

�
, L̄+1 =

1

2

�
K1 + iK2

�
,

L0 =
1

2
(D � iM12) , L̄0 =

1

2
(D + iM12) , (2.4)

L�1 =
1

2
(P1 + iP2) , L̄�1 =

1

2
(P1 � iP2) .

From this we can clearly see that the holomorphic and anti-holomorphic parts form
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CHAPTER 2. A BRIEF REVIEW OF CONFORMAL FIELD THEORIES

separate algebras, with the only non-zero commutators being:

[Lm, Ln] = (m� n)Lm+n, for m,n = 0,±1
⇥
L̄m, L̄n

⇤
= (m� n)L̄m+n, for m,n = 0,±1 (2.5)

This format allows us to clearly see that our global algebra is actually sl(2)⇥ sl(2).

2.2 The Infinite Dimensional Conformal Algebra

The global algebra above does not exhaust the full list of symmetries one has available

when dealing with 2D conformal field theories. As it turns out there is a huge freedom

which allows us to reparametrise the complex coordinates we defined above in any

analytic way we like as such,

z ! f(z), z̄ ! f̄(z̄). (2.6)

Due to the analiticity of these functions, we can take a look at the infinitesimal trans-

formations instigated by f and f̄ :

z ! z + ✏(z), z̄ ! z̄ + ✏̄(z̄) (2.7)

And making further use of the analytical nature of these transformations

✏(z) =
+1X

n=�1
zn+1✏n. (2.8)

The local nature of the theories we are considering allows us to define an energy-

momentum tensor, Tµ⌫ . In these theories (coming from usual CFT constraints) the

energy-momentum tensor is conserved and traceless. In the coordinates we defined

these two constraints manifest as

Tzz̄ = Tz̄z = 0 (2.9)

@z̄Tzz = @zTz̄z̄ = 0. (2.10)

The first line implies that we only have two non-zero components in the energy-

momentum tensor, while the second line tells us that one is holomorphic and the other

is anti-holomorphic. Let us define these two objects as

T (z) = �2⇡Tzz, T (z̄) = �2⇡Tz̄z̄ (2.11)

Where the strange coe�cients are a convention.
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The next step is to integrate over a boundary enclosing the energy-momentum

tensor to obtain the charge relating to the conformal transformation (2.7).

Q✏ =
1

2⇡i

I
dz✏(z)T (z) (2.12)

Using complex analysis we can Laurent expand both T and T and define the so-called

Virasoro L, L̄ modes.

T (z) =
+1X

n=�1
z�n�2Ln, Ln =

1

2⇡i

I
dzzn+1T (z) (2.13)

For the sake of brevity we did not show the expansion for T , but it is virtually the

same, with its own modes L̄n. This allows us to rewrite equation (2.12) as

Qc =
+1X

n=�1
✏nLn, Q✏̄ =

+1X

n=�1
✏̄nL̄n, (2.14)

which means that the charges are actually linear combinations of an infinite amount

of generators of local conformal transformations. Of course these operators obey an

algebra which is given by

[Lm, Ln] = (m� n)Lm+n +
c

12

�
m3
�m

�
�m+n,0

⇥
L̄m, L̄n

⇤
= (m� n)L̄m+n +

c

12

�
m3
�m

�
�m+n,0 (2.15)

⇥
Ln, L̄m

⇤
= 0.

This is the famous Virasoro algebra. One can observe that for m,n = 0,±1 one gets

back to the global algebra defined in equation (2.5).

2.3 General Aspects of CFTs

The so(D, 2) conformal algebra of a CFT in D spacetime dimensions organises the

spectrum of local operators/states of the theory in corresponding representations. A

primary operator Oi has scaling dimension �i and spin (under the SO(D) Lorentz

group) si. As we saw in the case D = 2 is special, since the so(2, 2) part of the

conformal algebra extends to the infinite-dimensional Virasoro algebra. It is, therefore,

customary in 2D CFTs to refer to the operators that are highest-weights in Virasoro

representations as primaries, while operators that are highest-weights in representations

of the global part so(2, 2) are called quasi-primary. Since we will be using only the

so(2, 2) structure of 2D CFTs, the reader should anticipate a clear distinction between

primary and quasi-primary operators in the context of our applications.
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A central object in the analysis of CFTs is the Operator Product Expansion (OPE),

which allows one to recast the product of two conformal primaries Oi, Oj as a sum

over single conformal primaries and their descendants

Oi(x1)Oj(x2) =
X

k

Ck
ij f̂

k
ij (x1, x2, @x2)Ok(x2) . (2.16)

The OPE coe�cients Ck
ij are c-numbers that are closely connected to the three-point

function coe�cients Cijk of the conformal primaries Oi,Oj ,Ok. For example, the two-

and three-point functions of three conformal primary scalar operators are given by the

expressions

hOi(x1)Oj(x2)i =
gij

|x12|2�
, for �i = �j ⌘ � , (2.17)

hOi(x1)Oj(x2)Ok(x3)i =
Cijk

|x12|�ij,k |x23|�jk,i |x13|�ik,j
, (2.18)

with �ij,k ⌘ �i + �j � �k and xij = xi � xj . In this case, Cijk =
P

k C
m
ij gmk. The

conformal symmetry forces the two-point functions in (2.17) to vanish if �i 6= �j and

fixes the spacetime dependence of both the two- and three-point functions. For spinning

operators the expressions in (2.17), (2.18) generalise to include the tensor structure of

the spins. The quantity f̂k
ij in the sum (2.16) is a di↵erential operator that incorporates

the contributions of all the conformal descendants in the conformal multiplet of Ok.

Its form is fixed by conformal symmetry.

The OPE (2.16) can be used to reduce a generic n-point function to a sum of

products of three-point functions. Hence, the full dynamical content of local correlation

functions in a CFT can be captured by the knowledge of two- and three-point functions.

Equivalently, the solution of the local structure of a CFT entails the computation of

the full spectrum of scaling dimensions �i at each spin si and of the corresponding

OPE coe�cients Ck
ij .

1

Four-point functions hOi1(x1)Oi2(x2)Oi3(x3)Oi4(x4)i provide a powerful demon-

stration of this reduction. Unlike (2.17), (2.18), conformal symmetry does not com-

pletely fix the spacetime dependence of four-point functions. Solely from the viewpoint

of conformal symmetries we can write

hOi1(x1)Oi2(x2)Oi3(x3)Oi4(x4)i = K(�i, xi) g(u, v) , (2.19)

where the factor K(�i, xi) has a fixed form (that will be written explicitly in two

dimensions below), and g(u, v) is a—typically complicated—theory-specific function of

1Another special feature of CFTs is the operator/state correspondence. We will frequently use it to
interchange language between states and operators.
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the cross-ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

, (2.20)

which are invariant under conformal transformations. The OPE expansion (2.16) of

the products Oi1Oi2 and Oi3Oi4 allows us to recast (2.19) as

hOi1(x1)Oi2(x2)Oi3(x3)Oi4(x4)i = K(�i, xi)
X

k1,k2

Ck1
i1i2

gk1k2C
k2
i3i4

g(i1i2i3i4)Ok
(u, v) ,

(2.21)

where g(i1i2i3i4)Ok
(u, v) is the conformal block that captures the contribution of interme-

diate operators Ok1 , Ok2 with equal scaling dimension �k. The conformal blocks are

theory-independent and, as already mentioned earlier, in many cases are either known

analytically in closed form, or can be determined using convenient relations. Specific

expressions for two-dimensional conformal blocks will be given momentarily.

It is customary (in the context of the so-called conformal frame) to re-express the

cross-ratios in terms of two variables z, z̄ as

u = zz̄ , v = (1� z)(1� z̄) . (2.22)

In Euclidean CFT z and z̄ are complex conjugate.

It is also customary to work in a basis of conformal primaries that diagonalises the

two-point functions (2.17). This is a convenient choice in general, but it can be subtle

in conformal manifolds for degenerate protected operators because of operator-mixing

e↵ects. In what follows we denote the OPE-squared sum at fixed scaling dimension �k

as

Ck
i1i2i3i4 ⌘

X

k1,k2 |�k1
=�k2

=�k

Ck1
i1i2

gk1k2C
k2
i3i4

. (2.23)

In the absence of degeneracies in the spectrum of operators that run in this sum, the

sum (2.23) comprises a single term. This is not, however, the only possibility and in

some of the applications of the main text we will encounter cases where degeneracies

do exist.

Obviously, the OPE expansion in (2.21) is not unique. Instead of using the OPEs

Oi1Oi2 and Oi3Oi4 one can use the OPEs Oi3Oi2 and Oi1Oi4 to obtain a di↵erent

looking, but equivalent, expansion of the four-point function. These two approaches

yield respectively the so-called s- and t-channel expansions of the four-point function.2

To distinguish the OPE-squared coe�cients in each channel, we will denote the s-

channel coe�cients as sCk
i1i2i3i4 and the t-channel coe�cients as tCk

i1i2i3i4 . The t-channel

2It is also possible to consider the (1, 3) � (2, 4) OPEs that yield the u-channel expansion. We
will not be considering the u-channel expansion. We note that the s, t and u channel expansions do
not converge simultaneously at all cross-ratio values. For further comments we refer the reader to the
review [25].

21



CHAPTER 2. A BRIEF REVIEW OF CONFORMAL FIELD THEORIES

can be obtained from the s-channel by exchanging the insertions 1$ 3 and equivalently

the cross-ratios u$ v, or z $ 1� z and z̄ $ 1� z̄. The equality of the two expansions

leads to the crossing symmetry constraints

X

k

sC
k
i1i2i3i4g

(i1i2i3i4)
�k

(u, v)�
X

k0
tC

k0
i1i2i3i4 h(�i;u, v)g

(i3i2i1i4)
�k

(v, u) = 0 , (2.24)

where the factor h(�i;u, v) accounts for the contribution of the prefactor K.

In general, the operators that appear in the s-channel k-sum are di↵erent from the

operators that appear in the t-channel k0-sum. Moreover, note that the crossing equa-

tions (2.24) have to be satisfied as functions of u, v at any values of u, v. This imposes

stringent constraints on the CFT data of scaling dimensions and OPE coe�cients.

2.4 Crossing Equations in 2D CFTs

It will be useful for our purposes to spell out the above results in the more specific case

of two-dimensional CFTs.

The analysis of the crossing equations (2.24) requires explicit knowledge of the

conformal blocks g(i1i2i3i4)�k
(u, v). Over the years significant progress in the computation

of conformal blocks (see [25] for a guide to the literature) has provided important input

in the development of the conformal-bootstrap programme. In even-dimensional CFTs

the conformal blocks in four-point functions of scalar operators are known analytically

in closed form. In two-dimensional CFTs, in particular, they are also known analytically

for any four-point function of spinless or spinning conformal primary operator [27]. The

latter is one of the basic reasons why we will focus on 2D CFTs. We stress again that

the aforementioned conformal blocks in two dimensions are conformal blocks for the

global so(2, 2) part of the Virasoro algebra. We will not be using Virasoro conformal

blocks.3

Concretely, consider four quasi-primary operators in a (Euclidean) 2D CFT de-

noted as Oi (i = 1, 2, 3, 4) with left- and right-moving conformal weights (hi, h̄i). The

corresponding scaling dimensions and spins of these operators are �i = hi + h̄i and

si = hi� h̄i. We insert the operators at four distinct spacetime points denoted in com-

plex coordinates as (zi, z̄i). The s-channel conformal-block expansion of the four-point

function of these operators is

3In two dimensions it would have been more e�cient, in general, to work with the full Virasoro
blocks. However, this would be problematic for us for two reasons. First, the general Virasoro conformal
blocks are not known in closed analytic form (see, however, [28] for useful expansions of these quantities).
Second—and more important—this would limit the direct applicability of our approach to the special
features of two-dimensional CFTs.
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hO1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)i =
1

zh1+h2
12 zh3+h4

34

1

z̄h̄1+h̄2
12 z̄h̄3+h̄4

34

⇥

✓
z24
z14

◆h12
✓
z̄24
z̄14

◆h̄12
✓
z14
z13

◆h34
✓
z̄14
z̄13

◆h̄34 X

O,O0

CO
12gOO0CO0

34 g1234h,h̄ (z, z̄) ,(2.25)

where zij = zi � zj ,

g1234h,h̄ (z, z̄) = zhz̄h̄ 2F1(h� h12, h+ h34; 2h; z) 2F1(h̄� h̄12, h̄+ h̄34; 2h̄; z̄) (2.26)

and

z =
z12z34
z13z24

, z̄ =
z̄12z̄34
z̄13z̄24

(2.27)

the complex parameters z, z̄ that express the cross-ratios u, v in (2.22). We are also

using the notation hij = hi � hj , while 2F1(a, b; c; z) is the ordinary hypergeometric

function. Adapting (2.23), we also set

X

O,O0 |�O=�
O0=h+h̄

CO
12gOO0CO0

34 ⌘ sCh,h̄ (2.28)

suppressing the reference to the operators Oi.

In the above notation the crossing equations (2.24) take the form

X

h,h̄

sCh,h̄ g
(1234)
h,h̄

(z, z̄) =

= (�1)(h41+h̄41) zh1+h2

(z � 1)h2+h3

z̄h̄1+h̄2

(z̄ � 1)h̄2+h̄3

X

h0,h̄0

tCh0,h̄0 g
(3214)
h0,h̄0

(1� z, 1� z̄) . (2.29)

At this point it is useful to make the following observations.

First, when one sums over the conformal block of a spinning quasi-primary operator

(i.e. an operator with conformal weights (h, h̄) and h 6= h̄) in either channel, one is also

summing over a quasi-primary with conformal weights (h̄, h). When we exchange h

and h̄, the spin s ! �s, and the corresponding OPE-squared coe�cients Ch,h̄ and

Ch̄,h are not in general equal. However, when the external operators are spinless, the

OPE-squared coe�cients are equal, Ch,h̄ = Ch̄,h, and we can collect together the (h, h̄)

and (h̄, h) contributions to form a single conformal block of the form

g̃(1234)
h,h̄

(z, z̄) =
1

1 + �h,h̄


zhz̄h̄ 2F1(h� h12, h+ h34; 2h; z)

⇥ 2F1(h̄� h̄12, h̄+ h̄34; 2h̄; z̄) + (z $ z̄)

�
. (2.30)
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In this manner, we can restrict the sums in (2.29) to only run over operators with

h � h̄, hence reducing by half the number of intermediate quasi-primary operators that

we need to consider later in the thesis.

Second, it is useful to single-out the contribution of the identity operator, when this

is present in a given channel, by setting C0,0 g
(1234)
0,0 (z, z̄) = g12g34.

2.5 Primaries versus Quasi-Primaries in More Detail

Primaries are a vital part of the group theoretic construction of CFTs. They form

the set of highest-weight states, which annihilate a subset of the operators we defined

above, and hence are used as fundamental building blocks of CFTs. However, as we

have found out above, in two dimensions the algebra expands to an infinite dimensional

group, so we have to be a bit careful. This is where the distinction of primaries versus

quasi-primaries enters.

We established before that the operators L�1,0,1, L̄�1,0,1 form the sl(2) subalgebras

of the Virasoro algebra. Quasi-primaries are states which are annihilated by the action

of L1 or L̄1, and have the eigenvalues h and h̄ under the action of L0 and L̄0 respectively.

h and h̄ are referred to as the holomorphic and anti-holomorphic conformal dimension.

In terms of the T (z) OPE this translates to

T (z)�(0) ⇠ . . .|{z}
not constrained

+

must vanishz}|{
0

z3
+
h��(0)

z2
+
@�(0)

z
+ . . . (2.31)

Essentially the few constraints we described above are reflected in what we can see

in this OPE. We took the operator �(z) to be our primary, and the constraints make

the order z�3 term vanish and constrain the form of the z�2 and z�1 terms. Most

importantly however they do not restrict the form of the smaller powers in the Laurent

expansion.

Now that we have explained quasi-primaries, primaries are very simple to motivate.

If we move to the whole Virasoro algebra, we will have a whole set of Ln and L̄n

operators. The premise is similar to what we did before, but now we constrain our

state such that it is annihilated by all n > 0 for both barred and unbarred L’s. As

one can imagine, this is an infinitely more powerful constraint as the one we had for

quasi-primaries, and it actually reads like this for the T (z) OPE

T (z)�(0) ⇠ 0|{z}
must vanish

+
h��(0)

z2
+
@�(0)

z
+ . . . (2.32)

As we can see, the new constraints completely remove all the coe�cients of any powers

smaller than �2 and constrain the form of the remaining ones.
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2.6 Vertex Operator and A�ne Kac-Moody Algebras

In Chapter 4, we will be studying the 4D/2D correspondence [29] and this correspon-

dence states that any four-dimensional N = 2 SCFT possesses a subsector which can be

identified with a two-dimensional chiral algebra. These two-dimensional chiral algebras

are defined as the holomorphic parts of a 2D CFT, otherwise also called meromor-

phic CFTs, or even more commonly in mathematical context, vertex operator algebras

(VOAs). We shall briefly introduce A�ne Kac-Moody (AKM) algebras in this subsec-

tion, because they will be very relevant to the results we will present in the following

sections. AKMs are an extension of the algebras presented above (in two dimensions)

with an additional flavour symmetry. This symmetry adds a conserved current oper-

ator JA
µ (z, z̄) which is in the adjoint representation of the flavour group, the index A

being in the adjoint [30].

Just like in the case of the energy-momentum tensor, the conservation of this current

implies that it will factorise into holomorphic and anti-holomorphic parts. The OPE

of the holomorphic JA(z) is given as

JA(z)JB(0) ⇠
k

z2
+

ifAB
C JC(0)

z
+ . . . (2.33)

There are two unknown quantities here: the level, denoted by k and also the structure

constants of the Lie algebra fAB
C . Of course for this to be an algebra we must close

it on the OPE of T and J (and their anti-holomorphic pairs). This is very simple to

do because J(z) is actually a Virasoro primary with h = 1 and h̄ = 0, so we know

exactly what the OPE will look like. The anti-holomorphic bits are analogous, and the

cross-OPEs vanish. One can also expand the currents into modes and integrate them

in order to obtain their commutation relations. We present them here for the sake of

completeness:

⇥
JA
m, JB

n

⇤
= ifAB

C JC
m+n + km�AB�m+n,0. (2.34)

One can observe that the zero modes recreate the flavour Lie algebra.
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Chapter 3

Conformal Bootstrap with

Reinforcement Learning

3.1 Introduction

The non-perturbative formulation of a generic Quantum Field Theory (QFT) and the

analytic, or numerical, solution of its dynamics remains an extremely challenging con-

ceptual and computational problem with important theoretical and experimental im-

plications.

The problem becomes more tractable in Conformal Field Theories (CFTs): a special

class of QFTs that describe typically the short and large-distance behaviours of generic

QFTs. Most notably, in a unitary, relativistic CFT in D spacetime dimensions, the

local structure of the theory is characterised by a set of discrete data: the scaling

dimensions �i of local conformal primary operators Oi and their Operator Product

Expansion (OPE) coe�cients Ck
ij . Once these data are known, the generic correlation

function of any local operator in the theory can be determined.

Unitarity implies certain well-known constraints on these data. For example, a

conformal primary operator with scaling dimension � and spin s must satisfy the

inequalities

� �
D � 2

2
, for s = 0 (3.1)

� � s+D � 2 , for s > 0 . (3.2)

The equality � = s+D � 2 occurs only for conserved currents.

More elaborate, and powerful, constraints on the CFT data arise from crossing

symmetry: the property that a correlation function is the same irrespective of the

channel used in its OPE decomposition. These constraints (consistency conditions)

form the basis of the conformal bootstrap approach. Since the 1970s (see e.g. [31, 32])

it was hoped that by solving the conformal bootstrap equations, one would be able to

26



CHAPTER 3. BOOTSTRAP WITH REINFORCEMENT LEARNING

solve CFTs non-perturbatively, without the need for a Lagrangian formulation. For

many years the complexity of the conformal bootstrap equations, and the fact that

they admit an infinite set of solutions for an infinite set of unknowns, did not allow the

programme to evolve beyond a limited set of cases in 2D conformal field theory.

3.1.1 Brief Background on the Modern Conformal Bootstrap

Significant progress was instigated in 2008 by the seminal paper [13], which shifted the

focus away from the search of exact solutions of the conformal bootstrap equations and

towards the following approach: Make an assumption about the spectrum of the CFT

and ask if the bootstrap equations can be satisfied; if the equations cannot be satisfied,

then this assumption can be successfully eliminated. With suitable truncations on the

infinite-dimensional CFT spectrum, this programme can be implemented numerically,

and powerful linear and semidefinite programming methods4 have been employed in

recent years to obtain many significant results in this direction. It is impossible to list

here all the results and di↵erent applications of this approach. Later in this chapter we

will present a review of relevant facts from modern CFT bootstrap in order to better

present the comparison between our algorithm and the current standard. For a separate

concise review, and orientation to the relevant literature, we refer the reader to [24, 25,

26].

The assumptions that drive this approach are selected blindly; in the words of [35],

the bootstrap computations in this context are performed in an “oracle mode”. Never-

theless, suitable assumptions not only carve out significant parts of the space of poten-

tial CFTs, but one interestingly finds in many cases that known theories lie at cusps of

the boundary of allowed possibilities. Even more e�ciently, sometimes one discovers

that the allowed region is an isolated “island”. When this happens, the oracle-mode

can be used to compute the scaling dimensions and OPE coe�cients remarkably well.

A beautiful application of this method is encountered in the 3D Ising model [36, 37].

Theories at the boundary of the allowed and disallowed regions are obviously special

from this perspective and have been the primary target of standard applications of the

conformal bootstrap. E�cient computational methods, like the Extremal Functional

Method [38, 39], can be used to enhance the arsenal of the conformal bootstrap in this

context.

Nevertheless, some obvious shortcomings of this approach include:

(a) For theories inside the allowed region one cannot, in general, tell how far they are

located away from the boundary.

(b) With generic assumptions in oracle mode it is hard to identify and solve specific

pre-selected CFTs, such as one’s favourite gauge (conformal field) theory, that

4A commonly used package is the Semidefinite Program Solver (SDPB) [33, 34].
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may not lie on the boundary of allowed and disallowed regions of the search.

(c) Higher-dimensional searches that would facilitate the study of more general classes

of CFTs are computationally expensive and di�cult to implement with the exist-

ing techniques. Typically, with current standard techniques one is restricted to

searches of a couple of parameters.

There have been some recent approaches [35][40] trying to solve these issues. These

methods and the one we introduce below, are phrased as optimisation problems. A

distinctive feature of what we do is that instead of minimising directly the quantity

of interest, we optimise a Neural Network (NN) that predicts a probability distribu-

tion, which is then sampled to make the actual predictions. This approach has several

advantages. When directly optimising a function, one needs to compute partial deriva-

tives, which can become expensive in high-dimensional searches.5 In contrast, we use

fixed optimisation algorithms for the NNs (already implemented at high e�ciency),

simplifying the details and complexity of the specific problem. Moreover, when one

optimises the function of interest directly, one has to first pick a point in state-space

to initialise the process, and then the derivatives guide the search towards the closest

minimum. In order to flow to the minimum, one has to pick a small enough learning

rate, but that inevitably restricts the flow to the closest minimum, even if it is not the

global one. Our approach is e�cient at trying to find the global minimum, because

the probing scale varies and it detects minima at varying distances from the original

starting point. The price we have to pay for these advantages is that our computations

become less “exact”, i.e. less direct and more statistical.

3.1.2 A Novel Study of Truncations Based on Artificial Intelligence

In the present work we study truncated crossing equations as an optimisation problem

and develop methods to find approximate numerical solutions taking advantage of re-

cent developments in Machine Learning (ML) and the wider availability of associated

techniques. Similar to [40, 41], our approach is more akin to the original philoso-

phy of the 1970s, which aimed at a direct solution of the conformal bootstrap equa-

tions. We will explain momentarily how we set up and implement a multi-dimensional

search of approximate solutions and how this search benefits from artificial intelligence-

techniques.

Introductory Comments on ML Terminology

Designing architectures and algorithms which one day could surpass human perfor-

mance has been a long-running goal in the field of ML. Although a significant part

5In [35] this problem is avoided with a general SDP gradient formula and the e�cient use of a
quasi-Newton method.
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of the theoretical (statistical and probabilistic) groundwork had been laid down for

more than half a century, ML has only recently started to truly flourish. Decades

ago algorithms which beat professional chess players had already been designed, but

these approaches involved codes that were rigid and non-dynamic, meaning that once

written their knowledge would be capped. In contrast, all of the modern developments

in having machines learn how to solve problems include dynamic programming and a

statistical approach to learning. The latter has only become practically feasible of late

with the rapid development of and easier access to powerful central processing units

(CPUs) and graphics processing units (GPUs).

The three best-known categories of ML algorithms are: supervised, unsupervised

and reinforcement learning. In supervised learning some of the data are tagged and

contain both the input and desired output. The algorithm trains on the tagged data

and learns how to produce a sensible output from any input. Typical applications of

supervised learning are classification and regression problems. In unsupervised learning

there are no externally provided tagged data for training; the algorithm recognises on

its own structure in a given set of data. In Reinforcement Learning (RL) [42]—or Deep

Reinforcement Learning (DRL), that employs Deep Neural Networks (DNNs) in the

learning steps of the “agent”—one knows the goals but does not know how to achieve

them. The algorithm interacts with a dynamic environment and receives feedback based

on its performance that guides it towards the desired result.

In recent years, ML has had a rising number of applications in High Energy Physics.6

In this chapter, we will showcase a study of the conformal-bootstrap programme using

RL techniques. This is the first study of conformal field theory of this kind.7

RL Setup in the Conformal Bootstrap

Ultimately, a successful RL algorithm should be able to identify a proper CFT, by

converging to a configuration of CFT data that satisfy the crossing equations within a

prescribed accuracy. It should similarly be able to exclude improper CFTs by failing to

converge to a configuration that satisfies the crossing equations within the prescribed

accuracy.

The basic scenario of our approach includes the following ingredients:

• Consider a specific four-point function with operators that have fixed symmetry

properties, scaling dimensions and spins. If the scaling dimensions of the external

6See [43, 44] for a compendium of reviews ranging from the more experimental to the more compu-
tational aspects, and [45] for a summary of applications to String Theory. RL implementations have
appeared in the context of String Theory even more recently in [15, 46, 47, 48]. See also [49] for a nice
introduction to deep learning from a physics-motivated viewpoint.

7An alternative ML approach towards certain aspects of CFT, using supervised learning, appeared
in [50]. The methodology, focus and scope of [50] are very di↵erent from the one that we introduce
below.
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operators are unknown, one can include them, as unknown variables, into the

search.

• The crossing equations are truncated with a specific assumption about the number

of operators per spin that appear in each channel. We call this assumption the

spin-partition of the truncated conformal-block expansion. For example, if the

truncation of the conformal block expansion in a given channel is assumed to

include only operators of integer spin, and we truncate at maximum spin 3, then

the spin-partition specifies the number of operators at spin 0, 1, 2 and 3. The

spin-partition, which is an input to the RL algorithm, specifies the dimensionality

of the vector of unknown scaling dimensions and OPE-squared coe�cients (~�,~C),

that we aim to determine.

• We assume that the conformal blocks are known analytically, or numerically,

[24, 25, 26]. The crossing equations, which are functions of the cross-ratios (see

Sec. 2.3 for details), are reduced to a set of algebraic equations for the unknown

scaling dimensions and OPE-squared coe�cients (~�,~C). The reduction can be

achieved by Taylor expanding the conformal blocks around a particular point (as

in standard applications of the numerical conformal bootstrap), or by evaluating

the conformal blocks on a set of di↵erent points in cross-ratio space. We will be

implementing the latter approach. Naturally, the number of algebraic crossing

equations obtained in this manner should be larger than the number of unknowns.

In compact vector form, the reduced algebraic crossing equations are

~E(~�,~C) = 0 . (3.3)

Since we truncate the crossing equations, it is not guaranteed (or expected) that

Eqs. (3.3) have an exact solution. Our aim is to find approximate solutions to

(3.3) that minimize ~E. Approximate solutions are expected to flow towards exact

solutions of the exact crossing equations as one adds more and more operators to

the truncation.

• One can specify the width of the search either individually for each unknown scal-

ing dimension and OPE-squared coe�cient, or collectively. For example, one can

set a common upper cuto↵, �max, on the unknown scaling dimensions. Clearly,

because of the unitarity constraints, (3.1)-(3.2), if the maximum spin in the spin-

partition is smax, then �max � smax +D � 2.

• With these specifications in mind, we set up a soft Actor-Critic RL algorithm,

[51], that performs a multi-dimensional search on the vector space of the unknown

scaling dimensions and OPE-squared coe�cients (~�,~C) and returns configura-
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tions that minimise the norm of the crossing-equation vector ~E. The operation

and key components of the RL algorithm will be discussed in Sec. 3.4.

3.1.3 Overview and Discussion of Results

Our main goal here is to show that suitable RL algorithms can be applied to the

conformal-bootstrap programme to e�ciently perform multi-dimensional searches, and

(when appropriately guided) to detect and solve arbitrary CFTs. We test the RL

algorithms against results that can be obtained independently using analytic methods.

We choose to analyse 2D CFTs, as in this case it is straightforward to write exact

conformal blocks for operators of arbitrary spin. Throughout our computations, we

will only use the global so(2, 2) part of the 2D conformal algebra, without making

any reference to the Virasoro algebra, which is a special feature of two dimensions.

Consequently, every tool that we set up is directly generalisable and applicable to

higher-dimensional CFTs, which will be treated elsewhere. For concreteness, we will

focus separately on the two leading unitary minimal models (the Ising and tri-critical

Ising model) and the free boson CFT on a circle.

Key Results

We highlight the following results:

• In all the cases we analysed, the algorithm was able to detect the CFT whose

spin-partition we used as input. This is extremely promising. It suggests that

Reinforcement Learning has a great potential as a tool in conformal-bootstrap

studies of generic pre-selected CFTs. Our approach is not limited to special theo-

ries, e.g. CFTs on cusps of parameter spaces, or CFTs with enhanced symmetries.

• Even with a relatively small upper cuto↵ on the scaling dimensions our algorithm

produces sensible numerical results that satisfy the truncated crossing equations

at good accuracy. The details depend on the theory and the four-point function

that we are analysing. For instance, for simple CFTs like the 2D Ising model,

a run with only 5 quasi-primary operators yields scaling dimensions and OPE-

squared coe�cients comparable with their analytic values within the order of 1%.

In the free compactified boson CFT we obtain sensible results even with 4 quasi-

primary operators and cuto↵ �max = 2. As one might expect, the results of our

RL algorithm are generically more accurate for lower scaling dimensions, and less

accurate for quasi-primaries close to the cuto↵ when compared with the analytic

answers.

• We can probe the dependence of CFTs on closely spaced discrete parameters, or

continuous parameters like exactly marginal couplings. We present examples of
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such a study in the context of the 2D free boson on a circle. In that case, the

continuous parameter is the radius of the circle. Being applicable in such sce-

narios, our method could readily be combined with analytic results in convenient

parameter regimes (e.g. at weak-coupling points) to solve the theory at generic

points by adiabatically changing the parameters.

• We can perform e�cient high-dimensional searches; our current algorithm can

do direct searches with tens of operators. In the context of the 2D compactified

boson CFT, we present results of a run with 36 parameters. We can, in principle,

go to even higher spins and scaling dimensions with multiple sequential runs that

start with a smaller number of operators and gradually introduce more.

Numerical Uncertainties

An important aspect of our approach, which is not addressed in detail in the preliminary

investigations here, has to do with the systematic treatment of errors. As emphasised

at the beginning of this subsection, the main goal of the present work is to establish

that our algorithm detects the intended CFT and produces sensible numbers. We

achieve this goal by comparing said numbers with the available exact analytic results.

A preliminary discussion of errors and uncertainties, and how they can be incorporated

systematically in the future, is relegated to the concluding Sec. 6.1.1. In the rest of

this subsection, we flesh out an important aspect of our approximations that a↵ects

the implementation of our approach.

As already noted, the truncated crossing equations that we are trying to solve do not

admit, in general, any exact solutions. Therefore, our main task is to find configurations

that minimise the violation of the truncated equations. What is the minimal violation

of the truncated equations that we should be aiming for? This is not a priori known and

the answer can depend strongly on the specifics of the CFT, the four-point function that

we are considering, the type of truncation that we are implementing on the spectrum

and the way we reduce the crossing equations as functions in cross-ratio space to a

number of algebraic equations. The answer to this question has obvious practical

implications. Most notably, it determines when a run should be terminated and a↵ects

the decision of whether a given output should be accepted as a solution to an actual

CFT, or whether it should be rejected as a false minimum.

In Sec. 3.2 we define a measure of relative accuracy A (see Eqs. (3.6), (3.7)) that

quantifies a % violation of the truncated crossing equations. A has a minimum value

Amin for searches in a compact subspace of parameter space. It is expected that Amin !

0 as we incorporate more and more operators, but it is not obvious, in general, how to

determine Amin as a function of all the factors that were listed in the previous paragraph.

If there is a regime, where the analytic solution is known, Amin can be estimated with a
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direct RL-algorithm run in the vicinity of the known solution. This estimate can then

be used as a guide in other regimes of parameters where the analytic solution is not

known.

We have empirically found that in all computations performed in our investigation

a solution has been properly identified for values of A below 0.1% irrespective of the

spin truncation. Once A is below this empirical threshold and A stops improving and

the agent has visibly converged to a configuration, we terminate the run and record the

result. We have implemented this triple selection rule in all the runs that are reported

in this chapter.

To obtain further evidence for the acceptance, or rejection, of a configuration one

can study the dependence of the best A obtained by the algorithm as more and more

operators are included. Once a configuration has been accepted as a valid approxima-

tion to the exact problem, one can define individual uncertainties for each CFT datum

that is being computed. We present preliminary results of statistical errors in specific

examples in Sec. 3.6. We discuss general uncertainties and their sources further in the

concluding Sec. 6.1.1.

3.1.4 Outline

The rest of this chapter is organised as follows. In Sec. 3.2 we present the truncation

scheme that we use, the associated spin partitions and a measure of accuracy that plays

a key role in the numerical computations of the main text. In Sec. 3.3 we present a

concise introductory review of the current numerical bootstrap methods as a contrast to

our own algorithms. In Sec. 3.4 we give a mathematical and conceptual introduction to

Markov Decision Processes and Reinforcement Learning in general. We then move on

to describe the key components of specific RL algorithms and eventually work our way

to the soft Actor-Critic algorithm and outline three practical modes of how we chose

to implement it. Secs 3.5 and 3.6 are the central sections of the chapter. In Sec. 3.5 we

present an RL study of four-point functions of the spin and energy-density operators

in the 2D Ising and tri-critical Ising models. In Sec. 3.6 we study four-point functions

of primary operators in the momentum/winding sector of the compactified boson CFT

and four-point functions of the conserved U(1) current. We discuss the dependence of

the results on the scaling dimension cuto↵ �max and the exactly marginal coupling of

the theory. We conclude in Sec. 6.1.1 with a brief synopsis of the main results and an

outlook on future directions.
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3.2 Truncations, Spin-partitions and Measures of Accu-

racy

We view the exact crossing equations (2.29) as non-linear equations for the unknown

positive8 conformal scaling dimensions � = h+ h̄ and the corresponding OPE-squared

coe�cients Ch,h̄ in both channels. The spin s = h � h̄ of the intermediate operators

and the conformal weights (hi, h̄i) (i = 1, 2, 3, 4) of the external operators are assumed

to be given. However, in their current form, the exact crossing equations (2.29) are im-

practical both for analytic and numerical methods. As already mentioned in Sec. 3.1.2,

we need to implement a truncation.

For numerical methods the first obvious obstacle is the appearance of a typically

infinite number of contributions to the conformal-block expansion. We address this

problem by truncating the spectrum of intermediate quasi-primary operators, by setting

some upper cuto↵ �max on the scaling dimensions. The convergence properties of the

conformal-block expansion [52] imply that one does not have to consider very large

values of �max for sensible numerical results, but the precise value of an optimal �max

is not easy to determine a priori and is, in general, theory-dependent. We will later

make the surprising observation that in some examples values of �max as low as 2 can

already yield good approximations.9

A second issue has to do with the continuous dependence of the exact crossing

equations (2.29) on the cross-ratio parameters z, z̄. We shall follow the approach of

[53] and evaluate the truncated crossing equations at a finite discrete set of points in

the z-plane. We have noticed experimentally that the sampling of z-points suggested

in Sec. 3.1 of [53] works well also in our computations. In general, if the number of

unknown scaling dimensions and OPE-squared coe�cients is, in total, Nunknown, we

choose Nz z-points (with Nz > Nunknown) to evaluate the truncated crossing equations.

With these specifications, the exact crossing equations (2.29) have been reduced

to a finite set of non-linear algebraic equations, where the scaling dimensions of all

contributing intermediate quasi-primary operators are bounded from above by �max.

This necessarily also puts an upper bound on the allowed spin s of these operators,

since |s|  �  �max.10 However, despite the above considerable simplifications, the

problem remains intractable: there is still a vast space of possibilities that an algorithm

can explore associated with the freedom to choose any number of quasi-primaries at

each spin. This final issue can be fixed by introducing a spin-partition.

8The positivity of the conformal weights h, h̄ follows from well-known unitarity constraints in two
dimensions.

9It may be that such behaviour is correlated with the fact that a CFT is easily truncable, in the
sense of [40]. In general, however, truncability is not a pre-requisite for the application of our method.

10Truncations on the spin of the conformal-block expansion and suitable discretisations in cross-ratio
space are also commonplace in standard applications of the numerical conformal bootstrap.
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Spin 0 1 2 · · · n� 1 n

s-channel a0 a1 a2 · · · an�1 an
t-channel b0 b1 b2 · · · bn�1 bn

Table 1: A depiction of the spin-partition for a truncated spectrum of integer-valued
spins in a four-point function of spinless operators where the conformal-block expansions
can be phrased in terms of only positive spins. In this example, we have chosen to use
the same number of maximum spin in both s and t channels. The non-negative integers
ai, bi specify the number of operators with the corresponding spin, in the correspond-
ing channel. For such a spin-partition the total number of unknowns in our problem
is Nunknown = 2

Pn
i=0(ai + bi). For each unknown scaling dimension there is a corre-

sponding unknown OPE-squared coe�cient, hence the factor of 2 in this expression for
Nunknown.

The spin-partition is a sequence of positive integers that specifies the number of

quasi-primaries per spin contributing to the conformal-block expansions of the trun-

cated crossing equations. The spin-partition is an input to the RL algorithm that we

set up in the next section. It fixes the dimensionality Nunknown of the vector space of

parameters (~�,~C) where the search takes place. We will be listing spin-partitions using

the template of Tab. 1.

We have thus arrived at a framework of truncated equations

~E(~�,~C) = 0 , (3.4)

where the dimension of the vector (~�,~C) is Nunknown and the dimension of the vector
~E is Nz. Each entry Ei (i = 1, . . . , Nz) of the vector ~E contains the evaluation of the

truncated version of Eq. (2.29) at one of the points (zi, z̄i) in our z-sampling

Ei =
truncX

h,h̄

sCh,h̄ g
(1234)
h,h̄

(zi, z̄i)

� (�1)(h41+h̄41)zh1+h2
i z̄h̄1+h̄2

i (zi � 1)�h2�h3(z̄i � 1)�h̄2�h̄3 (3.5)

⇥

truncX

h0,h̄0

tCh0,h̄0 g
(3214)
h0,h̄0

(1� zi, 1� z̄i) ,

where
truncX

denotes the truncated sum over intermediate operators.

This framework is very similar to the starting point of the approach [40, 41]. Notice,

however, that the truncation in the scheme of [40, 41] is arbitrary, whereas here it comes

with a further assumption that the unknown scaling dimensions are inside a specific

window of scaling dimensions. This detail is an important distinction between our

approach/implementation and those of [40, 41]. In particular, our approach entails a

probabilistic search in specified parameter windows.
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In general, (3.4) is not expected to have any exact solutions. Accordingly, as we

explain in the next section, our RL algorithm is designed to minimise the Euclidean

norm of ~E and determine configurations of CFT data that satisfy the truncated crossing

equations with the best possible accuracy. Although the Euclidean norm ||~E|| is an

important quantity of the computation, it is not straightforward to judge whether its

raw value at an optimal configuration is actually small or large. For that reason, we

find it useful to define a “relative measure of accuracy”, A, defined in the context of

(3.5) as

A =
||~E||

Eabs
(3.6)

with

Eabs =
NzX

i=1

"
truncX

h,h̄

����sCh,h̄ g
(1234)
h,h̄

(zi, z̄i)

���� (3.7)

+

����z
h1+h2
i z̄h̄1+h̄2

i (zi � 1)�h2�h3(z̄i � 1)�h̄2�h̄3

����
truncX

h0,h̄0

����tCh0,h̄0 g
(3214)
h0,h̄0

(1� zi, 1� z̄i)

����

#
.

The quantity A is guaranteed to be a number between 0 and 1. Its value gives a %

measure of the accuracy at which we have been able to satisfy the truncated equa-

tions (3.4), and this can in turn be compared more straightforwardly between di↵erent

computations.

3.3 Numerical Bootstrap

As we have established from before, the crossing equation is one of the most important

constraints one can impose on the CFT data. This in turn makes it very important in

verifying what CFTs are allowed to exist. Say, if we took a random set of numbers, the

crossing equation would be able to determine if they could form a consistent CFT.

The crossing equation given in the above form has been known for a very long time,

but solving it has been a highly non-trivial task. Crossing equations tend to depend

quite simply — most of the time linearly — on the squared OPE coe�cients, but they

are highly non-linear in the scaling dimensions of the operators. There is also of course

the fact that we have to usually deal with an infinite number of operators which sum

into this equation, and the fact that this equation is satisfied for all the values of the

conformal cross-ratios.

Solving the crossing equations exactly is very much out of the question. However,

there are some tools developed roughly a decade ago [13] which have been used to place

bounds on CFT data. In this section we will spend some time explaining these ideas

and also looking at how one could apply such methods numerically by using computers.
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3.3.1 Placing Bounds on Data Analytically

The main revelation of the paper mentioned above [13] is that they look at the crossing

equation as a sum of vectors in an infinite dimensional space of functions. In order to

demonstrate the method, we will use this 2 dimensional crossing equation:

X

O
f2
��O

�
v��g�,`(u, v)� u��g�,`(v, u)

�
= 0. (3.8)

Where above we have the crossing equation coming from the four-point function h����i.

The sum is over primaries O exchanged between the two vertices of the four-point

function. Other unknowns in the equations are the OPE squared coe�cients f2
��O, the

dimensions ��, the conformal blocks g and their inputs, the cross-ratios u, v, as well

as the scaling dimension of the exchanged primary �.

Now let us re-examine this equation, but from the perspective of a summation of

di↵erent vectors
�!
F

��

�,`. These vectors are taken straight from the cross ratio (3.8).

�!
F

��

�,` = v��g�,`(u, v)� u��g�,`(v, u) (3.9)

This is quite an abstract way to think about this problem, but the geometrical ideas

coming from visualising these as vectors will be su�cient to place bounds on the CFT

data. If we rewrite equation (3.8) so that the OPE coe�cients are all positive then we

can define this sum of vectors:

X

�,`

p�,`
�!
F

��

�,` = 0. (3.10)

Where, p�,` � 0. As it turns out, looking at the problem from this angle, we can

already infer some important information, knowing that these vectors have to sum to

zero. To put this simply, the vectors which are being summed cannot all be “pointing

in the same direction”. This is just a statement that for all the components of these

vectors to cancel, they have to be spread out with respect to each other. The simplest

example would be the case of two vectors, where in order for them to be able to cancel,

they would have to be pointing in the opposite direction — i.e. they would be the most

spread out.

Hence the criterion for the CFT existing rests on the ability of these vectors to

cancel. One can show that this is impossible if these vectors all lie on one side of a

plane ↵ running through the origin, cutting the space in half. Now we have abstracted

the problem from adding functions to looking at the existences of specific planes. In

the next few sections we shall explain how one can fabricate algorithms to place bounds

on CFT data.
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Bounds on Scaling Dimensions

Placing the bounds on the scaling dimensions is relatively straightforward. The first

step would be to make a guess (ansatz) at the operators which might appear. At this

point, we are only really interested in their spins and their dimensions, which label the

operators. The only operators one has to create an ansatz for are the ones that would

be present in the OPE of the given external operator (in our case �) that one chose.

The next step would be to search for that fabled ↵ plane. In the space of the functions

↵ would take the form of a functional, and based on the discussions above, it would

have to be semi-positive acting on all the vectors. This e↵ectively means it has to be

non-negative on all but one operator, which has to be strictly positive:

↵
⇣
�!
F

��

�,`

⌘
� 0. (3.11)

As we stated above, if ↵ exists for these values, then we have reached an inconsistency

and the given values cannot form a CFT. The full algorithm would be to repeat this

with di↵erent ansatze until one reaches a division point between the consistent and

non-consistent theories.

At the moment one might recall that we are still in the analytical mindset and

we are dealing with an infinite set of primaries as well as the infinite space of ↵’s to

consider. How one shifts this problem over to the numerical regime will be discussed

after presenting all the algorithms in section 3.3.2.

Bounds on OPE Coe�cients

The process for bounding the OPE coe�cients f2
��O = p�,` is a bit more involved [54].

First and foremost, we have to separate the contribution from the identity operator

X

�,`

p�,`
�!
F

��

�,` = 1. (3.12)

Here we have to make sure that all the coe�cients p�,` � 0. This is because we will

interpret equation (3.12) as the identity function being inside a convex cone. This can

be seen from the right-hand side of the equation which if the coe�cients are allowed to

change, would fill a convex cone. Let us now pick another operator from the right-hand

side and move it to the left:

X

�,`

p�,`
�!
F

��

�,` = 1� p�̄,¯̀
�!
F

��

�̄,¯̀
. (3.13)

The right-hand side is a linear combination of two vectors from our space, and if we

change p�̄,¯̀ it will move it to align more or less with
�!
F

��

�̄,¯̀
. There could exist a critical
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value of p⇤ above which the vector will leave the cone. This is very similar to the logic

we used with the scaling dimensions where we tried to construct an inconsistency. The

goal here is the same — to find a bound on the OPE coe�cients which makes equation

(3.10) contradicting.

The next step is to find the value of p⇤. For this we will reach back to the previous

section and grab the functional ↵ which we defined. We define it to be linear and

impose the condition (3.11). We will also normalise the functional on the unit operator

↵[1] = 1. (3.14)

Applying this to both sides of equation (3.13) we get the constraint:

↵
h
1� p�̄,¯̀

�!
F

��

�̄,¯̀

i
= 1� p�̄,¯̀ ↵

h
�!
F

��

�̄,¯̀

i
� 0. (3.15)

Which we can then rearrange to give

p�̄,¯̀ 1/↵
h
�!
F

��

�̄,¯̀

i
. (3.16)

Note that this bound is dependent on the functional that is chosen. The right-hand

side of the equation can then be defined as the object we have been seeking

p⇤ ⌘ 1/↵
h
�!
F

��

�̄,¯̀

i
. (3.17)

This would already impose a bound, but in order to get the most out of this relation

we need to take the extremal value of the right side. This concludes the analytical way

of determining the bounds for the OPE coe�cients.

3.3.2 From Analytical to Numerical

Changes Demanded by Numerical Techniques

In the previous section we described algorithms to try to bound the values of the CFT

data. In practice these algorithms as described are not actually very useful as it is very

rare that a problem is so simple that it can be bounded analytically. In such cases

numerical solutions tend to be the next most accurate and e�cient method to obtain a

good approximation of the analytical solution. We have drawn attention to some of the

potential issues which would arise when porting these methods to work with computers

in the sections leading up to this, but it is worthwhile to collect them here and address

them individually. The most important drawbacks:

• The are endless possibilities for the functional ↵.

• The infinite number of operators whose labels ` and � range from 0 to 1, while
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� can also technically take any real value.

The points raised above can be relatively easily bypassed in order to move into the

domain of numerical computations. Both issues have to be solved by understanding

that most computer algorithms cannot search an infinite range or deal with continuous

variables. Hence, the logical approach is to truncate the space we are searching and to

discretise the continuous variables.

The issue of the infinity arising from the space of functionals can be solved by

taking linear combinations of derivatives at a given point — usually taken to be the

point z = z̄ = 1
2 , which is where the crossing equations converge exponentially.

↵(F ) =
X

m+n⇤

amn@
m
z @

n
z̄ F (z, z̄)|z=z̄= 1

2
(3.18)

We have already introduced almost all of the symbols in the equation above (for F (z, z̄)

we just dropped the labels for clarity), the notable exception being ⇤. This is the value

which controls the total number of derivatives being applied to the functions appearing

in the crossing equation. We can see that now the space of functionals is described by

the values amn of which there is a finite amount by virtue of the cuto↵ ⇤.

For the other issue at hand, we can do a large variety of things, but here we will

just detail the simplest approach. We need to discretise the scaling dimensions � (the

smaller spacing between them, the better), and also impose an upper bound for the

search �max. The same approach can be applied to `, keeping in mind that it is already

discrete by default.

3.4 A Review of Reinforcement Learning

In many physical settings it is very common to have access to large amounts of data

(e.g. collider physics), where supervised/unsupervised ML techniques find direct appli-

cation. However, in scenarios often found in theoretical physics this is not usually the

case. This is where RL comes in handy because the learning agent is able to generate

its own data.

Reinforcement Learning, in brief, is an algorithm consisting of two parts with equal

importance. The first is the so-called “agent”, which is the brain of the algorithm.

The second is the “environment”: what the agent interacts with. The basic setup of

the algorithm is the process of the agent making decisions as it explores the provided

environment, while the environment gives feedback on the agent’s actions. One wants

the agent to explore the environment towards finding an ideal solution, while exploiting

the best solution it finds (explore-exploit dilemma). One also has to find a suitable

algorithm for how the agent (the neural network) “learns” and retains its experiences.
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There exists a considerable amount of previous work on DRL algorithms, which have

been applied to a large variety of problems, both theoretical and real-world. There

are examples of agents which can beat video games, drive cars, guide robots, solve

mathematical equations and—possibly the most famous one—AlphaGo, which beat

professional Go champions using a combination of supervised learning and DRL [55,

56], and the improved AlphaGo Zero, which relied completely on DRL [57].

Such algorithms can be split into two main sets and can be distinguished by whether

the actions (defined by numbers) taken by the agent are discrete or continuous. Algo-

rithms such as Deep Q-Learning [58] or Actor-Critic methods [59] use a discrete action

space (convenient when one can take only a finite amount of actions), while algorithms

such as the soft Actor-Critic method [51] and the Deep Deterministic Policy Gradient

method [60] were developed for when the actions can take any real value.

In the research presented in this thesis we will be making use of the soft Actor-Critic

algorithm and implementing it using the PyTorch package for Python 3.7, but one could

have equivalently chosen the Deep Deterministic Policy Gradient or any of the other

Machine Learning libraries (TensorFlow etc.). We will not go into the details of most

of the aforementioned algorithms, since these can be found in the original papers (with

pseudo code), and there exist plenty of additional online resources showcasing their

implementations. We will however build up the prerequisites to understand how the

algorithm we use —soft Actor-Critic— works in practice.

This section is fully dedicated to setting the scene and explaining the state-of-

the-art technology of reinforcement learning (RL). We will try to set up some basic

mathematical ideas behind RL and also deep reinforcement learning (DRL). Note that

the latter will be done without formally introducing machine learning (ML) and deep

neural networks (DNNs). While it is desirable to know these topics in order to discuss

RL, it is possible to treat them as “black boxes” and still understand how RL algorithms

work.

3.4.1 Fundamental Components of RL

What constitutes a reinforcement learning algorithm? That is the question we will try

to elaborate upon in this section. Perhaps the two most well known subalgorithms

would be the agent and the environment. Beyond those two, there are also three other

elements which are just as vital for RL to function: a policy, a reward and a value

function.

• Agent. Roughly speaking this part of the code would act like the “brain” of the

algorithm. This is where the decisions are made based on the current state the

agent is in. A good example which we will be bringing up throughout the rest

of the sections will be the example of a player playing a game. The agent would
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then take the role of the player.

• Environment. This part of the algorithm is where the agent makes contact with

the problem at hand. The job of the environment is to e↵ectively tell the agent

what its current situation is. This can be very abstract sometimes, but using our

analogy of a game, this would translate to the rules and the space in which this

game is played. The environment also reacts to any actions made by the agent.

• Policy. Now that we have a player and a game, time to actually play the game.

The policy tells us how the agent will make decisions based on a specific state

it occupies in the environment. E↵ectively this is just a function which maps

perceived states from the environment to actions to perform in those given states.

The policy forms the basis of the agent.

• Reward. Any game must have and end goal, or a particular way of being suc-

cessful. The reward or reward signal, is a way of quantifying that. For every step

the agent takes in the environment it must be told the reward that step invoked.

This gives the agent a sense of how it did and also how it can improve in the

future. This makes the maximisation of the reward the single most important

objective of the agent.

• Value Function. The reward is useful for determining how well an agent is

doing at an instant, but sadly it misses the global information about a specific

environment. What we mean by this is that maximising the reward in the short-

term might not always be the optimal way to win a game. What might happen

is that in order to reach the highest reward, the agent has to travel through an

undesirable area of the state space. This requires more long-term thinking by the

agent. The implementation of this is done through the so-called value function

which estimates the “value” of a state which translates to how much reward

we can get in the future. This means that in reality we want an agent which

maximises the value function which in turn will maximise the future reward.

We have now introduced the fundamental aspects of reinforcement learning. In the

next section we will go into detail about how the agent explores the environment and

tries to retrieve the information stored within.

3.4.2 Finite Markov Decision Processes

Notation and Definitions

In this section we will be defining RL more mathematically rigorously through the use

of finite Markov Decision Processes (MDPs). Just as a word of warning looking ahead,

MDPs are a purely theoretical construction for ideal RL cases so the later application
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to solve problems, will need some modifications (transition to DRL), as one usually

does with numerical/machine learning problems.

Let us call upon the ideas of Sec. 3.4.1 and recall that the two main components

of an RL algorithm are the agent and the environment. The most important thing

to note about these two is that they are continuously interacting with one another,

they are stuck in a cycle. To be a bit more concrete, at each step of the algorithm

—when the agent makes a decision on what to do— the environment receives that

information and outputs what the agent needs to make the next decision. That is one

step. The algorithm will run over many many steps, which we can label as time steps

t = 0, 1, 2, . . . .

Figure 1: A flowchart describing how the Agent-Environment loop works.

Let us introduce more notation. As shown in Fig. 1, at each instance t the agent

will be fed a certain representation of the state of the environment, St 2 S, where

S is the space of all possible states. Using this state, the agent will make an action,

At 2 A(s), where A(s) is the set of all actions possible from the state s. In some cases

(like the ones we will be using later in this thesis) the action space is the same for

all states. Once the action has been performed, the environment will change to state

St+1, and the reward for the action taken will be dispensed, given as Rt+1 2 R ⇢ R.

An important thing to note at this point is that here the space of states, actions and

rewards is finite, hence the use of finite MDPs.

If we start treating the new state s0 and the reward r arising from the previous

states s and action a then it is possible to define a probability distribution p(s0, r|s, a)

which theoretically contains the information of all the transitions through the entire

state and action spaces. By grace of it being a probability distribution, it has to obey

the following condition:

X

s02S

X

r2R
p
�
s0, r | s, a

�
= 1, for all s 2 S, a 2 A(s). (3.19)
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The fact that the probability p describes all the information of this process means that

this process must be a Markov Decision Process. This fact stems from the way the

probability was defined to only depend on the previous time step and no earlier. This

means that the previous state itself must contain enough information about the past

such that it is useful for the future.

We can marginalise over the reward in the joint conditional probability distribution

in order to obtain the state-transition probability

p
�
s0 | s, a

�
=
X

r2R
p
�
s0, r | s, a

�
. (3.20)

It is also possible to compute the expected reward going from a specific state with a

specific action

r(s, a) ⌘ E [Rt | St�1 = s,At�1 = a] =
X

r2R
r
X

s02S
p
�
s0, r | s, a

�
. (3.21)

Furthermore using the rules of conditional probability to fix the next state, the expected

reward in terms of the other three variables can be given as

r
�
s, a, s0

�
= E

⇥
Rt | St�1 = s,At�1 = a, St = s0

⇤
=
X

r2R
r
p (s0, r | s, a)

p (s0 | s, a)
(3.22)

Now that we have laid down some of the groundwork for MDPs, time to go back to

studying reinforcement learning. As we have described before, in RL the agent should

try to optimise the total amount of reward it is obtaining. This is much harder than

maximising the most immediate reward, as it requires thinking ahead. In order to

quantify this idea, let us define the expected return, which is something we would like

to maximise at each point in time

Gt ⌘ Rt+1 +Rt+2 +Rt+3 + · · ·+RT . (3.23)

T here denotes the final time step. Note that this is the expected reward from any

point in time t. This seems like a simple enough definition, but there is a slight issue.

What happens when there is no end to the process? There is no reason to assume that

the rewards would converge and so we could easily end up with optimising an infinite

value. As it turns out there is a much more convenient approach to take which in turn

also o↵ers a satisfactory explanation. Introduce the notion of discounting. What this

means is that each reward which is later than the most immediate one will be weighted

by an increasing power of a discount factor which is between 0 and 1. This ensures that

the sum converges and also implies that the value of the most immediate decisions is
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more important than the ones very far in the future.

Gt ⌘ Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1. (3.24)

Here � is the discount parameter. This parameter e↵ectively controls the agent’s far-

sightedness. From this definition of the expected return immediately follows the recur-

sion relation

Gt = Rt+1 + �Gt+1. (3.25)

For a finite series GT = 0, since there are no rewards after the process has terminated.

Policies and Value Functions

Back in Sec. 3.4.1 we introduced some basic aspects of an RL algorithm and one of

these was the value function. Just to summarise exactly what we mean by this, we mean

the functions which take the state alone or the state-action pair and try to quantify

how good it is to be in a specific state or to perform a specific action from the state. In

the previous section we defined this notion of “good” to be related to the reward and

later on we started to use the expected return at a specific instance. It is immediately

obvious that since the agent has a choice, these value functions should be di↵erent

depending on what the agent’s policy is. Recall that the policy, which we will denote

⇡(a|s) at the instance t, is the probability that the agent selects the action a given the

original state s = St. As the agent will experience more and more of the state and

action spaces we expect this policy to change in order to optimise the value function.

Now we will relate the value function to the expected return we defined in Eq. 3.24.

The definition of the value function of a state s with a policy ⇡ is defined to be

v⇡(s) ⌘ E⇡ [Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#
8 s 2 S. (3.26)

Here we took the expectation value of Gt with the agent following a given policy ⇡ at

the step t. An important trait which it inherits from the expected return is that for

the last step of the process the value of that state is zero. This happens for the same

reason as for GT , as there are no more steps to be taken and hence no more reward to

be earned. The o�cial name assigned to v⇡ is the state-value function for the policy ⇡.

Definitely note this name because it is one of the prominent functions in RL literature.

Just like before, in Eq. (3.21) where we took the expectation value with the action

a given, we can do a similar thing for the state-value function. This would give the

value of performing the action a from the state s and then obeying the policy ⇡, which
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we will denote q⇡(s, a).

q⇡(s, a) ⌘ E⇡ [Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#
. (3.27)

This function also enjoys a huge following in recent literature and it has been dubbed

the action-value function. From the definitions of these two functions, the latter being

for a specific action, follows the following property which relates the two

v⇡(s) =
X

a

⇡(a|s) q⇡(s, a). (3.28)

Which is just a statement that the q-value function’s expected value based on the policy

is the state-value function.

Here we have defined the two most important functions we will be using in our RL

construction. Note that these are all analytical and one would require the knowledge of

the distribution which governs the reward space in order to calculate these exactly. In

most cases that will be completely unfeasible and we will actually end up approximating

both v⇡ and q⇡ by probing the state and action spaces in order to gain insight into the

distribution of the rewards. This will build a data set we can use to train our neural

networks, which will approximate these functions in deep reinforcement learning.

The Bellman Equations

Before we move on to approximating the value functions explained in Sec. 3.4.2 we need

to find an equation that imposes a constraint on them. The Bellman equation does

exactly this. The recursion of the expected return shown in Eq. (3.24) actually imposes

a consistency condition on the functions we defined before. Using the definition of the

state-value function we get:

v⇡(s) ⌘ E⇡ [Gt | St = s]

= E⇡ [Rt+1 + �Gt+1 | St = s]

=
X

a

⇡(a | s)
X

s0

X

r

p
�
s0, r | s, a

� ⇥
r + �E⇡

⇥
Gt+1 | St+1 = s0

⇤⇤

=
X

a

⇡(a | s)
X

s0,r

p
�
s0, r | s, a

� ⇥
r + �v⇡

�
s0
�⇤

, 8 s, s0 2 S. (3.29)

In the second line we substituted in Eq. (3.24). The third line is tricky, but we essentially

just use some conditional probability rules and also use Eq.(3.21) for the first half, but

for the second we have to use the law of iterated expectations:

E⇡ [v⇡ (St+1) | St] = E⇡ [E⇡ [Gt+1 | St+1] | St] = E⇡ [Gt+1 | St] (3.30)
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This is also how we then finally get to the third line of Eq. (3.29). This line is known as

the Bellman equation for the state-value function. It relates the values of two succes-

sive states. The reason we introduced this equation is that it introduces a significant

constraint, which is solved by the state-value function. We can repeat the process for

the action-value function too:

q⇡(s, a) =
X

s0

X

r

p
�
s0, r | s, a

�
"
r + �

X

a0

⇡
�
a0 | s0

�
q⇡
�
s0, a0

�
#

(3.31)

This is known as the Bellman equation for the action-value function.

Let us now take a broader perspective and ask: how does one solve an MDP?

There is a consensus that we can consider an MDP solved if we can find something

called the optimal policy. This is essentially the same statement we made before about

trying to build an agent which maximises the value functions. Let us now define

quantitatively what we want. Our statement translates to the requirement that we

have a v⇡(s) � v⇡0(s) for all s 2 S. We are guaranteed to have at least one policy like

this, but it does not have to be unique. Let us denote all optimal policies by ⇡⇤ and

they are given to be

v⇤(s) ⌘ max
⇡

v⇡(s) 8s 2 S. (3.32)

A convenient fact is that all optimal policies also possess the same optimal action-value

function too

q⇤(s, a) ⌘ max
⇡

q⇡(s, a) 8s 2 S and a 2 A. (3.33)

We want to start solving for the optimal policy. We shall do this by maximising

over our optimal action-value function q⇤(s, a). For this we need to solve for q⇤(s, a) and

then pick the action which gives us the most optimal q⇤(s, a). This e↵ectively collapses

our policy to be fully deterministic

⇡⇤(a | s) =

8
><

>:

1 if a = argmax
a2A

q⇤(s, a)

0 otherwise.
(3.34)

This means that in the optimal policy we pick the action with the largest q⇤(s, a).

Before we might think the problem is solved, we still need to find q⇤(s, a), but once we

have it we can construct our optimal policy out of it.
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The Bellman Optimality Equations

Now that we have a way to work out the optimal policy, all that remains is to find the

optimal value functions. Like the title suggests we will do this by recalling the Bellman

equations (3.29) and (3.31). Let us also consider the relationship between the two value

functions given by Eq. (3.28). We can derive a similar relationship, but between the

optimal versions of these two functions.

v⇤(s) = max
a2A(s)

q⇡⇤(s, a) (3.35)

The main thing to note here is that the expectation turned into a maximum over the

action which can be traced back to the statement of Eq. (3.34). From here we can start

deriving the so-called Bellman optimality equations.

v⇤(s) = max
a

E⇡⇤ [Gt | St = s,At = a]

= max
a

E⇡⇤ [Rt+1 + �Gt+1 | St = s,At = a]

= max
a

E [Rt+1 + �v⇤ (St+1) | St = s,At = a]

= max
a

X

s0,r

p
�
s0, r | s, a

� ⇥
r + �v⇤

�
s0
�⇤

(3.36)

Here in the first line we just took (3.35) and substituted in (3.31), but written as an

expectation value. In the second line we reused the manipulation (3.25). Then the last

two lines are the same manipulations we used to derive the original Bellman equations

for the state-value function in Eq. (3.29). The ultimate and penultimate lines in this

calculation are two forms in which the Bellman optimality equation is expressed for the

optimal state-value function. We can do a similar process for q⇤:

q⇤(s, a) = E

Rt+1 + �max

a0
q⇤
�
St+1, a

0�
| St = s,At = a

�
(3.37)

=
X

s0,r

p
�
s0, r | s, a

� 
r + �max

a0
q⇤
�
s0, a0

��
. (3.38)

Here we have presented the two relevant Bellman optimality equations which one

has to consider when solving a Markov Decision Process and hence a reinforcement

learning problem. As we said before in order to derive the optimal policy, one has to

find one of the optimal value functions. This of course is very di�cult to do in practice,

especially with processes which have enormous state and action spaces. In order to

surmount this problem, we will try to use computational methods to approximate

these functions. The next sections will focus on placing the solutions into context and

also providing details on which algorithms we used in the course of this thesis.
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3.4.3 Deep Reinforcement Learning

In this section we will use all the knowledge we have acquired while investigating Markov

Decision Processes and try to solve them using computational algorithms. In recent

years there have been many research papers on solving finite action space problems —

the agent can only do a limited number of things, such as move up and down — using

highly varying approaches [61, 62, 63, 64]. Another class of reinforcement learning

algorithms developed quite recently were continuous action space algorithms [65, 60],

which will be the most relevant to the research presented in later sections.

All of these algorithms attempt to solve the equations posed in the previous sec-

tions, and the literature is quite vast. For simplicity we will only focus on explaining

algorithms which are directly related to our work. We will begin by focusing on Actor-

Critic (AC) methods for DRL, and this will then lead us to consider the final stop for

our review: the Soft Actor-Critic algorithm, which we shall make heavy use of.

Policy Gradient

In our quest to eventually discuss Actor-Critic methods, first we have to discuss Policy

Gradient (PG) methods on which AC is based. These methods (just like a lot of RL)

actually trace their origin back to almost 3 decades ago [64, 66]. The significance of

PG methods is that they start making the relationship between RL and ML manifest.

This is done through the introduction of a function requiring optimisation

J(✓) = E⇡[r(⌧)]. (3.39)

Here we just set up the machine learning problem to solve the maximisation of the

expected reward as in reinforcement learning. The variable ✓ is the set of parameters

which define the function we are trying to optimise. They are usually grouped into a

vector, but we will omit the vector notation because in the context of this literature

their nature is clear all the time. The only di↵erence from the notation we used in

the previous sections is the use of r(⌧), which is just a more general expected reward

(extended to continuous time), but we can replace it with our Gt and then we’ll arrive

at the so-called REINFORCE algorithm [66]. If the reader has had exposure to machine

learning techniques then they can guess what we will use equation (3.39) for. In ML

we use the function J(✓) to perform the optimisation. Usually however we are trying

to minimise the function, but in this instance we will be maximising it to solve the

RL problem. We will do this by gradient ascent which defines an update rule for the

parameters

✓t+1 = ✓t + ↵rJ(✓). (3.40)
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Here the gradient is taken with respect to the parameters ✓ and ↵ is referred to as the

learning rate (it measures how quickly we move towards an optimum). This procedure is

used to find the parameters which optimise the function J(✓). The next very important

result of the policy gradient method is that the derivative of the expectation of r(✓) is

the expectation of the product of the reward and gradient of the log of the policy ⇡✓,

parametrised by the ✓s

rE⇡✓ [r(⌧)] = E⇡✓ [r(⌧)r log ⇡✓(⌧)] . (3.41)

Here we just condensed the probabilities into ⇡✓(⌧) as such,

⇡✓(⌧) = ⇧T
t=1⇡✓ (at | st) p (st+1, rt+1 | st, at) . (3.42)

After some manipulation this will allow us to rewrite (3.41) as

rE⇡✓ [r(⌧)] = E⇡✓

" 
TX

t=1

Gtr log ⇡✓ (at | st)

!#
. (3.43)

This last equation, which we will refer to as the update equation, is the take-away

message from the REINFORCE-GP method. This is what one would use to update

the ✓ parameters in Eq. (3.40). This relationship between the gradient of the expected

reward and the log probabilities is what we will use to build the actor-critic methods

in the next section.

Actor-Critic Algorithm

In relatively simple terms, the actor-critic algorithm is a temporal di↵erence (TD)

version of policy gradient (which just means it will compare values at di↵erent time

steps), and it has two important entities within it: the actor and the critic. In deep

reinforcement learning, both of these will be approximated by their own individual

neural networks. The actor will contain the policy function and will decide what action

to take at each step, while the critic, as the name suggests will try to inform the actor

of the value of the action taken and how to improve.

In the previous section we introduced the REINFORCE algorithm. The reason for

this was because the actor follows a very similar algorithm, but with a small extension

called the baseline function, which just replaces Gt ! Gt � b(st). This was done to

improve on the REINFORCE algorithm, which without this has very high variance for

the gradients and hence the learning can be noisy and lacking stability. In the AC

algorithm this function is picked to be the state-value function v⇡✓(st).

A⇡✓(st, at) = r(st, at) + �v⇡✓(st+1)� v⇡✓(st) (3.44)
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To obtain the equation above we place the baseline function into (3.43) and then per-

form the same manipulation as we did when deriving the state-value function Bellman

equation in (3.29). We then group the three terms together and call it the advantage

function. This is also sometimes referred to as the TD error �.

There is a slight problem with expression (3.44). The state-value function is defined

in terms of the policy ⇡✓, which in an ideal scenario would be fine, but we cannot exactly

calculate this value function, which leads us back to what we said above about the use

of two neural networks. We have already approximated ⇡✓ with parameters ✓ and now

we will approximate the value function for this policy with parameters !, v!(s). The

advantage function defined above can now be rewritten in terms of this approximation.

A!(st, at) = r(st, at) + �v!(st+1)� v!(st) (3.45)

This now allows us to define the “errors” for the two neural networks. First for the

actor, coming from approximating the policy gradient expression:

J(✓)t ⇡ A! (st, at) log ⇡✓ (at, st) . (3.46)

Here, note the subscript on the error since this is at a specific time step. The definition

of the error for the critic is much more straightforward since it is only the advantage

function squared, 1
2A

2
!. A very important thing to note here is that when taking the

gradient of the advantage function with respect to ! there are two value functions, but

the v!(st+1) function is taken to be constant [67].

Now we are fully ready to give a small rundown of how the algorithm works. We

will do this by writing what is known as a pseudocode which outlines how one would

structure the code to perform the AC algorithm.

Algorithm 1: Actor-Critic

Initialise parameters s0, ✓, ! and also learning rates ↵✓, ↵!;

Sample an action a from the distribution ⇡✓(a|s0);

for t = 1 to T do ;

Sample reward rt;

Sample next action and next state, at+1 and st+1;

Update the policy parameters: ✓  ✓ + ↵✓v!(st)r✓ log ⇡✓ (at, st);

Calculate the advantage at instance t: A!(st, at);

Use it to update value parameters: !  ! + ↵!A!r✓A!;

Advance at ! at+1 and st ! st+1;

end for

The pseudocode above describes how this algorithm should be constructed. The

deep reinforcement learning procedure will be to iterate over this loop and tune the

51



CHAPTER 3. BOOTSTRAP WITH REINFORCEMENT LEARNING

two sets of parameters of the neural networks until the agent learns the best strategy

for navigating the environment. As a final remark we will say that all of the above

analysis can also be done by using the action value function instead of the state value.

Soft Actor-Critic

Now that we have explained the crucial background for the algorithm we use in our

research, let us motivate the reason for choosing this algorithm. First of all, almost

all the algorithms which we described or mentioned in this DRL section work only for

when the action space is discrete and finite. This, to reiterate, just means that at each

step we can only select from a finite pool of distinguishable actions (they need not be

the same for each state). We will not be able to make use of these algorithms when

we apply machine learning to estimating the scaling dimensions and OPE coe�cients

of CFTs in the following sections as they can take continuous values. Luckily for us

there have been algorithms developed for when actions take values in the real numbers.

To clarify this, we still have a finite amount of actions, but each action is not just

picked, but gives a real number. Let us give an example here to make the di↵erence

obvious. For the discrete action one could have the agent move up, down, left, right in

an environment by a unit distance. At each step the agent will have to choose which

action to make (i.e. choose which of the actions is allocated a 1 and all the rest 0),

hence the discreteness. In the case of the continuous, the agent doesn’t choose which

action to turn on but chooses what number to assign to each action. To run with the

example of 4 actions, the agent might pick 0.36 for the first, -0.001 for the second and

so on.

Soft Actor-Critic [65] is part of a group of algorithms which are called entropy-

regularised. What this means is that we will be altering the RL problem in Eq. (3.39)

by adding a term which accounts for the entropy of the policy

J = E⇡

" 1X

t=0

�t (R (st, at, st+1) + ↵H (⇡ (· | st)))

#
(3.47)

Here we are already using the expanded and discounted version of the expected return

and hence assuming an infinite horizon. The dot in the expression for the policy is

a placeholder for the random action variable indicating that the entropy H takes the

probability distribution function itself at a state as an input (i.e. not the value of the

probability at a specific a). There is one extra parameter which we have introduced

which may look like a learning rate, but it is actually a parameter controlling the

exploration of the agent. Note that since this is a shift to the expected return, both

the value functions and their Bellman equations will change accordingly.

Let us now start introducing the algorithm itself. The soft actor-critic algorithm
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aims to train four neural networks at the same time: the policy ⇡✓ and two Q-value

functions Q�1 , Q�2 , and a state-value function v . A huge innovation from the AC

algorithm we introduced in the previous section is that SAC has something known as

the replay bu↵er. It is like a memory for the agent and at every step it will sample

from this pool of memories and use that to update the networks. This means that

the networks are not necessarily updated using the action which the stochastic policy

samples when deciding the agent’s action to move in the environment. This is a huge

di↵erence from the AC algorithm, and is referred to as o↵-policy RL, while actor-critic

follows an on-policy algorithm.

We will proceed in the same fashion as we did for the previous algorithm by intro-

ducing the error terms for each of the networks and explaining them and then laying

the algorithm out in a pseudocode. An important thing to understand when dealing

with such algorithms is that all of the expectation values which we have defined before

will have to be approximated from the observations of the environment. The errors:

1. The error used to train the state-value function is:

JV ( ) =
1

2

�
V (st)�

⇥
min�1,2 Q�1,2 (st, at)� log ⇡✓ (at | st)

⇤�2
(3.48)

The most important thing to note here is the minimum over the two Q-functions,

which just means that the smaller of the two should be taken. It is there in order

to avoid overestimating the action-value.

2. The error used to train the action-value functions is:

JQ(�1,2) =
1

2

⇣
Q(�1,2 (st, at)� Q̂ (st, at)

⌘2
. (3.49)

Where Q̂ is known as the target and is given as

Q̂ (st, at) = r (st, at) + �V ̄ (st+1) . (3.50)

Here, the only thing requiring an explanation is the state-value function with

parameters  ̄. This is odd since we said we would only be training 4 neural

networks. In the strictest sense this is still true, but we did sweep quite a bit

under the rug. Technically this is a neural network of its own, but we are actually

not training it. There are no gradients for its parameters and no optimisation. It

is called the target value network and it is updated periodically by copying the

parameters  onto  ̄. Introducing a new network like this might seem like an

arbitrary thing to do, but this actually helps to stabilise the learning.
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3. The last is the error used to train the policy:

J⇡(✓) = log ⇡✓ (at | st)�min�1,2 Q�1,2 (st, at) . (3.51)

This equation is a bit less simple than it seems because the action at actually

comes from the policy network so actually both terms will be nonzero in the

✓ gradient. The reason for that is that the network used to approximate the

policy actually approximates the parameters to a probability distribution rather

than the distribution itself. This is usually done by using a Gaussian and the

output of the policy network will be the means and the standard deviations for

the individual actions. This is then sampled for at. This is what is referred to as

a stochastic action.

Note that just like we mentioned above, none of the expressions have expectations in

them and that is because we are already approximating them with the sampling.

The next step is to lay out the pseudocode so we can see how the algorithm would

flow in practice, shown in Alg. 2.

There are a couple of things worth noting in this pseudocode. We introduced the

parameter ⇢ which controls how strongly the parameters are copied onto the target

network. The other point is that we summed over the batches of the sampled tuples

in the replay bu↵er when doing the gradient step. This comes as an artefact of the

expectation values which now we have replaced by sampling, hence also the division by

the batch size, which will give us the arithmetic mean.

We display the details of the NNs that we used for our searches in Tab. 2.

NN Hyperparameter Value

learning rates 0.0005
� (discount factor) 0.99
replay bu↵er size 100000

batch size 64
⌧ (smoothing coe�cient) 0.001

layer 1 size 128
layer 2 size 64
reward scale 0.005

Table 2: Hyperparameter values for the NNs used in our calculations, presented in the
format of [51].
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Algorithm 2: Soft Actor-Critic

Initialise parameters s, ✓, �1, �2, and  and also their learning rates ↵✓, ↵�1 ,

↵�2 , ↵ ;

Initialise empty replay bu↵er B;

Set the target parameters equal to the state-value parameters  ̄   ;

repeat

Observe the state s and sample the action a;

Implement the action in the environment;

Observe the next state s0, the reward r and also the done signal which

indicates whether if s0 is a terminal state;

Store the tuple (s, a, r, s0, d) in B;

If terminal state was reached, reset environment;

if need to update NNs then

for number of times NNs need to be updated do

Sample a batch B = {(s, a, r, s0, d)} ⇢ B;

Update state-value function by one gradient step using;

1

|B|

X

(s,a,r,s0,d)2B
r JV ( )

Update action-value functions by one gradient step using;

1

|B|

X

(s,a,r,s0,d)2B
r�iJQ(�i), for i = 1, 2

Update policy by one gradient step using;

1

|B|

X

(s,a,r,s0,d)2B
r✓J⇡(✓)

Update the target value network with;

 ̄  ⇢ + (1� ⇢) 

end

end

until convergence;
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3.4.4 Environment

Here we summarise some of the most salient features of the environment implementa-

tion. The latter guides the agent’s learning on how to predict the CFT data. Since

implementations of RL agents can be easily adapted for use in a large variety of prob-

lems, setting the environment becomes the most important part of the implementation.

The environment must provide an interface that the agent can interact with, calculate

the constraints, come up with a quantitative notion of success and define a terminal

state.

The environment in which our agent “moves” is the space of parameters (~�,~C).

Every value for the scaling dimensions/OPE-squared coe�cients defines a di↵erent

theory. For our purposes, a point (~�,~C) in parameter space is judged based on how

well it satisfies the numerical constraints of truncated crossing equations ~E(~�,~C) = 0,

(3.4).

The agent’s predictions feed into these numerical constraints. Since we have trun-

cated the equations and are numerically approximating the values (and the number of

constraints is larger than the number of unknowns) it is unlikely that there will be a so-

lution that exactly satisfies all constraints in (3.4). In fact, one ends up with deviations

from zero for each constraint, which then have to be minimised so that the constraints

are satisfied to as good a numerical approximation as possible. These deviations are

individual numbers that form the observations of the agent.

One can now straightforwardly define the reward function. Clearly, the agent should

be encouraged to pick values for the parameters which minimise all the constraints. The

simplest choice for such a reward is

R := �||~E|| (3.52)

The use of the Euclidean norm of the vector ~E is natural (but not unique) as it quantifies

the distance from the origin where the truncated equations (3.4) are satisfied exactly.

The negative sign punishes larger distances away from the origin more than smaller

ones. It would be interesting in the future to further explore how the e�ciency of

the algorithm depends on the choice of reward and to examine other options, e.g. the

possibility of di↵erent weights in the definition of the Euclidean norm.

The very last section of the environment checks for final states. In our case this

is simply a flag checking if the current solution is better than the current best from

previous runs. If, indeed, it is, then the code overwrites the previous best, and supplies

the flag to the agent. The agent needs to know whether or not the step led to a final

state, as this directly feeds into the approximation of the probability distribution.

We summarise these steps in Alg. 3, where A stands for an action by the agent and

R⇤ for the current best reward.
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3.4.5 Three Modes of Running the Algorithm

The RL algorithm can be implemented in several di↵erent ways depending on the scope

and focus of the search. In this subsection, we outline three di↵erent modes that were

employed in producing the results of Secs 3.5 and 3.6. In summary, these are:

• Mode 1. Specify the spin-partition and �max and search for scaling dimensions

within the unitarity bound and �max. For OPE-squared coe�cients there are

very few constraints, e.g. they may only be restricted by unitarity to be positive.

• Mode 2. There is a specific expectation for the scaling dimensions, for which

the search is contained within a narrow window. There are no expectations for

the OPE-squared coe�cients, where the search is initially as wide as in mode 1.

• Mode 3. Both scaling dimensions and OPE-squared coe�cients are within a

specified, known narrow window. This mode could be implemented as a supple-

mentary run after a mode 1 or mode 2 run, or it could be relevant in cases where

we are verifying an analytic solution in the context of the truncated crossing

equations, or in cases where the solution is known in some regime of parameters

and we are changing these parameters adiabatically.

Algorithm 3: Basic Reinforcement-Learning Routine
Input: A, R⇤

Output: individual constraints, R, R⇤

Env calculate constraints using A;

Env calculate R;

Env check if R > R⇤;

Agent observe individual constraints;

Agent store memory in bu↵er;

Agent learn;

if R > R⇤
then

overwrite previous best reward R⇤ = R;

end

Clearly, the range of the search becomes more narrow as we go from mode 1 to

mode 3. The computational time is expected to be larger, in general, in mode 1.

Our algorithm gives the user two key dials that can be tuned at will at the beginning,

or multiple times in the middle of a run. The first is a lower bound for each parameter

(we will call it the “floor”). The second dial is a separate size for the search window

of each parameter, in each action of the agent (we will call this dial the “guess-size”).

As a rule of thumb, the initial window should at first be set large enough to minimise

the probability of the agent getting trapped at a local minimum. Once the presence

of a potential global minimum has been established, one can then start to hone in by

gradually reducing its size. We next provide a more detailed description of each mode.
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Mode 1

Since this mode involves the widest search windows, a blind search may be hindered by

the existence of multiple false vacua, or may lead to an approximate solution that rep-

resents a CFT that is not of immediate interest. As a result, this mode can be assisted

by additional preparation that partially restricts the search. For example, one could

start with a rough preliminary exploration of the minima of ||~E|| using Mathematica,

or obtain a rough estimate of some of the scaling dimensions using the approach of [40].

This preparation can help significantly facilitate the subsequent search.

To commence the search we initially run the algorithm in “guessing mode” where

the RL agent only tries to improve on its own guess in the current cycle. This allows

for the random exploration of configuration space and generates some initial profiles of

CFT data.

Then, we enter the “normal mode”, where the agent initially takes the final state

from the guessing mode and tries to find small corrections so as to better satisfy the

constraints. Once it finds such a correction, it replaces the final state and proceeds

with a new correction iteratively. Here one can set specific values for the floor and

guess-sizes. It helps to set the guess-size at a magnitude comparable to the expected

order of parameter change as the agent hits the next final state. In most cases, the user

can easily detect this size by observing how the agent generates configurations in real

time.

The algorithm continues the search ad infinitum and the crucial question is when

to stop and record the result. We have observed in the context of di↵erent theories

that in actual solutions the agent reaches in reasonable time (of the order of an hour

on a modern laptop) a value of the relative measure of accuracy A below 0.5%. In

addition, when the search window is set near actual solutions the agent keeps reducing

A significantly below the threshold of 0.5% with an apparent convergence on the values

of the parameters (~�,~C). Based on this observation, we have always aimed for runs

that drop A below 0.1%.

Mode 2

In this mode we conduct, from the beginning, a narrow search in scaling dimensions.

We have found that the following protocol produces good results.

We set the floor of the scaling dimensions to the expected values and the correspond-

ing guess-sizes to 0. This freezes the scaling dimensions and reduces the dimensionality

of the search by half, since we are conducting a search by varying only the OPE-squared

coe�cients. After exiting the guessing mode, we conduct the search for the optimal

OPE-squared coe�cients using the same procedure as in mode 1.

Once the relative accuracy A drops to the order of 1%, we unfreeze the scaling
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dimensions by reducing their floor and opening their guess-size. The size of the search

window around the expected values of the scaling dimensions can be controlled freely

by the user. If the agent is already in the vicinity of a solution, the scaling dimensions

will not move significantly once unfrozen, and the full set of parameters (~�,~C) will now

be adjusted by the agent to reduce A even further. We continue the search until we

achieve an acceptably small value of A and observe an apparent convergence following

the general procedure outlined in mode 1.

During this process it may happen that some scaling dimensions are driven towards

the boundary of the prescribed window of search. In that case, the user can slightly

increase the corresponding window to explore whether the approximate solution lies

nearby. As long as the agent keeps improving the accuracy A, the window can be kept

in place. If there is, however, a stage in the run where the agent stops improving at an

unacceptably high A, and the adjustment of guess-sizes does not help, then this can be

viewed as a strong signal that a solution does not exist in the prescribed windows.

Mode 3

In this case, we are conducting a narrow search in all components of the parameters

(~�,~C). We can run the algorithm as in mode 2 without the initial run to approximate

the configuration of the OPE-squared coe�cients, since this is already approximately

known.

Enlarging the Spin-Partition

After having obtained results for a given spin-partition one can implement a shortcut

for subsequent searches with an enlarged spin-partition (e.g. when �max is increased).

Instead of re-running the algorithm for all parameters, it is more economical to instead

implement a strategy akin to that of mode 2:

• Perform the search with the least number of parameters using the steps outlined

previously.

• Freeze these parameters.

• Start adding the new dynamical parameters to the set of frozen ones to approxi-

mately find the new global minimum.

• Unfreeze all parameters and let the agent determine how these new parameters

change the old ones to find a better solution.

This type of implementation opens up the exciting possibility of reconstructing consid-

erable amounts of CFT data without a full, specific, a priori given spin-partition.
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Algorithm 4: Reinforcement-Learning CFT Data Search
Input: spin partition, floor, guess-size

Output: (~�,~C)

initialise Agent (memory bu↵er + NN weights);

initialise file for overall best reward R⇤;

while running guessing mode do

Agent choose action;

Env calculate constraints;

Env calculate R;

Env check if R > R⇤;

Agent observe current state;

Agent store memory in bu↵er;

Agent learn;

if R > R⇤
then

overwrite previous best result, R⇤ = R;

end

end

while not accurate enough do

reinitialise Agent (memory bu↵er + NN weights);

while running normal mode do

Agent choose action;

Env calculate constraints;

Env calculate R;

Env check if R > R⇤;

Agent observe current state;

Agent store memory in bu↵er;

Agent learn;

if R > R⇤
then

overwrite previous best result, R⇤ = R;

end

if Agent trapped then

break normal mode loop;

end

end

end

if adding new parameters then

rerun above code first freezing then unfreezing;

end
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Comments on User Input

To summarise, our overall approach is sketched in Alg. 4. It should be apparent from the

description of the above three modes that, although the RL algorithm is set up to run

independently without the input of an external user, in actual runs user intervention

can help in significantly speeding up the search. A suitable real-time adjustment of

the guess-size for individual parameters helps the agent focus faster around a region

of potential interest. In the future, this is an aspect of the algorithm we would like

to improve—or better automate—in order to facilitate more e�cient parallel runs. At

this stage, the mode with the minimal user input is mode 3, which involves the smallest

search windows.

3.5 Application I: Minimal Models

We now pass on to explicit applications of our algorithm, starting with minimal models.

The unitary minimal models are, in the appropriate sense, the simplest possible 2D

CFTs and benchmarks of the original conformal bootstrap programme from the 1970s.

Here we revisit them from the perspective of the global part of the Virasoro algebra,

completely disregarding the Virasoro enhancement of the so(2, 2) conformal algebras.

In this section we search for approximate solutions to the crossing equations that

we listed in Sec. 2.4, which describe minimal models. The consistency of the crossing

equations in this well-known class of 2D CFTs was understood analytically early on. It

is therefore a good starting point to verify that our method recovers known facts about

these theories correctly. We focus on the two leading representatives in the series of

unitary minimal models, the Ising and tri-critical Ising models.

3.5.1 Analytic Solution

We next briefly recall some of the salient features of the Ising and tri-critical Ising

models (see [23] for a comprehensive review).

Ising Model

The Ising model, M(4, 3), is the simplest model in the unitary minimal series M(p +

1, p). It has central charge c = 1
2 and it is equivalent to the CFT of a free Majorana

fermion. Besides the identity operator I, its spectrum contains two more primary

operators: the spin operator � with conformal weights (h, h̄) = ( 1
16 ,

1
16), and the energy-

density operator (also called thermal operator) " with conformal weights (h, h̄) = (12 ,
1
2).

The corresponding OPEs are

� ⇥ � = [I] + ["] (3.53)
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� ⇥ " = [�] (3.54)

"⇥ " = [I] , (3.55)

where [O] denotes the Virasoro conformal family of the primary O. In what follows,

we will study the four-point functions

h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i , (3.56)

h"(z1, z̄1)"(z2, z̄2)"(z3, z̄3)"(z4, z̄4)i . (3.57)

The conformal-block decomposition of these correlation functions contains, according to

the first and third OPEs in (3.53), (3.55), the quasi-primaries in the Virasoro conformal

family of the identity and energy-density operators. By definition, a quasi-primary

state (in the holomorphic sector) is annihilated by the L1 =
1

2⇡i

H
dz z2 T (z) conformal

generator. Equivalently, the OPE between the energy-momentum tensor T (z) and a

quasi-primary should have no z�3 pole. It is straightforward to construct these quasi-

primaries by acting on the primary state with the Virasoro raising operators L�k,

(k � 1) but one needs to take into account the structure of the Virasoro algebra and

the presence of null states in the corresponding Verma modules. States of the form

L�1|statei are, by definition, descendants in the sense of the so(2, 2) global part of the

conformal algebra.

For example, by focusing on the holomorphic part of the theory, we obtain at the

first few levels the following quasi-primaries in the Virasoro conformal families of the

identity and energy-density operators.11 In the conformal family of the identity, the

states

L�2|0i ,

✓
L2
�2 �

3

10
L�1L�3

◆
|0i,

✓
L�2L�3 �

1

2
L�1L

2
�2 �

1

6
L�1L�4

◆
|0i (3.58)

are the only quasi-primaries up to level 5. In the conformal family of the energy-density,

the states

|"i ,

✓
L�3 �

4

9
L�1L�2

◆
|"i ,

✓
L�4 +

10

27
L2
�2 �

5

9
L�1L�3

◆
|"i ,

✓
L�5 �

2

3
L�1L�4 +

5

24
L2
�1L�3 �

1

40
L5
�1

◆
|"i (3.59)

are the only quasi-primaries up to level 5. A potential quasi-primary at level 2 does

not exist, because it is one of the characteristic null states of the Ising model.

When combined with the anti-holomorphic sector, these results yield the spin-

partitions that will be employed in the analysis of Sec. 3.5.2 below.

11This computation is greatly facilitated by the Mathematica package FeynCalc9.3.1 [68, 69, 70,
71].
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Tri-critical Ising Model

The tri-critical Ising model, M(5, 4), is the next minimal model in the unitary series.12

It has central charge c = 7
10 , and besides the identity operator, its conformal primary

spectrum comprises three energy-density operators

" with (h, h̄) =

✓
1

10
,
1

10

◆
,

"0 with (h, h̄) =

✓
3

5
,
3

5

◆
,

"00 with (h, h̄) =

✓
3

2
,
3

2

◆
,

and two spin operators

� with (h, h̄) =

✓
3

80
,
3

80

◆
,

�0 with (h, h̄) =

✓
7

16
,
7

16

◆
.

The OPEs of these operators are listed in Tab. 7.4 of [23]. We will be interested in four-

point functions of the tri-critical Ising model that resemble those of the Ising model,

and the way our algorithm di↵erentiates between the two CFTs. We will therefore

focus on the primary operators �0 and "00, which satisfy

�0 ⇥ �0 = [I] + ["00] , "00 ⇥ "00 = [I] . (3.60)

Notice the similarity with the OPEs (3.53), (3.55). Accordingly, in the next subsection

we will study the four-point functions

h�0(z1, z̄1)�
0(z2, z̄2)�

0(z3, z̄3)�
0(z4, z̄4)i , (3.61)

h"00(z1, z̄1)"
00(z2, z̄2)"

00(z3, z̄3)"
00(z4, z̄4)i . (3.62)

Similar to the case of the Ising-model primary ", we find that the conformal family of

"00 in the tri-critical Ising model contains the following quasi-primary states, up to level

4 in the holomorphic sector:

✓
L�2 �

3

8
L2
�1

◆
|"00i ,

✓
L2
�2 +

43

2240
L4
�1 �

15

56
L2
�1L�2

◆
|"00i ,

✓
L�4 +

31

672
L4
�1 �

5

28
L2
�1L�2

◆
|"00i . (3.63)

12One of the beautiful features of the tri-critical Ising model is that it is secretly endowed with
supersymmetry [72], but this feature will not play any role in our analysis.
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Spin 0 1 2 3 4 5 6

2 - 1 - 1 - 1

Table 3: A spin-partition informed by the conformal block decomposition of the four-
point function h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i in the Ising model with �max = 6.5.

To obtain this result we had to use that the Verma module of the state |"00i contains

the following null state at level 3 (in the holomorphic sector):

✓
L�3 �

4

7
L�1L�2 +

4

35
L3
�1

◆
|"00i . (3.64)

3.5.2 Reinforcement-Learning Results

The above analytic data can now be compared with those obtained from our RL al-

gorithms. The current state-of-the-art numerical bootstrap methods currently impose

bounds on the CFT data. Sometimes in simple theories like these, one can find isolated

regions where the CFT data can be determined extremely well. In these cases our

method verifies these results quite well, but our method truly shines in the cases when

the bounds cannot restrict the CFT data enough. This exercise is helpful in checking

the e�ciency of our code before proceeding to the more complicated example of the

c = 1 compactified boson CFT.

h����i in Ising Model

The exact crossing equation for the four-point function (3.56) in the Ising model is

X

h�h̄

0
Ch,h̄

⇣
|z� 1|2�� g̃(����)

h,h̄
(z, z̄)� |z|2�� g̃(����)

h,h̄
(1� z, 1� z̄)

⌘
+ |z� 1|2�� � |z|2�� = 0 .

(3.65)

As this correlator involves four identical spinless operators, both channels, s and t,

exchange the same intermediate operators with even spin. In the last two terms we

have singled out the contribution of the identity operator and hence the sum
P0 does

not contain it.

Using the crossing equation (3.65) to determine our reward function, we performed

the following computation with the RL algorithm. We set �� = 1
8 , for the external

spin operator �, and searched in mode 2 for solutions with the spin-partition of Tab. 3,

which is informed by the analytic solution with a cuto↵ �max = 6.5. A more agnostic

search in mode 1, with more limited information about the initial profile of the scaling

dimensions, is also feasible. Such runs are presented in the next Sec. 3.6. Here, the

mode-2 runs are computing independently the OPE-squared coe�cients and confirm

the analytic values of the scaling dimensions that were used to initiate the runs. In the
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�� = 1
8

spin analytic � RL � analytic C RL C

0 4 3.9331603 2.44141⇥10�4 3.657538⇥10�4

0 1 0.9881525 0.25 0.25254947
2 2 1.9802496 0.015625 0.015717817
4 4 3.9497 2.19727⇥10�4 2.4715587 ⇥10�4

6 6 5.971367 1.36239⇥10�5 0.54007314⇥ 10�5

A = 3.31618⇥ 10�6

Table 4: Analytic and numerical solutions for scaling dimensions and OPE-
squared coe�cients in the conformal-block decomposition of the four-point function
h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i for �� = 1

8 and the spin-partition of Tab. 3 with
�max = 6.5. The numerical results were obtained with a mode-2 run of the RL algo-
rithm.

implementation of the algorithm we enforced the unitarity constraint that the OPE-

squared coe�cients are positive.

This is a search in a 10-dimensional space of unknowns (5 for the scaling dimensions

and 5 for the corresponding OPE-squared coe�cients). The results of a run with 29

crossing equations—that is, (3.65) evaluated at 29 di↵erent points on the z-plane—

appear in Tab. 4. This particular run took approximately half an hour on a modern

laptop machine to yield the relative accuracy A = 3.31618 ⇥ 10�6.13 When unfrozen,

the scaling dimensions were allowed to vary with a guess-size 0.1. It is worth noting

that the agent started the run with a random profile of OPE-squared coe�cients (some

of which were orders of magnitude away from those of the Ising model) and gradually

converged to the results of Tab. 4.

We observe that the relative accuracy at which we can satisfy the truncated crossing

equations is impressively strong, even with a very rough truncation of only 5 quasi-

primary operators. When compared against the analytic expectations, the numerical

results for the scaling dimensions agree at the order of 1%. For the OPE-squared

coe�cients, the agreement is equally impressive for the two lower-lying operators " and

L�2 with scaling dimensions 1 and 2 respectively, but (as might be expected) becomes

worse for the higher scaling dimension operators at � = 4, 6 that lie closer to �max.

Notice that the exact unitarity bound for the spin-2, 4 and 6 operators requires their

scaling dimensions satisfying � � 2, 4 and 6 respectively. Since we have truncated the

crossing equations, we do not expect the results to obey the strict unitarity bounds,

and, as a result, we have allowed the agent to explore solutions with a small violation

of these bounds.
13Originally we used the MPMATH numerical PYTHON library, which is 24 times slower, and the

calculation of results similar to those of Tab. 4 took around 12 hours.
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Spin 0 1 2 3 4 5 6

2 - 3 - 1 - 1

Table 5: A spin-partition informed by the conformal-block decomposition of the four-
point function h�0(z1, z̄1)�

0(z2, z̄2)�
0(z3, z̄3)�

0(z4, z̄4)i in the tri-critical Ising model with
�max = 6.5.

h�0�0�0�0i in Tri-critical Ising Model

Similarly, in the tri-critical Ising model we study the four-point function (3.61) whose

crossing equation is

X

h�h̄

0
Ch,h̄

⇣
|z�1|2��0 g̃(�

0�0�0�0)
h,h̄

(z, z̄)�z2��0 g̃(�
0�0�0�0)

h,h̄
(1�z, 1�z̄)

⌘
+|z�1|2��0

�|z|2��0 = 0 .

(3.66)

Once again, the sum over h, h̄ does not include the contribution of the identity operator,

which has been singled out in the last two terms of the equation. In this case we ran

the RL algorithm in mode 2 by setting ��0 = 7
8 for the external operator �0, and using

the spin-partition of Tab. 5 informed by the analytic solution of the tri-critical Ising

model with �max = 6.5.

It may be instructive to compare this spin-partition with the corresponding spin-

partition for the Ising model in Tab. 3. The only di↵erence is 3 versus 1 spin-2 quasi-

primary operators. In the analytic solution there is another di↵erence, which is not

apparent in Tab. 5. At spin-6 the tri-critical Ising model has 2 degenerate quasi-primary

states
✓
L3
�2 +

10

7
L�6 �

1

2
L�1L�2L�3

◆
|0i ,

✓
L2
�3 +

92

63
L�6 �

4

9
L�1L�2L�3

◆
|0i , (3.67)

instead of just one, whose contribution combines as a single term in the crossing equa-

tions. The degeneracies are, therefore, invisible to the spin-partition and consequently

not detectable from our analysis.

In this context, we performed a search in a 14-dimensional space of scaling di-

mensions and OPE-squared coe�cients. The RL algorithm was run with 29 di↵erent

points on the z-plane. The results that appear in Tab. 6 were obtained after a run that

lasted approximately 20 minutes and yielded a configuration with relative accuracy

A = 0.000705966 (significantly larger than that in Tab. 4 for the Ising model).

The comparison between the numerical and analytic results follows a pattern similar

to that in the Ising model. The agent has clearly located the CFT data of the tri-critical

Ising model, and the agreement with the analytic results is better for the low-lying

operators at spin-0 and spin-2 with expected scaling dimensions 3 and 2 respectively.
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��0 = 7
8

spin analytic � RL � analytic C RL C

0 4 3.8950076 0.299072 0.63403654
0 3 2.9969018 0.285171 0.29550505
2 2 1.97196 0.546875 0.6054145
2 6 5.97496 0.0238323 0.041339442
2 5 5.0424104 0.0270531 0.040516548
4 4 4.051943 0.0435791 0.06928008
6 6 5.9997706 0.00589177 0.0047707544

A = 0.000705966

Table 6: Analytic and numerical solutions for scaling dimensions and OPE-
squared coe�cients in the conformal-block decomposition of the four-point function
h�0(z1, z̄1)�

0(z2, z̄2)�
0(z3, z̄3)�

0(z4, z̄4)i for �� = 7
8 and the spin-partition of Tab. 5 with

�max = 6.5. The numerical results were obtained with a mode-2 run of the RL algorithm.

4-point Functions with the Identity as the Single Virasoro Conformal Block

Several minimal models have 4-point functions of a single conformal primary with the

identity as the only Virasoro conformal block. In the Ising model, M(4, 3), this feature

appears in the four-point function h"(z1, z̄1)"(z2, z̄2)"(z3, z̄3)"(z4, z̄4)i, in the tri-critical

Ising model, M(5, 4), in the four-point function h"00(z1, z̄1)"00(z2, z̄2)"00(z3, z̄3)"00(z4, z̄4)i,

in the three-state Potts model, M(6, 5), and also in the relevant four-point function

hY (z1, z̄1)Y (z2, z̄2)Y (z3, z̄3)Y (z4, z̄4)i etc. The operators ", "00, Y are all spinless with

di↵erent scaling dimensions: 1, 3, 6, respectively. In this subsection, we compare the

first two cases: h""""i in the Ising model, and h"00"00"00"00i in the tri-critical Ising model.

In all these cases the crossing equations are similar,

X

h�h̄

0
Ch,h̄

⇣
|z�1|2�O g̃(OOOO)

h,h̄
(z, z̄)�z2�O g̃(OOOO)

h,h̄
(1�z, 1�z̄)

⌘
+|z�1|2�O�|z|2�O = 0 ,

(3.68)

and the spin-partition is the same. O is the spinless external operator and �O its

scaling dimension.

Using the spin-partition of Tab. 7, which contains the expected number of quasi-

primary operators in the identity Virasoro block up to scaling dimension 6.5, we var-

ied the scaling dimension �O of the external operator and searched for solutions to

the crossing equations (3.68). Our main purpose in this subsection was to verify the

expected analytic solutions of the Ising and tri-critical Ising models and that the al-

gorithm could distinguish solutions with di↵erent external scaling dimensions but the

same spin-partition. For these purposes a mode-3 run was deemed su�cient.

The results of Tab. 8 were obtained with O = ". Indeed, they verify quite clearly

the expected structure of the Ising model. The run reported in Tab. 8 took only 5

minutes to reach the relative accuracy A = 0.000862723 in mode 3.
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Spin 0 1 2 3 4 5 6

1 - 2 - 1 - 1

Table 7: A spin-partition for the conformal block contribution of the identity operator
with �max = 6.

�" = 1

spin analytic � RL � analytic C RL C

0 4 4.0683885 1 1.0427935
2 2 1.9544389 1 1.1926383
2 6 5.926708 0.1 0.1150967
4 4 3.904911 0.1 0.20634486
6 6 5.9300733 0.0238095 0.022085898

A = 0.000862723

Table 8: Analytic and numerical solutions for scaling dimensions and OPE-
squared coe�cients in the conformal block decomposition of the four-point function
h"(z1, z̄1)"(z2, z̄2)"(z3, z̄3)"(z4, z̄4)i for �" = 1 and the spin-partition of Tab. 7 with
�max = 6.5. The numerical results were obtained with a mode-3 run of the RL al-
gorithm.

A similar mode-3 run with O = "00 produced the results of Tab. 9 with a comparable

relative accuracy A = 0.000668002. The general features of the expected structure of

the tri-critical Ising model are present, but some of the numbers (depicted in magenta

in Tab. 9) exhibit significant discrepancies with the analytic results. A possibly related

feature in the analytic solution is the presence of sizeable OPE-squared coe�cients

at higher scaling dimensions. In order to probe this feature further, we repeated the

computation with a higher cuto↵, �max = 8.5, which involves a spin-partition with 8

di↵erent operators. The resulting 16-dimensional search in mode 3 produced the num-

bers listed in Tab. 10, which exhibit a definite improvement compared to the previous

�max = 6.5 run. For the convenience of the reader we have highlighted with a magenta

color the corresponding numbers in Tabs 9 and 10.

In the above computations we fixed the scaling dimension of the external operator

and tried to determine the remaining data. It would be interesting to perform a more

general computation, where the scaling dimension of the external operator is one of

the unknowns of the search. In mode 1, this search should be able to identify, solely

from the input of the spin-partition, di↵erent solutions corresponding to the data of

each CFT in the minimal series. We do not perform this computation here, but present

results of a very similar computation in Sec. 3.6.2 in the case of the compactified boson

CFT.
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�"00 = 3

spin analytic � RL � analytic C RL C

0 4 5.3342843 41.3265 43.009876
2 2 2.586108 6.42857 6.317041
2 6 5.900023 23.4184 23.202938
4 4 4.8769903 3.64286 16.4788
6 6 6.0306115 1.23387 1.7063767

A = 0.000668002

Table 9: Analytic and numerical solutions for scaling dimensions and OPE-
squared coe�cients in the conformal block decomposition of the four-point function
h"00(z1, z̄1)"00(z2, z̄2)"00(z3, z̄3)"00(z4, z̄4)i for �"00 = 3 and the spin-partition of Tab. 7
with �max = 6.5. The numerical results were obtained with a mode-3 run of the RL
algorithm.

�"00 = 3

spin analytic � RL � analytic C RL C

0 4 4.505229 41.3265 40.726093
0 8 7.9896655 13.2704 13.0988035
2 2 2.3935893 6.42857 5.4763665
2 6 7.1316943 23.4184 21.824356
4 4 4.362866 3.64286 4.9283843
4 8 7.9502306 5.89678 6.0844507
6 6 6.0996165 1.23387 2.7852516
8 8 8.006613 0.251744 0.0013012796

A = 0.000771919

Table 10: A �max = 8.5 version of Tab. 9.

3.6 Application II: c = 1 Compactified Boson

With an eye towards more general applications, it is important to explore the perfor-

mance of our approach beyond the restricted class of rational conformal field theories,

of which minimal models are a special case. In this section, we study the c = 1 com-

pactified boson CFT. This is a free scalar CFT. Free CFTs are the benchmark of the

Lagrangian QFT approach and the basis of perturbative methods in quantum field

theory, readily solved by traditional methods and an entry-level litmus test for the

generalisation of our method to more challenging settings.

The reader should appreciate that by rediscovering the compactified boson CFT

as a solution to the crossing equations, one would be able to solve it without the use

of the standard Lagrangian methods, e.g. they would be able to determine correlation

functions without using Wick’s theorem. Despite its simplicity, the free scalar CFT

has a rich spectrum of primary operators with momentum and winding around the

target circle and scaling dimensions that depend non-trivially on an exactly marginal
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coupling—the radius of the circle. This is therefore an interesting toy model where our

methods can be used to compute non-trivial CFT data across a continuous family of

CFTs connected by exactly marginal deformations, namely across a conformal manifold.

Conformal manifolds are ubiquitous in four-dimensional supersymmetric QFTs, e.g. in

4D N = 4 SYM theory, which would be one of the natural subsequent applications of

the RL approach presented here.

We study two examples of four-point functions in the compactified boson CFT:

four-point functions of vertex operators with momentum or winding, and four-point

functions of the conserved U(1) current. We discover that even with a very small

cuto↵, as low as �max = 2, the algorithm can detect correctly the 2D compactified

boson CFT and returns rather accurate approximate values for scaling dimensions and

OPE-squared coe�cients.

3.6.1 Analytic Solution

Before delving into the results of the RL exercise, it is useful to recall briefly the

analytic solution of the 2D S1 scalar theory that we want to rediscover from a conformal

bootstrap/RL perspective.

Consider the 2D CFT of a compact boson X with radius R:

S =
1

4⇡

Z
d2z @X@̄X , X ' X + 2⇡R . (3.69)

Since this is a free theory, it is straightforward to analytically compute all its data.

Let us summarise some of the pertinent details following closely the conventions of [73]

with ↵0 = 2.

The basic conformal primaries of the theory are the U(1) currents

j(z) =
i

2
@X(z) , j̄(z̄) =

i

2
@X(z̄) (3.70)

and the vertex operators14

Vp,p̄(z, z̄) = eipX(z)+ip̄X̄(z̄) , p =
n

R
+

wR

2
, p̄ =

n

R
�

wR

2
, (3.71)

where n and w are the integer momentum and winding quantum numbers of the

corresponding states. j, j̄ have respectively conformal scaling dimensions (h, h̄) =

(1, 0), (0, 1), while Vp,p̄ has (h, h̄) = (p
2

2 ,
p̄2

2 ). The spin of an operator is s = h � h̄. As

a result, the vertex operator Vp,p̄ has spin s = 1
2(p

2
� p̄2) = nw. Corresponding states

with only momentum, or only winding, are spinless.

The remaining spectrum of operators can be organised using the Virasoro algebra,

14All the operators appearing below should be understood as being normal ordered.
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but since we only want to use the global so(2, 2) part of the 2D conformal algebra,

we need to also identify all the quasi-primary operators. All quasi-primaries of the

theory can be obtained by combining any quasi-primary operator from the left-moving

(holomorphic) sector with any quasi-primary operator from the right-moving (anti-

holomorphic) sector. There are no factors with mixed holomorphic-antiholomorphic

derivatives in an operator because of the equations of motion @@̄X = 0. Hence, let us

focus momentarily on the holomorphic sector.

As already noted in our minimal-model discussion, a quasi-primary state (in the

holomorphic sector) is annihilated by the L1 = 1
2⇡i

H
dz z2 T (z) conformal genera-

tor. This requires that the OPE between the energy-momentum tensor T (z) and a

quasi-primary should have no z�3 pole. The general vertex operator with holomorphic

momentum p has the form

Om1,...,mr;p ⌘

rY

a=1

(@aX)ma eipX . (3.72)

A straightforward computation shows that the z�3 pole in the OPE T (z)Om1,...,mr;p(0)

is

h
T (z)Om1,...,mr;p(0)

i

3
=

rX

a=2

(a� 1)aOm1,...,ma�1+1,ma�1,ma+1,...,mr;p(0) . (3.73)

A generic quasi-primary is a linear combination of operators of the form (3.72) with

the same conformal dimension. Eq. (3.73) can be used to determine the numerical

coe�cients in these combinations. For example, the quasi-primaries with up to six

derivatives are:

⇥
(@X)2 + ip@2X

⇤
eipX ,


(@X)3 +

3

2
ip@X@2X �

p2

4
@3X

�
eipX ,

⇥
(@X)4 + 2ip(@X)2@2X � p2(@2X)2

⇤
eipX ,


@X@3X +

ip

12
@4X �

3

2
(@2X)2

�
eipX ,


(@X)5 +

5ip

2
(@X)3@2X �

p2

4

�
(@X)2@3X + ip@2X@3X + 6@X(@2X)2

��
eipX ,


(@X)2@3X �

3

2
@X(@2X)2 +

p

4

✓
5i

6
@X@4X �

1

24
@5X � i@2X@3X

◆�
eipX ,


(@X)6 + 3ip(@X)4@2X � 3p2

✓
(@X)2(@2X)2 +

ip

3
(@2X)3

◆�
eipX ,


(@X)3@3X �

3

2

✓
(@X)2(@2X)2 +

ip

3
(@2X)3

◆

+
3ip

2

✓
@X@2X@3X � (@2X)3 +

ip

12
(@3X)2

◆�
eipX ,
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
@X@5X +

ip

30
@6X � 10@2X@4X + 10(@3X)2

�
eipX ,


(@X)3@3X �

3

2
(@X)2(@2X)2 +

3p2

8
(@3X)2 �

p2

3
@2X@4X

+
ip

3
(@X)2@4X �

ip

2
@X@2X@3X

�
eipX . (3.74)

Putting together the holomorphic and anti-holomorphic parts, general quasi-primaries

can be obtained as linear combinations of the operators

O{ma},{m̄ā};p,p̄ ⌘
rY

a=1

(@aX)ma

r̄Y

ā=1

�
@āX̄

�m̄ā eipX+ip̄X̄ . (3.75)

The conformal dimensions of these operators are

h = `+
1

2
p2 = `+

1

2

✓
n

R
+

wR

2

◆2

, (3.76)

h̄ = ¯̀+
1

2
p̄2 = ¯̀+

1

2

✓
n

R
�

wR

2

◆2

, (3.77)

where ` =
rX

a=1

ama, ¯̀=
r̄X

ā=1

ā m̄ā and p, p̄ are expressed in terms of the momentum and

winding quantum numbers.

The two- and three-point functions involving the above quasi-primaries can be com-

puted straightforwardly using Wick contractions. Explicit results, that will be com-

pared against those from the RL output, will be listed in the next subsection.

3.6.2 Reinforcement-Learning Results

We will now attempt to rediscover the S1 theory from the conformal-bootstrap per-

spective. We consider two kinds of four-point functions. The first one is the four-point

function of four spinless conformal primaries with arbitrary, but fixed, scaling dimen-

sions. The zero-spin assumption is not necessary; we only make it here for convenience

and illustration purposes. We further assume that these operators are charged un-

der a conserved U(1) symmetry. We denote them as Vp and parametrise their scaling

dimension �p by the real variable p using the relation

�p ⌘ p2 . (3.78)

We emphasise that this equation should be viewed as the definition of the real number

p. At this point we do not specify how p relates to the U(1) charge of Vp and hence

(3.78) is not a dynamical statement about the scaling dimension �p in terms of some
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Spin 0 1 2 3 4 5

�max = 2 s-channel 1 – – – – –
t-channel 1 1 1 – – –

�max = 3.5 s-channel 1 – 1 1 – –
t-channel 1 2 1 1 – –

�max = 4.5 s-channel 2 – 1 1 1 –
t-channel 2 2 2 1 1 –

�max = 5.5 s-channel 2 1 1 1 1 1
t-channel 2 3 2 2 1 1

Table 11: Spin-partitions for the conformal-block decomposition of the four-point func-
tion hVp(z1, z̄1)Vp(z2, z̄2)V̄p(z3, z̄3)V̄p(z4, z̄4)i at four di↵erent values of the cuto↵ �max.

other quantum number.

Keeping the above in mind, we consider the four-point function

hVp(z1, z̄1)Vp(z2, z̄2)V̄p(z3, z̄3)V̄p(z4, z̄4)i , (3.79)

where V̄p denotes the complex conjugate of Vp. Since Vp and V̄p have opposite U(1)

charge, the four-point function (3.79) is neutral under the assumed global U(1) sym-

metry. Vp is expected to capture the primary vertex operator Vp,p(z, z̄) = eip(X(z)+X̄(z̄))

with p = p̄ = n
R and winding w = 0, or the T-dual Vp,�p(z, z̄) = eip(X(z)�X̄(z̄)) with

p = p̄ = w
R and momentum n = 0. Only a minimal part of this information will be

incorporated indirectly into the algorithm via the spin-partition. Using this partial

information, the agent will have to uncover that Vp is indeed part of the S1 theory and

that p is related to the U(1) charge.

The second kind of four-point function that we will consider is the correlator of the

conserved spin-1 operator j,

hj(z1)j(z2)j(z3)j(z4)i . (3.80)

We next display the results of the RL algorithm for each case.

Momentum/winding Sector

The crossing equation for the four-point function (3.79) can be written as

X

h�h̄

sCh,h̄|z� 1|2�p g̃(V V V̄ V̄ )
h,h̄

(z, z̄)�
X

h0�h̄0

0
tCh0,h̄0 |z|2�p g̃(V̄ V V V̄ )

h,h̄
(1� z, 1� z̄)� |z|2�p = 0 .

(3.81)

In the t-channel block decomposition we have separated the contribution of the identity

operator and have used the normalisation convention hVp V̄pi = 1.

73



CHAPTER 3. BOOTSTRAP WITH REINFORCEMENT LEARNING

Let us fix for concreteness the scaling dimension �p of Vp to some specific value, e.g.

�p = 0.1. This value is deliberately small to allow for spin-partitions with relatively

small cuto↵ �max. In Tab. 11 we collect four spin-partitions that will be used to

study the truncated version of the crossing equations (3.81). These spin-partitions are

inspired by the analytic solution of the S1 theory when imposing the cuto↵ �max =

2, 3.5, 4.5, 5.5, respectively, in the OPEs of the s- and t-channels. In each of these spin-

partitions the number of unknowns (scaling dimensions plus OPE-squared coe�cients)

that we are solving for is 8, 16, 26, 36.

In Tabs 12-14 we have collected the expected analytic results of the S1 theory for

Vp = Vp,±p and |p| =
p
0.1 together with the best results of the runs we performed. In

contrast to Sec. 3.5, where we presented results based mainly on mode-2 and mode-3

runs (guided by partial prior information about the CFT data in the initialisation of

the code), in this section we present results of genuine mode-1 runs based only on the

information provided by the spin-partition.

One of the first observations in Tab. 12 is that already in the simplest case of

�max = 2 the RL algorithm predicts the corresponding CFT data to very good accuracy.

The run reported in Tab. 12 for �max = 2 used 30 z-points and took approximately

5 minutes to yield the relative accuracy A = 0.000197442. The results for the higher

cuto↵s, that incorporate further operators with higher conformal scaling dimensions

(and spin), were obtained by building on the �max = 2 data with the use of the

incremental mode-1 procedure of Sec. 3.4.5.

The results at�max = 3.5 in Tab. 12 exhibit a noticeable decrease in A (which trans-

lates to a smaller violation of the truncated-reduced crossing equations) and agreement

between the numerical and analytic results for the low-lying spectrum, which is compa-

rable with the �max = 2 run. Notice that there are two deliberate features complicating

the �max = 3.5 run. First, the fact that the spin-3 operator is absent in the s-channel

was not an input. The agent had to discover this feature (as it does), but this com-

plicates the search. Interestingly, although the spin-3 operator is absent in the exact

conformal decomposition, the agent manages to identify its scaling dimension with re-

markable accuracy. Apparently, this is not an accident; similar results are obtained in

the higher cuto↵ runs of Tabs 13-14. Second, in the runs of Tab. 12 we are not using

any information about the signs of the OPE-squared coe�cients. As a result, some of

the OPE-squared coe�cients obtained in the �max = 3.5 run have the wrong sign in

the t-channel. Once again, this complicates the search and prevents the agent from

improving the agreement between the numerical and analytic results.

The data reported in Tabs 13-14 are based on multi-dimensional searches with

an even larger number of operators (13 and 18 respectively). To increase the accuracy

(namely, reduce the value of A) we used the results of the incremental mode-1 procedure

of Sec. 3.4.5 to initialise an additional, subsequent mode-2 run with 49 z-points. The
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�max = 2
Channel spin analytic � RL � analytic C RL C

s 0 0.4 0.38694087 1 0.99479413

t 0 2 2.1108415 0.01 0.010378244
1 1 0.9485743 -0.1 -0.10135128
2 2 2.1295118 0.005 0.004827103

A = 0.000197442

�max = 3.5
Channel spin analytic � RL � analytic C RL C

s 0 0.4 0.39011472 1 0.999143
2 2.4 2.2029796 3.57143 ⇥10�3 2.2229333 ⇥10�3

3 3.4 3.203875 0 4.971186 ⇥10�7

t 0 2 2.1141205 0.01 0.008170344
1 1 0.95283717 -0.1 -0.09884554
1 3 2.8024354 -5 ⇥10�4 9.701283 ⇥10�4

2 2 2.1266346 0.005 0.003557264
3 3 2.8005629 -1.66667 ⇥10�4 4.3958283 ⇥10�4

A = 0.00000225745

Table 12: Analytic and numerical solutions for scaling dimensions and OPE-squared
coe�cients for �p = 0.1 and spin-partitions with �max = 2, 3.5 and 30 z-points respec-
tively. The numerical results were obtained using the mode described in Sec. 3.4.5.

mode-2 run began with a search on the OPE-squared coe�cients alone, while the scaling

dimensions were kept fixed at the values obtained from the prior mode-1 search. At a

second stage of the run, the scaling dimensions were unfrozen and the agent was allowed

to search in the complete space of scaling dimensions and OPE-squared coe�cients to

find the results reported in Tabs 13-14. In the �max = 4.5 run we kept the signs of

the OPE-squared coe�cients free (as in Tabs 12). With the exception of the OPE-

squared coe�cients for the second spin-0 operator in the s-channel, the agent managed

to predict the correct signs. To illustrate what happens when we input the correct

signs, we performed the more complicated �max = 5.5 run by fixing the signs of the

OPE-squared coe�cients at their expected analytic values. The combined mode-1 and

mode-2 runs at �max = 4.5 took approximately 2 hours and the runs at �max = 5.5 4

hours.

Comparing the numerical and analytic results in Tabs 13-14 we observe that the

agent has performed impressively well for the scaling dimensions (even for the odd-spin

operators that do not contribute to the s-channel in the exact result). It performed

decently for the OPE-squared coe�cients of the low-lying �max = 2 operators, but

poorly for many of the remaining, numerically smaller coe�cients. From the single
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�max = 4.5
Channel spin analytic � RL � analytic C RL C

s 0 0.4 0.4185128 1 0.98406625
0 4.4 4.229518 1.27551 ⇥10�5 -5.3023865 ⇥10�5

2 2.4 2.4269097 3.57143 ⇥10�3 4.041962 ⇥10�3

3 3.4 3.2022634 0 -1.0026526 ⇥10�3

4 4.4 4.574162 1.96039 ⇥10�3 2.7667696 ⇥10�4

t 0 2 2.0097528 0.01 0.0025764485
0 4 3.8530886 2.5 ⇥10�5 4.1462967⇥10�4

1 1 0.9313935 -0.1 -0.10908633
1 3 2.9478629 -5 ⇥10�4 -7.262531 ⇥10�3

2 2 2.0496795 0.005 0.013589153
2 4 3.8056073 1.66667 ⇥10�5 6.19941 ⇥10�5

3 3 2.9541698 -1.66667 ⇥10�4 - 4.592793 ⇥10�3

4 4 4.0146556 4.16667 ⇥10�6 4.924626 ⇥10�3

A = 0.0000206548

Table 13: Analytic and numerical solutions for scaling dimensions and OPE-squared
coe�cients for �p = 0.1 and spin-partitions with �max = 4.5 and 49 z-points. The
numerical results were obtained using a mode-2 run on top of the mode described in
Sec. 3.4.5.

runs reported in Tabs 13-14 we can immediately deduce that the algorithm works,

because it managed to minimise the violation of the truncated crossing equations and

identified CFT data with a very low value of A. To obtain a better understanding

of the values predicted by the algorithm, and record a more solid result, one needs

(at the very least) to perform multiple runs and determine the statistical variation of

the obtained results. We expect the smallest statistical variations for the low-lying

scaling dimensions and the corresponding OPE-squared coe�cients. It would also be

interesting to explore further how these data are a↵ected by the choice of the z-sampling

and the precise form of the reward function. As a preliminary check, we examined a

derivative expansion of the crossing equations around the fully symmetric point u =

v = 1 (see Ref. [41]), using the quoted scaling dimensions in Tab. 14 as an input.

Truncating to the appropriate order we solved the resulting linear system to obtain the

corresponding OPE-squared coe�cients. Interestingly, we observed numerical values

comparable to the ones obtained in Tab. 14 with the use of the RL algorithm.

As an illustration, we performed a preliminary analysis of the statistical errors with

multiple runs for the �max = 2, �p = 0.1 case by completing 12 runs with 20 z-points.

The results, collected in Tab. 15, provide a more complete picture of the final output of

the computation. We note that the errors in Tab. 15 do not include systematic errors

associated with the truncation or the choice of the z-points.

Finally, we performed the following exercise. Using the fixed spin-partition for

�max = 2 from Tab. 11, we varied �p from 0.1 to 0.6 with a step of 0.1. As �p
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�max = 5.5
Channel spin analytic � RL � analytic C RL C

s 0 0.4 0.40006787 1 1.0057276
0 4.4 4.336432 1.27551 ⇥10�5 0.43016876 ⇥10�5

1 5.4 5.307818 0 -2.2633198 ⇥10�4

2 2.4 2.4060674 3.57143 ⇥10�3 5.486169 ⇥10�3

3 3.4 3.446559 0 -0.4480493 ⇥10�5

4 4.4 4.410344 1.96039 ⇥10�3 0.27796367 ⇥10�3

5 5.4 5.3354797 0 -9.976282 ⇥10�5

t 0 2 2.001293 0.01 0.0056684865
0 4 4.0166564 2.5 ⇥10�5 4.8836926 ⇥10�4

1 1 1.040068 -0.1 -0.085237
1 3 3.0494268 -5 ⇥10�4 -2.271628 ⇥10�2

1 5 4.9848695 -8.33333 ⇥10�7 -9.268466 ⇥10�4

2 2 2.00707 0.005 0.0018059064
2 4 4.045016 1.66667 ⇥10�5 7.282457 ⇥10�4

3 3 3.0331514 -1.66667 ⇥10�4 -2.894943 ⇥10�4

3 5 4.9544168 -4.16667 ⇥10�7 -3.3044117⇥10�3

4 4 3.9395354 4.16667 ⇥10�6 6.668457 ⇥10�4

5 5 5.0390368 -8.33333 ⇥10�8 -4.3607014 ⇥10�4

A = 0.0000321653

Table 14: Analytic and numerical solutions for scaling dimensions and OPE-squared
coe�cients for �p = 0.1 and spin-partitions with �max = 5.5 and 49 z-points. The
numerical results were obtained using a mode-2 run on top of the mode described in
Sec. 3.4.5.

�max = 2
Channel spin analytic � RL � analytic C RL C

s 0 0.4 0.38941 ± 0.00862 1 0.99546 ± 0.00335

t 0 2 1.96776 ± 0.11673 0.01 0.01151 ± 0.00359
1 1 0.96145 ± 0.04084 -0.1 -0.10180 ± 0.00435
2 2 2.06592 ± 0.17467 0.005 0.00497 ± 0.00156

A = 0.000298727± 0.0000960205

Table 15: Analytic and numerical solutions from 12 runs for the mean and standard
deviations of the scaling dimensions and OPE-squared coe�cients for �p = 0.1, spin-
partitions with �max = 2 and 20 z-points. The numerical results were obtained in mode
1.

increases so do the scaling dimensions in the s-channel. As a result, in the s-channel

we increase appropriately the upper cuto↵ in the search and the fixed spin-partition

is no longer that of �max = 2. At the same time, the t-channel scaling dimensions

remain within the �max = 2 window. In Fig. 2 we plot the scaling dimension �s of the

lowest scalar in the s-channel OPE of Vp as a function of �p. The slope of the best-fit

line, �s = �0.0127 + 3.99345�p, is 0.16% close to the analytically expected value of
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Figure 2: A plot of the numerically obtained values of �s for the lowest scalar in the s
channel as a function of �p. The solid line is the line of best fit.

Figure 3: A plot of the relative accuracy A for the runs leading to Fig. 2 as a function
of �p.

�s = 4�p, although the relative accuracy A of the corresponding search increases for

higher �p, as can be seen from Fig. 3. This result suggests that the fixed spin-partition

in the top entry of Tab. 11 is inadequate as we increase the scaling dimension of the

external operators and that more operators need to be included for large external scaling

dimensions in both channels. It would be useful to develop a better understanding of

the optimal use of cuto↵s and search windows in such situations.

One can also infer some additional information from Fig. 2. Had one been agnostic

about the CFT, Fig. 2 would provide evidence that the variable p is proportional to

the U(1) charge of the operator Vp, since the scalar appearing in the OPE VpVp has

twice the U(1) charge of Vp (the U(1) charge is additive) and the scaling dimension �s

is found to be �s = (2p)2. A sharper argument along these lines could be obtained

by studying the four-point function hVp1Vp2 V̄p1 V̄p2i for a generic pair of p1, p2. The

four-point function hjjVpV̄pi would also yield related information.

At this point, it is interesting to ask whether the RL results allow us to conclusively

determine that the CFT in question has a one-dimensional conformal manifold (namely

an exactly marginal operator). The uncharged, spinless operator of scaling dimension

2 that appears in the t-channel is an obvious candidate that indicates the existence of a
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Spin 0 1 2 3 4 5 6 7 8

- - 1 - 1 - 1 - 1

Table 16: A spin-partition inspired by the conformal-block decomposition of the four-
point function hj(z1)j(z2)j(z3)j(z4)i with �max = 8.

�j = 0.993577± 0.00528402
spin analytic � RL � analytic C RL C

2 2 2.01688± 0.0242115 2 1.94164± 0.0426005
4 4 3.96686± 0.0419861 1.2 1.15899± 0.0351261
6 6 5.95325± 0.0438046 0.23809524 0.22054± 0.00729978
8 8 7.97585± 0.0767531 0.03263403 0.0240609± 0.00121834

A = 0.000213657± 0.00000819217

Table 17: Analytic and numerical solutions from 10 runs for the mean and standard
deviation of scaling dimensions and OPE-squared coe�cients in the conformal-block de-
composition of the four-point function hj(z1)j(z2)j(z3)j(z4)i. �j is also an unknown
and the spin-partition is that of Tab. 16. The numerical results were obtained with 16
z-points and a mode-1 run of the RL algorithm.

one-dimensional conformal manifold. Moreover, if there is some additional information

that the spectrum of the CFT is discrete, the fact that we can solve the crossing

equations for a continuous set of scaling dimensions �p for the operators Vp, signals

the fact that the theory has an exactly marginal deformation and that the scaling

dimension of Vp can be used as a proxy for the value of the exactly marginal coupling.

Spin-1 correlation functions

A characteristic feature of the S1 theory is the existence of a conserved holomorphic

(and separately an anti-holomorphic) U(1) current j(z), under which many of the oper-

ators of the theory are charged. In this subsection, we study the four-point function of

this current, (3.80). The holomorphic current j(z) has spin 1 and (since it is conserved)

scaling dimension �j = 1. Keeping its scaling dimension �j free for the moment, we

find that the four-point function (3.80) yields the crossing equation

X

h�h̄

0
Ch,h̄

⇣
(z�1)2�jg(jjjj)

h,h̄
(z, z̄)�z2�jg(jjjj)

h,h̄
(1�z, 1�z̄)

⌘
+

1

16

⇣
(z�1)2�z2

⌘
= 0 . (3.82)

The 1/16 factor in the last term, capturing the contribution of the identity, originates

from the normalisation condition hjji = 1
4 .

The quasi-primaries that one needs in (3.82) come from the j(z1)j(z2) OPE of the

S1 theory and can be straightforwardly obtained following the discussion around (3.72),
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�j = 1
spin analytic � RL � analytic C RL C

2 2 2.0080483 2 1.9766322
4 4 4.0273294 1.2 1.1675011
6 6 6.014957 0.23809524 0.21928822
8 8 8.0047245 0.03263403 0.023595015

A = 0.00018822

Table 18: Analytic and numerical solutions for scaling dimensions and OPE-
squared coe�cients in the conformal-block decomposition of the four-point function
hj(z1)j(z2)j(z3)j(z4)i for �j = 1 and the spin-partition of Tab. 16. The numerical
results were obtained with 16 z-points and a mode-2 run of the RL algorithm.

by isolating contributions of the type @mX@nX and setting p! 0. These read

(@X)2 , @X@3X �
3

2
(@2X)2 , @X@5X � 10@2X@4X + 10(@3X)2 ,

1

21
@X@7X � @2X@6X + 5@3X@5X �

25

6

�
@4X

�2
, (3.83)

and lead to the spin-partition of Tab. 16 with �max = 8.

With this spin-partition we ran the RL algorithm 10 times in mode 1 using 16 z-

points. In this case, we kept the conformal scaling dimension of the external operator

j as one of the unknowns to be determined by the agent. Overall, this was a 9-

dimensional search. The results, collected in Tab. 17, include statistical errors and

exhibit the relative accuracy A = (2.13657 ± 0.0819217) ⇥ 10�4. It is very rewarding

to see that the agent determined the scaling dimension of the conserved U(1) current

to excellent accuracy just from the knowledge of the spin partition, and reproduced

sensibly the low-lying spectrum and OPE data of the quasi-primary operators that

appear in the OPE of the current with itself. For comparison, we also performed

a single, independent mode-2 run with 16 z-points, where the scaling dimension of

the current was fixed from the beginning at the analytic value �j = 1. The results,

at relative accuracy A = 0.00018822, are summarised in Tab. 18. They are nicely

consistent with the mode-1 results of Tab. 17.
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Chapter 4

Vacuum Characters of 2D VOAs

4.1 Introduction

In recent years there has been intense activity pertaining to the study of supercon-

formal theories (SCFTs) that do not admit a Lagrangian description. Theories with

N � 2 superconformal symmetry are ideal for such explorations. Despite the lack of

perturbative control, one can still extract nontrivial data by exploiting the large amount

of symmetry, e.g. by employing the power of dualities [74, 69, 75], implementing the

bootstrap programme [13, 76], or evaluating superconformal indices [7].

In this context, “pure” N = 3 SCFTs—N = 3 theories which do not automatically

enhance to N = 4—were envisioned in [77, 78] and engineered in string theory through

the Sk-fold constructions of [79, 80]. These are isolated, holographic SCFTs (a4D =

c4D) with an F-theory dual on an AdS5 ⇥ (S5 ⇥ T2)/Zk background. The gravity

description was used in [81, 82] to evaluate the superconformal index in the large-rank

limit. Candidates for additional rank-one and rank-two N = 3 examples were presented

in [83, 84], by constructing corresponding Coulomb-branch geometries via gaugings of

N = 4 theories by a discrete subgroup of the R-symmetry and electromagnetic duality

groups. The “Coulomb” limit of the superconformal index [85] and the Higgs-branch

Hilbert series for these models were evaluated in [86]; see also [87].

As N = 3 theories are automatically N = 2, a concrete computational handle can

be established through the description of a “Schur” Bogomol’nyi–Prasad–Sommerfield

(BPS) subsector of anyN = 2 4D theory [85] by a (non-unitary) vertex operator algebra

(VOA) [29]. VOAs for N = 3 theories were initially constructed in [88, 89] culminating

in the work of [20]. In that reference, it was conjectured that certain VOAs labelled

by non-Coxeter crystallographic complex reflection groups encode the Schur subsector

of the known N = 3 S-fold theories. In particular, [20] gave a prescription for an

elegant free-field realisation of such VOAs, along the lines of [90]. By constructing the

latter, one is able to recover the “Macdonald” limit of the superconformal index [85] for

N = 3 S-fold theories, from the VOA vacuum character. See also [91] for an alternate
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prescription on implementing a Macdonald grading of the chiral algebra.

Albeit concrete, implementing the findings of [20] in practice quickly becomes com-

putationally intensive. It is di�cult to write down the explicit free-field realisations

of the relevant VOAs in all but the simplest of cases, and also to evaluate the corre-

sponding vacuum characters in a fugacity expansion for increasing conformal weights.

The goal of this chapter is to show how far one can get by implementing a brute-force

approach using mathematical software, for the VOAs labelled by the complex reflection

groups G(k, 1, 1) = Zk, k = 3, 4, 6 (Z3,4 label rank-one S-fold models) and G(3, 1, 2)

(labels a rank-two S-fold model). We employ the G(k, p,N) notation of [92], where

p is a divisor of k; general complex reflection groups are denoted as G. G(k, p,N)

can be defined as the semi-direct product of an abelian group of order kN/p with the

symmetric group, Sym(N).

Towards that end, we reconstruct and explicitly exhibit the free-field realisations

of [20] for the theories of interest. We then provide algorithms for automating the

process of finding null states and for evaluating the VOA vacuum characters. Our

code, appended to this letter, can in principle be executed to obtain the corresponding

Macdonald index at arbitrary orders in a fugacity expansion. Note however that the

vacuum character computation time increases exponentially as a function of the con-

formal weight. Our code is also customisable—and we have clearly signposted how to

do so—for the reader interested in extending it to the evaluation of vacuum charac-

ters for VOAs labelled by other complex reflection groups, once the complete free-field

realisation of the VOA has been found.

Our results, all of which have been collected in the ancillary files here for quick

reference, can be used to check the conjecture of [20] against independent calculations

of the Macdonald index of 4D N = 3 S-fold theories and vice versa. For example, a

proposal for the Schur limit of the superconformal index—a special case of the Mac-

donald index—for the rank-one Z3 S-fold theory was put forward in [93]. In that limit,

their and our findings are in complete agreement.

4.1.1 Outline

In this section we aim to give a guide as to how the rest of this chapter is structured.

In Chapter 2 we gave a brief overview of some basic aspects of conformal field theories

and defined the conventions we will be employing. In Sec. 4.2 we aim to first build up

the N = 2 and small N = 4 superconformal algebras (SCAs) to then later be used to

calculate the vacuum characters. In Sec. 4.3 we present the prescription of [20]. Sec.

4.4 and 4.5 are the sections in which we build the free-field realisations of the VOAs up

from scratch. Then in Sec. 4.6 we present a new R-filtration charge which can be used

to label the free-fields in order to make contact with the 4D Macdonald indices. In

Sec. 4.7 we explain two algorithms which can be used in order to calculate the vacuum
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characters e�ciently, before moving on to presenting all the vacuum characters we

obtained as results. The conclusion for the chapter with a brief summary and potential

outlooks will be in Sec. 6.1.2.

4.2 N = 2 and Small N = 4 Superconformal Algebras

The 2D/4D duality implies that every 4D N � 2 has a subsector which is isomorphic

to a VOA. These VOAs will take the form of extended N = 2 or small N = 4 su-

perconformal algebras (SCAs). By extended we mean that suitable operators will be

added. All of these VOAs will be chiral algebras, which is an extra constraint on the

algebras which we introduced before in Chapter 2. It says that all the operators must

be holomorphic, and hence conserved. This in turn of course implies that all the OPEs

will be only in terms of z. Unitarity will constrain the weight h to be non-negative,

which will also put a cuto↵ on the largest singularity on the OPEs.

In this section we will describe both the N = 2 and small N = 4 superconformal

algebras in detail, listing all their operators and giving the OPEs of the algebra. We

will first start with the latter because the former can be defined as its subalgebra.

The small N = 4 SCA comprises of the AKM sl(2) currents J0,±, the energy-

momentum tensor and also four fermionic generators G± and G̃± — the superpartners

of the currents. The bosonic generators’ OPEs are given as

J0 (z1) J
0 (z2) ⇠

2k

(z1 � z2)
2 (4.1)

J0 (z1) J
± (z2) ⇠

±2J±

(z1 � z2)
(4.2)

J+ (z1) J
� (z2) ⇠

�k

(z1 � z2)
2 +

�J0

(z1 � z2)
(4.3)

T (z1)T (z2) ⇠
c/2

(z1 � z2)
4 +

2T (z2)

(z1 � z2)
2 +

@T (z2)

(z1 � z2)
. (4.4)

For simplicity we will stop adding the ellipses to represent the remaining non-singular

terms as it should be understood when they are present from context. There should be

nothing too surprising among these OPEs, it is just a Virasoro algebra with an AKM

extension. There is however an important fact to note about this theory, and that is

that the central charge and the level of the AKM are related by

c = 6k. (4.5)

Now we present the fermionic part of the algebra. The OPEs behave the same way,

but one has to keep in mind that these generators are Grassmann odd, which means
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they pick up a negative sign when commuted.

G+(z1) eG�(z2) ⇠
2k

(z1 � z2)3
+

J0(z2)

(z1 � z2)2
+

T (z2) +
1
2@J

0(z2)

z1 � z2
(4.6)

G±(z1) eG±(z2) ⇠
2J±(z2)

(z1 � z2)2
+
@J±(z2)

z1 � z2
(4.7)

All the other OPEs which were left out are regular. The only OPEs left are the ones

which are between the bosonic and fermionic generators.

J±(z1)G
⌥
⇠ ⌥

G±(z2)

z1 � z2
(4.8)

J±(z1) eG⌥
⇠ ⌥

eG±(z2)

z1 � z2
(4.9)

Which concludes the list of all relevant OPEs for this algebra. We omitted the OPEs

with T and J0 because these OPEs will just reveal the eigenvalues under T and J0.

We list these eigenvalues in the table below:

Generator Charge under T (h) Charge under J0 (j)

T 2 0

J0 1 0

J± 1 ±1

G± 3
2 ±

1
2

eG± 3
2 ±

1
2

Table 19: Charges of all the Generators in the small N = 4 SCA.

Now that we have completely presented the small N = 4 superconformal algebra,

we will define the N = 2 SCA as a subalgebra of the above generators. This can be

done by the simple identification

J = J0, G = G�, eG = eG+, T = T. (4.10)

The benefit of first doing the larger algebra is that we have already presented all the

OPEs and one can just pick out the relevant ones which are inherited by the N = 2

SCA without having to list them again.

This concludes the review into the CFTs and VOAs which will be required for the

remainder of this chapter. In the following sections we will be presenting a free-field

realisation which reproduces the algebras shown in this section and also moving on to

extend these algebras to eventually use them to calculate the vacuum characters of
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these VOAs and make contact with the 4D theories.

4.3 The Free-Field Realisation

In this section we will present the free-field realisation for N = 2 and small N = 4 SCAs

as proposed in [20]. We will first present the generators in the N = 2 superconformal

algebra and then in the subsequent subsections we will describe how further generators

can be added using this realisation.

4.3.1 The N = 2 SCA in the Free-Field Realisation

Our first order of business is to introduce a group G. This might seem like a bit of a

random decision, and from the perspective of the two dimensional theories it will be,

until we make contact with the four dimensional side. For the moment it is enough to

say that in 4D this will be related to the gauge group of the superconformal theory,

and in 2D this will translate to the definition of a so-called W -algebra labelled by G.

We will not explore this terminology any further and just focus on the fact that this

group defines a specific VOA, denoted by WG. What happens when the 4D theory does

not have a gauge group? In the case of N = 3 theories in 4D we can still relate the

theory to a specific crystallographic complex reflection (CCR) group and hence identify

a corresponding 2D VOA. In general we shall refer to the CCR of N = 2 SCAs in two

dimensions as G and the CCR of N = 4 ones as �. In the case of the latter, the CCR

is actually upgraded to a Coxeter group.

The proposal for the free-field realisation is the following: there are as many free

��bc systems as the rank of G, r = rank(G), or equivalently, the number of fundamental

invariants in the CCR. These systems have the OPEs:

�`1 (z1) �`2 (z2) = �
�`1`2
z12

, b`1 (z1) c`2 (z2) =
�`1`2
z12

. (4.11)

Here the indices `1,2 run from 1 to r. Using these free fields we can put the generators

of the N = 2 superconformal algebra into a new form

J =
rX

`=1

[p`�`�` + (p` � 1) b`c`] (4.12)

G =
rX

`=1

b`�`, eG =
rX

`=1

[p`�`@c` + (p` � 1) @�`c`] , (4.13)

T =
rX

`=1


�
1

2
p`�`@�` +

✓
1�

1

2
p`

◆
@�`�` �

1

2
(p` + 1) b`@c` +

1

2
(1� p`) @b`c`

�
.

(4.14)
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Note that here we swept the normal-ordering and the z-dependence under the rug. All

the operators here are meant to be normal-ordered and defined at the same point z,

i.e. : blcl : (z) := limw!z (bl(z)cl(w)� singular terms).

There is also a relationship between the degrees of the fundamental invariants of

the CCR and the central charge of the N = 2 theory

c = �3
rX

`=1

(2p` � 1) . (4.15)

As we can see the central charge of the two dimensional theory is negative, hence this

theory is non-unitary. Not to worry! This is acceptable since the two dimensional

theory is not the physical one, but the four dimensional ones are and the relationship

between their central charges is c2D = �12c4D [29]. Furthermore, the weights of the

generators (of the abstract algebra) are non-negative so we are all good to go.

Just as we did for the abstract algebra generators, let us summerise the charges of

the free fields under various symmetries. The global symmetry group of the N = 2

superconformal algebra is osp(2|2), with the bosonic subalgebra being sl(2)z�gl(1) and

there is also an outer automorphism gl(1)r.

h m h�m h+m r

�`
1
2p`

1
2p` 0 p` 0

b`
1
2 (p` + 1) 1

2 (p` � 1) 1 p`
1
2

c` �
1
2 (p` � 1) �

1
2 (p` � 1) 0 1� p` �

1
2

�` 1� 1
2p` �

1
2p` 1 1� p` 0

@ 1 0 1 1 0

Table 20: Charges of all the free fields [20].

4.3.2 Extension to Small N = 4

In the subsection above we have constructed a free field realisation for an N = 2 SCA

corresponding to a specific crystallographic complex reflection group G. In order to

construct the small N = 4 SCA, we have to construct the remaining generators in the

N = 4 case. These will be the operators which are charged under the extra sl(2) in

the global part of the N = 4 SCA, psl(2|2), in addition to the symmetries in osp(2|2).

Thankfully in [20] we find a whole recipe on how to construct such an algebra and close

it. The free-field realisation gives us these generators for free:

J+ = �1, G+ = b1, (4.16)
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W` = �`, GW` = b`, (4.17)

where again the index ` = 2, . . . , r. We have introduced two new sets of generators:

W` and GW` . They only appear in rank 2 or higher N = 4 superconformal algebras.

At each ` they form an N = 2 chiral multiplet, just like J+ and G+.

It is quite plain to see that we have not defined all of the generators needed for

this SCA. This is because not everything can be as easily defined when moving to the

free-field realisation. The rest of the generators must be constructed through proposing

an ansatz and then constraining their coe�cients though consistency conditions arising

from the closure of the algebra. One would take the simplest generator first and work

their way through the rest of the algebra. We will present a step-by-step guide of the

prescription of [20] which incorporates the above information and summarises the whole

procedure.

1. From the prescription we are told that there is a one-to-one correspondence be-

tween the degrees (of the fundamental invariants) of � and the chiral strong

generators (generators which cannot be expressed as normal ordered products of

other operators) of the VOA. This means that for each degree we can write down

the highest weight states of the algebra — these would be the operators in (4.16)

— and always assign �l and bl as the free field realisation to the bosonic and

fermionic generators respectively. (In our small N = 4 SU(2) case, this would be

equivalent to assigning J+ = � and G+ = b). We shall call these new generators

Wl and they actually enter with their N = 2 multiplets, which as mentioned be-

fore are chiral, so they only consist of {Wl, GWl}. This is the equivalent statement

of putting �l and bl into a chiral multiplet.

2. There are other generators which are not highest weight. There are two types of

these: anti-chiral and non-chiral. Let us first discuss the former which is simpler.

These multiplets are anti-chiral and the charge conjugates of the Wl multiplet we

introduced before. Let us denote the multiplet as {W l, GW l
}. W l do not have a

prescribed form and the way to determine them is to create an ansatz using the

free-field realisation and its quantum numbers. This will result in a finite amount

of terms which can potentially enter the ansatz.

3. Using these ansatze, enforce the closure of the VOA. This will introduce linear

constraints from the OPEs of generators with other generators and non-linear

constrains from the OPEs of the same generator.

4. Impose that the generators introduced in step 1 are primary.

5. Impose that these generators have non-zero norms.
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6. Above we also mentioned a case where we have generators which are neither chiral

nor anti-chiral. With the other two types of generators one is guaranteed to know

about their existence since they come in pairs which correspond to the degrees

of the complex reflection group, but could there be extra generators? Yes, there

can be extra generators which can be exchanged in the OPEs of the existing

generators. As far as we can tell, rank one cases are way too constraining and

have weights for the generators too small for these new types of generators to

appear in OPEs — they tend to have large weights. There is a methodical way to

determine their existence through an extended analysis of the complex reflection

group, but the most straightforward way is to note them when trying to close the

algebra.

7. Verify that the algebra closes on all the strong generators discussed above.

At the moment this may all seem very abstract, but later in section 4.4 we will give

explicit examples of VOAs derived using this procedure and hopefully it will become

clearer. Just as a word of caution, we will once again note: for higher rank VOAs, be

acutely aware that extra operators can appear, which are essential to closing the algebra

and evaluating the vacuum character correctly.

We will not make a separate section on how to apply this prescription in the case of

the extended N = 2 SCAs. It su�ces to say that the procedure is virtually the same,

but when closing the algebra one has to be aware that the supersymmetry multiplets

in N = 2 are smaller.

4.4 Examples of N = 4 VOAs

4.4.1 Rank 1 Example: � = S2

This is the two-dimensional smallN = 4 superconformal algebra with the central charge

c = �9. In terms of the 2D/4D correspondence this would correspond to the subsector

of the 4D N = 4 gauge theory with gauge group SU(2), since the Weyl group of SU(2)

is S2
⇠= Z2. This is by far one of the simplest theories to construct because there are no

hidden extra generators, and there is only one set of ��bc operators since it is a rank

one theory.

Let us write down the operators we get for free from the prescription:

J+ = �

J0 = bc+ 2��

G+ = b

G� = b�
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eG+ = c@� + 2@c�

T = �
3

2
b@c� �@� �

1

2
@bc (4.18)

So far we have not done anything worth noting besides substituting in the value of c

and also the degree p1 = 2. Since this is quite a simple case, and we know what the

algebra looks like, we know that we are only looking for the operators J� and eG�.

We construct an ansatz for the operator J� using its quantum numbers from the

table 19 and the quantum numbers of the free-fields from 20. Since this is quite a

simple case, it will not have a large amount of terms. We assign an unknown coe�cient

for each of the terms, except for the term ��� whose coe�cient we will fix to be one.

This will actually fix a special rescaling invariance these algebras enjoy. After using

this normalisation and also imposing the constraints arising from the algebra, we end

up with

J� = ��� + �bc�
3

2
@�. (4.19)

Now that we have found this operator, it is quite easy to find the remaining generator
eG� which is in the N = 2 multiplet of J� just by the action of eG+ on J�. This gives:

eG� = �b@cc+ 2��@c+ @��c�
3

2
@2c. (4.20)

And there we have the whole algebra. One can check by doing all the OPEs that

this algebra indeed closes. Below we shall include a small summary of the generators.

Generator h m r Generator h m r

J0 1 0 0 T 2 0 0

J+ 1 +1 0 J� 1 -1 0

G+ 3
2 +1

2 +1
2 G� 3

2 �
1
2 +1

2

eG+ 3
2 +1

2 �
1
2

eG� 3
2 �

1
2 �

1
2

Table 21: Charges of all the strong generators of the S2 extension of the small N = 4
superconformal algebra.

4.4.2 Rank 2 Example: � = S3

Now we present the first rank 2 algebra of this chapter. This is the VOA labelled by the

Coxeter group S3 which is the Weyl group of SU(3). As we explained before, since this

is a rank 2, we expect an increase in the di�culty of finding the free-field representation

and also closing the algebra. This will be very clear once we present the generators
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which appear in this VOA. This is also the simplest rank 2 algebra where generators

which are not chiral or anti-chiral appear.

Let us now take a look at the free-field realisation. Since we are dealing with a rank

2 algebra, we will have to employ two sets of the ��bc systems, with the degrees of the

fundamental invariants of S3 being 2 and 3. From these degrees we find the central

charge to be c = �24.

As per the prescription, our first order of business is to write down the small N = 4

generators in terms of these ��bc systems.

J+ = �1

J0 = b1c1 + 2�1�1 + 2b2c2 + 3�2�2

G+ = b1

G� = b1�1 + b2�2

eG+ = c1@�1 + 2@c1�1 + (p� 1)c2@�2 + p@c2�2

T = �
3

2
b1@c1 �

1

2
@b1c1 � �1@�1 � 2b2@c2 � @b2c2 �

3

2
�2@�2 �

1

2
@�2�2 (4.21)

This is analogous to the part we introduced for the rank 1 case in the previous subsec-

tion, but this time the prescription allows us to introduce more operators

W = �2

GW = b2 (4.22)

This is all we get from the initial prescription. The rest is up to us to determine by

closing the algebra. We will start the same way, by making an ansatz for J� and solving

it, which will result in:

J� = b1c1�1 + �1�1�1 + 2�1b2c2 + 3�1�2�2 � c1b2�2 � 4@�1

+ (�1)
2 (�2)

2 + 2⇤b1�1c2�2. (4.23)

Where we used a very specific normalisation. Now that we have J�, we can generate

some extra operators by using supersymmetry and its OPEs. From the ( eG+J�) OPE

we get

eG� =� b1@c1c1 + 2b2@c1c2 + 2�1b1@c2c2 � 2�21�2@c2

� 2�1�1@c1 � 3�2�1@c2 � 3�2�2@c1 � 2@�1�1�2c2

+ 2b1@c1c1 � 2@�1�1c1 � @�1�1c1 + 2@�21c2 � b2c1@c2

� @�2�2c1 + 4@2c1. (4.24)

From (WJ�) we get our first obscure non-chiral or anti-chiral (with respect to SUSY)
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generator, which we will call O:

O = �b2c1 � 2�1b1c2 � 2�21�2 � 3�2�1 (4.25)

Then we can start building the O multiplet by acting with G�

GO = �2�1�2b1 � 2�1b2. (4.26)

Then we act with G̃+ on O to get

eGO = 2�21@c2 + 3�2@c1 + 2@�21c2 + @�2c1. (4.27)

These are all the generators we can easily get from J� through the algebra. To

fully close the algebra we have to create an ansatz for the W operator and solve it just

like for J�. The result is quite long and complicated so it will be shortened here, but

the full results are available here, in the ancillary files.

W =
2

3
�31�

3
2 � 2�21�

2
1�2 + . . .+ 10@�2b2c2 �

20

3
@2�2 (4.28)

Now just as we did with the previous operators, we start acting with the supersymmetry

generator eG+

eGW = 4b1b2c1@c2c2 � 5b1c1@
2c2 + . . .� @2�1�2c1 +

20

3
@3c2 (4.29)

Here we can also define two new generators (one for W and one for W ), with the OPEs

( eG�GW ) and (G+ eGW ):

TW = �3b2@c1 � 4�1b1@c2 � 2�21@�2 � 2�1@b1c2 � 3�2@�1

� @b2c1 � 2@�1b1c2 � 2@�1�1�2 � @�2�1, (4.30)

TW = �4b1b2@c2c2 � 5b1@
2c2 + 2�1�1b1@c2 + 2�1�2b1@c1

� 2�1�2b2@c2 + �1@�2�
2
2 + 6�2�2b1@c2 + 2�1b2@c1 � @b1@c2

� 2@�1�1�1�2 � 3@�1�2�
2
2 � 4@�1�2b2c2 + @�1@�2 � @�2�

2
1

+ 4@�2�2b1c2 + @2�1�2. (4.31)

We are almost done, we have three more generators to introduce. These will come as

the charge conjugates of the O’s above. This time we use (J+W ),

O =� 5b1@c2 + 4�21�1�2 + 3�1�2�
2
2 + 4�1�1b1c2 + 2�1�2b1c1

+ 4�1�2b2c2 � 10�1@�2 + 3�2�
2
1 + 2�1b2c1 � 2@b1c2 � 3@�1�2. (4.32)
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Now the action of G� on it gives

GO =2�1�1�2b1 � �1�
2
2b2 + 3�2�

2
2b1 + �21b2 + 4�2b1b2c2 � �2@b2 � 5@�2b1. (4.33)

And lastly we have the action of eG+ on O:

eGO =2b2@c1c1 � 2�1b1c1@c2 + 4�1b1@c1c2 + 4�1b2@c2c2 � 4�21�1@c2

� 4�21�2@c1 � 6�1�2�2@c2 � 4�1@�2�2c2 + 10�1@
2c2 � 6�2�1@c1

� 4@�1�1�1c2 � 2@beta1�1�2c1 + 8@�1@c2 � 2@�2�1c1 + 2@2�1c2. (4.34)

This is the whole small N = 4 SCA with the S3 extensions. Of course if one had

the patience and the tenacity they could verify that indeed all the OPEs close and

the algebra is valid. In order to summarise all that was derived in this section, we

will present table below which details all the relevant information about the generators

which appear in the VOA, grouped by their derivations.

Generator h m r Generator h m r

J+ 1 +1 0 J� 1 -1 0

G+ 3
2 +1

2 +1
2 G� 3

2 �
1
2 +1

2

eG+ 3
2 +1

2 �
1
2

eG� 3
2 �

1
2 �

1
2

W 3
2 +3

2 0 W 3
2 �

3
2 0

GW 2 +1 +1
2

eGW 2 -1 �
1
2

TW
5
2 +1

2 0 TW
5
2 �

1
2 0

O 3
2 +1

2 0 O 3
2 �

1
2 0

GO 2 0 +1
2 GO 2 -1 +1

2

eGO 2 +1 �
1
2

eGO 2 0 �
1
2

T 2 0 0 J0 1 0 0

Table 22: Charges of all the strong generators of the S3 extension of the small N = 4
superconformal algebra.

As one can observe, the step up from rank one to rank two is quite a significant one.

At the moment we can only speculate as to how di�cult it might be to derive such a

free-field representation for a rank three theory. Later in this chapter, in Sec. 4.5.4, we

will derive another rank two case, but in the context of N = 2 SCAs, but for now we

shall take a step back and analyse some more rank one theories.
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4.5 Examples of N = 2 VOAs

In these subsections we will be analysing the structure of rank 1 N = 2 superconformal

algebras which correspond to certain N = 3 theories in four dimensions. The simplest

one to start with is the Z3 case.

4.5.1 Rank 1 Example: G = Z3

It is a rank 1 theory, which means a single copy of the free-field systems and the degree

of the invariant is p = 3, and hence the central charge is c = �15. Just as always, we

begin with writing down the free-field representation of the underlying algebra (note

that in this case it will be N = 2)

J = 2bc+ 3��

G = �b

eG = 2@�c+ 3�@c

T = �2b@c�
3

2
�@� � @bc�

1

2
@�� (4.35)

Note that since here we only have a single ��bc system, we will drop the index.

The operators W and GW are given by the prescription to be

W = �

GW = b (4.36)

The next step is to create an ansatz for the operator W and impose the constraints

from section 4.3.2. The result is

W =�2�3 + 2��2bc� 4�@�� �
4

3
�b@c+

2

3
�@bc+

2

3
@��2

�
8

3
@�bc+

10

9
@2� (4.37)

Note that here we have used the normalisation we described earlier in section 4.4.1.

Now we are only left with the superpartner of W (rank 1 algebras do not tend to have

hidden generators) which can be easily coerced to appear from the OPE of (eGW). It

will take the form

eGW =
8

3
b@2cc+ 3�2�2@c� 4��b@cc� 4��@2c� 4�@�@c

�
2

3
@b@cc+ 2@���2c�

8

3
@�@�c+

2

3
@2��c+

10

9
@3c (4.38)

This exhausts the list of strong generators we have to find. One can once again show
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that the algebra above closes. Just as with the previous algebras we will summarise

the generators in the table below.

Generator GW W G J T eG W eGW

h 2 3
2

3
2 1 2 3

2
3
2 2

m +1 +3
2 �

1
2 0 0 +1

2 �
3
2 �1

r +1
2 0 +1

2 0 0 �
1
2 0 �

1
2

Table 23: Charges of all the strong generators of the Z3 extension of the N = 2
superconformal algebra.

4.5.2 Rank 1 Example: G = Z4

This one is also a rank 1 theory, which means that again we use a single copy of the free-

field systems. The degree of the invariant is p = 4, and the central charge is c = �21.

Following the same procedure, we begin with writing down the free-field representation

of the underlying algebra (note that in this case it will be N = 2)

J = 3bc+ 4��

G = �b

eG = 3@�c+ 4�@c

T = �
5

2
b@c� 2�@� �

3

2
@bc� @�� (4.39)

The operators W and GW are given by the usual prescription forms. The next step is

to create an ansatz for the operator W and impose the constraints from section 4.3.2.

The result is

W = �3�4 + 3�2�3bc+ . . .+
45

16
@2�bc�

35

64
@3� (4.40)

Note that here we have used the normalisation we described earlier in section 4.4.1.

Due to the number of terms we had to truncate what we show here, but the full versions

are available to view in the ancillary files here. Comparing this realisation to the one

in section 4.5.1 one can see that the complexity starts to increase with the growing

degree. The simple reason for this is that more terms are allowed in the ansatz as the

weights of the abstract algebra generators increase.

Now we need to find the superpartner of W, which can be easily found from the

OPE of (eGW). It will take the form

eGW =
15

4
b@2c@c+

45

16
b@3cc+ . . .+

3

16
@3��c+

35

64
@4c (4.41)
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Again, we truncated it due to the sheer length of this operator. This exhausts the list

of strong generators we have to find. One can once again show that the algebra above

closes. Just as with the previous algebras we will summarise the generators in the table

below.

Generator GW W G J T eG W eGW

h 5
2 2 3

2 1 2 3
2 2 5

2

m +3
2 +2 �

1
2 0 0 +1

2 �2 �
3
2

r +1
2 0 +1

2 0 0 �
1
2 0 �

1
2

Table 24: Charges of all the strong generators of the Z4 extension of the N = 2
superconformal algebra.

4.5.3 Rank 1 Example: G = Z6

This is the last rank 1 theory we will be presenting, the degree of the invariant in this

theory is p = 6, and the central charge is c = �33. We only study this theory out of

interest, because unlike the other two N = 2 theories we presented in this section, this

one is proposed to not have a 4D partner [80].

We begin with writing down the free-field representation of the underlying algebra:

J = 5bc+ 6��

G = �b

eG = 5@�c+ 6�@c

T = �
7

2
b@c� 3�@� �

5

2
@bc� 2@�� (4.42)

The operators W and GW are given by the usual prescription forms. The next step is

to create an ansatz for the operator W and impose the usual constraints

W = �5�6 + 5�4�5bc+ . . .+
175

216
@4bc�

77

1296
@5�. (4.43)

Due to the number of terms we had to truncate what we show here, but the full versions

are available to view in the ancillary files here. The last term in the VOA takes the

form

eGW =
1225

324
b@3c@2c+

35

8
b@4c@c+ . . .�

5

1296
@5��c+

77

1296
@6c (4.44)

This is the full list of the strong generators. One can once again show that the algebra

above closes. The summary of the generators is below.
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Generator GW W G J T eG W eGW

h 7
2 3 3

2 1 2 3
2 3 7

2

m +5
2 +3 �

1
2 0 0 +1

2 �3 �
5
2

r +1
2 0 +1

2 0 0 �
1
2 0 �

1
2

Table 25: Charges of all the strong generators of the Z6 extension of the N = 2
superconformal algebra.

4.5.4 Rank 2 Example: G = G(3, 1, 2)

In this subsection we will be taking a look at the final theory which will be presented

in this chapter. This vertex operator algebra is by far the most complicated one out

of all of the ones we present here. Similar to the approach with the previous rank

2 algebra, we will first aim to present all the generators which are given to us for

free by the prescription, and then slowly build up more generators using ansatze and

constraints from the abstract algebra. This of course requires the knowledge of the

abstract algebra, but we will not be presenting that here due to the lack of space. One

can find a list of some of the relevant OPEs in [20].

The underlying symmetry group for this VOA will be G(3, 1, 2) which is a rank 2

complex crystallographic reflection group in the notation of Shephard and Todd [92].

The degrees of the fundamental invariants of this CCR are p1 = 3 and p2 = 6. From

this we can identify the central charge as being c = �48.

Let us now examine the free-field realisation. Just as in the S3 case, we will have

to employ two sets of the ��bc systems. Using the prescription, our N = 2 generators

in terms of these ��bc systems are

J = 2b1c1 + 5b2c2 + 3�1�1 + 6�2�2

G = �1b1 + �2b2

eG = 3�1@c1 + 6�2@c2 + 2@�1c1 + 5@�2c2

T = �2b1@c1 �
7

2
b2@c2 �

3

2
�1@�1 � 3�2@�2 � @b1c1 �

5

2
@b2c2

�
1

2
@�1�1 � 2@�2�2. (4.45)

The extra operators from the prescription:

W1 = �1, W2 = �2,

GW1 = b1, GW2 = b2. (4.46)

Now that we have gone through all the predetermined operators, it is time to start
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evaluating the algebra properly. Just as a warning, this algebra was very di�cult to

close and a lot of the generators are too large to be properly shown here. We will still

present the derivation of the operators and some of their terms, but we will mostly

relegate the detailed presentation to the ancillary files of this link. As it should be well

known by now, we will first create an ansatz for the first generator we shall investigate,

which is W1. There are 88 eligible terms in its ansatz, so this should show the non-

triviality of this problem.

As it happens, using all the constraints arising from the N = 2 SCA is not enough

to fix all the coe�cients in the W1 ansatz. This presents an issue, since this does not

allow us to progress in the usual way to close the algebra — by only relying on the

ansatze and the OPEs. The space of possible solutions is way too big, which means we

will actually need the form of the abstract algebra we discussed a few lines ago. The

reason for this is because this allows us to rearrange certain OPEs to form equations

for the unknowns. Of course if we are looking at the abstract algebra, we will also have

access to the list of generators:

{J ,G, eG, T },

{W1,2,GW1,2}, {W1,2, eGW1,2
}, (4.47)

{O,GO, eGO, TO}, {O,GO,
eGO, TO}, {U ,GU , eGU , TU}

Here we presented all the 24 operators in this algebra beforehand in order to follow

the steps laid out later on. The operators above are actually organised into multiplets

with the top one being the N = 2 current multiplet, the second are the chiral and

anti-chiral multiplets (they double up), and the last line is for the non-chiral multiplets

(non-anti-chiral also). Note that U is self-dual, which is why it appears without a

barred version.

The way we present this derivation will be a bit di↵erent in style to the way we did

the S3 case. It will also take the form of an outline, a recipe which one can follow to

re-derive the numbers we got. The recipe is as follows:

1. Substitute in the ansatze for W1 and fix as many unknowns as possible with the

N = 2 subalgebra constraints.

2. Use the first order pole terms in the OPE (W1W1) to write U in terms of the

unknowns.

3. Use the fourth and third order pole terms in the (W1U) OPE — which should

be zero — in order to solve for some of the unknown coe�cients. There will be

multiple solutions to the equations unfortunately, but there will be a solution

which fixes four of the coe�cients, and the rest only three. Pick that solution.

This will fix more of the coe�cients in U and W1.
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4. In order to fix more coe�cients we have to look at another operator and other

OPEs. We will impose an equation using the (W1U) OPE as we did in step 1,

but this time the first order pole will relate O to U and W1. There is a slight

complication this time though, because some of the terms mix at this order and

we have to introduce two extra unknowns, but this is acceptable.

5. Now use the first order of (W1O) and this should fix one of the new coe�cients

as well as one of the old ones.

6. Look at the coe�cient of the second order term in the expansion of (OO). From

the coe�cient of the �21 term we can obtain a quadratic equation for the last old

unknown. However, it is a quadratic so there will be two solutions. This is not

a problem because the third order term in (UO) will show us which of the two

solutions to pick.

7. Once the above is set, the second order term in the expansion of (OO) can be

used to fix the second of the unknown coe�cients introduced in step 4. This

series of steps should in practice determine all the unknowns in W1 and also U

and O.

8. Now that we possess the form of the above operators things will be easier. We

can obtain O from the coe�cient of the second order term in (W1U).

9. Here is the major di↵erence between this VOA and S3. In a general case we

would have to employ the ansatz method for W2, but here we are lucky because

the OPE (W1O) closes on this operator, so by finding the other operators in the

above steps, we have inadvertently fixed this one too.

10. The supersymmetric partners can be found in the relevant OPEs with the super-

currents.

Following this procedure should allow one to derive the exact free-field realisation

of the N = 2 superconformal algebra VOA with the G(3, 1, 2) underlying symmetry. In

the other subsections we have tried to explicitly show all the generators in their free-

field forms, but this will not be possible in this case and the generators will be given

in the ancillary files of this link. Below we have a table summarising the information

of the strong generators.

This concludes the derivations of all the relevant superconformal algebras we will be

calculating the vacuum characters of. The intricate information contained within the

construction of these algebras is indispensable for calculating the vacuum characters.

In the following sections we will go on to discuss quantum numbers of operators which

are very useful labels from the perspective of the 4D theories, and then we will present

two ways of calculating the vacuum characters.
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Generator h m r Generator h m r

W1
3
2 +3

2 0 W1
3
2 �

3
2 0

GW1 2 +1 +1
2

eGW1
2 �1 �

1
2

W2 3 +3 0 W2 3 �3 0

GW2
7
2 +5

2 +1
2

eGW2

7
2 �

5
2 �

1
2

O
5
2 +3

2 0 O
5
2 �

3
2 0

GO 3 +1 1
2 GO 3 �2 1

2

eGO +2 +1 �
1
2

eGO 3 �1 �
1
2

TO
7
2 +3

2 0 TO
7
2 �

3
2 0

U 2 0 0 TU 3 0 0

GU
5
2 +1

2
1
2

eGU
5
2 �

1
2 �

1
2

G
3
2 +1

2 �
1
2

eG 3
2 +1

2 +1
2

T 2 0 0 J 1 0 0

Table 26: Charges of all the strong generators of the G(3, 1, 2) extension of the N = 2
superconformal algebra.

4.6 R-Filtration

As we have seen in the sections leading up to this one, the VOAs we are considering are

realised as a subalgebra of ��bc systems. We say subalgebra since not all combinations

of free fields will appear and some will be null states, but more on this in Sec. 4.7. For

now it su�ces to know that we can define a filtration R at the level of the free-fields.

The motivation for this will be to identify a new quantum number which can be used

to make contact with a special set of 4D superconformal indices known as Macdonald

indices. This will be a relatively brief subsection where we will construct the details

of this filtration. We present the R-filtration weight (R-weight) in the table below.

It is important to note that these charges are not fully “conserved”. To elaborate on

�` �` b` c` @

R
1
2p` 1� 1

2p`
1
2p` 1� 1

2p` 0

h�R 0 0 +1
2 �

1
2 1

Table 27: The R-weights of all the elements of the ��bc systems [20].

this, the monomials constructed from the elements detailed in Tab. 27 will have the

R-charges of the individual components summed. However, this is not the case with
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polynomials. With polynomials one has to define the R-weight as the largest R-weight

out of the monomials which comprise it. This non-conservation gives a larger freedom

to what operators are allowed to appear in the OPE of two operators. If one has charge

R1 and the other R2, the only operators which can appear are ones with R  R1+R2.

Alone this is not very restricting, but we will not be using this for solving algebras,

only to grade them.

4.7 Vacuum Characters

4.7.1 From Vacuum Characters to Indices

4D N = 2 SCFTs, T , contain a BPS subsector that is isomorphic to a VOA, �[T ]

[76]. In this correspondence, the VOA central charge c is related to the type-B Weyl-

anomaly coe�cient in four dimensions as c = �12c4D, while the VOA vacuum character

reproduces the Schur limit of the 4D superconformal index. The Schur subsector of

pure N = 3 4D S-fold SCFTs was conjectured to be isomorphic to “N = 2 VOAs”—i.e.

VOAs containing the 2D N = 2 superconformal algebra (SCA) as a subalgebra—WG

labelled by non-Coxeter crystallographic complex reflection groups.

A nice feature of the free-field description, which we will use extensively in the

evaluation of the vacuum characters, is that null states built out of strong generators

are identically zero. The free-field realisation also facilitates the introduction of a

corresponding R-filtration (Sec. 4.6), inherited from the R-symmetry of the 4D N = 2

SCFT.

The vacuum character of the R-filtered VOA is

�WG(q, ⇠, z) := Tr(�1)F qh⇠R+rzm , (4.48)

where F is the fermion number, h is the conformal dimension, and r,m are associated

with the gl(1) outer automorphism and gl(1) subalgebra of the 2D N = 2 SCA osp(2|2)

respectively. R is the weight under the R-filtration and the vacuum character is nor-

malised so as to start with a “1” in its q expansion. This vacuum character can be

further refined by taking ⇠R+r
! yRvr. In the free-field realisation the ��bc fields carry

the quantum numbers presented in Tab. 20. The trace is taken to be over the Hilbert

space of states built out of the generators of the VOA acting on the sl(2) invariant

vacuum.

Eq. (4.48) was conjectured to correspond to the Macdonald limit of the 4D super-

conformal index of a theory for which WG is the associated VOA, WG = �[T ]. This is

defined through [85]

I
T
Macdonald(q, t, z) := Tr(�1)F qE�2R�rtR+rzm , (4.49)
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where the trace is taken over the set of Schur operators of the 4D SCFT. Here E is the

4D conformal dimension, while R and r are charges for the Cartan generators of the

SU(2)R and U(1)r R-symmetry groups respectively. Note that while from the point of

view of this 4D N = 2 Macdonald index m is a quantum number for a global U(1)F , in

the full N = 3 description it is part of the U(3) � SU(2)R⇥U(1)r⇥U(1)F R-symmetry

group. We should emphasise that in order to connect with (4.48) one needs to redefine

t! ⇠q so that

I
T
Macdonald(q, ⇠, z) = Tr(�1)F qE�R⇠R+rzm . (4.50)

4.7.2 Implementation

The derivation of the vacuum character expansion is a very laborious and time consum-

ing process when done by hand. One has to take into account all the possible operators

which can arise at a certain level, and the number of these operators proliferates rapidly

as one moves higher in the expansion. We instead propose the use of computer algo-

rithms which are optimised to perform these calculations in reasonable time, even for

quite complicated algebras mentioned in sections 4.4.2 or 4.5.4.

We shall introduce two independent, complementary methods and describe the

strategy behind our codes, while detailed results for each case are presented in sub-

sequent subsections. We are interested in the evaluation of the vacuum character for

VOAs labelled by crystallographic, non-Coxeter complex reflection groups Z3,4,6 and

G(3, 1, 2), and interpreting them as Macdonald indices for 4D N = 3 S-fold theories.

To do so one needs to consider (4.48) and trace over all the states created by acting only

with normal-ordered products and derivatives of the strong generators of the VOA on

the sl(2)-invariant vacuum, up to a given conformal weight, while removing the contri-

butions from null states. To speed up the calculation, we have taken advantage of the

symmetry of the spectrum under conjugation, by only constructing positively-charged

states under the two gl(1) symmetries of the VOA.

The Null-States Algorithm

In this section we will be describing how the 2D VOA Null States Code works. First

things first, let us describe the main objectives of this code. This code aims to brute

force search for the null states occurring at every single level. The number of these

null states then determine the correct degeneracies of the states at every level of the

expansion of the vacuum character. Hence this code calculates the character one level

at a time.

Naively, the action of the creation operators which create a ladder of states should

be enough, but as it turns out when we go to a specific theory — setting the central

charge to a specific value — this results in certain states turning null.
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In order to get the physical set of states, one has to mod out the null ones. This

is where the true challenge of calculating the vacuum character lies, since listing all

possible states is just the tip of the iceberg. The underlying method of this code start

di↵ering from the other one at this stage, but we will discuss that in the following

subsection. Due to the operator-state map in a CFT we can just consider the operator

side of our CFT and avoid all the mode expansions of the operators etc. This means

that at every level we have to generate all the possible operators we can construct out of

the original strong generators listed in sections 4.4 and 4.5, using only normal ordered

products and derivatives. For example T is a level (weight) 2 operator, but we can also

construct : JJ : as well as @J for example (the weights of these never change because

they are part of the underlying N = 2 SCA).

Once we have constructed all the allowed operators at a specific level, the code sub-

stitutes in the free-field representation. The reason to do this is because one incredible

merit of using the free-field realisation is that all the null states are zero [20]. This

step requires manipulating normal-ordered products of ��bc ghosts, making heavy use

of the OPEdefs [94] and ope.math [95] Mathematica packages. This allows our code to

try and create an ansatz for null states at each level, and produce a gigantic matrix of

all the coe�cients of the operators. The rank of this matrix is then found which reveals

information about the number of independent operators at each level.

As one goes down the ladder the number of states proliferates at an increasing rate,

and their normal orders and derivatives become increasingly more complicated in terms

of the free-fields. The algorithm has been optimised a lot in order to increase the speed

at which the degeneracies at each level are calculated. One of the things the algorithm

can do in order to speed up the calculation by a lot is to pre-process the potential

operators and group them into di↵erent categories based on quantum numbers. This

of course makes it much easier to solve for the ansatze because terms with di↵erent

charges will not combine into null states.

Another implementation takes advantage of the gl(1) charge symmetry which is

present in all of the vacuum characters calculated with this method. This means that

if the code finds a degeneracy n for a state with charges (h,m) = (4, 2) then there

will be the exact same degeneracy for the state (4,�2). Using this we only need to

calculate half of the character at a level (half + 1 for odd number of charges). As it

turns out, the negative side of the character tends to be much more complicated (due

to the ansatze in terms of the free fields being long), amounting to a very significant

part of the calculation of the character at a level. Ditching that side and calculating on

the other can massively boost the code’s performance. The other side of the character

can then be inferred by charge conjugation. The code is available to download as an

ancillary file here.
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The Screening Charge Algorithm

In addition to the method introduced in the preceding section, we have cross-checked

our rank 1 results using a second algorithm that makes no connection with the VOA

presentation — it uses only the free-fields. Just like with the other algorithm we will

give a small overview detailing how it works and what its aim is.

This free-field realisation code is actually radically di↵erent from the previous one.

In the previous section we described how the code builds the allowed operators at a

certain level using the abstract generators. This code does exactly the same thing at

this stage, but using the free-fields. This means that the theory has to be specified

from the very beginning since the free-fields need to be told what their weights are.

Furthermore since we start in the realm of the free-fields we are already guaranteed to

be null state free, since they are identically zero.

Now one might think that we are done, but as it turns out there is a complication

on this side of the calculation too. Not all the states that we generate using the free

fields are actually physical, and some must be discarded in order to make contact with

the algebra that it is supposed to be representing. This can be done by constructing

the VOA spectrum using all states in rank(G) copies of the ��bc ghost system that lie

in the kernel of a screening operator, S. This operator is defined as S =
R
J, given a

screening current J. Its action is through the first order pole of the OPE. For G = Zk

this current is given by [20]

J = b e(k
�1�1)(�+�) , (4.51)

where �,� are chiral bosons

� = e�+�, � = @� e���� , (4.52)

and all expressions should be considered as normal-ordered. Such an approach is con-

ceptually more straightforward—construct all states using free fields and then keep

those in the kernel of S—but as we will discuss in the next section how it is signifi-

cantly slower than the algorithm above.

Using this information we can start building all the states and then creating ansatze

to find the number of independent states, except this time the ansatze will reveal

physical states as opposed to null ones. The unknown coe�cients of the ansatze will

tell us the degeneracies of states within a certain level. Using this our code determines

the vacuum character at that level. This code is also available here.
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Remarks About the Codes

In this section we will comment on how we implemented the above algorithms by means

of Mathematica, and also give insight on how well they work as well as how one can

download and use them.

First of all, the codes are available to download as the ancillary files for this publica-

tion [2]. All of the codes are fully equipped with the explanatory material to reproduce

the results summarised in this chapter, as well as to potentially extend the workings of

the codes to other VOAs the user wants to implement. As we have mentioned in the

previous sections above, the speed of the codes varies due to many factors. The most

prevalent one which di↵erentiates the two codes is the fact that the screening operator

code is always more intensive and hence slower than the null-states code. The reason

for this is to do with the huge amount of states the former code has to comb through

compared to the latter one. E.g. at h = 9/2 one already needs to check 941 and 881

terms for Z3 and Z4 respectively.

The comparative speed is always fixed, but there are things which influence the

speed of both of the codes. Of course higher levels mean more ansatz terms, which

translate into more processing times. More complicated theories, i.e. rank 2 theories

or theories with Wl weights being very high also incur higher processing times, again

because of the number of free-fields in the calculations. However, as mentioned before,

utilising the gl(1) charge symmetry can cut down the processing time by a huge amount.

This shortcut is natively present in our codes. In Fig. 4 we show how the computational

times scale for di↵erent theories at di↵erent levels.

4.7.3 Results: G = Z3

This is a rank-one VOA with central charge c = �15. Its VOA presentation is discussed

in section 4.5.1. The ansatz for W contains 8 undetermined coe�cients — reported

for the sake of calculation complexity. We always count these before imposing the

super-Virasoro primary constraint. Using the codes given above, we have calculated

the fully-refined vacuum character (4.48) up to O(q8) and have cross-checked this result

using the screening-operator approach up to O(q4). The full expression can be found

in the ancillary file ‘vacuum characters summary.nb’ here.

This VOA is expected to encode the Schur sector of a rank one, 4D S-fold N = 3

SCFT, with a Coulomb-branch operator of dimension � = 3 and trace-anomaly coef-

ficient c4D = 5
4 . Through (4.50) the Macdonald index of this S-fold theory—including

the global U(1)F fugacity—can be identified with the refined vacuum character. Below

we only present the simpler, Schur limit of these expressions for brevity, where ⇠ ! 1,
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Figure 4: Computation times for carrying out the calculation of the vacuum character
for VOAs at di↵erent conformal weights. Several di↵erent VOAs are shown on the graph
for comparison, along with the Z3 theory computed using the kernel of the screening
operator. There are successive dips in the computation time because in general there
are less terms at those levels. We used a desktop PC with an Intel Core i7-6700K CPU
clocked at 4GHz, and 32GB RAM.

z ! 1. Then:

I
Z3
Schur = 1 + q + q2 + 2q3 � 2q7/2 + 3q4 � 2q9/2 + 4q5 � 4q11/2

+ 6q6 � 6q13/2 + 8q7 � 8q15/2 + 11q8 +O(q17/2). (4.53)

Since the character is counting the independent operators at each level, one can very

easily see what operators appear. For example here the first three entries in the expan-
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sion correspond to the identity, J and T . The contributions of W and W are cancelled

by G and eG in this limit.

In [93], an independent argument for determining the Schur index of the G = Z3

S-fold theory was presented. This entailed starting from an N = 1 4D UV Lagrangian

theory, and flowing to an interacting N = 1 SCFT in the IR, which can also be

reached from the Z3 S-fold theory via an N = 1 preserving marginal deformation.

Upon relabelling q ! p2, our result (4.53) agrees with that of [93]—listed to O(q7)—

providing a strong consistency check of both calculations.

4.7.4 Results: G = Z4

This is a rank-one VOA with central charge c = �21. Its VOA presentation is detailed

in section 4.5.2. The ansatz for W4 contains 19 undetermined coe�cients. We have

calculated the fully-refined vacuum character (4.48) up to O(q8). We have also cross-

checked this result using the screening-operator up to O(q4).

This VOA is expected to encode the Schur sector of a rank one 4D S-fold N =

3 SCFT, with a Coulomb-branch operator of dimension � = 4 and trace-anomaly

coe�cient c4D = 7
4 . Through (4.50) the Macdonald index of this S-fold theory can be

identified with the vacuum character. The Schur limit of these expressions yields:

I
Z4
Schur = 1 + q � 2q3/2 + 5q2 � 6q5/2 + 10q3 � 16q7/2 + 27q4

� 38q9/2 + 56q5 � 86q11/2 + 129q6 � 178q13/2

+ 251q7 � 362q15/2 + 511q8 +O(q17/2) . (4.54)

In this case the VOA construction is such that the bosonic states always appear with

integer while the fermionic ones with half-integer conformal weights. Therefore there

are no cancellations between bosonic and fermionic states at each level and the chiral

algebra partition function reproduces the partition function of Schur operators in the

corresponding 4D N = 3 theory.

4.7.5 Results: G = Z6

This is a rank-one VOA with central charge c = �33. Its VOA presentation is shown

in section 4.5.3. The ansatz for W6 contains 87 undetermined coe�cients. We have

calculated the fully-refined vacuum character (4.48) up to O(q8). We did not crosscheck

this result with the screening operator code because it was too time consuming. In the

limit ⇠ ! 1, z ! 1 this reads:

�WZ6
= 1 + q � 2q3/2 + 3q2 � 4q5/2 + 8q3 � 12q7/2 + 19q4

� 26q9/2 + 38q5 � 58q11/2 + 85q6 � 116q13/2
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+ 165q7 � 236q15/2 + 326q8 +O(q17/2) . (4.55)

No known S-fold theory is associated with this VOA [80].

4.7.6 Results: G = G(3, 1, 2)

This is our only rank 2 example, with central charge c = �48. Its VOA presentation is

given in section 4.5.4. The ansatz forW1 contains 84 undetermined coe�cients. It turns

out that through the OPEs in the W-algebra presentation, one can fix the coe�cients of

W1 and by doing so also determine the free-field realisation of all remaining generators.

We have calculated the fully-refined vacuum character (4.48) up to O(q9/2). We did

not crosscheck this result with the screening operator code because we do know the

relevant screening charge to be used to restrict the free-field systems. The full result

can be found in the ancillary file ‘vacuum characters summary.nb’ here.

This VOA is expected to encode the Schur sector of a rank-two 4D S-fold N =

3 SCFT, with Coulomb-branch operators of dimension � = 3, 6 and trace anomaly

coe�cient c4D = 4. Through (4.50) the Macdonald index of this S-fold theory can be

identified with the vacuum character. If for simplicity one considers the limit z ! 1:

I
G(3,1,2)
Macdonald = 1 + q⇠ + q3/2

⇣
�

p
⇠ + ⇠3/2

⌘
+ q2

�
⇠ + ⇠2

�

+ q5/2
⇣
�

p
⇠ � ⇠3/2 + 2⇠5/2

⌘
+ q3

�
⇠ � ⇠2 + 2⇠3

�

+ q7/2
⇣
�

p
⇠ � 2⇠3/2 + 2⇠5/2 + ⇠7/2

⌘

+ q4
�
2⇠ � ⇠3 + 3⇠4

�

+ q9/2
⇣
�

p
⇠ � 3⇠3/2 + ⇠5/2 + ⇠7/2 + 2⇠9/2

⌘

+O(q5) . (4.56)
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Chapter 5

AdS7 Black Hole Entropy from

5D N = 2 Yang-Mills

5.1 Introduction and Summary

Since the introduction of the superconformal index [7, 96, 97] there has been a puzzle

pertaining to why it seems to only be capturing supergraviton-state contributions in

AdS, and not those of certain BPS black holes as predicted by the AdS/CFT corre-

spondence at large N [98, 99]. Over the years there have been several approaches to

this problem. For example, one of the early explanations appealed to the possibility of

huge cancellations between bosonic and fermionic states. Later on, the reformulation of

the superconformal index in D even spacetime dimensions through the operator-state

map as an R-twisted supersymmetric partition function on SD�1
⇥ S1

� revealed that

ZSD�1⇥S1
�

= e�F I , (5.1)

where I is the superconformal index, � the radius of the thermal circle and F a quantity

related to the vacuum Casimir energy [100, 101, 102, 103]. Unlike the index, this

“supersymmetric Casimir energy” was shown to exhibit the expected scaling of degrees

of freedom at largeN . However matching the precise coe�cient predicted by AdS/CFT,

and corresponding entropy of BPS black holes in the gravity dual, turns out to be

subtler, see for example [104]. More recently, the black hole entropy for evenD has been

recovered from field theory through the extremisation of a quantity closely resembling

the supersymmetric Casimir energy [105, 106].

Over the last few years, there has been a significant acceleration of activity in this

direction. In [21], a complete gravitational derivation of the field-theoretic entropy

function was performed for AdS5/CFT4,15 while in [109, 110] the entropy function was

reproduced from field theory in the Cardy limit of large charges, for a variety of bulk

15For generalisations see [107, 108].
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dimensions. In yet another line of attack, the superconformal index itself (and not

the supersymmetric Casimir energy) was shown to be capturing larger than previously

thought degeneracies for a particular complexification of chemical potentials, through a

formulation that involves solutions for auxiliary Thermodynamic Bethe Ansatz (TBA)

equations [111, 112]. Finally, the general behaviour seen in [111, 112] was reproduced

for 4D N = 1 SCFTs in the Cardy limit without resorting to the TBA equations in

[113, 114].

In this chapter we will introduce the concept of localisation, initially in a mathe-

matical setting, and later transitioning to how it works in physics. We will also explain

a simple to example following the procedure of [22] which will serve as a light introduc-

tion to how localisation is carried out in practice in physics. After this review, we will

move on to presenting our research and focusing on the relationship between the AdS7

black hole entropy and the superconformal index of the six-dimensional (2,0) theory.16

We will first generalise the AdS5 analysis of [21] for the case of 2-equivalent charge

and 3-equivalent rotation non-extremal black hole solutions. A study of the regularity

conditions for the metric and Killing spinors in the bulk leads to a specific background

at the boundary of AdS7. The AdS/CFT correspondence then dictates that the black

hole entropy should be related to an R-twisted, supersymmetric partition function for

the six-dimensional AN�1 (2,0) theory on this particular background in the large-N

limit.

As the interacting (2,0) theory does not admit a Lagrangian description one cannot

directly employ the method of supersymmetric localisation to evaluate the boundary

partition function. We therefore turn to the existing literature, where it has instead

been conjectured to arise from a 5D supersymmetric partition function on S5 for the

maximally-supersymmetric (N = 2) Yang–Mills theory (MSYM) with SU(N) gauge

group [115, 116, 117, 118, 101, 119, 120, 121]—the circle reduction of the (2,0) theory on

S5
⇥S1

� . A modification of these results at large N and in a Cardy-like limit reproduces

a (generalised) supersymmetric Casimir energy that exactly matches the gravitational

prediction.17

Note also that the statistical entropy of various asymptotically-AdS black holes (not

only for D even) can be reproduced microscopically from a di↵erent, “topologically-

twisted index”.18 The latter can be evaluated through supersymmetric localisation for

a topologically-twisted gauge theory along the lines of [122]; see e.g. [123, 124] for

applications.

16Note that the AdS7 entropy function was first written down in [106], while it was reproduced in
the Cardy limit in [109]. However, our scope here will be to provide a microscopic derivation of this
quantity from the six-dimensional CFT dual theory.

17It would be very interesting to revisit the original work of [97] and investigate the scaling of degrees
of freedom directly in the 6D superconformal index along the lines of [111, 112].

18In this work, whenever we refer to the “index” we will mean the superconformal index and not its
topologically-twisted version.
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The rest of this chapter is organised as follows: In Sec. 5.2 we will introduce the

mathematical background from where localisation stems — equivariant localisation.

In the final part of this section we will explain the dictionary between equivariant

and supersymmetric localisation. Sec. 5.3 contains the fully explained derivation of

the localisation of the N = 2 Chern-Simons gauge theory on S3, which results in

the full computation of the path integral. This is the review of [22], and it serves

as a demonstration of how localisation works. In Sec. 5.4, we analyse the 2-equivalent

charge, 3-equivalent rotation black hole solution in AdS7 and determine how it fixes the

form of the boundary partition function that is AdS/CFT dual to the corresponding

on-shell action at large N . We then discuss the evaluation of this boundary partition

function from 5D MSYM using supersymmetric localisation in Sec. 5.5.

5.2 Introduction to Localisation

In this section we will be providing an abstract mathematical basis for the concept

of localisation. This will then be applied later on to supersymmetric path integrals.

However, in the meantime we would like to become familiar with the concept of abelian

equivariant cohomology.

5.2.1 Equivariant Cohomology

Let us say that we would like to calculate an integral over a given manifold, M. If

this manifold has a symmetry group G, that is, the integral will not be able to tell

apart the points related by the action of G, in order to not overcount naively one would

instead define M/G as the integration manifold. This would be fine if G acted freely

on the manifold. Let us suppose that in our case we have fixed points for our group

action. This means that M/G is not a smooth manifold anymore and hence standard

cohomology and di↵erential forms will not be applicable.

Enter equivariant cohomology, a generalisation of cohomology to the cases men-

tioned above. For now, let us define a Riemannian manifold with dimension 2l with no

boundary (works generally) and an abelian group G. Next we define a Killing vector

V corresponding to a U(1) isometry. This means:

LV gµ⌫ = 0. (5.2)

Where the Lie derivative is taken along the flow of V. In this next step we introduce a

space of polyforms [125] (polynomials of forms, or rather the sum of forms of di↵erent
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degrees)

⇤M =

(
↵ =

2lX

n=0

↵n|↵n 2 ⇤n
M

)
. (5.3)

Here ⇤n
M is the set of forms acting on T M In analogy with the exterior di↵erential

operator, we also define the so-called equivariant di↵erential dV :

dV ⌘ d� ıV . (5.4)

d being the exterior di↵erential operator for forms d : ⇤n
M ! ⇤n+1

M, and ı is the

inner derivative (otherwise known as contraction with vector field), ı : ⇤n
M! ⇤n�1

M.

An interesting corollary of the above definition is that the square of the equivariant

di↵erential is the Lie derivative in the direction of V :

d2V = d2 � dıV � ıV d+ ı2V = �{d, ıV } = LV . (5.5)

From this property of dV we can define a set of V-equivariant polyforms which have

a vanishing Lie derivative. This means that on this set of polyforms, the equivariant

di↵erential behaves exactly like a de Rham operator. Hence if we have dV ↵ = 0, we

call ↵ V-equivariantly closed. Similarly, we can define ↵ = dV �, which would make

↵ equivariantly exact. Therefore in the same spirit as the nth de Rham cohomology

group, one can define the nth V-equivariant cohomology group:

Hn
V (M) =

Ker dV |⇤n
V M

Im dV |⇤n�1
V M

. (5.6)

We can now move onto defining integrals of polyforms. Such integrals are defined

by only looking at the integral of the top form (highest order)

Z

M
↵ ⌘

Z

M
↵2l. (5.7)

It is important to note that from the statement that we have no boundaries and Stokes’

theorem, we obtain that the integrals of equivariantly exact polyforms vanish:

Z

M
dV � ⌘

Z

M
d�2l�1 = 0. (5.8)

This means that we can add exact deformations to this integral without changing the

overall value. This is a very important consequence which we will use now to show the

localisation argument.
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5.2.2 Atiyah-Bott-Berline-Vergne Localisation

In order to start localising we will make use of the property in equation (5.8), and deform

our form ↵! ↵etdV � . Let t be a real parameter and � a V-equivariant polyform. It can

be shown that the integral of this quantity is independent of t since the t derivative of

↵etdV � will be an exact form, i.e. zero once integrated. This has the impact of letting

us take any value of t which we prefer. For example, let us pick the t ! 1 limit. In

this limit the integral will be dominated by the minima of �(dV �)0. If we pick � to be

dual to the Killing vector V , we get by substituting everything in:

Z

M
↵ = lim

t!1

Z

M
↵etd�e�t|V |2 . (5.9)

We can see that in this limit the second exponential on the RHS turns into a delta

function (�(V )) and localises the integral to the points when V = 0 (since we are on

Riemannian not pseudo-Riemannian manifolds). We will denote these points where

V = 0 as MV and call it the localisation locus.

In this section we will only discuss localisation for isolated fixed points, however

there is a very similar method to derive the formula for a localisation locus which is

continuously defined. That is commonly known as the Duistermaat-Heckman formula,

but it will not be elaborated upon in this section.

Now that we have made the assumption that our localisation locus is a set of isolated

points, MV = {xk}, we can choose to move to a close vicinity of one of those fixed

points (called point P ). We zoom so close in fact that we can choose to consider the

coordinates of an intertial frame centred at P , with our usual Cartesian metric (with

Cartesian and spherical polar coordinates):

ds2 =
lX

i=1

(dx2i + dy2i ) =
lX

i=1

(dr2i + r2i d'
2
i ). (5.10)

In these coordinates locally the Killing vector corresponding to the U(1) action is given

by,

V =
lX

i=1

!P,i

✓
�yi

@

@xi
+ xi

@

@yi

◆
=

lX

i=1

!P,i
@

@'i
. (5.11)

Where we have defined !P,i to be the angular velocity in a particular plane. From these

definitions we can calculate the dual form to V , �

� =
lX

i=1

!P,i(�yidxi + xidyi) =
lX

i=1

!P,ir
2
i d'i. (5.12)
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Then for the equivariant di↵erential of �,

dV � = 2
lX

i=1

!P,idxi ^ dyi �
lX

i=1

!2
P,i(x

2
i + y2i )

=
lX

i=1

!P,i d(r
2
i ) ^ d'i �

lX

i

!2
P,ir

2
i . (5.13)

Now we are ready to see what the contribution to the integral of ↵ is from this isolated

point P

lim
t!+1

Z

N.hood of P
↵ etdV � = lim

t!+1
↵0(P )

lY

i=1

✓
2t!P,i

Z

R2
dxi ^ dyi e

�t!2
P,i(x

2
i+y2i )

◆

(5.14)

= lim
t!+1

↵0(P )
lY

i=1

✓
t!P,i

Z 2⇡

0
d'i

Z 1

0
d(r2i ) e

�t!2
P,ir

2
i

◆

= ↵0(P )
(2⇡)l

Ql
i=1 !P,i

.

Already in the first line we have made a drastic simplification, since in the Taylor

expansion of the first term in (5.13) we only keep the leading order term in our limit

(which is a form of degree 2l). Remembering that this is the contribution from one of

the fixed points, we can do the same analysis for all the others. It turns out that the

product of all the !P,i’s actually corresponds to the Pfa�an of the circle action of V

on TPM. Hence, putting everything together:

Z

M
↵ = (2⇡)l

X

xk2MV

↵0(xk)

Pf(�LV (xk))
. (5.15)

This is the famous Atiyah-Bott-Berline-Vergne localisation formula [126][127]. As one

can see, it drastically simplifies the integral in question. As we discussed before, the

next step would be to take the fixed points to not be isolated, this would result in the

Duistermaat-Heckman formula. The major di↵erences being that now one will integrate

over the manifold MV and also the transverse fluctuations to MV . The formula above

can be connected to the topic of equivariant index theorems, which are extensions of the

Atiyah-Singer index theorem [128] for when there is an action on the compact manifold

by a group. However, this is very much beyond the scope of what we need to discuss

localisation. Instead of discussing this in detail, we shall move onto drawing similarities

between equivariant localisation and supersymmetric localisation.
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5.2.3 Supersymmetric Localisation

In this section we will connect the ideas we have introduced so far in the previous

sections to supersymmetric path integrals. In SUSY QFT instead of equivariant dif-

ferentials which square to Lie derivatives of a symmetry, we have the supercharges Q

which square to a bosonic charge B of a symmetry. The bosons and fermions would

correspond to even and odd degree polyforms. Equivariantly closed polyforms translate

to BPS observables. These observables are annihilated by Q, which means that the

action of B on them is also going to give zero. We will now summarise these similarities

in a table below for conciseness.

Equivariant Localisation Supersymmetric Localisation

dV Q

d2V = �LV Q
2 = B

Even/Odd Polyforms Bosons/Fermions

dV ↵ = 0 QO = 0
R
M ↵ =

R
M ↵etdV �

R
F DXOe�S[X] =

R
F DXOe�S[X]�tQPF [X]

LV � = 0 BPF [X] = 0

Localisation locus MV BPS locus FQ

Knowing this should allow us to calculate some SUSY partition functions. Before we

move onto looking at the 6D/5D theories, we will present a sort of S3 toy model to

warm up with the calculations. In the next section we will start calculating the exact

partition function for an N = 2 theory on the 3-sphere.

5.3 Localisation on S3

5.3.1 Setting Up the Path Integral

In this section we will be aiming to perform the path integral of a N = 2 SUSY gauge

theory defined on a 3-sphere exactly along the lines of [22]. We will be attempting

this using the tools of supersymmetric localisation explained in the previous sections.

First and foremost we will describe the theory we chose to localise. We will consider

a supersymmetric Chern-Simons Lagrangian as the Lagrangian for our gauge theory.

We will take the Chern-Simons theory on R3 first and since it is a conformal theory we

will transfer it to S3 which is how we shall set up our model.

Let us look at the gauge multiplet for an N = 2 theory in 3D. As it turns out, this

is just the dimensional reduction of an N = 1 vector multiplet in 4D. It consists of a

gauge field Aµ, two auxiliary scalar fields, D and �, which are real and an auxiliary

fermion � (a two component complex Dirac spinor). Since these fields are all in the

same multiplet they all take values in the same Lie algebra g of the Lie group G, whose

knowledge is not important at the moment.
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The action for our SCS (SUSY Chern-Simons) theory is given by:

S =

Z

S3
d3x
p
g

✓
✏µ⌫⇢

✓
Aµ@⌫A⇢ +

2i

3
AµA⌫A⇢

◆
� �†�+ 2D�

◆
. (5.16)

As usual, this action is taken to be invariant under the EuclideanN = 2 gauge multiplet

SUSY transformations:

�Aµ =
i

2
(⌘†�µ�� �

†�µ"),

�� = �
1

2
(⌘†�+ �†"),

�D =
i

2
(⌘†�µ(Dµ�)� (Dµ�

†)�µ")�
i

2
(⌘†[�,�]� [�†,�]")

+

⇢
i

6
((rµ⌘

†)�µ�� �†�µrµ")

�
,

�� = (�
1

2
�µ⌫Fµ⌫ �D + i�µDµ�)"+

⇢
2i

3
��µrµ"

�
, (5.17)

��† = ⌘†(
1

2
�µ⌫Fµ⌫ �D � i�µDµ�)�

⇢
2i

3
�rµ⌘

†�µ
�
.

We have separated the transformations which would only be present on S3 in the

curly brackets. They appear as one makes the transition from Euclidean space to S3.

There are two types of covariant derivatives which appear in the expressions above. rµ

corresponds to the covariant derivative on S3 defined in the usual way acting on the

Dirac spinors and vectors, whilst Dµ is the full covariant derivative which contains the

gauge field terms and also the gravitational terms. Depending on which fields it acts

on, it will have a di↵erent form (eg. for a spinor in the adjoint it will have the adjoint

gauge covariant derivative and the spin connection parts). It is also possible to add

matter to the Lagrangian above by introducing a hypermultiplet, but that will not be

considered in this report.

Now that the SUSY and the action have been specified, we can move onto perform-

ing the localisation.

5.3.2 Localisation of the Gauge Sector

In order to perform supersymmetric localisation we need only to pick one of the super-

charges which we have introduced. Using this, we can introduce a Q exact term into

the action which we will then use to perform the localisation. For this we pick:

t�V = t�tr0
⇣
(��)†�

⌘
. (5.18)

We defined tr0 to be some Killing product on g. We remember from the analysis in

section 5.2.3 that V has to be invariant under the bosonic charge of Q2
⇠ �2 = B.
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From here we will take the parameter t to go to infinity as prescribed from before. The

bosonic part of the variation of V will be t(��)†��, which is positive definite, and hence

the fixed points will be given when �� = 0.

Before moving any further it is important for us to first note that to be able to

place any SUSY theory on a curved background one has to be able to solve the Killing

spinor equations for the given background [125], in our case for S3. There are detailed

solutions for all the spheres and their Killing spinors, which is why we will not spend

much time glossing over them here. Instead we will just state the two Killing spinor

equations which are relevant:

rµ" = ±
i

2
�µ". (5.19)

Same for ⌘. Let us choose " to be the charge with respect to which we localise, and we

set ⌘ = 0.

Using these identities we can rewrite the SUSY transformations from equation (5.17)

as,

�Aµ = �
i

2
�†�µ",

�� = �
1

2
�†",

�D = �
i

2
(Dµ�

†)�µ"+
1

4
�†"+

i

2
[�†,�]", (5.20)

�� = (�
1

2
�µ⌫Fµ⌫ �D + i�µDµ� � �)",

�� = 0.

It can be seen from these expressions that �2 is nilpotent on the relevant fields, and

�2V = 0.

Now we will calculate the expression for �V . First of all, we will split the calculation

into two parts: a bosonic and a fermionic part. The bosonic part is �Vbos = (��)†(��).

Substituting in relevant terms (we will drop the trace, but it will still be there in spirit,

which is why we will move terms around cyclically):

�Vbos = (��)†(��)

= "†
✓
1

2
�µ⌫Fµ⌫ �D � i�µDµ� � �

◆✓
�
1

2
�↵�F↵� �D + i�↵D↵� � �

◆
"

= "†
✓
�

1

4
�µ⌫�↵�Fµ⌫F↵� + i�µ⌫�↵Fµ⌫D↵� +D2 + 2D� + �2

+ �µ�↵(Dµ�)(D↵�)

◆
"

=
1

2
Fµ⌫F

µ⌫ + (Dµ�)(D
µ�) + (D + �)2. (5.21)
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Where in the last line we used 3D gamma matrix identities as well as the fact that we

can set our Killing spinor " to be normalised such that "†" = 1. Next we will calculate

the fermionic part �Vferm = �((��)†)�:

�Vferm = �((��)†)�

= �

✓
1

2
�µ⌫Fµ⌫ �D � i�µDµ� � �

◆
�.

For these, we have to derive how Fµ⌫ and Dµ� transform under these SUSY transfor-

mations

�Fµ⌫ = �(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])

= Dµ�A⌫ �D⌫�Aµ

= �
i

2
(Dµ�

†)�⌫"+
i

2
(D⌫�

†)�µ"+
1

2
(�†�⌫µ"), (5.22)

�(Dµ�) = �(@µ� + i[Aµ,�])

= Dµ�� + i[�Aµ,�]

= �
1

2
(Dµ�

†)"�
i

4
�†�µ"+

1

2
[�†,�]�µ". (5.23)

Now comes the fun bit of plugging it all back into the expression above. Since we have

a limited amount of space, we will spare the reader from pages and pages of algebra

and just quote the result, and the methods used to get to said result. The fermionic

part of the Q-exact bit is given by:

�Vferm = i�†�µrµ�+ i[�†,�]��
1

2
�†�. (5.24)

To get to this result, one has to employ various spinor and gamma matrix identities

such as:

�µ⌫�⌫ = 2�µ, (5.25)

�µ⌫�⇢�⌫ = �2� µ
⇢ . (5.26)

For the spinors there is the Fierz identity:

(⌘†1⌘2)(⌘
†
3⌘4) = �

1

2
(⌘†1⌘4)(⌘

†
3⌘2)�

1

2
(⌘†1�µ⌘4)(⌘

†
3�

µ⌘2). (5.27)

We can now write down the full expression for the exact term in the path integral:

�V =
1

2
Fµ⌫F

µ⌫ + (Dµ�)(D
µ�) + (D + �)2 + i�†�µrµ�+ i[�†,�]��

1

2
�†�. (5.28)
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That concludes the calculation of the localising term, otherwise in the context of

SUSY QFT referred to as the localising action, however we have still not determined

the localisation/BPS locus/field configurations. For this we have to see the condition

we imposed to minimise the localising action, which was to set �� = 0. Hence the

constraint is:
✓
�
1

2
�µ⌫Fµ⌫ �D + i�µDµ� � �

◆
= 0. (5.29)

From this equation we can draw two conclusions:

1

2
✏µ⌫⇢F

⌫⇢ = Dµ�, (5.30)

D = ��. (5.31)

The solution to the first line on S3 is given by setting Fµ⌫ = 0 (i.e. Aµ is pure gauge),

and � = �0 being a constant [22]. Then the second equation just implies that D = ��0.

Thus we have our localisation locus, which is the space of constant � configurations,

and all other fields vanishing. One can check that this truly minimises �V , since if

we substitute the values derived above into equation (5.28) we get that �V = 0. This

means that we are consistent.

Let us now turn our gaze to the whole path integral. In the saddle point approxi-

mation our integral becomes:

Z =

Z
d�0e

SCl[�0]Z
g
1�loop[�0]. (5.32)

The first bit of the integrand is our usual classical piece which we got just by taking

the classical action on the localisation locus following the localisation procedure. The

second term is the piece we did not derive in detail, which results from the transverse

oscillations from the locus over which we average and do the path integral to one loop.

It is referred to as the 1-loop determinant piece. The expression given above is exact.

This is due to the fact that 1/t behaves as an auxiliary ~, but since we are taking

the limit t ! 1, it is truly negligible and hence the only leading order term that

contributes is the one-loop calculation [125].

The classical piece can be found quite easily through substitution.

SCl[�0] = 2i

Z

S3
d3x
p
g(D�)

= �2i

Z

S3
d3x(�20)

= �4i⇡2(�20). (5.33)
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Where in the last line we have done the volume integral over the 3-sphere.

5.3.3 Gauge Fixing

We include a small interjecting section to explain that the gauge theory that we are

localising still has to be gauge fixed. Gauge theory path integrals are ill defined since

they are integrating over field configurations which correspond to the same physics,

hence vastly overcounting the result of the path integral. To remedy this issue one

can use the prescription introduced by Faddeev and Popov. We shall introduce the

ghost and antighost fields, respectively c, c̄ and the Nakanishi-Lautrup field b. After

introducing the gauge fixing terms into the Lagrangian we would like to have the

standard BRST transformations (labelled �B) which define a new nilpotent fermionic

symmetry. Using this symmetry, we combine the SUSY and BRST transformations to

give:

�0 = � + �B. (5.34)

We can then localise with respect to the new shifted charge �0 (since it is also nilpotent),

but this requires us to also shift V to V 0:

V 0 =0
⇣
(��†)�

⌘
+ c̄ rµAµ. (5.35)

Let us look at the variations of this new V with respect to �0. For the first term

the BRST charge does nothing since it is already gauge invariant hence we just get

back �V . For the second term the BRST variation gives the usual gauge fixing action:

c̄ @µDµc+ brµAµ. What do we do with the SUSY variation of the second term? The

answer is that we are allowed to set �c̄ = 0 and then absorb the rest in the definition

of c.

Now that we have tackled the gauge fixing, we can truly move on to performing the

path integral.

5.3.4 Performing the 1-loop Determinant

We have set up everything that we require to calculate the path integral exactly, the

last thing we require is to calculate the 1-loop determinant of the localising action:

S = t

Z

S3
d3x
p
g0
✓
1

2
Fµ⌫F

µ⌫ + (Dµ�)(D
µ�) + (D + �)2 + i�†�µrµ�+ i[�†,�]�

�
1

2
�†�+ @µc̄Dµc+ brµAµ

◆
. (5.36)
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We have changed this up a bit compared to equation (5.28) since we have added the

gauge fixing ghost terms. Let us remember that we are taking the limit of t ! 1 so

we will redefine the fields to remove it in the integral.

� = �0 +
1
p
t
�0,

D = ��0 +
1
p
t
D0, (5.37)

'!
1
p
t
'. (5.38)

Where for � and D we have separated out the zero modes (i.e. the dashed variables do

not have zero modes). ' just corresponds to all the other fields. In this scaling of the

fields, we can throw away anything which is higher than quadratic in the fields (not

zero modes). The action then becomes,

S =

Z

S3
d3x
p
g0
✓
1

2
fµ⌫f

µ⌫
� [Aµ,�0]

2 + (@µ�
0)(@µ�0) + (D0 + �0)2 + i�†�µrµ��

+i[�†,�0]�
1

2
�†�+ @µc̄ @µc+ brµAµ

◆
. (5.39)

We defined fµ⌫ to be the abelian field strength fµ⌫ = @µA⌫ � @⌫Aµ. The next step

would be to perform the integrals over D0 and b. D0 is just a Gaussian integral, while

b imposes the Lorenz gauge

S =

Z

S3
d3x
p
g0
⇣
�Aµ�Aµ � [Aµ,�0]

2 + (@µ�
0)(@µ�0) + i�†�µrµ�+ i[�†,�0]�

�
1

2
�†�+ @µc̄ @µc

◆
(5.40)

Where we used integration by parts (no boundary terms since S3 has no boundary).

The Laplacian is the standard spherical Laplacian. Let us now separate the vector field

into divergenceless and pure divergence components,

Aµ = @µ�+Bµ. (5.41)

B is the divergenceless part since rµBµ = 0. Using this trick, we can rewrite the

Lorenz gauge constraint delta function we obtained by integrating out b, �(rµAµ) as

�(���). Including the contribution coming from the Jacobian of the path integral, we

get a factor of det(��)�
1
2 . As it turns out, performing the integral over the scalar �0

also results in the same factor. Lucky for us, the ghosts come to the rescue and cancel

both of these factors since the result of their Berezin integral will be det(��). We are
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left with this e↵ective action:

S =

Z

S3
d3x
p
g0
✓
�Bµ�Bµ � [Bµ,�0]

2 + i�†�µrµ�+ i[�†,�0]��
1

2
�†�

◆
. (5.42)

At this stage, we can choose to simplify the path integral further by replacing the

integral over the constant matrices of �0 in the Lie algebra g, with some chosen CSA

(Cartan subalgebra) [129]. This can be done since the integral is completely gauge

invariant. One can then use the Weyl integration formula to rewrite the path integral

in the form:

Z =
1

|W|

Z
da

 
Y

↵2roots
↵(a)

!
e�4i⇡2(a2)

Z
g
1�loop[a]. (5.43)

Where the product runs over the roots of g and a are the elements of the CSA. Clearly

now we only care about �0’s which are in the CSA. We shall do a similar anlysis for

the gauge field. Let us break up B using the vector space formed by the root spaces

(step operators)

Bµ =
X

↵

B ↵
µ X↵ + hµ. (5.44)

X↵ are the step operators normalised such that tr0(X↵X�) = �↵+� , and they are labelled

by di↵erent roots. hµ is along the direction of the CSA,

[�0, Bµ] =
X

↵

↵(�0)B
↵

µ X↵. (5.45)

The hµ term does not appear since CSA elements commute by definition. We can do

the exact same thing for the �’s commutation relation. Knowing all of these relations,

we substitute them back into the action to get:

S =

Z

S3
d3x
p
g
X

↵

✓
Bµ

�↵(��+ ↵2(�0))Bµ,↵ + �†(i�µrµ + i↵(�0)�
1

2
)�

◆
. (5.46)

An important note here is that we chose to leave out the terms proportional to hµ. The

reason for this is that they can all be factorised out and will contribute a term which

is not dependent on �0, a prefactor for the integral. These prefactors never contribute

to expectation values, and hence can be dropped. The integral with the above action

can be calculated using the eigenvalues of the Laplacian acting on divergenceless vector

fields [130], which are known and can be stated from literature:

det(bosonic) =
Y

↵

1Y

l=1

((l + 1)2 + ↵(�0)
2)2l(l+2). (5.47)
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The same can be done for the fermionic determinant:

det(fermionic) =
Y

↵

1Y

l=1

((l + i↵(�0))(�l � 1 + i↵(�0)))
l(l+1) . (5.48)

Therefore if we put together the determinants as they should be:

Z
g
1�loop =

det(fermionic)

(det(bosonic))�
1
2

=
Y

↵

1Y

l=1

(l + i↵(�0))l(l+1)(�l � 1 + i↵(�0))l(l+1)

((l + 1)2 + ↵(�0)2)l(l+2)

=
Y

↵

1Y

l=1

(l + i↵(�0))l+1

(l + 1� i↵(�0))l

=
Y

↵

1Y

l=1

(l + i↵(�0))l+1

(l � i↵(�0))l�1
. (5.49)

Because the eigenvalues of the Cartan matrices in the adjoint representation come in

positive negative pairs (eigenvalues are the roots) and since we are performing a product

over all the roots, it does not matter if we take �0 ! ��0. Hence:

Z
g
1�loop[�0]Z

g
1�loop[��0] =

Y

↵

1Y

l=1

(l2 + ↵2(�0))l+1

(l2 + ↵2(�0))l�1

=
Y

↵

1Y

l=1

(l2 + ↵2(�0))
2

=

 1Y

l=1

l4
!
Y

↵

1Y

l=1

✓
1 +

↵(�0)2

l2

◆2

. (5.50)

The infinite constant term multiplying the expression can be renormalised away so we

will not pay much attention to it. The rest of the product is actually a representation

of the hyperbolic sine function

Z
g
1�loop[�0]Z

g
1�loop[��0] = Z

g
1�loop[�0]

2 =
Y

↵

✓
2sinh(⇡↵(�0))

⇡↵(�0)

◆
. (5.51)

Hence,

Z
g
1�loop[�0] =

Y

↵

✓
2sinh(⇡↵(�0))

⇡↵(�0)

◆
. (5.52)
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After this, we can simply substitute this result back into the path integral and get the

exact result after some cancellations:

Z =

Z
da e�4⇡2i(a2)

Y

↵

(2sinh(⇡↵(�0)) . (5.53)

5.4 2-equivalent-charge, 3-equivalent-rotation Black Holes

in AdS7

We begin with the study of supersymmetric black hole solutions of 7D gauged super-

gravity (SUGRA). We will follow the AdS5 analysis [21] very closely throughout and

discuss two distinct limits, that of supersymmetry and extremality. Generalising the

arguments of [21] is conceptually straightforward and we do not encounter any sur-

prises, although the details are more involved. This fact will force us to consider black

hole metrics with 2-equivalent charges and 3-equivalent rotations.

5.4.1 Non-extremal AdS7 Black Holes

The low energy limit of M-theory, 11D SUGRA, admits solutions where the geometry

is of the form M7 ⇥ S4 with the manifold M7 being asymptotically AdS7. There is

a consistent truncation of 11D SUGRA on S4 such that M7 is a solution to N = 4

SO(5) gauged SUGRA in seven dimensions [131]. Amongst the possible solutions

there is an expectation of finding seven-dimensional black holes with two independent

parameters (�1, �2) for the charges of the U(1)2 Cartan subgroup of SO(5) and three

independent parameters (a1, a2, a3) for the rotations supported by the SO(2)3 in the

maximal compact subgroup of SO(2, 6).

For practical purposes charged solutions are sought within a U(1)2 truncation of

the maximal SO(5) theory. The bosonic field content of this truncation consists of the

metric, two 1-form gauge potentials A1
(1), A

2
(1), one 3-form A(3) which may be traded for

a 2-form by utilising an odd-dimensional self-duality relation and two scalars X1, X2.

The most general black hole solution with generic charges and rotations has not yet

been found but solutions with two charges and three equivalent rotations [132] or two

equivalent charges and three rotations [133] are known.

5.4.2 2-equivalent-charge, 3-equivalent-rotation Black Hole

For simplicity, we choose to focus on a subclass within the non-extremal AdS7 black

holes where all the charges are set to be equal to each other, �1 = �2 = �, as are all the

rotational parameters, a1 = a2 = a3 = a. As a result, this family of non-extremal black

holes depends on three parameters (m, �, a). In this scenario the solutions of [132] and

[133] must coincide. The solution, incorporating a correction to the original literature
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[132], is

ds27 = H
2
5


�

Y

f1⌅2
�
dt2 +

⌅⇢6

Y
dr2 +

f1
H2⌅2⇢4

✓
� �

2f2
f1

dt

◆2

+
⇢2

⌅
ds2CP2

�
, (5.54)

A1
(1) = A2

(1) =
2msc

⇢4⌅H

�
⌅�dt� a�

�
+

↵

⌅�
dt , (5.55)

A(3) =
2mas2

⇢2⌅⌅�
� ^ (2d�) , (5.56)

X1 = X2 = H�1/5 . (5.57)

As in [21], we have added a pure gauge term, ⌅�1
� ↵dt, to each of the U(1) gauge fields.

The quantities f1, f2, H, Y appearing above are all functions of the radial coordinate r

through the definition ⇢2 = ⌅r2. They are given by

H = 1 +
2ms2

⇢4
, (5.58)

f1 = ⌅⇢6H2
�

(2⌅+mas2)2

⇢4
+ 2ma2

⇥
⌅2
+ + c2(1� ⌅2

+)
⇤
, (5.59)

f2 = �
g⌅+⇢6H2

2
+mac2 , (5.60)

Y = g2⇢8H2 + ⌅⇢6 � 2m⇢2
⇥
a2g2c2 + ⌅

⇤
+ 2ma2

⇥
⌅2
+ + c2(1� ⌅2

+)
⇤
, (5.61)

with g the gauge coupling parameter and

⌅± = 1± ag , ⌅ = 1� a2g2 = ⌅�⌅+ , s = sinh � , c = cosh � .

(5.62)

The black hole outer horizon is located at the largest positive root of Y (r) which we

denote by r+. The remaining data of the solution are given by

� = d +
1

2
sin2 ⇠l3 , ds2CP2 = d⇠2 +

1

4
sin2 ⇠(l21 + l22) +

1

4
sin2 ⇠ cos2 ⇠l23 , (5.63)

with (l1, l2, l3) a choice of left-invariant 1-forms for SU(2).

The solution given by (5.54)-(5.57), along with its associated Killing vector at the

horizon allow for the computation of thermodynamical aspects of the black hole such

as its temperature. This is done with respect to the non-rotating Killing vector

` =
@

@t
� g⌦

@

@ 
, (5.64)

found by redefining t! ⌅�t,  !  � gt. In these new coordinates the temperature,19

19We have incorporated the corrections to [134] as noted in [106] and [109].
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entropy,20 angular velocity and electrostatic potential are [134]

T =
@rY

4⇡g⇢3
p
⌅f1

, (5.65)

S =
1

GN

1

4

⇡3⇢2
p
f1

⌅3
, (5.66)

⌦ = �
1

g

✓
g +

2f2⌅�
f1

◆
, (5.67)

� =
4msc

⇢4⌅H

✓
⌅� � a

2f2⌅�
f1

◆
, (5.68)

and are all evaluated at the outer horizon r = r+. GN denotes the seven-dimensional

Newton constant. The conserved charges, namely the energy, angular momentum and

electric charge, are:

E =
1

GN

1

g

m⇡2

32⌅4


12(ag + 1)2(ag(ag + 2)� 1)� 4c2

�
a2g2(3ag(ag + 4) + 11)� 8

� �
,

(5.69)

J = �
1

GN

ma⇡2

16⌅4


4ag(ag + 1)2 � 4c2

�
a3g3 + 2a2g2 + ag � 1

� �
, (5.70)

Q =
1

GN

1

2g

msc⇡2

2⌅3
, (5.71)

and are found by integrating the first law:

dE = TdS + 3⌦dJ + 2�dQ . (5.72)

We will also need the free energy, I, of the black hole solution. The so-called quantum

statistical relation gives this as

I = �(E � TS � 3⌦J � 2�Q) , (5.73)

where � = T�1 and it has been evaluated in [135] to be

I =
�⇡2

8⌅3


m� g2r6+ � g2ms2(4r2+ � a2)

�
4g(ms2)2[gr4+ + a2g(1 + ag)r2+ + 2gms2 � a3(1 + ag)2]

r6+ + 2ms2r2+ � 2a2(1 + ag)

�
. (5.74)

The free energy is expected to coincide with the on-shell supergravity action evaluated

on the black hole solution.21 The black hole entropy is given in terms of the Legen-

20Here we have corrected the expression given in [109].
21It would be interesting to derive this explicitly in supergravity without resorting to the quantum

statistical relation.
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dre transform of the on-shell action with respect to the chemical potentials �,⌦,�,

conjugate to the charges E, J,Q respectively:

E =
@I

@�
, J = �

1

3�

@I

@⌦
, Q = �

1

2�

@I

@�
, (5.75)

hence

S = �I + �E � 3�⌦J � 2��Q . (5.76)

5.4.3 Supersymmetry

The non-extremal black hole solution detailed in the previous section is supersymmetric

whenever the charge and rotation parameter satisfy one of the following two relations

e2� = 1�
2

3ag
, (5.77)

e2� = 1�
2

ag
. (5.78)

However, when the second condition holds, it is not possible to deal with closed timelike

curves (CTCs) [134] and the solution is pathological. On the other hand, naked CTCs

can be avoided when (5.77) holds and for this reason it is this condition that we will

use in the remainder of this chapter.

The supersymmetric values of the conserved charges are

E =
1

GN

1

g

m⇡2

8

243 e�2�
�
e2� � 1

�6 �
�21e4� + 18e6� + 7

�

(3e2� � 5)4 (3e2� � 1)3
, (5.79)

J =
1

GN

m⇡2

8g

81 e�2�
�
e2� � 1

�6 �
18e2� + 9e4� � 23

�

(3e2� � 5)4 (3e2� � 1)3
, (5.80)

Q =
1

GN

1

2g

m⇡2

8

729 e�2�
�
e2� � 1

�7 �
e2� + 1

�

(3e2� � 5)3 (3e2� � 1)3
, (5.81)

and satisfy

E � 3J � 4Q = 0 . (5.82)

The remaining quantities, such as the temperature, can also be evaluated in the su-

persymmetric limit but the resulting expressions are not compact so we do not present

them here. However, the temperature is non-vanishing and consequently, as we will

see in the next section, this means the supersymmetric black hole is not necessarily

extremal.
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5.4.4 Extremality

The black hole is extremal if the outer horizon coincides with another horizon. Since

Y (r) is a quartic function of r2 we expect there to be four distinct horizons in general.

We denote the location of these horizons by (r+, r0, r̃0, r�) where r2+ � r20 � r̃20 � r2�.

We may write

(g2⌅4)�1Y (r) = (g2⌅4)�1(y0 + y1r
2 + y2r

4 + y3r
6 + y4r

8) (5.83)

⌘ (r2 � r2+)(r
2
� r20)(r

2
� r̃20)(r

2
� r2�) , (5.84)

so that the extremal limit, reached when r2+ = r20, corresponds to a double root of Y (r).

Comparing coe�cients determines

(g2⌅4)�1y4 = 1 , (5.85)

(g2⌅4)�1y3 = � r2+ � r̃20 � r2� � r20 , (5.86)

(g2⌅4)�1y2 = r2+
�
r̃20 + r2� + r20

�
+ r20 r̃

2
0 + r2�r̃

2
0 + r2�r

2
0 , (5.87)

(g2⌅4)�1y1 = r2+
�
�r20 r̃

2
0 � r2�r̃

2
0 � r2�r

2
0

�
� r2�r

2
0 r̃

2
0 , (5.88)

(g2⌅4)�1y0 = r2+r
2
�r

2
0 r̃

2
0 . (5.89)

We now show that the double root r2+ = r20 also corresponds to a zero-temperature

solution. Recall that the temperature is given by

T =
@rY

4⇡g⇢3
p
⌅f1

����
r=r+

, (5.90)

where

@rY |r=r+ =
1

r+
(8y4r

8
+ + 6y3r

6
+ + 4y2r

4
+ + 2y1r

2
+) . (5.91)

Substituting for the y’s leads to

T =
g2⌅4

4⇡gr+⇢3
p
⌅f1(r+)

⇥
2r2+(r

2
+ � r20)(r

2
+ � r̃20)(r

2
+ � r2�)

⇤
, (5.92)

so that the temperature vanishes when r0 coincides with r+, i.e. in the extremal limit.

Note that we have not used the supersymmetry condition and hence the extremal black

hole is not necessarily supersymmetric.

5.4.5 BPS Limit

As in [21] we will work with supersymmetric black holes and study their behaviour

in the extremal limit. When that happens, we use the nomenclature “BPS” (denoting
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both supersymmetric and extremal solutions) and we label the corresponding quantities

with a ⇤.

The absence of naked CTCs is a physically sensible requirement and places fur-

ther constraints on the parameters (m, �, a) describing the black hole, rendering the

supersymmetric solution extremal. One way of ruling out CTCs requires that [134]

0 = H
2
5

 
�
Y

f1
+

f1
H2⌅2⇢4

✓
2g +

2f2⌅�
f1

◆2
!

, (5.93)

at r = r+. This can be achieved if, in addition to the SUSY condition (5.77), the

following relation holds

m = m⇤ =
128e2�(3e2� � 1)3

729g4(e2� + 1)2(e2� � 1)6
. (5.94)

When the parameter m takes this value the function Y has a double root as expected

at r2+ = r2⇤ = r20 given by

r2⇤ =
16

3g2(3e2� � 5)(e2� + 1)
=

4a2

(1 + ag)(1� 3ag)
. (5.95)

We may invert this expression to write the charge in terms of the BPS radius:

e2� =
1

3

 
1±

4
p
g2r2⇤(1 + g2r2⇤)

g2r2⇤

!
. (5.96)

Evaluating the thermodynamic quantities for these BPS values of m and r+ gives

T ⇤ = 0 , (5.97)

S⇤ =
1

GN

⇡3

g5
32
p
9e2� � 7

3
p
3 (3e2� � 5)3 (e2� + 1)3/2

, (5.98)

⌦⇤ = 1 , (5.99)

�⇤ = 2 , (5.100)

E⇤ =
1

GN

⇡2

g5
16
�
18e6� � 21e4� + 7

�

3 (3e2� � 5)4 (e2� + 1)2
, (5.101)

J⇤ =
1

GN

⇡2

g5
16
�
9e4� + 18e2� � 23

�

9 (3e2� � 5)4 (e2� + 1)2
, (5.102)

Q⇤ =
1

GN

⇡2

g5
8
�
3e6� � 5e4� � 3e2� + 5

�

(3e2� � 5)4 (e2� + 1)2
. (5.103)
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The supersymmetry relation (5.82) with these expressions can be simply written as

E⇤
� 3J⇤⌦⇤

� 2Q⇤�⇤ = 0 . (5.104)

5.4.6 Complexified Solution

We can extract information about the value of the parameter m = m+ at the outer

horizon—but away from the extremal limit—by examining Y (r+) = 0. We see that

Y (r+) = 0 is equivalent to a quadratic equation for m+:

0 = m2
+(4g

2s4) +m+

h
2
�
gs2

�
2g⌅2r4+ � a3(ag + 2)

�
� ⌅r2+

�
c2a2g2 + ⌅

�
+ a2

� i

+ r6+(1 + g2r2+)⌅
4 . (5.105)

Inserting the SUSY condition (5.77), we solve to find

m+ =
�2e2�

�
3e2� � 1

�

81 (e2� � 1)6 g4

⇣⇣
3e2� � 5

⌘
g2r2+

⇣
9e2�

⇣⇣
e2� � 2

⌘
g2r2+ � 2

⌘
+ 5g2r2+ � 2

⌘

+ 32
⌘
±

2e2�
�
3e2� � 1

� �
16� 3

�
e2� + 1

� �
3e2� � 5

�
g2r2+

�

81 (e2� � 1)6 g2

⇥

q
(9e2� (e2� � 2) + 5) g2r2+ � 4 . (5.106)

As shown in App. A.1, the parameter m+ is complex when r+ > r⇤ and becomes

real (and equal to its BPS value m⇤) only at r+ = r⇤. Consequently, the thermo-

dynamic quantities in which m+ appears are generically complex away from the BPS

limit. Substituting for this complex m+ and r+ gives cumbersome expressions for

the thermodynamic quantities, which however can be shown to satisfy the remarkable

condition:

2�� 3⌦� 1 = ±2⇡iT . (5.107)

Using this, one can show that the free energy (5.73) can be expressed very simply in

terms of

I = �
⇡2

128g5GN

�4

!3
, (5.108)

where

2�� 3! = ±2⇡i . (5.109)
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Here

! = �(⌦� ⌦⇤) (5.110)

� = �(�� �⇤) . (5.111)

In terms of these redefined chemical potentials, the quantum statistical relation

(5.73) becomes

I = �S � 3!J � 2�Q , (5.112)

subject to the condition (5.109), where the energy has disappeared using the relation

(5.82). One could formally re-instate it by writing

I = �(E � 3⌦⇤J � 2�⇤Q)� S � 3!J � 2�Q . (5.113)

This form of the on-shell action will be useful shortly when establishing the background

at the boundary of AdS7.

The results (5.108) and (5.109) obtained here for the free energy reproduce those

first written down in [106] following [105]. One sees from (5.112) that a Legendre

transform with respect to the chemical potentials ! and � will yield the Bekenstein-

Hawking entropy for the AdS7 black hole.

5.4.7 SCFT Background from Bulk Regularity

We will now shift our focus to recovering the form of the background at the conformal

boundary located at r =1.

Metric: We begin by looking at the form of the black hole solution (5.54)-(5.57)

in the limit r !1. One obtains

ds27 = �g2r2dt2 + r2(� + gdt)2 +
1

g2r2
dr2 + r2ds2CP2

=
1

g2r2
dr2 + r2ds2bdry ,

(5.114)

with the boundary metric being

ds2bdry = � g2dt2 + (� + gdt)2 + ds2CP2

! � dt2 + �2 + ds2CP2

= � dt2 + ds2S5 .

(5.115)

In the second line above we performed a scaling of the time coordinate t ! t/g and

also absorbed gdt into � by sending the fibre coordinate  !  � gdt. The boundary

metric is therefore just R⇥ S5 and does not depend on the chemical potentials defined
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in the bulk. This dependence will instead be recovered by looking at the behaviour of

the metric at the horizon.

In order to do so, we first analytically continue to Euclidean gravity by letting

t = �i⌧ . One then introduces into (5.54) the shifted radial coordinate R2 = r� r+. At

the horizon, the black hole metric takes the following form

ds27 = hRR

 
dR2 +R2

✓
2⇡

�
d⌧

◆2
!

+ (r2+ + h�)

✓
� �

2f2
f1

id⌧

◆2

+ r2+ds
2
CP2 , (5.116)

where hRR and h� are functions of the parameters of the original metric and of some

angular coordinates on CP2, the explicit form of which is not important for the ensuing

analysis. By employing similar rescaling transformations as on the boundary metric,

⌧ ! ⌧/g and  !  � i⌧ and using the definition of ⌦ from (5.67) we can re-write

(r2+ + h�)(� + i⌦d⌧)2 + r2+ds
2
CP2 = 2ir2+⌦�d⌧ � r2+⌦

2d⌧2 + h�(� + i⌦d⌧)2 + r2+ds
2
S5 .

(5.117)

At this stage we perform the coordinate transformation detailed in App. A.2,22 which

brings the metric on S5 as well as the 1-form � to

ds2S5 = d✓21 + sin2 ✓1d✓
2
2 + sin2 ✓1 sin

2 ✓2d�
2
1 + sin2 ✓1 cos

2 ✓2d�
2
2 + cos2 ✓1d�

2
3 ,

� = sin2 ✓1 sin
2 ✓2d�1 + sin2 ✓1 cos

2 ✓2d�2 + cos2 ✓1d�3 .

(5.118)

Using this fact, we can recast the metric close to the horizon as

ds2 = hRR

 
dR2 +R2

✓
2⇡

�
d⌧

◆2
!

+ h✓1✓1d✓
2
1 + h✓2✓2d✓

2
2 + h�1�1(d�1 + i⌦d⌧)2

+ h�2�2(d�2 + i⌦d⌧)2 + h�3�3(d�3 + i⌦d⌧)2 + h�1�2(d�1 + i⌦d⌧)(d�2 + i⌦d⌧)

+ h�1�3(d�1 + i⌦d⌧)(d�3 + i⌦d⌧) + h�2�3(d�2 + i⌦d⌧)(d�3 + i⌦d⌧) ,

(5.119)

where we once again emphasise that the explicit form of the functions h is not important

for the remaining discussion.

The metric in Eq. (5.119) describes a warped fibration of S5 (parametrised by

the coordinates (✓1, ✓2,�1,�2,�3)) over R2 (parameterised by R and ⌧). To ensure

the lack of conical singularities at the point R = 0, one has to introduce the twisted

identifications of certain coordinates.

(⌧ ,�1 ,�2 ,�3) ⇠ (⌧ + � ,�1 � i⌦� ,�2 � i⌦� ,�3 � i⌦�) , (5.120)

22This coordinate transformation also brings the Killing vector (5.64) to the form ` = @/@t +
⌦
P3

i=1 @/@�i.
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as one completes a circle around the temporal direction. It is important to point out

that the 1-form i⌦d⌧ is not well defined at R = 0, but we can remove this dependence

from the metric by introducing a “rotating” coordinate frame:

⌧ = ⌧̂ , �1 = �̂1 � i⌦⌧̂ , �2 = �̂2 � i⌦⌧̂ , �3 = �̂3 � i⌦⌧̂ . (5.121)

We have thus “untwisted” the identifications to recover more canonical ones as we go

around the Euclidean time circle

(⌧̂ , �̂1 , �̂2 , �̂3) ⇠ (⌧̂ + � , �̂1 , �̂2 , �̂3) . (5.122)

We then take the coordinates (5.122) and substitute them into the boundary metric.

This results in the following final form

ds2bdry = d⌧̂2 + d✓21 + sin2 ✓1d✓
2
2 + sin2 ✓1 sin

2 ✓2(d�̂1 � i⌦d⌧̂)2

+ sin2 ✓1 cos
2 ✓2(d�̂2 � i⌦d⌧̂)2 + cos2 ✓1(d�̂3 � i⌦d⌧̂)2 . (5.123)

1-form gauge fields: Next, we will address the remaining fields in the supergravity

multiplet, switching momentarily back to Lorentzian signature. The only fields which

are non-trivial at the conformal boundary are the 1-form gauge fields which become

A|bdry = ↵dt , (5.124)

that is, they can only have a pure-gauge dependence. These terms cannot be fixed

just by requiring regularity of the bulk metric at the horizon. However, they can be

restricted by looking at the action of the Lie derivative with respect to the Killing

vector (5.64) on the Killing spinors [21].

The solutions to the Killing spinor equations for the backgrounds [132, 133], or even

the special case that we are considering with 2-equal charges and 3-equal rotations are

not known. However, the Killing spinors for the background with 2 independent charges

and vanishing rotations were given in [136]. For equal charges, this is a subcase of the

configuration we are considering with ⌦ = 0. Fortunately, it is also precisely what we

need to fix the asymptotic form of the 1-form gauge fields at the boundary.

When the two charges are set to the same value, the Killing spinor given in [136] is

schematically of the form

✏ = e
1
4g(1+2↵)t�12

(. . . )P✏0 , (5.125)

where the ellipsis represents the angular and radial terms which commute with �12, the

P is a projection operator which also commutes with �12 and ✏0 is a constant spinor.23

23We note that our normalisations are slightly di↵erent when compared to [136], gLM = 4g, �12
LM =
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The rank 2 SO(5) Gamma matrix �12 is such that the Killing spinors have the following

eigenvalues, i
2�

12✏ = ±✏.

With this information at hand, we proceed with the evaluation of the Lie derivative.

For vanishing rotations the Killing vector (5.64) simplifies to ` = @
@t and hence we simply

need to evaluate L @
@t
✏. Explicit calculation shows that the Lie derivative simplifies

dramatically

L @
@t
✏ =

@✏

@t
= ⌥

i

2
(1 + 2↵)g✏ . (5.126)

Keeping in mind that the electrostatic potential is defined as

� = ı`A|r+ � ı`A|bdry = ı`A|r+ � ↵ , (5.127)

with ı the interior product, one can define the gauge parameter as

↵ ⌘ ı`A|r+ � � . (5.128)

By also using (5.107), Eq. (5.126) can finally be written as

L@/@t✏ = ⌥

✓
�
⇡

�
+ iı`A|r+

◆
g✏ . (5.129)

Analytically continuing to the Euclidean-signature solution, and using the coordinates

(5.122), the circumference of the time circle is �. Transporting the Killing spinor around

the time circle generated by ` can be done through the exponentiation of the action of

the Lie derivative

ei�Li@/@⌧̂ ✏ = �e±�ı`A|r+g✏ . (5.130)

In order to keep the gauge field well defined, the component in the direction which

shrinks as we go to the black hole horizon has to vanish, which sets A|r+ = 0, while

in order to satisfy (5.130) the Killing spinor has to be anti-periodic when transported

all the way along the time circle. This discussion also fixes the pure gauge parameter

once and for all to be

↵ = �� , (5.131)

and leads to the pure-imaginary gauge field at the boundary

A|bdry = i�d⌧̂ . (5.132)

1
2�

12. We have also added a pure-gauge term in the 1-form gauge fields.
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Note that although we carried out this analysis for the charged AdS7 black hole solution

with no rotations, the results should extend straightforwardly when one turns the

rotations back on, as in [21].24 We will henceforth go back to considering the case

with 3-equivalent rotations.

Energy: Translations with respect to the new Euclidean time coordinate ⌧̂ will

have a corresponding charge Ê, given by

Ê = E � 3⌦J . (5.133)

Utilising this in the quantum-statistical relation (5.113), when formally also including

the gauge field for which A|r+ = 0, leads to

I = �
⇣
Ê + 3(⌦� ⌦⇤)J + 2(A|r+ � �⇤)Q

⌘
� S � 3!J � 2�Q , (5.134)

where the term multiplying � is zero via (5.82). However, at the boundary this com-

bination can be interpreted as a supersymmetric Hamiltonian, which can be further

simplified to

{Q,Q†
} = Ê + 3(⌦� ⌦⇤)J + 2(A|bdry � �⇤)Q

= Ê +
1

�
(3!J + 2'Q) ,

(5.135)

using (5.132) and the redefined chemical potentials (5.110).

Summary: To summarise, we have derived the following information about the

supersymmetric, black hole solution at the boundary of AdS7:

⇧ It will involve the following metric

ds2bdry = d⌧̂2 + d✓21 + sin2 ✓1d✓
2
2 + sin2 ✓1 sin

2 ✓2(d�̂1 � i⌦d⌧̂)2

+ sin2 ✓1 cos
2 ✓2(d�̂2 � i⌦d⌧̂)2 + cos2 ✓1(d�̂3 � i⌦d⌧̂)2 ,

(5.136)

which is a nontrivial fibration of S1
� over S5.

⇧ There will be a background gauge field

A|bdry = i�d⌧̂ . (5.137)

⇧ The Killing spinor will satisfy anti-periodic boundary conditions on S1
� .

24For example, rotation is supported by the non-trivial 3-form potential in (5.56) which does not
have a component along the time direction and its presence only a↵ects the (. . . ) part of the Killing
spinor solution (5.125) with the relation (5.126) being unchanged.
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⇧ At the boundary, the charge associated with translations @/@⌧̂ is given by

�Ê = �{Q,Q†
}� 3!J � 2'Q . (5.138)

⇧ The chemical potentials obey the constraint

2�� 3! = ±2⇡i . (5.139)

5.5 (2,0) Partition Function on the Boundary

We now shift our attention to the dual field theory. An extremisation principle that

reproduces the bulk AdS7 black hole entropy was first proposed in [106], based on an

insightful modification of the Casimir-energy result of [121]. Here, we use the bulk

calculation of the preceding section to provide a microscopic derivation of [106], in line

with expectations from the approach of [21].

5.5.1 Expectations from AdS/CFT

The AdS/CFT correspondence dictates that at large N the on-shell action for the

supersymmetric AdS7 black hole solution (5.108) should match the generator of con-

nected correlators in the boundary theory, that is I = � logZ [137]. Because of the

anti-periodic boundary conditions on the Killing spinors, and assuming usual periodic

boundary conditions for the bosons, all fermions will be anti-periodic. Let us encode

this information by allowing for general e⇡in0 periodicity the fermions in the boundary

theory with the understanding that we need to set n0 = ±1 when comparing with

gravity. The partition function is then to be understood as

Z ⇠ TrHe
��Ê (5.140)

since Ê corresponds to translations in the time variable ⌧̂ and where the trace is over

the physical Hilbert space of the flat-space AN�1 (2,0) theory in radial quantisation.

Through (5.138) it is clear that this is a special case of the index-like quantity

I(!1,!2,!3,�1,�2;n0) = TrH(�1)
F (1+n0)e��{Q,Q†}+�

P3
i=1 !iJi+�

P2
j=1 �jQj , (5.141)

where the chemical potentials are subject to the condition

3X

i=1

!i �

2X

j=1

�j =
2⇡in0

�
, n0 2 Z . (5.142)
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In the above, Q denotes any one of the Poincaré supercharges preserved by the 6D the-

ory, while the {�,!i}, {�j} are Cartan generators (dilatations, orthogonal rotations

and R-charges respectively) for the maximal bosonic subalgebra of the 6D supercon-

formal algebra so(2, 6) � sp(2) ⇢ osp(8⇤|4). For concreteness, since we will be using

the conventions of [121], our chosen supercharge will have charges Q1 = Q2 = 1
2 and

J1 = J2 = J3 = �1
2 . The spin-statistics theorem allows us to express the fermion-

number operator as F = 2J1. Note that we have rescaled our chemical potentials as

{!i,�j}! �{!i,�j}.

On the one hand, for n0 = 0, the above expression reproduces precisely the definition

of the most general 6D superconformal index of [97], as presented in [121]. On the other

hand, the case which is of interest to us—as dictated from the gravity calculation—is

the one with !i = !, Ji = J , �j = �, Qj = Q and n0 = ±1. Keeping that in mind,

it will be possible to keep all parameters and charges generic for the duration of the

following discussion and fix them only at the very end.

Before proceeding further, let us massage Eq. (5.141) by defining a new parameter

m through the relations25

�1 ⌘
1

2

3X

i=1

!i �m�
⇡in0

�
, �2 ⌘

1

2

3X

i=1

!i +m�
⇡in0

�
. (5.143)

The quantity I can be rewritten as

I(!1,!2,!3,m;n0) = TrH(�1)
F (1+n0)e��{Q,Q†}+�

P3
i=1 !i(Ji+

Q1+Q2
2 )

⇥ e�m
Q2�Q1

2 �2⇡in0
Q1+Q2

2 . (5.144)

Making use of 2J1 = F leads to

I(!1,!2,!3,m;n0) = TrH(�1)
F e��{Q,Q†}+�(!1� 2⇡in0

� )(J1+
Q1+Q2

2 )

⇥ e�
P3

i=2 !i(Ji+
Q1+Q2

2 )+�m
Q2�Q1

2 . (5.145)

At this stage one can redefine26

!̃1 ⌘ !1 �
2⇡in0

�
, !̃2 = !2 , !̃3 = !3 . (5.146)

and write

I(!1,!2,!3,m;n0) = I(!̃1, !̃2, !̃3,m; 0) . (5.147)

25This paramater m should not be confused with the parameter of the same name appearing in
Sec. 5.4. We hope that the repeated use of this symbol will not cause confusion.

26By a di↵erent assignment of the fermion-number operator, the shifts can also be accommodated in
the other chemical potentials.
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Therefore, the quantity I can be thought of as a bona fide superconformal index when

associated with the tilded chemical potentials, i.e. it is independent of �. It also has

an N -scaling of O(1) as N !1; see [21] and also the nice discussion in [108].

Note that when expressed as a supersymmetric path integral, the partition function

is expected to factorise into an expression of the form:27

ZS5⇥S1
�

= e��F I , (5.148)

where F is referred to as the “generalised supersymmetric Casimir energy”.28 Con-

necting to the gravitational result for the on-shell action requires that F has a large-N

scaling of O(N3). The evaluation of the RHS for the above equation at large N will be

our next goal.

Although analogous partition functions for superconformal theories in three and

four dimensions can be directly computed using supersymmetric localisation, this is

not the case for the interacting (2,0) theory, which lacks a Lagrangian description.

However, for the case where n0 = 0 heroic technical works [116, 117, 118, 101, 119, 120]

produced a candidate 6D result from the S5 partition function of SU(N) 5D MSYM.

Here we will base our calculation on the results of this partition-function calculation

at large N following [121]. The key observation is that the indices in (5.147) are

expected to be reproduced by the above partition-function calculations in 5D when

using the tilded chemical potentials. The answer turns out to be indeed of the form

(5.148) where the quantity F gives back the exact value for the on-shell action predicted

by AdS/CFT including the overall coe�cient, when we take the Cardy-like limit !i ! 0.

5.5.2 The S5 Partition Function at Large N and a Cardy-like Limit

The parameters of the 5D partition function on the (squashed) S5 can be straightfor-

wardly inherited from the 6D background corresponding to the RHS of (5.147), via

dimensionally reducing on S1
� [138]. The !i are associated with the squashing param-

eters of the five sphere while m plays the role of a mass parameter. The relationship

between the (2,0) theory and 5D MSYM also identifies the radius of the thermal circle

with the 5D gauge coupling, 2⇡� = g2YM, with these quantities defined in units of the

S5 radius. The 6D physics is then expected to be recovered in the � !1 limit, where

the M-theory circle can no-longer be neglected.

As argued in [121],29 to leading order in the large N limit the partition function on

S5 should not receive instanton contributions. This argument significantly simplifies the

calculation, as the leadingN result in supersymmetric localisation only receives classical

27This is indeed the case for cases where the exact supersymmetric path integral can be evaluated
directly.

28When n0 = 0 this reduces to the supersymmetric Casimir energy of [101].
29This argument relies on the results of [139].
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contributions from the localising saddle point and one-loop determinant contributions

from the N = 1 vector multiplet and single adjoint N = 1 hypermultiplet.

These one-loop determinants in 5D can be obtained following the procedure of [138];

see also [115, 119]. In that reference, the starting point was precisely (5.141) in 6D

for n0 = 0. The one-loop determinants for 6D (1, 0) vector and hypermultiplets were

reduced on the thermal circle to produce the 5D N = 1 contributions in terms of triple-

sine functions, S3(x). When used in the 5D MSYM calculation of [121], for one vector

and one adjoint hypermultiplet, the result is

Z
n0=0
1�loop =

✓
limx!0S3(x)/x

S3(m̃)

◆N�1 NY

i>j

S3(±i�ij |~!)

S3(m̃± i�ij |~!)
, (5.149)

where we are using standard shorthand notation with S3(±x|~!) = S3(x|~!)S3(�x|~!),

the equivariant mass is defined as m̃ = m + 1
2(!1 + !2 + !3) and �ij = �i � �j are

Coulomb-branch parameters. In this expression, the numerators encode fermion con-

tributions from the vector multiplets while the denominators scalar contributions from

the hypermultiplets, after supersymmetric cancellations.

It is possible to revisit the derivation of (5.149) from [138] and repeat it for the case

of general n0. We show in App. A.3 that this results in the following modification of

the arguments in the triple-sine functions (5.149)

Z
n0
1�loop =

 
limx!0S3(x)/x

S3(
!1+!2+!3

2 �
i⇡n0
� )

!N�1 NY

i>j

S3(±i�ij |~!)

S3(
!1+!2+!3

2 �
i⇡n0
� ± i�ij |~!)

. (5.150)

Combining this with the classical contribution from the localising saddle-point, one

obtains in the large-N limit [121]

Z
n0
S5 (m, ~!, ~�,�) =

1

(!1!2)
N�1

2

Z
dN�1�

N !
e
� 2⇡2

�!1!2!3

P
i �

2
iZ

n0
1�loop(�, ~!,

~�,�) , (5.151)

where the integration is over the Coulomb branch parameters �i; the scalar vev of the

N = 1 vector multiplet onto which the path integral localises. It takes values in the

Cartan subalgebra of SU(N).

We will now specialise to the case of interest with !1 = !2 = !3 = ! and �1 = �2 =

�. The constraint hence reduces to 3! � 2� = 2⇡in0
� . Using this we can write

Z
n0
1�loop =

✓
limx!0S3(x)/x

S3(�)

◆N�1 NY

i>j

S3(±i�ij |~!)

S3(�± i�ij |~!)
(5.152)

Performing the matrix integral of (5.151) exactly is challenging. In the n0 = 0 case

the authors of [121] employed the � ! 1 limit to simplify the triple-sine functions.
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For general n0 we will use an additional, Cardy-like limit in the spirit of [109] by also

considering ! ! 0. We show in App. A.3 that the 1-loop-determinant contribution is

then approximated by

Z
n0
1�loop ' �

⇡

!3

2

4�2
X

i>j

�ij +O(�,!)

3

5 , (5.153)

when the parameters � are restricted to the Weyl chamber where �i > �j for i > j and

assumed to be very large while the other parameters remain of order one [121]. The

partition function then simplifies to

Z
n0
S5 (m, ~!,�) /

Z
dN�1�

N !
e�

2⇡
!3 f(�,�,�) , (5.154)

where

f =
⇡

�

NX

i

�2i +
�2

2

X

i>j

�ij +O(�,!) . (5.155)

The integration in (5.154) can now be carried out using the saddle-point approximation.

Note that in our Cardy-like limit the constraint has reduced to � = ⇡in0
� , which implies

that �2 < 0. This is crucial to ensure that there exists a saddle point—the �i are

already ordered. The solution is [121]

�i = �
��2

4⇡
(2i�N � 1) , (5.156)

which when substituted back into the integral leads to the following leading-N expres-

sion for the 5D free energy

� logZS5 / �
��4N3

24!3
+O(�0,!�2, N) . (5.157)

The claim is that this 5D calculation captures precisely the 6D partition function of

the (2,0) theory on S5
⇥ S1, Eq. (5.148), and hence that

� logZS5 = �F � log I . (5.158)

In certain limits of the chemical potentials where finite-N calculations can be explicitly

performed and the n0 = 0 superconformal-index can be evaluated independently, one

sees that the corrections in (5.157) capture O(N) terms in the quantity F (e.g. coming

from instantons) as well as the correct superconformal index contributions I which are

O(�0, N0) [97, 101, 119, 140, 141].
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In the large N limit therefore the expectation is that

� logZS5⇥S1 �����!
limN!1

�F (5.159)

with

�F = �
�N3�4

24!3
+O(N) . (5.160)

After setting n0 = ±1 as well as converting to gravitational parameters using N3 =
3⇡2

16g5GN
we arrive at

�F = �
�⇡2

128g5GN

�4

!3
+O(�0,!�2, N) . (5.161)

Upon sending {!,�} ! ��1
{!,�}, this expression, which is valid in the Cardy-like

limit ! ! 0, exactly reproduces the gravitational on-shell action (5.108) and therefore

yields the value of the black hole entropy in AdS7 with the correct normalisation.
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Chapter 6

Conclusions

There were two aims of this thesis. The first was to present the results gathered

over years of research through varying methods and their applications in the subject

of conformal field theories. The other was to present the insight gained by moving

between solving problems analytically and numerically. Our aim is that perhaps with

the demonstration of these methods and results we can show that all of these tools

complement each other and we hope to inspire more theoretical physicists to start using

and developing new methodology for numerical methods in these subjects (especially

ML). With a growing interest in these areas, we can start bringing machine learning

and reinforcement learning out of its infancy in theoretical physics.

6.1 Summary of Results

6.1.1 Learning the Conformal Bootstrap

In Chapter 3 we introduced the use of Reinforcement-Learning techniques into the

conformal bootstrap programme. We tested an RL soft Actor-Critic algorithm in the

context of several 2D CFTs and showed that the algorithm can perform e�cient multi-

dimensional searches in the space of scaling dimensions and OPE-squared coe�cients.

The basic input of our approach is a spin-partition and a window of scaling dimensions,

where the search is concentrated. We demonstrated in concrete examples that this

minimal input is enough to guide the algorithm towards a CFT of interest and that

the obtained numerical values can be sensible even in very rough truncations with only

a handful of operators. Our algorithm can be straightforwardly applied to any CFT

of arbitrary spacetime dimension. This opens up the very exciting possibility of new

non-perturbative results in conformal field theory in a wide range of directions, some

of which we plan to explore in the near future.

We view the approach introduced here as largely complementary to the more stan-

dard ones that have already been developed to-date in the context of the numerical
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conformal bootstrap. We believe that our method is comparatively stronger in per-

forming e�cient multi-dimensional searches in arbitrary, a priori selected (unitary or

non-unitary) CFTs. Since it is based on statistical and probabilistic techniques, it can

be weaker in accuracy, on detecting rigorous bounds and on conclusively rejecting CFT

data as inconsistent. The latter is the context where standard numerical conformal-

bootstrap approaches have excelled over the last decade. Eventually, one would like

to combine all available analytic and numerical methods at their disposal to build a

powerful multi-purpose toolbox.

We envisage the most e�cient application of our approach in contexts where a CFT

can be solved in a parametrically convenient regime (e.g. in a weakly coupled large-N

regime or a weakly coupled regime on a conformal manifold). Then, one can use the

information of the perturbative solution to set up a well-informed spin-partition, that

can in turn be applied adiabatically to a search with gradually changing parameters.

By using a gradual update of the CFT data, one should be able to implement the RL

algorithm step-by-step and track them from a weak- to a strong-coupling regime. This

is a concrete context, where one can try to leverage all available analytic and numerical

information. For example, in superconformal field theories, our approach can benefit

from many recent developments that use the superconformal structure of the theory in

an essential way.

Although our results provide a proof of principle for the usefulness of RL techniques

to this class of problems, there are several aspects of our approach that require further

investigation and development. The most urgent is to systematically understand how

to incorporate reliable errors in our computations. The primary source of error is of an

analytic nature and originates from the truncation of the conformal-block expansions.

The convergence properties of these expansions, [52], imply that there is a su�ciently

high �max above which the error will be negligible. It is unclear, however, how to

identify this optimal �max in a generic theory and for generic four-point functions.

Hence, one might initially need to perform a case-by-case analysis in order to explore

how our results are a↵ected by an increasing �max.

Another source of error, which is sometimes more significant than the error due

to the �max truncation, comes from the way we reduce the functional dependence of

the crossing equations on the cross-ratios to a discrete set of algebraic equations. Here

we have chosen to implement this reduction by evaluating the crossing equations on a

finite set of cross-ratio values. We noticed experimentally that the sampling of z-points

suggested in Sec. 3.1 of [53] works well in our computations. However, we lack a good

understanding of whether this is the optimal sampling, or how the calculations are

a↵ected by the number of z-points selected. An error can consequently be associated

with these e↵ects by varying the sampling (in form and size). Alternatively, one can

explore more standard reductions based on Taylor-expansions of the conformal blocks
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around some point in z-space. It would be interesting to repeat the computations of

this chapter with this alternative approach and compare results.

Other errors have to do with the statistical nature of our approach and the fact

that we do not a priori know the minimal possible violation of the truncated crossing

equations for a given truncation and reduction. We quantified this violation with a

relative measure of accuracy A and performed runs of the RL algorithm up to the point

where the improvement of A was saturated. An important additional measure of error

for each CFT datum is a statistical error obtained by performing the same type of run

many times, which we sampled in the case of the c = 1 compactified boson CFT on

S1 for the simplest case of �max = 2 in the momentum sector and for �max = 8 in

the four-point function of the conserved U(1) current. The evaluation of this type of

error would benefit from a fully parallelisable algorithm. As we noted in Sec. 3.4.5,

current implementations of the algorithm benefit from the judicious caretaking of the

user, which obstructs the full parallelisability of the code. It would be useful to improve

this aspect in future work.

We did not make systematic use of the constraints of global symmetries or of the full

constraints of unitarity on the OPE-squared coe�cients. As we observed in Sec. 3.6.2,

multi-dimensional searches can benefit significantly from prior information on the signs

of the OPE-squared coe�cients. Without such information the agent is allowed to

explore cancellations between di↵erent conformal blocks that sidetrack the search by

increasing the statistical error on certain OPE-squared coe�cients, especially so for

those at higher scaling dimensions that come naturally with suppressed numerical val-

ues.

Finally, we treated the learning algorithm itself as a black box, using the o↵-the shelf

soft Actor-Critic algorithm of [51]. It would be interesting to explore what e�ciency

and speed gains one can achieve by tuning hyperparameters or choosing the Deep

Deterministic Policy Gradient method [60]. We also chose the simplest definition for

the reward function (3.52). The choice of an appropriate reward function is crucial in

achieving better results for RL algorithms and this is an area that also deserves further

investigation.

6.1.2 Brute-Forcing Vacuum Characters

In Chapter 4 we have calculated vacuum characters of rank-one and rank-two VOAs

labelled by non-Coxeter, crystallographic complex reflection groups. This involved a

brute-force implementation of the algorithms presented in [20] and leads to the Mac-

donald index of certain 4DN = 3 S-fold SCFTs. Our results were given as an expansion

in the fugacity that keeps track of the conformal weight, and were truncated to orders

that require short computation times when using a desktop computer; they can be

pushed to arbitrary higher orders by allocating appropriate resources. As they stand,
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they can already be used as new data for N = 3 SCFTs. E.g. the G = Z3 result agrees

in the Schur limit with [93].

Our code is customisable. We have clearly signposted where changes would need

to be made to return vacuum characters of VOAs labelled by di↵erent complex reflec-

tion groups, for which the free-field realisation is known. In particular, it would be

very interesting to extend this approach to the N = 3 S-fold SCFT of rank two asso-

ciated with G(4, 1, 2) and the rank-three example G(3, 3, 3); a proposal for the Schur

index of the latter was also given in [93]. Unfortunately, finding the free-field real-

isation for both these VOAs—already needed before identifying the null states—is a

challenging task: the simplest anti-chiral strong generator ansatze involve 425 and 2265

undetermined coe�cients respectively. It would perhaps be more promising to use the

screening-operator approach, upon determining S. Although our screening-operator

code is currently more expensive to run, it could benefit from optimisations that par-

allelise the computations, hence making it significantly faster on multi-core clusters. It

will also be interesting to check these results by directly studying the BPS-states of

N = 3 theories. One way to do so would be to study three-string junctions in S-fold

backgrounds as in [142]. We hope to return to some of these questions in the near

future.

6.1.3 AdS7 Black Holes and 5D MSYM Theory

In Chapter 5 we mainly looked at the how the AdS7 black hole entropy and the su-

perconformal index of the 6D (2,0) theory were related. In order to do that we first

introduced a few ingredients on both sides of the AdS/CFT correspondence. In Sec.

5.2 we introduced the reader to some basic concepts in localisation, and also recreated

the famous 3D localisation of the Supersymmetric Chern-Simons theory on S3 done

by [22]. In Sec. 5.4, on the AdS side we generalised the AdS5 case of [21] for our

own research where we took the relatively simple example of a 2-equivalent charge,

3-equivalent rotation non-extremal black hole solution in AdS7. Just as a remark, we

have attempted more complicated solutions (e.g. ones with non-equivalent charges or

rotations), but they proved too di�cult to generalise to, so we decided to settle on

the simpler case in the end. In this section we also imposed the BPS limit on the

black hole solutions we considered (supersymmetric and extremal limit) and looked at

the thermodynamic quantities in this limit. Then we further analysed the values of

certain parameters of the black hole at the outermost horizon which gave us complex

values for thermodynamic quantities and also allowed us to write down the relationship

2�� 3! = ±2⇡i. This relationship between the chemical potentials is analogous to the

one in [21] and was paramount to the analysis of the 6D theory.

Before we could begin analysing the (2,0) theory, we had to derive the background

for the boundary. We did this by using bulk regularity, that is, finding an ideal coor-
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dinate transformation and then taking the limit as r ! 1. This again was done in a

similar manner to that of [21], but there was some extra work done to derive the trans-

formations for S5, which were included in App. A.2. Before moving on we also had to

look at what happens to the gauge field. At the boundary there will be a background

gauge field, which was pure gauge and imaginary A|bdry = i�d⌧̂ .

In Sec. 5.5 we started considering the boundary CFT side of the correspondence.

Since the (2,0) theory is non-Lagrangian, we could not directly calculate the supercon-

formal index using the method of supersymmetric localisation, which we introduced

in the review section, directly in 6D. However, there exists a conjecture in which the

theory appears from the reduction of a maximally-supersymmetric N = 2 Yang-Mills

theory with SU(N) gauge group [115, 116, 117, 118, 101, 119, 120, 121] on a circle from

S5
⇥ S1

� . We then went on to calculate the partition function of this MSYM theory on

S5 in the large N and Cardy-like limit (to simplify the problem further). In order to

perform the localisation computation we utilise the procedures of [140, 138] in order

to arrive at the result which reproduces the correct N3 scaling of the supersymmetric

Casimir energy as well as matches with the expected value — the gravitational on-shell

action— in this limit.

6.2 Final Comments and Outlook

There has been a large variety of research presented in this thesis. All the way from fully

numerical — complete with numerical truncations, approximations and novel computa-

tional algorithms —; computational brute force, yet still analytic by calculations; and

finally fully analytic. It was our aim to showcase the diversity of theoretical physics re-

search taking place at the moment. While analytic solutions still remain the most highly

desired in theoretical physics, it is very much the case that computational methods can

massively help in verifying conjectures, or even treading into unknown territories on

their own.

We have reserved this final section to compare and contrast the methods we used

in this thesis in a qualitative way. Let us start with the analytic method of localisation

which we employed in the case of the MSYM theory on S5. Just like with a lot of

problems in this area of String theory, usually a direct approach is out of the question,

and one has to use a series of convenient limits and/or approximations in order to churn

out an answer from the theory being analysed. Usually localising such theories also

results in expressions which include large amounts of special functions whose properties

must be well considered, which can present a di�culty when analysing the solutions.

A great example is in the calculation in appendix A.3 where we had to consider triple

sine functions.

We are not trying to justify the use of an analytic solution, since such methods
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are already well established. However, computational methods have only really been

used in physics perhaps for almost half a century. The 2D VOA case, while perfectly

analytically solvable, would have not been e�cient to do by hand, if even possible to the

level we have shown in Chapter 4. Computers are fast. Trivial to say, but in the future

we hope to see a lot of index-like evaluations hopefully being calculated via machines

(especially since closed forms are very di�cult). Calculating indices from huge sets of

operators is definitely not a problem when the algorithm is properly parallelised and

potentially running on a high-powered cluster.

Finally, the numerical methods we employed in this thesis also heavily relied on

approximations and truncations. In a sense this is somewhat comparable to the analytic

computation, since they will both present solutions which are heavily restricted by their

assumptions. In the case of our research, our truncations of the crossing equations had

to assume that the terms contributing were decaying fast enough to give a good enough

approximation if we only included a small, finite amount of operators. Furthermore

we also had to put our continuous functions on a grid, and the points we chose to

evaluate the functions on also heavily influenced the results. If one has access to

high computational power, it is possible to run many iterations of these evaluations in

many di↵erent grids or assumptions and “integrate (sum) out” the dependence on such

trivialities. In our computations we have demonstrated that accurate results can be

obtained using such numerical methods and for future directions we will be utilising

highly statistical approaches which can eliminate the bias in individual runs of the

code and provide a much more robust algorithm, which will also make it easier for the

scientific community to replicate results.

In conclusion, the most sensible approach is to utilise all of these methods in con-

junction. As it may be, at the moment there is an enormous pool of problems where

computational methods could be used to verify existing analytic results, or even help

to inspire the use of analytic tools in certain subfields. The increased research into

machine learning applications in the String theory landscape, knot theory and also

conformal field theories could potentially be the spark of a whole new era in theoretical

physics.
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Appendix A

Black Hole and S5 Calculations

A.1 Reality Properties of m

Here we would like to show that the mass parameter appearing in the AdS7 black

hole metric (5.54) becomes complex away from the BPS limit (i.e. when r+ > r⇤) and

becomes real when the black hole is supersymmetric and extremal (when r+ = r⇤).

We can check whether if any solutions of m are complex by looking at the discrim-

inant

� = C2
1 � 4C0C2 , (A.1)

with Ci(r+, r⇤, a) being the coe�cient of the ith power of m+ in (5.105). The parameter

a can be expressed in terms of r⇤ as

a =
�r2⇤ ± 2

p
r2⇤(1 + r2⇤)

4 + 3r2⇤
, (A.2)

where we have chosen to set the AdS radius to one, g = 1 to simplify the presentation.

This expression can be inverted to yield

r⇤ =

s
4a2

(1 + a)(1� 3a)
, (A.3)

with the positive branch being selected on physical grounds. Reality of the black hole

horizon sets a bound on a

�1 < a <
1

3
(A.4)

and since this is a radius we can see that a defines the range of r⇤ to be [0,1).

At this stage we should also note that in order to preserve the signature of the

metric (5.54), we have to restrict ⌅ such that it is always larger than zero. This implies
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that

⌅ = 1� a2 > 0 , (A.5)

which is always satisfied for a choice in (A.4).

Returning to (A.1), one finds that it can be written as

C2
1 � 4C0C2 = �

1024r4⇤
�
r2+ � r2⇤

�
2
�
r2⇤ + 1

� ⇣
4r2+

⇣
�
p

r2⇤ (r
2
⇤ + 1) + r2⇤ + 1

⌘
� r2⇤

⌘

9
⇣
r2⇤ � 2

p
r2⇤ (r

2
⇤ + 1)

⌘
4
⇣
4
p
r2⇤ (r

2
⇤ + 1) + r2⇤

⌘
2

.

(A.6)

All of the above terms are clearly positive, with the exception of

� ⌘ 4r2+

⇣
�

p
r2⇤ (r

2
⇤ + 1) + r2⇤ + 1

⌘
� r2⇤ . (A.7)

Let us take a part of this and define

f(r⇤) = 4(�
p
r2⇤ (r

2
⇤ + 1) + r2⇤ + 1) . (A.8)

The range for this function is 2 < f(r⇤) < 4. This can be seen by taking the infinite

limit, or by Laurent expansion. Hence,

� > 2r2+ � r2⇤ > 0 , (A.9)

and the whole of (A.1) is always negative except at the BPS limit. We have therefore

shown that the mass is indeed complex for r+ < r⇤.

A.2 5-sphere Geometry

In this appendix we give the details of the change of coordinates (5.118). Start from

C3 with complex coordinates (z1, z2, z3) and metric

ds26 =
3X

i=1

|dzi|
2 . (A.10)

We then restrict to S5 by imposing the constraint
P3

i=1 |zi|
2 = 1. Next define coordi-

nates

⇠1 =
z1
z3

, ⇠2 =
z2
z3

, z3 = |z3|e
i⌧ , (A.11)
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and

Â =
i

2
(1 + |⇠1|

2 + |⇠2|
2)�1

�
⇠̄1d⇠1 + ⇠̄2d⇠2 � ⇠1d⇠̄1 � ⇠2d⇠̄2

�
. (A.12)

Then the 5-sphere metric is

ds2S5 = (d⌧ � Â)2 + (1 + |⇠1|
2 + |⇠2|

2)�1(|d⇠1|
2 + |d⇠2|

2)

� (1 + |⇠1|
2 + |⇠2|

2)�2(⇠̄1d⇠1 + ⇠̄2d⇠2)
2 .

(A.13)

Choosing

⇠1 = tan� cos
✓

2
e

i
2 ( +')

⇠2 = tan� sin
✓

2
e

i
2 ( �') ,

(A.14)

gives

ds2S5 =

✓
d⌧ +

1

2
sin2 �(d + cos ✓d')

◆2

+ d�2 +
1

4
sin2 �

h
cos2 �(d + cos ✓d')2 + d✓2 + sin2 ✓d'2

i
,

= d⌧2 + sin2 �d⌧(d + cos ✓d')

+ d�2 +
1

4
sin2 �

h
(d + cos ✓d')2 + d✓2 + sin2 ✓d'2

i
.

(A.15)

From the choice of ⇠’s we get

z1 = sin� cos
✓

2
e

i
2 ( +')ei⌧

z2 = sin� sin
✓

2
e

i
2 ( �')ei⌧

z3 = cos�ei⌧ .

(A.16)

On the other hand one can take the following Cartesian coordinates for S5

x1 = sin�1 sin ✓1 sin ✓2

x2 = cos�1 sin ✓1 sin ✓2

x3 = sin�2 sin ✓1 cos ✓2

x4 = cos�2 sin ✓1 cos ✓2

x5 = sin�3 cos ✓1

x6 = cos�3 cos ✓1 ,

(A.17)
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and identify

z̃1 = x2 + ix1 = ei�1 sin ✓1 sin ✓2

z̃2 = x4 + ix3 = ei�2 sin ✓1 cos ✓2

z̃3 = x6 + ix5 = ei�3 cos ✓1 .

(A.18)

The metric in these coordinates is

ds2S5 = d✓21 + sin2 ✓1d✓
2
2 + sin2 ✓1 sin

2 ✓2d�
2
1 + sin2 ✓1 cos

2 ✓2d�
2
2 + cos2 ✓1d�

2
3 . (A.19)

Inserting the coordinate mapping

✓ ⌘ 2✓2 ,  ⌘ �1 + �2 � 2�3 , ' ⌘ ��1 + �2 , ⌧ ⌘ �3 , � ⌘ ✓1 . (A.20)

into (A.15) gives back (A.19).

A.3 5D 1-loop Determinants for General n0

In this appendix we provide some additional details on the derivation of the 1-loop

determinants of 5D MSYM on a squashed S5 for general n0 and their simplification in

the Cardy-like limit, ! ! 0, which we made use of in Sec. 5.5.2. We will follow both

[138] and [121] closely, to which we refer the interested reader for a complete account.

The calculation of [138] involves looking at the partition function of a 6D (1,0) theory

with vector and hypermultiplets on S5
⇥ S1, calculating the 6D one-loop determinants

via supersymmetric localisation and then reducing on the circle to get expressions in

5D. Interestingly, even though the 6D theory is not superconformal, the result for the 1-

loop determinants can be expressed as a Hamiltonian index. This fact greatly simplifies

the organisation of the calculation for n0 = 0 and allows for a straightforward extension

to arbitrary n0.

We begin by setting up notation, as in [138]. There are 5 Cartans left after a choice

of localising supercharge Q in the 6D (1,0) theory

H = �@t, QV = �iL , ⌧3, �3,8 . (A.21)

These Cartans correspond to the bosonic symmetries R⇥U(1)V ⇥SU(3)V ⇥SU(2)R. We

will also make the supercharge we picked manifest, with the associated supersymmetry

parameters being

H QV ⌧3 �3 �8

"1 +1
2 �

3
2 +1 0 0

"2 �
1
2 +3

2 -1 0 0
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With this information, one can formulate the following “index” [138]30

I = Tr(�1)F qH�QV �2⌧3xQV + 3
2 ⌧3y�33 y�88 , (A.22)

where q = e�� , x = q1+iw0 and y3,8 = qiw3,8 . The trace is taken over the Fock space

of gauge-invariant states on the squashed S5. We choose the fermion-number operator

as F = 2QV . This index uses completely independent chemical potentials since the

operator on the RHS of (A.22) commutes with the supercharge Q. We note that the

chemical potentials w0,3,8 are related to the !1,2,3 that appear in the main part of this

paper as

(1 + iw0) =
1

3

3X

i=1

!i , iw3 =
1

2
(!2 � !1) , iw8 =

1

6
(2!3 � !1 � !2) (A.23)

and these are in turn related to the squashing parameters 'i as !i = 1 + i'i.

Following the discussion in Sec. 5.5.1, one can straightforwardly generalise (A.22)

for arbitrary n0 by shifting one of the chemical potentials, !1 ! !1 �
2⇡in0
� = !̃1

I = Tr(�1)F qH�QV �2⌧3 x̃QV + 3
2 ⌧3 ỹ�33 ỹ�88 , (A.24)

with the fugacities x̃, ỹ3,8 defined as below (A.22) but using the !̃i of (5.146). From

here on we can repeat the calculation of [138] using the tilded chemical potentials. In

particular, this means that we will encounter the same bosonic and fermionic cancel-

lations that occur in the calculation of the supersymmetric partition function of [138].

The non-cancelling contributions from the vector multiplet are fermionic modes that

can be encoded into the plethystic exponential of the single-letter index

�

X

�2adj

" 1X

k=1

q�i�(�)x̃k�(k,k)(ỹ3, ỹ8) +
1X

k=0

q�i�(�)x̃(k+3)�(k,k)(ỹ3, ỹ8)

#

= �
X

�2adj

" 1X

k=1

q�i�(�)x̃k�(k,k)(ỹ3, ỹ8) +
1X

k=0

q�i�(�)+
P

i !i x̃k�(k,k)(ỹ3, ỹ8)

#
,(A.25)

where the �(k,k)(ỹ3, ỹ8) is the SU(3)V character and the �(�) denote an inner product

in weight space. The surviving modes from the hypermultiplet in a representation R

have a corresponding single-letter index contribution

X

⇢2R

" 1X

k=0

q�i⇢(�)x̃(k+
3
2 )�(k,k)(ỹ3, ỹ8) +

1X

k=0

qi⇢(�)x̃(k+
3
2 )�(k,k)(ỹ3, ỹ8)

#
. (A.26)

30When the theory is superconformal this is the standard 6D (1,0) index.
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We can use the fact that n0 2 Z and recast this as

X

⇢2R

" 1X

k=0

q�i⇢(�)+ 1
2

P
i !i�

⇡in0
� x̃k�(k,k)(ỹ3, ỹ8) +

1X

k=0

qi⇢(�)+
1
2

P
i !i+

⇡in0
� x̃k�(k,k)(ỹ3, ỹ8)

#
.

(A.27)

By grouping the q±(i⇢(�)�⇡in0
� ) expressions together in the hypermultiplet, the calcu-

lation of the corresponding 1-loop determinants in [138] can be carried out identically.

The only point that merits special mention is that the pi variables of Eq. (79) of that

reference are still the ones that are used in the general n0 case, since

p̃i = q!̃i = q!i . (A.28)

Following the rest of the arguments in [138], one ends up with the final result for the

1-loop determinants of a 5D N = 1 theory with one vector and one hypermultiplet in

the representation R

Z1�loop =

Q
↵2roots S3(�i�(�)|~!)Q

⇢2R S3(�i⇢(�)�
i⇡n0
� + !1+!2+!3

2 |~!)
. (A.29)

In the Cardy-like limit !i ! 0, the triple-sine functions31 S3(�|~!) have a simple

� ! 1 limit if one additionally assumes that the � scale as �, while the remaining

parameters remain of order one [121]

logS3(i�|~!)
sgn(�)=±1
⇠ �

⇡

6!1!2!3

�
|�|3 +O(�2, ~!)

�
. (A.30)

As a result Eq. (5.152) from the main part of this paper where ~! = (!,!,!) becomes

Z
n0
1-loop /

NY

i>j

S3(i�ij |~!)S3(�i�ij |~!)

S3(�+ i�ij |~!)S3(�� i�ij |~!)

⇠ exp

0

@� ⇡

6!3

X

i>j

⇥
2�3ij � (�ij � i�)3 � (�ij + i�)3

⇤
+O(�,!)

1

A

= exp

0

@� ⇡

!3
�2
X

i>j

�ij +O(�,!)

1

A , (A.31)

where the absolute values have been dropped because the parameters � have been

restricted to the Weyl chamber where �i > �j for i > j and since we have assumed

that �ij � i� because of its � scaling. Note that in the Cardy-like limit ! ! 0 the

constraint implies that � is imaginary, so the combination �ij ± i� is real and positive.

31For a summary of the properties of triple-sine functions see also [143].
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[90] Dražen Adamović. “A REALIZATION OF CERTAIN MODULES FOR THE

N = 4 SUPERCONFORMAL ALGEBRA AND THE AFFINE LIE ALGEBRA

A2(1)”. In: Transformation Groups 21.2 (2016), pp. 299–327. doi: 10.1007/

s00031-015-9349-2. eprint: 1407.1527.

[91] Jaewon Song. “Macdonald Index and Chiral Algebra”. In: JHEP 08 (2017),

p. 044. doi: 10.1007/JHEP08(2017)044. arXiv: 1612.08956 [hep-th].

[92] G. C. Shephard and J. A. Todd. “Finite Unitary Reflection Groups”. In: Cana-

dian Journal of Mathematics 6 (1954), pp. 274–304. doi: 10.4153/CJM-1954-

028-3.

[93] Gabi Zafrir. “An N = 1 Lagrangian for an N = 3 SCFT”. In: JHEP 01 (2021),

p. 062. doi: 10.1007/JHEP01(2021)062. arXiv: 2007.14955 [hep-th].

[94] Kris Thielemans. “An Algorithmic approach to operator product expansions, W

algebras and W strings”. PhD thesis. Leuven U., 1994. arXiv: hep-th/9506159.

[95] A. Fujitsu. “ope.math: Operator product expansions in free field realizations of

conformal field theory”. In: Comput. Phys. Commun. 79 (1994), pp. 78–99. doi:

10.1016/0010-4655(94)90231-3.

160

https://doi.org/10.21468/SciPostPhys.9.6.083
https://arxiv.org/abs/1904.10969
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://doi.org/10.1007/JHEP10(2018)131
https://arxiv.org/abs/1804.05396
https://doi.org/10.1007/JHEP06(2020)125
https://arxiv.org/abs/2004.03919
https://arxiv.org/abs/2004.03919
https://doi.org/10.1007/JHEP09(2016)116
https://arxiv.org/abs/1602.01503
https://doi.org/10.1007/JHEP04(2017)032
https://arxiv.org/abs/1612.01536
https://arxiv.org/abs/1612.01536
https://doi.org/10.1007/s00031-015-9349-2
https://doi.org/10.1007/s00031-015-9349-2
1407.1527
https://doi.org/10.1007/JHEP08(2017)044
https://arxiv.org/abs/1612.08956
https://doi.org/10.4153/CJM-1954-028-3
https://doi.org/10.4153/CJM-1954-028-3
https://doi.org/10.1007/JHEP01(2021)062
https://arxiv.org/abs/2007.14955
https://arxiv.org/abs/hep-th/9506159
https://doi.org/10.1016/0010-4655(94)90231-3


BIBLIOGRAPHY

[96] Christian Romelsberger. “Counting chiral primaries in N = 1, d=4 superconfor-

mal field theories”. In: Nucl. Phys. B747 (2006), pp. 329–353. doi: 10.1016/j.

nuclphysb.2006.03.037. arXiv: hep-th/0510060 [hep-th].

[97] Jyotirmoy Bhattacharya et al. “Indices for Superconformal Field Theories in

3,5 and 6 Dimensions”. In: JHEP 02 (2008), p. 064. doi: 10.1088/1126-

6708/2008/02/064. arXiv: 0801.1435 [hep-th].

[98] Lars Grant et al. “Comments on 1/16 BPS Quantum States and Classical Config-

urations”. In: JHEP 05 (2008), p. 049. doi: 10.1088/1126-6708/2008/05/049.

arXiv: 0803.4183 [hep-th].

[99] Chi-Ming Chang and Xi Yin. “1/16 BPS states in N = 4 super-Yang-Mills

theory”. In: Phys. Rev. D88.10 (2013), p. 106005. doi: 10.1103/PhysRevD.88.

106005. arXiv: 1305.6314 [hep-th].

[100] Satoshi Nawata. “Localization of N=4 Superconformal Field Theory on S1xS3

and Index”. In: JHEP 11 (2011), p. 144. doi: 10.1007/JHEP11(2011)144.

arXiv: 1104.4470 [hep-th].

[101] Hee-Cheol Kim and Seok Kim. “M5-branes from gauge theories on the 5-sphere”.

In: JHEP 05 (2013), p. 144. doi: 10.1007/JHEP05(2013)144. arXiv: 1206.6339

[hep-th].

[102] Jakob Lorenzen and Dario Martelli. “Comments on the Casimir energy in su-

persymmetric field theories”. In: JHEP 07 (2015), p. 001. doi: 10 . 1007 /

JHEP07(2015)001. arXiv: 1412.7463 [hep-th].

[103] Benjamin Assel et al. “The Casimir Energy in Curved Space and its Supersym-

metric Counterpart”. In: JHEP 07 (2015), p. 043. doi: 10.1007/JHEP07(2015)

043. arXiv: 1503.05537 [hep-th].

[104] Davide Cassani and Dario Martelli. “The gravity dual of supersymmetric gauge

theories on a squashed S1 x S3”. In: JHEP 08 (2014), p. 044. doi: 10.1007/

JHEP08(2014)044. arXiv: 1402.2278 [hep-th].

[105] Seyed Morteza Hosseini, Kiril Hristov, and Alberto Za↵aroni. “An extremization

principle for the entropy of rotating BPS black holes in AdS5”. In: JHEP 07

(2017), p. 106. doi: 10.1007/JHEP07(2017)106. arXiv: 1705.05383 [hep-th].

[106] Seyed Morteza Hosseini, Kiril Hristov, and Alberto Za↵aroni. “A note on the

entropy of rotating BPS AdS7 ⇥ S4 black holes”. In: JHEP 05 (2018), p. 121.

doi: 10.1007/JHEP05(2018)121. arXiv: 1803.07568 [hep-th].

[107] Davide Cassani and Lorenzo Papini. “The BPS limit of rotating AdS black hole

thermodynamics”. In: (2019). arXiv: 1906.10148 [hep-th].

161

https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://arxiv.org/abs/hep-th/0510060
https://doi.org/10.1088/1126-6708/2008/02/064
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://doi.org/10.1088/1126-6708/2008/05/049
https://arxiv.org/abs/0803.4183
https://doi.org/10.1103/PhysRevD.88.106005
https://doi.org/10.1103/PhysRevD.88.106005
https://arxiv.org/abs/1305.6314
https://doi.org/10.1007/JHEP11(2011)144
https://arxiv.org/abs/1104.4470
https://doi.org/10.1007/JHEP05(2013)144
https://arxiv.org/abs/1206.6339
https://arxiv.org/abs/1206.6339
https://doi.org/10.1007/JHEP07(2015)001
https://doi.org/10.1007/JHEP07(2015)001
https://arxiv.org/abs/1412.7463
https://doi.org/10.1007/JHEP07(2015)043
https://doi.org/10.1007/JHEP07(2015)043
https://arxiv.org/abs/1503.05537
https://doi.org/10.1007/JHEP08(2014)044
https://doi.org/10.1007/JHEP08(2014)044
https://arxiv.org/abs/1402.2278
https://doi.org/10.1007/JHEP07(2017)106
https://arxiv.org/abs/1705.05383
https://doi.org/10.1007/JHEP05(2018)121
https://arxiv.org/abs/1803.07568
https://arxiv.org/abs/1906.10148


BIBLIOGRAPHY

[108] Finn Larsen, Jun Nian, and Yangwenxiao Zeng. “AdS5 Black Hole Entropy near

the BPS Limit”. In: (2019). arXiv: 1907.02505 [hep-th].

[109] Sunjin Choi et al. “Large AdS black holes from QFT”. In: (2018). arXiv: 1810.

12067 [hep-th].

[110] Sunjin Choi et al. “Entropy functions of BPS black holes in AdS4 and AdS6”.

In: (2018). arXiv: 1811.02158 [hep-th].

[111] Francesco Benini and Paolo Milan. “A Bethe Ansatz type formula for the su-

perconformal index”. In: (2018). arXiv: 1811.04107 [hep-th].

[112] Francesco Benini and Paolo Milan. “Black holes in 4d N = 4 Super-Yang-Mills”.

In: (2018). arXiv: 1812.09613 [hep-th].

[113] Joonho Kim, Seok Kim, and Jaewon Song. “A 4d N = 1 Cardy Formula”. In:

(2019). arXiv: 1904.03455 [hep-th].

[114] Alejandro Cabo-Bizet et al. “The asymptotic growth of states of the 4d N=1

superconformal index”. In: (2019). arXiv: 1904.05865 [hep-th].

[115] Guglielmo Lockhart and Cumrun Vafa. “Superconformal Partition Functions

and Non-perturbative Topological Strings”. In: (2012). arXiv: 1210.5909 [hep-th].

[116] Johan Källén and Maxim Zabzine. “Twisted supersymmetric 5D Yang-Mills

theory and contact geometry”. In: JHEP 05 (2012), p. 125. doi: 10.1007/

JHEP05(2012)125. arXiv: 1202.1956 [hep-th].

[117] Johan Källén, Jian Qiu, and Maxim Zabzine. “The perturbative partition func-

tion of supersymmetric 5D Yang-Mills theory with matter on the five-sphere”.

In: JHEP 08 (2012), p. 157. doi: 10.1007/JHEP08(2012)157. arXiv: 1206.6008

[hep-th].

[118] J. Källén et al. “N3-behavior from 5D Yang-Mills theory”. In: JHEP 10 (2012),

p. 184. doi: 10.1007/JHEP10(2012)184. arXiv: 1207.3763 [hep-th].

[119] Hee-Cheol Kim, Joonho Kim, and Seok Kim. “Instantons on the 5-sphere and

M5-branes”. In: (2012). arXiv: 1211.0144 [hep-th].

[120] Hee-Cheol Kim et al. “The general M5-brane superconformal index”. In: (2013).

arXiv: 1307.7660 [hep-th].

[121] Nikolay Bobev, Mathew Bullimore, and Hee-Cheol Kim. “Supersymmetric Casimir

Energy and the Anomaly Polynomial”. In: JHEP 09 (2015), p. 142. doi: 10.

1007/JHEP09(2015)142. arXiv: 1507.08553 [hep-th].

[122] Francesco Benini and Alberto Za↵aroni. “A topologically twisted index for three-

dimensional supersymmetric theories”. In: JHEP 07 (2015), p. 127. doi: 10.

1007/JHEP07(2015)127. arXiv: 1504.03698 [hep-th].

162

https://arxiv.org/abs/1907.02505
https://arxiv.org/abs/1810.12067
https://arxiv.org/abs/1810.12067
https://arxiv.org/abs/1811.02158
https://arxiv.org/abs/1811.04107
https://arxiv.org/abs/1812.09613
https://arxiv.org/abs/1904.03455
https://arxiv.org/abs/1904.05865
https://arxiv.org/abs/1210.5909
https://doi.org/10.1007/JHEP05(2012)125
https://doi.org/10.1007/JHEP05(2012)125
https://arxiv.org/abs/1202.1956
https://doi.org/10.1007/JHEP08(2012)157
https://arxiv.org/abs/1206.6008
https://arxiv.org/abs/1206.6008
https://doi.org/10.1007/JHEP10(2012)184
https://arxiv.org/abs/1207.3763
https://arxiv.org/abs/1211.0144
https://arxiv.org/abs/1307.7660
https://doi.org/10.1007/JHEP09(2015)142
https://doi.org/10.1007/JHEP09(2015)142
https://arxiv.org/abs/1507.08553
https://doi.org/10.1007/JHEP07(2015)127
https://doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698


BIBLIOGRAPHY

[123] Francesco Benini, Kiril Hristov, and Alberto Za↵aroni. “Black hole microstates

in AdS4 from supersymmetric localization”. In: JHEP 05 (2016), p. 054. doi:

10.1007/JHEP05(2016)054. arXiv: 1511.04085 [hep-th].

[124] Seyed Morteza Hosseini, Itamar Yaakov, and Alberto Za↵aroni. “Topologically

twisted indices in five dimensions and holography”. In: JHEP 11 (2018), p. 119.

doi: 10.1007/JHEP11(2018)119. arXiv: 1808.06626 [hep-th].

[125] Stefano Cremonesi. “An Introduction to Localisation and Supersymmetry in

Curved Space”. In: PoS Modave2013 (2013), p. 002. doi: 10.22323/1.201.

0002.
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