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Summary   
The ego-noise generated from rotating motors and propellers as well as the movement of the 
drone impose significant challenges to drone audition, which aims to sense the acoustic 
environment with onboard microphones mounted on a flying drone. As a state-of-the-art 
framework for sound processing on drones, time-frequency spatial filtering (TFS) exploits the 
time-frequency sparsity of the acoustic signals and their correlation at multiple microphones to 
localize and enhance a target sound in the presence of strong ego-noise. The original TFS 
framework was proposed with a 2D coordinate system considering azimuth only in the horizontal 
plane. We extend the TFS framework to a 3D coordinate system for the microphone array 
considering both azimuth and elevation. We validate the proposed framework with data from a 
flying drone, and the proposed algorithm significantly outperforms the baseline SRP-PHAT 
algorithm.  

1. Introduction 

With a drone being able to fly around and hover above a ground terrain, drone audition has found 
wide applications in search and rescue, aerial filming, monitoring and surveillance, and 
autonomous human-drone interaction [1-6]. However, acoustic sensing based on the signals 
captured by airborne microphones is a very challenging task, mainly due to three reasons [7]. 
First, the rotating motors and propellers generate strong ego-noise that leads to extremely low 
signal-to-noise ratios (SNR can be lower than -15 dB) at onboard microphones, which are located 
much closer to motors and propellers than target sound sources around the drone. The ego-
noise typically consists of full-band and harmonic components, whose spectrum changes 
dynamically with the rotating speed of the motors and the flight status of the drone. Second, the 
wind from the rotating propellers and in the natural environment add a strong noise component 
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and further lower the SNR at onboard microphones. Third, the movement of the drone creates 
dynamic transmission paths between the target sound sources and onboard microphones, and 
further increases the challenge of acoustic sensing from the drone.  

Microphone arrays have been widely used on ground robots to improve acoustic sensing 
performance in noisy environments [8]. However, the performance of existing microphone array 
techniques degrades significantly on drone platforms [9]. In recent years, dedicated methods 
have been proposed for sound source localization and sound enhancement on drones [11-24]. 
These methods can be categorized into uni-modal and multi-modal approaches. Uni-modal 
approaches are based on the microphone signals only [12-16, 19, 21, 27]. To cope with the 
strong ego-noise, some works optimize microphone array placement and develop algorithms for 
specific hardware setups [13, 15]. Multi-modal approaches utilize additional sensors to improve 
acoustic sensing performance. Motor speed sensors can be employed to assist in predicting the 
ego-noise received at onboard microphones; the prediction is subsequently incorporated into 
microphone array algorithms for improved robustness to the ego-noise [11, 15]. Onboard 
cameras can be employed to detect pre-defined sound sources (e.g. human speakers in the 
application of human-drone interaction) with computer vision algorithms, which are not affected 
by acoustic noise and thus provides guidance for sound processing [14, 18]. The requirement of 
additional sensors increases the cost and complexity when applying drone audition in practice.  

Time-frequency spatial filtering (TFS) is a recently established framework for sound 
processing on drones [17-24]. The ego-noise and the target sound (e.g. human speech) typically 
consist of harmonic components that have concentrated energy at isolated time-frequency bins. 
Based on this observation, the TFS framework proposed to estimate the directional of arrival 
(DOA) at each time-frequency bin with the microphone array, based on which a set of spatial 
filters are formulated to estimate the location of the target sound and to suppress the ego-noise. 
By exploiting the time-frequency sparsity of the signal (see an example in Fig. 5(b)), TFS 
effectively improves the acoustic sensing performance in the presence of ego-noise, and 
achieves state-of-the-art performance for microphone array processing on drones [19, 21]. TFS 
enables both sound enhancement and sound source localization. The sound enhancement 
performance was further improved in combination with deep learning [23] and blind source 
separation [24]. A multi-modal analysis framework was proposed that jointly exploits audio and 
video to enhance the sounds of multiple targets captured from a drone equipped with a 
microphone array and a video camera [18]. An audio-visual drone sound recording dataset is 
made public available to encourage research in the field [22].    

A limitation of the current TFS framework is that the algorithm was originally proposed with a 
2D circular array and thus works only for a 2D coordinate system considering azimuth only in the 
plane defined by the array. To encourage a more general application of the algorithm, we extend 
the TFS framework to a 3D coordinate system that considers both azimuth and elevation. We 
evaluate the performance of the proposed algorithm with the DREGON dataset [25], which 
consists of recordings made by a 3D array mounted on a flying quadcopter.  

The remaining part of the paper is organized as follows. Sec. 2 formulates the problem. Sec. 3 
and Sec. 4 present the time-frequency spatial filtering framework for sound enhancement and 
sound source localization in 3D space, respectively. Sec. 5 presents experimental results. Finally, 
we draw conclusions in Sec. 6.  

2. Problem formulation  
Let a microphone array mounted on a quadcopter consist of  microphones arranged in an 
arbitrary shape. Considering a general 3D coordinate system, the locations of the microphones 

are denoted as , where  is the position of the -th microphone, 
and the superscript  denotes the transpose operation. A target sound source in the far field 
emits sound with a direction of arrival (DOA)  with respect to the microphone array, 
where  and  represent the azimuth and elevation, respectively (Fig. 1).   
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Figure 1. A microphone array mounted underneath a drone and the 3D coordinate system. (a) Hardware 
used in the DREGON dataset (image from [25]). (b)The 3D coordinate system.

The microphone array signal consists of the target sound
and the ego-noise . This is expressed in the time 

domain as

and in the time-frequency domain as

where and denote the frequency and frame indices, respectively. Let and be the total 
number of frequency bins and time frames, respectively.  

Given and , our goal is to estimate the DOA of the target sound and to 
design a spatial filter to extract the target sound from the 
microphone array signal via

where the superscript denotes the Hermitian transpose. 

3. Time-frequency spatial filtering for Sound enhancement 
Given the microphone signal , the microphone location , we aim to extract the sound 
coming from the target direction . The basic idea of the algorithm is to compute the 
instantaneous DOA of the sound at each time-frequency bin, which is subsequently utilized to 
compute the correlation matrix of the target sound and the corresponding spatial filter. 

We first estimate the instantaneous DOA of the sound at each time-frequency bin. This is 
achieved by computing a local spatial likelihood function as 

(4)
where denotes the frequency at the -th bin, the superscript denotes the complex
conjugation, and the operator denotes the real component of the argument. The term 

denotes the delay between two microphones and with respect to the sound 
coming from a candidate direction , and can be approximated as

(a) (b)
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Figure 2. Time-frequency spatial filtering for sound enhancement, which aims to extract the target sound 
coming from direction . 

 
where  and  denotes the locations of the two 
microphones; and  

   (6) 

with  meters representing a sound source in the far field.  
The DOA of the sound at each time-frequency bin  is then 

computed as 

Assuming the target sound comes from the direction ,  we define a confidence 
measure to indicate the target sound presence probability at each time-frequency bin, i.e.  

where  

denotes the distance between  and ; and . Here we assume the DOA estimate 
to be Gaussian-distributed with mean  and standard deviation . The higher , the closer the 
local DOA  to the direction .  

Given this confidence measure, we can compute the correlation matrix of the target sound as  

,    (10) 

where  can be interpreted as the contribution of each time-frequency bin to the target 
correlation matrix. With this target correlation matrix, we can formulate a spatial filter pointing at 
direction . We use a standard Multi-channel Wiener filter (MWF) that is defined as [9] 

,      (11) 

where  is the first column of , and  is the correlation matrix of 

the microphone signal, which can be estimated directly using .  

Finally, the sound coming from  is extracted as   

.       (12) 

The computation procedure is illustrated in Fig. 2. For sound enhancement, TFS requires to 
know the target direction , which can be estimated with the algorithm described in the next 
section.  
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Figure 3. Time-frequency spatial filtering for sound source localization, which aims to compute a spatial 
likelihood function  in the search space . 

4. Time-frequency spatial filtering for sound source localization 
The basic idea of TFS for sound source localization is to formulate a set of spatial filters pointing 
at candidate directions:  

,     (13) 

where  is the total number of candidate directions in a grid search space in azimuth and 
elevation. We then use the kurtosis of the spatial filtering outputs to indicate the spatial likelihood 
of the target sound. The target location typically presents a high kurtosis value once the target 
sound is extracted and the ego-noise is suppressed.   

For each candidate direction , we compute a TFS filter and extract the sound  
coming from the direction  as   

,      (14) 

We calculate the kurtosis value  of the time sequence in each frequency bin:  

,       (15) 

where  denotes the time sequence  and  denotes the kurtosis value 
of the sequence. The spatial likelihood of the target sound at  is represented as the average of 
the kurtosis value over the whole frequency band, i.e.  

       (16) 

Repeating this procedure for , we get the spatial likelihood function over the whole 
search space. The location of the sound source is then estimated as the location with the highest 
peak, i.e.  

.       (17) 

The whole computation procedure is illustrated in Fig. 3. 

5. Experimental results 
We use the DREGON dataset [25] to validate the performance of the TFS algorithm in 3D 
scenario. The dataset provides 8-channel recordings made via a cubic microphone array (with 
side length roughly 10 cm) mounted on the bottom side of a MikroKopter drone, which can fly 
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Figure 4. Sound source localization with SRP-PHAT and TFS. (a) Spatial likelihood map of one sample 
segment. (b) Scatter plot of the estimation and boxplot of the absolute estimation error. (c) Azimuth and 
elevation trajectory.

freely (Fig. 1). A loudspeaker placed on a desk emits speech signals when the drone is flying. 
The ground-truth location between the sound source and the moving drone was measured with 
a Vicon motion tracking system. The distance between the drone and the loudspeaker varies 
between 2 to 4 meters. Speech Source at High Volume 

. The duration of the recording is about 110 seconds. Based on the description in [25], 
the SNR of the recording is roughly -12.8 dB. 

When applying the TFS algorithm, we set within a space with a grid of at azimuth 
and a grid at elevation . This generates 1656 candidate locations

in total. We set FFT length 1024 and set . We employ a block-wise processing scheme 
to process the signal continuously, i.e. using a processing block of size 2 seconds with half
overlap. In this way, we have 51 processing blocks. We apply a medial filter among 3 processing 
blocks to remove the estimation outliers and to improve the localization accuracy. 

We compare with the performance of a baseline algorithm steered response with phase 
transform (SRP-PHAT) [26], with FFT length 1024. For performance evaluation, we compare the 
estimated azimuth and elevation with the ground truth, and compute the absolute error as the 
Euclidean norm of the azimuth and elevation errors. 

Fig. 4 shows the sound source localization results by SRP-PHAT and TFS. Fig. 4(a) compares 
the spatial likelihood map produced by the two algorithms. for one sample segment of 2 seconds. 
Due to the influence of the ego-noise, SRP-PHAT does not estimate the sound source location 
correctly. On the other hand, TFS can estimate the sound source location correctly, with a peak 
clearly observed in the spatial likelihood map. Fig. 4(b) scatterplots the ground-truth location and

(a)

(b)

(c)
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Figure 5. Sound enhancement results with TFS for a sample segment. (a) Time-domain waveforms of the noisy input, clean 
reference and enhanced output. (b)-(d) Time-frequency spectrograms of the noisy input, clean reference and enhanced output.  

 
the estimated locations by the two algorithms in the azimuth-elevation plane. The source 
locations estimated by SRP-PHAT deviate significantly from the ground-truth while the ones 
estimated by TFS situate closely to the ground-truth. Fig. 4(b) also boxplots the absolute error 
across all processing blocks achieved by the two algorithms. SRP-PHAT achieves a median error 
of while TFS achieves a median error of . Finally, Fig. 4(c) visualizes the azimuth 
trajectory and elevation trajectory estimated by the two algorithms. The azimuth and elevation of 
the drone vary dynamically during the flight. TFS algorithm can track the trajectory very well in 
comparison to SRP-PHAT.  

Fig. 5 shows sound enhancement results for one sample segment of 4 seconds (19-23th 
second in the recording). We use the estimated source location at the 21st second (see Fig. 4) 
as the target location in this segment. For sound enhancement, we choose a processing segment 
length of 4 seconds and extract the sound from the target location. In Fig. 5, we show the time-
domain waveforms and the time-frequency spectrogram of the noisy input, the clean reference 
(which was provided by an external camera capturing the whole scene), and the enhanced output 
by TFS. From the spectrogram in Fig. 5(b), the noisy input contains the ego-noise, which consists 
of full-band and harmonica components, the wind noise, which dominates the low frequency 
band, and the speech component, which is hardly distinguished. From Fig. 5(d), the speech 
component is clearly observed after TFS enhancement, although with certain distortion in 
comparison with the clean reference in Fig. 5(c).  

6. Conclusions 
We presented a time-frequency spatial filtering framework for sound processing on drones. We 
extended the TFS filtering framework [19, 21] to a more general 3D scenario and validated the 
performance with a public dataset for sound source localization from a flying drone. Future work 
includes optimizing the algorithm for real-time computation.  
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