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Equations Driven by General Shot Noise Processes

Abstract

In this thesis we analyze the properties of a broad class of non-Markovian stochastic processes
driven by Generalized Shot Noise (GSN) and aim to find their transition probabilities via distinct
yet fundamental approaches.

Stochastic processes are widely used mathematical tools to model uncertain behavior in a physical
system. Recent studies show that the current stochastic models, which assumeMarkov or mem-
oryless property, are inaccurate to model complex physical systems, frommolecular dynamics in
porous media to mild correlations of stock price returns in financial markets. We show that one can
model these problems with a non-Markovian stochastic process X as the solution of the Generalized
Langevin Equation (GLE) Ẋt = −V′(Xt) + ξt, whereV is the potential of the environment and ξt is
a GSN trajectory.

We show that the non-Markovian GLE can be obtained by relaxing the Markov property with
an impulse function h that creates diverse mathematical properties. Next, we show three distinct
methods, each with their own rights and caveats, of finding the transition probability of Xt: first
by directly from its characteristic functional, second by evaluating its time evolution equation, and
third by formulating its path integral.

Subsequently, we reserved the last part of our thesis for the application of the path integral results
to two separate physical systems: tracking the position of a particle in a porous biological medium,
and forecasting the price trajectory of a financial instrument that shows correlations in returns.
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The mathematical sciences particularly exhibit order,

symmetry, and limitation; and these are the greatest

forms of the beautiful.

Aristotle

0
Introduction

Mechanisms including biological transport and financial markets are highly complex involving

multi-body system analysis. Depending on whether it is active transport of molecules in biology or

determining the volatility of a financial security for risk management or fair pricing, mathematical

modeling can be purely deterministic, purely stochastic or a combination of both, depending on the

available data and the characteristics of the variable environment2. As nature is heavily controlled

with stochastic factors, we specified our notion to stochastic modeling.
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Stochastic modeling in systems biology offers promising results in many fields including genetics

(e.g. expression of mRNAs14, life cycle of proteins15), evolutionary biology (e.g. ancestral lineage

behavior17, protein sequence evolution16) or intermittent search strategies18. Furthermore, re-

cent developments indicate that using non-Gaussian processes show even more promising results in

modelling biophysical mechanisms, for example, migration of T-cells to find extreme targets19.

As realistic systems are highly complex, to decisively model the system using discrete state and

continuous-time would require some finite memory effect to take place. In fact, processes that vio-

late the Markov property, in a physical context, is a direct causality of the past affecting the present;

for example, it is experimentally shown that average waiting times between different biochemical

reactions are not exponentially distributed, an indication of non-Markovianity in the system20.

Using this scope, Kanazawa and his collaborators3 have started to work on stochastic modelling

of tracer diffusion in active suspensions. According to empirical findings, the active diffusion of the

tracer experimentally exhibited the following unique features that can no longer be explained as a

Brownian motion:

(i) its mean square displacement (MSD) exhibited a crossover between super-diffusion with

∼ tα (1 < α ≤ 2) for short times and normal diffusion (α = 1) for long times6 7 8 10 11 12;

(ii) the probability density function (PDF) of position displacements exhibited strong non-

Gaussian features manifest as power-law tails9 13, and the PDF eventually reverted to a Gaus-

sian shape12 13;

Using this scope,3 used the following Langevin equation (LE) to model the diffusion of tracers,

given by the position Xt at time t, the LE reads:

Γ
dXt

dt
= ξt,

ξt =
Nt∑
i=1

h(t− Ti),

(0.0.1)

2



where Γ is the viscous coefficient,Nt forms the Poisson process with intensity λ > 0, and {Ti} are

the arrival times of the Poisson process. Here, h is the impulse function that is fitted using simula-

tion data of the force exerted on the tracer. Consequently, the force ξt forms theGeneral Shot Noise

(GSN) process with finite intensity.

Their findings show that the LE driven by the GSN ξ can be applied to a variety of scenarios

where enhanced diffusion points detailed above are observed. Authors also pinpoint that additional

force fields may lead to novel mechanisms to control and exploit enhanced diffusion in artificial

devices.

Using the recent findings of3, we added additional terms to their original LE and started working

on analyzing the velocity of a particle using the following non-Markovian system:

dXt

dt
= −V ′(Xt) + ξt,

ξt =
Nt∑
i=1

Aih(t− Ti),

(0.0.2)

where X = (Xt)t≥0 is the position process of the particle,V corresponds to the potential of the

environment, ξ = (ξt)t≥0 is the GSN process such thatN = (Nt)t≥0 is the Poisson process with

intensity λ, Ti are the arrival times ofN, Ai are iid jump amplitudes and h is the impulse function

that is assumed to be smooth onR. We shall call this type of system given above the non-Markovian

Langevin Equation.

Notice that in the Markovian case, the impulse function is simply the Dirac delta function, h 7→

δ, in which case the position process X becomes the Compound Poisson process.
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0.1 Intuitive Examples

In literature, non-Markovianity in Langevin equations are generally established by inducing a non-

local position process, where (e.g.66) the system is defined by:

Ẋt = −γf (Xt,Xt−τ) + σξt. (0.1.1)

Here, the function f is smooth and ξt is the white noise processes satisfying delta-correlation 〈ξtξs〉 =

δ(t − s). In this realm, finding the Master Equation of Xt is not as simple due to its dependence to

all the past values Xτ, where τ < t < 0; instead, the Master Equation is generally given for the joint

probability distribution of X. By equally partitioning the interval [τ, t] into ordered sequence of size

n, {ti}ni=1, the Master Equation for the joint PDF Pn of (Xt1 , ...,Xtn) is given by the following:

∂Pn
∂tn

(xn, tn; ...; x1, t1) =D
∂2

∂x2n
Pn(xn, tn; ...; x1, t1)

+ γ
∂

∂xn

∫
dx ′ f(xn, x ′)Pn+1(xn, tn; x ′, t ′; ...; x1, t1).

(0.1.2)

Methods to find the Master Equation for the marginal distribution of Xt include applying the sim-

plest case of linear function f(x, y) = y, where (0.1.1) becomes the so-called Delayed Langevin

Equation, and rewriting (0.1.1) in terms of Green’s functions67.

We next outline in next two sections some examples of multi-body systems in biology and fi-

nance, where current models involvingMarkov processes seem inadequate, and more “relaxed”

models involving short- or long-termmemory are needed to be adapted.
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0.1.1 Biology

One of the most promising fields with a potential application of the non-Markovian LE is in biol-

ogy, where it can be applied to various scenarios frommolecular dynamics to cancer modelling and

bioinformatics.

A potential application is identified in cancer immunotherapy, as in the heterogeneity of cancer

cells124 and genetic and phenotypic resistance of tumours130 all indicate non-Markovianity in the

system. Further, in the field of bioinformatics, a recent paper by Sristava & Chen (2010)131 show

that non-Markovian Langevin equations driven by GSN process ξ are used to enhance data analysis

on sequencing ribonucleic acids (RNA), the building blocks of life.

One example we can focus on is in molecular biology, using the extensive article published by

Łuczka in 2005125. The author first shows that the activation rate of an intramolecular motion of

a molecule can be much greater in the Markovian description, and non-Markovian frameworks are

better suited to model this scenario. The author posits that the PDF of X (modeling the motion

of the molecule) driven by the non-Markovian GLE in (0.0.2) is extremely difficult to solve unless

the GSN process ξ is either GaussianWhite Noise or Poisson white noise, and instead defines the

following LE:

mẌt +

∫ t

0
γ(t− s)Ẋs ds+ V ′(Xt) = ξt, (0.1.3)

whereV is the potential of the system, andm is the mass of the particle in question. The integral

kernel γ is defined as

γ(t) =
∫ ∞

0

ρ(s)
s

cos(st) ds, (0.1.4)

where

ρ(ω) =
∑
k

λ2k
mkωk

δ(ω− ωk) (0.1.5)

such thatmk, λk and ωk are coefficients describing the oscillations within the intramolecular medium.

5



Lastly, the colored noise ξ is completely characterised by its correlation function 〈ξtξs〉 = Dγ(t − s)

for some positive diffusion coefficientD.

The paper also asserts that the memory effects caused by the integral kernel γ play a significant

role and modify the activation rate, causality that is not taken into account in the Markovian realm.

Although distinct, the model itself does not have a closed-form solution of the PDF of X for general

γ, where the author instead derives the PDF by explicitly defining examples of γ.

0.1.2 Finance

Due to their simplicity and analytical closed-form solutions, current research for deriving models

underlying financial instruments have been widely applied toMarkov processes44,48,49,52. However,

recent empirical data show that correct implementation of financial models requires taking a look at

the ensemble average of the driving process, rather than the time average, indicating non-stationarity

of increments and hence a non-Markovian behavior.

Quantitative finance lacks a solid description for non-Markovian processes; characteristics such

as memory effects are commonly observed in human behavior in financial markets132,133, and non-

Gaussian processes are widely used to better model the security prices (for example see134).

Further, an article published by53 indicates that high-frequency trading data using liquid for-

eign currency pairs (e.g. Euro to Dollar exchange rate) turn out to be non-Markovian, due to self-

similarity and non-stationarity of returns on investment.

Similarly, an article published by Frank in 200754 indicates in detail that the pricing models of

financial instruments, such as bonds, should involve past time dependence. Financial trading in

general is heavily influenced by events that happen in the past. Therefore, recently, time-delayed

evolution equations in financial physics have been discussed that account for memory effects.

In regards, the author in54 focuses on the following model driving the interest rate processR =
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(Rt)t≥0 as a Delayed Langevin Equation:

Ṙt = −γ (Rt − 〈Rt〉) +
N∑
i=1

Ai (Rt−Ti − 〈Rt〉) + σẆt (0.1.6)

where {Ai} are jump amplitudes, {Ti} ∼ U(0, t) are iid uniformly distributed random variables,

γ is the friction coefficient, σ is the volatility of the interest rate and Ẇt forms the Gaussian white

noise (i.e. time derivative of the Wiener process), with correlation
〈
ẆtẆs

〉
= 2Dδ(t− s). Here, the

interest processR is a non-Markovian version of the renowned Ornstein-Uhlenbeck process. Using

this Delayed Langevin Equation, authors compute the price of a bondM(T)with unit coupon rate

and at time of maturity T as follows:

M(T) =
〈
exp

(
−
∫ T

0
dt Rt

)〉
, (0.1.7)

and conclude that time delays can induce a smoothening of strong system nonlinearities, a process

widely observed in price behavior of complex financial instruments. Albeit explicitly, the authors

of54 derive the PDF of the non-Markovian interest rate processR by approximating from the solu-

tion of the Markovian PDF (where Ti = 0) by means of perturbation theoretic techniques55.

Another example of non-Markovian frameworks in financial mathematics is by directly mod-

elling the volatility of the underlying noise, such as the Bergomi model116. The Bergomi model

assumes that the price process X follows the following LE:

Ẋt = rXt +
√

VtXtẆt,

Vt = exp

(
ηBt −

1
2
η2t2H

)
,

(0.1.8)

where r refers to the constant interest rate,Vt forms the non-Markovian stochastic process mod-

elling the volatility of X, η > 0 is a positive constant and Bt forms the fractional Brownian motion
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withHurst exponent H ∈ [0, 1] defined by its correlation 〈BtBs〉 = 1/2
(
t2H + s2H − |t− s|2H

)
,

and similar to the Delayed Langevin Equation above, the noise Ẇt forms the Gaussian white noise

(GWN) process with correlation
〈
ẆtẆs

〉
= δ(t − s). Due to the non-Markovian nature ofV,

the solution X of the LE has been solved numerically116, and fully analytic representation of X has

been shown by117 by approximatingV as a Markov process. In fact, as we will show in later chap-

ters of this thesis, authors in117 further assert that one can only fully represent any non-Markovian

stochastic process by an infinite dimensional Markov process.

0.2 Motivation and Chapter Breakdown

As we have outlined in the previous section, current studies on non-Markovian models that are

used in biology and finance either provide numerical techniques to solve the corresponding LE’s,

or approximate them by simpler Markovian processes to derive analytic solutions. There also has

been insufficient research on combining non-Markovian models into one unified model that would

encompass different behaviours on time dependence on correlations.

This thesis aims to show that the GSN process ξ as in (0.0.2) is a potential candidate to derive a

unified model for non-Markovian LE’s. In detail, the impulse function h of ξ plays a very important

role such that it can embed different types of time-dependent correlations into ξ, which in turn de-

fines X as a broad class of non-Markovian stochastic processes. We also show two main approaches

to find the PDF of X as the solution of such general non-Markovian GLE.

The thesis is structured as follows. We first introduce the concept of stochastic processes in

Chapter 1. Here, we outline some examples of Markovian stochastic processes that have been widely

used in literature: the Wiener process, the Poisson process and the Compound Poisson process. We

next outline the Markov property, also known as the memoryless property, of stochastic processes,

which dictates that if X is a Markov process, then all the future realizations of X are independent of
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their past and that X only retains the memory at its present time. We next embark on defining X as

the solution of a Markovian GLE. We finalize the introductory part of the chapter by introducing

the Master Equation and the path integral formulation of X, both of which would enable us to find

its PDF and its transition probability.

The first chapter as a whole provides us the necessary foundation to embark on the GSN pro-

cesses in Chapter 2. Here, we show that the characteristics of the impulse function h plays a very

important role in determining the behavior of ξ and therefore X; for example, X is a non-Markovian

process for all integrable impulse functions h unless h is a Dirac delta function, h = δ. Further-

more, we assert that the GSN process has a correlation function that specifically depends on the

impulse function h. We also cover in this chapter three broad types of h, left-tailed, right-tailed

and n−hierarchy. We also show the functional correspondence between the position process X

and the GSN process ξ, where the correspondence can only occur when non-Markovian GLE

Ẋt = −V′(Xt) + ξt is linear, i.e. for zero or Harmonic potentialV(x) = γx2/2 with γ ≥ 0.

Lastly, from the functional correspondence, we next derive the correlation function and the MSD

of X, where one can then find a relationship with the impulse function h. Thus, one can get the

whole characteristics of the position process X by solely referring to its MSD.We end this chapter

by deriving the PDF of X from the functional correspondence of ξ and applying exemplary impulse

functions to fit their resulting PDF’s byMonte Carlo simulation.

In Chapter 3 we show new findings on the characteristics of the GSN process. We first start by

showing the hierarchical nature of the time derivative of the GSN process. This hierarchical na-

ture of ξ further strengthens our understanding that the joint tuple of X and the hierarchies of

ξ becomes an infinite-dimensional Markov process. Conveniently, we next infer that if the im-

pulse function of ξ is an n−hierarchy type, then the infinite-dimensional Markov process reduces

to (n + 1)−dimensions. We next show in this chapter two methods of finding the PDF of non-

Markovian X for general potentialV and impulse function h, firstly by the Markovian Ito’s approach,
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and next by the path integral formulation. As the name suggests, the Ito’s approach helps us find

the joint PDF of X and the hierarchies of ξ, where choosing a 1-hierarchy function helps us derive

the joint PDF of (X, ξ) , commonly referred to asKlein-Kramers equation. On the other hand, the

path integral formulation is more intricate as it helps us find the marginal PDF of X for any impulse

function.

We next analyze the asymptotic limits of the GSN process and prove byMarkov Convergence

Theorem that if the impulse function h is integrable, then ξ asymptotically converges to the Poisson

white noise (PWN) process. This is an important finding for us as it consequentially implies that

any non-Markovian process driven by ξwill asymptotically converge to a Markovian process as long

as the integrable condition for h holds. Next, we prove that under Gaussian Limits the CPN process

converges to a general Gaussian noise process where the impulse function h continues to play an

important role; we outline an example that the fractional Brownian motion as used in the Bergomi

model can be defined as the generalized Gaussian process with a specific type of impulse function.

We then end this chapter by showing an example of Markov Convergence Theorem by simulating

the PDF’s of X under zero potential by overlapping the PDF’s of Markovian X driven by GSN pro-

cess with that of the PWN process.

These new findings of the GSN process characteristics next lead us to Chapter 4, where we show

how to find the PDF of the non-Markovian position process X by calculating its Lagrangian and ac-

tion. The path integral approach has been widely used in the Markovian regime to find the optimal

path of X by solving its Euler-Lagrange Equations (ELE’s), also known as the equations of motion, of

the Markovian LE. We extend this to the non-Markovian realm by showing that the resulting ELE’s

are time non-local and become hard to solve analytically. We next show that one can in fact localize

the non-Markovian ELE to (2n + 2)−dimensional Markovian ELE if the impulse function of ξ is

of an n−hierarchy type. We first give a simple example of unit order hierarchy (i.e. n = 1) and find

the solutions of the localized ELE’s, where one can obtain the optimal action of X and thus find its
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PDF. However, by increasing the order of the hierarchy of h the resulting Markovian ELE’s become

highly coupled and therefore difficult to solve.

To overcome this coupling problem, we define a very useful method called theMarkov Embed-

ding Technique by asserting that any impulse function can be defined as a sum ofK independent,

unit order hierarchy, and complex-valued impulse functions. This leads us to define the complex-

valued GSN process ξ, and therefore a complex-valued non-Markovian position process X via the

GLE. Using this technique, we then compute the complex-valued and uncoupled system of local

ELE’s. This new method of calculating optimal path and action via the Markov Embedding Tech-

nique is then strengthened by using exemplary impulse functions; exponential decay (first-order

hierarchy), damped oscillation (second-order hierarchy), and power-law decay (infinite-order hierar-

chy).

We next combine all the results we derived throughout this thesis in Chapter 5, where we applied

the Markov Embedding Technique to real life scenarios. We provide two applicable scenarios where

we will use the Markov Embedding Technique. We first calibrate an impulse function to the clinical

data of the Mean Square Displacement of the mitochondria submersed in course-grained medium,

where empirical results show the diffusion model is anomalous, suggesting non-Markovianity in

nature33. Next, we apply the GSN process ξ to model the value of S&P500 financial index, and aim

to capture its behavior during the Covid-19 pandemic.

We lastly bring this thesis to fruition in Chapter 6, where we outline the newmethods we have

defined and utilized so far, together with their strengths and weaknesses. We also propose future re-

search topics that would further strengthen the GSN process as the potential candidate for unifying

non-Markovian stochastic processes.
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Mathematics, which most of us see as the most factual

of all sciences, constitutes the most colossal metaphor

imaginable, and must be judged, aesthetically as well as

intellectually in terms of the success of this metaphor.

Norbert Wiener

1
Preliminaries: Stochastic processes

In this chapter, we first introduce the definition of a stochastic process from a physical point

of view. We then give a few examples of stochastic processes, such as the Poisson point process, the

Wiener process, and the Compound Poisson process. Next in our chapter, we outline the Markov

property of s.p.’s, and categorize the noise terms as white or colored. This is a common tool in ana-

lyzing dynamical systems driven by stochastic processes.
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Finally, we end this chapter by defining the Langevin equation, and showing how to construct

the dynamical system using various stochastic processes, with common applications to biological

systems and finance.

We assume that throughout this chapter, and by extension the thesis, the reader has basic knowl-

edge of probability theory, such as calculating moments, defining conditional probabilities and

expectations. For further details please refer to the introductory book by Ross (2014)50.

1.1 Definition of Stochastic Processes

Stochastic processes are functions of random variables that define the statistical distribution of one-

(or multi-) parameter family of events. In other words, given an index t ∈ T (usually denoted as

time), a stochastic process X = (Xt)t∈T is a sequence of random variables such that each element Xt

is an event happening at time t.

Let us give a brief introduction below:

Definition 1.1.1. Given time t ∈ T, a stochastic process X = (Xt)t∈T is a set of random variables de-

fined on a probability space (Ω,F ,P) whereΩ is the sample space that consists of all possible events,

F is the event space that consists of all subsets ofΩ i, and P, called the probability measure, is the com-

mon probability density function (pdf) defined on P : Ω × T → [0, 1], such that for all t ∈ T, the

probability of an event Xt, called a realization at time t, to take place in a region E ∈ Ω, is given by:

Pr (Xt ∈ E) =
∫
E∈Ω

dx P(x, t). (1.1.1)

Furthermore, if P is a probability mass function, then the probability is given by the summation over

iHere,F is called the σ-algebra of Ω and contains all possible combinations of events, henceF ⊆ 2Ω.
More mathematical foundations can be extracted from68.
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the region E:

Pr (Xt ∈ E) =
∑
E∈Ω

P(x, t). (1.1.2)

Therefore, given a stochastic process X = (Xt)t∈T, for each t ∈ T, the realization Xt is a random

variable with probability distribution P(x, t).

Notice also that regarding to the above definition, we can assert that a stochastic process can be

discrete or continuous. A discrete stochastic process (also known as time series) is simply the case

where the index set T is countable, e.g. the set of natural numbersN. On the other hand, contin-

uous stochastic processes are the case where T is uncountable, e.g. the set of real numbersR. In

this thesis, we will focus on continuous stochastic processes with non-negative real set of indices,

T = R\R− = {∀t : t ≥ 0}, i.e. the physical time.

Furthermore, we can also define herein the expectation of a realization Xt over its sample space Ω;

〈Xt〉 :=
∫
Ω
dx x · P(x, t), (1.1.3)

and, in general, the n-th moment of Xt is given by:

〈Xn
t 〉 :=

∫
Ω
dx xn · P(x, t). (1.1.4)

Lastly, using the n-th moment of any realization (i.e. random variable) Xt, one can define the charac-

teristic function (CF) of Xt, denoted by ϕXt
, as follows:

ϕX(θ, t) :=
〈
eiXtθ
〉
=

∫
Ω
dx eixθ · P(x, t), (1.1.5)

where i is the imaginary constant. It is important to note that any random variable has uniquely

defined PDF and CF. Since stochastic processes are sequences of random variables, one can simply
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extend the uniqueness property to stochastic processes68.

Lastly, similar to the CF of a random variable, we can define the unique characteristic functional

(CFal) of a random variable. Given a stochastic process Xt, its CFal with a test function g, is given

by:

ΦX[g] :=
〈
exp

(
i
∫ ∞

0
dτ g(τ)Xτ

)〉
(1.1.6)

An important application of the CFal is for computing high order expectations of the stochastic

processes. Given a stochastic process X, its cumulants of orders n,m ∈ N of the autocovariance of X

can be found by computing the variational derivatives (refer to21 for methodology) of its CFal:

〈Xn
t Xm

s 〉 =
1

in+m
δn+mΦX[g]
δng(t)δmg(s)

∣∣∣∣∣ g=0. (1.1.7)

Calculating the autocovariance of X via its CFal is an important tool to study and categorize stochas-

tic processes. In the next section, we focus on defining stochastic processes that will not only be used

for categorization, but will also play a foundation to define and analyze the GSN process in subse-

quent chapters.

1.2 Some Examples of Stochastic Processes

As stated in Definition 1.1.1, a stochastic process can be formed by any combination of probability

space (Ω,F ,P), and since P uniquely defines stochastic processes, one can construct an infinite

class of stochastic processes.

However, we will be focusing on 3 major classes of stochastic processes: the Poisson point pro-

cess, the Wiener process, and the Compound Poisson process.
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1.2.1 Poisson Process

Named after French mathematician Siméon Denis Poisson, the Poisson processes are by far the sim-

plest kind of continuous stochastic processes. Despite not having worked directly on this process

before, Poisson gave a major foundation to this class of stochastic processes due to its indirect con-

nection with the Poisson random variables51.

The Poisson processN = (Nt)t≥0 with intensity λ is a counting process, where

• Each realizationNt is non-negative integer-valued, and

• Each following realization is non-decreasing, i.e. for all s > twe have thatNs > Nt.

Therefore, the Poisson process has unit increments and is, therefore, a counting process. In addition

to being a counting process, each realization of the Poisson process has a Poisson distribution with

mean λt, i.e. Nt ∼ Poisson(λt)with pmf:

P(Nt = n) :=
(λt)n

n!
e−λt. (1.2.1)

This is the simplest definition of the Poisson process; however, in consequence of its eclectic ap-

plications, the notation, terminology and level of mathematical rigor used to define and study the

Poisson processes generally varies according to the context. In the below definition, we outline the

formal and original mathematical definition of the Poisson process by defining its arrival and inter-

arrival times.

Definition 1.2.1. Let {Xi}∈N be a collection of iidii random variables defined on a probability space

(Ω,F ,P) such that Xi have an exponential distribution with parameter λ, denoted by Xi
iid∼ Exp(λ).

Let {Ti}i∈N also be a collection of random variables such that T0 = X0 and Ti = Xi + Ti−1 for all

i > 0.
iiIndependent and identically distributed.
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Then N = {Nt}t≥0 is a Poisson process with intensity λ if each realization has the following cumu-

lative distribution function (CDF):

P(Nt ≤ n) = P(Tn ≥ t). (1.2.2)

In context, {Ti}i≥0 and {Xi}i≥0 are respectively called the arrival times and inter-arrival times

of the Poisson processN. This definition showcases the importance of the probability distribution

of inter-arrival times: a stochastic process is a Poisson process with intensity λ if and only if its inter-

arrival times have iid exponential distribution with mean λ. Another important outcome from the

construction is that since the inter-arrival times are independent, Poisson processes also hold the

so-called memoryless property of Markov processes.

Lastly, as a counting process, the Poisson process is also known as a pure jump process or a càdlàg

iii process, meaning that the process has right-continuity and left limits. Given the Poisson pro-

cessN as above, one can hence infer that the limit from the right of any realization is continuous,

lims→t+ Ns = Nt and we denote the limit part as lims→t− Nt =: Nt− . The difference between the

left and right limits is denoted by ΔNt := Nt − Nt− . Lastly, note that for the Poisson processN,

since it is a counting process, its jump sizes are of unit size. A visual representation is given in Figure

1.1.

Interestingly, the above definition of the Poisson processes is not directly linked to the Poisson

distribution; it was not until 1909 when HansW. Geiger and Ernest Rutherford developed the

mathematical model for the ticking time of the Geiger counter. They found that the counter, as-

sumed to be a random process, has probability function pn as the solution of the following family of

ODE’s47 p′n(t) = −λpn(t) − λpn−1(t), where p′0(t) = −λp0(t). Conveniently, the solution of this

family of ODE is indeed the pmf of the Poisson distribution with mean λ, after which the random

iiiRight-continuous with left-limits (fr. continue à droite, limites à gauche).
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Figure 1.1: Realiza on of the Poisson processN with single and unit jump at me t, where one-sided limits and the
jump size are visually explained. Here to me of jump t is split into con nuous part, t+, and discon nuous part t−.

process was named.

1.2.2 Compound Poisson Process

The Compound Poisson process is very sought in the financial sector since it is used for modelling

jumps of random size and random direction. As the name suggests, this process is an extension of

the Poisson process defined in the previous section.

We begin with the definition of the Compound Poisson process below:

Definition 1.2.2. Let N be a Poisson process with intensity λ and arrival times {Ti}i∈N, and let

{Ai}i∈N be a set of iid random variables. Then, the corresponding process L = (Lt)t≥0 is called the

Compound Poisson process if each realization is of the following form:

Lt =

Nt∑
i=0

AiΘ(t− Ti), (1.2.3)
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whereΘ is the Heaviside step function. In literature, each element Ai is called the jump amplitude of

the Compound Poisson process.

Like its close relative to the Poisson process, the Compound Poisson process is also a càdlàg pro-

cess. In fact, the Poisson process is the Compound Poisson process with almost surely unit jump

amplitudes, i.e. ∀i ∈ N, Ai = 1 almost surely. However, due to the inclusion of the jump ampli-

tudes, the Compound Poisson processes are in general not counting processes.

The jump size of any realization of the Compound Poisson process L is proportional to its jump

amplitudes, i.e. ΔLt = ANtΔNt. This can be directly extracted in subsequent chapters when we use

the same method to find the jump size of our stochastic process of interest.

The Compound Poisson process will have a variety of applications in our thesis. The first inter-

esting property that we will assert is that, under certain limiting conditions, the Compound Poisson

process converges to the Wiener process, defined in the next section.

1.2.3 Wiener Process

Similar to the Poisson process and the Compound Poisson process, the Wiener process is another

widely studied stochastic process in literature. As explained in Chapter 0, Wiener processes have a

variety of applications in various industries due to their easy definition, simulation, and concrete

mathematical foundation.

We begin this section by the rigorous definition of the Wiener process:

Definition 1.2.3. A stochastic processW = (Wt)t≥0 defined on a probability space (Ω,F ,P) is a

Wiener process, also known as Brownian motion iv, if the following conditions hold:

(i) W has continuous paths almost surely under P,

ivDue to their usage in literature, we use both names interchangeably in this thesis.
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(ii) The initial starting point of the path is almost surely at 0: P(W0 = 0) = 1,

(iii) ∀s, t : 0 ≤ s ≤ t, each incrementWt −Ws has equal probability distribution asWt−s, that

is: Wt −Ws
D
= Wt−s,

(iv) ∀u, s, t : 0 ≤ u ≤ s ≤ t, Wt −Ws is independent ofWu,

(v) ∀s, t : 0 ≤ s ≤ t, each incrementWt −Ws has a Normal distribution with variance t − s,

that is: Wt −Ws ∼ N (0, (t− s)).

In regards to the above definitions, condition (i) asserts that the Wiener process is one of the few

stochastic processes with almost surely continuous paths.

It is also a very interesting fact that the Compound Poisson process converges to the Wiener pro-

cess under certain limits, which we will call the Gaussian limits.

First, we establish the Lévy continuity theorem for stochastic processes:

Lemma 1.2.1 (Lévy’s Continuity Theorem). Let {Xn} be a collection of random variables with

corresponding characteristic functions ϕn and let X be another random variable with characteristic

function ϕ. Then, the following statements are equivalent:

1. The random variables {Xn} converge in distribution to X, i.e.

Xn
D−→ X.

2. The sequence of characteristic functions {ϕn} converges point-wise to ϕ, i.e. for all θ ∈ R,

lim
n→∞

ϕn(θ) = ϕ(θ).

Using Lemma 1.2.1, we next prove the following theorem for Gaussian limits:
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Theorem 1.2.1. Let L = (Lt)t≥0 be a Compound Poisson process with intensity λ > 0 and iid jump

amplitudes {Ai}. Furthermore, letW = (Wt)t≥0 be theWiener process.

Then, for fixed λ
〈
A2
1
〉
, the Compound Poisson Process converges in distribution to theWiener process

under the following limits:

lim
λ→∞
⟨A1⟩→0

Lt
D−→ Wt

Proof. Firstly, w.l.og., let us fix λ
〈
A2
1
〉
= 1 to one so that we can rewrite λ = 1/

〈
A2
1
〉
. Then, using

Lemma 1.2.1, the theorem can be written as follows:

lim
λ→∞
⟨A1⟩→0

ϕL(θ, t) = ϕW(θ, t),

where the characteristic function of the Compound Poisson process is given by v:

ϕL(θ, t) = exp
[
λt
(
ϕA1

(θ)− 1
)]

and that of the Wiener process by vi:

ϕW(θ, t) = exp

[
− 1
2
θ2t
]
.

vThe CF of the Compound Poisson process will be proven in Chapter 2 when we outline the CFal of the
GSN process.

viThe CF of the Wiener process is simply the Inverse Fourier Transform of its PDF, recalling that
Wt ∼ N (0, t).
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Notice that ϕL can be written as the Taylor expansion

ϕL(θ, t) = exp

[
t〈
A2
1
〉 (ϕA1

(θ)− 1
)]

= exp

[
t〈
A2
1
〉 (〈eiθA1

〉
− 1
)]

= exp

[
t〈
A2
i
〉 (〈1+ iθA1 −

1
2
θ2A2

1 +O(A3
1 )

〉
− 1
)]

= exp

[
i 〈A1〉〈
A2
1
〉 tθ− 1

2
tθ2 +

O
(〈
A3
1
〉)〈

A2
1
〉 ]

(1.2.4)

Furthermore, when 〈A1〉 approaches to zero, the expectation 〈An
1 〉 vanishes faster than 〈A1〉 for

n > 2. Hence, theO(
〈
A3
1
〉
) vanishes as 〈A1〉 approaches zero. Furthermore, also notice that the

term λ 〈A1〉 = 〈A1〉 /
〈
A2
1
〉
→ 0 as 〈A1〉 → 0.

Therefore, we get that

lim
λ→∞
⟨A1⟩→0

ϕL(θ, t) = exp

[
− 1
2
tθ2
]
= ϕW(θ, t). (1.2.5)

This point-wise converge of characteristic functions completes our proof.

Furthermore, condition (iv) is also highly important as it asserts that the Wiener process has

independent increments. This will be very useful to define the Markov property of stochastic pro-

cesses.

1.3 Markov Property

TheMarkov property is a very extensive tool for studying characteristics of stochastic processes,

where some future predictions about stochastic processes is independent of the past, given the
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present state of the process. If a stochastic process holds the Markov property, then one can assert

simple predictions about its future states at any given time.

As the name suggests, a stochastic process X = (Xt)t≥0 defined on the probability space (Ω,F ,P)

is a Markov process if the conditional probability of finding the realization Xt in a region E ∈ Ω

given all the past realizations up to time s < t is equal to the conditional probability of finding Xt in

E ∈ Ω given the realization Xs, i.e.:

P (Xt ∈ E | Fs) = P (Xt ∈ E | Xs) . (1.3.1)

Here,Fs is called the filtration of the event spaceF such that it contains all the combinations of

events up to time s < t.

This property empirically shows that future realizations of X are independent of their past and

that the s.p. has memory only at the current time s. This nature of behavior is why the Markov pro-

cesses are also known as stochastic processes with one step memory69.

To test whether a stochastic process holds the Markov property, we first have to outline the defi-

nition of a white noise process:

Definition 1.3.1. A stochastic process X is called awhite noise process if its covariance is delta-

correlated, i.e. for all s, t > 0 and some constant K ∈ R:

〈XtXs〉 = Kδ(t− s), (1.3.2)

where δ is the Dirac delta function.

One thing to note is that one can rewrite Definition 1.3.1 in Fourier space by taking into account

the spectral density of a stochastic process.

Definition 1.3.2. Let X be a s.p. with defined correlation functionRX(τ) := 〈XtXt+τ〉. Then, the
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spectral density S of a s.p. X is the Fourier transform of its correlation function:

SX(ω) := F{RX(τ)}(ω) =
1√
2π

∫
R
dτ eiωτ 〈XtXt+τ〉 . (1.3.3)

Therefore, we can reiterate Definition 1.3.1 using the spectral density function: a stochastic pro-

cess ξ is a white noise process if it has constant spectral density, i.e.:

Sξ(ω) =
1√
2π

∫
R
dτ eiωτδ(τ) =

1√
2π

. (1.3.4)

The white noise processes have been applied to various sectors since the early 1900’s; the assump-

tion of the rate of return for stock investments to be white noise have been widely used to describe

various asset pricing models45.

We next introduce Van Kampen’s Lemma46, which states that there is a direct correspondence

betweenMarkov processes and white noise processes:

Theorem 1.3.1 (Van Kampen’s Lemma). Let X = (Xt)t≥0 and ξ = (ξt)t≥0 be two stochastic

processes connected by the following SDE: Ẋt = f(Xt) + ξt, where f is any smooth function. Then, X is a

Markov process if ξ is a white noise process.

Conversely, X is not aMarkov process if ξ is not a white noise process.

In layman’s terms, what Theorem 1.3.1 tells us is that any s.p. X that is the solution of such SDE

is completely characterized by the random force ξ. If ξ is a white noise process, then integrating Ẋ

out will yield a one-step memory, i.e. Markov, process X125 127.

We will next be using this important characterization to classify stochastic processes into Marko-

vian and non-Markovian processes.

In detail, all the three exemplary stochastic processes we have previously defined in this chapter

are in fact Markov processes. Let us show briefly in the following remarks:
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Remark 1.3.1. TheWiener processW = (Wt)t≥0 is aMarkov process.

Proof. Wewill use Theorem 1.3.1 to show that the Wiener process holds the Markov property.

First of all, the covariance function ofW is widely known68 to be given by the minimum function:

〈WtWs〉 = min(t, s) = (t− s)Θ(t− s). Next, we find the covariance function of its derivatives:

〈
dWt

dt
dWs

ds

〉
=

d2

dt ds
[(t− s)Θ(t− s)]

=
d
ds

[Θ(t− s) + (t− s)δ(t− s)]

= −δ(t− s) + δ(t− s)− (t− s)δ′(t− s)

= δ(t− s),

(1.3.5)

where in last step we used the property of the Dirac delta function−xδ′(x) = δ(x). Therefore,

since Ẇ is delta-correlated, it is a white noise process, which implies that by choosing f(x) = 0 in

Theorem 1.3.1,W is a Markov process.

Note that there are a variety of ways to prove this remark. Instead of differentiating the covari-

ance function ofW, we can instead directly find the covariance of Ẇ via its CFal27:

ΦẆ[g] =
〈
exp i

∫ ∞

0
dt g(t)Ẇt

〉
= exp

(
− 1
2

∫ ∞

0
dt g(t)2

)
. (1.3.6)

Therefore, using Equation 1.1.7, we indeed get delta correlation:

δΦẆ[g]
δg(t1)

= − 1
2

∫ ∞

0
dt 2g(t)δ(t− t1)ΦẆ[g],

=⇒
δ2ΦẆ[g]

δg(t1)δg(t2)
= −

∫ ∞

0
dt δ(t− t2)δ(t− t1)ΦẆ[g] +

δΦẆ[g]
δg(t2)

δΦẆ[g]
δg(t1)

,

=⇒ 〈Wt1Wt2〉 =
∫ ∞

0
dt δ(t− t1)δ(t− t2) = δ(t1 − t2).

(1.3.7)
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In Figure 1.2 we have plotted the simulation of the Wiener process together with its derivative, the

GWN process in the inset.
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Figure 1.2: Simula on of a realiza on of the Wiener processW together with the GWN Ẇ realiza on as shown in the
inset.

We next look into the Poisson process.

Remark 1.3.2. The Poisson process N = (Nt)t≥0 with intensity λ is aMarkov process.

Proof. In this example, inr order to infer the Markov property of the Poisson process, we will first

find the CFal of the Poisson processN and calculate its covariance using Equation (1.1.7).

The CFal can be found by the following double expectation:

ΦN[g] =
〈
exp i

∫ ∞

0
dτ g(τ)Nτ

〉
= lim

t→∞

〈〈
exp i

∫ t

0
dτ g(τ)Nτ

∣∣∣∣∣
∫ t

0
dτ Nτ

〉 ∣∣∣∣∣
∫ t

0
dτ Nτ

〉
.

(1.3.8)
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The expectation conditioned on the event
∫ t
0 dτ Nτ = n is therefore given by:

〈
exp i

∫ t

0
dτ g(τ)Nτ

∣∣∣∣∣
∫ t

0
dτ Nτ = n

〉
=

(
exp i

∫ t

τ
ds g(s)

)n
. (1.3.9)

Notice that by the additive nature of the Poisson process, we have that
∫ t
0 dτ Nτ = N∫ t

0 dτ
∼

Poisson
(
λ
∫ t
0 dτ
)
and therefore, the total expectation by:

ΦN[g] =
〈
exp i

∫ ∞

0
dτ g(τ)Nτ

〉
= lim

t→∞

〈(
exp i

∫ t

τ
ds g(s)

)∫ t
0 dτ Nτ

〉

= lim
t→∞

∞∑
n=0

(
exp i

∫ t

τ
ds g(s)

)n exp
(
−λ
∫ t
0 dτ
) (

λ
∫ t
0 dτ
)n

n!

= lim
t→∞

exp

(
−λ
∫ t

0
dτ
)
· exp

(
λ
∫ t

0
dτ exp i

∫ t

τ
ds g(s)

)
= lim

t→∞
exp

[
λ
∫ t

0
dτ
(
ei
∫ t
τ ds g(s) − 1

)]
= exp

[
λ
∫ ∞

0
dτ
(
ei
∫∞
τ ds g(s) − 1

)]
.

(1.3.10)

Therefore, the covariance ofN can be computed by taking the second functional derivative of ΦN[g]

as in Equation (1.1.7). Let’s take the functional derivative of ΦN[g]with respect to test functions
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g(t1) and g(t2):

δ2ΦN[g]
δg(t1) δg(t2)

=
δ

δg(t1)

{
δ

δg(t2)
exp

[
λ
∫ ∞

0
dτ
(
ei
∫∞
τ ds g(s) − 1

)]}
=

δ
δg(t1)

{
λ
∫ ∞

0
dτ
[
i
∫ ∞

τ
ds
(
δ(s− t1)ei

∫∞
τ ds g(s)

)]
ΦN[g]

}
=

δ
δg(t1)

{
λ
∫ ∞

0
dτ
[
iΘ(t1 − τ)ei

∫∞
τ ds g(s)

]
ΦN[g]

}
= λ2

∫ ∞

0
dτ
[
(i)2Θ(t1 − τ)

∫ ∞

τ
ds δ(s− t2)ei

∫∞
τ ds g(s)

]
ΦN[g]

+ (i)2
δΦN[g]
δg(t1)

· δΦN[g]
δg(t2)

= λ
∫ ∞

0
dτ
[
(i)2Θ(t1 − τ)Θ(t2 − τ)ei

∫∞
τ ds g(s)

]
ΦN[g] + (i)2

δΦN[g]
δg(t1)

· δΦN[g]
δg(t2)

.

(1.3.11)

Therefore, the covariance function of the Poisson process is given by dividing both sides by (i)2 and

letting g = 0:

〈Nt1Nt2〉 = λ
∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ), (1.3.12)

where due to the definition of the Poisson process the latter plus terms vanish: 〈Nt1〉 = 〈Nt2〉 = 0.

Lastly, in order to find thatN is Markovian, we will compute the covariance of its derivatives, like in

the case of the Wiener process:

〈
Ṅt1Ṅt2

〉
=

d2

dt1 dt2
〈Nt1Nt2〉 = λ

∫ ∞

0
dτ δ(t1 − τ)δ(t2 − τ) = λδ(t1 − t2), (1.3.13)

which implies that Ṅ is indeed white noise. Thus, by letting f(x) = 0 in Theorem 1.3.1 again, the

Poisson processN is a Markov process.

In Figure 1.3 we have plotted the simulation of the Poisson processN together with its derivative

Ṅ, i.e. the PWNwith unit jump amplitudes, in the inset. Lastly, a very similar case for the Com-
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Figure 1.3: Simula on of the Poisson processN together with the unit jump PWN Ṅ as shown in the inset. No ce that
Ṅ is simply the PWN with almost surely unit jump amplitudes, i.e. ∀i ∈ N, Ai = 1 almost surely. We used λ = 1.2
for our simula on.

pound Poisson process can be extracted from Remark 1.3.2. We have detailed this case in the follow-

ing remark.

Remark 1.3.3. Given the Compound Poisson process L = (Lt)t≥0 with intensity λ and iid jump

amplitudes {Ai}i∈N, the time derivative of L is indeed white noise and the covariance is given by:〈
L̇tL̇s

〉
= λ

〈
A2
1
〉
δ(t− s). Therefore, the Compound Poisson process L is also aMarkov process.

Proof. This is the very same method of deriving the CFal of the Poisson processNwith the addition

of the jump amplitudes. The CFal of L is given by:

ΦL[g] =
〈
exp i

∫ ∞

0
dτ g(τ)Lτ

〉
= lim

t→∞

〈〈
exp i

∫ t

0
dτ g(τ)

Nτ∑
i=1

AiΘ(τ− Ti)

∣∣∣∣∣
∫ t

0
dτ Nτ

〉 ∣∣∣∣∣
∫ t

0
dτ Nτ

〉
.

(1.3.14)
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The inner expectation conditioned on the event
∫ t
0 dτ Nτ = n is given by:

〈
exp i

∫ t

0
dτ g(τ)

Nτ∑
i=1

AiΘ(τ− Ti)

∣∣∣∣∣
∫ t

0
dτ Nτ = n

〉
=

〈
exp i

∫ t

τ
ds g(s)

n∑
i=1

AiΘ(s− τ)

〉
,

=

〈(
exp i

∫ t

τ
ds g(s)A1

)n〉
,

(1.3.15)

where Θ(s − τ) = 1 and the summation term simplifies due to the iid nature of the jump ampli-

tudes. Therefore, taking the expectation with respect to the Poisson random variable as before, the

CFal of L is given by:

ΦL[g] = lim
t→∞

〈(
exp i

∫ t

τ
ds g(s)A1

)∫ t
0 dτ Nτ

〉
= lim

t→∞
exp

[
λ
∫ t

0
dτ
(
eiA1

∫ t
τ ds g(s) − 1

)]
= exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(∫ ∞

τ
ds g(s)

)
− 1
)]

,

(1.3.16)

where we defined ϕA1
to be the CF of the jump amplitudes for easier writing. Like in the case of

Poisson process, differentiating the CFal twice yields:

δ2ΦL[g]
δg(t1) δg(t2)

= λ
∫ ∞

0
dτ
[
(i)2ϕ′′A1

(∫ ∞

τ
ds g(s)

)
Θ(t1 − τ)Θ(t2 − τ)

]
ΦL[g]+(i)2

δΦL[g]
δg(t1)

·δΦL[g]
δg(t2)

.

(1.3.17)

Therefore, the covariance is given by dividing both sides by (i)2 and letting g = 0:

〈Lt1Lt2〉 = λ
〈
A2
1
〉 ∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ), (1.3.18)
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which implies that the covariance of their derivatives is indeed delta-correlated:

〈
L̇t1 L̇t2

〉
= λ

〈
A2
1
〉 ∫ ∞

0
dτ δ(t1 − τ)δ(t2 − τ) = λ

〈
A2
1
〉
δ(t1 − t2), (1.3.19)

which finishes our proof.

In Figure 1.4 we have plotted the simulation of the Compound Poisson process L together with

its derivative, the PWN process L̇, in the inset.
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Figure 1.4: Simula on of the Compound Poisson process L together with the PWN L̇ as shown in the inset. We used
λ = 1.2 and Ai ∼ N

(
0, λ−1) for our simula on.

Now that we have given a foundation for our upcoming chapters dealing with the GSN process,

we will finish this chapter by going briefly through the Langevin equations.
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1.4 Introduction to Langevin Equations

The Langevin equation (LE) is an SDE that describes the time evolution of a stochastic process. It is

generally given by the following equation:

Ẋt = −V ′(Xt) + ξt, (1.4.1)

where Xt forms the stochastic process X = (Xt)t≥0 that is generally called the position process in

physical terminology, ξt forms the stochastic noise process ξ = (ξt)t≥0 that induces randomness to

X, andV is called the potential of the system.

In many simple LE’s, the noise term ξ is generally assumed to be white noise, i.e. 〈ξtξs〉 = Kδ(t −

s) for some constantK. In fact, this is what van Kampen laid out in Theorem 1.3.1: given a LE as in

Equation 1.4.1, if the noise ξ is white, then X is Markovian; if the noise ξ is colored, then X is non-

Markovian.

As we established in the previous sections of this chapter, traditionally used white noise processes

as the derivative of the Wiener process, Ẇ, which is distinctively called theGaussianWhite Noise

(GWN). For example, lettingV = γx2/2, γ ∈ R to be a harmonic potential yields the famous

Ornstein-Uhlenbeck (OU) process, which we will focus on in the next section below.

1.4.1 Ornstein-Uhlenbeck Process

The OU process is the solution to one of the simplest Langevin equations, where the potential is

harmonic,V(x) = γx2/2, and the random noise ξ driving the process X is the GWN:

Ẋt = −γXt + σẆt, (1.4.2)
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where γ, σ > 0 are constants. In literature, the LE is usually written in differential form by multiply-

ing both sides by dt:

dXt

dt
= −γXt + σ

dWt

dt
⇐⇒ dXt = −γXt dt+ σ dWt. (1.4.3)

The OU process X has very interesting properties. First and foremost, by Theorem 1.3.1, it is a

Markov process. Second of all, the OU process is amean-reverting s.p., where it tends to fluctuate

around its long-termmean, Xt = 0, which is the global minimum of the harmonic potentialV

vii. A simulation of the OU process is given in Figure 1.5 using 3 different initial conditions: X0 =

{−5,−2, 3}. We can see that the process X tends to say around the long-term limit (red dashed line)

regardless of its initial conditions. Furthermore, the OU process corrects its path back towards its

long-term limit from fluctuations caused by Ẇ. Further to the mean-reverting stage, the role of γ is

also very important. Here, γ corresponds to the rate of which the OU process X fixes its paths along

the long-term limit. The larger the γ, the faster Xwill revert to its long-termmean. In Figure 1.6

such property of γ can be visualized.

Furthermore, one can also defineGeneralizedOrnstein-Uhlenbeck (GenOU) processes using

white noises other than the GWN. The most famous one is using the derivative of the Compound

Poisson process, L̇, which is generally called the PoissonWhite Noise (PWN), where the GenOU

process Xwill now be the solution of Ẋt = −γXt + σ̇Lt.

The GenOU process is also widely used in literature, especially those related to financial applica-

tions. The “traditional” OU process X driven by the GWN is a Gaussian process, where each realiza-

viiThat being said, the potential can be defined in a non-symmetric way asV(x) = (x − a)2/2 for some
a ∈ R. In this case, the long-term limit of the corresponding OU process will be at Xt = a. This type of
OU process with non-symmetric potential is widely used in the finance industry. For example, one usually
seeks the OU process to model interest ratesR = (Rt)t≥0 that conventionally requires to be sticky around a
non-zero market reference pointRt = a28.
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Plots of the OU Process ̇Xt= − γXṫ σẆt

Figure 1.5: Realiza ons of the OU process X using 3 different ini al condi ons. No ce that regardless of where it starts
from, or the resul ng random fluctua ons due to the GWN Ẇ, the OU process always tends to s ck around Xt = 0
(red dashed line), i.e. the global minimum of the harmonic poten alV(x) = γx2/2. We used γ = 2 and σ = 1.
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Plots of the OU Process ̇Xt= − γXṫ σẆt

γ=0.1
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γ=10

Figure 1.6: Realiza ons of the OU process X using 3 different values of γ. Here, we can clearly dis nguish that the
larger the value of γ, the faster the OU process X converges to its long-term mean (red dashed line), i.e. the global
minimum of the harmonic poten alV(x) = γx2/2. We used the ini al condi on X0 = 3 and σ = 1.
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tion Xt has a Gaussian/Normal distribution viii 28 29. Preference over the GenOU is widely sought in

instances where the probability distribution of X is empirically known not to be Gaussian, i.e. the

process X has discontinuous jumps.

For visualization purposes, simulations of the GenOU process are given in Figure 1.7 for the

same set of initial conditions as in the case of the GWN. Last but definitely not least, the OU pro-
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Plots of the GenOU Process ̇Xt= − γXṫ σ ̇Lt

Figure 1.7: 3 realiza ons of the OU process X using different ini al condi ons. Again in the same case of the OU pro-
cess, regardless of where it starts from, or the resul ng random non-Gaussian fluctua ons due to the PWN L̇, the
GenOU process always tends to stay around Xt = 0 (red dashed line), which is the global minimum of the harmonic
poten alV(x) = γx2/2. The PWN is simulated with intensity λ = 5 and Normally-distributed jump amplitudes
Ai ∼ N

(
0, λ−1). We also used γ = 2 for the Harmonic poten al.

cess driven by the GWN X has the following covariance function30:

〈Xt1Xt2〉 =
σ2

2γ

(
e−γ|t1−t2| − e−γ(t1+t2)

)
. (1.4.4)

Furthermore, for the case of GenOU process, the coefficient σ simply becomes λ
〈
A2
1
〉
where λ and

viiiThe proof is relatively simple by finding the unique solution of Equation (1.4.2) via Ito’s lemma in
Lemma 1.5.2 and applying additive properties of the Normal distribution.
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A1 are respectively the intensity and iid jump amplitudes of the Compound Poisson process; this

directly coincides with our Gaussian Limits property as proven in Theorem 1.2.1.

Lastly, we will prove in upcoming chapters that the GSN noise process with a specific memory

kernel is in fact the GenOU process.

1.5 Introduction toMaster Equations

Now that we grasped the generic idea behind s.p.’s and how to derive the LE’s, we now focus on

finding the PDE governing the PDF of a s.p. X driven by a LE.

TheMaster Equation (ME) of a stochastic process X defined over the probability space (Ω,F ,P)

is a PDE describing the time evolution of the PDF of X, P(x, t). TheME, in its broadest definition,

has the following form:
∂P
∂t

= AP(x, t), (1.5.1)

whereA is the differential operator that contains the spatial derivatives of P.

The most famous, if not the sole, way to derive the ME of X driven by the generic LE in Equation

1.4.1 is via the generalized Ito’s lemma84 68:

Lemma 1.5.1 (Generalized Ito’s lemma). Let X be a s.p. driven by Ẋ = −V ′(Xt) + ξt, where ξ is any

noise process. Then, given a smooth function f : R → R, one has the following SDΔE for f(Xt):

df(Xt)− Δf(Xt) =
2∑

m=1

1
m!

dm f
dxm

(dXt)
m −

2∑
m=1

1
m!

dm f
dxm

(ΔXt)
m , (1.5.2)

where Δf and ΔXt are respectively the jump sizes of f(Xt) and Xt.

The proof of Lemma 1.5.1 can be simply outlined by applying Taylor’s expansion on f(x)with
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infinitesimal increment dx:

f(x+ dx) = f(x) +
df
dx

dx+
1
2
d2 f
dx2

(dx)2 + · · ·+ 1
m!

dm f
dxm

(dx)m + . . . , (1.5.3)

where df (x+ dx) − f(x) = df(x). This is followed by correcting Taylor’s expansion by splitting

X into purely continuous and purely discontinuous parts, noting that the summations stop at the

second derivative since the purely continuous part of dXt will vanish for powers higher than 268.

Lastly, Δfwill contain infinite order derivatives if the noise process ξ contains jumps.

Although solving the SDE in Lemma 1.5.1 w.r.t f is not relatively straightforward, there are mul-

tiple instances where Ito’s formula reduces to a finite order SDE, which is much easier to analyze.

For example, Ito’s formula for X driven by the GWN process reduces to a much simpler form

below:

Lemma 1.5.2. Let X be a s.p. driven by the LE: Ẋ = V ′(Xt)+σẆt, where σ > 0 is a constant and Ẇ

is the GWN process such that for all s, t > 0,
〈
ẆtẆs

〉
= δ(t − s). Then, for any twice-differentiable

function f : R → R, the following SDE for f(Xt) holds:

df(Xt) =
∂f
∂x

dXt +
σ2

2
∂2f
∂x2

dt. (1.5.4)

Proof. Referring to the generic formula in Lemma 1.5.1, notice first that the jump terms vanish: By

rewriting the LE in differential form, dXt = −V ′(Xt) dt + σ dWt, we can then write the jump

discontinuities as ΔXt = −V ′(Xt)Δt + σΔWt. Since time is continuous, it is trivial that Δt = 0.

Furthermore, referring to Definition 1.2.3, the Wiener processW is a continuous-time s.p. and

therefore we have that ΔWt = 0 almost surely.
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Next, we square the differential form to yield the following:

(dXt)
2 = V ′(Xt)

2 (dt)2 + σ2 (dWt)
2 + 2σV ′(Xt) dt dWt. (1.5.5)

Regarding to the squared form, it is trivial that (dt)2 = 0. Furthermore, again by68, we have that

the quadratic variation ofWt converges to dt under mean-square convergence, i.e. (dWt)
2 m.s.−−→ dt,

and that dt · dWt
m.s.−−→ 0. From the extension of the properties mentioned herein, we can also infer

that the higher orders ofm for (dXt)
m simply converge to 0 in mean-square, yielding the desired

SDE.

The reason why Ito’s lemma is important is that one can find the differential operatorA directly

from the solution of f. In fact, the linear operator applied to f is the adjoint ix of the linear operator

in the ME:

〈f,AP〉 = 〈A∗f,P〉 , (1.5.6)

where the notation 〈·, ·〉 refers to the inner product x. In most contexts, the adjoint operatorA∗ is

called the infinitesimal generator of the s.p. X (e.g. Chapter 37 of93).

Let us now find the ME of X via the SDE for f derived in Lemma 1.5.2. Rewrite the SDE of f in

ixAn adjoint of a linear operatorA, denoted byA∗, is any linear operator that satisfies the condition
A∗A = 1.

xIn detail, it is the inner product in Euclidean space. For any two functions f, g : R → R, their inner
product is given by:

〈f, g〉 =
∫
R
dx f(x)g(x). (1.5.7)
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dot notation by dividing both sides by dt, followed by taking their average yields the following:

〈
df(Xt)

dt

〉
=

〈
∂f
∂x

Ẋ
〉
+

σ2

2

〈
∂2f
∂x2

〉
=

〈
∂f
∂x
(
−V ′(Xt) + ξt

)〉
+

σ2

2

〈
∂2f
∂x2

〉
= −

〈
∂f
∂x

V ′(Xt)

〉
+

〈
∂f
∂x

ξt

〉
+

σ2

2

〈
∂2f
∂x2

〉
.

(1.5.8)

Notice that due to the iid nature of the GWN, we have that
〈

∂f
∂xξt
〉

= 〈ξt〉
〈

∂f
∂x

〉
= 0. Further-

more, given the PDF of X as P, we can apply integration by parts to the following expectation:

〈
∂f
∂x

V ′(Xt)

〉
=

∫
R
dx

∂f(x)
∂x

V ′(x)P(x, t) = −
∫
R
dx f(x)

∂

∂x
[
V ′(x)P(x, t)

]
. (1.5.9)

Similarly, we can apply integration by parts twice to the following,

〈
∂2f
∂x2

〉
=

∫
R
dx

∂2f(x)
∂x2

P(x, t) =
∫
R
dx f(x)

∂2P
∂x2

. (1.5.10)

Rewriting the expectations as integrals w.r.t. f yields the following:

∫
R
dx f(x)

∂P
∂t

=

∫
R
dx f(x)

(
∂

∂x
[
V ′(x)P(x, t)

]
+

σ2

2
∂2P
∂x2

)
. (1.5.11)

Disregarding the integration and f yields the ME for a GWN driven general s.p. X:

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
+

σ2

2
∂2P
∂x2

. (1.5.12)

Notice that the linear operator of the ME in Equation (1.5.12) is simply the following spatial differ-

entials:

A = V ′′(x) + V ′(x)
∂

∂x
+

σ2

2
∂2

∂x2
, (1.5.13)
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and its adjointA∗ can simply be referred from Equation (1.5.8) to be:

A∗ = −V ′(x)
∂

∂x
+

σ2

2
∂2

∂x2
. (1.5.14)

It is important to note that the Master Equation given in Equation 1.5.12 is a second-order PDE

solely due to the Gaussian nature of the noise process ξ. In fact, Master Equations of GWN-driven

Langevin Equations are an extensively studied class of second-order PDE’s that are exclusively called

the Fokker-Planck Equations57. For non-Gaussian processes, the Master Equation will instead be an

infinite order PDE xi.

We finally finish this section, and subsequently this chapter, by further extending generalized

Ito’s lemma in Lemma 1.5.1 to bivariate functions:

Lemma 1.5.3 (GeneralizedMultivariate Ito’s Lemma). Let X⃗ =
(
X1,X2, . . . ,Xn) be a collection

stochastic processes that need not be independent. Then, given a smooth function f : Rn → R, one has

the following SDΔE:

df(X⃗t)− Δf(X⃗t)

=

2∑
m1=1

2∑
m2=1

· · ·
2∑

mn=1

1
m1!m2! . . .mn!

∂m1+m2+···+mnf
∂xm1

1 ∂xm2
2 . . . ∂xmnn

(
dX1

t
)m1 (dX2

t
)m2 . . . (dXn

t )
mn

−
2∑

m1=1

2∑
m2=1

· · ·
2∑

mn=1

1
m1!m2! . . .mn!

∂m1+m2+···+mnf
∂xm1

1 ∂xm2
2 . . . ∂xmnn

(
ΔX1

t
)m1 (ΔX2

t
)m2 . . . (ΔXn

t )
mn

(1.5.15)

Much like its univariate counterpart, the multivariate Ito’s lemma mentioned in Lemma 1.5.3

for the two dimensional s.p. (X, ξ) can be used to find the joint PDF of the tuple (Xt, ξt). This will

be very useful in later chapters when we introduce the GSN noise process ξ, where the resulting

xiNonetheless, in most physical contexts, suchMaster Equations that are driven by non-Gaussian noises
are calledHigher-Order Fokker Planck Equations 94 123.
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position process Xwill be marginally non-Markovian, but the collection of X together with ξ and its

derivatives, (X, ξ, ξ̇, ξ̈, . . . ), will be a Markov process.

1.6 Chapter Review

In this chapter, we have briefly undergone the broad definition of what a stochastic process means,

with some detailed examples of the Poisson process, the Compound Poisson process, and theWiener

process. We have also discussed how to find the CF and the CFal of such processes, which are very

useful in calculating their moments and the covariance functions. We next entailed the Markov

property of stochastic processes that is a very useful tool for classifying stochastic processes into

memoryless processes and processes with memory. In this section we have also gone through the

time derivative of Markov processes that are white noise, and shown that the time derivatives of the

Wiener process, Poisson process and Compound Poisson processes are white noise processes. Later

in this chapter, we defined a broad classification of Langevin equations with some examples widely

used in literature. Finally, we gave a broad outline of how to derive Master Equations for LE’s driven

by GaussianWhite Noise process, where in this particular case the Master Equation is usually called

the Fokker-Planck Equation.

Next chapter, we focus on our Colored Poisson process, which shares similar characteristics as to

other noise processes but violates the Markov property.
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Truth is ever to be found in the simplicity, and not in the

multiplicity and confusion of things.

Sir Isaac Newton

2
Introduction to the Generalized Shot Noise

Process

Throughout the previous chapter, we focused on defining stochastic processes that obey the Markov

property. As outlined in Theorem 1.3.1, asserting whether a s.p. either obeys or violates the Markov

property is directly linked by its underlying noise: given the s.p. X as the solution of the LE Ẋ =

−V′(Xt) + ξt, we have that X is a Markov process if ξ is a white noise process. However, what hap-
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pens if ξ is not white, but colored?

In this chapter, we aim to connect the previous definitions, namely the Wiener process, the Pois-

son process and the Compound Poisson process, as well as the Markov property, in order to prop-

erly define the GSN process such that it is not a white noise process. Later in this chapter, we classify

the GSN processes with respect to their innate definitions, the most widely studied example is the

Colored Poisson noise process. We then finish this chapter by focusing on how to construct the CF

of GSN processes, which can be used to find their PDF via Inverse Fourier Transform (IFT).

2.1 Definition of the GSN Process

The GSN process is a very interesting stochastic process that has in fact been used to formulate

non-Markovian LE’s in theory since the 1920’s, starting with the Campbell noise99, and further

extended in the early 1950’s101 109. Due to its limitations to finding the PDF and solving the time

evolution equations, the GSN processes have not been widely used in practice.

We disclose the broad definition of the GSN process below:

Definition 2.1.1. Let N = (Nt)t≥0 be the Poisson process with intensity λ, jump amplitudes {Ai}i∈N

and arrival times {Ti}i∈N. Let h : R → R be a smooth function. Then, theGSN process ξ = (ξt)t≥0

is formed by the following realization:

ξt =
Nt∑
i=1

Aih(t− Ti). (2.1.1)

Throughout this thesis, the function h will be called the impulse function of the GSN process.

Notice the similarity of the GSN process ξ to that of the Compound Poisson process, as given

in Definition 1.2.2. In fact, the Compound Poisson process is a special type of GSN process where

the impulse function is the Heaviside step function, i.e. h = Θ. An even more interesting property
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is that the PWN, which is the time derivative of the Compound Poisson process, is also another

special type of GSN process where the impulse function is the Dirac delta function, i.e. h = δ.

The proof of this relation will be given in Section 3.1 of the next chapter, when we identify the time

derivative of the GSN process ξ.

2.2 Visual Representation of Impulse Functions

An important outcome that we can draw from the two examples of the impulse function h = δ and

h = Θ is that h plays a very important role in categorizing the GSN process ξ. Given the case for

h = Θ, the process ξ becomes a colored noise process; whereas for h = δ, the process ξ becomes a

PoissonWhite Noise (PWN) process i.

The conditions for such behavior of ξ can be visualized in Figures 2.1 and 2.2. In the case of

Dirac delta impulse function, the s.p. ξ becomes a Poisson white noise, as there is zero step involved

with the impulse size; whereas in the case of Heaviside function, the impulses have a unit step size,

which creates a Markovian (i.e. unit step memory) process ξ. In latter Figure 2.2, the grey points are

where the intersection of different impulses we also can witness where memory is formed.

Now that we have defined the simplest impulse function functions, we can focus on something

more advanced. Let the impulse function instead be a rectangular function, defined as follows:

h(t) := rect(t; a, b) =



0 t < a,

1
b−a a ≤ t ≤ b,

1 t > b.

(2.2.1)

We have plotted the impulses regarding the rectangular function in Figure 2.3. Notice that this

iRecall from Theorem 1.2.1 that under certain limitations, collectively calledGaussian limits, the PWN
will converge to GaussianWhite Noise (GWN) process.
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Figure 2.1: Impulse response Anδ(t − Tn) with Dirac delta impulse func on. No ce that the impulses i and j are unit
impulses with zero steps, indica ng PWN nature of ξ. For this plot we used jump amplitudes Ai ∼ N (0, λ−1) with
λ = 10. Throughout this thesis, we use sta s cally independent (iid) jump amplitudesAi for our simula ons. Finally,
the arrival mes Ti are derived from the Poisson process with intensity λt. A sample impulse response trajectory is
shown in direc onal arrows, where dashed parts are discon nuous jumps.

Figure 2.2: Impulse response AnΘ(t − Tn; a = 1/2, b = 1/2) with Heaviside impulse func on. No ce that
the impulses i and j are unit impulses with one step, indica ng that the s.p. ξ a one-step memory, i.e. Markov, process.

We used jump amplitudes Ai ∼ N (0, λ−1) with λ = 10, and the arrival mes Ti are derived from the Poisson
process with intensity λt. A sample impulse response trajectory is shown in direc onal arrows, where dashed parts are
discon nuous jumps.
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time the impulse function has two steps, where it is indicated by continuous straight lines. This re-

sults in a colored noise process again. Let us advance further into the impulse functions by defin-

Figure 2.3: Impulse response Anrect(t − Tn; a = −1/2, b = 1/2) with Rectangular impulse func on. No ce that
the impulses i and j are unit impulses with two steps, indica ng that the s.p. ξ a colored noise process. We used jump

amplitudes Ai ∼ N (0, λ−1) with λ = 10, and the arrival mes Ti are derived from the Poisson process with intensity
λt. A sample impulse response trajectory is shown in direc onal arrows, where dashed parts are discon nuous jumps.

ing continuous cases. Let the impulse function now be an exponentially decaying function, i.e.

h(x) = αe−αx, where α > 0 determines the rate of decay. The GSN process with exponentially

decaying impulse function is commonly known in literature as the CP process74 101 109.

The impulse responses using this function is given in Figure 2.4, where one can see that the im-

pulse function will promote infinite steps to the noise process. In the following Figure 2.5 one can

see the impulse trajectories for the exponentially decaying impulse function. Another example that

we can give herein is the damped and oscillating impulse function. This type of impulse function

is similar to exponential decay; however, it includes an additional sinusoid oscillating term that is

useful to extend the memory condition as we will observe in later chapters of our thesis.
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Figure 2.4: Plot of the exponen ally decaying impulse func on h(t) = αe−αt. No ce that the steps in this impulse
func on is infinite; upon zooming to a small region of h, the impulse func on gain an addi onal step along the infinitesi-
mally small right triangle. Here we used α = 1/2 for be er visualiza on.

Figure 2.5: Impulse response Anαe−α(t−Tn) with exponen ally decaying impulse func on. No ce that the impulses i
and j are unit impulses with infinite steps, indica ng that the s.p. ξ is a colored noise process. We used the decay rate

α = 1/2, and the jump amplitudes Ai ∼ N (0, λ−1) with λ = 10, where the arrival mes Ti are derived from the
Poisson process with intensity λt.
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A damped and oscillatory impulse function is generally defined to be of the following form:

h(t) :=
α2 + β2

α + β
e−αt (sin βt+ cos βt) ,

where α, β > 0 are constants.

Regarding to this particular impulse function the impulse response can be visualized in Figure

2.6.

Figure 2.6: Impulse response for jump sizes Anh(t− Tn; α = 1, β = 2) with damped and oscilla ng impulse func on.
No ce that the impulses have infinite steps, indica ng that the s.p. ξ again a colored process. We used jump amplitudes

Ai ∼ N (0, λ−1) with λ = 10, and the arrival mes Ti are derived from the Poisson process with intensity λt.

The last example of a impulse function we would like to introduce is the sigmoid function. It is

in general defined as:

h(t; α) =
eαt

1+ eαt
, (2.2.2)

where α is the steepness coefficient. The reason behind using the Sigmoid kernel is due to its re-

semblance to the Heaviside step function. In fact, the coefficient α decides the rate of saturation to

limt→∞ h(t) = 1, where simple analysis shows that for large α the sigmoid function converges to
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the Heaviside step function:

lim
α→∞

eαt

1+ eαt
= Θ(t). (2.2.3)

This relaxed version of the sigmoid function is highly used in various mathematical applications

where continuous version of the Heaviside step function is needed to be used95. The impulse re-

sponse regarding to this impulse function is given in Figure 2.7.

Figure 2.7: Impulse response for jump sizes Anh(t; α = 2) with sigmoid impulse func on. No ce that the impulses
have infinite steps, indica ng that the s.p. ξ again a colored process. We used jump amplitudes Ai ∼ N (0, λ−1) with
λ = 10, and the arrival mes Ti are derived from the Poisson process with intensity λt.

So where does the term colored noise come into play? In general, any noise where the impulse

function itself is not Dirac delta is a colored noise process, meaning that the noise does not have zero-

step memory. Given the step size n in the impulse function, one can summarize this property as

follows:

• If n = 0, then the noise becomes a white noise process; and

• If n > 0, then the noise becomes a colored noise process.
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Now that we have grasped the visual representation of impulse functions and their classifications

to white or colored noise, let’s prove their existence by computing their autocovariances via their

CFal.

2.3 Finding the Characteristic Function of the GSN process

We now find the CFal of the noise process ξ. This will be useful in not only classifying ξ, but also

to find the CFal of X obeying the Langevin equation (0.0.2) using the method from Caceres & Bu-

dini’s paper published 1997 (ref.99).

We first reproduce the paper’s result for Campbell noise and apply the same technique to our

GSN process ξ, then use the functional correspondence technique to find the CFal of X.

Next, we apply some candidate impulse functions to the CFals of ξ and X in order to deduce

similarities between known Lévy processes, e.g. Compound Poisson process andWiener process.

2.3.1 Reproducing the Result with Campbell Noise

Note that Campbell et al. used the following noise in deriving their LE [Equation (2.6) of99]:

ξt =
S∑

i=1
ψ(t− Ti), (2.3.1)

where Ti are iid random variables with density dqwith support on [0,∞[, and S ∼ Poisson(λ = 1)

is a Poisson-distributed random variable with unit intensity. From here, one can get the CFal of ξ,

Φξ[g] =
〈
exp i

∫ ∞

0
g(t)ξt dt

〉
=

〈
exp i

∫ ∞

0
g(t)

S∑
i=1

ψ(t− Ti) dt

〉
, (2.3.2)
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by conditioning on S = s:

〈
exp i

∫ ∞

0
g(t)

S∑
i=1

ψ(t− Ti) dt

∣∣∣∣∣ S = s

〉
=

〈
exp i

∫ ∞

0
g(t)

s∑
i=1

ψ(t− Ti) dt

〉

=

∫ ∞

0

(
exp

[
is
∫ ∞

0
ψ(t− τ) dt

])
q(τ) dτ.

(2.3.3)

Hence, we simply get Φξ by averaging over S:

Φξ[g] =
〈∫ ∞

0

(
exp

[
iS
∫ ∞

0
ψ(t− τ) dt

])
q(τ) dτ

〉
=

∞∑
s=0

∫ ∞

0

(
exp

[
is
∫ ∞

0
ψ(t− τ) dt

])
q(τ) dτ

e−1

s!

=

∫ ∞

0
e−1

( ∞∑
s=0

(
exp

[
i
∫∞
0 ψ(t− τ) dt

])s
s!

)
q(τ) dτ

=

∫ ∞

0

(
exp

[(
exp i

∫ ∞

0
ψ(t− τ)g(t) dt

)]
− 1
)
q(τ) dτ.

(2.3.4)

However, our GSN process is not the Campbell noise: by far the most important difference is that

Campbell noise assumes a Poisson-distributed random variable S over the summation; whereas we

assume a Poisson process (Nt)t≥0.

2.3.2 Characteristic Functional of the GSN process

Note that using the definition of the CFal, we first compute the following double expectation, as in

cases for the Poisson and Compound Poisson processes:

Φξ[g] =
〈
exp i

∫ ∞

0
dτ g(τ)ξτ

〉
=

〈
exp i

∫ ∞

0
dτ g(τ)

Nτ∑
i=1

Aih(τ− Ti)

〉

= lim
t→∞

〈〈
exp i

∫ t

0
dτ g(τ)

Nτ∑
i=1

Aih(τ− Ti)

∣∣∣∣∣
∫ t

0
dτ Nτ

〉 ∣∣∣∣∣
∫ t

0
dτ Nτ

〉 (2.3.5)
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Due to the iid nature of Ai, the inner expectation conditioned on the event
∫ t
0 dτ Nτ = n is given

by:

〈
exp i

∫ t

0
dτ g(τ)

Nτ∑
i=1

Aih(τ− Ti)

∣∣∣∣∣
∫ t

0
dτ Nτ = n

〉

=

〈
exp i

∫ t

τ
ds g(s)

n∑
i=1

Aih(s− τ)

〉
=

〈(
exp iA1

∫ t

τ
ds g(s)h(s− τ)

)n〉
.

(2.3.6)

Therefore, we get the characteristic functional by the total expectation as follows:

Φξ[g] = lim
t→∞

〈(
exp iA1

∫ t

τ
ds g(s)h(s− τ)

)∫ t
0 dτ Nτ

〉

= lim
t→∞

∞∑
n=0

e−λ
∫ t
0 dτ

1
n!

(
exp iA1

∫ t

τ
ds g(s)h(s− τ)

)n

= lim
t→∞

exp

[
λ
∫ t

0
dτ
(
ϕA1

(∫ t

τ
ds g(s)h(s− τ)

)
− 1
)]

=exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(∫ ∞

τ
ds g(s)h(s− τ)

)
− 1
)]

.

(2.3.7)

First and foremost, we confirm in below Lemma that the condition for ξ to be a white noise process

solely depends on the impulse function h:

Lemma 2.3.1. Let ξ be the GSN process as given in Definition 2.1.1. Then, ξ is not a white noise pro-

cess unless the impulse function h is a Dirac delta function.

Proof. The proof is relatively simple, as we only require to find whether the covariance function of

ξ is delta-correlated. In order to do that, let’s find the two functional derivatives of Φξ[g]w.r.t. test
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functions g(t1) and g(t2):

δ2Φξ[g]
δg(t1)δg(t2)

=
δ

δg(t1)

{
δ

δg(t2)
exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(∫ ∞

τ
ds g(s)h(s− τ)

)
− 1
)]}

=
δ

δg(t1)

[
λ
∫ ∞

0
dτ
(∫ ∞

τ
ds δ(s− t1)h(s− τ) · ϕ′A1

(∫ ∞

τ
ds g(s)h(s− τ)

))
Φξ[g]

]
=

δ
δg(t1)

[
λ
∫ ∞

0
dτ
(
Θ(t1 − τ)h(t1 − τ)ϕ′A1

(∫ ∞

τ
ds g(s)h(s− τ)

))
Φξ[g]

]
=λ
∫ ∞

0
dτ
(
Θ(t1 − τ)h(t1 − τ)

∫ ∞

τ
ds δ(s− t2)h(s− τ) · ϕ′′A1

(∫ ∞

τ
ds g(s)h(s− τ)

))
Φξ[g]

+
δΦξ[g]
δg(t1)

δΦξ[g]
δg(t2)

=λ
∫ ∞

0
dτ
(
Θ(t1 − τ)h(t1 − τ)Θ(t2 − τ)h(t2 − τ) · ϕ′′A1

(∫ ∞

τ
ds g(s)h(s− τ)

))
Φξ[g]

+
δΦξ[g]
δg(t1)

δΦξ[g]
δg(t2)

.

(2.3.8)

Then the covariance of the GSN process is simply given by letting dividing both sides by i2 and

letting g = 0, noting that by construction of the GSN process as in Definition 2.1.1, 〈ξt〉 = 0 for all

t ≥ 0: 〈
ξt1ξt2

〉
= λ

〈
A2
1
〉 ∫ ∞

0
dτΘ(t1 − τ)h(t1 − τ) · Θ(t2 − τ)h(t2 − τ). (2.3.9)

Since Θ are only Heaviside step functions, the only case where Equation (2.3.9) above is delta-

correlated is the case where h = δ, which concludes our proof.

2.4 Correlation Functions of GSN processes driven by the Exemplary Impulse

Functions

Now that we have the covariance of the GSN process ξ, we can now confirm that the below-defined

impulse functions are indeed classified into white and colored noise processes.
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2.4.1 Heaviside Impulse Function

By defining h(t) = Θ(t), the covariance of ξ simply becomes

〈
ξt1ξt2

〉
= λ

〈
A2
1
〉 ∫ ∞

0
dτΘ(t1 − τ)Θ(t1 − τ) · Θ(t2 − τ)Θ(t2 − τ)

= λ
〈
A2
1
〉 ∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)

= λ
〈
A2
1
〉
min{t1, t2}.

(2.4.1)

As we established, this is indeed a Markovian noise process; in fact, it is the Compound Poisson

process. This can also be visualized in the simulation in Figure 2.8 below. Furthermore, applying

Lemma 1.3.1, we get that the covariance of the derivative of ξ is delta-correlated as expected:

〈
ξ̇t1 ξ̇t2

〉
= λ

〈
A2
1
〉 ∫ ∞

0

dΘ(t1 − τ)
dt1

· dΘ(t2 − τ)
dt2

= λ
〈
A2
1
〉 ∫ ∞

0
dτ δ(t1 − τ)δ(t2 − τ)

= λ
〈
A2
1
〉
δ(t1 − t2).

(2.4.2)

2.4.2 Rectangular Impulse Function

For more mathematical rigour, note that one can rewrite the rectangular function rect(t; a, b) in

terms of Heaviside functions as rect(t; a, b) = (b− a)−1 (Θ(t− a)− Θ(t− b)). Then, upon

applying this definition to the covariance of ξ, we can see that ξ is indeed not delta correlated, i.e. not
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Figure 2.8: Simula ng the GSN process with Heaviside impulse func on h(t) = Θ(t), i.e. the Compound Poisson
process. The inset is the plot of the impulse func on. We used λ = 10 and Ai ∼ N (0, λ−1) for our simula on.

white:

〈
ξt1ξt2

〉
=
λ
〈
A2
1
〉

b− a

∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)·

· (Θ(t1 − τ− a)− Θ(t1 − τ− b)) (Θ(t2 − τ− a)− Θ(t2 − τ− b)) ,

(2.4.3)

Interestingly, the covariance function of ξ resembles that of the Compound Poisson process as in

Equation (1.3.18); however, the time delay by coefficients a and b contribute to the colored and

non-Markovian nature of ξ. This can also be visualized in Figure 2.9, where we simulated the GSN

process ξwith rect(t; a = −1/2, b = 1/2) as impulse function.
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Figure 2.9: Simula ng the GSN process with Rectangular impulse func on h(t) = rect(t; a = −1/2, b = 1/2).
No ce its close resemblance to the Compound Poisson (Markov) process as in Figure 2.8. The inset is the plot of the
impulse func on. We used λ = 10 and Ai ∼ N (0, λ−1) for our simula on.

2.4.3 Exponentially Decaying Impulse Function

Recall that the exponentially decaying impulse function is defined by h(t) = αe−αt, where α > 0 is

the rate of decay. The covariance of ξ is given by:

〈
ξt1ξt2

〉
= λ

〈
A2
1
〉 ∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)α2e−α(t1−τ)e−α(t2−τ)

= λ
〈
A2
1
〉
α2e−α(t1+t2)

∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)e2ατ

= λ
〈
A2
1
〉
α2e−α(t1+t2)

∫ t1∧t2

0
dτ e2ατ

= λ
〈
A2
1
〉
α2e−α(t1+t2) e

2α(t1∧t2) − 1
2α

= λ
〈
A2
1
〉 α
2

(
e−α|t1−t2| − e−α(t1+t2)

)
.

(2.4.4)
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Notice that the covariance of the GSN process ξ in this case is exactly the covariance of the GenOU

process X defined in Equation (1.4.2): Ẋt = −αXt + αL̇t, where in this instance the constants are

γ = σ = α. This is the fundamental outcome of the exponentially decaying impulse function.

Due to fact that the GenOU process is very well defined, there is extensive research on colored noises

driven by this particular impulse function75 87 97. In more detail, this correspondence is due to the

hierarchical nature of the GSN process ξ per se, on which we will focus extensively in later chapters.

For visualization, we have given a simulation of the GSN process in Figure 2.10 below.
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Figure 2.10: Realiza on of the GSN process ξ with exponen ally decaying impulse func on h(t) = αe−αt. The inset is
the plot of the impulse func on. We used α = 2, λ = 10 and Ai ∼ N (0, λ−1) for simula ng the realiza on.
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2.4.4 Damped andOscillating Impulse Function

As explained in previous section, one can relax the strictly decaying condition of the impulse func-

tion by introducing oscillation. Recalling our damped oscillating impulse function

h(t) =
α2 + β2

α + β
e−αt (sin βt+ cos βt) , (2.4.5)

where α, β > 0. Therefore, the covariance function of ξ driven by this impulse function is given by:

〈
ξt1ξt2

〉
=

(
α2 + β2

α + β

)2

e−α(t1+t2)
∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)e2ατ [sin β (t1 − τ) + cos β (t1 − τ)] ·

· [sin β (t2 − τ) + cos β (t2 − τ)]

=

(
α2 + β2

α + β

)2

e−α(t1+t2)
∫ t1∧t2

0
dτ e2ατ [sin β (t1 − τ) + cos β (t1 − τ)] [sin β (t2 − τ) + cos β (t2 − τ)]

=
α2 + β2

2α (α + β)2

[ (
α2 + β2

) (
e−α|t1−t2| − eα(t1+t2)

)
cos β |t1 − t2| − α (β cos β (t1 + t2) + α sin β (t1 + t2))

+ αe−α|t1−t2| (β cos β |t1 − t2|+ α sin β |t1 − t2|)

]
(2.4.6)

By directly checking their covariance, we can be certain that the noise process ξ is indeed colored,

with simulation given in Figure 2.11 below.

Our last example will be to define another smooth yet non-decaying impulse function: the sig-

moid kernel.
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Figure 2.11: Realiza on of the GSN process ξ with damped and oscilla ng impulse func on h(t) =(
α2 + β2

)
/ (α + β) e−αt (sin βt+ cos βt). The inset is the plot of the impulse func on, where we chose a large

β to promote oscilla on within this me range. We used α = 4, β = 15, λ = 10 and Ai ∼ N (0, λ−1) for simula ng
the realiza on.
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2.4.5 Sigmoid Impulse Function

The sigmoid function is defined by:

h(t) =
eαt

1+ eαt
. (2.4.7)

As detailed in Section 2.2, the sigmoid function is an important tool to approximate the Heaviside

step function in continuous form. Let’s see how the covariance of ξ behaves with this impulse func-

tion:

〈
ξt1ξt2

〉
= eα(t1+t2)

∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)

e−2ατ(
1+ eα(t1−τ)

) (
1+ eα(t2−τ)

)
= eα(t1+t2)

∫ t1∧t2

0
dτ

e−2ατ(
1+ eα(t1−τ)

) (
1+ eα(t2−τ)

)
=

1
α (eαt1 − eαt2)

[
− eαt2

(
ln (1+ eαt1)− ln

(
eαt1 + eα(t1∧t2)

)
+ α (t1 ∧ t2)

)
+ eαt1

(
ln (1+ eαt2)− ln

(
eαt2 + eα(t1∧t2)

)
+ α (t1 ∧ t2)

) ]
(2.4.8)

The resulting covariance is clearly not delta-correlated, hence ξ is indeed a colored noise. The simula-

tion of ξ together with the impulse function embedded is given in Figure 2.12.

Next, we will outline 3 broad classifications of impulse functions that will be useful in further

analyzing the GSN process in Chapter 3 and finding the solutions for the optimal paths of the posi-

tion process X in Chapter 4.

2.5 Classification of Impulse Functions

Throughout this chapter, we have deeply analyzed how the impulse function directly changes the

behavior of the GSN process. In this section, we will categorize the impulse functions into 3 major

groups: left-tailed, right-tailed and hierarchical.

60



0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.1

0.2

0.3

0.4

0.5
ξ t

0 1
t

0.5

1.0

h(
t)

Figure 2.12: Realiza on of the GSN process ξ with sigmoid impulse func on h(t) = eαt/ (1+ eαt). The inset is the plot
of the impulse func on. We used α = 4, λ = 10 and Ai ∼ N (0, λ−1) for our simula ng the realiza on.

2.5.1 Left-Tailed Impulse Functions

The left tailed impulse functions are, as the name suggests, asymptotically zero from their left tails.

In more mathematical rigor, a impulse function h is left-tailed if limt→0 h(t) = 0. From our can-

didate impulse functions, the Heaviside step function and the sigmoid function are examples of

left-tailed kernels.

2.5.2 Right-Tailed Impulse Functions

The right-tailed impulse functions are, on contrast, asymptotically zero from their right tails, i.e.

limt→∞ h(t) = 0. In this case, candidate impulse functions such as the exponential decay function

and the damped and oscillating function are examples of right-tailed impulse functions.

As we haven’t categorized any asymptotics on their right tail, left-tailed impulse functions are not

integrable through time; examples include the Heaviside step function and the sigmoid function,
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where both of their integrals diverge at infinity.

On the contrary, right-tailed impulse functions can be globally integrable through time if they are

bounded everywhere on [0,∞[. Therefore, both exponential decay function and the damped and

oscillating function are integrable impulse functions; a counterexample could be a power law decay

impulse function, h(t) = t−a for a > 0, where it is a right-tailed but not integrable on [0,∞[ due

to singularity at t = 0.

Both globally integrable and globally not integrable impulse functions give rise to very interesting

asymptotic properties of the GSN process. We will go through them in detail in Chapter 3.

Lastly, we identify the third and highly important class of impulse functions.

2.5.3 n-th Hierarchy Impulse Functions

This third class of impulse functions can be simply defined as any impulse function h that obeys a

linear and homogeneous n-th order ODE; i.e., with suitable initial conditions, any function h that is

a unique solution of the IVP:

n∑
i=0

cih(i)(t) = 0, h(i)(0) = ai (2.5.1)

is an n-th hierarchy impulse function, where h(i) is the i−th time derivative of h, ci ∈ R are constant

coefficients and ai ∈ R are suitable initial conditions.

For example, from our candidate impulse functions, the exponentially decaying function, h(x) =

αe−αx is a first hierarchy impulse function, as it is the solution of the first order linear homogeneous

ODE: ḣ(t) + αh(t) = 0 with initial condition h(0) = α.

Furthermore, the damped oscillating function,

h(t) =
α2 + β2

α + β
e−αt (sin βt+ cos βt) , (2.5.2)
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is a 2nd hierarchy impulse function. By the unique solution, the characteristic roots of the ODE are

r = α ± βi. This implies that the characteristic equation of the ODE is of the form:

(r− α − βi) (r− α + βi) = (r− α)2 + β2 = r2 − 2αr+ α2 + β2 = 0. (2.5.3)

Therefore the resulting linear homogeneous initial value problem becomes:

h′′(t)− 2αh′(t) +
(
α2 + β2

)
h(t) = 0, h(0) = 1, h′(0) = β− α. (2.5.4)

The n-th hierarchy impulse functions will be highly useful to find the Markovian correspondence

of the Langevin equations due to the hierarchical nature of the corresponding GSN processes ξ.

Now that we showed how the impulse function affects the color of the noise process ξ, we can

now focus on finding the characteristics of the position process X driven by the LE as in Equation

(1.4.1).

2.6 Characteristics of the Position Process Driven by the Langevin Equa-

tion

In this section, we now apply our knowledge of the GSN process to the LE as in Equation (1.4.1).

First and foremost, the potentialV plays an important role in finding the CFal of X from ξ.

In detail, if we were to assume the LE is, in fact, an ordinary differential equation, i.e. ẋ(t) =

−V′(x(t)) + f(t) for some function f, then we observe that the resulting ODE for ẋ is nonlinear

unless the functionV is parabolic, where it can be solved easily under suitable initial condition.

This is exactly the case for an interesting article by Caceres & Budini in 199799. In their paper,

the authors postulate that the CFal relationship between X and ξ can only be found in closed form

solution if the potentialV is harmonic, i.e. V(x) = γx2/2 for some positive γ. Under this condi-
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tion, the authors have proven in Equation (2.3) of their paper99 that given the LE with harmonic

potential, i.e. Ẋt = −γXt + ξt, the following relationship exists between the CFals of X and ξ:

ΦX[g] = Φξ

[
eγt
∫ ∞

t
ds g(s)e−γs

]
. (2.6.1)

Due to its similarity in the definition of the [Markovian] OU process, we will call the solution of the

LE Ẋt = −γXt + ξt with GSN ξ theNon-Markovian Ornstein-Uhlenbeck Process.

Therefore, plugging the inner test function of Φξ in Equation (2.6.1) to its definition in Equa-

tion (2.3.7) yields the CFal of X for any impulse function h under harmonic potential:

ΦX[g] = exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

t
ds e−γsg(s)

)
− 1
)]

. (2.6.2)

From Equation (2.6.2), one can retrieve the autocovariances of X by taking the variational derivative

twice:

δ2ΦX[g]
δg(t1)δg(t2)

=
δ

δg(t2)

{
λ
∫ ∞

0
dτ
∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

τ
ds e−γsδ(s− t1)·

· ϕ′A1

(∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

t
ds e−γsg(s)

)
ΦX[g]

}

= e−γt1 δ
δg(t2)

{
λ
∫ ∞

0
dτΘ(t1 − τ)

∫ t1

τ
dt h(t− τ)eγt·

· ϕ′A1

(∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

t
ds e−γsg(s)

)
ΦX[g]

}

= e−γ(t1+t2)

{
λ
∫ ∞

0
dτΘ(t1 − τ)Θ(t2 − τ)

(∫ t1

τ
dt h(t− τ)eγt

)(∫ t2

τ
dt h(t− τ)eγt

)

· ϕ′′A1

(∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

t
ds e−γsg(s)

)
ΦX[g]

}
+

δΦX[g]
δg(t1)

δΦX[g]
δg(t2)

,

(2.6.3)
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Therefore, by Equation (1.1.7) the autocovariance of X is given by:

〈Xt1Xt2〉 = λ
〈
A2
1
〉
e−γ(t1+t2)

∫ ∞

0
dτΘ(t1−τ)Θ(t2−τ)

(∫ t1

τ
dt h(t− τ)eγt

)(∫ t2

τ
dt h(t− τ)eγt

)
.

(2.6.4)

Evidently, defining g(t) = θδ(T − t) and plugging in to the CFal of X in Equation (2.6.2) will yield

ϕX(θ,T), the CF of X at time T:

ϕX(θ,T) = exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(
θ
∫ ∞

τ
dt h(t− τ)eγt

∫ ∞

t
ds δ(T− s)e−γs

)
− 1
)]

= exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(
θ
∫ ∞

τ
dt h(t− τ)eγtΘ(T− t)e−γT

)
− 1
)]

= exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(
θΘ(T− τ)

∫ T

τ
dt h(t− τ)eγ(t−T)

)
− 1
)]

= exp

[
λ
∫ T

0
dτ ϕA1

(
θ
∫ T

τ
dt h(t− τ)eγ(t−T)

)
− λT

]
.

(2.6.5)

Lastly, one can take the Inverse Fourier Transform (IFT) of ϕX to get the PDF of the position pro-

cess, denoted by PX, either analytically or numerically, depending on the selected impulse function

h as well as distribution of iid jump amplitudes A1:

PX(x,T) =
1
2π

∫ ∞

−∞
dω e−iωxϕX(ω,T). (2.6.6)

Now that the PDF of X can be found via its CF, we now simulate the LE of X via harmonic po-

tential, where various candidate impulse functions for the GSN process ξwill be used.

The simulation results for 4 candidate impulse functions for the GSN process ξ driving the har-

monic LE Ẋt = −γXt + ξt:

1. Dirac Delta: h(t) = δ(t);

2. Exponential decay: h(t) = αe−αt;
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3. Damped oscillator: h(t) =
(
α2 + β2

)
/ (α + β) e−αt (sin βt+ cos βt);

4. Sigmoid: h(t) = eαt/ (1+ eαt).

The first function is used as a control, as the resulting position process X is the GenOU process

which is Markovian and widely analyzed. The second and third functions are respectively classified

as first and second hierarchy and right-tailed impulse functions, as detailed in Section 2.5. The first

candidate is a left-tailed non-integrable impulse function. The numerical solution of PDF derived

by the IFT of the CF of X as given in Equation (2.6.5) is plotted against the simulations obtained by

Monte Carlo in Figure 2.13 and Figure 2.14 in logarithmic scale. The results indicate some inter-
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Figure 2.13: Plots of the PDF of Xt at t = 5. Sca er plots are simula ons obtained by Monte Carlo method with 7,000
itera ons and the resul ng histogram is split into 23 equal bins. Lines are results obtained numerically via IFT of the
CF with Dirac Delta (Delta) (where X becomes the GenOU process), exponen ally decaying (ExpD), damped oscillatory
(DampOsc) and Sigmoid impulse func ons. We used α = 2, β = 5, λ = 10,Ai ∼ N (0, λ−1) and γ = 1 for
calcula ng the PDF’s.
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Figure 2.14: Plots of the log-scale PDF of Xt at t = 5. Sca er plots are simula ons obtained by Monte Carlo method
with 7,000 itera ons and the resul ng histogram is split into 23 equal bins. Lines are analy c results obtained numeri-
cally via IFT of the CF with Dirac Delta (Delta) (where X becomes the GenOU process), exponen ally decaying (ExpD),
damped oscillatory (DampOsc) and Sigmoid impulse func ons. We used α = 2, β = 5, λ = 10,Ai ∼ N (0, λ−1)
and γ = 1 for calcula ng the PDF’s.
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esting behaviors of the position process X. First and foremost, the rate of diffusion varies greatly for

different impulse functions and their coefficients. We observe that the GenOU has faster diffusion

than both ExpD and DampOsc cases; however, the Sigmoid function greatly took over the diffusion

rate, where we observe a larger sample space of probabilities.

Although the diffusion rates can be compromised between the ExpD, DampOsc and GenOU

cases by perturbing their coefficients, it is evident that the left-tailed impulse functions have a higher

span of diffusion.

We can further witness this diffusive behavior by taking a look at their Mean Squared Displace-

ments (MSD). TheMSD of a s.p. X is simply given by its autocovariance in Equation (2.6.4):

MSD(t) =
〈
X2
t
〉
= 〈Xt1Xt2〉 |t1=t2=t

= λ
〈
A2
1
〉
e−2γt

∫ t

0
dτ
(∫ t

τ
ds h(s− τ)eγs

)2 (2.6.7)

By computing its MSD, a s.p. X is said to be:

• sub-diffusive ifMSD(t) ∝ ta for 0 < a < 1.

• diffusive ifMSD(t) ∝ t

• superdiffusive ifMSD(t) ∝ ta for a > 1.

The GenOU process is widely known to be sub-diffusive; this can be easily verified by its autocovari-

ance in Equation (1.4.4) (also subsequently in Equation (2.4.4)). Again using the GenOU process

as control, we observe that the resulting MSD’s of X driven by colored noise show an interchange

between different diffusive behaviors. The position process X under ExpD and DampOsc impulse

functions start off as super-diffusive, but later switch to sub-diffusion. On the other hand, the po-

sition process X under Sigmoid impulse function starts off as super-diffusive, then later switches
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to normal diffusion. This change of behaviors can be visualized in Figure 2.15, where we split the

figure into 2 plots to better see the change in diffusion behavior.
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Figure 2.15: Logarithmic plot of the MSD simula ons of the posi on process X as the solu on of Ẋt = −γXt + ξt,
where ξ is the GSN process with Dirac Delta (Delta) (where X becomes the GenOU process), exponen ally decaying
(ExpD), damped oscillatory (DampOsc) and Sigmoid impulse func ons. The black curves in the bo om plot are analy c
solu ons of the MSD’s via Equa on (2.6.4) that fit the simula ons. We used α = 2, β = 5, λ = 10,Ai ∼ N (0, λ−1)
and γ = 1 for the simula ons.
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2.7 Chapter Review

In this chapter, we have defined the GSN process in detail, where we focused on how the impulse

function generates memory per se and yields either white or colored noise processes. We also estab-

lished that different candidate functions cause a wide range of interesting behaviors, such as the

change in diffusion behavior for the position process X

We note that due to the non-linear nature governing the LE, any potentialV other than the har-

monic potential is next to impossible to solve via this CFal correspondence approach. The linear

correspondence between X and ξ is necessary to obtain the CFal of X (henceV has to be quadratic),

from which the PDF can be extracted via IFT. Higher-orderV’s are currently impossible to solve

analytically; in order to find the CFal of X under, say, double-well potential (henceV is a polynomial

of order 4), one first has to analytically solve Abel’s equation of the first kind to find the CFal rela-

tionship. Although there are extensive attempts to solve Abel’s equation of the first kind (cf.98), this

is still one of the most prominent open questions in mathematics.

However, there are some other intricate methods to find the PDF of the position process X: via

the Master Equation or the Path Integral approach.

Particularly in the next chapter, we would like to point out one of our most important outcomes,

where we will use two methods to find the Master Equation of the LE. The first outcome will be the

somewhat standardized method to findMaster Equations, the Ito’s approach68. The second one

will be the non-Markovian way to findMaster Equations provided by Hanggi74.
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What is mathematics? It is only a systematic effort of

solving puzzles posed by nature.

Shakuntala Devi

3
Further Results on the GSN process

This chapter of our thesis will consist of our new findings on the GSN process, where we will

use the definitions and properties mentioned in the previous chapters of our thesis to establish the

recursive nature of the GSN process with respect to its time derivative, which is colored depending

on the nature of h as outlined in Section 2.5. This property of the GSN process will be a very useful

tool to find the optimal path and action of the position processes.
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Next, we will derive the time evolution equation (aka Master Equation (ME)) of the position

process X driven via the LE entailed in Equation (0.0.2). As defined in our Chapter 1 of our thesis,

the Master Equation is another useful method of finding the PDF of X,the other being the CFal

method as detailed in Chapter 2.

We will then end this chapter by deriving the asymptotic and limiting distributions of the GSN

process and show that under certain conditions, the GSN process converges to either white noise

processes, non-Markovian Gaussian processes, or general Markov processes. This convergence to a

wide array of classes of stochastic processes shows the fundamental and relaxed properties and vast

potential applications of the GSN process.

3.1 Time Derivative andHierarchical Nature of the GSN Process

Recall from Equation (0.0.2) that we have trying to solve the following dynamical system:

dXt

dt
=− V ′(Xt) + ξt,

ξt :=
Nt∑
i=1

Aih(t− Ti),

(3.1.1)

with potentialV and impulse function h. Depending on the class of impulse functions, the GSN

process ξ exhibits a mixture of continuous and discontinuous processes.

We will aim to show this using the time derivative of ξt i. In general sense, the time derivative of ξ

iAlthough the time derivative of stochastic processes is not well-defined62, we will instead outline it using
Itō’s framework, where for any s.p. Xwhere X0 = 0 a.s., one can write the following integral representation
of its time derivative:

Xt =

∫ t

0
dXτ =

∫ t

0
dτ

dXτ

dτ
=

∫ t

0
dτ Ẋτ (3.1.2)
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forms another s.p. ξ̇, where each of its realizations ξ̇t is defined by:

ξ̇t := lim
s→0

1
s
(
ξt+s − ξt

)
. (3.1.3)

By the P-additivity of the Poisson process, we can indeed find the sole form solution as follows:

ξ̇t =
dξt
dt

= lim
s→0

Nt−∑
i=1

Ai
h(t+ s− Ti)− h(t− Ti)

s
+

1
s

Nt+s∑
i=Nt−+1

Aih(t+ s− Ti)


=

Nt−∑
i=1

Aiḣ (t− Ti) + lim
s→0

1
s

Nt+s−Nt−∑
i=1

Ai+Nt−
h
(
t+ s− Ti+Nt−

)
=

Nt−∑
i=1

Aiḣ (t− Ti) + ANt−
h
(
t− TNt−

) dNt

dt

=

Nt−∑
i=1

Aiḣ (t− Ti) + ANt−
h (0)

dNt

dt
,

(3.1.4)

as in the last step, since {Ti} are arrival times, which are ordered collection of random variables, we

have that t = TNt almost surely. This results in h (t− TNt) = h(0) almost surely.

We can also rewrite ξ̇t in SDE form by multiplying both sides by dt,

dξt =
Nt−∑
i=1

Aiḣ(t− Ti) dt+ ANt−
h (0) dNt. (3.1.5)

If h is not differentiable, then the SDE of ξwill instead be of the following form:

dξt =
Nt−∑
i=1

Ai dh(t− Ti) + ANt−
h (0) dNt. (3.1.6)

The differentiability of h plays a key role in defining the jump size of ξt. For general kernel function
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hwith discontinuities, the jump size is defined by:

Δξt =
Nt−∑
i=1

AiΔh(t− Ti) + ANt−
h (0)ΔNt. (3.1.7)

Notice that the summation term containing Δh vanishes if h is differentiable, yielding Δξt =

ANt−
h (0)ΔNt, the jump size of the Compound Poisson process as in Definition 1.2.2 multiplied

by h(0).

Therefore, we can draw two conclusions on the behavior of ξt: if h is differentiable at least once,

then

1. The SDE governing ξt as in (3.1.5) will have a purely continuous drift term, and a càdlàg ii

jump term;

2. The jump size of the GSN process Δξt depends only on the [Markovian] Compound Pois-

son jump size ANt−
ΔNt and is independent from the path of ξt.

Throughout this thesis, we will assume that the impulse function h is differentiable, or in its broad-

est term, its distributional derivative exists iii.

Notice further that the SDE of ξt in Equation (3.1.5) can be categorized into two main processes,

a dependent GSN process, (1)ξ, and an independent Compound Poisson process Y:

dξt =
Nt−∑
i=1

Aiḣ(t− Ti)︸ ︷︷ ︸
(1)ξt

dt+ h (0)ANt−
dNt︸ ︷︷ ︸

dYt

. (3.1.8)

iiRecalling from Chapter 1, a càdlàg process is a stochastic process where right-limits are continuous and
left limits are discontinuous (fr. continue à droite, limites à gauche). Refer to Figure 1.1 for visualization.

iiiA simple example is the Dirac delta function, which is the distributional derivative of the Heaviside step
function,

dΘ(x)
dx

= δ(x).

More mathematical rigour on calculus for distributions can be inferred from63.
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Now, one can iterate the differentiation steps in Equation (3.1.4) to get the SDE for (1)ξt:

d(1)ξt =
Nt−∑
i=1

Ai dḣ(t− Ti) + ANt−
ḣ (0) dNt. (3.1.9)

If h is twice differentiable, then we get dḣ(t− Ti) = ḧ(t− Ti) dt. Interestingly, for the SDE of (1)ξt

we get another GSN process, (2)ξ and the same Compound Poisson process Y:

d(1)ξt =
Nt−∑
i=1

Aiḧ(t− Ti)︸ ︷︷ ︸
(2)ξt

dt+ ḣ (0)ANt−
dNt︸ ︷︷ ︸

dYt

. (3.1.10)

Therefore, rewriting the original GSN process ξ = (0)ξ for easier writing, given a smooth impulse

function h overR, we get a infinite order hierarchical system of SDE’s for the GSN process ξ:

d(0)ξt =
(1)ξt dt+ h (0) dYt

d(1)ξt =
(2)ξt dt+ ḣ (0) dYt

d(2)ξt =
(3)ξt dt+ ḧ (0) dYt
...

d(n−1)ξt =
(n)ξt dt+ h(n−1) (0) dYt,
...

(3.1.11)

where each GSN process (n)ξ is defined by the following realization:

(n)ξt =
Nt∑
i=1

Aih(n)(t− Ti). (3.1.12)

Notice that given a general LE for X, Ẋt = −V ′(Xt) + ξt, where ξt is defined by the hierarchy in
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Equation (3.1.11) (in LE form) with smooth function h:

Ẋt = − V ′(Xt) +
(0)ξ̇t

(0)ξ̇t =
(1)ξt + h (0) Ẏt

(1)ξ̇t =
(2)ξt + ḣ (0) Ẏt

(2)ξ̇t =
(3)ξt + ḧ (0) Ẏt
...

(n−1)ξ̇t =
(n)ξt + h(n−1) (0) Ẏt,
...

(3.1.13)

the joint tuple
(
X, (0)ξ̇, (1)ξ, (2)ξ, . . . , (n)ξ, . . .

)
forms an infinite dimensional Markov process.

This means that if we define an infinite dimensional stochastic process Z⃗with realization Z⃗t =(
Xt,

(0)ξ̇t, (1)ξt, (2)ξt, . . . , (n)ξt, . . .
)
, then, by extension of Theorem 1.3.1, Z⃗ is a Markov process

if and only if its realization is a solution of the Langevin Equation ˙⃗Zt = F⃗
(
Z⃗t

)
+

˙⃗Yt, where F⃗

is an infinite dimensional smooth function and ˙⃗Yt is an infinite dimensional vector of white noise

processes.

One can write the LE in Equation (3.1.13) in matrix form by defining infinite dimensional vec-

tors Ξ⃗t =
(
(0)ξt, (1)ξt, (2)ξt, . . . , (n−1)ξt, . . .

)⊤ and η⃗ =
(
h(0), ḣ(0), ḧ(0), . . . , h(n−1)(0), . . .

)⊤
.

Then, the LE can be rewritten as follows,

Ẋt = −V ′(Xt) +
(0)ξ̇t

˙⃗Ξt = AΞ⃗t + η⃗L̇t,

(3.1.14)
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whereA, the coefficient matrix, is an infinite dimensional matrix given by:

A =



0 1 0 0 . . . 0 0 . . .

0 0 1 0 . . . 0 0 . . .

0 0 0 1 . . . 0 0 . . .

...
...

...
... . . . ...

... . . .

0 0 0 0 . . . 1 0 . . .

0 0 0 0 . . . 0 1 . . .

...
...

...
... . . . ...

... . . .



. (3.1.15)

Furthermore, we can define the vectors Z⃗t :=
(
Xt, Ξ⃗t

)⊤
and Y⃗t := (0, η⃗)⊤ Yt. Then, given an

infinite dimensional function F⃗:

F⃗ : R∞ → R∞, (3.1.16)

we can define F⃗
(
Z⃗t

)
:=
(
−V ′(Xt) + ξt,AΞ⃗t

)⊤
and rewrite the LE in vector form Z⃗ as follows:

˙⃗Zt = F⃗
(
Z⃗t

)
+

˙⃗Yt, (3.1.17)

where ˙⃗Y is now the PWN process multiplied by coefficient vector η⃗. Therefore, by Theorem 1.3.1,

Equation (3.1.17) is an infinite dimensional Markov process with Markovian tuple Z =
(
X, ξ, (1)ξ, . . . , (n)ξ, . . .

)
.

One way of reducing the dimension of the Markovian tuple is by specifically defining the im-

pulse function h. Recall in to our classification in Section 2.5 that given an n−th hierarchy impulse

function h as the solution of the linear IVP:

n∑
i=0

cih(i) (t) = 0, h(i) (0) = ai (3.1.18)
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where ci, ai ∈ R are constant coefficients. Then, rewriting the largest order of h independently,

we get that h(n)(t) =
(∑n−1

i=0 cih(i)(t)
)
/cn. For simpler writing, we can assume without loss of

generality that cn = −1. Therefore, one can rewrite the realization of (n)ξ as follows:

(n)ξt =
Nt∑
i=1

Aih(n) (t− Ti) =

Nt∑
i=1

Ai

n−1∑
j=0

cjh(j) (t− Ti)

=
n−1∑
j=0

cj
Nt∑
i=1

Aih(j) (t− Ti)

=
n−1∑
j=0

cj · (j)ξt.

(3.1.19)

Therefore, the hierarchical SDE of ξwill be reduced to a finite order:

d(0)ξt =
(1)ξt dt+ h (0) dYt

d(1)ξt =
(2)ξt dt+ ḣ (0) dYt

d(2)ξt =
(3)ξt dt+ ḧ (0) dYt
...

d(n−1)ξt =

n−1∑
j=0

cj · (j)ξt

 dt+ h(n−1) (0) dYt.

(3.1.20)

In this case, the LE can be rewritten as follows,

Ẋt = −V ′(Xt) +
(0)ξ̇t

˙⃗Ξt = AΞ⃗t + η⃗L̇t,

(3.1.21)
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where the coefficient matrixA is now of size n× n:

A =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 1

c0 c1 c2 c3 . . . cn−2 cn−1



. (3.1.22)

Lastly, given the multivariable function F⃗ : Rn+1 → Rn+1, we can define F⃗
(
Z⃗t

)
:=
(
−V ′(Xt) +

(0)ξt,AΞ⃗t

)⊤
as before and rewrite the LE in (n+ 1)−dimensional vector form Z⃗ as follows:

˙⃗Zt = F⃗
(
Z⃗t

)
+

˙⃗Yt, (3.1.23)

Thus, if the GSN ξ has n−hierarchy impulse function, then the resulting Markovian tuple
(
X, (0)ξ, (1)ξ, . . . , (n−1)ξ

)
becomes an (n+ 1)−dimensional Markov process.

3.1.1 Examples of Impulse Functions onHierarchy Reduction

Now, we give some examples of n-th hierarchical impulse functions and observe how the rank re-

duces in the Markovian tuple.

The first and trivial candidate of impulse functions is the exponential decay, h(x) = α−αx. Recall

that h is the solution of the IVP ḣ(t) = −αh(t), h(0) = α. Therefore, the LE for the Markovian
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tuple Z⃗ is simply given by the following:

Ẋt = −V ′(Xt) + ξt

ξ̇t = −αξt dt+ αL̇t,

(3.1.24)

where we have the scalar reductionA = η⃗ = α. Due to its simplicity and numerical efficacy, this

type of GSN process has been widely analyzed in literature, such as in finding the closed-formME

of X74 as well as calculating its optimal escape probabilities under Gaussian Limits87 97.

Another example that one can give is the damped oscillating impulse function,

h(t) =
α2 + β2

α + β
e−αt (sin βt+ cos βt) , (3.1.25)

which is the solution of the IVP

ḧ(t)− 2αḣ(t) +
(
α2 + β2

)
h(t) = 0, h(0) = 1, ḣ(0) = β− α. (3.1.26)

In this instance, the LE for Z⃗ is given by the following:

Ẋt = −V ′(Xt) + ξt

ξ̇t =
(1)ξt + L̇t

(1)ξ̇t = 2α (1)ξt −
(
α2 + β2

)
ξt + (β− α) L̇t,

(3.1.27)

where we obtain the coefficient vector η⃗ = (1, β− α)⊤ and the 2× 2 coefficient matrixA as

A =

 0 1

−(α2 + β2) 2α

 . (3.1.28)
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3.2 Master Equation of the GSN Process

In this section, we propose two methods of finding the ME of the GSN process ξ and the position

process X driven by the LE in Equation (0.0.2). The first method is by standard Itō’s approach,

where it is widely used in finding time evolution equations for Markovian processes68. We show

here that due to the non-Markovian nature of ξ, one cannot simply find the ME for the PDF of X,

where instead a joint distribution has to be derived via Multivariate Itō’s Lemma as we discussed in

Lemma 1.5.3.

Next, we showHänggi’s method which, by using the CFal approach, relaxes the Markov assump-

tion in solving the ME.

3.2.1 Finding theMaster Equation via Itō’s Approach

Recalling the generalized Itō’s lemma in Lemma 1.5.2, given a smooth function f : R → R, the

SDE of f(Xt) driven by the LE in differential form dXt = −V ′(Xt) + ξt dt is given by:

df− Δf = f ′ (Xt−) dXt +
1
2
f ′′ (Xt−) (dXt)

2 − f ′ (Xt−)ΔXt −
1
2
f ′′ (Xt−) (ΔXt)

2

=⇒ df = f ′ (Xt)
(
−V ′(Xt) + ξt

)
dt+

1
2
f ′′ (Xt)

((
−V ′(Xt) + ξt

)
dt
)2

= f ′ (Xt)
(
−V ′(Xt) + ξt

)
dt,

(3.2.1)

where since X is continuous in time, the jump terms Δf and ΔXt vanish, and we have that (dt)2 =

0. Denoting the PDF of X by PX, if we attempt to find the infinitesimal generatorA∗ as in Equation

(1.5.6) we get the following:

d
dt

〈f〉 = −
〈
f ′ (Xt)V ′(Xt)

〉
+
〈
f ′ (Xt) ξt

〉
. (3.2.2)
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Unlike the white noise case as in Equation (1.5.8), the colored nature of ξ indicates that the real-

izations Xt and ξt are not necessarily independent for any given t, i.e. 〈f ′ (Xt) ξt〉 6= 〈f ′ (Xt)〉 〈ξt〉.

Therefore, one has to find the joint PDF of the tuple (X, ξ).

This time, let the function f : R × R → R be a smooth bivariate function. Then, assuming

the impulse function h to be differentiable at least once, we obtain the SDE for f(Xt, ξt) by applying

generalized multivariate Itō’s lemma as in Lemma 1.5.3:

df− Δf

=
∂f
∂x

dXt +
∂f
∂y

dξt +
1
2

(
∂2f
∂y2

(dXt)
2 +

∂2f
∂x∂y

dXt dξt +
∂2f
∂y2

(dξt)
2
)

− ∂f
∂x

ΔXt −
∂f
∂y

Δξt −
1
2

(
∂2f
∂x2

(ΔXt)
2 +

∂2f
∂x∂y

ΔXtΔξt +
∂2f
∂y2

(Δξt)
2
)

=
∂f
∂x
(
−V ′(Xt) + ξt

)
dt+

∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti) dt+ ANth(0) dNt

+
1
2
∂2f
∂y2

A2
Nth(0)

2 dNt

− ∂f
∂y

ANth(0)ΔNt −
1
2
A2
Nth(0)

2ΔNt

=

 ∂f
∂x
(
−V ′(Xt) + ξt

)
+

∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

 dt+
[
∂f
∂y

ANth(0) +
1
2
∂2f
∂y2

A2
Nth(0)

2
]
ΔNt,

(3.2.3)

where we reduced in last step the fact thatN is a purely discontinuous process so dNt = 0 almost

surely. We can retrieve the ME for the tuple (X, ξ) by applying the infinitesimal generator approach:

d
dt

〈f〉 =

〈
∂f
∂x
(
−V ′(Xt) + ξt

)
+

∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉

+ 〈Δf〉+
〈
∂f
∂y

ANth(0) +
1
2
∂2f
∂y2

A2
Nth(0)

2
〉
〈ΔNt〉 .

(3.2.4)
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Notice first that that due to Poissonian nature of ξ, we have that Δf (Xt, ξt) 6= 0. In fact, one can

further analyze this jump size by taking its Taylor expansion:

f(x, y) =
∞∑

m=0

∞∑
n=0

xmyn

m!n!
∂m+nf
∂mx∂ny

=⇒ Δf(Xt, ξt) =
∞∑

m=0

∞∑
n=1

Xm
t Δ (ξnt )
m!n!

∂m+nf
∂mx∂ny

(Xt, ξt−) ,
(3.2.5)

where we can further expand the jump term Δ (ξnt ) as follows:

Δ (ξnt ) = Δξt
n−1∑
i=0

ξitξ
n−1−i
t− = Δξt

n−1∑
i=0

(ξt− + Δξt)
i ξn−1−i

t− = Δξt
n−1∑
i=0

i∑
j=0

(
i
j

)
ξjt− (Δξt)

i−j ξn−1−i
t−

=

n−1∑
i=0

i∑
j=0

(
i
j

)
ξn−1−i+j
t− (Δξt)

i−j+1 .

(3.2.6)

Therefore,

〈Δf〉 =
∞∑

m=0

∞∑
n=1

n−1∑
i=0

i∑
j=0

(
i
j

)
1

m!n!

〈
(Δξt)

i−j+1
〉〈

Xm
t ξ

n−1−i+j
t

∂m+nf
∂mx∂ny

〉

=

∞∑
m=0

∞∑
n=1

n−1∑
i=0

i∑
j=0

(
i
j

)
1

m!n!

〈
Ai−j+1
Nt

〉
hi−j+1(0)

〈
Xm
t ξ

n−1−i+j
t

∂m+nf
∂mx∂ny

〉
〈ΔNt〉 .

(3.2.7)
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By denoting the joint PDF of (X, ξ) by P, we obtain the followingME:

∫∫
dx dy

∂P
∂t

f(x, y)

=

∫∫
dx dy

{
∂

∂x
[(
V ′(x)− y)

)
P
]
− λ 〈A1〉 h(0)

∂P
∂y

+
1
2
λ
〈
A2
1
〉
h(0)2

∂2P
∂y2

+ λ
∞∑

m=0

∞∑
n=1

n−1∑
i=0

i∑
j=0

(
i
j

)
(−1)m+n

m!n!

〈
Ai−j+1
1

〉
hi−j+1(0)

∂m+n

∂xm∂yn
[
xmyn−1−i+jP

]}
f(x, y)

+

〈
∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉
.

(3.2.8)

Notice that the ME is almost complete except the last expectation, where it contains the first hierar-

chy of the GSN process, (1)ξ as in Equation (3.1.11). Therefore, similar to our assertion in the begin-

ning on this chapter, one now needs to find the joint PDF of the tuple
(
X, ξ, (1)ξ

)
. Using the trivari-

ate Itō’s lemma in Lemma 1.5.3 and finding the infinitesimal generator of this system, we would

then end up with the expectation containing the second hierarchy of the GSN process, (2)ξ. This

induction coincides with our results in the beginning of this chapter, where due to the hierarchical

nature of ξ, one needs to find the joint PDF of the infinite tuple
(
X, ξ, (1)ξ, (2)ξ, . . . , (n)ξ, . . .

)
.

As expected, if we choose the exponential decay impulse function h(x) = αe−αx, then the last

expectation would simplify to the following:

〈
∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉
= −α

〈
∂f
∂y

Nt∑
i=1

Aih(t− Ti)

〉
= −α

〈
∂f
∂y

ξt

〉
, (3.2.9)

which can be inserted back into Equation (3.2.8) and complete the ME of the Markovian tuple
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(X, ξ) under exponentially decaying impulse function:

∂P
∂t

=
∂

∂x
[(
V ′(x)− y)

)
P
]
+ α

∂

∂y
[y P]− λ 〈A1〉 h(0)

∂P
∂y

+
1
2
λ
〈
A2
1
〉
h(0)2

∂2P
∂y2

+ λ
∞∑

m=0

∞∑
n=1

n−1∑
i=0

i∑
j=0

(
i
j

)
(−1)m+n

m!n!

〈
Ai−j+1
1

〉
hi−j+1(0)

∂m+n

∂xm∂yn
[
xmyn−1−i+jP

]
.

(3.2.10)

We will go through this in detail in the following section. For now, we next apply Gaussian Lim-

its to our ME to retrieve the FPE as we introduced in Chapter 1.

3.2.2 Obtaining the Fokker-Planck Equation under Gaussian Limits

Notice that under the Gaussian Limits the summation terms in the incomplete ME in Equation

(3.2.8) will be reduced to cases for n = 2, i = 1 and j = 0, in which case we obtain the following:

∫∫
dx dy

∂P
∂t

f(x, y) =
∫∫

dx dy

{
∂

∂x
[(
V ′(x)− y)

)
P
]
+

σ2

2
h(0)2

∂2P
∂y2

+
σ2

2
h(0)2

∂2

∂y2

[ ∞∑
m=0

1
m!

(
− ∂

∂x

)m
[xmP]

]}
f(x, y)

+ lim
GL

〈
∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉
,

(3.2.11)

where the limit term limGL refers to the Gaussian Limits. Notice also that the summation term in

Equation (3.2.11) converges to the PDF P. We will prove this in the following theorem:

Theorem 3.2.1. Given any smooth function f onR× [0,∞[, the following condition always holds:

∞∑
m=0

1
m!

(
− ∂

∂x

)m
[xm · f(x, t)] = f(x, t). (3.2.12)
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Proof. Applying higher-order chain rule to the summation yields the following:

∞∑
m=0

1
m!

(
− ∂

∂x

)m
[xm · f(x, t)] =

∞∑
m=0

(−1)m

m!

m∑
k=0

(
m
k

)
∂m−k

∂xm−k x
m · ∂

kf(x, t)
∂xk

=

∞∑
m=0

(−1)m

m!

m∑
k=0

(
m
k

)
(k+ 1)m−k xk

∂kf(x, t)
∂xk

,

(3.2.13)

where (k + 1)m−k is the rising factorial (aka Pochhammer symbol), which is equivalent tom!/k!.

Substituting this back into the equation and writing the partial differential separately yields the

following:

∞∑
m=0

(−1)m

m!

m∑
k=0

(
m
k

)
(k+ 1)m−k xk

∂kf(x, t)
∂xk

= f(x, t)
∞∑

m=0
(−1)m

m∑
k=0

(
m
k

)
1
k!

(
x
∂

∂x

)k

= f(x, t)
∞∑

m=0
(−1)m · 1F1

(
−m; 1;−x

∂

∂x

)
,

(3.2.14)

where now the function 1F1 is the confluent hypergeometric function (CHF) that is derived from

the inner summation96. The CHF 1F1(a; b; c) is defined as the solution w of the following ODE:

c
d2w
dc2

+ (b− c)
dw
dc

− aw = 0. (3.2.15)

Notice that as c = −x ∂
∂x , which is algebraically independent of w, the only solution of the above

ODE is when w = 0. Therefore, we have that 1F1(−m; 1; ,−x ∂
∂x) = 0 and hence the series con-
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verges:

f(x, t)
∞∑

m=0
(−1)m · 1F1

(
−m; 1;−x

∂

∂x

)
= f(x, t)

∞∑
m=0

(−1)m · 0 ≡ f(x, t) lim
B→∞

∞∑
m=0

(
−1
B

)m

= f(x, t) lim
B→∞

B
B+ 1

= f(x, t),

(3.2.16)

which completes our proof.

Thus, we can rewrite our incomplete FPE for non-Markovian yet Gaussian s.p. X as follows:

∫∫
dx dy

∂P
∂t

f(x, y) =
∫∫

dx dy
{

∂

∂x
[(
V ′(x)− y)

)
P
]
+ σ2h(0)2

∂2P
∂y2

}
f(x, y)

+ lim
GL

〈
∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉
.

(3.2.17)

As we established in non-Gaussian regime, we can simplify the FPE even further by introducing

the exponential decay impulse function, h(x) = αe−αx. Hence,

lim
GL

〈
∂f
∂y

Nt−∑
i=1

Aiḣ(t− Ti)

〉
=

〈
−α

∂f
∂y

ξt

〉
= α

∫∫
dx dy

∂

∂y
[yP] . (3.2.18)

Thus we can retrieve the complete FPE for (X, ξ) that is commonly known as the Klein–Kramers
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equation125:

∫∫
dx dy

∂P
∂t

f(x, y) =
∫∫

dx dy
{

∂

∂x
[(
V ′(x)− y

)
P
]
+ α

∂

∂y
[yP] + σ2h(0)2

∂2P
∂y2

}
f(x, y)

=⇒ ∂P
∂t

=
∂

∂x
[(
V ′(x)− y

)
P
]
+ α

∂

∂y
[yP] + σ2α2

∂2P
∂y2

.

(3.2.19)

We would like to iterate from Chapter 1 that under the Gaussian Limits and exponential decay

impulse function h, the LE is given by the following:

Ẋt = −V ′(Xt) + ξt

ξ̇t = −αξt + αẆt,

(3.2.20)

where Ẇt forms the GWN process, and hence ξ is the OU process as in Equation (1.4.2). The

FPE of such system where the non-Markovian position process X is driven by the Markovian OU

noise process ξ is commonly known as the Kramer’s equation56, where the FPE can be solved by

separation of variables followed by inverse Laplace transform58. Once the joint PDF is found, the

marginal PDF of the position process X, pX, can be retrieved by integrating P over the sample space

of ξ, i.e. pX(x, t) =
∫∞
−∞ dy P(x, y, t).

Thus, we have shown that Itō’s approach plays an important role in finding the ME of the po-

sition process X. However, this method only works in Markovian realm. Due to the hierarchical

nature of the GSN process ξ, the ME can be computed for an infinite tuple of X and the hierarchies

of ξ unless we choose an n−hierarchical impulse function h that reduces to the size of the tuple to

n+ 1.

Next, we analyze another method of finding the ME of X in the non-Markovian realm by finding

the path integral of X. Although we will in detail explain it, we expect the reader in the following
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section to have basic knowledge of calculus of variations iv.

3.2.3 Finding theMaster Equation via Path Integral Approach

We have shown in previous section in detail that Itō’s approach yields the ME for infinite order

Markovian tuple
(
X, ξ, (1)ξ, (2)ξ, . . . , (n)ξ, . . .

)
, unless we assume some properties for the impulse

function h. Here, we show that the path integral approach works in the non-Markovian regime,

where one can find the ME solely for X regardless of the behaviour of the impulse function. In de-

tail, using the CFal’s of both X and ξ as we have derived in Chapter 2, we find the ME of X using the

Kramers-Moyal expansion method conducted by Hänggi74.

Given the s.p. Xwith pdf p(x, t), its general ME is given by

∂p
∂t

=
∞∑
n=1

(−1)n

n!
∂n

∂xn
[αn(x)p(x, t)] , (3.2.21)

where

αn(x) =
∫
R
(x′ − x)nP(x′|x) dx′ (3.2.22)

are the cumulants and P(x′|x) is the transition probability.

Hänggi’s important proposition is to rewrite the CFal of a s.p. X

ΦX[g] =
〈
exp

[
i
∫

ds g(s)Xs

]〉
(3.2.23)

using the functional Taylor Expansion,

ΦX[g] =
∞∑
n=0

in

n!

∫ n∏
i=1

dti g(ti)

〈 n∏
i=1

Xti

〉
, (3.2.24)

ivWhere need be, the reader is encouraged to read 21 for detailed explanation.
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where by definition 〈 n∏
i=1

Xti

〉
= i−n δn

n∏
i=1

δg(ti)
ΦX[g]

∣∣
g=0. (3.2.25)

One can also apply the functional Taylor expansion in terms of the cumulant generating functional

(CGFal) ΨX[g] ≡ lnΦX[g]:

Ψ[g] =
∞∑
n=1

in

n!

∫ n∏
i=1

dti g(ti)K(t1, ..., tn), (3.2.26)

whereK is the cumulant function:

K(t1, ..., tn) = i−n δn
n∏
i=1

δg(ti)
ΨX[g]

∣∣
g=0. (3.2.27)

Furthermore, Hänggi also looked at the general correlation function of the form 〈XtG[X]〉, whereG

is an arbitrary functional. Defining another functional Σt as:

Σt[g] ≡
1

ig(t)
∂

∂t
ΨX;t[g], (3.2.28)

where ΨX;t is the “trimmed” CGFal,

ΨX;t[g] = lnΦX;t[g] = ln

〈
exp

[
i
∫ t

0
ds g(s)Xs

]〉
, (3.2.29)

Hänngi found that the general correlation function can be defined as follows:

〈XtG[X]〉 =
〈
Σt

[
δ
iδX

]
G[X]

〉
. (3.2.30)
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The next proposal of Hänngi is to find the ME of a LE of the following:

Ẋt = α(t)Xt + β(Xt, t)
∫ t

0
ds γ(t, s)Xs + b(Xt, t) Zt, (3.2.31)

where Zt forms another s.p. Z = (Zt)t≥0 that need not be independent of X.

Defining the pdf of X by p(x, t), one can rewrite the pdf in terms of the average of the Dirac delta

function:

p(x, t) = 〈δ(Xt − x)〉 . (3.2.32)

Thus, taking the time derivative of the p yields the following:

∂

∂t
p(x, t) =

∂

∂t
〈δ (Xt − x)〉 =

〈
Ẋtδ′ (Xt − x)

〉
=

〈(
α(t)Xt + β(Xt, t) ·

∫ t

0
ds γ(t, s)Xs + b(Xt, t)Zt

)
δ′ (Xt − x)

〉
=
〈
α(t)Xtδ′ (Xt − x)

〉
+

〈
β(Xt, t)

∫ t

0
ds γ(t, s)Xsδ′ (Xt − x)

〉
+
〈
b(Xt, t)Ztδ′ (Xt − x)

〉
,

(3.2.33)

where, using the identities−xδ′(x) = δ(x), δ(−x) = δ(x) and δ′(−x) = −δ′(x), we get the

following expectations,

〈
α(t)Xtδ′ (Xt − x)

〉
=
〈
α(t)(Xt − z)δ′ (Xt − x) + α(t)xδ′ (Xt − x)

〉
=− α(t)

〈
δ(x− Xt) + xδ′(x− Xt)

〉
=− α(t)

〈
∂

∂x
(xδ (x− Xt))

〉
=− α(t)

∂

∂x
(x p(x, t)),

(3.2.34)
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〈
β(Xt, t)

∫ t

0
ds γ(t, s)Xsδ′ (Xt − x)

〉
=

〈
(β(Xt, t)− β(x, t))

∫ t

0
ds γ(t, s)Xsδ′ (Xt − x)

〉
+

〈
β(x, t)

∫ t

0
ds γ(t, s)Xsδ′ (Xt − x)

〉
=−

〈
β(Xt, t)− β(x, t)

Xt − x

∫ t

0
ds γ(t, s)Xsδ (Xt − x)

〉
+

〈
β(x, t)

∫ t

0
ds γ(t, s)Xsδ′ (Xt − x)

〉
=−

〈∫ t

0
ds γ(t, s)Xs

(
β(x, t)− β(Xt, t)

x− Xt
δ (x− Xt) + β(x, t)δ′(x− Xt)

)〉
=−

〈∫ t

0
ds γ(t, s)Xs

∂

∂x
(β(x, t)δ (x− Xt)

〉
=− ∂

∂x
β(x, t)

〈∫ t

0
ds γ(t, s)Xsδ (Xt − x)

〉
,

(3.2.35)

and similarly,

〈
b(Xt, t)Ztδ′ (Xt − x)

〉
= − ∂

∂x
b(x, t) 〈Ztδ (Xt − x)〉 . (3.2.36)

Furthermore, as Z can be dependent to X, we can rewrite the last expectation as

〈
b(Xt, t)Ztδ′ (Xt − x)

〉
= − ∂

∂x
b(x, t) 〈Ztδ(Xt − t)〉 = − ∂

∂x
b(x, t)

〈
Σt

[
δ
iδZ

]
δ (Xt − x)

〉
.

(3.2.37)

Hence, the ME governing the LE in Equation (3.2.31) is given by:

∂

∂t
p(x, t) = −α(t)

∂

∂x
(x p(x, t))− ∂

∂x
β(x, t)

〈∫ t

0
ds γ(t, s)Xsδ (Xt − x)

〉
− ∂

∂x
b(x, t)

〈
Σt

[
δ
iδZ

]
δ (Xt − x)

〉
.

(3.2.38)

Now that we have the foundation for building the non-MarkovianME, let’s focus on applying it
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to X driven by our LE.

3.2.4 Application of the Path Integral Approach to the Langevin Equation

We now apply the path integral approach to the following LE in Equation (0.0.2):

Ẋt = −V ′(Xt) + ξt,

ξt =
Nt∑
i=1

Aih(t− Ti).
(3.2.39)

Denoting the PDF of X by P, we get the following:

∂P
∂t

=
∂

∂t
〈δ(Xt − x)〉 =

〈
Ẋtδ′(Xt − x)

〉
=
〈(
−V ′(Xt) + ξt

)
δ′(Xt − x)

〉
= −

〈(
V ′(Xt)− V ′(x)

)
δ′ (Xt − x) + V ′(x)δ′ (Xt − x)

〉
+
〈
ξtδ

′ (Xt − x)
〉

= −
〈
−V ′′(x)δ (Xt − x) + V ′(x)δ′ (Xt − x)

〉
+
〈
ξtδ

′ (Xt − x)
〉

= − ∂

∂x
〈
V ′(x)δ (Xt − x)

〉
− ∂

∂x
〈ξtδ (Xt − x)〉

=
∂

∂x
[
V ′(x)P(x, t)

]
− ∂

∂x
〈ξtδ(Xt − x)〉 .

(3.2.40)

Notice that one can find the expectation above by plugging it into the general correlation function

in Equation (3.2.30):

〈ξtδ(Xt − x)〉 =
〈
Ωt

[
δ
iδξ

]
δ (Xt − x)

〉
, (3.2.41)

where Ωt is the auxiliary functional defined by

Ωt[g] :=
1
i

δ
δg(t)

lnΦξ;t[g], (3.2.42)
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and Φξ;t is the CFal of ξ in Equation (2.3.7) trimmed at time t:

Φξ;t[g] = exp

[
λ
∫ t

0
dτ
(
ϕA1

(∫ t

τ
ds g(s)h(s− τ)

)
− 1
)]

. (3.2.43)

Notice also that as Ωt is linear, we can directly obtain the following for some time s

δ
δξs

δ (Xt − x) = −
(
δXt

δξs

)
∂

∂x
δ (Xt − x) . (3.2.44)

For any s and t the functional derivative within the parentheses simply equals to one due to the addi-

tive nature of the GSN ξ 61. Therefore, the expectation simplifies to the following:

〈ξtδ (Xt − x)〉 =
〈
Ωt

[
i
∂

∂x

]
δ(Xt − x)

〉
= Ωt

[
i
∂

∂x

]
P(x, t). (3.2.45)

One can also write Ωt as the first functional derivative of the trimmed CFal Φξ;t[g] (which we de-

rived in prior equations leading to Equation (2.3.7)):

Ωt[g] =
λ
i

∫ t

0
dτ h(t− τ)ϕ′A1

(∫ t

τ
ds g(s)h(s− τ)

)
=

λ
i

∫ t

0
dτ h(t− τ)

〈
iA1 exp

[
iA1

∫ t

τ
ds g(s)h(s− τ)

]〉
= λ

∫ t

0
dτ h(t− τ)

〈
A1

∞∑
n=0

An
1

n!

(
i
∫ t

τ
ds g(s)h(s− τ)

)n
〉

= λ
∫ t

0
dτ h(t− τ)

∞∑
n=0

〈
An+1
1
〉

n!

(
i
∫ t

τ
ds g(s)h(s− τ)

)n

=

∞∑
n=0

λ
〈
An+1
1
〉

n!

∫ t

0
dτ h(t− τ)

(
i
∫ t

τ
ds g(s)h(s− τ)

)n

(3.2.46)
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where we used the fact that ϕA1
(θ) =

〈
eiθA1

〉
⇒ ϕ′A1

(θ) =
〈
iA1eiθA1

〉
and we applied Taylor

expansion on the exponent. Hence we have the following equation for the auxiliary functional:

Ωt

[
i
∂

∂x

]
=

∞∑
n=0

λ
〈
An+1
1
〉

n!

∫ t

0
dτ h(t− τ)

(∫ t

τ
ds
(
− ∂

∂x

)
h(s− τ)

)n

=

∞∑
n=0

λ
〈
An+1
1
〉

n!

∫ t

0
dτ h(t− τ)

(∫ t

τ
ds
(
− ∂

∂x

)
h(s− τ)

)n

=
∞∑
n=0

λ
〈
An+1
1
〉

n!

∫ t

0
dτ h(t− τ)

(∫ t

τ
ds h(s− τ)

)n(
− ∂

∂x

)n
.

(3.2.47)

Plugging Equations (3.2.47) and (3.2.45) to Equation (3.2.40) yields the non-MarkovianME that

solely depends on X:

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
− ∂

∂x

[ ∞∑
n=0

λ
〈
An+1
1
〉

n!

∫ t

0
dτ h(t− τ)

(∫ t

τ
ds h(s− τ)

)n(
− ∂

∂x

)n
]
P(x, t).

(3.2.48)

Lastly, one can also apply the Gaussian Limits to get the non-Markovian Fokker-Planck Equation

(FPE) of X:

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
+ σ2

∫ t

0
dτ h(t− τ)

∫ t

τ
ds h(s− τ)

∂2P
∂x2

. (3.2.49)

We note that the resulting FPE’s obtained by the Itō’s approach and path integral approach show

some similarities as well as distinct features. We can observe this by plugging the exponential decay

impulse function h(x) = αe−αx to the non-Markovian FPE for X obtained in Equation (3.2.49) and
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compare it with the Markovian FPE for (X, ξ) in Equation (3.2.19):

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
+ σ2

∫ t

0
dτ h(t− τ)

∫ t

τ
ds h(s− τ)

∂2P
∂x2

=
∂

∂x
[
V ′(x)P(x, t)

]
+ σ2α2

∫ t

0
dτ e−α(t−τ)

∫ t

τ
ds e−α(s−τ)∂

2P
∂x2

=
∂

∂x
[
V ′(x)P(x, t)

]
+ σ2

(
1− e−αt − 1− e−2αt

2

)
∂2P
∂x2

.

(3.2.50)

Furthermore, letting α → ∞ (thereby ξ becomes GWN) yields:

lim
α→∞

(
1− e−αt − 1− e−2αt

2

)
=

1
2
. (3.2.51)

As expected, by choosing harmonic potentialV(x) = γ x2/2 we obtain the FPE for the Ornstein-

Uhlenbeck process that we derived in Equation (1.5.12):

∂P
∂t

= γ
∂

∂x
[xP(x, t)] +

σ2

2
∂2P
∂x2

. (3.2.52)

One may compare the Klein-Kramers Equation of the joint Markovian PDF of (X, ξ), P, in

Equation (3.2.19) with the marginal non-Markovian PDF of X, PX, in Equation (3.2.50) by plug-

ging the marginalization PX(x, t) =
∫
R dy P(x, y, t) into Equation (3.2.19). Once we do so, we can

retrieve the first differential of Equation (3.2.50) containing the term with the potentialV:

∂PX

∂t
=

∂

∂t

∫
R
dy P(x, y, t) =

∫
dy

∂P
∂t

=

∫
R
dy

[
∂

∂x
[(
V ′(x)− y

)
P
]
+ α

∂

∂y
[yP] + σ2α2

∂2P
∂y2

]

=
∂

∂x
[
V ′(x)PX(x, t)

]
+

∫
R
dy

[(
− ∂

∂x
+ α

∂

∂y

)
[yP] + σ2α2

∂2P
∂y2

]
.

(3.2.53)

The second term above containing the integration with respect to dy is not straightforward to solve.
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This is due to the fact that as X and ξ are dependent stochastic processes, their joint PDF P cannot

be written as the product of their marginal PDF’s; therefore, one cannot use traditional methods

such as separation of variables by assuming solution of the form P(x, y, t) = X(x)Y(y)T(t). How-

ever, the generalized form of this approach, called the functional separation of variables, can be used

to integrate the ξ-factor out of the joint PDF P (cf.31 for more information).

In this thesis we instead outline 2 ansatzes that will transform the joint Markovian FPE in Equa-

tion (3.2.19) to the non-Markovian FPE in Equation (3.2.50). If we frist provide the following

ansatz regarding to the relationship between the joint PDF P and marginal PDF PX;

∫
R
dy

∂P
∂y

=

(∫ t

0
dτ e−ατ

)
∂PX

∂x
=⇒

∫
R
dy

∂2P
∂y2

=

(∫ t

0
dτ e−ατ

∫ τ

0
ds e−αs

)
∂2PX

∂x2
,

(3.2.54)

then we can obtain the second order partial derivative of PX as in Equation (3.2.50):

σ2α2
∫
R
dy

∂2P
∂y2

= σ2α2
(∫ t

0
dτ e−ατ

∫ τ

0
ds e−αs

)
∂2PX

∂x2
= σ2

(
1− e−αt − 1− e−2αt

2

)
∂2PX

∂x2
.

(3.2.55)

Notice that we have
∫
R dy ∂P/∂y = [P(x, y, t)]y∈R = C(x, t), where C(x, t) arises due to the partial

integration of Pwith respect to y. Furthermore, this ansatz works for the white noise case. If we let

the impulse function to be the Dirac delta function, h → δ, which holds for α → ∞, then the

PDF relationship in Equation (3.2.54) becomes zero,
∫
dy ∂P/∂y = 0. Moreover, if ξ is a white

noise process, then the processes X and ξwill be independent and we can write the joint PDF P and

sum of the marginal PDF’s of X and ξ, P(x, y, t) = PX(x, t) + Pξ(y, t). Thus, we indeed get that∫
dy ∂P/∂y =

∫
dy ∂

(
PX + Pξ

)
/∂y = [Pξ(y, t)]y∈R = 0.
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Subsequently, we infer the second ansatz as follows:

∫
dy

[(
− ∂

∂x
+ α

∂

∂y

)
[yP]

]
= 0. (3.2.56)

Similar to the first ansatz, this equation can be solved using functional separation of variables. Fur-

thermore, notice that the partial differential with respect to X is proportional to the partial differ-

ential with respect to ξwith coefficient α that directly arises from the 1-hierarchy impulse function

h(t) = αe−αt. This suggests that functional analytic methods such as Fujikawa method78 to trans-

form the probability spaces of (X, ξ) into that of X can also be used to integrate the joint FPE. An

exemplary approach for this method is outlined in Appendix A where we used it to derive the path

integral of X as part of Chapter 4.

Lastly, plugging these two ansatzes into Equation (3.2.53) results in direct correspondence be-

tween Equations (3.2.19) for joint Markovian FPE and (3.2.50) for marginal non-Markovian FPE.

We next take a look at the asymptotic properties of the GSN process ξ and show that the impulse

function h of ξ plays an important role in characterizing whether ξ is asymptotically a white noise

process.

3.3 Limiting and Asymptotic Theorems for the GSN Process

In this section, we show that if the impulse function h is integrable over [0,∞[, then under long-

time limit t → ∞, the GSN ξ becomes a white-noise process and hence X becomes Markov process.

Before we proceed to prove our statement as a theorem, let us show that our statement under certain

examples:
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3.3.1 Example For Exponential Decay Impulse Function

Let h(t) = αe−αt be the exponential decay impulse function. Applying it to the Master Equation in

(3.2.48) we get,

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
+

∂

∂x

[ ∞∑
n=0

λ
〈
An+1
1
〉

n!
αn+1

∫ t

0
dτ e−α(t−τ)

(∫ t

τ
ds e−α(s−τ)

)n(
− ∂

∂x

)n
]
P(x, t).

(3.3.1)

Applying long-time limit yields

∫ t

0
dτ e−α(t−τ)

(∫ t

τ
ds e−α(s−τ)

)n
= α−n

∫ t

0
dτ e−α(t−τ)

(
1− e−α(t−τ)

)n
=

(1− e−αt)
n+1

(n+ 1) αn+1

t→∞−→ 1
(n+ 1)αn+1 .

(3.3.2)

Therefore our ME simply reduces to the ME of GenOU process:

∂P
∂t

=
∂

∂x
[
V ′(x)P(x, t)

]
− ∂

∂x

[ ∞∑
n=0

λ
〈
An+1
1
〉

n!
1

n+ 1

(
− ∂

∂x

)n
]
P(x, t)

=
∂

∂x
[
V ′(x)P(x, t)

]
+

∞∑
n=1

λ 〈An
1 〉

n!

(
− ∂

∂x

)n
P(x, t).

(3.3.3)

Lastly, one can easily witness that further applying Gaussian Limits will yield the Fokker Planck

Equation of the OU process X.
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3.3.2 Example for Power Law Impulse Function

Now, we let the impulse function be a power law decay: h(x) = α−1
(−c)1−α (x − c)−α, where α, c > 0

are positive coefficients. As one can establish, this type of impulse function does not belong to the

n−th hierarchy classification of ξ. Therefore, applying a new impulse function will help us better

understand the characteristic of our GSN ξ and hence create an ansatz to prove our long-time limit

statement for general impulse function h.

For this case, we have defined variables α, c to be strictly positive in order to circumvent any singu-

larities. Accordingly, the term α−1
(−c)1−α is the normalizing constant satisfying our condition v:

∫ ∞

0
dx h(x, c) = 1. (3.3.4)

Therefore, we can solve the following integral,

∫ t

0
dτ h(t− τ)

(∫ t

τ
ds h(s− τ)

)n
=

(
α − 1

(−c)1−α

)n+1 ∫ t

0
dτ (t− τ− c)−α

(∫ t

τ
ds (s− τ− c)−α

)n

=

(
α − 1

(−c)1−α

)n+1 1
(1− α)n

·

·
∫ t

0
dτ (t− τ− c)−α ((t− τ− c)1−α − (−c)1−α)n

(3.3.5)

vAs the impulse function hmust be integrable over [0,∞[, we introduced the normalization term to h
such that h(x) → 0 as α → 1. Without the normalization term the integral

∫∞
0 dx h(x) diverges as α → 1.
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Setting α = 2 yields the following limit:

(−c)n+1 (−1)n
∫ t

0
dτ (t− τ− c)−2 ((t− τ− c)−1 − (−c)−1)n

=− cn+1 1
c(n+ 1)

t
c− t

(
1
c
+

1
c− t

)n

t→∞−→ 1
(n+ 1)

,

(3.3.6)

yielding again the Master Equation of GenOU process as in Equation (3.3.3).

3.3.3 Limiting Theorem

Witnessing what we have achieved in previous examples of impulse functions, we deduce the follow-

ing corollary as the Markov Convergence Theorem (MCT):

Theorem 3.3.1 (Markov Convergence Theorem). Let X be the position process defined by the follow-

ing generalized LE:

dXt

dt
= −V ′(Xt) + ξt− ,

ξt =
Nt∑
i=1

Aih(t− Ti),

(3.3.7)

where Nt forms the Poisson process with intensity λ > 0, Ai are iid random variables with well-defined

moments, and Ti are arrival times.

For any integrable impulse function h satisfying the following condition,

∫ ∞

0
dx h(x) = 1, (3.3.8)

the position process X converges in time to aMarkov process driven by PWN.
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In other words, we have that

ξt
t→∞−→ ξPWN

t , (3.3.9)

where ξPWN
t is the PWN process satisfying the correlation

〈
ξPWN
t ξPWN

s

〉
= λ

〈
A2
1
〉
δ(t− s).

Proof. Let P be the pdf of X. As probability functions uniquely define the stochastic processes, we

can confirm the time convergence of X using its Master Equation, as we have found in (3.2.48).

Furthermore notice that, as we have established in 2 previous examples, it is sufficient to prove the

following ∫ t

0
dτ h(t− τ)

(∫ t

τ
ds h(s− τ)

)n
=

1
n+ 1

. (3.3.10)

Using the substitution u =
∫ t
τ ds h(s− τ), hence du = −h(t− τ) dτ, we have that,

∫ ∫ t
0 ds h(s−τ)

0
du un =

[
un+1

n+ 1

]∫ t
0 ds h(s−τ)

0
=

1
n+ 1

(∫ t

0
ds h(s− τ)

)n+1

t→∞−→ 1
n+ 1

,

(3.3.11)

where we have used our necessary condition of h in last step.

TheMCT is a very useful tool to identify the asymptotic behavior of X. The theorem simply

states that for any globally integrable impulse function h, regardless of its classification, the GSN

process ξ converges asymptotically to the PWN process.

3.3.4 Formulating a Relationship between the Impulse Function and the Dif-

fusion Coefficient of the Position Process

Recall from Equation (3.2.49) that under Gaussian Limits we get the following FPE for X:

∂P
∂t

=
∂

∂x
[
V′(x)P(x, t)

]
+ σ2

∫ t

0
dτ h(t− τ)

∫ t

τ
ds h(s− τ)

∂2P
∂x2

. (3.3.12)
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Here, we aim to show that a specific impulse function hwould yield a super- (sub)-diffusive particle,

i.e.
〈
X2
t
〉
∼ tβ, for any β > 1 (< 1). This can be obtained by finding an impulse function satisfying

the following integral equation of the diffusion coefficient:

∫ t

0
dτ h(t− τ)

∫ t

τ
ds h(s− τ) = tβ. (3.3.13)

As before, we can use change of variables u =
∫ t ds h(s− τ) to obtain the following:

∫ ∫ t
0 dτ h(t−τ)

0
du u = tβ, (3.3.14)

yielding the following Volterra convolution equation:

(∫ t
0 dτ h(t− τ)

)2
2

= tβ =⇒
∫ t

0
dτ h(t− τ) =

√
2 t

β
2 . (3.3.15)

The above integral can be solved in Laplacian space; namely, givenL andL−1 respective the Laplace

and inverse Laplace transform operators, denoting ĥ(s) the Laplace transform of the impulse func-

tion h(t)we obtain the following:

L
{∫ t

0
dτ h(t− τ)

}
(s) = ĥ(s) · 1

s
=

√
2L{t

β
2 }(s), (3.3.16)
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where we used the convolution property. Rearranging the terms and noting thatL−1{s} = δ′(t),

we have the following:

ĥ(s) =
√
2L
{
t
β
2

}
· s =

√
2L
{
t
β
2

}
· L
{
δ′(t)

}
=
√
2L
{∫ t

0
ds s

β
2 δ′(t− s)

}
=
√
2L
{∫ t

0
ds

β
2
s
β
2−1δ(t− s)

}
=

√
2
2

βL{t
β
2−1Θ(t)},

(3.3.17)

yielding the desired impulse function by applying inverse Laplace transform,

h(t) =
√
2
2

βt
β
2−1Θ(t). (3.3.18)

Notice that we can indeed generalize this approach for any diffusion coefficient. Given the

Fokker Planck Equation (FPE) of X under Harmonic potential and Gaussian limits as,

∂P
∂t

= γ
∂

∂x
[xP(x, t)] + σ2m(t)

∂2P
∂x2

, (3.3.19)

wherem(t) is the differentiable diffusion coefficient, the impulse function h associated with the

GSN ξmust be of the form:

h(t) =
√
2
2

m′(t)√
m(t)

Θ(t). (3.3.20)

Or, in better formulation, the FPE of X under Gaussian Limits is of the following form,

∂P
∂t

=
∂

∂x
[
V′(x)P(x, t)

]
+ σ2

m2(t)
2

∂2P
∂x2

(3.3.21)

if and only if the impulse function is given by h(t) = m′(t)Θ(t). This is a very important outcome
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of our thesis, where one can model the trajectory of any particle by assigning it a suitable impulse

function h calculated from the diffusion coefficientm(t)with respect to time.

3.3.5 Convergence of the GSN process to the Generalized Gaussian Process

Next, we will use the same limiting cases to our GSN in order to get a generalized Gaussian process

with a well-defined correlation function. We have formally given in our Theorem below, with proof

as follows:

Theorem 3.3.2. Let ξ be the GSN process. Then, for fixed λ
〈
A2
i
〉
= σ2, our GSN process converges in

distribution to a general Gaussian process G:

lim
λ→∞
⟨Ai⟩→0

ξt
D−→ σGt, (3.3.22)

where it is defined by the following correlation function:

〈GtGs〉 =
∫ t∧s

0
dτ h(t− τ)h(s− τ). (3.3.23)

Proof. We apply the same concept as in the previous lemma. We will also show here that we can

indeed apply the distributional converge to CFals.
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Therefore,

Φξ[g] = exp

[
λ
∫ ∞

0
dτ
(
ϕA1

(∫ ∞

τ
g(t)h(t− τ)

)
− 1
)]

= exp

[
λ
∫ ∞

0
dτ
(〈

exp

(
iA1

∫ ∞

τ
dt g(t)h(t− τ)

)〉
− 1
)]

= exp

[
λ
∫ ∞

0
dτ

(〈
1+ iA1

∫ ∞

τ
dt g(t)h(t− τ)

− 1
2
A2
1

(∫ ∞

τ
dt g(t)h(t− τ)

)2
+O

(
A3
1
)〉

− 1

)]

−→ exp

[
−σ2

2

∫ ∞

0
dτ
(∫ ∞

τ
dt g(t)h(t− τ)

)2
]
=: ΦG[g],

(3.3.24)

where we applied the Gaussian Limits in last step.

Notice that this is indeed the CFal of the generalized Gaussian process σ (Gt)t≥0, as its increment is

defined by the Normal distribution;

Gt ∼ N
(
0,
∫ t

0
dτ h2(t− τ)

)
, (3.3.25)

Hence, by Lévy’s Continuity Theorem, we have that the limit is indeed a generalized Gaussian pro-

cess:

lim
λ→∞
⟨A1⟩→0

λ〈A2
1〉=σ2

ξt
D−→ σGt. (3.3.26)
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Lastly, in order to prove the correlation, we simply apply two functional derivatives on ΦG[g]:

δΦG[g]
δg(t1)

= σ2
∫ ∞

0
dτ
∫ ∞

τ
dt g(t)h(t− τ) ·

∫ ∞

τ
dt δ(t− t1)h(t− τ)ΦG[g],

δ2ΦG[g]
δg(t1)δg(t2)

= σ2
∫ ∞

0
dτ
∫ ∞

τ
dt δ(t− t1)h(t− τ) ·

(∫ ∞

τ
dt δ(t− t1)h(t− τ)ΦG[g]

+

∫ ∞

τ
dt g(t)h(t− τ)

δΦG[g]
δg(t2)

)
,

(3.3.27)

where this yields the correlation function:

〈Gt1Gt2〉 =
∫ t1∧t2

0
dτ h(t1 − τ)h(t2 − τ), (3.3.28)

which completes the proof.

Interestingly, this type of s.p. Gwith correlation given in Equation (3.3.23) forms by far the

broadest class of Gaussian processes. For an example, the fractal Brownian motion (fBm) B, which

is defined as the generalization of the Gaussian processes, is uniquely defined by its correlation func-

tion106 〈Bt1Bt2〉 = (t1 ∧ t2)2H, whereH ∈ [0, 1] is called the Hurst parameter that determines the

characteristics of the fBm, noting thatH = 1/2 yields the Wiener process. Letting t1 = t2 = t and

equating the correlation function of fBm to that of Equation (3.3.23) in Laplace space, as we did in
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Section 3.3.4, yields two impulse functions that satisfy this correlation:

L
{∫ t

0
dτ h(t− τ)2

}
(s) = L

{
t2H
}
(s)

=⇒ L
{
h(t)2

}
(s) = L

{∫ t

0
dτ τ2Hδ′(t− τ)

}
(s)

= 2HL
{∫ t

0
dτ τ2H−1δ(t− τ)

}
(s)

= 2HL
{
t2H−1Θ(t)

}
(s)

=⇒ h(t) = ±
√
2H tH−1/2Θ(t).

(3.3.29)

One can easily check that forH = 1/2, the impulse function above simply becomes the Heavi-

side step function, h(t) = Θ(t) and thus, by Theorem 1.2.1 the process ξ indeed converges to the

Wiener process under Gaussian Limits. Furthermore, recalling from Section 2.5, this impulse func-

tion is left-handed (due to Θ(t)) and can also be right-handed ifH < 1/2. Also, for anyH ∈ [0, 1]

the impulse function is not globally integrable. We can observe this behavior in Figure 3.1 where we

plotted the impulse function for various Hurst parametersH.
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t
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0.7

0.9

Figure 3.1: Plot of the impulse func on h of the frac onal Brownian mo on for different Hurst parametersH.

This Gaussian distribution property of the GSN process directly indicates that one can find all

the characteristics of Gaussian processes directly from the GSN process we have extensively analyzed

throughout Chapters 2-3.
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We nowmove forward to simulate our findings on the MCT, where we will show convergence

in distribution of the GSN process to the PWN process using the solution of the LE in (0.0.2) with

different candidate potentialsV.

3.4 Simulation Results onMarkov Convergence Theorem

Here, we numerically show that the asymptotic limits we have proven in this chapter are correct.

For simplicity in our numerical integration, we opted to simulate the LE in Equation (0.0.2) using

Gaussian jump amplitudes with CF ϕA1
(θ) = exp

(
−θ2/2

)
, unit jump intensity λ = 1, and

exponentially decaying impulse function h(x) = αe−αx. We aim to numerically obtain the results

of the MCT by simulating the realizations of the position process X driven by the zero-potential LE

Ẋ = ξ, where ξ is the GSN process.

Recalling Theorem 3.3.1, if the conditions in MCT holds, then the GSN process ξt converges

asymptotically to the PoissonWhite Noise process. Therefore, X, which is formed by the time in-

tegrals of ξ, should converge to the time-integral of the PWN, i.e. the Compound Poisson process.

For simulations, we chose the exponential decay impulse function where it holds the MCT condi-

tions. Indeed, in Figure 3.2, we can observe convergence in distribution at around t = 50.
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Figure 3.2: Probability distribu on (log-scale) of Xt as solu on of the LE Ẋt = ξt. Graphs colored in red are cases
where ξ is the GSN (hence X is Non-Markovian (NM)); whereas those in blue are cases where ξ the PWN (hence X is
Markovian (M)). Sca er plots are simula ons obtained by Monte Carlo method with 5,000 itera ons, and line plots are
analy c solu ons of the PDF’s obtained by Inverse Fourier Transform of the characteris c func ons. As we increase
me t, we can visualize convergence in distribu on. For simula ng the realiza ons of ξ we chose the α = 1, λ = 5, and
Ai ∼ N (0, λ−1).
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3.5 Chapter Review

In this chapter, we provided new results of the GSN process ξwith interesting properties. We first

showed that the time derivative of ξ is recursive and depends on the time derivative of the impulse

function h. The infinite recursive nature of ξ can be truncated to a finite value n if there exists an

n-th order linear ODE for h.

We next derived the ME of the position process X driven by ξ, where we used both Itō’s approach

in Chapter 1 and Hänggi’s approach that is designed especially for non-Markovian s.p.’s. Both these

methods are useful tools to find the PDF of X. The Itō’s method yields MarkovianME with respect

to the tuple of the position process and the hierarchies of the GSN,
(
X, ξ, (1)ξ, . . .

)
as in Equation

(3.2.8); whereas the Hänggi’s method yields the non-MarkovianME in Equation (3.2.48) that solely

governs X. Although we provided ansatzes to provide a heuristic relationship between the Marko-

vianMaster Equation of (X, ξ) via Itō’s approach and the non-MarkovianME of X via Hänggi’s

approach, finding a analytic transformation between these twoMaster Equations is currently an

open question, and could be further investigated in future research, such as using the functional

separation of variables technique31, or obtaining the Jacobian functional from transforming the

joint PDF P to marginal PDF of X, PX, via Fujikawa method78, outline of which can be inferred

from Appendix A. Besides finding analytic correspondence, one can also apply numeric techniques,

such asmethod of lines32, to partially integrate the joint PDF P.

Moreover, finding analytic solutions of these ME’s is close to impossible unless we assume spe-

cial cases for h or consider asymptotic limits of ξ. This asymptotic behavior of ξ is encompassed

within the following section, where our analysis shows that the GSN process converges to the Pois-

sonWhite Noise for h → δ, and further to a generalized Gaussian process under Gaussian limits.

Indeed, we showed that byMarkov Convergence Theorem (MCT), the GSN process ξ asymptoti-

cally converges in distribution to the PWN for any globally integrable impulse function h. We then
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backed our analytical results of the MCT by numerical simulation, where we observe that the non-

Markovian process converges in distribution to the Markov process (Figure 3.2).

In the next chapter, we show another method of finding the PDF of X driven by ξ via path inte-

gral approach, where we apply our results obtained throughout the previous chapters. We will also

investigate the escape problem of X, which arises directly from computing its path integral.
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Mathematics are the result of mysterious powers which no

one understands, and which the unconscious recognition

of beauty must play an important part. Out of an infin-

ity of designs a mathematician chooses one pattern for

beauty’s sake and pulls it down to earth.

MarstonMorse

4
Stationary Action Principle for

Non-Markovian Processes

4.1 Introduction

This chapter focuses on deriving the stationary action principle using the non-Markovian process X

driven by the Langevin Equation Ẋt = −V′(Xt) + ξt, recalling thatV is the potential of the system
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and ξt forms the GSN process with impulse function h as in Equation 0.0.2.

We begin this chapter by introducing the basic concepts of Lagrangian mechanics, namely the

concepts of the Lagrangian, stationary action principle, Euler-Lagrange equations and equations of

motion. Next, we introduce the optimal escape problem, which is the stationary action principle of X

under potentialV that has more than one stable state (e.g. double-well potential).

These definitions will then be used to derive the path integral formulation, proposed by Richard

Feynman & Albert Hibbs in 196585, where it is found by the functional integral of the Lagrangian

of stochastic processes. The path integral formulation will help us derive the probability amplitude

of X, from where we can ultimately achieve the main goal of this thesis by calculating its PDF.

Path integral formulation is a very important tool used for not only finding the PDF of X for any

potentialV and impulse function h, but to also for helping us better understand the behavior of

X, most importantly its time-non-local (TNL) property, which makes finding its PDF extremely

difficult. Nonetheless, we show that if h is an n−hierarchy impulse function (cf. Definition 2.5.3),

then the TNL property of X vanishes and we can find Lagrangian and (2n + 2)−dimensional

equations of motion of X, both of which is local in time. This property fundamentally agrees with

our understanding of the hierarchical nature of ξ, as we analyzed extensively in Chapters 2,3.

We then move on to final section of this chapter by introducing theMarkov Embedding tech-

nique in order to simplify the equations of motion of X. By approximating any impulse function

h as a sum of exponential decay functions in the complex plane, the resulting equations of motion

of X, and therefore its Lagrangian and hence its PDF, will be much more easier to calculate numeri-

cally.

Before we begin this chapter, we expect the reader to have preliminary knowledge of functional

calculus, especially functional integration, as well as a basic understanding of Lagrangian mechanics.

We will, albeit briefly, touchdown the Lagrangian mechanics throughout this introductory section;

however for further remarks, we encourage the reader to refer to a wide-scope book published by Gi-
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aquinta &Hildebrandt21 for the mathematics of Lagrangian mechanics and functional integration,

as well as22 for further physical aspects of both concepts.

4.1.1 Path Integral Formulation

Path integral formulation was first introduced by Feynman &Hibbs to bring forth a global formal-

ism of quantummechanics86. The formalism is defined to predict the possible path of a particle

from point A to point B by taking into account all possible paths it can take between those two

points. The formulation works by integrating over the functional space of paths of the particle and

assigning a complex-valued function π called the probability amplitude. One can then derive the

PDF P of the particle by taking the squared modulus of its probability amplitude: P = |π|2 .

Path integrals are widely used in scopes outside of quantummechanics. For example, it is used

in biophysics to model the transition between two different states of DNA during transcription

phases23 or modeling the evolutionary process of species24.

Figure 4.1: Depic on of 5 out of infinitely possible paths from pointA to point B. Path integral works by integra ng
over all possible trajectories of the par cle from A to B and output the probability amplitude π of the par cle between
this range.

Feynman &Hibbs showed in85 that the probability amplitude of a particle between the time
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range [ta, tb] and end-points x(ta) ≡ xa and x(tb) ≡ xb, is given by the following functional integra-

tion:

π(xb, tb|xa, ta) =
∫

C
D[x] exp

(
i
∫ tb

ta
dtL (x(t), ẋ(t), ẍ(t), . . . )

)
, (4.1.1)

where C = [xa, xb] is the configuration space of all paths of the particle between times ta and tb, and

functionL is the Lagrangian of the particle that depends on the particle’s position function x(t)

all its derivatives. The tuple (C ,L ) together form the Lagrangian system of the particle22.

In most physical contexts including formulation by Feynman &Hibbs, the integration of the

Lagrangian is normally defined as the action functional S:

S[x, ẋ, ẍ, . . . ] =
∫ tb

ta
dtL (x(t), ẋ(t), ẍ(t), . . . ) ; (4.1.2)

in fact, rewriting Equation (4.1.1) in terms of the action functional is the most common way to

define the probability amplitude in literature:

π(xb, tb|xa, ta) =
∫

C
D[x] exp (i S[x, ẋ, ẍ, . . . ]) . (4.1.3)

Here, the LagrangianL of a particle is the difference between its kinetic energy (energy of the par-

ticle itself) and potential energy (energy of interaction between the particle and the external forces

such as gravity, friction, etc.). Furthermore, the action S is a functional that assigns a numerical

value to the Lagrangian system by integrating the Lagrangian over [ta, tb]. In fact, the action func-

tional is used to find the stationary action principle by minimizing the Lagrangian.

The stationary action principle dictates that out of infinitely possible paths between points xa

and xb, the particle travels the path that has the stationary action22. Such path is defined as the opti-

mal path of the particle and is usually denoted with an asterisk x∗. We can explain this phenomenon

in Figure 4.1, where under no external forces (i.e. zero potential energy) that can affect the system,
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the optimal path of the particle that travels from point A to point Bwould be a straight line, as it

will intuitively use the least energy. We will validate this mathematically in the next section, where

by minimizing the Lagrangian we obtain an ODE called the Euler-Lagrange Equations, also known

in physical contexts as equation of motion.

4.1.2 Optimal Path Calculation

As we explained in the previous section, the optimal path of a particle is found by finding its station-

ary action. Let (C ,L ) be the Lagrangian system of the particle whose position in time is defined by

x(t), and let S be its associated action. Then, the infinitesimal change in S is found by applying the

total functional derivatives25:

S =
∫ tb

ta
δS =

∫ tb

ta
dt
(
δS
δx
δx+

δS
δẋ
δẋ+

δS
δẍ
δẍ+ . . .

)
=

∫ tb

ta
dt

(
δS
δx
δx− d

dt
δS
δẋ
δx+

(
d
dt

)2 δS
δẍ
δx+ . . .

)

=

∫ tb

ta
dt

δx
∞∑
j=0

(
− d
dt

)j δS
δx(j)

 ,

(4.1.4)

where x(j) refers to jth time derivative of x and in the third equation we applied integration by parts j

times on each δx(j). We can then find the stationary action by letting δS = 0 in Equation (4.1.4):

δS = 0 ⇐⇒ dt

δx
∞∑
j=0

(
− d
dt

)j δS
δx(j)

 = 0

=⇒
∞∑
j=0

(
− d
dt

)j δS
δx(j)

= 0.

(4.1.5)

Instead of writing Equation (4.1.5) in terms of S, we can use its definition on Equation (4.1.2) to

rewrite it in terms of the partial derivatives of the LagrangianL , which yields the Euler-Lagrange
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Equation (ELE):
∞∑
j=0

(
− d
dt

)j ∂L

∂x(j)
= 0. (4.1.6)

Solving this ELE ultimately yields the optimal path x∗(t) for the Lagrangian system.

Now that we have shown how this formulation is derived, we can now give some basic examples.

Let us consider a particle with massm > 0 defined by the Lagrangian system (C ,L ). Let us also

first assume that the particle has zero potential energy. Defining its position in time by x(t), the

particle’s kinetic energy and thus its Lagrangian is given byL = m (ẋ)2 /2, where we can observe

that it solely depends on ẋ. We then plug this into the ELE:

∞∑
j=0

(
− d
dt

)j ∂L

∂x(j)
= − d

dt
∂L

∂ẋ
= −m

dẋ
dt

= 0. (4.1.7)

Notice that the ELE simply becomesmẍ = 0, where its solution (i.e. the optimal path) is given by a

straight line x(t) = c1t+c2 = x∗(t)with integral coefficients c1 and c2. This agrees with our intuitive

understanding that without any potential energy, the optimal path between two points, regardless

of its massm, is always a straight line.

Let us introduce potential energy to the Lagrangian system. DefiningV to be the potential func-

tion, the Lagrangian is then given byL = m (ẋ)2 /2 − V(x), where it now depends on both x and

ẋ. Plugging this to the ELE yields the following:

∂L

∂x
− d

dt
∂L

∂ẋ
= 0

=⇒ −V ′(x)−mẍ = 0.
(4.1.8)

This is a classical result ofNewton’s Second Law ofMotionwhere external force acting on a particle is

equal to is its mass times its acceleration.

From the optimal path we can further obtain the stationary action of such particle. By inte-
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grating the equation of motion w.r.t. over [ta, t] yieldsmẋ = mẋa −
∫ t
ta dτ V

′(x(τ)), where

ẋa ≡ ẋ(t)|t=ta . Thus, the stationary action of the particle over the region [ta, tb] is given by

S[x∗, ẋ∗] =
∫ tb

ta
dtL (x∗(t), ẋ∗(t)) =

∫ tb

ta
dt

(
1
2m

(
mẋ∗a −

∫ t

ta
dτ V ′(x∗(τ))

)2
− V(x∗(t))

)
,

(4.1.9)

where x∗, the optimal path, is the solution of Equation (4.1.8).

We finally close this introductory section by defining the optimal escape problem, which is widely

used for calculating stationary actions for Lagrangian systems with potentials containing local min-

ima and maxima.

4.1.3 Optimal Escape Problem

The optimal escape problem seeks to find the rate of escape of a particle to irreversibly change its

position from one stable point to a different (stable or unstable) point76. As given in Figure 4.2

below, the optimal escape problem calculates the stationary action (commonly referred to as the

optimal escape rate in this instance) of a particle under the potentialVwith more than one stable

point. Therefore, if the potentialV is of this form, then the stationary action of a free particle given

in Equation (4.1.9) is called its optimal escape rate.

Calculating the escape rates of physical systems has been widely used in statistical physics, where

a particle located in a potential well can escape to another stable state with smaller potential energy,

thereby allowing favorable conditions for the particle. Furthermore, quantummechanics posits

the true nature of quantum tunneling, where a particle can randomly escape a potential barrier

to another stable state77. Stochastic processes are also commonly used in building optimal escape

problems; it has been shown that particles within a local potential well that require the existence

of an external force (e.g. friction) appear to show random fluctuations in motion, where stochastic

processes would be employed to model the position of such particle82.
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Figure 4.2: Depic on of a double-well poten alV(x) = x4 − 5x2 + 3x− 2 with stable state, xa = x(ta), metastable
state xb = x(tb) and an unstable state xc = x(tc). Top figure: Op mal escape problem calculates the sta onary
ac on of a par cle from the stable state xa to the metastable state xb under this poten al. Bo om figure: One can also
calculate the escape rate from the stable state xa to the unstable state xc with lowest poten al.
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Therefore, instead of confining within the boundaries of deterministic systems for solving the

optimal escape problem, one can also define the Lagrangian system for stochastic processes. How-

ever, the resulting Lagrangian is not as straightforward to find as in the deterministic cases men-

tioned in the above examples. If the position of a particle is modeled by a stochastic process, we

must first define it as a Langevin equation and then construct the Lagrangian from there. One

method to do so is to deduce the Lagrangian straight from the LE itself, as conducted by26, or by

the CFal of the position process, as done by Hanggi in 198975. Both methods work for LE’s driven

by white noise processes as well as GSN processes.

Due to its simplicity and more extensive analysis, we opted to use the method provided by75 in

finding the solution of our LE Ẋt = −V ′(Xt) + ξt via path integral approach, where ξt forms the

GSN process that we extensively defined in Chapter 2. Remarkably, this method also works for any

potentialV, which we showed to be a great caveat for finding the PDF of X via CFal approach as

conducted in Chapter 3.

4.2 Finding the Probability Amplitude and the Euler-Lagrange Equations

of the Position Process driven by the GSN

Let X be the position process defined by the Langevin equation Ẋ = −V ′(Xt) + ξt, whereV is the

potential, and ξt =
∑Nt

i=1 Aih(t − Ti) is the GSN as in Definition 2.1.1. As we aim to model the

path of a particle between time-frames [ta, tb], we constrain the GSN (ξt)t∈[ta,tb].

Then, by75, the probability amplitude of X between times [ta, tb], defined by π(xb, tb|xa, ta), is
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given by:

π(xb, tb|xa, ta)

=

∫
CX

D[X]
∫

Cg

D
[ g
2π

]
Φξ[g] exp

(
i
∫ tb

ta
dt g(t)

(
Ẋt + V ′(Xt)

))
exp

(
1
2

∫ tb

ta
dt V ′′(Xt)

)
,

(4.2.1)

where CX and Cg are respectively the functional space of all possible paths X and test functions g,

both constrained on [ta, tb], and Φξ[g] is the CFal of the constrained GSN process ξ as in Equation

(2.3.7):

Φξ[g] = exp

[
λ
∫ tb

ta
dt
(
ϕA1

(∫ tb

t
ds h(s− t)g(s)

)
− 1
)]

, (4.2.2)

recalling fromDefinition 2.1.1 that λ > 0 is the intensity of ξ. The last exponential term containing

V ′′(Xt), commonly referred to as the Jacobian, naturally arises from discretizing the path integral

in order to obtain the probablity amplitude π 83, followed by the change of functional space of the

path integral term, as we show in Appendix A.

Notice further that we can gather all the exponentials in the integrands and rewrite the probabil-

ity amplitude in terms of the action functional S,

π(xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg

D
[ g
2π

]
exp (−S[X, g]) , (4.2.3)

where S is given by the integral of the LagrangianL of X, Ẋ and g:

S[X, g] =
∫ tb

ta
L
(
Xt, Ẋt, g(t)

)
=

∫ tb

ta
dt
(
λ − λϕA1

(∫ tb

t
ds h(s− t)g(s)

)
− ig(t)

(
Ẋt + V ′(Xt)

)
+

1
2
V ′′(Xt)

)
.

(4.2.4)
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The optimal path (X∗, g∗) is then found by solving each component’s respective ELE. This can be

easily shown by extending the expansion of S in Equation (4.1.4) with respect to X and g (ref.110):

S[X, g] =
∫ tb

ta
δS[X, g] =

∫ tb

ta
dt
(
δS
δX

δX+
δS
δg
δg+

δS
δẊ

δẊ+
δS
δġ
δġ+

δS
δẌ

δẌ+
δS
δg̈
δg̈+ . . .

)
=

∫ tb

ta
dt

(
δS
δX

δX− d
dt

δS
δẊ

δX+

(
d
dt

)2 δS
δẌ

δX+
δS
δg
δg− d

dt
δS
δġ
δg+

(
d
dt

)2 δS
δg̈
δg+ . . .

)

=

∫ tb

ta
dt

δX
∞∑
j=0

(
− d
dt

)j δS
δX(j) + δg

∞∑
j=0

(
− d
dt

)j δS
δg(j)

 .

(4.2.5)

By letting δS = 0 the resulting ELE’s will be two dimensional system of ODE’s with respect to the

LagrangianL
(
Xt, Ẋt, g(t)

)
as we initiated in the beginning of this chapter.

However, notice that one cannot explicitly define the partial derivative ∂L /∂Ẋ due to the im-

pulse function h causing time non-locality in g. These types of ELE’s that contain impulse func-

tions are called Time Non-Local ELE’s (TNL ELE’s), as coined by25. Instead, one has to refer to the

action functional itself to compute the TNL ELE’s:

δS
δX

− d
dt

δS
δẊ

= 0,

δS
δg

= 0.
(4.2.6)

As it is local in t, the first equation simply becomes ġ(t) = V ′′(Xt)g(t) + i/2V ′′′(Xt). The second
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equation, which contains the time non-local term of g, is found as follows:

δS
δg(t)

= 0

=⇒ − λ
∫ tb

ta
dτ
∫ tb

τ
ds h(s− τ)δ(s− t)ϕ ′

A1

(∫ tb

τ
ds h(s− τ)g(s)

)
− i
∫ tb

ta
dτ δ(t− τ)

(
Ẋt + V ′(Xt)

)
= 0

=⇒ − λ
∫ tb

ta
dτ h(t− τ)Θ(t− τ)ϕ ′

A1

(∫ tb

τ
ds h(s− τ)g(s)

)
− i
(
Ẋt + V ′(Xt)

)
= 0

=⇒ − λ
∫ t

ta
dτ h(t− τ)ϕ ′

A1

(∫ tb

τ
ds h(s− τ)g(s)

)
− i
(
Ẋt + V ′(Xt)

)
= 0.

(4.2.7)

Therefore, putting them together, the TNL ELE’s are given by the following system of ODE’s;

Ẋt = −V ′(Xt) + iλ
∫ t

ta
dτ h(t− τ)ϕ ′

A1

(∫ tb

τ
ds h(s− τ)g(s)

)
ġ(t) = V ′′(Xt)g(t) +

i
2
V ′′′(Xt).

(4.2.8)

We can also further simplify the TNL ELE’s by rescaling the GSN ξwith ε, such that for sufficiently

small ε (i.e. under the weak noise limit), the LagrangianL can be written only in terms of g. This

can be established by referring to the Baule & Sollich 2018 paper113, where one can redefine the

GSN ξwith new jump intensity λ → λ/ε and jump amplitudes A1 → A1 ε. In this case, the CFal of

ξ is given by:

Φξ[g] = exp

[
λ
ε

∫ tb

ta
dt
(〈

eiA1ε
∫ tb
t ds h(s−t)g(s)

〉
− 1
)]

. (4.2.9)
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Thus, in this regime, the probability amplitude of X is given by:

π(xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg

D
[ g
2π

]
exp

[
λ
ε

∫ tb

ta
dt
(〈

eiA1ε
∫ tb
t ds h(s−t)g(s)

〉
− 1
)]

· exp
(
i
∫ tb

ta
dt g(t)

(
Ẋt + V ′(Xt)

))
exp

(
1
2

∫ tb

ta
dt V ′′(Xt)

)
,

(4.2.10)

where upon further rescaling g → g/ε, we can rewrite the probability amplitude in terms of its

action functional S and LagrangianL :

π(xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg

D
[ g
2πε

]
exp

[
−S[X, g]

ε

]
, (4.2.11)

where the rescaled action is given by

S[X, g] =
∫ tb

ta
dtL (Xt, Ẋt, g(t)))

=

∫ tb

ta
dt
(
λ
(
1− ϕA1

(∫ tb

t
ds h(s− t)g(s)

))
− ig(t)

(
Ẋt + V ′(Xt)

)
− ε

2
V ′′(Xt)

)
.

(4.2.12)

Plugging the rescaled action above to the TNL ELE in (4.2.6) and applying the weak noise limit

ε → 0, we get the following coupled ODE’s from which we can obtain optimal solutions (X∗, g∗):

[1] ġ = V ′′(Xt)g(t)

[2] Ẋ = −V ′(Xt) + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
.

(4.2.13)

Notice that under weak noise limit, ε → 0, the Lagrangian can be rewritten by g only: by plugging
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[2] to the Lagrangian we get the following,

L (Xt, g(t)) = λ
(
1− ϕA1

(∫ tb

t
ds h(s− t)g(s)

))
−ig(t)

(
−V ′(Xt) + iλ

∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
+ V ′(Xt)

)
= λ

(
1− ϕA1

(∫ tb

t
ds h(s− t)g(s)

))
+ λg(t)

∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
= L (g∗(t)) .

(4.2.14)

Therefore, the stationary action S[g∗(t)] can be found by by integrating the Lagrangian. However,

notice that the solution g∗ of the ELE must be purely complex in order to get a purely real solution

for X∗. Thus, by re-defining g∗(t) ≡ ik(t), we get the stationary action as follows:

S[g∗(t)] =
∫ t

0
dτL (ik(τ))

= λ
∫ t

0
dτ

[
1− ϕ̄A1

(∫ tb

τ
ds h(s− τ)k(s)

)

+ ik(τ)
∫ τ

ta
ds h(τ− s)ϕ̄′A1

(∫ tb

s
du h(u− s)k(u)

)]
,

(4.2.15)

where ϕ̄A1
(k(t)) = ϕA1

(g(t))withWick-rotated derivatives: ∂
∂gϕA1

(g(t)) → i ∂∂k ϕ̄A1
(k(t)).

Even though g is an arbitrary test function, due to the integration factor over [τ, tb] in Ẋt, which

causes TNL problem, one has to know in prior the function g over [ta, tb]. We will explain methods

to convert the TNL ELE to higher-order local ELE in Section 4.5.

But before this, in the next two sections we describe ways to analytically solve the TNL ELE for

different types of potentialsV; zero potentialV(x) = 0 and Harmonic potentialV(x) = γx2/2.
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4.3 Optimal Path and Stationary Action for Zero andHarmonic Potentials

4.3.1 Markovian Ornstein-Uhlenbeck Process

Recall from Chapter 1 that OU process is the solution of the LE Ẋt = −V ′(Xt) + ξt where ξ is the

GWN andV(x) = γx2/2 is Harmonic potential.

Let’s first rewrite the original (i.e. not k-transformed) ELE’s of g∗ and X∗ under Harmonic po-

tential:

ġ = γg(t),

Ẋ = −γXt + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
.

(4.3.1)

Then, since ξ is the GWN process, we have the memory-less property h(x) = δ(x) and the following

characteristic function of the jump amplitude under Gaussian limits ϕA1
(θ) = − 1

2
〈
A2
1
〉
θ2 + 1

such that ϕ ′
A1
(θ) = −

〈
A2
1
〉
θ. Hence, after integrating out the Dirac delta functions, the ELE of

X∗ reduces to

Ẋ = −γXt + iλ
∫ t

ta
dτ δ(t− τ)ϕ′A1

(∫ tb

τ
ds δ(s− t)g(s)

)
= −γXt + iΘ(tb − t)λϕ′A1

(g(t))

= −γXt − iΘ(tb − t)λ
〈
A2
1
〉
g(t).

(4.3.2)

Defining σ2 = λ
〈
A2
1
〉
under Gaussian limit and noting due to the boundary value that Θ(tb − t) =

1, we get the following simplified ELE’s:

ġ = γg(t),

Ẋ = −γXt − iσ2g(t).
(4.3.3)
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Note that with boundary condition g(0) = g(ta) first ELE has general solution g∗(t) = g(0)eγ(t−ta).

Hence, the ELE for X∗ is given by Ẋ = −γXt − ig(0)σ2eγ(t−ta). It is important to actually fix

g(0) = g0 as a function of space and time, i.e. g0 = g0(xb, tb|xa, ta), where it can be fully derived

from solving the ELEs with initial conditions of trajectory points from (xa, ta) to (xb, tb).

In detail, the solution of the second ELE Ẋ = −γXt−ig0σ2eγ(t−ta) under the boundary condition

Xtb = xb is given by:

X∗
t =

e−γ(t+ta)

γ

(
γxbeγ(ta+tb) − 1

2
ig0σ2

(
e2γt − e2γtb

))
, (4.3.4)

where under the second boundary condition X∗
ta = xa we can find the function g0:

xa =
e−2γta

γ

(
γxbeγ(ta+tb) − 1

2
ig0σ2

(
e2γta − e2γtb

))
=⇒ g0 =

2iγeγta (xaeγta − xbeγtb)
σ2 (e2γta − e2γtb)

.

(4.3.5)

Plugging this to our X∗ equation and re-arranging the terms yields the closed form solution of the

optimal path of the OU-process:

X∗
t =

eγt

e2γta − e2γtb
((

eγ(2t+ta) − eγ(2tb+ta)
)
xa −

(
eγ(2t+tb) − eγ(2ta+tb)

)
xb
)
. (4.3.6)

Remark 4.3.1. An interesting yet also obvious case is that upon applying γ → 0 limit, in which case X

becomes Brownian motion, the optimal path is given by a straight line,

lim
γ→0

X∗
t =

(t− tb)xa − (t− ta)xb
ta − tb

. (4.3.7)

This agrees with the consensus that the shortest path between two points, under no external or internal

force present, is a straight line.
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Now that we have found the optimal path, let’s rewrite the stationary action in case for the OU

process. For simplicity, we can insert the ELE for X given above to the action functional S[X, g]

given in Equation (4.2.12):

S[X, g] =
∫ tb

ta
dτ
[
λ
(
1− ϕA1

(∫ tb

τ
ds h(s− τ)g(s)

))
− ig(τ)

(
Ẋτ + V ′(Xτ)

)]
=

∫ tb

ta
dτ
[
λ
(
1+

1
2
〈
A2
1
〉
(−Θ(τb − τ)2

)
g(τ)2 − 1− ig(τ)

(
−iλ

〈
A2
1
〉
g(τ)

)]
= − 1

2
σ2
∫ tb

ta
dτ g(τ)2

=⇒ S(xb, tb|xa, ta) = − 1
2
σ2g20

∫ tb

ta
dτ e2γ(τ−ta) = − 1

2

(
2iγeγta (xaeγta − xbeγtb)

σ2 (e2γta − e2γtb)

)2
σ2
e2γ(tb−ta) − 1

2γ

=
γ
σ2

(xbeγtb − xaeγta)2

e2γtb − e2γta
.

(4.3.8)

The stationary action for OU case is interesting because for large enough time, the action simply de-

pends on the current state of X. We have explained this in a bit more detail in the following remark.

Remark 4.3.2. Given the following stationary action for the OU process,

S(xb, tb|xa, ta) =
γ
σ2

(xbeγtb − xaeγta)2

e2γtb − e2γta
, (4.3.9)

where recalling that ta is time observed for the event Xta = xa such that ta < tb. Then, the stationary

action will be independent from initial state xa if one waits for a sufficiently long time; i.e. we have

that,

lim
tb→∞

S(xb, tb|xa, ta) =
γ
σ2
x2b . (4.3.10)

Note also that by simply letting γ = 0 (i.e. zero potential energy) we will retrieve the optimal

path X∗ and action S(xb, tb|xa, ta) for Wiener process. Under zero potential, the ELE for X reads
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Ẋ = −iσ2g(t)with solution given by:

X∗
t =

(t− tb)xa − (t− ta)xb
ta − tb

(4.3.11)

and the stationary action simply becomes

S(xb, tb|xa, ta) =
(xb − xa)2

2σ2(tb − ta)
. (4.3.12)

Now that we have analyzed the optimal escape problem for Gaussian white noise, we will expand

this functional technique for Poisson white noise (i.e. X becomes the GenOU process) then estab-

lish the novel foundation for the case for GSN ξ.

Let us refer to the original set of ELE’s for X and g under Harmonic potential:

ġ = γg(t),

Ẋ = −γXt + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
.

(4.3.13)

As in previous attempt for OU process, we will let the impulse function to Dirac delta h → δ,

however relax the condition for Gaussian limits. Solving for δ yields the ELEs for Generalized OU

process:

ġ = γg(t),

Ẋ = −γXt + iλϕ ′
A1 (g(t)) ,

(4.3.14)

where g(t) = g0 exp (γ(t− ta)). As we will establish in the next section considering GSN ξ, we

have an implicit equation for g0 and therefore finding g0 can only be achieved by directly defining

ϕ ′
A1
or by numeric techniques. For its similarity to the following results, we leave the solutions for

optimal path X∗ and action S for the next section.
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4.3.2 Non-Markovian Ornstein-Uhlenbeck Process

Recall in Chapter 2 that the Non-Markovian OU Process is defined as the solution of the LE Ẋt =

−V ′(Xt) + ξt, where the potential is harmonicV(x) = γx2/2 and the noise ξ is the GSNwith

Gaussian Limits. Therefore, the CF simplifies to ϕA1
(θ) = − 1

2
〈
A2
1
〉
θ2+ 1. Fixing σ2 = λ

〈
A2
1
〉
and

get the following ELE’s:

ġ = γg(t),

Ẋ = −γXt − iσ2
∫ t

ta
dτ h(t− τ)

∫ tb

τ
ds h(s− τ)g(s).

(4.3.15)

Under the initial condition g(0) = g0 we get that g(t) = g0 exp (γ(t− ta)) and hence get the

following ODE: Ẋ = −γXt − iσ2g0e−γta
∫ t
ta dτ h(t − τ)

∫ tb
τ ds h(s − τ)eγs. Applying the second

boundary condition Xtb = xb yields the general solution for X∗:

X∗
t = e−γt

(
xbeγtb + iσ2g0

∫ tb

t
ds eγs

∫ s

ta
dτ h(s− τ)

∫ tb

τ
du h(u− τ)eγ(u−ta)

)
. (4.3.16)

Notice that from above we can explicitly express g0. By letting the first boundary condition Xta =

xa, we get:

xa = e−γta
(
xbeγtb + iσ2g0

∫ tb

ta
ds eγs

∫ s

ta
dτ h(s− τ)

∫ tb

τ
du h(u− τ)eγ(u−ta)

)
=⇒ g0 =

i
σ2

(xbeγtb − xaeγta)
(
xbeγtb + iσ2g0

∫ tb

ta
ds eγs

∫ s

ta
dτ h(s− τ)

∫ tb

τ
du h(u− τ)eγ(u−ta)

)−1
.

(4.3.17)

As in the Markovian counterpart, one can explicitly define the initial condition g0 from the TNL

ELE’s for the Non-Markovian OU process. However, it is close to impossible to do so without the

Gaussian Limits.
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Let us know show below the case for Non-Markovian GenOU process X, where the TNL ELE is

now given by:

ġ = γg(t),

Ẋ = −γXt + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
.

(4.3.18)

As before, we next aim to find the coefficient under the boundary condition g(0) = g(ta) =

g0(xb, tb|xa, ta) using solution of the first ELE g∗(t) = g0 exp (γ(t− ta)) . Plugging this back

into the second ELE and solving it under the boundary condition Xtb = xb yields:

Ẋ = −γXt + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− t)g(s)

)
=⇒ X∗

t = e−γt
(
xbeγtb − iλ

∫ tb

t
ds eγs

∫ s

ta
dτ h(s− τ)ϕ ′

A1

(
g0
∫ tb

τ
du h(u− τ)eγ(u−ta)

))
.

(4.3.19)

In order to find g0, we need to plug into the X∗ solution the next boundary condition Xta = xa:

xbeγtb − xaeγta = iλ
∫ tb

ta
ds eγs

∫ s

ta
dτ h(s− τ)ϕ ′

A1

(
g0
∫ tb

τ
du h(u− τ)eγ(u−ta)

)
. (4.3.20)

The above equation will almost surely be implicit for g0 due to characteristic function ϕA1
. How-

ever, we can still get a better understanding of the behavior of g0 by takingDouble Laplace transform

with respect to ta and tb as detailed by Debnath L. in 2016120; or by defining the LHS as f(ta, tb)

and RHS byK(ta, tb, s) := eγs
∫ s
ta dτ h(s − τ) and obtain the two-dimensional Volterra Integral

equation:

f(ta, tb) =
∫ tb

ta
ds K(ta, tb, s)ϕ ′

A1

(
g0
∫ tb

τ
du h(u− τ)eγ(u−ta)

)
, (4.3.21)

where we can then numerically solve it for ϕ ′
A1
using kernel separation method published by Fazli et
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al. 2016121.

Now that we have expressed the foundation to retrieve the coefficient g0, let’s observe the be-

havior of the optimal path and stationary action by applying the simplest impulse function, the

exponential decay h(x) = αe−αx, where the resulting noise ξwill be the CP noise process.

Plugging the impulse function to the second ELE in Equation (4.3.19) and solving the integrals

yields the ELE for X:

Ẋ = −γXt + iαλ
∫ t

ta
dτ e−α(t−τ)ϕ′A1

(
αg0
α − γ

e−γta+ατ
(
e−(α−γ)τ − e−(α−γ)tb

))
(4.3.22)

Furthermore, the stationary action S that solely depends on X∗ will also be given by plugging the

solutions of ġ and Ẋ above to the action functional in Equation (4.2.12), given by:

S[X∗, g∗]

=

∫ tb

ta
dτ
[
λ
(
1− ϕA1

(∫ tb

τ
ds h(s− τ)g(s)

))
− ig(τ)

(
Ẋτ + V ′(Xτ)

)]
=

∫ tb

ta
dτ

[
λ
(
1− ϕA1

(
αg0
α − γ

e−γta+ατ
(
e−(α−γ)τ − e−(α−γ)tb

)))

− ig0eγ(τ−ta)

(
− γXτ + iαλ

∫ τ

ta
ds e−α(τ−s)ϕ′A1

(
αg0
α − γ

e−γta+αs
(
e−(α−γ)s − e−(α−γ)tb

))

+ V ′(Xτ)

)]

= S[X∗]

(4.3.23)

From the optimal path and action, we can also find the case for the free particle (i.e. without
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potential energy) by letting γ = 0:

Ẋt = iαλ
∫ t

ta
dτ e−α(t−τ)ϕ′A1

(
g0
(
1− eα(τ−tb)

))
, (4.3.24)

where from here we can also obtain the stationary action of the free particle:

S[X∗]

=

∫ tb

ta
dτ

[
λ
(
1− ϕA1

(
g0
(
1− eα(τ−tb)

)))
− ig0

(
iαλ
∫ τ

ta
du e−α(τ−u)ϕ′A1

(
g0
(
1− eα(u−tb)

)))]
(4.3.25)

We now established that although one can find optimal path and stationary action for the Har-

monic potential easily, one cannot fully analytically describe them due to the initial condition g0

being embedded within the CF of the jump amplitude, ϕA1
.

4.4 Optimal Path and Stationary Action for General Potential

Let the potentialV in this case be an undefined potential. We will separately analyze for differ-

ent noise cases, first starting with Poisson white noise to compare our results with Baule & Sollich

2015113 and lastly with our GSN process ξ.

4.4.1 PoissonWhite Noise Process

In this case, under k-transformation as in Equation (4.2.15), we have the following set of TNL

ELE’s,

k̇ = V ′′(Xt)k(t),

Ẋ = −V ′(Xt)− λϕ ′
A1 (k(t)) .

(4.4.1)
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As can be visualized, the above set of ODE can only be solvable for specific cases of potentialV; the

harmonic potential is a trivial case as we have established in the previous section. However, as we

assign higher leading order toV, we step into the realm of non-linear ODEs, where one usually finds

numerical solutions. Nonetheless, there are some analytic approaches, and we will briefly explain

them in the next section considering the GSN.

Finally, one can also numerically integrate the stationary action S given in Equation (4.2.15) un-

der Poisson white noise, i.e. h → δ:

S(xb, tb|xa, ta) = λ
∫ tb

ta
dτ
[
1− ϕ̄A1

(k(τ)) + k(τ)ϕ̄ ′
A1 (k(τ))

]
, (4.4.2)

which we can find by directly integrating k∗.

4.4.2 GSN Process

In the case of the GSN process we now have the following TNL ELE’s for the system:

ġ = V ′′(Xt)g(t),

Ẋ = −V ′(Xt) + iλ
∫ t

ta
dτ h(t− τ)ϕ′A1

(∫ tb

τ
ds h(s− τ)g(s)

)
.

(4.4.3)

As you may recall, we now have coupled, nonlinear and non-local systems of ODE’s. There are some

techniques to simplify these equations, such as the Dirichlet expansion114 or advanced Lie symme-

try techniques115. Numerical solutions of these ODE’s can also be found by the Forward Euler’s

scheme as given in Chapter 16 Section 5.1.3.1 of119. However, all these schemes assign specific po-

tentialV to numerically approximate the solutions of the ODE’s.

In summary, when dealing with non-Markovian processes of any potentialV(x)with leading

order xn, n > 1 (i.e. any potential that is neither constant nor Harmonic): one has to know the
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entire function g prior to solving the optimal escape problem. We can directly observe this from the

general TNL ELE in Equation (4.2.8) where the equation of motion for X has integration of the

impulse function h over [t, tb] such that tb is the end of our time constraint.

This may also seem empirically sensible, as due to the impulse function h, the position process

can hold all prior information of X generated since its inception. Therefore, even numerically com-

puting the solution of both g and X requires non-standard techniques that are beyond the scope of

this thesis.

In the next section, we instead show that if the impulse function is an n−hierarchy function,

then one can overcome knowing the entire function g to solve the equations of motion, and thus

obtain a localized ELE from the TNL ELE.

4.5 Localizing the Euler Lagrange Equations using n−Hierarchy Impulse

Functions

We postulate that the integration of entire function g is solely related to the impulse function h,

specifically the behaviour of its differentials. Recall from Equation (3.1.8) and that for any general

kernel h, the time derivative of our GSN ξ is given by:

ξ̇t =
Nt∑
i=1

Aiḣ(t− Ti) + h(0)L̇t, (4.5.1)

where the first variable on the RHS forms another GSN process (1)ξwith impulse function ḣ, and

the second variable L̇t forms the PWN.

Further differentiation of (1)ξt as explained in Chapter 3 yields the following recursion:

(n−1)ξ̇t =
(n)ξt + h(n−1)(0)L̇t, (4.5.2)
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where (n)ξt forms the GSN process with impulse function h(n)(t). Furthermore, recalling the

n−hierarchical impulse function defined by in Equation (2.5.1):
∑n

i=0 cih(i)(t) = 0, h(i)(0) = ai,

one can simplify the 2 dimensional TNL ELE’s into (n + 1)-dimensional localized ELE’s if h is an

n−hierarchical function, as the LE reduces to (n+ 1) dimensions:

Ẋt = −V ′(Xt) + ξt

ξ̇t =
(1)ξt + h(0)L̇t

(1)ξ̇t =
(2)ξt + ḣ(0)L̇t

...

(n−1)ξ̇t =

n−1∑
j=0

cj · (j)ξt

+ h(n−1) (0) L̇t,

(4.5.3)

Notice also that by taking the n-th derivative of X, we can plug in all the ODEs above into the first

ODE involving X, after which we can derive the desired probability amplitude, action and equations

of motion.

Remark 4.5.1. From the above relation of periodicity, we understand that the behaviour of ξmust be

well-defined in order to solve Euler-Lagrange equations involving non-Markovian behaviours under

any potential V. In fact, if the impulse function h is not an n−hierarchy function, then we have to

know the entire function g as given in Equation (4.2.13).

In the following two sections, we outlined some hierarchical impulse functions (see Section 2.5.3

for review) in first and fourth-order derivatives. This indeed circumvents the non-local problem and

reduces the dimension of the LE to a point where it is much easier to solve numerically.

138



4.5.1 Example 1: Exponentially Decaying Impulse Function

In this example, we define the simplest impulse function h(x) = αe−αx where the resulting GSN ξ is

the CP noise process. From here, we simply get the following Langevin equation60:

Ẋt = −V ′(Xt) + ξt

ξ̇t = −αξt + αL̇t,

(4.5.4)

where L̇t forms the PWN process.

By taking h → δ in the general Lagrangian of the GSN process, one obtains the Lagrangian of the

PWN as: L = λ
[
1− ϕA1

(g(t))
]
− ig(t)L̇t

113. From here, we can find an ODE relationship be-

tween L̇ and X directly by combining the ξ terms together. This is done by taking the time derivative

of Ẋ above and equating it to the LE for ξ: Ẍt + V ′′(Xt)Ẋt = −αξt + αL̇t. Hence, we can write this

equation in terms of L̇t:

L̇t =
Ẍt + V ′′(Xt)Ẋt + α

(
Ẋt + V ′(Xt)

)
α

. (4.5.5)

Plugging this to the Lagrangian of the Poisson white noise, we get the general Lagrangian that de-

pends on the first two derivatives of X and g:

L
(
Xt, Ẋt, Ẍt, g(t)

)
= λ

[
1− ϕA1

(g(t))
]
− ig(t)

(
Ẍt + V ′′(Xt)Ẋt + α

(
Ẋt + V ′(Xt)

)
α

)
.

(4.5.6)

Notice how the Lagrangian is now localized without integration over g. Therefore, the correspond-
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ing ELE for X and g can be solved directly by its Lagrangian:

d2

dt2

(
∂L

∂Ẍ

)
− d

dt

(
∂L

∂Ẋ

)
+

∂L

∂X
= 0,

∂L

∂g
= 0.

(4.5.7)

The first ODE is given as follows,

d2

dt2

[
−ig(t)

α

]
− d

dt

[
−ig(t)

α
(
V ′′(Xt) + α

)]
− ig(t)

α
(
V ′′′(Xt)Ẋt + αV ′′(Xt)

)
= 0 (4.5.8)

The second ODE is simply given by:

Ẍ+
(
V ′′(Xt) + α

)
Ẋ+ αV ′(Xt) = iαλϕ ′

A1 (g(t)) . (4.5.9)

Notice that the resulting ODE is now localized, two-dimensional and second-order, and can be

solved numerically. In subsection simulations sector of this chapter we plotted the optimal trajec-

tory of X and gwhere we used the same potentialV and conditions xa, xb, ta, tb as in113.

4.5.2 Example 2: Damped andOscillating Impulse Function

Similarly, here we expand the above impulse function by introducing an oscillatory term;

h(t; α) = αe−αt (cos αt+ sin αt) , (4.5.10)

where α > 0 is the parameter that contributes to range of memory. This is the special case of the

broader Damped and Oscillating impulse function that we defined in Chapter 1 with α = β.

Therefore, the impulse function is periodic in its fourth derivative, i.e. d4h/ dt4 = −4h(t), and
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we can rewrite the LE as five dimensional LE:

Ẋt = −V ′(Xt) + ξt

ξ̇t =
(1)ξt + h(0)L̇t

(1)ξ̇t =
(2)ξ̇t + ḣ(0)L̇t

(2)ξ̇t =
(3)ξt + ḧ(0)L̇t

(3)ξ̇t = −4ξt +
˙̈h(0)L̇t.

(4.5.11)

From here, we outline two approaches to solve the resulting ELE: first by differentiating X, and

second by solving the Matrix ODE resulting from the 4−hierarchy nature of h.

Via Differentiating the Position Process Taking the fifth derivative of X and combining

the rest of the ODE’s in Equation (4.5.11) yields the following ODE for X:

˙̈̈
X = −V(5)(X)Ẋ4 − 6V(4)(X)Ẋ2Ẍ− 3V ′′′(X)Ẍ2 − 4V ′′′(X)Ẋ ˙̈X− V ′′(X)¨̈X− 4(Ẋ+ V ′(X)) + ˙̈h(0)L̇t.

=⇒ L̇t =

˙̈̈
X+ V(5)(X)Ẋ4 + 6V(4)(X)Ẋ2Ẍ+ 3V ′′′(X)Ẍ2 + 4V ′′′(X)Ẋ ˙̈X+ V ′′(X)¨̈X+ 4(Ẋ+ V ′(X))

˙̈h(0)

(4.5.12)

As before, L̇t forms PWN process with LagrangianL (g(t)) = λ
[
1− ϕA1

(g(t))
]
− ig(t)L̇t. Once

we plug the equation for L̇t above to its Lagrangian, we now obtain the Lagrangian that depends up
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to 5 derivatives of X and on g:

L

(
Xt, Ẋt, Ẍt,

˙̈Xt,
¨̈Xt,

˙̈̈
Xt, g(t)

)
=λ
[
1− ϕA1

(g(t))
]

− ig(t)
˙̈̈
X+ V(5)(X)Ẋ4 + 6V(4)(X)Ẋ2Ẍ+ 3V ′′′(X)Ẍ2 + 4V ′′′(X)Ẋ ˙̈X+ V ′′(X)¨̈X+ 4(Ẋ+ V ′(X))

˙̈h(0)
.

(4.5.13)

And lastly, the equations of motion is given by the localized ELE’s for the above Lagrangian g:

− d5

dt5

(
∂L

∂
˙̈̈
X

)
+

d4

dt4

(
∂L

∂ ¨̈X

)
− d3

dt3

(
∂L

∂ ˙̈X

)
+

d2

dt2

(
∂L

∂Ẍ

)
− d

dt

(
∂L

∂Ẋ

)
+

∂L

∂X
= 0

∂L

∂g
= 0

(4.5.14)

We can observe from the ELE above that is it now localized, yet we now have a highly coupled and

nonlinear systems of ODE’s with respect to X and g.

Next, we show the second method by solving the LE as a matrix equation.

Via Solving theMatrix ODE Notice that one can rewrite Equation (4.5.11) in matrix form:

Ẋt = −V ′(Xt) + ξt

d
dt



ξt

ξ̃
(1)
t

ξ̃
(2)
t

ξ̃
(3)
t


=



0 1 0 0

0 0 1 0

0 0 0 1

−4 0 0 0





ξt

ξ̃
(1)
t

ξ̃
(2)
t

ξ̃
(3)
t


+



h(0)

ḣ(0)

ḧ(0)
˙̈h(0)


L̇t,

(4.5.15)
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where one can define Ξ⃗t :=
(
ξt, ξ̃

(1)
t , ξ̃

(2)
t , ξ̃

(3)
t

)⊤
, the coefficient matrix asA and

η⃗(t) := L̇t

(
h(0), ḣ(0), ḧ(0), ˙̈h(0)

)⊤
to get the four dimensional first order linear ODE ˙⃗Ξt = AΞ⃗t + η⃗(t). This is indeed solvable and one

can obtain the solution for ξt. However, one problem that naturally occurs is that the solution of ξt

will contain stochastic time integrals in form
∫
dτ L̇τ, which would be hard to derive its Lagrangian.

We have shown now that both methods (by taking derivatives of X and by solving the Matrix

ODE) result in nonlinear or stochastic integral terms that can only be solved numerically.

In the next section, we will apply the beautiful hierarchic nature of the GSN and derive interest-

ing and new results on Lagrangian and equations of motion.
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4.6 Finding the Localized ELE for General n−Hierarchy Impulse Function

Here, we show that one can extend solving the Matrix ODE for the damped and oscillating impulse

function case for a more general, n−hierarchical case.

Let h(x) be the impulse function of the GSN ξ satisfying the LE Ẋt = −V ′(Xt) + ξt, such that h

is the solution of the general n-th order linear IVP:

n∑
i=0

cih(i)(t) = 0, h(i)(0) = ai, (4.6.1)

where ai, ci ∈ R are scalars. Therefore, we showed in Equation (2.5.1) that the LE for ξ becomes

hierarchical as follows:

Ẋt = −V ′(Xt) + ξt

ξ̇t =
(1)ξt + h(0)L̇t

(1)ξ̇t =
(2)ξt + ḣ(0)L̇t

...

(n−1)ξ̇t =

n−1∑
j=0

cj · (j)ξt

+ h(n−1) (0) L̇t,

(4.6.2)

Defining Ξ⃗t :=
(
ξt, (1)ξt, (2)ξ, · · · , (n−1)ξ

)⊤ and η⃗ :=
(
h(0), ḣ(0), ḧ(0), · · · , h(n−1)(0)

)⊤
yields
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the matrix ODE as follows:

˙⃗Ξt =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 1

c0 c1 c2 c3 . . . cn−2 cn−1



Ξ⃗t + η⃗ L̇t = AΞ⃗t + η⃗ L̇t. (4.6.3)

Furthermore, we can go one step further and find the action of the system. By defining the vec-

tors as Z⃗t :=
(
Xt, Ξ⃗t

)⊤
, F⃗
(
Z⃗t

)
:=
(
−V ′(Xt) + ξt,AΞ⃗t

)⊤
and Y⃗t := (0, η⃗)⊤ Yt = u⃗ Yt, one can

write the Markovian LE for Z⃗ as:
˙⃗Zt = F⃗

(
Z⃗t

)
+

˙⃗Yt, (4.6.4)

where ˙⃗Y is the vector of Poisson white noise processes. Therefore, as in the case of Bray &McKane

1989, one can find the Lagrangian of Z⃗t by first finding the CFal of
˙⃗Yt, which is given by

ΦY⃗ [⃗k(t)] =
〈
exp i

∫
dt k⃗(t)Y⃗t

〉
=

〈
exp i

∫
dt
(⃗
k · u⃗

)
L̇t

〉
= exp

[
λ
∫

dt
(
1− ϕA1

(⃗
k · u⃗

))]
.

(4.6.5)

Therefore, the Lagrangian of Z⃗ is given by the following:

L = λ
[
1− ϕA1

(⃗
k · u⃗

)]
− i⃗k

(
˙⃗Z− F⃗

(
Z⃗
))

, (4.6.6)

where k⃗ = (k(t), g⃗(t))⊤ is a vector with auxiliary test function k, such that one can rewrite the
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Lagrangian as follows:

L = −ik(t)
(
Ẋ+ V ′(Xt)−

〈⃗
I, Ξ⃗t

〉)
+ λ

[
1− ϕA1

(⃗g · η⃗)
]
− i⃗g

(
˙⃗Ξt − AΞ⃗t

)
(4.6.7)

with I⃗ = (1, 0, 0, ..., 0)⊤. Notice that we now have a localized Lagrangian that depends on Xt, Ẋt, g⃗(t),

k(t), Ξ⃗t and
˙⃗Ξt. In order to get the optimal path, we minimizeL w.r.t. these variables, resulting the

following localized ELE’s:

− d
dt

∂L

∂Ẋ
+

∂L

∂X
= 0,

∂L

∂g⃗
= 0,

∂L

∂k
= 0,

− d
dt

∂L

∂
˙⃗Ξ

+
∂L

∂Ξ⃗
= 0.

(4.6.8)

Solving this yields the following (2n+ 2)−dimensional systems of ODE’s:

k̇(t) = V ′′(Xt)k(t)

˙⃗Ξt = AΞ⃗t + iλ⃗ηϕ′A1
(⃗g · η⃗)

Ẋt = −V ′(Xt) +
〈⃗
I, Ξ⃗t

〉
˙⃗g(t) = A⊤g⃗(t)− I⃗k(t).

(4.6.9)

4.6.1 Application to Literature: CPNoise Process under Gaussian Limits

Now that we have the general foundation of building a time local ELE, we now apply this to the

results obtained by Bray &McKane 1989112, where the GSN is the OU process, i.e. its impulse

function is exponential decay, h(x) = αe−αx and is under Gaussian Limits.
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Therefore, we have the following reduced LE’s:

Ẋt = −V ′(Xt) + ξt

ξ̇t = −αξt + αẆt.

(4.6.10)

We can rewrite this in vector form ˙⃗Zt = F⃗
(
Z⃗t

)
+ u⃗ Ẏt as in the previous section, which yields the

following:

d
dt

Xt

ξt

 =

−V ′(Xt) + ξt

−αξt

+

0

α

 Ẇt. (4.6.11)

Next, we apply it to the Lagrangian, noting that applying Gaussian Limits to the general model we

get the following CF of our Gaussian white noise process: Φ ˙⃗W
[ ⃗k(t)] = exp

(
−D/2

(⃗
k · u⃗

)2)
,

where k⃗(t) = (k(t), g(t))⊤ as before.

Note that the diffusion coefficientD and the imaginary number i can be removed w.l.o.g. by

rewriting u⃗ → −i⃗u/D and k⃗ → −i⃗k/D. Thus, it remains to find the Lagrangian of the system:

L =
1
2

(⃗
k · u⃗

)2
+ k⃗ ·

(
˙⃗Z− F⃗

(
Z⃗
))

= k(t)
(
Ẋt + V ′(Xt)− ξt

)
+

1
2
g(t)2 + g(t)

(
ξ̇t + αξt

)
.

(4.6.12)

It remains to apply the localized ELE’s as in Equation (4.6.8):

k̇(t) = V ′′(Xt)k(t)

ξ̇t = −αξt + g(t)

Ẋt = −V ′(Xt) + ξt

ġ(t) = αg(t)− k(t).

(4.6.13)

Notice that our ELE in Equation (4.6.8) is localized and four dimensional; the non-local and one
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dimensional ELE found by Bray &McKane is:

−Ẍ+ V ′V ′′ + α−2
(
¨̈X+ 3ẊẌV ′′′ + Ẋ3V ′′′′ − Ẋ2V ′′V ′′′ − ẌV ′′2

)
= 0. (4.6.14)

We can prove that Bray&McKane’s non-local ELE and our localized higher dimensional ELE are the

same. Notice that from our ELE one can rewrite the instantons g = ξ̇+ αξ and k = α2ξ− ξ̈. Then,

we take the fourth order derivative of X:

Ẋ = −V ′ + ξ

=⇒ Ẍ = −ẊV ′′ + ξ̇ = −ẊV ′′ − αξ+ g

=⇒ ˙̈X = −Ẋ2V ′′′ − ẌV ′′ − αξ̇+ ġ

= −Ẋ2V ′′′ − ẌV ′′ − α (−αξ+ g) + αg− k

= −Ẋ2V ′′′ − ẌV ′′ + α2ξ− k

=⇒ ¨̈X = −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ + α2ξ̇− k̇

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ + α2 (−αξ+ g)− kV ′′

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ − α3ξ+ α2g− kV ′′

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ − α3ξ+ α2
(
ξ̇+ αξ

)
−
(
α2ξ− ξ̈

)
V ′′

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ + α2ξ̇−
(
α2ξ− ξ̈

)
V ′′,

(4.6.15)

where the derivatives of ξ can now be retrieved from the LE: ξ̇ = Ẍ + ẊV ′′ and ξ̈ = ˙̈X + Ẋ2V ′′′ +
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ẌV ′′. Therefore, plugging these back to the fourth order derivative of X yields:

¨̈X = −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ + α2ξ̇−
(
α2ξ− ξ̈

)
V ′′

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ − ˙̈XV ′′ + α2
(
Ẍ+ ẊV ′′)− (α2 (Ẋ+ V ′)− ˙̈X− Ẋ2V ′′′ − ẌV ′′

)
V ′′

= −Ẋ3V ′′′′ − 3ẊẌV ′′′ + Ẋ2V ′′V ′′′ + ẌV ′′2 + α2
(
Ẍ− V ′V ′′) .

(4.6.16)

Moving all the variables to the LHS and dividing the equation with α2 yields the desired non-local

ELE in Equation (4.6.14).

One can numerically solve the ELE in Equation (4.6.8) viaMathema ca; however in order to

progress on that one needs to find the boundary conditions for the tuple (Xt, ξt, g(t), k(t)). The

first two are relatively trivial. As we are aiming to find the instanton of Xt within some boundary

[ta, tb], we can decide on the boundary conditions for X as Xta = xa and Xtb = xb. As for our CP

process ξ, we can choose an initial condition ξta = 0 without loss of generality.

As for the latter two in the tuple, choosing the initial conditions gta = g0 and kta = k0 is not

relatively straightforward.

First, notice that our ELE yields explicit solution for g(t) given g0: g(t) = g0eα(t−ta). Plugging

this to the ODE for ξ yields: ξ̇t = −αξt − iDg0eα(t−ta), where, given the initial condition ξta = 0 has

explicit solution

ξt =
−iDg0e−αt (−1+ e2αt

)
2α

. (4.6.17)

In order to explicitly solve for g0, one needs to assign additional boundary condition ξtb = sb to get:

sb =
−iDg0e−αtb

(
−1+ e2αtb

)
2α

=⇒ g0 =
2iαsbeαtb

D (−1+ e2αtb)
. (4.6.18)

The initial condition for k(t) is even trickier to solve. Directly from the first ELE we obtain k(t) =
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k0e
∫ t
ta dτ V

′′(Xτ). In order to find an equation for k0, one needs to fix a boundary for k, e.g. ktb = kb

to get

k0 = kbe−
∫ tb
ta dτ V ′′(Xτ), (4.6.19)

where this is now solvable if one knows the [optimal] values of Xt on t ∈ [ta, tb].

These assumptions are similarly required in the Bray &McKane paper, where they focus on find-

ing the ELE solely w.r.t X. Given the Lagrangian,

Lbray =
(
Ẋt + V ′(Xt)

)2
+

1
α2
(
Ẍt + V ′′(Xt)Ẋt

)2
, (4.6.20)

the corresponding ELE for Xt is of fourth order and requires multiple boundary conditions to solve

the ODE. The authors choose asymptotic boundary conditions to be the two global minima of the

double well potential of the form: V(x) = −v1x2/2 + v2x4/4, where v1, v2 > 0. In below figure,

the potential that we used in our numerical calculation is given. The authors here used the points a

and b as the two asymptotic boundary conditions of the ELE, i.e. limt→−∞ Xt = −
√

v1/v2 = a,

and limt→+∞ Xt = b. They also proposed to choose a point d that is between these two extreme

boundary conditions as their third initial condition. Instead of solving the ODE of X at the fourth

order, the authors instead integrated the Lagrangian w.r.t to time and multiplied the integration by

Ẋ to reduce their ELE to third order. Furthermore, in their subsequent article published in Bray,

McKane &Newman in 199059, the authors further reduce the order of their ELE by introducing

y(x) = ẋ and rewriting the ELE in terms of y. They next propose 2 boundary conditions y(a) =

y(b) = 0, where x = a and x = b are bottom and top of the symmetric wells as given in Figure 4.3.

However, instead of transforming our localized ELE to that of Bray &McKane’s, we instead

proposed to revert the boundary conditions of the transformed, second-order non-local ELE: 0 =

y(a) = Ẋ0 = ẊT = y(b), where we set ta = 0 and tb = T for some T > 0. Together with the

desired boundary conditions of moving from the bottom of the hill towards the top, we choose the
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Figure 4.3: General graph of the poten alV(x) = −x2/2 + x4/4 with suggested points a, b, c and d to be used in
our numerical calcula ons.
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free variable d = (a + b)/2 (which is the midpoint of the potentialV) and apply 2 more boundary

conditions on X: X0 = a, and XT = b. Now, we have 4 boundary conditions for X, and one can

instead numerically solve the Bray &McKane’s un-transformed fourth-order ELE as in Equation

(4.6.14).

Before applying the initial conditions (IC’s) obtained by Bray &McKane to our system of ODE’s,

notice that they solely depend on X, and that one can derive the IC for ξ by applying Ẋ0 = −V ′(X0)+

ξ0 =⇒ ξ0 = V ′(X0). Likewise, ẊT = 0 =⇒ ξT = V ′(Xt).

Instead, we can indirectly derive the IC’s for k and g via the Lagrangian of X as given in Equation

(4.6.12). Applying the IC of X toL the ELE’s in Equation (4.6.13) we get:

L (0) = k(0)
(
Ẋ0 + V ′(X0)− ξ0

)
+

1
2
g(0)2 + g(0)

(
ξ̇0 + αξ0

)
=⇒ g(0) = ±

√
2
3
L (0),

L (T) = k(T)
(
ẊT + V ′(XT)− ξT

)
+

1
2
g(T)2 + g(T)

(
ξ̇T + αξT

)
=⇒ g(T) = ±

√
2
3
L (T).

(4.6.21)

We can also obtain the conditions for k by taking the first derivative of the Lagrangian:

L̇ (t) = k̇(t)
(
Ẋt + V ′(Xt)− ξt

)
+ k(t)

(
Ẍt + V ′′(Xt)Ẋt − ξ̇t

)
+

+ g(t)ġ(t) + ġ(t)
(
ξ̇t + αξt

)
+ g(t)

(
ξ̈t + αξ̇t

)
L̇ (0) = 3g(0) (αg(0)− k(0)) =⇒ k(0) = αg(0)− L̇ (0)

3g(0)
,

L̇ (T) = 3g(t) (αg(t)− k(t)) =⇒ k(T) = αg(t)− L̇ (T)
3g(T)

.

(4.6.22)

Lastly, as we are analyzing the optimal path of the same particle X, we have that the Lagrangians

obtained by our results and that of Bray &McKane as in Equation (4.6.20) should be the same,
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L = Lbray. Therefore, we can find the IC of k and g by first solving Equation (4.6.14) with suit-

able initial conditions, findingLbray, and then solving our ELE with initial conditions for X, ξ, g,

and k obtained throughout this section. Lastly, we used the IC as part of the Shoo ngmethod of our

numerical computation.

For the Bray &McKane model, the initial conditions are found to be: X0 = −1, Ẋ0 = 0, Ẍ0 =

0.000480018 and ˙̈X0 = −0.00359538. Interestingly the particle jumping from the bottom well

and top well is mainly characterized by the initial condition of its third derivative, also known as

initial jerk.

By choosing a large time T = 20, the result is a perfect fit for instantons X as given in Figure 4.4

below, with the resulting lots for auxiliary instantons k and g given in Figure 4.5.

5 10 15 20
t

-1.0

-0.8

-0.6

-0.4

-0.2

X(t)

Bray & McKane

Ours

Figure 4.4: Numerical solu ons of the instanton path obtained by Bray & McKane’s model versus our model, where we
computed the path from bo om of the well d = a to the top of the well at x = b.

Now that we grasped how the case for exponential decay and Gaussian white noise works, let

us extend to the new realm of research by finding optimal paths of X driven by for non-Gaussian

colored noise process.
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5 10 15 20
t

0.2

0.4

0.6

0.8

g[t]

k[t]

Figure 4.5: Instanton solu ons of k and g for longer me range T = 20 from top bo om well to top well.

4.6.2 Extension from Literature: CPNoise Process

In this section, we now extend the model proposed by112 to take into account the CPNoise pro-

cess ξ formed by the exponentially decaying impulse function h = αe−αx. Recall that we already

obtained the Lagrangian of a general finite hierarchy system in Equation (4.6.7), followed by the

localized ELE’s in Equation (4.6.9). In case of our choice of h, the Lagrangian simply becomes:

L = k(t)
(
Ẋt + V ′(Xt)− ξt

)
+ λ

(
1− ϕA1

(−ig(t))
)
+ g(t)

(
ξ̇t + αξt

)
, (4.6.23)

and the local ELE becomes,

k̇(t) = V ′′(Xt)k(t)

ξ̇t = −αξt + iλϕ′A1
(−ig(t))

Ẋt = −V ′(Xt) + ξt

ġ(t) = αg(t)− k(t).

(4.6.24)
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As before, the IC’s for X and ξ are X0 = −1,XT = 0 and ξ0 = V ′(X0), ξT = V ′(XT). After trial

and errors, we have found instantons for the path X and action S under following jump amplitudes:

• Constant: ϕA1
(θ) = cosh θ.

• Gaussian: ϕA1
(θ) = eθ2/2,

• Exponential: ϕA1
(θ) = 1+ θ2

2(1−θ2) ,

The candidate variables for g0 and k0 are given in the below table, where we fixed g0 and chose can-

didate k0: We then solved this ELE system numerically inMathema ca, where we chose λ = 1, α = 1

Constant Gaussian Exponential Gaussian Limits
g0 0.0004799 0.0004799 0.0004799 0.0004799

108k0 1.552607375 1.456437384 1.337414248 1.59142852

Table 4.1: Candidate ini al condi ons for instantons of g and k under various jump amplitudes, compared with the case
for Gaussian Limits.

and T = 20. We next plotted the resulting instantons of X using three jump amplitudes in Figure

4.6. This is followed by Figure 4.7 the instantons of g and k for 3 different jump amplitudes.

Lastly, we have shown in Figure 4.8 the resulting instantons of actions obtained by 3 jump ampli-

tudes plotted against that obtained by Gaussian Limits, all normalized by the escape rate S∞ via the

Bray &McKane model. The results suggest that the stationary action is obtained by the Gaussian

Limits, followed by Gaussian, Constant and Exponential jump amplitudes. As our goal is to find

the minimum action required for jumping from the bottom well to the top well, we will show in the

next section the combination of parameters where one can obtain an even smaller escape rate than

that of Gaussian Limits.
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Figure 4.6: Instantons of the paths X obtained from 3 different jump amplitudes (Constant, Gaussian, and Exponen al),
plo ed against the case for Gaussian Limits.
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Figure 4.8: Instantons of ac ons driven by Constant, Gaussian and Exponen al jump amplitudes and Gaussian Limits
(GL), normalized by escape rate obtained via the Bray & McKane model, S∞.

4.6.3 Optimal Escape Rates for Different Parameters of the CPNoise ξ

In this section, we now find various combinations of parameters defined by the colored Poisson

noise ξwhere one can attain smallest escape rate. For more in depth analysis, we will focus on vary-

ing parameters of various jump amplitudes, starting with the constant jump amplitude.

Constant Jump Amplitude

Here, the parameters to be varied are the jump intensity λ and amplitude coefficient A0 such that

the CF of the jump amplitudes will be given by ϕA1
(A0θ) = cosh (A0θ). As in the previous section,

we fixed g0 = 0.0004799 and perturbed k0 to obtain the escape rates.

Since the derivation of optimal escape calculations for non-Gaussian and non-Markovian pro-

cesses are new, we will measure the escape rate

S =
∫ tb

ta
dτ k(τ)

(
Ẋτ + V ′(Xτ)− ξτ

)
+ λ

(
1− ϕA1

(−A0ig(τ))
)
+ g(τ)

(
ξ̇τ + αξτ

)
(4.6.25)
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by normalizing Swith the case for Gaussian Limits on ϕ to see whether one can achieve smaller es-

cape rate (hence normalization is< 1) for different parameters. As in Baule & Sollich paper, the

Gaussian Limit is obtained by truncating φ at the quadratic term of its Taylor series of cosh, i.e.

φtrunc (θ) =
∑1

n=0 θ
2n/(2n)! = 1+ x2/2, therefore yielding the Gaussian Limit.
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Gaussian Jump Amplitude

We established in the previous subsection that in the case of constant jump amplitudes, the effective

escape rate of X driven by colored Poisson noise ξwith Constant jump amplitudes is higher than the

Gaussian colored noise.

Now, we outline the case for Gaussian jump amplitudes, where ϕA1
(A0θ) = eA2

0θ
2/2. The Gaus-

sian Limits case will be the same as before: ϕtruncA1
(A0θ) = 1 + A2

0θ
2/2. The IC k0 of the Gaussian

jump amplitudes and the corresponding normalized escape rates are given below Tables, noting that

the Gaussian Limit case ktrunc0 will be the same as in the constant jump amplitude case. We again

started with g0 = 0.0004799.

Furthermore, for A0 = 1, we plotted the escape rates w.r.t. Gaussian and Constant jump am-

plitudes in Figure 4.9, where we observe that the Gaussian jump amplitude case has more efficient

escape rate. Lastly, for various values of A0 and λ, we plotted heat diagram of S/SGL for Gaussian

jump amplitudes in Figure 4.10, where similar decaying behavior is observed for the case in Figure

4.9; however the efficiency of escape rate increases for smaller A0.

For Various Impulse Function Coefficient α

Now that we established the efficacy of the escape rate of the Gaussian jump amplitude for various

λ and A0, we next show whether perturbing the coefficient α of exponential decaying impulse func-

tion h(x) = αe−αx would alter the overall behavior of the normalized escape rate. For simple recall,

we note that for α → ∞ the CP noise ξ becomes PWN. This time, we fixed g0 = 0.0004799 for

α = 1.5 and decreased g0 = 10−6 for α = 2.

Now, we showed in this section that relaxation of the TNL ELE yields high order, coupled yet

now local ELE’s where the tuple of the hierarchies
(
ξ, (1)ξ, . . . , (n)ξ

)
together with the position

process X jointly becomeMarkovian. We also showed that our hierarchy method matches with the

159



-6 -4 -2 2 4
l�λ

0.2

0.4

0.6

0.8

1.0

S/SGL

Gaussian lnA0=0 Gaussian lnA0=0.5 Constant lnA0=0

Constant lnA0=0.5
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various A0.
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results obtained by87, where authors solely focused on the CP noise process, the impulse function

of which only has unit hierarchy order.

We now expand the impulse functions to higher hierarchy orders and show newmethods of

computing the localized ELE’s by uncoupling them with theMarkov Embedding principle.

4.7 Uncoupling Time Non Local ELE’s ByMarkov Embedding Technique

So far in the previous section, we have established how the action is calculated using the exponen-

tially decaying impulse function, which is a first hierarchical function. We now extend our method

to finding the optimal path of X under a general potentialV for higher-order hierarchical functions.

Let us first outline an example for the case of second hierarchical impulse function of the follow-

ing form:

h(x) =
α2 + β2

α + β
e−αx (sin βx+ cos βx) . (4.7.1)

Recall from Chapter 2 that the impulse function h is now the solution of the second order IVP:

ḧ−2αḣ+
(
α2 + β2

)
h = 0, h(0) = 1, ḣ(0) = β−α. Therefore, the hierarchy of ξ becomes second

order:

ξ̇t =
(1)ξt + L̇t

(1)ξ̇t = 2α (1)ξt −
(
α2 + β2

)
ξt + (β− α) L̇t,

(4.7.2)

with coefficient vector η⃗ and matrixA respectively given by η⃗ = (1, β− α)⊤ and

A =

 0 1

−(α2 + β2) 2α

 . (4.7.3)

Defining Ξ⃗t =
(
ξt, (1)ξt

)⊤, g⃗ = (g1(t), g2(t)) the Lagrangian of as in (4.6.7) is now given by the
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following:

L =− ik(t)
(
Ẋt + V ′(Xt)− ξt

)
+ λ

[
1− ϕA1

(g1(t))
]
− ig1(t)

(
ξ̇t − (1)ξt

)
+ λ

[
1− ϕA1

((β− α) g2(t))
]
− ig2(t)

(
(1)ξ̇t −

(
α2 + β2

)
ξt + 2α(1)ξt

)
.

(4.7.4)

Under Wick rotations k 7→ −ik, g1 7→ −ig1 and g2 7→ −ig2, this yields the following localized ELE

as in (4.6.9):

k̇(t) = V ′′(Xt)k(t)

ξ̇t =
(1)ξt + iλϕ′A1

(−ig1(t))

(1)ξ̇t = −
(
α2 + β2

)
ξt + 2α(1)ξ̇t + iλϕ′A1

(−i (β− α) g2(t))

Ẋt = −V ′(Xt) + ξt

ġ1(t) = −
(
α2 + β2

)
g2(t) + k(t)

ġ2(t) = g1(t) + 2αg2(t).

(4.7.5)

Such a system is not only highly coupled, it also results new equations, where we now have to find

the Ansätze for the initial conditions (1)ξ0, g1(0), g2(0) and k(0) and optimize each parameter in

order to obtain the optimal path X.

One way to overcome this problem of coupled systems is to approximate the impulse function

by simpler functions. In fact, one may approximate any impulse function h by the sum of complex-

valued exponential functions. This method of approximating impulse functions is calledMarkov

Embedding Technique, which we will introduce in the next section.

Before we progress on this, since the approximate impulse function will be complex-valued, so

will the GSN ξ. Therefore, we first need to introduce the concept of complexifying stochastic pro-

cesses.
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4.7.1 Complexification of Stochastic Processes

So far throughout this thesis, we considered stochastic processes X on the real lineR. In this section,

we show that not only one can extend stochastic processes to the complex plane, i.e. complexify the

stochastic processes, but this extension also preserves the properties and definitions we outlined in

Chapter 1.

Let us first begin by explaining the extension for random variables. Complex random variables

play an increasingly important role in communications and biomedical signal processing and related

fields38 as well as in condensed matter physics where complex-valued optical scattering indices are

observed39. Instead of treating random variables as complex-valued, one usually defines a complex

random variable as a short-hand notation of defining a pair of real random variables.40.

In this sense, if we let X and Y be two random variables defined over the probability space (Ω,F ,P)

that need not be independent, then the complex random variable Z can be defined as Z = X + iY,

where i =
√
−1 is the imaginary number. Indeed, the CDF of Z is a function F : C → [0, 1] that is

given by the joint CDF of X and Y:

FZ(z) = FX,Y (< (z) ,= (z)) = P (X ≤ < (z) ,Y ≤ = (z)) . (4.7.6)

If we define x = < (z) and y = = (z) for easier writing, the PDF of Z, denoted by fZ : C → [0, 1], if

it exists, will be given by differentiating the joint CDF of X and Ywith respect to x and y:

fZ(z) =
∂2

∂x∂y
P (X ≤ x,Y ≤ y) . (4.7.7)

Due to its linear nature, the expectation in complex sense is the same as the expectation of the sum

of two random variables: 〈Z〉 = 〈X〉 + i 〈Y〉. However, the variance of complex random variables

is not trivial. In literature, the variance in the complex plane is categorized into absolute variance
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and pseudo-variance. The absolute variance is, as hinted in its name, the variance of Z in an absolute

sense:

varAbs [Z] =
〈
|Z|2

〉
− |〈Z〉|2 . (4.7.8)

By plugging in the definition of Z, we get that
〈
|Z|2

〉
− |〈Z〉|2 =

〈
X2〉 − 〈X〉2 +

〈
Y2
〉
− 〈Y〉2;

therefore, the absolute variance of Z is given by the sum of the variances of X and Y: varAbs [Z] =

var [< (Z)] + var [= (Z)]. Therefore, the absolute variance is a positive and real number, just as its

real counterpart.

On the other hand, the pseudovariance is the variance of Z that is not in absolute sense: varp [Z] =〈
Z2〉− 〈Z〉2. In this case, the pseudovariance is a generally complex number that is treated the same

way as summation of two random variables:

varp [Z] = var [< (Z)]− var [= (Z)] + 2icov [< (Z) ,= (Z)] . (4.7.9)

Lastly, due to its linear definition, the CF of Z is a function ϕ : C → C that is the CF of the sum of

two random variables:

ϕZ (ω) =
〈
eiℜ(ω̄Z)

〉
=
〈
ei(ℜ(ω)ℜ(Z)+ℑ(ω)ℑ(Z))

〉
. (4.7.10)

Using the case of random variables, one can then extend this notion of complexification to stochas-

tic processes the same way. Complex stochastic processes first arose in a detailed analysis by Hida

in 197141 for providing a mathematical model of the complex white noise, i.e. collection of inde-

pendent complex random variables. This was later brought out extensively to quantummechanics

due to square root dependence of stochastic processes (which is naturally complex-valued) with the

solution of Schrodinger’s equation126.

If we let X = (Xt)t≥0 and Y = (Yt)t≥0 be two stochastic processes defined on the probability
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spaces (Ω,F ,P) that also need not be independent, then one can construct a complex stochastic

process Z = (Zt)t≥0 where each realization is defined by Zt = Xt + iYt. Since the realization Zt is a

random variable, all the above definitions on expectation, absolute and pseudo-variance, and the CF,

are applicable for Zt.

In addition, by43, the CFal of Z can also be extended from its CF as follows:

ΦZ[ω] =
〈
exp i

∫ ∞

0
dt<

(
ω(t)Zt

)〉
=

〈
exp i

∫ ∞

0
dt (< (ω(t))< (Zt) + = (ω(t))= (Zt))

〉
.

(4.7.11)

This will be a useful tool in understanding the behavior of the complex-valued GSN process ξ. One

way to complexifying ξ is to let the impulse function h be extended to the complex plane, h : R →

C. Therefore, by definition, the real part (and likewise the imaginary part) of each realization of ξ is

given by:

< (ξt) = <

( Nt∑
i=1

Aih(t− Ti)

)
=

Nt∑
i=1

Ai< (h(t− Ti)) . (4.7.12)

Therefore, if we assume a complex-valued impulse function, we can rewrite CFal of ξ from Equation

(2.3.7) as follows:

Φξ[ω] = exp

[
λ
∫ ∞

0
dt
(
ϕA1

(∫ tb

t
ds<

(
ω(s)h(s− t)

))
− 1
)]

. (4.7.13)

Lastly, we can also define the complex position process X to be the solution of the LE Ẋt = −V ′(Xt)+

ξt, where the potentialV : C → C is now also complexified.

4.7.2 Path Integral Formulation for Complex Stochastic Processes

From the CFal of the complex GSN process ξ from Equation (4.7.13), we can then extend the path

integral formulation X as the LE solution. In the complexified version, the probability amplitude for
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the time frame [ta, tb] is then given by:

π(xb, tb|xa, ta) =
∮

CX

D[X]
∮

Cg

D
[ g
2π

]
Φξ[g] exp

(
i
∫ tb

ta
dt g(t)

(
Ẋt + V ′(Xt)

))
· exp

(
1
2

∫ tb

ta
dt V ′′(Xt)

)
,

(4.7.14)

where Φξ[g] is the CFal of the complex GSN in Equation (4.7.13) bounded on [ta, tb]. However, as

one refers to the path integral formula, the resulting action and Lagrangian will now also be complex

valued.

Complex Lagrangian and action have also been recently studied in analyzing quantummechan-

ical systems and biochemical dynamics. Complex Lagrangian arises in non-standard cases where

there may be hidden properties of a given dynamical system34, or in general to provide a more accu-

rate approximation of the Master Equation of simple biochemical circuits35. Furthermore, complex

action has been shown to provide a future-included theory of quantummechanics, as well as calcu-

lating black hole dynamics in general relativity42.

To approach the principle of stationary action in the complex realm, we complexify the action

functional into purely real and purely imaginary values, S = SR + iSI, hence also the Lagrangian

L = LR + LI. Therefore, by41 and42, the probability amplitude for the time frame [ta, tb] under

weak-noise limit as in (4.2.11) can be rewritten as follows,

π (xb, tb|xa, ta) =
∮

CX

D[X]
∮

Cg

D
[ g
2πε

]
exp

[
−SR[X, g]

ε
− i

SI[X, g]
ε

]
. (4.7.15)

Therefore, the stationary action will now be taken as the functional expansion on both real and

imaginary parts of the action: δSR = δSI = 0 and by Equation (4.2.5) the stationary action princi-
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ple yields the following TNL ELE:

∫ tb

ta
dt

δXR

∞∑
j=0

(
− d
dt

)j δSR
δX(j)

R

+ δgR
∞∑
j=0

(
− d
dt

)j δSR
δg(j)R

 = 0,

∫ tb

ta
dt

δXI

∞∑
j=0

(
− d
dt

)j δSI
δX(j)

I

+ δgI
∞∑
j=0

(
− d
dt

)j δSI
δg(j)I

 = 0,

(4.7.16)

where we used the same notation XR = < (X), XI = = (X) and gR = < (g), gI = = (g). Thus, the

TNL ELE will then be similar to the real-valued counterpart, where the functional derivatives will

instead be split to purely real and purely imaginary X and g.

4.7.3 Introduction toMarkov Embedding Technique

Markov Embedding is a very useful technique to approximate the behavior of a non-Markovian

stochastic process in the Markovian realm. It has been widely applied in theoretical physics to ap-

proximate non-Markovian the Schrödinger equation of a quantum particle88 and modeling com-

plex network dynamics89.

We first recall that under the [trivial] exponentially decaying impulse function h(x) = αe−αx

with α > 0, the resulting CP process ξ becomes OU noise, and the tuple process (X, ξ) is Marko-

vian. Here, we will use sum of exponential functions to approximate our impulse function. By90

and91, any continuously differentiable h : R → C can be approximated by the following sum of

exponentials:

h(x) ≈ happr(x) =
K∑
j=1

βje
−αjx, (4.7.17)

where αj, βj ∈ C \ {0} are complex-valued coefficients with condition<
(
αj
)
> 0 for all j. Au-

thors in referenced paper neglected the normalization coefficients βj, however it is essential in our

circumstance as we also need set the initial value h(0) = happr(0) =
∑K

j=1 βj. Therefore, using this
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exponential sum term, we can rewrite the realization of the CP process ξ as follows:

ξt =
Nt∑
i=1

Ai

K∑
j=1

β−αj(t−Ti) =
K∑
j=1

(j)ξt, (4.7.18)

where

(j)ξt = βj
Nt∑
i=1

Aie−αj(t−Ti) (4.7.19)

has the following time derivative:

(j)ξ̇t = −αj(j)ξt + βjL̇t, (4.7.20)

with L̇t forming the PWN. Notice that due to αj and βj, the GSN ξ becomes complex-valued. Plug-

ging this relation into the LE of X yields a much more simple, [almost] uncoupled,K-th order sys-

tem of SDE’s in derivative form:

Ẋt = −V ′(Xt) +

K∑
j=1

(j)ξt

(1)ξ̇t = −α1(1)ξt + β1L̇t

(2)ξ̇t = −α2(2)ξt + β2L̇t

...

(K)ξ̇t = −αK(K)ξt + βKL̇t

(4.7.21)

Note that although the SDE for X is coupled, the rest of the SDE’s is uncoupled. Therefore, we first

consider the system for ξ. Defining Ξ⃗t =
(
(1)ξt, (2)ξt, . . . , (K)ξt,

)⊤, α⃗ = (α1, α2, . . . , αK)⊤, and

β⃗ =
(
β1, β2, . . . , βK

)⊤, we can rewrite the ξ system in matrix form:

˙⃗Ξt = − (I⊗ α⃗) Ξ⃗t + β⃗L̇t, (4.7.22)
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where I⊗ α⃗ is the tensor product between the identity matrix and α⃗ defined by

I⊗ α⃗ =



α1 0 0 . . . 0

0 α2 0 . . . 0

0 0 α3 . . . 0
...

...
... . . . ...

0 0 0 . . . αK


. (4.7.23)

We can further define Z⃗t =
(
Xt, Ξ⃗t

)⊤
and find the SDE for Z⃗t:

˙⃗Zt = F
(
Z⃗t

)
+ Y⃗t, (4.7.24)

where F
(
Z⃗t

)
=
(
−V ′(Xt) +

〈
Ξ⃗t, 1⃗

〉
,− (I⊗ α⃗) Ξ⃗t

)⊤
with

〈
Ξ⃗t, 1⃗

〉
=
∑K

j=1
(j)ξt being the inner

product of Ξ⃗t and 1-vector, 1⃗ = (1, 1, . . . , 1)⊤, and Y⃗t =
(
0, β⃗
)
L̇t = η⃗L̇t. From here, the CFal of Y⃗

withK-dimensional complex-valued test function k⃗(t) = (k(t), g⃗(t)) is given by:

ΦY⃗t [⃗k(t)] =
〈
exp i

∫
dt<

(⃗
k · Y⃗t

)〉
=

〈
exp i

∫
dt<

(⃗
k · η⃗

)
L̇t

〉
= exp

[
λ
∫

dt
(
1− ϕA1

(
<
(⃗
k · η⃗

)))]
.

(4.7.25)

Therefore, the real and imaginary parts of the Lagrangian of the system Z⃗ is now given by:

LR = λ
[
1− ϕA1

(⃗
kR
)
· η⃗R
]
− i⃗kR(t)

(
˙⃗ZR;t − F

(
Z⃗R;t

))
= −ikR(t)

(
ẊR;t + V ′(XR;t)−

〈
Ξ⃗R;t, 1⃗

〉)
+ λ

[
1− ϕA1

(⃗
gR · β⃗R

)]
− ig⃗R

(
˙⃗ΞR;t + (I⊗ α⃗R) Ξ⃗R;t

)
,

LI = −ikI(t)
(
ẊI;t + V ′(XI;t)−

〈
Ξ⃗I;t, 1⃗

〉)
+ λ

[
1− ϕA1

(⃗
gI · β⃗I

)]
− i⃗gI

(
˙⃗ΞI;t + (I⊗ α⃗I) Ξ⃗I;t

)
.

(4.7.26)
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From here, we can find the minimum action of X by minimizingL with respect to k, g⃗,X, Ξ⃗ as

before, yielding the ELE:

ẊR;t = −V ′(XR;t) +
〈
Ξ⃗R;t, 1⃗

〉
ẊI;t = −V ′(XI;t) +

〈
Ξ⃗I;t, 1⃗

〉
k̇R(t) = V ′′(XR;t)kR(t)

k̇I(t) = V ′′(XI;t)kI(t)

˙⃗gR(t) = (I⊗ α⃗R) g⃗R(t)− kR(t)⃗1

˙⃗gI(t) = (I⊗ α⃗I) g⃗I(t)− kI(t)⃗1

˙⃗ΞR;t = − (I⊗ α⃗R) Ξ⃗R;t + iλ⃗βRϕ
′
A1

(⃗
gR(t) · β⃗R

)
˙⃗ΞI;t = − (I⊗ α⃗I) Ξ⃗I;t + iλ⃗βIϕ

′
A1

(⃗
gI(t) · β⃗I

)
.

(4.7.27)

Simplifying theMatrix ODE

Although the system is coupled again due to X, the SDE’s for both real and imaginary parts of Ẋ

only depends on the sum of the variables (j)ξt, where each of their individual SDE’s are uncoupled.

We can actually use the uncoupled property of (j)ξt to our advantage. Notice that for each j the

CP (j)ξt is a Gen-OU process with initial condition (j)ξ0 = 0 a.s., and has the general solution:

(j)ξt = βj

∫ t

0
dτ L̇τe−αj(t−τ). (4.7.28)

Plugging the solution to the LE we get that

Ẋt = −V ′(Xt) +
K∑
j=1

βj

∫ t

0
dτ L̇τe−αj(t−τ) = −V ′(Xt) +

∫ t

0
dτ L̇τ

K∑
j=1

βje
−αj(t−τ). (4.7.29)
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Therefore, the Lagrangian of Xwill now be the integrated Lagrangian of L̇t as in Equation (4.2.14)

of our thesis:

LR = λ

1− ϕA1

∫ t

0
dτ gR(τ)

K∑
j=1

<
(
βje

−αj(t−τ)
)− igR(t)

(
ẊR;t + V ′(XR;t)

)

LI = λ

1− ϕA1

∫ t

0
dτ gI(τ)

K∑
j=1

=
(
βje

−αj(t−τ)
)− igI(t)

(
ẊI;t + V ′(XI;t)

)
.

(4.7.30)

Therefore, one can find the ELE for real and imaginary parts as;

ẊR;t = −V ′(XR;t) + iλ

 K∑
j=1

< (β)j

 ϕ′A1

∫ t

0
dτ gR(τ)

K∑
j=1

<
(
βje

−αj(t−τ)
)

ẊI;t = −V ′(XI;t) + iλ

 K∑
j=1

= (β)j

 ϕ′A1

∫ t

0
dτ gI(τ)

K∑
j=1

=
(
βje

−αj(t−τ)
)

ġR(t) = V ′′(XR;t)gR(t)

ġI(t) = V ′′(XI;t)gI(t)

(4.7.31)

The first two ELE’s are a type of Volterra convolution equation92. In detail, it is a special type of

differo-integral equation that we can transform the second ELE into a second-order ODE.

Let’s rewrite the interior of ϕ′A1
as follows:

∫ t

0
dτ g(τ)

K∑
j=1

βje
−αj(t−τ) =

K∑
j=1

∫ t

0
dτ g(τ)βje

−αj(t−τ) =
K∑
j=1

kj(t), (4.7.32)

where kj(t) =
∫ t
0 dτ g(τ)βje

−αj(t−τ). We can now conduct the following operations for all j ∈
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{1, . . . ,K} to get an equation for g:

kj(t) =
∫ t

0
dτ g(τ)βje

−αj(t−τ)

=⇒ kj(t)eαjt = βj

∫ t

0
dτ g(τ)eαjτ

=⇒ d
dt
(
kj(t)eαjt

)
= βj

d
dt

∫ t

0
dτ g(τ)eαjτ

=⇒
(
k̇j(t) + αjkj(t)

)
eαjt = βjg(t)e

αjt

=⇒
k̇j(t) + αjkj(t)

βj
= g(t),

(4.7.33)

where the last operation holds as we assumed βj 6= 0 for all j. Therefore, since the equation for g

above holds for all j, we can take the average of the LHS and equate it to g:

k̇j(t) + αjkj(t)
βj

= g(t) ∀j =⇒ 1
K

K∑
j=1

k̇j(t) + αjkj(t)
βj

= g(t). (4.7.34)

Therefore, the ELE for g can now be written as second order ODE:

1
K

K∑
j=1

k̈j(t) + αjk̇j(t)
βj

= V ′′(Xt)
1
K

K∑
j=1

k̇j(t) + αjkj(t)
βj

=⇒
K∑
j=1

k̈j(t)−
(
V ′′(Xt)− αj

)
k̇j(t) + αjV ′′(Xt)kj(t)

βj
= 0

=⇒ k̈j(t)−
(
V ′′(Xt)− αj

)
k̇j(t) + αjV ′′(Xt)kj(t) = 0,

(4.7.35)

where we can omit the summation in last as kj forms the basis of g. Thus, we now converted the
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ELE into differential form,

ẊR;t = −V ′(XR;t) + iλ

 K∑
j=1

<βj

 ϕ′A1

 K∑
j=1

<kj(t)


<k̈j(t) =

(
V ′′(XR;t)−<αj

)
<k̇j(t) + <αjV ′′(XR;t)<kj(t)

ẊI;t = −V ′(XI;t) + iλ

 K∑
j=1

=βj

 ϕ′A1

 K∑
j=1

=kj(t)


=k̈j(t) =

(
V ′′(XI;t)−=αj

)
=k̇j(t) + =αjV ′′(XI;t)=kj(t)

(4.7.36)

Conveniently, we can also find the initial conditions of the system very easily. The first one is the

trivial condition for XR, XR;0 = xa, i.e. the starting point of X on the potential in the real line. We

also let XI;0 = 0. As for the rest of the initial conditions, notice first that<kj(0) = =kj(0) = 0

due to the definition of kj and that<k̇j(0) = <βj<g(0) = <βj<g0 and similarly=k̇j(0) =

=βj=g0. Therefore, we just have to calibrate g0 in our numerical calculations in order to find the

initial conditions of k̇j for all j.
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4.7.4 Markov Embeddingwith Exponentially Decaying Impulse Function

Applying our findings we can obtain the optimal path of X in the following figures, where we sim-

ulated over t ∈ [0, 10]. We first tested our ELE using the exponentially decaying impulse func-

tion h(t) = αe−αx, where we chose α = 1. We next chose the double-well potentialV(x) =

−x2/2 + x4/4, and starting point X0 = −1. We estimated 40th order Markov embedding func-

tion, i.e. withK = 40.

We found that g0 = −0.0000001, i.e. g0 is a real number i. The complex-valued optimal path,

the test function and the Complex Lagrangian are given in the following figures. This results in

complex-valued instantons of Xt and g(t) and therefore a complex-valued Lagrangian.

2 4 6 8 10
t

-1.0

-0.8

-0.6

-0.4

-0.2

X
*(t)

Re

Im

Figure 4.14: Op mal path Xt for Exponen al Decay impulse func on using Markov Embedding func on capped at
K = 40. Real and Imaginary parts labelled.

iThe values of Markov embedding kernel αj will be given in appendix.
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2 4 6 8 10
t

-0.004

-0.003

-0.002

-0.001

g*(t)

Re

Im

Figure 4.15: Plot of g(t) obtained as the average in (4.18). Real and imaginary parts labelled.

2 4 6 8 10
t

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.0005

ℒ

Re

Im

Figure 4.16: The resul ng complex-valued Lagrangian. Real and imaginary parts labelled.
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4.7.5 Markov Embeddingwith Power LawDecaying Impulse Function

We can also compare this result with a power-law decaying impulse function, h(t) = (b−1)/a1−b(t+

a)−b, where a, b > 0 are real numbers. This would be an interesting application: firstly one cannot

define a hierarchical solution of the power-law decaying impulse function; however, due to the sim-

ilarity of this impulse function with exponentially decaying case, we should expect similar behaviors

in the optimal path and the resulting Lagrangian. We chose the instanton gpow0 = g0, where g0 is

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

Impulse function

1

(t+1)2

-t

Figure 4.17: Plots of exponen al decaying (blue) and power-law decaying (red) impulse func ons defined in the legends
set. Due to the impulse func ons’ similarity, we should expect similar op mal path and ac on.

obtained as in the exponential decay case.
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2 4 6 8 10
t

-1.0

-0.8

-0.6

-0.4

-0.2

X
*(t)

Re

Im

2 4 6 8 10
t

-0.010

-0.005

0.005

ℒ

Re

Im

Figure 4.18: Op mal path and Lagrangian of Xt for Power Decay impulse func on using Markov Embedding func on
capped atK = 40. Real and Imaginary parts labelled.
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4.7.6 Markov Embeddingwith Damped andOscillating Impulse Function

We next chose the damped and oscillating impulse function h(t) =
(
α2 + β2

)
/ (α + β) e−αt (sin βt+ cos βt) ,

with α = 1 = β = 2, where in this case we also simulated over t ∈ [0, 10]. We estimated 40th order

Markov embedding function, i.e. withK = 40.

2 4 6 8 10
t

-1.0

-0.8

-0.6

-0.4

-0.2

X
*(t)

Re

Im

2 4 6 8 10
t

-0.004

-0.002

0.002

ℒ

Re

Im

Figure 4.19: Resul ng op mal path and Lagrangian of X driven by damped oscilla ng impulse func on decay h(t) =
e−t cos t.
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4.7.7 Comparison of Actions

Now that we can solve the ELE for 3 different types of impulse functions, we will next compare the

actions formed by each impulse function and check which case is more efficient.

Note that we chose impulse functions as in Figure 4.20 to start from same initial value h(t =

0) = 1 and that all are decaying as t = ∞.

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

Impulse function

1

(t+1)2

-t

-t (sin(t) + cos(t))

Figure 4.20: Plots of exponen al decaying (blue), power-law decaying (red) and damped oscilla ng (green) impulse
func ons defined in the legends set with new coefficients.

The optimal paths X∗ and the Lagrangian for three types of impulse functions are given in Figure

4.21 below. We can observe from their Lagrangians in Figure 4.21 that damped oscillating impulse

function produces more efficient action, as the area of its Lagrangian is smaller. Indeed, in Table 4.2

below we can see the corresponding complex actions and their moduli:

Exponential Power-law Damped Oscillation

Action (S) −0.00499+ 0.00119i −0.009871+ 0.01858i −0.00141+ 0.00101i
Modulus (|S|) 0.005132 0.021041 0.001737

Table 4.2: Ac on calcula on of the Lagrangian for various impulse func ons.
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2 4 6 8 10
t

-1.0

-0.8

-0.6

-0.4

-0.2

X
*
t

Power-law

Exponential

Damped Osc.

2 4 6 8 10
t

-0.04

-0.02

0.02

ℒ

Power-law

Exponential

Damped Osc.

Figure 4.21: Resul ng op mal path and Lagrangian of X driven by power-law decay h(t) = (t + 1)−2, exponen al
decay, h(t) = e−t and damped oscilla ng, h(t) = e−t (sin t+ cos t) impulse func ons.
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4.8 Chapter Review

This chapter contains important and new findings on the non-Markovian LE’s driven by the GSN

ξ. We first introduced the concept of path integration, where it was first outlined by Feynman and

Hibbs85 to find a global equation to fully describe the movement of a particle. We defined the La-

grangian functionL , the action functional S and the probability amplitude π of such particle’s

position in time, X(t), from which one can obtain the scope of this thesis: its transition PDF.

These definitions were followed by introducing the Stationary Action Principle, which explains

to us that between the time frames [ta, tb] the particle chooses the path from point X(ta) to point

X(tb) that has the stationary action. This principle helps us find the probability amplitude of X by

minimizing S, where one obtains the equations of motion of the particle, also known as the Euler-

Lagrange Equations (ELE). We also referred to75 for the probability amplitude of X, paths of which

are given the solution of the LE Ẋt = −V ′(Xt) + ξt such that ξt forms the GSN process.

We next embarked on Section 4.1.2, where we outlined the computation ELE’s for Markovian

and non-Markovian stochastic processes by minimizing S. We showed that due to the impulse

function h defined in the GSN ξ, the resulting ELE’s for non-Markovian processes are time non-

local (TNL ELE’s) and hence cannot be defined by their Lagrangian, one instead has to define the

TNL ELE’s directly from their action functional as in Equation (4.2.13). This is not the case for

the Markovian regime, where the ELE’s are locally defined on time and one can define the ELE’s

directly by their Lagrangian. This can be directly visualized by letting h → δ in Equation (4.2.8).

For simplifying both local and TNL ELE’s, we applied the weak noise limit proposed by113 and

continued our further analysis from there.

The introduction to optimal path calculation is then followed by first analyzing the cases of

Markovian process and harmonic potential (i.e. the OU process), where we showed that the re-

sulting two dimensional local ELE as in Equation (4.3.1) for X and g can be rewritten solely in form
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of X due to the linearity of the ELE for g. However, one cannot fully define the solution X∗ analyt-

ically unless the Gaussian Limits (GL) are applied. This problem arises due to the implicit equation

regarding the initial condition g0 of the ELE in that is embedded in the CF of jump amplitude, ϕA1
,

and applying GL linearizes the CF as in Equation (4.3.3). The same analysis is then conducted for

the non-Markovian regime for the non-Markovian OU process, the TNL ELE is given in Equation

4.2.8.

We next progressed onto Section 4.4, where we assumed a more intricate potentialV that need

not be harmonic. This implies that the TNL ELE for g and X in Equation (4.4.1) (as well as the

Markovian ELE’s in Equation (4.4.3)) are not separable, and one has to compute both ODE’s si-

multaneously, which is close to impossible to solve. To overcome this problem, we showed that if

the impulse function h is an n−hierarchical function as in Section 2.5.3, then, as we outlined in the

beginning of Chapter 2, the corresponding (n + 1)−dimensional tuple
(
X, ξ, (1)ξ, (2)ξ, . . . , (n)ξ

)
,

where (n)ξ is the GSN process with impulse function h(n), is Markovian. Thus, the corresponding

(n+ 1)−dimensional ELE will be local.

We later showed in subsequent sections two main methods of finding the solution of (n +

1)−dimensional localized ELE. We first showed the method of differentiating X n times and plug-

ging in all the ODE’s for hierarchical GSN (n)ξ to the ODE of X(n). This method is then inde-

pendently matched by findings of Bray &McKane112 in Equation (4.6.16), where the authors

used the Gaussian CP process, i.e. the GSN process with exponentially decaying impulse function

h(x) = αe−αx under GL. We next extended this to the non-Gaussian CP process in Section 4.6.2

where we analyzed the optimal paths for three different types of jump amplitude Ai distributions:

Exponential, Gaussian, and Constant. We followed this by comparing the resulting stationary ac-

tions obtained by these three jump amplitudes. We also calculated the optimal path and stationary

actions for different parameters of α and showed the results against the case for white noise, i.e. at

α → ∞. Differently, the second method of finding the high dimensional localized ELE is by rewrit-
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ing the ξ hierarchy in matrix form, Ξ⃗t =
(
ξ, (1)ξ, (2)ξ, . . . , (n)ξ

)
and deriving the Matrix ODE in

Equation (4.6.3) that is the vector form of the GenOU process. We showed that the Lagrangian is

local with ELE’s and resulting equations of motion given in Equations (4.6.7)-(4.6.9). We apply this

method to show the resulting ELE in Section 4.6.2 as well.

The matrix ODE computation is then extended to higher-order impulse functions in Section 4.7,

where we first introduced the case for damped and oscillating impulse function, which has hierar-

chy order 2. The resulting Lagrangian and localized equations of motion are given respectively in

Equations 4.7.4-(4.7.5), where we can observe that system of ODE’s are coupled and requires the

computation of unknown initial conditions.

This caveat leads us to defining theMarkov Embedding Technique in Section 4.7.3, which we

use to localize and simplify TNL ELE’s X driven by the GSN ξ such that the impulse functions h

need not have the n−hierarchy property. We show that any integrable h can be approximated by

the Markov Embedding function happrox in Equation (6.0.4), where one can define a GSN pro-

cess with impulse function happrox. Conveniently, plugging this resulting GSN process into our

Langevin Equation yields separable and local ELE’s with well-defined initial conditions as in Equa-

tion (4.7.36). We thus end this chapter by giving examples of various hierarchical (exponential de-

cay, damped oscillation) and non-hierarchical (power-law) impulse functions, where we can solve

the equations of motion numerically.

We next move on to the final chapter of our thesis, where we use the properties of the GSN pro-

cess obtained throughout this thesis to model real-life scenarios.
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Mathematical reasoning may be regarded rather

schematically as the exercise of a combination of two

facilities, which we may call intuition and ingenuity.

Alan Turing

5
Applications of GSN Processes

Throughout the previous chapters, we have focused on detailed analysis of non-Markovian LE’s

driven by GSN processes, as well as their path integral computation and derivation of equations

of motion. We nowmove on to the last section of our thesis, where we apply the results obtained

throughout Chapters 3 and 4 to real-life scenarios.

We provide two applicable scenarios where we will use the Markov Embedding Technique. We

first calibrate an impulse function to the clinical data of the Mean Square Displacement of the mi-
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tochondria submersed in course-grained medium, where empirical results show the diffusion model

is anomalous, suggesting non-Markovianity in nature33. We use complex integration in this section

and therefore advise our readers to have knowledge of Cauchy’s Residue Theorem prior to reading

this section. Due to the scope of this thesis, readers are welcome to refer to Chapter 6 of Mitrinovic

& Keckic37 for a more detailed explanation.

In the later section, we apply the GSN process ξ to model the index value of S&P500 obtained

from Yahoo Finance i, and aim to capture its behavior during the Covid-19 pandemic. We expect

the reader of this section to be familiar with financial instruments and stochastic calculus. The

reader is welcome to refer to84 for detailed analysis on the stochastic analysis of jump processes,

from where we extended our model.

5.1 Application 1: Particle Diffusing in a Coarse-GrainedMedium

In this section, we now apply our findings to the MSD of a diffusing particle in coarse-grained

medium, published by Höfling & Franosch in 201381 and mathematically modelled by Cairoli &

Baule in 201533.

The authors in their paper assert that the MSD of the mitochondria diffusing in mating S. cere-

visiae cells is given by the following equation in Laplace space:

M̃SD(λ) =
2σ

λΦ̃(λ)
, (5.1.1)

where

Φ̃(λ) := d1
(

λ
d2

)α1
(
1+

(
λ
d2

) 1
β
)(α2−α1)β

, (5.1.2)

such that the variables are given by σ = 1, α1 = 1, α2 = 0.66, β = 0.85, d1 = 4.53, d2 = 0.02.

ihttps://finance.yahoo.com/quote/%5EGSPC/history/
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Authors also published the data for the MSD of the subject particle between the time interval t ∈

[0.31, 331.608], where we will conduct our analysis. Using the MSD fitting with clinical data, the

authors next considered a particle X under Harmonic potentialV(x) = γx2/2, where γ = 1 was

chosen.

Therefore, the relationship withMSD and the impulse function h for position process X driven

by the CP noise ξ under the Harmonic potentialV(x) = x2/2 is given in Equation (2.6.7) with

γ = 1, where from there we can define the impulse function h in terms of the MSD by applying

change of variables twice:

MSD(t) = λ
〈
A2
1
〉
e−2γt

∫ t

0
dτ
(∫ t

τ
ds h(s− τ)eγs

)2

= λ
〈
A2
1
〉
e−2γt

∫ t

0
dτ
(∫ t−τ

0
du h(u)eγ(u+τ)

)2

[u = s− τ]

= λ
〈
A2
1
〉
e−2γt

∫ t

0
dτ e2γτ

(∫ t−τ

0
du h(u)eγu

)2

= λ
〈
A2
1
〉
e−2γt

∫ t

0
dv e2γ(t−v)

(∫ v

0
du h(u)eγu

)2
[v = t− τ]

= λ
〈
A2
1
〉 ∫ t

0
dv e−2γv

(∫ v

0
du h(u)eγu

)2

=⇒ h(t) = e−γt d
dt

[√
e2γt

λ
〈
A2
1
〉 d
dt
MSD(t)

]
.

(5.1.3)

Notice from the above equation that due to the non-linear relationship between h andMSD,

one cannot apply Laplace transform to define the relationship in Laplace space. Therefore, in order

to find h, we first need to convert the MSD data from Laplace space, M̃SD(λ) to Euclidean space,

MSD(t) by Inverse Laplace Transform (ILT), defined by the operatorL−1.

The ILT of M̃SD(λ) is given byMellin’s Inverse Formula58:

MSD(t) := L−1
{
M̃SD(λ)

}
(t) =

1
2πi

lim
T→∞

∫ +iT

−iT
dλ eλtM̃SD(λ), (5.1.4)

189



where we can apply the convolution property to get

L−1
{
M̃SD(λ)

}
(t) = 2σL−1

{
1
λ
Φ̃(λ)−1

}
(t) = 2σ

∫ t

0
dτL−1 {Φ(λ)−1} (τ). (5.1.5)

Therefore, we need to compute the ILT of Φ(λ)−1, which is given by,

L−1 {Φ(λ)−1} (τ) : = 1
2πi

lim
T→∞

∫ +iT

−iT
dλ

eλτ

Φ(λ)

=
1
2πi

lim
T→∞

∫ +iT

−iT
dλ

eλτ

d1
(

λ
d2

)α1 (
1+

(
λ
d2

) 1
β
)(α2−α1)β

=
dα22
d1

1
2πi

lim
T→∞

∫ +iT

−iT
dλ

eλτ

λα1
(
d1/β2 + λ1/β

)(α2−α1)β
.

(5.1.6)

Defining the integrand above by f(λ; τ), we can then use Residue Theorem37 to solve the integral as

the sum of the residues over the whole complex planeC including∞:

dα22
d1

1
2πi

lim
T→∞

∫ +iT

−iT
dλ

eλτ

λα1
(
d1/β2 + λ1/β

)(α2−α1)β
=

dα22
d1

1
2πi

∮
C∗

dλ f(λ; τ) =
dα22
d1

∑
ak

Res(f(λ; τ), ak),

(5.1.7)

whereC∗ refers to the Complex planeCwith inclusion of infinity, Res(f(λ; τ), ak) is the residue of

f at singularity λ = ak.

By the definition of our coefficients given above, we have the following singularities of f:

• Pole of order α1 at λ = 0; and

• Singularity at infinity (behaving like the Riemann zeta function).

The first singularity is obvious; however we can refer to the Figure below to understand the behavior

of f at infinity: Therefore, let’s identify the residues at each singularity differently.
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Figure 5.1: Plot of f(λ; τ = 1) indica ng singulari es at infinity and the obvious pole at origin. Blue hue denotes the
real part of f and orange its imaginary part.

First Residue The first residue is a α1-order pole and is directly given by:

Res (f(λ; τ), 0) =
1

(α1 − 1)!
lim
λ→0

d α1−1

dλα1−1 [λ
α1f(λ; τ)]

=
1

(α1 − 1)!
lim
λ→0

d α1−1

dλα1−1

 eλτ(
d1/β2 + λ1/β

)(α2−α1)β

 (5.1.8)

Notice that we can extend this for any α1 ii.

Second Residue Here, we will use the definition of residue at infinity as:

Res (f(λ; τ),∞) = −Res
(

1
λ2

f
(
1
λ
; τ
)
, 0
)
, (5.1.9)

iiHowever, in 33, this coefficient is simply α1 = 1 and hence the above residue simply reduces to dα1−α2
2 .
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where we can rewrite λ−2f(λ−1) in terms of series as follows,

1
λ2

f
(
1
λ
; τ
)

=
eτ/λ

λ2−α1
(
d1/β2 + λ−1/β

)(α2−α1)β

= eτ/λλα1−2
(
1+ (d2λ)1/β

)(α1−α2)β
λα2−α1

= eτ/λλα2−2
∞∑
k=0

(
(α1 − α2) β

k

)
(d2λ)k/β

= λα2−2

( ∞∑
n=0

1
n!

τn

λn

)( ∞∑
k=0

(
(α1 − α2) β

k

)
(d2λ)k/β

)

=

∞∑
n=0

n∑
m=0

1
m!

τm
(
(α1 − α2) β
n−m

)
d

n−m
β

2 λ
n−m
β −m+α2−2 (Cauchy product rule).

(5.1.10)

Then the corresponding residue will be the coefficient of λ−1 satisfying the following equation:

n−m
β

−m+ α2 − 2 = −1 =⇒ m =
n− (1− α2) β

1+ β
. (5.1.11)

Therefore, the residue at infinity is given by:

Res (f(λ; τ),∞) = −Res
(

1
λ2

f
(
1
λ

)
; 0
)

= −
∞∑
n=0

1(
n−(1−α2)β

1+β

)
!

(
(α1 − α2) β

n− n−(1−α2)β
1+β

)
d
n− n−(1−α2)β

1+β
2 τ

n−(1−α2)β
1+β .

(5.1.12)
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Thus we have found the ILT of Φ̃(λ)−1 as follows:

L−1 {Φ̃(λ)−1} (τ) = dα22
d1

(Res (f, 0) + Res (f,∞))

=
dα22
d1

{
1

(α1 − 1)!
lim
λ→0

d α1−1

dλα1−1

 eλτ(
d1/β2 + λ1/β

)(α2−α1)β

−

−
∞∑
n=0

1(
n−(1−α2)β

1+β

)
!

(
(α1 − α2) β

n− n−(1−α2)β
1+β

)
d
n− n−(1−α2)β

1+β
2 τ

n−(1−α2)β
1+β

}
.

(5.1.13)

Using above, recall that we can simply derive the MSD in Euclidean space asMSD(t) = 2σ
∫ t
0 dsL

−1 {Φ̃(λ)−1} (s).
We have plotted the resulting MSD in Figure 5.2 together with the clinical data below. We next

data

ILT

0.5 1 5 10 50 100
t

0.005

0.010

0.050

0.100

0.500

1

MSD(t)

Figure 5.2: Log-log plot of the resul ng MSD,MSD(t) = 2σ
∫ t
0 dsL

−1 {Φ̃(λ)−1} (s), whereL−1 {Φ̃(λ)−1} (s) is
calculated by the Inverse Laplace Transform (ILT) in Equa on (5.1.13). Actual data is obtained from 33.
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fitted the MSD to the impulse function using our Markov Embedding technique, where the result-

ing fit atK = 15 is given in Figure 5.3.

MSD Relation

Markov Embedding

5 10 15 20
t

0.05

0.10

0.15

h(t)

Figure 5.3: Fi ng of the impulse func on h obtained by MSD rela on in Equa on (5.1.3) (blue circle) and by fi ng with
the Markov Embedding func on (red line) capped atK = 15.

Now that we have successfully retrieved the impulse function of ξwithMarkov Embedding

Technique, let’s now calculate the escape of the particle X driven by ξ if it were under double well

potentialV(x) = −x2/2 + x4/4. Using the impulse function in Figure 5.3, we generated the op-

timal path of Xt from t ∈ [0.31, 331.608]with instanton g0 = 10−25 in Figure 5.4. The resulting

instanton g and complex LagrangianL are also plotted in Figures 5.5 and 5.6 respectively.
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Figure 5.4: Op mal path X formed by the impulse func on h in Figure 5.3, with close-up view given in right bo om
inset. Real and Imaginary values labelled.
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Figure 5.5: Instanton solu on g formed by the impulse func on h in Figure 5.3, with close-up view given in right bo om
inset. Real and Imaginary values labelled.
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Figure 5.6: Lagrangian of X formed by the impulse func on h in Figure 5.3, with close-up view given in right bo om
inset. Real and Imaginary values labelled.

5.2 Application 2: Stock Index Behavior During Covid-19 Pandemic

In this example, we now change gears to financial markets, and model the behavior of the S& P 500

Stock Index, which is computed as the weighted average of 500 selected stocks, with the GSN pro-

cess ξ. We expect the reader of this section to be familiar with financial instruments such as deriva-

tives, stocks, stock indices and bonds, as well as pricing of financial instruments such as the Fun-

damental Theorem of Asset Pricing (FTAP) and quantitative finance. References regarding their

definitions can be found in79, and more mathematical rigour in135.

5.2.1 Preliminary Definitions

Before we dwell on the realms of financial modeling, we first have to outline some mathematical

definitions that will be the essential part of modelling the price of financial instruments.
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Martingales and the EquivalentMartingaleMeasure

In simple terms, amartingale is a stochastic process for which at any moment in time, the condi-

tional expectation of its next value is equal to the present value, regardless of all prior values.

A stochastic processM = (Mt)t≥0 defined on a probability space (Ω,F ,Q) is called aQ-

martingale with respect to the filtrationFs if for all t > s > 0, the following holds:

〈Mt|Fs〉Q = Ms. (5.2.1)

Here, 〈〉Q refers to the expectation taken with respect toQ and the filtration is the subset of the

event space (cf. Chapter 1),Fs ∈ F , that contains all the previous values ofM up until time s.

Martingales are very important stochastic processes used in financial modelling, as they ensure

that in a fair market, if one knows all the past values of the price of a financial instrument, one still

cannot predict its future values135. Therefore, if one wishes to model the price of a financial instru-

ment in a fair market with a stochastic process, then the stochastic process must be a martingale.

An interesting property of the martingale is that, under necessary conditions135, one can define

another stochastic process as a martingale by changing its probability measure. Given the martingale

Mwith probability measureQ and another stochastic process Xwith probability measure P, we say

that X is aQ-martingale adapted to the filtration ofM if for any t > s > 0,

Xs = 〈Xt|Fs〉Q = 〈ZtXt|Fs〉P , (5.2.2)

where Zt forms another stochastic process with probability measure dQ
dP , commonly referred to as

theRadon-Nikodym derivative of the equivalent martingale measure (EMM)Qwith respect to

the original measure P. More properties of the Radon-Nikodym derivative and the EMM can be

inferred from Chapter 9 of105.
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Fundamental Theorem of Asset Pricing

We next give a brief introduction to the Fundamental Theorem of Asset Pricing (FTAP), which

provides necessary and sufficient conditions for a financial market, in which financial instruments

(stocks, derivatives, options, etc.) are traded, to be fair. The FTAP asserts that financial models

should be arbitrage-free, i.e. the models should not give traders a risk-free opportunity. This the-

orem enables the markets to be efficient and complete, where no traders can gain any risk-free ad-

vantage over the other.

Let us show the FTAP condition in a mathematical setting. Let the price of a financial asset A

during times t ∈ [0,T] be modelled by a continuous-time stochastic process S = (St)0≤t≤T defined

on a probability space (Ω,F ,P). Let f(St) be defined as the price of a financial derivative with A as

its underlying. Then, the FTAP suggests that in a fair and arbitrage-free market, the current value

of the derivative, f(S0), is given by the expectation of the discounted price of any future value of the

derivative under the EMM of P, i.e. for all T ≥ 0:

f(S0) =
〈
e−rTf(ST)

〉
Q =

〈
e−rTZtf(St)

〉
P (5.2.3)

where r is called the risk-free interest rate (e.g. the coupon rate of a government bond), Zt forms

the stochastic process with probability measure as Radon-Nikodym derivative dQ/ dP and 〈〉Q

denotes the expectation taken with respect to the EMMQ. In most financial settings, P is tradition-

ally called the historical PDF of S as it is obtained by directly modeling the historical values of asset

price.
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5.2.2 Modeling the Index Value with non-Markovian Geometric Brownian

Motion

Modeling the price of financial instruments has been the foundation of stochastic processes ever

since its mathematical formulation by Louis Bachelier in 190070. In his paper, Bachelier modelled

the price of a stock, X, as the Wiener process, i.e. as the solution of the LE Ẋt = σẆt, where σ, called

the volatility of the stock price, measures the strength of the GWN.

Later on, this model was strengthened by Samuel by modeling the natural logarithm of the X

as the Wiener process with drift. In this instance, the so-called geometric Brownian motion X that

models the stock price is defined by the SDE:

dXt

Xt
= μ dt+ σ dWt, (5.2.4)

where μ, called the drift of the stock price, σ is called its volatility, and dWt forms the increments of

the Wiener process. One can also rewrite this by defining Y = lnX and applying Ito’s lemma on Yt:

dYt =
1
Xt

dXt −
1

2X2
t
(dXt)

2

= μ dt+ σ dWt −
1
2
(μ dt+ σ dWt)

2

=

(
μ− σ2

2

)
dt+ σ dWt.

(5.2.5)

One can rewrite Xwith respect to Y as X = E(Y), where E is called the stochastic exponential that is

the solution of the SDE for dYt above.

The SDE for Y can also be given in Langevin form below, where Ẇt forms the GWN:

Ẏt = μ− σ2/2+ σẆt. (5.2.6)
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Although there has been a vast array of candidates for modelling stock prices, by far the most use-

ful model up to date is the geometric Brownian motion as it is the foundation of pricing various

financial instruments such as the Black-Scholes model.

Without getting into detail, the main idea behind geometric Brownian motion is that the natural

logarithm of the derivative of the stock price is a GWN. In a more financial perspective, the model

assumes that at any given time, the natural logarithm of the rate of return (“log-return”) on invest-

ing in a stock is an independent and normally distributed random variable with mean μ − σ2/2 and

variance σ2, i.e. for all t, Ẏt ∼ N
(
μ− σ2/2, σ2

)
.

Let us now test whether this assumption holds for the S& P 500 index data obtained weekly be-

tween 1 January 2020 till 21 October 2021. We specifically chose this region of time as it captures

extreme movements in the financial markets due to the implications caused by the Covid-19 pan-

demic iii.

In Figure 5.7 below one can see the value of the index, together with the log-return and its MSD.

We can directly observe from theMSD that the log-return is not the GWN. By taking the correla-

tion of the LHS and RHS of Equation 5.2.6, we get that

〈
ẎtẎs

〉
=
〈(
μ− σ2/2+ σẆt

) (
μ− σ2/2+ σẆs

)〉
=
(
μ− σ2/2

)2
+ σ2

〈
ẆtẆs

〉
=
(
μ− σ2/2

)2
+ σ2δ((t− s)).

(5.2.7)

TheMSD of Ẏ hence should be a straight line.

This is the main caveat of using the geometric Brownian motion, as it is an oversimplified pric-

ing model that does not capture movements caused by extreme events, e.g. the Covid-19 pandemic.

Although there have been many advancements in further generalizing the geometric Brownian mo-

iiiFurther information can be obtained from the article published byMcKinsley & Co. on 10March 2021:
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/
the-impact-of-covid-19-on-capital-markets-one-year-in
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Figure 5.7: Index values of S&P500 (top), the resul ng log-returns (middle) and MSD of the log-returns (bo om) ob-
tained between 1 January 2020 un l 21 October 2021. No ce the significant drop in index value (and spikes in log-
return and MSD log-return) in around March 2020, the beginning of the Covid-19 pandemic.
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tion, such as the inclusion of jump processes118,84, most models assume that the price of a stock (or

the value of a stock index) is a Markov process. Here, we assume that it is non-Markovian, where

instead of Ẇ, we assume that the log-return is modelled by the derivative of the GSN process ξ̇.

Notice first that we cannot fit the impulse function h directly with the MSD of the log-return, as

we have conducted in the previous section’s application with success. Due to the flip of the MSD as

can be observed around October 2020 in Figure 5.7, the impulse function, which is related to the

derivative of the square root of the MSD as in Equation (5.1.3), will be complex-valued.

Instead, for this case, we can instead infer the shape of the impulse function directly from S& P

500 log-return as in Figure 5.8 below. If we allow small jump intensity λ and iid jump amplitudes Ai

to drive the GSN ξ, then the behavior of ξwill be greatly governed by the impulse function h itself.

Therefore, assuming low λ and Ai, we can model S& P500 log-returns with the GSN process by

directly fitting the log-returns with the impulse function h.

Indeed, as shown in Figure 5.8, we fitted the log-returns with the impulse function using a poly-

nomial function of degree 20. We then defined the GSN process ξwith the resulting fitted impulse

function, ĥSP500, and simulated the log-price of the index as Ẏt = μ− σ2/2+ σξ̇t.

The resulting index price process X is then obtained by exponentiating the log-price process Y,

given by the following system:

Xt = E (Yt)

Ẏt = μ− σ2/2+ σξ̇t.
(5.2.8)

For Monte Carlo simulation, obeying low intensity and iid jump amplitude condition mentioned

above, we next fixed the parameters λ = 1, Ai ∼ Exponential(
√
λ), σ = 1 and estimated the drift

coefficient to be μ = σ2/2 + 10−4. As can be inferred from Figure 5.9 below, the simulation gives

a great approximation of the S&P 500 index, and steadily captures the spike occurred during the
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Figure 5.8: Sca er plot of the S&P 500 log-returns with polynomial impulse func on fi ed directly.
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beginning of Covid-19 pandemic.
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Figure 5.9: Index value (red sca er plot) together with the stochas c process X = expY (blue line) as the solu on of
the LE Ẏt = μ− σ2/2+ σξ̇t. The GSN process ξ is simulated with Monte Carlo method with 7,000 itera ons and using

polynomial impulse func on ĥSP500.

Now that our impulse function is approximated, and the resulting index process X is shown to fit

nicely to index data, we can then derive its historical probability measure P. First, notice that the LE

of Y and be integrated over [0, t] to give Yt =
(
μ− σ2/2

)
t + σξt. Then, due to the linearity, we can

establish a CFal correspondence between ΦY and Φξ as follows:

ΦY[g(t)] =
〈
exp

(
i
∫

dt g(t)Yt
)〉

=

〈
exp

(
i
∫

dt g(t)
((

μ− σ2

2

)
t+ σξt

))〉
= exp

(
i
(
μ− σ2

2

)∫
dt g(t)t

)
Φξ[σ g(t)].

(5.2.9)

Therefore, the probability amplitude of Y can be calculated by using the functional IFT of the
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CFal ΦY and change the functional space of Y to that of ξ, as outlined in Appendix A:

π(yb, tb|ya, ta)

=

∫
CY

D[Y]
∫

Cg

D
[ g
2π

]
exp

(
i
∫

dt g(t)Yt
)
ΦY[g(t)]

=

∫
Cξ

D[ξ]
∫

Cg

D
[ g
2π

]
exp

(
2i
(
μ− σ2

2

)∫
dt g(t)t

)
exp

(
i
∫

dt g(t)ξt

)
Φξ[σ g(t)] exp (−SJ) ,

(5.2.10)

where exp (−SJ) is the Jacobian obtained from the change of functional space and is given by Sj =

−1/2 ln (δYt/δξ0). Notice that since the relationship between Yt and ξt is linear, the action will be

given by SJ = −1/2 ln σ, and hence the Jacobian becomes exp (−SJ) = 1/
√
σ.

From here, one can obtain the historical probability measure of Y by taking the modulus squared

of πY, after which it remains to find the EMMQ such that Y becomes aQ-martingale.

Although there are several ways to compute the EMMQ for Markov processes, such as by Gir-

sanov theorem cited above, as well as the Esscher transform73, due to the time-dependence on corre-

lations, finding EMM for non-Markovian stochastic processes is not straightforward and is beyond

the scope of this thesis. We encourage the readers to check64 and65 for a detailed explanation of

finding the EMM for specific non-Markovian stochastic processes by means of Esscher transform.

After finding the EMM ofQ, we can next use Girsanov theorem107 to show that since Y is aQ−

martingale, the price process X given by the stochastic exponential X = E(Y) is also aQ-martingale.

Establishing an EMM for Xwill finally enable us to use the FTAP to model the price of a financial

derivative f(Xt) at an arbitrage-free market, f(X0) =
〈
e−rTf(XT)

〉
Q =

〈
e−rTZtf(XT

〉
P, where the

probability measure of Zt can now be calculated by taking the Radon-Nikodym derivative of the

EMMQwith respect to the historical measure P that can be directly obtained by simulation.

205



5.3 Chapter Review

In this chapter we applied the properties of the GSN process to real-life scenarios; first on the bio-

physical diffusion model and second on the financial index.

In first application we found the Markov embedding impulse function of the non-Markovian

diffusion data obtained from33, from where we obtained the optimal path and Lagrangian in Fig-

ures 5.4-5.6. This example was relatively straightforward to compute, as we can observe from Figure

5.2 that the MSD of the diffusion model is monotonously increasing, therefore the representation

in Equation (5.1.3) the impulse function will always be real-valued.

This is not the case for the second scenario when we apply Markov Embedding Theorem to

the value of the S&P500 stock index between January 2020 and October 2021. We used the non-

Markovian version of the geometric Brownian motion by switching the GWN process with a GSN

process. As we can see in Figure 5.7, the MSD of the log return is not monotonous at around t =

10, where we observe a rapid decrease and increase in the index value during the beginning of Covid-

19 pandemic. This directly implies that by the MSD relation in Equation (5.1.3) the impulse func-

tion will switch from real to a imaginary after around t = 10, which is what we observe in Fig-

ure 5.7. Nonetheless, this type of reverting MSD has been studied in detail by Großmann et al in

201636, where authors model the anomalous diffusion of a particle in coarse-grained media by a

stochastic clock.

Instead of focusing on the reverting MSD, we instead showed that one can directly fit the impulse

function with the GSN data as in Figure 5.8. This result naturally arises due to our definition of the

price process X, where it directly depends on the stochastic exponential of the GSN process ξ. Using

the fitted impulse function, we next showed that the resulting Monte Carlo simulation of X tracks

the index data very well as in Figure 5.9. This ultimately means that the LE for the GSN adapted

version of the geometric Brownian motion can capture extreme events.
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Lastly, we outlined steps to change the historical probability measure of X to the EMMQ, where

one can apply the Fundamental Theorem of Asset Pricing to properly model any financial deriva-

tive. The methods of finding an EMM for the non-Markovian process X are not as straightforward

and require further research that is beyond the scope of this thesis.
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As far as the laws of mathematics refer to reality, they are

not certain; as far as they are certain, they do not refer to

reality.

Albert Einstein

6
Summary and Concluding Remarks

The main goal of this thesis is to find the transition probability of the position process X driven by

the non-Markovian GLE, Ẋt = −V′(Xt) + ξt, whereV is the potential of the system and ξt forms

the GSN process as defined in Definition 2.1.1 by the following realization,

ξt =
Nt∑
i=1

Aih(t− Ti). (6.0.1)
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By defining the non-Markovian GLE and the GSN process in detail at the beginning of Chap-

ter 2, this thesis provided three main approaches to find the PDF of the non-Markovian position

process. The first one was via the CFal of X as shown in Chapter 2, where from the CFal one can

obtain the CF of Xt and thus infer the PDF of X via Inverse Fourier Transform (IFT). The strength

of this first approach is in its simplicity in finding analytic expressions of the CF for various impulse

functions, as well as its numerical efficacy in computing the IFT. However, the downside of the

CFal approach is that one can only define the non-Markovian GLE by zero or Harmonic potentials

V(x) = γx2/2, γ ≥ 0. This naturally arises from the fact that under this potential assumption

the GLE becomes a linear differential equation, Ẋt = γXt + ξt, where finding a functional corre-

spondence between X and ξ is relatively simple. However, if one chooses a potentialV(x) ∝ xα for

α > 2, the resulting GLE is non-linear and becomes impossible to solve. For example, for double-

well potentialV(x) = −x2/2+ x4/4 the GLE becomes Abel’s equation of the first kind, where the

fully analytic solution remains an open question in mathematics.

The second approach to finding the PDF was by obtaining its Master Equation (ME) from Ito’s

approach as outlined in Section 3.2.1. Ito’s approach is simplistic in its own way as it applies Tay-

lor expansion to the differential df(Xt) for any continuously differentiable function f; however,

due to the non-Markovian nature of X one obtains the average 〈Xtξt〉while calculating the ME.

Likewise, upon applying Ito’s approach for tuple (Xt, ξt) one then would be stuck with the av-

erage
〈
Xtξt(1)ξt

〉
, recalling that (1)ξt forms another GSN process with impulse function ḣ. By in-

duction, one can only obtain the fully described form of the ME by Ito’s approach for an infinite-

dimensional joint tuple
(
Xt, ξt, (1)ξt, . . . , (n)ξt, . . .

)
. Therefore, Ito’s approach can only work for

Markovian stochastic processes.

The third approach to find the PDF was by obtaining its ME fromHanggi’s path integral for-

mulation as in Section 3.2.3. In Hanggi’s formulation, instead of applying Taylor expansion on a

function of Xt, one obtains the ME by applying the functional Taylor expansion on the CFal of X.
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As we show in Equation (3.2.48), the ME can be obtained for the marginal PDF of X for any poten-

tialV and impulse function h.

Since Hanggi’s formalism captures the non-Markovian nature of X, we then further analyzed it in

detail in Chapter 4. We defined Feynman’s path integral for calculating the probability amplitude π

of the s.p. X between the time [ta, tb] as follows:

π(xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg

D
[ g
2πε

]
exp (−S[X, g]/ε) , (6.0.2)

where the action functional S under the weak noise limit ε → 0 is given by the integral of the La-

grangianL :

S[X, g] =
∫ tb

ta
L
(
Xt, Ẋt, g(t)

)
=

∫ tb

ta
dt
(
λ
(
1− ϕA1

(∫ tb

t
ds h(s− t)g(s)

))
− ig(t)

(
Ẋt + V ′(Xt)

))
.

(6.0.3)

From the probability amplitude, one can simply obtain the transition PDF of X by squaring the

modulus of the probability amplitude, |π|2.

Due to the non-Markovian nature of X one can only obtain the Euler-Lagrange Equations

(ELE’s) for X and g from the action functional, which we later showed they are in fact time non-

local (TNL) ELE’s due to the integration of g in Equation (4.2.13)[2]. Due to the TNL ELE’s one

has to know the entire value of the function g up to tb, where it is tricky to compute. We showed

that one can circumvent this problem by assuming that h is an n−hierarchy impulse function of

the form:
∑n

i=0 cih(i)(t) = 0, h(i)(0) = ai, where the resulting non-Markovian GLE becomes

(n+ 1)−dimensional Markovian GLE as in Equation (4.5.3).

From here, one can either differentiate the first LE for Ẋ n−times and plug the resulting higher-

order ODE to the Lagrangian of the PWN to obtain two-dimensional localized ELE’s, where the
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correspondingL would then depend on the first n derivatives of X and g, resulting in high-order,

coupled and highly nonlinear systems of ODE’s. The second option was to solve the (n+1)−dimensional

Markovian GLE as a matrix ODE, where one would instead obtain (2n + 2)−dimensional, cou-

pled, localized and first-order ELE’s as in Equation (4.6.9). These two methods, although distinct in

their own way, share one common caveat, which is the coupling of each component of the localized

ELE’s.

This let us progress onto defining the Markov Embedding Technique in Section 4.7.3, where we

asserted that any continuously differentiable function h : R → C can be approximated by the

following sum of complex-exponentials:

h(x) ≈ happr(x) =
K∑
j=1

βje
−αjx, (6.0.4)

where recalling that αj, βj ∈ C \ {0} such<
(
αj
)
> 0 for all j. This enabled us to rewrite the

GSN process as a sum of independent, complex-valued CP processes (i.e. GSN processes with unit

hierarchical order of n = 1), which would in turn decouple the localized ELE’s. We also outlined in

Section 4.7.2 that one can complexify the action and the Lagrangian of complex stochastic processes

into a sum of purely real and purely imaginary components. This enabled us to derive twice the

amount of localized ELE’s from before, now both arising from the real part and purely imaginary

parts of the Lagrangian, as in Equation (4.7.27). Therefore, we now showed that one can find the

optimal path and action of non-Markovian X for any continuously differentiable impulse function

h by the Markov Embedding Technique.

We lastly provided two examples from literature to apply the Markov Embedding Technique in

Chapter 5. We first looked at the MSD data of a particle diffusing in coarse-grained medium, where

we derived impulse function first, and applied the Markov Embedding Technique to derive localized

and uncoupled complex-valued ELE’s and outlined the optimal escape problem for the particle un-
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der double-well potential, where the optimal path and the Lagrangian are given in Figures 5.4 and

5.6. Due to the monotonic behavior of the MSD, the resulting impulse function was real-valued.

On the other hand, our second application on the MSD data of the log-returns of S&P500 stock in-

dex values shows that due to the non-monotonic nature of the MSD, the resulting impulse function

would fluctuate between purely real to purely imaginary functions. This violates the continuously

differentiable condition of the impulse function, where Markov Embedding Techniques could not

be applied.

Instead, we fitted the impulse function directly with the log-return, modelled by the derivative

of GSN process ξ̇, and showed that the resulting SDE for the index process dXt/Xt = μ dt + σ dξt

fits the index data in Figure 5.9, where it captures extreme changes in index value during Covid-19

pandemic. As we outlined at the end of Section 5.2, by Fundamental Theorem of Asset Pricing, one

needs to find the EMMQ for the index process X to properly price financial derivatives. Due to the

colored nature of ξ, Xwill be non-Markovian, and future work is needed to determine the EMM for

this class of non-Markovian processes.
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A
Derivation of the Probability Amplitude

Here we show the derivation of the probability amplitude in Equation (4.2.1) and outline the im-

portance of the Jacobian term.

Recall that given the LE Ẋt = −V′(Xt) + ξt, where ξt forms a noise process, andV is the poten-
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tial, the probability amplitude for the position process X is given by

π(xb, tb|xa, ta)

=

∫
CX

D[X]
∫

Cg

D
[ g
2π

]
Φξ[g] exp

(
i
∫ tb

ta
dt g(t)

(
Ẋt + V ′(Xt)

))
exp

(
1
2

∫ tb

ta
dt V ′′(Xt)

)
,

(A.0.1)

recalling that its action S is given by rewriting the integrand as exp (−S[X, g]).

Another way to define π is by taking the functional inverse Fourier Transform (IFT),F−1, of the

CFal of X, ΦX[g], in terms of its angular frequency:

πIFT (xb, tb|xa, ta) = F−1ΦX[g] =
∫

CX

D[X]
∫

Cg

D
[ g
2π

]
exp

(
i
∫ tb

ta
dt g(t)Xt

)
ΦX[g], (A.0.2)

where its action, distinguishing it by SIFT, is also given by rewriting the integrand as mentioned

above.

Notice that the probability amplitude given in Equation (4.1.1) depends on the CFal of the noise

ξ; whereas the one to be obtained by the functional IFT in Equation (A.0.2) depends on the CFal

of X. Thus, our goal is then to rewrite the latter equation in terms of the first equation by change

of functional space by the FujikawaMethod, proposed by Fujikawa & Suzuki in 200478, which is

analogous to the change of variables in ordinary integrals. For better understanding, we will first

show the case for Harmonic potentialV(x) = γx2/2., where the reader can then easily generalize

for generalV.

The Fujikawa method posits that the transformation of the action by changing its functional

space requires an addition of the correction term called the Jacobian. Defining Cg as the functional

space of action Sg, if we define the change of functional space sayCg → Cg̃, then the resulting
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action, Sg̃ is given by:

Sg̃ = Sg + SJ, (A.0.3)

where correcting term SJ, called the action of the Jacobian, is defined by80:

SJ = − 1
2
ln

(
δg̃

δg(ta)

)
. (A.0.4)

Now, we can use the Fujikawa method to rewrite πIFT. Under the Harmonic potential, recall from

Equation (2.6.1) that one can rewrite the CFal correspondence between X and ξ:

ΦX[g] = Φξ

[
eγt
∫ tb

t
ds g(s)e−γs

]
. (A.0.5)

Let us define g̃(t) := eγt
∫ tb
t ds g(s)e−γs such that one can then rewrite the functional correspon-

dence as ΦX[g] = Φξ [̃g]. Furthermore, for g̃ to be a CFal test function, we require g̃(ta) = g̃(tb) =

0.

One can define original functional spaceCg in terms of the transformed spaceCg̃ as g(t) =

γg̃(t)− ˙̃g(t). Using these transformations, we can then change the functional space to Cg̃ and rewrite

πIFT as:

πIFT (xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg̃

D
[
g̃
2π

]
exp

(
i
∫ tb

ta
dt
(
γg̃(t)− ˙̃g(t)

)
Xt

)
Φξ [̃g] exp (−SJ) .

(A.0.6)
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where SJ is given by:

Sj = − 1
2
ln

(
δg̃

δg(ta)

)
= − 1

2
ln

(
eγt
∫ tb

t
ds e−γsδ(s− ta)

)
= − 1

2
ln
(
eγte−γtaΘ(tb − t)

)
= − 1

2
ln eγ(tb−ta)

= − 1
2
γ (tb − ta)

=
1
2
γ
∫ tb

ta
dt.

(A.0.7)

Furthermore, notice that we can simplify the following by integration by parts:

i
∫ tb

ta
dt
(
γg̃(t)− ˙̃g(t)

)
Xt = iγ

∫ tb

ta
dt g̃(t)Xt − i

∫ tb

ta

˙̃g(t)Xt

= iγ
∫ tb

ta
dt g̃(t)Xt − i

([
g̃(t)Xt

]t=tb

t=ta
−
∫ tb

ta
dt g̃(t)Ẋt

)
= iγ

∫ tb

ta
dt g̃(t)Xt + i

∫ tb

ta
dt g̃(t) (−γXt + ξt)

= i
∫ tb

ta
dt g̃(t)ξt

= i
∫ tb

ta
dt g̃(t)

(
Ẋt + γXt

)
.

(A.0.8)

Gathering all together, the transformed probability amplitude πIFT is given as follows:

πIFT (xb, tb|xa, ta) =
∫

CX

D[X]
∫

Cg̃

D
[
g̃
2π

]
exp

(
i
∫ tb

ta
dt g̃(t)

(
Ẋt + γXt

))
Φξ [̃g] exp

(
1
2
γ
∫ tb

ta
dt
)
,

(A.0.9)

which directly corresponds to the path integral given in Equation (4.2.1).
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