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Self-correcting Bayesian target tracking

Abstract

Visual tracking, a building block for many applications, has challenges such as occlusions,

illumination changes, background clutter and variable motion dynamics that may degrade the

tracking performance and are likely to cause failures. In this thesis, we propose Track-Evaluate-

Correct framework (self-correlation) for existing trackers in order to achieve a robust tracking.

For a tracker in the framework, we embed an evaluation block to check the status of tracking

quality and a correction block to avoid upcoming failures or to recover from failures. We present a

generic representation and formulation of the self-correcting tracking for Bayesian trackers using

a Dynamic Bayesian Network (DBN). The self-correcting tracking is done similarly to a self-

aware system where parameters are tuned in the model or different models are fused or selected

in a piece-wise way in order to deal with tracking challenges and failures. In the DBN model

representation, the parameter tuning, fusion and model selection are done based on evaluation and

correction variables that correspond to the evaluation and correction, respectively. The inferences

of variables in the DBN model are used to explain the operation of self-correcting tracking. The

specific contributions under the generic self-correcting framework are correlation-based self-

correcting tracking for an extended object with model points and tracker-level fusion as described

below.

For improving the probabilistic tracking of extended object with a set of model points, we use

Track-Evaluate-Correct framework in order to achieve self-correcting tracking. The framework

combines the tracker with an on-line performance measure and a correction technique. We cor-

relate model point trajectories to improve on-line the accuracy of a failed or an uncertain tracker.

A model point tracker gets assistance from neighbouring trackers whenever degradation in its

performance is detected using the on-line performance measure. The correction of the model

point state is based on the correlation information from the states of other trackers. Partial Least

Square regression is used to model the correlation of point tracker states from short windowed

trajectories adaptively. Experimental results on data obtained from optical motion capture sys-
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tems show the improvement in tracking performance of the proposed framework compared to the

baseline tracker and other state-of-the-art trackers. The proposed framework allows appropriate

re-initialisation of local trackers to recover from failures that are caused by clutter and missed

detections in the motion capture data.

Finally, we propose a tracker-level fusion framework to obtain self-correcting tracking. The

fusion framework combines trackers addressing different tracking challenges to improve the

overall performance. As a novelty of the proposed framework, we include an online perfor-

mance measure to identify the track quality level of each tracker to guide the fusion. The trackers

in the framework assist each other based on appropriate mixing of the prior states. Moreover, the

track quality level is used to update the target appearance model. We demonstrate the framework

with two Bayesian trackers on video sequences with various challenges and show its robustness

compared to the independent use of the trackers used in the framework, and also compared to

other state-of-the-art trackers. The appropriate online performance measure based appearance

model update and prior mixing on trackers allows the proposed framework to deal with tracking

challenges.
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Chapter 1

Introduction

1.1 Motivation

Tracking, in the computer vision community, refers to estimate state(s) of a target or multiple

targets. The state estimation is done based on measurements such as feature points, contours and

regions of interest taken from a single camera or multiple cameras. Tracking plays important

roles to link low-level image processing and high-level video content analysis in various applica-

tions [123]. The estimated states help to locate, identify and determine the dynamic properties of

one or many targets from the measurements in time. In surveillance systems, tracking provides

vital information in the form of people counting, security and traffic flow analysis [37, 13, 94].

In human-computer interaction, tracking allows machines or entities in the environment to un-

derstand commands from humans [135]. Tracking is used in robotics in order to identify the

target of interest for interaction and for coordination among multiple robotic agents [82, 95].

In addition to this, tracking is main building block in medical image processing [83], wearable

technologies [79] and autonomous navigation [35].

Targets in the scene can undergo challenges such as occlusions, illumination changes, pose

changes, photometric changes, variable motion dynamics and be similar to background clutter

(Fig. 1.1). These challenges may lead to a performance degradation or tracking failure. Different

challenges require different modelling approaches. For example, a target undergoing illumination

changes needs a tracker with an illumination invariant or an adaptive appearance model [134],

while a target with variable motion dynamics needs a tracker with multiple motion models or that

18



Chapter 1: Introduction 19

Figure 1.1: Appearance variation of a target in a video acquired by a single camera. The target
in the scene, which is shown by the rectangle bounding box, undergoes changes in scale, illumi-
nation, shape and view angle together with large amount of variation in background clutter in the
different frames.

searches in a large region of the state space [108]. In order to tackle the different challenges, a

wide variety of tracking techniques have been proposed such Mean-shift [17], Kalman filter [4],

Particle filter [43], Kanade-Lucas-Tomasi (KLT) [62]. In general, the variation between trackers

can be in one of the following key components: appearance representation and modelling, motion

representation and modelling, and searching and matching strategy [110]. This thesis mainly

considers Bayesian trackers (details are presented in Chapter 3).

When different challenges appear simultaneously, a single tracker with a fixed model may

be insufficient to achieve satisfactory performance and results in a tracking failure. For a tracker

in the incorrect state estimation condition, it is difficult to recover the correct state estimation

operation even after the tracking challenges disappear. Tracking failure at any instant of time

remains to be a long-term failure due to the use of first-order Markov processes [21]. Except [48,

87, 120, 25, 24, C1], most trackers do not explicitly detect and correct failures or handle tracking

challenges. Therefore, a performance measure to detect tracking failures is needed and a tracking

correction step is desirable to obtain a robust tracking [15, 61, 16].

Robust visual tracker is characterised by its ability to avoid or to recover from tracking fail-

ures. The former property is known as ante-failure robustness, whereas the latter is known as

post-failure robustness [132]. A possible design approach to avoid and to recover from the fail-

ures is a self-correcting tracking, Track-Evaluate-Correct (TEC) framework (Fig. 1.2). As a
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Tracking 

Evaluation 

Output 
(state) 

Input 
(image) 

Correction 

Figure 1.2: Self-correcting tracking, Track-Evaluate-Correct (TEC) framework. Tracking is
aided by an online evaluation block to identify challenges and failures, and a correction block to
avoid and to recover from failures.

formal definition, a self-correcting tracker is characterised by its state-awareness and tracking

model (parameter) correction properties. The state-awareness depends on probabilistic proper-

ties of instantaneous knowledge over the state and allows the tracker to reason about its tracking

quality. The state-awareness is expressed in the form of quality assessment scores or classifica-

tion classes. The correction on a tracker is done in accordance to the state-awareness and allows

a tracker to actively change one or more of its models (parameters) to resume correct state esti-

mation behaviour. The design of self-correcting framework largely involves how to employ the

evaluation and correction blocks together with the existing state-of-the-art tracker.

Performance measures, the criteria to judge the track quality, play an important role for the

correction to proceed on the tracker. Since comparing the tracker’s output to the ground-truth

data is not applicable for real-time systems and the ground-truth data are not available for most

applications [91, 64], there is the need for an efficient and robust framework for online track

verification [48, 86]. There exist different methods to carry out online the performance measure

of a tracker. From the tracker output, trajectory characteristics, feature characteristics, and hy-

brid of trajectory and feature characteristics are used to obtain the performance results [115, 90].

Corrections are achieved mainly in the form of model update and fusion. Model update allows a

tracker to adapt for changes in tracking environment such as illumination changes and amount of

clutter [15]. Fusion allows correction of a tracker by switching and combining different tracking

components and trackers [132]. In self-correcting tracking, the information to be fused as cor-

rection of the tracker are obtained directly from a source running in parallel [48, 112] or gathered

online whenever the fusion is required [C1]. Context information in the scene can be exploited
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for the fusion to recover tracking failures and verify tracking result [123].

1.2 Contributions

We designed a TEC framework where we embed appropriate evaluation and correction blocks

for trackers to obtain robust tracking. A generic formulation of self-correcting tracking is made

based on Dynamic Bayesian Network (DBN) in order to examine its operation and different

correction methods in a tracker. The detailed contributions of the thesis are:

1. Generic representation of self-correcting tracking

We provide a generic formulation of a self-correcting target tracking using a DBN model. In

the DBN model of the self-correcting tracking, discrete variables represented by additional

hidden layers are incorporated over a DBN model of a baseline tracker that allow evaluation

and correction on a tracker. The discrete variables value identifies the level of track quality

and the type of corrections made to a tracker. An approximate inference is made by utilising

the TEC framework. To model interacting units in the self-correcting tracking, a coupled

DBN model is proposed. The generic DBN formalisation allows us to develop a self-

correcting tracking for an intended tracking application.

2. Improve tracking of model points on an extended object

We use the TEC framework to improve Bayesian filtering of model points on an extended

object [J1]. We propose a quality measure criterion for evaluation of each model point track

to produce a decision for correction. The quality measure is based on examining trackers

state and modelling of failure sources. Unlike evaluation methods proposed in [C1, C2,

47, 87], modelling the source of failures enable the tracker to make correction for avoiding

expected failures. We used data obtained from optical motion capture systems in order to

show the improvement in tracking performance of our proposed method compared to the

state-of-the-art methods.

3. Utilise correlation information for correction

We make model point trackers to assist each other based on their correlation model in the

TEC framework [J1]. Correction of low-quality model point trackers involves an estimation

of a probable true state and a re-initialisation of the tracker using the correlation model with

other point trackers. The correlation between point trackers is modelled from observed tra-

jectory histories adaptively. Unlike the method presented in [C1, 120], an online modelling
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and a correlated trajectory selection criterion are used for effectively recovering low-quality

trackers.

4. Tracker-level fusion for self-correcting tracking

We propose self-correcting tracking using tracker-level fusion of complementary track-

ers [J2]. In the fusion framework, we include online performance measures for indi-

vidual trackers as enabling factor for tracker-level fusion. Most existing methods en-

able the fusion by considering the measurement likelihood for score or reliability assess-

ment [53, 132, 128, 51, 127]. However, measurement likelihoods are affected by scene

clutter and are dependent on the discriminative capability of the target appearance mod-

elling [89].

5. Collaboration strategy for tracker-level fusion

We define a tracker collaboration strategy in the tracker-level fusion using prior states (prior

correction) based on the performance measures of trackers [J2]. The basic idea of the prior

correction is to improve a tracker with low-quality performance. A poorly performing

tracker prior is partially or fully replaced with the prior of a well-performing tracker ac-

cording to their relative performance levels. In addition to this, we set a criterion for the

appearance model update for trackers based on the performance measure to minimise drift-

ing.

1.3 Organisation of the thesis

This thesis is organised as follows:

Chapter 1: The introduction and motivation for the thesis are described in Sec. 1.1 and followed

by discussion of the contributions in Sec. 1.2.

Chapter 2: The introduction of the chapter is provided in Sec. 2.1. Related works on a tracking

system are described in Sec. 2.2, Sec. 2.3 and Sec. 2.4. Performance measures and correction

methods for target tracking are discussed in Sec. 2.5 and Sec. 2.6. Data fusion methods for

tracking are described in Sec. 2.7. Discussions on related work to obtain self-correcting tracking

are presented in Sec. 2.8.

Chapter 3: The introduction of the chapter is provided in Sec. 3.1. Tracking of targets in

Bayesian framework is explained in Sec. 3.2. The proposed DBN model and filtering equations
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for self-correcting tracking are presented in Sec. 3.3, Sec. 3.4 and Sec. 3.6. Based on the DBN

model, tracking corrections are explained in Sec. 3.5. Summary of the chapter is given in Sec. 3.7.

Chapter 4: The introduction of the chapter is given in Sec. 4.1. The proposed TEC frame-

work based probabilistic tracking of an extended object with set of model points is presented in

Sec. 4.2, Sec. 4.3, Sec. 4.4 and Sec. 4.5. Experimental analysis and validation, and compari-

son with other state-of-the-art methods are provided in Sec. 4.6. The chapter is summarised in

Sec. 4.7.

Chapter 5: The chapter is introduced in Sec. 5.1. The proposed tracker-level fusion framework

is described in Sec. 5.2 and Sec. 5.3. Trackers and their appearance model update in the fusion

framework are explained in Sec. 5.4 and Sec. 5.5. The DBN model discrete variables for the

fusion framework are described in Sec. 5.6. Experimental analysis and validation, and compar-

isons to other-state-of-the art methods are discussed in Sec. 5.7. Summary of the chapter is given

in Sec. 5.8.

Chapter 6: Summary of achievements and future research directions of the thesis work are

presented in Sec. 6.1 and Sec. 6.2.
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Related work

2.1 Introduction

Tracking involves estimating the state of a target using measurements taken from a camera. For

the state estimation there exist numerous trackers with different formulations. The trackers might

encounter failure when the target of interest undergoes challenges such as occlusions and pho-

tometric changes. In order to allow trackers to avoid or recover from failures, a self-correcting

tracking framework can be considered. The self-correcting framework requires an online perfor-

mance measure for track quality assessment and a correction for correcting a tracker in the case

of tracking challenges and failures (Fig. 1.2). In this chapter, reviews on the state-of-the-art for

tracking methods together with associated performance measures and correction techniques are

presented. Table 2.1 gives the characteristics of trackers that use performance measures and/or

correction techniques. Reviews on key components of a tracking system are presented in Sec. 2.2,

Sec. 2.3 and Sec. 2.4. Related works on performance measures for track quality assessment are

discussed in Sec. 2.5. In Sec. 2.6, state-of-the-art trackers using correction techniques for achiev-

ing robust tracking are presented. Sec. 2.7 presents data fusion techniques in tracking as a means

of enabling self-correcting tracking. Finally, Sec. 2.8 provides a discussion of the presented

literature.

24
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Figure 2.1: A generalised pipeline of a visual tracker with key components.

2.2 Appearance models

As the core of a tracking system (Fig. 2.1), the target’s representation and appearance model play

an important role in visual tracking [64, 96]. The target representation can be in the form of a

point, set of points, parts, a contour and a bound box [125, 64, 96]. For the intended representa-

tion, the appearance of the target is measured in the image in the form of pixel values and their

properties, and is represented by using schemas such as template [10], histograms [76] and fea-

ture vectors [127] (Fig. 2.2). The set of pixels representing a target can be organised either in the

form of a global (holistic) descriptor or a local descriptor [99, 12]. Global descriptors identify the

target by considering pixels in the overall target, while local descriptors are constructed from spe-

cific parts of the target. In both of the descriptors, different properties of pixels can be considered

as features for modelling the appearance of the target. In some appearance modelling techniques,

the pixels in the background (context-information) can also contribute in order to describe or to

discriminate the target in the form of classification task [3, 130]. The classification task uses

pixels on the target and on the background as positive and negative samples, respectively.

The features taken from the image can be categorised as low-level, medium-level and high-

level features [64]. Low-level features include colours [76], gradients [65] and motion pat-

terns [12, 93]. Colours are directly obtained from the pixels in an image, and different colour

spaces (e.g. RGB and HSV) exist to identify the target of interest. Gradients are obtained by

taking the difference in the intensity values of pixels on the target (sometimes from background

too), while motion patterns are obtained as changes in pixel values between different images in

the video, such as optical flow. An image processing technique can be applied to pixels in order

to obtain medium-level features such as edges [39], interest points [31] and uniform regions [41].
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(a) (b) (c) (d)

Figure 2.2: Target appearance representations: (a) sample image containing target (indicated
by yellow bounding box), (b) gray-image template (2D-array), (c) gray-image intensity-based
histogram and (d) gray-image intensity-based gradient feature vectors.

High-level features are used to directly identify and discriminate the target of interest from the

background by utilising appearance features. Example of high-level features can be extracted

from a head-detector used in applications such as crowd counting or density estimation [98].

2.3 Motion models

Target’s motion over time is described by a motion model. The motion model helps to re-

duce computational complexity by predicting the likely state of a target between consecutive

frames [53, 110]. Motion prediction is done using constant velocity [12, 65], constant accelera-

tion [128], coordinated -turn [108] and random walk [53, 52] models. The motion model allows

the tracker to perform robust tracking when the model properties match with the motion char-

acteristics of the target. The constant velocity, acceleration and coordinated turn motion models

result robust in tracking when a target moves behind occlusions. The random walk model is

widely used for targets with no predefined motion pattern. Motion models can be adaptive such

as an adaptive velocity model with adaptive nose [134]. Similarly, observation data driven motion

model is introduced for handling abrupt motion changes of the target [77]. The motion models

can be designed and represented to describe the changes in scale, rotation and deformation prop-

erties of the target depending on an adopted state representation method. Among the rich motion

representations methods, an affine motion model contains the centre, scale, rotation, aspect ratio

and the skew angle of a rectangular bounding box [107].
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2.4 Searching and matching strategies

Trackers such as Mean-Shift [17] and KLT [62] are designed free of a constrained motion model,

rather they implicitly embed the motion model in their search strategies. The search strategy de-

fines a method to find and match the best state of the target in the current frame [96]. The search

strategies in tracking can be either deterministic or stochastic. The search strategy is accompa-

nied by a matching method for selecting the best candidate of the target. The search strategy

for matching the features of the target from frame to frame can be formulated as an optimisation

problem of an objective function. In deterministic methods, the optimisation problem is formu-

lated as differential algorithms, and is solved by using gradient decent and its variants. The Mean-

Shift and KLT trackers are examples of deterministic trackers. Stochastic methods use Bayesian

formulations to optimise the objective function. Kalman filter [4] and particle filter [43] are the

most common Bayesian trackers. Although deterministic methods are computationally efficient

and have low complexity, the capability to escape local minimum solutions makes stochastic

trackers preferable [110]. Recent advances and an experimental survey on trackers are available

in [121, 96, 125].

2.5 Performance measures

Performance measures judge the quality of the tracker either based on the algorithm used or the

tracker output (Fig. 2.3) [64]. In analytical methods, the tracker components and the complexity

of the algorithm are examined without the need of tracks. In empirical methods, one or more

output variables of a tracker are compared with a predefined characteristic and reference data in

order to quantify the track quality. The track quality can be quantified either offline or online. For

an offline performance measure, manually collected ground-truth data is used as a reference in

empirical discrepancy methods [91]. For the case of an online performance measure, the output

of the tracker is judged in empirical standalone methods. Online performance measures play an

important role in obtaining self-evaluation decision for correcting a tracker. In this thesis we

review related works on online performance measure as part of building self-correcting tracking.

Various types of online performance measures have been proposed related to the diverse

tracking strategies. For the online evaluation, characteristics of the tracker output include tra-

jectory properties [48, 47, 115], objects colour differences and boundary contrasts with back-

ground [14, 26, 69], observation likelihood [91, 105, 69] and innovation errors or covariances
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Performance 
measures 

without tracker output using tracker output 

non ground-truth based ground-truth based 

Empirical 
methods 
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Figure 2.3: Performance measures in object tracking (this figure is an adaptation of [64]). Among
the different techniques, Empirical standalone methods are used for track quality assessment for
realisation of self-correcting trackers.

of the states [91, 89]. These characteristics are compared with threshold values and predefined

target models. Moreover, in the case of fusion of multiple trackers or tracking of an extended

object with model points or parts, the multiple estimated states are compared in order to obtain

the evaluation [47, 133, C2].

2.5.1 Trajectory and feature properties

Trajectory-based evaluation methods consider properties such as smoothness, length, change of

direction, similarity with the predefined model [89, 81] and similarity with a reverse tracking

result [115]. Detection of failures for a tracker is a form of performance measure with binary

decisions. A failed tracker is assumed to have irregular (random) changes in the tracker output

states [116]. The irregularity in the trajectory is measured from a combination of the complexity,

the smoothness and the scale consistency scores. The irregularity assumption for detection of

failures is a predefined characteristic for the target; however, these characteristics cannot be

applied to a generic target variable motion pattern. Trajectory consistency between the forward

and the backward track is measured for quality assessment based on the assumption that correct

tracking is achieved independent of time direction [47, 115, C1].

Histogram difference between the tracker output and a prior known reference of the target is

used as colour-oriented performance measures. In addition to this, properties of temporal colour
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differences between tracks are also considered as a performance measure. The occurrence of

dramatic change in colour properties of the track has been used to detect failures [42]. Although

these performance measures are easy to implement, they can produce false positive results when

there are illumination changes [89, 26]. Moreover, the use of colour similarities for guiding the

state estimation in the tracker as well as for the evaluation of the tracker at the same time cannot

represent appropriate track quality evaluation. Features of colour change in log-polar transformed

track image are used for detecting failures instead of comparing colour similarity directly [14].

Authors defined failure of the tracker as the movement of the centre of the bounding box from

the target to the background, and this property is shown to be easily measured in the log-polar

transformed image.

In multi-face tracking based on a face detector, combinations from static observations on the

tracker state and dynamic observations on the temporal evolution of features are used to detect

tracking failures [25, 24]. The static observations are made based the properties of the face

detector output, trajectory (refereed as tracking memory) and the likelihood with respect to the

state estimated. The dynamic observations are based on the changes in the state distribution and

observations likelihood over consecutive frames. Abrupt increase and decrease of the dynamic

observations are associated with tracking failures.

2.5.2 Model validation

Performance measures are considered equivalent to online model validation of the assumed dy-

namic system in the tracker such as motion models. Model validation for the probabilistic track-

ers can be directly estimated from their innovation error, likelihood, covariance magnitudes and

their corresponding cumulative sums [105, 115]. However, similar measurements available from

other objects or clutter usually produce inaccurate performance measures by using the model val-

idation approaches. Negative expected log likelihood of the states is proposed as a performance

measure metric in order to detect particular failures from slow model changes (drifting) [105].

Entropy characteristic of the estimated posterior distribution is also considered for track quality

estimation [60]. In particle filter, the entropy is measured from the weights of the samples, and

a large value of entropy is associated with poor tracking performance. A more generic and ro-

bust performance measure for probabilistic tracker is proposed based on the spatial uncertainty

of samples from the posterior distribution [89, 90, 65].
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2.5.3 Multiple states

Relativity-based evaluation is used as performance measure for selection and comparison of set

of trackers for fusion. In the fusion of multiple trackers, relationship among trackers and majority

voting schema are exploited to analyse the relative performance of trackers. Relative likelihoods

from trackers are used for obtaining the quality of trackers [52, 126]. The tracker with the high-

est probability is selected as the best performing tracker or assigned with the highest weight for

fusion. Relativity-based evaluation methods avoid the need of a threshold value for failure de-

tections. The difference between results from individual trackers and the fused results from all

trackers is examined for identifying failed trackers [133]. A pair-wise track correlation among

set of trackers, together with track consistency between two successive frames from individual

trackers, is used to rank performance of trackers in order to have an optimal combination [32].

For tracking an extended object by a set of model points and parts, the performance measure

is based on the model point’s and part’s detection and matching quality [103, 40, 69] or their

trajectory properties [48, C1, 47]. Individual allocated tracker for each model point or part can

be referred as local trackers. Performance measure of extended object track is performed either

with the local trackers [47] or with the global-object tracker [48]. A local tracker is considered to

have a low-quality performance when no new observations are matched with it [103]. However,

matching-based performance evaluation generates false positives and negatives due to similari-

ties between descriptors, clutter and misdetections. In feature points tracker, Sum-of-Squared-

Differences (SSD) metric is used on surrounding image patch for the performance measure [74].

Trajectory-based performance measures use time-reversed tracking to obtain a backward trajec-

tory for the comparison with the original one [115]. The differences between the forward and the

backward trajectories are used as a performance measure [C1, 47, 115]. However, tracking back

to the initial (or previous) frame leads to delays; moreover it is expensive for long-term trackers

and for targets with large number of model points or parts, such as markers for the human body

in motion capture system [8]. Trajectory correlation among local trackers is exploited in order

to obtain the performance of extended target tracking [C2]. From the observed trajectory cor-

relation, reference data is estimated for local trackers using the states of others. The evaluation

compares error distances between the output state and the estimated reference data.
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2.6 Correction

The correction step involves changing a tracking parameter [134], using a suitable tracking prin-

ciple over a baseline tracking algorithm [50] in order to deal with challenges. The baseline tracker

is a tracker without an explicit modelling of evaluation and correction blocks in it.

2.6.1 Adaptive modelling

Changing of parameters and models helps a tracking system to adapt changes in property over

time for the target and tracking environment, and allows occurrence of tracking failures to be

minimised [15]. The parameter changing is a form of correction in a tracker which is usually done

in accordance with the performance measure. The motion and observation models in a tracker

contain the parameters that can be tuned for correct state estimation. Trackers that tune their

parameters are referred to as adaptive [44, 101]. In the case of adaptive appearance model, every

time the tracker update its appearance model, the update is a form of correction to the predefined

model. Adaptive trackers change the tracker model based on the outcome of the most recent

frames. It is worth noting that changing a tracker model based on its outputs without any sort of

quality measure, can be referred as blind updates, are prone to accumulate errors and cause drifts

to background [110, 109]. Considering inter frame modelling changes for motion and appearance

in tracking, an adaptive strategy for motion and appearance models are proposed [134]. The

motion model uses adaptive velocity with adaptive noise modelling based on first-order predictor

of states in consecutive frames. The adaptive appearance model uses a mixture of appearance

models obtained from the tracker output with a constraint that past mixture components are

exponentially forgotten. Assuming the effectiveness of a strong appearance model compared

to a strong motion model in visual tracking, emphasis has been given to adaptive appearance

models [86, 44, 36, 101, 88].

2.6.2 Re-initialisation

Tracker re-initialisation is used as a correction in order to recover from its failure [48, 87, 11]. The

re-initialisation is a model resting technique that is similar to breaking the Markovian chain in

Bayesian trackers [9]. This approach requires a mechanism to obtain the (expected) true state of

the target independent of the tracker [48, 87]. Contextual dynamics between a target and features

in the background are used for correcting the tracker in the cases of occlusions and/or camera
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Figure 2.4: Performance of Tracking-Learning-Detection (TLD) framework [48]. (a) Area over-
lap score (Sec. 5.7.3) of TLD compared to ground truth over frame k. (b) Modes of operation for
TLD: c = 0- result from tracker alone, c = 1 - result from fusion of tracker and detector, c = 2-
re-initialisation of a tracker and c = 3- no result. Failures in a tracker, corresponding to small
values of overlap in (a), are corrected by a detector in the re-initialisation mode of operation. (c)
Sample tracking results.

motion [119]. Detector has been used for target re-accusation and re-initialisation of trackers in

the cases of occlusions in Tracking-Learning-Detection (TLD) framework [48]. The detector is

learned online while the tracker is well on the target. The output from TLD can either be from

the tracker alone or fusion of the tracker with the detector depending on their performances. TLD

has four modes of operations: result from tracker alone, fusion of the tracker with detector, re-

initialisation of a tracker from detector and no track estimate (Fig. 2.4). Failures in the tracker

are corrected by the detector in the form of re-initialisation.

Similarly to TLD, a face detector has been incorporated with a face tracker for re-initialisation

capability of the tracker [87]. In a face detector based multi-face tracking, correction of failed

target tracking is done in the form of association with the new initialised targets [25]. The associ-
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ation of removed and created targets is done using person identification. The person identification

model for correction is built from observations during the tracking process before failure.

2.6.3 Multiple states

In the extended object tracking, the state estimation can be done in the form of local model points

and parts. The states of model points and parts combined to estimate the global state of the

object. Terminating uncertain or low-quality local track in the extended object is used to achieve

robust tracking [47]. The termination process avoids likely tracking failures and incorrect state

information by the low-quality local trackers that contribute the state estimation for the global

object. This approach usually leads to the loss of structural information of the object when model

points are assumed to be a persistent part of the object. The structural information of the object

plays an important role as an input for High-level tasks such as activity analysis. Terminating

poor performing local trackers can be accompanied with initiating new local trackers [103, 40].

For such tracking method the initiation is another form of correction. The track initiation criteria

give focus to the stability of the added new model point. However, it is crucial to consider the

structural information to add the new model point for accurate tracking of the extended target.

In a tracking system consisting of multiple trackers, correlation information among the track-

ers has been used as a correction technique [C1, 124, 120]. In 3D articulated human motion

tracking, correlation information is obtained from symmetric portions of the human body [120].

This information is used to estimate the motion prior and constrains the proposal distribution of

the particle filter when no measurement data is available. The model used to obtain correlation

information is learned offline, which limits the generality of the solution. Although not explicitly

stated as a correction technique, a similar type of correlation information is used to obtain robust

tracking with a context-aware tracker [124]. The source of correlation information is tracking

other objects in the scene (auxiliary objects). In the context-aware-tracker the concept of per-

formance measure is not exploited before fusing correlation information from auxiliary objects.

Correction in a tracking system is mainly done in the form of fusion. Fusion helps the individual

trackers to cooperate each other based on the score assigned to the trackers as a performance

measure. In the cooperation, trackers correct their own posterior state in reference to the fused

state. Details of fusion in tracking are discussed in Sec. 2.7.
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2.7 Fusion in tracking

Data fusion has been widely used for enabling robust visual tracking [132, 67]. The fusion

principle can be directly related to the design of self-correcting framework. The score (weight)

assessment to the units to fuse is similar to online performance measure. The fused output that

is used as an input for next frame in Bayesian trackers (Sec. 3.2) is similar to applying the

correction step for the less weighted unit in the fusion framework. Fusion can be implemented at

different levels for tracking: Component-Level Fusion (CLF) [108, 65] on motion and appearance

models using a single tracker, and Tracker-Level Fusion (TLF) [52] on trackers in a multi-tracker

scenario. In this section, we review the related work on fusion for visual tracking.

Figure 2.5 shows block diagram for the two levels of fusion (CLF and TLF), and Table 2.2

summarises visual trackers using different fusion techniques.

2.7.1 Selection of units to fuse

The selection of units to be considered for fusion is mainly based on complementary perfor-

mance properties. The complementary properties allow the units to overcome any unforeseen

challenge mutually or independently (in piecewise selection manner). In addition to this, com-

plementary properties of the units help to avoid the use of redundant tracking hypothesis [65].

The complementary performance properties are observed from robustness of the units to track-

ing challenges [32, 112, 51]. A comparison based on the simulated real-world challenges al-

lows one to observe the complementary performance of trackers and tracker components for the

fusion [110, 96, 73]. Holistic and local appearance representations have complementary perfor-

mances to occlusions, and illumination and pose changes [113]. Zero-order and constant velocity

motion models have complementary performances to occlusions and sudden pose changes of the

target [45]. In TLF variations in searching and matching strategies can be considered in addition

to the complementary performance properties of motion and appearance models for the trackers.

In order to account for the long-term occlusions, a detector with a sliding-window search strategy

can be assumed to have a complementary characteristic to a search strategy in a tracker for target

reacquisition [48].
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2.7.2 Fusion methods

Fusion of units is done based on different techniques such as product rule [113, 54], weighted-

sum rule [12] and the Interactive Multiple Model (IMM) framework [108, 66]. The weighted-sum

rule is a voting scheme where independent decisions from each model are combined in the form

of mixtures as

p(xk|Zk) =
M

∑
i=1

η
i p(xi

k|Zi
k), (2.1)

where p(xi
k|Zi

k) represents the probability density estimate for target state from ith unit and η i is

the weight assigned, while M is the number of the units to fuse. In p(xi
k|Zi

k), variables xk and

Zk represent target state and measurements, respectively (Sec. 3.2). The probability distributions

from different fused components are usually integrated into a single distribution in the form of

product rule as

p(xk|Zk) =
M

∏
i=1

p(xi
k|Zi

k). (2.2)

The weighted-sum rule maximises the results of individual models and is robust to fused units

that contain noise (such as measurements from an occlusion), while the product rule considers the

integration of models and is effective for units with independent modalities [132]. An adaptive

combination of weighted-sum rule and product rule can also be used for an effective fusion [33,

117]. IMM allows fusion of different models by switching between model associations [52, 112].

The model associations can be obtained by weighted-sum rule or product rule of the different

fused units.

Co-training has also been proposed for fusion of learning-based and classifier-based track-

ers. In co-training, different classifiers cooperate by providing negative samples for their indi-

vidual training [102] or use individual estimates for incrementally updating their target model

in a criss-cross fashion [127]. The fused output from the co-trained units is estimated using the

weighted-sum or product rules. Co-training is appropriate for features obtained from independent

modalities such as voice and appearance [48].

2.7.3 Component-level fusion

A tracker using a single motion model and measurement model is more vulnerable to tracking

challenges and encounters failure. In order to cope with the challenges multiple appearance mod-
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els or multiple motion models can be used in CLF. Multiple appearance models can be used to

handle changes in target appearance and measurement uncertainty [65, 113, 12]. The appearance

model can also be obtained as a fusion of multiple visual cues [65, 33]. The visual cues represent

appearance attributes of the target. Features containing colour and edge information, which can

be either holistic or local representations for the target, are used to model the appearance in the

form of histograms or templates. Most of the proposed methods exploit the strengths of both

holistic and local features [113, 12]. Holistic appearance models can be robust to out-of-plane

rotations and deformations, while local appearance models can be robust to partial occlusions,

scaling and in-plane rotations [110, 112]. CLF using multiple appearance models includes part-

wise colour histograms together with holistic-edge histograms [65], sparse features in the form

of local and holistic templates (including background) [113], and local-colour histograms with

motion, shape and colour features of the whole target [12].

Multiple motion models are utilised in CLF to cope with uncertainty and variable motion of

the target [108]. Combinations of constant velocity and acceleration models, Gaussian random

walk with various covariances and coordinated turn models are used to implement motion vari-

ations [45, 128]. In Multiple Model (MM) particle filter, a bank of parallel Extended Kalman

filters is used to construct the proposal distribution for accurate tracking [108]. The Extended

Kalman filters have different motion models: constant velocity and acceleration, and clockwise

and anticlockwise coordinated turn motion models. For handling sudden stops and direction

changes, a zero-order motion model and a constant velocity motion model can be integrated for

pedestrian tracking [45].

2.7.4 Tracker-level fusion

TLF is carried out using output from multiple trackers. Due to tracking challenges, it is possible

that both of the appearance and motion models of the target changes simultaneously. Since CLF

uses either multiple motion models with single appearance model or multiple appearance models

with single motion model, it might not be possible to address such changes when using CLF. Fu-

sion of multiple trackers allows us to handle the simultaneous change in motion and appearance

of the target by incorporating multiple motion and appearance models in the trackers [132]. TLF

can be considered as a generalisation of CLF, regardless of computational complexity. Within

TLF framework, individual trackers can operate either in an independent [32], or in an interac-

tive (cooperative) manner [112, 52, 54]. The two modes of operations in TLF are shown by the
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Figure 2.6: Closed box fusion of trackers T1 and T2 (this figure is an adaptation of [54]). The
superscripts in variables identify trackers. The block N is used for normalising the posterior
distribution.

switches in Fig. 2.5. Fusion of independent working trackers aims only for an optimal combina-

tion of tracks for boosting the overall performance compared to individual trackers. The fused

result is not used as a feedback for improving the performance of individual trackers and thus the

fusion operation can be done offline. Individual trackers in the fusion are considered as a black

box without requiring details of trackers [32]. Optimal combination from the individual tracks is

obtained by considering only the correlation among tracks.

Cooperating trackers in TLF aims to overcome a tracking failure mutually. A generalised

fusion framework is proposed that treats trackers as a ‘closed box’ and combines the outputs

from each tracker [54] (Fig. 2.6). The combinations of multiple motion models with multiple

appearance models have been used in order to create multiple trackers that work in collaboration

as a single compound tracker [53, 52]. Appropriate trackers, selected based on likelihood score,

are sampled and communicate with other trackers for improving individual performance together

with the overall tracking performance. A region tracker [86] (robust to target scale changes

and in-plane rotations) is fused with an object tracker (superpixel tracker robust to out-of-plane

rotations and deformations) in a complementary tracking framework [112]. The re-initialisation

of a tracker from the estimated state of the other one is made by observing the overlapping

area between the trackers’ estimate bounding-boxs. TLF can also be in the form of cascaded

fusion [111, 63], where the result of a tracker is used as an input for the other one with the aim

of obtaining more accurate tracks. In the case of different state representation techniques by the



Chapter 2: Related work 41

trackers, state conversion between trackers is a necessary step during fusion [54].

2.8 Discussion

In tracking, changes in properties of the target together with changes in the tracking environ-

ment can cause trackers to failures. In order to deal with the failures and obtain robust tracking

results, an explicit modelling of tracking failures or handling of tracking challenges should be

adopted for trackers. Failures and performance degradation in trackers can be detected using on-

line evaluation techniques and recovering from failure can be done in the form of correction. The

evaluation and correction techniques are directly related to the design of a tracker (Table 2.1),

thus we have summarised state-of-the-art tracking strategies and tracker components as part of

designing self-correcting tracking.

Performance measures on trackers have been discussed for failure detection and quality as-

sessment in order to devise the self-correcting tracking. Changes in trackers parameters and char-

acteristics of tracks are compared with known properties for the evaluation. Robust and generic

evaluation methods for all tracking scenarios are very challenging, but it is an important problem

that needs to be addressed [25, 48]. Different evaluation criteria and characteristics have been

considered related to the wide variation of tracking strategies and state representations. Track

characteristics such as trajectory smoothness and shape, colour differences with the background

and errors from assumed tracking models have been considered for the evaluation. In general,

the accuracy of a particular performance measure might vary for different trackers due to varia-

tions in state representation and tracking formulations used in the trackers. In order to improve

the performance of a particular tracker, a suitable evaluation method can be adopted for better

quality assessment and failure identification [103, 120, 48].

Trackers using correction in the form of model update and re-initialisation have also been

discussed. The challenging issue behind correction is looking for information that helps to make

appropriate changes to the tracker so that the tracker resumes its normal operation [48, 87].

Moreover, identifying the component of the tracker undergoing changes is a concern during cor-

rection. The use of recent tracker output as source of information without proving its correctness

is susceptible to drifting problem [88]. In order to alleviate the drifting, the adaptive modelling

approach needs to be assisted by an appropriate online performance measure. Information for

correction can stem from different sources such as context information and other trackers running
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in parallel (fusion) [124, 53]. As potential solution towards obtaining correction information, we

have summarised related works on fusion for tracking (Table 2.2). The existence of wide range

of tracker with different strategies and ability to cope with different challenges encourage the use

of TLF [65]. For effective implementation of characteristics to avoid failures and to recover from

failures, we have mentioned the requirement of complementary properties between trackers in

the fusion framework. Appropriate online performance measures need to be addressed for the

fusion units for better quality assessment. Moreover, the collaboration method plays an important

role to improve the performance of individual tracker and at the same time to boost the overall

fusion framework.

This thesis aims to enable trackers a self-correcting capability by embodying online perfor-

mance measure and correction explicitly, TEC framework (Fig. 1.2). Specifically, for an extended

object tracker with local model points we use covariance property and source of failure models

to obtain quality of local tracker, and utilized correlation information between local trackers to

correct failed tracks (Chapter 4). Accurate correction information is acquired by using adaptive

online correlation modelling. In tracker-level fusion, we include appropriate online performance

measure and collaboration strategy to obtain self-correcting capability among individual trackers

(Chapter 5). We also utilized the online performance measure to guide and minimize drifting in

model update for the individual trackers.



Chapter 3

Dynamic Bayesian Network framework for

self-correcting tracking

3.1 Introduction

Trackers using a fixed motion model and appearance model are vulnerable to tracking challenges,

and may encounter failures. In order to avoid and/or recover from these failures, trackers can be

assisted by evaluation and correction in self-correcting tracking (Fig. 1.2). A Dynamic Bayesian

Network (DBN) is an appropriate mathematical tool for representing and solving the inference

problem of the state estimation in self-correcting tracking. A DBN model of a baseline tracker

can be extended to contain the evaluation and correction units in order to obtain a DBN model

of self-correcting tracking. In this chapter, we provide a generic formulation and representation

of self-correcting tracking using the DBN model. In the DBN model of self-correcting tracking,

we incorporate additional hidden layers to the DBN model of a baseline tracker. The additional

hidden layers are represented by discrete variables that allow the self-correcting tracker to have

evaluation and correction operations.

In this chapter, the baseline method of tracking in a Bayesian framework is presented in

Sec. 3.2. The proposed DBN model for a generic self-correcting tracker with associated filtering

equations is discussed in Sec. 3.3. Approximate inference for the DBN model based on the TEC

framework is described in Sec. 3.4. Correction of a tracker is explained based on the filtering

equations from the DBN model in Sec. 3.5. A Coupled DBN model for interacting units in

self-correcting tracking is presented in Sec. 3.6. Finally, Sec. 3.7 summarises the chapter.

43
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Figure 3.1: Graphical model representation of a generalised baseline Bayesian tracker [71].
Nodes represent a random variable and arrows show the dependence between variables. Ob-
servable variables are indicated by shading the nodes.

3.2 Bayesian tracking

Let I = {Ik}K
k=1 be an image sequence of K number of frames. Tracking involves estimating of

the states X = {xk}K
k=1 of the target over time from a set of available observations Z = {zk}K

k=1

obtained from I. A Bayesian network, which is a special class of Probabilistic Graphic Models

(PGMs), allows us to represent conditional dependence between variables and to estimate hidden

variables given other observed variables. A Dynamic Bayesian Network (DBN) is a type of

Bayesian Network for handling changes in the value of a variable over time [71]. A DBN model

of a generalised baseline Bayesian tracker is shown in Fig. 3.1. The model is used for analysing

the evolution and the conditional dependence within and across the time slot for the target state [7,

84].

Tracking in Bayesian formulation is expressed as sequentially estimating xk, from the set of

observations Zk = [zk,zk−1 · · ·z0]. The state, xk, is estimated in the form of a posterior distribution

p(xk|Zk) using two important steps: a prediction step followed by an update step. The prediction

step is

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (3.1)

where p(xk|Zk−1) is the probability distribution of the current state estimated from all previous

observations and p(xk|xk−1) is the probability distribution for state transition between consecu-

tive frames. p(xk|xk−1) is estimated from the assumed motion model of the target. The update

step estimates

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (3.2)
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where p(zk|xk) is the likelihood function obtained using the appearance model and p(zk|Zk−1) is

a normalising function. The Bayesian filtering assumes a prior distribution of p(x0) and Marko-

vian assumptions for the sequential state estimation. The prior distribution allows us to define

the identity of the target and is used to initialise tracking. The Markovian assumptions are: a

first order process for the hidden states, i.e. p(xk|xk−1,Zk−1) = p(xk|xk−1), and a conditional

independence between the current observation with the rest of the previous observations given

the current state xk, i.e. p(zk|xk,Zk−1) = p(zk|xk).

The posterior distribution p(xk|Zk) can have a linear Gaussian form as in the case of Kalman

filters, or any arbitrary non-linear distribution as in the case of particle filters. From the distribu-

tion p(xk|Zk), the best hidden state x̂k can be approximated using either Minimum Mean Square

(MMS) or Maximum a Posteriori (MAP) formulations. In MMS, x̂k is the mean of distribution

calculated as

x̂MMS
k ≈ E[p(xk|Zk)] =

∫
xk p(xk|Zk)dxk, (3.3)

while in the case of MAP, x̂k is the best candidate selected as

x̂MAP
k ≈ arg max

xk
p(xk|Zk). (3.4)

3.3 Dynamic Bayesian Network model of self-correcting tracking

3.3.1 DBN model

A self-correcting tracker should contain the evaluation and correction to improve a baseline

tracker (Fig. 1.2). A DBN model for self-correcting tracker requires additional hidden layers for

representing the evaluation and correction compared to the DBN model of the baseline tracker.

The additional hidden layers result in a deeper hierarchical DBN for a self-correcting tracker as

shown in Fig. 3.2. The DBN has a similar structure to that of Markov switching models such as

Switching Linear Dynamical System (SLDS) [118, 78], or Change Point Models (CPM) [28, 7].

In SLDS and CPM the additional nodes are used for selection of models. In the case of the

DBN model for self-correcting tracking, the additional nodes explicitly model evaluation and

correction operations that also include model selection as done by SLDS and CPM.

The top hidden layer of the DBN model for the self-correcting tracker (Fig. 3.2) contains a

discrete performance evaluation variable, pk, for providing information about the performance
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Figure 3.2: DBN graph of self-correcting tracker. The discrete evaluation variable, pk, and
correction variable, ck, allow the tracker to tune the parameters in the models or to select different
models, while xk and zk are the target state and observation variables, respectively. Circle and
square nodes represent continuous and discrete variables, respectively.

of a tracker. The hidden layer just below pk contains a discrete correction variable, ck, that allows

the tracker to have a decision for correction. The discrete variables take values from the sets

pk =
{

p ∈ N0 : 0≤ p≤ (Np−1)
}
,

ck =
{

c ∈ N0 : 0≤ c≤ (Nc−1)
}
,

(3.5)

where Np and Nc are the number of discrete values for pk and ck, respectively. The Np discrete

labels for pk represent the results of distinctive classes from the performance measure on the

tracker. For instance good and poorly performing classes can be considered as two labels of pk.

The Nc discrete labels for ck identify the type of corrections done on a tracker such as motion or

observation model selection, and re-initialisation.

The DBN model has a joint probability distribution of

p(x0:K ,c0:K ,p0:K ,z0:K) =
K

∏
k=0

p(zk|xk,ck)p(xk|xk−1,ck)p(ck|ck−1,pk)p(pk). (3.6)

In the joint probability distribution p(zk|xk,ck) and p(xk|xk−1,ck) are the measurement and mo-

tion models, respectively, which are dependent on the correction variable ck. The correction

variable has also prediction model of p(ck|ck−1,pk).

3.3.2 Inference: filtering equations

For the DBN model shown in Fig. 3.2, the filtering task is estimation of the probability distribu-

tions p(xk|Zk,ck), p(ck|Zk,pk) and p(pk|Zk). Due to the discrete characteristics of pk and ck, the
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distributions p(xk|Zk,ck), p(ck|Zk,pk) and p(pk|Zk) need to be evaluated for each discrete value

as p(xk|Zk,ck = c), p(ck = c|Zk,pk = p) and p(pk = p|Zk), respectively [30].

The distribution p(xk|Zk,ck = c) is estimated in the recursion from the probability density

function p(xk−1|Zk−1,ck−1 = ĉ), where ĉ is the correction variable value at k− 1. In principle,

the recursion is similar to the Bayesian formulations of the baseline tracker (Eq. 3.1 and 3.2).

The function p(xk|Zk,ck = c) is estimated using a prediction step

p(xk|Zk−1,ck = c) =
∫

p(xk|xk−1,ck = c)p(xk−1|Zk−1,ck = c)dxk−1, (3.7)

and then an update step:

p(xk|Zk,ck = c)∝ p(zk|xk,ck = c)p(xk, |Zk−1,ck = c). (3.8)

In the filtering equations the densities p(xk|xk−1,ck = c) and p(zk|xk,ck = c) are in their ap-

propriate form as described in Eq. 3.6. However, in Eq. 3.7 the probability density function

p(xk−1|Zk−1,ck = c) shows non-normality in its form which arises from the possible changes

of values between ck−1 and ck. The density p(xk−1|Zk−1,ck = c) is estimated by using a finite

mixture of the prior p(xk−1|Zk−1,ck−1 = ĉ) as

p(xk−1|Zk−1,ck = c) =
Nc−1

∑
ĉ=0

p(xk−1|Zk−1,ck−1 = ĉ)wĉc, (3.9)

where wĉc is the weight for the prediction of ck = c from the previous value ck−1 = ĉ. The weight

is estimated proportional to the distribution p(ck−1 = ĉ|Zk−1,pk−1 = p̂). Similarly to the filtering

equation for p(xk|Zk,ck = c), the probability density p(ck = c|Zk,pk = p) can be estimated using

prediction and update steps [30].

Exact inference techniques for the DBN model in Fig. 3.2 are complex and computationally

expensive due to the fact that the distributions p(xk|Zk,ck), p(ck|Zk,pk) and p(pk|Zk) require

recursions. The recursions contain integrations over xk together with summation over the values

of discrete variables(pk and ck). For cases such as Gaussian probability density functions for

models in the tracker, the complexity of the filtering equation grows exponentially due to the

additional discrete variable values [7, 30]. For reducing the complexity an approximation is

considered in the filtering equations. The most widely used approximation is based on the use

of only the best value ck in the filtering equations [49, 80]. The best value of ck is selected from
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the maximum likelihood value of p(zk|xk,ck). We use our proposed TEC framework to obtain an

approximate filtering equations as explained in Sec. 3.4.

3.4 Approximate inference using the TEC framework

The TEC framework implements a self-correcting tracker with an explicit performance measure

to estimate the evaluation variable that, in turn, is used to determine the correction variable. To

overcome the complexity of exact-variable inference in the DBN model, an approximation is

needed. The step-wise operations of tracking, evaluation and correction in the TEC framework

are implicit assumptions that allow us to obtain the approximate filtering equations. At each k,

the evaluation and correction variables are estimated after obtaining the result of the hidden state

xt . The step-wise variable inference corresponds to freezing a subset of the network nodes, i.e. pk

and ck with their most probable values in order to estimate xk [70, 75]. Estimation of xk involves

the use of the prediction of ck from time k−1 as the most probable value.

3.4.1 Estimation of the evaluation variable

From the TEC framework assumption, the distribution for evaluation variable p(pk = p|Zk) is

obtained after the estimation of the target state at time k, i.e. when xk is available. The probability

distribution p(pk = p|Zk) is estimated as

p(pk = p|Zk) = fp(xk, Ip), (3.10)

where fp(·) is a performance measure function that assigns the probability density for pk. When

ck is not available, the distribution of pk is dependent on xk (see the DBN model, Fig. 3.2).

Ip is any information other than the current estimated state of the tracker, such as pre-defined

threshold values and reference data, which are used by fp(·). Determining fp(·) together with Ip

for the tracker plays an important role as part of implementing the self-correcting tracking. The

performance measure fp(·) is a non-linear operation and returns one label of the track quality at

each frame k.
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3.4.2 Estimation of the correction variable

The value of ck is estimated from the value of pk (Fig. 3.2). The distribution p(ck = c|Zk,pk = p)

is estimated according to the formulation

p(ck = c|Zk,pk = p) = fc(ck,pk), (3.11)

where fc(·) is a function that maps the probability density values of pk to ck. The characteristic

of fc(·) controls the growth in hypotheses of the filtering equation due to the different values of

ck. For instance, fc(·) with a Kronecker delta function characteristic can be used to select one

of the values of ck at each time k. Selection of a single value for ck is equivalent to maximum

likelihood or maximum a posteriori formulation of multiple models [80].

3.4.3 Approximate filtering equations

At each k, the state xk is estimated before the estimation of pk and ck. However, the equations in

the estimation of xk are dependent on the discrete variable ck (Eq. 3.7 and 3.8). As an approxi-

mation, in order to estimate xk, the prediction values of the discrete variables from time k−1 can

be considered as the most probable value at time k.

Let the prediction of the correction variable be represented as ck|k−1. In the TEC framework

based estimation, the posterior probability density function p(xk, |Zk,ck|k−1) is calculated in a

similar way to the Bayesian formulations given in Eq. 3.7 and 3.8. The prediction step estimates

p(xk|Zk−1,ck|k−1) as

p(xk|Zk−1,ck|k−1) =
∫

p(xk|xk−1,ck|k−1)p(xk−1|Zk−1,ck|k−1)dxk−1. (3.12)

The update of a tracker involves estimating the final state p(xk|Zk−1,ck|k−1) as

p(xk|Zk,ck|k−1)∝ p(zk|xk,ck|k−1)p(xk, |Zk|k−1,ck|k−1). (3.13)

3.5 Tracking correction

Correcting a tracker involves the use of different tracking models that are suitable for the cur-

rent observation and target’s characteristics. Additionally correction can be done in the form of

changing of prior information of the target (i.e. a form of re-initialisation). For a generic inter-
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pretation, let us consider that the discrete value c = 0 represents the status of tracking without

correction (i.e. the baseline mode of operation), while c 6= 0 represents the mode of operation

with corrections and changes made on the baseline method. The correction step aims to modify

the tracker T and to improve the accuracy of the estimated states xk as

T ,xk =

{
T,xk, if ck = 0,
Θ(xk,T,ck, Ic) otherwise

(3.14)

where Θ(·) is the transformation made to obtain the corrected tracker T and the improved states

xk. Similarly to Ip (Eq. 3.10), Ic represents valid information, such as the true state of the target

from a detector [48] to assist the correction technique.

T is obtained by changing the parameters and models for the tracker. The correction can be

associated to the Bayesian filtering equations discussed in Eq. 3.12 and 3.13. In the prediction

equation the motion model probability density is conditioned on the variable ck, and can be

expressed as

p(xk|xk−1,ck|k−1 = c) =


p(xk|xk−1) if c = 0,

p(xk|xk−1) = fΘm(xk, Ic) if c 6= 0,
(3.15)

where p(xk|xk−1) is the corrected motion model and fΘm is a function to estimate the corrected

motion probability density. fΘm typically implements motion models different from the baseline

tracker, or adopts the motion model of the baseline tracker based on the different values of ck.

Correction on the observation model p(zk|xk,ck|k−1) is performed at the update step accord-

ing to

p(zk|xk,ck|k−1 = c) =


p(zk|xk) if c = 0,

p(zk|xk) = fΘo(xk,Zk, Ic) if c 6= 0,
(3.16)

where p(zk|xk) is the corrected observation model and fΘo represents a function to estimate the

corrected observation model. Similarly to fΘm , fΘo can be implemented by using different obser-

vation models from the baseline tracker or it can be an adaptive version of the observation model

in the baseline tracker.

The posterior estimate at time k is used as prior information at time k+1. The prior density

provides vital information for the execution of the tracker. In the case of a poor estimation of the
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Figure 3.3: Reset model for re-initialisation of a tracker (prior correction). The reset model is a
particular case of the general DBN shown in Fig. 3.2. In the model, for some values of (ck,pk)
the Markov chain between xk−1 and xk can be discontinuous (indicated by weak lines between
the states).

state, the posterior knowledge is incorrect, and this may lead a tracker failure. In the update step

(Eq. 3.13), the tracker estimates the posterior density p(xk|Zk,ck|k−1). At each time k, the poste-

rior p(xk|Zk,ck|k−1) needs to be corrected to p(xk|Zk,ck) based on the current estimate values of

ck. We refer to this correction schema as prior density correction, which can be expressed as

p(xk|Zk,ck = c) =


p(xk|Zk,ck|k−1) if c = 0,

p(xk|Zk,ck|k−1) = fΘp(xk,Zk, Ic) if c 6= 0,
(3.17)

where p(xk|Zk,ck|k−1) is the corrected prior and fΘp is a function used to estimate the corrected

prior density. A re-initialisation of a tracker is a prior correction, and it involves breaking the

Markov chain between consecutive state estimates xk−1 and xk, which results in a reset model

as shown in Fig. 3.3 [9]. In the figure, the weak link between states xk−1 and xk is to show the

independence of the current state from the previous state estimate whenever c 6= 0.

3.6 Coupled DBN model of interacting units

Incorporating multiple trackers and tracking components as a single system helps to attain self-

correcting tracking in the form of collaboration (Sec. 2.7). A coupled DBN (CDBN) allows us to

represent the operation of two or more interacting units. The filtering equation can be obtained

from the inference of variables in the CDBN. In the CDBN, the different units interact based

on hidden variables from the individual units [71]. Figure 3.4 shows a CBDN model of two

interacting trackers i and j in order to obtain a self-correcting tracker. Trackers i and j have
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Figure 3.4: Coupled DBN model of interacting trackers i and j to enable self-correcting tracking.

their own observations zi
k and z j

k, state estimations xi
k and x j

k, evaluation variables pi
k and p j

k,

and correction variables ci
k and c j

k, respectively. The individual trackers estimate the target state

xi
k and x j

k and evaluation variables pi
k and p j

k based on their respective variables. However, the

trackers interact based on their individual evaluation variables pi
k and p j

k in order to estimate the

correction variable ci
k and c j

k. The estimated correction variables determine modes of operation

for each tracker. The mode of operation for trackers includes the weights assigned to each tracker

for the fusion and the level of cooperation between trackers for avoiding failures to obtain robust

tracks.

In order to obtain the inference of variables in CDBN, similar strategies can be followed as

described in Sec. 3.3 and Sec. 3.4. For the units i and j, evaluation variables are determined

independently as of Eq. 3.10

p(pi
k = p|Zk) = fp(xi

k, Ip),

p(p j
k = p|Zk) = fp(x j

k, Ip).

(3.18)

However, the correction variables of each unit is estimated as

p(ci
k|Zk,pi

k,p
j
k) = f i

c(c
i
k,p

i
k,p

j
k),

p(c j
k|Zk,pi

k,p
j
k) = f j

c (c
j
k,p

j
k,p

i
k).

(3.19)
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In the CDBN, unlike Eq. 3.11, the estimation of the probability density function for ck for each

unit is a function of the pk from the other unit. fc does not fulfil commutative properties for pi
k

and p j
k, and the superscript of fc identifies the estimation of ck for the particular interacting unit.

3.7 Summary

This chapter presented a generic formulation and representation of self-correcting target tracking

using a DBN. In the representation, we added nodes to the DBN model of a baseline tracker

resulting in a deep hierarchical DBN model. The additional nodes (that we referred to as evalu-

ation and correction variables) are discrete variables and control update, selection and fusion of

models. For the DBN model, inference of variables is explained as filtering equations. Due to

the additional nodes, exact inference among variables is computationally expensive and the need

for an approximations has been discussed. We utilised our proposed TEC framework (Fig. 1.2)

in order to obtain approximate inference between the variables in the DBN model. Different

schemes of making correction in a tracker or tracker’s model are explained based on the filtering

equations of the proposed DBN model.

The chapter explained a generic means of obtaining self-correcting trackers using DBN. Ta-

ble 3.1 summarises the main components in order to model self-correcting tracking using the

TEC framework. The components of the self-correcting tracking can be designed for a particular

baseline tracker. The design includes determining appropriate performance measure and cor-

rection functions for the baseline tracker. Chapters 4 and 5 present details of our proposed self-

correcting trackers using a correlation-based correction for an extended object and a tracker-level

fusion framework, respectively. For the proposed trackers, in Sec. 4.5 and Sec. 5.6 we discuss

the characteristics of discrete variables following the DBN model developed in this chapter.
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Chapter 4

Correlation-based self-correcting tracking

4.1 Introduction

The target state representation varies from one application domain to another. An extended object

can be represented by a set of model points estimated from multiple independent measurements.

Local appearance is modelled using pre-selected points on the object, which we refer to as model

points, such as markers in a motion capture system [8], or features extracted from images using

Scale-Invariant Feature Transform (SIFT) [100]. Tracking model points is achieved by estimat-

ing the state of each point individually, which generates a challenge for data association [106].

Moreover, performance degradation or failures in tracking can be generated by the challenges re-

lated to data association, missed and false detections, illumination changes and occlusions [110].

Therefore, a performance measure to detect tracking failures and a tracking correction step are

desirable to obtain a robust tracking [15, 61, 16]. To this end, we use the TEC framework for the

Bayesian filtering of model points [J1] (Fig. 4.1). In the proposed framework, we make model

point trackers to assist each other based on their evaluation and trajectory correlation in order to

obtain self-correcting tracking.

In this chapter, we first discuss the algorithm for tracking model points in Sec. 4.2. We then

present the proposed performance measure and correction technique for the tracker in Sec. 4.3

and Sec. 4.4, respectively. Sec. 4.5 explains the DBN model discrete variables for the framework.

Sec. 4.6 discusses the experimental validation and analysis, and Sec. 4.7 summarises the chapter.

55
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Figure 4.1: Block diagram of the proposed TEC framework for tracking of model points. From
the image Ik, the feature extractor produces a set of measurement zk and the baseline tracker
estimates the set of tracks xk. A performance measure on the state xk and tracker T gives a set
of binary decisions pk that expresses the track quality. Based on pk a correction step produces a
more accurate estimate xk and a corrected tracker T . Failure models and the knowledge of the
past trajectory information allow evaluation and correction in the framework.

4.2 Extended object tracker

In an extended object tracking the state xk consists of the state (and identity) of each model point.

Therefore, the state xk can be expressed as

xk =
{

xi
k : 1≤ i≤ Nk, i ∈ N+

}
, (4.1)

where xi
t is the state of the ith model point and Nk is the number of estimated model points.

For implementations with initiation and termination of model points, Nk is variable over time.

Similarly, at each time the sensor or feature extractor produces Mk point measurements

zk =
{

zî
k : 1≤ î≤Mk, î ∈ N+

}
, (4.2)

where zî
k is the îth model point measurement. The measurements zk are unlabelled and are af-

fected by potential misdetections and clutter.

Individual allocated trackers for each model point are local trackers T i. For tracking the

local points, Bayesian filtering is used as a baseline tracker (Sec. 3.2) [97]. An analytical online

solution to the integral in Eq. 3.1 is obtained by assuming a linear-Gaussian model as a Kalman

filter. For non-linear and non-Gaussian models numerical approximations such as Monte Carlo

methods are applied [22]. For marginalising analytically the state of the extended object, which
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is proportional to the number of local trackers, we choose Kalman filter as the baseline tracker,

T i, for each model point. Moreover, we assume that the motion of model points is not complex

(highly non-linear), and a linear motion model and a linear measurement model with Gaussian

noise are adequate for state estimation [97, 38].

For a D-dimensional tracking problem, the state for each local point xi
k in the Kalman filter

are represented as

xi
k = [xi

1,k, ẋ
i
1,k, ...x

i
D,k, ẋ

i
D,k]. (4.3)

where x and ẋ are the position and velocity components of the state. For the state models a

constant velocity is assumed. The prediction model (state transition) is defined by the Gaussian

distribution as

p(xi
k|xi

k−1) =N (Fkxi
k−1,Qk), (4.4)

where N (·) is a D-dimensional Gaussian probability density function with mean Fkxk−1 and

covariance matrix Qk. The constant velocity model is defined by the matrix Fk as

Fk = ID⊗
[

1 ∆k
0 1

]
, (4.5)

where ID is a D×D identity matrix and ⊗ represents the tensor product on matrices. Let us

assume that the measurement zî
k is associated with the local tracker T i and the measurement

model is defined as

p(zî
k|xi

k) =N (Hxi
k,Rk), (4.6)

where Rk is the covariance matrix that represents the uncertainty in the measurement and H is

the observation matrix, defined as

H = ID⊗
[

1 0
]
. (4.7)

Data association uncertainty arises between the local trackers, particularly when the object

undergoes deformation or it is articulated. The uncertainty is due to the arrival of multiple mea-

surements in a validation region (Fig. 4.2). The region is determined by the gate probability Pg

of the predicted Gaussian distribution, p(xi
k|Zk−1). The multiple measurements obtained in the
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Figure 4.2: Data association problem with multiple measurements in the validation region at the
update stage of the Kalman filter.

validation region are the result of other local point trackers or clutter. Optimal solutions for such

scenarios are characterised by exponential complexity to the number of measurements [5]. A

suboptimal solution is to apply a Joint Probability Data Association Filter (JPDAF) [29]. The

JPDAF is implemented by using a Probability Data Association Filter (PDAF) to each model

point independently. The separate PDAF implementation to a model point considers the other

model points’ measurements as clutter. PDAF allows the tracker to take into account the as-

sociation uncertainty for measurements in the validation region. The soft decision of PDAF is

based on Minimum Mean Square Error (MMSE), between the predicted state and measurements

in the validation region. JPDAF is effective for tracking a known number of targets, which is

considered in our framework, and in the presence of clutter [5]. However, JPDAF performance

degrades significantly when neighbouring targets and clutter produce persistent interference, and

when misdetections occur. We improve the performance of JPDAF in such conditions with the

proposed TEC framework.

4.3 Quality measure

Sources of performance degradation are clutter (false measurements), absence of measurements

(misdetections) and association errors. Fig. 4.3 shows the proposed tracking quality estimation

for a model points tracker taking into consideration the aforementioned sources of failure. We

model the sources of failure as information, which are represented by Ip in Table 3.1, in order to

estimate the track quality. The details of the quality estimation are described below.
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Figure 4.3: Performance measure of local trackers based on predefined failure models. Individ-
ual performance measures from the covariance check (pi

c,k), absence of measurement (pi
o,k) and

coalescence (pi
c,k) are combined to obtain the overall performance measure of a tracker pi

k (ΣΣΣT is
a covariance threshold). The estimated quality values are used for the correction.

4.3.1 Addressing performance degradation

An increase in the error covariance of the Bayesian tracker is an indication of low confidence

for the local tracker [105]. The increase is a result of associating more than one measurement

data zk in the validation region of the Kalman filter at the update step. The local points in the

extended object come close to each other and lead to the observation of one model point in the

validation region of the other model point trackers. The multiple measurements in the validation

region are also a result of clutter. Let T i represent ith local point tracker. Fig. 4.4 shows the

covariance characteristics for local point trackers under clutter (the position of the points are

manually collected from a walking person for simulation). T 3 and T 6 have clutter at frames 17

and 50, respectively. The association uncertainties from the clutter increase the covariances of

the local point trackers and finally lead to a track loss.

Let ΣΣΣ be the covariance matrix in the Kalman filter and pc,k be the quality measure against

the error in covariance (in the case of double subscript for p, the first subscript identifies the

particular type of performance measure). We estimate pc,k by observing the magnitudes of the

covariance matrix |ΣΣΣ| as
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Figure 4.4: Increase in covariance of local point trackers due to multiple measurements in the
validation region. (a) sample track, (b) covariance magnitude and (c) track error. T 3 and T 6

incur track losses due to clutter appearance in their validation region. The Euclidean distance is
measured between local point track and ground-truth position.

pc,k =

{
1 if |ΣΣΣ| ≥ ΣΣΣT

0 otherwise,
(4.8)

where ΣT is a threshold covariance used to estimate the trajectory. The term |ΣΣΣ| is obtained by

considering the individual matrix components value. For selecting the threshold, factors such as

spatial distributions of points in the extended object are considered.

Misdetections due to sensor resolution or the feature extraction process cause an absence

of measurement for the update stage. It is not possible to distinguish online if the absence of

measurement is either from a tracking failure or from a misdetection. For such a reason, any

absence of measurement at the update stage is used to estimate the track quality as a performance
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Figure 4.5: Performance of local point trackers against misdetections. (a) sample track, (b) mis-
detections duration: D=detection and MD=misdetection, and (c) track error. A failure happens
in T 5 and T 9 due to the misdetections of their model point measurement. The Euclidean distance
is measured between local point track and ground-truth position.

due to absence of measurement po,k = 1. Fig. 4.5 shows the results of T 5 and T 7 when they

undergo misdetections at frames 30 and 50, respectively. Both trackers failed in the subsequent

frames.

Coalescence occurs when two or more local trackers are tracking the same model point.

For example, after a crossover between targets, one tracker assumes the wrong model point and

continues to track. Coalescence also occurs due to an increase in covariance, that in turn is caused

by a misdetection and clutter, and the tracker starts to consider data from other model points than

its own. This happens in multiple target tracking due to the inconsideration of joint associations

for the measurements and trackers. The other performance measures mentioned, pc,k and po,k, do

not handle such situations. The increase in covariance may not be noticeable before it is detected
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by pc,k. Therefore, a performance measure against coalescence ps,k is used to estimate the track

quality. We estimate ps,k by examining the local trackers and their associated measurements.

Whenever a single measurement alone is associated to two or more trackers, we set ps,k = 1.

4.3.2 Strong and weak trackers

Considering the aforementioned low-quality tracking performance and sources of failure, the

performance measure conducted on the output of the local trackers produces two classes: strong

trackers and weak trackers. Weak trackers are not certain about the state they have estimated. Let

pk = 1 and pk = 0 represent the decision given for weak and strong trackers, respectively. For

each model point tracker the performance value pi
k = {0,1} is determined as

pi
k = pi

c,k∨pi
o,k∨pi

s,k, (4.9)

where ∨ is a logical OR operator for combining performance measures (Fig. 4.3).

It is important to note that a weak tracker, for instance with large covariance, does not always

imply tracking failure. The increase in covariance leads to the inclusion of other model points and

also exposes it to a large amount of clutter in its validation region. Correcting this uncertainty, i.e.

the low confidence, will avoid associating multiple points in the subsequent frames to improve

the accuracy of the model point trackers. The information to make corrections on the identified

weak trackers is obtained from either an offline constructed model [120] or learned online [48].

Online learned methods are based on decisions from the performance measure. Our correction

step for weak trackers is based on states of strong trackers, and details are described in the next

section.

4.4 Correction

The correction step estimates the most probable state of the weak tracker from the state of strong

trackers. A correlation model from trajectories is used to estimate the state of one tracker from

the other. The state estimation using the correlation model enables Θ(·), where trajectories from

trackers represent Ic (Eq. 3.14). Trajectories allow us to observe motion correlation of the state

of model points over time. The correlation existing between local trackers of a generic extended

object, such as articulated structure, is time dependent and has different degrees of correlation.

The degree of correlation is the confidence in accurately estimating the state of one local tracker



Chapter 4: Correlation-based self-correcting tracking 63

Predictor/ 
corrector 

Good 
correlation 

selector 

{𝐱𝑘 , 𝑇} 

{𝐬𝑘 , 𝛂 𝑘} 

𝐱 𝑘 , 𝑇  

{𝛃k, 𝐂k} 
𝐩𝑘  

Trajectory 
history 

PLS 
correlation 

model 

Figure 4.6: Correction step. The correlation model βββ k, constructed from short windowed tra-
jectories, and its modelling error covariance Ck allow to select correlated local trackers sk and
their corresponding weight α̃ααk according to the degree of correlation. The selected trackers with
a high degree of correlation allow the estimation of the corrected state xk and tracker T .

from the state of the others. The adaptive modelling of this correlation over time is important for

estimating the probable state of the weak tracker.

The overall correction step comprises of three sub-steps (Fig. 4.6): correlation model con-

structor, correlated trackers selector and predictor/corrector. A correlation model is constructed

for each set of weak trackers against a set of existing strong local trackers. From the correlation

model, a degree of correlation between the weak tracker and the strong trackers is estimated

by assigning normalised weights to the strong trackers. Finally, the state of the weak tracker is

corrected by combining the outputs from the aforementioned two components.

4.4.1 Partial Least Square regression

Correlation is modelled using Partial Least Square (PLS) regression [120]. PLS regression mod-

els the relation between dependent and independent variables. The independent variables are

the predictors and the dependent variables are the responses. Trajectories from strong and weak

trackers are used as predictor and response variables, respectively.

In order to formulate the correlation model at each frame, let wk and sk be the set of indices

for weak and strong local trackers, respectively. wk and sk are obtained from their performance

evaluation pk according to
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i : 1≤ i≤ Nk ∈

{
wk if pi = 1
sk otherwise.

(4.10)

wk = {wi : 1≤ i≤ NWk , i ∈ N+} and sk = {s j : 1≤ j ≤ NSk , j ∈ N+}, where Nwk and Nsk are the

number of weak and strong trackers, respectively, such that Nwk +Nsk = Nk. Nk is the number

of local trackers, which is equal to the number of model points. For describing the correlation

model, the pair between weak trackers, wik, and strong tracker, s jk, is used, and the combination

of all the trackers is considered in Sec. 4.4.2. Trajectories are constructed from the position

components of the tracker state. Let the trajectories at the current frame ΓΓΓ
wi
k and ΓΓΓ

s j
k for a weak

and a strong tracker, respectively, be defined as

ΓΓΓ
wi
k = [xwi

k−1,x
wi
k−2, ...,x

wi
k−m], wi ∈ wk,

ΓΓΓ
s j
k = [xs j

k−1,x
s j
k−2, ...,x

s j
k−m], s j ∈ sk, (4.11)

where m is the trajectory length corresponding to a temporal window for modelling the correla-

tion. The state xk is a D×1 vector, and hence ΓΓΓk has a dimensions of D×m.

PLS regression allows the correlation model to be learnt by using the observed trajectories as

a training data. The learnt model is used to estimate the correct state of a weak tracker by using

the state of a strong tracker. The correlation model βββ
wis j
k between a weak tracker wi and strong

tracker s j is estimated using PLS as

βββ
wis j
k =ΓΓΓ

s j
k V (UT

ΓΓΓ
s j
k ΓΓΓ

s j
k

TV )UT
ΓΓΓ

wi
k , (4.12)

where U and V are the component matrices for the predictor variable (ΓΓΓ
s j
k ) and the response

variable (ΓΓΓwi
k ), respectively using principal component analysis. The superscript T represents the

transpose operator [85].

The correlation model allows the estimation of the corrected state of weak trackers xwi
k

(Eq. 3.14) given the state of strong trackers through a probability density function p(xwi
k |x

s j
k ,βββ

wis j
k ).

The probability density is estimated from a motion model for predicting the weak tracker wi from

the strong local tracker s j, and is given as

xwi
k = Awis j

k xs j
k +bwis j

k . (4.13)

The matrix A and translation vector b are obtained directly from the model βββ wis j (βββ wis j =
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[Awis j
k ,bwis j

k ]). Awis j and bwis j have dimensions of D×D and D×1, respectively.

Due to absence of perfect correlations in the training data (i.e. between ΓΓΓ
s j
k and ΓΓΓ

w j
k ), the

model βββ
wis j
k has a residual fitting error Ewis j

k , and is calculated as

Ewis j
k =ΓΓΓ

wi
k − (Awis j

k ΓΓΓ
s j
k +Bwis j

k ), (4.14)

where Bwis j
k is a matrix of dimension D×m obtained by concatenation of m vectors of bwis j

k . Ewis j
k

has a dimension D×m, where the D rows correspond to the dimension of the states and the m

columns correspond to the trajectory history considered from the current frame of reference.

PLS estimates the correlation model by minimising the variance of Ewis j
k . As a result, the

mean of Ewis j
k is very small compared to the individual m errors of the trajectory component.

Assuming the small mean error value of Ewis j
k , the covariance matrix Cwis j

k for estimating the

state of weak trackers from the state of strong trackers in the training data is calculated as

Cwis j
k =

1
m

Ewis j
k Ewis j

k
T
. (4.15)

Ck has dimensions D×D.

The state xwi
k is determined from the state of a strong tracker, xs j

k , as

p(xwi
k |x

s j
k ) =N (Awis j

k xs j
k +bwis j

k ,Cwis j
k ), (4.16)

where N is a D-dimensional Gaussian density function (Eq. 4.4). The correction of a weak

tracker is done in a Gaussian function form, due to the fact that the baseline tracker is the Kalman

filter. The mean value of the Gaussian is the most probable position as estimated by other track-

ers’ states, and the covariance is proportional to Ewis j .

4.4.2 Correlated trackers selection

The degree of correlation for a particular weak tracker wi ∈ wk to a set of strong trackers sk =

{s j}
NSk
j=1 varies from one strong tracker to another. For articulated structures, subsets of model

points with good correlation are those laying in the same rigid structure relative to the overall

object. In order to obtain the most accurate state estimation of the weak tracker, the best corre-

lations need to be identified among the set of strong trackers. Fig. 4.7 shows an example of a

trajectory for a particular weak tracker w and a list of available strong trackers (s1, s2, s3, s4 and

s5): among the existing strong trackers s1 shows the best correlation to the weak tracker while s5
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Figure 4.7: Trajectory correlations between trackers. In the plot, the x1,k values represent the
trajectory values obtained by considering the first component of the state vector xk (Eq. 4.3 and
4.11). (a) A weak tracker and a set of strong trackers. (b) A weak tracker against a list of strong
trackers.

is the worst.

For each candidate weak tracker wi ∈ wk, a new set of strong trackers

gwi
k =

{
gwi

n : 1≤ n≤ NSk ,n ∈ N+
}
, (4.17)

are selected from the original list sk (the superscript identifies the set particular to weak tracker

wi). The new array gwi
k contains indices of strong trackers in decreasing order of correlation with

tracker wi. gwi
k is obtained by considering the PLS correlation model covariance Cwis j

k (Eq. 4.15).

Strong trackers in gwi
k are ordered according to the formulation

|C
wig

wi
(n)

k |< |Cwig
wi
n+1

k |, 1≤ n≤ NSk . (4.18)

Ranking the correlation level is important since the level is directly proportional to the prediction

accuracy. Fig. 4.8 shows how the correlation between two local tracks is estimated from the
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Figure 4.8: Trajectories ΓΓΓ
s j
k and ΓΓΓ

wi
k from a strong and a weak tracker, respectively, used for

training data in order to construct the correlation model βββ
wis j
k . The correlation model has a

covariance Cwis j
k . The fitting error from the constructed model is used to measure the correlation

between strong and weak local trackers.

regression model. The magnitude of the red arrows indicates how large the fitting error between

the constructed model and the observed trajectories is. The correlation level is determined by

considering the magnitudes of these residual errors for the trackers.

For accurate state estimation, only the first γ elements of gwi
k are selected as predictor by

considering the magnitude of the covariance in the PLS regression model:

|Cwig
wi
p |<CT , 1≤ p≤ γ, p ∈ N+, (4.19)

where CT is a threshold covariance magnitude. The scale of the object and the spatial distribution

of the model points are considered as factors for determining the magnitude of CT for a particular

application. Additionally, the optimised value of the state covariance in the baseline tracker

(Eq. 4.4) allows CT to be selected.

The selected γ strong local trackers from gwi
k are assigned a weight αααk which is inversely

proportional to the magnitude of their covariance in the PLS model

α
wig

wi
p

k ∝ |Cwig
wi
p |
−1

. (4.20)

The estimated weight gives the goodness of correlation level and accuracy of prediction from the

learned model. In order to have a proper probability density, the weights for the selected local
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strong trackers are normalised at each time step as

α̃
wig

wi
p

k =
α

wig
wi
p

k
γ

∑
p=1

α
wig

wi
p

k

. (4.21)

4.4.3 Correction

For each weak tracker wi, the selected γ strong trackers jointly contribute to estimate xwi
k as

p(xwi
k ) = p(xwi

k |x
gwi

1:γ
k ) =N (xwi

k,mean,C
wi
k ), (4.22)

where

xwi
k,mean =

γ

∑
p=1

α̃
wig

wi
p

k (Awig
wi
p

k xgwi
p

k +bwig
wi
p

k ),

and

Cwi
k =

γ

∑
p=1

α̃
wig

wi
p

k Cwig
wi
p

k .

We used the joint prediction from γ trackers rather than the use of only prediction from the best

correlated tracker (i.e. equivalent to maximum likelihood) in order to minimize the effect of

an inaccurately learnt model and also to reduce the effect of fast changing correlation model

between trackers.

It is worth mentioning that the set of strong tracker indices for the available two or more

weak trackers are the same at each step of correction. However, the selected γ strong predictor

trackers for a particular weak local tracker are different and are assigned with weights according

to their constructed regression models. Eq. 4.22 represents the function Θ(·) in Eq. 3.14, and the

state p(xwi
k ) is used as the corrected state output and prior information for the execution of the

baseline tracker. The correction is a form of Kalman filter re-initialisation, which estimates xk

and changes the prior information of T in order to obtain T .

4.5 Discrete variables of the DBN model

The mapping function f i
c described in Table 3.1 (Eq. 3.19) to obtain the probability distribu-

tion for correction variable, ci
k, from its evaluation variable, pi

k, and other model point tracker

j evaluation variable, p j
k, is shown in Fig. 4.9. The correction variable has two discrete values

ci
k = {0,1}, where the values 1 and 0 correspond to the mode of operation with and without cor-
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Figure 4.9: Mapping function f i
c (Table 3.1) to obtain the values of ci

k for tracker i from the value
of its pi

k and the value of p j
k from tracker j.

rection, respectively. For the weak local tracker wi, i.e. when p(cwi
k = 1) = 1 and p(cwi

k = 0) = 0,

correction is made by complete re-initialisation of a tracker. The prior correction for the tracker

is formulated as,

p(xwi
k |Zk,cwi

k = c) =


p(xwi

k |Zk) if c = 0,

p(xwi
k |x

gwi

k ), if c = 1,
(4.23)

where p(xwi
k |x

g
k) is the re-initialisation of tracker wi from list of strong trackers gwi described

in Eq 4.22. In the correlation based-self correcting tracking, the motion model and observation

model are independent of ck resulting in

p(xi
k|xi

k−1,c
i
k−1) = p(xi

k|xi
k−1),

p(zk|xi
k,c

i
k−1) = p(zk|xi

k).

(4.24)

Figure 4.10 shows the performance of two local trackers from the baseline tracker T 1 and T 2,

and their correlation-based self-correcting tracker T 1 and T 2, respectively. In the self-correcting

tracker, the selected discrete correction variable values c, i.e. p(ck = 1), are shown to indicate the

times in which correction is made on the baseline tracker (4.10(b) and 4.10(d)). For T 1, correc-

tions made around k = 55 has no significance over the baseline tracker, however the corrections

made around k = 180 play an important role for recovering the baseline tracker from failures.

For tracker T 2, the first correction made on the baseline tracker allows to recover from its failure.

4.6 Experimental results and analysis

We present a quantitative performance evaluation of the proposed TEC framework by tracking

markers from a motion capture system. Tracking of the markers involves matching corresponding
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Figure 4.10: Comparison of tracking errors in the baseline tracker (T ) and in the correlation-
based self-correcting tracker (T ) for local point tracking. Track errors are euclidean distance
between the track estimate and ground-truth state. Tracker 1: (a) tracker error and (b) values of
c1

k with p(c1
k = c) = 1 in self-correcting tracking. Tracker 2: (c) tracker error and (d) values of c2

k
with p(c2

k = c) = 1 in self-correcting tracking.

marker indices at different frames from the list of unlabelled points. Fig. 4.11 shows a typical mo-

tion capture system [34]. At each frame, in the measured two-dimensional and three-dimensional

points there are misdetections and false detections (clutter) of markers. Misdetections are the re-

sult of occlusions and wrong spatial alignment of the two-dimensional points detected by cameras

in the motion capture system. False detections are common when multiple cameras are used and

their detected two-dimensional points are cluttered. Using the markers, we compare the results

of TEC framework with the baseline tracker JPDAF [23]1 [5]. JPDAF and TEC for 30 targets run

on average 30 and 26 frames per second, respectively, (without clutter) and 16 and 12 frames per

second (with 100 as the amount of clutter) on an Intel i5-3570k, 3.4GHz CPU with 8GB RAM

on Windows 7 (non-optimised MATLAB2013b code). We also compare TEC with other state-

of-the-art multi-target trackers: two online methods - Kalman filters using Hungarian algorithm

and nearest-neighbour data associations HDAF [18]2 and NNDAF, respectively, and two offline

1code:-http://www.mathworks.co.uk/matlabcentral/fileexchange/34146, Last
accessed: March 2014

2code:-http://studentdavestutorials.weebly.com/multi-bugobject-tracking.
html, Last accessed: March 2014

http://www.mathworks.co.uk/matlabcentral/fileexchange/34146
http://studentdavestutorials.weebly.com/multi-bugobject-tracking.html
http://studentdavestutorials.weebly.com/multi-bugobject-tracking.html
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Figure 4.11: Motion capture pipeline. 2D points yi=1:Mk
k obtained by each camera are used to

estimate the absolute 3D position of each marker indices. The obtained 3D points zi=1:Mk
k are

associated and tracked at each time to create the markers’ trajectories. Misdetections, false de-
tections and data association problems generate errors. Finally, off-line post-processing remove
the outliers.

methods - Hungarian-assessment-based particle tracker PT [104]3 and motion dynamics-based

assessment for tracking targets with similar appearances SA4 [19].

4.6.1 Experimental setup

We use the Carnegie Mellon University (CMU) [1] and HumanEva [2] Motion Capture database.

The data is from a human performing different actions. For the CMU dataset, the front snapshot

of the human body with the marker indices are shown in Fig. 4.12. The subject has 41 markers,

and the data include absolute position (three-dimensional) and orientation information. We select

39 markers, and their three-dimensional absolute positions are read from C3D file format in

the database. Two of the markers are discarded in the experimentation since their initial frame

measurements are either incorrect or not available. Similarly, for the HumanEva dataset we use

39 markers.

The comparison of TEC with JPDAF is done by using three-dimensional marker points,

while the comparison with other state-of-the-art trackers PT, SA, HDAF and NNDAF (including

JPDAF) is done on two-dimensional marker points as the trackers implementation is for two-

dimensional targets. The two-dimensional markers are obtained by removing the less variable

coordinate component followed by removing markers indices that overlap and are very close to

each other in their two-dimensional view for the whole sequence. The labels obtained from the

dataset are used as a ground-truth for evaluating tracking results. Moreover, sources of failures

3code:-http://www.mathworks.co.uk/matlabcentral/fileexchange/34040, Last
accessed: March 2014

4code:-https://bitbucket.org/cdicle/smot, Last accessed: March 2014

http://www.mathworks.co.uk/matlabcentral/fileexchange/34040
https://bitbucket.org/cdicle/smot
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Figure 4.12: Markers, their positions on the body and an example of their evolution over time.
(a) Labels of markers on the object (image from CMU human motion data capture [1]). (b)
Ground-truth three-dimensional trajectories for selected markers.

Table 4.1: Dataset used for validating the proposed Track-Evaluate-Correct approach. Legend-
3D: three-dimensional dataset from CMU [1] and HumanEva [2], 3D-m: 3D with misdetection,
3D-c: 3D with clutter, 2D-m and 2D-c: two-dimensional of the 3D dataset with misdetections
and clutter, respectively, FL: frame length, NM: number of markers, SF: source of failure

Dataset Motion FL NM SF

3D

Walking 342 39

-
Running 172 39
Dancing 867 39

WalkingEva 1877 39
JoggingEva 1701 39

3D-m 3D Misdetection
3D-c 3D Clutter

2D
Walking 342 27

-Running 172 23
Dancing 320 29

2D-m 2D Misdetection
2D-c 2D Clutter

are added to the original data (Table 4.1). 3D is the original dataset obtained from CMU and

HumanEva, while 3D-m and 3D-c represent the data with imposed misdetections and clutter,

respectively. 2D-m and 2D-c are two dimensions of the original 3D dataset with misdetections

and clutter, respectively. The added clutter appears only in the rectangular volume occupied

by the object for the 3D dataset and in the image plane view of the object for the 2D dataset.

We test the experimentation for a variable amount of clutter, misdetection length durations and
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Table 4.2: Parameters and values used to generate DS-m and DS-c from Dataset DS. Legend- ϕ:
uniformly-distributed pseudo-random number generator function, ∆: difference between maxi-
mum and minimum values of the marker states, x: position component of the object state in the
3D space.

Dataset Parameters Symbol Value/function

3D-m
duration of misdetection Lmd 1≤ Lmd ≤ 15 frames

misdetected marker number Nmd 10
misdetected marker index Imd Ψ

3D-c
amount of clutter Nc 100≤ Nc ≤ 600

volume occupied by the object V ∆x1 ∗∆x2 ∗∆x3

state of clutter xc V ∗ϕ

2D-m
probability of misdetection %MD 0%, 1%, 5%, 10%

fixed amount of clutter %Nc 50%
misdetected marker index Imd ϕ

2D-c
percentage of clutter %Nc 0%,50%,100%,200%

state of clutter xc ϕ

fixed probability of misdetections %MD 5%

probability of misdetections (see Table 4.2).

We use the same tracking parameters for each type of motion sequences, and optimal pa-

rameters are selected by examining the results. The matrices Qk and Rk in the Kalman filters of

JPDAF are set according to the formulation in [6] (variances of 20cm and 5cm, respectively). The

gate probability for the Gaussian distribution is set to 0.99. As the quality measure for covariance

grow, we use ΣΣΣT between 2ΣΣΣint and 4ΣΣΣint (ΣΣΣint is the initial covariance matrix in the Kalman filter

estimated from Qk). A trajectory length of m = 12 is used to train the correlation model. Long

trajectories are expensive in terms of computation and do not model appropriately fast changing

correlations between states of model points. We use γ = 4 for selecting the number of best pre-

dictor trackers, and zero weights are assigned to the rest of the trackers (Eq. 4.21). Kalman filters

in HDAF and NNDF are set similarly to JPDAF. The minimum association threshold for HDAF

is set to 10cm. For SA tracker, we use a singular threshold value of 0.3, a time window of 80

frames and ADMM method. For PT, we use the default parameters as provided in the code and

tracklets shorter than 30 frames are removed.

4.6.2 Evaluation measures

Tracking results are compared to the labelled ground-truth data based on Optimal Sub-Pattern

Assignment (OSPA) [92]. Let O =
{

oī
k

}Gk

ī=1
, ī ∈ N+ be the labelled ground-truth data, where Gk
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Table 4.3: Summary of parameters used for correlation based correction of model point trackers.
The term Σint is initial covariance matrix of Kalman filter.

Parameter name Symbol Value Reference
Threshold covariance ΣT 2Σint - 2Σint Eq. 4.8

Trajectory length m 12 Eq. 4.11
Number of Predictor trackers γ 4 Eq. 4.22

is the number of targets at each time. The OSPA distance Dk is estimated according to

Dk(xk,ok) =

=

[
1

max(Nk,Gk)

(
min

π∈ΠGk

Nk

∑
l=1

dc̀(xi
k,o

ī
k)

a + |Gk−Nk|.c̀a

)]1/a

,

(4.25)

where ΠGk is a set of permutations of length Nt taken from the {1,2 · · ·Gk}, dc̀(xi
k,o

ī
k)=min(c̀,d(xi

k,o
ī
k))

is a cut of distance with c̀ > 0, d(xi
k,o

ī
k) is the base distance (i.e. Euclidean) and a is the order of

OSPA metric. We use the MATLAB code provided in [92] for estimating D, with c̀ = 10cm by

considering the spatial distance between markers, and a = 1.

To characterise the overall tracker performance, we also count the number of False Positive

FP for local track output components. For a frame length of ν , the FP level on a local tracker i

is

FP =

{
1 if di

k ≥ dT h,k ∈ ν

0 otherwise,
(4.26)

where qT h is the thresholds of error value. In the reported results, we use dT h = 10 cm and ν > 10.

We calculate FP for online trackers only. The online trackers considered are initialised based on

the ground truth information in the first frame, and hence association between the trackers result

and the ground truth is known. However, the offline trackers are based on optimization over all

the sequences and from the result the association with the ground truth is not known. The offline

trackers also produce a large number of trajectories compared the number of targets in the ground

truth information particularly in the presence of clutter. In such cases, association of the tracker’s

result with the ground truth is not known and we cannot estimate the FP.
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Figure 4.13: PLS regression model (training) errors and estimation errors for marker RTOE (see
Fig. 4.12) using the states of the other marker indices: (a) using LTOE; (b) using RWRA.

Table 4.4: Mean and standard deviation of errors (cm) for the PLS regression model over the
walking sequence for different marker selected (see fig. 4.12). Legend: µ=mean, σ=standard
deviation, P= predictors variables (row space), R=response variables (column space).

P/R
RTOE LTOE RWRA LKNE

µ σ µ σ µ σ µ σ

RTOE - - 1.61 2.94 1.65 2.17 1.43 1.95
LTOE 2.61 3.78 - - 1.14 1.59 1.09 1.61
RWRA 0.57 0.83 0.27 0.32 - - 0.18 0.18
LKNE 0.86 1.08 0.34 0.48 0.29 0.24 - -
LSHO 0.51 0.66 0.38 0.65 0.24 0.23 0.19 0.16
RFHD 0.51 0.67 0.36 0.50 0.24 0.26 0.19 0.14
LWRA 0.41 0.43 0.71 1.31 0.43 0.71 0.34 0.53

4.6.3 Discussion

The first set of experiments examines how accurately the PLS regression model can estimate

the state of one marker from the states of other markers. Fig. 4.13 shows the results of the

state estimation accuracy with the corresponding regression model covariance (Eq. 4.20). The

covariance of the regression model is estimated from the training error according to Eq. 4.15,

which measures estimation accuracy. The results indicate that different local point trackers have

different state estimation accuracy to a specific local point tracker and the accuracy is variable

in time. This property is noticeable for deformable objects and articulated structures, such as

human motion which is considered here. Table 4.4 gives the mean and standard deviation errors

for estimating the state of one marker from the state of other markers.

Figure 4.14 shows the result of state estimation of marker index RTOE (see Fig. 4.12) by

weighting adaptively the estimation of other markers. The weights assigned to each predictor
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Figure 4.14: Selection of best predictor indices. (a) Heat map of weights calculated for predictor
marker indices for estimating the state of marker RTOE. (b) Estimation error of marker RTOE
from the weighted estimate of all the other markers.

trackers (i.e. strong trackers) are indicated in the heat map (Fig. 4.14(a)). Due to the dynamic

changing nature of human motion, the importance of adaptive modeling of the correlation is

shown from the scattered weights assigned to the predictor marker indices in the heat map. From

the map it is possible to see that for RTOE the marker index 32, just above it, is more correlated

for large frame number durations. Fig. 4.14(b) shows the state estimation error of RTOE from

the weighted prediction of all the other markers. The weighted estimate shows smaller error than

the estimate errors by individual indices (Fig. 4.13).

Tracking on 3D data involves creating labels (data association) for each marker index at each

frame in the sequence. For this dataset, the performance of JPDAF, without TEC, produces good

tracking results. For the Dancing sequence FP= 1, while for the Walking, Running, WalkingEva

and JoggingEva FP = 0. Fig. 4.15 shows sample tracking results for the walking sequence

of 3D. The 3D ellipses represent the validation region of the marker trackers. Video results

for the sequences described in Table 4.1 are available in http://www.eecs.qmul.ac.

uk/˜andrea/tec.html. The website contains videos showing the results of our proposed

method and trackers used for comparison. The video results allow one to compare qualitatively

the performance of our proposed framework with the competing methods.

Comparisons of JPDAF and TEC, using the CMU dataset, are shown in Fig. 4.16. The

first row of the figure shows the result of performance for JPDAF on dataset 3D-m compared

to TEC using the distance metric given in Eq. 4.25. Here, a misdetection duration Lm = 5 is

considered. The results presented are averaged over 50 runs. The proposed approach shows a

significant improvement of the error distance D compared to JPDAF in all types of sequences

http://www.eecs.qmul.ac.uk/~andrea/tec.html
http://www.eecs.qmul.ac.uk/~andrea/tec.html
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(a) frame 80 (b) frame 100 (c) frame 140

Figure 4.15: Sample three-dimensional track results on the CMU 3D dataset for walking (Ta-
ble 4.1) using JPDAF. The ellipses represent the validation regions of each local tracker for the
markers. The number next to each ellipse is the label (index) of the marker.

considered. The obtained error distances are small, since only a small percentage of the overall

markers undergoes low-quality tracking performance or tracking failure. The increase in the

distance error with frame numbers is due to an increase in the number of failed local tracks in

the motion capture sequence. The second row of Fig. 4.16 shows the performance of JPDAF

and TEC using the number of FP for local tracks on 3D-m. The results are shown for variable

misdetection length Lm (Table 4.2). The percentage of failures for markers are 19% and 5% for

JPDAF and TEC, respectively, when averaged over all types of sequences in 3D-m. The result

using TEC for the running dataset has not shown much improvement compared to the other

sequences, particularly for longer misdetection durations. This particular case is a limitation

to our correlation-based correction approach. The reason behind the limitation is due to rapid

changes in correlation between marker trackers, which is caused by the rapid change in the

dynamics of the markers. Additionally, the proposed correction schema is likely to fail with

model points getting spatially close to each other for long time intervals.

For dataset 3D-c, the third row of Fig. 4.16 shows the performance of JPDAF and TEC using

D at each frame of the sequence. The performance of tracking markers is improved by using

TEC over JPDAF. The result reported is also averaged on 50 runs. The fourth row of Fig. 4.16

shows the performance of tracking by counting the number of FP for different amounts of added

clutter. The amount of clutter is increased in such a way that it will lead the JPDAF to a likely

failure. Averaging over all types of sequences in 3D-c, the percentage of failure for markers is
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Figure 4.17: Visualisation of selected marker trajectories on 3D dataset. (a) JPDAF and (b) TEC.

smaller than 1% for the TEC framework, while for the tracker alone it is 6%. The result shows

that the TEC framework improves the tracking result of JPDAF in clutter. Trajectory output plots

for JPDAF and TEC framework on the dataset 3D are shown in Fig. 4.17. In this figure, results

from selected indices are shown to compare the improvements made by TEC over JPDAF. Tracks

from JPDAF show failures due to drift caused by the presence of clutter and wrong association

with other local trackers.

Similarly using the HumanEva dataset, comparisons of JPDAF and TEC are shown in Fig. 4.18.

The improvement made by TEC on the JoggingEva dataset is not as good as that of the WalkingEva

dataset due to the rapid changes in correlation between markers (second row, second column).

Averaging over the sequences in the HumanEva dataset, TEC has 12%, while JPDAF has 20.4%

of failures. The subjects in the HumanEva dataset make circular motion, unlike Walking and

Running in the CMU dataset which are on a straight direction, and cause rapid changes in the

correlation model. Failures in the HumanEva dataset are more numerous than those in the CMU

dataset.

Figure 4.19 shows the performance of TEC compared to other state-of-the-art trackers using

the datasets 2D-m and 2D-c. HDAF performs better if the measurements contain either clutter

or misdetection. However, when both challenges exist at the same time the performance de-

grades. NNDAF performs well when there are no misdetections. Unlike JPDAF, HDAF and

NNDAF make hard decisions in the association, therefore the presence of clutter and misdetec-

tions strongly influence their tracking performance.

As for the offline trackers: PT and SA perform poorly, since misdetection and clutter largely

affect the overall optimisation accuracy. In addition to this, offline trackers produce two or more
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Figure 4.18: Comparisons of JPDAF and TEC using the 3D dataset from HumanEva. First
row: OSPA (Eq. 4.25) plots for a misdetections duration of 5 frames. Second row: Number of
false positive (FP) local tracks with different misdetection durations. Third row: OSPA plots for
500 points of added clutter. Fourth row: FP local tracks with variable amount of clutter. First
column: WalkingEva. Second column: JoggingEva.

tracklets for a single marker and result in a higher D as compared with online trackers that

produce tracks equal to the number of markers. JPDAF performs well with a large amount of

clutter and presence of higher misdetections compared to the other trackers. However, using

the proposed TEC framework, we have further improved the tracking results from JPDAF. For

the dataset 2D-m (2D-m), TEC improves D and FP of JPDAF by 0.64 (1.14) and 1.5 (2.2),

respectively. Comparison of online trackers in terms of number of FP is shown in Fig. 4.20. The
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Figure 4.19: Comparison of trackers performance using OSPA averaged over the different hu-
man motions. (a) Dataset 2D-m with misdetection MD; (b) Dataset 2D-c with amount of clutter
Nc.
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Figure 4.20: Comparison of trackers performance using Number of FP averaged over the dif-
ferent human motions. (a) Dataset 2D-m with misdetections MD; (b) Dataset 2D-c with amount
of clutter Nc.

number of FP for offline trackers is not given as the track association with ground-truth is not

known a priori.

Table 4.5 compares the results obtained by all the trackers under consideration. The statistics

given are averaged over the different types of sequences, the frame lengths and the separate

multiple iteration runs. The number of failures and tracking errors in the 2D dataset are larger

compared to the 3D dataset. The trajectories of markers in the 2D dataset crossover multiple

times, thus increasing the data association problem compared to the 3D dataset. On average over

all the the experiments, TEC improves the tracking performance of JPDAF by reducing D and

FP by 0.66 and 2.87, respectively.

4.7 Summary

In this chapter, we presented a TEC framework to improve tracking performance of an extended

object by a set of model points using a Bayesian tracker. The framework uses an on-line per-

formance evaluation based on predefined failure models to decide whether the results obtained
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Table 4.5: Comparisons of the results. For the best performing tracker values are indicated in
bold and values not calculated are indicated by “-”.

Dataset Method D-cm Number
Average Min Max Var of FP

3D-m
JPDAF 1.01 0.98 1.04 0.00 7.62

TEC 0.08 0.03 0.17 0.00 1.83

3D-c
JPDAF 0.46 0.19 0.83 0.06 2.40

TEC 0.22 0.11 0.40 0.01 0.40

2D-m

PT 4.43 0.57 6.52 3.45 -
SA 6.20 3.75 8.00 1.24 -

NNDAF 6.14 0.01 9.42 14.5 14.1
HDAF 3.80 0.01 8.32 9.58 10.9
JPDAF 1.01 0.14 2.87 0.71 2.7

TEC 0.37 0.00 2.24 0.41 1.2

2D-c

PT 6.34 1.27 8.64 4.52 -
SA 6.58 3.72 8.23 1.62 -

NNDAF 8.53 8.01 8.83 0.06 19.8
HDAF 5.46 0.02 8.71 11.6 14.4
JPDAF 1.46 0.46 2.89 0.71 5.0

TEC 0.32 0.00 0.80 0.10 2.8

by each local point tracker are weak or strong. A weak tracker corrects its state in the form of

re-initialisation based on the assistance from the available strong trackers. Inferring the corrected

state of the weak tracker from that of strong trackers is done by PLS regression using the short

windowed trajectories of the trackers. For an accurate estimation of a weak tracker state, a weight

is assigned to the estimations from strong trackers based on the observed trajectory correlation

level. The level of correlation between local trackers is obtained from the regression model.

We used markers data from CMU [1] and HumanEva [2] motion capture database for ex-

perimental analysis and validation. In the data we introduced challenges such as misdetections

and clutter as part of the experiment. The proposed framework has achieved improved in perfor-

mance compared to the baseline tracker [5] used in the framework. Moreover, we have shown

the improved in tracking performance by the framework compared to other state-of-the-art track-

ers [18, 104, 19].

For self-correcting tracking, in addition to identifying the quality of tracks the challenging

task involves obtaining the information for correction in case of failures. In this chapter, we

utilised the trajectory correlation information between local trackers of the extended target to

recover tracking failures. In the case of tracking a single target, the information for correcting
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the tracker might be obtained from another tracker or a detector that is able to provide the true

state of the same target. Chapter 5 presents TLF as a possible direction to obtain the correction

information and allows trackers to have self-correcting capability.



Chapter 5

Tracker-level fusion for robust tracking

5.1 Introduction

In self-correcting target tracking a correction step needs an appropriate source of information

such as from another tracker for the same target or for auxiliary targets in the background in

order to recover tracking failures. In this chapter, we present Tracker-Level Fusing (TLF) as a

method such that the source of information for correction stems from running in parallel indepen-

dent trackers, and the tracking failure from one tracker is corrected by another tracker [J2]. The

proposed TLF framework is shown in Fig. 5.1. The fusion framework is based on the evaluation

and correction paradigm (Fig. 1.2). In the framework, we propose a performance measure for

trackers to guide the fusion and a tracker collaboration strategy using prior states (prior correc-

tion) based on the performance measures of trackers. In addition to this, we set a criterion for the

appearance model update that uses the performance measure. Our proposed method is generic

for Bayesian trackers: we use two Bayesian trackers with different formulations and show the

robustness of the fusion framework using various sequences with challenges such as occlusions,

illumination changes, shadows, motion changes and cluttered background. The results are shown

to be more accurate compared to results from the individual trackers used in the framework and

to state-of-the-art trackers that use tracker-level fusion.

In this chapter, we discuss the performance measure employed for the trackers in Sec. 5.2.

The collaboration strategy and estimation of the fused output for the trackers in the framework are

presented in Sec. 5.3. Sec. 5.4 explains the trackers used in the framework. Sec. 5.5 describes the

84
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Figure 5.1: Block diagram of the proposed tracker-level fusion framework. A performance mea-
sure ui

k is estimated for the output of each tracker p(xi
k|zk). ui

k is used to define the level of
interaction between trackers and the fused output. At each frame k, trackers interact using their
prior state p(xi

k−1|zk−1) so as to get the corrected version p(xi
k−1|zk−1) for the next frame state

estimation. x̂ f
k is the fused state estimate of the target in the framework.

proposed online performance measure based model update and Sec. 5.6 explains the DBN model

discrete variables for the framework. Experimental analysis and validation of the framework are

presented in Sec. 5.7. Finally, Sec. 5.8 summarises the chapter.

5.2 Performance measure

In this section, we present online quality assessment of trackers. The trackers considered in the

fusion framework are based on particle filter (Sec. 5.4). Particle filters are widely-used proba-

bilistic (Bayesian) methods in visual tracking [20]. In the particle filter p(xi
k|Zk) (Eq. 3.1 and 3.2)

consists of a set of particles
{

xi,r
k ,π i,r

k

}Nr

r=1
, where xi,r

k and π
i,r
k are hypothesised states and their

weights, respectively, and Nr is the number of particles 1. This representation leads to an approx-

imation of p(xi
k|Zk) using a weighted sum of particles as

1When xk has two superscripts the first one identifies the tracker, while the second represents the
particle index.
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p(xi
k|Zk)'

Nr

∑
r=1

π
i,r
k δ (xi

k−xi,r
k ), (5.1)

where δ (x) is the Dirac delta function. For each particle, the state xi,r
k is obtained from their

previous state xi,r
k−1 using the motion model p(xi,r

k |x
i,r
k−1), and the weight π

i,r
k is assigned a value

proportional to the observation likelihood p(zk|xi,r
k ) as [63]

π
i,r
k ∝ p(zk|xi,r

k ). (5.2)

We conduct online tracking quality assessment to quantify trackers’ performance based on

the spatial uncertainty of the particles [65, 89]. Spatial uncertainty analysis outperforms other

methods such as those that directly use likelihood measurement [90]. The spatial uncertainty is

calculated using a covariance matrix Ci
k for the particles and their weights [89]. Ci

k is estimated

as

Ci
k =

Nr

∑
r=1

π̃
i,r
k (xi,r

k − x̌i
k)

T (xi,r
k − x̌i

k), (5.3)

where

π̃
i,r
k =

π
i,r
k

Nr

∑
r=1

π
i,r
k

is the normalised weight of particle i and x̌i
k is the mean state vector of the particles. The dimen-

sionality of Ci
k is d×d, where d is the dimension of the state vector. The state can have the form

of a bounding box, defined as

xi
k = [xi

k,y
i
k,h

i
k,w

i
k], (5.4)

where (xi
k,y

i
k) are the centre of the target in the image plane and hi

k and wi
k are its approximated

width and height, respectively. We use the centre (xi
k,y

i
k) of the target in the image plane for

estimating the spatial uncertainty. The uncertainties of the other state parameter components

such as width and height of the bounding box are mainly dependent on the assigned threshold

values for the particular target property. The covariance matrix for the centre Ĉi
k is a 2×2 matrix,

and is given as
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Ĉi
k =

[
ci

xx ci
xy

ci
yx ci

yy

]
, (5.5)

where ci
xx and ci

yy are variances of the state components xi and yi, respectively, and ci
xy = ci

yx is

the covariance between state components xi and yi [89]. The spatial uncertainty ũi
k is estimated

from Ĉi
k as

ũi
k =

2
√
|Ĉi

k|
wi

khi
k
, (5.6)

where | · | is the determinant of a matrix, wi
k and hi

k are the width and height of target size for

normalising the uncertainty. For reducing noise in ũi
k, its value is smoothed according to

ui
k = ρ ũi

k +(1−ρ)ui
k−1, (5.7)

where ρ ∈ [0,1] is a smoothing factor. The higher the value of ρ , the lower the smoothing effect.

The changes of ui
k over a sliding window can be analysed for classifying whether a tracker is on

the target or is lost [89]. We directly utilise ui
k as track-quality measure for fusion.

When there is a tracking failure (i.e. nearly all samples are far from the target) the weights

and particles tend to be more spread compared to when the samples are on the target. This results

in higher values of Ci
k(u

i
k). Figure 5.2 shows an example of ui

k as a quality measure of two

trackers, T 1 [76] and T 2 [107]. An illumination change and a partial occlusion happen around

k = 65 resulting in an increase of uk for T 2 leading to a tracking failure, while T 1 continues to

track well and its uk remains constant and low.

We quantise the performance result, ui
k, into three quality levels pi

k = {p1,p2,p3}. The quan-

tisation process to obtain the quality level represents Eq. 3.10. These levels are defined based on

two thresholds of the performance measure, namely uT h1 and uT h2 , as

pi
k =


p1 if ui

k ≤ uT h1 ,

p2 if uT h1 < ui
k < uT h2 ,

p3 if ui
k ≥ uT h1 .

(5.8)

The first level p1 has small values of uncertainty that represents a good track performance. The

level p3 has large uncertainty values that indicates low-quality performance. The level p2 repre-

sents an average performance that lies between the two aforementioned levels. We discuss the
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Figure 5.2: Distribution of the uncertainty measure u over frame k on STUDENTS dataset. (a)
Uncertainty measure and (b) sample tracking results. —: T 1 [76] and —:T 2 [107]. Details of T 1

and T 2 are described in Sec. 5.4.

values of uT h1 and uT h2 in Section 5.7.4.

5.3 Fusion

The fusion unit consists of a collaboration strategy between trackers and a method to estimate

the fused output from each trackers based on the performance measure (Fig. 5.1). The details of

the sub-units are described as follows.

5.3.1 Prior state correction

Poorly performing (failed) trackers usually have an inaccurate (incorrect) prior of the target state

that needs to be corrected. In our fusion framework a tracker assists the other by providing an

appropriate prior p(xi
k−1|Zk−1). In the fusion framework, at frame k the corrected prior for a

tracker i, p(xi
k−1|Zk−1), described in Eq. 3.14 and Eq. 3.17, is determined as
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Figure 5.3: Prior state correction across trackers. Two sample cases are shown according to the
quality measures obtained. The circles are particles in a 2D space and their size is proportional to
their weights. Particles with small weights are replaced by particles with large weights. Colours
identify the two trackers.

p(xi
k−1|Zk−1) =

M

∑
j=1

Λ(p(x j
k−1|Zk−1), η̃i j),

=
M

∑
j=1

Λ(
Nr

∑
r=1

π
j,r

k δ (x j
k−x j,r

k ), η̃i j), (5.9)

where M and Nr are the number of trackers and particles, respectively,

η̃i j =
ηi j

M
∑
j=1

ηi j

.

ηi j is a weight that determines the level of prior correction for T i from the prior of T j and η̃i j is

its normalised weight. p(x j
k−1|Zk−1) represents the prior obtained from each tracker before the

fusion. Λ(·, ·) is a sampling function.

The function Λ(·, ·) samples the number of particles proportional to η̃i j from p(x j
t−1|Zt−1)

according to the particle weights. For a poorly performing tracker the particles with low weights

are replaced with particles with high weights from the well-performing tracker (see Fig. 5.3).

During prior correction, T i only keeps η̃ii ·N particles with good weights, while the remaining
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Figure 5.4: Weight assignment between trackers T i and T j according to their performance mea-
sure levels. 0 < η1 < η2 < η3 < 1. (a) ηi j: prior state passing from tracker j to tracker i and (b)
η ji: prior state passing from tracker i to tracker j.

particles (1− η̃ii) ·N are taken from the other trackers. For trackers with different representations

of the state vector xk (e.g. rectangular and elliptic), the calculation of the corrected prior (Eq. 5.9)

requires a transformation between the states.

Figure 5.4 shows the estimation of ηi j between trackers for level of interaction in their prior.

ηi j ∈
{

0,η1,η2,η3,1
}

is dependent on the trackers respective performance levels pi and p j,

which in turn depends on ui and u j. η1,η2 and η3 are constants such that 0 < η1 < η2 < η3 < 1.

Considering T i and T j with pi = p3 and p j = p1, respectively, we get ηi j = 1 and η ji = 0.

This case results T i to leap (complete re-initialisation) to the state of T j (Fig. 5.4). Similarly,

considering the case T i with pi = p2 and T j with p j = p3, we get ηi j = η1 and η ji = η3. In this

case since η1 < η3, T i will take more prior of T j and T j takes only small part of the prior from

T i as collaboration. Although prior correction might not be necessary when all the available

trackers perform well (pi = pi = p1), we prefer trackers to interact in order to avoid possible

tracking failures such as local minimum state estimation due to clutter or similar background to

the target. As a particular case, prior mixing with good performance conditions is prominent for

trackers using MAP estimate strategies.

Note that a poorly performing tracker can degrade the performance of a well-performing

tracker during prior interaction. In our approach the constraint 0 < η1 < η2 < η3 < 1 for the

weights minimises the effect of a poorly performing tracker on a well-performing tracker and

maximises the performance improvement of the poorly performing tracker. Although the weight
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of η1 ≈ 0 could avoid this effect, this solution would be completely dependent on the accuracy

of the online performance measure. We discuss the values of the weights in Section 5.7.4.

The correction of a tracker in the form of prior can be compared to a resampling technique

in a particle filter. In the case of a single particle filter, the resampling is constrained to its own

particles only. In the proposed fusion framework the prior correction of a tracker can be consid-

ered as a similar strategy of resampling particles between trackers thus achieving robust tracking

in an assistive manner.

5.3.2 Estimated-state fusion

The final target state x̂ f
k from the fusion framework is obtained as a weighted sum of the states

estimated by each tracker. The weights for the fusion are estimated similarly to the prior state

correction. x̂ f
k is calculated as

x̂ f
k =

M

∑
i=1

η̃iix̂i
k, (5.10)

where x̂i
k is the state estimate from each tracker in the fusion framework and the weight η̃ii =(

1−
M
∑

j=1,i 6= j
η̃i j

)
measures the tracking quality level of each tracker. Similarly to the idea pre-

sented in Eq. 5.9, η̃ii determines the number of particles a tracker keeps while correcting its prior

state. Similar to the prior state correction, in the case of differences in state representation be-

tween trackers, the transformation of the states to a similar representation is required in order to

apply the weighted-sum rule (Eq. 5.10).

5.3.3 Computational complexity

The fusion framework with M trackers and N particles for each trackers has an upper-bound com-

putational complexity of O
(
M2N

)
. Specifically, the complexity of the fusion framework can be

divided into the complexity of the performance measure, prior correction and fusing output op-

erations for the individual trackers. The performance measure (Eq. 5.3-5.7) involves summation

of weighted states of particles and has a complexity of O
(
N
)
. The prior correction for a tracker

involves state exchange in the form of particles with other trackers based on minimum and max-

imum weights selection (Eq. 5.9). This operation has an upper-bound complexity of O
(
MN

)
.

For M trackers, the performance measure and prior correction have a complexity of O
(
MN

)
and



Chapter 5: Tracker-level fusion for robust tracking 92

O
(
M2N

)
, respectively. The fusion operation (Eq. 5.10) multiplies the estimated state from each

tracker and has a complexity of O
(
M
)
.

5.4 Visual trackers

As example of application for the proposed framework, we consider two particle filters with com-

plementary appearance and motion models. The first tracker is based on colour histograms and a

constant velocity motion model [76], whereas the second tracker is based on sparse features with

a Gaussian random walk motion model [107]. The details of the trackers are given below.

5.4.1 Colour-Histogram-based Particle Filter (CHPF)

Colour features encoded in a histogram are robust to rotations, deformations and non-rigidity of

the target. Let the set
{

x1,r
k ,π1,r

k

}N1
r

r=1
be the states of the N1 particles and their weights for CHPF .

The state of each particle x1 (indexes k and s are removed for simplicity) is represented as an

ellipse with parameters x1 = [x, ẋ,y, ẏ,hx,hy,θ ], where (x,y) represents the centre, (ẋ, ẏ) is the

velocity of the centre, (hx,hy) represent the half-length of the major and minor axes, respectively,

and θ is the orientation for the ellipse.

The probability distribution for the state transition p(x1
k |x1

k−1) is obtained from a constant

velocity motion model with Gaussian random noise. The state transition is formulated as

x1
k = Ax1

k−1 +Wk, (5.11)

where A is a matrix that defines the constant velocity model from the state components ẋ and ẏ

[128] and Wk is the Gaussian noise for the state transition model.

The weight π1 is estimated through the likelihood function defined from the observed colour

histogram at x1 and the target’s reference colour histogram. For measuring the similarity between

colour histograms, we use the Bhattacharyya distance dB =

√
1−

m
∑

u=1

√
puqu, where pu and qu are

colour histograms with m−bin for the candidate sample and the reference model, respectively.

The weights of each particle are calculated from dB as

π
1 ∝ exp−(

dB
ε
)2
, (5.12)

where ε is a constant.
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In CHPF the Minimum Mean Square (MMS) formulation is used to estimate the final output

for representing the target state x̂1
k from p(x1

k |Zk). x̂1
k is estimated as

x̂1
k =

N1
r

∑
r=1

x1,r
k π̃

1,r
k , (5.13)

where π̃
1,r
k is the normalised particle weight (Eq. 5.3).

5.4.2 Least Soft-thresold Squares (LSS) tracker

LSS uses sparse features obtained from intensity values of a target template. The template is re-

sized to Ts×Ts pixels for extracting the features. Representations based on sparse features have

achieved success in tracking [111, 113, 58], classification and recognition [122, 114]. Let the set{
x2,r

k ,π2,r
k

}N2
r

r=1
includes N2

r particles and their weights for LSS. The state x2 of each particle is

represented by a rectangle with affine parameters x2 = [x,y,sx,θ ,rx,δ ], where (x,y) is the centre,

sx is the scale, θ is the rotation, rx is the aspect ratio and δ is the skew angle of the rectangle.

The state transition p(x2
k |x2

k−1) for the particles is modelled as a random walk

x2
k = x2

k−1 +Ω, (5.14)

where Ω is a matrix representing the Gaussian random walk composed of the standard deviations

of each affine model parameter.

The weights π2 are assigned using the Least Soft-thresold Square distance, dLSS, which is

obtained by minimising the error with a linear regression between the template model and the

observation zk from Ik. dLSS is obtained by assuming a Laplacian distribution for the error term in

order to reduce the effect of outliers. A linear regression for observation z (the index k is removed

for simplicity) with two independent noise components, Gaussian and Laplacian, is given as

z = D̀y+ωG +ωL, (5.15)

where y is the vector of coefficients to be estimated from the regression; D̀ is the known dictionary

or basic matrix of the target; ωG and ωL are the Gaussian and Laplacian noise vectors. dLSS is

defined as the distance between z and D̀ as
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dLSS(z, D̀) = min
{y,ωL}

1
2
||z− D̀y−ωL||22 +λ ||ωL||1, (5.16)

where λ is a regularisation constant. The weight π2 for the particle is assigned according to dLSS

as

π
2 ∝ exp(−dLSS). (5.17)

The Maximum a Posteriori (MAP) formulation is used to estimate the final state of the target

x̂2
k from p(xk|Zk). x̂2

k is assigned to the state of the particle with maximum π2 as

x̂2
k = arg max

π2,r
[x2,r

k ,π2,r
k ]

N2
r

r=1. (5.18)

Note that the two selected trackers have limitations related to using a single motion model

in the case of variation of motion dynamics. In CHPF , the constant velocity motion model may

result in drifting in the cases of a sudden motion change. The colour histogram used in CHPF is

sensitive to clutter. LSS uses a Gaussian motion model and maximum a posteriori formulations,

which cannot explicitly cope with occlusions. In addition to this, LSS calculates intensity features

in the gray image only: this could be improved using colour information. In the proposed fusion

framework, effective collaborative tracking is enabled and the limitations from each tracker are

minimised.

5.5 Appearance model update

Updating the target appearance model using each output x̂k may lead to drifting. Either an as-

sumption of the estimated state x̂k for the tracker [86, 44] or a separate external labeler to select

x̂k [46, 55] are usually used for updating the appearance model [88]. We propose a selective

update for the appearance model by observing the tracking performance level. The current state

x̂k is considered for updating the current model only when a tracker is at level p1 and p2, because

when the performance of a tracker is at level p3 the tracker may be tracking the wrong target and

will result in an incorrect model update and subsequent tracking failure.

For CHPF the update is performed according to

q(k) = αq0 +(1−α)pMMS(k), (5.19)
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p𝑖 , p𝑗  
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Figure 5.5: Mapping function f i
c (Table 3.1) to obtain the values of ci

k for tracker i from the value
of its pi

k and the value of p j
k from tracker j.

where pMMS(k) is the target representation obtained from the track estimate x̂k and α measures

the weight contribution of pMMS as the target model together with the original model, q0. The

authors of LSS [107] have proposed an update based on the state estimates of the tracker every

5 frames. In our fusion framework, a similar update strategy is followed, but only using tracks

with performance levels of p1 and p2.

5.6 Discrete variables of the DBN model

The performance levels p1, p2 and p3 represent the discrete values pk. For the two Bayesian

trackers are considered, 9 different correction variable values ci
k = {0,1, · · · ,8} exist. The values

of ci
k are obtained from a combination of ei

k and e j
k values for trackers using the mapping function

f i
c in Eq. 3.19 (Fig. 5.5). The discrete value ci

k = 0 represents no prior correction on the tracker,

while the other values are for different levels of prior correction according to the weight ηi j

(Fig. 5.4).

Performance of two trackers in the tracker-level fusion is compared to the individual use

of trackers in Fig. 5.6. The quality of tracks are measured using overlap score (Sec. 5.7.3). The

result shows that trackers in the fusion framework has improved tracking performances compared

to the independent use of trackers. In the figure the different levels of prior correction are shown

through the sequence. c = 2 represents when both trackers are in good performance and with

equal amount of prior exchange, c = 8 represents complete re-initialisation of a tracker from

the state of the other tracker. The case c = 0 represents when no prior correction is done on

the tracker. In most of the sequence the c = 2 indicating both trackers are performing good,

however at k = 125,126,127, CHPF is completely re-initialised from the prior of LSS (c = 8).

The re-initialisation allow CHPF to resume good tracking performance. At the re-initialisation

of CHPF , LSS takes no prior from the other tracker, i.e. c = 0. LSS fails at k = 80, while in the

fusion framework the tracker is able to avoid the failure.
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Figure 5.6: Comparison of trackers working independently and collaboratively in the fusion
framework. (a) and (b) CHPF , and (c) and (d) LSS. (a) and (c) Area overlap score, OA, between
track estimate and ground-truth data (Sec. 5.7.3), and (b) and (d) values of c with p(ck = c) = 1.
(e) Sample tracking results for —: CHPF , —: LSS, - - -: CHPFF (CHPF collaborating with LSS
in the fusion framework) and - - -: LSSF (LSS collaborating with CHPF in the fusion framework.
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5.7 Experimental results and analysis

5.7.1 Experimental setup

For testing the proposed approach, we consider the STUDENTS2 [56], CAVIAR3, MEN100m4,5,

VISOR6, PETS20067, SINGER1, SINGER2, SKATING2, BASKETBALL8, DAVIDOUTDOOR

[107], PANDA9, MOTOR110, MOTOR211 and CHASING12 datasets. The targets in these datasets

undergo motion blur, occlusion, different motion dynamics, illumination and background changes.

The datasets have 19 targets and a total of 8482 frames in which the targets exist. Table 5.1

summarises the properties of the datasets used in the experiments. Figure 5.7 shows the target

initialisations.

We compare the output of the fusion framework F (Eq. 5.10) with that of individual trackers

CHPF and LSS, and 7 state-of-the-art trackers. CHPF and LSS, and their fusion F are imple-

mented (non-optimised code) using MATLAB2013b, which run 45, 6 and 5 frames per second,

respectively, on an intel(R) core(TM) i5-3570k, 3.4GHz CPU with 8GB RAM on windows 7. We

comparison with the V T S tracker [52] [53], which uses tracker-level fusion. V T S uses 2 motion

models and 4 features as appearance models to construct 8 separate trackers. From the separate

trackers, a fused state is estimated according to their likelihood values. We also compare with

AFT [27], which uses an adaptive cue integration for part-based tracking. Additionally, we con-

sider five state-of-the-art trackers L1T [68], MT T [131], FCT [130], CT [129] and 3DDCT [57]

for comparison. The performance of CHPF and LSS change due to their collaboration when run-

ning in the fusion framework. In order to analyse the change, we also compare the performance

of CHPFF and LSSF , where CHPFF and LSSF are output of CHPF and LSS, respectively, while

collaborating in the fusion framework.
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Table 5.1: Summary of the datasets used in the experiments. key- S1,S2,S3,R1,R2,B1 and B2:
particular targets in the datasets, K: number of frames, O: occlusion, BC: background clutter,
MV: motion variation, IC: illumination changes, SC: scale changes, AC: strong articulated struc-
ture changes, MIN: minimum and MAX: maximum

Dataset K Image size Target size Characteristics
MIN MAX

STUDENTS
S1 250

720 × 576
26 × 58 26 × 58

O, BC, MV, IC, ACS2 250 23 × 65 23 × 65
S3 165 24 × 64 24 × 64

CAVIAR
R1 500

384 × 288
24 × 62 52 × 136

SC, O, BC, IC
R2 500 24 × 62 52 × 136

MEN100M
B1 500 640 × 360 22 × 61 26 × 74

MV, BC, AC
B2 293 480 × 270 33 × 50 35 × 75

VISOR 300 288 × 352 11 × 18 18 × 37 O, MV, SC
PETS2006 247 720 × 576 34 × 105 49× 158 IC, SC
SINGER1 321 624 × 352 26 × 79 70 × 270 IC, BC, SC
SINGER2 366 624 × 352 64 × 142 84 × 264 IC, BC, MV, AC

SINGER2face 366 624 × 352 25 × 28 34 × 40 IC, BC, MV
SKATING2 707 640 × 352 40 × 130 70 × 200 O, BC, MV

DAVIDOUTDOOR 252 640 × 480 34 × 140 40 × 154 O, MV
BASKETBALL 725 576 × 432 33 × 80 33 ×80 O, BC, MV

PANDA 970 312 × 233 22 × 14 40 × 30 BC, IC, MV, SC
MOTOR1 800 1280 × 720 39 × 62 83 × 166 MV, IC, SC, BC
MOTOR2 370 1280 × 720 52 × 132 85 × 172 MV, SC, BC
CHASING 600 320 × 240 20 × 22 58 × 47 MV, IC, SC, BC

R2 B1 
B2 

S1 

S2 

S3 R1 

Figure 5.7: Targets selected and initialisation in each dataset. The order from top-left to bottom-
right along the rows is according to the order of the rows in Table 5.1.
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Table 5.2: Summary of parameters used for the individual trackers and the fusion framework.

Parameter name Symbol Value Reference
Number of particles Nr ≤ 600 Eq. 5.1

Smoothing coefficient for uk ρ 0.5 Eq. 5.7

Spatial uncertainty thresholds
uT h1 1

Eq. 5.8
uT h2 2

Appearance model update coefficient α 0.7 Eq. 5.19

Interaction weights
η1 0.25

Fig. 5.4η2 0.5
η3 0.75

LSS tracker template size Ts 32 Sec. 5.4.2
LSS tracker regularisation constant λ 0.1 Eq. 5.16

5.7.2 Parameters

The thresholds for performance measure levels are set to 1 and 2 for uT h1 and uT h2 , respectively,

for all datasets, except for DAVIDOUTDOOR. In this sequence, due to clutter with similar colour

distribution, so 0.5 and 1 are used for uT h1 and uT h2 , respectively. The interaction weights be-

tween trackers for prior mixing η1, η2 and η3 are selected as 0.25, 0.5 and 0.75, respectively.

The parameter values for the fusion are selected based on a parameter sensitivity analysis (Sec-

tion 5.7.4). For the thresholds of performance measure levels, a similar value of threshold uT h2 is

used in [89] for tracker quality level segmentation. The smoothing coefficient for uk is ρ = 0.5.

For CHPF the colour histogram is constructed using 8× 8× 8 bins in RGB colour space and

its model update coefficient is α = 0.7. For the LSS tracker, we use the original implementa-

tion from the authors with Ts = 32, λ = 0.1 and 16 for the eigenvector representation13. For all

trackers the same number of particles is used in a particular dataset. The number of particles

used in a particular dataset is a maximum of 600 or less. In our implementation, we choose the

state representation of x̂ f
k to be similar to one used in the LSS tracker. For the V T S and 3DDCT ,

2http://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
3http://groups.inf.ed.ac.uk/vision/ CAVIAR/CAVIARDATA1/
4https://www.youtube.com/watch?v=2O7K-8G2nwU
5http://www4.comp.polyu.edu.hk/∼cslzhang/CT/CT.htm
6http://imagelab.ing.unimore.it/visor/
7http://www.cvg.rdg.ac.uk/PETS2006/data.html
8http://cv.snu.ac.kr/research/vtdvts/
9http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/index.html

10http://www.youtube.com/watch?v=3PoMeL1mCak
11http://www.youtube.com/watch?v=cYq1esN yJ4
12http://www4.comp.polyu.edu.hk/~cslzhang/FCT/FCT.htm
13code:http://faculty.ucmerced.edu/mhyang/pubs.html
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the common parameters such as number of particles and motion parameters for the targets in the

datasets, are set to the same value as for LSS and CHPF . The other parameters of V T S, such as

the bin size of the colour and edge histograms, and the number of frames used to generate the

target model, are set to their default values as provided in the authors’ code14. Similar strategy is

followed for L1T 15, MT T 16, FCT 17, 3DDCT 18 and AFT 19. A similar tracking parameters with

the best performing colour component of RGB images are used for CT 20. The parameters we use

for the trackers are optimal for each dataset (i.e the best results for the trackers).

5.7.3 Evaluation measures

In order to compare the performance of the trackers, we use the overlap score OA and the area

under the lost-track-ratio curve AUCκ [72], [64]. OA measures the area of overlap between the

bounding boxes generated by the tracker estimate and the ground truth. OA is calculated as

OA =
2|Ao∩Ag|
|Ao|+ |Ag|

, (5.20)

where Ao and Ag are the bounding boxes for the tracker estimate and ground truth, respectively;

and ∩ and | · | denote the intersection and area estimation operators on the bound boxes, respec-

tively. OA ∈ [0,1] and the larger its value, the better the tracking result. For CHPF , the ellipse

output is converted into a rectangular one for calculating its OA with the rectangular ground truth.

In order to quantify a track failure, the lost-track-ratio κ is estimated as [64]:

κ =
Nk

N f
, (5.21)

where N f is the total number frames where the target exists and Nκ is the number of frames with

OA < τ , τ ∈ [0,1]. In order to remove dependency on τ , the AUCκ is estimated as

AUCκ = ∆τ

1

∑
τ=0

κ(τ), (5.22)

14code: http://cv.snu.ac.kr/research/∼vts/
15code: http://www.dabi.temple.edu/∼hbling/code data.htm
16code: https://sites.google.com/site/zhangtianzhu2012/
17code: http://www4.comp.polyu.edu.hk/∼cslzhang/FCT/FCT.htm
18code: https://code.google.com/p/boosting/downloads/list
19code: http://web.cs.hacettepe.edu.tr/∼erkut/publications.html
20code:http://www4.comp.polyu.edu.hk/∼cslzhang/CT/CT.htm
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Figure 5.8: Sensitivity analysis of the fusion parameters. (a) Performance with different magni-
tudes of interaction weights, Case 1: η1 = 0.10,η2 = 0.50,η3 = 0.90; Case 2: η1 = 0.25,η2 =
0.50,η3 = 0.75; Case 3: η1 = 0.40,η2 = 0.50,η3 = 0.60. uT h is selected as of Case 5 mentioned
below. In the box plots the mean AUCκ values, indicated by mark ’x’, for Cases 1, 2 and 3 are
0.33, 0.31 and 0.34, respectively. (b) Performance with different threshold levels of the spatial
uncertainty, Case 4: uT h1 = 0.5,uT h2 = 1; Case 5: uT h1 = 1,uT h2 = 2; Case 6: uT h1 = 3,uT h2 = 4;
Case 7: uT h1 = uT h2 =∞. For ηi j we use Case 2. In the box plots the mean AUCκ values,
indicated by mark ’x’, for Cases 4, 5, 6 and 7 are 0.35, 0.31, 0.33 and 0.37, respectively.

where ∆τ is a small incremental value used to count the possible variations in τ . In in our

experiment we set ∆τ = 0.01. AUCκ ∈ [0,1] and the lower its value, the better the tracking result.

5.7.4 Discussion

Figure 5.8 shows the results of the fusion framework to parameter variations. The results by

varying the weight ηi j (assigned from η1,η2 and η3) with uT h1 = 1 and uT h2 = 2 are shown in

Fig. 5.8(a). In the box plots, the AUCκ results are obtained by averaging the results from all the

datasets. Since η2 represents tracking conditions with similar performance levels, we keep its

value constant as η2 = 0.5, while three different values of η1 and η3 are considered, with the

assumption that η1 < η2 < η3. From the box plots we observe similar performance between

the three cases. However Case 2 with η1 = 0.25,η2 = 0.5 and η3 = 0.75 outperforms Case 1

with η1 = 0.1,η2 = 0.5 and η3 = 0.9, and Case 3 with η1 = 0.4,η2 = 0.5 and η3 = 0.6. In

the case of a tracker with a large number of particles, the effect of variations in weight is barely

noticeable in the fusion result. This is due to the fact that the interaction weights are proportional

to the percentage of particles state exchange between the trackers. As an additional parameter-

sensitivity analysis, the results for different sets of uT h1 and uT h2 are shown in Fig. 5.8(b). In order
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Figure 5.9: Comparison of performance of the fusion framework between normal appearance
model update, Case 8: update for all p, and proposed update strategy, Case 9: update for only
p ∈ {p1,p2}. The mean AUCκ , indicated by mark ’x’, in the box plots for Cases 8 and 9 are 0.34
and 0.31, respectively.

to generate the results, we use Case 2 of the weight. The best fused output is obtained in Case 5

with uT h1 = 1 and uT h2 = 2. Case 7 with uT h1 = uT h2 =∞ is equivalent to the assumption that

the trackers perform well, independently of the values given by the online performance measure.

As expected, the result from Case 7 is the worst of all the other cases. However, Case 7 still

involves prior exchange between the trackers at every frame with η2 = 0.5, resulting in a better

performance compared to the independent use of the trackers, as discussed below.

Figure 5.9 shows the performance of the fusion framework with the proposed selective ap-

pearance model update compared to a normal model update technique applied independently of

the quality measure. Averaged over all the datasets, the proposed model update (Case 9), de-

fined in reference to the performance measure levels for p ∈ {p1,p2}, results in 3% improvement

compared to normal model update at every track output (Case 8). In the cases of CAVIAR R1,

STUDENTS S3 and SINGER1 the proposed model update gives the best improvements of 11%,

7% and 5%, respectively.

Figure 5.10 shows sample comparisons of trackers performance using OA values. A poorly

performing tracker is characterised by small OA values. STUDENTS S1 undergoes occlusions,

changes of motion dynamics and blur in a crowded scene, causing LSS to fail around frame

75 (Fig. 5.10(a)). STUDENTS-S3 undergoes strong background changes resulting in failure of

CHPF and LSS around frames 87 and 122, respectively (Fig. 5.10(b)). Using the fusion frame-

work, we are able to use the best performing tracker and obtain robust tracking results for both

STUDENTS-S1 and STUDENTS-S3. The target in CAVIAR-R1 dataset undergoes occlusion,
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Figure 5.10: OA scores for the trackers under analysis for selected sequences. A decrease in
OA value indicates a tracking performance degradation and in particular a zero value indicates
a complete failure. (a) STUDENTS-S1, (b) STUDENTS-S3, (c) CAVIAR-R1, (d) VISOR, (e)
SINGER1 and (f) PANDA (see Table 5.1). —:F, —:LSS, —: CHPF ,—: V T S, —: CT ,- - -:
FCT , —: 3DDCT , - - -: MT T , —: AFT , - - -: L1T .

abrupt motion and large scale changes. The performance of CHPF degrades through the se-

quence and fails around frame 300. The LSS tracker overcomes the challenges and achieves

good tracking performance (Fig. 5.10(c)). Using F the target in CAVIAR-R1 is successfully

tracked. The accuracy of F is slightly smaller than that of LSS due to the poor performance of
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CHPF .

In VISOR, CHPF performs well due to the colour difference between face and background

even when the face undergoes sudden change in motion and partial occlusions. However, due to

the similarity in intensity between the face and background in the gray-scale image, and abrupt

change in its state, LSS fails around frame 70 (Fig. 5.10(d)). The result from F shows that the

target is tracked successfully. The small values of OA from F at frame numbers such as 200

and 240 are due to the small size of the target, which causes a sudden drop in the lost-track value

when the target undergoes sudden motion changes and due to the MMS formulation of the CHPF

(CHPF performs well in the fusion). In SINGER1 CHPF fails around frame 100 (Fig. 5.10(e))

due to scale and illumination changes, and in PANDA both LSS and CHPF fail around frames

400 and 580 (Fig. 5.10(f)), respectively, due to out-of-plane rotation, scale changes and cluttered

background. Using F the targets are tracked successfully even though one or both of the tracking

components failed. In the PANDA sequence, small values of OA are due to the scale changes

from the out-of-plane rotations that the trackers can not cope with. Note that when all tracker

components fail at the same time, it is highly probable that F fails too.

In Fig. 5.10, we observe the complementary nature in performance of CHPF and LSS for

some of the targets. In STUDENTS-S1, CHPF performs well, while the LSS fails around frame

75; whereas in CAVIAR-R1 LSS performs well, while CHPF fails around frame 300. However,

in both targets robust tracking is obtained using F by exploiting the best performing tracker

in the mutually supportive fusion framework. The results of other trackers considered for our

comparison are also shown in Fig. 5.10. V T S fails for STUDENT-S1, CAVIAR-R1 and PANDA

around frames 80, 100 and 150, respectively, and the results can be interpreted likewise for other

trackers.

Tracking results for some of the datasets are shown in Fig. 5.11. The videos of the tracking

results for all datasets can be found in http://www.eecs.qmul.ac.uk/˜andrea/tlf.

html. The video results in the website allow one to compare qualitatively the performance of

our proposed framework with the competing methods.

The advantages of the fusion framework are improvement in tracking performance compared

to the performance of individual trackers in the framework, handling challenges that cannot be

addressed by a single tracker and effectiveness for tracking an arbitrary target where variety of

tracking challenges might exist. Tables 5.3 summarises the quantitative evaluation using OA. The

http://www.eecs.qmul.ac.uk/~andrea/tlf.html
http://www.eecs.qmul.ac.uk/~andrea/tlf.html
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Figure 5.11: Sample tracking results. (a) STUDENTS-S1, (b) VISOR, (c) PANDA, (d) BAS-
KETBALL, (e) MEN100M-B1 and (f) SINGER1 (see Table 5.1). —:F, - - -:LSSF , - - -: CHPFF ,
—:LSS, —: CHPF ,—: V T S, —: CT , - - -: FCT , —: 3DDCT , - - -: MT T , —: AFT , - -
-: L1T . For the videos with the tracking results, please see:http://www.eecs.qmul.ac.
uk/˜andrea/tlf.html

average value µ over the video is shown. Since the trackers under comparison are probabilistic,

the results reported are obtained by averaging 10 independent runs for each datasets. The stan-

http://www.eecs.qmul.ac.uk/~andrea/tlf.html
http://www.eecs.qmul.ac.uk/~andrea/tlf.html
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dard deviation σ of each evaluation measure is indicated in the same cell next to µ . In order

to show the variations in the results over the datasets, the standard deviation values in the last

row of the table (average tag) are estimated for the average values of each dataset result. By

comparing the columns CHPF and LSS with columns CHPFF and LSSF it is possible to observe

that a failure in one tracker is corrected by the other tracker in the proposed fusion framework.

For instance, for target STUDENTS-S1 the performance of LSS has improved by 52% in OA as

in LSSF and for target CAVIAR-R1 the performance of CHPF has improved by 28% in OA as in

CHPFF . In most of the targets, the output accuracy of F is slightly higher than the performance

of CHPFF and LSSF .

In some of the targets such as CAVIAR-R1 and DAVIDOUTDOOR the results from F are

slightly lower than that of LSSF . However, the OA values do not show large differences, i.e. 0.05

and 0.09, respectively. For the targets in STUDENTS-S2, CAVIAR-R1 and DAVIDOUTDOOR,

the trackers operating in the fusion framework (CHPFF or LSSF ) generate less accurate results

than that of the best performing individual trackers (CHPF or LSS). This occurs due to the lack

of perfection in the spatial uncertainty analyses as performance measure. The spatial uncertainty

analyses on the particles state depend on the noises in the motion model and observation models;

and the result of the performance measure may not be absolute all the time. Averaged overall

the datasets, on average the decrease in accuracy of the well-performing tracker by the poorly

performing tracker is only 2.7% in OA compared to 23.3% improvement in OA achieved by the

poorly performing tracker in the framework.

A tracker that fails in the middle of the sequence is associated to a large value of σ (e.g.

CHPF in targets STUDENTS-S2, CAVIAR-R1 and DAVIDOUTDOOR; LSS in STUDENTS-

S1, VISOR and SINGER2; CT in SKATING2 and BASKETBALL; V T S in CAVIAR-R1 and

MEN100m). In addition to this, the value of σ indicates the variation of results over different

runs of the probabilistic trackers and the fusion framework, such as the performance of F in

STUDENTS-S2 and CAVIAR-R2. For multiple runs on STUDENTS-S2, CAVIAR-R2, SINGER2

and DAVIDOUTDOOR, we noticed that F fails for some of the runs, and as a result F has

relatively larger values of σ for those targets compared to the values of σ for other targets. In

SINGER2 both CHPF and LSS perform poorly, and the fusion framework does not cope with

the poor performance of both trackers for a long duration, unlike MEN100M.

The performance of other state-of-the-art trackers is shown in Table 5.3. CT and AFT can-
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not deal with scale changes, thus resulting in a poor performance in CAVIAR-R1 and R2, and

SINGER2. For small targets (faces) with background clutter in VISOR and SINGER2face, CT

performs the worst. FCT has a similar implementation to CT , however the use of the best per-

forming colour channel of RGB in STUDENTS, SKATING2 and DAVIDOUTDOOR datasets

for CT results in a better performance over the use of gray-scale image for FCT . Although

3DDCT performs the best on some targets, the results are not satisfactory for the targets where

the colour distribution plays an important role in target discrimination such as in VISOR, SKAT-

ING2, BASKETBALL and CAVIAR-R2. L1T performs poorly on strong articulated changes of

the target such as in MEN100m, SINGER2 and SKATING1, and MT T fails due to occlusions

in STUDENTS2, BASKATEBALL and CAVIAR1. V T S performs relatively well on most of

the datasets. However it fails to track the whole sequence for STUDENTS-S1, MEN100m and

PANDA due to occlusion and background clutter.

F gives 15% and 17% improvement in OA over the individual trackers CHPF and LSS,

respectively, proving that the fusion framework achieves a more robust tracking. V T S tracker

outperforms CHPF and LSS, F has a 6% improvement in OA over V T S. The explicit performance

measure computed for each tracker and the exchange of prior between trackers as correction

give better tracking results compared to directly using the likelihood values as done in V T S.

Compared to the other trackers L1T , MT T , AFT , 3DDCT , FCT and CT , the fusion F results in

a performance improvement of 31%, 29%, 13%, 20%, 29% and 29% in OA values, respectively.

5.8 Summary

We presented a fusion framework that allows us to obtain self-correcting target tracking. The

framework measures online the performance of individual trackers for guiding the fusion deci-

sion. Trackers in the framework assist each other based on an appropriate prior state exchange,

referred to as prior state correction. The individual trackers and their fusion are able to avoid and

recover from failures due to the online performance based prior state correction. In addition to

this, we exploited the result of the performance measure for selecting appropriate states for the

appearance model update in order to minimise drifting.

The framework is demonstrated using two Bayesian trackers [76, 107] and challenging datasets

containing 19 targets and a total of 8482 frames. The proposed selective model update results

in an average of 3% improvement in overlap score compared to the normal (every frame) model
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update. Moreover, the framework results in averages of 15% and 17% improvement of overlap

score over the individual trackers considered. Finally, the framework is shown to have improved

performance compared to other state-of-the-art trackers [52, 27, 68, 131, 130, 129, 57].



Chapter 6

Conclusions

6.1 Summary of achievements

In this thesis, we addressed the problem of how to achieve self-correcting tracking that can avoid

and recover from tracking failures. Targets undergo challenges such as deformation, variable

motion dynamics changes, illumination changes and be similar to background clutter that lead

to performance degradation for trackers. Except [48, 87, 120, 25, 24, C1], most existing state-

of-the-art tracking methods do not explicitly detect poor performance and failures, and do a

correction in the state estimation. To address this, we proposed a generalised Track-Evaluate-

Correct framework, where a tracker is assisted by online evaluation and correction blocks in

order to obtain the self-correcting tracking. The evaluation block allows the tracker to gather in-

formation about its track quality, and the correction block helps the tracker to avoid and recover

from poor performance and failures. We discussed various types of performance measures and,

similarly, we discussed different means of correcting a tracker. The main concern for designing

self-correcting tracking is identifying appropriate strategies to be employed in the evaluation and

correction blocks. The thesis mainly considered tracking in a Bayesian framework. In particular,

we addressed the problem of representation and formalisation of self-correcting tracking by using

DBN and the problem of obtaining the self-correcting tracking by embedding appropriate evalu-

ation and correction blocks to the state-of-the art trackers. Details of the particular achievements

are presented below.

We utilised DBN model for representation of self-correcting tracking. In the DBN model

110
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representation, we used additional hidden variables for the evaluation and correction together

with variables for the target state and measurement. The inclusion of evaluation and correction

variables results in deep-hierarchical DBN model when compared with the DBN model of a

baseline tracker with only target state and measurement variables. From the inference between

variables, we showed the filtering equations of the target state estimation that depends on the

evaluation and correction variables. In particular we showed the dependence of models, such

as motion and appearance, on the evaluation and correction variables in self-correcting tracking.

Both the evaluation and correction variables in the DBN are discrete. In the case of evaluation, the

discrete values correspond to classes that characterise the quality of tracks, while in the case of

correction, the different discrete values primarily allow the self-correcting framework to decide

whether correction is needed or not. Additionally, the different values for correction variables

can indicate different correction schema on the tracker, such as correction on the motion model or

correction in the appearance model. Moreover, for a tracking scenario with multiple models, the

different correction variable values help to select the appropriate model or decide their optimal

combinations. By using the Track-Evaluate-Correct framework, we provided filtering equations

for the proposed DBN model of the self-correcting tracking.

We used the Track-Evaluate-Correct framework for improving probabilistic tracking of an

extended object with a set of model points [J1]. Self-correcting tracking requires correction infor-

mation about the true state of the target in cases of failures. In the tracking of the extended object,

we exploited the correlation information between model points tracks for correction. Tracking

involves estimating the state and identify for each of the model points. However, challenges from

data association, misdetection and clutter lead to tracking failures. We modelled sources of fail-

ure and covariance characteristics of the tracker in order to measure the quality of tracks. Based

on the measure, we classify model point trackers into strong and weak trackers. Weak trackers

are those having poor performance or uncertain about their true state. The correction of weak

trackers is achieved in the form of re-initialisation based on an online learnt correlation model.

Inferring the corrected state of the weak tracker from that of strong trackers is done by Partial

Least Square regression using trackers short-windowed trajectory. For an accurate estimation

of a weak tracker state, the predictions from the list of available strong trackers are weighted

according to the observed correlation level. The correlation level between trackers is observed

during the learning step of the regression model. We showed the improvement in performance
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of our proposed method compared to other state-of-the-art methods on tracking of data obtained

from optical motion capture systems.

We have proposed a tracker-level fusion framework as a means of achieving self-correcting

tracking [J2]. There is a need for correction information in case of poor performance and failures

of trackers. The individual trackers are used as the source of correction information for each

other in the tracker-level fusion. In the framework we incorporated an online performance mea-

sure to identify the track quality level of individual trackers. We classified the track quality in

to three classes: well, medium and poorly performing. The quality levels are used for guiding

the fusion and collaboration for the trackers. We defined the collaboration strategy using prior

states of trackers. The collaboration strategy is a form prior correction for poorly performing

trackers. For recovering poor performance of the tracker, its prior is partially or fully replaced

with the prior state of a well performing tracker. In addition to this, corrections on trackers in the

fusion framework are done in the form of appearance model update. The model update considers

only tracks with medium and good performance classes aimed at minimising the drifting due to

wrong updates. We demonstrate the performance of the proposed fusion framework by using

two particle filter based Bayesian trackers on challenging datasets. Trackers are selected taking

into account variation in trackers’ components and complementary performance to tracking chal-

lenges. We compared with state-of-the-art methods and show the improvement in performance

by our method in the experimental analysis and validation. Moreover, we did sensitivity analysis

of the fusion framework for its parameters as part of the experiment.

In summary, we presented a framework that takes into consideration the capabilities to avoid

and recover from failures in target tracking. The framework achieves the capabilities by the

explicit use of online track quality measurement and correction blocks for trackers. We used

DBN as a tool for representing the design of self-correcting tracking. Moreover, we employed

the framework for tracking an extended object with model points and fusion of multiple trackers.

6.2 Future research directions

This section summarises possible future research directions of the thesis as follow.

1. In this thesis, step-wise integration of the tracker with the evaluation and correction blocks

is used in the Track-Evaluate-Correct framework. Other frameworks to obtain self-correcting

tracking need to be addressed for maximising self-correcting capabilities. The new frame-
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work could be explored from techniques to obtain an approximate inference of the proposed

DBN model for self-correcting tracking.

2. For recovering trackers from failures, the main challenge lays in obtaining information

about the true state and updated properties of the target. Context information in the scene

could be exploited as a means of getting the information for correcting the trackers.

3. The proposed correlation-based self-correcting tracking in Chapter 4 can be extended to

other multi-target tracking scenarios. The correlation information between trackers, which

has been used for correction, can be exploited to assist hard decision in data association

strategies. Moreover, improved techniques for correlation modelling could be considered.

4. Threshold-free performance measures need to be investigated for better design of self-

correcting tracking. Additionally, the concept of performance measure needs to be extended

also for detection of tracking challenges. The detected tracking challenge can be accom-

panied with appropriate tracking strategies and corrections on the tracker to overcome the

challenge. This approach minimises failures and also partially overcomes the problem of

obtaining correction information in self-correcting tracking.

5. We showed that fusion of trackers helps us to obtain self-correcting tracking (Chapter 5).

The fusion presented uses evaluation and collaboration strategy based on particle filter. The

framework can be extended to contain non-Bayesian trackers and a collaborative method

independent of the tracking strategies needs to be addressed. Additionally, in the fusion

framework, a mechanism needs to be designed for minimising the effect of a poorly per-

forming tracker on a well-performing tracker.

6. In tracker-level fusion complementary performance characteristics of trackers play an im-

portant role in avoiding failures. Methods to identify the complementary performance of

trackers need to be studied. In order to have target reacquisition after long-term occlusions,

a tracker with such capability should be considered in the fusion framework.
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