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Abstract

The incorporation of intelligent reflecting surface (IRS) into wireless communica-

tion systems can extend the coverage and enhance the data transmission rate. This paper

studies the joint transceiver and IRS designs in IRS-assisted multi-input multi-output

(MIMO) systems under both perfect channel state information (CSI) and imperfect

CSI. Specifically, the transmit precoder, reflection coefficients at the IRS, and receive

equalizer are jointly optimized to minimize the data detection mean square error (MSE),

subject to the transmission power constraint and the modulus constraints for IRS

reflection coefficients. The design problems, non-convex and challenging, are tackled

under the framework of alternating optimization. For the design with perfect CSI, we

successively optimize the IRS reflection coefficients given the precoder and present

the closed-form optimal angle of one reflection coefficient given the others. For the

robust design with imperfect CSI, we first average the detection MSE over channel

uncertainties by using a generalized statistical CSI error model. Then, the averaged

MSE is approximated by a more tractable upper bound. Subsequently, the robust design

problem is elaborately transformed into a form similar to the problem with perfect CSI.

Numerical results demonstrate the effectiveness of the proposed designs as compared

to various benchmark schemes.

Index Terms

Intelligent reflecting surface (IRS), multi-input multi-output (MIMO), robust de-

sign, channel state information (CSI).

W. Zhou is with the Department of Electronic Engineering, Nanjing Forestry University, Nanjing, China.
C. Li is with the School of Information Science and Engineering, Southeast University, Nanjing, China.
L. Fan and J. Xia are with the School of Computer Science, Guangzhou University, Guangzhou, China.
A. Nallanathan is with the School of Electronic Engineering and Computer Science, Queen Mary University of London,

London, U.K.

Page 1 of 78

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

I. INTRODUCTION

The fifth-generation (5G) mobile communication is required not only to provide users with

more immersive business experiences, but also solve the communication problem between people

and things, things and things. This leads to the emergence of a few dominant candidates, such

as massive multi-input multi-output (MIMO), milimeter wave (mmWave), carrier aggregation.

Though the candidates can meet the requirements of 5G to some degree, there still exist some

problems. The mmWave signal is easily blocked by buildings and vulnerable to bad weather. The

hardware of massive MIMO is difficult to implement due to dedicated radio frequency chains.

Besides, the increase of users and services will result in high energy consumption. All these

bring about new challenges to 5G systems [1].

To alleviate the dilemma, the intelligent reflecting surface (IRS) has emerged. The IRS consists

of a large array of passive scattering elements with low cost. By deploying it in the radio envi-

ronment, e.g. advertising panels and building walls, the IRS can assist wireless communications

and information sensing effectively. Hence, it attracts a lot of attention from the academia as well

as the industry and various works have been conducted in the IRS-related area from hardware

implementation [2] to algorithm design.

The existing studies showed that the joint transmitter and IRS design could improve the

system performance [3]–[20]. Specifically, the communication rate or capacity optimization was

conducted in [4]–[11]. For instance, the capacity of IRS-aided MIMO systems was enhanced

by jointly optimizing the MIMO transmission covariance and the reflection coefficients at the

IRS [6], [8], while a genetic algorithm (GA) was proposed to maximize the sum rate of all

users in IRS-aided multiple-input single-output (MISO) systems [9]. Moreover, some researches

considered the optimization of symbol error rate (SER) [12] and signal-to-noise-plus-interference

ratio (SINR) [13] in IRS-aided systems. With discrete phase shifts, the IRS reflecting elements

and the precoder at the transmitter were jointly optimized to minimize the SER for IRS-aided

point-to-point MIMO systems [12]. A multi-beam multi-hop routing problem for a multi-IRS

aided multiuser MISO system was studied in [13], where the optimal IRSs and their beam

routing paths for users were selected and the beamforming at the BS/IRSs was designed in

order to maximize the minimum received signal power among users. Aiming at minimizing the

transmit power, the transmit precoding at the access point (AP) and the reflect phase shifts at
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the IRS for IRS-aided MISO systems were jointly designed [16], [17]. In further, there were

also a few works that minimized the detection mean square error (MSE) at the receiver so as

to improve the IRS-aided system performance [19], [20]. For example, the problem of model

aggregation for the federated learning with the aid of multiple IRSs was studied in [19], in which

the transmit power at devices, the receive scalar at the base station, and the phase shifts at IRSs

were jointly designed by minimizing the MSE. Currently, the IRS-aided MISO or single-input

single-output (SISO) systems have been extensively studied [3], [4], [9], [13]–[19], while there

is still research room for IRS-aided MIMO systems.

Note that the aforementioned literature [3]–[20] requires perfect channel state information

(CSI). However, due to the limited length of pilot sequences and the feedback latency, perfect

CSI is difficult to be obtained in practice. Taking the estimated CSI as perfect will cause the

system performance degradation. Hence, the robust design against the CSI error in IRS-aided

systems is of significance and a few related works have been conducted [21]–[29]. Aiming at

minimizing the transmission power subject to some quality of service (QoS) constraints, the

beamformer at the transmit and phase shifts at the IRS were jointly designed in [21]–[24]. For

instance, a robust design framework was proposed for IRS-aided communication systems in the

presence of user location uncertainty [24], where the transmit beamformer and IRS phase shifts

were designed in order to minimize the transmit power while ensuring the user rate is above

a threshold for all possible user location error realizations. The robust transmission designs for

IRS-aided multi-antenna systems in the presence of channel uncertainties have been proposed

to maximize the system sum rate [25], [26]. Besides, some researches considered the problem

about the detection MSE [27] or energy efficiency [29]. However, most current works focused

on the IRS-aided MISO system [22]–[29]. To the best of our knowledge, there have been no

works on the robust design for IRS-aided MIMO systems.

From the above literature review, we can see that there is still much room for the study of

IRS-aided MIMO systems. Compared with MISO systems in which only a single beamformer

is considered, multiple beamformers that form the precoder matrix should be designed at the

transmitter of the IRS-aided MIMO system. The IRS reflection coefficients need to enhance the

effective channel composed of a direct link and a few cascaded channels, meanwhile balancing

the power allocation among multiple beamformers. Moreover, the coupling between the precoder

matrix and the IRS reflection coefficients becomes more complicated. Mathematically, the objects
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handled by the problem in IRS-aided MIMO systems are matrices whose processing is usually

more difficult than vectors in MISO systems. Next, we discuss the criterion of the joint design in

this article. A few performance metrics can be considered as the design criteria, e.g., the capacity

[6], [8], SER [12], outage, and MSE. Usually, the capacity is derived with the assumptions of

Gaussian codes used by the transmitter and Gaussian noises in the channel [30], whereas the

MSE has no such assumptions, the optimization of which has more applications, e.g. the case of

non-Gaussian noise. On the other front, compared with the SER-based metric, optimizing MSE

is more likely to obtain the solution analytically. Due to these reasons, we adopt the MSE-based

metric for the design. The main difficulties for the joint design in IRS-aided MIMO systems

lie in that the coupling between the precoder and IRS reflection coefficients and the inverse of

a matrix parameterized by many variables. Moreover, the coupling is more complicated for the

case of imperfect CSI by comparing with the perfect-CSI case, which brings more challenges

to the joint design.

Based on the above, with the MSE-based metric, this paper studies the joint transceiver and IRS

design for IRS-aided MIMO systems under both the perfect CSI and imperfect CSI. Specifically,

the precoder at the transmitter, reflection coefficients at the IRS, and equalizer at the receiver

are jointly optimized in order to minimize the data detection MSE. The main contributions of

this work are outlined as follows:

1) To the best of our knowledge, this is the first work to study the joint transceiver and IRS

design whose aim is to minimize the data detection MSE. This is also the first work to study

the robust joint transceiver and IRS design against channel uncertainties for IRS-assisted

MIMO systems, whereas the most previous robust designs are for MISO systems1.

2) For IRS-aided MIMO systems with perfect CSI, we formulate the joint design problem that

minimized the detection MSE subject to the transmission power constraint and the modulus

constraints for IRS reflection coefficients. The problem, nonconvex and hence challenging,

is solved under the framework of alternating optimization. Given the precoder, we exploit

1The main differences between this paper and [27] lie in two aspects: 1) The system models are different, i.e., the MIMO
system is used in this paper instead of the MISO system in [27]; 2) the channel error models are also different, i.e., the error
model of this paper considers the channel correlation while [27] did not consider it. In addtion, there are two major differences
between this paper and [20]. One difference is that [20] adopts the nonlinear transceiver, i.e., Tomlinson-Harashima precoding
at the transmitter and decision feedback equalizer at the receiver, while this paper uses a linear structure. Another difference is
that we consider the optimization for the amplitudes of IRS reflecting coefficients, instead of the unit-modulus assumption in
[20].
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an iterative algorithm and solve the reflection coefficients successively, i.e., each time only

one coefficient is optimized. The optimal angle of the coefficient is derived in a closed

form while the optimal modulus can be found via one-dimension (1D) line search.

3) For IRS-aided MIMO systems with imperfect CSI, we present a more generalized statistical

CSI error model in which only the first and second moments are specified while the

distribution is not. With this model, we average the detection MSE over CSI errors and

formulate the robust design problem that minimizes the average MSE subject to two

constraints. Since the objective of the problem is intractable, we derive an upper bound

and replace the original objective. After a few elaborate manipulations, the robust design

problem is arranged into a form similar to the problem with perfect CSI, and hence can

be readily solved.

4) The joint transceiver and IRS designs under both perfect CSI and imperfect CSI are

evaluated by extensive numerical results. The results show that, the proposed joint design

under perfect CSI is able to achieve the lowest detection MSE among all the benchmark

schemes. Compared with the non-robust design, the proposed robust design against chan-

nel uncertainties exhibits significantly better performance in terms of both MSE and bit

error rate (BER). Even with imperfect CSI, the exploitation of IRS has benefits to the

improvement of system performance.

The rest of this paper is organized as follows. The IRS-aided MIMO system model is described

in Section II. The joint transceiver and IRS design with perfect CSI is considered in Section

III, while the robust joint design against the imperfect CSI is studied in Section IV. The effects

of various system parameters on the performance of the proposed algorithms are presented in

Section V, followed by conclusions in Section VI.

Notations: Vectors are denoted by boldface lowercase letters and matrices are denoted by

boldface uppercase letters. Cm×n represents the set of m × n complex matrices. For a scalar

x, �x� takes its integer part. For a vector x, diag{x} stands for a square diagonal matrix with

x’s elements on the main diagonal; x � 0 means xi ≥ 0, ∀i, where xi is the i-th entry of x.

For a matrix X, the notations X∗, XT , and XH denote the conjugate, transpose, and Hermitian

transpose of X, respectively; Tr(X) and rank(X) denote the trace and rank of X, respectively;

Re(X) and Im(X) take the real and imaginary part of X, respectively; [X]m,n is the (m,n)-th

entry of X; X � 0 means that X is positive semidefinite. We write CN (μ,R) to represent a
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Fig. 1: The system diagram.

complex Gaussian distribution with mean μ and covariance matrix R. Besides, ‖·‖F denotes the

Frobenius norm, E(·) denotes the statistical expectation, and Im is an m×m identity matrix.

II. SYSTEM MODEL

As in Fig. 1, consider an IRS-assisted MIMO communication system with NT transmit

antennas and NR receive antenna. The incorporation of the IRS provides a non-light-of-sight

(NLOS) path between the transmitter and the receiver and hence improves the communication

quality. The IRS consists of M independent reflection elements whose coefficients can be

dynamically adjusted by a controller. The coefficient of the m-th element is expressed by

αm = ρme
jθm , where 0 ≤ ρm ≤ 1 and 0 ≤ θm < 2π are the amplitude and phase of element m.

The transmitted signal arrives at the receiver through both the direct and reflection paths. Denote

by H0 ∈ C
NR×NT , R ∈ C

NR×M , and T ∈ C
M×NT the channel matrices from the transmitter

to receiver, the IRS to receiver, and the transmitter to IRS, respectively. The equivalent channel

matrix between the transmitter and receiver is given by [6]

H = H0 +RΦT

=
√
g0Ψ

1
2
R,0Hw,0Ψ

1
2
T,0 +

√
g2Ψ

1
2
R,2Hw,2Ψ

1
2
T,2 ·Φ · √g1Ψ

1
2
R,1Hw,1Ψ

1
2
T,1,

(1)

where R � √
g2Ψ

1
2
R,2Hw,2Ψ

1
2
T,2 and T � √

g1Ψ
1
2
R,1Hw,1Ψ

1
2
T,1; g0, g1, and g2 are the path losses

of the direct link, the transmitter to IRS link, and the IRS to receiver link, respectively; Φ is

the reflection matrix and Φ
Δ
= diag {α1, · · · , αM} ; Hw,0 ∈ C

NR×NT consists of i.i.d complex

Gaussian random variables with zero mean and unit variance, and Hw,1 ∈ C
NR×M and Hw,2 ∈

C
M×NT have similar definitions; ΨR,0 and ΨT,0 are the transmit and receive correlation matrices

for the direct link, respectively; similarly, {ΨR,1,ΨT,1} and {ΨR,2,ΨT,2} are defined for the

transmitter to IRS and the IRS to receiver links, respectively. Note that, the direct link, the
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transmitter to IRS link, and the IRS to receiver link are numbered 0, 1, and 2, respectively.

Denote by s ∈ C
d×1 the data to be sent, where 1 ≤ d ≤ NT is the number of symbols. With

the aid of a linear precoder matrix F ∈ C
NT×d, the transmitted vector is expressed by s̃ = Fs.

We assume that the symbols of s are independent and with unit power, i.e., E
(
ssH
)
= Id.

Hence, the average transmission power is E
(
s̃H s̃
)
= Tr

(
FFH

)
, satisfying Tr

(
FFH

) ≤ PT ,

where PT is the maximum transmission power. The received signal, denoted as r ∈ C
NR×1, can

be expressed as

r = HFs+ n, (2)

where n is a zero-mean random vector with covariance Rn.

At the receiver, with the aid of a linear equalization matrix G ∈ C
NT×NR , the transmitted data

is estimated by ŝ = Gr. Consequently, the MSE of data detection is given by

MSE = E

[
(̂s− s)H (̂s− s)

]
= E

{
Tr
[
(Gr− s) (Gr− s)H

]}
. (3)

Notice that the transmitted data s has been normalized and hence, the MSE is normalized

accordingly.

This paper aims at jointly designing F, G, and Φ in order to minimize the detection MSE.

In what follows, we will consider two cases according to whether perfect CSI is available for

the system and design {F,G,Φ} for them respectively.

Remark 1: On the system model, a few things need to be further discussed. First, the noise

n is not limited to the Gaussian noise and it can be non-Gaussian and colored. Second, the

transmit signal x can be either the Gaussian code or with simple signal constellations, e.g.

BPSK. Third, the phase shifts of IRS reflection coefficients are assumed continuous instead of

discrete. The proposed design in this paper is not suitable for the discrete case [16], in which

the integer programming will be involved. Fourth, different from most literature, the amplitudes

of IRS reflection coefficients in this paper are assumed to vary within [0, 1]. This may result in

a complicated control. However, the corresponding research is still theoretically meaningful.

Remark 2: As in (1), the Kronecker model is used for the modelling of the equivalent channel.

In fact, it has been widely used in current works [31], [32]. Ref. [31] discussed this model in

detail and presented its suitability condition [31, Propositions 3.1, 3.2]. Besides, in general,

there are three types of spatial correlation models for MIMO channels, including the physical

parameter-based model [32]–[34], exponential type [35], and uniform type [36]. All these types
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can be used for the IRS-assisted MIMO system model. The first type, though quite complicated,

is an accurate model for real-world scenarios. Hence, it is used for most cases in the simulation.

The second, a single-parameter model, is simple but allows one to study the correlation effect in

an explicit way. Hence, for few cases where the effect of channel correlation is specially studied,

the second type is used.

III. JOINT PRECODER, REFLECTION COEFFICIENTS, AND EQUALIZER DESIGN WITH

PERFECT CSI

This section considers the case in which the system has perfect CSI. The joint precoder,

reflection coefficients, and equalizer design is formulated as a nonconvex optimization problem.

The alternating optimization framework is used to tackle this problem, where the problem is

divided into two subproblems and the variables Φ and F are optimized alternately. For the

subproblem of optimizing Φ, the IRS reflection coefficients are successively optimized, i.e.,

each time only one single variable in {αm}Mm=1 is optimized while the other M − 1 variables

are fixed. By doing so, the complicated coupling among these coefficients can be avoided.

To start with, the MSE in (3) is further expressed as

MSE = En,s

{
Tr
[
(GHFs+Gn− s) (GHFs+Gn− s)H

]}
= Tr

{
(GHF− Id)Es

(
ssH
)
(GHF− Id)

H
}
+ Tr

[
GEn

(
nnH

)
GH
]

= Tr
[
(GHF− Id) (GHF− Id)

H
]
+ Tr

[
GRnG

H
]
,

(4)

where Rn is the covariance matrix of the noise vector n. Given F and H, the optimum linear

receiver GOPT is obtained by setting ∂MSE
∂G∗ = (GHF− Id) (HF)H +GRn = 0, which yields

GOPT = (HF)H
[
Rn +HF(HF)H

]−1

. (5)

Substituting GOPT into (4), we have [37, Section IV.A]

MSE = Tr
[
Id − (HF)H

(
HFFHHH +Rn

)−1
HF
]

= Tr
[(
Id + FHHHR−1

n HF
)−1
] . (6)

With (6), the design problem is formulated as P1. Note that, to highlight the two parameters F

and Φ, we write the objective function as MSE(F,Φ). It is clear that P1 is nonconvex due to
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9

the coupling of F and Φ. Hence, the alternating optimization framework is adopted so that the

variables F and Φ can be treated separately.

P1 : min
F,Φ

MSE(F,Φ) = Tr
[(
Id + FHHHR−1

n HF
)−1
]

s.t. C1 : Tr
(
FFH

) ≤ PT

C2 : |αm| ≤ 1,m = 1 · · ·M
C3 : Φ = diag {α1, · · · , αM} .

A. The Framework of Alternating Optimization

Under the alternating optimization (AO) framework, we divide P1 into two subproblems and

solve them alternately.

1) Optimizing F given Φ : Clearly, given Φ, P1 is convex with respect to F. The optimal F

has the following structure [37, Theorem 1]:

F=UFΛF, (7)

where UF ∈ C
NT×d′ has as columns the eigenvectors of HHR−1

n H corresponding to d′ largest

eigenvalues, d′ Δ
= min (d, rank (HR)), and HR

Δ
= HHR−1

n H; ΛF =
[
diag

(
{λF,i}d

′
i=1

)
0
]
∈

C
d′×d with λF,i =

√(
μ−1

2λ
−1
2

HR,i − λ−1
HR,i

)+

, λHR,i’s are the d′ largest eigenvalues of HR, (x)+

means max(x, 0), and μ > 0 satisfies the equation
d′∑
i=1

λ2
F,i=PT .

2) Optimizing Φ given F : First, this subproblem, termed as P2, is expressed as

P2 : min
Φ

MSE(F,Φ) = Tr
[(
Id + FHHHR−1

n HF
)−1
]

s.t. C2, C3

For P2, we would like to solve it by optimizing αm’s successively, i.e., each time only one

variable αm is optimized while αi’s with i �= m are fixed. The details are presented in the

following subsection.

B. Successive Optimization of the Reflection Coefficients (SORC)

In this subsection, we propose an algorithm for optimizing the reflection coefficients {αm}
successively. That is, at each iteration, only one reflection coefficient αm is optimized with

{αi, i �= m}Mi=1 given.

To start with, we rewrite the effective channel H as
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10

H = H0 +RΦT = H0 +
M∑

m=1

αmrmt
T
m, (8)

where rm and tm are the m-th columns of R and TT , respectively. Let H̃0 = R
− 1

2
n H0F,

R̃ = R
− 1

2
n R, T̃ = TF, and H̃ = H̃0 + R̃ΦT̃. With (8), the MSE expression can be re-arranged

as

MSE(F,Φ) = Tr
[(
Am + αmBm + α∗

mB
H
m

)−1
]
,

where Am = Id +

(
H̃0 +

M∑
i=1,i �=m

αir̃it̃
T
i

)H (
H̃0 +

M∑
i=1,i �=m

αir̃it̃
T
i

)
+ |αm|2

(
r̃mt̃

T
m

)H (
r̃mt̃

T
m

)
and Bm =

(
H̃0 +

M∑
i=1,i�=m

αir̃it̃
T
i

)H

r̃mt̃
T
m.

Then, given {αi, i �= m}Mi=1, we consider the following problem.

P2-m : min
αm

Tr
[(
Am + αmBm + α∗

mB
H
m

)−1
]

s.t. |αm| ≤ 1

The module and phase of αm will be treated separately. With αm
Δ
= ρme

jφm , P2-m can be

equivalently written as P2-m : min
0≤ρm≤1

f1 (ρm) , where

f1 (ρm) = min
φm

q(ρm, φm)
Δ
= Tr

[(
Am + ρme

jφmBm + ρme
−jφmBH

m

)−1
]
. (9)

Note that, for ease of exposition, we rewrite the MSE expression and define q(ρm, φm) with

respect to ρm and φm in (9).

Given ρm, solving f1 (ρm) can be divided into the following two cases according to whether

Tr (A−1
m Bm) = 0.

1) Tr (A−1
m Bm) �= 0: With the definition of Bm, one has rank(Bm) ≤ 1, leading to rank(A−1

m ×
Bm) ≤ 1. As Tr (A−1

m Bm) �= 0, we must have rank(A−1
m Bm) = 1. Otherwise, rank(A−1

m Bm) =

0 will result in A−1
m Bm = 0 and Tr (A−1

m Bm) = 0, which contradicts the prerequisite.

The function q(ρm, φm) can be further expressed as

q(ρm, φm) = Tr

[
A

− 1
2

m

(
Id + ρme

jφmA
− 1

2
m BmA

− 1
2

m + ρme
−jφmA

− 1
2

m BH
mA

− 1
2

m

)−1

A
− 1

2
m

]
. (10)

According to the Schur’s triangularization theorem, any square complex matrix X is unitarily

similar to a upper triangular matrix whose diagonal entries are X’s eigenvalues [38, Theorem

2.3.1]. Therefore, A
−1
2

m BmA
−1
2

m can be factorized as
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A
−1
2

m BmA
−1
2

m = UmCmU
H
m, (11)

where Um ∈ C
d×d is unitary, and Cm = (cij) is upper triangular with diagonal entries c11 �= 0

and cii = 0, i ≥ 2. Clearly, rank(A−1
m Bm) = 1 is equivalent to rank(A

−1
2

m BmA
−1
2

m ) = 1; c11 is

the unique nonzero eigenvalue of A
−1
2

m BmA
−1
2

m and c11 = Tr

(
A

−1
2

m BmA
−1
2

m

)
= Tr (A−1

m Bm).

Further, we have the following lemma on the structure of Cm.

Lemma 1: All entries of Cm are zeros except for those in the first row, i.e., cij = 0, ∀i ≥
2, j = 1 · · · d.

Proof : If there exists some ci0j �= 0 (i0 ≥ 2, i0 < j), the i0-th row and the first row must be

linear independent. In other words, the rank of Cm is at least 2. This contradicts the prerequisite.

Let UH
mA

−1
m Um be partitioned as

UH
mA

−1
m Um=

⎡⎣ t11 tH21

t21 T22

⎤⎦ , (12)

where t12 ∈ C
(d−1)×1 and T22 ∈ C

(d−1)×(d−1). With (12) and after a few manipulations, q(ρm, φm)

can be finally expressed as

q(ρm, φm) =

[
t11+Tr

(
T22c̄c̄

H
)]− 2ρt cos (φm + φt)(

1− ‖c̄‖2F
)
+ 2ρc cos (φm + φc)

+ Tr (T22) , (13)

where c̄ = ρme
−jφm

[
c12 · · · c1d

]H
∈ C

(d−1)×1, ρte
jφt = ρm

[
c12 · · · c1d

]
t21, and ρce

jφc

= c11. The derivation of (13) is given by Appendix A.

Given ρm, the function q(ρm, φm) is a periodical function of φm. It is not difficult to find that,

q(ρm, φm) has two extreme points within a period: one is the maximal point and the other is

the minimal point. Clearly, the latter is the desired solution. By setting
∂q(ρm,φm)

∂φm
= 0, it can be

derived that the minimal point is

φ�
m = arctan

{
cst,1ρc
ρtcst,2

+ cot (φt − φc)
}

+arccos

⎧⎨⎩−2

[(
cst,1

ρt sin(φt−φc)
+ cot(φt−φc)cst,2

ρc

)2
+

c2st,2
ρ2c

]−1
2

⎫⎬⎭− φc

,

where cst,1 = t11+Tr
(
T22c̄c̄

H
)

and cst,2 = 1− ‖c̄‖2F .

2) Tr (A−1
m Bm) = 0: In this case, Tr (A−1

m Bm) = Tr

(
A

−1
2

m BmA
−1
2

m

)
= 0. If rank (A−1

m Bm) =

0, it follows that A−1
m Bm = A

−1
2

m BmA
−1
2

m = 0 and any φm is optimal. Hence, we emphasize at

the situation where rank (A−1
m Bm)= rank

(
A

−1
2

m BmA
−1
2

m

)
= 1.
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12

As it has rank one, A
−1
2

m BmA
−1
2

m can be expressed as the product of two nonzero vectors

xm,ym ∈ C
d×1, i.e., A

−1
2

m BmA
−1
2

m =xmy
H
m. For notation brevity, we use x, y instead of xm, ym

in the subsequent derivations. With this formula, q(ρm, φm) in (10) is expressed as

q(ρm, φm) = Tr
[
A

− 1
2

m

(
Id + ρme

jφmxyH + ρme
−jφmyxH

)−1
A

− 1
2

m

]
. (14)

To further exploit the function q(ρm, φm), we introduce the Sherman-Morrison-Woodbury for-

mula [38, Eq. (0.7.4.2)]:
(
X+ abH

)−1
= X−1 − X−1abHX−1

1+bHX−1a
. With this formula, one has(

Id + ρme
jφmxyH

)−1
= Id − ρme

jφmxyH and(
Id + ρme

jφmxyH + ρme
−jφmyxH

)−1

=
(
Id + ρme

jφmxyH
)−1 − (Id+ρmejφmxyH)

−1
ρme−jφmyxH(Id+ρmejφmxyH)

−1

1+ρme−jφmyH(Id+ρmejφmxyH)
−1

x
.

(15)

Noticing that Tr (A−1
m Bm) = 0 results in yHx = xHy = 0 and after a few manipulations, (15)

can be finally expressed as(
Id + ρme

jφmxyH + ρme
−jφmyxH

)−1

= Id + ‖x‖2F yyH + ‖y‖2F xxH − ρmejφmxyH+ρme−jφmyxH

1−‖x‖2F ·‖y‖2F

(16)

Substituting (16) into (14), one obtains

q(ρm, φm) = Tr
[
A−1

m

(
Id + ‖x‖2F yyH + ‖y‖2F xxH

)]
− 1

1−‖x‖2F ·‖y‖2F
Tr
[
A−1

m

(
ρme

jφmxyH+ρme
−jφmyxH

)]
= cst,3 − 2ρm

1−‖x‖2F ·‖y‖2F
Re
{
ejφmTr (A−2

m Bm)
}
,

where cst,3 = Tr
[
A−1

m

(
Id + ‖x‖2F yyH + ‖y‖2F xxH

)]
. Clearly, given ρm, the optimal phase that

minimizes q(ρm, φm) is φ�
m = − arg [Tr (A−2

m Bm)], where arg[x] takes the angle of x.

To sum up, the optimal solution to min
φm

q(ρm, φm) is given by

φ�
m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− arg [Tr (A−2

m Bm)] , if Tr (A−1
m Bm) = 0;

arccos

{
−2

[(
cst,1

ρt sin(φt−φc)
+ cot(φt−φc)cst,2

ρc

)2
+

c2st,2
ρ2c

]− 1
2

}
+arctan

{
cst,1ρc
ρtcst,2

+ cot (φt − φc)
}
− φc, else.

(17)

Since f1(ρm) = min
φm

q(ρm, φm) has been solved, P2-m can be solved by one-dimensional

line search of f1(ρm) over 0 ≤ ρm ≤ 1. Subsequently, the method of successively optimizing

reflection coefficients is summarized in Algorithm 1.1.

Finally, we briefly analyze the convergence and complexity of this algorithm. First, given

m, the optimal solution to P2-m is obtained from Step 2. Hence, this algorithm will generate
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Algorithm 1.1: The proposed SORC algorithm for P2.

Input: F, R,T,H0, Rn, d, PT

Output: {αm}Mi=1

1: Randomly generate {αm = ρme
jφm}Mi=1 with 0 ≤ ρm ≤ 1, ∀m.

2: for m = 1 to M do
With (17), solve P2-m by one-dimensional line search of f1(ρm) over 0 ≤ ρm ≤ 1. Denote
α�
m = ρ�me

jφ�
m as the optimal solution to P2-m.

Update αm := α�
m.

end for
3: Repeat Steps 2-3 until convergence.

a series of non-increasing MSEs, i.e., the objective values of P2. On the other hand, the MSE

is lower bounded (larger than zero) and it follows that the algorithm converges. Moreover,

considering that all αm’s are not coupled in P2’s constraints, the limit point generated by

this algorithm satisfies the Karush-Kuhn-Tucker (KKT) condition of P2 [39] and it is a KKT

point. Second, for X ∈ C
n×n, its Schur triangularization has the complexity of O (n3). The

computation of this algorithm mainly lies in Step 2, where the Schur triangularization and a

few matrix multiplications are involved. The complexity of this algorithm can be summarized as

O [I1I2M (d3 + d2NR +NRNT )], where I1 is the outer iteration number and I2 is the modulus

samples’ number in one-dimension search.

Remark 3: For the case where only the phase shifts can be tuned, i.e., |αm| = 1, ∀m, the

optimal phase for P2-m can be solved by setting ρm = |αm| = 1 in (17). The proposed Algorithm

1.1 is also available for P2 with unit-modulus constraints for IRS coefficients except for a slight

change. That is, solve P2-m by setting ρm = 1 in Step 2, instead of one-dimensional line search

over 0 ≤ ρm ≤ 1.

C. Overall Algorithm

In the previous subsection, we have proposed an algorithm to solve P2. This subsection

presents the complete alternating algorithm of solving P1. As aforementioned, this algorithm

iteratively solves the two subproblems in subsection A, which can be summarized in Algorithm

1.

Algorithm 1 is under the alternating optimization framework, and it is clear that the objective

of P1 is non-increasing with each iteration. Since the objective, larger than zero and hence lower
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Algorithm 1: The proposed algorithm for P1.

Input: R,T,H0, Rn, d, PT

Output: F, Φ, G
1: Randomly generate {αm = ρme

jφm}Mi=1 with 0 ≤ ρm ≤ 1, ∀m.
2: Given Φ = diag {α1, · · · , αM}, solve F according to (7).
3: Given F, solve {αm}Mi=1 by Algorithm 1.1.
4: Repeat Steps 2-4 until convergence.
5: Solve G by (5).

bounded, does not increase with the iteration number, Algorithm 1 converges. Further, due to the

fact that F and Φ are not coupled in P1’s constraints, the limit point by Algorithm 1 is a stationary

point of P1. Besides, considering that the eigen-decomposition for X ∈ C
n×n has the complexity

of O (n)3, it can be shown that Step 2 has the complexity of O (MNRNT +N2
RNT +N3

T ).

With the complexity analysis on Algorithms 1.1 in the previous subsection, it can be found

that Algorithm 1 has the complexity of O{IΣ,1 [I1I2M (d3 + d2NR +NRNT ) +N2
RNT +N3

T ]},

where IΣ,1 is the outer iteration number.

D. Further Discussions

This subsection further explores problem P1, in which we present the optimality condition for

the IRS coefficient, study a few special cases, and discuss the group-based optimization scheme.

To begin with, we have the following proposition on the optimal αm.

Proposition 1: If αm satisfies (34) and |αm| ≤ 1, it is a candidate solution to P2-m. Otherwise,

the optimal αm must satisfy |αm| = 1.

This proposition presents the optimality condition for αm, the proof of which is given by

Appendix B. With (17), we may first find a solution by setting |αm| = 1, denoted as ᾱm. Then,

solve (34), obtaining another solution, denoted as α̂m, and verify whether α̂m satisfies |α̂m| ≤ 1.

If this condition does not hold, the optimal solution to P2-m is ᾱm. Otherwise, choose a better

one from ᾱm and α̂m by comparing their objective values. Instead of 1D line search for the

optimal αm, Proposition 1 provides another approach, where an equation in complex variable is

involved and one may resort to the Newton-type iterative algorithm for complex variables [40].

Then, we study a few special cases.
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1) Beamforming Transmission: In this case, the number of data stream d = 1 and the precoder

matrix F ∈ C
NT×d becomes a column vector. Given Φ, the optimal F =

√
PTuBF, where

uBF ∈ C
NT×1 is the eigenvector of HHR−1

n H corresponding to the largest eigenvalue. Given F,

with (9), the objective of P2-m is

q(ρm, φm) =

⎡⎣1 +(H̃0 +
M∑

i=1,i �=m

αir̃it̃
T
i

)H (
H̃0 +

M∑
i=1,i�=m

αir̃it̃
T
i

)
+|αm|2

(
r̃mt̃

T
m

)H (
r̃mt̃

T
m

)
+αmBm + α∗

mB
H
m

]−1

,

where αm
Δ
= ρme

jφm . Clearly, min q(ρm, φm) is equivalent to max |αm|2
(
r̃mt̃

T
m

)H (
r̃mt̃

T
m

)
+

αmBm +α∗
mB

H
m. The optimal solution can be shown to be ρ�m = 1, φ�

m = − arg {Bm} .

2) MISO/SIMO: We consider the MISO case. Given Φ, the optimal F=
√
PTuMISO, where

uMISO∈C
NT×1 is the eigenvector of HHR−1

n H corresponding to the unique nonzero eigenvalue.

Given F, the objective of P2-m is

q(ρm, φm) = Tr
[(
Id + FHHHR−1

n HF
)−1
]

= Tr
[(
1 +HFR−1

n FHHH
)−1
]
+ d− 1

=
(
1 +HFR−1

n FHHH
)−1

+ d− 1

=
[
A′

m + αmB
′
m+α∗

m(B
′
m)

H
]−1

,

where A′
m = 1 +

(
H̃0 +

∑M
i=1,i�=m αir̃it̃

T
i

)(
H̃0 +

∑M
i=1,i�=m αir̃it̃

T
i

)H
+ |αm|2(r̃mt̃Tm)(r̃mt̃Tm)H

and B′
m = r̃mt̃

T
m(H̃0 +

∑M
i=1,i�=m αir̃it̃

T
i )

H . The optimal solution can be shown as ρ�m = 1, φ�
m =

− arg {B′
m} . In addition, similar analysis can be conducted on the SIMO case, which is omitted

for brevity.

Finally, we discuss the group-based optimization scheme. The group-based IRS optimization

strategy was proposed in [41], where the IRS units were partitioned into several groups and then

optimized in two stages. This scheme is quite effective for large IRSs by exploiting the tradeoff

between complexity and performance. Here, we borrow this concept and preliminarily explore

the group-based optimization. Divide M elements into NG groups and each group has M/NG

elements. The effective channel is rewritten as

H = H0 +
M∑

m=1

αmrmt
T
m = H0 +

NG∑
i=1

βG
i

⎛⎝M/NG∑
j=1

βg
ijrmt

T
m

⎞⎠ ,

where αm = βG
i β

g
ij with m = (i− 1) M

NG
+ j, βG

i is the intergroup coefficient for group i, and
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βg
ij is the intragroup coefficient for element j in group i. We further assume that only one set

of intragroup coefficients is used, i.e., βg
ij = βg

1j, ∀i. In this way, only two sets,
{
βG
i

}NG

i=1
and{

βg
1j

} M
NG
j=1 , need to be optimized, and the number of optimization variables is NG +M/NG. The

group-based optimization is still under the framework of alternating optimization, i.e., two sets

are optimized alternately. For optimizing one set of variables, each time we only optimize one

single variable with others being fixed. The details are omitted for brevity.

Besides, there is a simpler group-based scheme, where βg
ij = 1, ∀i, j, i.e., the intragroup

coefficients are assumed to be identical. Hence, only
{
βG
i

}NG

i=1
needs to be optimized and the

number of optimization variables is reduced to NG. The performance of both schemes will be

evaluated by computer simulation.

IV. JOINT PRECODER, REFLECTION COEFFICIENTS, AND EQUALIZER DESIGN WITH

IMPERFECT CSI

In the previous section, we have optimized the linear transceiver and reflection coefficients

under the assumption that the system has perfect CSI. Specifically, the direct channel matrix H0

is exactly known; either the two matrices R,T or the cascaded matrices rmt
T
m, ∀m are exactly

known. However, in practice, it is difficult to obtain perfect CSI due to the followings: 1) The

channel noise and Doppler effect reduce the quality of channel estimation; 2) for an IRS-aided

system, the available pilots appear insufficient due to the large number of IRS elements; 3) the

pilot contamination due to intra/inter-IRS interference is also a negative factor. In this situation,

robust design in which the channel uncertainties are considered is of significance since it can

reduce the performance degradation and enhance the robustness of the system. Assuming that

only imperfect CSI is available for the system (i.e., both the transmitter and receiver), this section

studies the robust joint transceiver and IRS design against the CSI error.

A. Channel Error Model

This subsection presents a more generalized channel error model, where the mean and covari-

ance matrices of the channel error are specified, but the distribution is not.

We borrow the error model from the existing literature [42]–[44], in which the channel spatial

correlation is incorporated. Specifically, the estimation error matrix is modeled by

ΔH′ = Θ
1
2
BH

′
ωΘ

1
2
A, (18)
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where ΘA and ΘB are the row and column covariance matrices of ΔH′, respectively; H′
ω

consists of i.i.d complex Gaussian random variables with zero mean and unit variance. With

(18), it follows that vec
(
(ΔH′)T

) ∼ CN (0,ΘB ⊗ΘT
A

)
, where vec(·) denotes the vectorization

operation and ⊗ is the Kronecker product. As will be seen later, the derivation of MSE is

only related with two covariance matrices ΘA, ΘB, and hence we generalize the model (18)

by not limiting the distribution of vec
[
(ΔH′)T

]
. In other words, the elements of H′

ω are not

limited to Gaussian distribution and vec
[
(ΔH′)T

] ∼ F (0,ΘB ⊗ΘT
A

)
, where F(·) denotes

some distribution.

Based on the above, the estimated direct channel matrix is modeled by Ĥ0 = H0+ΔH0, with

vec
[
(ΔH0)

T
] ∼ F0

(
0,ΘB,0 ⊗ΘT

A,0

)
. On the other front, the cascaded channel, the product

of the transmit-IRS channel and IRS-receive channel, is often sufficient and used for the joint

design in IRS-aided systems [4], [6]. The robust joint design is based on the estimated cascaded

channels, which are modeled as L̂m = Lm + ΔLm, ∀m, where Lm ∈ C
NR×NT

Δ
= rmt

T
m, L̂m is

the estimated Lm, and

vec
[
(ΔLm)

T
] ∼ Fm

(
0,ΘB,m ⊗ΘT

A,m

)
.

The estimation for Lm’s can be successively conducted [45]–[47] so that ΔLm’s are independent.

Furthermore, with (1), it can be verified that the covariance matrices of Lm are independent of

m. Since the covariance matrices of ΔLm are closely related with that of Lm, we can further

assume that ΘA,m and ΘB,m do not depend on m, i.e.,

ΘA,m = ΘA,IRS,ΘB,m = ΘB,IRS, ∀m.

Take an example. If the conventional minimum MSE (MMSE) method [42] is adopted to

estimate the cascaded channel, we have ΘA,m = ΘA,IRS = g1g2σ
2
e

(
INR

+ σ2
eΨ

−1
R,2

)−1
and

ΘB,m = ΘB,IRS = ΨT,1, ∀m, where σ2
e is the normalized estimation error variance.

In this way, the equivalent channel matrix with uncertainties can be written as

H = H0 +
∑M

m=1
αmrmt

T
m = Ĥ+ΔH, (19)

where Ĥ = Ĥ0 +
∑

m αmL̂m and ΔH = ΔH0 +
∑

m αmΔLm.

Note that, in [48], the equivalent channel between an AP and a user was estimated, where

the IRS phase shifts were optimized based on the statistical CSI. While in this paper, the

IRS coefficients are optimized based on the instantaneous CSI, i.e., the MSE is minimized
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by optimizing the IRS coefficients based on the instantaneous estimated CSI. Therefore, the

estimated CSI can not contain the information of IRS coefficients and the estimation for cascaded

channels is suitable.

B. Problem Formulation

To overcome the impact of the statistical CSI error, we optimize the average MSE over channel

uncertainties, which is a commonly-used approach for stochastic channels [49]. The overall

logical flow is as follows. The first step is to derive the expected MSE expression over channel

uncertainties. Next, the equalizer G is optimized so that the MSE expression is simplified and

becomes a function of only two variables: F and Φ. Then, with the aid of a matrix inequality, we

derive the upper bound of MSE. In this way, we will optimize the MSE indirectly by minimizing

the MSE upper bound.

First, with the channel error model, we derive the expected MSE expression over n, s, and

ΔH. The MSE in (3) is further expressed as

MSE = En,s,ΔH

{
Tr
[
(GHFs+Gn− s) (GHFs+Gn− s)H

]}
= EΔH

{
Tr
[
(GHF− Id) (GHF− Id)

H
]}

+ Tr
[
GRnG

H
]
.

(20)

Substituting (19) into (20), one obtains

MSE=Tr

[(
GĤF−Id

)(
GĤF−Id

)H]
+Tr
[
GRnG

H
]
+EΔH

{
Tr
[
(GΔHF)H(GΔHF)

]}
. (21)

The third item on the right side of (21) is derived as

EΔH

{
Tr
[
(GΔHF)H(GΔHF)

]}
= Tr

[
GEΔH

(
ΔHFFHΔHH

)
GH
]

= Tr

{
GEΔH

[(
ΔH0 +

M∑
m=1

αmΔLm

)
FFH

(
ΔH0 +

M∑
m=1

αmΔLm

)H
]
GH

}
= Tr

{
G
[
Tr
(
FFHΘB,0

)
ΘA,0 +

∑
m |αm|2Tr

(
FFHΘB,IRS

)
ΘA,IRS

]
GH
}
.

(22)

With (22), the MSE in (21) can be finally written as

MSE = Tr
[
G(K+ ĤFFHĤH)GH

]
+ d− Tr

(
GĤF

)
− Tr

(
GĤF

)H
, (23)

where

K
Δ
= Rn + Tr

(
FFHΘB,0

)
ΘA,0 +

∑
m
|αm|2Tr

(
FFHΘB,IRS

)
ΘA,IRS. (24)
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Next, we consider the optimization of the equalizer G. Since the design problem does not

impose constraints on G, the optimal G can be solved by setting ∂MSE
∂G∗ = 0. It is easy to find

that the optimal G is

GOPT=(ĤF)H(K+ ĤFFHĤH)−1. (25)

Substituting (25) into (23), after a few manipulations we have

MSE(F,Φ) = Tr

[(
Id + FHĤHK−1ĤF

)−1
]
, (26)

in which we write MSE = MSE(F,Φ) to emphasize that MSE is a function of F and Φ.

Then, observe from (26) that, minimizing MSE(F,Φ) is intractable due to the matrix K.

To handle the problem, we derive K’s upper bound and obtain MSE’s upper bound afterwards.

With (24) and [38, Theorem 4.2.2],

K = R
1
2
n

[
INR

+ Tr
(
FFHΘB,0

)
R

−1
2

n ΘA,0R
−1
2

n

+
∑

m |αm|2Tr
(
FFHΘB,IRS

)
R

−1
2

n ΘA,IRSR
−1
2

n

]
R

1/2
n

� R
1
2
n

[
INR

+ Tr
(
FFHΘB,0

)
λmax
A,0 · INR

+
∑

m |αm|2Tr
(
FFHΘB,IRS

)
λmax
A,IRS · INR

]
R

1/2
n

= Rn

[
1 + Tr

(
FFHΘB,0

)
λmax
A,0 +

∑
m |αm|2Tr

(
FFHΘB,IRS

)
λmax
A,IRS

]
,

(27)

where λmax
A,0 and λmax

A,IRS are the maximum eigenvalues of R
−1
2

n ΘA,0R
−1
2

n and R
−1
2

n ΘA,IRSR
−1
2

n ,

respectively. Substituting K’s upper bound into (26), we have an upper bound of MSE(F,Φ):

MSEUP(F,Φ)

= Tr

[(
Id +

FHĤHR−1
n ĤF

[1+Tr(FFHΘB,0)λmax
A,0 +

∑
m |αm|2Tr(FFHΘB,IRS)λmax

A,IRS]

)−1
]
.

(28)

Finally, for the joint design, we would like to optimize MSEUP(F,Φ) instead of MSE(F,Φ).

The design problem can be formulated as

P3 : min
F,Φ

MSEUP(F,Φ)

s.t. C1 ∼ C3

For P3, it can be verified that the optimal F satisfies Tr
(
FFH

)
= PT . This can be proved by

using reduction to absurdity and the proof is omitted for brevity. Using this fact, P3 can be

equivalently written as
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min
F,Φ

MSEUP(F,Φ)

s.t. C ′
1 : Tr

(
FFH

)
=PT

C2, C3.

C. The Proposed Algorithm

Similar to the previous section III, the proposed algorithm is also under the framework of

alternating optimization, in which P3 is divided into two subproblems being treated alternately.

1) Optimizing F given Φ: We define D = INT
/PT + λmax

A,0 ΘB,0 + λmax
A,IRS

∑
m |αm|2ΘB,IRS

and write MSEUP(F,Φ) as another form: MSEUP(F,Φ) = Tr

[(
Id +

FHĤHR−1
n ĤF

Tr(FHDF)

)−1
]
. Let

F̄ = D
1
2F√

Tr(FHDF)
. Given Φ, the subproblem of solving F can be formulated as

P3-1 : min
F,F̄

MSEUP(F̄,Φ) = Tr

[(
Id + F̄HD−1

2 ĤHR−1
n D−1

2 ĤF̄

)−1
]

s.t. C ′
1 : Tr

(
FFH

)
=PT

C4 : F̄ = D
1
2F√

Tr(FHDF)

Concerning P3-1, we have the following lemma.

Lemma 2: P3-1 is equivalent to the problem

P′
3-1: min

F̄
MSEUP(F̄,Φ) = Tr

[(
Id + F̄HD−1

2 ĤHR−1
n D−1

2 ĤF̄

)−1
]

s.t. Tr
(
F̄F̄H

)
=1.

Proof: See Appendix C.

Since the matrix D−1
2 ĤHR−1

n D−1
2 Ĥ is positive semidefinite, P′

3-1 is the same with the

problem [37, Theorem 1] in form so that the closed-form solution to P′
3-1, denoted as F̄�,

can be solved. Here, the details are omitted for brevity. When P′
3-1 is solved, the optimal F can

be readily given by

F� =
√
PTD

−1
2 F̄�/

√
Tr
((

F̄�
)H

D−1F̄�
)
. (29)

2) Optimizing Φ given F: Given {αi, i �= m}Mi=1, consider the following problem

P3-2-m : min
0≤ρm≤1

f2 (ρm) ,

where

f2 (ρm) = min
φm

MSEUP = Tr

[(
Id + FHĤHR̄−1

n ĤF
)−1
]
, (30)
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αm
Δ
= ρme

jφm , and R̄n = RnTr
(
FHDF

)
. Notice that the matrix D does not involve φm and

hence can be treated as a constant when optimizing φm. Consequently, only Ĥ involves φm. We

may arrange the objective of (30) as the form similar to (9) and solve the optimal φm by (17).

Then, the optimal ρm can be solved by one-dimensional line search of f2 (ρm) over 0 ≤ ρm ≤ 1.

In a word, the whole processing is similar to Algorithm 1.2, the details of which are omitted.

Based on the above, the overall algorithm of solving P3 is proposed and summarized in Algo-

rithm 2. Similar to the convergence analysis on Algorithm 1, Algorithm 2 also converges and the

limit point generated by this algorithm is a stationary point of P3. Besides, it can be shown that the

computational complexity of this algorithm is O{IΣ,2[I3I4M(d3+d2NR+NRNT )+N2
RNT+N3

T ]},

where IΣ,2 is the outer iteration number; I3 and I4 are the iteration number and the modulus

samples’ number in Step 3, respectively.

Algorithm 2: The proposed algorithm for P3.

Input: R̂, T̂, Ĥ0, Rn, ΘA,0, ΘB,0, ΘA,IRS, ΘB,IRS, d, PT

Output: F, Φ, G
1: Randomly generate {αm = ρme

jφm}Mi=1 with 0 ≤ ρm ≤ 1, ∀m.
2: Given Φ = diag {α1, · · · , αM}, solve P′

3-1 and obtain F̄�. Then, compute F by (29).
3: Given F, solve {αm}Mi=1 by the similar algorithm to Algorithm 1.1.
4: Repeat Steps 2-4 until convergence.
5: Solve G by (25).

V. SIMULATION RESULTS

In this section, computer simulation is deployed to investigate the performance of the proposed

algorithms. Consider an IRS-assisted MIMO system with NT = NR = 4. Assume that both the

transmitter and receiver are equipped with a uniform linear array (ULA) while the IRS is with

a uniform planar array (UPA).

For the ULA, the (m,n)-th entry of the spatial correlation matrix ΨULA is modeled as [33,

Eq. (19)]

[ΨULA]m,n = γ0
exp
[
j2π dA

λ
(m− n) sin θ0

]
1 +

σ2
θ

2

[
2π dA

λ
(m− n) cos θ0

] ,
where θ0 the mean angle of arrival (AOA)/departure (AOD), σθ is the standard deviation of

the power azimuth spectrum (PAS), dA is the antenna spacing, λ is the wave length, and

γ0=
1

1−exp
(
−2π
σθ

) is a normalization factor. The antenna spacing dA is set to the half-wavelength
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λ/2. The tuples {θ0, σθ}’s are set to
{

π
3
, π
10

}
,
{

π
4
, π
10

}
,
{

π
6
, π
5

}
, and

{
π
4
, π
10

}
for the correlation

matrices ΨR,0, ΨT,0, ΨR,2, and ΨT,1, respectively.

For the UPA, the (m,n)-th entry of the spatial correlation matrix ΨUPA is modeled as [50]

[ΨUPA]m,n = γ1
∫ π

2
θ=0

∫ ϕ0+π

ϕ=ϕ0−π
felev (θ)fazim (ϕ) sin θ

× exp
[
j2π (i1 − i2)

dy
λ
sin θ sinϕ

]
× exp

[
j2π (j1 − j2)

dx
λ
sin θ cosϕ

]
dθdϕ

,

where i1 =
⌊

m
Mx

⌋
, j1 = m − Mxi1, i2 =

⌊
n
Mx

⌋
, and j2 = n − Mxi2, with Mx being the

number of IRS elements in each row along the x-th axis; θ0 and ϕ0 are the mean azimulth

and elevation angles, respectively; dx and dy are the IRS element spacings on the x-th axis and

y-th axis, respectively; γ1 is a normalized factor; felev (θ) is the probability density function

(PDF) of the elevation angle, which follows the truncated Laplacian distribution [50, Eq. (1)];

fazim (ϕ) is the PDF of the azimuth angle, following the Von-Mises distribution [50, Eq. (5)].

In the simulation, the IRS element spacings dx and dy are both set to λ/2. For ΨR,1 and ΨT,2,

we set {θ0, ϕ0, σθ, κ}’s to
{

π
3
, 2π

3
, π
10
, 5
}

and
{

π
3
, π
3
, π
10
, 5
}

, respectively, where σθ is the PAS

standard deviation of the elevation angle and κ is the concentration parameter of the Von-Mises

distribution.

The large-scale path loss is modeled as fpath(d̄) = d̄−n0 , where d̄ is the path distance and n0

is the exponent. The tuples
{
d̄, n0

}
’s are set to {100 m, 3.5}, {80 m, 2.3}, and {40 m, 2.2} for

the direct link, the transmitter to IRS link, and the IRS to receiver link, respectively. Besides, the

noise covariance matrix Rn = 3.2× 10−10I4 W and the number of data streams d = 2. Unless

specified otherwise, these parameter settings are available for all examples in this section.

A. Joint Design with Perfect CSI

We introduce six benchmark schemes for comparison:

1) No IRS: Design the optimal F and G without IRS.

2) Isotropic transmission: Set F =
√

PT

d

[
Id 0

]T
. Optimize G according to (5) and Φ with

Algorithm 1.1.

3) Beamforming: The special case presented in Section III.D.

4) Random reflection coefficients: Randomly generate {αi}Mi=1 with |αi| ≤ 1, ∀i. Optimize F

and G according to (7) and (5).
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Iterations
2 4 6 8 10

M
SE

0.01

0.015
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0.025

0.03
0.035

0.04

One channel sample
Average over 100 samples

Fig. 2: The convergence of the proposed
Algorithm 1.

Group number  N
G

1 4 8 16 32 64

M
SE

0.01
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0.05

Scheme 1
Scheme 2

Fig. 6 MSE performance for group-based
schemes.

Number of reflection elements,  M
5 10 20 30 40 50 60 80 100

M
SE

10-3

10-2

10-1 Isotropic transmission
Random reflection coefficients
All-one reflection coefficients

No IRS
Method in Ref. [6]
Proposed algorithm

Fig. 3: The effect of the element number M on MSE.

5) All-one reflection coefficients: Set αi = 1, ∀i and only optimize F and G.

6) Method in Ref. [6]: Obtain the optimal transmission covariance matrix Q and the co-

efficients {αi}Mi=1 by [6, Algorithm 1]. Note that when optimizing Q with the classic

water-filling method, the maximum number of data streams, to which the power can be

allocated, is d. Then, solve F =
√
Q and G by (5).

Fig. 2 shows the convergence behaviour of the proposed Algorithm 1, where M = 10 and

PT = 15 dBmW. The MSE with one channel sample and that averaged over 100 independent

channel samples are presented. For both cases, the MSEs decrease monotonically and converge

after 4 ∼ 6 iterations.

Fig. 3 shows the effect of the element number M on MSE, with PT = 15 dBmW. Observe

that, the isotropic transmission has poor performance at small M . When M > 20, it outperforms

the benchmark schemes 4 and 5. With moderate or large M , all the schemes with IRS are
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Transmission power,  P
T
 (dBmW)

0 5 10 15 20 25

M
SE

10-3

10-2

10-1

Random reflection coefficients
All-one reflection coefficients

No IRS
Method in Ref. [6]
Isotropic transmission
Proposed algorithm

Fig. 4: The effect of the transmission power PT on MSE.

superior to that without IRS, i.e., the benchmark scheme 1. The performance of the method in

[6] is the second only to the proposed algorithm. This is due to the fact that the design objective

of the method in [6] is to maximize the capacity, which is different from the objective in this

paper. Besides, the MSEs for all the schemes with IRS decrease monotonically with M , which

illustrates that large reflection elements are able to bring the performance gain.

Fig. 4 presents the effect of the transmission power PT on MSE, with M = 40. Observe that,

all MSEs decreases with PT . It is clear that increasing PT leads to larger signal-to-noise ratio

(SNR) and better performance. The isotropic transmission outperforms the benchmark schemes 4

and 5, which demonstrates the importance of optimizing the coefficients {αi}. Compared with the

benchmark scheme 6, the proposed algorithm has about 1.0 dB power gain within 0 ≤ PT ≤ 25

dBmW. Again, the proposed algorithm has the best performance, followed by the benchmark

scheme 6.

Fig. 5 shows the effect of the UPA correlation on MSE, where M = 40, PT = 15 dBmW, and

the exponential model is used for the modelling of UPA. The correlation coefficient between

two IRS elements with co-ordinates (i1, j1) and (i2, j2) is (ρcov)
√

(i1−i2)
2+(j1−j2)

2

with ρcov ∈
[0, 1]. Observe that, the proposed algorithm is superior to all benchmark schemes except for the

beamforming. This is because the number of data streams for beamforming is 1, less than the

predetermined d = 2 for all other schemes. The lower MSE of beamforming is achieved at the

cost of transmission rate. Besides, the MSE for the proposed algorithm is not affected by the
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(a) Receiver

Transmit correlation coefficient, ρT
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Proposed algorithm
Isotropic transmission
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All-one reflection coefficients
Beamforming

(b) Transmitter

Fig. 5: The effect of UPA correlation on MSE.

TABLE I: IRS group parameters

Group number NG 1 2 4 8 16 32 64

Group size 8×8 4×8 4×4 2×4 2×2 1×2 1×1

transmit or receive correlation within a wide range, e.g. 0 ≤ ρcov ≤ 0.7, except for a slight

increase at large ρcov. This illustrates that the proposed algorithm can overcome the impact of

UPA correlation to some degree.

Fig. 6 depicts the MSE performance of two group-based schemes, where an IRS of size 8×8

is used and partitioned into a few groups whose sizes are given by Table I. Both intergroup

and intragroup coefficients are optimized for Scheme 1 while only intergroup coefficients for

Scheme 2. The details of them can be found in Section III.D. Observe that, the MSE for Scheme

2 decreases with NG monotonically. Due to the increase of the optimized variables for NG ≥ 8,

the MSE for Scheme 1 raises first and then decreases. Compared with Scheme 2, Scheme 1 has

smaller variation and exhibits better MSE performance.

B. Robust Design with Channel Uncertainties

This subsection evaluates the performance of the proposed Algorithm 2. The channel samples

are generated according to (1). We employ the conventional MMSE method [42] to obtain the

cascaded channel estimates {L̂m}. Subsequently, the row covariance matrix of ΔLm, ΘA,IRS =

g1g2σ
2
e

(
INR

+ σ2
eΨ

−1
R,2

)−1
and the column covariance matrix of ΔLm, ΘB,IRS = ΨT,1.

Fig. 7 shows the convergence behaviour of the proposed Algorithm 2, where M = 50 and

PT = 15 dBmW. Two cases with σ2
e = 0.05 and σ2

e = 0.15 are incorporated; for each case, we

December 18, 2021 DRAFT

Page 25 of 78

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26
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Fig. 7: The convergence of the proposed Algorithm 2.

provide the MSE iterate under a single channel realization as well as that averaged over 100

channel samples. As in Fig. 7a, although we aim at optimizing the MSE upper bound, MSEUP

in (28), the convergence behaviour of the actual MSE is quite similar to that of MSEUP. Both

MSEs decrease with iterations and converges only after 5 ∼ 8 iterations, except for a certain

MSE gap. The MSE gap between MSEUP and the actual MSE decreases with decreasing σ2
e . For

the case in which the MSE is averaged over 100 channel samples, the MSE gap for σ2
e = 0.15

is around 5.0× 10−4, as compared to 1.2× 10−4 for σ2
e = 0.05.

Figs. 8 and 9 investigate the impacts of the element number M and transmission power PT

on MSE. Here, the MSE refers to the actual MSE, not the upper bound MSEUP. Besides, each

point in these figures is an average over 100 independent channel realizations. Three designs

are included for comparison: the exact design with perfect CSI, the non-robust design (which

assumes the channel estimate as perfect), and the proposed robust design against imperfect CSI.

In addition, we set PT = 15 dBmW in Fig. 8 and M = 50 in Fig. 9. Observe From Fig. 8

that the MSE with the proposed robust design decreases with M but the opposite is found for

the non-robust design. This is probably because the non-robust ignores the estimation errors

and increasing M brings about more channel uncertainties. Besides, large estimation error σ2
e

degrades the MSE performance for both the robust and non-robust designs. From Fig. 9, all

MSEs decrease with PT . Given σ2
e , the MSE of the proposed robust design is always less than

that of the non-robust design. The results of the two figures have demonstrated the effectiveness

of the proposed robust design.

Fig. 10 compares the BERs of the proposed robust design, the non-robust design, and the
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Fig. 8: The effect of the element number M on MSE.
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Non-robust 

Fig. 9: The effect of the transmission power PT on MSE.

exact design with perfect CSI, where M = 50 and the QPSK modulation is employed. Observe

that, for the non-robust design, large estimation error, e.g. σ2
e = 0.15, results in a BER floor of

0.015. For both the robust and non-robust designs, their BER performance improves when σ2
e

decreases. Given σ2
e , the robust design is superior to the non-robust one. These results are in

line with the MSE performance in Fig. 9.

VI. CONCLUSIONS

In this work, we investigated the joint transceiver and IRS design in IRS-assisted MIMO

systems under both perfect and imperfect CSI conditions. The detection MSE was minimized

by jointly optimizing the precoder at the transmitter, reflection coefficients at the IRS, and

equalizer at the receiver. For the design with perfect CSI, the SPOC algorithm was proposed to
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Fig. 10: The BERs of the proposed robust design and a few other algorithms.

solve the optimal IRS reflection coefficients successively. For the robust design with imperfect

CSI, the detection MSE was averaged over channel uncertainties and an MSE upper bound

was derived and used to make the problem more tractable. Numerical results demonstrated the

convergence of the proposed algorithms. The proposed joint design under perfect CSI is superior

to all the benchmark schemes with or without the IRS. Compared with the non-robust design, the

proposed robust design achieves better performance in terms of both MSE and BER. Besides, the

application of IRS is beneficial to improving the system performance even under the imperfect

CSI.

APPENDIX A

DERIVATION OF EQ. (13)

Substituting (11) into (10), we have

q(ρm, φm) = Tr
[
A

− 1
2

m

(
Id + ρme

jφmUmCmU
H
m + ρme

−jφmUmC
H
mU

H
m

)−1
A

− 1
2

m

]
= Tr

[
A

− 1
2

m Um

(
Id + ρme

jφmCm + ρme
−jφmCH

m

)−1
UH

mA
− 1

2
m

]
= Tr

[
UH

mA
−1
m Um

(
Id + ρme

jφmCm + ρme
−jφmCH

m

)−1
]
.

(31)

With Lemma 1, (Id + ρme
jφmCm + ρme

−jφmCH
m) has the following form:

Id + ρme
jφmCm + ρme

−jφmCH
m=

⎡⎣ c̄11 c̄H

c̄ Id−1

⎤⎦ ,
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where c̄11 = 1 + ρme
jφmc11 + ρme

−jφmc∗11, and c̄ = ρme
−jφm

[
c12 · · · c1d

]H
∈ C

(d−1)×1.

To find (Id + ρme
jφmCm + ρme

−jφmCH
m)

−1, we present the inverse of a partitioned matrix. Let

X be partitioned as a 2-by-2 block matrix X=

⎡⎣ X11 X12

X21 X22

⎤⎦ . The inverse of X is [38, Eq.

(0.7.3.1)]

X−1=

⎡⎣ (
X11 −X12X

−1
22 X21

)−1
X−1

11 X12

(
X21X

−1
11 X12 −X22

)−1

X−1
22 X21

(
X12X

−1
22 X21 −X11

)−1 (
X22 −X21X

−1
11 X12

)−1

⎤⎦ . (32)

With (32), we have

(Id + ρme
jφmCm + ρme

−jφmCH
m)

−1 =
1

c̄11 − ‖c̄‖2F

⎡⎣ 1 −c̄H

−c̄
(
c̄11 − ‖c̄‖2) Id−1 + c̄c̄H

⎤⎦ . (33)

Substitute (33) and (12) into (31), obtaining q(ρm, φm)=
1

c̄11−‖c̄‖2F
[
t11−2Re

{
tH21c̄
}
+Tr

(
T22c̄c̄

H
)]

+Tr (T22) . It is clear that, ‖c̄‖2F , Tr
(
T22c̄c̄

H
)

and Tr (T22) are not related with φm and they can

be treated as constants. Let c11
Δ
= ρce

jφc and c̄Ht21/e
jφm = ρm

[
c12 · · · c1d

]
t21

Δ
= ρte

jφt .

q(ρm, φm) can be finally arranged as

q(ρm, φm) =

[
t11+Tr

(
T22c̄c̄

H
)]− 2ρt cos (φm + φt)(

1− ‖c̄‖2F
)
+ 2ρc cos (φm + φc)

+ Tr (T22) .

APPENDIX B

PROOF OF Proposition 1

Introducing an auxiliary variable vm ≥ 0, the Lagrangian associated with P2-m is

L (αm, vm) = Tr
[(
Am + αmBm + α∗

mB
H
m

)−1
]
+ vm

(|αm|2 − 1
)
.

It is clear that the optimal solution to P2-m satisfies the KKT conditions:
∂L(αm,vm)

∂αm
= 0,

vm (|αm|2 − 1) = 0, vm ≥ 0, and |αm| − 1 ≤ 0. When vm = 0, it follows that

∂L(αm,vm)
∂α∗

m
= −Tr

{(
Am + αmBm + α∗

mB
H
m

)−2
[
αm

(
r̃mt̃

T
m

)H (
r̃mt̃

T
m

)
+BH

m

]}
= 0. (34)

If αm satisfies (34) and |αm| ≤ 1, it satisfies all KKT conditions and hence, it is a candidate

for the optimal solution. Otherwise, vm can not be 0 and it follows that |αm|=1.
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APPENDIX C

PROOF OF Lemma 3

First, we note that the objectives of P3-1 and P′
3-1 are identical. Obviously, if the pair {F, F̄}

is feasible for P3-1, then F̄ is also feasible for P′
3-1. It follows that the optimal value of P3-1 is

larger than or equal to that of P′
3-1.

Conversely, if F̄ is feasible for P′
3-1, with F

Δ
=

√
PTD

−1
2 F̄/
√
Tr
(
F̄HD−1F̄

)
, the pair {F, F̄}

is feasible for P3-1. Therefore, the optimal value of P3-1 is less than or equal to that of P′
3-1.

Based on the above analysis, we conclude that P3-1 and P′
3-1 are equivalent.
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