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Abstract

Behavioral patterns observed in data generated by mobile and wearable devices

are used by many applications, such as wellness monitoring or service personal-

ization. However, sensitive information may be inferred from these data when

they are shared with cloud-based services. In this thesis, we propose machine

learning algorithms for data transformations to allow the inference of informa-

tion required for specific tasks while preventing the inference of privacy-sensitive

information. Specifically, we focus on protecting the user’s privacy when sharing

motion-sensor data and web-browsing histories.

Firstly, for human activity recognition using data of wearable sensors, we in-

troduce two algorithms for training deep neural networks to transform motion-

sensor data, focusing on two objectives: (i) to prevent the inference of privacy-

sensitive activities (e.g. smoking or drinking), and (ii) to protect user’s sensitive

attributes (e.g. gender) and prevent the re-identification of user. We show how

to combine these two algorithms and propose a compound architecture that

protects both sensitive activities and attributes. Alongside the algorithmic con-

tributions, we published a motion-sensor dataset for human activity recognition.

Secondly, to prevent the identification of users using their web-browsing be-

havior, we introduce an algorithm for privacy-preserving collaborative training

of contextual bandit algorithms. The proposed method improves the accuracy

of personalized recommendation agents that run locally on the user’s devices.

We propose an encoding algorithm for the user’s web-browsing data that pre-

serves the required information for the personalization of the future contents

while ensuring differential privacy for the participants in collaborative training.

In addition, for processing multivariate sensor data, we show how to make

neural network architectures adaptive to dynamic sampling rate and sensor se-

lection. This allows handling situations in human activity recognition where the

dimensions of input data can be varied at inference time. Specifically, we intro-

duce a customized pooling layer for neural networks and propose a customized

training procedure to generalize over a large number of feasible data dimensions.

Using the proposed architectural improvement, we show how to convert existing

non-adaptive deep neural networks into an adaptive network while keeping the

same classification accuracy.

We conclude this thesis by discussing open questions and the potential future

directions for continuing research in this area.
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Notation

The notation that is used throughout this thesis:

General Notation
a A random variable
a An unknown scalar (integer or real)
A A known (constant) scalar
a A (column) vector
A A matrix
ai Element i of a vector
ai,j Element i, j (row, column) of a matrix
aT Transpose of a vector
A A set
Ai The i-th item in a set
A(·) A function
A(·; θ) A function parameterized by a set of explicit parameters
size(A) Cardinality of a set
|a| Absolute value of a scalar
[a, b) The real interval including a but not including b

, Delta equivalent

Spacial Cases
E(a) The expected value of a random variable
H(a) Shannon entropy of a random variable
I(a;b) Shannon mutual information between two random variables
In Identity matrix with n rows and n columns
N The set of natural numbers
P(a) Probability distribution over a random variable
P(a | b) Conditional probability distribution over a random variable
R The set of real numbers
RA·B A one-dimensional data, of size A product B
RA×B A two-dimensional data, of size A by B
{1, . . . , n} The set of all integers between 1 and n
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Chapter 1

Introduction

1.1 Motivation

The potentially sensitive information inferred from our behavioral data can be

unwillingly used to manipulate our decisions [1, 2], affect our reputations [3],

reveal our private activities [4], cause unfair discrimination against us [5], or

provoke social embarrassment due to the leak of private information [6, 7]. Such

behavioral data can be sold to insurance companies and digital marketers or even

shared with courts of law or government organizations [8, 9]. If your secret data

is leaked , e.g. your password, you can change it and make it secret again; but

if your private data is leaked e.g. the name of your first pet which you may

use as part of your password, then it becomes public and it never can become

private again! Thus, safeguarding our personal data before sharing it with third-

party applications (apps) is getting increasingly important, and motivated by

the law [10, 11].

An individual’s data privacy can be defined as “the right to select what

personal information about me is known to what people” [12]. We believe, as

the main motivation of this thesis, that the least we should have knowledge

and control of is the type and amount of information that can be discovered

from our data [13, 14, 15, 16]. To this end, we need algorithms that give us

such control of our data, while allowing us to utilize cloud-based apps, such

as health monitoring [17] or content personalization [18], that require having

access to our data [19, 20, 21]. Despite their applicability to single-valued,

or low-dimensional, static data, current privacy-preserving algorithms [22, 23,

24, 25, 26, 27] are not well-suited to multivariate data generated by mobile

and wearable devices equipped with varying types of inertial sensors and third

parties’ apps; mainly because these algorithms (explained in Chapter 2) are

designed for the extraction of population-level statistics from large datasets,
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and not the release of individual-level multivariate data.

We generate a considerable amount of data through our daily interactions

with smart devices, or simply just by carrying them. For instance, wear-

ing fitness trackers for monitoring personal health and wellness during the

day, and even the night’s sleep, is becoming pervasive [28]. Health-monitoring

apps [29, 17] utilize data collected from motion sensors embedded in mobile and

wearable devices to infer our body movements and temporal changes in our phys-

iological state [30, 31]. Hence, sharing our sensor data helps to track our activi-

ties [32], interactions [33], mood [34, 35], and sleep quality [36, 37]. As another

example, web browsing is an unavoidable daily routine, and we may welcome

personalization of contents through collecting and analyzing a history of our

past content browsing behavior to improve our future experiences [38, 39, 18].

A web browser can gather the history of the most visited websites to recommend

personalized news articles that are attractive to us [40, 41], or a social media

app can monitor our engagement in different contents to propose interesting

pages or people to follow [42].

The main obstacle in utilizing such motivational apps is the risk of revealing

potentially sensitive information that a user might wish to keep private. Sensor

data can reveal sensitive habits such as smoking [43], attributes such as age

and gender [44], or enable the re-identification of the user [45]. Continuous

monitoring of ambient light [46] or accelerometer [47, 48] sensor can be used to

extract sequences of entered text on smartphones and consequently the user’s

password. Recommendation apps, that keep track of the user’s engagement in

different types of contents, can model similarities across users that may reveal

a user’s sexual orientation, age group, approximate location, or political views

which collectively can re-identify the user [49, 50, 51, 52, 53, 54].

Therefore, while we need to share our data with apps to obtain utility, we are

also concerned about our privacy. A naive algorithm, which is often found to be

used, is the extreme “all-or-nothing” that allows us to choose whether to grant

an app permission for collecting data or not (e.g. permission over location).

Such binary algorithms only allow us to choose one of two extremes: perfect

utility, by giving them permission, or perfect privacy, by revoking the permis-

sion [55]. More flexible algorithms should allow us to grant permission over a

controlled type and amount of information, customized according to the app’s

requirements. Hence, an important motivation is to build privacy-preserving

algorithms that establish an acceptable utility-privacy trade-off between the

protection of sensitive private information and the maintenance of required non-

private information in the shared data, while our data can also contain some

neutral information irrelevant to the target utility and not critical to our privacy.

10



1.2 Objectives

In this thesis, we design and evaluate machine learning algorithms that aim to

provide users of cloud-assisted apps more control and protection over the type

and amount of information that can be discovered from their data. Considering

two specific, but pervasive, types of user-generated data, we evaluate the per-

formance of the proposed algorithms in terms of the achieved utility and privacy

trade-off; according to the defined criteria for the user and target app. First, we

consider motion-sensor streams of mobile and wearable devices that are in the

shape of multivariate time-series, and capture the user’s gestures and activities

with fine granularity. Second, we consider browsing history of web pages which

are in the shape of temporal histograms that indicate the temporal interests of

the user, and consequently may reveal their identity.

As an example, consider a smartwatch step-counter app that measures the

user’s body movement through motion sensors like an accelerometer. Static

acceleration shows the magnitude and direction of the earth’s gravitational force,

and helps to recognize the user’s posture; whereas dynamic acceleration shows

changes in the motion velocity of the user that can be mapped to the user’s

activities [56]. We may specify the recognition of some user’s activities as the

required information for the utility of step-counting, such as walking, jogging,

or stair-stepping. Also, there might be a set of sensitive activities that a user

wish to keep private, such as smoking and typing, or sensitive inferences such

as gender. Here, some activities may be neither required nor sensitive and be

considered as the neutral activities, such as sitting or standing. We assume

that such apps are honest in extracting their required information from shared

data and in providing useful services to the users. But they may also curiously

extract sensitive information that can be used to invade the user’s privacy [57].

The focus of this thesis is on privacy and utility preserving algorithms for

applying data transformations on the user’s data before sharing them with cu-

rious cloud-assisted apps. Unlike previous approaches, to be discussed in Chap-

ter 2, the proposed algorithms aim for applying online data transformation at

the user side, rather than collecting all users’ data and then applying a one-

shot offline data transformation over the collected dataset. Moreover, previous

works mostly considered single-valued static data, or they are more applicable

for gathering population-level aggregated statistics [22, 23, 24, 25, 26, 27], while

the algorithms proposed in this thesis aim for multivariate temporal data at the

user-level.
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1.3 Problem Definition

In sharing personal data with apps and cloud services, there is always the

possibility of sharing more information than what is actually needed to be

shared. In the last decades, numerous algorithms have been proposed for

privacy-preserving data analysis: from randomized response [58] to differential

privacy [59, 60], from statistical confidentiality [61] to adversarial synthesis [62],

from suppression and rounding [63, 64] to masking [65] to k-anonymity [66] to

l-diversity [67] to crowd-blending [68]. The common aspect among all these

privacy-preserving algorithms, and their extensions and relaxations, is data

transformation: all mechanisms, either deterministically or randomly, trans-

form the original data into other representations, at the user side (i.e. local)

or after collecting the data (i.e. central). However, there is no one-of-a-kind

algorithm suitable for all data types, and, even for the same data type, the suit-

able algorithm can vary depending on the app’s requirements. For example, the

required information that the app needs to infer from data, the privacy metric

that is used to quantify the privacy loss, the threat model assumptions on who

does the user trust, and where the user’s data will be processed.

In this thesis, we design privacy-preserving algorithms that aim to release a

transformed version of the original data such that the transformed data is still

useful for achieving the required utility, while revealing as minimum as possi-

ble information that is sensitive to the user’s privacy. We consider the setting

depicted in Figure 1.1 where we have two main parties called: the user (e.g.

a smartwatch wearer) and the app (e.g. a software application and its corre-

sponding cloud service provider). In each iteration of data sharing i ∈ N, user

generates data Xi ∈ Rw×h with dimensions (w ∈ N, h ∈ N). Specifically, we

assume that Xi represents the captured data of a time window. For example,

a 2.5-seconds time window of data generated by the accelerometer, gyroscope,

and magnetometer of a smartwatch (each having three axes), with a 50 Hz sam-

pling rate, has dimensions of w = 125 and h = 9, where each sample point

shows a sensory reading. Or, a time window of the recent 100 web-page visits

has dimensions of w = 100 and h = 1, where each sample point shows the

category of the visited page. We also assume that each Xi is independent of

other Xj , for all j 6= i. Also, given the user, the data Xi is sampled from an

identical distribution, for all i. For example, we assume that the motion char-

acteristics of a user’s walking activity do not change through time. Although

the independence assumption is not always held in practice, the estimation of

the non-linear dependency structure between a set of multivariate time windows

is too difficult [69]; especially when we do not have good knowledge about the

data generation process and the joint distribution P(Xi,Xj). For the sake of
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Figure 1.1: The general setting for temporal data sharing considered in this
thesis. User is modelled as an unknown function G. The observed data X,
captured by the device, is informative about three hidden random variables: re-
quired (non-private) r, sensitive (private) s, and neutral n. A privacy-preserving
algorithm,M, transforms X into Y before sharing with an app. The app then
computes r̂ and ŝ as the estimation of r and s, using models empirical mod-
els parameterized by θr and θs, respectively. We assume that except App and
Cloud that are under the app’s control, other components are under the user’s
control. Dashed arrows show interactions during the training of the algorithm;
solid lines show data flow during the test time.

brevity, we remove subscript i when it is not necessary in the following.

In this setting, X is a multivariate observed variable that carries information

about at least two hidden discrete variables: required non-private variables r ∈
{1, 2, · · · , R} (e.g. user’s activity or step counts), and sensitive private variables

s ∈ {1, 2, · · · , S} (e.g. user’s gender or identity), where R and S denote the

domain size of r and s, respectively. Beside these two, X might naturally

carry information about some other hidden variables which we call them neutral

variables n (e.g. on-body position of the mobile device). The temporal value

of hidden variables are not directly accessible and have to be inferred from

temporal data X. Let a data transformation algorithmM take X and produce

data Y = M(X) for sharing with the app. The dimensions of Y can be the

same as the dimensions of X or not, depending on the context.

Given the received Y an empirical machine learning model, parameterized

by θr, computes the r̂ = θr(Y ) that denotes the estimation of r. Let us assume

that θr (as a potential app’s model) honestly estimates r, to provide the desired

utility to its user. For example, an activity monitoring app can provide its

user some daily statistics about number of steps or the amount of calories they

have burnt. This honesty is important, as otherwise the app cannot attract

any user for its offered services. But this app may also curiously use a model

parameterized by θs to discover the value of s by computing ŝ = θs(Y ), when the

app get access to and collect the user’s data.. This is usually called a honest-but-

curious threat model [70], which in this thesis it particularly means that while

users get the promised service from the app’s provider (i.e. honesty), users
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cannot make sure that their data is not used for other purposes (i.e. curiosity).

Let data utility uY ∈ [0, 1], over N rounds of data sharing, be defined as the

average of correct prediction of r by the app:

uY =
1

N

N∑
i=1

1
[
θr(Y i) = ri

]
, (1.3.1)

where 1[·] denotes the indicator function that outputs 1 if its condition holds,

otherwise 0. In this thesis, in Chapter 3 and 4 where we consider multi-class

classification tasks, uY is interpreted as the classification accuracy of the model

θr, and in Chapter 5 where we consider recommendation tasks, uY is interpreted

as the average reward of the model θr.

Let privacy cost cY ∈ [0, 1], over N rounds of data sharing, be defined as

the absolute difference between the average of correct prediction of s by the app

and the accuracy of the app’s prior belief over s, G(s):

cY =

∣∣∣∣ 1

N

N∑
i=1

1
[
θs(Y i) = si

]
− G(s)

∣∣∣∣. (1.3.2)

In other words, we assume that cY measures the changes in the app’s posterior

belief after observing Y .

It is worth noting that the optimal value of uY is always 1, while the optimal

value of cY is 0; considering that any changes in the app’s posterior belief on

s can be interpreted as information leakage [71]. For example, in Chapter 4

where we consider gender as the sensitive attribute and we assume G(s) = 0.5,

the optimal privacy is achieved when the average of correct prediction of s by the

app is 50%. In Chapter 3, we consider performing some activities, e.g. smoking,

as the sensitive behavior and we assume that the app’s prior belief is that the

user is not performing any of these activities (i.e. G(s) = 0). Thus, any correct

predictions of such sensitive activities will cause a privacy cost. In Chapter 5, we

consider that an app’s prior belief on the presence or absence of the user in the

shared dataset is 0.5., thus leaking any information about either the presence

or absence of the user is considered as privacy cost.

Let a privacy-preserving algorithm be a functionM : X → Y that minimizes

cY subject to maximizing uY . Note that we always have uY ≤ uX and cY ≤
cX . The reason can be found in the underlying structure (r, s,n) → X → Y

constructed from our assumptions (see Figure 1.1), thus based on the data

processing inequality [72], the maximum amount of information about r and s

that can be inferred from the released data Y is equal to what one can infer

from the original data X.

We assume that the app only has access to the output of M at the test
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time (i.e. inference time), but it has complete knowledge of theM which models

a strong adversary. For finding the appropriate algorithmM (i.e. training), we

sometimes need help from a mediator to mediate between the user and a service

provider. However, the proposed algorithms do not need such a mediator at test

time on the user’s side. The mediator in Chapter 3 and Chapter 4 is a trusted

party that trainsM on a (public or private) dataset and broadcasts the trained

model back to the users. Similarly, in Chapter 5 we assume that the mediator

is a trusted third party that anonymizes the communications between users and

the app’s server during training.

Finally, the dimensions, w and h, of the transformed data, Y , may not always

be the same as its input, X. For example, due to privacy protection [4, 73, 74],

energy preservation [75, 76, 77], or fault tolerance [78, 79] requirements, an

algorithm may dynamically select/deselect some sensors or increase/decrease

the sampling rate of the selected sensors, before sharing data with the app.

Therefore, as an appendix to this thesis, we also look into solutions for making

an app adaptive to such algorithms that may share variable-sized data with the

app, in different situations, while still providing a reliable classification of the

shared data. The motivation is that empowering apps with such capability will

also facilitate designing more flexible privacy-preserving algorithms, because it

allows apps to still recognize user’s activity (with some level of accuracy) even

when users decide to share data of which sensors and with what sampling rate.

The definitions that are used throughout this thesis are summarized in Ta-

ble 1.1.

1.4 Thesis Contributions

The novelties and main contributions of this thesis are as follows.

First, we present the Replacement AutoEncoder (RAE): a deep neural net-

work architecture that takes a time window of multivariate motion sensors, X,

as input and if X is generated through a user’s sensitive activity, then the RAE

transforms X into a time window Y such that the transformed data resembles

time windows that are generated through a user’s neutral activity. Otherwise, if

X is generated through a user’s non-sensitive (i.e. required or neutral) activity,

the RAE produces a Y as similar as possible to X; ideally Y = X. Although

previous methods, such as filtering [80, 81, 82] or perturbation [83, 26], prevent

the recognition of the exact sensitive activity, they have this major weakness of

revealing that an unknown-but-sensitive activity has occurred. Our RAE covers

this weakness as it not only eliminates the possibility of recognizing the user’s

sensitive activities, it also limits the possibility of detecting the occurrence of

them. Moreover, unlike offline transformation approaches [84] that assume data
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Table 1.1: Summary of the definitions used throughout this thesis.

Term Description
activity the daily activity of a wearer/user of a wear-

able/mobile device inferred from motion sensors
anonymization preventing an app from identifying a user, among

a set of potential candidates.
app a software application installed on the user’s device

and backed by a service provider
browsing history a histogram of the type or category of visited con-

tents by the user
behavioral data information inferred from the user’s (motion-

sensors or browsing history) data
curious app an app that tries to infer the user’s sensitive infor-

mation
context the current state of a user’s engagements inferred

from their browsing history
data transformation converting a sample data into another representa-

tion (of the same or different dimensions)
honest app an app that provide the promised services to the

user
identification identifying a specific user among a set of potential

candidates.
motion sensors accelerometer, gyroscope, and magnetometer sen-

sors embedded in mobile and wearable devices
neutral information information that is neither sensitive nor required

required information information that the user wants to share with the
app

sampling rate the number of data points captured in the prede-
fined unit of time

sensitive information information that the user wishes to keep private
sensor data dimensions number of sensory streams, h, and the length of

each stream, w.
time window a bounded time interval which is characterized by

a length and a step-size
user the person who owns or interacts with mobile or

wearable devices

is already collected, RAE is a trained model that can be used in an online setting.

Second, we propose the Anonymization AutoEncoders (AAE): a deep neural

network architecture, trained through an adversarial training procedure using

a customized objective function, to avoid the unexpected inference of the user’s

sensitive attributes or the re-identification of the user. The AAE takes sensor

data over a time window X, generated through a user’s activity, and produces a

time window Y which is informative about the user’s activity but uninformative

about the user’s sensitive attribute s (e.g. gender or identity). Unlike other

approaches [85, 86, 87, 88, 89], AAE regulates both encoder and decoder to
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shape the final output independently of the specific users in the training set.

Moreover, we show how to cascade RAE and AAE into a compound architecture

to build a unified framework that can protect both sensitive activities and a

sensitive attribute.

Third, we introduce Privacy-Preserving Bandits (P2B): a system for col-

laborative and private training of contextual-based algorithms. P2B trans-

form the histogram of the browsing behavior into a cluster code which is in-

formative about the required information for the personalization of the con-

tents while providing the user differential privacy guarantee when sharing their

data for training a global model. Compared to other collaborative learning ap-

proaches [90, 91, 92], P2B is substantially less complicated as it does not need

users to train a model locally and it does not need multiple rounds of communi-

cation between users and the server. Moreover, other privacy-preserving bandits

algorithms [93, 94] consider a centralized setting where the server knows every-

thing about the user except their responses to the recommended contents, but

P2B is built upon a distributed setting where all the user’s data are processed

locally.

Forth, alongside the above algorithmic contributions, we collected and pub-

lished MotionSense [95]: a dataset containing data of two sensors embedded in

mobile devices: accelerometer and gyroscope. MotionSense includes 24 users of

different gender, ages, weights, and heights, where each user performs 6 activi-

ties in 15 different trials. Thus, covering the shortcoming of other datasets [96,

97, 98, 99, 100] that only report the performed activities, and no information

about the users who performed those activities. We use MotionSense for evalu-

ating some of the proposed algorithms in this thesis, and by the time of writing

this thesis, it also has been used by several other researchers to evaluate their

methods.

Finally, as an appendix, we propose Dimension-Adaptive Neural Architec-

ture (DANA) that includes a dimension-adaptive pooling layer to make deep

architectures adaptive to temporal changes in sampling rate and in sensor avail-

ability, and a dimension-adaptive training procedure to generalize over the en-

tire space of feasible data dimensions at the inference time. DANA allows us to

transform existing non-adaptive deep architectures [101, 102, 103] into an adap-

tive model without the need for adding or removing their trainable parameters.

While previous works address either sensor selection [96, 104, 105, 106, 107, 108]

or adaptive sampling rate [109, 110, 111, 112, 113], DANA provides a unified

solution to both requirements.
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1.5 Associated Publications

Parts of the work detailed in this thesis have been presented in the follow-

ing Jouranl, Conference, and Workshop publications as well as Preprints in

chronological order:

1. [C1] M. Malekzadeh, R. G. Clegg, H. Haddadi. “Replacement autoen-

coder: A privacy-preserving algorithm for sensory data analysis.” IEEE/ACM

International Conference on Internet-of-Things Design and Implementation (IoTDI’18)

pp. 165-176, Orlando, Florida, April 2018. (Chapter 3)

2. [W1] M. Malekzadeh, R. G. Clegg, A. Cavallaro, H. Haddadi. “Pro-

tecting sensory data against sensitive inferences.” First EuroSys Workshop on

Privacy by Design in Distributed Systems (W-P2DS), pp. 1-6, Porto, Portugal,

2018.(Chapter 4)

3. [C2] M. Malekzadeh, R. G. Clegg, A. Cavallaro, H. Haddadi. “Mobile

sensor data anonymization.” IEEE/ACM International Conference on Internet-

of-Things Design and Implementation (IoTDI’19), pp. 49-58, Montral, Canada,

April 2019. (Chapter 4)

4. [J1] M. Malekzadeh, R. G. Clegg, A. Cavallaro, H. Haddadi, “Privacy

and utility preserving sensor-data transformations”, In Journal of Pervasive

and Mobile Computing, Elsevier, Volume 63, Article 101132, 2020. (Chapter 3

and 4)

5. [C3] M. Malekzadeh, D. Athanasakis, H. Haddadi, B. Livshits. ”Privacy-

Preserving Bandits.” In Proceedings of Third Conference on Machine Learning

and Systems (MLSys’20), Austin, Texas, March 2020. (Chapter 5)

6. [P1] M. Malekzadeh, R. G. Clegg, A. Cavallaro, H. Haddadi, “Dimen-

sion Adaptive Neural Architectures for Temporal Data.” Under review. (Ap-

pendix A)
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1.6 Organization of the Thesis

This thesis is organized as follows:

Chapter 2, Background and Related Work. We provide a literature

review on privacy-persevering methods for sharing multivariate data, discuss

the characteristics of the behavioral data that are of interest in this thesis, and

present prerequisites that are needed for understanding the following chapters

of this thesis. We also describe our contributed MotionSense dataset as well as

other datasets that are used in this thesis.

Chapter 3, Sensitive Data Replacement. we consider the user’s sensi-

tive activities that can be unexpectedly discovered by a human activity recogni-

tion (HAR) app. We assume that the user shares a time window of multivariate

motion sensors X, generated by wearable devices while performing daily activi-

ties. The user wishes to prevent the app from inferring their sensitive activities

s, while allowing the inference of required activities r, as accurate as possible.

As a solution, we present the Replacement AutoEncoder (RAE): a deep neural

network architecture that takes X as input and if X is generated through a

user’s sensitive activity, then the RAE produces a synthetic time window Y

which aims to be similar to data generated through a user’s neutral activity n.

Otherwise, if X is generated through a user’s non-sensitive (i.e. required or neu-

tral) activity, the RAE outputs a Y as similar as possible to X; ideally Y = X.

This efficiency is achieved by defining a procedure for training deep autoen-

coders that helps them approximating a two-part piece-wise function, such that

the RAE learns to act as a transformation function if data is sensitive, otherwise

act as the identity function if data is non-sensitive or required. We also design

an attack on the RAE using a generative adversarial network (GAN) [114] to

show that, even in a worst-case scenario where the app can have access to some

user’s original data, the RAE provides some level of privacy protection. This

chapter is based on [C1] and parts of [J1].

Chapter 4, Sensor Data Anonymization. We consider HAR again, and

discuss that even the user’s non-sensitive activities can be exploited by a cu-

rious app to infer the user’s sensitive attributes or enable the re-identification

of the user. To avoid such unexpected discovery, we propose the Anonymiza-

tion AutoEncoders (AAE): a deep neural network architecture trained through

an adversarial training procedure using a customized objective function. The

AAE takes a sensor time window X, generated through a user’s activity, and

produces a time window Y which is informative about the user’s activity r, but

uninformative about the user’s sensitive attribute s (e.g. gender or identity).

Hence, while HAR apps can recognize what activity the user is performing, it

becomes much more difficult for them to infer who is performing that activ-
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ity. We propose a multi-objective loss function for training AAE that helps to

minimize the privacy loss cY by minimizing the mutual information between

sensitive variable s and the shared data Y. The AAE is designed to be flexible

such that its comprising component and the multi-objective loss function can be

flexibly tuned for a desirable trade-off between privacy and utility. Moreover,

we show how to cascade RAE and AAE into a compound architecture to build

a unified framework that can protect both sensitive activities and a sensitive

attribute. This chapter is based on [W1], [C2], and parts of [J1].

Chapter 5, Privacy-Preserving Contextual Bandits. We consider

content provider apps (e.g. social media or web browsers) and privacy concerns

related to the identification of users by making a profile of their potentially sen-

sitive interests for personalization purposes. We introduce Privacy-Preserving

Bandits (P2B): a system for collaborative and private training of contextual-

based algorithms [41, 115]. The P2B lets the app that is running locally on

users’ devices to contribute useful feedback to other apps through centralized

model updates in a differentially-private manner. We show how to transform the

histogram of the browsing behavior X into a cluster code y which is informative

about the required information for the personalization of the contents while pro-

viding the user differential privacy guarantee when sharing y for training a global

model. We compare P2B with a non-private system (i.e. centralized training

without privacy guarantee) and a fully-private system (i.e. only local training),

and show the performance on both synthetic benchmarks and real-world data,

and discuss why P2B can be an effective solution to account for the challenges

arising in on-device privacy-preserving personalization. This chapter is based

on publication [C3], and has been carried out during an industrial placement

at Brave Research, under the co-supervision of Dr. Dimitrios Athanasakis and

Dr. Benjamin Livshits.

Chapter 6, Conclusion and Future Work. We summarize the findings

presented in the previous chapters and discuss the directions for future research

that may address existing open questions in privacy-preserving behavioral data

analytics that are not covered in this thesis.

Appendix A, Dimension-Adaptive Neural Architecture. We discuss

that sensors embedded in wearable and mobile devices allow for dynamic con-

figuration and customization of sensor streams and sampling rates, depending

on the privacy, accuracy, and power consumption requirements of each app. We

show that changes in the dimensions w and h of the input data can cause consid-

erable accuracy loss and even application failures, or enforce data pre-processing

or unnecessary computations by the neural network. Since current deep neu-

ral network architectures for multivariate sensor data X ∈ Rw×h are mostly

designed for data coming from a fixed set of sensors, with a fixed sampling
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rate [116, 101, 103, 102, 117, 118, 119]. To address this problem, we propose

Dimension-Adaptive Neural Architecture (DANA). We introduce a dimension-

adaptive pooling layer that makes deep architectures robust to temporal changes

in sampling rate and in sensor availability, then building on this architectural

improvement, we present a dimension-adaptive training procedure to generalize

over the entire space of feasible data dimensions at the inference time. DANA

is a unified framework that transforms existing non-adaptive deep architectures

into an adaptive model without the need for adding or removing their trainable

parameters. We show that how a HAR app can provide a good classification

accuracy to the user in dynamic situations where sensor data dimensions can

change, accidentally (e.g. due to hardware failure such as missing a sensor) or

deliberately (e.g. due to power saving strategies). This appendix is based on

based on [P1].
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Chapter 2

Background and Related Work

In this chapter, we discuss the nature and characteristics of the data types that

we consider in this thesis, and provide the mathematical definition of the related

privacy and utility metrics that we refer to in this thesis. We also elaborate

on the related works in the literature of privacy-preserving data analytics and

compare them in the context of user-level behavioral data sharing.

2.1 Time Series

A (real-valued or categorical) sample datum represents the state of a variable in

time. An ordered set of samples, generated by the same source through time,

shapes a time series [120]. Usually, a time series is captured regularly, based

on a predefined sampling rate; known as equally spaced time series, such as the

linear acceleration of the user’s body recorded by a smartwatch’s accelerometer

in every 50 milliseconds. A time series can also be captured irregularly, based

on an event happening, known as unequally spaced time series, for instance,

type of the web-content that user is looking for, recorded by every page view in

a browser app.

The granularity of an (equally spaced) time series describes the period be-

tween two successive data points. The sampling rate of a time series is the

number of data points captured in the predefined unit of time (e.g. every sec-

ond). For instance, a time series with a 20 milliseconds granularity produces 50

temporal data points per second, 50 Hertz (Hz). Time series can be univariate,

including only one variable, or multivariate, containing two or more variables. If

the statistical properties (such as mean, variance, and auto-correlation) of a time

series do not change over time, it is called stationary, while in a non-stationary

time series some statistical properties may change over time.

Correlation is an important aspect in time series that is utilized by predic-
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Figure 2.1: Every reading for a mo-
tion sensor (accelerometer, gyroscope,
or magnetometer) includes three ele-
ments x, y , and z, representing the
direction of the device motion [122].

Figure 2.2: A time window of ac-
celerometer (top) and gyroscope (bot-
tom) sensor data for walking activity.
RPS is revolutions per second, and
m/s2 is meters per second squared.

tion, classification, or clustering algorithms. Correlation, e.g. Pearson product-

moment correlation [121], measures the strength and direction of linear relation-

ships between pairs of real-valued variables. Auto-correlation is the correlation

between two data points, xt and xt−k, of the same time series x, where t is the

current time and k > 0. Cross-correlation, on the other hand, is the correlation

among two data points, x1
t and x2

t , of two different time series, or two different

variables of the same multivariate time series, x1 and x2 [120].

2.1.1 Motion Sensors

Personal devices, such as smartphones and smartwatches, are equipped with a

collection of onboard motion sensors; such as accelerometers, gyroscopes, and

magnetometers. These sensors repeatedly measure the value of a variable over

time and across three-dimensional space (see Figure 2.1), producing time series

that can be used to infer the user’s fine-grained body movements or temporal

changes in the user’s physiological state [17]. These sensors facilitate many

applications for users’ health and wellness as they can help to infer the user’s

gestures, activities, and other behaviors [34]. For example, Figure 2.2 shows a

2.5 seconds time window of a 50 Hz time series collected from accelerometer

and gyroscope sensors of a smartphone in the user’s front pocket while walking.

Each accelerometer’s data point includes three numerical values representing

the rate of change in the linear velocity across three-dimensional space (x, y, z).

Similarly, values of a gyroscope’s data point represent the angular velocity at

which the device is rotating in the three-dimensional space.
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Figure 2.3: A time window of accelerometer (accl) and gyroscope (gyro) data
for six different activities of a user.

Figure 2.2 also shows that the magnitude value (
√
x2 + y2 + z2) of both sen-

sors almost follow each other, especially for the peaks and periodicity, intuitively

showing a strong correlation between two sensors. However, the correlation be-

tween two axes of the same sensor is less obvious, at least by the human eye.

The distance between two peaks shows the stride length of the user that is a bit

more than one second in this example. Figure 2.3 compares the magnitude val-

ues of the data from two sensors when the user performs six different activities.

Note that motionless activities such as sat (i.e. sitting still) and stand-up (i.e.

standing still) are difficult to be distinguished by the magnitude of sensors, as

the device does not move significantly during these activities. Moreover, distin-

guishing among activities such as going downstairs or upstairs or walking (on a

flat area) might not be trivial as the patterns in the data of these activities are

quite similar.

2.1.2 Sampling Rate

Sampling rate has an important impact on the recognition of users’ activity

via mobile and wearable devices [110]. The Nyquist-Shannon sampling theo-

rem [123, 124] specifies the sufficient sampling rate that allows us to completely

reconstruct the original continuous-time signal from a received discrete-time

signal: If a continuous-time data source contains no frequency components

higher than H Hertz, then it is completely determined by giving a time series of

sample points that are equally spaced 1/(2H) seconds apart. This states that

every time series with a sampling rate equal to or more than the sufficient rate

captures all the information included in the original, finite bandwidth signal.

Because of implicit uncertainties in human behavior, it is not straightfor-

ward to easily use the Nyquist-Shannon theorem [125] and define a minimum

sampling rate that captures the frequency components necessary to discern dif-
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Figure 2.4: Auto-correlation of accelerometer data for four activities averaged
over 24 users in MotionSense [95]. For example, samples of walking activity are
correlated in a time window of about 5 seconds, while for jogging the correlations
last for about 3 seconds. Correlation values outside the lines of the confidence
interval (Conf. Int.) are considered as a statistically significant correlation.

ferent types of user’s behaviors [110]. For example, accelerometers provide two

types of measurements, namely static and dynamic acceleration [56]. Static

acceleration is measured with respect to the earth’s gravitational field and is

useful for recognizing changes in the user’s posture. For example, the direction

of the gravitational force in a smartphone’s accelerometer data can determine

whether the phone is held vertically or horizontally, and the phone’s position

can be mapped to a specific user’s posture. Dynamic acceleration measures

changes in the velocity of the user’s body and generates higher frequency pat-

terns, depending on the user’s body size. In lower sampling rates, signal aliasing

happens to the acceleration patterns and activities that are characterized by the

high frequencies in the data, become indiscernible from each other [112, 113].

The sufficient sampling rate not only varies depending on the set of activity

classes or the position of the sensor on the user’s body, but it even varies across

different users while all other parameters are fixed. Khan et al. [110] show that

the sufficient sampling rate across different datasets varies in the range 22Hz

to 63Hz, for a 99% Kolmogorov-Smirnov similarity test [126], which is a non-

parametric test for the equality of continuous probability distributions. Thus,

the estimated probability distributions of corresponding time windows for the

sufficient sampling rate against the original sampling rate of the dataset should
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Figure 2.5: Auto-correlation of the accelerometer data for three different users
while walking. The differences in correlation patterns between users can be due
to several factors such as weight, stride length, walking speed, and even the
tightness of the trouser.

become statistically similar, as measured by the Kolmogorov-Smirnov test.

2.1.3 Window-Based Classification

A typical practice in processing sensor data is to use a sliding time window

to segment the incoming sensor streams into smaller tractable time periods.

A sliding time window is a bounded time interval which is characterized by a

length and a step-size, both in the unit of seconds. For example, to continuously

process the latest five seconds (i.e. the length) of sensor data every second

(i.e. the step), we need a sliding time window of the length 5 seconds with the

step-size of 1 second.

Mostly, the aim of processing sensor data is to assign each time window to one

of the predefined classes. There are different approaches, from classical machine

learning algorithms, such as decision trees or support vector machines [127], to

deep learning methods, such as convolutional or recurrent neural networks [128],

for the discovery and learning of discerning patterns in sensor data. For all these

algorithms, the length of the time window has an important effect on the clas-

sification accuracy [129, 130]. Short time windows accelerate the classification
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task, but they may negatively impact accuracy; while long time windows in-

crease the computational complexity and may contain patterns related to two

or more classes. Although, in real-world situations a user may perform some

parallel activities at the same time, e.g. smoking while standing and typing an

email on the phone, we do not yet have access to such a public dataset includ-

ing parallel user activities. Thus, in our experiment throughout this thesis, each

time window only contains one and only one user’s activity, which is a common

assumption in most previous related works [97, 99, 102, 103, 116, 117].

Figure 2.4 shows the average auto-correlation, over 45 seconds of data for 24

users, at varying time lags for the magnitude of accelerometer data for different

activities. Note that each activity has a different period. Walking has the

highest correlation, followed by Jogging, Upstairs, and Downstairs. The distance

between two peaks can be connected to the stride length. There are also strong

auto-correlations among samples inside a 2-second time window, whereas auto-

correlations go under the confidence interval after about 5 seconds.

Figure 2.5 shows the auto-correlations of the same activity (walking) per-

formed by three users. For different users, the intervals between two peaks are

different, which shows the walking pace varies among different users. This user-

identifiable pattern is a challenging feature to obscure before sharing the data.

In fact, such different patterns in sensor data are what an app can exploit for

user re-identification or to discover the user’s gender.

2.1.4 Browsing History

Web browsing apps, for content-based advertisement [131], usually classify web

contents into different categories such as educational, financial, sport, family,

and entertainment. When a user is browsing the contents of a web page,

the user’s browsing data is updated to capture the recent user’s interactions.

Through time, the browsing history of a user can be used to identify the user’s

interests or temporal requirements. Hence, this data is a valuable source of

information for personalization purposes [41].

A typical representation for the browsing history is obtained via histograms.

For example, Figure 2.6, shows a histogram of my Site Engagement data [132].

Chromium browser keeps more than 4000 different histograms each representing

accumulated data of a specific variable and capturing data from browser startup

to current page load [133]. A histogram of browsing history is an indicator of

the user’s personal interests and needs [134], and can be used to re-identify the

user. From Figure 2.6, one can easily guess that data is linked to a student of

Queen Mary University of London, who is a heavy user of LATEX, using deep

learning libraries, reading about visa immigration rules, and listening to Persian

27



 

Figure 2.6: Screenshot of Site Engagement for data captured by my personal
Chromoium browser at 25-08-2020. The engagement score (range between 0 and
100) of an Origin (i.e. a URL) is a cumulative function of how long the user
scrolls, how many clicks are made, and how many character are typed during
each visit [132].

music!

2.2 Privacy Definitions

In this thesis, we focus on two major categories of privacy algorithms known as

differential privacy (DP) [60] and inferential privacy (IP) [71]

2.2.1 Differential Privacy

Intuitively, a DP algorithm bounds the ability of attackers to distinguish whether

or not the data of a specific user, x, is used in the computation; holding the

participation of all other user’s data fixed assuming a threat model where all-

but-one can collude. This is known as the worst-case adversary of DP where we

assume that an adversary can have complete knowledge about all the user’s in

the dataset, except one of them who is the target of the attack.

Definition 2.1 (Differential Privacy [59, 60]). Given ε, δ ≥ 0, a data shar-

ing algorithm M satisfies (ε, δ)−differential privacy if for all pairs of neighbor

datasets X and X′ differing in only one sample x—such that X = X′ ∪ {x} or
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X′ = X ∪ {x}—and for all Y ⊂ Range(M), we have

P
(
M(X) ∈ Y

)
≤ eεP

(
M(X′) ∈ Y

)
+ δ, (2.2.1)

where ε is the parameter that specifies the privacy loss, δ is considered as the

“probability of failure” in ensuring that the inequality holds, and the probability

distribution P is over the internal randomness of the algorithm M, holding the

dataset fixed.

An algorithm with δ = 0 is called a pure DP because it never fails to

bound the privacy loss. An algorithm with δ > 0 is called approximate DP

because it approximately ensures, with probability 1 − δ, that the privacy loss

is bounded [59].

In the DP definition, eε can be seen as an approximation to 1 + ε [60] such

that an acceptable privacy loss must keep these two values close to each other:

eε ≈ 1 + ε. However, the multiplicative term eε is preferred, rather than the

additive term 1+ε. Despite the fact that the behavior of eε under multiplication

is much more useful (eε1eε2 = eε1+ε2) [135], the main reason is that the additive

definition allows the existence of a algorithm M that picks a random user’s

record from the input database and outputs it, while satisfying P(M(X) ∈ Y) ≤
P(M(X′) ∈ Y) + 1

size(X)
. The multiplicative definition in (2.2.1) rules out the

possibility of such algorithm [60]. For the same reason, a DP algorithm with

δ ≥ 1
size(X)

is not an acceptable algorithm.

When the goal is to approximate a deterministic function F (e.g. the mean or

histogram of the dataset), a typical example ofM in Definition 2.1 is the noise

addition algorithm, such as a zero-mean Laplace [136] or Gaussian noise [59]

with the variance proportionate to the sensitivity of F . In general, to be able to

calculate the SF , one always needs to know, or at least to bound, the Range(F);

otherwise, a DP algorithm cannot be designed.

For example, in a Laplace DP algorithm, the sensitivity of a function is

defined as the maximum of the absolute distance SF = maxX,X′ |F(X)−F(X′)|
among all pairs of neighbor datasets X and X′. Considering a function F :

Rsize(X) → R, a Laplace algorithm M that satisfies ε-DP is defined as

M(X) , F(X) + Lap(
SF
ε

)

where Lap(SF
ε ) is a random sample drawn from a zero-mean SF

ε -variance Laplace

distribution.

DP algorithms give a mathematical bound on the privacy loss for both user-

level (local DP) and population-level (central DP) data sharing. A central DP

algorithm considers a model where users trust the data aggregator, thus they
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share their original data with the aggregator. The trusted aggregator then

applies transformations (e.g. noise addition) to the outcome of a target com-

putation on the collected data before sharing them with other third parties. A

local DP algorithm randomly transforms data at the user’s side without needing

to trust the data aggregator or other third parties [137, 138, 139].

Let x denote the user’s original data and x′ denote a random value selected

from the set of possible values. A local (ε, δ)-DP algorithm M releases y such

that P(M(x) = y) ≤ eεP(M(x′) = y)+δ . Thus, in terms of privacy guarantee,

local DP ensures that the probability of discovering the true value of the user’s

data (i.e. whether it was x or x′) is limited to a mathematically defined upper-

bound. However, central DP gives such an upper-bound for the probability of

discovering whether a specific user has shared their data or not.

The central and local are sometimes referred to as output perturbation and

input perturbation, respectively: In the former, the result of a computation is

perturbed before releasing it, while in the latter each datum is perturbed, before

performing any sort of computations. Although DP algorithms are mostly used

for computing aggregated statistics, such as the mean, variance, or histogram

of a common attribute among users [140, 141, 142], DP algorithms can also be

used for training machine learning models on sensitive datasets while providing

plausible deniability guarantees for the participants in the dataset [143, 144,

145]. In [143], authors propose a central DP algorithm, called differentially-

private stochastic gradient descent (DP-SGD), that randomly sample a batch of

samples from a training dataset and adds random Gaussian noise to the average

of the clipped gradients before updating the weights of the model. Similar

to DP-SGD, authors in [144] propose a local DP algorithm, called LDP-SGD,

where users locally compute the clipped gradients using their private data and

then share a randomized version of their gradient which further will be averaged

at the server side to update the model.

Differential privacy mainly considers the effect of using or not using a sin-

gle data point on the result of a computation, and makes no assumption on

the distribution of the data. Although DP offers a strong privacy guarantee,

adjustable by a well-defined privacy loss parameter ε, it only cares about the

privacy violation of sharing personal data, and not proposing any explicit no-

tion of the data utility. A cost of having such a strong definition is that DP

does not provide a guarantee on the type and amount of information that is

revealed by sharing the data [71]. Moreover, DP cannot be efficiently utilized

in a setting of multivariate data sharing, mainly because of the data correlation

and the DP’s composition property [136]. Basically, DP algorithms offer how

to compute a random noise, n, to be added to the original data, x, such that

an adversary’s ability to reconstruct the original data from the received noisy
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data, y = x + n, is bounded. As we discussed earlier, for a fixed ε ≥ 0, the

variance of the required noise for DP mainly depends on the sensitivity of the

target function. When the function is to release a transformed version of the

data, and not a statistic about the data, e.g. for a time window of multivariate

sensor data, the sensitivity is not only unknown in a dynamic setting but is

usually very large.

For example, there will be multiple releases of very similar data patterns in

a continual sharing scenario with periodic sensor data, e.g. the gait of a walking

person. The composition of T consecutive ε-differentially private computation

is in order of (T · ε)-differentially private [60]. Therefore, to guarantee a desired

bound on the privacy loss, the privacy budget ε must be decided among the

whole period of data release such that, for instance, each data release guarantees

a bound of ε/T . Thus, when sharing multivariate data, where T is usually a

large number, one can only guarantee ∞-differential privacy if we want to keep

the utility of data; otherwise, the appropriate noise level would be so high as

to be equivalent to complete randomization. Hence, despite the strong privacy

guarantee and its usefulness in sharing data bounded to a specific range, DP is

not a meaningful notion of privacy for multivariate temporal data sharing.

2.2.2 Crowd-Blending Privacy

Crowd-blending privacy [68] aims to blend the data of every user in a crowd of

l ≥ 0 users in a way that replacing the user’s data with any other individual’s

data in this crowd does not alter the results of the target computation. A

necessary condition for satisfying the crowd-blending privacy, for a user’s data

in a dataset, is the existence of at least l − 1 other data sample that can be

categorized in the same group with the user’s data. If the condition is not

satisfied for a user’s data, then the algorithm must essentially ignore that data

and should not use it in the required computation.

Definition 2.2 (Crowd-Blending Privacy [68, 146]). Given l ≥ 1, we say

a data sharing algorithm M satisfies l-crowd-blending privacy if for all pairs

of neighbor datasets X and X′ differing in only one sample x—such that X =

X′ ∪ {x}—we have

size

({
y ∈M(X) : y =M ({x})

})
≥ l or M(X) =M(X′). (2.2.2)

The Equation 2.2.2 means that (i) for every sample data x in the original

dataset X the corresponding transformed data y is equal to the output of at

least l − 1 other samples, (ii) otherwise M completely ignores the sample data

x, hence the ultimate output of the M does not depend on the presence or
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absence of x.

Overall, every DP algorithm satisfies crowd-blending privacy for every pos-

sible l ≥ 1, hence the crowd-blending privacy can be considered as relaxation

of DP [68]. The most important aspect of crowd-blending privacy is that if one

performs a pre-sampling, before applying the crowd-blending algorithm M on

the collected dataset, the combined pipeline, of first pre-sampling then crowd-

blending, provides a DP guarantee [68, 146]. The pre-sampling means to ran-

domly and uniformly choose a fraction of (p < 1) percentage of the whole avail-

able users. Thus, as the randomness of M is a necessary condition for a DP

algorithm, but not for a crowd-blending algorithm, this pre-sampling introduce

the required randomness. This intuitively says that looking at the outcome of

M, not only every user’s data blends in a crowd of l people (due to crowd-

blending), but also the user’s data being sampled or not is also not clear (due

to pre-sampling).

Notice that the outcome of a crowd-blending algorithm depends not only on

the dataset, but also on the desired algorithm M. This makes crowd-blending

a more flexible privacy notion than the k-anonymity [66] which is a notion of

privacy independent of any specific algorithm, and mainly designed for releasing

tabular datasets. Thus, unlike crowd-blending and DP, k-anonymity is not a

property of an algorithm, but a property of the dataset. More precisely, a

property of a subset of attributes in a tabular dataset, known as quasi-identifiers.

A tabular dataset satisfies k-anonymity if and only if each combination of quasi-

identifiers appears with at least k occurrences [66]. For example if a dataset

has three attributes, namely age, gender, and disease, then a 10-anonymity

dataset, with age and gender as the quasi-identifiers, has at least 10 records for

each appearing combination of age and gender. Crowd-blending extends this

definition by considering assigning this property to the algorithm that produces

the dataset, hence it can also be used in other scenarios than dataset release

depending on the required algorithm M.

2.2.3 Inferential Privacy

An IP algorithm minimizes the amount of sensitive information included in the

shared data, while keeping a constraint on the amount of distortion that is

allowed in the required data.

Definition 2.3 (Mutual-Information Privacy [71, 85, 147]). Given λ ≥ 0,

the distortion measure D, and an observed data x, that is informative about two

hidden random variable s (sensitive) and r (required), we say a data transfor-

mation algorithm M that transforms x to y, satisfies a λ−mutual information
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privacy if it is a solution of the following optimization problem:

min
M:x→y

I(s;y) subject to I(r,y) ≥ λ. (2.2.3)

where I(·, ·) denotes the mutual information, and the Markov chain (s, r) →
x → y is assumed as the underlying structure of data generation process, and

the distortion measure can be any deterministic or probabilistic function of the

data.

Intuitively, an IP algorithm implies that for a given utility constraint based

on λ, among all feasible algorithms, we select the one that minimizes I(s;y). An

algorithm with the perfect utility tends to release y = x that maximizes I(r,y);

however this algorithm also maximizes I(s,y) that means the worst privacy.

On the other hand, an algorithm with the perfect privacy tends to ignore x and

uniformly and randomly release a y that gives I(s;y) = I(r,y) = 0 that is

equal to the worst utility.

IP algorithms propose establishing a trade-off between the utility of the re-

quired information, and the privacy of the sensitive information such that the

shared transformed data be as informative as possible about the required in-

formation, while revealing as little as possible the sensitive information [147].

Thus, IP algorithms are aimed to reduce the possibility of inferring user’s sensi-

tive information from the shared data, while keeping the possibility of inferring

non-private required information from data at an acceptable level [85, 148].

Since the optimization problem defined in (2.2.3) is a non-convex [147] prob-

lem, as a practical alternative we can rewrite (2.2.3) as a minimax optimization

min
M:x→y

max
A:y→s

I(s;y) + max(0, λ− I(r;y)), (2.2.4)

where A is an adversarial algorithm that is optimized to infer the sensitive in-

formation. Thus, in turn and repeatedly, we can optimizeM and A in minimax

game. Notice that, when we are optimizing A, M is fixed and so the second

term in (2.2.4) is ignored by A.

In a practical setting, it is not straightforward to target a desired λ for the

required utility. Therefore, a similar but more straightforward formulation of

(2.2.4) is:

min
M:x→y

max
A:y→s

I(s;y)− αI(r;y), (2.2.5)

where α > 0 is a hyper-parameter that can be used to establish a desired privacy-

utility trade-off. In Chapter 4, we provide some examples of such trade-offs

where we regularize the loss function of a DNN based on such hyper-parameter

during training.
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Similar to DP, a data aggregator can be trusted or not, hence data transfor-

mation can be done at the user’s side or on the collected data from a popula-

tion [149, 88, 86]. Unlike DP, IP algorithms do not guarantee an exact statistical

upper bound for the privacy loss incurred by each data release. The main reason

is that the statistical bounds in DP algorithms, ε and δ, depend on the chosen

noise and the sensitivity of the desired function. However, the privacy metrics

used in IP algorithms are mainly based on the theory of Shannon information

content [150] where for the exact computation of the provided upper-bounds, we

need to know the exact probability of each possible outcome to compute mutual

information; a requirement which is almost impossible to satisfy for real-world

data. Hence, IP algorithms usually provide an approximation of the provided

privacy guarantees [62, 89]. As, in practice, the data distribution is estimated

from an available dataset, the effect of the discrepancy between the estimated

empirical distribution and the true data distributions can be a great risk to

privacy, which should be taken into account when offering IP algorithms [151].

In practice, we need an empirical estimation of mutual information to find an

approximate solution to the problem in Equation 2.2.5. Poole et al. [152] provide

a summary and evaluation of several recent methods of mutual information

estimation. Adversarial estimation using a parameterized model is one of these

common approaches that is used in the literature [86, 88, 153]. As I(s | y) =

H(s) − H(s | y) and in a fixed dataset H(s) is fixed (i.e. does not depend on

the algorithmM). Thus the estimation of I(s | y) is reduced to the estimation

of H(s | y) which can be achieved via a parameterized model, e.g. a neural

network, that takes y as input and produces ŝ as an estimation to the true s

trained via log-loss [147]. In Chapter 4 we discuss more on such adversarial

estimation and use it for training an autoencoder that aims to transform data

such that it (approximately) minimizes sensitive information.

2.3 Privacy-Preserving Data Sharing

In Table 2.1 we provide a summary of algorithms that have been used for

privacy-preserving data sharing. In terms of the privacy concern, a privacy-

preserving algorithm aims to release data such that the released data does not

include sufficient information either (i) to confidently reconstruct the original

data, or (ii) to discover a sensitive latent information from the released data,

or (iii) to realize whether a specific user’s data is part of the released data or

not (i.e. membership inference). Regarding the utility of the released data, a

privacy-preserving algorithm should preserve information with respect to a re-

quired task such as calculating the sum, estimating a histogram, or discovering a

required latent information. Privacy-preserving algorithms are either run at the
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Table 2.1: A summary of privacy-preserving algorithms for data sharing. U and
S refer to the user and server side, CDP and LDP refer to the central and local
differential privacy, and IP refers to the inferential privacy.

Work Algorithm Privacy Utility Side Data Type Bound

[22]

perturbation
membership

sum S binary CDP
[154] histogram S categorical CDP
[137, 141, 155, 156] histogram U categorical LDP
[92, 157, 158]

reconstruction latent info. U real-valued
LDP

[26] –
[25]

synthesis
latent info. latent info.

S real-valued
–

[62, 159] membership latent info. CDP
[80]

filtering latent info. latent info.

U

real-valued

–
[84] S –
[82] U IP
[88, 86, 160]

sanitization latent info. latent info.

S

real-valued

IP
[161] U IP
[162] U –
[149, 163, 73, 74] S –

User side or the Server side, but not all of them are based on the well-defined,

DP or IP, privacy bounds.

Achieving the perfect preservation of both privacy and utility in multivariate

data sharing is a challenging task. Therefore, there have been many efforts to

design and evaluate algorithms that allow us establishing a trade-off between

privacy and utility [13, 19, 164, 85]. In the following, we discuss and compare the

related privacy and utility preserving algorithms, grouped into four categories:

perturbation, synthesis, filtering, and sanitization.

2.3.1 Perturbation

Perturbation generally means adding a carefully computed noise to the original

data. Apple proposes a local DP algorithm to collect personal data for getting

insights into the most popular items among their users [155]; e.g., the words or

emojis that are trending or the health categories that are most popular among

users. Each user’s device, once per day, chooses the latest temporal data point

(e.g. the latest typed emoji), applies local randomization to it [22], and sends it

over an encrypted channel to the server. A mediator server is used to remove the

communication identifiers and any other data that can associate a data point

to a specific user. Such a mediator can also buffer the users’ shared data and

later shuffle them before sending them to the untrusted server. The buffering

and shuffling operations can protect the system against timing attacks and also

amplify the guaranteed DP privacy bound [139, 158].

An important concern regarding the use of local DP algorithms is about

privacy leakage that can occur if data is collected repeatedly. Although the

privacy guarantee for a single data point may seem appropriate, for instance, if
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the ε ≤ 1, the overall privacy loss per device is increasing over time if the user’s

data points do not significantly change or if they are correlated. For example, it

is a reasonable assumption to say a user may send similar emoji multiple times.

Depending on the value of ε, after a number of rounds, the server has enough

noisy versions of the same data to confidently reconstruct the original data.

The privacy loss upper-bound proposed by local DP follows the composition

theorem [60] which states that the privacy guarantee gets weaker by a factor of

the number of iterations.

A technique called memoization can be used to remedy the effect of repeated

data collection [137, 141]. In memoization, a user’s data point is randomized

once at the user’s side, then at each iteration, the user sends a randomized

instance of that fixed value to the server. Randomization is done by dividing

the promised privacy budget ε among T iterations, and by adding the Laplace

noise with a variance of T
ε . Google [137] and Microsoft [141] use a local DP

algorithm with Memoization for the estimation of mean or histogram of the

user’s daily usage statistics; across millions of their users. Memoization has

some limited applications such as calculating the mean or the histogram, and

it’s meaningful if the user’s data remains approximately the same, or varies

around a small number of values. Fan et al. [154] propose to exploit the domain

knowledge: after adding Laplacian noise, the authors perform a post-processing

stage to release more utility-preserving data for sharing location data in multiple

iterations. Joseph et al. [156] propose to repeatedly recompute a statistic with

an error that decays proportional to the number of times the data changes

significantly rather than the total iterations.

In sharing multivariate data, DP cannot offer a practical algorithm. Hence,

privacy-preserving algorithms for time series sharing consider privacy models

based on domain-specific privacy and utility definitions. To hide sensitive pat-

terns in time series a crafted, privacy-preserving algorithms add a noise that is ei-

ther independent or correlated [165, 162], to each time window of the time series.

As independent and identically distributed noise can be easily removed from cor-

related time series [26] to reduce the risk of information leakage, the correlation

between noise and original time series should be indistinguishable [83, 166].

Low variance additive random noises can be filtered out using a method called

random-matrix filtering, while noises with high variance completely destroy the

utility of data [167].

2.3.2 Synthesis

When the primary goal of collecting personal data is to train or evaluate machine

learning models, one can build a synthetic data generation model based on
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the distribution of the original dataset. A synthetic dataset maintains some

required information of the original data, but not all the information that can

be used to re-identify users or are related to the user’s privacy. For example,

to protect health records, synthetic medical datasets can be published instead

of the real ones using generative models trained on sensitive real-world medical

datasets [62]. Zhang et al. [168] propose an obfuscation method that generates

and releases synthetic data (e.g. HTTP requests) alongside real data to ensure

that the service provider cannot distinguish which incoming data are real and

which are generated.

Optimization methods can be used to generate and publish an entirely new

time series from the original ones by considering some predefined constraints

on the type of information that can be inferred [25]. Generative adversarial

networks [114] can be used to approximate the data distribution to generate

new synthetic data that is similar to the existing one [169]. To provide a privacy

guarantee, generators can be trained under the constraint of DP [159, 170] or

with constraints on the type of information that should be unsynthesized in the

data [25]. However, these generative algorithms are mostly usable for dataset

publishing by a data aggregator [62], not for online data transformation at the

user side.

2.3.3 Filtering

In some applications of sensor data analysis, users only want to filter some sensi-

tive time windows of their data instead of perturbing the whole time series [81].

Thus, an appropriate algorithm should apply an amount of perturbation to each

time window of a time series proportionate to the structure of that time window.

Filtering algorithms can be used to remove time windows that include sensitive

information, while releasing time windows that are required and not sensitive

without any modification. For example, users of a smart home must give the

aggregate electrical usage to the service provider, but might want to keep the

information related to their eating patterns private (e.g. microwave usage).

Erdogdu et al. [82] propose to estimate the correlations between time series

to be released and a private variable using probabilistic graphical models to

filter out the time windows that are highly correlated to that private data. An

algorithm called MaskIt [80] releases location time series when users are at a

regular workplace and suppresses location data when users are in a sensitive

place, such as a hospital, by building a Markov chain on a pre-defined set of

sensitive locations. Saleheen et al. [84] suggest a dynamic bayesian network

model to replace sensitive time windows that indicate users’ stress, while keeping

non-sensitive time windows corresponding to their walking periods. Overall,
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when we are facing with multivariate time series of fine granularity, algorithms

based on the probabilistic model are not tractable, as it is not easy to find an

accurate model of correlation between the original data and the noise needed for

the desired utility-privacy trade-off. Hence, hiding sensitive patterns without

excessively perturbing the non-sensitive ones is very challenging when general

time series perturbation approaches are extended to sensor data.

2.3.4 Sanitization

Sanitization is the process of removing sensitive information before publishing

data which is formulated through a minimax game[88, 161] between two players:

a user who wishes to hide their sensitive data and a malicious app that seeks

to find the sanitized sensitive data. For example, by smoothing the signal and

reducing the sampling rate of time series data, users can protect such sensitive

inferences that can be made on fine-grained data, but not from the coarse-

grained version of the data [162].

The capacity of deep neural networks in extracting useful features helps to

capture the main factors of variation in the data and to identify and obscure

sensitive patterns in the latent representation [86], as well as during the recon-

struction from the extracted low-dimensional representation [161, 171]. Thus,

using deep neural networks, the original data can be transformed into a lower

dimensional [86, 149, 160] or the same dimensional [88, 161] data such that

the amount of sensitive information in the data is reduced while non-sensitive

information is preserved for utility.

2.4 Learning from Distributed Data

As we discussed in Section 2.2, DP algorithms are not practical to be used

for releasing multivariate data, and IP algorithms require having knowledge of

the true data distribution to provide an exact statistical guarantee. Particularly,

such privacy-preserving data sharing algorithms might not be useful in situations

where data is highly sensitive and informative about the user’s identity (e.g.

web-browsing data). To tackle this problem, an alternative approach is that

data does not need always to leave the user’s device if we only need to learn

some specific information from that data. Federated learning is built upon this

approach of doing on-device training through the idea of “bringing the code to

the data, instead of the data to the code” [91]. Thus, instead of sharing the raw

data, or sharing a randomized or transformed version of the data, users train the

received machine learning model on their private data and share the updated

parameters of that model. In federated learning, DP algorithms can be used
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to add noise to the model’s parameters, instead of directly adding noise to the

data, which is shown to be a more utility preserving solution [144]. To ensure

that the updated model remains encrypted even in the server’s memory, one

can use the secure aggregation through multi-party computation [91, 90]. Thus,

instead of performing a data transformation and releasing the transformed data

for further computations, users can keep their data and choose whether they

want to participate in a specific computation or not.

The Draw and Discard algorithm [92] is a combination of federated learning

and differential privacy that encompasses decentralized model training for gen-

eralized linear models. The Draw and Discard consists of two components: On

the server’s side, it sends a randomly chosen model instance (among k available

models) to the user that is trained locally at the user’s side. Upon receiving an

updated model instance from a user, the server randomly replaces it with one

of the k existing instances. On the user side, users update the linear model on

their data, and add Laplacian noise to the model parameters to satisfy differ-

ential privacy. Draw and Discard assumes that the features of the model are all

uncorrelated. As a consequence, for achieving model-level privacy, where most

features are correlated to each other, substantially more noise needs to be added

to the updated model before sending the model to the server.

A collaborative system for training deep neural networks in mobile environ-

ments is proposed by Liu et al. [172] that enables multiple agents to train a

model only by sharing partial parameters with each other; arguing that privacy

is protected by keeping data locally and only share a small fraction of the pa-

rameters to the server at each round. However, even in such cases, if a system

does not satisfy the DP requirements, then there is the risk of model inversion

attacks that reconstruct data based on the shared parameters [173]. To protect

the privacy of the patients, a federated learning system for brain tumor seg-

mentation is proposed in [157] in a setting where each hospital owns a dataset

of MRI scans. Shariff et al. [174] discuss that adhering to the standard notion

of DP implies high data perturbation. Thus, they use a relaxed notion of DP,

called “joint differential privacy”, that allows using the non-privatized data at

time t , while guaranteeing that all interactions with all other users at time

points t′ > t have very limited dependence on that user data at time t.

2.5 HAR Datasets

In Table 2.2, we summarize the details of motion-sensor datasets, for human

activity recognition, that are used in this thesis.

Opportunity [97] is composed of the collected data of 4 users and there

are 18 gestures classes. Each record in this dataset comprises 113 sensory read-
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ings from various types of body-worn sensors like accelerometer, gyroscope, and

magnetometer.

Skoda [96] is collected by an assembly-line worker in a car production com-

pany wearing 19 accelerometer sensors on his right and left arm and performing

a set of pre-specified experiments.

Hand-Gesture [98] includes data from accelerometer and gyroscope sen-

sors attached to the upper and lower arm. There are two users performing 12

classes of hand movements. Each record in this dataset has 15 real-valued sensor

readings.

Utwente [99] includes the data of 10 participants performing several ac-

tivities, including potentially sensitive smoking activity, while wearing a smart-

phone on their wrist. Accelerometer, gyroscope, and magnetometer data are

collected. The whole dataset is publicly available in a single file with activity

labels only. We divide the dataset into 80% training and 20% validation.

UCI-HAR [100] is a widely used dataset [101, 102, 103, 117] of 30 users

performing 6 activities. Accelerometer and gyroscope data were collected by a

smartphone worn on the waist. Data from 21 users are used for training and

that of the other 9 users for testing purposes.

MobiAct [175] contains the accelerometer, gyroscope, and orientation data

collected from users who kept a smartphone in their front pocket and performed

different types of activities. We use the data of 55 users, including 41 males and

14 females, who have performed falls alongside other normal activities.

Our dataset, MotionSense, is collected with a smart-phone kept in the

users’ front pocket. A total of 24 users (14 males and 10 females) performed

6 activities in 15 trials in the same environment and conditions at the campus

of Queen Mary University of London. It includes accelerometer and gyroscope

data. Among these HAR datasets, only MobiAct and our MotionSense include

users’ attributes such as gender, age, weight, and height which are highly useful

for evaluating privacy-preserving algorithms that need multi-label datasets. Mo-

biAct dataset has been released, while we were collecting MotionSense dataset,

but we were not aware of that. Nevertheless, because of sharing some similarities

such as the type and on-body location of the device, MobiAct and MotionSense

can be combined for evaluating HAR models, as in Appendix A we show an

example of such evaluation.

For each user, the data collection had been commenced by collecting the

user’s attributes: gender, age, weight, and height. Then, we provided the user

with a specific smartphone (iPhone 6) and asked them to keep the phone in

their trousers’ front pocket during the experiment. All the users were asked to

wear flat shoes and tight trousers. The shoes and trousers were not chosen by

us, but their own clothes. We asked each user to perform 6 different activities
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(walking, jogging, sitting, standing, stairs-up, and stairs-down) around the Mile

End campus of Queen Mary University of London.

In each trial, we set up the phone and gave it to the user, then we stood in a

corner. The user pressed the start button of the Crowdsense app [176], and put

it in their trousers’ front pocket, and performed one of the defined activities.

We asked them to do it as naturally as possible, like their everyday life. At

the end of each trial, they took the phone out of their pocket and pressed the

stop button. MotionSense is published at https://github.com/mmalekzadeh/

motion-sense.
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Table 2.2: Details of the datasets for human activity recognition based on motion sensors (A: accelerometer, G: gyroscope, and M: magnetometer)
that we use throughout this thesis. The null class refers to data that cannot be mapped to a known behavior. Only two datasets include user’s
attributes: gender, age, weight, and height.

# Opportunity [97] Skoda [96] HandGesture [98] Utwente [99] UCI-HAR [100] MobiAct [177] MotionSense (Ours)
0 null null null — — — —
1 open door1 write notes open window walking walking walking walking
2 open door2 open hood close window stairs-down stairs-down stairs-down stair-down
3 close door1 close hood water a plant stairs-up stairs-up stairs-up stairs-up
4 close door2 check front door turn book standing standing standing standing
5 open fridge open left f door drink a bottle sitting sitting sitting sitting
6 close fridge close left f door cut w/ knife jogging lying jogging jogging
7 open washer close left doors chop w/ knife cycling — jumping —
8 close washer check trunk stir in a bowl typing — falling —
9 open drawer1 open/close trunk forehand writing — — —

10 close drawer1 check wheels backhand eating — — —
11 open drawer2 — smash smoking — — —
12 close drawer2 — — — — — —
13 open drawer3 — — — — — —
14 close drawer3 — — — — — —
15 clean table — — — — — —
16 drink cup — — — — — —
17 toggle switch — — — — — —

Users 4 1 2 10 30 61 24
Features 113 57 15 9 6 9 6

Sampling Rate (Hz) 30 30 30 50 50 50 50
Sensors A, G, and M A A and G A, G, and M A and G A,G, and M A and G

User’ Attribute No No No No No Yes Yes
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2.6 Summary

We have discussed the recent progress in the field of data privacy with a focus on

the algorithms proposed for time series data sharing. While existing works are

proved useful for many applications, there still are some challenges in applying

them to behavioral data generated by users of mobile and wearable devices.

First, most of the previous works are only useful in an offline setting where

we first collect all the data at one place and then perform transformations

(e.g. sanitization or anonymization), however in many real-world situations we

need algorithms that can be shipped to the user’s side for performing online

data transformations. For example, it might not be a realistic assumption to

design a trusted mediator system that collects sensor data produced by all users

of an activity recognition app every day, and then performs anonymization

before sharing users’ data with the app for receiving some health monitoring

statistics. Similarly, it is hardly imaginable to have a trusted mediator for

collecting and anonymizing all users’ web browsing histories sharing them with

a recommendation app to propose some personalized contents.

Second, previous works are mostly focused on the extraction of a population-

level aggregated statistic from personal data, but for many situations we need

to extract user-level information and propose personalized services based on

their behavioral data. In some personalized settings, e.g. in continually sharing

multivariate sensor data, central DP algorithms are not applicable and local

DP algorithms cannot achieve any meaningful utility. Thus, we need to think of

a more practical notion of privacy. For example using inferential privacy with

empirical guarantees, where privacy loss is quantified based on the empirical

estimation of information leakage. Although the guaranteed privacy by such

empirical algorithms is weaker than a pure IP algorithm or a local DP algorithm,

these empirical algorithms can provide some acceptable privacy protection that

might be useful in situations that there are no other choices than having no

privacy at all.

Therefore, in this thesis, we focus on machine learning algorithms that can

be run at the user side and can be generalized to unseen users who did not

contribute training data. The aim is to cover the shortcoming of centralized

approaches that first need to collect all users’ data, then release a transformed

version of the collected dataset to the untrusted parties. In the proposed work

in this thesis, we do not assume the existence of a trusted data aggregator to

perform anonymization for end users. We only assume having access to a public

dataset for training a generalized algorithm. It is much more reasonable to

design a privacy-preserving machine learning algorithm that can be trained on

a dataset collected from hundreds of users, and then be used by thousands of
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other users to perform anonymization locally.

In addition, we argue that when it comes to multivariate data with charac-

teristics we need algorithms that are adaptive and robust to changes so they can

be used across different users and devices. While making an algorithm adaptive

to changes in the dimension of their input data does not make it a privacy-

preserving algorithm per se, it can enable the design and deployment of more

flexible privacy-preserving algorithms. For instance, if we want to allow users

to have more control over the data they are sharing with an activity recognition

app, an adaptive algorithm allows apps to continue their service even if the user

can choose the type of sensors and sampling rate of the data.
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Chapter 3

Sensitive Data Replacement

3.1 Overview

A typical setting in health and wellness monitoring via wearable devices is an

app that monitors the user’s activities through time, reporting useful statistics

to them alongside some fitness or health advice [? 8, 99, 34]. Basically, not

all the user’s activities are required to be recognized by the app to achieve

the desired utility, and more importantly, some of the non-required activities

might be sensitive to the user’s privacy. Ideal privacy and utility preserving

algorithm should allow the app to accurately recognize the required activities

while preventing it from the recognition of sensitive activities [178, 84]. To

achieve such a desire, we propose to utilize the capacity of activities that are

neither required nor sensitive; in the following, we will refer to these as neutral

activities.

For example, Figure 3.1 shows 11 samples of accelerometer time-series from a

smartwatch worn on the user’s right wrist [99]. Considering an app that counts a

user’s daily steps, the user may want this app to only be able to exclusively infer

activities that are required for step counting task (e.g. walking, jogging, and

stair-stepping), and not inferring activities such as smoking or typing that may

be considered sensitive. The idea is to automatically detect and replace data

patterns that reveal sensitive activities with the same dimensional data that

simulates neutral activities that do not affect the step counter’s utility (e.g.

standing or sitting that are not related to the step counting). In this chapter,

we propose Replacement AutoEncoder (RAE) to transform data patterns that

correspond to sensitive activities into some patterns that are more observed in

neutral activities, while keeping the patterns corresponding to required activities

as unmodified as possible1.

1Code and data to reproduce results are publicly available at https://github.com/mmalekzadeh/
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Figure 3.1: Three-axis (x, y, z) accelerometer data of a smartwatch worn on the
right wrist, from UTwnete dataset [99].

3.2 Autoencoders

The performance of a classification task depends on the data type, the data

representation, and the quality of the extracted features on which a classifier

is applied. When using classical machine learning algorithms for classification,

such as decision trees or nearest neighbors, we need to first devise an appropriate

feature extractor to pre-process multi-dimensional raw sensor data, and then

feed them into the classifier. On the other hand, a deep neural network (DNN)

can automatically learn representations of data that capture relevant features

for the classification tasks. The key aspect of representation learning is the

extraction of features from data and discover the informative representation

needed for the desired task.

DNNs are representation learning architectures with multiple levels of rep-

resentation, developed by composing a multi-layer stack of non-linear modules

replacement-autoencoder
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that each transform the representation at one level into a representation at a

higher, slightly more abstract level [179]. The hidden layers of a deep neural

network (starting with the raw input) can potentially learn more abstract fea-

tures at higher layers of representations and reuse a subset of these features

for each particular task. The earlier layers of a deep neural network contain

more generic features that should be useful for many tasks, but later layers

become progressively more specific to the details of the classes relevant to the

desired task [180, 181]. Thus, feeding such representations to a classifier helps to

achieve better generalization [181]. When compared to other machine learning

approaches, DNNs have shown superior performance in processing data streams

generated by mobile and wearable sensors [116, 102, 101, 182, 103, 119, 183].

An autoencoder is a deep neural network that composes of an encoder

Fe(·; θe) and a decoder Fe(·; θe), respectively parameterized by the parame-

ter sets θe and θd. As an unsupervised feature extractor, an autoencoder is

trained to first encode the input X into a latent representation z = Fe(X; θe),

and then to output Y = Fd(z; θd) as the reconstruction of the input by decoding

that latent representation. The parameters of the autoencoder are optimized to

minimize average reconstruction error L(X,Y ):

θe, θd = arg min
θe,θd

N∑
i=1

L(Xi,Y i)

where Xi is the i-th sample in the dataset, Y i is the produced output for Xi,

and L is a loss function (e.g. mean squared error) that measures the discrep-

ancy between original data and its reconstruction, over all provided training

examples [184].

By constraining the latent feature vector z to have a lower dimension than

input data X, an autoencoder is forced to learn and capture important features

of the underlying data-generating distribution. This bottleneck forces the train-

ing process to capture the most descriptive patterns in the data (i.e. the main

factors of variation of the data) in order to generalize the model and prevent

undesirable memorization [185, 180]. For example, if an autoencoder has just

one hidden layer with a linear activation function and the loss function is the

mean squared error, then the k hidden units of that hidden layer learn to project

the input in the span of the first k principal components of the data [186]. Using

non-linear activation functions, one can extend the learned feature set beyond

just principal components, and even capture more complex and non-linear fea-

tures [187].

Another effective way to train an autoencoder is to randomly add noise to

the original input and force the model to refine it in the reconstruction, called
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denoising autoencoder [188]. In this way, a well-trained autoencoder captures

prominent and desired patterns in the data and ignores noise or undesired pat-

terns [188].

3.3 RAE Methodology

Let us elaborate the assumptions about the three categories of patterns in sensor

time series that can be mapped into corresponding human activity.

• Required: A set of patterns that help the app to recognize activities which

the user gains utility from sharing with the app.

• Sensitive: A set of patterns that help the app to recognize activities that

users wish to keep private and should not be revealed to the app. These

activities are sufficiently sensitive that users would wish to prevent infer-

ence that they have undertaken any activities within this set even if the

app cannot know which specific one.

• Neutral: A set of patterns that correspond to activities that are neither

sensitive to the user’s privacy nor required for gaining utility from the

app. This set may include patterns that cannot be mapped to a known

or meaningful activity.

Our assumptions are that (i) we know what activities are required for the

app to provide the promised utility, (ii) we know what activities are sensi-

tive to the users, and (iii) every activity that is not listed as required or sen-

sitive, will be considered as a neutral activity. We assume B classes of ac-

tivities, a = {a1, ..., ai, ..., aj , ..., aB}, are divided into three categories: (i)

Required, r = {a1, ..., ai}, (ii) Sensitive, s = {ai+1, ..., aj}, and (iii) Neutral,

n = {aj+1, ..., aB}. The focus is on the classification of the user’s activities

through pattern recognition in sensor time series, especially using deep neural

networks [102, 101, 116].

Let X ∈ RW×H denote a time window of length W that includes H sensor

streams (i.e. variables). Let X contain patterns that can be classified into

a known activity class. Let the training dataset include labeled sample time

windows, each belonging to one of the following categories: required, sensitive,

or neutral. Let X = {Xrequired,Xsensitive,Xneutral} be the input dataset and Y =

{Xrequired,Xsensitive→neutral,Xneutral} be the output dataset, with a one-to-one

relationship between each X ∈ X and Y ∈ Y explained in Figure 3.2. Basically,

the only difference between X and Y is that data samples of sensitive classes,

Xsensitive, are randomly and uniformly replaced with data samples from one of

the neutral classes, Xneutral, to build Y. Therefore, Y contains only samples
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Figure 3.2: Circles represent time windows in the input (X) and output (Y)
datasets for training the RAE. We first make a copy of the original input dataset
and replace every sensitive time window with a randomly chosen neutral one to
prepare the output dataset for training the RAE. Then, the RAE is trained to
transform each Xi ∈ X to the corresponding Y i ∈ Y. At inference time, RAE
can replace unseen sensitive time windows with data that simulates neutral ones.

from the required and neutral classes. The RAE is then trained to transform

each X to the corresponding Y , subject to a loss function, L(X,Y ), which

calculates the difference between the input of the RAE and its corresponding

output.

We define the replacement algorithm, M, a privacy-preserving algorithm

if its outcome limits the possibility of recognizing the user’s sensitive activities

using a machine learning classifier trained by the adversary. Thus, if Z ∈ RW×H

is the best possible replacement for a sensitive time window X, then, M aims

to implement the following operation:

Y =M(X) =

Z if X contain sensitive data patterns,

X otherwise,
(3.3.1)

Let M(·; θ) be a practical implementation of M: an autoencoder with param-

eter set θ. Let L(·, ·) be the autoencoder’s loss function. Then, the optimal

parameter set for the M(·; θ) is defined as

θ∗ = arg min
θ
L
(
M(X; θ),Y

)
, (3.3.2)

which is achieved through a neural network optimization process.

The idea of RAE is inspired from the denoising autoencoder [184] that takes

a noisy data sample, Xnoisy = X + N , and removes the noise, N , by pro-

ducing a reconstruction Y ≈ X. To train a denoising autoencoder, one only

needs to make a pair of datasets X and Y, the original dataset and the noisy

version of it, by using a desired noise addition function. It is also based on

the information bottleneck method [189] that considers a setting where we want

to compress X into another smaller-sized representation, while maintaining as
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much information as possible that it carries about a hidden correlated factor.

The information bottleneck in the hidden layers of the autoencoder forces the

RAE to put more attention on the descriptive and useful data patterns in order

to better reconstruct data and generalize to unseen data [181].

Thus, as a summary of the promised utility and piracy to the user, RAE

transforms each time window of sensor data, with a pre-defined length (e.g. 2

seconds), such that:

• Utility. First, the implemented classifier for activity recognition should

correctly recognize time windows that correspond to the user’s required

activities with an accuracy similar to what we expected to get if we could

have released the original data (i.e. high true positive rate for required

activities). Second, time windows of non-required activities should not be

transformed such that the activity classifier mistakenly recognizes them as

one of the required activities (i.e. very low false-positive rate for required

activities).

• Privacy. First, sensitive time windows should be transformed such that

the classifier recognizes them as one of the neutral activities (i.e. high

false-negative rate for sensitive activities). Second, required time win-

dows should not be recognized as one of the sensitive activities by the

classifier (i.e. very low false-positive rate for sensitive activities).

• Adversary. First, we assume each time window only contains patterns

that correspond to one activity. Second, we assume that each time win-

dow is sampled i.i.d. and thus we do not address situations where there

might be any temporal or long-term correlation between different time

windows. These two are mainly due to the limitation that we face in the

publicly available HAR datasets (also mentioned in Section 2.1.3). Third,

we assume that adversaries only have access to the data released by the

RAE to launch an attack, and do not consider adversaries that can take

advantage of other side information that they can collect about users’ be-

havior. Fourth, we assume that adversaries are computationally bounded

and use empirical machine learning models to perform the classification

of the user’s data.

Our assumptions are similar to those considered in [84] where instead of

releasing the original sensitive time window, a Bayesian model is used to find

the “most-plausible” non-sensitive time window to be released. However, the

algorithm in [84] ignores neutral activities and it is an offline algorithm that

assumes the availability of all time windows before starting the replacement

procedure. For this reason, they maintain a mapping database to be used in
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the replacement phase, that stores sensor time windows of different lengths for

each possible state. Our proposed RAE can be used in an online transformation

setting, it does not need storing an auxiliary database, and by using neutral

activities for replacement it does not damage the utility of required activities.

3.4 Evaluation

To evaluate the RAE, we use four benchmark datasets of activity recognition

including at least 10 different labels; called Opportunity [97], Skoda [96], Hand-

Gesture [98], and Utwente [99] (see Table 2.2). For Opportunity, we use four

trials as the training data, and consider the last trial as the testing data. For

other datasets, we consider 80% of the data as the training set and the rest as

the testing set.

3.4.1 RAE Performance

We implemented RAE with the following settings. We use seven fully-connected

layers with the number of neurons equal to N , N
2 , N

8 , N
16 , N

8 , N
2 , and N , re-

spectively where N = W ·H (except for the Hand-Gesture dataset with a lower

dimensionality where the three middle layers are N
3 , N

4 , N
3 ). For all datasets,

we consider a 1-second time window, W = 30. All the experiments are trained

on 30 epochs with batch size 128. The activation function for the output layer

is linear and for the input and all of the hidden layers is Scaled Exponential

Linear Unit [190]. In our experiments, to retain the overall structure of the

reconstructed data, we set L in Eq. (3.3.2) as the point-wise mean square error

function.

To evaluate the privacy loss and utility of the RAE’s outcomes, both the raw

sensor data and the transformed data inputs to a state-of-the-art deep neural

network classifier, as the assumed app, and F1-score are calculated in Table 3.1

and Table 3.2. We use F1-score as the evaluation metric because it takes both

false positives and false negatives into account and is a better metric when there

are imbalanced classes as in the dataset.

The results show that the utility is preserved for non-sensitive, r and n,

classes while recognizing sensitive ones, s, is very unlikely. Moreover, Figure 3.3

shows that the model misclassifies all transformed sections corresponding to s

into the n and therefore the false-positive rate on required activities is very

low. For instance, to see how RAE can establish a good utility privacy trade-off,

consider the results for the Skoda dataset in Table 3.1(#1). We observe that

the activity classifier can effectively recognize r activities (e.g. opening and

closing doors), even when the app processes the output of RAE instead of the
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Table 3.1: Results for the activity recognition on the Skoda dataset, using a
pre-trained convolutional neural network [116]. X shows the original data, and
Y shows the transformed data by RAE. Each number in the column “set of
activities” refers to a corresponding activity label in Table 2.2.

F1-score (%) F1-score (%)
# set of activities X Y # set of activities X Y

r = {2, 3, 5, 6, 7, 9} 96.5 93.2 r = {2, 3, 5, 6, 7, 9} 95.8 91.1
1 s = {4, 8, 10} 97.9 0.0 3 s = {4, 8, 10} 97.4 0.0

n = {0, 1} 93.9 94.8 n = {0, 1} 94.3 92.4
r = {4, 8, 9, 10} 97.9 96.3 r = {1, 4, 10} 97.6 95.0

2 s = {1, 5, 6, 7} 96.2 0.0 4 s = {2, 3, 8, 9} 98.0 0.0
n = {0, 2, 3} 94.3 93.4 n = {0, 5, 6, 7} 92.3 88.2

Table 3.2: Results for the activity recognition on the the (left) Hand-Gesture
and (right) the Opportunity dataset, using a pre-trained convolutional neural
network [116]. X shows the original data, and Y shows the transformed data
by RAE. Each number in the column “set of activities” refers to a corresponding
activity label in Table 2.2.

F1-score (%)
# set of activities X Y

r = {1, 2, 3, 4, 9, 10, 11} 94.1 90.1
1 s = {5, 6, 7, 8} 95.7 0.3

n = {0} 95.0 96.5
r = {1, 3, 4, 5, 6, 7} 95.2 90.4

2 s = {2, 8, 9, 10, 11} 94.5 0.6
n = {0} 95.0 97.5
r = {1, 3, 4, 5, 6, 7, 8} 97.2 93.3

3 s = {2, 9, 10, 11} 92.5 0.7
n = {0} 95.9 97.5
r = {2, 3, 5, 6, 7, 9} 96.1 92.1

4 s = {4, 8, 10} 97.0 0.5
n = {0, 1} 95.7 97.6

F1-score (%)
# set of activities X Y

r={1,2,...,8,15,17} 76.9 75.9
1 s={9,10,...,14} 71.5 1.3

n={0,16} 84.4 82.1
r={9,10,...,17} 71.8 64.3

2 s={1,2,...,8} 79.1 0.2
n={0} 88.9 89.7
r={9,10,...,14,16} 74.9 77.1

3 s={1,2,3,4,15,17} 76.2 0.9
n ={0,5,6,7,8} 85.0 81.6
r={1,2,...,8,15,17} 70.3 65.0

4 s={9,10,...,14,16} 74.9 6.3
n={0,1} 93.7 92.9

raw data (with 93.2% accuracy). However, s activities (e.g. checking doors)

that can be recognized with high accuracy when the app processes the raw data

(with 97.9% accuracy), are completely filtered out in the output of the RAE.

Moreover, the corresponding confusion matrix for this experiment in Figure 3.3

(Left-Bottom) shows that the utility of the required activities is preserved as the

classifier wrongly infers all s activities as some n activities and not as one of r

activities.

3.4.2 A Realistic Scenario

Considering the Utwente [99] dataset, let s = {typing, writing, smoking, eating}
be the set of sensitive activities, n = {sitting, standing} be the set of neutral

activities, and r = {walking, jogging, cycling, stairs-up, stairs-down} be the set

of required activities. Considering a 2-second time window (W = 100 due to

50Hz sampling rate), we train an RAE with 6 hidden layers: 4 Convolutional-

LSTM layers using hyperbolic tangent as the activation function with 256, 128,
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Figure 3.3: Confusion Matrix for (top) original time-series, and (bottom) trans-
formed time-series by RAE. After transformation almost all the sensitive activ-
ities are recognized as neutral ones. The results correspond to case #1 of (left)
Skoda dataset in Table 3.1, (middle) Hand-Gesture dataset in Table 3.2, and
(right) Opportunity dataset in Table 3.2.

64, and 64 filters respectively, followed by 2 Convolutional layers using Scaled

Exponential Linear Unit [190] as the activation function with 64 and 128 layers

respectively. We also put a batch-normalizer [191] on the output of each hidden

layer to reduce the training time.

To evaluate the privacy-utility trade-off, we use a DNN classifier. As we

see in Table 3.3, the average accuracy of the classifier on the raw data is more

than 99%. However, when we feed the same classifier with the output of the

RAE, all the s activities are recognized as sitting, while the accuracy for r

activities is almost equal to that of the raw data. As mentioned in Section 1.3

and Section 2.1.3, we emphasize that our assumption is that each time window

only belongs to one activity of the user and we assume these time windows

are sampled in an i.i.d. manner. To preserve privacy against an adversary

that can take advantage of correlation among and timing of activities, each

sensitive activity should be transformed into a neutral activity that does not

leak information about performing a replacement at that time point. We discuss

more on this in Chapter 6, as potential future work. We observe that for smoking

there still is a 5% chance of recognition. Note that for some time windows of
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the smoking the raw data are similar to those of standing . This effect can

be also seen in Table 3.3 (column smoking). This might be because of the

labeling decision when the data curator labels intervals between cigarette drags

as smoking behavior while the user is standing, but we lack proof of this due

to the lack of this information in the dataset documentation from the original

publishers.
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Table 3.3: Confusion Matrix of the results on the test data for Utwente dataset. Rows show the true labels and columns show the predicted labels. In each
cell, the left part shows the accuracy on the raw data, and the right part shows the accuracy after transformation. For brevity, all the values are rounded
to one decimal point. Empty cells show 0.0→ 0.0.

walking jogging cycling stairs-up stairs-down sitting standing typing writing eating smoking
walking 97.5 → 97.2 0.7 → 0.7 1.5 → 1.9 0.3 → 0.1
jogging 100 → 100
cycling 100 → 100

stairs-up 0.4 → 0.3 0.4 → 0.4 0.0 → 0.1 98.8 → 98.8 0.1 → 0.1 0.3 → 0.3
stairs-down 0.3 → 0.3 99.7 → 99.7

sitting 0.0 → 0.3 98.6 → 96.8 1.0 → 0.0 0.1 → 0.0 0.1 → 0.0 0.1 → 2.8
standing 0.0 → 0.3 99.4 → 98.2 0.6 → 1.5

typing 0.0 → 100 100 → 0.0
writing 0.0 → 0.7 0.0 → 99.3 99.9 → 0.0 0.1 → 0.0
eating 0.0 → 0.5 0.1 → 99.4 0.3 → 0.0 99.6 → 0.0 0.1 → 0.1

smoking 0.0 → 0.1 0.0 → 94.9 2.3 → 0.0 97.5 → 5.0
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Figure 3.4: An example of RAE’s performance on the MNIST dataset. We
consider 0 as the neutral digit, other even numbers as the sensitive digits, and
the odd digits as the required digits. The first and third rows show the original
digit, while the second and fourth rows show the corresponding transformation
done by the trained RAE.

3.4.3 Visualization

It is a very challenging task to visualize multi-channel time-series, especially in

our multi-dimensional setting. In order to clarify the idea of RAE, we present

and discuss some perceptible examples.

First, we consider the MNIST dataset of handwritten digits [192]. It con-

tains 60, 000 training images and 10, 000 testing images. As an explicit example,

in our setting, we consider 0 as a kind of neutral information, other even num-

bers (2, 4, 6, 8) as a set of sensitive information, and all of the odd numbers

(1, 3, 5, 7, 9) as a set of the required information we want to keep unchanged.

Figure 3.4 shows the output of the RAE when it receives some samples from

the test set as input. The top part of Figure 3.4 shows that RAE transforms all

of the images categorized as sensitive information into images that are visually

very similar to the digit 0 which is considered as neutral, whereas the bottom

part of Figure 3.4 shows that the required information is kept almost unchanged;

except for one case that digit 7 is wrongly transformed into 0. This is just a

simple example to build an intuitive sense of how our method can learn the

piecewise function described in equation 3.3.1 to automatically replace sensitive

information in personal data.

Second, as another visualization example, we use t-Distributed Stochastic

Neighbor Embedding (t-SNE) [193] which is a well-known algorithm for 2D

visualization of high-dimensional data. The t-SNE is in fact a technique for

dimensionality reduction and as well it is a known strategy for showing the

similarity relationships among different classes in a dataset. It uses PCA to

compress high-dimensional data into a lower-dimensional space, then maps the
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Figure 3.5: 2D visualization of the sensitive s, required r, and neutral n activ-
ities in the Skoda dataset (#1 in table 3.1) using t-SNE: (left) original data X,
and (right) transformed data Y .

compressed data to a 2D plane that can be plotted easily. Since t-SNE aims to

preserve the local structure of the high-dimensional data, we use it to describe

how the RAE would push sensitive data points, in the original data space,

into areas that correspond to neutral data, and at the same time preserve the

separability and structures of the required data points.

Figure 3.5 shows the similarity relationships among different classes of ac-

tivities for Skoda dataset. Regarding the scatter plots depicted in Figure 3.5,

sensitive data points in the original time-series (left plot) have their own struc-

tures and clearly separable from other classes. But, in the transformed version

of time-series (right plot) almost all sensitive data points have been moved into

another area of the data space which is more closely related to neutral data

points. They also lose their recognizable patterns and all of them mapped to

almost the same area of the space. On the other hand, RAE maintains partic-

ular patterns of required data points, thus causes no harm to the recognition

accuracy of desired activities. Note that in this example, we reduce the dimen-

sionality from 1800-d to just 2-d, which leads to huge information loss. t-SNE

has two tunable parameters, initial dimension (here is set to 100), and perplexity

(here is set to 60) that is defined as 2 to the power of the Shannon entropy.

3.5 A Potential Attack

We assume that an adversary has access to the RAE that is used by the users

to transform their data (i.e. white-box access). Moreover, the adversary has

access to the user’s transformed data, and a dataset of the user’s sensor data.

We consider a setting where, observing a time window released by the user that

is classified as one of the neutral activities, the adversary aims to determine

whether this time window is real (i.e. the time window really corresponds to
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the classified neutral activity) or fake (i.e. it was originally a sensitive data

and it is replaced). Notice that the adversary recognizes each time window

as either required or neutral, as all sensitive time windows are transformed to

neutral ones. Therefore, if the adversary can distinguish between real and fake

neutral time window, then it can make sure that the fake ones are the result of

a transformation of a sensitive activity. Thus, in such case the RAE is no more

useful than a filtering approach that just does not release sensitive time windows

at all. Hence it is important to know that to what extent the replacement of

sensitive data with neutral data is indistinguishable from the real neutral data.

For this purpose, we use a Generative Adversarial Network (GAN) [114]. A

GAN is a DNN that learns to generate fake data that are very similar to the

samples drawn from the true data distribution. GANs consist of two models:

a generator and a discriminator. The generator takes random input values

and uses feedback from the discriminator to produce convincing data that the

discriminator cannot distinguish from real data. The discriminator, which is

usually a binary classifier, determines whether a given input looks like a real

input from the dataset or like artificially generated data.

We implement the GAN proposed in [194] for evaluating the RAE as follows.

First, we assume that the adversary trains a GAN on the available dataset, such

that the generator learns to produce time windows very similar to real neutral

time windows and the discriminator learns to determine whether the given time

windows, recognized as neutral data, are real or fake one. Second, after training

the GAN, we separate the discriminator and give it as input: (i) real neutral

time windows, (ii) fake neutral time windows, (iii)randomly generated neutral

time windows by the generator, and (iv) the top 10% randomly generated neutral

time windows as rated by the discriminator. We measure the binary classifica-

tion accuracy rate for these four categories. The results, shown in Figure 3.6,

demonstrate that the output of the RAE is almost as similar as the random data

generated by the generator but not quite as good as the best data generated by

the generator. We see that when we give the discriminator more time to learn,

it eventually distinguishes between real neutral data and fake ones. Therefore,

if an adversary can get access to some of the user’s sensor data, the adversary

can use GAN to distinguish between real and fake non-sensitive data. Thus, in

this situation, the safety of our proposed replacement method will be reduced

to the safety of the filtering approach.

We also conduct another experiment to investigate whether the privacy of

user i can be compromised by having access to the original data of another user

j. Figure 3.7 shows the accuracy of the discriminator for distinguishing between

real and fake neutral data of subject #3 in the Opportunity dataset when the

discriminator has been trained on neutral data from subject #1. Results show
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Figure 3.6: The accuracy of the
GAN’s discriminator in distinguishing
different kinds of real, fake, and gen-
erated time windows on the Skoda
dataset (#1 in table 3.1).

Figure 3.7: The accuracy of the
GAN’s discriminator in detecting real
neutral data by having access to
other users’ data on the Opportunity
dataset (#1 in table 3.2).

that the discriminator cannot recognize real neutral data as real, and its error

rate is about 70% when it converges. Although the adversary recognizes all fake

neutral data as fake, it is not valuable because it also recognizes real data as

fake. Note that in this experiment the list of sensitive and neutral inferences

is the same for both data subjects. Moreover, we can see from Figure 3.6 that

the adversary’s accuracy begins to improve slowly from epoch 10 to epoch 30

and stabilized by epoch 70. By contrast, without access to the data of the

target user, even after 100 epochs in Figure 3.7 there is no consistent pattern of

improvement.

3.6 Summary

We showed that in dealing with sensitive patterns in sensor time series, a re-

placement algorithm, addresses some important challenges. First, it is rational

to say that not only the recognition of a specific sensitive activity, but also the

detection of the occurrence of any kind of sensitive activities can violate a user’s

privacy. Perturbation by adding noise to a sensitive time window or completely

filtering those time windows, although avoid the explicit recognition of the ex-

act activity, yet clearly shows that something sensitive has happened at that

moment. An additional knowledge that can be used as side-channel information

for other potential attacks on the user’s privacy. Moreover, perturbation algo-

rithms not only need to distinguish sensitive and non-sensitive time windows

from each other, but also to compute a correlated noise based on the structure

of the current time window such that it cannot be easily filtered out.

A replacement algorithm addresses this concern by deceiving the app into

falsely believing that another activity is happening. For example, during walk-
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ing in a park, the user stops to smoke. Here, replacing patterns related to the

smoking activity with some patterns related to the sitting activity can cover sen-

sitive behavior. Second, transformation algorithms that map each time window

into a lower-dimensional feature vector, or any other representation, restricts

the app’s functionality into using classifiers that are consistent with that rep-

resentation. A replacement algorithm keeps the data dimensions unchanged

without enforcing any limitations on the model that they can choose. Despite

these advantages, the replacement approach is still susceptible to adversaries

with some other background knowledge, similar to the attack we showed using

GANs. Other potential attacks can also happen by taking advantage of the

likelihood of each activity at a specific time or the temporal correlation among

different activities. For example, observing 2 minutes sitting right after observ-

ing going downstairs activity and right before recognizing going upstairs activity

can leak some information that such sitting might be a replacement of a smoking

activity, because of the temporal correlation with other observed activities. We

discuss more on this in Chapter 6 and leave it as a potential future work.
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Chapter 4

Sensor Data Anonymization

4.1 Overview

The RAE algorithm (presented in Chapter 3) aims to protect a user’s sensitive

activities, but the range of sensitive information can go beyond just a subset

of our daily activities and may contain other types of information that might

be discovered from data patterns observed in our daily activities. Motion pat-

terns can facilitate the re-identification of users [45], or reveal some personal

attributes, such as gender [195, 44]. When the user’s sensor data are collected,

for example for research purposes [196, 197], users may want to minimize the risk

of being re-identified by those who will access the collected data, and researchers

may want to infer the user’s activities. Although there are many ways to identify

a user in a dataset, here re-identification based on sensor data pattern refers to

analyzing a sample time series of sensor data and figure out whether that data

belongs to a specific user or not, possibly by taking advantage of some data of

that user collected through another channel. To cover such privacy concerns, we

need a data transformation algorithm to protect such sensitive information that

can be discovered from all activities and helps an adversary in re-identification

purposes.

In this chapter, we propose Anonymizing AutoEncoder (AAE) to transform

sensor data to prevent the exposure of sensitive information that are user-

specific (e.g. gender information), while simultaneously preserving some infor-

mation in the data that help us to recognize the user’s activities (see Figure 4.1).

We formulate the problem into an information-theoretic framework [71, 164],

then propose a multi-objective loss function that helps AAE to minimize the

amount of sensitive information while keeping the data utility regarding the

desired task. This is achieved by forcing the encoder of AAE to produce an

uninformative latent representation as well as forcing the decoder of AAE to
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Figure 4.1: Overview of the AAE. For each sensor time window, every stream
of sensor data, xi, is transformed into a stream with the same length, yi, then
is shared with the server. The transformation aims to keep the pre-specified
required information, but preventing the pre-specified sensitive information to
be inferred.

reconstruct data such that it cannot be confidently assigned to a specific user in

the training set. Moreover, by imposing a constraint on the amount of distortion,

AAE tries to reconstruct data such that it is useful for an activity recognition

app.

It is worth noting that in the problem formulation of Chapter 3, each sen-

sor time window is mapped to only one categorical variable, i.e. the type of

user’s activity. Therefore, in RAE, we assumed that some values of that variable

(i.e. label) indicate sensitive activities and other values indicate non-sensitive

ones. However, in the problem formulation of this chapter, a sensor time win-

dow is mapped to two categorical variables, i.e. the activity and the attribute

of the user. Here, for AAE, all values of the activity variable are assumed

as non-sensitive, and all values of the attribute variable are assumed as sensi-

tive. Therefore, in this chapter, we show how to formulate the problem as an

information-theoretic minimax game that aims to keep one variable and hide

another one. But for RAE, it was not straightforward to design such a minimax

game, as we needed to keep some activities while replacing some others at the

same time.

We evaluate AAE on two datasets of human activity recognition using state-

of-the-art deep neural networks as the classifier. We show that the AAE can

preserve the usefulness of the transformed data for activity recognition similar

to that of the original data, while reducing the accuracy of gender and identity

recognition close to the random guess in the corresponding dataset1.

1Code and data to reproduce results are publicly available at https://github.com/mmalekzadeh/
motion-sense
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4.2 AAE Methodology

Let r ∈ {0, 1}R and s ∈ {0, 1}S be one-hot vectors representing the required (e.g.

activity) and sensitive (e.g. gender or identity) data, respectively. Let M̂(·)
be a data transformation algorithm, X be the data want to anonymize, and

Y = M̂(X) be the transformed data. We define the fitness function F(.) as

F
(
M̂(X)

)
= βsI

(
s;M̂(X)

)
− βrI

(
r;M̂(X)

)
+ βdD

(
X,M̂(X)

)
, (4.2.1)

where I(·, ·) is the mutual information, D(·, ·) is a distance metric (e.g. Mean

Squared Error), and the non-negative, real-valued weights βs, βr and βd are

the parameters2. that can be used for making a trade-off between privacy and

utility (as formulated in Section 1.3). Let the optimal anonymization function,

M(·), that transforms X into Y be defined as

M(X) = arg min
M̂(X)

F
(
M̂(X)

)
. (4.2.2)

The threefold objective of Equation (4.2.1) is to minimize I
(
s;M̂(X)

)
, the

mutual information between the sensitive data and the transformed data; to

maximize I
(
r;M̂(X)

)
, the mutual information between the required data and

the transformed data (i.e. to minimize its negative value); and, to avoid large

distortions in the data by minimizing D
(
X,M̂(X)

)
, the distance between the

original data and its transformation.

As we cannot practically search over all possible transformation functions,

we consider a DNN and look for the optimal parameter set through training.

To approximate the required mutual information terms, we reformulate the

optimization problem in Equation (4.2.2) as a DNN optimization problem. Let

M̂(X; θ) be a DNN, where θ is the parameter set of the DNN. Ideally, the

training procedure aims to find the optimal parameter set θ∗ by searching the

space of all possible parameter sets, Θ, as:

θ∗ = arg min
θ∈Θ

βsI
(
s;M̂(X; θ)

)
−βrI

(
r;M̂(X; θ)

)
+βdD

(
X,M̂(X; θ)

)
. (4.2.3)

We define M(·; θ∗) as the best transformation algorithm for a general M(·) in

Equation (4.2.2), realized by a DNN. It should be noted that, in practice, using

off-the-shelf DNN optimizers for a non-convex loss function, we cannot guarantee

to find the optimal parameter set (i.e. the best transformation algorithm), but

to find a near-optimal parameter set. Moreover, in practice we cannot compute

the exact value of mutual information, I(·; ·). However, an estimation of mutual

2Note that here we use three β parameters for the ease of exposition, but two would be enough
as theoretically it is only the ratios that matter
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information can be achieved via log-likelihood estimation using an adversarial

approximation [147, 88]. In Section 4.3, we elaborate more on how to estimate

I(·; ·) using adversarial training via neural networks.

Finally, similar to the setting of previous work [86, 88], a summary of our

assumptions on the provided utility and privacy to the user by AAE is:

• Utility. Each time window of sensor data is transformed such that an ac-

tivity recognition app, simulated via a parameterized DNN, can recognize

the user’s activity by processing the transformed data, with an accuracy

close to what it could have got if we have released the original data (i.e.

high classification accuracy for activity recognition task).

• Privacy. First, each time window is transformed such that an app, again

simulated via a parameterized DNN, cannot recognize the identity/gender

of the user from the transformed data (i.e. very low classification accu-

racy for identity/gender recognition task). Second, following the notion

of inferential privacy, the empirical estimation of mutual information is

achieved by an adversarial training of a classifier using log-likelihood loss

function (see Section 2.2.3).

• Adversary. First, similar to Chapter 3, we assume each time-window only

contain patterns that correspond to one activity, and we assume that each

time window is sampled i.i.d. and thus we do not address situations where

there might be any temporal or long term correlation between different

time windows. Second, we assume that adversaries only have access to

the data released by the AAE to launch an attack, and do not consider

adversaries that can take advantage of other side information that they

can collect about users. Third, we assume that adversaries are computa-

tionally bounded and use empirical machine learning models to perform

the classification of the user’s data.

4.2.1 Multi-Objective Loss Function

The key contributor to the AAE training is the multi-objective loss function

L = βsLs + βrLr + βdLd, (4.2.4)

where Lr and Ld are the utility losses that can be customized based on the

target task requirements, whereas Ls is the privacy loss that helps the AAE to

remove data patterns that facilitate the inference of sensitive information. This

loss function is used by the AAE optimizer searching for the θ∗ in Equation 4.2.3.
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Practically, the categorical cross-entropy loss function for classification, Lr =

−r log(r̂), can be used to preserve the required information, where r̂, the output

of a softmax function, is an R-dimensional vector that sums to 1 and is supposed

to simulate the conditional probability of the label given the observed data. The

distance function that controls the amount of distortion, Ld, forces Y to be as

similar as possible to the input X:

Ld =
1

W ×H

W∑
w=1

H∑
h=1

(xwh − ywh)2. (4.2.5)

Finally, the privacy loss, Ls, the most important term of our multi-objective

loss function that aims to minimize sensitive information in the data, is defined

as:

Ls = −
(

s · log(1S − ŝ) + log
(

1−max(ŝ)
))

, (4.2.6)

where 1S is the all-one column vector of length S, s is the ground truth one-

hot3 vector for X, and ŝ is the output of the classifier’s softmax layer that is an

S-dimensional real-valued column vector, and · denotes the dot product of two

column vectors. The first term, s · log(1S − ŝ) penalizes AAE if the classifier’s

prediction for the true identity in is close to 1, and the second term, 1−max(ŝ),

penalizes AAE if the classifier is also too certain about any other (wrong) identity

label.

The goal of training AAE is to minimize the privacy loss by minimizing the

amount of information leakage from s to Y, and we show, in Section 4.2.2,

how our loss function Ls can achieve this. A trivial transformation would con-

sistently transform data of si into the data of sj (and vice versa). However,

this transformation would only satisfy the first element of Ls. As no adversary

should be able to confidently predict s from X, we maximize the difference be-

tween the prediction, ŝ, and the ground truth, s by minimizing the cross-entropy

between these two values, as well as the maximum value of the predicted vector

ŝ. Although the max(·) function is not differentiable, it is piecewise differen-

tiable and in practice it can also be implemented using the corresponding soft

version of the maximum function that is (softmax(z))T·z [198].

4.2.2 Derivation of the Privacy Loss

The main goal of our AAE is to make the hidden sensitive factor s and the re-

leased data Y as independent of each other as possible. To this end, we minimize

the amount of information leakage from s to Y. As no function G can increase

the available information in the data [72], the inequality I(s; Y) ≥ I(s;G(Y)),

3A column vector with zeros except for a 1 in the row corresponding to the correct class.
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holds, and therefore if we reduce the mutual information between s and Y, we

technically put an upper bound on the amount of sensitive information leakage

through sharing Y.

We know that I(s; Y) = H(s) + H(Y) − H(s,Y), and H(s) is fixed as it does

not depend on our transformation function. Thus, to minimized I(s; Y), a

transformation should (i) minimizes H(Y), and (ii) maximizes the H(s,Y). For

example, authors in [74] show that the downsampling of sensor data makes

re-identification of users much harder, as it directly reduces H(Y). We will

show a similar result in Figure 4.5. However, reducing H(Y) independent of

the sensitive variables, e.g. by downsampling to a very low sampling rate, can

lead to a substantial utility loss [74]. Instead, we can focus on maximizing

H(s,Y). In other words, instead of blindly reducing as much information as we

can from (i.e. by decreasing the entropy H(Y)), we can focus on only reducing

the sensitive information that we do not want to share (i.e. by increasing the

joint entropy H(s,Y)).

For practical purposes, we need an estimator for H(s,Y) as we cannot cal-

culate the joint entropy directly for high-dimensional data. When labeled data

are available, Y can be used as input to predict ŝ as an estimation of s. We

therefore reformulate the problem of maximizing the joint entropy, H(s,Y), as

maximization of the cross-entropy between the true label, s, and the predicted

label, ŝ: Hŝ(s) = −
∑S
i=1 si log ŝi, where ŝi is the i-th element of the vector

predicted by the multi-class classifier. The empirical cross-entropy between Y

of a ground truth sensitive label s with si = 1 is −s log ŝ = − log ŝi and, since

ŝi ∈ (0, 1], maximizing − log ŝ[k] is equivalent to minimizing − log (1− ŝ[k]).

Therefore, minimizing the first term of Equation (4.2.6), s log(1S − ŝ), helps

us to empirically minimize the mutual information, I(s; Y), and, by forcing

the AAE to minimize this value, we minimize the amount of privacy loss. We

discussed this notion of inferential privacy in Chapter 2, Section 2.2.3, and

encourage readers to find more rigorous analyses and applications of inferential

privacy approach for minimizing the mutual information in [71, 147, 85, 199, 88].

4.3 AAE Training Procedure

Figure 4.2 shows the framework for the training of an AAE. The Encoder maps

a received time window, X ∈ RW×H , into a lower-dimensional latent vector

z. The Decoder gets z and produces a reconstruction, Y , of the original time

window. The Encoder Classifier and the Decoder Classifier process z and Y ,

respectively, to measure how they are informative about the sensitive data s.

The Required Data Classifier performs a similar task for measuring how Y is

informative about the required data r. Finally, the distortion measurement, a
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Figure 4.2: The losses involved in the training procedure. After training, the
Anonymizing AutoEncoder (AAE). Solid lines show data flow; dashed lines
show loss functions feedback. X is the original time window and z is the
lower-dimensional representation of the input data. Y is the transformed time
window. Ls is the privacy loss, Lr is the utility loss corresponding to the required
data, and Ld is the distortion loss function. L is the overall loss function for
training the AAE in Equation 4.2.4.

Algorithm 4.1 Training AAE

1: Input: D: training datasets, Gs: ground truth labels for sensitive data,
Gr: ground truth labels of required data, E: number of epochs, CE : En-
coder Classifier, CD: Decoder Classifier, CR: Required Data Classifier,ME :
Encoder part of the AAE, MD: Decoder part of the AAE, (βs, βr, βd): pa-
rameters for a desired trade-off.

2: Output: θ: the AAE’s optimized parameters.
3: for e = 1 to E do
4: for (X, s, r) in (D,Gs,Gr) do
5: z = ME(X)
6: Y = MD(z)
7: Ls = ClassificationLoss(CE(z), s) + ClassificationLoss(CD(Y ), s)
8: Lr = ClassificationLoss(CR(Y ), r)
9: Ld = DistortionLoss(X,Y )

10: L = βsLs − βrLr + βdLd
11: G = Backpropagation(L)
12: θ = optimize(θ,G))
13: end for
14: end for

loss function that constrains the allowed distortion on the data, gets the original

data, X, and reconstructed data, Y , to quantify the amount of distortion that

is done, for example, by using MSE.

First, we train all the classifiers on the training dataset for several epochs,

following the typical procedures for training DNNs. Then, using a similar idea

of adversarial training [114], we train AAE using the procedure that is explained

in Algorithm 4.1. The trained classifiers help to approximate the amount of
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information that is carried by the transformed data. In fact, unlike other adver-

sarial methods [114, 200], our objective is not to learn the data distribution, but

to transform a time window, that is informative about users’ sensitive data, into

another time window which (ideally) carry only information about the required

data, with minimum possible distortion. This training procedure can be done

through a trusted mediator, or it can be done locally on the user side, or a user

can download a public pre-trained model and refined it on their own data [201].

4.4 Evaluation

4.4.1 Datasets

To evaluate the AAE, we use my contributed MotionSense dataset and the Mo-

biAct [175] dataset (see Table 2.2).

4.4.2 Protecting the User’s Identity

To evaluate the AAE, we first measure the extent to which the accuracy of ac-

tivity recognition suffers from anonymization compared to accessing the original

data. We measure the trade-off between recognizing users’ activities (required

information) and their identity (sensitive information). We compare AAE with

baseline methods for coarse-graining time-series data (resampling and singular

spectrum analysis) and with the method in [86] that only considers the infor-

mation included in latent representation, z, without taking the reconstructed

data, Y , into account.

We use MotionSense4 and consider two methods of dividing the dataset into

training and test sets, namely Subject and Trial. For Subject, we put all data

of 4 of the users in the dataset, 2 females and 2 males, as testing data and the

remaining 20 users as training. We use the Subject setting for evaluating the

activity recognition task, thus the accuracy of activity recognition is evaluated

on data of 4 users that are not used during the training. As using the Subject

setting is not meaningful for the identity recognition task, we consider the Trial

setting where we put one trial data of each user as testing data and the remaining

trials of that user’s data as training. For example, as we have three walking trials

for every user, we consider one trial as testing and the other two as training.

We use the Trial setting for the identity recognition task. In both cases, we put

20% of the training data for validation during the training phase. We repeat

each experiment 5 times and report the mean and the standard deviation. For

4The majority of public datasets of motion sensor data do not simultaneously satisfy the re-
quirements of abundance and variety of activities and users, and datasets that satisfy both are not
publicly available (e.g. [197, 45].)
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Figure 4.3: The DNN architecture used to evaluate AAE. (left) DNN used for
building all the classifiers in Figure 4.2. The only differences among these classi-
fiers are that W for Encoder Classifier is 32, whereas for Decoder and Required
Data classifiers is 128, and C for Required Data classifier is 4, whereas for the
other two is 24 as we have 24 users and 4 activities. (right) The architecture
of Encoder and Decoder. For the details, we refer to TensorFlow’s naming
conventions [202].
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Figure 4.4: Data flow during the training of the AAE.

all the experiments we use the magnitude value for both the gyroscope and

accelerometer.

For all the classifiers, we use the DNN architecture depicted in Figure 4.3

(left) using categorical cross-entropy loss function [198]. To prevent overfitting
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Figure 4.5: Classification accuracy for a deep convolutional neural network for
both Activity and Identity recognition. (eft) Using data resampled to another
rate (from 5 to 50 Hz, where 50 Hz is the original sampling rate). (right) Using
data reconstructed using only a subset of components (from 1 to 10, from a
total of 50), ordered from largest to smallest by corresponding singular values.

to the training data, we put a Dropout [203] layer after each convolutional layer.

We also use L2 regularization to penalize large weights so that the classifier is

forced to learn features that are more relevant for the prediction. Similarly,

the DNN architecture used as AAE is depicted in Figure 4.3 (right). Figure 4.4

shows the overall architecture. To simplify the process of encoding data into a

lower-dimensional representation and then decoding it to the original dimension

with convolutional filters, we set W to be a power of 2. The larger length of

time window W, the lower the possibility of taking advantage of the correlation

among the successive windows by adversaries. But larger window sizes increase

the delay for real-time apps. We set W = 128 (i.e. 2.56 seconds), following the

setting used in state-of-the-art papers for activity recognition [101, 103, 102].

4.4.2.1 Baseline Methods

Theoretically speaking, downsampling can reduce the amount of information

included in the data [72]. One can use downsampling to reduce the richness

of the data to the extent that it contains the minimum acceptable information

for recognizing the user’s activity but not more fine-grained information that

reveals other user’s sensitive attributes. Figure 4.5 (left) shows the classification

accuracy with downsampled sensor data. For a fair comparison, we trained a

fixed model (in terms of the size of the parameters and number of the layers)

for all the sample rates. The impact of downsampling on activity recognition

can be ignored for rates greater than 20 Hz. However, even at 5 Hz, we can

distinguish the 24 users from each other with over 60% accuracy.

Singular Spectrum Analysis (SSA) [204] is a model-free technique that de-

composes time-series into the trend, periodic, and structureless (or noise) com-
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ponents using singular value decomposition. In our case, we decompose X =

{X1,X2, . . . ,XD} such that the Xi and Xi+1 are arranged in descending or-

der according to their corresponding singular value and the original time-series

can be recovered as: X =
∑D
i=1 X

i. Thus, we test the idea of incremental recon-

struction by SSA as a base-line transformation method. Figure 4.5 (right) shows

that training a classifier on the reconstruction with only the first components,

up to the total of 10 extracted components, can achieve over 80% accuracy for

both activity and identity recognition.

4.4.2.2 AAE performance

To measure the utility, we train an activity recognition classifier on both the

original data and the output of each transformation method: Resampling, SSA,

[86], and the AAE. Then, we use the trained model for inference on the corre-

sponding testing data. Here we use the Subject setting, thus the testing data

include data of new unseen users. The second row of Table 4.1 (ACT) shows

that the average accuracy for activity recognition for both Original and AAE

data is around 92%. Compared to other methods that decrease the utility of

the data, we can preserve the utility and even slightly improve it, on average, as

the AAE shapes data such that an activity recognition classifier can learn better

from the transformed data than from the original data.

To measure the privacy loss, we assume that an adversary has access to

the training dataset and we measure the ability of a pre-trained deep classifier

on users’ original data in inferring the identity of the users when it receives the

transformed data. We train a classifier in the Trial setting over original data and

then feed it different types of transformed data. The third row of Table 4.1 (ID)

shows that downsampling data from 50Hz to 5Hz reveals more information than

using the AAE output in the original frequency. These results show that the AAE

can effectively obscure user-identifiable information so that even a model that

has had access to the original data of the users cannot distinguish them after

applying the transformation.

Finally, to evaluate the privacy loss and efficiency of the anonymization

with an unsupervised mechanism, we implement the k-Nearest Neighbors (k-

NN) with Dynamic Time Warping (DTW) [205]. Using DTW, we measure the

similarity between the transformed data of a target user k and the original data

of each user l, Xl, for all l ∈ {1, . . . , k, . . . , N}. Then we use this similarity

measure to find the k nearest neighbors of user l and check their rank. The

last row of Table 4.1 (DTW) shows that it is very difficult to find similarities

between the transformed and original data of the users as the performance of

the AAE is very similar to the baseline methods and the constraint in Equa-
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Table 4.1: Trade-off between utility (activity recognition) and privacy (pro-
tecting identity). The second and third rows show the accuracy of the trained
classifier which illustrate how data, in each column, is informative about ac-
tivity and identity, respectively; as a proxy to the mutual information between
each time window and the corresponding labels in Equation (4.2.3). The fourth
row shows the K-NN rank between 24 users (the lower the better). Key – ACT :
activity recognition, ID : identity recognition, ACC : accuracy, F1 : F1− score,
DTW : Dynamic Time Warping as similarity measure, SSA: Singular Spectrum
Analysis, AAE: Our method.

Experiment Measure Original Data Resampling SSA [86] AAE
50Hz 10Hz 5Hz 1+2 1 50Hz 50Hz

ACT
mean F1 92.5 91.1 88.0 88.6 87.4 91.5 92.9
variance F1 2.1 0.6 1.8 0.9 0.9 0.9 0.37

ID
mean ACC 96.2 31.1 13.5 34.1 16.1 15.9 7.0
mean F1 95.9 25.6 8.9 28.6 12.6 11.2 1.8

DTW
mean Rank 0 7.2 9.3 6.8 9.5 10.7 6.6
variance Rank 0 5.7 5.8 5.6 5.4 5.5 4.7

tion (4.2.3) maintain the data as similar as possible to the original data. This

result shows that the utility-privacy trade-off of AAE is preferable to that of the

other methods.

4.4.2.3 Visualization

To gain an understanding of the type of distortions introduced by the AAE, we

visually compare sensor time windows before and after transformation.

Figure 4.6 (top) shows the low-dimensional latent representation of original

gyroscope data extracted by the bottleneck of the model. The distribution of

Y has useful information to distinguish not only the activities, but also the

users (color clusters of the top-right plot). We can notice that just using di-

mensionality reduction methods cannot ensure anonymization even if we greatly

reduce the dimensions. Figure 4.6 (bottom) shows the latent representation of

the data anonymized by our method: the transformation masks the data for dif-

ferent users but preserves the Jogging activity samples separated from those of

the other activities (note that this is a considerably compressed representation

of the input data).

Figure 4.7 compares original and transformed data of four activities. It is

noticeable that the AAE obscures patterns and peaks, but maintains differences

among data of different activities. Finally, Figure 4.8 compares the spectrogram

of original and transformed data for a user: the AAE introduces new periodic

components and obscure some of the original ones, and they differ across the

activities. As periodic components in accelerometer data can disclose informa-

tion about attributes of users such as height and weight, the AAE reduces the

possibility of user re-identification by introducing new periodic components in

the data.
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Figure 4.6: A 2D visualization of the lower-dimensional representation of the
input data, z, in Figure 4.2. (Top row): original data. (Bottom row): data
transformed by the AAE: (left) samples of four activities, and (right) jogging
data for all users.

4.4.3 Protecting Gender Information

Here, we consider the recognition of the user’s gender as the sensitive infor-

mation, whereas the recognition of their activities as the required information.

We evaluate a setting where anonymization with the AAE follows replacement

using RAE (Chapter 3). An important difference between RAE and AAE is in

the nature of sensitive information that they aim to hide. For RAE, each time

window, that corresponds to a user’s activity, is either sensitive (that must be

replaced) or not (that must be released with minimum perturbation), whereas

for AAE all time windows include both sensitive information (that must be hid-

den) and non-sensitive information (that must be kept). The goal is to measure
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Figure 4.7: Comparison of original (first and third row) and transformed data
(second and fourth row) for gyroscope (first two rows) and accelerometer (last
two rows) for four activities.

the accuracy of a server in the recognition of the user’s sensitive activities and

gender when they have access to the original data, versus when they have access

to the transformed one (see Figure 4.9).

In MotionSense dataset, we want a server to be unable to infer gender or

jogging activity from motion data. Let s={jogging} be the sensitive activity to

be replaced with n={standing still} as the neutral activity. We also consider

r ={walking, stairs-down, stairs-up} as the required inferences. Let the time-

window be 2.56 seconds (W = 128 samples) and H = 2, i.e. we consider the

magnitude of rotation and acceleration of the device.

First, we train two convolutional neural networks (see Figure 4.3), one as

an activity classifier and another as a gender classifier, on the original training

dataset. These two classifiers will simulate a potential activity recognition app

that may also try to infer the user’s gender. We tested multiple settings of hyper-

parameter selection and chose the classifiers that achieved the best accuracy on

the validation dataset for activity and gender recognition. We compute the

accuracy of these models on the test dataset without any modification and

report the accuracy in the second column of Table 4.2. Second, RAE is trained

to replace the jogging time-windows while keeping the required time-windows

unmodified in the RAE’s output, X′. Third, we use the RAE’s output, X′, as

the AAE’s input and train the AAE to reduce the likelihood of the user’s gender

being inferred from the ultimate data that is shared with the app, X′′. Finally,

after training both autoencoders, we feed the testing dataset into the compound

model.
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Figure 4.8: Spectrogram of original (first and third row) and transformed data
(second and fourth row) for gyroscope (first two rows) and accelerometer (last
two rows) for four activities.

Table 4.2: True-positive rate for each activity and gender classification accu-
racy (%) using a convolutional neural network for each stage of the compound
model on MotionSense dataset. “92 as n”, and so, means 92% of sensitive data
misclassified as a neutral data

Inference X: Original X′: Replacement X′′: Anonymization
βi = βa = βd βi = 1

2βa = βd

stairs-down 98.0 93.9 98.5 96.3
r stairs-up 96.4 97.8 92.3 96.3

walking 99.7 94.8 89.4 94.8
s jogging 99.3 1.4 (92 as n) 0.2 (92 as n) 0.1 (84 as n)
n standing 99.9 99.9 100 99.9
Gender 98.9 97.1 45.0 39.0

Table 4.2 shows the activity and gender classification results at each process-

ing stage. While X is highly informative for all inferences, after replacement

jogging intervals are not inferred in X′ and they are classified as standing. How-

ever, gender can still be inferred from X′. Inferring gender from X′′ (i.e. after
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Figure 4.9: (Top) the data flows in the compound framework. At the test-time,
first RAE automatically replaces sensitive time-windows with non-sensitive neu-
tral data, while required time-windows are passed with minimal distortions.
Then, AAE transforms data to reduce the chance of the user’s gender recogni-
tion. (Bottom) a visual illustration of our transformation mechanism. Depicted
signals show accelerometer data transformation for standing, walking, and jog-
ging activities respectively as neutral, required, and sensitive inferences (from
the experiment of Table 4.2).

anonymization) reaches the desired level of random guess while the inference of

r is maintained close to the original accuracy. Importantly, the proposed frame-

work allows us to give different weights on preserving the activity and hiding

gender: the last column of Table 4.2 shows that a better accuracy can be ob-

tained if we increase the risk of leaking more sensitive information. Notice that,

the random guess is 58% accurate in this dataset ( 14 males
24 males and females

). Thus,

the privacy loss is larger when we have 39% accuracy for gender classification

than 45%.

We repeat the same experiment as Table 4.3 on MobiAct [175] dataset by

keeping the same architecture for RAE and AAE. In this experiment we consider

all kinds of falls as sensitive activities, assuming that they can be considered as

symptoms of some diseases. We also consider being steady as a neutral activity,

which in this dataset it means either sitting or standing. We see results for

two different settings for utility-privacy parameters in Table 4.3, that show

almost similar results to what we have on the MotionSense dataset in Table 4.2.

Accuracy of recognizing the required activities are almost the same before and

after transformations, while accuracy in detecting falls is dropped from 99.6% to

less than 4.5%. Moreover, we can reduce the adversary’s accuracy in detecting

gender from 97.35% to 66.8%, which is close to the random guess in this dataset

that is 74.5% ( 41 males
55 males and females

).
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Table 4.3: True-positive rate for each activity and gender classification accuracy
(%) using a convolutional neural network for each stage of the compound model
on MobiAct [175] dataset.

Inference X: Original X′: Replacement X′′: Anonymization
1
10βi = βa = 1

5βd
1
4βi = βa = 1

2βd
stair-stepping 98.5 98.4 98.2 98.6

r walking 97.8 96.9 96.7 94.1
jogging 94.5 93.4 92.1 93.3
jumping 93.2 93.2 91.4 89.6

s falling 99.6 3.6 (96.1 as n) 3.4 (95.9 as n) 4.4 (94.9 as n)
n steady 98.6 98.5 95.8 92.7
Gender 97.3 95.5 79.9 66.7

4.5 Summary

In this chapter we showed how to train a deep autoencoder, called anonymiz-

ing autoencoder (AAE), using a multi-objective loss function for transforming

multivariate sensor data such that an activity recognition app cannot discover

the user’s identity or gender. Experiments conducted on real-world sensor data

show that the AAE obscures user-specific motion patterns that enable user re-

identification, introducing a small utility loss for activity recognition tasks. We

trained AAE in an adversarial setting [86, 89] where we give the transformed

data, by AAE, to another neural network model that classifies the sensitive vari-

ables. We showed how such an adversarial model can approximate the mutual

information between transformed data and sensitive data.

To remove sensitive patterns in data, AAE not only forces the encoder to

produce an uninformative latent representation, but also forces the decoder to

reconstruct data that cannot be confidently assigned to a specific user in the

training set, so the final trained model can generalize to a new unseen user.

Moreover, using some constraints on the amount of the allowed data distortion,

AAE tries to reconstruct data such that it is useful for an activity recognition

app. We showed that AAE achieves a better utility-privacy trade-off compared

to approaches that only consider regularizing the latent representation [86].

Unlike other solutions [163, 149, 73, 74] that need a trusted party to collect

all the users’ data and then run a one-shot privacy-preserving algorithm, the

AAE can anonymize data locally and can be shared across users. Thus, the

AAE has application in participatory sensing [206], to ensure anonymization

for participants who contribute their personal data for health and well-being

applications.
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Chapter 5

Privacy-Preserving Contextual

Bandits

5.1 Overview

In this chapter, we look into the privacy concerns corresponding to user’s web-

browsing temporal data that is utilized for personalization purposes. Personal-

ization aims to improve the quality of the content recommendations (e.g. news

articles or advertisements) by dynamically adapting to a user’s interests and re-

quirements. However, personalization algorithms learn how to maximize a user’s

positive responses to the proposed content, through time, by collecting poten-

tially sensitive information about the user’s interests and their past responses, a

fact that raises privacy concerns. For example, as shown in Section 2.1.4, a web

browser captures a history of the visited URL by a user in a temporal histogram

that specifies the user’s engagement in different URLs and can be mapped to

the user’s temporal needs and interests; a fine-grained personal data that can

reveal the identity of the user.

Contextual Bandit Algorithms (CBAs) [41, 134] are one of the major tools

for such personalized services. A centralized CBA, running on a centralized

server, analyzes each user’s temporal contextual data (e.g. web-browsing his-

togram) to recommend them some content. Then, based on the user’s responses

to the recommended content, the CBA can improve its future recommendations.

As centralized CBAs collect potentially sensitive data, such as the web-browsing

history, a privacy-preserving solution should be used to keep and process con-

textual data locally. Hence, we focus on local CBAs that run on the user’s

local device and perform on-device recommendations. Thus, as sensitive data

does not leave the user’s device, this approach naturally maintains the user’s
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privacy1.

The main challenge is that while a local CBA can achieve perfect privacy,

this approach is detrimental to personalization, as it fails to incorporate use-

ful information gleaned from other users, limiting its utility in making good

recommendations. This is known as the cold-start problem, where each local

CBA trains its algorithm from scratch by only observing its own user behav-

ior. Hence, the quality of initial recommendations to the user is often too low

because the local CBA needs to explore more into different content to learn a

good model of its user’s interests.

In this chapter, we propose Privacy-Preserving Bandits (P2B): a system

that updates local CBA agents by collecting feedback from other agents in

a differentially-private [60] manner. Therefore, while we keep data and run

agents locally, we also allow them to collaborate to solve the cold-start problem.

Comparisons of P2B with the other two extreme approaches, non-private CBAs

and fully-private (local) CBAs, show competitive performance on both synthetic

benchmarks and real-world data.

We evaluate P2B on three types of datasets that (explicitly or implicitly) sim-

ulate a recommendation system: synthetic dataset, online advertising dataset,

and multi-label classification dataset. Specifically, while providing differential

privacy (DP) with a privacy budget ε ≈ 0.693, P2B only decreases the multi-

label classification accuracy by 2.6 and 3.6 percentage point, and keeps the

click-through rate (CTR) in a content advertising dataset almost the same as

the non-private counterpart. These results suggest P2B is an effective approach

to challenges arising in on-device privacy and utility preserving personalization2.

5.2 Bandit Agents

5.2.1 Learning from Interactions

One of the most natural approaches to learning is to model a learner as an agent

that learns from its interactions with the environment; known as Reinforcement

learning [207]. Overall, reinforcement learning deals with learning how to map

the environment’s state to an agent’s action such that the achieved reward from

the environment is maximized. Naturally, actions not only affect the immediate

reward but more or less the subsequent rewards. This is a different approach

than supervised learning. The goal of supervised learning is to train an agent

using a labeled dataset such that it can be generalized well when, at the test

time, it is supposed to correctly label an unseen data sample from a similar

1In a practical setting, we still need to do extra work to eliminate potential security attacks.
2Code and data to reproduce results are publicly available at https://github.com/mmalekzadeh/

privacy-preserving-bandits
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distribution of the training dataset. In reinforcement learning, we do not have

access to a labeled dataset that well represents all possible situations that an

agent may face in the environment. Therefore, instead of entirely relying on

supervision, an agent is supposed to learn from its own interactions.

In learning from interactions in an active environment, the agent is always

faced with the overall trade-off between exploitation and exploration. The former

means the desire to take actions that have been awarded better in the past

or recent interactions, while the latter means to choose actions that are not

well experienced yet, in order to discover other potentially good actions for

future exploitation. Exploration is an essential strategy for an active agent,

because it helps to experience interactions that are impossible to see if the agent

always greedily selects actions that have the best temporal reward. For example,

recognizing that a (potentially student) user is interested in the educational

content, the agent can always recommend education-related materials during

the whole period of the service. However, purely focusing on the exploitation

of what the agent knows about the user will prevent the agent to explore what

it does not know, especially when the user’s interest is dynamically changing

through time.

A policy (i.e. algorithm) specifies when and how the agent decides to exploit

or explore at a given round. A policy’s input is the current state of the environ-

ment, and its output is the action to be taken. Mostly, policies are stochastic

such that they output a probability distribution over the set of possible actions.

After taking an action, the agent receives a reward from the environment. The

agent’s temporal reward is usually coming from a stochastic function of the

states of the environment and the actions that are taken. The objective of a

policy is to maximize the total reward that the agent receives over the long

run [207].

5.2.2 Contextual Bandit Algorithms

A multi-armed bandit problem is a special case of the reinforcement learning

problem in which the environment is non-associative: an environment that has

only a single state. In a non-associative environment, the reward function is

characterized by a set of fixed probability distributions, each corresponding to

one of the possible actions (a.k.a. arms3). For example, in a multi-armed bandit

problem with a (fixed but unknown) Bernoulli reward function, for each action

a the environment releases a reward of 1 with probability Pa, and otherwise a

reward of 0. In this case, the agent explores to find the action with the highest

Pa, and then it exploits it for the rest of interactions. If the Bernoulli reward

3An analogy to a slot machine that has multiple arms (levers) to choose and pull.
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function is not fixed, then the agent needs to perform occasional explorations

to keep track of the best action as it changes over time.

A more realistic environment is an associative environment, where there is

more than one state. In a contextual bandit problem the agent seeks to learn a

policy that maps each possible state to the action that is probably the best in

that state. A Contextual Bandit Algorithm, at each round t ∈ {1, 2, . . . , T}, se-

lects an action at ∈ {1, 2, . . . , A} based on the observed d - dimensional context4

vector xt = [x1,x2, . . . ,xd]
T at that round. In our web-browsing example, a

context vector is the (normalized) histogram of the user’s engagement in differ-

ent content. For instance an xt = [.4, .2, .1, .3]T can represent the user’s engage-

ment in content categories such as [shopping, social media, sport, education]. It

is important to notice that a context vector xt is not showing a specific URL

visit at round t, but it is showing a cumulative histogram of all the URLs that

are visited by the user at round t. Thus, in this example, 0.3 means 30% of the

user’s URL visits are educational websites.

The agent then obtains the reward rt ∈ {0, 1} associated with the selected

action, without observing the rewards associated with alternative actions. For

example, after observing current xt, the agent may recommend a promoted

online course, as the action at, and receive a positive response, rt = 1.

The main difference between a contextual multi-armed bandit problem and

a full reinforcement learning problem is that the chosen action by a CBA affects

only the agent’s immediate reward, but in a full reinforcement learning problem,

it may affect the reward corresponding to the next context as well. A fact that

makes it much more difficult to deploy a full reinforcement learning agent in

practice.

5.2.3 Upper Confidence Bound Algorithm

As explained, to deal with uncertainties in non-fixed associative environments,

an agent needs to explore. A simple algorithm, called explore-first, uniformly

explores all actions, each for N times, and then picks the empirically best action

for exploitation. A better algorithm, called ε-greedy, in each iteration randomly

and uniformly chooses an action to explore with probability ε, otherwise, it

greedily chooses the current best empirical action with probability 1 − ε. This

helps the agent to spread explorations over time, instead of only at the first

N iterations [115]. A problem with ε-greedy is that the agent will continue

exploring bad actions even when they already have been explored multiple times.

To make explorations more efficient, one idea is to give more chance to

actions that are not well explored yet, and the agent has higher uncertainty

4In the literature of bandit algorithms, people usually use the term context, instead of state,
where both refer to the same concept.
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about their rewards than other actions. This approach is called upper confidence

bound (UCB) [208] that computes upper bounds on the plausible rewards of each

action and consequently selects the action with the highest bound.

For contextual bandits, the agent should also take the current context xt

into account. Linear UCB [41, 209] is a contextual algorithm that computes

UCB based on a linear combination of contexts and rewards encountered on

previous iterations to propose the appropriate action for the current context.

For each action a, Linear UCB keeps a set of trainable parameters W a ∈ Rd×d

and ba ∈ Rd which are updated at each iteration. Briefly, at each iteration, the

next action is chosen to be:

at = arg max
a∈{1,2,...,A}

(W−1
a ba)Txt + α

√
xT
tW

−1
a xt

where α ≥ 0 is the parameter that controls exploration-exploitation trade-off,

and xt and ba are column vectors. Then, based on the user’s response to

the proposed at (e.g. to click or not to click on a recommended content), the

agent will update parameters W a and ba based on the Linear UCB algorithm

proposed in [41].

5.3 P2B Methodology

Privacy-preserving data collection has numerous applications. To collect browser

settings data, Google has built RAPPOR into the Chrome browser [137]. RAP-

POR hashes textual data into Bloom filters using a specific hash function. It

then randomizes the Bloom filter, which is a binary vector and uses it as the

permanent data to generate an instantaneous randomized response for sharing

with the server. RAPPOR can be used to collect some aggregated statistics

from all users. For example, having a huge number of users, RAPPOR can esti-

mate the most frequent homepage URLs. However, since the shared data is only

useful for estimating aggregated statistics like mean or frequency, the utility of

every single shared data for training a model is often too low; the accuracy of

the private data becomes unacceptable even with a large number of users.

As an extension to RAPPOR, the Encode-Shuffle-Analyze (ESA) architec-

ture [140, 158] adds two more layers to a local DP algorithm, called shuffler and

analyzer, that aims to obscure the identity of the data owner through oblivious

shuffling with trusted hardware. ESA implemented in PROCHLO [140, 158]

promises to safeguard user’s privacy, while preserving the quality of resulting

recommendations, through a combination of cryptographic, trusted hardware,

and statistical techniques. The Shuffler in the ESA architecture eliminates all

metadata attached to the users’ reports to eliminate the possibility of linking a
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data report to a single user during data collection. However, if users do not want

to trust any other party, the provided privacy will be the same as RAPPOR.

We explore the question of how the ESA approach can be used in a dis-

tributed personalization system to balance the quality of the received recom-

mendations with maintaining the privacy of users. We propose P2B—Privacy-

Preserving Bandits—a system where individual agents running locally on users’

devices are able to contribute useful feedback to other agents through central-

ized model updates while providing DP guarantees [68, 60]. To achieve this,

P2B combines a CBA agent running locally on a user’s device with a privacy-

preserving data collection scheme similar to ESA. For the CBA of the local

agent, we implement the well-known linear UCB algorithm [41]; which is one

of the most popular algorithms for recommendation systems in practice [115].

Moreover, updating the weights of a CBA agent only needs knowledge about

the most recent interaction with the user, which makes them more practical for

a lightweight local recommendation agent, than other full RL agents [207].

In P2B, every user runs their own CBA agent that works independently of

any other agents5. At round t the agent observes the current context xt, which

represents the user’s recent web browsing history. Based on xt, the agent pro-

poses an action at, and consequently observes the reward rt associated with the

action (e.g. proposing a news article and observing the user’s reaction to that

article). As the interaction proceeds locally, we refer to agents running on a

user’s device as local agents. The agent may periodically elect to send some

information about an observed interaction to a data collection server, and we

show how agents encode their data such that the released data to the server

satisfies differential privacy with a specific bound. Using the collected data, the

server updates a central model that is then propagated back to the users. Fig-

ure 5.1 summarizes the overall architecture of the proposed framework. The rest

of this section presents P2B’s operation and details its various components. Sec-

tion 5.4 describes how P2B satisfies DP, and Section 5.5 experimentally explains

how this approach improves the performance of local agents.

5.3.1 Randomized Data Reporting

Local agents participate in P2B through a randomized participation mechanism.

After having some local interactions with the user (e.g. after recommending

T ≥ 1 different content), the local agent may randomly construct a payload,

containing an encoded instance of interaction data, with probability p. Ran-

domized participation is a crucial step in two ways. First, it raises the difficulty

of re-identification attacks by randomizing the timing of recorded interactions.

5Note that user is an individual and agent is an on-device algorithm that serves a user.
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Figure 5.1: System architecture for P2B. A local agent, with probability p,
encodes a context vector xt into the code y and sends it to the shuffler, along-
side the recommended action a and observed response r. The trusted shuffler
removes all meta-data that may help to deanonymize data, filters data with a
frequency lower than the pre-specified threshold l to satisfy the crowd-blending
privacy model, shuffles the received data to mitigate potential timing attacks,
then sends all data to the server that updates the CBA algorithm to share it
with other users and mitigate the cold-start problem.

More importantly, the participation probability p as a source of randomness,

has a direct effect on the DP parameters ε and δ we will establish in Section 5.4.

Briefly, by choosing the appropriate participation probability, one can achieve

any level of desired privacy guarantee in P2B.

5.3.2 Encoding

The agent encodes an instance of the context vector, x, prior to data transmis-

sion. The encoding step acts as a function that maps a d-dimensional context

vector x into a code y ∈ {0, 1, . . . ,K − 1}, where K is the total number of en-

coded contexts. Here, x denotes the original and highly informative contextual

data, for instance, a histogram with d bars that shows the user’s engagement

in different content types (e.g. URLs). On the other hand, y is considered as

a cluster code for x; a highly restricted contextual data that is aimed to be

useful to a CBA for distinguishing different states of the user’s behavior, but

not useful to distinguish a user in a population.

Let us consider x as a histogram with d bars, where the value of each bar has

a fixed precision of q decimal digits and the histogram is normalized that means

its values sum to 1. This combination of normalization and finite precision

has two important characteristics. First, it allows us to precisely enumerate all

possible contexts according to a classic theorem of counting problem in combina-

torics, that is proved by a technique called as stars and bars [210]. The theorem

says that for any pair of positive integers s and d, the number of d-tuples of

non-negative integers whose sum is s is equal to the number of multisets of
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Figure 5.2: Normalized vector space of x = (x1, x2, x3) with precision q = 1
that has the cardinality n = 66. Context vectors are normalized such that
x1 +x2 +x3 = 1. The size of the circles shows the value of x3. Rectangles show
a potential encoding of the vector space withK = 6 clusters. Here, the minimum
number of elements in a cluster is l = 9 which is an important parameter for
the crowd-blending privacy model.

cardinality d− 1 taken from a set of size s+ 1 that is(
s+ d− 1

d− 1

)
.

In our setting, using a finite precision of q decimal digits we have s = 10q and

the cardinality, n, of the set of possible normalized context vectors is

n =

(
10q + d− 1

d− 1

)
. (5.3.1)

Secondly, the samples of such normalized context vectors are distributed

uniformly, in a grid shape, in the d-dimensional space. For instance, in Figure

5.2 we see an example of encoding a 3-dimensional normalized vector space that

is encoded in K = 6 different codes. In this example, the number of 3-tuples of

non-negative xi whose sum is 1 (e.g. [0.3, 0.5, 0.2]) is n = 66.

Given that the CBA agent tends to propose similar actions for similar con-

texts, neighboring context vectors can be encoded into the same context code y.

While this approach may appear to be limiting, as it reduces the granularity of
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the data, we will show in Section 5.5 that the encoded values are still useful for

establishing a desired utility-privacy trade-off. The encoding algorithm can be

chosen depending on application requirements, but we limited our experimental

evaluation to the simple K-means clustering [211]. After electing to participate

and encoding an instance of a user interaction, the agent transmits the data in

the form of the tuple (yt, at, rt) to the shuffler.

5.3.3 Shuffler

The trusted shuffler is a critical part of every ESA architecture [140], and in

P2B it is necessary for ensuring anonymization and DP guarantee. Following

the same PROCHLO implementation [140], the shuffler operates in a secure

enclave on trusted hardware and performs three tasks:

1. Anonymization: eliminating all the received meta-data (e.g. IP address)

originating from local agents.

2. Shuffling: gathering tuples received from several local agents into batches

and shuffling their order. This helps to prevent side-channel attacks (e.g.

timing attack).

3. Thresholding: removing tuples that their encoded context vector fre-

quency in the batch is less than a defined threshold. This threshold plays

an important role in the achieved DP bound.

After performing these three operations, the shuffler sends the refined batch

to the server for updating the model. Upon receiving the new batch of training

data, the server updates the global model and distributes it to local agents that

request it. More importantly, this global model is used as a warm-start by new

local agents that are joining the system to help in preventing the cold-start

problem.

5.4 Privacy Analysis

This section analyzes how P2B ensures DP through a combination of pre-

sampling and crowd-blending (see Section 2.2.2). Here, we assume that users

wish to share their sensitive context vector x with the server without revealing

their identity (i.e. who is the owner of x), and we discuss how randomized

pre-sampling, encoding x into y, and shuffler’s operations make P2B a privacy-

preserving algorithm. The user’s privacy is defined against a curious server that

collects the user’s context vectors and wants to recognize whether a target user

is contributed to the dataset or not. Thus, if we guarantee such DP for our users
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against the server, then by post-processing property of DP, the same privacy

guarantee will hold against all other parties who will get access to the collected

data or ML models that are trained on that data.

As context vectors are multi-dimensional real-valued vectors, we assume a

context vector in its original form can be uniquely assigned to a specific user.

Here, we assume no prior on the possible values for a context vector, meaning

context vectors are coming from a uniform distribution over the underlying

vector space. This may seem to be an unrealistic assumption, as for example in

the real world, not all URLs have the same chance to be visited. However, from

the privacy point of view, this uniform assumption indicates a vector space of

the maximum entropy which is the worst possible vector space to be encoded

into a lower-dimensional space with an entropy depending on the chosen K.

With these assumptions, P2B can resist strong adversaries with any kind of

prior knowledge or side information, because P2B provides a DP guarantee and,

therefore, inherits all the advantages of DP.

For the n different context vectors in Equation (5.3.1), the optimal encoder

(see Section 5.3.2) encodes every n/K contexts into one of the possible K codes.

Consequently, when a total number of U users participate in P2B to send a

tuple to the server, the optimal encoder satisfies crowd-blending privacy with

l = U/K. In the case of a suboptimal encoder, we consider l as the size of

the smallest cluster in the vector space. Furthermore, situations where the

number of users is small, leading to a small l, can be addressed by adjusting the

shufflers threshold to reach the desired l. Essentially, l can always be matched

to the shuffler’s threshold.

Each user randomly participates in data sharing with probability p (see

Section 5.3.1), and then encoding the pre-sampled data tuple. Following [68],

the combination of (i) pre-sampling with probability p and (ii) (l, ε̄)−crowd-

blending, leads to a differentially private mechanism with

ε = ln
(
p · (2− p

1− p
· eε̄) + (1− p)

)
(5.4.1)

and

δ = e−Ω(l·(1−p)2). (5.4.2)

Here Ω is a constant that can be calculated based on the analysis provided by

[68]. For better understanding of the role of the parameters ε and δ, please visit

Section 2.2.1 where we elaborate the DP model.

Our encoding scheme provides an ε̄ = 0 for crowd-blending, as the encoded

values for all the members of a crowd is exactly the same. As a consequence, the

ε parameter of the DP of the entire data sharing mechanism depends entirely
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Figure 5.3: ε as a result of the probability of participating in the scheme p.

on the probability p of participation as (Figure 5.3):

ε = ln
(
p · (2− p

1− p
) + (1− p)

)
.

For example, by trading half of the potential data (p = 0.5) P2B achieves

an ε ≈ 0.693 that is a strong privacy guarantee. On the other hand, δ depends

on both p and l. To understand the effect of δ, Dwork et al. [60] prove that an

(ε, δ)-differentially private mechanism ensures that for all neighboring datasets,

the absolute value of the privacy loss will be bounded by ε with probability at

least 1 − δ. Therefore, by linearly increasing the crowd-blending parameter l,

we can exponentially reduce the δ parameter.

Our illustrations here provide concrete settings and parameters that show

how P2B satisfies the requirements of the DP model proposed in [68]. We refer

the interested reader to the rigorous analysis and proofs provided in the original

paper [68].

It is worth mentioning that a crowd-blending privacy guarantee is not enough

per se, and we need a DP guarantee if we need to assure plausible deniability for

the users such that it is always possible for the users of P2B to deny participation

in the process. For example, in the crowd-blending model, a user can still be

identified to certainly be one of l people who their web-browsing history is

clustered into a sensitive category (e.g. a category showing users who visit

some sensitive URLs). However, in the DP model, this identification cannot be
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done with certainty, as there is always a chance for all users to not be sampled

in the first place. Hence, plausible deniability is provided to all users, with a

specific statistical bound defined by DP.

5.5 Experimental Evaluation

This section explores P2B’s privacy-utility trade-offs compared to (i) non-private

and (ii) completely private approaches. The experimental evaluation assumes

the standard bandit settings, where the local agent learns a policy based on

the contextual Linear Upper Confidence Bound algorithm (LinUCB) [209, 41].

For simplicity, throughout the experiments, the probability p of randomized

transmission by a local agent was set to p = 0.5, the rounding parameter q

of the encoder was set to q = 1, and the parameter α for LinUCB was set to

α = 1, meaning that the local agent is equally likely to propose an exploration or

exploitation action. The experiments compare the performance of the following

three settings:

Cold. The local agent learns a policy without any communication to the

server at any point. As there is no communication, this provides full privacy,

but each agent has to learn a policy from a cold-start.

Warm and Non-Private. In this setting, local agents communicate the

observed context to the server in its original form. Thus, other agents are

able to initialize their policy with a model received from the server and start

adapting it to their local environment. This is called warm and non-private

start, and represents the other end of the privacy/utility spectrum with no

privacy guarantee afforded to the users.

Warm and Private. In this setting, local agents communicate with the

server using P2B. Once more, other agents initialize their internal policy with

an updated model received from the server and start to adapt it to their local

environment. We term this a warm and private start, and the provided privacy

guarantees function according to the analysis in Section 5.4.

These approaches are evaluated on synthetic benchmarks, two multi-label

classification datasets, and an online advertising dataset.

5.5.1 Synthetic Preference Benchmark

These benchmarks consider the setting where there is a stochastic function F
that relates context vectors with the probability of a proposed action receiving a

reward. Specifically, F is the scaled softmax output of a matrix-vector product

of the user contexts with a randomly generated weight matrix W and bias vector
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Figure 5.4: Synthetic benchmarks: (Top) size(A) = 10, (Middle) size(A) = 20
(Bottom) size(A) = 50. For all: d = 10 and t = 10. The expected reward in
this setting has a strong dependence on the number of actions as agents will
spend considerable time exploring alternative actions.

b:

F(x) = softmax(Wx + b) ∈ [0, 1]size(A). (5.5.1)

For the specific implementation in this section, we use the default weight initial-

izer of TensorFlow [202] to set W and b, and then keep them fixed throughout

the experiment. In the LinUCB algorithm, we set the mean reward r̄a for every
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action a as

r̄a = βFa(x) + z,

where Fa is the a-th component of the softmax output in Equation 5.5.1, β is

a scaling factor with 0 ≤ β ≤ 1, and z is random Gaussian noise z ∼ N (0, σ2).

Hence, to create an instance of a synthetic interaction between user and agent,

we first randomly and uniformly generate a context vector x. Then having x

and using F , for each possible action a we calculate the probable reward r. For

round t, this process results in a synthetic data tuple (xt, at, rt).

For all synthetic benchmarks, the parameters are set as follows. The scaling

factor for the preference function was fixed to β = 0.1 and the variance of

the Gaussian noise σ2 = 0.01. In terms of local agent settings, the agents use

K = 210 codes for encoding purposes and observe t = 10 local interactions

before randomly transmitting an instance with probability p = 0.5. We varied

the number of dimensions d of the context vector in the range of 6 to 20, and

the number of actions in the range of 10 to 50. We observe the average reward

in each setting as the user population U grows from 103 to 106.

Our results in Figure 5.4 indicate that for a small number of interactions

the cold-start local model fails to learn a useful policy. In contrast, the warm

models substantially improve as more user data becomes available. Utilizing

prior interaction data in this setting, more than doubles the effectiveness of the

learned policies, even for relatively small user populations. Overall, the non-

private agents have a performance advantage, with the private version trailing.

Figure 5.5 illustrates how the dimensionality of the context vector affects

the agent’s expected reward. By increasing d from 6 to 20 the average reward

decreases as agents spend more time exploring the larger context space. P2B

remains competitive with its non-private counterparts, and on occasion outper-

forms them, especially for low-dimensional context settings. The number of

actions has a similar effect to the dimensionality of the context, as agents have

to spend more time exploring suboptimal actions. Once more, the results of

Figure 5.4 indicate that this is the case experimentally.

The number of users is pivotal in the trade-off between privacy and utility.

For simplicity, and in order to avoid unnecessary computation, experiments

fix p = 0.5. However, the expected reward for other p values can be simply

deduced from the current experiments. For example, if p changes from 0.5

to 0.25 (meaning ε is changed from 0.69 to 0.28) P2B would require 100K

users rather than 50K to achieve the same performance with the new privacy

guarantee. In simple terms, to achieve smaller ε, a smaller p is required, which

consequently means that a proportionally increased number of users is necessary

to maintain a similar performance.
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Figure 5.5: Synthetic benchmarks: U = 20000, size(A) = 20, t = 20, and
d = {6, 7, . . . , 20}. As the dimensionality of the context increases the average
reward for this settings is reduced as agents spend more time trying to explore
their environment.

5.5.2 Multi-Label Classification

These experiments examine the performance of the three settings on multi-label

classification with bandit feedback. Although a multi-label classification task

is not an explicit recommendation task, there are some similarities between

these two tasks. In both tasks (classification/recommendation): (i) the predic-

tion is based on the given sample/context (ii) for each sample/context, there

usually are more than one correct labels/items to recognize/propose, and (iii)

the set of possible labels/items is large enough to not make the problem triv-

ial. Therefore, as we do not have access to many public real-world datasets for

the recommendation, it is proposed to use multi-label classification datasets for

better evaluation of bandit algorithms [212].

We consider two datasets, namely (1) MediaMill [213], a video classification

dataset including 43,907 instances, 120 extracted features from each video, and

101 possible categories, and (2) a TextMining dataset [214] including 28,596

instances, 500 extracted features from each text, and 22 possible categories.

P2B’s performance in this setting was evaluated according to the following

setting. We consider a fixed number of local agents. Each agent has access to,

and is able to interact with, a small fraction of the dataset. In particular, every

agent has access to up to 100 samples, which were randomly selected without

replacement from the entire dataset. 70% of agents participate in P2B and we

test the accuracy of the resulting models with the remaining 30%. For both

datasets, the local agents use K = 25 codes for encoding purposes.

This setting is particularly interesting as it allows us to study how the pre-

dictive performance of the system changes when the local agents interact more

with the user. In terms of relative performance between the different approaches,
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Figure 5.6: Accuracy in multi-label datasets: (Top) Media-Mill with d = 20
and size(A) = 40 (Bottom) Text-Mining with d = 20 and size(A) = 20. As
local agents observe more interactions they obtain better accuracy. This has a
multiplicative effect in the distributed settings where agents reach the plateau
much faster.

the results in Figure 5.6 repeat the findings of the synthetic benchmarks. The

non-private warm version is better than the private warm version, which is still

better than the cold version that utilizes only local feedback.

However, we can also observe that the cold version given enough interac-

tions produces increasingly improving results. The centralized update mecha-

nism tends to have a multiplicative effect, especially when there is little local

interaction data before reaching a plateau.
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Figure 5.7: Criteo results. d = 10, size(A) = 40, (Top) K = 25, and (Bottom)
K = 27. The private and non-private agents obtain similar performances for
low numbers of local interactions. As the number of local interactions increases
the private agents perform better than their non-private counterparts.

5.5.3 Online Advertising

Here, we consider an advertisement recommendation scenario where the action

is to recommend an ad from one of the existing categories. We use the Criteo

dataset from a Kaggle contest6. It consists of a portion of Criteo’s traffic over

a period of 7 days, including 13 numerical features and 26 categorical features.

For each record in the dataset, there is a label that shows whether the user

has clicked on the recommended ad or not. For anonymization purposes, the

feature’s semantics are unknown and the data publisher has hashed the values

of categorical features into 32 bits.

As the exact semantics of the features were not disclosed, we assume that

numerical features represent the user’s context and categorical features corre-

spond to the type of the proposed product. For each sample in the dataset,

we hash the values of the 26 categorical features into an integer value. The

6https://labs.criteo.com/category/dataset
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resulting integer value is then used as a possible product category to recom-

mend. The hashing procedure operates as follows: First, the 26 categorical

values are reduced into a single hashed value using feature hashing [215]. After

hashing, the 40 most frequent hash codes are selected. These are converted into

an integer value in the range between 1 to 40, based on their frequency (label 1

shows the most frequent code and so on). Finally, for evaluation, we only use

data samples having one of these 40 values as the product label and ignore the

remaining data.

During the evaluation, the local agent observes the values of the numerical

features as the context vector, and in response takes one of the size(A) =

40 possible actions. The agent obtains a reward of 1 if the proposed action

matches the logged action in the dataset. The remaining experimental setup

for the Criteo dataset is similar to the one used in the multi-label datasets.

Specifically, we present experimental results (Figure 5.7) for d=10 and total

number of actions size(A) = 40. We compare the results for two values of

encoding parameter K = 25 and K = 27. The sampling probability p remains

0.5, and the shuffling threshold remains 10. This experimental setting has U =

3000 agents, and each of the agents accumulates 300 interactions.

The results in this setting are quite surprising as private agents attain a

better click-through rate than their non-private counterparts. There is a recent

work [216] showing that privacy-preserving training of machine learning models

can aid generalization as well as protect privacy. There are some factors we

believe help explain these experimental results.

Private agents use the encoded value as the context. As a result, the

number of possible contexts is much smaller compared to using the original

d-dimensional context vector. As contextual bandits need to balance explo-

ration with exploitation, especially in the early stages, a bandit with a smaller

context size can quickly reach better results. Furthermore, P2B clusters similar

context vectors into the same categories and this also helps a private bandit to

better act in similar situations. This is an effect that also can be seen for the

higher dimensional contexts of the synthetic benchmarks in Figure 5.5.

Once more, the number of users plays a critical role in establishing an accept-

able trade-off between utility and privacy. The parameter δ in Equation 5.4.2

can be interpreted as the probability that the worst-case happens in differen-

tially private data sharing. Using a larger K in a system with a small number

of users U , limits the crowd blending parameter l and consequently leads to un-

desired potential values for δ. Unfortunately, the number of users for real-world

datasets used in this paper is limited, thus posing constraints on the range of

parameters in the experimental evaluation.
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5.6 Summary

Taking advantage of clustering algorithms, such as K-means, we proposed a

method for efficiently encoding feedback instances of a contextual bandit al-

gorithm on the user’s device. We evaluated P2B on a synthetic benchmark,

multi-label classification, and online advertising data. We showed experimen-

tally that standalone agents trained on an individual’s data require a substantial

amount of time to learn a useful recommendation policy. The results experi-

mentally show that P2B remains competitive in terms of predictive utility with

approaches that provide no privacy protections. At the same time, as expected,

it substantially outperforms on-device cold-start models that do not share data.

The experiments show that sharing data between agents can significantly reduce

the number of required local interactions in order to reach a useful local pol-

icy. We examined the overall trade-offs between recommendation quality and

privacy loss by performing a DP analysis of the P2B according to the crowd-

blending privacy model [68]. We showed that P2B results in a small ε value

for DP, which can be directly quantified from the probability of an agent par-

ticipating in the data collection mechanism. Such bound on the privacy loss,

provided by the guaranteed DP, shows that P2B can promise the users strong

privacy protection. In a series of experiments, P2B shows considerable improve-

ment for increasing numbers of users and local interactions. With regards to

P2B’s privacy, experiments show the clustering-based encoding scheme is ef-

fective in encoding interactions. In addition, all the experiments relied on a

sampling probability p = 0.5. This results in a very competitive privacy budget

of ε ≈ 0.693.
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Chapter 6

Conclusions

In this chapter, we first provide a summary of this thesis’s achievements, then we

discuss the research questions that are still open and the corresponding future

directions that, we believe, are worth exploring.

6.1 Summary of Achievements

The focus of this thesis was on proposing machine learning algorithms that can

help the users of cloud-assisted applications to have more control and protection

over the data they share and the amount of information which can be discovered

from their data.

First, we proposed two privacy-preserving algorithms for transforming motion-

sensor data generated by mobile and wearable devices. (i) We proposed Re-

placement AutoEncoder (RAE) to prevent the inference of the user’s sensitive

activities without decreasing the accuracy of the desired app in recognizing non-

sensitive activities. (ii) We proposed Anonymization AutoEncoders (AAE) to

avoid the inference of the user’s sensitive attributes, or enable the re-identification

of the user, from the patterns observed in their motion sensor data. The differ-

ence between RAE and AAE is in the nature of sensitive information that they

aim to hide. In RAE, each time window corresponds to a user’s activity and that

activity is either sensitive (that must be replaced) or non-sensitive (that must be

released with minimum perturbation), whereas for AAE all time window include

both sensitive information (that must be hidden) and non-sensitive information

(that must be kept). Despite this difference, we showed how to cascade RAE

and AAE into a compound architecture to build a unified framework that can

protect both sensitive activities and sensitive attributes, such as gender, that

a user may want not to reveal. We evaluated the efficiency of the proposed

algorithms on several datasets for human activity recognition, and showed that
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these algorithms can generalize well for establishing a meaningful privacy-utility

trade-off on data of unseen users. Alongside these algorithms, we also collected

and published a HAR dataset of motion sensors which is not only used in this

thesis, but also by many other researchers.

Second, we proposed Privacy-Preserving Bandits (P2B) for efficiently encod-

ing the user’s web-browsing data while maintaining its usefulness for collabora-

tively training personalized content recommendation apps. We showed how P2B

can provide a formal differential privacy guarantee while improving the quality

of recommendations. We evaluated P2B on several datasets and showed how

P2B remains competitive with a non-private counterpart as well as substantially

outperforming the non-collaborative fully-private counterpart. Our results sug-

gest P2B is an effective approach to challenges arising in on-device privacy and

utility preserving personalization.

6.2 Future Directions

Related to the proposed algorithms in this thesis, there are some directions for

future research that we discuss in the following.

1. Collaborative Model Training. We have assumed the existence of

a publicly available dataset to train the RAE and the AAE through a trusted

mediator. When such a public dataset is not available or users do not trust a

mediator, one option is to use privacy-preserving collaborative model training

without collecting personal data [143], for example through federated learn-

ing [144]. In cases where there is a limited set of the labeled data and a large

set of unlabeled data, one option might be to use semi-supervised training using

GANs [217], where the unlabeled dataset is used to help the model learning

more discerning features for the target task.

2. Diversity and Robustness in Data Transformations. We have

seen that the RAE tends more to transform many sensitive activities into one

of the possible neutral activities. Such a lack of diversity in replacement might

give an adversary some advantages to distinguish whether the received data is

a replacement of a sensitive time window or not. Thus, one can investigate an

improvement to the RAE that transforms each sensitive activity into a neutral

activity that is more probable to happen at that specific time. It should be noted

that for evaluation of such improvement one needs to get access to, or collect, a

more detailed HAR dataset including time-stamped, consecutive activities data

of several users. Deriving a more rigorous statistical analysis for the amount of

privacy achieved by the RAE or AAE is an important task. Recent advances in

using neural networks and variational bounds [152] for measuring the mutual

information between high-dimensional data can be used for better quantifying
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the amount of preserved/removed information or to introduce new privacy and

utility metrics.

3. Cost and Complexity Analysis. Measuring the cost of running the

proposed algorithms on the user devices, to see what are the complexities that

we should tolerate to locally protect the user’s privacy, is an important direction.

One can design and evaluate the interplay between the operating system of the

user’s device, the data transformation algorithms such as RAE, AAE, DANA, or

P2B, and the applications that are running on the device and request access

to data. Specifically, one can focus on developing algorithms that let users

dynamically define their personal privacy policies or resources that the apps are

allowed to have access to.

4. A Privacy Model without Losing Data. With the current privacy

model of P2B, we need to discard a considerable fraction of the data (e.g. half

of the data) to ensure an acceptable privacy guarantee. Although the P2B still

performs well, there is still some room for working on a privacy model that

can take advantage of the whole available data. For example, a differential

privacy model using randomized response, instead of randomized pre-sampling,

can help. However, as the randomized response needs to add noise to every

sample, this approach may scarify more utility than the current approach of

P2B.

5. Lower/Upper Bounds for P2B. We have seen that P2B traces a

similar trend to its non-private counterpart in several experiments and showed

that P2B is competitive and even sometimes outperforms the non-private model.

One can also study the behavior of more encoding approaches as well as their

interplay with alternative contextual bandit algorithms. Hence, working on

theoretical lower- and upper-bounds for the accuracy of P2B to provide more

concrete reasons on the behavior of the model is an interesting future direction.

6. Sensor Data Collection. In most of the available HAR datasets, the

activities that are categorized into sensitive, required, and neutral are indepen-

dent of each other and at each time-window, only one of them is happening.

However, in a real-world situation there might be correlations among different

activities, some activities may happen at the same time, or there might be ac-

tivities that are more probable to happen consecutively. Moreover, correlations

among consecutive time-windows of a specific activity may incrementally re-

veal information that facilitates the re-identification of the user. To assess these

situations for better evaluation of RAE and AAE, we would need access to multi-

labeled data collected over a much longer time period as well as a large number

of demographically different users. From another point of view, the current pub-

lic datasets of mobile and wearable sensor data do not simultaneously satisfy

the requirements of abundance and variety of activities and users. With larger
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datasets, one can increase the learning capacity of the proposed deep neural

architecture by adding more layers to the neural network or investigate various

DNN architectures for RAE or AAE. Collecting and labeling datasets that cover

such scenarios can facilitate answering many research questions in this area.
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Appendix A

Dimension-Adaptive Neural

Architecture

A.1 Overview

Motion sensors embedded in wearable and mobile devices allow for dynamic

selection of sensor streams and sampling rates, enabling useful applications,

e.g. for power management or control of data sharing. While deep neural

networks (DNNs) achieve competitive accuracy in sensor data classification,

current DNN architectures [101, 102, 103, 117, 116, 182, 119, 183, 118] only

process data coming from a fixed set of sensors with a fixed sampling rate,

and changes in the dimensions of their inputs cause considerable accuracy loss,

unnecessary computations, or failure in operation. Thus, current DNNs cannot

reliably handle dynamic conditions at inference time (e.g. when the sampling

rate changes or some sensors are dropped or deselected), which are important

for energy preservation [75, 76, 77], privacy protection [4, 73, 74], and fault

tolerance [78, 79]. Moreover, DNNs are often trained on datasets collected

with specific devices, but may be used in a wider set of devices, with different

combinations of sensors and sampling rates [218].

To address sampling rate and sensor selection in a unified framework, we

introduce Dimension-Adaptive Neural Architecture (DANA) that is robust to

variable sampling rates and sensor selection, and also works on any combina-

tion of sensors that were considered at training time. Specifically, we introduce

a dimension-adaptive pooling (DAP) layer that captures temporal correlations

between consecutive samples and dynamically adapts to all feasible data di-

mensions. To enable DNNs that use DAP to generalize at inference time over

the set of feasible dimensions, we propose a dimension-adaptive training (DAT)

procedure, which incorporates dimension randomization and optimization with
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accumulated gradients. In each forward pass, DAT re-samples a batch of time

windows to a new rate and may also cope with removed streams from some

sensors. Then, gradients from multiple batches are accumulated before updat-

ing the parameters. Combining DAP and DAT, we show how to transform an

existing DNN into an adaptive architecture, while keeping the same number of

parameters and classification accuracy, and improving the inference time. Be-

sides allowing adaptive sampling rate and sensor selection in a unified solution,

DANA also enables power-limited devices to take advantage of convolutional

layers’ capability in reducing the performed computations according to the di-

mensions of the sampled data. Experimental results on four datasets show that

DANA can maintain classification accuracy in dynamic situations where exist-

ing DNNs drop their accuracy, and better generalizes to unseen environments.

Most neural network architectures can work with the proposed DANA, without

altering other architectural aspects of the original model, while benefiting from

the robustness and flexibility DANA provides.

In this chapter, we first discuss the sampling rate and sensor selection prob-

lems, and explain how an adaptive neural network can address both problems.

Then we elaborate on how a DAP layer works, and how DNNs that use DAP can

be efficiently trained using DAT. Finally, we compare DANA with non-adaptive

DNNs and other baselines1.

A.2 Sampling Rate and Sensor Selection

In human activity recognition via mobile and wearable devices, two highly

debated characteristics are the appropriate selection of sensors and the sam-

pling rate for the selected sensors. Previous works, which are mostly based

on non-deep-learning approaches, have addressed either sensor selection [96,

104, 105, 106, 107, 108] or adaptive sampling rate [109, 110, 111, 112, 113],

and usually dedicated a separate classifier for each feasible setting of avail-

able sensors [219, 220]. Moreover, the trade-off between classification accuracy

and power consumption varies with changes in the sampling rate, the sensor

streams used by the classifier, the type of the current activity, and the phys-

ical characteristics of the wearer [221]. Power-aware sensor selection may use

a meta-classifier [96] or the prediction of future activities from the current one

to deselect sensors that are not useful for future activities [104]. Alternatively,

a graph model representing the correlation among sensors with a greedy ap-

proximation can be used for sensor selection [106]. Finally, a subset of sensors

can be dynamically selected by minimizing an objective function that takes

1Code and data to reproduce results are publicly available at https://github.com/mmalekzadeh/
dana
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classification accuracy and the number of sensors as inputs [108].

Defining the minimum sampling rate that captures discerning frequency

components in different human activities, for example, to minimize power con-

sumption [75], is challenging [110] as the minimum required sampling rate

varies across users, activities, and sensor positions. Khan et al. [110] show

that the minimum sampling rate across activity recognition datasets varies

between 22 and 63 Hz, for a 99% Kolmogorov-Smirnov similarity test [126].

Yan et al. [221] propose to use a classifier with the highest sampling rate and

then, after recognizing the current activity, switch to a lower sampling rate with

another classifier and only monitoring whether the current activity changes or

not. In order to lower the power consumption, AdaSense [109] uses a lower sam-

pling rate to periodically check for changes in the current activity of the user,

and if a change has detected, then it uses a higher sampling rate to classify the

new activity. To determine the best trade-off between power consumption and

classification accuracy, Cheng et al. [111] find an optimal classification model

as well as appropriate sampling rates using a continuous state Markov decision

process that is only appropriate for training simple classifiers, such as softmax

regression, and not applicable in training DNNs.

A.3 Adaptive DNNs

The architecture of a DNN is mainly defined by the type and number of the

layers, and the way these layers are connected to each other [198]. A commonly

used DNN architecture to classify sensor data is composed of a convolutional

neural network (CNN) followed by a feedforward neural network (FNN) or a

recurrent neural network (RNN) [101, 102, 103, 117, 116, 182, 119, 183, 118].

A CNN is inherently adaptive to input data of variable dimensions and learns

features relevant for the classification task. Feeding such extracted features to

an FNN or an RNN facilitates generalization, compared to using multi-channel

raw sensor data [181]. However, FNNs work on fixed-dimension input data only,

whereas RNNs work on a variable number of samples, but on a fixed number of

data streams. The main difference between FNNs and RNNs is that there are

no feedback connections in an FNN. A feedback connection feeds the output of

a neuron in a neural net, to the neuron itself. Every neuron in an RNN includes

a feedback connection which helps RNN to capture temporal correlation among

consecutive samples.

To address these limitations, a pre-processing stage can be added to the

inference pipeline that up/down-samples data to a fixed rate or imputes dummy

data (e.g. zeros or the average value of the training data) to compensate for
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missing samples [222], but these solutions reduce classification accuracy and can

even raise some security challenges. In [223], authors show that in downsampling

data, from higher resolutions to a lower resolution, some discerning patterns in

the data are either removed or changed such that the resampled data of a specific

class will be categorized into another class. They show how adversaries can take

advantage of their knowledge about the used downsampling method to generate

adversarial examples for deceiving machine learning models.

Alternatively, one can perform a global maximum or average pooling over all

values of each convolutional filter map [224]. A global pooling layer maps each

CNN’s output of variable dimensions into a one-dimensional vector whose length

is equal to the number of the convolutional filters, by taking the maximum

or average over each filter map. Global pooling ignores the inherent spatial

structure of the data and we show that it can cause accuracy loss.

To mitigate the shortcomings of global pooling in visual object recognition,

spatial pyramid pooling (SPP) [225] runs pooling on a pyramid that is cre-

ated by hierarchically dividing a feature map into equally sized segments. SPP

is supported by a weight-sharing mechanism for training CNN-FNN architec-

tures on different image resolutions, and is used for transfer learning: the CNN

part trained on the source dataset can be used with other FNNs on the tar-

get dataset [226]. SPP has promising results in image processing [227], but

is not applicable to CNN-RNN architectures where recurrent layers, such as

LSTMs [228], need two-dimensional inputs that preserve the temporal corre-

lation among consecutive samples and across different sensor streams. There-

fore, global or pyramid layers are not directly applicable to RNNs, which are

often preferred for time-series classification [229]. Moreover, existing pooling

layers cannot turn DNNs for multivariate sensor time series adaptive to tem-

poral changes in the input data dimensions, unless the DNN’s architecture is

considerably changed, which may reduce accuracy.

A DNN that can process variable input dimensions should also be trained to

produce accurate outcomes with any feasible input dimensions. Weight Aver-

aging [225] was proposed to build a single DNN by averaging the weights across

multiple DNNs trained in parallel across different settings, which is also used

in federated learning where the goal is to collaboratively train a shared model

across different users [144]. Similarly, in meta-learning, the goal is to train a

model across a large number of different tasks [230]. Reptile [231] is a meta-

learning algorithm that uses the average parameters of multiple DNNs, each

trained on a different task, as input to the optimizer for updating the DNN’s

parameters, instead of directly using the gradients of the loss function.

Unlike existing adaptive pooling layers [224, 225], our proposed DAP layer

considers the temporal correlations in data as well as the absence of some of the
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Figure A.1: A DAP layer enables a DNN performing classification on input data
of variable dimensions. At time t, a window X of dimensions w×h is produced.
The number of streams, h, depends on the number of available sensors, while
the number of samples, w, per each stream depends on the current sampling
rate (in Hz) and the length of time window (in seconds). For example, a 2.5-
seconds time window of 50 Hz data generated by accelerometer, gyroscope, and
magnetometer of a smartwatch has dimensions of w = 125 and h = 3 · 3 = 9.
Convolutional layers process X, then DAP is applied to the M outputs of the
last convolutional layer, X′. DAP uses an adaptive kernel of size pw′ × ph′ that
is calculated based on DAP’s chosen parameters, (W,H), and the dimensions of
CNN’s outputs, w′ × h′. Finally, data of fixed dimensions, X′′, is provided for
the following feedforward or recurrent layers that are estimating a probability
distribution, Ŷ, over the possible outcomes. Note that, × separates the size of
each dimension while · denotes product (see the Notations).

sensors. This is particularly important as RNNs are more efficient in processing

temporal data than FNNs [102, 118, 117]. Moreover, the proposed DAT resolves

the need for weight sharing via training multiple DNNs, providing a faster and

more accurate training algorithm, compared to the existing ones [225, 144, 231].

Finally, our solution resolves the need for training and deploying multiple DNNs

to perform multimodal fusion [232, 220] which is particularly important for ap-

plications running mobile and wearable devices with limited power and process-

ing resources.

A.4 Dimension-Adaptive Pooling

We propose the DAP layer to handle situations where one or more sensors may

dynamically be deselected at inference time. The flexibility of DAP aims not

only to make DNNs adaptive to changes in the dimension of data, but also to

allow efficiently training the DNN such that it provides reliable performance

across several combinations of data dimensions.

Considering a multivariate time-series (see Figure A.1), let X be a time

window of dimensions w× h where w is the number of samples, which depends

on the sampling rate and the length of the time window, and h is the number

of sensor streams. Particularly in our case, motion sensors have three spatial

axes (x, y, z), thus h = 3 · s, where s is the number of available sensors. Thus,
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if a sensor is not available, or deselected, then X will have 3 fewer streams.

A DNN can cope with inputs of variable dimensions by using a convolutional

layer as the input layer. A two-dimensional convolutional layer slides M fixed-

sized filters across the input data, and computes the dot products between each

filter’s entries and the data at the current position of the filter, resulting in M

two-dimensional filter maps (X′s in Figure A.1). In a stack of convolutional

layers, the dimensions of the CNN’s output, w′ × h′, mainly depend on the

dimensions of the input data2, w × h.

Typically, the CNN’s outputs are reshaped into one-dimensional data of size

w′ · h′ ·M for FNNs or two-dimensional data w′ × h′ ·M for RNNs. However,

these typical DNNs can cope only with input data of fixed dimensions. One can-

not simply use existing layers to make DNNs, which are proposed for processing

sensor time-series, adaptive to the sampling rate and sensor selection without

imposing any architectural changes. For instance, the single-dimensional data

produced by SPP [225] is not appropriate for RNNs where the input must be

provided in two dimensions: consecutive samples and parallel streams.

DAP addresses the aforementioned limitations without enforcing assump-

tions on the DNN architecture to be used. DAP builds upon the global and

pyramid pooling ideas and aims to map the outputs of dimensions w′ × h′ ×M
into data whose dimensions are consistent with the next FNN/RNN layer. The

size of the pooling filters in DAP is not limited to be square, hence it generalizes

existing adaptive layers [224, 225].

Algorithms A.1 shows the functionality of DAP layer for DNNs process-

ing motion sensor data3. Let (W,H) be the pre-specified hyper-parameters for

pooling all the M feature maps into an output X′′ of single dimension of size

W ·H ·M (if the next layer is FNN) or two dimensions W ×H ·M (if the next

layer is RNN). DAP first calculates the pooling parameters (pw′ = bw
′

W c, ph′ =

bh
′

H c) for the received inputs. It then, for every segment of size (pw′ , ph′ ) on

the received input, chooses the maximum value to create a the output which

aims to be of fixed-dimensions (W,H). For larger data dimensions, the pool-

ing parameters adaptively cover a larger segment of the data and for smaller

data dimensions the pooling parameters will shrink appropriately. Hence, DAP

always produces an output of fixed dimensions.

As an example, consider a CNN-RNN and s = 3, w′ = 128, h′ = 9, W = 16,

H = 3, M = 32. The maximum of every 8 consecutive samples among all 3 axes

of each sensor will be chosen for the output, thus producing X′′ with dimensions

16 × 3 · 32. If we deselect two sensors and choose a sampling rate half of the

2Design parameters such as the number of convolutional filters, M , size of the filters, the chosen
padding mode, and the stride length of the filters are fixed at inference time.

3bc denotes floor, de denotes ceiling, and be denotes rounding to the nearest integer.
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Algorithm A.1 Dimension Adaptive Pooling.

1: Input: X′: filter maps received from a CNN,
(W , H): the fixed output parameters.

2: Output: X′′: input to the next layer.
3: M,w′, h′ = dimensions of(X′)
4: X′′ = {}
5: for m = 1 to M do
6: V = X′[m]
7: Z = copy of(V)
8: a = max(d(H − h′)/3e, 0)
9: for i = 1 to a do

10: Z = concatenate vertically(Z,V)
11: end for
12: Z = Z[0 : w′, 0 : max(h′, H)]
13: pw′ = w′/W
14: ph′ = h′/H
15: Q = {}
16: for i = 1 to W do
17: for j = 1 to H do
18: r1 = bi · pw′ e
19: r2 = b(i+ 1) · pw′ e
20: if a=0 then
21: c1 = bj · ph′ e
22: c2 = b(j + 1) · ph′ e
23: else
24: c1 = bj · b(a+ 1) · ph′ ce
25: c2 = b(j + 1) · b(a+ 1) · ph′ ce
26: end if
27: Q = append

(
Q,max(Z[r1 : r2, c1 : c2])

)
28: end for
29: end for
30: X′′ = append(X′′,Q)
31: end for

original, this means w′ = 64 and h′ = 3, then DAP adaptively keeps the output

fixed, by choosing the maximum of every 8/2 = 4 consecutive samples of each

axis of the only available sensor.

The input of DAP has dimensions w′×h′, which can be variable at training

and inference time; whereas the output of DAP, X′′, is fixed and includes W ·H ·
M values. The first inner loop in Algorithm A.1 (lines 9-11) handles situations

when one or more sensors are unavailable. Depending on the value of H, we

may need to replicate some of the existing streams to satisfy fixed-sized outputs.

For a DAP layer with W = 16, H = 9, and 3 sensors, the possible situations

are as follows.

(1) All the sensors are available (h′ = 9), thus a = 0 (in line 8 of Algo-
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rithm A.1) and the algorithm skips the loop (Lines 9-11).

(2) One sensor is unavailable (h′ = 6), thus a = 1 and the loop fills the

gap by vertically concatenating a copy of the data from available sensors to the

second dimension of the input data. Therefore Z will have h′ = 12 streams and

Line 12 truncates Z on its second dimension to ensure that its second dimension

satisfies H = 9.

(3) Two sensors are unavailable (h′ = 3), thus a = 2 and the algorithm fills

the gap by vertically concatenating a copy of the data from the only available

sensor two times. So, we will again satisfy H = 9.

Note that Line 12 guarantees that, in case of concatenating data to Z, the

number of streams in data never exceeds H, and it has a neutral effect when

h′ = H. The next two loops, in Lines 16-29, perform the pooling operation over

the consecutive segments of Z.

Following our example, in each iteration we consider a segment of data in-

cluding w′/W samples and h′/H streams. For example, if w′ = 96 then the

maximum of every 6 consecutive samples of each sensor stream (e.g. the ac-

celerometer’s x-axis) is calculated and appended to Q (Line 27). If we only

change H to 3, instead of 9, a will be zero, thus no concatenation happens. On

the other hand, every segment of data includes 6 · 3 = 18, 6 · 2 = 12, or 6 · 1 = 6

samples if all three, two, or only one sensor(s) are (is) available, respectively.

Therefore, DAP adaptively changes the size of pooling segments to ensure that

the output dimensions are fixed. Also note that, in Lines 16-29, the first loop

runs on the first dimension W and the second loop on the second dimension

H: this order preserves the temporal correlation between consecutive samples,

which is necessary for DNNs that use recurrent layers.

A.5 Dimension Adaptive Training

Although a DNN using DAP can accept input of any dimensions, it should be

properly trained for being adaptive to changes, otherwise, its classification ac-

curacy will be low when the input’s dimensions change. The multi-size training

procedure [225] for images trains in parallel two DNNs with different dimensions

but with shared weights. This multi-size training is problematic with sensor

data because of the large variety of possible training situations. For example,

10 sampling rates (e.g. 5, 10, 15, . . ., 50 in Hz) and the 7 possible combinations

of 3 sensors lead to 70 DNNs to train.

To overcome this challenge and provide a reasonable, converging training

strategy, we propose dimension adaptive training (DAT). In DAT, we train

a single DNN, and therefore there is neither a need for weight sharing nor

for choosing a specific set of data dimensions. DAT comprises of two main
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Algorithm A.2 Dimension Adaptive Training.

1: Input: D: training datasets, Θ: trainable parameters, E: number of epochs,
U: a subset of all feasible dimensions, B: number of batches used in each
optimization round, K: the size of each batch.

2: Output: Θ: optimized parameters.
3: for e = 1 to E do
4: while not feeding the DNN all data in D do
5: G = 0
6: for b = 1 to B do
7: X = generate random batch(D,K)
8: X = dimension randomization(X, R)

9: Ŷ = forward pass(Θ,X)

10: G = G +Gradients(Loss(Y, Ŷ))
11: end for
12: Θ = optimize(Θ,G)
13: end while
14: end for

ideas: dimension randomization and optimization with accumulated gradients

(Figure A.2). The DAT process works by training the DNN on input data of

several randomly selected dimensions. For efficiency, the data is processed in

batches of input data that has the same dimension. The details of DAT are

shown in Algorithm A.2.

Each round of optimization includes two steps. First, a random batch, X,

of K time windows of the highest available sampling rate is generated from

the dataset. For batch number, b, the available sensors are chosen randomly

and a random sampling rate is chosen with data downsampled using bilinear

interpolation. All the time windows in batch b have the same dimensions4

wb × hb ∈ U. Considering an example where the possible sampling rates range

from 6 Hz to 50 Hz, instead of considering all the 45 possible cases, we only

choose a subset U, for instance including 8 sampling rate {6, 12, 18, 25, 31, 37,

43, 50} (in Hz). In the epoch e, dimension randomization() in Line 8 randomly

and uniformly chooses, for instance B = 4 of this 8 sampling rates without

replacement. Second, a forward pass is performed on batch b giving a vector

of predictions, Ŷ. we calculate the average loss value (e.g. categorical cross-

entropy) of the predictions compared with the true labels, Y, and its gradients,

corresponding to the Θ, is accumulated into G. These two stages are repeated

B times, then using the accumulated gradients, G, the parameters the DNN, Θ,

are updated at once.

As DNNs tend to forget previously learned information upon learning from

4Note that, the key point of efficiently training DNNs on GPUs is in eliminating loops by matrix
multiplications that forces all samples in each batch, b, to have the same dimensions in a forward
pass.
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Figure A.2: Overview of each iteration in DAT. B batches of time windows are
randomly generated from a training dataset. Samples within each batch have
the same dimension while samples among batches have different dimensions.
All time windows in each batch are transformed into the same randomly chosen
dimensions wb × hb. Every batch is iteratively fed into DNN and the corre-
sponding gradients with respect to the current loss value are accumulated into
G. Finally, the parameters of the DNN are updated based on G.

new data, updating Θ immediately after computing losses for each batch of data

causes catastrophic forgetting [233], in which the DNN may repeatedly forget

how to perform classification on the previously trained dimensions. We show

that the combination of dimension randomization and gradient accumulation

not only helps DAT to prevent catastrophic forgetting but also to converge

better.

It is worth noting that the gradient accumulation in DAT is similar but a

different concept than the typical method of keeping track of gradient momen-

tum in stochastic gradient descent [234]. In a momentum-based optimization,

a scaled version of the gradients used in the previous round is added to the

gradients of the current round. Thus, at each round, the DNN’s parameters are

updated based on the current gradients and the history of the past gradients.

On the other hand, DAT is a procedure for computing the required gradients

in a single round, hence we can use DAT and a momentum-based optimization,

such as Adam [235], together.
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A.6 Evaluation

We evaluate DANA on four public datasets of human activity recognition: UCI-

HAR, UTwente, MobiAct, and MotionSense (see Table 2.2). UCI-HAR is a

widely used dataset [101, 102, 103, 117], but only including two sensors and

6 activities. Thus, we also use UTwente which includes three sensors and 13

activities. MobiAct [175] and our MotionSense, both include accelerometer and

gyroscope collected by a smartphone in the pocket of the users’ trousers. We

use the data from the 6 activities in common among MobiAct and MotionSense,

thus we can use the entire MotionSense dataset for test purposes and do not use

it in the training. For all experiments, we use a time window T = 2.56 seconds

(i.e. a maximum of 128 samples per window) [101, 103, 102].

In the following, we show how to transform three state-of-the-art CNN-

FNN/RNN architectures for sensor-based human activity recognition [101, 103,

102] into a DANA, and discuss how DAP works with and without using DAT.

We also evaluate the advantages of DANA at training time, compared with three

other training procedures: standard, weight averaging [225], and Reptile [231],

and at the inference time compared with two alternatives baselines: imputation

and resampling with and without data augmentation. Finally, we perform a

cross-datasets experiment to show the generalization of DANA.

A.6.1 Transforming a DNN into DANA

Figure A.3 compares the original architectures proposed in the related work [101,

103, 102] and our modified version using DAP. A 2D convolutional layer is shown

by Conv2D(n, (k1, k2), padding, activation) where n is the number of neurons,

(k1, k2) is the size of the 2D kernel used by each neuron; if padding is same, the

output and the input of the layer have the same dimensions, otherwise if it is

valid then the output has k1−1 and k2−1 values fewer than the number of inputs

in the first and second dimensions, respectively; activation shows the nonlin-

ear activation function applied to the output of the layer; Dense(n, activation)

shows a fully-connected feedforward layer; LSTM(n, activation) shows a recur-

rent LSTM [228] layer; MaxPool2D((p1, p2)) shows a 2D maximum pooling layer

that outputs the maximum value of each window including p1 · p2 data points;

Dropout(q) applies Dropout [203] with probability q that randomly sets the

output of a neuron to 0 during each forward pass in training time; FlattenXD()

reshapes its inputs into 1D or 2D outputs.

To transform a non-adaptive DNN into a DANA, we only use a single DAP

layer, instead of “maximum pooling“ layers, with an appropriate pooling pa-

rameter (W,H), and instead of “valid” padding, we use “same” padding. Thus,

we can keep the total number of trainable layers and parameters exactly the
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Input(dim = (𝟏𝟐𝟖, 𝟔, 1)) 

Conv2D(96, (9,1), same, relu) 

MaxPool2D((3,1)) 

Conv2D(192, (9,1), same, relu) 

MaxPool2D((3,1)) 

Conv2D(192, (9,1), same, relu) 

MaxPool2D((3,1)) 

𝐅𝐥𝐚𝐭𝐭𝐞𝐧𝟏𝐃() 

Dense(1000, relu) 

DropOut(0.8) 

Dense(6, softmax) 

Output(dim = 6) 

Input(dim =(𝐰, 𝐡, 1)) 

Conv2D(96, (9,1), same, relu) 

Conv2D(192, (9,1), same, relu) 

Conv2D(192, (9,1), same, relu) 

𝐃𝐀𝐏(𝟒, 𝟔) 

Dense(1000, relu) 

DropOut(0.8) 

Dense(6, softmax) 

Output(dim = 6) 

(A) Original (B) Using DAP 
 

Input൫dim =ሺ𝟏𝟐𝟖, 𝟔, 1ሻ൯ 

Conv2Dሺ196, ሺ16,6ሻ, same, reluሻ 

MaxPool2D൫ሺ4,1ሻ൯ 

𝐅𝐥𝐚𝐭𝐭𝐞𝐧𝟏𝐃ሺሻ 

Denseሺ1024, reluሻ 

DropOutሺ0.95ሻ 

Denseሺ6, softmaxሻ 

Outputሺdim = 6ሻ 

(A) Original 

Input൫dim =ሺ𝐰, 𝐡, 1ሻ൯ 

Conv2Dሺ196, ሺ16,6ሻ, same, reluሻ 

𝐃𝐀𝐏ሺ𝟑𝟐, 𝟏ሻ 

Denseሺ1024, reluሻ 

DropOutሺ0.95ሻ 

Denseሺ6, softmaxሻ 

outputሺdim = 6ሻ 

(B) Using DAP  

(A) Original (B) Using DAP 

Input൫dim = ሺ𝟏𝟐𝟖, 𝟔, 1ሻ൯ 

Conv2Dሺ64, ሺ9,1ሻ, 𝐯𝐚𝐥𝐢𝐝, reluሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐯𝐚𝐥𝐢𝐝, reluሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐯𝐚𝐥𝐢𝐝, reluሻ 

𝐅𝐥𝐚𝐭𝐭𝐞𝐧𝟐𝐃ሺሻ 

LSTMሺ128, tanhሻ 

DropOutሺ0.5ሻ 

Denseሺ6, softmaxሻ 

Outputሺdim = 6ሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐯𝐚𝐥𝐢𝐝, reluሻ 

LSTMሺ128, tanhሻ 

DropOutሺ0.5ሻ 

Input൫dim =ሺ𝐰, 𝐡, 1ሻ൯ 

Conv2Dሺ64, ሺ9,1ሻ, 𝐬𝐚𝐦𝐞, reluሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐬𝐚𝐦𝐞, reluሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐬𝐚𝐦𝐞, reluሻ 

𝐃𝐀𝐏ሺ𝐖,𝟔ሻ 

LSTMሺ128, tanhሻ 

DropOutሺ0.5ሻ 

Denseሺ6, softmaxሻ 

Outputሺdim = 6ሻ 

Conv2Dሺ64, ሺ5,1ሻ, 𝐬𝐚𝐦𝐞, reluሻ 

LSTMሺ128, tanhሻ 

DropOutሺ0.5ሻ 

Figure A.3: The original (left) DNNs proposed by [101] (top), [103] (middle),
and [102] (bottom) versus their DANA version (right). The differences between
each pair of DNNs are shown in blue bold font. We use the TensorFlow [202]
naming conventions.

same as the original DNN.
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Table A.1: Classification accuracy of three benchmark DNNs on UCI-HAR
dataset, the original non-adaptive model, versus the corresponding adaptive
model with a DAP layer.

Accuracy (%)
Architecture Size DNN [(W,H)] Setting Mean±STD Maximum

CNN-FNN 5,114,014
[101]

validate 93.85±.49 94.51
test 91.92±.97 93.14

with DAP(4,6)
validate 93.73±.84 95.39

test 91.88±1.1 93.04

CNN-FNN 6,448,714
[103]

validate 93.80±.59 94.78
test 92.75±.73 94.02

with DAP(32,1)
validate 93.89±.41 94.57

test 92.57±.60 93.65

CNN-RNN 457,030

[102]
validate 94.13±.53 95.25

test 91.66±1.3 93.45

with DAP(4,6)
validate 94.69±.31 95.32

test 94.07±.39 94.77

with DAP(8,6)
validate 94.82±.34 95.32

test 93.47±.81 94.33

with DAP(16,6)
validate 94.69±.48 95.18

test 93.19±.59 94.02

with DAP(32,6)
validate 94.74±.33 95.32

test 93.23±.92 94.70

A.6.2 Original DNNs versus Their DANA Version

To ensure the comparison is fair among all DNNs, we use the same number of

epochs (1,000), early stopping patience (100 epochs), and batch size (128). We

also use the same optimizer as reported in the corresponding works: for the

models with FNN, Adam [235], and for the models with RNN, RMSProp [236].

We run each model 10 times and report the mean and standard deviation for

classification accuracy.

Table A.1 compares the classification accuracy for each DNN architecture

with that architecture using DAP instead of their standard maximum pooling.

Although we set (W,H) such that the transformed architecture has the same

model size as the original DNN; it is possible to choose any other values getting

a larger or smaller size DNN. Here, two settings are considered for evaluations.

(i) Validate: where the whole training dataset is used for training, and the test

dataset is used for validation. Thus, each DNN is trained on the training dataset

and the validation dataset is used to check the accuracy of the model after each

epoch. This is the setting that is used by other works re-implemented [101, 103].

(ii) Test: where 10% of the training dataset is randomly chosen as the validation

set and the rest (90%) is used as the training set. Here, the test dataset is used

to evaluate the best trained DNN on the validation set.

Table A.1 shows that for all three architectures the classification accuracy

114



Table A.2: Classification accuracy (%) of three benchmark DNNs on UTwente,
the original non-adaptive model versus the corresponding adaptive model using
a DAP layer.

Accuracy (%)
DNN Size Ref. Mean±STD Maximum

CNN-FNN
7,425,021 [101] 59.20±9.6 76.99

12,878,417 [103] 78.85±6.2 88.01

CNN-RNN 556,237
[102] 93.68±.36 94.55
with DAP(8,9) 94.35±.37 95.16
with DAP(16,9) 94.64±.40 95.40

of the adaptive version is either slightly improved or almost the same as the

original DNN, in both validate and test setting. This suggests that the DAP

layer does not lead to a loss in accuracy while providing the desirable adaptivity.

The CNN-RNN model has 10 times fewer parameters than the FNN but has a

better classification accuracy. The CNN-RNN with DAP significantly improves

accuracy in the test setting, thus suggesting that DAP helps the model to better

generalize to the test data. RNNs are also flexible in their first dimension, which

is the number of samples per stream. Thus, unlike FNNs, we can use DAP layers

having different pooling parameters for the first dimension while keeping the rest

of the architecture the same. Changing the pooling parameters leads to slightly

different accuracies, which can be used as part of a fine-tuning pipeline for DNN

models but would not be possible with FNNs.

To see the performance of the DNNs and DANA on another dataset, we

evaluate existing DNNs (without fine-tuning) on UTwente, which is a differ-

ent dataset from those datasets used in the original papers of the implemented

DNNs. Table A.2 shows that the CNN-RNN architecture has better general-

ization than the other two CNN-FNN architectures. The model using DAP

maintains a comparable accuracy.

We see that transforming a DNN into DANA does not change the trainable

parameters of the DNN, whereas using other global pooling or SPP layers would

require a change in the size of the FNN/RNN layers and consequently the num-

ber of trainable parameters of the original DNN. As an experiment, to measure

the effect of using the global average pooling layer [224], we run a similar ex-

periment on CNN-RNN [102] with UCI-HAR. The model size is reduced from

457K to 293K, but also the classification accuracy (%) reduced from 94.13± .53

to 78.6± .81.

It should be noted that this experiment only aims to show that using a

DAT layer does not degrade the accuracy, and not to show that by using a

DAT layer we can achieve better accuracy in a fixed-dimensions scenario. As
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Figure A.4: Classification accuracy of CNN-RNN [102] on UCI-HAR for differ-
ent sampling rates.

we show in other experiments, the main advantage of DANA is keeping high

accuracy in variable-dimensions scenarios. As the validate setting is what is

considered in other works [101, 103], where they report the best accuracy that

corresponding DNN can achieve on the dataset, for the rest of the experiment

we use the validate setting for fair comparisons. Note that as we do not tune

any hyper-parameters and do not change the size of trainable parameters in all

DNNs, similar relative results are achieved in the test setting. But, unlike the

validate setting which has only one instance (i.e. a training set and a validation

set), the test setting could be biased because there are many possible instances

depending on the randomly chosen 10% validation set.

Figure A.4 compares the original and DANA version of the DNN proposed

by [102], as CNN-RNN performs better. First, using the original DNN, the

model can only be trained and validated on data of fixed dimensions. To see

how the original model performs if we change the sampling rate, we keep the

weights and parameters of the original model and use them on a version using

DAP (lines with a cyan cross and red plus). Second, we have a DNN version

that only uses DAP during the training but only trained on a fixed sampling

rate (lines with yellow and blue triangles). Finally, we have the DANA version

(the line with green square) which not only uses DAP, but it also uses DAT

with B = 4 and U={6, 12, 18, 25, 31, 37, 43, 50 } (in Hz).
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Figure A.5: Classification accuracy of CNN-RNN [102] on UCI-HAR with a
variable number of sensors.

A.6.3 Changes in Sampling Rate and Sensor Availability

Although DANA version slightly reduces the accuracy on the specific sampling

rates the other DNN versions were trained on (34Hz and 50Hz), it considerably

outperforms the other DNN versions across the whole range of sampling rates,

where the accuracies of other DNNs drops quickly when moving away from

their pre-defined settings. Because the best accuracy of DANA occurs at 34 Hz,

for this reason, we trained other DNNs on this specific sampling rate, thus

suggesting that DAT is consistent in its performance while being adaptive.

To see the effect of sensor selection, Figure A.5 shows the replication of pre-

vious experiments (in Figure A.4) in different sensor-selection scenarios. Here,

DANA is trained to account for the possibility of deselecting (or missing) sen-

sors, and the other lines are the same as in Figure A.4 where the training

only considers sampling rate selection and does not account for sensor selection.

During training, 50% of the time, DANA is trained on both sensors, and 50% of

the time with one of accelerometer or gyroscope (randomly chosen with equal

probability). The values of B and U are the same as Figure A.4.

Figure A.5 (left) shows that the adaptivity to the sensor selection is not

associated with a large penalty when all sensors are present. Figure A.5 (middle)

shows that when the gyroscope is deselected, DANA maintains its accuracy

around 85% while the accuracy of other DNNs falls rapidly to around 60%.

Similarly, Figure A.5 (right) shows that when the accelerometer is deselected

the accuracy for DANA remains around 85% while other DNNs fall to 50% or

less. It is interesting that while for other DNNs deselecting accelerometer data

causes more accuracy loss than deselecting gyroscope, the type of the deselected

sensor has a reduced effect on DANA.

In Figure A.6 we make the CNN-RNN model adaptive to both sampling rate

and sensor availability using DAP and DAT on UTwente, and we achieve similar

accuracy to the original model. Note that, while original DNNs are not reliable

when the data dimensions change, DANA provides at least 55% accuracy across
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Figure A.6: Classification accuracy on UTwente with the DANA version of the
CNN+RNN proposed by [102]. The two points shown by 3 at 16 Hz and 50 Hz
shows the accuracy of the original DNN when trained on these fixed sampling
rates.

Figure A.7: Classification accuracy on UCI-HAR using a CNN-FNN [101]. The
data points + and 3 at 50 Hz refer to Table A.1 accuracies.

7·45=315 feasible data dimensions.

Figure A.7 compares the accuracy for different versions of a CNN-FNN pro-

posed by [101]. The accuracy of DANA, trained on both variable sampling rates
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Table A.3: Accuracy (%) of CNN-RNN architecture proposed in [102] trained on
the MobiAct training dataset and validated on the MobiAct and MotionSense
test datasets.

DNN MobiAct
MotionSense

Normalized Pseudo-Normalized

Original 98.64 69.87 44.16
Only DAP 98.91 74.65 49.65
DANA 98.18 74.60 47.97

and variable sensors, remains high for a variety of sampling rates. When one of

two sensors is deselected, the accuracy loss is much smaller than the one obtained

from training only on variable sampling rates, with fixed sensors. The accuracy

loss for this generalization is small when compared with the single points that

show the situations where the DNN is only trained on a fixed sampling rate

with all sensors present without and with DAP, respectively.

A.6.4 DANA Across Datasets

We train three versions of the CNN-RNN proposed in [102] on MobiAct and test

them on MotionSense. We follow two settings: normalized, where we normalize

the MotionSense data to zero mean and unit standard deviation, and pseudo-

normalized, where we use the MobiAct statistics to normalize the MotionSense

data to mean zero and unit standard deviation. The latter is standard practice

as, when streaming data, the mean and standard deviation are not known in

advance. All three models have the same number of parameters and were trained

under the same training setting.

Table A.3 shows that DANA generalizes better on the test dataset, in terms

of accuracy, by about 5 percentage points. This result confirms that for the

corresponding datasets, using DAT to make a DNN adaptive helps to achieve a

more accurate model in an unseen environment5. Although the DANA version

has a slightly lower accuracy than the one using only DAP, DANA is the only

reliable model when the dimensions of the input data change (see Figure A.8).

Thus, while DANA shows a bit smaller accuracy than the original DNN on

MobiAct, this will considerably pay off when DANA is used in dynamic settings

which we have shown in the results of the previous experiments.

5MobiAct was collected with a Samsung Galaxy S3 in the right or left pocket of the trousers.
MotionSense was collected with an iPhone 6s in the front, right pocket of their trousers.
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Figure A.8: Classification accuracy of a CNN+RNN [102] trained on Mobi-
Act [175] and tested on (top) MobiAct test set and (Bottom) our MotionSense
dataset. The single data point shown by + at 50 Hz refers to the accuracy
achieved with the original DNN in Table A.3.

A.6.5 Comparison with Baselines

An alternative baseline to DANA is to take the original model and every

time the sampling rate is changed, we fix the problem by re-sampling data

to the original sampling rate, and if some sensors are missing or deselected,

we impute dummy data, e.g. zeros. Another baseline is to use an augmented

training dataset by making a copy of the data for every possible combination of

sensors availability. For example, with 3 sensors, we build 6 other samples for

each sample time-window in the training dataset, one for each possible setting.

Hence, the training time for the augmented case is 7 times the training time for

the original and DANA.
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Figure A.9: Effect of the size of resampling batches B on UCI-HAR with CNN-
RNN [102]. Each point is the average and each segment shows the standard
deviation for 5 runs.
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Figure A.10: Comparing baselines with DANA on UCI-HAR with CNN-
RNN [102].
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Figure A.11: Comparison of baselines and DANA with CNN-RNN on
UTwente [102].
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Table A.4: Comparison of different training methods for turning a DNN adap-
tive to changes in the input data dimensions. Acc denotes the classification
accuracy and times (average time per each training epoch) are in the unit of
seconds.

Dataset UCI-HAR [100] UTwente [99]
DNN Model CNN+FNN [101] CNN+RNN [102] CNN+RNN [102]

Optimizer Adam RMSProp Adam Adam

Method Acc Time Acc Time Acc Time Acc Time
Standard 69.94±6.08 4.24±.29 86.21±.11 6.03±.17 86.98±.21 5.55±.15 87.02±.51 14.24±.44

WeightAvg 85.90±.25 5.63±.13 86.61±.19 6.54±.10 87.02±.21 6.07±.14 88.14±.99 15.03±.45
Reptile 85.73±.25 5.50±.11 15.91±2.25 6.23±.10 86.87±.26 5.96±.19 87.87±.74 15.01±.43

DAT (Ours) 85.74±.20 3.68±.08 87.12±.13 5.58±.15 87.50±.11 5.43±.15 88.91±.59 13.30±.57

Figure A.10 and A.11 compares DANA with these baselines. We see that

DANA can train a single model that outperforms the original model across

all 56 settings, and also outperforms the augmented case for lower sampling

rates (while remaining competitive for larger sampling rates). Note that the

augmented baseline needs longer training time and also does not reduce the

computations when sampling rate changes or some sensors are unavailable or

deselected. These results show that DANA can capture the correlation, or infor-

mation redundancy, between different sensor streams. For example, when the

original models miss a sensor or two, their accuracies considerably fall, because

they are not able to substitute the missed information using the available ones.

But DANA keeps the accuracy at the same level as the augmented one, while

it does not need to endure the difficulties of the augmented one at the training

and inference time.

A.6.6 Comparison with other Training Approaches

We explore the impact of the value of the training hyper-parameter B on the

accuracy. Figure A.9 shows, for both CNN-FNN and CNN-RNN, the classifi-

cation accuracy is comparable for RNN for B ≥ 4 (whereas FNN cannot be

trained with these values), and in general, it suggests setting a B ≥ 5.

Table A.4 shows that DAT either outperforms or achieves comparable accu-

racy to other methods in several settings, and is always faster in training. The

training approaches we compare with are Standard, the typical training proce-

dure that includes a forward pass on a batch of data to calculate loss value,

following with a backward pass to update model parameters based on the gra-

dients; WeightAvg [225, 144], when each of the B copies of the model is trained

on a dedicated batch of data using the Standard approach, and then the average

parameter values of updated B copies will be used to update the central model;

and Reptile [231], which performs the same procedure as WeightAvg, except the

last step when the average parameters of B copies, each trained on a different
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batch of data, is fed to the chosen DNN optimizer, instead of the typical gradi-

ents of the loss function, to update the central model. The value of B is fixed

to 5 for all experiments in Table A.4. The time shows the average training time

per each iteration over the whole training dataset (i.e. one epoch). Note that,

DAT is not sensitive to the chosen optimizer, or dataset, or DNN architecture.

Also, Reptile works with Adam (that is mentioned in the original paper [231]),

but it cannot be useful with the RMSProp optimizer.

A.7 Summary

We presented DANA, a solution to make deep neural networks adaptive to

changes in the dimensions of the input data to cope with adaptive sampling

and sensor selection. DANA provides a single trained model that retains high

classification accuracy across a range of settings, thus avoiding the need for a

separate classifier for each setting at inference time. DANA imposes no limita-

tions on the type of DNN and is flexible in shaping the DNNs without adding or

removing trainable parameters. We showed that our proposed approach outper-

forms the state-of-the-art over a range of sampling rates and retains accuracy

when some sensors are unavailable at inference time. For instance, on a dataset

of 3 sensors and 13 activities, DANA keeps classification accuracy similar to the

original DNN in a range of 6Hz to 50Hz and its accuracy only falls from 95% to

around 90% and 85% in case of missing one or two of the three sensors, respec-

tively, while the original DNN cannot handle these changes, or achieve at most

75% and 55% accuracy with resampling and imputation prepossessing.

To cover the whole range of possible data dimensions at inference time, we

randomly cover a subset of the possible situations at each round of training. As

future work, one can study the behavior of this randomized selection alongside

the gradient accumulation procedure to see if it is possible to provide a more

theoretical analysis of the convergence and learning. Moreover, the focus and

evaluation of DANA was on motion sensor data. It might be helpful to apply

DANA to other types of temporal data, such as audio streams or other types

of sensors that have different data characteristics, and analyze the effect of

becoming adaptive to temporal changes in other data types.
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[158] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang

136



Song, Kunal Talwar, and Abhradeep Thakurta. Encode, shuffle, analyze

privacy revisited: Formalizations and empirical evaluation. arXiv preprint

arXiv:2001.03618, 2020.

[159] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P

Bhavnani, James Brian Byrd, and Casey S Greene. Privacy-preserving gener-

ative deep neural networks support clinical data sharing. Circulation: Cardio-

vascular Quality and Outcomes, 12(7):e005122, 2019.

[160] Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Minos Katevas, Hamed

Haddadi, and Hamid RR Rabiee. Deep private-feature extraction. IEEE Trans-

actions on Knowledge and Data Engineering, 2018.

[161] Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan. Olympus: Sensor pri-

vacy through utility aware obfuscation. Proceedings on Privacy Enhancing Tech-

nologies, 2019(1):5–25, 2019.

[162] Yousef Amar, Hamed Haddadi, and Richard Mortier. An information-theoretic

approach to time-series data privacy. In Proceedings of the 1st Workshop on

Privacy by Design in Distributed Systems, page 3. ACM, 2018.

[163] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. Deeprotect: En-

abling inference-based access control on mobile sensing applications. arXiv

preprint arXiv:1702.06159, 2017.

[164] Yuksel Ozan Basciftci, Ye Wang, and Prakash Ishwar. On privacy-utility trade-

offs for constrained data release mechanisms. In 2016 Information Theory and

Applications Workshop (ITA), pages 1–6. IEEE, 2016.

[165] Yang-Sae Moon, Hea-Suk Kim, Sang-Pil Kim, and Elisa Bertino. Publishing

time-series data under preservation of privacy and distance orders. In Interna-

tional Conference on Database and Expert Systems Applications, pages 17–31.

Springer, 2010.

[166] Jure Sokolic, Qiang Qiu, Miguel RD Rodrigues, and Guillermo Sapiro. Learning

to succeed while teaching to fail: Privacy in closed machine learning systems.

arXiv preprint arXiv:1705.08197, 2017.

[167] Hillol Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivakumar.

Random-data perturbation techniques and privacy-preserving data mining.

Knowledge and Information Systems, 7(4):387–414, 2005.

[168] Gaofeng Zhang, Xiao Liu, and Yun Yang. Time-series pattern based effective

noise generation for privacy protection on cloud. IEEE Transactions on Com-

puters, 64(5):1456–1469, 2015.

[169] P Kingma Diederik, Max Welling, et al. Auto-encoding variational bayes. In Pro-

ceedings of the International Conference on Learning Representations (ICLR),

2014.

[170] Gergely Acs, Luca Melis, Claude Castelluccia, and Emiliano De Cristofaro. Dif-

ferentially private mixture of generative neural networks. IEEE Transactions on

Knowledge and Data Engineering, 31(6):1109–1121, June 2018.

[171] Ali Shahin Shamsabadi, Hamed Haddadi, and Andrea Cavallaro. Distributed

137



one-class learning. In 25th IEEE International Conference on Image Processing

(ICIP), pages 4123–4127. IEEE, October 2018.

[172] Menghan Liu, Haotian Jiang, Jia Chen, Alaa Badokhon, Xuetao Wei, and Ming-

Chun Huang. A collaborative privacy-preserving deep learning system in dis-

tributed mobile environment. In CSCI, pages 192–197. IEEE, 2016.

[173] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks

that exploit confidence information and basic countermeasures. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security,

pages 1322–1333, 2015.

[174] Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits.

In Advances in Neural Information Processing Systems, pages 4296–4306, 2018.

[175] Charikleia Chatzaki, Matthew Pediaditis, George Vavoulas, and Manolis Tsik-

nakis. Human daily activity and fall recognition using a smartphone’s acceler-

ation sensor. In International Conference on Information and Communication

Technologies for Ageing Well and e-Health, pages 100–118. Springer, 2017.

[176] Kleomenis Katevas, Hamed Haddadi, and Laurissa Tokarchuk. Poster: Sens-

ingkit: A multi-platform mobile sensing framework for large-scale experiments.

In Proceedings of the 20th annual international conference on Mobile computing

and networking, pages 375–378. ACM, 2014.

[177] George Vavoulas, Charikleia Chatzaki, Thodoris Malliotakis, Matthew Pediadi-

tis, and Manolis Tsiknakis. The mobiact dataset: Recognition of activities of

daily living using smartphones. In ICT4AgeingWell, pages 143–151, 2016.

[178] Supriyo Chakraborty, Kasturi Rangan Raghavan, Mani B Srivastava, Chatschik

Bisdikian, and Lance M Kaplan. Balancing value and risk in information sharing

through obfuscation. In IEEE FUSION, 15th International Conference on, pages

1615–1622, 2012.

[179] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[180] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends

in Machine Learning, 2(1):1–127, 2009.

[181] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1798–1828, 2013.

[182] Kleomenis Katevas, Ilias Leontiadis, Martin Pielot, and Joan Serrà. Practical
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