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Abstract

In 1990, Klein, Lacroix, and Speis proved (spectral) Anderson localisation for the Anderson

model on the strip of width W ⩾ 1, allowing for singular distribution of the potential. Their

proof employs multi-scale analysis, in addition to arguments from the theory of random matrix

products (the case of regular distributions was handled earlier in the works of Goldsheid and

Lacroix by other means). We give a proof of their result avoiding multi-scale analysis, and also

extend it to the general quasi-one-dimensional model, allowing, in particular, random hopping.

Furthermore, we prove a sharp bound on the eigenfunction correlator of the model, which implies

exponential dynamical localisation and exponential decay of the Fermi projection.

The method is also applicable to operatos on the half-line with arbitrary (deterministic,

self-adjoint) boundary condition.

Our work generalises and complements the single-scale proofs of localisation in pure one

dimension (W = 1), recently found by Bucaj�Damanik�Fillman�Gerbuz�VandenBoom�Wang�

Zhang, Jitomirskaya�Zhu, Gorodetski�Kleptsyn, and Rangamani.

1 Introduction

1.1 The operator, transfer matrices and Lyapunov exponents

Let W ⩾ 1. Let {Lx}x∈ℤ be a sequence of identically distributed W ×W random ma-
trices in GL(W ,ℝ), and let {Vx}x∈ℤ be a sequence of identically distributed W ×W real
symmetric matrices, so that {Lx}x∈ℤ, {Vx}x∈ℤ are jointly independent. Denote by  the
support of L0 and by  � the support of V0. Throughout this paper we assume that

(A) there exists � > 0 such that

E(‖V0‖� + ‖L0‖
� + ‖L−10 ‖

�) <∞ ;

(B) the Zariski closure of the group generated by −1 in GL(W ,ℝ) intersects  (this
holds for example when 1 ∈ );

1 Department of Mathematics and Physics, Roma Tre University, Largo San Murialdo 1, 00146 Roma,
Italy. Email: davide.macera@uniroma3.it

2 School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United King-
dom. Email: a.sodin@qmul.ac.uk. Supported in part by the European Research Council starting grant
639305 (SPECTRUM), a Royal Society Wolfson Research Merit Award (WM170012), and a Philip Lev-
erhulme Prize of the Leverhulme Trust (PLP-2020-064).

1



1 Introduction 2

(C)  is irreducible (i.e. has no common invariant subspaces except for {0} and ℝW ),
and  −  contains a matrix of rank one.

We are concerned with the spectral properties of the random operator H acting on (a
dense subspace of) l2(ℤ → ℂW ) via

(H )(x) = Lx (x + 1) + Vx (x) + L
⊺
x−1 (x − 1) , x ∈ ℤ . (1)

This model, often referred to as a quasi-one-dimensional random operator, is the general
Hamiltonian describing a quantum particle withW internal degrees of freedom in random
potential and with nearest-neighbour random hopping. The special case Lx ≡ 1 is known
as the block Anderson model; it is in turn a generalisation of the Anderson model on
the strip ℤ × {1,⋯ ,W }, and, more generally, on ℤ × Γ, where Γ is any connected �nite
graph (the assumption that Γ is connected ensures that  is irreducible). Another known
special case of (1) is the Wegner orbital model.

Fix E ∈ ℝ. If  ∶ ℤ → ℂW is a formal solution of the equation

Lx (x + 1) + Vx (x) + L
⊺
x−1 (x − 1) = E (x) , x ⩾ 1 ,

then
(

 (x + 1)
 (x)

)

= Tx

(

 (x)
 (x − 1)

)

, (2)

where the one-step transfer matrix Tx ∈ GL(2W ,ℝ) is given by

Tx =
(

L−1x (E1 − Vx) −L−1x L
⊺
x−1

1 0

)

. (3)

The multi-step transfer matrices Φx,y ∈ GL(2W ,ℝ), x, y ∈ ℤ, are de�ned by

Φx,y =

⎧

⎪

⎨

⎪

⎩

Tx−1⋯ Ty , x > y
1 , x = y
T −1x ⋯ T −1y−1 , x < y ,

(4)

so that

Φx,y

(

 (y)
 (y − 1)

)

=
(

 (x)
 (x − 1)

)

. (5)

In particular, Tx = Φx+1,x. We abbreviate ΦN = ΦN,0. The Lyapunov exponents 
j(E),
1 ⩽ j ⩽ 2W , are de�ned as


j(E) = lim
N→∞

1
N

E log sj(ΦN (E)) ,

where sj stands for the j-th singular value. It is known [11] that (for �xed E) this limit in
expectation is also an almost sure limit. The cocycle {Φx,y} is conjugate to a symplectic
one (see Section 3.1), and hence


j(E) = −
2W +1−j(E) , j = 1,⋯ ,W .
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Further, as we shall see in Section 3.2, using the work of Goldsheid [15] to verify the
conditions of the Goldsheid�Margulis theorem [16] on the simplicity of the Lyapunov
spectrum, that


1(E) > 
2(E) >⋯ > 
W (E) > 0 .

We also mention that the Lyapunov exponents 
j(E) are continuous functions of E. This
was proved by Furstenberg and Kifer in [12]; it can also be deduced from the large
deviation estimate (27) � see Duarte and Klein [8].

1.2 The main results

Theorem 1. Assume (A)�(C). Then the spectrum of H is almost surely pure point.
Moreover, if

[H] =
{

(E, ) ∈ ℝ × l2(ℤ → ℂW ) ∶ ‖ ‖ = 1 , H = E 
}

is the collection of eigenpairs of H , then

ℙ
{

∀(E, ) ∈ [H] lim sup
x→±∞

1
|x|

log ‖ (x)‖ ⩽ −
W (E)
}

= 1 , (6)

i.e. each eigenfunction decays exponentially, with the rate lower-bounded by the slowest
Lyapunov exponent.

Remark 1.1. It is believed that the lower bound is sharp, i.e. the rate of decay can not
be faster than the slowest Lyapunov exponent:

ℙ
{

∀(E, ) ∈ [H] lim inf
x→±∞

1
|x|

log ‖ (x)‖ ⩾ −
W (E)
}

= 1. (7)

We refer to [18] for a discussion and partial results in this direction. For W = 1, (7) was
proved by Craig and Simon in [7].

The property of having pure point spectrum with exponentially decaying eigenfunc-
tions is a manifestation of Anderson localisation of the random operator H . The math-
ematical work on Anderson localisation in one dimension was initiated by Goldsheid,
Molchanov and Pastur [17], who considered the case W = 1, Lx ≡ 1 and established the
pure point nature of the spectrum under the assumption that the distribution of Vx is
regular enough (absolutely continuous with bounded density). A di�erent proof of the
result of [17] was found by Kunz and Souillard [25]. Under the same assumptions, the
exponential decay of the eigenfunctions was established by Molchanov [29]. The case of
singular distributions was treated by Carmona, Klein, and Martinelli [6].

The case W > 1 was �rst considered by Goldsheid [14], who established the pure
point nature of the spectrum for the case of the Schrödinger operator on the strip, i.e.
when Lx ≡ 1, Vx is tridiagonal with the o�-diagonal entries equal to 1 and the diagonal
ones independent and identically distributed, under the assumption that the distribution
of the diagonal etries of Vx is regular. In the same setting, Lacroix [26, 27, 28] proved
that the eigenfunctions decay exponentially. The case of the Anderson model on a strip
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with general (possibly, singular) distributions was settled by Klein�Lacroix�Speis [23],
who established localisation in the strong form (6).

Unlike the earlier, more direct arguments treating regular distributions, the works
[6, 23] allowing singular distributions involve a multi-scale argument (as developed in the
work of Fröhlich�Spencer [10] on localisation in higher dimension); the theory of random
matrix products is used to verify the initial hypothesis of multi-scale analysis. Recently,
proofs of the result of [6] avoiding multi-scale analysis were found by Bucaj et al. [5],
Jitomirskaya and Zhu [22], and Gorodetski and Kleptsyn [20]; the general one-dimensional
case (allowing for random hopping) was settled by Rangamani [30]. Our Theorem 1 can be
seen as a generalisation of these works, and especially of [22, 30], to which our arguments
are closest in spirit: we give a relatively short and single-scale proof of localisation which
applies to arbitraryW ⩾ 1, and allows for rather general distributions of V0 and L0 (under
no regularity assumptions on the distribution of the potential). In particular, we recover
and generalise the result of [23].

In fact, we prove a stronger result pertaining to the eigenfunction correlators, intro-
duced by Aizenman [1] (see further the monograph of Aizenman�Warzel [3]). If Λ ⊂ ℤ is
a �nite set, denote by HΛ the restriction of H to l2(Λ→ ℂW ), i.e.

HΛ = PΛHP ∗
Λ ,

where PΛ ∶ l2(ℤ → ℂW ) → l2(Λ → ℂW ) is the coordinate projection. If I ⊂ ℝ is a
compact interval, denote

QΛ
I (x, y) = sup

{

‖f (HΛ)x,y‖ ∶ supp f ⊂ I , |f | ⩽ 1
}

, QI (x, y) = sup
a⩽x,y⩽b

Q[a,b]
I (x, y) .

Here ‖f (HΛ)x,y‖ is the operator norm of the (x, y) block of f (HΛ), and the functions f in
the supremum are assumed to be, say, Borel measurable.

Theorem 2. Assume (A)�(C). For any compact interval I ⊂ ℝ,

ℙ
{

lim sup
x→±∞

1
|x|

logQI (x, y) ⩽ − infE∈I

W (E)

}

= 1 . (8)

It is known (see [3]) that Theorem 2 implies Theorem 1. By plugging in various choices
of f , it also implies (almost sure) dynamical localisation with the sharp rate of exponential
decay, the exponential decay of the Fermi projection, et cet. (see e.g. [2] and [3]). We
chose to state Theorem 1 as a separate result rather than a corollary of Theorem 2 since
its direct proof is somewhat shorter than that of the latter.

We refer to Bucaj et al. [5], Jitomirskaya�Zhu [22], and Ge-Zhao [13] for earlier results
on dynamical localisation for W = 1.

1.3 Main ingredients of the proof

Similarly to many of the previous works, including [6, 23] and also the recent works
[5, 22, 20], the two main ingredients of the proof of localisation are a large deviation
estimate and a Wegner-type estimate. We state these in the generality required here. Let
I ⊂ ℝ be a compact interval, and let F ⊂ ℝ2W be a Lagrangian subspace (see Section 3).
Denote by �F ∶ ℝ2W → F the orthogonal projection onto F .
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Proposition 1.2. Assume (A)�(C). For any � > 0 there exist C, c > 0 such that for any
E ∈ I and any Lagrangian subspace F ⊂ ℝ2W

ℙ
{

|

|

|

|

1
N
log sW (ΦN (E)�∗F ) − 
W (E)

|

|

|

|

⩾ �
}

⩽ Ce−cN . (9)

The proof is essentially given in [23]; we outline the necessary reductions in Section 3.1.
The second proposition could be also proved along the lines of the special case considered
in [23]; we present an alternative (arguably, simpler) argument in Section 3.3.

For an operator H and E in the resolvent set of H , we denote by GE[H] = (H −E)−1
the resolvent of H and by GE[H](⋅, ⋅) its matrix elements. If E lies in the spectrum of H ,
we set GE[H](⋅, ⋅) ≡∞.

Proposition 1.3. Assume (A)�(C). For any � > 0 there exist C, c > 0 such that for any
E ∈ I and N ⩾ 1

ℙ
{

‖GE[H[−N,N]](i, i)‖ ⩽ e−�N
}

⩽ Ce−cN (i ∈ [−N,N])
ℙ
{

‖GE[H[−N,N]](i, i ± 1)‖ ⩽ e−�N
}

⩽ Ce−cN (i, i ± 1 ∈ [−N,N])
(10)

Remark 1.4. The arguments which we present can be applied to deduce the following
strengthening of (10):

ℙ
{

dist(E, �(H[−N,N])) ⩽ e−�N
}

⩽ Ce−cN .

We content ourselves with (10) which su�ces for the proof of the main theorems.

Klein, Lacroix and Speis [23] use (special cases of) Propositions 1.2 and 1.3 to verify
the assumptions required for multi-scale analysis. We deduce Theorems 1 and 2 directly
from these propositions. In this aspect, our general strategy is similar to the cited works
[5, 22, 20]. However, several of the arguments employed in these works rely on the special
features of the model for W = 1; therefore our implementation of the strategy di�ers in
several crucial aspects.

Acknowledgement We are grateful to Ilya Goldsheid for helpful discussions, and to
Alexander Elgart for spotting a number of lapses in a preliminary version of this paper.

2 Proof of the main theorems

2.1 Resonant sites; the main technical proposition

Let � > 0 be a (small) number. We say that x ∈ ℤ is (�, E,N)-non-resonant (x ∉
Res(�, E,N)) if

{

‖Lx‖ ⩽ e�N ,
‖GE[H[x−N,x+N]](x, x ±N)‖ ⩽ e−(
W (E)−�)N ,

(11)

and (�, E,N)-resonant (x ∈ Res(�, E,N)) otherwise. The following proposition is the key
step towards the proof of Theorems 1 and 2.
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Proposition 2.1. Assume (A)�(C). Let I ⊂ ℝ be a compact interval, and let � > 0.
There exist C, c > 0 such that for any N ⩾ 1

ℙ
{

max
E∈I

diam(Res(�, E,N) ∩ [−N2, N2]) > 2N
}

⩽ Ce−cN .

The remainder of this section is organised as follows. In Section 2.2, we express the
Green function in terms of the transfer matrices. Using this expression and Proposi-
tions 1.2 and 1.3, we show that the probability that x ∈ Res(�, E,N) (for a �xed E ∈ ℝ)
is exponentially small. In Section 2.3, we rely on this estimate to prove Proposition 2.1.
Then we use this proposition to prove Theorem 1 (Section 2.4) and Theorem 2 (Sec-
tion 2.5).

2.2 Reduction to transfer matrices

Fix N ⩾ 1. Consider the W ×W matrices

Ψ+i = (1 0)Φi,N+1

(

0
1

)

= (0 1)Φi+1,N+1

(

0
1

)

,

Ψ−i = (1 0)Φi,−N

(

1

0

)

= (0 1)Φi+1,−N

(

1

0

)

.
(12)

The Green function of H[−N,N] can be expressed in terms of these matrices using the
following claim, which holds deterministically for any H of the form (1). A similar
expression has been employed already in [14].

Claim 2.2. If E ∉ �(H[−N,N]), then:

1.
(Ψ±±1
Ψ±0

)

GE[H[−N,N]](0,±N) =
(

GE[H[−N,N]](0,±1)
GE[H[−N,N]](0, 0)

)

;

2. for any i, j ∈ [−N,N],

GE[H[−N,N]](i, i) =

{

Ψ−j (Ψ
−
i )
−1
(

Ψ+i+1(Ψ
+
i )
−1 − Ψ−i+1(Ψ

−
i )
−1
)−1L−1i , i ≥ j

Ψ+j (Ψ
+
i )
−1
(

Ψ+i+1(Ψ
+
i )
−1 − Ψ−i+1(Ψ

−
i )
−1
)−1L−1i , i ≤ j .

Proof. Abbreviate GE = GE[H[−N,N]], and set GE(i, j) = 0 for j ∉ [−N,N]. The matrices
GE(i, j), −N ⩽ j ⩽ N , are uniquely determined by the system of equations

LjGE(i, j + 1) + (Vj − E1)GE(i, j) + L
⊺
j−1GE(i, j − 1) = �j,i1 , −N ⩽ j ⩽ N . (13)

We look for a solution of the form

GE(i, j) =

{

Ψ−j �
−
i , j ⩽ i

Ψ+j �
+
i , j ⩾ i ,

(14)
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where

Ψ−i �
−
i − Ψ

+
i �

+
i = 0 (15)

Ψ−i+1�
−
i − Ψ

+
i+1�

+
i = −L−1i . (16)

The �rst equation ensures that (14) de�nes GE(i, i) consistently, while the second one
guarantees that (13) holds for j = i. For the other values of j, (13) follows from the
construction of the matrices Ψ±j .

The solution to (15)�(16) is explicitly found by elimination:

�−i = (Ψ
−
i )
−1Ψ+i �

+
i , �+i = −(Ψ

−
i+1(Ψ

−
i )
−1Ψ+i − Ψ

+
i+1)

−1L−1i .

This implies the second part of the claim. For the �rst part, note that for j ⩾ i

GE(0, j) = Ψ+j �
+
0 = Ψ

+
j (Ψ

+
0 )
−1GE(0, 0) = Ψ+j (Ψ

+
1 )
−1GE(0, 1) .

Observing that Ψ+N = 1, we conclude that

GE(0, N) = (Ψ+0 )
−1GE(0, 0) = (Ψ+1 )

−1GE(0, 1) ,

as claimed. Similarly,

GE(0,−N) = (Ψ−0 )
−1GE(0, 0) = (Ψ−−1)

−1GE(0,−1) .

2.3 Proof of Proposition 2.1

Fix a small � > 0. Without loss of generality I is short enough to ensure that

max
E∈I


W (E) − minE∈I

W (E) ⩽

�
2

(this property is valid for short intervals due to the continuity of 
W ; the statement for
larger intervals I follows by compactness). Fix such I (which will be suppressed from the
notation), and let


 = 1
2
(max
E∈I


W (E) + minE∈I

W (E)) , so that sup

E∈I
|
W (E) − 
| ⩽

�
4
.

For x ∈ ℤ, let

Res∗(�, x,N) =
{

E ∈ I ∶ max
±

‖GE[H[x−N,x+N]](x, x ±N)‖1,∞ ⩾ e−(
(E)−
�
2 )N

}

,

where ‖A‖1,∞ = max1⩽�,�⩽W |A�,�|. For N large enough (N ⩾ N0(�)),
(

‖Lx‖ ⩽ e�N
)

and (E ∉ Res∗(�, x,N))⟹ x ∉ Res(�, E,N) .

By (A) and the Chebyshev inequality

ℙ
{

∃x ∈ [−N2, N2] ∶ ‖Lx‖ ⩾ e�N
}

⩽ (2N2 + 1)
E‖L0‖�

e��N
⩽ C1e

−c1N .

Hence the proposition boils down to the following statement:

|x − y| > 2N ⟹ ℙ {Res∗(�, x,N) ∩ Res∗(�, y,N) ≠ ∅} ⩽ Ce−cN . (17)

The proof of (17) rests on two claims. The �rst one is deterministic:
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Claim 2.3. Res∗(�, x,N) is the union of at most CWN disjoint closed intervals.

Proof. By Cramer's rule, for each �, � ∈ {1,⋯ ,W } and ± the function

g±�,� ∶ E ↦ (GE[H[x−N,x+N]](x, x ±N))�,�

is the ratio of two polynomials of degree ⩽ W (2N + 1). Hence the level set
{

E ∶ |g±�,�(E)| = e
−(
− �

2 )N
}

is of cardinality ⩽ W (2N +1) (note that the ⩽ W (2N +1) discontinuity points of g±�,� are
poles, hence they can not serve as the endpoints of the superlevel sets of this function).
Hence our set

{

E ∶ |g±�,�(E)| ⩾ e−(
−
�
2 )N

}

is the union of at most ⩽ W (2N + 1)∕2 closed intervals, and Res∗(�, x,N) is the union of
at most

2
W (W + 1)

2
W (2N + 1)

2
⩽ CWN

closed intervals.

Claim 2.4. Assume (A)�(C). For any compact interval I ⊂ ℝ there exist C, c > 0 such
that for any N ⩾ 1 and any E ∈ I,

ℙ {E ∈ Res∗(�, x,N)} ⩽ Ce−cN .

Proof. According to Claim 2.2,

‖GE[H[−N,N]](0,±N)‖ ⩽

{

sW

(Ψ±±1
Ψ±0

)

}−1

‖

(

GE[H[−N,N]](0,±1)
‖GE[H[−N,N]](0, 0)

)

‖ ;

hence

ℙ
{

‖GE[H[−N,N]](0,±N)‖ ⩾ e−(
W (E)−
�
4 )N)

}

⩽ ℙ

{

sW

(Ψ±±1
Ψ±0

)

⩽ e(
W (E)−
�
8 )N

}

+ ℙ

{

‖

(

GE[H[−N,N]](0,±1)
‖GE[H[−N,N]](0, 0)

)

‖ ⩾ e
�
8N

}

.

By Propositions 1.2 and 1.3, both terms decay exponentially in N , locally uniformly in
E.

Now we can prove (17). By Claim 2.3 both Res∗(�, x,N) and Res∗(�, y,N) are unions
of at most CWN closed intervals. If these two sets intersect, then either one of the edges
of the intervals composing the �rst one lies in the second one, or vice versa. The operators
H[x−N,x+N] and H[y−N,y+N] are independent due to the assumption |x− y| > 2N , hence by
Claim 2.4

ℙ {Res∗(�, x,N) ∩ Res∗(�, y,N) ≠ ∅} ⩽ 4CWN × Ce−cN ⩽ C1e
−c1N .

This concludes the proof of (17) and of Proposition 2.1.
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2.4 Spectral localisation: proof of Theorem 1

The proof of localisation is based on Schnol's lemma, which we now recall (see [21] for a
version applicable in the current setting). A function  ∶ ℤ → ℂW is called a generalised
eigenfunction corresponding to a generalised eigenvalue E ∈ ℝ if

Lx (x + 1) + Vx (x) + L
⊺
x−1 (x − 1) = E (x) , x ⩾ 0 (18)

lim sup
|x|→∞

1
|x|
log ‖ (x)‖ = 0 . (19)

Schnol's lemma asserts that any spectral measure of H is supported on the set of gen-
eralised eigenvalues. Thus we need to show that (with full probability) any generalised
eigenpair (E, ) satis�es

lim sup
|x|→∞

1
|x|

log ‖ (x)‖ ⩽ −
W (E) . (20)

Fix a compact interval I ⊂ ℝ, and � > 0. Consider the events

M (I, �) =
{

∀E ∈ I ∀N ⩾M diam(Res(�, E,N) ∩ [−N2, N2]) ⩽ 2N
}

.

By Proposition 2.1 and the Borel�Cantelli lemma,

ℙ

(

⋃

M⩾1
M (I, �)

)

= 1 .

We shall prove that on any M (I, �) every generalised eigenpair (E, ) with E ∈ I satis�es

lim sup
|x|→∞

1
|x|

log ‖ (x)‖ ⩽ −
W (E) + 3� . (21)

From (18), we have for any x

 (x) = −GE[H[x−N,x+N]](x, x−N)L
⊺
−N−1 (x−N−1)−GE[H[x−N,x+N]](x, x+N)LN (x+N+1) .

If x ∉ Res(�, E,N), this implies

‖ (x)‖ ⩽ e−(
W (E)−2�)N (‖ (x −N − 1)‖ + ‖ (x +N + 1)‖)
⩽ 2e−(
W (E)−2�)N max(‖ (x −N − 1)‖, ‖ (x +N + 1)‖) ,

whence f�(x)
def

= e−�|x|‖ (x)‖ satis�es

f�(x) ⩽ 2e−(
W (E)−3�)N max(f�(x −N − 1), f�(x +N + 1))) . (22)

The function f� is bounded due to (19), hence it achieves a maximum at some x ∈ ℤ.
For

N > log 2∕(
W (E) − 3�) ,

(22) can not hold at x = x , thus on M (I, �) x for all

N ⩾ N0
def

= max(M, log 2∕(
W (E) − 3�), |x |)
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we have:

Res(�, E,N) ∩ [−N2, N2] ⊂ [x − 2N, x + 2N] ⊂ [−3N, 3N] .

Thus (22) holds whenever x,N are such that 3N < |x| ⩽ N2 and N ⩾ N0.
For each x ∈ ℤ, let N(x) be such that N2∕10 ⩽ |x| ⩽ N2∕5. If |x| is large enough,

N(x) ⩾ N0. Applying (22) ⌊|x|∕(N + 1)⌋ − 4 times, we obtain

f�(x) ⩽ (2e−(
W (E)−3�)N )⌊x∕(N+1)⌋−4 × max f� ⩽ e−(
W (E)−3�)|x|+C(
√

|x|+1) × max f� ,

which implies (21).

2.5 Eigenfunction correlator: proof of Theorem 2

Fix a compact interval I ⊂ ℝ, and let 
 = minE∈I 
W (E). The proof of (8) relies on the
following fact from [9, Lemma 4.1], based on an idea from [3]:

QΛ
I (x, y) ⩽ lim

�→+0

�
2 ∫I

‖GE[HΛ](x, y)‖1−�dE ⩽ W . (23)

Our goal is to bound on this quantity uniformly in the interval Λ ⊃ {x, y}. Without loss
of generality we can assume that x = 0. Choose N such that N2∕10 ⩽ |y| ⩽ N2∕5. By
Proposition 2.1, for any � ∈ (0, 
)

ℙ
{

∀E ∈ I diam(Res(�, E,N) ∩ [−N2, N2]) ⩽ 2N
}

⩾ 1 − Ce−cN .

We show that on the event
{

∀E ∈ I diam(Res(�, E,N) ∩ [−N2, N2]) ⩽ 2N
}

(24)

we have
QΛ
I (0, y) ⩽ e−(
−2�)|y| , |y| > C0(
 − �) . (25)

Expand the Green function GE[HΛ](0, y) as follows. First, iterate the resolvent identity

GE[HΛ](x, y) = GE[H[x−N,x+N]](x, x −N)L
⊺
x−N−1GE[HΛ](x −N − 1, y)

+ GE[H[x−N,x+N]](x, x +N)Lx+N GE[HΛ](x +N + 1, y)

starting from x = 0 at most |y|∕N times, or until the �rst argument of GE[HΛ] reaches
the set Res(�, E,N). Then apply the identity

GE[HΛ](x, u) = GE[HΛ](x, u −N − 1)Lu−N−1GE[H[u−N,u+N]](u −N, u)
+ GE[HΛ](x, u +N + 1)L⊺u+N GE[H[u−N,u+N]](u +N, u)

starting from u = y at most |y|∕N times, or until the second argument of GE[HΛ] reaches
the set Res(�, E,N). The resulting expansion has ⩽ 22|y|∕N addends, each of which has
the form

GE[H[x0−N,x0+N]](x0, x1)⋯GE[H[xk−1−N,xk−1+N]](xk−1, xk)
GE[HΛ](xk, yl)
GE[H[yl−1−N,yl−1+N]](yl, yl−1)⋯GE[H[y0−N,y0+N]](y1, y0) ,

(26)
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where x0 = 0, xj+1 = xj ±N , y0 = y, yj+1 = yj ±N , and (by the construction of the event
(24)) k + l ⩾ |y|∕N − 4. All the terms in the �rst and third line of (26) are bounded in
norm by e−(
−�)N , hence

‖GE[HΛ](0, y)‖ ⩽ 64
(

4e−(
−�)N
)

|y|∕N−4 ∑

u,v⩽2|y|
‖GE[HΛ](u, v)‖ .

Now we raise this estimate to the power 1 − � and integrate over E ∈ I :

�
2 ∫I

‖GE[HΛ](0, y)‖1−�dE ⩽ 641−�
(

4e−(
−�)N
)(1−�)(|y|∕N−4) ∑

u,v⩽2|y|

�
2 ∫I

‖GE[HΛ](u, v)‖1−�dE .

It remains to let � → +0 while making use of the two inequalities in (23).

3 Properties of transfer matrices

3.1 Preliminaries

Denote

J =
(

0 −1
1 0

)

∈ GL(2W ,ℝ) .

A matrix Q ∈ GL(2W ,ℝ) is called symplectic, Q ∈ Sp(2W ,ℝ), if Q⊺JQ = J .
The matrices Tx are, generally speaking, not symplectic. However, the cocycle {Φx,y}x,y,∈ℤ

is conjugate to a symplectic one. Indeed, observe that

Claim 3.1. If L ∈ GL(W ,ℝ) and Z isW ×W real symmetric, then Q(L,Z) =
(

L−1Z −L−1
L⊺ 0

)

is symplectic.

Denote Dx =
(

1 0
0 L⊺x

)

, then

T̃x(E)
def

= DxTx(E)D−1
x−1 = Q(Lx, E1 − Vx) ∈ Sp(2W ,ℝ) .

Thus also

Φ̃x,y(E) = Dx−1Φx,y(E)D−1
y−1 =

⎧

⎪

⎨

⎪

⎩

T̃x−1(E)⋯ T̃y(E) , x > y
1 , x = y
T̃ −1x (E)⋯ T −1y−1(E) , x < y

∈ Sp(2W ,ℝ) .

3.2 Simplicity of the Lyapunov spectrum and large deviations

Goldsheid and Margulis showed [16] that if gj are independent, identically distributed
random matrices in Sp(2W ,ℝ), and the group generated by the support of g1 is Zariski
dense in Sp(2W ,ℝ), then the Lyapunov spectrum of a random matrix product {gN⋯ g1}
is simple, i.e.


1 >⋯ > 
W > 0 .



3 Properties of transfer matrices 12

Goldsheid showed [15] that if  is irreducible and  −  contains a rank-one matrix,
then for any E ∈ ℝ the group generated by Q(1, E1 − V ), V ∈  , is Zariski dense in
Sp(2W ,ℝ).

Corollary 3.2. Assume (A)�(C). Then for any E ∈ ℝ


1(E) >⋯ > 
W (E) > 0 .

Proof. Observe that

Q(L,E1 − V ) =
(

L−1 0
0 L⊺

)

Q(1, E1 − V ) ,

whence

Q(L̂, E1 − V )−1Q(L,E1 − V ) =
(

L̂L−1 0
0 L̂−⊺L⊺

)

.

If the Zariski closure of the group generated by −1 intersects , then the Zariski closure
of the group generated by {Q(L,E1 − V )}L∈,V ∈ contains that of the group generated
by {Q(1, E1 − V )}V ∈ .

Having the corollary at hand, we deduce from [23, Proposition 2.7] applied to the
matrices Φ̃N (E):

Proposition 3.3. Assume (A)�(C). For any � > 0 there exist C, c > 0 such that for any
E ∈ I and 1 ⩽ j ⩽ W

ℙ
{

|

|

|

|

1
N
log sj(Φ̃N (E)) − 
j(E)

|

|

|

|

⩾ �
}

⩽ Ce−cN . (27)

Further, for any Lagrangian subspace F ⊂ ℝ2W

ℙ
{

|

|

|

|

1
N
log sj(Φ̃N (E)�∗F ) − 
j(E)

|

|

|

|

⩾ �
}

⩽ Ce−cN . (28)

Proof. The estimate (28) is a restatement of [23, Proposition 2.7], whereas (27) follows
from (28) applied to a �-net on the manifold of Lagrangian subspaces of ℝ2W (the La-
grangian Grassmannian). We note that (27) is also proved directly in [8].

Note that Proposition 1.2 follows from (28).

Now �x � and a Lagrangian subspace F , and let

ΩF
� [Φ̃N ] =

{

W
max
j=1

[

|

1
N
log sj(Φ̃N ) − 
j| + |

1
N
log sj(Φ̃N�

∗
F ) − 
j|

]

⩽ �
100W

}

. (29)

According to Proposition 3.3,

ℙ(ΩF
� [Φ̃N (E)]) ⩾ 1 − C(�, E)e−c(�,E)N ,
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where the constants are locally uniform in E. Let

Φ̃N (E) = UN (E)ΣN (E)VN (E)⊺

be the singular value decomposition of Φ̃N (E). Assume that the singular values on the
diagonal of ΣN (E) are arranged in non-increasing order; the choice of the additional
degrees of freedom is not essential for the current discussion. Denote

F+ =
{(

x
0

)

∶ x ∈ ℝW
}

⊂ ℝ2W , F− =
{(

0
y

)

∶ y ∈ ℝW
}

⊂ ℝ2W . (30)

Claim 3.4. Let F ⊂ ℝ2W be a Lagrangian subspace. For N large enough (depending on
�), one has (deterministically) on the event ΩF

� [Φ̃N (E)] de�ned in (29)

sW (�F+VN (E)
⊺�∗F ) ⩾ e−

�
25N .

Remark 3.5. For future reference, we also record the dual version of the claim: on
ΩF
� [Φ̃N (E)⊺]

sW (�∗FUN (E)�F+) ⩾ e−
�
25N .

Proof. We abbreviate Σ = ΣN (E), V = VN (E), and 
j = 
j(E). On the other hand, the
constants with � not explicitly present in the notation will be uniform in � → +0.

Clearly, sj(�F+V
⊺�∗F ) ⩽ ‖�F+V

⊺�∗F‖ ⩽ 1. Hence it will su�ce to show that onΩF
� [Φ̃N (E)]

W
∏

k=1
sk(�F+V

⊺�∗F ) ⩾ e−�N . (31)

Let Σ+ be the diagonal matrix obtained by setting the (k, k) matrix entries of Σ to
zero for k > W . Then on ΩF

� [Φ̃N (E)] we have

‖Σ − Σ+‖ ⩽ exp(−cN)

(with c > 0 uniform in � → +0). Thus sj(Φ̃N�∗F ) = sj(ΣV
⊺�∗F ) satis�es

|sj(Φ̃N�
∗
F ) − sj(Σ

+V ⊺�∗F )| ⩽ e−cN .

Observing that sj(Σ+V ⊺�∗F ) = sj(Σ̂
+�F+V

⊺�∗F ), where Σ̂
+ = �F+Σ

+�∗F+ , and that

sj(Φ̃N�
∗
F ) ⩾ e(
j−

�
100W )N

on ΩF
� , we get (for su�ciently large N):

sj(Σ̂+�F+V
⊺�∗F ) ⩾ e(
j−

�
50W )N ,

j
∏

k=1
sk(Σ̂+�F+V

⊺�∗F ) ⩾ e(
1+⋯+
j−
�
50 )N .
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On the other hand, using the submultiplicativity of the operator norm and the equalitiy
between the norm of the j-th wedge power of a matrix and the product of its j top singular
values, we have

j
∏

k=1
sk(Σ̂+�F+V

⊺�∗F ) ⩽
j

∏

k=1
sk(Σ̂+) ×

j
∏

k=1
sk(�F+V

⊺�∗F )

⩽ e(
1+⋯+
j+
�
100 )N

j
∏

k=1
sk(�F+V

⊺�∗F ) ,

whence
j

∏

k=1
sk(�F+V

⊺�∗F ) ⩾ e−
�
25N , 1 ⩽ j ⩽ W ,

thus concluding the proof of (31) and of the claim.

3.3 Wegner-type estimate: proof of Proposition 1.3

Let us �rst show that for any i ∈ [−N,N]

ℙ
{

‖GE[H−N,N]](i, i)‖ ⩾ e�N
}

⩽ C�e
−c�N . (32)

By Claim 2.2,

GE[H[−N,N]](i, i) =
(

Ψ+i+1(Ψ
+
i )
−1 − Ψ−i+1(Ψ

−
i )
−1)−1L−1i ,

where
(

Ψ+i+1
Ψ+i

)

= Φi+1,N+1

(

0
1

)

=
(

1 0
0 L−⊺i

)

Φ̃i+1,N+1

(

0
L⊺N

)

,
(

Ψ−i+1
Ψ−i

)

= Φi+1,−N

(

1

0

)

=
(

1 0
0 L−⊺i

)

Φ̃i+1,−N

(

1

0

)

.

Hence
GE[H[−N,N]](i, i) = L

−⊺
i

(

X+ −X−)−1L−1i ,

where
X+ = (Φ̃i+1,N+1)12(Φ̃i+1,N+1)−122 , X− = (Φ̃i+1,−N )11(Φ̃i+1,−N )−121 ,

and the subscripts 11 and 21 represent extracting the corresponding W ×W blocks from
a 2W × 2W matrix (i.e. Y11 = �F+Y �

∗
F+
, Y21 = �F−Y �

∗
F+
, in the notation of (30)). Both

matrices X± are Hermitian, as follows from the symplectic property of the transfer ma-
trices.

Without loss of generality we can assume that i ⩾ 0. We shall prove that

ℙ
{

sW (X+ −X−) ⩽ e−�N |X+} ⩽ C�e
−c�N .

To this end, denote

F =
{(

x
y

)

∈ ℝ2W ∶ y = −X+x
}

.
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In the notation of Claim 3.4, consider the transfer matrix Φ̃i+1,−N , and let

Ω� = ΩF
� [Φ̃

∗] ∩ ΩF+
� [Φ̃

∗] ∩ ΩF−
� [Φ̃

∗] ∩ ΩF+
� [Φ̃]

(note that Φ̃i+1,−N is independent of X+ and thus also of F ). It su�ces to show that on
Ω�

sW (X+ −X−) ⩾ e−
�
2N . (33)

Let us write the singular value decomposition of Φ̃ = Φ̃i+1,−N in block form:
(

Φ̃11 Φ̃12
Φ̃21 Φ̃22

)

=
(

U11 U12
U21 U22

)(

Σ̂+

Σ̂−

)(

V ⊺
11 V ⊺

21
V ⊺
12 V ⊺

22

)

whence on Ω�
‖Φ̃11 − U11Σ̂+V

⊺
11‖ , ‖Φ̃21 − U21Σ̂+V

⊺
11‖ ⩽ e−cN .

Further, by Claim 3.4 we have on Ω�:

sW (U11) , sW (U21) , sW (V22) ⩾ e−
�
25N . (34)

Let us show that
‖X− − U11U−1

21 ‖ ⩽ e−c′N . (35)

To this end, start with the relation

X− = (U11Σ̂+V
⊺
11 + E1)(U21Σ̂

+V ⊺
11 + E2)

−1, ‖E1‖, ‖E2‖ ⩽ e−cN .

In view of the bound

sW (U21Σ̂+V
⊺
11) ⩾ sW (U21)sW (Σ̂+)sW (V

⊺
11) ⩾ e+c1N ,

we can set E′
2 = E2(U21Σ̂

+V ⊺
11)

−1 and rewrite

(U21Σ̂+V
⊺
11 + E2)

−1 = (U21Σ̂+V
⊺
11)

−1(1 + E′
2) , ‖E′

2‖ ⩽ e−c2N ,

which implies (35).
Now, the matrix X+ is symmetric, therefore x−X+y = 0 for

(x
y

)

∈ F ⟂, whence for any
(x
y

)

∈ ℝ2W

x −X+y = (1 ∣ −X+)�∗F�F

(

x
y

)

(where the �rst term is a 1 × 2 block matrix). Therefore we have, by another application
of Claim 3.4:

sW (U11 −X+U21) = sW ((1 ∣ −X+)�∗F�FU�
∗
F+
)

⩾ sW ((1 ∣ −X+)�∗F )sW (�FU�
∗
F+
) ⩾ sW (�FU�∗F+) ⩾ e−

�
25N .

This, together with (35) and (34), concludes the proof of (33), and of (32).
Now we consider the elements GE[H[−N,N]](i, i ± 1). We have:

GE[H[−N,N]](i, i ± 1) = Ψ
±
i+1(Ψ

±
i )
−1GE[H[−N,N]](i, i) .

The norm of GE[H[−N,N]](i, i) is controlled by (32), whereas Ψ±i+1(Ψ
±
i )
−1 = L−1i X

± are
controled using (35) and Claim 3.4.
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4 On generalisations

Other distributions The assumptions (A)�(C) in Theorems 1 and 2 can probably be
relaxed. Instead of a �nite fractional moment in (A), it should be su�cient to assume the
existence of a su�ciently high logarithmic moment:

E(logA+ ‖V0‖ + log
A
+ ‖L0‖ + log

A
+ ‖L

−1
0 ‖) <∞

for a su�ciently large A > 1. To carry out the proof under this assumption in place of
(A), one would need appropriate versions of large deviation estimates for random matrix
products.

As we saw in the previous section, the rôle of the assumptions (B)�(C) is to ensure
that the conditions of the Goldsheid�Margulis theorem [16] are satis�ed. That is, our
argument yields the following:

Theorem 3. Let I ⊂ ℝ be a compact interval. Assume (A) and that for any E ∈ I the
group generated by

{Q(L,E1 − V )}L∈, V ∈
is Zariski-dense in Sp(2W ,ℝ). Then:

1. The spectrum of H in I is almost surely pure point, and

ℙ
{

∀(E, ) ∈ [H] E ∈ I ⟹ lim sup
x→±∞

1
|x|

log ‖ (x)‖ ⩽ −
W (E)
}

= 1 ; (36)

2. for any compact subinterval I ′ ⊂ I (possibly equal to I) one has:

ℙ
{

lim sup
x→±∞

1
|x|

logQI (x, y) ⩽ − infE∈I

W (E)

}

= 1 . (37)

As we saw in the previous section, the second condition of this theorem is implied
by our assumptions (B)�(C). Most probably, weaker assumptions should su�ce, and, in
fact, we believe that the conclusions of Theorems 1 and 2 hold as stated without the
assumption (B). A proof would require an appropriate generalisation of the results of
Goldsheid [15].

Another interesting class of models appears when Vx ≡ 0. The complex counterpart
of this class, along with a generalisation in which the distribution of Lx depends on
the parity of x, has recently been considered by Shapiro [31], in view of applications to
topological insulators. An interesting feature of such models is that the slowest Lyapunov
exponent 
W (E) may vanish at E = 0. This circle of questions (in partiular, the positivity
of the smallest Lyapunov exponent and Anderson localisation) is studied in [31] under
the assumption that the distribution of L0 in GL(W ,ℂ) is regular. In order to extend
the results of [31] (for matrices complex entries) to singular distributions, one would �rst
need an extension of [16] to the Hermitian symplectic group.

Returning to the (real) setting of the current paper, assume that (B)�(C) are replaced
with
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(B′) the group generated by  is Zariski-dense in GL(W ,ℝ);

(C′) Vx ≡ 0.

Along the arguments of [31], one can check that the conditions of [16] hold for any E ≠
0. From Theorem 3, one deduces that the conclusion of Theorem 1 holds under the
assumptions (A), (B′), (C′), whereas the conclusion (37) of Theorem 2 holds for compact
intervals I not containing 0. If 
W (0) = 0, (37) is vacuous for I ∋ 0. If 
W (0) > 0, (37)
is meaningful and probably true for such intervals, however, additional arguments are
required to establish the large deviation estimates required for the proof.

Finally, we note that Theorem 3 remains valid if the independence assumption is
relaxed as follows: {(Vx, Lx)}x∈ℤ are jointly independent (i.e. we can allow dependence
between Vx and the corresponding Lx).

The half-line Similar results can be established for random operators on the half-line.
For simplicity, we focus on the case Lx ≡ 1. Fix a Lagrangian subspace F ⊂ ℝ2W , and
consider the space F of square-summable sequences  ∶ ℤ+ → ℂW such that

( (1)
 (0)

)

∈ F .
De�ne an operator HF acting on F so that

(HF )(x) = Lx (x + 1) + Vx (x) + L
⊺
x−1 (x − 1) , x ≥ 1

(see e.g. [4] for details).

Theorem 4. Fix a Lagrangian subspace F ⊂ ℝ2W . Under the assumptions (A) and (C)
with Lx ≡ 1, the spectrum of HF in any compact interval I is almost surely pure point,
and

ℙ
{

∀(E, ) ∈ [HF ] E ∈ I ⟹ lim sup
x→∞

1
|x|

log ‖ (x)‖ ⩽ −
W (E)
}

= 1 . (38)

Remark 4.1.

1. For general Lx, the boundary condition has to be prescribed in a di�erent way.
However, in the Dirichlet case F = F+ the result holds as stated for general Lx
satisfying (A)�(B).

2. Combining the proof of Theorem 2 with the additional argument described below,
one can also prove dynamical localisation.

3. For W = 1, a result of Kotani [24] implies that the operator HF has pure point
spectrum for almost every boundary condition F ; a similar statement is valid for
W > 1. As to �xed (deterministic) boundary conditions, the only published reference
known to us is the work of Gorodetski�Kleptsyn [20], treating Schrödinger operators
in W = 1 with Dirichlet boundary conditions.

4. The event of full probability provided by Theorem 4 depends on the boundary condi-
tion F . And indeed, a result of Gordon [19] implies that (almost surely) there exists
a residual set of initial conditions F for which the spectrum of HF is not pure point
(and in fact has only isolated eigenvalues).
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Sketch of proof of Theorem 4. We indicate the necessary modi�cations with respect to
the proof of Theorem 1. First, we modify the de�nition (11) of Res(�, E,N) as follows:
x ≥ N+1 is said to be (�, E,N)-non-resonant (x ∉ Res(�, E,N)) under the same condition

‖GE[H[x−N,x+N]](x, x ±N)‖ ⩽ e−(
W (E)−�)N , (39)

while x ∈ {1,⋯ , 2N} is said to be (�, E,N)-non-resonant if

det(�FΦN (E)∗ΦN (E)�∗F ) ≥ e2(
1(E)+⋯+
W (E)−�)N (40)

(this condition does not depend on x, and only depends on the restriction of the operator
to [1, N]). We claim that Proposition 2.1 is still valid:

ℙ
{

max
E∈I

diam(Res(�, E,N) ∩ [1, N2]) > 2N
}

⩽ Ce−cN . (41)

To prove this estimate, it su�ces to show that for any 1 ≤ x < y ≤ N2 with |y− x| > 2N
one has

ℙ {∃E ∈ I ∶ x, y ∈ Res(�, E,N)} ⩽ Ce−cN . (42)

The case x, y > 2N is covered by the current Proposition 2.1. If x ≤ 2N and y > 2N
the events x ∈ Res(�, E,N) and y ∈ Res(�, E,N) are independent; the probability that
x ∈ Res(�, E,N) is exponentially small due to the large deviation estimate (9), and the
collection of E violating (40) is the union of ≤ N2W intervals. From this point the proof
of (42) mimics the argument in the proof of Proposition 2.1.

As in the proof of Theorem 1, let  be a generalised solution at energy E ∈ I given
by Schnol's lemma, x−1 log ‖ (x)‖ → 0. Letting ux =

(  (x)
 (x−1)

)

, we have

‖ΦN (E)u1‖ ≤ e�N ,

hence for su�ciently large N one has

sW (ΦN (E)�∗F ) ≤ e2�N .

On the other hand, on an event of full probability one has for all E ∈ I and all su�ciently
large N

(s1⋯ sW −1)(ΦN (E)�∗F ) ≤ (s1⋯ sW −1)(ΦN (E)) ≤ e(
1(E)+⋯+
W −1(E)+�)N

due to a version of the Craig�Simon theorem [7] (cf. [18, Lemma 2.2]). This implies

(s1⋯ sW )(ΦN (E)�∗F ) ≥ e(
1(E)+⋯+
W −1(E)+3�)N ,

which contradicts (40) when � > 0 is small enough. Thus for N large enough

Res(�, E,N) ∩ [N + 1, N2] = ∅ ,

and thus  decays exponentially as in the proof of Theorem 1.
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