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Abstract. Objective. The recent breakthrough of wearable sleep monitoring devices

results in large amounts of sleep data. However, as limited labels are available,

interpreting these data requires automated sleep stage classification methods with

a small need for labeled training data. Transfer learning and domain adaptation

offer possible solutions by enabling models to learn on a source dataset and adapt

to a target dataset. Approach. In this paper, we investigate adversarial domain

adaptation applied to real use cases with wearable sleep datasets acquired from diseased

patient populations. Different practical aspects of the adversarial domain adaptation

framework are examined, including the added value of (pseudo-)labels from the target

dataset and the influence of domain mismatch between the source and target data.

The method is also implemented for personalization to specific patients. Main results.

The results show that adversarial domain adaptation is effective in the application

of sleep staging on wearable data. When compared to a model applied on a target

dataset without any adaptation, the domain adaptation method in its simplest form

achieves relative gains of 7%-27% in accuracy. The performance on the target domain is

further boosted by adding pseudo-labels and real target domain labels when available,

and by choosing an appropriate source dataset. Furthermore, unsupervised adversarial

domain adaptation can also personalize a model, improving the performance by 1%-

2% compared to a non-personal model. Significance. In conclusion, adversarial

domain adaptation provides a flexible framework for semi-supervised and unsupervised

transfer learning. This is particularly useful in sleep staging and other wearable EEG

applications. (Clinical trial registration number: S64190.)

Keywords: domain adaptation, transfer learning, electroencephalography, deep learning,

sleep stage classification
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From unsupervised to semi-supervised adversarial domain adaptation 2

1. Introduction

Sleep disturbances can have a hugely negative impact on quality of life. They

also play a key role in a variety of illnesses [1, 2]. Diagnosing these disturbances

traditionally requires overnight monitoring of a patient and subsequent annotation of the

recorded signals. The gold standard for such sleep assessments is based on in-hospital

polysomnography (PSG) recordings. Every 30-second segment of such a PSG recording

is manually classified as a particular sleep stage according to developed rules [3, 4]. This

is referred to as sleep staging.

The recent breakthrough of low-cost wearable electroencephalography (EEG)

recording devices gives rise to a new era for sleep research. These these devices enable

remote long-term monitoring of patients and allow to conduct large-scale screenings

across the population. The increasingly large volumes of EEG data collected through

such wearables necessitate automated analysis of the recorded signals. This pressing

need is aggravated further by the fact that trained clinicians have difficulties interpreting

wearable EEG signals recorded from non-standard locations [5]. Deep neural networks

have extensively been trained for automated sleep staging on large, manually labeled

PSG datasets [2, 6, 7, 8, 9, 10, 11, 12]. However, in wearable EEG datasets, labels are

typically scarce. This greatly limits the performance of these deep learning methods.

To compensate for the lack of labeled data, automated sleep staging methods for

wearable EEG should benefit from exploiting large labeled PSG datasets with standard

EEG modalities. Transfer learning allows transferring information learned from a large

dataset (the source domain) to improve the sleep staging performance on a usually

smaller dataset (the target domain). There is typically a mismatch between the two

domains. This can be caused by differences in recording equipment or recording setups,

i.e. the recorded EEG electrode positions. Moreover, the patient population can differ

in both datasets, causing a change in the sleep architecture, and manual labels can differ

between scorers. Transfer learning methods aim to overcome the mismatch caused by

these differences. Previous studies have successfully applied these methods towards

sleep staging [13, 14], and even towards personalized sleep staging, where the patient

population of the target domain consists of just one person [15]. These studies adopted

a fully supervised fine-tuning approach, in which models were pre-trained on the source

domain and fine-tuned on the target domain with limited labeled data.

Although supervised transfer learning techniques have proven useful, unsupervised

techniques requiring only unlabeled wearable EEG data could be even more practical.

Very recently, unsupervised domain adaptation techniques have found their way to

EEG-based classification tasks [16, 17, 18, 19, 20]. Most of these techniques are

based on domain-invariant feature learning, either by domain-adversarial training of

neural networks [21], or using the maximum mean discrepancy (MMD) loss [22, 23].

A few studies focus on adversarial domain adaptation for sleep staging specifically

[24, 25, 26]. These methods successfully cope with domain mismatch between different

sleep databases without requiring any labels from the target domain. All these
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From unsupervised to semi-supervised adversarial domain adaptation 3

studies exploit a common framework with some minor variations. The methods are

demonstrated on traditional PSG sleep databases, with minimal differences between

recorded channels of the source datasets and target datasets.

Building upon these previous studies, the present study makes the following

contributions. First, instead of creating a novel domain adaptation method, this study

assesses the performance of the common adversarial domain adaptation backbone in

novel, real-world use cases. The target domains are three different databases with

various non-traditional EEG derivations and real wearable EEG data. The data are

acquired from different populations and include a realistic use case of elderly and

diseased patients. Second, we investigate the added value of using pseudo-labels or real

labels of the target domain, comparing a semi-supervised approach to fully unsupervised

adversarial domain adaptation. To our best knowledge, the use of target labels was

not yet investigated in domain adaptation studies for sleep staging, and the individual

impact of pseudo-labels was not yet discussed. We hypothesize that a limited number

of labels may help overcome the large mismatch between traditional PSG and wearable

EEG datasets. Therefore, we augment the unsupervised domain adaptation framework

used in previous studies to a semi-supervised framework allowing for labeled target

data. We also add a separate target domain classifier to allow for more flexibility in this

framework. Third, we evaluate the effect of the different causes for domain mismatch

between a source domain and a target domain. To do so, we investigate alternative

source domains to match with the target domains. Lastly, we demonstrate that the same

framework can be used for personalization, applying the adversarial domain adaptation

method to single subjects.

The remainder of this paper is structured as follows. Section 2 starts with an

introduction to domain adaptation and transfer learning and explains the proposed

adversarial domain adaptation framework with its different variations. Section 3

describes the datasets used to evaluate the methods. Section 4 discusses the experiments

conducted to assess the performance of the transfer learning methods in different

scenarios. Section 5 then shows the obtained results, which are discussed in section

6. Section 7 extracts some final conclusions and recommendations from this study.

2. Methods

2.1. Transfer learning and domain adaptation

Domain adaptation is generally referred to as a type of transfer learning. Transfer

learning is defined as the transfer of information between two different but related

machine learning problems [27]. It is aimed at addressing machine learning scenarios

where a model is trained to perform a task on a source domain, but then applied

to a potentially different task in a potentially different target domain. Formally, a

domain consists of a feature space X and a marginal probability distribution P (X):

D = {X , P (X)}. A task consists of a label space Y and predictive function f(.)
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From unsupervised to semi-supervised adversarial domain adaptation 4

projecting the input space onto the label space: T = {Y , f(.)}. When a mismatch

between two tasks or domains occurs (TS ̸= TT or DS ̸= DT with subscripts S and

T denoting source and target), transfer learning is used to overcome this disparity,

improving fT (.) using information from TS and DS [27, 28, 29].

Domain adaptation is a common type of transfer learning in which the task remains

unchanged (T = TS = TT ), but the source domain differs from the target domain

(DS ̸= DT ). In domain adaptation, labeled source data are usually assumed available.

As such, we call a domain adaptation technique unsupervised, semi-supervised, or

supervised depending on the use of labels from the target domain [28].

In the application to automated sleep staging on wearable EEG recordings, we

select a standard EEG channel in a large public PSG database as the source domain,

DS. Knowledge is transferred from this domain to a target domain, DT , consisting of a

small dataset of non-standard EEG recordings. The main difference between the source

and target dataset is in the domains, owing to the difference in electrode positions.

The task is not profoundly changed between both datasets, as it always consists of

classifying 30-second data segments into five sleep stages. As a result, this can be

regarded predominantly as a domain adaptation problem. However, when the patient

population or the annotator changes between the datasets, the predictive function f(.)

between the input data and output labels changes as well. Hence, the tasks TS and

TT are not actually identical, so we argue this should be regarded as a general transfer

learning problem. When target and source tasks are different, this, in turn, implies that

some labeled target data are required to infer the target predictive function fT (.), as

argued by theoretical works [28, 29]. Therefore, while some of the discrepancies between

the source and target can be overcome by using unlabeled target data, the performance

on the target domain will be further improved with the addition of target domain labels.

2.2. Adversarial domain adaptation

In adversarial domain adaptation, the domain discrepancy between a source domain and

a target domain is overcome through two competing objectives. A feature extractor F

extracts features from the input data. These features are then processed by a classifier C

predicting the class labels and by a domain discriminator D predicting whether samples

are from the source domain or the target domain. The feature extractor tries to confuse

the domain discriminator by producing domain-invariant features and works with the

classifier to produce features that allow distinguishing different classes. Figure 1 shows

this idea in a schematic representation. In the application of sleep staging, F is the sleep

staging network, and C can simply be its classification layer. The features computed

by the one-before-last layer of the network are thus fed to both the classification layer

and domain discriminator.

Typically, in adversarial domain adaptation, the feature extractor and classifier are

both shared between the source and the target domain (F ≡ FC ≡ FT , C ≡ CS ≡ CT ).

A shared F is not a necessity but rather a design choice [30] which is often made. This
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From unsupervised to semi-supervised adversarial domain adaptation 5

Figure 1. Schematic illustration of adversarial domain adaptation. Subscripts S and

T stand for source and target domain, respectively. The feature extractors are always

shared (FS ≡ FT ≡ F ). The classifiers are shared in the basic method (CS ≡ CT ≡ C),

but not in the pseudo-labels and target labels method. The loss function Lps is used

in the pseudo-labels method, LT is used in the target labels method.

study also uses a shared feature extractor in line with previous studies [24, 26]. A

shared C is necessary when there is no loss function to optimize a target classifier CT

independently. This is the case when no target domain (pseudo-)labels are used. When

we do use (pseudo-)labels of the target domain, we can train an independent target

classifier to learn the target task independently (TS ̸= TT , see section 2.1).

Three versions of the adversarial domain adaptation technique are implemented: a

basic method, a method with pseudo-labels, and a semi-supervised method with some

labels from the target domain. In the pseudo-labels method and target labels method, a

separate target classifier CT is used. The following sections explain these three different

adversarial domain adaptation methods in more detail, with a summary in table 1.

Source code is available at https://github.com/elisabethRMH/adversarial DA.

2.3. Basic method

The basic adversarial domain adaptation method is implemented as follows. The

classifier and feature extractor are trained for the classification in the source domain

using the standard categorical cross-entropy loss:

LS = −ExS∼PS

Nc∑
c=1

ycS log pcS, (1)

where pS = CS(F (xS)) = C(F (xS)) is the class probability output of the network for

a source sample, and yS is the one-hot sleep stage label. c is the class number and Nc
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From unsupervised to semi-supervised adversarial domain adaptation 6

the number of classes. The domain discriminator is trained with the standard binary

cross-entropy loss to classify the domain of each sample:

LD = −ExS∼PS
log (1− d′S)− ExT∼PT

log d′T , (2)

where d′T = D(F (xT )) and d′S = D(F (xS)). The feature extractor F is trained with

the adversarial loss to confuse the domain discriminator. The adversarial loss function

corresponds to LD with inverted labels:

Ladv = −ExS∼PS
log d′S − ExT∼PT

log (1− d′T ). (3)

The basic adversarial domain adaptation framework is governed by the following

end-to-end optimization:

min
D

LD, (4)

min
F,C

LS + λadvLadv. (5)

2.4. Pseudo-labels

Prior work on adversarial domain adaptation for EEG applications has already used

multiple additions and tricks to improve upon the basic framework [24, 25, 26]. Pseudo-

labels [25] and entropy minimization [24, 26] are techniques aimed at mitigating the lack

of labels of the target domain. Both approaches include the addition of a categorical

cross-entropy loss based on the target samples:

Lps = −ExT∼PT

Nc∑
c=1

ỹcT log pcT , (6)

in which pT is the class probability output of the network for a target sample, and ỹcT is

a substitute for the true label of this target sample. In entropy minimization, the true

label is simulated by the classifier’s output itself (ỹcT = pcT ). Pseudo-labels are used as

a more general term for an approximation of the true labels.

In this study, pseudo-labels are implemented as follows. Different from previous

works on adversarial domain adaptation for sleep staging, a separate classifier is defined

for the source domain (CS) and the target domain (CT ). The source domain classifier

is trained with LS as defined in the loss function (1). The target domain classifier is

trained with the loss function (6), where ỹT = CS(F (xT )) is the probability output

of the source classifier for the target samples, and pT = CT (F (xT )) is the probability

output of the target classifier for the target samples. This way, Lps prevents the target

classifier from straying too far from the source classifier while also favoring outputs with

minimal entropy, i.e. with a higher probability for one class.

In conclusion, the pseudo-labels version of adversarial domain adaptation is

governed by the following optimization procedure:

min
D

LD, (7)

min
F,CS ,CT

LS + λadvLadv + λpsLps. (8)
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From unsupervised to semi-supervised adversarial domain adaptation 7

2.5. Target labels

As explained in section 2.1, the sleep staging task itself can differ between a source

and target dataset. Learning the target task then requires some target labels. We thus

investigate how much the target domain performance can be boosted by adding a limited

amount of target labels. This semi-supervised approach is implemented by using labels

of only two recordings of the target domain. CT is trained with real target domain labels

of a limited number of samples with the categorical cross-entropy loss function:

LT = −ExT∼PT

Nc∑
c=1

ycT log pcT . (9)

This results in the following optimization framework for the adversarial domain

adaptation with target labels:

min
D

LD, (10)

min
F,CT ,CS

LS + λadvLadv + LT . (11)

Table 1. The three different adversarial domain adaptation methods.

Classifiers Loss functions Hyperparameters

Basic Shared (C) LD,LS ,Ladv λadv = 0.01

Pseudo-labels Unshared (CS ̸= CT ) LD,LS ,Ladv,Lps λadv = 0.01, λps = 0.01

Target labels Unshared (CS ̸= CT ) LD,LS ,Ladv,LT λadv = 0.01

3. Data

3.1. Source domain: PSG datasets

3.1.1. MASS PSG An appropriate choice for the source domain in transfer learning

experiments is a standard EEG channel of a large public PSG dataset. In all experiments

but one, we use the Montreal Archive of Sleep Studies (MASS) [31] for this purpose.

MASS is a large, public PSG database gathered from three hospital-based sleep

laboratories. It consists of 200 recordings of 103 women and 97 men between 18 and 76

years of age. Sleep stages were manually labeled according to either the AASM standards

[32] or the R&K guidelines [4]. To make the dataset homogeneous, we combine the six

sleep stages of the R&K rules into the five sleep stages of the AASM standard (W,

N1, N2, N3, and REM) and expand all segments to 30 seconds, as in [6]. The C4-A1

channel of this database is selected as the source domain for all our experiments unless

otherwise mentioned. This EEG derivation is a good choice for the source domain,

as it is commonly used in automated sleep staging methods [6, 7, 9, 24, 25, 26] and

recommended in sleep scoring guidelines [3, 32].
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From unsupervised to semi-supervised adversarial domain adaptation 8

3.1.2. Leuven PSG In one experiment, a different source database is used to show the

influence of changing the source domain on the transfer learning process. This source

database is extracted from a large PSG dataset, consisting of 218 recordings of patients

with suspected sleep apnea [33]. The dataset was recorded at the sleep laboratory of the

University Hospitals Leuven (UZ Leuven) and annotated according to AASM standards

[32]. From this PSG dataset, we select the C4-A1 channel of 38 recordings corresponding

to patients over 60 years of age. This dataset is further referred to as the Leuven PSG

database.

3.2. Target domain: wearable EEG datasets

Three different target domains are used to investigate the transfer learning scenarios in

various setups reflecting possible use cases and wearable EEG configurations.

3.2.1. Surrey – cEEGrid The first target domain is the Surrey - cEEGrid dataset

[34, 5]. It was recorded using the cEEGrid array, a wearable EEG device that

records from multiple EEG channels around the ear with a flexible electrode strip

[35, 36]. Simultaneous measurements of cEEGrid-EEG and PSG were collected from

12 healthy adults. A sony Z1 Android smartphone and wireless SMARTING amplifier

(mBrainTrain, Belgrade, Serbia) were used to record the signals at a 250 Hz sampling

rate. Manual sleep staging was performed on the PSG. In this study, the right-ear

front-versus-back cEEGrid derivation is used.

3.2.2. Dreem - Headband The Dreem - Headband dataset [37] is a dataset recorded

from 25 adult volunteers with self-reported quality of sleep varying between no

complaints and sub-threshold insomnia symptoms [38]. EEG signals were recorded with

the Dreem Headband, a reduced-montage wearable dry-EEG device recording from five

frontal and occipital EEG electrodes. This dataset also includes simultaneous PSG

measurements, which are scored with a consensus based on the manual labels of five

sleep experts [37]. In the present study, the F7-F8 derivation of the Dreem Headband

is used as a target domain.

3.2.3. Leuven – crosshead behind-the-ear The extended Leuven - crosshead behind-the-

ear (Leuven-CBTE-46) sleep dataset consists of 46 recordings from the sleep laboratory

of the University Hospitals Leuven (UZ Leuven). It is an extended version of the

dataset described in [39]. The study was conducted in accordance with the Declaration

of Helsinki, and the protocol with registration number S64190 / B3222020000148

was approved on 08.11.2018 by the Ethics Committee Ethische Commissie Onderzoek

UZ/KU Leuven. The population consists of elderly patients with suspicion of sleep

apnea. Data from these patients were recorded simultaneously with the full PSG and

a crosshead behind-the-ear EEG. This additional EEG channel was recorded using an

extra EEG electrode behind the right ear, referenced to A1. Manual labeling of the sleep
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From unsupervised to semi-supervised adversarial domain adaptation 9

stages was performed on the PSG. In this study, the crosshead behind-the-ear channel

is used as a simulation of a wearable behind-the-ear EEG.

4. Experiments

A number of experiments were performed to investigate multiple factors influencing

the performance of adversarial domain adaptation. In each of these experiments, the

feature extractor and classifier were first initialized with weights pre-trained on the

source domain. Then, one of the adversarial domain adaptation methods from section

2 was applied. Source and target domain samples were fed to the feature extractor,

and the feature extractor was trained to match the two domains. The classification

performance on the target domain was investigated.

4.1. Sleep staging network

Adversarial domain adaptation can be applied to any sleep staging network architecture,

as it only requires taking features learned by this network and feeding these to a domain

discriminator. Both recurrent and convolutional architectures were successfully used in

combination with adversarial domain adaptation [26].

In order to validate the proposed methods, a state-of-the-art sleep staging network

was used to extract relevant features from the EEG signals. The SeqSleepNet [6]

architecture with a sequence length of M = 10 was selected as the baseline feature

extractor. This network follows a many-to-many classification scheme, taking a sequence

of multiple 30-second segments as input and predicting the corresponding sequence of

sleep stages.

SeqSleepNet requires being fed with time-frequency images rather than raw EEG

signals. As a pre-processing step, all the EEG signals were first bandpass filtered between

0.3 and 40 Hz and resampled to 100 Hz. Then, the logarithmically scaled spectrogram

of every recording was computed and normalized to unit standard deviation and zero

mean.

The network architecture consists of a first block of layers operating on an epoch

level and a second block of layers operating on a sequence level. Computations at the

epoch level are performed by a filterbank layer, a bidirectional RNN (biRNN) layer, and

an attention layer. This block of three layers outputs one feature vector for every 30-

second epoch. Then, the feature vectors of the whole sequence of epochs are combined

and presented to a sequence-level biRNN layer. This layer transforms the given sequence

of input feature vectors into a sequence of output feature vectors. Thus, M input vectors

get transformed into M output vectors. These are then classified into M sleep stages

by a series of M fully connected layers with softmax activation. SeqSleepNet is trained

end-to-end, by minimizing the average cross-entropy loss over the M segments. The

parametrization and training settings in this study were the same as in the original

paper, using L2-regularization, the Adam optimizer, and a learning rate of 1e− 4. For
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From unsupervised to semi-supervised adversarial domain adaptation 10

more details, see [6].

4.2. Experimental setup

4.2.1. Training parameters The base network was pre-trained for 10 training epochs

on all 200 C4-A1 recordings of the MASS dataset, except for 10 recordings used as a

validation set to retain the best model. Then, for every domain adaptation experiment,

cross-validation was performed on the target dataset to obtain average performance

values. For every fold of a cross-validation experiment, the target dataset was divided

into a training set, a validation set, and a test set. The training set was used to train the

adaptation method for 20 training epochs, and the validation set was used to evaluate

the model after every 100 training steps and retain the best-performing one. The best

model was then evaluated on the test set. The test performances were averaged over all

the cross-validation folds. For the Surrey - cEEGrid dataset consisting of 12 recordings,

12-fold cross-validation was performed. For the Dreem - Headband dataset, 12-fold

cross-validation was performed on the 25 recordings. The Leuven - CBTE dataset of 46

recordings was split through 23-fold cross-validation.

4.2.2. Minibatch construction During training, minibatches were constructed with

(i) labeled data from the source domain,

(ii) unlabeled data from the target domain,

(iii) only in the semi-supervised experiments: labeled data from the target domain.

In every minibatch, the number of labeled samples from the target domain was fixed to

8 in the semi-supervised experiments. The number of unlabeled samples of the target

domain was such that one training epoch would correspond to one pass through both

the labeled and unlabeled part of the dataset. The amount of data from the source

domain was balanced with the amount of target data.

4.2.3. Performance metrics After applying the adversarial domain adaptation training

procedure, the final model was evaluated on an independent test set of the target domain

as pT = CT (F (xT )). This result was compared to the ground truth target labels yT using

the classification accuracy (acc), Cohen’s kappa coefficient (κ), and the weighted F1-

score (wF1). κ measures the inter-rater agreement between the scorer and the model.

wF1 is the mean of the per-class F1-scores, weighted by each class’s number of true

instances.

4.3. Influence of target (pseudo-)labels

In the first set of experiments, we aimed to quantify the effect of adversarial domain

adaptation on the wearable EEG target datasets and determine the impact of pseudo-

labels and real target labels on the performance. Various baseline methods were

implemented in order to evaluate the three adversarial domain adaptation methods
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From unsupervised to semi-supervised adversarial domain adaptation 11

defined in section 2. The lower limit baseline was defined as the performance obtained

by directly applying the network to the target domain after pre-training on the MASS

C4-A1 dataset (‘direct transfer’). The model was also trained on the complete labeled

target dataset, with supervised training from scratch and supervised fine-tuning of the

pre-trained network. The latter method represents the upper limit to the performance.

These experiments were performed for all three target domains: the Surrey -

cEEGrid dataset, the Headband data of the Dreem dataset, and the crosshead behind-

the-ear modality of the Leuven dataset. The Surrey - cEEGrid dataset and Dreem

- Headband dataset both allow to investigate transfer learning on real wearable data

acquired at different sleep laboratories from the source data of the MASS dataset. While

the cEEGrid data are recorded from behind the ear, the Headband data are recorded

with forehead electrodes. The Leuven-CBTE-46 target domain allows to analyze transfer

learning on a new EEG modality acquired at another sleep laboratory and from a widely

different population. The diseased and elderly patient population of this dataset reflects

the real use case for wearable sleep monitoring and allows us to validate our sleep staging

methods on the target population with suspected sleep-wake disturbances.

4.4. Influence of amount of domain mismatch

When a target and source domain are more similar, the domain mismatch is smaller,

and the domain adaptation problem gets easier. The same holds for the difference in the

source and target task in transfer learning. In each of the two following experiments,

we selected a different source dataset with a closer resemblance to a target dataset.

We tested whether such a better-matched source domain improved the performance

after transfer learning to the target domain. Two different sources of mismatch were

investigated in this way. To ensure a fair comparison, the source domain was only

changed in the adversarial domain adaptation training, so pre-training was performed

on the original source domain (C4-A1 of MASS) in all experiments.

4.4.1. Influence of recording setup The first experiment tested the influence of the

mismatch between the recording setup of the source and target domain. The F7-F8

forehead derivation of the Dreem dataset greatly differs from the C4-A1 derivation of

the MASS PSG dataset. However, the MASS dataset’s EOG signal (EOG left-right)

should resemble the F7-F8 derivation much more. For that reason, we tested adversarial

domain adaptation with MASS’s EOG derivation as a source domain and the Dreem

dataset’s F7-F8 derivation as a target domain. The obtained performance was compared

to the performance obtained with MASS’s C4-A1 channel as a source domain.

4.4.2. Influence of other factors The second experiment tested the impact of the

mismatch between the population, recording equipment, and scorer of the source data

and target data. The Leuven PSG dataset was specifically selected as an almost perfect

match for the Leuven-CBTE-46 dataset with regard to all three factors. Indeed, both
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From unsupervised to semi-supervised adversarial domain adaptation 12

datasets are recorded from elderly suspected sleep apnea patients in the same sleep

laboratory and hence with the same equipment, and even scored by the same scorer.

The sleep staging model was thus adapted to the Leuven-CBTE-46 dataset (right ear -

A1 derivation) with two source domains: the highly matched Leuven PSG dataset and

the general MASS PSG dataset. The source EEG derivation was C4-A1 in both cases.

4.5. Personalization

Adversarial domain adaptation could also provide an elegant way to personalize a sleep

staging network to an individual subject. A last set of experiments was conducted

to determine the effect of unsupervised personalization, using adversarial domain

adaptation with pseudo-labels. Since only one recording was available per subject,

these experiments required some adjustments of the experimental setup defined for the

other experiments.

Regarding the pre-training, it made sense to start the personalization process for

each subject with a network adapted to the relevant EEG modality and dataset. The

feature extractor and classifier weights were thus initialized with network weights pre-

trained with supervised fine-tuning on the relevant dataset and EEG derivation (Surrey

- cEEGrid, Dreem - Headband, or Leuven-CBTE-46). Following the cross-validation

scheme from section 4.2, in every fold, the base network was first fine-tuned to other

recordings of the dataset (the training set of the fold). Then, adversarial domain

adaptation was separately performed on each recording in the fold’s test set. The new

‘source dataset’ in this personalization process consisted of the training set of the current

fold, and the ‘target dataset’ was one of the test set recordings. To avoid confusion with

the source and target datasets as defined for the other experiments, these are further

referred to as the training set and test recording in the context of personalization.

Pre-training was achieved with transfer learning to the other recordings of the target

dataset, and was thus performed with the same experimental setup as the transfer

learning experiments (see section 4.2). In the personalization step, the network was

trained for 10 training epochs instead of 20. Instead of selecting the best-performing

model using a validation set, we retained the model with the lowest pseudo-label loss

Lps for evaluation. This change in the experimental setup was necessary because we

could not use an independent labeled validation set as the target domain was just one

recording. Minibatches consisted of 32 samples of the training set and the test recording.

After performing the cross-validation as described, results were averaged over all the test

recordings.

The personalization experiments were carried out on all three target datasets: the

Surrey - cEEGrid dataset, the Dreem - Headband dataset, and the Leuven-CBTE-46

dataset. Adversarial domain adaptation for personalization was performed with the

pseudo-labels method and compared with two baselines. The first baseline was the

performance of the pre-trained baseline network, in this case, trained with supervised

fine-tuning to the relevant target dataset. The second baseline was the result obtained
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From unsupervised to semi-supervised adversarial domain adaptation 13

with a simple adaptation of the normalization statistics in the batch norm layers of

the sleep staging network. This commonly known domain adaptation technique [28]

was recently demonstrated in personalized sleep staging [40]. The method adjusts

normalization statistics to a target domain without training any network weights. By

comparing against this baseline, we investigated whether adversarial domain adaptation

accomplishes more than only adapting these normalization statistics.

5. Results

5.1. Influence of target (pseudo-)labels

Figure 2 shows the influence of adversarial domain adaptation on the sleep staging

performance in the target domain. The impact of using (pseudo-)labels of the target

domain is also shown. The accuracy is plotted for all three proposed adversarial domain

adaptation methods: the basic method (ADA-0), the pseudo-labels method (ADA-

ps), and the method with real labels of two recordings (ADA-2). The performance

of these adversarial domain adaptation methods is compared to the three baselines:

direct transfer of the pre-trained base network (DT), supervised training from scratch

(FS), and fine-tuning on the target dataset (FT). Results are ranked from least to most

relevant training data for training the model. Table 2 shows the complete results, with

all three performance metrics. The performance metrics are represented as their mean

and standard error over all cross-validation folds.

The results clearly show that all three adversarial domain adaptation methods

achieve performances between the direct transfer and training from scratch baselines.

The supervised fine-tuning baseline performs better than training from scratch. Overall,

out of the three adversarial domain adaptation methods, the version with true target

labels of two recordings (ADA-2) performs the best, followed by the pseudo-label version

(ADA-ps), and lastly the basic method (ADA-0).

The hyperparameters λadv and λps define the relative weight of the adversarial

domain loss function and the pseudo-label loss function during training. In this study,

λadv = 0.01 and λps = 0.01 were chosen. Figure 3 shows a sensitivity analysis to these

hyperparameters on the Surrey - cEEGrid dataset. As can be seen, the hyperparameter

values are optimal for this dataset. However, the same values were applied for all three

datasets, and the trends and results were consistent across the three datasets without

overfitting to these hyperparameters.

5.2. Influence of domain mismatch

Figure 4 shows the effect of different sources of domain mismatch on the adversarial

domain adaptation results. The figure shows the mean and standard error of the sleep

staging accuracy for different training methods: adversarial domain adaptation with no

target labels (ADA-0), with pseudo-labels (ADA-ps) and with labels of two recordings

(ADA-2).
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From unsupervised to semi-supervised adversarial domain adaptation 14
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Figure 2. The accuracy of the three adversarial domain adaptation techniques on

the three target datasets. Direct transfer (DT), fully supervised training (FS), and

supervised transfer learning (TL) are shown as baselines. ADA designates adversarial

domain adaptation. ADA-0 is the basic ADA, ADA-ps is the pseudo-label version, and

ADA-2 is the ADA with labels of two target recordings. From left to right, there is an

increased amount of relevant training data. The error bars indicate the standard error

over the cross-validation folds. (a) The Surrey - cEEGrid dataset. (b) The Dreem -

Headband dataset. (c) The Leuven - crosshead behind-the-ear dataset.
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Figure 3. Sensitivity analysis to the hyperparameters λadv and λps in Surrey -

cEEGrid dataset. (a) λadv in the basic adversarial domain adaptation experiment

(λ∗
adv = 0.01), (b) λps in the pseudo-label experiment (λ∗

ps = 0.01).

Figure 4(a) displays the influence of the mismatch between recording setups on

the classification performance on the Dreem - Headband dataset. There is a clear

difference in performance between the scenario with the EOG channel and the C4-A1

channel as the source domain. With the EOG channel as a source domain, the mean

accuracy is higher for all three adversarial domain adaptation methods. Figure 4(b)

shows the impact of the mismatch between the population, scorer, and equipment on the

classification performance in the Leuven-CBTE-46 dataset. The sleep staging accuracy

on this target dataset is higher with the Leuven PSG dataset as a source domain than
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From unsupervised to semi-supervised adversarial domain adaptation 15

Table 2. The results of the three adversarial domain adaptation techniques: the basic

version using no labels of the target domain, the pseudo-labels version and the version

with target domain labels of two recordings. The compared baselines are direct transfer

with no retraining, fully supervised training from scratch on the target dataset, and

supervised fine-tuning on the target dataset. The sleep staging performance is reported

for the three target domains, as mean ± standard error over all the cross-validation

folds. Metrics are the accuracy (acc), Cohen’s kappa (κ) and weighted F1-score (wF1).

Surrey - cEEGrid

Method Acc κ wF1

Direct transfer 51.4±3.7 0.375±0.032 50.4±3.1

ADA Basic 65.2±3.5 0.512±0.046 62.4±3.3

ADA Pseudo-labels 66.3±2.7 0.517±0.039 63.2±2.8

ADA Target labels 66.5±4.0 0.527±0.055 64.3±4.0

From scratch 69.1±3.5 0.575±0.041 66.3±3.6

fine-tuning 71.4±3.3 0.597±0.046 70.5±3.2

Dreem - Headband

Method Acc κ wF1

Direct transfer 62.0±3.6 0.460±0.045 61.4±3.6

ADA Basic 66.3±3.6 0.512±0.049 66.0±3.6

ADA Pseudo-labels 66.5±3.6 0.517±0.047 66.3±3.5

ADA Target labels 68.0±3.5 0.537±0.048 67.8±3.5

From scratch 72.8±2.2 0.599±0.030 71.1±2.1

Finetuning 73.8±2.7 0.619±0.035 73.5±2.6

Leuven - crosshead behind-the-ear

Method Acc κ wF1

Direct transfer 57.9±1.8 0.440±0.024 58.4±1.8

ADA Basic 62.6±1.8 0.482±0.024 63.1±1.8

ADA Pseudo-labels 62.8±1.9 0.485±0.025 63.2±2.0

ADA Target labels 64.6±2.0 0.506±0.028 64.3±2.2

From scratch 67.9±2.3 0.538±0.032 65.2±2.4

fine-tuning 68.3±2.1 0.550±0.030 66.9±2.2

with the MASS dataset as a source domain. Again, this is true for all three adversarial

domain adaptation methods (see the green line compared to the yellow line in figure

4(b)).

These results clearly indicate that the mismatch between the source and target

dataset influences the obtained classification performance on the target dataset (for a

further discussion, see section 6).

5.3. Personalization

Table 3 shows the effect of personalization on individual patients. The performance

before personalization is shown (non-pers), as well as the performance after

personalization with the batch norm method (BN pers) and with adversarial domain

adaptation (ADA pers). For each metric and target dataset, the table reports the mean
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Figure 4. The influence of the domain mismatch between the source domain and

target domain. ADA designates adversarial domain adaptation. ADA-0 is the basic

ADA, ADA-ps is the pseudo-label version, and ADA-2 is the ADA with labels of two

target recordings. The error bars indicate the standard error over the cross-validation

folds. (a) For the Dreem - Headband dataset, the MASS dataset’s EOG is compared

to the MASS dataset’s C4-A1 derivation as a source domain. (b) For the Leuven -

crosshead behind-the-ear dataset, the Leuven PSG dataset is compared to the MASS

dataset as a source domain.

and standard error over all the patients in this target dataset.

In almost all experiments, both personalization methods improve the performance

compared to the baseline of fine-tuning to other patients of the same dataset. It is also

observed that adversarial domain adaptation outperforms or achieves similar results to

batch norm personalization in all datasets.

6. Discussion

This study proposes a unified adversarial domain adaptation framework for real-world

use cases and evaluates its performance in the context of sleep staging on wearable

EEG recordings. Experiments were performed to investigate the influence of key

elements in this framework: the use of pseudo-labels and real labels from the target

domain, the similarity of the source domain to the target domain, and the potential for

personalization.

First, the adversarial domain adaptation strategy clearly achieves its purpose in

real applications of wearable EEG recordings and unhealthy patient populations. The

basic adversarial domain adaptation achieved relative accuracy improvements of 7% to

27% compared to the direct transfer scenario (see table 2). These gain margins are

higher than those reported for the SeqSleepNet network by Yoo et al. [26], ranging from

-1% to 13%. Our higher margins of improvement can be directly related to the increased
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From unsupervised to semi-supervised adversarial domain adaptation 17

Table 3. Results of personalization on the three target domains. Mean ± standard

error of the sleep staging performance over all the subjects after transfer learning to

the dataset without personalization (Non-pers), batch normalization personalization

(BN pers), and adversarial domain adaptation personalization (ADA pers). Accuracy

(acc), Cohen’s kappa (κ), and weighted F1-score (wF1) are shown. For each metric,

the highest mean is shown in bold.

Surrey - cEEGrid

Acc κ wF1

Non-pers 71.4±3.3 0.597±0.046 70.5±3.2

BN pers 72.5±3.4 0.613±0.047 72.4±2.9

ADA pers 72.8±3.6 0.618±0.049 72.7±3.2

Dreem - Headband

Acc κ wF1

Non-pers 73.6±2.7 0.625±0.030 73.8±2.6

BN pers 72.9±2.5 0.610±0.032 73.1±2.4

ADA pers 74.5±2.7 0.638±0.030 74.6±2.6

Leuven - crosshead behind-the-ear

Acc κ wF1

Non-pers 68.4±1.8 0.544±0.026 67.4±1.8

BN pers 69.1±1.7 0.551±0.026 68.4±1.6

ADA pers 69.0±1.8 0.558±0.025 68.2±1.7

domain mismatch in our experiments. In [26], the source and target domains consisted

of similar, mostly healthy populations with comparable EEG channel configurations.

In the present study, there was a large mismatch between the populations and channel

configurations. This resulted in lower baseline accuracies for the direct transfer scenario

and larger gain margins on average.

Second, this study generalizes adversarial domain adaptation to a semi-supervised

framework for EEG-based classification and sleep staging applications. The addition

of a separate target domain classifier trained with pseudo-labels or real labels from

the target domain clearly has a positive impact on the classification performance in

the target domain. Pseudo-labels resulted in rather small improvements, with relative

increases in accuracy 0% to 2%. The improvement by using real target labels led to

relative accuracy gains of 2% to 3%. We conclude from these results that the adversarial

domain adaptation backbone is easily generalized to a semi-supervised framework. If a

limited amount of target labels is available, it is beneficial to use them. If no labels of the

target domain are available, pseudo-labels can be employed as an imperfect substitute.

Our results support the idea that the classification tasks in the source dataset and target

dataset differ to an extent, as this could explain the large gains obtained from training

a separate target domain classifier with target labels.
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From unsupervised to semi-supervised adversarial domain adaptation 18

The domain mismatch experiments were designed to investigate the influence of

the similarity between the source domain (and task) and the target domain (and task)

in the transfer learning process. In both experiments, during the adversarial domain

adaptation training, the original source dataset was replaced with a new source dataset,

which more closely matched the target dataset. The pre-training of the network was

still performed on the original source dataset in both cases, so all adversarial domain

adaptation experiments started from the same baseline network. The first domain

mismatch experiment investigated the influence of the source domain channel (see figure

4(a)). Using the EOG channel of the MASS dataset instead of the C4-A1 channel,

the accuracy was improved by a relative 3% to 5%. This clearly indicates that the

match between a source channel and target channel has a large influence over the target

performance. In practical applications with wearable EEG datasets, it makes sense to

choose as the source domain channel the available PSG channel with the highest possible

similarity to the new wearable derivation.

The second domain mismatch experiment tested the influence of other factors of

the source dataset (see figure 4(b)). Being a highly controlled dataset of the same

population, acquired in the same sleep laboratory, and scored by the same scorer, the

Leuven PSG dataset is an almost perfect match for the Leuven-CBTE-46 dataset. The

only substantial difference between this source and target dataset is the EEG channel,

which is the standard C4-A1 in the source domain and the right ear - A1 channel in

the target domain. The accuracy improved by 4% to 7% when using this matched

source domain instead of the MASS source domain. Therefore, we conclude from this

experiment that the match between the population, scorer, and recording equipment

of the source and target dataset also greatly influences the target performance. In real

clinical applications, it will often be unrealistic to find a source dataset with such a

good correspondence on all these aspects. However, any parameter that influences the

similarity of the source domain and target domain should be considered when choosing

a source domain to achieve the best possible performance in the target domain. A

second noteworthy observation with the Leuven PSG as a source dataset was the lack of

improvement when using true labels instead of pseudo-labels (see ADA-ps and ADA-2

in figure 4(b)). As the population and scorer are the same in the Leuven-CBTE-46

and Leuven PSG datasets, this is a more ‘pure’ domain adaptation problem in which

the sleep scoring task remains unchanged. This argument could explain why the target

labels in this scenario did not add value. Again, this result supports the idea that the

task mismatch between datasets is the reason why target labels are useful.

Lastly, the personalization experiments compared a baseline model fine-tuned on

the relevant dataset to a model personalized to a specific recording (see table 3). The

adversarial personalization results were also compared to batch norm personalization as

a simpler alternative method. Overall, both personalization strategies improved upon

the non-personalized baseline. The adversarial strategy systematically improved the

baseline by a relative 1% to 2%. For all three datasets, it outperformed or performed

on par with the batch norm method, which improved the baseline in two out of three
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datasets. Hence, this investigation indicates that adversarial domain adaptation can

be applied for personalization. Further work is needed to determine to what extent it

outperforms the simple batch norm method. The margin of improvement obtained with

the adversarial domain adaptation strategy may well increase with increasing numbers

of recordings of a subject. Indeed, more recordings would lead to a more accurate target

distribution with sufficient representation for all sleep stages.

7. Conclusion

In this study, adversarial domain adaptation was applied to several real-world sleep

staging problems. We can summarize our findings in a number of recommendations for

adversarial domain adaptation in general, and some for sleep staging in particular.

First, adversarial domain adaptation is mostly implemented as an unsupervised

method, but it can easily be generalized to a semi-supervised method. When some labels

of the target domain are available, they should be used for improving the accuracy on

the target domain. This is mostly beneficial when the source and target classification

task may differ. In sleep staging tasks, the classification task may change with the

study population and scorer, making semi-supervised learning with some target labels

the superior option. Pseudo-labels can serve as an imperfect substitute when no true

labels are available. When multiple labeled source domains are available to choose from,

it is advisable to select the one that is the most similar to the target domain. For sleep

staging, both the recording setup and the practical aspects of the sleep study such as

the scorer, patient population, and recording equipment are of consequence. Lastly, we

demonstrated that adversarial domain adaptation can elegantly achieve personalization

of a model to a specific recording of an individual subject.
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