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We observe that quantum indistinguishability is a dynamical effect dependent on measurement
duration. We formulate a quantitative criterion for observing indistinguishability in quantum fluids
and its implications including quantum statistics and propose a viscoelastic function describing
both long-time and short-time regimes where indistinguishability and its implications are operative
and inactive, respectively. On the basis of this discussion, we propose an experiment to observe
a transition to the short-time non-equilibrium state where the implications of indistinguishability
become inoperative.

Indistinguishability of identical particles in quantum
mechanics has several implications including limiting the
wavefunction to be symmetric or antisymmetric (related
to Bose-Einstein or Fermi-Dirac statistics), Pauli princi-
ple and exchange interaction [1]. The wave function of
two particles exchanging places must obey

ψ(ξ1, ξ2) = ±ψ(ξ2, ξ1) (1)

where ξ are spatial and spin coordinates. A related effect
is the emergence of the exchange integral J0 in the aver-
age value of the interaction operator U(r2 − r1) between
two electrons:

U = B ± J0

B =

∫
U(r2 − r1)|φ1(r1)|2|φ2(r2)|2dV1dV2

J0 =

∫
U(r2 − r1)φ1(r1)φ∗1(r2)φ2(r2)φ∗2(r1)dV1dV2

(2)

where φ1 and φ2 are wave functions of non-interacting
particles, plus and minus signs correspond to symmetric
and antisymmetric wave function with the total spin 0
and 1, respectively, B is the additive constant and ±J0
is the energy level shift due to exchange [1].

The textbook discussions of examples such as (1), (2)
as well as many others where quantum statistics is impor-
tant, tacitly assume that particles are able to physically
exchange places. As we see below, this assumption may
or may not be correct depending on an observable and
measurement duration. For example, quantum statistics
plays an decisive role in liquid 4He and 3He where atoms
flow and are able to exchange places. However, thermo-
dynamic properties in solid 3He and 4He are largely gov-
erned by lattice effects as in conventional solids [2], with
atomic exchanges representing a weak effect in compar-
ison [3]. Therefore, the current discussion of quantum
indistinguishability and its implications such as quan-
tum statistics is incomplete. This was noted by Leggett
who says that in order to observe the effects of indis-
tinguishability and quantum statistics, particles need to
physically exchange places and “find out” that they are

indistinguishable, with consequences for the symmetri-
sation of the wave function [3, 4]. Leggett uses another
example, the difference of vibration and rotation spectra
of heteronuclear and homonuclear molecules, underlying
a difference between rotation where identical particles
physically change places and vibration where they do not
[3, 4].

Similarly to theoretical discussion, computational tech-
niques tacitly assume particle exchange. Physical ex-
change of particles in embedded in path integral Monte
Carlo simulations of liquid He where trajectories are sam-
pled from the space of particle permutations consistent
with Bose symmetry. Critical effects such as the super-
fluid transition are associated with a large number of
particle exchanges visualised as winding paths of cyclic
exchanges [5]. The exchange energy related to fermions
plays an important role in electronic structure calcula-
tions, and is rigidly added to the total system energy [6].

We observe that physical exchange of particles is a dy-
namical process with a characteristic time scale. Conse-
quently, particle indistinguishability and its consequences
depend on details of particle dynamics involved in setting
an observable and measurement duration. To the best of
our knowledge, this dependence has not been previously
discussed. In this paper, we take a first step to provide
a quantitative description of this dependence. We formu-
late a quantitative criterion for observing indistinguisha-
bility in quantum fluids and its implications including
quantum statistics and propose a viscoelastic function de-
scribing both long-time and short-time regimes where in-
distinguishability and its implications are operative and
inactive, respectively. We finally propose an experiment
to observe a transition to the short-time non-equilibrium
state where the implications of indistinguishability be-
come inoperative.

We start a discussion with fluids where an impor-
tant time scale is liquid relaxation time τ , the time be-
tween two consecutive large flow-enabling particle dis-
placements, jumps, from one quasi-equilibrium position
to the adjacent position [7]. τ is governed by the acti-
vation energy barrier Ũ and varies in a very wide range:
from typically 0.1 ps in high-temperature liquids to hours
at the liquid-glass transition, i.e. by about 16 orders of
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magnitude. In between the jumps and at time t � τ ,
liquid particles vibrate as in solids and are unable to ex-
change places. Therefore, a necessary condition for liquid
particles to exchange places is that the time of an exper-
iment where an observable is measured should exceed τ :

t� τ (3)

In this case, a measured quantity would show the effect
of particle indistinguishability and its implications such
as Eqs. (1), (2) and other effects of quantum statistics.

Another way of writing this condition is

ωτ � 1 (4)

where ω is the frequency at which a long-time observable
is measured.

Eq. (4) is a familiar condition of hydrodynamic equi-
librium [7]. The novelty here is its relation to the regime
where particle indistinguishability and quantum statis-
tics play a role.

A regime opposite to (3) and (4) is t� τ , or ωτ � 1,
where ω is the frequency at which an observable is mea-
sured during short times t� τ . In this regime, particles
do not exchange places, and implications of quantum in-
distinguishability are not operative. ωτ � 1 corresponds
to a non-hydrodynamic solid-like regime of liquid dynam-
ics [7]. This regime has important implications for liquid
collective modes and thermodynamics [8].

It is interesting to ask what theory describes both
long-time and short-time regimes of fluids dynamics as
well as a transition between them and, consequently,
indistinguishability and its measurable implications. A
simple approach describing these effects is the Maxwell-
Frenkel theory of liquids (see, e.g. Ref. [8] for review).
Maxwell proposed that liquid response to, for example,
shear stress P is neither hydrodynamic nor elastic, but
has contributions from both effects [9]. Frenkel has made
this more specific and wrote [7]:

dv

dy
=
ds

dt
=
P

η
+

1

G

dP

dt
(5)

where v is the velocity perpendicular to y-direction, s is
shear strain, η is viscosity and G is shear modulus.

According to Eq. (5), shear deformation in a liquid is
the sum of the viscous and elastic deformations, given
by the first and second right-hand side terms. This has
given rise to term “viscoelasticity” of liquids. Both defor-
mations are treated in (5) on equal footing, hence “elas-
toviscosity” would be an equally legitimate term.

Eq. (5) gives a viscoelastic crossover: consider an exter-
nal force P ∝ eiωt. Then, dvdy = 1

η (1+iωτ)P where τ = η
G .

ωτ � 1 gives viscous response, dvdy = P
η , whereas ωτ � 1

gives elastic response: ds
dt = iωGP = GdP

dt . Augmenting
this result with a microscopic theory, Frenkel identified
liquid relaxation time introduced earlier with τ ≈ η

G [7].
This was later confirmed by experiments.

Eq. (5) can be written as

dv

dy
=
ds

dt
=

1

η
AP (6)

where A is the operator

A = 1 + τ
d

dt
(7)

(5)-(6) enable us to generalize G to allow for long-time
hydrodynamic flow [7]: noting that if A−1 is the recip-
rocal operator to A, (6) can be written as P = ηA−1 ds

dt .

Because d
dt = A−1

τ from (7), P = G(1−A−1)s. Compar-
ing this with the solid-like equation P = Gs, we see that
the presence of hydrodynamic viscous flow is equivalent
to the substitution of G by the operator

G→ G(1−A−1) (8)

Similarly, η can be generalised to account for short-
term elasticity: Eqs. (6)-(7) are equivalent to

1

η
→ 1

η

(
1 + τ

d

dt

)
(9)

Eq. (9) can be used to generalise the Navier-Stokes
equation for shear velocity field and obtain an equation
governing the propagation of shear waves in viscoelastic
liquids which gives gapped momentum states [10, 11].
Eq. (8) can be used to generalise the elastic stress-strain
constitutive equation and obtain the same [10].

Let us now consider a response to a periodic pertur-
bation such as an external force P ∝ eiωt as before.
Then, Eq. (8) gives G(ω) = G 1

1+ 1
iωτ

[7]. We now write

Re G(ω) = G ω2τ2

1+ω2τ2 , or

G(ω) = G(1− F ) (10)

where

F =
1

1 + ω2τ2
(11)

and where we dropped Re for simplicity.
Eqs. (10)-(11) describe liquid viscoelasticity and its

two limiting regimes ωτ � 1 in Eq. (4) and ωτ � 1
in a transparent way. The hydrodynamic regime ωτ � 1
gives G(ω) = 0 as expected. The opposite solid-like elas-
tic regime ωτ � 1 gives the expected Re G(ω) = G.
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The viscoelastic function F in Eq. (11) changes from
F = 1 in the hydrodynamic regime ωτ � 1 where the en-
ergy is entirely viscous and particle physically exchange
places to F = 0 in the opposite solidlike regime ωτ � 1
where all energy is entirely elastic and no exchanges op-
erate. In time domain, this behavior is described by the
function F = 1 − e−t/τ (the exponential form follows
from P ∝ e−t/τ in Eq. (5) when s = 0): F = 0 at t � τ
crosses over to F = 1 at t � τ . F can therefore be used
to account for the dynamical effects of particles indistin-
guishability such as the exchange energy. For example,
writing the exchange energy J as

J = J0F (12)

where J0 is given in Eq. (2), gives (a) J = J0 in the regime
ωτ � 1 (t � τ) where particle exchange and exchange
energy are operative and (b) J = 0 in the regime ωτ � 1
(t� τ) where particle exchange is inactive.

The above discussion applies to gases, with the proviso
that the mechanism of particle exchanges becomes dif-
ferent in gases where particles fly in straight lines before
undergoing collisions. In order for a pair of gas particles
to exchange places, a particle needs to change its course
and end up where the other particle was before. Hence,
particle exchanges are inoperative during time t shorter
than the collision time τc. In gases, τc = l

v , where l is the
particle mean free path and v is thermal velocity [7]. Re-
cent work [13] quantified the transient regime in the gas
where the product state of two particles far away from
each other transitions to the symmetrised state due to
wavefunction overlap.

The dynamical viscoelastic picture of quantum indis-
tinguishability can be put in a wider context of under-
standing fluids. Traditionally, fluids were discussed in the
hydrodynamic regime ωτ � 1 [12]. Frenkel’s theory [7]
opened up a way to discuss important liquid properties
in the opposite solid-like high-frequency regime ωτ � 1.
A fairly recent realisation is that this regime is the key
to understanding basic liquid dynamical and thermody-
namic properties such as transverse phonons, energy and
heat capacity [8]. Here, we have begun discussing the
implications of this high-frequency regime ωτ � 1 for
quantum indistinguishability and ensuing effects.

From the point of view of fundamental understand-
ing, it is interesting to discuss the experimental impli-
cations of dynamical quantum indistinguishability. Lets
assume that the wave function starts evolving in response
to changing external parameters such as temperature or
pressure at time t = t0 and that an observable is mea-
sured in the time window between t0 and t = t0 + t,
where t � τ so that the system is out of equilibrium.
In this state, the wave function is a product rather than
a symmetrised product [3]. The above discussion implies
that an experiment would not show effects of quantum
indistinguishability and statistics in this non-equilibrium

state, including the formation of a condensate [14, 15]
or Fermi surface [16] in cold gases or a condensate in
the quantum fluid [17], as it wouldn’t in their respective
high-pressure crystal phases where particle exchanges
are inoperative. Instead, BEC, Fermi surface and other
statistics-related effects are predicted to be seen at longer
time only (this time may considerably exceed τ to enable
a macroscopically large number of exchange effects cor-
responding to the symmetrisation of the wave function,
because τ marks the onset of particle exchanges only).
We note that this long time corresponds to an equilib-
rium state where equilibrium Bose or Fermi distributions
are considered to explain the above effects.

In the equilibrium state, the dynamics of particle ex-
changes and τ are related to the degree of overlap of
particle wave functions and associated energy terms such
as the exchange energy J0 in Eq. (2) [18]. For example,
the transition rate Γ in a system of two electrons be-
tween the state |i〉 = φ1(r1)φ2(r2) and the state with
particles swapped, |f〉 = φ1(r2)φ2(r1), is Γ ∝ |〈f |U |i〉|2
according to the Fermi golden rule, where U is the
interaction operator and 〈f |U |i〉 is its matrix element
〈f |U |i〉 =

∫
Uφ1(r1)φ∗1(r2)φ2(r2)φ∗2(r1)dV1dV2. This is

the exchange energy J0 setting the energy levels of two
electrons and depending on the overlap of the wave func-
tions φ1(r1) and φ2(r2) in Eq. (2). In this simple model,
Γ ∝ J2

0 . J0 depends on U , implying that τ and J0 are
related as well because (a) τ depends on the activation
energy barrier Ũ and (b) U and Ũ are closely related.
Unless tunneling is involved, τ can additionally depend
on other parameters such as temperature.

A related important effect from the fundamental point
of view is the transition between regimes t� τ and t� τ
in quantum systems. The importance of observing such a
transition is supported by the interest generated by the
experimental observation of Bose-Einstein condensation
in cold gases [14, 15] and other quantum-statistical ef-
fects in boson and fermion systems [3]. In the proposed
transition, one can observe the dynamical emergence of
quantum indistinguishability, quantum statistics and its
consequences such as BEC, Fermi surface and other ensu-
ing properties. The experiments may be easier to perform
in cold gases where relaxation times are relatively long
and where the transition can be systematically studied
in a given system at different τ (time between collisions).
We have recently discussed specific details of such an ex-
periment [18]. This can guide new experiments in non-
equilibrium quantum systems that have been of interest
recently.

In summary, we took a first step to discuss the dy-
namical effect of quantum indistinguishability in fluids,
formulated a quantitative criterion for observing its im-
plications and proposed a viscoelastic function describing
long-time and short-time regimes where the implications
of indistinguishability are operative and inoperative. We
proposed an experiment to observe a transition to the
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state where the implications of indistinguishability be-
come inoperative.
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