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The History of every major Galactic Civilization tends to pass through three distinct

and recognizable phases, those of Survival, Inquiry and Sophistication, otherwise known

as the How, Why and Where phases.

For instance, the first phase is characterized by the question How can we eat? the sec-

ond by the question Why do we eat? and the third by the question Where shall we have

lunch?

Douglas Adams

The Hitchhiker’s Guide to the Galaxy, (1979)
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Mammographic density, the amount of radiodense tissue on a mammogram, is a strong

risk factor for breast cancer, with properties that could be an asset in screening and pre-

vention programmes. Its use in risk prediction contexts is currently limited, however,

mainly due to difficulties in measuring and interpreting density.

This research investigates firstly, the properties of density as an independent marker of

breast cancer risk and secondly, how density should be measured.

The first question was addressed by analysing data from a chemoprevention trial, a trial

of hormonal treatment, and a cohort study of women with a family history of breast

cancer . Tamoxifen-induced density reduction was observed to be a good predictor of

breast cancer risk reduction in high-risk unaffected subjects. Density and its changes

did not predict risk or treatment outcome in subjects with a primary invasive breast

tumour. Finally absolute density predicted risk better than percent density and showed

a potential to improve existing risk-prediction models, even in a population at enhanced

familial risk of breast cancer.
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The second part of thesis focuses on density measurement and in particular evaluates

two fully-automated volumetric methods, Quantra and Volpara. These two methods

are highly correlated and in both cases absolute density (cm3) discriminated cases from

controls better than percent density. Finally, we evaluated and compared different mea-

surement methods. Our findings suggested good reliability of the Cumulus and visual

assessments. Quantra volumetric estimates appeared negligibly affected by measure-

ment error, but were less variable than visual bi-dimensional ones, affecting their ability

to discriminate cases from controls. Overall, visual assessments showed the strongest

association with breast cancer risk in comparison to computerised methods.

Our research supports the hypothesis that density should have a role in personalis-

ing screening programs and risk management. Volumetric density measuring methods,

though promising, could be improved.
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Chapter 1

Review of breast density issues

and study plan

1.1 Introduction

This chapter first describes the epidemiological and clinical issues in breast density,

then summarises the research for this PhD project. The project itself is in two parts,

evaluation of density as a biomarker of risk in breast cancer, and researching automated

methods of density estimation which can render it usable in population screening.

1.2 Review of issues in breast density

1.2.1 Introduction

Mammographic density is the portion of the breast that appears white on a mammo-

gram (i.e. radiodense) and it identifies the amount of fibroglandular tissue, stroma and

epithelium, in the breast. For a better understanding, Figure 1.1 shows mammograms

from two breasts with different breast composition: (a) is primarily fatty and has low

levels of density, whereas (b) has predominantly dense tissue. As early as 1976, Wolfe

observed that high levels of mammographic density (henceforth referred to simply as

density) were associated with increasing risk of breast cancer [5]. Since then, the mecha-

nisms that account for this association have been investigated, and the association with

risk further quantified. A recent comprehensive review and meta-analysis of the effect of

density on breast cancer risk has been performed by McCormack and dos Santos Silva
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[6], documenting associations of qualitative and quantitative density measures with risk.

The precise mechanism for the effect on risk remains uncertain [7, 8], although recent

hypotheses include increased stromal collagen [9], delayed involution [10] and increased

expression of aromatase [11]. Other aspects of density have been extensively researched,

and it has been found that density is heritable, alterable by weight change or exogenous

hormones and has significant associations with other risk factors for breast cancer [12],

including age, menopausal status, parity, heritability, exogenous hormones (hormone re-

placement therapy and tamoxifen) and body mass index (BMI). The influence of density

on breast cancer risk persists even after adjustment for these factors [13, 14], and high

amounts of fibroglandular tissue were shown to predict higher risk for up to 7-10 years

[15, 16]. In addition to this, recent studies of primary chemoprevention and recurrence-

prevention with tamoxifen [17–20] suggest that a reduction in density reflects a decrease

in breast cancer risk.

In this chapter, the following aspects of density research are reviewed: methods of mea-

suring density, quantification of the independent effect of density on breast cancer risk,

the relationship between density and other breast cancer risk factors, the implication of

density for breast cancer screening, the alterability of density at individual level, and

its potential in monitoring the effects of risk reducing interventions. In addition, some

suggestions for the future applications of density as a breast cancer risk biomarker have

been included.

Figure 1.1: Mammograms of a breast with very low(a) and high density (b)
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1.2.2 Measurement of mammographic density

Methods of assessing breast density have varied over the years, since in 1976 Wolfe pre-

sented his method based on parenchymal patterns [5], and, to date, no ideal method

has been developed. Wolfe was the first to suggest a strong association between the

radiographic appearance of breast tissue and the risk of breast cancer. He identified

four parenchymal patterns and dichotomised these into two main risk categories: pat-

terns N1, predominately fat, and P1, ductal prominence in less than 25% of the breast,

which he suggested indicated low risk, and P2, ductal prominence in at least 25% of the

breast, and DY, extensive dysplasia, which he concluded conferred higher risk. Note

that DY does not necessary imply dysplasia, which is a pathological rather than ra-

diological phenomenon but merely the presence of large uniform areas of density on a

mammogram. Observing that the typical radiological appearance of the premenopausal

breast contained substantial dense areas, Gram et al [21] proposed the Tabàr classifica-

tion which has five patterns, based on anatomic-mammographic correlation: I scalloped

contours and Cooper’s ligaments, evenly scattered terminal ductal lobular units and

oval lucent areas corresponding to fatty replacement; II complete fatty replacement; III

retroareolar prominent duct pattern and fatty involution; IV extensive nodular and lin-

ear densities; and V homogenous fibrosis with convex contour. Tabar patterns II, III, IV

and V correspond approximately to Wolfe’s patterns N1, P1, P2, and DY respectively;

and similarly Tabar patterns IV and V are associated with increased risk [22]. However,

some mammograms which would be P2 or DY in Wolfe’s classification are classified as

Tabar pattern I, since this represents the typical rather dense appearance of the pre-

menopausal breast.

The Tabàr and Wolfe classification methods are categorisations based on both qual-

itative and quantitative observations, but it has been noted that purely quantitative

measures of breast density give better risk prediction [15, 23, 24]. Thus, over time,

these semi-quantitative methods have been replaced by largely quantitative methods,

with percent density most often assessed visually and divided into categories. In the

1990s the American College of Radiology proposed the Breast Imaging Reporting and

Data System (BIRADS ) lexicon that classifies density as: BIRADS-1, almost entirely

fatty breast (“<25 % dense”); BIRADS-2, presence of scattered fibroglandular densi-

ties (“26-50% dense”); BIRADS-3, heterogeneously dense breast (“51-75% dense”); and

BIRADS-4, extremely dense breast (“>75 % dense”). Many researchers have used a 5-

category classification (“<10% dense”, “10% to 25% dense”, “25% to 50% dense”, “50%

to 75% dense” and “>75% dense”), sometimes augmented to six categories by allowing

zero a separate class [25, 26]. Both semi-quantitative methods and BIRADS rely on
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visual assessments, and are relatively quick and easy to perform [27]. However, their

subjective nature constitutes their major weakness, because intra- and inter-observer

variability adversly affects the reproducibility of the results. A standardised lexicon,

such as BIRADS, high-quality mammograms and good training for the raters can un-

doubtedly help to improve reproducibility. In a study on this issue, the inter-observer

agreement for Wolfe’s patterns, as measured by Kappa statistics, ranged from 0.69 to

0.88, and the intra-observer from 0.69 to 0.87, whereas using BIRADS both intra- and

inter-observer agreements were as 0.89 [27].

Visually estimated percent breast density, measured on a 21-point semi-continuous scale

(0, 5%, 10%,. . . 100%), has also been found to predict breast cancer risk [4, 17] but there

is nevertheless much interest in fully automated and computer-assisted methods, firstly

to render the process less labour-intensive and less subjective, and secondly to allow more

comprehensive information (measurements of total breast area, dense area and non-dense

area) to be obtained. Technological progress has generated several computer-assisted or

automated methods, such as planimetry and interactive thresholding (Cumulus) [28].

The former was developed from Wolfe’s expert outlining method where the edge of the

breast and area of dense tissue on a mammogram were marked on an acetate sheet

and quantified using planimetry [29]. For interactive thresholding, instead, an observer

chooses the appropriate threshold level by manipulating an image of the mammogram

on a computer screen so that the dense tissue and edge of the breast are identified,

and the number of pixels in the dense and non-dense areas automatically calculated

[28, 30, 31]. Percent dense area can then be calculated from absolute dense and total

breast area. Hence, interactive thresholding is less subjective than visual assessment,

provides more comprehensive information (measurements of total breast area, dense area

and non-dense area, in addition to a continuous measure of percent dense area) and is

similarly predictive of breast cancer risk [30]. Cumulus is the most widely used inter-

active thresholding tool and is regarded by many as the gold standard. However, this

method is time-consuming, so it is not ideal for density assessment in routine popula-

tion screening (taking an average of two to three minutes per film, whereas purely visual

classification allows performing the assessments of Wolfe patterns, Boyd’s six-category

classification and continuous percent density in less than 1.5 min per mammogram [27]).

There is debate as to whether absolute dense area is a more useful measure than percent

breast density for independent risk prediction [16, 32, 33]. This will be discussed further

in the Breast Density and Breast Cancer Risk section 1.2.3. It is also known that both

percent dense area and absolute dense area tend to be lower when assessed from digital

mammograms rather than films [34], in part due to the processing of the image, but also

to the better delineation of the breast edge on a digital mammogram [35].
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Current methods of measuring density, both visual and semi-automated, have two limi-

tations: (1) they require significant input from the human user, which in turn implies a

need for training and maintains the labour-intensive nature of density measurement; and

(2) they reduce a three-dimensional feature, the breast, to its 2-dimensional projection

obtained on a mammogram. Controlling the reproducibility and reliability of density

measurements (inter- and intra- reader error) is a major challenge, and one to which

there is currently no easy solution as even when there is a high level of agreement on

average, for individual mammograms the disagreement could be as much as 30-35% (for

percent dense area read visually), or more than a category (for Wolfe patterns or Boyd’s

six-category classification)[27].

Methods that assess the volume of dense tissue are currently being developed and will

hopefully give more precise estimates of the amount of fibroglandular tissue within the

breast and therefore be better predictors of breast cancer risk. With the advent of digital

mammography, there is particular interest in fully automated volumetric density estima-

tion. Several automated volumetric approaches have been proposed [36–41], including

some that are undergoing commercial development, but so far the results suggest that

the volumetric methods provide a similar or weaker risk prediction than the area-based

measures. Most recently, Shepherd et al [42] found that the categorical risk classifica-

tion for 20% of women, with or without breast cancer, could be improved by including

fibroglandular volume in the risk assessment model. We shall return to this issue in

section Future Applications 1.2.7.

Magnetic resonance Imaging (MRI)-based analyses has received great attention because

it provides a detailed three dimensional distribution of fibroglandular tissue that is not

subject to the tissue overlap problem in mammography [43]. For this reason, this mea-

sure is anticipated to be the most accurate estimate of the amount of dense tissue in

the breast and several studies have compared it with density measured by mammog-

raphy [43–49] showing that the MRI measure for the volume fibroglandular tissue is

highly correlated to mammographic density, assessed either visually or [44–47] or with a

volumetric fully-automated software [48]. Recently Wang and colleagues [50] compared

three fully-automated volumetric methods based on FFDM, i.e. SXA [42], Quantra [51]

and Volpara [52], to MRI breast density and found them in moderate agreement. Ap-

parently, most cases of disagreement were driven by differences in total breast volume

measured for MRI versus mammography [50]. MRI fibroglandular volume is also often

used ground truth against which mammogram measurements are compared [53], espe-

cially when developing new volumetric methods.

Besides MRI fibroglandular volume, it has also been speculated that another estimates

of breast density from MRI, i.e. background parenchymal enhancement, could provide
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further relevant information on breast cancer risk. Background parenchymal enhance-

ment is the volume and intensity that fibroglandular tissue “enhances” after intravenous

contrast agent administration during MRI, and it appears to have an association with

breast cancer risk as strong as mammographic density and which may be especially

useful evaluating the effectiveness of a treatment, such as tamoxifen [49, 54]. Although

background parenchymal enhancement could promote a better understanding of the re-

lationship between the amount of fibroglandular tissue in the breast and breast cancer

risk, the research in this field is still at an early stage.

Another approach adopted by several research groups is to automate 2-dimensional mea-

surements. In Sweden Li et al. developed Auto Threshold (v1.10) ImageJ plug-in, aim-

ing to mimic Cumulus readings [55]. Results on 1,498 cases and 1,495 controls indicate

a reasonable agreement between fully-automated and computer-assisted thresholding.

Auto Threshold is less labour- and time-consuming, and therefore could be introduced

into clinical practice more easily. Following poor results from the comparisons between

automated volumetric measures and visual assessment, it is believed that, besides the

amount of dense tissue, other aspects of mammographic appearance may be informative

of breast cancer risk [56]. Thus, in Denmark Nielsen and colleagues have developed a

software that extracts textural information from all pixels of segmented breast images,

and recognises texture relating to breast cancer status of women [56]. Their findings

showed that their mammographic texture resemblance (MTR) marker was independent

of mammographic density and more predictive of risk. Likewise Schmidt and colleagues

designed CIRRUS, a fully-automated predictor of breast cancer risk, that tries to iden-

tify the features in a mammographic image that best predict breast cancer risk [57].

Heine et al. adopted a simpler but still effective approach [58]. Their work focused on

the estimation of the ”variation measure”, i.e. the standard deviation of calibrated pixel

values, that appeared to have an association with breast cancer risk at least as strong as

percent density assessed with Cumulus in a case-cohort study (2,311 subjects, including

217 cases) and two case-control studies (1,967 and 762 subjects, including 928 and 246

cases, respectively) [58]. These methods are promising but require further external val-

idation.

Electrical impedance tomography is based on the concept that every different tissue,

and in particular malignant tumours, reacts differently to the same electrical pulse, and

produces reconstructed tomographic 2D or 3D images of the impedance, and therefore of

the tissue composition [59]. Likewise, digital breast tomosynthesis provides 3D images of

breast composition by using multiple low-dose radiographic exposures taken at different

angles [60]. There are high expectations that using these breast imaging methods, it

should be possible to have a more accurate estimate of the amount of breast dense tissue,
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than those based only on two-view 2-dimensional mammograms. Methods for density

estimation from these new 3D breast imaging systems are currently being developed,

however the research on this topic has just started moving its first steps [61].

1.2.3 Breast density and breast cancer risk

Increasing density is associated with an increase in risk of breast cancer regardless of

the type of assessment (qualitative or quantitative)[6], the population (symptomatic

or asymptomatic) [13], whether the density assessment was made on a negative mam-

mogram years prior to the cancer diagnosis (incidence studies) or on the contralateral

mammogram at the time of the breast cancer diagnosis [13]. It should be noted, however,

that the effect is attenuated with increasing time since measurement [6]. Two compre-

hensive meta-analyses, conducted more than a decade apart, both found a strong effect

of density on risk and both observed that quantitative measures gave superior risk pre-

diction to qualitative ones [6, 62]. The RRs for Wolfe’s most dense category (DY)

relative to the least dense (N1) were 3.98 (95% CI (2.53-6.27)) and 2.42 (1.98-2.97),

respectively in incidence and prevalence studies; for BIRADS category “extremely dense

(≥ 75% dense)”, there was a risk of 4.08 (2.96 − 5.63) relative to the lowest category,

“almost entirely fatty (< 25% dense)”; whereas the strength of the association between

percentage density and breast cancer risk was estimated as 4.64 (3.64-5.91) for 75%

density or more compared to less than 5% [6]. Mammographic density is therefore an

important risk predictor for breast cancer, although the mechanisms that account for

this association are currently still unclear and under investigation [7, 8, 63]. Almost 5%

of the female population has extremely dense breasts (dense tissue in 75% or more of

the breast), and these women have a 4- to 6-fold increase in risk compared with those

with primarily fatty breasts (< 10% dense tissue) [6, 26, 64]. It should be remembered,

however, that the mean percent dense area in postmenopausal women is approximately

30% so the relative risk of developing breast cancer for a woman with greater than 75%

density compared to the general population is somewhat lower than that typically re-

ported for comparisons of most and least dense.

The masking bias hypothesis was suggested by Egan and Mosteller [65] to explain the re-

lationship between extensive fibroglandular tissue and subsequent breast cancer risk. It

is based on the fact that density is associated with failure to detect some breast cancers

by mammography [26, 66], since density renders the task of detecting presymptomatic

tumours in the breast more difficult [67]. One supposition is that, in primarily dense
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breasts, tumors may be masked because they share the same x-ray attenuation prop-

erties as fibroglandular tissue, therefore an artificially higher incidence of symptomatic

breast cancer is observed in the ensuing years [26, 66, 68]. However, the increased breast

cancer risk in asymptomatic women, and the fact that the risk remains increased after

excluding cancers in the year following negative mammography, indicate that the effect

is not entirely due to masking [6]. Indeed, mammographic density predicts breast cancer

risk up to 10 years thereafter [15, 16]. However, although it is clear that the observed

effect of density on risk is not completely due to masking, the phenomenon is clearly

a potential biasing factor in individual studies. interpretation of results should always

bear in ming the potential of masking to inflate associations with symptomatic cancers

and attenuate the associations with screen -detected.

Breast density has a high attributable fraction compared with other risk factors for

breast cancer [69] and may be reduced by hormonal therapy [17–20] and diet [70]. It is

therefore hoped that by reducing particularly high levels of density a substantial pro-

portion of breast cancers might be prevented. Most breast cancer risk factors account

for a very small percentage of cases, either because the increased risk associated with

the factor is modest or because the prevalence of the factor is very low [71]. Boyd et

al [26] found that 16% of all breast cancers and 26% of breast cancers in women aged

under 56 were attributable to breast densities greater than 50%. This underlines the

potential role of density in breast cancer prevention [17, 72–74].

As noted above, quantitative measures of breast density have been observed to have a

stronger association with risk than qualitative measures. However, this is not universally

observed, so there remains the question as to whether relative or absolute breast density

is a better predictor of risk [8, 16, 33]. Breast density is negatively confounded with two

other risk factors, age and body mass index (BMI). Increases in all three are associated

with increased risk of breast cancer, but percent breast density reduces with both in-

creasing age and BMI [12]. This has a number of implications for risk estimation. First,

the effect of percent density on risk [25], if no adjustment is made for age and BMI, will

be underestimated. Secondly, it should be noted that absolute dense area does not show

this confounding with BMI [75]. Vachon et al [76] found that absolute dense area had

similar risk predictive potential as percent density. Stone et al [33] found similar results

and in addition found that absolute area did not need adjustment for non-dense area (as

a surrogate for BMI) to attain maximum predictive effect, whereas percent density did

require such adjustment. However, Wong et al [75] found that percent density predicted

risk better than absolute dense area, albeit in an Asian population. Thus this remains

an open question.

The influence of mammographic density on breast cancer persists after adjustment for
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other risk factors [14, 76, 77]. This suggests that it can be of use in further improving

individual risk models [1, 73, 74, 78, 79] which in turn will aid in identifying high risk

groups who might benefit from specific preventive or surveillance interventions. See Fu-

ture Applications 1.2.7 for further discussion of this.

1.2.3.1 Breast density and breast cancer outcome

Despite being a strong predictor of breast cancers, higher levels of density do not neces-

sarily imply a worse prognosis, in terms of death or recurrence. Firstly, it was speculated

that an extensive amount of breast density would be associated with more aggressive

tumour characteristics [80], perhaps also because of masking-bias. However, results of a

recent meta-analysis [81] contradicted this hypothesis and concluded that subjects with

denser breasts are more likely to develop breast cancer, regardless of tumour sub-type.

Secondly, two studies [82, 83] comprising women who experienced ductal carcinoma in

situ , observed an association between breast density and subsequent invasive breast

cancer in the contralateral, but not ipsilateral breast, suggesting that dense tissue play

a role in carcinogenesis but not in the further development of the tumour. Finally, a

Danish study [84] involving 48,052 women, aged 50-69 years, screened between 1991

and 2001, reported that breast tumours were more frequent among subjects with denser

breasts, but they were, overall, less severe. The proportion of fatalities was lower than in

women with fattier breasts. Gierach and colleagues had similar findings from a cohort of

9,232 women diagnosed with primary invasive breast carcinoma between 1996 and 2005

[85]. As in the Danish study, the data indicated a lack of association between breast den-

sity and breast cancer mortality, suggesting that following carcinogenesis, other factors

determine how the tumour develops.

1.2.4 Breast density and other breast cancer risk factors

Mammographic density is a representation of the fibroglandular component of breast-

tissue, and, although mammograms do not allow the distinction, the dense area com-

prises both stroma, the connective fibrous tissue, and epithelium, the two layers of

epithelial cells covering it. The complex interactions between these two features may

provide the biological basis for tumorigenesis [7]: although breast cancer tumours arise

mostly from ductal epithelial cells, stroma also plays an important role in the origin and
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development of breast cancer tumours, contributing both instructive and permissive sig-

nals, and represents, therefore, a potential target for cancer-preventing interventions

[86, 87].

1.2.4.1 Age, parity and menopause

Breast density changes throughout a woman’s adult lifetime; the proportion of fibrog-

landular tissue tends to increase until the 3rd decade after menarche (30-40 year old),

then declines progressively with increasing age [88]. Further, more pronounced reduc-

tions occur subsequent to each pregnancy and following the menopause, conferring on

average reductions of 2% and 2.4% in percentage density [89–91]. This suggests a strong

connection between mammographic density and the cumulative exposure to hormones

and growth factors that stimulate cell division in breast stroma and epithelium, sus-

pected to represent an important factor in the age-specific incidence of breast cancer in

the population [92].

1.2.4.2 Confounding with body mass index

The interpretation of mammographic density as a marker of breast cancer risk, particu-

larly when density is measured in relative terms, is complicated by the fact that density

is confounded with BMI. A woman with high BMI tends to have larger breasts than a

woman with low BMI so that 50% dense area might represent very different absolute

amounts of dense breast tissue. Similarly a low amount of relative density may still be

associated with a high risk, because of an extensive dense area, surrounded by an even

larger area of non-dense tissue. Further, when expressing density with percent scores,

its association with breast cancer risk appears weaker in women with larger breasts [93].

Body mass index is an alterable feature. A woman might reduce her BMI with diet and

exercise, for example, and thereby reduce her breast cancer risk, yet if her dense breast

area remains the same (and her breast size decreases) losing weight will mean that her

estimate of risk, based on percent dense area alone, would be increased. A recent review

[94] focusing on mammographic density and physical activity, found no evidence of an

association between them, although results may be influenced by the heterogeneity of

the studies included, in terms of population, definition of physical activity and how this

was reported.

In general, classic anthropometric measures of adiposity (body mass index and waist cir-

cumference) have been shown to be as good as adiposity measures from whole body dual

x-ray absorptiometry and computed tomography for adjusting mammographic density
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for this confounding[95].

1.2.4.3 Confounding with age

As already noted, mammographic density is negatively confounded with age, so that

density decreases and the risk of developing breast cancer increases with increasing age.

This apparent anomaly was first explained by Boyd et al [92] who found that the decline

in percent dense area with age corresponds to the cumulative rate of breast tissue aging

described in Pike’s model [96] and depends more on hormonal history (for example, age

at menarche, age at first birth and age at menopause) than chronological age. McCor-

mack et al [91] further showed that there is a high degree of tracking post age 50 (i.e.

that a woman’s percent density ranking, at age 50, relative to other women in her cohort,

will be the same at age 60) so that a single assessment of a woman’s mammographic

density at age 50 or more might be viewed as a reasonable long-term measure of her

breast cancer risk [91]. As Lokate and colleagues [97] observed in their Dutch cohort,

cases and controls experienced similar age-related declines in mammographic density,

however at all mammographic examinations, density was higher on average for cases

than for controls.

1.2.4.4 Exogenous hormones

The hypothesis of a strong association between mammographic density and exogenous

sex hormones is supported by evidence from a number of studies. A major meta-analysis

[98] showed that oral contraceptives cause a significant increase in breast cancer inci-

dence among current users, relative risk 1.24 (1.15-1.33), and that this effect decreases

with time after stopping use, i.e. it is null after 10 or more years, RR 1.01 (0.96− 1.05).

However, findings relating hormonal contraceptive use and percent mammographic den-

sity are generally negative [76, 99]. In contrast combined hormone replacement therapy

(HRT) with oestrogen and progesterone was found to increase both risk of breast can-

cer [100–102] and mammographic density [101–105]. In particular oestrogen/progestin

combination treatments confer a significant mean increase in density ranging from 3%

to 5% [103, 104, 106]. Sala et al [99] found that while current users of HRT had signifi-

cantly increased density compared to never users, former users did not, which suggests

that exogenous oestrogen has only a short term effect on density. More recently, in a

multi-ethnic study [102] Hou and colleagues observed that the effect of HRT on breast
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cancer risk was modified by mammographic density, BMI and ethnicity. In particular

they observed that underweight/normal weight women with dense breasts were found

to be more sensitive to the detrimental effects of HRT on breast cancer risk, whereas for

black women and overweight/obese women with fatty breasts, HRT use did not affect

their risk of breast cancer.

Treatment with tamoxifen, a selective oestrogen receptor modulator (SERM), causes

a greater density reduction (7.9% (6.9%-8.9%)) than placebo treatments (3.5% (2.7%-

4.3%)), within 18 months [72], and this change seems to reflect a reduction of risk of

breast cancer in a high-risk population [17–20]. It is not yet known whether the same

will be found with other prospective breast cancer prevention therapies. A number of

small studies have looked at the effect of raloxifene, another SERM, on mammographic

density and reported no significant change in density with treatment [107, 108] or a

change of a similar magnitude to that observed in women on placebo [109]. None are

conclusive, however, as they suffer from a number of weaknesses, including a lack of

statistical power. Studies of aromatase inibitors have had negative or inconclusive re-

sults. Two small studies of letrozole in women who had previously undergone 5 years

of tamoxifen treatment [110] and in women with at least 25% mammographic density

(including women with previously treated breast cancer) [111] found no reduction in

density but again are too small to be considered conclusive. A randomised study of

mammographic breast density and exemestane similarly found no significant change in

percent density with treatment [111]. More recently Vachon et al. [112] investigated the

changes in breast composition due to aromatase inhibitors comparing 369 early-stage

postmenopausal patients and 369 matched controls. They found no evidence of signifi-

cant change in percent density due to aromatase inhibitor therapy. However it has been

speculated that breast magnetic resonance imaging (MRI) could be more appropriate

than mammography examination for recording changes in breast dense tissue due to

endocrine treatment [107].

1.2.4.5 Endogenous hormones

Measurements of hormones and growth factors have shown that blood concentrations of

insulin-like growth factor IGF-I and prolactin, respectively in pre- and post-menopausal

women, are associated with mammographic density, both before and after adjustment

for other risk factors [106]. In particular, IGF-I is a known mitogenic agent that strongly

influences epithelial cells of the breast, and is thought to be responsible for a proportion

of breast tumours [113]. It is also hypothesized that pre-menopausal levels of IGF-I may
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be related to risk of post-menopausal breast-cancer [113].

Measurement of hormone levels in ovulating women is complicated by the fact that

levels depend heavily on when in the cycle the blood is taken. Nevertheless studies

aimed at testing the hypothesis that, even in postmenopausal women, breast density

reflects circulating sex hormone levels found no association after adjustment for BMI

[114–116]. Additional support for the hypothesis that mammographic density and post-

menopausal endogenous oestrogen levels are independent lies in the lack of association

between density of the surrounding breast-tissues and the oestrogen receptor status of

a breast cancer [80, 117, 118]. High mammographic density has been observed to in-

crease the risk of both ER-positive and ER-negative breast cancers [81], suggesting that

mammographic density may influence breast cancer risk through oestrogen-independent

pathways [80]. It may also be that endogenous hormone levels are best measured in the

breast tissue itself rather than in the blood because the concentrations of oestrogens

in the tumours of postmenopausal women are significantly higher than that found in

plasma [119]. Furthermore, it has been shown in mice that in situ aromatisation (oe-

strogen production within the breast itself through the action of the enzyme aromatase)

is the key determinant of tumour estradiol levels and tumour growth [120]. Recently

Varghese and colleagues [121] investigated the relationship between mammographic den-

sity and hormone levels on 1,286 women to verify whether the increased risk of breast

cancer caused by endogenous hormones through cell proliferation may be reflected in

mammographic density [122]. They observed no association between density, both in

absolute and percent terms, and estradiol or testosterone levels, after adjusting for BMI.

1.2.4.6 Heritability

Genetic and family history factors are long-established risk factors for breast cancer

[123]. Likewise heritability appears to account for a large proportion of mammographic

density variation, with the odds of a woman having dense breasts (BIRADS category

3 or 4) being 17% (9%-25%) greater for women with a first-degree relative who has

had breast cancer, 19% (10%-29%) greater if the affected relative is a sister, and 22%

(10%-35%) greater if the relative was diagnosed with breast cancer before 50 years of

age [124].

Epidemiologic risk factors associated with mammographic density, e.g. menopausal sta-

tus, age, body mass index (BMI), and number of live births, account for only 20-30%

of variation in the trait [12]; on the other hand the contribution of genetic factors,

to the observed variability in density, has been estimated as between 29% [125] and
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60% [123, 126]. Supporting the hypothesis that genetic factors influence mammographic

density, twin studies demonstrated that the correlation of breast dense tissue between

monozygotic twins was approximately twice as strong as that between dizygotic twins,

0.63 versus 0.27 [123]. Most of the studies suggest considering also an interaction be-

tween genes and environment [123, 127, 128].

Special interest in the genetics lying behind mammographic density arises from the fact

that its strong association with breast cancer risk and its high heritability meet the

criteria for considering it as a potential intermediate phenotype of breast cancer. It is

believed that genes responsible for familial correlation in mammographic density could

also affect the incidence of breast cancer in the population and contribute partially

to the familial aggregation of the disease [123]. Therefore several studies have been

conducted to identify these genes [129–133]. Candidate gene approaches indicated the

presence of an association of both COMT Val158Met and IGF1 rs6220 A<G with pre-

menopausal mammographic density, and of ESR1 (Xbal and Pvull) polymorphisms with

post-menopausal mammographic density [134].The first large genome-wide linkage study

[127] concluded that there may be at least one gene influencing mammographic density

on chromosome 5p. Further recent findings from Dumas and Diorio [135] indicated

that some single nucleotide polymorphisms (SNPs) located in the CYP181, COMT or

HSD1781 genes are associated with mammographic density among nulliparous women,

non-hormone users, those with late menarche or women with high BMI, hence modifying

effects of estrogen-related factors should be considered when evaluating associations of

polymorphisms in estrogen-related genes with premenopausal mammographic density.

Furthermore Tamimi and colleagues [136] conducted a cross-sectional study to investi-

gate the potential association between mammographic density and the 11 SNPs identified

by a multistage genome-wide association study (GWAS) [129], but results were incon-

clusive. However, in 2011 results from another GWAS led by Lindström and colleagues

[131] reported an association between percent mammographic density and rs10995190

in ZNF365, also known for being associated with susceptibility to breast cancer. In

addition to this, findings from a three-stage GWAS provided additional evidence that

common genetic variation contributes to breast tissue composition and identified a novel

percent mammographic density locus at 12q24, that they suggested should be the focus

of further studies [132]. Recently, Varghese and colleagues [133] investigated the poten-

tial shared genetic basis for mammographic density and breast cancer risk, using two

GWAS: one to identify a set of SNPs that showed the strongest association with mam-

mographic density, and one to examine their association with breast cancer risk. Their

results confirmed Lindstrom findings regarding rs10995190 [131], and then suggested

another SNP (rs10509168) also in the ZNF365 gene. Varghese et al. also evaluated the
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hypothesis of a shared genetic basis between mammographic density and sex-hormone

levels [121] and discarded it, suggesting to consider the two features as two independent

sets of traits. The same study also showed that dense and nondense areas of the breasts

were partly influenced by the same genetic factors, although in opposite directions [63].

There is uncertainty as to whether subjects with known BRCA mutations have higher

density than non-carriers or the general population [137–141].

1.2.4.7 Benign breast disease

It is well established that women who develop benign breast disease (BBD) are at in-

creased risk of developing breast cancer, with the magnitude of the increased risk de-

pending on the degree of epithelial atypia [142, 143] and being particularly high for

women age 45 or less with atypical hyperplasia [144, 145]. Furthermore, Boyd et al.

[146] showed that having high density (> 75%) increased the risk of having hyperpla-

sia without atypia (RR=13.85), and the risk of having atypical hyperplasia or lobular

carcinoma in situ (RR=9.23). Thus, the two features may not be independent factors.

Further investigations by Byrne et al. [142], however, suggest that benign breast disease

histology and mammographic density are independent breast cancer risk factors. Tice

and colleagues addressed this hypothesis on a cohort of 42,818 women with at least one

benign breast biopsy. They found that women with atypical hyperplasia and very high

breast density had the highest risk for breast cancer, however women with almost en-

tirely fatty breasts were at low risk for future breast cancer regardless of the histology

of their breast biopsy [147]. This suggests that there may be synergy between atypia

and density in their effect on subsequent breast cancer risk [147].

1.2.5 Breast density and screening

Mammographic density, appearing as opaque areas on a mammogram, can mask some

radiological features of the breast and thus render it more difficult to detect tumours [70].

As noted in 1.2.3 above, because density influences the detection of cancer, estimates of

the risk of breast cancer associated with mammographic density may be distorted [26].

It has been found that interval cancers occurring within a short period after screening

are more common in women with dense breasts, in particular Boyd and colleagues [26]

observed an increased OR of 17.8 in women with over 75% of breast density, compared

to subjects with primarily fatty (less than 10% dense) breasts in the first 12 months
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after a negative screening, therefore, implying that breast density is associated with a

shorter potential lead time in mammography screening [148]. Nevertheless, in the same

study [26] the association between density and breast cancer risk remained significant,

though weaker, with an OR of 5.7 (2.1-15.5), for cancers detected more than a year after

a negative screening, suggesting that this issue of masking can only partially explain

such an association.

The radiation dose required to penetrate fibroglandular tissue and to compensate for

less effective compression (i.e. greater thickness) is greater in dense breasts, so that cu-

mulative lifetime exposure to radiation due to mammography screening, is also greater

in women with dense breasts [149]. Although this may suggest that mammographic

screening could have a less favourable benefit-harm ratio for women with dense breasts,

particularly younger women, it has been estimated that this exposure has a lifetime

attributable risk of fatal breast cancer of 1.3 per 100,000 women aged 40 at exposure

and <1 case per 1,000,000 women aged 80 at exposure, whereas 292 lives would be saved

as a result of annual screening [150]. Recent results from a major study of adjunct ul-

trasound screening in women with mammographically dense breasts suggest that with

this additional screening modality the interval breast cancer rate in women with at least

50% density could be brought down to a similar level as that currently seen in women

with less than 50% density [151]. Similarly, early results from a non-randomised study

of automated whole breast ultrasound and mammography in asymptomatic women with

BIRADS density 3 or 4 suggest that the breast cancer detection rate could be doubled

for women in these categories with the use of this technology.

As noted previously, MRI is considerably more effective than mammography for the

surveillance of women with high-risk BRCA mutations [152–154], even in BRCA carri-

ers with low mammographic density [155], thus mammographic density does not entirely

explain the difference in performance between these two screening modalities. It should

be remembered that surveillance in such women tends to begin relatively early in adult

life when the breast tissue is denser, which may explain why there is conflicting evidence

as to whether mammographic density is generally greater in BRCA carriers than in non

carriers or the general population [137–140].

MRI is resource intensive, and demands a greater commitment from the screenee than

does mammography. Hand-held ultrasound is labour-intensive and subjective, but there

is now an automated whole-breast ultrasound system (AWBUS) [156–158] that promises

to improve sensitivity, although increasing the numbers of false positives [150, 157, 159].

Hence screening modalities which may mitigate the effect of breast density on sensitiv-

ity and which are more appropriate for high-throughput population screening are digital

mammography and automated ultrasound [150, 156, 158, 160]. Personalised screening
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strategies, according to the level of breast density and other risk factors such as family-

history, have the potential to improve cost-effectiveness of the breast cancer screening

programme.

1.2.6 Breast density and models for predicting breast cancer risk

Currently, there are a number of risk evaluation models available for assessing a woman’s

breast cancer risk based on her risk factors but none have yet been validated in the

general population or have yet incorporated mammographic density into their risk as-

sessment. The majority have been developed and validated in high-risk subgroups of

women. In a study comparing the performance of the Gail [161, 162], Tyrer-Cuzick [1],

Claus [163–165] and Ford [166] models at predicting breast cancer risk in women with a

family history of breast cancer who were attending the Family History Evaluation and

Screening Programme in Manchester, UK, Amir et al. [167] found that the Gail, Claus

and Ford models all significantly underestimated risk and that the Tyrer-Cuzick model

was consistently the better performer, with the ratio of expected to observed numbers

of breast cancers .48 for the Gail model, .56 for Claus, .49 for Ford and .81 for Tyrer-

Cuzick. As regards ability to predict individual cases there was far less difference among

the models, with the area under the ROC curve being .735 for Gail, .716 for Claus,

.737 for Ford and .762 for Tyrer-Cuzick. Thus, it seems that the Tyrer-Cuzick model,

incorporating extensive family history information, endogenous estrogen exposure and

benign breast disease, is the best at predicting the average level of risk of a population,

and therefore the overall number of cases, but has only a slight advantage as regards

individual discrimination and prediction. Other studies have also found that the Gail

model [161] has low discriminatory power (c-statistic = .58) [13] but to some extent this

is due to the fact that the age-specific breast cancer rates on which it is based require

updating [168]. The Tyrer-Cuzick model significantly overpredicts breast cancer risk in

women with atypical hyperplasia [169] whereas the Gail model significantly underpre-

dicts [170]. Both models could therefore be improved by addressing known weaknesses

and adding information on new risk factors, such as genotype and mammographic den-

sity.

Previous attempts [2, 3, 78, 171] to introduce mammographic density into risk predic-

tion models have led to only modest improvements in predictive ability. In 2005, Tice

and colleagues[3, 171] built a model containing only breast density adjusted for age and

ethnicity, which performed as well as the Gail model. Similarly, in 2006 Barlow et al. [2]

used a cohort of 1,007,600 women to develop two models, one for pre-menopausal and
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one for post-menopausal women, that include both traditional risk factors and breast

density. In both cases, breast density, as a single predictor, appeared to be as power-

ful as age, however only a moderate further predictive ability was obtained by adding

this feature to the other factors. During the same year Chen et al. [78] proposed a

model based on age at first live birth, number of biopsies, number of affected relatives,

mammographic density and body weight, as an alternative to the Gail model but the

improvement in discriminatory power, assessed with the c-statistic, was modest (Gail

model: .602 vs Chen model: .664) [162]. It should be noted, however, that in a multi-

variate risk model for breast cancer, most individual risk factors typically account for

only a modest proportion of the predictive power.

These results need validation on independent datasets, and may lead to the conclusion

that major determinants of breast cancer risk remain to be discovered [2]. Nevertheless

measures of mammographic density are likely to make at least a modest contribution.

Given also that all these models used BIRADS [2, 3, 78, 171] as the measure of density

(i.e. a measure with 4 or 5 categories), and it is possible that a more detailed measure

may be more suitable for this context. It may be that continuous measures would lead

to a better prediction. It is also worth noting that there are limitations regarding the

c-statistic, or area under the ROC curve (AUC), as a measure for capturing discrimina-

tion and, therefore, for assessing the usefulness of markers [172, 173].

These issues concerning the predictive power of risk evaluation models are important to

both clinical practice and the current controversy regarding whether or not a woman

should be informed of her mammographic density. Current recommendations in the

US from the American Society of Clinical Oncologists are that if a woman has a 5 year

breast cancer risk of greater than 1.66% by the Gail model then she should be considered

high-risk and offered a risk-reducing intervention such as tamoxifen or raloxifene [174].

However action advocacy groups, in the USA, are pushing for legislation, which would

mandate that women attending screening should be informed regarding their breast

density; thirteen states have already adopted this policy [63]. Similarly, in the UK,

the NICE guidelines [175] recommend a threshold of 8% for the 10 year breast cancer

risk calculated from the Tyrer-Cuzick or a similar model when determining whether a

risk-reducing intervention should be offered. Because mammographic density has not

yet been incorporated into these models, it is still possible for a woman to have high

mammographic density and not satisfy the above criteria. Thus, a woman who is in-

formed of her high mammographic density might have her fears raised but be denied

appropriate counselling and risk-reducing interventions. It is a matter of some urgency,

therefore, that major studies to investigate the complex interrelationship between mam-

mographic density, established breast cancer risk factors and risk of breast cancer, are
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carried out, as the results of these will inform the existing risk evaluation models and

enable them to be further developed. It is of particular importance that we learn how

best to incorporate mammographic density into existing or new models so that the

process of assessing risk becomes more comprehensive and coherent. Work on this is al-

ready underway. The PROCAS (Predicting Risk Of breast Cancer At Screening) study

[176] in the Greater Manchester area of the UK is currently collecting comprehensive

information on women’s breast cancer risk factors (including mammographic density

and SNPs) through the NHS Breast Screening Programme and has already enrolled

about 52,000 women (http://www.uhsm.nhs.uk/research/Pages/PROCASstudy.aspx).

The data collected, together with subsequent follow-up, will provide a valuable resource

for investigating the feasibility and acceptability of assessing breast cancer risk within

a population-based mass screening programme and for the further development and

testing of the statistical models used in the evaluation of individual breast cancer risk.

Specifically, it is intended that the Tyrer-Cuzick model will be updated on the basis of

this study to include two new risk factors, mammographic density and a genetic risk

score based on a number of SNPs. Including information from mammographic density

and SNPs in risk prediction models is the most topical challenge for breast cancer risk

estimation [79]. A similar study, KARMA (http://www.karmastudien.se/) in Sweden

was designed to update the Gail model. So far Darabi et al. recorded a limited but

significant improvement in terms of AUC, including adding percent density, BMI and a

collection of SNPs to the Gail model. It has been suggested that AUC may not be the

most appropriate tool to assess the predictive ability gained adding new information to

the model [173]. However, the current lack of standardisation in breast density assess-

ment is the more important issue to be addressed.

1.2.7 Future applications

The key drawbacks of the established area-based methods of measuring breast density

are that they are subjective (visual assessment, and to a lesser extent computer assisted)

and labour intensive (computer assisted). The intra- and inter-reader error (respectively,

the difference between repeat readings of a single mammogram by the same reader and

the difference between repeat readings of a single mammogram by different readers) can

be as much as 30% and 35%, respectively, for visual assessment [27]. The labour-intensive

nature of density assessment, particularly if measured using interactive threshold meth-

ods, and the subjective decision-making involved in visual assessment, render it difficult

to incorporate into mass screening. For example, it would clearly add an unsustainable
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burden to the UK National Breast Screening programme which screens approximately

two million women per year [177]. However, the advent of digital mammography means

that both these issues may soon be resolved as there are a number of fully-automated

methods of assessing breast density from digital mammography currently being devel-

oped, ranging from bespoke image analysis software designed specifically to work with

particular mammography machines (Quantra [51, 178], Volpara [52, 179]) to stand-alone

generic packages which accept any digital images (Image J), which will assess and record

breast density as the mammogram is being taken.

The potential this technological progress will release is considerable, as major population-

based studies will now become more feasible, and new volumetric and absolute measures

of mammographic density will be readily available, adding little or no labour or time

to population screening. If the automated methods predict risk as effectively as visual

assessment and interactive thresholding, then their use in risk-management could be

incorporated into population screening. Further work is required, however, to validate

these new methods of density assessment for it is not yet known whether they will work

as well as the current methods at determining breast cancer risk.

It should also be noted that the modifiability of breast density may be a major factor in

future applications. As noted above, density has been shown to be modifiable by hor-

monal drugs and by changes in body habitus. The fact that in high-risk women treated

with tamoxifen, only those whose density was reduced after administration showed a

subsequent reduction in breast cancer risk suggests that density can be used not only

to select subjects at risk as candidates for preventive interventions, but also to monitor

the effectiveness of such interventions on an individual basis. [17]

1.2.8 Conclusions

Technological advances suggest that the breast density research community is on the

brink of major progress. Nevertheless, there is currently no fully validated objective

means of assessing mammographic density (see section on Measurement of mammo-

graphic density 1.2.2) and continuing uncertainty as to how to utilise mammographic

density in clinical practice (see sections on interpretation of density and risk 1.2.3 and

future applications 1.2.7). Without this knowledge the current demand in the US for the

introduction of Breast Density Inform Law (for example, Public Act No. 09-41 passed in

the State of Connecticut in 2009) may be premature. Whilst breast density has clearly

been shown to be a powerful factor for predicting the risk of developing breast cancer, its

potential role in assessing hormonal preventive regimes and helping to tailor screening
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algorithms cannot be fully realised until we have density measures which both predict

risk with accuracy and can be used in a population screening context.
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1.3 Aims and objectives

Research plan

1.3.1 Part I: Mammographic density as a biomarker for breast cancer

risk

Mammographic density is recognised as one of the strongest independent risk predictors

for breast cancer risk, but the reasons accounting for this association are not yet fully

understood. Thus it appears to have great potential as a biomarker for risk of this

disease, and great interest lies in investigating its properties.

In this part we analyse studies that have recorded information on density and other risk

factors for breast cancer. It should be underlined that the datasets presented in these

chapters were already existing as part of previous larger studies, and no further data

was collected during the PhD project. However these datasets had not been fully anal-

ysed and exploited for what concerns density and its association to breast cancer risk.

In order to clarify the novelty element of this thesis, Table 1.1 compares the published

results from these studies and the issues that will be addressed in this work. Hence these

data will allow us to investigate the relationship of mammographic density with breast

cancer risk, and with other risk factors. This in turn will clarify the potential of density

as a tool in breast cancer risk management.

The studies involved in the analyses are here described in brief.



Review of breast density issues and study plan 42

Table 1.1: Main published findings of the studies analysed in part I and new issues
addressed in this thesis

Unreported issues
Study Published Results for analyses Data

in this thesis

IBIS-I Prophylactic tamoxifen reduces the risk Alternative Nested
of breast cancer by about a third. [180] quantification case-control
The risk-reducing effect of tamoxifen of the extent study
persisted for at least 10 years, but most of surrogacy N=1065
side effects of tamoxifen do not continue (123 cases)
after the 5-year treatment period. [181]
The 12- to 18-month change in mammographic
breast density is an excellent predictor
of response to tamoxifen in the
preventive setting. [17]

ATAC Anastrozole showed both short-term and Analyses of Nested
long term superior efficacy than Tamoxifen the relationship dataset
in both improving survival and lessening of density N=601
severe side effects. [182, 183] and its changes (132 cases)

with risk of
recurrence
and first tumour
characteristics

FH01 Annual mammography in women aged 40-49 Assessment of Nested
years at enhanced familial risk is both the strength of case-control
clinically effective in reducing breast the association study
cancer mortality and cost-effective. [184] between density N=298

and risk in (103 cases)
this high-risk
population, with
and without
adjustment for
other risk
factors and
Tyrer-Cuzick
risk estimate
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1.3.1.1 Potential of visually assessed density as a marker of chemopreven-

tive effect: a case-control study within a breast cancer chemopre-

vention trial (IBIS-I), Chapter 2

Data The International Breast cancer Intervention Study (IBIS-I)[17] is 10-year-long

prevention trial, April 1992 to March 2001, that involved 7,152 high-risk subjects from

the UK (60%), Australia or New Zealand (37%) and the rest of Europe (3%), and

investigated the effectiveness of therapy with Tamoxifen, an oestrogen antagonist, in

preventing breast cancer. Women, aged 30-70 years, were considered at high risk if they

had risk factors for breast cancer indicating at least a two-fold relative risk at ages 45-

70 years, a four-fold relative risk at ages 40-44 years or a roughly ten-fold relative risk

at ages 35-39 years. After recruitment one half of the study population was randomly

assigned to a 5-year treatment with Tamoxifen and the other to placebo.

After the main trial results had been reported [181], 123 women who had been diagnosed

with breast cancer and 942 controls were selected and their data analysed to examine

the relationship between changes in breast cancer risk and mammographic density due

to Tamoxifen [17]. The study found that those women treated with tamoxifen where

density decreased most were also the population whose wisk was most reduced. However,

traditional measurement of the extent to which the Prentice criterion for surrogacy was

satisfied were modest [17, 185]. It has been noted in the past that it would be difficult to

find surrogate endpoint which satisfies the Prentice criterion perfectly or nearly perfectly

[186].

This nested case-control data will therefore be used for the following analysis.
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Proposed analysis

• To further examine the recent published result [17] that those whose density de-

creases as a result of treatment, also have corresponding reduced risk.

• To assess an alternative criterion for surrogate endpoints [185] in order to further

clarify the extent to which reductions in density can be considered as a valid

indicator of the success of the treatment.

1.3.1.2 Correlates of density with prognostic markers and outcome in a trial

of treatment of breast cancer (ATAC), Chapter 3

Data The Arimidex (anastrozole), Tamoxifen, Alone or in Combination (ATAC) study

[187] was an international double-blind clinical trial aimed to find a therapy successful in

preventing breast cancer recurrence in post-menopausal women with hormone receptor-

positive tumours. Between July 1996 and 2000 the study enrolled 9,366 postmenopausal

women with localized breast cancer, and randomised them to receive either 5 years of

adjuvant treatment with anastrozole alone, tamoxifen alone or a combination of the two.

The dataset for analysis will comprise 601 women from ATAC, 208 treated with anas-

trozole, 198 with Tamoxifen, and 195 with a combination of the two, including 22% of

cases of recurrence, in each arm respectively 42, 47 and 43.

Proposed analysis

• To analyse the relationship between mammographic density and risk of recurrence

of breast cancer.

• To investigate the interactions of density, treatment and other risk factors.

• To study how density correlates with biomarkers and tumour histochemistry (e.g.

her2 etc.).

• To replicate findings from IBIS-I, that size of density reduction is related to treat-

ment efficacy, here measured by time to recurrence, not prevention like in IBIS-I.
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1.3.1.3 Additional risk information from breast density in a population at

enhanced familial risk of breast cancer (FH01), Chapter 4

Data The Family History (FH01) study [188] was designed to evaluate the effective-

ness of annual mammographic surveillance in young women (50 years old or less) with a

family history of breast cancer. In the UK 6,710 subjects were enrolled because of their

“moderate risk” of developing breast cancer, i.e. their family history was such that they

had a substantially increased of risk of developing breast cancer, but generally not suf-

ficiently strong to suspect a BRCA mutation. These women received annual invitation

to screening and were observed for a minimum of 5 years.

Although mammographic density is well established as a risk factor, its interplay with

other risk factors is less clear. In particular, it is not known whether it adds further

information on risk in a population already known to be at high risk.

At the end of the intervention, a nested case-control study was performed, including 103

cancer cases and 195 matched controls, which investigated how mammographic density

affected risk of developing breast cancer and interacted with familial factors.

The case-control study will be used for the following analysis.

Proposed analysis

• To estimate the additional effect of density on risk, in a population already known

to be at enhanced risk of breast cancer.

• To investigate the association of density and breast cancer risk, adjusted and

unadjusted for other factors in this higher risk population.

• To compare percent and absolute measures of density.

• To study how the relationship between density and breast cancer risk varies ac-

cording to menopausal status.

1.3.2 Part II: Automated volumetric assessments of mammographic

density (Quantra and Volpara)

Fully-automated techniques are expected to be the future of measuring mammographic

density, since they will hopefully provide predictive ability as regards breast cancer risk

and quick assessments, would be possible to implement on a population scale and would
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ensure reproducibility of the results. In addition to this, while repeatability and repro-

ducibility are important in measurement of density, as with measurement of any other

attribute, the crucial feature is the ability to predict breast cancer risk. Therefore a

number of technologies are currently being developed or undergoing validation.

Quantra [51, 178] and Volpara [52, 179] are two of such methods in need of evaluation,

before being recommended in routine screening. In this part of the thesis data from

Princess Grace Hospital, a private facility in central London, are analysed to investigate

the properties of the two new techniques, comparing their predictive ability. In order to

clarify the novelty element of this thesis, Table 1.2 compares the published results from

these studies and the issues that will be addressed in this work.

The studies involved in the analyses are here described in brief.
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Table 1.2: Main published findings of the studies analysed in part II and new issues
addressed in this thesis

Published
Chapter Results Unreported issues for analyses in this thesis Data

Chapter 5 - Analyses of the association between Case-control
breast cancer risk and Quantra absolute study
and relative density measures, also N=400
in comparison to BIRADS visual (200 cases)
assessments.
Evaluation of the impact of age and
area of residence on such association.

Chapter 6 - Assessment of changes in breast Longitudinal
composition as estimated by Quantra, dataset
according to age and area of N=332
residence. (no cases)

Chapter 7 - Analyses of the association between Case-control
breast cancer risk and Volpara absolute study
and relative density measures, also N=366
in comparison to Quantra and BIRADS. (182 cases)
Evaluation of the impact of age and
area of residence on such association.

Chapter 8:
1. IBIS-I see Evaluation of intra- and inter-reader see Table 1.1

Table 1.1 agreement in Cumulus and visual (21
agreement.

2. Chapters 5 - Assessment of potential measurement see above
and 6 error in Quantra density estimates and

its impact on their association with breast
cancer risk.
Evaluating the relationship between
volumetric and area density assessments.
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1.3.2.1 A case-control evaluation of a fully automated volumetric density

measure as a predictor of breast cancer risk (1) (Quantra),

Chapter 5

Data As previously noted, to be practically useful in the context of population screen-

ing and risk management, automatic measurement of density, with little or no call on

manpower, is desirable. In this study details were recorded of 200 cases, female patients

with histopathologically verified breast cancer, and 200 matched controls. For every

subject, mammographic density was assessed both with Quantra volumetric measures

of absolute and relative density and visually with the BIRADS classification. The avail-

able covariates also included age, area of residence and the Quantra measure of total

breast volume.

Proposed analysis

• To compare Quantra measures of absolute and relative volumetric density as re-

gards their ability to discriminate between cases and controls.

• To examine the relationship between mammographic density, as assessed with

Quantra, and the established BIRADS method.

• To assess how the association between density estimates and breast cancer risk

varies according to age and area of residence.

1.3.2.2 Serial volumetric density measures using Quantra, Chapter 6

Data This dataset recorded details of 332 women, (231 younger than 50 years and

101 aged 50 or more years) undergoing two mammographic examinations, typically 18

months apart. Density was assessed with Quantra and we also had information on age

and area of residence.
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Proposed analysis

• To assess changes in breast composition (i.e. amount of dense and fat tissue) over

time, for the combined study group and each age cohort separately.

1.3.2.3 A case-control evaluation of a fully automated volumetric density

measure as a predictor of breast cancer risk (2) (Volpara),

Chapter 7

Data The mammograms of 366 women (182 cases and 184 controls) from the Quantra

case-control study, were reassessed using Volpara[52, 179], another fully-automated vol-

umetric measure.

Proposed analysis

• To examine the relationship between the mammographic density measures pro-

duced with Volpara and the established BIRADS method.

• To compare Volpara measures of absolute and relative volumetric density as re-

gards their ability to discriminate between cases and controls.

• To assess how the association between density estimates and breast cancer risk

varies according to age and area of residence.

• To compare directly Volpara and Quantra assessments.

1.3.2.4 Measuring mammographic density: results, issues and potential im-

plications, Chapter 8

This chapter includes analyses on data described in Chapters 2, 4, 5 and 6 and it focuses

on variability from measurement error and population variation in breast composition.

Proposed analysis

• To evaluate inter- and intra-reader agreement in Cumulus [28] and visual (21-

categories) assessments using data from the IBIS-I study [17], described in Chapter

2.
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• To investigate how measurement error in density assessed with a fully-automated

volumetric method (Quantra) may influence the association between density and

breast cancer risk, observed in Chapter 5.

• To adjust the association between risk and Quantra absolute density estimates

(Chapter 5) for the potential measurement error, using data introduced in Chapter

6 to estimate variability components.

• To study the relationship between two- and three-dimensional density assessments,

and their difference in variability, using data from the longitudinal study presented

in Chapter 6 and CADET1 study [4].

• To compare the propensity for risk prediction of most of the density measures

available for this project (visual 21-category assessment from Chapter 2, Cumulus

from Chapters 2 and 4, Quantra from Chapter 5 and Volpara from Chapter 7)

using standardised odds ratios and the areas under the ROC curve (AUCs).

1.3.3 Implications for practice and for future research

As noted above, the aim of this project is to clarify the role of breast density as a marker

of risk, and to indicate its scope in:

• identification of high-risk individuals for preventive or surveillance interventions,

• monitoring of interventionss to reduce risk at individual level,

• risk and surveillance: management in the context of population screening.

The concluding chapter draws together implications put in terms of what can be imple-

mented in health care now, and which issues remains to be researched.



Part I

Mammographic density as a

biomarker for breast cancer risk
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Chapter 2

Potential of visually assessed

density as a marker of

chemopreventive effect: a

case-control study within a breast

cancer chemoprevention trial

(IBIS-I study)

2.1 Introduction

Studies focusing on cancer incidence as an endpoint within cancer prevention and treat-

ment trials require large numbers of subjects, follow-up over many years, and, conse-

quently, imply great expense. Surrogate markers are measures that can be used as early

indicators of treatment effect because of their ability to predict the outcome of the ther-

apy on this endpoint. They are therefore very attractive for study designers because

of the opportunity they provide to make studies smaller, faster and less expensive. A

surrogate (S) is expected to mediate the effect of the therapy or exposure (Z) on the

true endpoint (T), in other words S should lie on the causal pathway connecting Z to T.

Given the complexity of carcinogenesis, finding an appropriate surrogate marker is not

an easy task [185, 186, 189].

52
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The appearance of breast tissue on a mammogram varies between subjects due to differ-

ences in breast composition, leading to different levels of risk of developing breast cancer.

In particular, a larger amount of white (dense) areas, i.e. the projection of stroma and

epithelium or fibroglandular tissue, corresponds to higher breast cancer risk [6]. Decades

of research on this topic indicated that this association holds regardless of the tumour-

type [81]. Nevertheless the understanding of the biology underlying the association

between breast cancer risk and mammographic density is still limited [190]. Current hy-

potheses suggest increased stromal collagen, delayed involution and increased expression

of aromatase [63]. One of the most interesting properties of breast density as a risk fac-

tor for breast cancer is that it can be altered and is particularly responsive to hormonal

manipulation. Exposure to hormone replacement therapy, normally progesterone and

oestrogen combined, leads to increases in both breast cancer risk and mammographic

density, although possibly through independent pathways [101, 103, 191]. Tamoxifen

therapy, on the other hand, is associated with a decline in mammographic density as

well as in risk [17–19]. Tamoxifen influences breast cancer risk by blocking oestrogen

stimulation on breast cancer cells, inhibiting both translocation and nuclear binding

of the oestrogen receptor [192]. Recent publications [17–19] showed that subjects who

experienced a considerable reduction (≥10%) in mammographic density, were more re-

sponsive to tamoxifen treatment. This was observed both in a high-risk population in a

cancer-prevention study (IBIS-I) [17] and in the context of reducing risk of recurrence or

death [18, 19]. These findings strengthen the hypotheses that changes in mammographic

density may be a good indicator for the outcome of therapy with tamoxifen.

Previously published findings from the IBIS -I study [17, 181] suggested that: (1) tamox-

ifen (Z) is associated with reduction in breast cancer risk (T), (2) tamoxifen is associated

with reduction in mammographic density (S), and (3) the reduction in mammographic

density is associated with reduction in breast cancer risk. Hence reduction in mammo-

graphic density satisfies three of the four conditions necessary for a surrogate end-point

[185, 193]. The fourth requires that

f(T |S,Z) = f(T |S) (2.1)

where f(T |S,Z) and f(T |S) are the conditional probability distribution of T . In simpler

terms this equation stipulated that the effect of tamoxifen on density should be sufficient

information to infer its effect on breast cancer risk.

The analyses reported in this chapter are based on data from the case-control study

nested in IBIS-I [17] and are aimed at verifying whether this condition holds too, i.e. to

investigate the extent to which mammographic density mediates the effect of tamoxifen
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therapy on breast cancer risk, and thus evaluate the potential of mammographic density

changes as a predictor of the outcome of the treatment.

2.2 Materials and Methods

2.2.1 Study Setting and Population

The IBIS-I chemoprevention study is an international trial designed to evaluate the ef-

fect of tamoxifen on breast cancer risk in high-risk women. It recruited a total of 7,152

women aged 30-70 [180]. A nested case-control study was conducted subsequently to in-

vestigate relationships between treatment, change in mammographic density and known

breast cancer risk factors. It comprised 123 cases from the UK and Finland and 942

British controls, and its results were published in 2011 by Cuzick and colleagues [17].

Detailed breast cancer risk factors were collected at study entry. Of the women in our

subset 507 were treated with tamoxifen and 558 received a placebo treatment, with ran-

dom allocation in the treatment arms [180, 181]. Mammographic density was assessed

visually by one radiologist (R.M.L. Warren) who viewed the film mammograms and

visually estimated the proportion of total breast area that comprised dense tissue (to

the nearest 5%). Baseline films were taken at or up to a year before randomisation, and

follow-up films were taken at least 12 months after randomization, with a median time

between randomization and first follow-up mammogram of 18 months. The assessment

of mammographic density for both cases and controls was based on a composite assess-

ment of both the left and right mediolateral oblique views, with the exception of 13 case

subjects who were diagnosed at the first follow-up mammogram. For these women the

density assessment was made using only the film from the contralateral breast [17].

In this study we only focused on age, body mass index and percent breast density at

baseline as risk factors for breast cancer. Change in breast density between the two

mammograms was classified in four categories as follows: “Increase”, “No change” “Re-

duction 5-10%” and “Reduction ≥10%”.

Further details on the data collection are provided in Cuzick and colleagues’ paper [17].
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2.2.2 Prentice’s criteria and how to quantify the effect of a surrogate

marker

Prentice’s necessary and sufficient condition for a surrogate endpoint [185] is as follows:

a test of the null hypothesis of no relationship of the surrogate to treatment is also a

valid test of no relationship of the true endpoint to treatment.

If T is the clinical outcome or true endpoint, S is the surrogate endpoint, Z is the treat-

ment indicator and f(S|Z), f(S), f(T |Z) and f(T ) are conditional and unconditional

distribution of S and T, this can be expressed as: f(T |S,Z) = f(T |S) where T and Z

are associated to each other and to the surrogate S. Further, Qu distinguished between

surrogate marker and surrogate endpoint, as the former is drug-specific, whereas the

latter is a surrogate for any efficacious treatment [193]. Hence in our case it is more

appropriate to use the term “surrogate marker”, as we tested it only in relation to ta-

moxifen treatment.

Freedman and colleagues [189] proposed the proportion of treatment effect (PTE) ex-

plained by a surrogate marker to quantify the extent to which Prentice’s criterion is

satisfied. PTE is a function of the ratio of the estimated treatment effects, i.e. regres-

sion coefficients γZ and βZ , respectively from a model including both treatment (Z) and

surrogate (S) and one including only treatment (Z) as predictor variable.

PTE = 1− γZ
βZ
. (2.2)

In more familiar terms, γZ is the regression coefficient of the treatment on the true

endpoint adjusted for the surrogate, and βZ is the unadjusted coefficient. The main

drawbacks of this index are that it is unbounded and that results, in particular the

variability of γZ , can easily be affected by a strong collinearity between treatment and

surrogate marker. Because the treatment is generally effective in improving the surro-

gate marker, a strong correlation between treatment and the surrogate marker might be

expected [194]. In this situation the coefficient estimates of the regression model includ-

ing both S and Z may change erratically in response to small changes in the model or the

data [195]; thus making PTE a less reliable estimate of the validity of S as a surrogate

marker, as intended by Prentice [185].

More recently Qu and Case proposed another method, the proportion of information

gain (PIG), to evaluate a surrogate marker [193, 194]. PIG is based on the likelihood

function and is defined as

PIG = LRT (S : 1)/LRT (S,Z : 1) (2.3)
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where LRT(S:1) is the likelihood ratio test statistic comparing the model including in-

tercept and marker S as explanatory variables for outcome and the model only including

the intercept. Likewise LRT(S,Z:1) is the statistic referring to the model including both

surrogate (S) and treatment (Z), along with the intercept, in comparison to the model

based on the intercept only. Simulations showed that PIG overcomes some of the dis-

advantages of PTE [193, 194]. The major conceptual difference between PTE and PIG

is that the former compares the effect of treatment on the true endpoint, adjusted and

unadjusted for the surrogate, whereas the latter compares the effect of the surrogate on

the true endpoint, adjusted and unadjusted for the treatment.

Alonso et al. [196] also developed a method to assess the validity of a potential surrogate

marker according to the Prentice’s criteria, the likelihood reduction factor (LRF). This

method uses the same models necessary to compute PTE and LRF is defined as

LRF (Z, S : Z) = 1− exp{−LRT (Z, S : Z)/n} (2.4)

where LRT(Z, S : Z) is the likelihood ratio test (LRT) based on the models were the true

endpoint is explained by the treatment effect adjusted and unadjusted by the surrogate,

and n is the number of observations. This measure, like PIG, is based on likelihood

function and, as Qu and Case pointed out [194], there is a close relationship between

LRFa, i.e. the adjusted LRF, bounded by [0,1], and PIG,that can be approximated as

follows: 1− LRFA(S,Z : S) ≈ PIG.

2.2.3 Statistical Analyses

The distributions of demographic and other variables at baseline are summarised as

percentages or mean and SDs, as appropriate, both overall and stratified by treatment

arm.

Some results on this dataset have been previously published [17]. These suggested change

in percent density after tamoxifen treatment as a potential predictor of the outcome of

the therapy. Subjects experiencing a reduction in density of at least 10% appeared more

responsive to the therapy in terms of risk reduction.

As noted above, results already published from IBI-I suggest that changes in density

reflect changes in risk. Our aim in this chapter was therefore to assess the extent of den-

sity’s potential as a surrogate for the outcome ofbreast cancer, using alternate formal

measures of this extent. In particular, we assessed the validity of reduction in density as

a surrogate marker for risk reduction using both PTE and PIG methods. Alonso’s LRF
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was considered redundant and not computed because of its close relationship to the PIG

measure. The results of this work apply to an enhanced risk population rather than the

general population. This is appropriate since it is specifically in such a enhanced risk

population that tamoxifen can be used as primary prevention.

Logistic regression models were used to assess the relationship between risk of breast

cancer and both treatment with tamoxifen and reduction in mammographic density. We

used weights to reflect the sampling fraction, since, by study design, the two treatment

arms have different sample size. In particular we weighted the subjects with the inverse

of the probability that the observation is included because of the sampling design, there-

fore subjects in the placebo arm were weighted 532.5/558 and those in the tamoxifen

arm 532.5/507.

All analyses were performed using Stata, version 12.1.

2.3 Results

Baseline characteristics of the 1,065 subjects, overall and by treatment group, are sum-

marised in Table 2.1. More than half of the subjects in both arms had on average

received treatment for at least 5 years. Other characteristics such as age and BMI at

entry in the study were well balanced between the two arms.

The proportion of cases in the two arms are similar, because of the study design, since

the placebo arm here included 558 cases and controls, whereas the tamoxifen arm in-

cluded only 507 subjects, i.e. larger numbers of unaffected subjects were sampled for the

placebo arm. Hence sampling weights were used in the logistic regression. However the

protective effect of tamoxifen against breast cancer has been widely recognised and it

was especially evident in the long-term prospective results from the whole IBIS-I study

[180, 181].

Baseline density levels were similar but differed post-treatment as the two therapies af-

fected mammographic density in different ways. Almost half of the women treated with

tamoxifen (46%) experienced a reduction in the percent density of at least 10%, whereas

only a quarter of the subjects in the placebo arm (25%) showed such a change.
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Table 2.1: Characteristics of the study sample

Overall Tamoxifen Placebo
N=1065 N=507 N=558

Number of cases (%) 123 (11.6) 51 (10.1) 72 (12.9)

Time on treatment
Mean (SD) 4.9 (0.7) 4.9 (0.7) 4.9 (0.7)

Age in years at baseline
Mean (SD) 50.2 (6.2) 50.2 (6.3) 50.1 (6.1)

Body Mass Index at baseline
Mean (SD) 26.7 (4.8) 26.7 (4.9) 26.7 (4.8)

% breast density at baseline, No.(%)
0 % 114 (10.7) 58 (11.4) 56 (10.0)
1-10 % 108 (10.1) 47 (9.3) 61 (10.9)
11-25 % 132 (12.4) 62 (12.2) 70 (12.5)
26-50 % 252 (23.7) 129 (25.4) 123 (22.0)
51-75 % 240 (22.5) 109 (21.5) 131 (23.5)
76-100 % 219 (20.6) 102 (20.1) 117 (21.0)
Mean(SD) 44.5 (30.2) 44.1 (30.0) 44.8 (30.4)

Change in breast density categories after 12 months, No. (%)
Increase 86 (8.1) 20 (3.9) 66 (11.8)
No change 394 (37.0) 161 (31.8) 233 (41.8)
Reduction 5-10% 213 (20.0) 94 (18.5) 119 (21.3)
Reduction ≥10% 372 (34.9) 232 (45.8) 140 (25.1)

It is clear from Table 2.2 that the numbers and the percentages of events varied according

to the change in density that the patients experienced, therefore this is a strong risk

factor. Likewise tamoxifen reduced the number of breast cancer events. Table 2.3 shows

the estimates required for computing both Freedman’s and Qu’s methods [189, 193, 194]

for surrogate markers.

We fitted the models with and without treatment (Z) and our potential surrogate marker

(S), Table 2.3. Freedman’s PTE was then obtained as:

PTE = 1− −0.18

−0.28
= .37. (2.5)
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Table 2.2: Change in density and breast cancer incidence according to randomised
treatment group (P=placebo, T=tamoxifen)

Change in density Nr. patients at risk/events Percent of events
after 12-month treatment P T P T

Increase 66/9 20/4 13.6 20.0
no change 233/27 161/20 11.6 12.4
Reduction >5% 119/21 94/12 17.6 12.8
Reduction ≥10% 140/15 232/15 10.7 6.5

Table 2.3: Intermediate endpoint validation analysis

Model βz SE(βZ) LR (χ2) df

ln(p/1− p) = β0 + βZZ + βSS -.18 .21 9.85 4
ln(p/1− p) = β0 + βZZ -.28 .19 2.09 1
ln(p/1− p) = β0 + βSS - - 8.77 3
ln(p/1− p) = β0 - - 0 0

Qu’s PIG instead is computed as:

PIG =
LRT (S : 1)

LRT (S,Z : 1)
∗ 100 =

8.77

9.85
∗ 100 = 89%. (2.6)

This low PTE may be due to collinearity between S and Z. This hypothesis is supported

by the significant association between treatment arm and density reduction observed in

Table 2.2 (χ2 test: p<.01). Qu and Case observed similar disagreement between PTE

and PIG in their example based on the MORE (Multiple Outcome of Raloxifene Eval-

uation) study [194]. This issue will be further discussed in the next section.

2.4 Discussion

Reduction in mammographic density is a potential surrogate marker in trials with ta-

moxifen, since there is a very high proportion of information gain (PIG) [193, 194],

89%. Conversely, Freedman’s proportion of treatment effect (PTE) explained by a sur-

rogate marker [189] appeared modest, (.37). A similar disagreement between the two

methods was observed also by Qu and Case [194] in their example using data from the

MORE study [197]. They felt this was an illustration of the limitations of PTE: this

measure is unbounded and susceptible to collinearity between treatment and surrogate
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marker. As a matter of fact the standard error for PTE in their simulation was quite

high, especially in comparison with the other measures. This is supporting evidence

of the collinearity existent between the surrogate and the treatment, as it would make

parameter estimates, in the regression model including both factors, more susceptible

to small changes in the data [195]. Another disadvantage of Freedman’s PTE is that it

does not consider whether the coefficient of the treatment remain significant after the

surrogate marker is introduced to the model. It would be difficult to observe a PTE

equal to 1 as it would require that the adjustment for the surrogate marker nullifies the

coefficient of the treatment. This rarely happens but the significance of the effect of the

treatment may be more strongly influenced, in other words: even if the introduction of

the surrogate marker decreases only slightly the coefficient of the treatment, the latter

may no longer be significant.

PIG on the other hand addresses significance , and therefore consistency, of effects rather

than their size, being based on likelihood ratio test statistics of the models, which also

makes it robust to collinearity. This method is based on the concept that the treatment

will not contribute much information to the clinical outcome, once the surrogate mark-

ers are available, if these are truly effective surrogates [194]. The disadvantage of this

method is that there is no established cut-off point for PIG above which the surrogate

marker is deemed to be valid. However 89% appears high enough to consider reduction

of at least 10% in mammographic density as a good predictor of the efficacy of treatment

with tamoxifen.

There is also the difference noted that PTE and PIG are not measuring exactly the

same phenomenon. PTE measures the attenuation of the magnitude of the treatment

effect by adjusting for the surrogate; PIG measures the additional information provided

by the treatment effect in addition to that provided by the surrogate. Also, as noted

above, the PIG is more related to consistency rather than magnitude of effect.

Density as a surrogate may not apply to treatment with other therapies though, as

different treatments may act through different causal pathways. Risk-reduction strate-

gies using raloxifene, aspirin or aromatase inhibitors have not led to larger changes in

mammographic density compared to the placebo arms [107, 111, 112, 198–200], despite

being more successful in reducing risk of breast cancer. The fibroglandular tissue may

be related to potential oestrogen binding sites in the breast but not to the amount of

bioavailable estradiol, so that mammographic density is not an appropriate surrogate

marker for the effect of aromatase inhibitors in reducing the risk of breast cancer [200].

It is also possible that mammographic appearance is not the right tool for assessing

changes in breast composition due to aromatase inhibitors and thus alternative tech-

niques, such as MRI or ultrasound tomography may need to be evaluated [200]. To
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support this theory, Eng-Wong and colleagues [107] assessed the change in breast den-

sity in high-risk premenopausal women from both mammograms and breast magnetic

resonance imaging (MRI) and observed that the breast MRI volume (MRIV) declined

significantly after use of raloxifene, whereas mammographic density did not. It should

be observed that because of the limited size of the sample (N=27) this result would

require validation on a larger dataset. Cigler and colleagues [111] found that letrozole

does not significantly affect breast density, however it should be noted that their subjects

were previously treated with tamoxifen and therefore this may have already achieved

maximal density-lowering effects. Vachon et al. deduced similar conclusions from their

study on the impact of letrozole in women completing 5 years of tamoxifen [110]. A

more recent study [112] enrolled 369 early-stage breast-cancer postmenopausal patients

and 269 matched healthy controls to study the efficacy of aromatase inhibitors, anas-

trazole and exemestane. In this case as well, no therapy induced reduction in density

was reported, other than the natural decline observed also in the controls. Raloxifene is

a selective oestrogen receptor modular (SERM) with similar mechanisms to tamoxifen,

but a review on raloxifene trials [198] found no treatment-induced change in density, in

contrast to the IBIS-I study [17]. This could be due to a difference in the population:

IBIS-I included healthy pre- and post-menopausal women at high risk of developing

breast cancer whereas the studies on raloxifene included in the review were performed

mostly on healthy post-menopausal women not at high risk. Hence subjects in these

studies had lower baseline breast density, which may have made reductions in breast

density less evident [198].

Even though change in mammographic density appears promising as a surrogate for

tamoxifen treatment, it is not ready to be used as such, because the assessment of mam-

mographic density has yet to be standardised [28, 201]. Currently the most popular

density classification method is BIRADS, which uses four wide categories and therefore

may not be sensitive enough to reflect change in density at the required level of de-

tail. The IBIS-I case-control study [17] used visually assessed density in 21 categories,

and found that a reduction in density of at least 10% was a good indicator for a suc-

cessful outcome of the treatment. Kim and colleagues [18] observed similar results in

preventing recurrence using interactive thresholding to estimate density. In Sweden Li

et al. assessed mammographic density, at baseline and follow-up, using an automated

thresholding method [55], and in their data a reduction in dense area of at least 20%

corresponded to a decrease in mortality of 50%, in comparison to little or no change.

Finally in a recent Korean study [20] mammographic density reduction was defined di-

chotomously comparing baseline and follow-up mammograms classified using BIRADS

categories. In this study patients who showed a reduction in breast density according to
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BI-RADS classification after an average of 19 months of adjuvant tamoxifen treatment

had a 65% lower risk of recurrence than patients who did not show such reduction. Other

density assessment methods, e.g. volumetric methods such as Quantra or Volpara, may

need different cut-off points in density reduction. A standardisation of breast density

assessment with general accepatibility to patients and practitioners is necessary for its

use in risk-prediction of breast cancer in routine mammography screening. Likewise the

use of breast density reduction as a surrogate marker is limited without standardised

measurements.

In conclusion, this study found that mammographic density reduction could be a valid

surrogate for a positive outcome with tamoxifen treatment in high-risk women. How-

ever, it is not clear whether it could be also used for other therapies for reducing risk

of breast cancer. Alternative imaging methods, for example MRI or tomosonography,

may be better than mammography in detecting the relevant changes in breast composi-

tion. In any case, mammographic density reduction requires an established standardised

method of measurement in order to be used as a surrogate. The potential for automated

methods to fill this role is further investigated in the second part of this thesis.



Chapter 3

Mammographic density, risk of

breast cancer recurrence and

characteristics of the tumour

(ATAC study)

3.1 Introduction

Despite advances in therapy a substantial number of breast cancer patients remain at

risk for late recurrences. In particular almost one in five breast cancer survivors after

5 years of adjuvant therapy suffers a recurrence within 10 years after treatment [202].

Being able to identify subjects more likely to develop a recurrence would be crucial to

design focused and more effective disease control strategies. Mammographic density,

i.e. the amount of radiodense tissue in a mammogram, is a strong and independent

risk-predictor for breast cancer, but it is unclear if it could be helpful in a prognostic

setting. A British study, including 759 screened women with an invasive breast cancer

[203], reported that mammographic density and prognosis, subsequent to diagnosis and

treatment, were unrelated. Later results on a Danish cohort [84], by contrast, indicated

that breast tumours arising within mixed or dense breasts were less aggressive than

tumours detected in primarily fatty breasts. Finally, in 2009 a study comprising 335

women, who underwent breast-conserving surgery for invasive breast cancer [204], sug-

gested that mammographic density could provide a good indicator of risk of local breast

cancer recurrence. However, these results were limited to subjects who did not receive

63



Mammographic density and risk of breast cancer recurrence (ATAC study) 64

breast irradiation.

The ATAC trial [182, 183] was designed to evaluate anastrazole and tamoxifen as adju-

vant treatments for prevention of breast cancer recurrence. Therapy with anastrazole,

and other aromatase inhibitors, has not been observed to have a significant effect on

density [112, 205], whereas tamoxifen is known to affect the breast composition of the

subjects, substantially decreasing density [17–20]. Recent evidence suggests that reduc-

tion in density of at least 10%, following tamoxifen therapy, in unaffected women at

moderate to high-risk of breast cancer, might lead to a risk reduction of 63% [17]. Like-

wise Kim and colleagues [18] suggested that patients, with ER-positive breast cancer,

who did not experience a reduction of at least 10% in density after a year of tamoxifen

therapy, were twice as likely to have a recurrence than those who did experience such a

reduction. Similar results were reported on a cohort of Swedish post-menopausal breast

cancer patients [19] and in Korea on a group of premenopausal women with ER-positive

breast cancers [20]. Hence, reduction in the amount of fibroglandular tissue could pro-

vide an indicator of the effectiveness of the treatment [17–20]. This background suggests

two hypotheses: that density might be employed as a risk predictor also for recurrence;

and that targeting density reduction could be a successful strategy for dynamic therapy

decisions to prevent breast cancer recurrences.

Breast cancer is a heterogenous disease; not only have different pathological subtypes

of breast cancer distinct clinico-morphological features and require different treatment

strategies, but they are also associated with distinct risk factors, suggesting an etiologic

heterogeneity [80, 206]. For this reason the relationship between density and breast

tumour subtypes has been subject of several investigations that have reported contra-

dicting results [80, 207–211]. A recent meta-analysis [81] concluded that mammographic

density should be recognised as an important and strong marker of overall and of sub-

type specific risk.

The analyses reported here are on a subset of subjects from the ATAC trial, thus post-

menopausal women with histologically proven operable invasive breast cancer and ran-

domly assigned to treatment with anastrazole, tamozifen or a combination of the two,

after completing primary surgery, chemotherapy and, often, radiotherapy. The data

included details on tumour characteristics, as well as information on the cell prolifera-

tion marker Ki-67. Mammographic density was assessed retrospectively on baseline and

subsequent yearly mammograms.

This gave us the opportunity to investigate: the role of mammographic density in asso-

ciation to risk of recurrence, both as an indicator of higher risk and as a target for more

effective treatment; and how mammographic density and its changes interact with the

tumour characteristics, including (Ki-67), both overall and within the treatment arms.
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3.2 Materials and Methods

3.2.1 Study setting and population

The Arimidex (anastrazole), Tamoxifen, Alone or in Combination (ATAC) trial has been

described in detail previously [182, 183]. In brief it was designed to compare the effi-

cacy and safety of anastrazole and tamoxifen to prevent breast cancer recurrence, during

a 5-year treatment and a 10-year follow-up. The trial enrolled 9,366 postmenopausal

women with localised breast cancer, and randomly assigned (1:1:1) them to one of the

three treatment arms, anastrazole, tamoxifen and a combination of the two.

This chapter presents analyses on a subset of these women, that comprises 601 sub-

jects from centres in England and Wales, including 132 that experienced breast cancer

recurrences (20-24% in each arm). The dataset recorded information about age and

Body Mass Index (BMI) at entry in the study. Characteristics of the first tumour, such

as histological grade, tumour size, nodal and ER status, were collected through CRF

pathological reports from each centre. Moreover, information on HER2 (human epider-

mal growth factor receptor 2) status and Ki-67, a cellular marker for proliferation, was

available for a subset of the subjects. HER2 status was determined using the Dako Her-

cepTest (k5207; Dako Cytomation, Carpinteria, CA) followed by the Vysis fluorescence

in situ hybridization (FISH; Downers Grove, IL) test for tumors [212]. Ki67 was scored

as the percentage of positively stained cells among 1,000 malignant cells [213].

Data included details regarding time to recurrence, to death or exit from the study.

Please note that in these analyses “recurrence events” refers to local and distant recur-

rences, but also death before recurrence if deemed a consequence of the primary breast

tumour.

Mammographic density was assessed visually (to the nearest 5%) using the MLO view

on the contralateral breast from scanned film mammograms taken at baseline and ide-

ally yearly thereafter. Our analyses focused on density at baseline and its changes after

one, two and five years of treatment.

After the initial analysis at 33 months of follow-up [182], the combination group was

stopped because no benefit compared with tamoxifen alone was seen, in terms of either

efficacy or tolerability, and follow-up data were not subsequently collected. However,

the mammograms were collected retrospectively, after randomising on the sample firstly

enrolled in ATAC, and blinded to the treatment arm. Thus we had details on density
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also for women in the combination arm even after its termination.

3.2.2 Statistical Analyses

The distributions of demographic and other variables at baseline are summarised as

percentages or mean and SDs, as appropriate, both overall and stratified by treatment

arm.

Percent density distribution was presented using both categories, following Boyd’s clas-

sification (”0 %”, ”1-10 %”, ”11 - 25%”, ”26-50%”, ”50-75%” and ”>75%”) [28], and

mean and SDs, again both overall and stratified by treatment arm. Likewise changes in

density after 12, 24 and 60 months were summarised with mean and SDs, highlighting

the distribution of changes after two years of treatment categorised as follow: ”> −5%”,

”−5−−10%”, ”≤ −10%” and ”Unknown”.

Associations between risk of breast cancer recurrence and risk factors, such as age and

body mass index (BMI) at baseline and the first breast tumour characteristics were eval-

uated using univariate logistic regression models. Univariate and multivariable logistic

regression models were run to analyse the association between mammographic density at

baseline and its changes after 12, 24 and 60 months and risk of breast cancer recurrence.

These analyses were repeated after adjusting for the available risk factors (age and BMI

at baseline and first breast tumour characteristics). Multivariable Cox regression models

evaluated how mammographic density and its changes over time affected the time free

from recurrences.

We illustrated the relationship between the characteristics of the first breast tumour and

mammographic density at baseline and its changes over time, both overall and accord-

ing to treatment arm, using means, SDs, and box-plots. Significance testing was done

using non-parametric test for trend [214] or Wilcoxon rank-sum test, for dichotomous

variables. Repeated measures of density at baseline and after 1, 2 and 5 years were

also analysed graphically and with linear regression models over time, adjusting for age

and BMI, in order to investigate potential different trends according to tumour charac-

teristics. The regression models took into account the potential correlation of repeated

measures on the same subjects.

Results from the two tests on HER2 status were defined as “Positive” or “Negative”.

This was available only for a limited number of subjects (N=268), none of whom were

in the combination group.

The cell proliferation marker Ki-67 was first log-transformed, because of the approximate
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lognormal distribution of the data [215], then scatter plots and Pearson’s correlation co-

efficients allowed an evaluation of the relationship between the quantitative Ki-67 level

and mammographic density and its changes over time, both overall and according to

treatment arm. Note that, similarly to HER2, there were no data on Ki-67 for the sub-

jects in the combination group so only the anastrazole and tamoxifen arm are compared.

3.3 Results

As noted above, this study comprised 601 post-menopausal women, diagnosed with

breast cancer and enrolled in the ATAC trial from centres around England and Wales.

Median follow-up for this analysis was 102 months (range 3-127), including a total of

4650 women-years (1640 women-years for anastrazole, 1557 for tamoxifen and 1453 for

the combination arm).

A similar number of recurrences (20-24 %) occurred in these subsets of the three study

arms though they differed in time to recurrence (Table 3.1). As reported previously

[183] disease-free survival was significantly better in the anastrazole group compared to

the tamoxifen arm. The distributions of baseline age and BMI appeared similar across

the groups (Kruscal-Wallis non-parametric ANOVA p-values: .69 and .31 respectively),

whereas mammographic density was similar in the tamoxifen and anastrazole arms, but

appeared higher in the combined group. However this difference was not statistically

significant, according to ANOVA analysis (p=.27). Likewise for the change in density,

the combination group, two and five years in the study, showed a higher, although not

significantly higher, reduction, probably due to a regression to the mean phenomenon

related to the higher initial level of density.

The analyses of the association between the risk of breast cancer recurrence and the avail-

able risk factors and first tumour characteristics revealed that age, histological grade,

nodal status and tumour size were strongly and positively associated with risk of recur-

rence (Table 3.2). However in the multivariable logistic regression model, only age at

diagnosis and tumour size remained significant. In other words women diagnosed with a

larger tumour (>2 cm) and who entered the ATAC study at an older age were especially

prone to recurrence.
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Table 3.1: Characteristics of the study samples in the three treatment arm

Treatment Arm
Anastrazole Tamoxifen Combined Total

(N=208) (N=198) (N=195) (N=601)

Number of recurrences (%) 42 (20.2) 47 (23.7) 43 (22.1) 132 (22.0)

Time at recurrences, No.(%)*
0-12 months 0 (0.0) 3 (6.4) 1 (2.3) 4 (3.0)
12-24 months 3 (7.1) 7 (14.9) 3 (7.0) 13 (9.8)
24-60 months 17 (40.5) 12 (25.5) 18 (41.9) 47 (35.6)
>60 months 22 (52.4) 25 (53.2) 21 (48.8) 68 (51.5)

Age in years at baseline
Mean (SD) 63.2 (7.7) 63.3 (8.4) 63.9 (8.7) 63.5 (8.2)

Body Mass Index in kg/m2 at baseline
Mean (SD) 27.3 (5.0) 27.1 (4.6) 26.7 (4.8) 27.0 (4.8)

% breast density at baseline, No.(%)
0% 17 (8.2) 15 (7.6) 8 (4.1) 40 (6.7)
1-10% 37 (17.8) 26 (13.1) 31 (15.9) 94 (15.6)
11-25% 44 (21.2) 53 (26.8) 44 (22.6) 141 (23.5)
26-50% 59 (28.4) 52 (26.3) 48 (24.6) 159 (26.5)
51-75% 39 (18.8) 46 (23.2) 53 (27.2) 138 (23.0)
76-100% 12 (5.8) 6 (3.0) 11 (5.6) 29 (4.8)
Mean(SD) 33.6 (24.9) 34.2 (24.6) 37.4 (25.3) 35.0 (25.0)
Median (IQR) 30 (40) 30 (40) 35 (45) 30 (40)

Change in breast density, mean (SD)
after 12 months (N=464) -3.8 (10.0) -3.3 (10.7) -3.6 (11.6) -3.6 (10.7)
after 24 months (N=525) -4.9 (10.0) -4.3 (11.3) -5.5 (12.4) -4.9 (11.2)
after 60 months (N=506) -6.8 (11.6) -7.1 (12.9) -8.5 (14.2) -7.4 (12.8)

Change in breast density categories after 24 months, No. (%)
> −5% 88 (42.3) 85 (42.9) 75 (38.5) 248 (41.3)
−5−−10% 48 (23.1) 34 (17.2) 38 (19.5) 120 (20.0)
≤ −10% 49 (23.6) 52 (26.3) 56 (28.7) 157 (26.1)
Unknown 23 (11.1) 27 (13.6) 26 (13.3) 76 (12.6)

Note: (*) percent values refer to the amount of recurrences
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Table 3.2: Odds ratios (ORs) for the risk of recurrence of breast cancer from univariate
logistic models

case subjects controls subjects Univariate
Variable (N=132) (N=469) OR [95% Conf. Interval]

Age at baseline in y, No. (%)
≤59 33 (36.3) 185 (39.5) 1.00 (referent)
60-69 51 (4.1) 190 (4.5) 1.50 .93 2.44
≥70 48 (23.6) 94 (2.0) 2.86 1.72 4.76
Ptrend <.01

Body mass index in kg/m2, No. (%)
≤23 23 (17.4) 83 (17.7) 1.00 (referent)
24-25 19 (14.4) 83 (17.7) .83 .42 1.63
26-30 52 (39.4) 178 (38.0) 1.05 .60 1.84
>30 26 (19.7) 101 (21.5) .93 .49 1.75
Unknown 12 (9.1) 24 (5.1) -
Ptrend .93

Histological grade, No. (%)
(1) Well 24 (18.2) 113 (24.1) 1.00 (referent)
(2) Moderate 66 (5.0) 233 (49.7) 1.33 .79 2.24
(3) Poor/Undiff 36 (27.3) 93 (19.8) 1.82 1.02 3.27
Unknown 6 (4.5) 30 (6.4) -
Ptrend .04

Nodal status, No. (%)
Negative 67 (5.8) 324 (69.1) 1.00 (referent)
Positive 58 (43.9) 125 (26.7) 2.24 1.49 3.37
Unknown 7 (5.3) 20 (4.3) -
Ptrend <.01

Tumour size, No. (%)
≤2cm 71 (53.8) 328 (69.9) 1.00 (referent)
>2cm 61 (46.2) 140 (29.9) 2.01 1.36 2.99
Unknown 0 (0.0) 1 (0.2) -
Ptrend <.01

ER status, No. (%)
Positive 94 (71.2) 361 (77.0) 1.00 (referent)
Negative 21 (15.9) 48 (1.2) 1.68 .96 2.94
Unknown 17 (12.9) 60 (12.8) 1.09 .61 1.95
Ptrend .40

Note: Subjects classified as “Unknown” were excluded when testing for trend.
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Table 3.3: ORs for risk of breast cancer recurrence from univariate and multivariable
logistic regression models using mammographic density and its change over time

Variable category obs OR [95% Conf. Interval] P>z

% breast density at baseline per 10% 601 .96 .89 1.04 .349

% breast density at baseline per 10% 464 .95 .87 1.05 .314
12-month change in density per 10% reduction .94 .76 1.17 .599

% breast density at baseline per 10% 525 .97 .89 1.07 .576
24-month change in density per 10% reduction .91 .73 1.12 .370

% breast density at baseline per 10% 506 .96 .87 1.07 .490
60-month change in density per 10% reduction .97 .78 1.20 .754

In univariate and multivariate analyses (Table 3.3), mammographic density and its

changes were not significantly related to the risk of breast cancer recurrence nor to

the probability of remain recurrence free for the whole follow-up.

Table 3.4: ORs for risk of breast cancer recurrence from multivariable logistic regres-
sion models using mammographic density and its change over time adjusted for other

risk-factors*

Variable category obs OR [95% Conf. Interval] P>z

% breast density at baseline per 10% 531 .98 .89 1.08 .627

% breast density at baseline per 10% 398 .96 .85 1.07 .443
12-month change in density per 10% reduction .95 .73 1.23 .689

% breast density at baseline per 10% 466 .96 .86 1.08 .542
24-month change in density per 10% reduction 1.05 .82 1.34 .714

% breast density at baseline per 10% 447 .94 .82 1.08 .374
60-month change in density per 10% reduction 1.11 .87 1.42 .408

Note: (*) age and BMI at baseline, tumour size, hystological grade, nodal and ER status

After adjusting for age, BMI and first breast tumour characteristics (Table 3.4), the

results were not materially different.

We repeated the multivariable logistic regression analyses, adjusted for the other risk

factors and tumour characteristics, in the three treatment arms separately (Table 3.5).

Once again mammographic density and its changes over time appeared ineffective in
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Table 3.5: ORs for risk of breast cancer recurrence from multivariable logistic re-
gression models using mammographic density and its change over time stratified by

treatment arms adjusted for other risk-factors*

Variable category obs OR [95% Conf. Interval] P>z

Anastrazole
% breast density at baseline per 10% 183 .88 .73 1.05 .163

% breast density at baseline per 10% 134 .87 .68 1.12 .286
12-month change in density per 10% reduction 1.08 .58 1.98 .814

% breast density at baseline per 10% 164 .84 .66 1.05 .126
24-month change in density per 10% reduction 1.12 .66 1.91 .623

% breast density at baseline per 10% 167 .83 .64 1.07 .149
60-month change in density per 10% reduction 1.11 .67 1.85 .675

Tamoxifen
% breast density at baseline per 10% 175 1.05 .89 1.25 .558

% breast density at baseline per 10% 130 .94 .77 1.15 .564
12-month change in density per 10% reduction 1.07 .69 1.65 .774

% breast density at baseline per 10% 151 1.14 .93 1.39 .224
24-month change in density per 10% reduction .97 .62 1.50 .881

% breast density at baseline per 10% 140 1.04 .82 1.33 .738
60-month change in density per 10% reduction 1.20 .79 1.84 .394

Combination
% breast density at baseline per 10% 173 .97 .82 1.15 .734

% breast density at baseline per 10% 134 .97 .80 1.17 .727
12-month change in density per 10% reduction .75 .48 1.20 .230

% breast density at baseline per 10% 151 .91 .74 1.11 .340
24-month change in density per 10% reduction 1.08 .74 1.58 .685

% breast density at baseline per 10% 140 .94 .75 1.18 .609
60-month change in density per 10% reduction 1.00 .66 1.51 .994

Note: (*) age and BMI at baseline, tumour size, hystological grade, nodal and ER status
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discriminating subjects who experienced a second tumour event and those who did not,

in every treatment arm.

Table 3.6: HRs for risk of breast cancer recurrence from multivariable Cox survival
regression models using mammographic density and its change over time adjusted for

other risk-factors*

Variable obs HR [95% Conf. Interval] P>z

% breast density at baseline 531 1.00 .99 1.01 .545

% breast density at baseline 398 1.00 .99 1.01 .419
12-month change in density 1.00 .98 1.03 .732

% breast density at baseline 466 1.00 .99 1.01 .553
24-month change in density 1.00 .98 1.02 .825

% breast density at baseline 447 1.00 .98 1.01 .437
60-month change in density .99 .97 1.01 .488

Note: (*) age and BMI at baseline, tumour size, hystological grade, nodal and ER status

Results from the Cox regression analyses (Table 3.6) confirmed those observed with lo-

gistic regression models, and the hazard ratios related to mammographic density and

how it changed after 12, 24 and 60 months were all not significant.

We repeated the analyses reported in Tables 3.3, 3.4, 3.5 and 3.6 without adjusting for

baseline density, and results were not affected: odds ratios and hazard ratios related to

changes in density remained not significant (results not shown).

In Table 3.7 the distributions of mammographic density and its changes over time are

summarised with means and SDs according to histological grade (“(1) well differenti-

ated”, “(2) moderately differentiated” and “(3) poorly differentiated”). Overall mam-

mographic density at baseline appeared lower for subjects who were classified as “(3)

Poor/Undiff.”. These subjects appeared also the least responsive to the treatment in

terms of breast density reduction. In particular after one year of treatment we registered

a trend across the three histological categories, however after 2 and 5 years the women

classified as “(2) Moderate” experienced a reduction similar to the subjects whose cells

were differentiating “(1) Well”, and even the differences between these two groups and

the “(3) Poor/Undiff.” group are no longer significant when assessed with Wilcoxon

rank-sum test (p=.10 and p=.40 for 24 and 60 months respectively). These are further

illustrated in Figure 3.1, that also suggests a similar decreasing trend for each of the

histological grade, but a lower baseline density for subjects with poorly differentiated
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tumours, although not significantly lower, as confirmed in the linear regression analyses

adjusted for age and BMI (Linear regression coefficient for “(3) poorly differentiated”: -

1.3, p=.64). These results did not differ according to treatment arm (results not shown).

Table 3.7: Distribution of mammographic density at baseline and its change after 12,
24 and 60 months according to histological grade

(1) Well (2) Moderate (3) Poor/Undiff
N=137 N=299 N=129

Variable mean (SD) mean (SD) mean (SD) Ptrend

% density at baseline 35.2 (25.6) 35.7 (25.2) 32.6 (23.2) .490
12-month change in density -4.8 (10.3) -3.8 (11.1) -1.4 (8.9) .029
24-month change in density -5.5 (10.4) -5.3 (12.4) -3.8 (9.1) .069
60-month change in density -8.6 (13.6) -7.6 (13.5) -6.0 (9.4) .325

Figure 3.1: Mammographic density over time according to histological grade

Overall results regarding the relationship between nodal status and mammographic den-

sity (Table 3.8) reported nothing significant. Mammographic density and its changes

at the different time-points were similar in subjects whose nodal status was classified

as ”Negative” or ”Positive/Unknown”, suggesting similar decreasing patterns in den-

sity for both groups. There was a baseline significant difference at 24 months, with

the node negative group showing greater changes. This appears evident in Figure 3.2,

where, after the second year of treatment, density in the two groups decline in similar

magnitude although values in the node negative group are consistently lower. Linear
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regression analysis of density over time, adjusted for age and BMI, confirmed this re-

sult. No substantial difference according to nodal status, instead, was observed in the

analyses stratified by treatment arm (results not shown).

Table 3.8: Distribution of mammographic density at baseline and its change after 12,
24 and 60 months according to nodal status

Positive or Unknown Negative
N=210 N=391

Variable mean (SD) mean (SD) PWilcoxon

% density at baseline 35.6 (25.5) 34.7 (24.7) .697
12-month change in density -3.9 (11.0) -3.4 (10.6) .808
24-month change in density -3.7 (12.0) -5.4 (10.8) .086
60-month change in density -6.6 (13.3) -7.9 (12.6) .126

Figure 3.2: Mammographic density over time according to nodal status

Table 3.9 and Figures 3.3-3.4 illustrate how tumour size and mammographic density and

its changes over time interact. Overall no significant difference was recorded in density or

density reductions between subjects who had a first tumour larger than 2 cm and those

who had a smaller tumour. Only after 2 years of treatment the difference is borderline

significant, indicating that women who had a larger first tumour were less responsive

to treatment in terms of density reduction. This result is further supported by Figure

3.3 and by the linear regression analysis of density over time. Average density levels in
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Table 3.9: Distribution of mammographic density at baseline and its change after 12,
24 and 60 months according to tumour size

≤ 2cm >2cm
N=399 N=201

Variable mean (SD) mean (SD) PWilcoxon

% density at baseline 34.7 (25.1) 35.6 (24.7) .605
12-month change in density -3.7 (11.1) -3.3 (10.0) .551
24-month change in density -5.5 (11.5) -3.7 (10.5) .064
60-month change in density -8.0 (13.3) -6.2 (11.8) .173

subjects who had larger primary tumours were consinstently higher (+6%, p<.01). This

difference between the two tumour size groups appeared stronger in the tamoxifen arm

(Figure 3.4.b). However after 5 years of treatment this difference was less notable, even

in the tamoxifen arm (Wilcoxon rank-sum test: p=.10).

Figure 3.3: Mammographic density over time according to tumour size
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Figure 3.4: Distribution of changes in mammographic density after 12 and 24 months
according to tumour size and treatment arm
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Table 3.10: Distribution of mammographic density at baseline and its change after
12, 24 and 60 months according to ER status

Positive Negative
N=455 N=69

Variable mean (SD) mean (SD) PWilcoxon

% density at baseline 35.3 (25.0) 36.2 (25.0) .785
12-month change in density -3.9 (10.5) -5.8 (13.6) .806
24-month change in density -5.0 (11.2) -6.8 (12.9) .884
60-month change in density -7.7 (12.9) -9.0 (14.2) .999

Most of the subjects in our study had a first breast tumour which was oestrogen receptor

positive (455/524). Table 3.10 and Figures 3.5-3.6 display the results of the analyses of

the relationship between ER status and density, both overall and according to treatment

arm. Overall, contrary to expectations, the mean reductions at 12, 24 and 60 months

were consistently larger in the ”Negative” group, however these differences were not

significant. The linear regression analysis of density over time confirmed these results.

The stratified analyses on changes after 24 months highlighted that in the anastrazole

and in the tamoxifen arms the reduction were larger, though not significantly, in the

subjects who had ER positive tumours, as one would expect. In the combination group,

instead, we observe a significant trend in the opposite direction. This is likely due to

the limited number of subjects in the combination arm who had an ER negative tumour

(N=22).
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Figure 3.5: Mmmographic density over time according to ER status
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Figure 3.6: Distribution of changes in mammographic density after 12 and 24 months
according to ER status and treatment arm
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Table 3.11: Distribution of mammographic density at baseline and its change after
12, 24 and 60 months according to HER2 status

Positive Negative
N=26 N=242

Variable mean (SD) mean (SD) PWilcoxon

% density at baseline 33.9 (24.5) 36.7 (27.1) .666
12-month change in density -3.8 (10.1) -2.5 (8.0) .617
24-month change in density -4.8 (10.8) -5.2 (9.8) .889
60-month change in density -7.6 (12.8) -6.6 (10.8) .661

Analyses of the interaction between mammographic density and HER2 status were lim-

ited by the small number of HER2 positive subjects (N=26). Results showed no substan-

tial difference in density and its changes between the two groups (Table 3.11). However,

this observation is qualified by the small proportion of HER2 positive subjects.

Figure 3.7: Association between the amount of protein ki67 and (a) mammographic
density at baseline and its change after (b) 12, (c) 24 and (d) 60 months
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Figure 3.8: Association between the amount of protein ki67 and the changes in mam-
mographic density after (a,b)12, (c,d) 24 and (e,f) 60 months according to treatment

arm
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Results on density and cellular proliferation, indicated by levels of the protein Ki-67,

are reported in Figures 3.7 and 3.8. They revealed a significant negative relationship

between density and Ki-67, which means that the higher the density the lower the levels

of Ki-67 and vice versa. However, the lower the level of KI-67 at baseline, the larger the

reduction in density for each of the time-points. In other words breasts with a lower level

of cellular proliferation were more likely to experience a higher reduction in the amount

of fibroglandular tissue. This was evident also in both treatment groups, although the

relationship between the level of Ki-67 and the changes in density after 12, 24 and 60

months was stronger in the tamoxifen arm (Figure 3.8).

3.4 Discussion

Mammographic density at baseline appeared unrelated to risk of recurrence, and larger

reductions in density did not necessarily lead to a lower risk of recurrence. Our find-

ings support Porter and colleagues’ previous study [203], reporting a lack of association

between primarily dense breast composition and breast cancer prognosis, whereas they

contradict Cil et al.’s [204] conclusions, that suggested that denser breasts were more

likely to experience a recurrence. In comparison with both these studies, ours had the

advantage of considering density assessed in greater quantitative detail (21 visual cate-

gories), whereas Porter and colleagues had it classified according to the four BIRADS

categories and Cil’s study used a variation of Wolfe’s parenchymal patterns [89]. On the

other hand, in both Porter’s and Cil’s data, mammographic density was assessed on the

contralateral breast on a diagnostic pretreatment mammogram, whereas our study used

as baseline mammograms those taken at enrollment in the ATAC trial. Since entry in

the trial was after the subjects underwent chemotherapy and, often (65% of subjects in

our subset), radiotherapy treatment, density may be affected by these. Chemotherapy

is known to affect mammographic appearance [216], whereas the relationship between

density and radiotherapy has not been established.

Similar changes in density were reported across the treatment arms (Table 3.1), and

unlike previous findings [18–20] a reduction in dense tissue of 10% or higher did not

suggest better outcomes.

Despite being a strong predictor of primary breast cancer, higher levels of density do

not increase risk of death or recurrence. This result is consistent with Gierach and col-

leagues’ findings on a cohort of 9,232 women diagnosed with primary invasive breast

carcinoma [85], that reported that BIRADS density was not related to breast cancer
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death, especially after adjusting for tumour characteristics and risk factors. Likewise,

results from a Danish study [84] indicated that subjects with denser breasts had a higher

incidence of breast tumours, but the proportion of breast cancer deaths among them was

lower than among women with fattier breasts. Thus, risk factors for the development of

breast cancer may not necessarily be the same as factors influencing the risk of death

after developing a breast cancer [84, 85]. Our findings suggest that the same may be

applied to risk of recurrence.

Our analyses did not suggest an association between mammographic density and risk of

more aggressive tumours, as previous studies suggested [80, 211]. However it is known

that dense breasts decrease mammographic sensitivity, resulting in delayed detection

and corresponding to larger and more advanced tumours [207]; and this could explain

why those studies observed such a relationship. A recent meta-analysis on mammo-

graphic density and tumour subtypes [81] suggested that denser breast tissue increases

the risk of developing a breast tumour overall, no matter what the sub-type is.

Our results suggest a modest association of histological grade with changes in density,

consistent with the effect of grade on response to treatment. Good or moderate differ-

entiation in the tumour was associated with a significantly larger reduction in density,

at least for the first two years of treatment. Density appeared affected by nodal status

after the second year of treatment, and the “Negative-node” group experienced higher

reductions in the amount of fibroglandular tissue after 24 months. Our analyses sug-

gested similar findings regarding ER and HER2 status, however the small number of ER

Negative (N=69) and HER2 Positive (N=26) subjects prevented a proper comparison.

In our data, tumour size appeared not influenced by mammographic density, although,

after two years, subjects with smaller tumours experienced significantly greater reduc-

tions in breast dense tissue, especially in the tamoxifen arm (p=.04). This effect was

temporary and after 5 years the difference in reduction between the two groups (≤ 2 cm

and > 2cm) was no longer significant. However studying the trend in density over time

according to tumour size, it was more evident that density was consistently higher and

less likely to reduce in women with larger primary tumours.

It is worth reminding also that for all histological grade, nodal status and tumour size,

there was a borderline significant difference 24 months into the study, always showing

the larger reduction in the category with the better prognosis, i.e. histological grade 1

(“well differentiated”), negative nodal status and smaller primary tumour.

Levels of the proliferation marker Ki-67 were significantly lower in those with higher

density at baseline in this study. In contrast to our findings, Harvey and colleagues



Mammographic density and risk of breast cancer recurrence (ATAC study) 84

[217] observed that increased breast density was significantly associated with Ki-67 ac-

tivity in the ducts. However their analyses considered only 56 women and focused on the

effect of the use of hormone replacement therapy and the histologic changes it caused,

whereas our sample comprised 268 subjects. Another study of 55 tamoxifen users [218]

reported no correlation between breast density and cell proliferation. These findings

may also be due to the limited sample size. Furthermore, in our data, a lower baseline

level of Ki-67 corresponded to a larger reduction in fibroglandular tissue. This may

be partly due to the initial higher levels of density in those with low Ki-67, however

we observed also a stronger association between Ki-67 and reduction in density in the

tamoxifen arm. Since this phenomenon is affected by treatment given, this suggestes

that it does indeed reflect a biological association. The higher the levels of proliferation

at baseline, the higher the chance that subjects would experience no change or even

an increase in density over the years of treatment, particularly in the tamoxifen arm.

There is extensive clinical evidence that tamoxifen decreases cell-proliferation in breast

tissue [218]. In 2005 Dowsett et al. compared the effect on levels of Ki-67 of treatment

with anastrazole and tamoxifen, alone or combined [215]. Results showed significantly

greater suppression of the proliferation marker within the anastrazole arm, which could

explain the weaker correlation between Ki-67 and density changes we observed in that

treatment group. Unfortunately we only had data on Ki-67 levels at baseline, so we

could not compare the changes in both suppression of proliferation and breast density

during treatment. Nevertheless, we can hypothesize that increased cell proliferation

would limit reductions in density, and therefore the higher the level of Ki-67, the lesser

the resulting decrease of breast density. If anastrazole is more effective than tamoxifen

in suppressing proliferation, but not in decreasing density, than the relationship between

changes in fibroglandular tissue and baseline level of Ki-67 would be weaker in this arm,

as we observed. Further investigations on this relationship are needed, as levels of Ki-67

could be crucial to understanding how aromatase inhibitors and tamoxifen affect breast

cancer risk and the tissue composition of the breast.

This study had limitations. Firstly, because therapy with aromatase inhibitors was a

major focus, it comprised only post-menopausal women, thus our findings may not apply

to premenopausal breast cancer patients. Secondly, as we noted above, mammographic

density was assessed after chemotherapy and, in most subjects (65%), radiotherapy,

which may have affected not only the breast composition but also how this tissue re-

sponds to treatment, as well as the relationship between density and Ki-67. Moreover,

our sample included relatively few cases of ER negative or HER2 positive tumours.
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Figure 3.9: Comparison of percent density assessments using images scanned with
VIDAR (old scanner) and ARRAY (new scanner)

Hence our results regarding the relationship between density and these two tumour cat-

egories, as well as their response to treatment, are not conclusive. Larger studies focusing

on these two tumour subtypes and non-hormonal treatments may be needed. Finally, it

may be hypothesised that results might have been influenced by a possible sub-optimal

quality of the images, because of the scanner used (VIDAR). To verify if this was the

case, a batch of mammograms (N=103) were re-scanned with a new machine (Array

2905HD Laser Film Digizer) and we compared density assessments using both images

for each mammogram (Figure 3.9). Results showed a good agreement between the two

scanners (Pearson’s correlation coefficient: 86.4%) and reassured usabout the reliability

of the findings we reported in this chapter (Intraclass correlation coefficient: 76%, 95%

CI (67.8%, 84.2%)).

In conclusion, mammographic density at baseline did not predict risk of recurrence and

greater reductions in the proportion of dense tissue were not necessarily suggesting bet-

ter outcomes of the treatment. However, subjects with primary invasive tumour of poor

histological grade experienced smaller reductions in breast density. After two years in

the study, the differences in density were more evident also between subjects with differ-

ent nodal status and size of the primary tumour, with larger reductions in the negative



Mammographic density and risk of breast cancer recurrence (ATAC study) 86

node and smaller tumour groups. Further, women with a higher baseline level of cell

proliferation were less likely to experience changes in breast composition. Thus, we can-

not yet assign a role for density in management of such patients. Further studies are

needed to determine the role mammographic density plays in the pathways of adjuvant

treatments, histologic factors and improved survival, as well as the effect of radiotherapy

on breast tissue composition.



Chapter 4

Mammographic density and

breast cancer risk in a young

population at enhanced familial

risk (FH01 study)

4.1 Introduction

In UK the NHS Breast Screening Programme (NHSBSP) invites women aged 50 to 70

for mammographic screening every 3 years, and the age range is currently being ex-

tended from 47 to 73. The majority of women in their 40s are, therefore, not included

because it has been observed that screening in women aged 40 to 49 has lower sensitivity

and, due to the lower incidence in this age group, fewer lives are saved in return for the

financial and human costs [219]. However, there is evidence that targeted screening in

this age group could lower breast cancer mortality in women at higher than average risk

by detecting tumours at an earlier stage [13, 73, 188, 220]. Since family history of breast

cancer is a well-established indicator of risk of developing the disease [1, 221], in the UK,

many women under 50, i.e. not yet eligible for the national screening programme, are

offered early mammographic screening when found to be at moderate or high familial

risk.

High breast density reduces screening sensitivity as well as increasing risk of developing

a breast tumour [2, 74]. As noted in the previous chapters, mammographic density is

a reflection of the amount of connective and epithelial tissue in the breast [222] and

87
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declines with age [88]. More precisely the proportion of epithelial tissue increases until

age 30-40 years, then declines progressively [88], and between the ages of 40 and 49

years the majority of women have high- or very high- density breasts, respectively 57%

and 17% of the subjects, according to BIRADS classification [223]. However, because

of its strong independent association to breast cancer risk, it has been suggested that

density should also be considered when deciding the appropriate surveillance regimen

for a high-risk patient [73].

An important question to be clarified before such a strategy could be adopted as policy

is whether density adds further information on risk in a population already defined as at

enhanced risk, even after adjustment for other risk factors. FH01 is a study recruiting

precisely such a population. It is a longitudinal, single arm study of five years of mam-

mographic surveillance in 6,710 women aged 40-49, at moderate familial risk of breast

cancer [188, 224].

The present investigations were run on a case-control study nested within FH01 [188,

224]. Our primary objective was to evaluate mammographic density as a risk factor for

breast cancer, investigating its ability to discriminate between cases and controls in this

population, that have not only been classified as high risk because of their family history

[188, 224], but also have a predominant proportion of high density subjects because of

the age range [223]. Secondly, we examined the interactions between density and other

breast cancer risk factors, e.g. age at menarche and parity, and how these affected the

association between density and risk of breast cancer. Finally, we studied the additional

effect of density adjusted for a 10-year risk of breast cancer established from multiple

familial and non familial risk factors [1]. The results of the work in this chapter neces-

sarily pertain only yo a younger population at enhanced familial risk. However, there

is a need to clarify the role of mammographic density in further risk delineation in this

risk group. The effect of density in such risk groups is considerably less well researched

than in the general population.

4.2 Materials and Methods

4.2.1 Study setting and population

The FH01 study [188, 224] was designed to evaluate the effectiveness of annual mam-

mographic screening in women younger than 50 years who have a clinically significant

family history of breast cancer. Across the UK, a total of 6,710 women, aged 40-49
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years, were enrolled between 2003 and 2007 because of their moderate familial risk of

developing breast cancer. The intervention offered every subject annual mammography

over 5 years and the study was concluded in 2009 [188, 224].

Here we report on a case-control study nested within FH01, with 103 breast cancer

cases, each matched by age and time in the study, until diagnosis, to either one or two

controls free from breast cancer. There were a total of 195 controls.

Mammographic density was assessed on the last mammogram prior to diagnosis for the

cases, and for the controls density was assessed on the image closest to this in time.

Density measures were estimated, by trained radiologists (Professor R.M.L. Warren, I.

Warsi, Dr. M. Kataoka), using the semi-automatic computerised interactive threshold-

ing programme (Cumulus) [28]. This method provides estimates of total breast area

and absolute density (cm2), allowing percent density and non-dense breast area to be

computed.

The dataset included other risk factors for breast cancer: age at menarche, parity, age

at first live birth, use of hormone replacement therapy and menopausal status. We also

had absolute risk estimates using the Tyrer-Cuzick model. The Tyrer-Cuzick model

provides 10 year risk estimates for developing breast cancer based on extensive family

history information, multiple other breast cancer risk factors mainly representing expo-

sure to endogenous oestrogen, and benign breast disease [1].

4.2.2 Statistical Analyses

The distributions of demographic and other variables at the first examination are sum-

marised as percentages for discrete variables, or means and SDs for continuous variables.

Percent density was categorised following Boyd’s classification (“< 5%”, “5 − 10%”,

“10 − 25%”, “25 − 50%”, “50 − 75%” and “> 75%”) [28] and then reduced to five

and four categories, collating first “< 5%” with “5 − 10%” and then “50 − 75%” with

“> 75%”, in order to have more than five subjects for each level of density, both in cases

and controls.

The relationship between breast cancer risk and density, both percent and absolute,

was assessed using odds ratios obtained from conditional logistic regression, taking into

account the matching of the study design. The relationship between density estimates

and other variables was investigated both graphically and using the Pearson’s corre-

lation coefficient, the Wilcoxon rank-sum test and the non-parametric test for trend

[214], as appropriate. Multivariable conditional logistic regression was used to adjust

for other risk factors. In order to include nulliparous subjects in the conditional logistic
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regression model with age at first pregnancy, we created a new discrete variable age

at first pregnancy * with the three following categories “Under 30”, “30 or more” and

“Nulliparous”. The relationship between breast cancer risk and density was also studied

adjusted for the Tyrer-Cuzick estimate of 10-year risk of breast cancer. However, since

these estimates are based on age, besides age at menarche, parity, menopausal status

and family history, conditional logistic would have led to adjusting for age twice (both

in the model and in the matching). Thus standard unconditional logistic was performed

instead for this analysis.

Secondary analyses, including only premenopausal subjects, the majority of this popu-

lation (75%), were also performed.

All analyses were performed with STATA software version 11.

4.3 Results

The characteristics of the 103 case subjects and 195 control subjects are shown in Table

4.1. On average the subjects underwent the mammographic examination used for the

density assessment 3 months after their 44th birthday and had about 2-years follow-

up in the study at that time. They experienced their first period aged 12 years and

8 months and gave birth for the first time when they were 26. The modal number of

children was two (41%), only 14 % had been prescribed hormone replacement therapy

and the majority (75%) were premenopausal.

Percent density and non-dense area had similar mean values and standard deviations

in the two groups. Conversely, absolute density and, consequently, total breast area

had substantial differences in distribution, both mean and SD, between case and control

subjects.
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Table 4.1: Characteristics of the study sample

cases controls
N=103 N=195

Age at mammogram in years
mean (SD) 44.38 (2.33) 44.21 (2.18)
Years of follow-up
mean (SD) 2.32 (1.63) 2.09 (1.49)

Menopausal status (%)
Pre-menopausal 86 (83.50) 148 (75.90)
Post-menopausal 5 (4.85) 17 (8.72)
Unknown 12 (11.65) 30 (15.38)

Age at menarche in years
mean (SD) 12.84 (1.60) 12.63 (1.43)

Number of live births (%)
0 19 (19.79) 34 (18.48)
1 16 (16.67) 28 (15.22)
2 39 (40.63) 83 (45.11)
3 20 (20.83) 26 (14.13)
≥4 2 (2.08) 13 (7.07)
Unknown 7 - 11 -

Age at first live birth in years
mean (SD) 26.70 (5.79) 25.58 (5.23)

Hormone replacement therapy or HRT (%)
Users 13 (13.54) 28 (15.82)

Tyrer-Cuzick 10-years estimate of risk, mean (SD)
Absolute risk .068 (.041) .057 (.039)
Relative risk 3.71 (2.48) 3.06 (2.23)

Breast composition,mean (SD)
Absolute density (cm2) 56.86 (41.38) 47.80 (31.74)
Percent density (%) 36.71 (19.29) 34.55 (19.21)
Non-dense area (cm2) 105.38 (65.61) 100.54 (62.48)
Total breast area (cm2) 162.24 (73.77) 148.34 (61.88)
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Figure 4.1: Distribution of (a) absolute and (b) percent density among cases and
controls

Figure 4.1 and Table 4.2 show in more detail how the distribution of absolute and per-

cent density varies between cases and controls. In both it is seen that the median for

absolute density in the cases is higher than that for the controls, although the Wilcoxon

rank-sum test found this difference to be weakly significant (p=.09). On the other hand

percent density appeared to be distributed similarly in the two groups.
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Table 4.2: Distribution of cases and controls in density categories based on quintiles
of the controls distribution

cases (%) controls (%) Total (%)

Absolute density
0-20.77 cm2 13 (12.62) 38 (19.49) 51 (17.11)
20.77-32.41 cm2 13 (12.62) 39 (20.00) 52 (17.45)
32.41-49.93 cm2 24 (23.30) 39 (20.00) 63 (21.14)
49.93-77.02 cm2 32 (31.07) 39 (20.00) 71 (23.83)
≥77.02 cm2 21 (20.39) 40 (20.51) 61 (20.47)
Total 103 (100.00) 195 (100.00) 298 (100.00)

Percent density
0-14.58 % 14 (13.59) 38 (19.49) 52 (17.45)
14.58-29.93 % 26 (25.24) 39 (20.00) 65 (21.81)
29.93-40.86 % 20 (19.42) 39 (20.00) 59 (19.80)
40.86-52.44 % 18 (17.48) 39 (20.00) 57 (19.13)
52.44-100 % 25 (24.27) 40 (20.51) 65 (21.81)
Total 103 (100.00) 195 (100.00) 298 (100.00)

4.3.1 Mammographic density and breast cancer risk

Table 4.3 shows how mammographic density, assessed in percent and absolute terms, re-

lates to breast cancer risk, using both control quintiles and a continuous effect expressed

per 10-unit increase, and adjusting for non-dense area, which has been suggested as a

proxy for BMI [33, 225, 226]. Categorisation by quintiles of the distribution among con-

trols did not seem able to discriminate between cases and controls, as was also the case

in Table 4.2. However, we observed a significant continuous effect of absolute density,

in discriminating cases and controls, especially after adjusting for non-dense area. This

may be related to the fact that among cases, absolute density has a skewed distribution,

with a longer tail for extreme values (Figure 4.1.a).

We also categorised percent density using Boyd’s cut-off points (Table 4.4), and condi-

tional logistic regression led to significantly and steadily increasing ORs (p=.034), after

adjusting for non-dense area (Table 4.5). To be more specific, subjects with percent

density between 10 and 25 % were three (3.1) times more likely to have breast cancer

than women with a breast density of less than 10%, when they have similar non-dense

area. This difference in risk increases with the categories with up to a 12.6 (95% CI

(1.40,114.06)) OR between the two extreme density groups, i.e. “< 10% dense” and

“> 75% dense” (Table 4.5).
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Table 4.3: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic density

Factor category obs OR [95% Conf. Interval] P>z

absolute density 0- 20.77 cm2 292 1.00 - - .099
20.77-32.41 cm2 1.11 0.44 2.79
32.41-49.93 cm2 2.13 0.87 5.20
49.93-77.02 cm2 2.75 1.18 6.42
> 77.02 cm2 1.57 0.67 3.72

absolute density per 10cm2 292 1.06 0.99 1.14 .064

percent density 0- 14.58% 292 1.00 - - .614
14.58-29.93% 1.84 0.82 4.11
29.93-40.86% 1.41 0.63 3.15
40.86-52.44% 1.19 0.53 2.67
52.44-100% 1.63 0.74 3.59

percent density per 10% 292 1.05 0.93 1.19 .449

absolute density per 10cm2 292 1.07 1.00 1.15 .040
non-dense area per 10cm2 1.02 0.98 1.07 .257

percent density per 10% 292 1.15 0.97 1.37 .105
non-dense area per 10cm2 1.04 0.99 1.10 .111

These results could have been influenced by the scarcity of subjects in the highest cat-

egory (Table 4.4), so we repeated the conditional logistic analyses combining the two

highest categories in “> 50% dense” (Table 4.6). Here again we observed a significant

and steady increase in the ORs across Boyd’s categories (p=.048), and the odds ratio

between the two extreme density groups was 4.43 (1.26,15.58).
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Table 4.4: Distribution of percent density, categorised using Boyd’s cut-off points (5
categories)

Categories controls (%) cases (%) Total (%)

<10% 27 (6.93) 7 (13.99) 34 (11.56)
10-25% 38 (21.78) 22 (19.69) 60 (20.41)
25-50% 79 (44.55) 45 (40.93) 124 (42.18)
50-75% 47 (23.76) 24 (24.35) 71 (24.15)
>75% 2 (2.97) 3 (1.04) 5 (1.70)

Total 193 (100.00) 101 (100.00) 294 (100.00)

Table 4.5: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic percent density classified in Boyd’s density categories (5)

and adjusted for amount of non-dense tissue, n=292

Factor category OR [95% Conf. Interval] P>z

percent density <10% dense 1.00 - - .231
10-25% dense 2.24 .83 6.05
25-50% dense 2.10 .84 5.23
50-75% dense 2.00 .76 5.23
>75% dense 5.19 .71 37.70

percent density <10% dense 1.00 - - .034
10-25% dense 3.09 1.04 9.23
25-50% dense 3.81 1.22 11.86
>50% dense 4.25 1.20 15.07
>75% dense 12.62 1.40 114.06

non-dense area per 10 cm2 1.06 1.00 1.12 .046
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Table 4.6: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic percent density classified in Boyd’s density categories and

adjusted for amount of non-dense tissue, n=292

Factor category OR [95% Conf. Interval] P>z

percent density <10% dense 1.00 - - .279
10-25% dense 2.26 .84 6.09
25-50% dense 2.08 .84 5.17
>50% dense 2.13 .82 5.52

percent density <10% dense 1.00 - - .048
10-25% dense 3.08 1.04 9.17
25-50% dense 3.69 1.19 11.42
>50% dense 4.43 1.26 15.58

non-dense area per 10 cm2 1.06 1.00 1.11 .070
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4.3.2 Mammographic density and other risk factors

Figure 4.2 shows the relationship between age and mammographic density, both in ab-

solute and percent terms. Absolute density did not appear to be correlated with age

(p=.88) whereas percent density did, but only weakly (p=.08). However, it is reason-

able to believe that we observed this because of the design of the study, that included a

limited age-range.

Figure 4.2: Association between age at mammogram and mammographic density
measures, (a) absolute and (b) percent

The associations between density measures and risk factors for breast cancer (use of

HRT, age at menarche, age at first live pregnancy and number of live pregnancies)

are shown in Figures 4.3 and 4.4. The unexpected significantly negative association

between the use of HRT and both percent and absolute density (Figures 4.3.a and

4.4.a) was possibly due to the strong confounding effect of menopause. Apart from this,

absolute density appeared unrelated to the other risk factors for breast cancer (Figure

4.3). On the other hand, percent density was significantly negatively related to parity

and positively related to age at first birth (Figures 4.4.c and .d).

We repeated these analyses using only controls (results not shown), and the results were

similar to those using the whole dataset.
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Figure 4.3: Association between absolute density (cm2) and risk factors for breast
cancer

Figure 4.4: Association between percent density (%) and risk factors for breast cancer
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The risk factors available were included in multivariable conditional logistic regression

models, along with density measures, to study their impact on the association between

density and breast cancer risk. Results are shown in Tables 4.7, 4.8 and 4.9. Absolute

density was more strongly associated with breast cancer risk than percent density, after

adjustment for other risk factors for breast cancer. Moreover, the association between

absolute density and breast cancer risk appeared independent of other risk factors. The

ORs were consistently significant at about 1.08 per 10 cm2, increasing slightly to 1.10

per 10 cm2 after adjusting for age at first pregnancy (Table 4.9), possibly related to the

exclusion of nulliparous subjects in the analysis (N=174). This hypothesis is supported

by the fact that when nulliparous women were included in the model (Table 4.10) the

OR per 10 cm2 of dense tissue was again 1.07 (1.00,1.15), after adjusting for non-dense

area, consistent with the results obtained from the analyses with the other risk factors.
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Table 4.7: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic density measures adjusted for use of hormone replacement

therapy and age at menarche

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 261 1.07 1.00 1.15 .044
hrt Never 1.00 - - .977

Currently or previous 0.99 0.44 2.21

percent density per 10% 261 1.11 0.96 1.27 .155
hrt Never 1.00 - - .989

Currently or previous 1.01 0.44 2.28

absolute density per 10cm2 261 1.08 1.00 1.16 .039
non-dense area per 10cm2 1.01 0.97 1.06 .648
hrt Never 1.00 - - .910

Currently or previous 0.95 0.42 2.17

percent density per 10% 261 1.19 0.99 1.43 .063
non-dense area per 10cm2 1.04 0.98 1.10 .223
hrt Never 1.00 - - .957

Currently or previous 0.98 0.43 2.22

absolute density per 10cm2 240 1.08 1.01 1.16 .033
age at menarche per year 1.10 0.92 1.31 .295

percent density per 10% 240 1.11 0.97 1.28 .122
age at menarche per year 1.08 0.91 1.28 .400

absolute density per 10cm2 240 1.09 1.01 1.17 .026
non-dense area per 10cm2 1.02 0.97 1.06 .509
age at menarche per year 1.11 0.93 1.33 .247

percent density per 10% 240 1.23 1.02 1.50 .032
non-dense area per 10cm2 1.05 0.99 1.11 .125
age at menarche per year 1.11 0.93 1.32 .264
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Table 4.8: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic density measures adjusted for parity

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 259 1.07 1.00 1.15 .050
parity 0 1.00 - - .677

1 0.98 0.39 2.47
2 0.80 0.41 1.55
3 1.36 0.61 3.03
≥4 0.33 0.07 1.70

percent density per 10% 259 1.08 0.94 1.24 .286
parity 0 1.00 - - .666

1 0.99 0.40 2.48
2 0.84 0.43 1.63
3 1.31 0.59 2.90
≥4 0.32 0.06 1.63

absolute density per 10cm2 259 1.08 1.00 1.16 .040
non-dense area per 10cm2 1.01 0.97 1.06 .534
parity 0 1.00 - - .701

1 0.96 0.38 2.42
2 0.79 0.41 1.54
3 1.38 0.62 3.08
≥4 0.34 0.07 1.73

percent density per 10% 259 1.16 0.96 1.40 .128
non-dense area per 10cm2 1.03 0.97 1.10 .269
parity 0 1.00 - - .773

1 0.97 0.39 2.45
2 0.84 0.43 1.63
3 1.37 0.61 3.07
≥4 0.36 0.07 1.84
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Table 4.9: ORs for risk of developing breast cancer from conditional logistic regression
models using mammographic density measures adjusted for age at first live pregnancy

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 174 1.10 1.01 1.19 .025
age at 1st pregnancy per year 1.03 0.97 1.09 .308

percent density per 10% 174 1.14 0.97 1.34 .104
age at 1st pregnancy per year 1.03 0.97 1.09 .397

absolute density per 10cm2 174 1.10 1.01 1.19 .029
non-dense area per 10cm2 1.00 0.95 1.06 .974
age at 1st pregnancy per year 1.03 0.97 1.09 .310

percent density per 10% 174 1.20 0.97 1.49 .094
non-dense area per 10cm2 1.03 0.96 1.10 .479
age at 1st pregnancy per year 1.03 0.97 1.09 .412

Table 4.10: ORs for risk of developing breast cancer from conditional logistic re-
gression models using mammographic density measures adjusted for age at first live

pregnancy, including nulliparous women

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 292 1.06 .99 1.13 .076
age at 1st pregnancy* Under 30 1.00 - - .414

30 or more 1.60 .84 3.08
Nulliparous 1.22 .69 2.16

percent density per 10% 292 1.04 .92 1.18 .534
age at 1st pregnancy* Under 30 1.00 - - .415

30 or more 1.62 .85 3.10
Nulliparous 1.22 .68 2.17

absolute density per 10cm2 292 1.07 1.00 1.15 .048
non-dense area per 10cm2 1.02 .98 1.07 .271
age at 1st pregnancy* Under 30 1.00 - - .370

30 or more 1.58 .82 3.03
Nulliparous 1.25 .70 2.22

percent density per 10% 292 1.14 .96 1.35 .149
non-dense area per 10cm2 1.04 .99 1.10 .143
age at 1st pregnancy* Under 30 1.00 - - .432

30 or more 1.55 .81 2.98
Nulliparous 1.21 .68 2.16
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Table 4.11: ORs for risk of developing breast cancer from conditional logistic regres-
sion models using mammographic density measures adjusted for the other available risk

factors

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10 cm2 143 1.11 1.01 1.21 .025
non-dense area per 10 cm2 1.00 .94 1.07 .982
hrt Never 1.00 - - .301

Current or previous .47 .12 1.95
age at menarche per year 1.06 .82 1.36 .665
age at 1st pregnancy per year 1.04 .96 1.12 .304
parity per pregnancy 1.06 .64 1.76 .823

Table 4.12: ORs for risk of developing breast cancer from conditional logistic regres-
sion models using mammographic density measures adjusted for the other available risk

factors, including nulliparous women

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10 cm2 216 1.08 1.00 1.16 .056
non-dense area per 10 cm2 1.01 .96 1.06 .660
hrt Never 1.00 - - .180

Current or previous .47 .16 1.42
age at menarche per year 1.09 .91 1.31 .360
age at 1st pregnancy* Under 30 1.00 - - .958

30 or more 1.39 .65 2.95
Nulliparous .74 .23 2.41

parity per pregnancy .77 .50 1.20 .252

The inclusion of all risk factors in a conditional logistic regression model (Table 4.11)

reduced the number of observations to 143, mostly because of missing values, but also

because 83 subjects were dropped by the conditional analyses due to all positive or all

negative outcomes. Nevertheless absolute density appeared strongly and significantly

associated with breast cancer risk after adjusting for the other available risk factors

(non-dense area, use of HRT, age at menarche, age at first pregnancy and number of

live births), with an OR of 1.11 (1.01,1.21) per 10 cm2 of dense tissue. This analysis

was repeated including the nulliparous women and results are displayed in Table 4.12.

The number of observations increased to 216 and the OR per 10 cm2 of dense tissue

was 1.08 (1.00,1.17), in agreement with the previous results of independence between

absolute density and the other risk factors, except for non-dense area.
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4.3.3 Mammographic density and Tyrer-Cuzick 10-year risk estimate

Figure 4.5: Association between mammographic density measures, (a) absolute and
(b) percent, and the Tyrer-Cuzick 10-year personal risk [1]

The relationship between mammographic density measures and Tyrer-Cuzick 10-year

personal risk estimates is displayed in Figure 4.5. In both cases there is a negligible and

non-significant association.

After adjusting for the Tyrer-Cuzick 10-year relative risk of developing breast cancer

(Tables 4.13 and 4.14), the association between absolute density and breast cancer risk

was not altered, in that the OR per 10 cm2 of dense tissue was 1.08 (1.00,1.16) without

adjusting for non-dense area and 1.09 (1.01,1.17) after adjustment. This indicates that

absolute density added risk information to the Tyrer-Cuzick risk estimates and could

potentially improve risk stratification and delineation of high-risk groups.

In the analysis using percent density classified in Boyd density categories, Table 4.14,

the association between density and breast cancer risk was slightly weakened by adjust-

ment for Tyrer-Cuzick risk: the ORs ranged between 2.61 and 3.90, and, overall, lost

significance.
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Table 4.13: ORs for risk of developing breast cancer from unconditional logistic
regression models using mammographic density measures adjusted for non dense area

and Tyrer-Cuzick estimates for 10-year personal risk [1]

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 292 1.08 1.00 1.16 .038
personal risk <.06 risk 1.00 - - <.001

≥.06 risk 2.95 1.75 4.98

percent density per 10% 292 1.06 .93 1.21 .375
personal risk <.06 risk 1.00 - - <.001

≥.06 risk 2.93 1.74 4.92

absolute density per 10cm2 292 1.09 1.01 1.17 .024
non-dense area per 10cm2 1.02 .98 1.07 .240
personal risk <.06 risk 1.00 - - <.001

≥.06 risk 3.01 1.78 5.10

percent density per 10% 292 1.19 .99 1.42 .062
non-dense area per 10cm2 1.05 1.00 1.11 .068
personal risk <.06 risk 1.00 - - <.001

≥.06 risk 3.01 1.78 5.08

Table 4.14: ORs for risk of developing breast cancer from unconditional logistic
regression models using mammographic percent density classified in Boyd’s density
categories and adjusted for amount of non-dense tissue and Tyrer-Cuzick estimates for

10-year personal risk [1], N=294

Factor category OR [95% Conf. Interval] P>z

percent density <10% dense 1.00 - - .079
10-25% dense 2.61 .87 7.86
25-50% dense 3.27 1.01 10.56
>50% dense 3.90 1.05 14.52

non-dense area per 10 cm2 1.05 1.00 1.11 .068
personal risk < .06 risk 1.00 - - <.001

≥ .06 risk 2.79 1.65 4.71
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4.3.4 Results for premenopausal women

As noted above, the majority of women were premenopausal, but there was a minority

of postmenopausal women, which appeared to introduce confounding to the relationship

between HRT and density, and may have other unforeseen confounding effects.

Logistic regression analyses were therefore repeated on the premenopausal subset (78.5%)

of the sample. In the univariate analyses, every additional 10 cm2 of dense tissue was

associated with a 12% increase in odds of breast cancer (OR: 1.12 (1.03,1.22)), Table

4.15. Even after adjusting for other risk factors (Table 4.16), results remained strongly

significant and the OR ranged between 1.12 and 1.14.

Among premenopausal women, percent density also had a significant association with

breast cancer risk, after adjustment for non-dense area or other risk factors (Tables 4.15

and 4.16). However, it appears that adjusting percent density for non-dense breast area

gives similar information as we would obtain from absolute density.

Table 4.15: ORs for risk of developing breast cancer from conditional logistic results
for density in premenopausal women

Factor category obs OR [95% Conf. Interval] P>z

absolute density 0- 20.77 cm2 200 1.00 - - .026
20.77-32.41 cm2 1.59 .51 5.00
32.41-49.93 cm2 2.62 .85 8.10
49.93-77.02 cm2 3.54 1.21 10.36
> 77.02 cm2 2.47 .85 7.18

absolute density per 10cm2 200 1.12 1.03 1.22 .008

percent density 0- 14.58% 200 1.00 - - .194
14.58-29.93% 1.97 .72 5.41
29.93-40.86% 1.72 .63 4.67
40.86-52.44% 1.16 .44 3.04
52.44-100% 2.53 .99 6.49

percent density per 10% 200 1.13 0.97 1.31 .108

absolute density per 10cm2 200 1.14 1.04 1.24 .005
non-dense area per 10cm2 1.03 0.98 1.08 .228

percent density per 10% 200 1.34 1.07 1.67 .009
non-dense area per 10cm2 1.08 1.01 1.15 .033
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Table 4.16: ORs for risk of developing breast cancer from conditional logistic regres-
sion models using mammographic density measures adjusted for other risk factors for

breast cancer, in premenopausal women

Density measure adjusted for obs OR [95% Conf. Interval] P>z

Absolute density hrt 183 1.13 1.03 1.23 .007
per 10 cm2

hrt 183 1.14 1.04 1.25 .005
non-dense area

age at menarche 180 1.12 1.03 1.22 .009

age at menarche 180 1.14 1.04 1.25 .005
non-dense area

parity 185 1.12 1.03 1.22 .008

parity 185 1.14 1.04 1.25 .005
non-dense area

age at 1st pregnancy 119 1.16 1.04 1.28 .007

age at 1st pregnancy 119 1.15 1.03 1.29 .011
non-dense area

Percent density hrt 183 1.20 1.02 1.41 .030
per 10 %

hrt 183 1.42 1.12 1.79 .003
non-dense area

age at menarche 180 1.15 0.98 1.34 .078

age at menarche 180 1.37 1.09 1.73 .008
non-dense area

parity 185 1.13 0.96 1.32 .137

parity 185 1.32 1.05 1.66 .018
non-dense area

age at 1st pregnancy 119 1.26 1.04 1.53 .020

age at 1st pregnancy 119 1.37 1.04 1.79 .024
non-dense area
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On this premenopausal subset, absolute density also added significant risk information

to the Tyrer-Cuzick personal risk estimates, with or without adjustment for non-dense

area, Table 4.17. The ORs were smaller than those obtained in the previous conditional

logistic regression analyses, possibly because of use of standard unconditional analyses.

After adjustment for Tyrer-Cuzick risk estimates, percent density had a significant effect

only after adjusting for non-dense area which was also significantly associated with risk

in this model. This is not surprising, since percent density and non-dense breast area

together give information similar to absolute density on its own.

Table 4.17: ORs for risk of developing breast cancer from unconditional logistic results
for density adjusted for Tyrer-Cuzick estimates for risk [1], in premenopausal women

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10cm2 232 1.09 1.01 1.18 .027
personal risk <.06 risk 1.00 - - .002

≥.06 risk 2.50 1.40 4.47

percent density per 10% 232 1.10 .95 1.28 .189
personal risk <.06 risk 1.00 - - .002

≥.06 risk 2.51 1.41 4.46

absolute density per 10cm2 232 1.10 1.02 1.19 .019
non-dense area per 10cm2 1.02 .98 1.07 .288
personal risk <.06 risk 1.00 - - .002

≥.06 risk 2.55 1.42 4.58

percent density per 10% 232 1.29 1.05 1.59 .017
non-dense area per 10cm2 1.07 1.01 1.13 .032
personal risk <.06 risk 1.00 - - .001

≥.06 risk 2.61 1.45 4.68

4.4 Discussion

In these analyses with 298 subjects, including 103 breast cancer cases, at enhanced fa-

milial risk of breast cancer [188], an association between mammographic density and

breast cancer risk was evident, especially when expressing density continuously and in

absolute terms (cm2). This result is consistent with other studies, on the general popu-

lation, where it has been observed that an absolute measure of density is more predictive

of risk than percent density [32, 33, 225–227] [Chapters 5 and 7], possibly because it is
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a closer estimate of the amount of stromal and fibroglandular tissue and is less affected

by confounding with BMI.

Although adjustment of percent density estimates for non-dense area has been consid-

ered a reasonable substitute for adjusting for BMI, interpretation is problematic. Firstly,

the structural negative collinearity of percent density and non-dense area may lead to

instability of estimates. Secondly, empirically we observed that risk prediction using

absolute density unadjusted was similar to that using percent density with adjustment

for non-dense areas, both in terms of effect size and information as measured by log-

likelihood differences.

A 10 cm2 increase in dense tissue corresponded to an increase in the odds of about 8%,

when having a similar amount of non-dense tissue, and this result was not altered by

adjusting for other risk factors. This independence of the association of density and

breast cancer risk from other risk factors is consistent with observations in other studies

[13, 16, 92].

Another of our results was that, in our high or moderate familial risk population, the risk

association was more evident in the premenopausal majority. A possible explanation is

the fact that some high risk women experienced a premature menopause because of a hys-

terectomy and/or oophorectomy, and therefore the menopausal status for these subjects

was unclear and thus sometimes classified as “unknown”. To support this hypothesis

we repeated the conditional logistic regression analyses excluding only the subjects with

“unknown” menopausal status. On the remaining 232 subjects, we observed an OR of

1.11 (1.02,1.20) per 10 cm2 of dense tissue after adjusting for non-dense breast area.

The reduction of the sample, from 298 to 232, could help explain this change. Never-

theless, further investigations on larger samples of these under 50, high-risk women with

postmenopausal or unclear menopausal status, could provide a clearer explanation.

In our study, age at mammogram did not appear to have an effect on either absolute

or percent density, unlike most of the previous literature [91, 228]. This is most likely

to be due to the limited age range available in our study, rather than to the enhanced

familial risk that characterised the subjects in FH01. However, in another study with

volumetric assessment of density [Chapter 6], we observed that absolute density did not

vary with increasing age, whereas the percent density did, because of a steady increase

with age in non-dense breast volume.

Despite HRT being known to increase mammographic density [101, 103–105], we ob-

served a significant negative association between these two features. This is most likely

to be explained by a confounding effect of menopausal status, as HRT is normally pre-

scribed to postmenopausal women and menopause is known to lead to a significant
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decrease in density [90, 91]. Also, the age range of the women in this study meant that

they were mainly premenopausal.

In this data, age at menarche appeared unrelated either to absolute or percent density.

These results are consistent with the weak or null association between density and age at

menarche observed in other studies [12, 226, 229, 230]. De Stavola and colleagues [229]

observed in a cohort of 5,104 women a significant tendency for later age of menarche

to be associated with a denser Wolfe pattern, however this association was only signif-

icant among postmenopausal women once adjusted for other risk factors, such as BMI.

Likewise, Vachon et al. [12] in 2000 conducted a study with 1,900 subjects reaching a

similar conclusion, that late age at menarche was associated with increased density, but

the magnitude and statistical significance were attenuated in multivariate analyses. If

this assumption is real, it is an interesting example of negative confounding. However, a

case-control study, comprising 607 cases and 667 controls, from a multi-ethnic popula-

tion [230] concluded that mammographic density was not related to age at menarche, in

agreement with our results. More recently, Haars and colleagues [226] investigated the

relationship between density expressed in both absolute and percent terms and other

risk factors on a population of 418 postmenopausal women, and observed, as in in our

study, no significant tendency of increasing density at increasing age at menarche.

Reproductive factors (age at first birth and parity) were strongly related to percent

breast density. This is in agreement with previous literature and consistent with biolog-

ical mechanisms, since parity leads to changes in breast morphology and biochemistry

and it is known that some of these changes are reflected by a reduction in mammographic

density [231]. Hence, it is generally observed that late age of first pregnancy is associ-

ated with higher breast density, as well as the fact that breast density decreases with

increasing number of births [12, 89, 226, 232, 233]. However, mammographic density

expressed in absolute rather than percent terms did not appear to be related to these

reproductive factors in our data. It is interesting to compare this result with the study

from Haars et al. [226], as in both cases there is a comparison between proportional and

absolute amount of density in association with other factors. In their study, both mea-

sures showed an association between density and parity, and both were unrelated to age

at first childbirth, unlike in our data. The populations of the two studies differed consid-

erably: theirs comprised only postmenopausal subjects, aged 49.2-65.8 years, whereas

ours were under 50, mostly premenopausal women at enhanced familial risk. More re-

cently, Woolcott and colleagues obtained data from four case-control studies (1,699 cases

and 2,422 controls) in order to investigate if the association between density, assessed

with Cumulus in both absolute and percent terms, and breast cancer risk was modified

by reproductive factors [231]. As in Haars’s study, analyses showed that percent density
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was lower among women with greater parity and did not vary by age at first birth, and

results for absolute dense area followed a similar pattern.

One of the goals of this study was to evaluate the ability of breast density to further dis-

criminate cases from controls, after adjusting for Tyrer-Cuzick 10-year risk estimates [1].

Both density measures were found independent from Tyrer-Cuzick 10-year risk-estimates

of developing breast tumours. Absolute density, in particular, appeared to add discrim-

inatory ability to the model, both on its own and after adjusting for non-dense breast

area. These results further highlight the potential of density in risk management and

surveillance policy, and support the suggestion of using it to identify high-risk subjects

and to design personalised screening programmes [73].

The cases included in the study were primarily screen detected (80%). Thus, the effect

of density on risk may be artificially reduced in this study due to masking, particularly

as this is a relatively young population with denser breast tissue than is typical in the

National Screening Programme. However, the effect of density is consistently observed

in this dataset. When data were restricted to screen-detected cases, the OR we obtained

(1.06 (.98-1.14) per 10 cm2 of dense tissue) did not vary substantially from the original

results but it was no longer significant, possibly because of the loss of statistical power

due to the sample reduction, from 292 to 239 subjects.

The main weakness of this study is the small number of cases. However, it has the

strength of allowing the analyses to focus on this selected high- and moderate-risk pop-

ulation, that, because of their relatively young age, could benefit the most from individ-

ually tailored surveillance.

In summary, absolute density aided discrimination between cases and controls even in

this population at enhanced familial risk for breast cancer. Moreover, our study pro-

vides further evidence that absolute density should be preferred over percent density.

Not only was absolute dense area more predictive than percent density, it was not associ-

ated with most of the risk factors that percent dense area was, thus making it a simpler

risk-predictor and less affected by confounding factors. In addition, absolute density

appeared able to improve significantly the risk-prediction provided by Tyrer-Cuzick 10-

year risk estimates. Further and larger studies are needed to validate these results and

to have a better understanding of how density should be used to provide more effective

screening programmes.
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Chapter 5

A case-control evaluation of a

fully automated volumetric

density measure (Quantra) as a

predictor of breast cancer risk

5.1 Introduction

As noted in Chapter 1, area based breast density assessments measure the amount

of breast stromal and epithelial, or dense, tissue that appears white in a mammo-

gram. There are currently two main approaches for measuring density: computer-

assisted, e.g. interactive thresholding (Cumulus) [30], and visual, e.g. Boyd’s six-

category classification (SCC) [25, 26] and Breast Imaging Reporting and Data System

(BIRADS )[234, 235]. The latter was developed in the 1990s by the American College

of Radiology, and is a standardized lexicon that classifies density into four categories

according to the proportion of dense tissue in the mammogram. It is widely employed

because of its ease of use in routine screening, and its reasonably high inter- and intra-

observer agreement rates [27]. In addition to this, it has been shown to be a successful

risk predictor [2, 3]. Tice and colleagues [3] observed, within a cohort of 81,777 women

(5.1 average years of follow-up, 955 cases), that a model based on BIRADS alone, ad-

justed for age and ethnicity, could predict breast cancer risk as accurately as the Gail

model [161, 162], a multivariable statistical model commonly implemented for this pur-

pose. Similarly, the results of Barlow et al. [2] suggested that, as a single predictor,

113
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BIRADS is almost as powerful as age. However, the dense area on the mammogram is a

two-dimensional representation of a three-dimensional feature, the volume of fibroglan-

dular tissue in the breast; hence, in principle, a volumetric measure is preferable. Dense

volume is expected to be more directly related to risk and to capture more accurately

the underlying biological processes that lead to breast cancer, since it is believed to be

a more precise estimate of the amount of fibroglandular tissue in the breast [30].

It has long been thought that the introduction of a calibration object, beside the breast

during imaging, would allow the projected dense area to be directly related to the thick-

ness and the composition of the breast tissue, and thereby provide an estimate of the

fibroglandular volume [30, 236]. Recent fully-automated volumetric approaches have

used X-ray attenuation at each pixel to estimate the amount of fibroglandular tissue it

represents, and hence estimate both the overall and the dense volume [38]. One example

is Quantra, a software package that analyses raw images from full-field digital mammo-

grams (FFDM) to quantify dense tissue. This method appears promising according to

the results presented at conferences [38, 48, 237–244], and recent publications [51, 178],

partially in terms of reproducibility, but there is no certainty that this will be the case

in a risk-prediction context.

Disappointingly, other automated volumetric approaches proposed so far [8, 36, 245]

seem to provide similar or weaker risk prediction than area-based measures. Ding and

colleagues [245] compared the standard mammography form (SMF), a software tool for

volumetric assessment, to Wolfe’s parenchymal patterns, visual percent density (21-point

scale) and interactive thresholding. Their data suggested that the volumetric measure-

ments had a lesser association with breast cancer risk than interactive thresholding, the

current gold standard [28]. The predictive ability of SMF was also investigated by Aitken

et al. [36] within a case-control study comprising 969 subjects (355 cases), that led to

similar discouraging results. Likewise, findings from Boyd and colleagues’s comparison

of area-based Cumulus with the new volumetric version (Cumulus V ) [8] indicated that

the volumetric measure provided similar risk information to that of the area method.

These results highlighted the need to develop new techniques or to refine current algo-

rithms, and to validate the novel approaches using larger datasets. The pursuit of a

fully automated density measurement continues, as density could only be used for risk

management at a population level if it could be measured automatically.

In this study, we examine the relationship between Quantra and BIRADS and evaluate

their performance in predicting risk of breast cancer, and also compare Quantra absolute

and percent measurements of dense volume.
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5.2 Material and Methods

5.2.1 Data collection

We conducted a case-control study, whose participants were women attending the Princess

Grace Hospital, an independent hospital in central London, who had full-field digital

mammographic examinations in 2005-2009. Two hundred symptomatic cases were ran-

domly selected from patients with histopathologically verified breast cancer, and each

case was matched with a healthy control by date of birth, age at examination and lat-

erality of mammogram used for density determination.

All mammograms were high quality two-view images, soft copy reported on high reso-

lution monitors. Image quality was not a factor in case selection before randomization,

and because all images were adequate, none were rejected during the density estima-

tion. Among cases, density was assessed on the last mammogram of the contralateral

breast before cancer detection; for controls, density was estimated on the same side as

the matched case, using mammograms dating as close as possible to the matched case

diagnosis. Both views were used for assessing density, as it is known that the craniocau-

dal view tends to give higher density estimates than the mediolateral oblique view [4].

The area-based density was estimated by two experienced radiologists (Dr. Nick Perry

and Dr. Katja Pinker-Domenig) using the standard density grades according to the

American College of Radiology Breast Imaging Reporting and Data System (BIRADS)

[234]. This system classifies density into four categories: (A) < 25% dense (almost en-

tirely fatty); (B) 25− 50% dense (scattered fibroglandular density); (C) 51− 75% dense

(hetereogeneously dense); (D) > 75% dense (extremely dense) [246].

Breast density was also assessed using an integral automated volumetric breast density

measurement system (Hologic, Quantra). Further details of Quantra are provided in the

next section.

As previous results suggested higher density in women resident in London [246], we also

recorded data on area of residence. Area of residence was classified as London, any other

region in the UK (based on the post-code of residence), or outside the UK, referred to

as “abroad” for brevity. In addition to age, area of residence, and density assessed with

both Quantra and BIRADS, no other data on breast cancer risk factors was available.

Complete information was collected for every variable in the study (breast density and

total volume estimates, age and area of residence) thus there were no missing values.
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5.2.2 Quantra

Quantra is a software application that quantifies the total volume of the breast, its

fibroglandular, dense, component (absolute density) in cm3, and proportional breast

density as a ratio of the two (percent density).

Quantra accepts and evaluates raw image data, produced by Full-Field Digital Mam-

mography (FFDM). It evaluates density from even just a single view and can use either

cranio-caudal or mediolateral oblique images. If both views are available the software

estimates density as an average from both images. In our study the two views of the

contralateral breast were taken into account for each case, and the same side was chosen

for the matched control.

The algorithm is based on a physical model of the X-ray imaging chain that relates

breast tissue X-ray attenuation to the digital mammography images provided. It esti-

mates the amount of fibroglandular tissue that an X-ray must have penetrated in order

to deposit a measured amount of energy at the detector. Thus Quantra provides a re-

sult in centimetres of fibroglandular tissue penetrated (Hfg) at each pixel of the image

(Figure 5.1.a). After completing the analysis of every pixel, all the Hfg are aggregated

into the volume of fibroglandular tissue (absolute density), given in cm3.

Figure 5.1: Quantra volumetric assessment of fibroglandular tissue (a) and total
breast volume (b)

Source: Understanding R2 Quantra 1.3, Hologic

Likewise, for the total volume, Quantra considers the entire outline of the imaged breast,

compensating for the decrease in thickness in the uncompressed portions (Hu), Figure

5.1.b. The percent density is then computed as a ratio.

For further information on Quantra algorithm:

http://www.hologic.com/en/breast-screening/volumetric-assessment/
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5.2.3 Statistical analyses

Demographic and other variables are summarised using percentages for categorical vari-

ables or medians and IQRs for continuous variables. We had data on age, area of

residence classified as “London”, “Other UK regions” and “abroad”, total breast vol-

ume, dense volume, non-dense volume and BIRADS classification. Total breast volume

and non-dense volume were used as potential indirect indicators of BMI, which was not

available, and age under 50 versus greater than or equal to 50 was used as a surrogate

for menopausal status.

Conditional logistic regression was used to calculate odds ratios (OR) for risk of breast

cancer after adjustment for potential confounding factors. This analysis was repeated

after log-transformation of Quantra estimates. Secondary analyses were also performed

stratified by area of residence (London vs Other UK), and age.

The relationship between BIRADS and Quantra was investigated graphically and non-

parametric tests [214] were used to test for differences for trend across ordered groups.

All analyses were performed using STATA, version 12.1.

5.3 Results

Characteristics of the 200 cases and 200 controls are summarised in Table 5.1. The

matching algorithm, based on date of birth, age at examination and laterality of mam-

mogram used for density determination, was successful as the distribution of these factors

was the same for each group. There was no difference between cases and controls in the

proportions of women from London, from other British regions, and from abroad. The

distribution of total breast volume, dense volume (absolute density) and percent density

were compared between the case and control groups using the Wilcoxon rank-sum test.

Results indicated that there was no significant difference between cases and controls in

both total breast volume and percent density, p = .15 and p = .40 respectively, whereas

cases seemed to have systematically greater dense volume in terms of cm3 (p = .01).

Figure 5.2 supports this result, as controls tended to group at lower levels than cases for

absolute density, whereas this trend was less evident for percent density.
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Table 5.1: Characteristics of the study samples

Cases Controls Total
N=200 N=200 N=400

Age at mammogram, No.(%)
< 45 35 (17.5) 35 (17.5) 70 (17.5)
45-54 63 (31.5) 63 (31.5) 126 (31.5)
55-64 53 (26.5) 52 (26.0) 105 (26.2)
≥ 65 49 (24.5) 50 (25.0) 99 (24.8)

Area of residence, No. (%)
London 102 (51.0) 107 (53.5) 209 (52.2)
Other UK 81 (40.5) 78 (39.0) 159 (39.8)
Abroad 15 (7.5) 17 (8.5) 32 (8.0)

Measures of mammographic breast density assessed by Quantra, Median (IQR)
Percent breast density, in % 20 (14.0) 19.5 (13.0) 20 (13.5)
Absolute breast density, in cm3 91 (76.5) 75.5 (60.5) 82 (73.5)
Total breast volume, in cm3 441.5 (399.5) 407.5 (347.0) 422.5 (392.5)
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Figure 5.2: Distribution of (a) percent and (b) absolute breast density in cases and
controls
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Figure 5.3: Distribution of BIRADS dense categories in cases and controls, (a) overall
and (b) stratified by age

Figure 5.3 depicts the distribution of BIRADS classification between cases and controls.

It shows a pattern of a smaller proportion of cases in the lowest density category, and

a greater proportion in the highest. This was more pronounced in women aged 50 or

more (Figure 5.3.b).

We also investigated the association of percent and absolute density, assessed using

Quantra, with the risk of breast cancer (Tables 5.2 and 5.3). The odds ratios related to
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absolute density and non-dense volume are expressed per 10 cubic centimetre increase,

whereas those regarding percent density are given per 10% increase. Comparing the

performance of risk prediction of the two variables derived by the Quantra system (Tables

5.2 and 5.3), the outcomes suggest that only absolute breast density had a significant

univariate main effect (p=.03), and that an increase of 10 cm3 1 in fibroglandular volume

would lead to a 4% increase in risk of breast cancer. The introduction of the other risk

factors (non-dense volume and area of residence) to the model did not substantially alter

these results, whereas the observed effect of Quantra percent density was strengthened

by adjustment for these factors, OR 1.47 (95% CI (1.09, 1.98)) per 10% density (Table

5.2). In both cases, likelihood ratio tests indicated that the fit of the model did not

improve significantly from the inclusion of other risk factors.

The introduction of area of residence in the model caused a reduction in sample size for

two reasons: (a) 32 women from abroad were excluded from the analysis in order to study

the urban effect of London against other areas in the UK; (b) a further 28 observation

were dropped by the analyses because of all positive or all negative outcomes.

Table 5.2: ORs for developing breast cancer from conditional logistic regression mod-
els using Quantra percent density

Factor category obs OR [95% Conf. Interval] P>z

univariate
% density per 10% 400 1.15 .92 1.44 .211

adjusted for non-dense volume
% density per 10% 400 1.29 1.00 1.66 .050
non-dense volume per 10 cm3 1.01 1.00 1.02 .055

adjusted for London residence
% density per 10% 340 1.31 1.01 1.70 .040
residence Other UK 1.00 - - .660

London .90 .56 1.44

adjusted for non-dense volume and London residence
% density per 10% 340 1.47 1.09 1.98 .011
non-dense volume per 10 cm3 1.01 1.00 1.02 .081
residence Other UK 1.00 - - .864

London .96 .60 1.54

1The average absolute density is 97.31 cm3.
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Table 5.3: ORs for developing breast cancer from conditional logistic regression mod-
els using Quantra absolute density

Factor category obs OR [95% Conf. Interval] P>z

univariate
absolute density per 10 cm3 400 1.04 1.00 1.08 .030

adjusted for non-dense volume
absolute density per 10 cm3 400 1.04 1.00 1.09 .063
non-dense volume per 10 cm3 .99 .99 1.01 .719

adjusted for London residence
absolute density per 10 cm3 340 1.04 1.00 1.08 .062
residence Other UK 1.00 - - .956

London .99 .62 1.58

adjusted for non-dense volume and London residence
absolute density per 10 cm3 340 1.05 1.00 1.10 .063
non-dense volume per 10 cm3 1.00 .99 1.01 .480
residence Other UK 1.00 - - .869

London .96 .60 1.54

Table 5.4 shows the ORs associated with quintiles of absolute dense volume, based on

the control distribution, in order to further understand the linear association between

Quantra absolute density and risk of developing breast cancer. According to these re-

sults, the presence of at least 125 cm3 of dense tissue in the breast would correspond

to a 77% increase in breast cancer relative risk, compared to subjects with less than 47

cm3 of dense tissue. The effect on breast cancer risk of absolute density categorised in

this way was significant (p=.02).

Table 5.4: ORs for developing breast cancer from a conditional logistic regression
model using the quintiles of Quantra absolute density among controls

Quintile OR [95% Conf. Interval] P>z

1st quintile (< 47 cm3) 1.00 - - .020
2nd quintile (47− 65 cm3) .78 .39 1.55
3rd quintile (66− 87 cm3) 1.08 .56 2.06
4th quintile (88− 124 cm3) 1.26 .68 2.35
5th quintile (≥ 125 cm3) 1.77 .95 3.29
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Results of the analyses using Quantra measures after log-transformation are summarised

in Table 5.5. The evidence sustaining the association between breast cancer risk and

absolute density appears stronger in comparison with the results obtained using the

original measures. However, they led to similar conclusions to those of Tables 5.2 and

5.3, and we therefore returned the original measures for the following analyses, this

also facilitates the interpretation of the results. Nevertheless, in the analysis based on

the log-transformed densities, the chi-square statistics demonstrate that adjustment of

the percent density effect for total breast volume is returning the same information as

absolute density but at the cost of adding a degree of freedom.

Table 5.5: ORs for developing breast cancer risk from conditional logistic regression
models using Quantra log-transformed measures

Factor obs OR [95% Conf. Interval] P>z modelχ2 df

univariate
log-absolute density 400 1.50 1.07 2.11 .020 5.62 1

adjusted for log-non-dense volume
log-absolute density 400 1.76 1.08 2.85 .022 6.47 2
log-non-dense volume .83 .56 1.24 .358

adjusted for log-total volume
log-absolute density 400 1.83 1.03 3.25 .038 6.38 2
log-total volume .79 .47 1.34 .386

univariate
log-% density 400 1.35 .82 2.24 .236 1.42 1

adjusted for log-non-dense volume
log-% density 400 1.86 1.02 3.40 .044 5.20 2
log-non-dense volume 1.39 .99 1.94 .055

adjusted for log-total volume
log-% density 400 1.73 .98 3.03 .057 5.66 2
log- total volume 1.43 1.01 2.01 .042

Table 5.6 reports the results from the analyses on the association between risk of devel-

oping a tumour in the breast and percent breast density classified according to BIRADS

categories. The relationship between BIRADS density and risk is a non-linear one, nev-

ertheless the risk of developing breast cancer in subjects classified as “extremely dense”

(D) is more than two-fold higher than women defined “almost entirely fatty” (A). The
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univariate OR is estimated to be 2.26 (1.01, 5.05), and the effect is stronger when ad-

justing for area of residence (OR 2.72 (1.12, 6.62)).

BIRADS and absolute Quantra measures assess breast density in different ways: the first

gives a subjective evaluation of the dense tissue area in terms of 25% intervals, whereas

the second is an automatic system that estimates the volume of fibroglandular tissue in

cm3. Bearing this in mind, a comparison between the risk-predictive performances of

the two variables must be tentative (Tables 5.3 and 5.6).

Table 5.6: ORs for developing breast cancer from conditional logistic regression mod-
els using BIRADS classification

Factor category obs OR [95% Conf. Interval] P>z

univariate
BIRADS (A) <25% dense 400 1.00 - - .161

(B) 25-50% dense 1.57 .90 2.73
(C) 50-75% dense 1.24 .66 2.35
(D) ≥75% dense 2.26 1.01 5.05

adjusted for non-dense volume
BIRADS (A) <25% dense 400 1.00 - - .188

(B) 25-50% dense 1.57 .90 2.73
(C) 50-75% dense 1.24 .65 2.34
(D) ≥75% dense 2.18 .97 4.88

non-dense volume per 10 cm3 1.00 1.00 1.01 .276

adjusted for London residence
BIRADS (A) <25% dense 340 1.00 - - .057

(B) 25-50% dense 1.56 .86 2.84
(C) 50-75% dense 1.42 .71 2.84
(D) ≥75% dense 2.78 1.15 6.74

residence Other UK 1.00 - - .825
London .96 .59 1.54

adjusted for non-dense volume and London residence
BIRADS (A) <25% dense 340 1.00 - - .065

(B) 25-50% dense 1.57 .86 2.85
(C) 50-75% dense 1.42 .71 2.84
(D) ≥75% dense 2.72 1.12 6.62

non-dense volume per 10 cm3 1.00 .99 1.01 .594
residence Other UK 1.00 - - .902

London .98 .60 1.60
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Conditional logistic regression analyses were repeated in women aged under 50 years

and 50 or more separately (Tables 5.7,5.8 and 5.9). Quantra percent density was signif-

icant in discriminating cases from controls in the younger group, particularly when the

model took non-dense volume into account, with an OR per 10% density of 1.61 (1.05,

2.48) (Table 5.7). Conversely, Quantra absolute density was not significant in the model

based only on women aged under 50 (OR per 10 cm3: 1.02 (.97, 1.07)), but there was a

considerate loss of power as the sample size reduced from 400 to 154 (Table 5.8). This

result is partly explained by the dependency of percent density on non-dense volume,

as Figure 5.4 illustrates. At younger ages, cases tend to have a higher percent density

not because of a greater absolute volume of dense tissue, but due to a generally smaller

amount of non-dense tissue than controls. Furthermore, among women aged under 50,

there was no substantial difference in breast cancer risk in subjects belonging to the

two extreme categories of BIRADS classification, i.e. “almost entirely fatty” (A) and

“extremely dense” (D). At older ages, on the other hand, breasts classified as “extremely

dense” have 4.12 (1.41, 12.07) times higher odds of cancer than those classified as “al-

most entirely fatty” (Table 5.9).

Table 5.7: ORs for developing breast cancer from conditional logistic regression mod-
els using Quantra percent density, stratified by age

Factor category obs OR [95 Conf. Interval] P>z

univariate
Under 50
% density per 10% 154 1.46 1.01 2.10 .045

50 or more
% density per 10% 246 .97 .72 1.31 .850

adjusted for non-dense volume
Under 50
% density per 10% 154 1.61 1.05 2.48 .029
non-dense volume per 10 cm3 1.01 .99 1.02 .336

50 or more
% density per 10% 246 1.09 .78 1.52 .607
non-dense volume per 10 cm3 1.01 1.00 1.02 .107
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Figure 5.4: Comparison of medians and inter-quartile ranges of Quantra (a) percent
density, (b) non-dense volume and (c) absolute density by age group, between cases

and controls
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Table 5.8: ORs for developing breast cancer from conditional logistic regression mod-
els using Quantra absolute density, stratified by age

Factor category obs OR [95 Conf. Interval] P>z

univariate
Under 50
absolute density per 10 cm3 154 1.02 .97 1.07 .493

50 or more
absolute density per 10 cm3 246 1.06 1.01 1.11 .022

adjusted for non-dense volume
Under 50
absolute density per 10 cm3 154 1.04 .97 1.11 .279
non-dense volume per 10 cm3 .99 .98 1.01 .384

50 or more
absolute density per 10 cm3 246 1.06 .99 1.13 .083
non-dense volume per 10 cm3 1.00 .99 1.01 .984
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Table 5.9: ORs for developing breast cancer from conditional logistic regression mod-
els using BIRADS classification, stratified by age

Factor category obs OR [95 Conf. Interval] P>z

univariate
Under 50
BIRADS (A) <25% dense 154 1.00 - - .692

(B) 25-50% dense .89 .34 2.36
(C) 50-75% dense 1.51 .48 4.74
(D) ≥75% dense .88 .24 3.29

50 or more
BIRADS (A) <25% dense 246 1.00 - - .148

(B) 25-50% dense 2.24 1.11 4.54
(C) 50-75% dense 1.10 .50 2.44
(D) ≥75% dense 4.12 1.41 12.07

adjusted for non-dense volume
Under 50
BIRADS (A) <25% dense 154 1.00 - - .707

(B) 25-50% dense .87 .32 2.35
(C) 50-75% dense 1.48 .47 4.70
(D) ≥75% dense .86 .23 3.27

non-dense volume per 10 cm3 1.00 .99 1.01 .891

50 or more
BIRADS (A) <25% dense 246 1.00 - - .233

(B) 25-50% dense 2.16 1.06 4.39
(C) 50-75% dense 1.05 .47 2.34
(D) ≥75% dense 3.67 1.24 10.89

non-dense volume per 10 cm3 1.01 1.00 1.02 .188
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Table 5.10: ORs for developing breast cancer from conditional logistic regression
models using Quantra percent density, stratified by UK location of residence

Factor category obs OR [95 Conf. Interval] P>z

univariate
London
% density per 10% 124 1.25 .83 1.86 .283

Other UK
% density per 10% 72 1.49 .91 2.44 .112

adjusted for non-dense volume
London
% density per 10% 124 1.41 .89 2.23 .146
non-dense volume per 10 cm3 1.01 .99 1.02 .236

Other UK
% density per 10% 72 2.02 1.07 3.82 .030
non-dense volume per 10 cm3 1.03 1.00 1.06 .046

Table 5.11: ORs for developing breast cancer from conditional logistic regression
models using Quantra absolute density, stratified by UK location of residence

Factor category obs OR [95 Conf. Interval] P>z

univariate
London
absolute density per 10 cm3 124 1.03 .98 1.09 .231

Other UK
absolute density per 10 cm3 72 1.11 1.00 1.22 .050

adjusted for non-dense volume
London
absolute density per 10 cm3 124 1.04 .97 1.12 .291
non-dense volume per 10 cm3 1.00 .98 1.02 .824

Other UK
absolute density per 10 cm3 72 1.10 .98 1.24 .121
non-dense volume per 10 cm3 1.00 .98 1.03 .890

In the analyses stratified by area of residence (Tables 5.10, 5.11 and 5.12), 32 women

living abroad were excluded in order to focus on within-UK differences. A further 172

observations, 85 in the “London” group and 87 in the “Other UK” group, did not con-

tribute to the matched statistical analysis due to all positive or all negative outcomes.

Therefore the reduced sample sizes affect the precision of the results. However, Quantra
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Table 5.12: ORs for developing breast cancer from conditional logistic regression
models using BIRADS classification, stratified by UK location of residence

Factor category obs OR [95 Conf. Interval] P>z

univariate
London
BIRADS (A) <25% dense 124 1.00 - - .025

(B) 25-50% dense 4.18 1.54 11.34
(C) 50-75% dense 1.61 .50 5.25
(D) ≥75% dense 12.14 2.06 71.38

Other UK
BIRADS (A) <25% dense 72 1.00 - - .896

(B) 25-50% dense .40 .07 2.20
(C) 50-75% dense .40 .07 2.37
(D) ≥75% dense .70 .09 5.46

adjusted for non-dense volume
London
BIRADS (A) <25% dense 124 1.00 - - .023

(B) 25-50% dense 4.21 1.54 11.50
(C) 50-75% dense 1.64 .50 5.35
(D) ≥75% dense 12.19 2.07 71.72

non-dense volume per 10 cm3 1.00 .99 1.02 .484

Other UK
BIRADS (A) <25% dense 72 1.00 - - .915

(B) 25-50% dense .35 .06 2.13
(C) 50-75% dense .29 .04 1.90
(D) ≥75% dense .57 .07 4.92

non-dense volume per 10 cm3 1.01 .99 1.04 .175

densities, both absolute and percent (the latter after adjustment for non-dense breast

volume) seemed to be able to discriminate better cases from controls in British women

not living in London (Tables 5.10 and 5.11), whereas BIRADS density registered strongly

increasing ORs in London residents (Table 5.12).

We repeated these stratified analyses using unmatched logistic models adjusted for age,

in order to preserve a larger portion of the sample (Tables 5.13, 5.14 and 5.15). These

unconditional analyses relating to Quantra density estimates confirmed the previous

results. In the models with BIRADS, on the other hand, the larger sample, 368 subjects

instead of 196, led to less extreme results, especially among London residents, i.e. the OR

for the most dense breasts in comparison to the primarily fatty ones (“<25% dense”) was
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3.5 (1.3, 9.6) instead of 12.1 (2.1, 71.4), as observed in the conditional logistic analyses.

Table 5.13: ORs for developing breast cancer from unconditional logistic regression
models using Quantra percent density adjusted for age, stratified by UK area of resi-

dence

Factor category obs OR [95 Conf. Interval] P>z

adjusted for age
London
% density per 10% 209 1.07 .80 1.44 .632
age per year 1.01 .99 1.04 .386

Other UK
% density per 10% 159 1.46 1.00 2.14 .050
age per year 1.00 .97 1.03 .792

adjusted for non-dense volume and age
London
% density per 10% 209 1.17 .84 1.63 .366
non-dense volume per 10 cm3 1.01 .99 1.02 .301
age per year 1.01 .99 1.04 .343

Other UK
% density per 10% 159 1.59 1.05 2.40 .027
non-dense volume per 10 cm3 1.01 1.00 1.02 .270
age per year 1.00 .96 1.03 .763
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Table 5.14: ORs for developing breast cancer from unconditional logistic regression
models using Quantra absolute density adjusted for age, stratified by UK area of resi-

dence

Factor category obs OR [95 Conf. Interval] P>z

adjusted for age
London
absolute density per 10 cm3 209 1.09 .99 1.08 .177
age per year 1.01 .99 1.04 .361

Other UK
absolute density per 10 cm3 159 1.04 .98 1.10 .181
age per year .99 .96 1.01 .318

adjusted for non-dense volume and age
London
absolute density per 10 cm3 209 1.04 .98 1.10 .236
non-dense volume per 10 cm3 1.00 .98 1.01 .803
age per year 1.01 .99 1.04 .346

Other UK
absolute density per 10 cm3 159 1.06 .98 1.15 .117
non-dense volume per 10 cm3 .99 .98 1.01 .370
age per year .99 .96 1.02 .511
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Table 5.15: ORs for developing breast cancer from unconditional logistic regression
models using BIRADS classification adjusted for age, stratified by UK area of residence

Factor category obs OR [95 Conf. Interval] P>z

adjusted for age
London
BIRADS (A) <25% dense 209 1.00 - - .056

(B) 25-50% dense 2.43 1.16 5.10
(C) 50-75% dense 1.67 .70 4.00
(D) >75% dense 3.46 1.25 9.56

age per year 1.01 .99 1.04 .378

Other UK
BIRADS (A) <25% dense 159 1.00 - - .726

(B) 25-50% dense .80 .30 2.13
(C) 50-75% dense .95 .31 2.85
(D) >75% dense 1.13 .28 4.51

age per year .98 .96 1.01 .264

adjusted for non-dense volume and age
London
BIRADS (A) <25% dense 209 1.00 - - .059

(B) 25-50% dense 2.40 1.14 5.05
(C) 50-75% dense 1.66 .69 3.99
(D) >75% dense 3.41 1.23 9.46

non-dense volume per 10 cm3 1.00 .99 1.01 .524
age per year 1.01 .99 1.04 .402

Other UK
BIRADS (A) <25% dense 159 1.00 - - .748

(B) 25-50% dense .80 .30 2.13
(C) 50-75% dense .94 .31 2.84
(D) >75% dense 1.11 .28 4.45

non-dense volume per 10 cm3 1.00 .99 1.01 .764
age per year .98 .95 1.01 .249
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Figure 5.5 compares medians of Quantra measures by case-control status and age group,

stratified by area of residence and may help to explain such result. In London residents,

case and control lines are relatively close, especially for median percent density, imply-

ing poor discrimination. Moreover, comparing the controls from London and other UK

regions, subjects from the capital appear to have a higher percent density, even pre-

senting similar absolute density estimates, because they have lower non-dense volume.

The Wilcoxon rank-sum test comparing non-dense breast volume among women living

in London or elsewhere in the UK supports this result (p=.03). This may mean that

London women have lower percent density because they are thinner than women resi-

dent in other UK regions.
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Figure 5.5: Comparison of medians and inter-quartile ranges of Quantra (a) percent
density, (b) non-dense volume and (c) absolute density by age group, between UK

residents from London or other British regions, stratified by case-control status
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Figure 5.6 shows the relationship between BIRADS and Quantra (a) percent and (b)

absolute density. The boxplots represent the distribution of percent and absolute breast

density in each BIRADS category. Ideally, with increasing BIRADS category, one would

expect to observe an increasing trend among the boxes, as evidence of a positive asso-

ciation between density measured by the two methods. Overall results from tests for

trend suggest the absence of association between BIRADS and Quantra percent density

among controls (p=.35). However, focusing only on cases, the two measures appear

significantly but inversely related (p<.01). There appears to be no association between

BIRADS classification and Quantra absolute density, and tests for trend are consistent

with this (cases: p=.38; controls: p=.76).

Figure 5.6: Boxplots of (a) percent and (b) absolute breast density stratified by
BIRADS categories and case-control status
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Analyses of the other measures estimated by Quantra, i.e. (a) non-dense and (b) to-

tal breast volume (Figure 5.7), yielded similar results. Among controls, tests for trend

showed no significant association between BIRADS and Quantra non-dense and total

breast volume (respectively p=.35 and p=.38). In contrast, among cases, tests for trend

showed a significant and positive association with BIRADS categories for both non-dense

(p<.01) and total breast volume (p=.01). This indicates that the result for percent den-

sity in cases is due mainly to the non-dense volume.

Figure 5.7: Boxplots of (a) non-dense and (b) total breast volume stratified by BI-
RADS categories and case-control status

Because of the lack of association observed between the two measures, we performed

a conditional logistic regression adjusting Quantra absolute density for BIRADS, with

results shown in Table 5.16. These results provide further evidence that there is no
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Table 5.16: ORs for developing breast cancer risk from conditional logistic regression
models using Quantra absolute density and adjusting for BIRADS categories

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10 cm3 400 1.04 1.00 1.07 .035
BIRADS (A) <25% dense 1.00 - - .191

(B) 25-50% dense 1.58 .90 2.78
(C) 50-75% dense 1.23 .65 2.35
(D) ≥75% dense 2.19 .97 4.93

relationship between BIRADS classification and Quantra absolute density, as the values

do not substantially vary from those reported in previous Tables 5.3 and 5.6. The two

measures appeared to have independent effects on risk. This suggests that they may be

measuring different aspects of breast density.

5.4 Discussion

Our data seem to support the hypothesis that absolute volume of dense tissue, is a better

predictor of breast cancer risk than percent density, possibly because it gives a closer es-

timate of the number of cells at risk of suffering a malignant transformation. However it

should be noted that the OR for the highest quintile compared to the lowest is only 1.77

(Table 5.4); in other words, the observed difference in the number of cases and controls

between high and low amounts of dense volume is modest. In order to validate and give

further support to our findings, it would be interesting to compare the performances of

Quantra dense volume and interactive thresholding, the current gold standard. Previ-

ously, other volumetric estimates [8, 36, 245] failed to be more informative in similar

comparisons. It should be noted that our study population is on average younger than

the target population for screening in the UK, and is likely yo be of higher socioeconomic

status than the general population, since it is made up of users of a private healthcare

facility. Also, the cases are symptomatic. It is feasible that the levels of breast density

may differ from the general population. However, the comparison between cases and

controls would be expected to be valid.

In our data, the lack of association between Quantra and BIRADS is surprising and

raises questions about the validity of both measures. Moreover the association between

breast cancer risk and BIRADS classification here appears weaker than one would ex-

pect. As McCormack and dos Santos Silva’s meta-analysis [6] reported BIRADS category
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“extremely dense (≥ 75% dense)” typically presents a risk of 4.08 (2.96, 5.63) relative

to the lowest category, “almost entirely fat (≤ 25% dense)”, whereas in this study it

was 2.26 (1.01, 5.05). A first suggestion could be to repeat these analyses on further

and larger datasets for validation. If these results were confirmed we should start in-

vestigating what Quantra is actually measuring, since it seems to be strongly related

to breast cancer risk. In particular, the significant inverse positive association between

BIRADS and Quantra non-dense breast volume, among cases is surprising. It could

indicate that part of the visually assessed dense tissue is detected as fat by Quantra. It

should be mentioned that, recently, Ciatto and colleagues compared Quantra estimates

and BIRADS readings by 11 expert radiologists on 418 digital mammograms [51] and

their findings suggested that, despite Quantra estimates being consistently lower than

visual classification, there was a good agreement between automated and visual density

assessments. This is in opposition to what we observed, thus further analyses on a larger

dataset are needed to clarify this issue.

Figure 5.8: Percent distribution of BIRADS in the present study compared to Barlow
2006 [2]
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Table 5.17: Distribution (%) of BIRADS in Tice et al. 2005 [3], Barlow et al. 2006
[2] and the present study

BIRADS dense categories Tice et al. 2005 Barlow et al. 2006 present study
controls cases

(%) (%) (%) (%)

(A) <25% dense 7,890 (9.7) 142,660 (8.6) 42 (21.0) 30 (15.0)
(B) 25-50% dense 36,543 (44.7) 744,080 (45.2) 97 (48.5) 106 (53.0)
(C) 50-75% dense 31,282 (38.2) 633,954 (38.5) 45 (22.5) 39 (19.5)
(D) ≥75% dense 6,062 (7.4) 126,680 (7.7) 16 (8.0) 25 (12.5)
Total 81,777 (100.0) 1,647,374 (100.0) 200 (100.0) 200 (100.0)

Supplementary investigation of the distribution of BIRADS, stratified by menopausal

status (Figure 5.8), revealed that our data differ significantly from those observed in

larger studies [2, 3]. Barlow’s dataset was chosen for the comparison because the high

number of women (N=1,647,374) assessed with BIRADS and the similarity of propor-

tions in the categories found in Tice’s analysis on 81,777 subjects [3] make it a good

estimate of the general population. Table 5.17 shows the distributions of BIRADS cate-

gories in the cases and controls in the present study and in the larger studies of Tice et

al. [3] and Barlow et al. [2]. In our sample women, both cases and controls, seem to be

more likely to have less dense breasts (BIRADS categories A or B) than in the the other

two studies, with a corresponding deficit in category C. The cases in our study do have

a higher proportion in category D, as one would expect. The differences between the

distributions in the controls here and in the Barlow population were significant overall,

and in pre- and post-menopausal women separately (p<.01 in every comparison). Thus

it may be that our sample is not representative of the general population; and the fact

that the data were collected in a private medical facility could have introduced selection

bias. Also, of course, the controls are not a population sample, but are age-related to

cases.

Another possibility is that the visual classification of density on processed, full-field

digital images is not reliable. The image-digitization process is not designed to assess

breast density but to help detect tumours. The processing algorithm is developed to

remove image errors and to attenuate areas of whiteness (dense tissue) within the raw

images, so that tumours are more visible. Consequently, breasts are classified as less

dense as they would be if the assessment were based on film mammograms. This fact

might explain not only the differences in distribution between our sample and Barlow’s

but also the poor performance and small ORs of a well-established method, (BIRADS)

in the present case-control study. Based on our findings, one would have to conclude

that visual estimation from digital mammograms is a less reliable measure. However,
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a previous study [34] compared density measures, using both Wolfe’s patterns and the

Boyd’s six category classification (SCC), assessed from film and digital mammograms,

and found substantial agreement. More recently Harvey et al. [247] found no difference

in reported BIRADS breast density categories according to acquisition method, i.e. film

or digital images. Thus, it is by no means clear that visual assessment by BIRADS or

other systems is not reliable with digital mammography.

There have been studies [48, 50, 248] that compared Quantra volumetric assessments to

MRI breast density [47] that should help evaluate what Quantra is actually measuring.

Although the total breast volume appeared to be estimated with a good agreement, the

fibroglandular tissue volume, or absolute density, was poorer (squared Pearson’s correla-

tion coefficient: .36), leading also to low correlation regarding percent density (squared

Pearson’s correlation coefficient: .51) [50, 248]. Nevertheless Wang and colleagues [50]

concluded that the observed lack of agreement between mammographic density and MRI

density was most likely driven by differences in total breast volume. Kontos et al. [48],

instead, observed that MRI estimates of absolute density were significantly lower than

Quantra estimates for women with very low density breasts. This finding suggests that

Quantra may consider as dense some fatty tissue, one may speculate that it could be

due to the compression applied during the mammographic exam. Nevertheless Kontos

and colleagues were using a limited sample (N=32), thus their results require validation

from a larger dataset.

Non-dense breast volume is utilised as a proxy measure for BMI, though it also allows

absolute density to be adjusted to become percent density and vice versa. Interestingly,

the association between breast cancer risk and percent density increases in strength af-

ter adjusting for non-dense volume, so it seems that there is independent information in

each measure. It is also probable that this finding is due to the fact that percent density

and non-dense breast volume together allow the computation of the amount of dense

breast volume in terms of cm3 and thus are just as informative as absolute density on

its own. The structural collinearity of non-dense volume and percent density, however,

make the adjusted estimates difficult to interpret. This may be distinct from the issue

of confounding with BMI, which could be effectively answered in a study including BMI

data on the subjects. Clearly, non-dense volume is at best a partial substitute for BMI.

Case subjects included in this study were symptomatic, and this may have affected our

findings due to masking, i.e. symptomatic subjects are likely to have denser breasts

that can hide tumours and lead to negative screening. Thus, masking should reduce

observed associations of density with risk of screen-detected cases and exaggerate asso-

ciations with post-screening, symptomatic cancers. However, if this was the case, we

would have expected a much stronger association between density and risk.
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The results with respect to area of residence suggest that the higher percent density

in London women is largely due to lower non-dense breast volume. This is consistent

with our previous finding, and with the observation that women residing in London

are thinner than women living outside the capital [246, 249]. The differing results by

“menopausal” groups (age below and above 50) may be chance findings and need con-

firmating by further studies, with explicit data on menopausal status.

These findings need to be validated using a larger dataset with richer data on other

risk factors in order to be confirmed and to help explain the apparent lack of association

between Quantra density measures and BIRADS categories. Our main finding that,

overall, absolute dense volume is a better predictor of risk than percent, is consistent

with our own previous findings [Chapter 4]. Quantra volumetric method requires further

validation as well, but it suggests that this is a hopeful direction for research and for

risk management in practice.



Chapter 6

Serial volumetric density

measures using Quantra: changes

with time and age

6.1 Introduction

Mammographic density has been consistently found to be lower in older women than

in younger women [92], and the relationship between mammographic density and time

has been investigated in several studies [16, 88, 91]. Better understanding of how breast

composition varies with age, how density increases with age up to age 40 and then de-

creases [88], could give us a wider insight into the association of density with risk, and

improve breast screening and breast cancer prevention programmes.

As a woman ages the mammographic appearance of her breasts changes because of an

involution process, i.e. there is a reduction in glandular tissue, and a simultaneous in-

crease in fat and connective tissue [16]. In particular Hutson and colleagues [88] analysed

breast samples, collected at necropsy, from subjects aged 10 to 80, and concluded that

the proportion of the breast comprised of epithelial tissue increases in the first decades

after menarche (approx. age 10 to 40), and then declines progressively until menopause.

In post-menopausal subjects this proportion remained fairly constant [88].

In 2010 McCormack et al. focused on the relationship between breast composition and

age in 645 women aged 50 to 65, studying the screening mammograms available in a

3- to 12-year interval [91]. Their findings suggest a non-linear relationship between age

and mammographic density, both percent and absolute dense area, with a greater drop

143
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in the first years after the 50th birthday, intuitively due to the beginning of menopause,

and then a gradual stabilization by age 65. The proportion of non-dense tissue in

the mammograms correspondingly increased but the rate of change was almost double

that of dense area. However, it is hoped that volumetric methods of assessment for

mammographic density should provide more precise measures of the changes in breast

composition [91].

The current study comprised 331 women without breast cancer, whose density was as-

sessed on two occasions using Quantra, a fully-automated volumetric method [51]. These

data allow investigations of the change in breast composition over time within subjects,

and how the rate of change varies according to age. In addition, we performed a cross-

sectional analysis on the association between age and the amount of dense and non-dense

breast tissue at baseline. The potential presence of an “urban effect” [246] was also a

subject of investigation.

6.2 Materials and methods

6.2.1 Data collection

Between 2002 and 2008, 413 women attending for mammography screening at the

Princess Grace Hospital, a private facility in central London, were randomly selected

to enter a cohort study of volumetric changes in breast composition. Cohort members

were aged 34 to 81 and had no diagnosis of breast cancer before or during the study.

These women underwent two digital mammographic examinations, on average 18 months

apart. Due to misrecording and missing values, the final dataset included complete de-

tails on 332 women (231 younger than 50 years and 101 aged 50 or more years at entry).

The younger group included one subject whose exact age was not known, but was known

to be under 50.

Density was assessed with Quantra, an automated volumetric method. This technique

is described in the previous chapter [Chapter 5]. It provides estimates of the total and

dense volumes in cm3, and the percent density, which is a ratio of the two. We also

computed the volume of fatty tissue (non-dense volume), as the difference between total

and dense volumes.

As previous results suggested higher density in women resident in London, data on area

of residence was also recorded. This was classified as London, any other region in the

UK (based on the post-code of residence), or overseas.
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Aside from residence, age, breast composition assessed by Quantra and screening his-

tory, no other personal data was available.

6.2.2 Statistical analysis

The distributions of demographic and other variables at the first examination were sum-

marised as percentages for discrete variables, or means and SDs for continuous variables.

Total breast volume and non-dense volume were used as a proxy for BMI, and the sub-

division between women aged under 50 and those aged 50 or over, at the first screening,

provided an approximate indicator of menopausal status.

Changes in breast composition between the two mammogaphic examinations were the

main subject of investigation, and were first summarised with means and SDs. The null

hypothesis of “no change” was assessed using the non-parametric Wilcoxon matched-

pairs signed-ranks test. The relationship between age at baseline and the changes in ab-

solute and percent density, non-dense and total breast volume, was studied graphically

and through linear regression analyses. The hypothesis that the rate of change in breast

composition is time/age-dependent was investigated using boxplots, non-parametric

tests for trend across ordered groups and linear regression. Note that the differences in

mammographic measures between screens were computed as follows: screen2−screen1,

so that the change is positive if the measure has increased over time, and negative if it

has decreased.

The relationship between age and breast composition at baseline was investigated using

linear regression and Pearson’s correlation coefficients.

Secondary analyses, stratified by age at baseline and by area of residence (London or

elsewhere in the UK), were also performed.

All analyses were performed with STATA software version 11.

6.3 Results

The sample recruited in the study comprised 332 women, resident mainly in London

(64%) and on average aged 47 (Table 6.1). The age distribution varied significantly ac-

cording to area of residence (χ2 test: p=.02), because women living outside the capital

tended to be more often in the extreme age classes, “under 45” and “65 or more” (Fig.
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6.1).

Figure 6.1: Distribution of age at baseline and area of residence (London: N=213,
Other UK: N=83)

Overall, breast composition at baseline, shown in Table 6.1, was as one would expect: at

older ages women had, on average, significantly lower percent density (Wilcoxon rank-

sum test: p<.01) and higher amounts of fatty and total volume (p<.01 for both), whereas

absolute breast density did not, on average, change significantly with age (p=.78).
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Table 6.1: Characteristics of the study samples at baseline

Age groups
under 50 50 or more Total
N=231 N=101 N=332

Age at baseline
mean (sd) 42.1 (3.4) 58.4 (6.8) 47.1 (8.9)

Area of residence (%)
London 154 (66.7) 59 (58.4) 213 (64.2)
Other UK 58 (25.1) 25 (24.8) 83 (25.0)
Abroad 19 (8.2) 17 (16.8) 36 (10.8)

Measures of mammographic breast density assessed by Quantra at baseline
mean (sd)
Percent breast density (%) 26.9 (11.4) 20.0 (9.4) 24.8 (11.3)
Absolute breast density (cm3) 102.9 (72.1) 96.5 (52.0) 101.0 (66.6)
Non-dense volume (cm3) 321.0 (250.8) 446.9 (277.5) 359.3 (265.2)
Total breast volume (cm3) 423.9 (303.3) 543.4 (309.8) 460.2 (309.7)

Figure 6.2: Distribution of the time interval (in years) between screenings and age at
baseline
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For the group aged 50 or more mammography screening was repeated after one year in

81% of cases, most other cases after 2 years, whereas 49% of younger women (49.4%)

had their second mammogram 2 to 5 years after (Figure 6.2). In all women considered,

we observed a significant decrease of percent density between the first and second mam-

mogram (-.3%, p=.03), a stronger effect among older women (-.8%, p<.01). This was

due to the fact that both groups experienced a substantial increase in volume of fatty

tissue (under 50: +8.6 cm3, p<.01; 50 or more: +10 cm3, p<.05). Absolute density did

not change substantially between screens (Table 6.2).

Table 6.2: Breast composition measures at first and second screen

screen 1 screen 2
Variable Mean (SD) Mean (SD) p

Under 50, N=231
Percent breast density (%) 26.9 (11.4) 26.9 (12.0) .39
Absolute breast density (cm3) 102.9 (72.1) 103.6 (74.7) .31
Non-dense breast volume (cm3) 321.0 (250.8) 329.5 (262.3) <.01
Total breast volume (cm3) 423.9 (303.3) 433.1 (313.4) <.01

50 or more, N=101
Percent breast density (%) 20.0 (9.4) 19.3 (9.1) <.01
Absolute breast density (cm3) 96.5 (52.0) 94.5 (48.9) .80
Non-dense breast volume (cm3) 446.9 (277.5) 456.9 (268.8) .05
Total breast volume (cm3) 543.4 (309.8) 551.3 (296.6) .11

Total, N=332
Percent breast density (%) 24.8 (11.3) 24.6 (11.7) .03
Absolute breast density (cm3) 101.0 (66.6) 100.8 (68.0) .46
Non-dense breast volume (cm3) 359.3 (265.2) 368.3 (270.3) <.01
Total breast volume (cm3) 460.2 (309.7) 469.1 (312.7) <.01

Figure 6.3 depicts the changes in (a) percent density, (b) absolute density, (c) non-dense

volume and (d) total volume between the two screens according to age of the subjects; it

shows also the fitted linear slope with related 95% confidence interval (area in grey). In

every case the distribution was a funnel-shaped pattern, with a broader range of values

for change in density between screens at earlier ages and a narrower distribution at later.

The intervals around the fitted lines are narrower at younger ages because of a higher

number of subjects. The linear trend described by these slopes was not significantly

different from zero, and in particular in the charts regarding the change in density, both

percent and absolute, the lines are almost exactly parallel to the X-axis (coefficient for

percent density: -.02, p=.6; coefficient for absolute density: -.08, p=.7). Interestingly,
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between 40% and 50% of young women experienced an increase in breast density (both

percent and absolute) between the first and the second mammogram.

Figure 6.3: Changes in breast composition between subsequent mammograms accord-
ing to age at baseline (years)

The fact that at younger ages the interval between screens was wider and therefore

subject to a higher variability could also explain the funnel shape. Thus, we repeated

this analysis considering only the subjects screened a year or less apart (Figure 6.4).

However results did not differ substantially from the previous ones.
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Figure 6.4: Changes in breast composition between subsequent mammograms ac-
cording to age at baseline (years), with maximum one-year interval between screens

Investigating if and how changes in breast composition depend on time between mea-

surements (Figures 6.5 and 6.6), the results suggested that changes in non-dense and

total breast volume increased with time between mammograms. This is consistent with

the findings above that in the younger women, the percent and absolute density did not

change significantly between screens, and that the significant change in percent density

in all ages combined was driven by an increase in non-dense volume (Table 6.2).

The relationship between change in density and time between screens was investigated

only overall and in the young group, because women aged 50 or more underwent their

second screen mostly (98%) only one or two years after the first (Figure 6.2). Thus,

there was insufficient variation in time interval to assess its effect in the older group.
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Figure 6.5: Dependence on time of changes in breast composition between two sub-
sequent mammograms (N=332)

Figure 6.6: Dependence on time of changes in breast composition between two sub-
sequent mammograms, in women aged under 50 (N=231)
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Table 6.3 shows the results of regression analyses for the change in breast composition

factors by time between screens, both adjusted and unadjusted for age at baseline. Sig-

nificant associations were only observed for non-dense breast volume (p=.03 unadjusted;

p=.05 adjusted for age) and total breast volume (p=.02 unadjusted; p=.04 adjusted for

age). Age at baseline, on the other hand, seemed to have no effect on the changes,

indicating that the rates of change in breast composition were similar at all ages. This

can also be seen in Table 6.2.

Table 6.3: Linear dependance of changes in mammographic volumetric measures on
time between screens

Factor Coef. [95% Conf. Interval] p-value

Response: Difference in percent density
Interval between screenings .02 -1.00 1.04 .97

Interval between screenings -.08 -1.15 .99 .88
Age at baseline -.02 -.11 .06 .58

Response: Difference in absolute density
Interval between screenings 2.95 -1.74 7.63 .22

Interval between screenings 2.74 -2.16 7.63 .27
Age at baseline -.02 -.41 .38 .93

Response: Difference in non-dense volume
Interval between screenings 12.13 1.35 22.91 .03

Interval between screenings 11.28 -.02 22.58 .05
Age at baseline -.22 -1.13 .70 .64

Response: Difference in total volume
Interval between screenings 15.07 2.31 27.83 .02

Interval between screenings 14.01 .65 27.38 .04
Age at baseline -.23 -1.31 .85 .67

Scatter plots in Figure 6.7 illustrate the relationship between age and breast composi-

tion, i.e. (a) percent and (b) absolute density, (c) non-dense and (d) total breast volume,

at baseline. They suggest a steady increase of non-dense and total breast volume with

age, respectively +6.8 cm3/year (p<.01) and +6.3 cm3/year (p=<.01) and a consequent

constant decrease in percent density (-.41%/year, p<.01). The absolute amount of dense
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tissue did not change significantly (-.47 cm3/year, p=.26).

Figure 6.7: Relationship between breast composition and age at baseline

Table 6.4: Breast composition measures at first and second screen, stratified by resi-
dence

screen 1 screen 2
Variable Mean (SD) Mean (SD) p

London, N=213
Percent breast density (%) 26.1 (11.3) 25.3 (11.5) .01
Absolute breast density (cm3) 101.1 (67.9) 100.3 (70.7) .96
Non-dense breast volume (cm3) 341.4 (271.1) 351.3 (279.5) < .01
Total breast volume (cm3) 442.5 (319.2) 451.5 (328.0) .03

Other UK, N=83
Percent breast density (%) 21.3 (9.3) 22.2 (10.8) .51
Absolute breast density (cm3) 96.8 (60.1) 100.0 (65.4) .15
Non-dense breast volume (cm3) 401.9 (239.9) 402.3 (228.2) .30
Total breast volume (cm3) 498.7 (277.3) 502.3 (260.7) .21

Table 6.4 examines change in breast composition between successive screens according

to area of residence. UK residents living outside London seemed not to have experi-

enced any significant changes from screen 1 to screen 2, whereas in London residents,

on average, there was a significant decrease in percent density (-.71%, p=.01) because

of a substantial increase in non-dense tissue (+9.84 cm3, p<.01). It is possible that the
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absence of observed differences in the non-London residents is due to the smaller number

of subjects; however there are not even any suggestive differences in this group. Another

hypothesis to explain these differences between the two groups is a different age com-

position (Figure 6.1), but London residents are, on average, only slightly younger (46.7

years) than women living elsewhere in the UK (47.5 years). Furthermore a Wilcoxon

rank-sum test, comparing age distributions in the two groups, was unequivocally non-

significant (p=.81).

Studying Table 6.4 vertically between London and other UK locations, it appears that

at baseline all the subjects presented with similar volumes of fibroglandular tissue in vol-

umetric terms (Wilcoxon rank-sum test: p=.88), but that London residents had lesser

fatty (non-dense) tissue and smaller total breast size (p<.01 for non-dense breast vol-

ume, p=.02 for total breast volume) leading to a higher average percent density (p<.01).

Figure 6.8: Relationship between percent breast density and age at baseline, stratified
by residence

Figures 6.8, 6.9, 6.10 and 6.11 illustrate the correlations between breast composition

and age at baseline. The increase in non-dense volume per year of age was less steep in

London (+5.61 cm3/year, p=.01) than elsewhere in the UK (+8.51 cm3/year, p<.01),

likewise for the total breast volume (London: +4.69 cm3/year, p=.08; Other UK: +9.27

cm3/year, p<.01), arguably consistent with the smaller breast size and lower fatty tissue

volume in London.
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Figure 6.9: Relationship between absolute breast density and age at baseline, strati-
fied by residence

Figure 6.10: Relationship between non-dense breast volume and age at baseline,
stratified by residence
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Figure 6.11: Relationship between total breast volume and age at baseline, stratified
by residence

6.4 Discussion

In the present study we witnessed no significant change in absolute density with age at

baseline or between successive screens, indicating that the observed variations in breast

composition, and in particular the decrease in proportion of dense tissue, are to be

attributed to the growth in volume of non-dense tissue. Between screens percent den-

sity had, overall, a limited, but statistically significant, reduction of .27% because the

non-dense tissue was volumetrically increasing at a higher rate (+11 cm3/year, Table

6.3) than the dense tissue. This result is in agreement in McCormack’s and colleagues’s

study [91] where the growth in non-dense area was much larger in magnitude than the

decline in dense area.

However unlike in the previous literature, including McCormack et al.’s findings [91],

in our case, the dense tissue did not appear to vary in absolute size. This could be

due to lack of power investigating changes in fibroglandular tissue, but also the different

methods used for assessing density could have contributed: McCormack and colleagues

used interactive-thresholding, a computer-assisted technique that estimates breast com-

ponents in terms of areas [30], whereas the current data were assessed with Quantra, a

volumetric fully-automated system [51]. The estimates from Quantra were anticipated

to be more reliable because they are not affected by the rater subjectivity, unlike those

from interactive thresholding that depend on human input; nevertheless the Quantra
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method is still undergoing validation and currently there is no conclusive evidence of

its accuracy in measuring density. Another possible explanation for the disagreement

between the current findings and those of McCormack et al. is the different age com-

position of the samples: in the present study age at baseline ranged from 34 to 81, and

almost the 70% of subjects were aged under 50, whereas McCormack and colleagues in-

cluded in their study only women aged 50 to 65. In premenopausal women breast tissue

is known to be more susceptible to both endogenous and exogenous factors [12], and

this is reflected in a wider variability in breast composition at younger ages which was

also seen in our data. This variability could have been enhanced by the longer intervals

between screens, i.e. up to 5 years, in women aged under 50, but when we repeated the

analyses including only subjects screened one year apart the results were not affected.

Furthermore, analyses run separately in two age groups, “under 50” and “50 or more”,

did not report significant differences. Such findings could also indicate that longitudinal

changes in breast composition occur at similar rates at different ages. However this could

be due to lack of power, since these results are derived from relatively small subsets of

data.

Menopause affects the characteristics of mammographic appearance [21, 89, 90], promot-

ing the involution process and leading to an average further reduction in breast percent

density of 3.26%, over 5 years, due to a reduction in glandular, i.e. dense, tissue, and

an increase in connective tissue and fat, i.e. non-dense, tissue [90]. McCormack and

colleagues [91] observed this drop and consequently described as non-linear the trajec-

tory of reduction in absolute and percent dense area over time. In the current study,

by contrast, the rate of change in breast tissue components seemed to be unaffected

by age as a substitute for menopausal status. Moreover pre- and post-menopausal (age

50) mammographic appearances were significantly different in terms of percent density

because of non-dense volume. The volume of dense tissue appeared approximately con-

stant.

Since details on area of residence were available it was possible to verify the existence of

an “urban effect”. A previous study by Perry and colleagues [246] classified 962 women

(318 from London, 654 resident outside of London) according to BIRADS density cate-

gories and then compared the incidence of each category between subjects from London

or other UK areas. It was observed that women resident in London had significantly

higher Birads categories than women resident outside the capital, after adjusting for

age. Similarly, in the current data, percent density in London residents was substan-

tially higher (Table 6.4). Once more, we found that it was more attributable to larger

volumes of fatty tissue in women resident outside London, than to a difference in ab-

solute density. In the previous publication reporting higher percent density in London
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women [246], it was speculated that this was due to lower body mass in London women,

as evident from survey data [246, 249]. The results here support this speculation.

A limitation of this study is the fact that it only comprised two screens within a rela-

tively short interval. It is possible that with a longer interval between screens we might

have observed a reduction in absolute density, due to involution, within the subjects.

However the volume of dense tissue stayed constant across age even when we performed

a cross-sectional analysis of the data at baseline, supporting our longitudinal results.

Measurement error in Quantra estimates could be partially responsible for some of the

unexpected results. As noted above, the Quantra method is currently undergoing val-

idation to assess the extent to which it is correctly measuring mammographic density.

This issue will be further developed in Chapter 8.

The availability of details on only age and residence, besides volumetric estimates of

breast components, represents another limitation. Information on other factors, e.g. ex-

ogenous hormone use, potential pregnancies between the screens and menopausal status,

could have helped us explain more clearly the variations in breast composition.

In the current study, the volume of dense tissue seemed not to be susceptible to age and

time. It has been suggested that an absolute measure of density should be chosen over

a percent one in breast cancer risk prediction contexts [33, 226], since it is less affected

by BMI. Our results suggest that further study of the non-dense component might yield

further understanding of this.

In conclusions the main implications of this analysis are:

1. Absolute non-dense volume, as measured by Quantra, appears to be more sensitive

to temporal and age-related changes than percent or absolute dense volume.

2. Research in the future should focus on whether the previous implication is due

to the measurement qualities of Quantra or to a greater biological role for non-

dense tissue. If the latter, there may be major implications for prevention and for

monitoring of preventive interventions.

3. Assuming that the results are not primarily due to measurement properties of the

Quantra instrument, the results strongly support previous findings that percent

density is higher in London women, probably due to their lower body mass.

4. These results broadly support those of others using automated or semi-automated

methods, that absolute measures of breast composition are at least as important

as percentages (and probably more so).



Chapter 7

A case control evaluation of a

fully automated volumetric

density measure (Volpara) as a

predictor of breast cancer risk

7.1 Introduction

In Chapter 5, we examined the association of a fully-automated volumetric density mea-

sure, Quantra, with breast cancer risk in a case-control study. In that chapter we noted

that, whilst there is good evidence for density as a risk factor [6], there are practical diffi-

culties in its use at population level unless a reliable and fully-automated method is avail-

able. In the USA and in other countries, the visually assessed BIRADS categorisation is

in general use, and in parts of the USA it is mandated by statute [2, 3, 234, 235, 250–252].

Nevertheless, being based on human input, it is susceptible to subjectivity [28, 250] and

its reliability on digital mammograms still requires proper validation [32] [Chapter 5],

although Harvey and colleagues recently observed good agreement in reported BI-RADS

breast density categories according to acquisition method, i.e. film or digital [247]. As

already remarked, it is thought that a continuous density assessment could provide a

more informative and accurate measure [28].

In the late 1990s, technology advances led to the development of a computer-assisted

method for assessing density, based on interactive thresholding [30]. This technique,

available as the computer programme Cumulus, is considered by many in the field to
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be the gold-standard. It provides continuous information regarding both absolute and

percent dense area observed in mammograms. Not only does Cumulus record more

complete and comprehensive information regarding breast density, it has also been ob-

served to be very effective in breast cancer risk predictions [6, 26]. The drawbacks of

this technique are that it requires trained observers and digitized images, along with

being time- and labour-intensive. For these reasons, Cumulus is difficult to use in the

context of high-volume, population mammographic screening.

Automated approaches are expected to minimize or solve these limitations, by provid-

ing quick and non-subjective assessments with little or no call on human resources. In

particular, the newly developed methods have been focusing on volumetric assessments

[36–42, 51, 52, 178, 236], because it is anticipated that volumetric estimates of den-

sity may provide more precise information about the amount of fibroglandular tissue

[30, 201]. These methods are currently undergoing validation, however the results pre-

sented so far have suggested that volumetric estimates were no more predictive of risk

than bi-dimensional measures, assessed with interactive thresholding [8, 36, 201, 245].

Volpara [52] is one of these novel fully-automated volumetric methods. It is a soft-

ware package that analyses raw images from full-field digital mammograms (FFDM) to

quantify dense tissue. Despite the current scarcity of evidence in the public domain

supporting Volpara, its implementation has already spread internationally, e.g. in UK,

Netherlands, Korea and US [253], and made its evaluation and validation urgent and

necessary.

Here we report an evaluation of the association of Volpara with breast cancer risk in a

case-control dataset, using, largely but not entirely, the same cases and controls as in

the Quantra study reported in Chapter 5.

7.2 Materials and Methods

7.2.1 Data collection

For this study, we used mostly the same digital mammograms used in the Quantra case-

control study [Chapter 5], from women attending the Princess Grace Hospital, London,

who had full-field digital mammographic examinations between 2005-2009 . Originally,

two hundred cases were randomly selected from patients with histopathologically verified

breast cancer, along with two hundred controls. Due to missing raw digital information,
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124 (62 cases) subjects could not be assessed with Volpara. Consequently 90 new sub-

jects (43 cases) were recruited.

All mammograms were high quality two-view images, soft copy reported on high resolu-

tion monitors. Image quality was not a factor in case selection and none were rejected

on quality grounds during density estimation. Among cases, density was assessed on the

last mammogram of the contralateral breast before diagnosis; for controls, density was

estimated on the same side as the matched case, using mammograms dating as close as

possible to the matched case diagnosis. Estimation of density was based on an average

of the two-views, as it is known that the craniocaudal view tends to give higher density

estimates than the mediolateral oblique. The area-based density was estimated by one

of two experienced radiologists (Dr Nick Perry and Dr Katja Pinker Domenig), using the

standard density grades according to the American College of Radiology Breast Imaging

Reporting and Data System (BIRADS) [234], as described in Chapter 5.

Results regarding Quantra density estimates are given in Chapter 5. In this chapter, we

report the corresponding results using the Volpara software [52], acquired more recently.

As previous results suggested higher density in women residing in London [246], we also

recorded data on area of residence. Area of residence was classified as London, any other

region in the UK (based on the post-code of residence), or outside the UK, referred to as

“abroad” for brevity. In addition to age at mammogram (henceforth referred to simply

as age), area of residence, and density assessed with Volpara, Quantra and BIRADS, no

information on other breast cancer risk factors was available.

Volpara assessment was only available for 366 subjects (182 cases and 184 controls).

Table 7.1 shows the numbers of cases and controls used in both chapters.

Table 7.1: Data available for both measures

Density measure cases controls

Volpara only 43 47
Quantra only 61 63
Both 139 137

7.2.2 Statistical analyses

Demographic and other variables are summarised using percentages for categorical vari-

ables or medians and IQRs for continuous variables. As noted above, we had data on age,
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area of residence classified as “London”, “Other UK regions” and “Abroad”, Volpara

and Quantra estimates for total breast volume, dense volume and non-dense volume and

BIRADS classification. Total breast volume and non-dense volume were used as a proxy

for BMI, which was not available, and age under 50 versus greater than or equal to 50

was used as a surrogate for menopausal status.

The distributions of percent and absolute density, as well as non-dense and total breast

volume, were compared between cases and controls using the Wilcoxon rank-sum test.

Unconditional logistic regression was used to calculate odds ratios (OR) for risk of breast

cancer after adjustment for age and other potential confounding factors. Loss of infor-

mation at merging made conditional logistic regression analyses, used in Chapter 5, no

longer applicable to the data as this would have entailed loss of large numbers of matched

cases and controls. This analysis was repeated after log-transformation of Volpara esti-

mates. Secondary analyses were also performed stratified by age and area of residence

(London vs other UK).

The relationship between BIRADS and Volpara was investigated graphically and Cuz-

ick’s nonparametric test was used to evaluate differences for trend across ordered groups

[214].

The agreement between the two automated density measures was assessed using Pear-

son’s correlation coefficents and contingency tables of categorised measures. Finally the

associations of Volpara and Quantra density estimates with breast cancer risk were com-

pared using standardised odds ratios.

Quantra and BIRADS analyses are presented in Chapter 5. Henceforth, in this chapter,

Volpara density estimates are referred to simply as density, unless otherwise specified.

All analyses were performed using STATA, version 12.1.

7.3 Results

Characteristics of the 182 case subjects and 184 control subjects are presented in Table

7.2. Age at mammogram and areas of residence appeared equally distributed between

cases and controls. The distribution of percent and absolute density, as well as non-

dense and total breast volume, were compared between cases and controls using the

Wilcoxon-rank-sum test. There was no significant differences in these measures between

the two groups, but absolute density was borderline significantly higher among cases

than controls (p=.07).



A case control evaluation of Volpara 163

Table 7.2: Characteristics of the study samples

Cases Controls Total
N=182 N=184 N=366

Age at mammogram, No. (%)
<45 22 (15.8) 21 (15.3) 43 (15.6)
45-54 46 (33.1) 47 (34.3) 93 (33.7)
55-64 37 (26.6) 36 (26.3) 73 (26.4)
≥ 65 34 (24.5) 33 (24.1) 67 (26.3)

Area of residence, No. (%)
London 71 (51.1) 81 (59.1) 152 (55.1)
Other UK 53 (38.1) 46 (33.6) 99 (35.9)
Abroad 15 (10.8) 10 (7.3) 25 (9.0)

Measures of mammographic breast density assessed by Volpara, Median (IQR)
Percent breast density, in % 11.9 (7.2) 11.4 (7.0) 11.7 (7.1)
Absolute breast density, in cm3 66.4 (38.3) 58.7 (31.4) 62.5 (35.2)
Non-dense breast volume, in cm3 634.4 (416.3) 588.5 (372.5) 611.3 (395.0)
Total breast volume, in cm3 700.7 (428.2) 647.3 (382.3) 673.9 (406.1)

Table 7.3 summarises the distribution of BIRADS classification between cases and con-

trols. Overall, there was a smaller proportion of cases in the lowest density category,

and a greater proportion in the highest. These differences appeared stronger in the older

age group. Further results regarding BIRADS on this dataset are presented in Chapter

5.
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Table 7.3: Distribution of BIRADS in cases and controls (percentages)

BIRADS Cases (%) Controls (%)
N=139 N=137

Under 50

(A) <25% dense “almost entirely fatty” 11 (19.0) 11 (20.4)
(B) 25-50% dense “scattered fibroglandular density” 28 (48.3) 26 (48.1)
(C) 50-75% dense “hetereogeneously dense” 15 (25.8) 12 (22.2)
(D) >75% dense “extremely dense” 4 (6.9) 5 (9.3)

50 or more

(A) <25% dense “almost entirely fatty” 11 (13.6) 16 (19.3)
(B) 25-50% dense “scattered fibroglandular density” 50 (61.7) 40 (48.2)
(C) 50-75% dense “hetereogeneously dense” 6 (7.4) 19 (22.9)
(D) >75% dense “extremely dense” 14 (17.3) 8 (9.6)

Overall
(A) <25% dense “almost entirely fatty” 22 (15.8) 27 (19.7)
(B) 25-50% dense “scattered fibroglandular density” 78 (56.1) 66 (48.2)
(C) 50-75% dense “hetereogeneously dense” 21 (15.1) 31 (22.6)
(D) >75% dense “extremely dense” 18 (13.0) 13 (9.5)
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Figure 7.1: Distribution of (a) percent and (b) absolute breast density in cases and
controls
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Table 7.4: ORs for developing breast cancer from unconditional logistic regression
models using Volpara absolute density

Factor category obs OR [95% Conf. Interval] P>z

adjusted for age
absolute density per 10 cm3 366 1.07 1.00 1.13 .038
age per year 1.00 .98 1.02 .809

adjusted for age and non-dense volume
absolute density per 10 cm3 366 1.06 1.00 1.13 .069
age per year 1.00 .98 1.02 .914
non-dense volume per 10 cm3 1.00 1.00 1.01 .602

adjusted for age and London residence
absolute density per 10 cm3 251 1.06 .98 1.14 .123
age per year 1.00 .97 1.02 .754
area of residence Other UK 1.00 (referent) .309

London .77 .46 1.28

adjusted for age, non-dense volume and London residence
absolute density per 10 cm3 251 1.06 .98 1.15 .129
age per year 1.00 .97 1.02 .800
non-dense volume per 10 cm3 1.00 1.00 1.01 .841
area of residence Other UK 1.00 (referent) .302

London .76 .46 1.28

We also investigated the association of percent and absolute density assessed using Vol-

para with breast cancer risk (Figure 7.1). The odds ratios relating to absolute density

and non-dense volume are expressed per 10 cubic centimetre increase, whereas those re-

lating to percent density are per 10% increase. Comparing the performance in risk pre-

diction of the two density measures derived by the Volpara system (Tables 7.4 and 7.5),

the results suggested that only absolute density had a significant main effect (p=.04),

after age-adjustment. An increase of 10 cm3 1 in fibroglandular volume would lead to a

7% increase in the odds of breast cancer. The inclusion of non-dense volume to the model

did not substantially alter the result, whereas adjusting for area of residence weakened

it, possibly by causing a reduction in the number of observations (Table 7.4). Volpara

percent density, on the other hand, had a non-significant association with breast cancer

risk, even after adjustment for the other available risk factors (Table 7.5).

The introduction of the area of residence in the model (Table 7.4-7.5) caused a reduction

1the average absolue density is 62.5 cm3
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Table 7.5: ORs for developing breast cancer from unconditional logistic regression
models using Volpara percent density

Factor category obs OR [95% Conf. Interval] P>z

adjusted for age
% density per 10 % 366 1.11 .82 1.50 .513
age per year 1.00 .98 1.02 .886

adjusted for age and non-dense volume
% density per 10 % 366 1.37 .94 2.00 .105
age per year 1.00 .98 1.02 .872
non-dense volume per 10 cm3 1.01 1.00 1.01 .064

adjusted for age and London residence
% density per 10 % 251 1.20 .83 1.75 .335
age per year 1.00 .97 1.02 .823
area of residence Other UK 1.00 (referent) .247

London .74 .44 1.23

adjusted for age, non-dense volume and London residence
n=251
% density per 10 % 251 1.40 .88 2.22 .154
age per year 1.00 .97 1.02 .865
non-dense volume per 10 cm3 1.00 1.00 1.01 .267
area of residence Other UK 1.00 (referent) .273

London .75 .45 1.25

in sample size for two reasons: (a) 25 foreign women were excluded from the analysis, in

order to study the urban effect of London against other areas in the UK; (b) further 90

observations were dropped because of missing values. While it increases the standard

error and reduces significance, adjustment for area of residence does not notably change

the ORs for density, nor is area of residence significant. Therefore, adjustment for area

of residence is probably counter-productive, lowering precision of estimation with no

gain in validity.

Table 7.6 shows the ORs associated with quintiles of absolute dense volume, based on

the control distribution, in order to facilitate the understanding of the shape of the as-

sociation between Volpara absolute density and risk of developing breast cancer. There

was no significant difference in the odds across the quintiles (p=.12). This may suggest
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Table 7.6: ORs for developing breast cancer from an unconditional age-adjusted
logistic regression model using the quintiles of Quantra absolute density among controls,

N=366

OR [95% Conf. Interval] P>z

1st quintile (0− 34.75 cm3) 1.00 (referent) .119
2nd quintile (34.75− 43.58 cm3) .97 .49 1.92
3rd quintile (43.58− 59.15 cm3) 1.23 .63 2.41
4th quintile (59.15− 80.78 cm3) 1.43 .75 2.75
5th quintile (> 80.78 cm3) 1.35 .77 2.37
age 1.00 .98 1.02

that the association between breast cancer risk and density which we observed previ-

ously (Table 7.4) is substantially influenced by small numbers of extreme values among

cases, as Figure 7.1 also suggests. It may also suggest a threshold effect as the main

difference in Table 7.6 is between quintiles 1-2 combined and 3-5 combined.

Results of the analyses using Volpara measures after log-transformation are summarised

in Table 7.7. Evidence of an association between breast cancer risk and absolute density

appears weaker, i.e. only borderline significant (p=.06), in comparison with the results

obtained using the original measures. However, overall they led to similar conclusions

to those of Tables 7.4 and 7.5. We therefore returned to the original measures for subse-

quent analyses, to facilitate interpretation of results. In addition to this, in the analysis

based on the log-transformed densities, the χ2 statistics demonstrate that adjustment of

the percent density variable for non-dense or total breast volume is returning the same

information as absolute density but at the cost of adding a degree of freedom.
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Table 7.7: ORs for developing breast cancer risk from unconditional age-adjusted
logistic regression models using Volpara log-transformed measures

Factor obs OR [95% Conf. Interval] P>z model χ2 df

adjusted for age
log-absolute density 366 1.47 .98 2.19 .061 3.55 2
age 1.00 .98 1.02 .842

adjusted for age and log-non-dense volume
log-absolute density 366 1.45 .94 2.22 .091 3.59 3
age 1.00 .98 1.02 .890
log-non-dense volume 1.03 .74 1.45 .846

adjusted for age and log-total volume
log-absolute density 366 1.44 .92 2.24 .109 3.59 3
age 1.00 .98 1.02 .890
log-total volume 1.04 .71 1.53 .842

adjusted for age
log-% density 366 1.12 .79 1.58 .525 0.41 2
age 1.00 .98 1.02 .902

adjusted for age and log-non-dense volume
log-% density 366 1.51 .93 2.43 .094 3.55 3
age 1.00 .98 1.02 .904
log-non-dense volume 1.49 .96 2.32 .079

adjusted for age and log-total volume
log-% density 366 1.44 .92 2.24 .109 3.59 3
age 1.00 .98 1.02 .892
log- total volume 1.49 .96 2.33 .077

The logistic regression analyses were repeated in women aged under 50 and 50 or more

separately (Tables 7.8 and 7.9). Volpara absolute density was not significantly related

to risk in both groups, but there was a considerable loss of power as the sample size was

reduced from 366 to 130 and 236 respectively (Table 7.8). Also, the size of OR was the

same as the significant results for all ages combined. Similar results were obtained from

the analyses using percent density (Table 7.9).
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Table 7.8: ORs for developing breast cancer from unconditional age-adjusted logistic
regression models using Volpara absolute density, stratified by age

Factor category obs OR [95% Conf. Interval] P>z

adjusted for age
under 50
absolute density per 10 cm3 130 1.07 .98 1.17 .151
age per year .98 .93 1.04 .577

50 or more
absolute density per 10 cm3 236 1.07 .98 1.16 .123
age per year 1.01 .97 1.04 .735

adjusted for age and non-dense volume
under 50
absolute density per 10 cm3 130 1.08 .98 1.19 .132
age per year .99 .93 1.04 .604
non-dense volume per 10 cm3 1.00 .99 1.01 .643

50 or more
absolute density per 10 cm3 236 1.06 .97 1.15 .228
age per year 1.00 .97 1.04 .798
non-dense volume per 10 cm3 1.00 1.00 1.01 .393
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Table 7.9: ORs for developing breast cancer from unconditional age-adjusted logistic
regression models using Volpara percent density, stratified by age

Factor category obs OR [95 Conf. Interval] P>z

adjusted for age
under 50
% density per 10 % 130 1.16 .74 1.82 .505
age per year .99 .94 1.04 .686

50 or more
% density per 10 % 236 1.05 .68 1.62 .815
age per year 1.01 .97 1.04 .741

adjusted for age and non-dense volume
under 50
% density per 10 % 130 1.32 .73 2.39 .351
age per year .99 .94 1.04 .679
non-dense volume per 10 cm 3 1.00 .99 1.02 .511

50 or more
% density per 10 % 236 1.38 .81 2.35 .235
age per year 1.00 .97 1.04 .806
non-dense volume per 10 cm3 1.01 .99 1.01 .087
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Figure 7.2: Comparison of medians and inter-quartile ranges of Volpara (a) percent
density, (b) non-dense volume and (c) absolute density by age group, between cases

and controls

Figure 7.2 depicts the differences in breast composition between cases and controls ac-

cording to age group. Results showed no substantial difference at any age and in any

of the breast characteristics here presented, (a) percent density, (b) non-dense breast
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volume and (c) absolute density.

Table 7.10: ORs for developing breast cancer from unconditional age-adjusted logistic
regression models using Volpara absolute density, stratified by UK location of residence

Factor category obs OR [95% Conf. Interval] P>z

adjusted for age
London
absolute density per 10 cm3 152 1.10 .99 1.21 .069
age per year 1.01 .98 1.05 .374

other UK
absolute density per 10 cm3 99 1.02 .91 1.13 .768
age per year .98 .94 1.01 .162

adjusted for age and non-dense volume
London
absolute density per 10 cm3 152 1.08 .97 1.19 .163
age per year 1.01 .98 1.04 .546
non-dense volume per 10 cm3 1.01 1.00 1.02 .206

other UK
absolute density per 10 cm3 99 1.06 .94 1.20 .355
age per year .98 .95 1.02 .364
non-dense volume per 10 cm3 .99 .98 1.00 .121

In the analyses stratified by area of residence (Tables 7.10, 7.11 and 7.12) 25 women

living abroad were excluded to focus on the potential influence of urban and provincial

environment within the UK on breast density and its risk-predictive ability. A further

90 observations were dropped because of missing values resulting in a reduced sample

size which may affect the reliability of the results. Volpara absolute density seemed to

better discriminate cases from controls among London residents, although this was only

only borderline significant (p=.07), whereas Volpara percent density was borderline sig-

nificant (p=.08) in discriminating cases from controls among British women not living

in the capital.

According to Figure 7.3, cases residing in London or elsewhere in the UK have a very

similar pattern in absolute density (c) across ages, and have no significant differences

either in (a) percent density or (b) non-dense breast volume. Likewise, among controls

(Figure 7.4) we observed no difference among (a) percent density, (b) non-dense breast
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Table 7.11: ORs for developing breast cancer from unconditional age-adjusted logistic
regression models using Volpara percent density, stratified by UK location of residence

factor category obs OR [95% Conf. Interval] P>z

adjusted for age
London
% density per 10 % 152 .97 .61 1.55 .906
age per year 1.01 .98 1.04 .658

other UK
% density per 10 % 99 1.85 .93 3.67 .078
age per year .99 .95 1.03 .510

adjusted for age and non-dense volume
London
% density per 10 % 152 1.49 .81 2.76 .199
age per year 1.01 .98 1.04 .524
non-dense volume per 10 cm3 1.01 1.00 1.02 .035

other UK, n=99
% density per 10 % 99 1.68 .77 3.69 .196
age per year .99 .95 1.03 .506
non-dense volume per 10 cm3 1.00 .99 1.01 .639

Table 7.12: Distribution of cases and controls according to area of residence and age
at mammogram

controls (%) cases (%) Total (%)

London, n=152
Under 50 33 (40.7) 29 (40.8) 62 (40.8)
50 or more 48 (59.3) 42 (59.2) 90 (59.2)

Other UK, n=99
Under 50 15 (32.6) 23 (43.4) 38 (38.4)
50 or more 31 (67.4) 30 (56.6) 61 (61.6)
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Figure 7.3: Comparison of medians and inter-quartile ranges of Volpara (a) percent
density, (b) non-dense volume and (c) absolute density by age group, between UK

residents from London or other British regions, in cases
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Figure 7.4: Comparison of medians and inter-quartile ranges of Volpara (a) percent
density, (b) non-dense volume and (c) absolute density by age group, between UK

residents from London or other British regions, in controls



A case control evaluation of Volpara 177

volume and (c) absolute density comparing subjects living in London or in another UK

area. Nevertheless it can be observed that London control residents have consistently

higher median percent density than women resident elsewhere in the UK, despite the

fact that women with a different area of residence have mostly higher absolute dense

volume. This is observed because London residents had consistently lower non-dense

volume, according to Volpara estimates.

Figure 7.5: Boxplots of Volpara (a) percent and (b) absolute breast density stratified
by BIRADS categories and case-control status)

Figure 7.5 shows the relationship between BIRADS and Volpara density measures. These

boxplots represent the distribution of percent and absolute density in each BIRADS

category. Ideally, with increasing BIRADS category, we would expect to observe an in-

creasing trend, at least of Volpara percent density, as evidence of a positive association
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between the two methods. Results from tests for trend in Volpara percent density with

increasing BIRADS category suggest the absence of an overall association (p=.70), but a

positive association among controls (p=.05) and a negative trend among cases (p=.01).

However, there appears to be no association between BIRADS and Volpara absolute

density, and tests for trend confirm this lack of association between the two measures

(overall: p=.92, controls: p=.95 and cases: p=.99).

Figure 7.6: Boxplots of Volpara (a) non-dense and (b) total breast volume stratified
by BIRADS categories and case-control status)

Analyses of the other measures estimated by Volpara, non-dense and total breast volume

(Figure 7.6), help to explain these results. Overall no significant trend was observed for

either measure (non-dense breast volume: p=.59, total breast volume: p=.58), whereas

a significant declining trend for both was observed among controls (non-dense breast
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volume: p=.04, total breast volume: p=.04), and a significant increasing trend among

cases (non-dense breast volume: p<.01, total breast volume: p<.01).

Table 7.13: ORs for developing breast cancer risk from unconditional age-adjusted
logistic regression models using Volpara absolute density and adjusting for BIRADS

categories

Factor category obs OR [95% Conf. Interval] P>z

absolute density per 10 cm3 276 1.06 .99 1.14 .086
BIRADS 0-25% dense 1.00 (referent) .794

25-50% dense 1.51 .78 2.91
50-75% dense .80 .36 1.79
75-100% dense 1.73 .69 4.33

age per year 1.00 .97 1.02 .619

Given the lack of association between BIRADS and Volpara absolute density, we per-

formed an age-adjusted unconditional logistic regression including both measures, Table

7.13. These results provide further evidence of the lack of impact that BIRADS classifi-

cation has on Volpara absolute density and vice versa, as the values do not vary greatly

from those reported previously in Table 7.4. However, the association between Volpara

density and breast cancer risk was slightly weakened.

Further results regarding BIRADS on this dataset are presented in Chapter 5.
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Figure 7.7: Association between Volpara and Quantra estimates

Analyses of the association between Quantra and Volpara methods showed high and

significant correlations between all the breast composition characteristics estimated, (a)

percent and (b) absolute density, (c) non-dense and (d) total breast volume (Figure 7.7).

Volpara density measures were consistently lower than those estimated by Quantra, per-

haps because the former method does not treat skin as dense tissue. These plots also

highlighted a worse agreement between the two methods for higher values of Quantra.

As regards non-dense and total breast volumes, Volpara estimates were consistently

higher. Consequently standard deviations were higher for Volpara measures of non-dense

and total breast volume than those obtained by Quantra (395.0 vs 291.8 for non-dense

breast volume and 406.1 vs 334.3 for total breast volume). Conversely, Volpara density

estimates had a consistently lower standard deviations compared to Quantra density

measures (7.1 vs 9.7 for percent density and 35.2 vs 60.2 for absolute density).

The association between Quantra and Volpara estimates for absolute density was also in-

vestigated by comparing their quintile distributions in a contingency table (Table 7.14).

The cut-off points vary between the two methods, but because of the differences in the

two algorithms, standardised categories would lead to a poorer agreement, thus it was

preferred to compare Quantra and Volpara estimates on their own scales. Results indi-

cated an overall agreement of 54.7 %, with 26.5 % of subjects classified in higher quintiles
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by Volpara, and vice versa for the remaining 18.8%. The absence of observations in the

two most extreme cells (top right and bottom left) and low percent frequency in the

adjacent cells are also indicators of good agreement between the two measures.

Table 7.14: Absolute and relative (%) cell frequencies comparing Volpara and Quantra
quintile distributions for absolute density

Quantra
Volpara 0-46.6 cm3 46.6-68 cm3 68-91 cm3 91-125.4 cm3 >125.4 cm3 Total

0-34.8 cm3 32(11.6) 16(5.8) 1(.4) 0(.0) 0(.0) 49(17.8)
34.8-43.6 cm3 10(3.6) 18(6.5) 7(2.5) 5 (1.8) 1(.4) 41(14.9)
43.6-59.2 cm3 4(1.5) 8(2.9) 24(8.7) 9 (3.3) 7(2.5) 52(18.8)
59.2-80.8 cm3 2(.7) 5(1.8) 25(9.1) 29(10.5) 6(2.2) 67(24.3)
>80.8 cm3 0(.0) 4(1.5) 4(1.5) 11(4.0) 48(17.4) 67(24.3)

Total 48(17.4) 51(18.5) 61(22.1) 54(19.6) 62(22.4) 276(100.0)

Finally, we compared Volpara and Quantra with respect to their associations with breast

cancer risk (Table 7.15), in terms of the effect per 10 cm3 for absolute density and per

10% for percent density. We then report the standardised effects (i.e. OR per standard

deviation) to enable a scale-free comparison of the two methods. ORs and p-values were

very similar between the two methods for both absolute and percent density, and this

result is confirmed by the standardised ORs.

Further results assessing Quantra using this dataset are presented in Chapter 5.
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Table 7.15: ORs for developing breast cancer risk from age-adjusted unconditional
logistic regression using Volpara and Quantra density estimates

Factor obs OR [95% Conf. Interval] P>z

Absolute density
Volpara per 10 cm3 366 1.07 1.00 1.13 .038
age per year 1.00 .98 1.02 .809

Quantra per 10 cm3 400 1.04 1.00 1.07 .030
age per year 1.00 .98 1.02 .848

Percent density
Volpara per 10 % 366 1.11 .81 1.50 .513
age per year 1.00 .98 1.02 .886

Quantra per 10 % 400 1.15 .92 1.42 .221
age per year 1.00 .99 1.02 .679

Standardised OR
Volpara per 1 standard deviation 366 1.26 1.01 1.56 .038
age per year 1.00 .98 1.02 .809

Quantra per 1 standard deviation 400 1.25 1.02 1.53 .030
age per year 1.00 .98 1.02 .848

7.4 Discussion

The data support the hypothesis that absolute volume of dense tissue could be a bet-

ter predictor of breast cancer risk than percent density. This may be because absolute

density is a closer measure of the quantity of tissue at risk of malignant transformation.

However, despite being statistically significant, the ORs do not indicate a particularly

strong relationship, i.e. increases in absolute density do not reflect substantial increase

in risk. In fact, when comparing the extreme quintiles (Table 7.6), the odds of expected

cases and controls are not substantially different (OR: 1.35, 95% CI (.77-2.37)).

As noted in Chapter 5, the study population here is younger and likely to be of higher

socioeconomic status than generla population women in the UK screening programme.

However, one would expect case-control differences in breast density to prevail in our

population as in the general population.

The overall lack of association between Volpara and BIRADS is surprising and raises

questions about the validity of both measures. In particular, stratified analyses revealed

a positive association between BIRADS and Volpara percent density among controls and
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a negative one among cases. This was observed because Volpara non-dense and total

breast volume decreased with increasing BIRADS category among controls and increased

along with BIRADS categories among cases. Volpara absolute volume and BIRADS cat-

egories, on the other hand, appeared independent in both groups. Likewise, Quantra

measures of non-dense and absolute breast volume increased steadily with increasing

BIRADS categories [Chapter 5]. This leads to doubts about what the two volumetric

methods are actually assessing. Volpara percent density was non-significantly related to

breast cancer risk even after adjusting for age and non-dense volume. Also, the associa-

tion between BIRADS and risk of developing breast tumours was weaker than expected

[6] [Chapter 5]. This may be due to an inherent difficulty in visual estimation of density

from processed digital images. The use of processed images for visual assessment, and

raw data for automated assessment, may have implications for the association between

the two.

In 2013 Wang and colleagues [50] ran a study on 99 women comparing mammographic

measures of volumetric breast density, including Volpara, to MRI density [47]. They

found that average total breast volume was higher for Volpara than for MRI, probably

due to the fact that Volpara includes the edge in their estimates, a moderate correla-

tion and agreement were observed between the two methods measuring percent density

(squared Pearson’s correlation coefficient: .73, and kappa statistics: .68). These results

are encouraging, suggesting that Volpara is capturing the right amount of dense tissue,

nevertheless larger datasets are needed for validation.

Investigation of the relationship between the two volumetric methods suggest a strong

association and similarity. Pearson’s correlation coefficients showed an almost perfect

correlation (98%) for non-dense and total volume, and were lower, although still very

high (over 80%), in the density measures. This lower correlation is likely to be due to the

exclusion of skin tissue from Volpara dense estimates. Nevertheless, for the association

with breast cancer risk (Table 7.15), Volpara and Quantra density estimates were very

similar, both for ORs and p-values. The standardised ORs provide further support of

the hypothesis of equivalence between the two techniques, in terms of breast cancer risk

prediction.

In terms of costs, both Quantra and Volpara have multiple packages with diminishing

additional costs per additional unit, but both would cost approximately US $ 50,000 for

the software and hardware. On cost alone, it would be difficult to decide between the

two.

As in the Quantra study (Chapter 5), this dataset was comprised of symptomatic cases,

which may have affected our findings due to masking. Again, if this were the case, as in

Chapter 5, we would have expected a much stronger association between density and risk.
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Interestingly, for analysis of area of residence, the higher percent density among London

residents without breast cancer (Figure 7.4) was driven by a lower non-dense volume

rather than a higher dense volume. This is in agreement with the Quantra results

[Chapter 5] and is consistent with the hypothesis that a higher percent density in Lon-

don residents is largely due to lower BMI in London women [246, 249].

The main weakness of this study lies in the limited sample size, which suffered a fur-

ther loss of information during merging. The analyses may have also benefited from

additional details on other risk factors, which could have helped to explain and clarify

the unexpected results we observed. Thus these findings require further validation on a

richer and larger dataset.

In conclusion, Volpara absolute density is a breast cancer risk predictor of similar

strength to Quantra, and the two measures are strongly related. Validation in a larger

dataset with information on potential confounders would be useful.



Chapter 8

Measuring mammographic

density: results, issues and

potential implications

8.1 Introduction

In the review in Chapter 1, we described how the methods of measurement of mam-

mographic density have developed since 1976 [5] and discussed some of the outstanding

issues delaying a more extensive use of density in breast cancer screening.

Mammographic density is a strong risk factor for breast cancer. Evidence of this associa-

tion has been published in the past decades [15, 16, 254, 255] and a recent meta-analysis

[6] confirmed that a dense breast indicates a four- to six-fold increase of risk of devel-

oping a breast cancer compared to a non-dense. Nevertheless mammographic density is

underused as a means of assessing breast cancer risk. One explanation for this is that,

despite the wide availability of technology and the high attendance in breast screening

programs, how mammographic density should be assessed effectively and feasibly in rou-

tine screening has not been determined yet.

To date, the most commonly applied methods for measuring density are based on vi-

sual assessment (usually BIRADS), and interactive thresholding (Cumulus, a computer-

assisted technique), both of which have drawbacks. Firstly, visual assessments depend on

human judgement, and this introduces subjectivity in the form of inter- and intra-rater

variability, raising questions of reproducibility [27]. Advancements in technology led to

the introduction of interactive thresholding [256], arguably the current gold standard,

185
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which is less subjective, although it still relies on reader input, and has the advantage

of providing more comprehensive information about total breast area, dense area and

non-dense area [28, 30, 256]. However, the main barrier to density being routinely mea-

sured with this method lies in its time-consuming nature that makes it impractical for

density assessment in routine population screening. In addition, both methods reduce

a three-dimensional feature, the breast, to its bi-dimensional projection obtained on a

mammogram, and may lose accuracy by not taking into account the thickness of the

dense tissue of the breast. It is therefore anticipated that volumetric measures of dense

tissue will provide more precise estimates of the amount of fibroglandular tissue within

the breast and thus will be a better predictor of breast cancer risk [201]. For this reason,

recent years witnessed the development of several fully-automated volumetric methods

[36–42, 51, 52, 178, 236], that are undergoing validation.

In this chapter, we focus on some of these issues relating to variability, from both mea-

surement error and genuine population variation in breast composition, in measurement

of mammographic density and suggest possible solutions. Firstly, we analyse intra- and

inter-reader agreement in visual (21 categories) and Cumulus [256] assessments, using

data from the IBIS-I study [17]. Secondly, we investigate the potential effect of measuring

error on observed risk associations, in density assessed with the novel fully-automated

volumetric method Quantra [51, 178], using datasets introduced in chapters 5-6, and

applying a modification of Rosner’s and colleagues’s method [257–259] for correcting for

the measurement error. This method is based on the method of moments and requires

the estimates of the variability components from an external dataset with serial assess-

ments of the factor prone to measurement error, in this case Quantra absolute density

estimates. Then, we study the relationship between two- and three-dimensional density

assessments, focusing on their difference in variability, albeit in data from two different

population, with data from CADET1 [4] and the Quantra longitudinal study [Chapter

6]. Finally, we compare the association with breast cancer risk of most of the density

measures available for this project: visual (Chapter 2), Cumulus (Chapters 2 and 4),

Quantra (Chapter 5) and Volpara (Chapter 7). In this analysis, we use the exponential

of the standard logistic regression coefficient as the measure of association for each den-

sity method. Thus each measure of association is the odds ratio per standard deviation

of the density measure, so that all methods are assessed on a comparable scale.
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8.2 Inter- and intra-reader agreement (IBIS-I)

Cumulus is said to be preferable to visual assessment because it provides more complete

information regarding breast composition, thus leading to more accurate estimates of

breast cancer risk, and it is to some extent less subjective, because it is partially auto-

mated. However there is a scarcity of literature regarding reader reproducibility.

In this section we focus on quantifying variability in Cumulus estimates from the same

mammograms, and compare them with visual density assessment (to the nearest 5%).

We also evaluate both inter- and intra-reader agreement in visual assessment.

8.2.1 Materials and Methods

8.2.1.1 Data Collection

The IBIS-I chemoprevention study was an international trial designed to evaluate the

role of tamoxifen for breast cancer risk reduction in high-risk women. The study popu-

lation comprised a total of 7,152 women aged 30-70 years. A nested case-control study

was conducted to investigate relationships between treatment, change in mammographic

density and known breast cancer risk factors. It comprised data from 123 cases and 942

controls and some results were published in 2011 [17].

Mammographic density was assessed on these 1,065 subjects both at baseline and after

12-month follow-up. Three trained readers (J. Stone, J. Warwick and P. Allgood) used

Cumulus software to measure both absolute and percent dense area. The same read-

ers received training by one experienced radiologist (R.M.L. Warren) and classified the

proportion of dense tissue in the subjects visually on a 21-point scale (to the nearest

5%). Prof. Warren also performed visual density assessment on the whole sample, on

two separate occasions in order to allow analyses of intra-reader agreement. One reader

(PA) performed her assessment on only 56% of the sample. However most of the sub-

jects (98%) had density assessed with Cumulus by 2 readers (JS and JW) and visually

by 3 (JS, JW and RW). Note that there is a difference in the number of mammograms

read visually and using Cumulus by each reader.

Since Prof. Warren provided the training and was by far the most experienced reader,

we considered her as the referrent reader when comparing visual assessments.
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8.2.1.2 Statistical Analyses

The focus of the analyses reported here was the inter-reader agreement and not the

change in density between baseline and follow-up, hence each mammogram was counted

separately, allowing the size of the sample for the analyses to double. To verify that

the inclusion of two mammograms for each subject would not influence the results, we

repeated the analyses using only baseline mammograms. As we obtained very similar

outcomes (results not shown), we decided to keep all the mammograms available. Like-

wise the exclusion of the cancer cases gave similar results.

For an exploratory analysis, we compared the distributions in the readers’ assessments

using mean, SD and percentiles for Cumulus estimates, and histograms for visual.

We compared the readers in pairs using Bland-Altman limits of agreement plots [260]

and concordance correlation coefficients [261, 262] for Cumulus continuous estimates

and Cohen’s kappas for visual discrete measures, as well as average absolute differences.

Bland and Altman are sceptical about the intraclass correlation coefficient (ICC), as it

models measurements by different raters as replicates, whereas they may be systemati-

cally different due to individual rater tendencies. It has been noted, however, that the

ICC is a useful summary of the relative size of the between-subject variation (reader vari-

ation of the attribute from person to person) and the within-subject variation (variation

between measures on the same subject due to measurement error) [263]. We therefore

calculated ICCs as a secondary measure.

Prof. Warren repeated her readings in two occasions 6-month apart, and intrareader

agreement was also studied.

8.2.2 Results

The distributions of all the density measures considered are summarised in Table 8.1 and

Figure 8.1. Concerning Cumulus estimates, the two main readers (1 and 2) had similar

distributions (Wilcoxon rank-sum test: p=.12 for absolute density and p=.15 for percent

density), whereas assessments by the third reader appeared consistently lower, both for

absolute and percent density (Wilcoxon rank-sum test: p<.01 in each comparison). For

visual assessments (Figure 8.1), Prof. Warren is identified as “reader 0”, having trained

the other three. The distributions, in this case, appeared uneven but, overall, similar.
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Table 8.1: Summary statistics of Cumulus measures by reader

Reader obs Mean SD 1st quartile median 3rd quartile

Absolute density (cm2)
1 2084 24.62 15.54 13.75 23.29 33.33
2 2099 23.93 15.20 13.34 22.16 32.50
3 1192 21.08 14.64 10.33 18.77 28.85

Percent density (% )
1 2084 36.24 21.06 20.21 36.43 51.85
2 2099 37.25 21.37 20.71 36.83 53.16
3 1192 32.78 20.23 16.10 31.72 47.83

Figure 8.1: Distribution of visual density assessments according to reader
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Overall concordance coefficients (Figure 8.2) suggested about 80% concordance between

readers for both absolute and percent density estimated with Cumulus, with a peak of

85% between the two main readers. Bland-Altman limits of agreement plots allow to

evaluate how the agreement was affected by the level of density, in other words if the

mammograms were overall darker or whiter. The shapes of the scatter plots suggest a

better agreement for extremely low values, i.e. darker mammograms, then the variabil-

ity increased in an approximately linear fashion with increasing density estimates with a

peak at about 40% for percent dense area and between 30 and 50 cm2 for absolute mea-

sures. On the other hand, the width between the 95% limits of agreement line indicated

that the estimates were quite variable between readers, and also support the hypothesis

that readers 1 and 2 have the better agreement. Further evidence for this hypothesis

is the fact that the lines of observed average agreement between readers 1 and 2 are

close to the one of perfect agreement both for percent and absolute density estimates

(Figures 8.2.a and .b). Comparing these two readers with reader 3 (Figures 8.2.c-.f), it

appeared that this third reader would estimate density with on average lower values, as

suggested by the scatter plots and especially by the observed average agreement line.

It can be speculated that the better agreement between readers 1 and 2 is due to the

larger samples of mammograms used for the analyses. However repeating the analyses

on a reduced number of mammograms, including only those read also by reader 3, the

concordance correlation agreement between the first two readers remained the highest

(.86 (.85-.88) for both percent and absolute dense area, compared with .81 (.79-.83) for

percent and .80 (.78-.82) for absolute between readers 1 and 3, and .77 (.75-.79) for

percent and .77 (.75-.79) for absolute between readers 2 and 3).

In this comparison there was no reader known to be the referent as they all received

the same training. However, comparing the visual readings with reader 0 (our refer-

ent), reader 1 had the highest concordance correlation coefficient (.89 (.88-.89)), and

was therefore considered as referent for the Cumulus readings.

Note that readers 1-3 were abbreviated as r1-3.
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Figure 8.2: Bland-Altman’s limits of agreement plots and concordance correlation
coefficients between readers

y=0 is the line of perfect average agreement, the dotted line is the observed average
agreement and the two external lines are the 95% limits of agreement.
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Absolute differences between readers assessments are summarised in Table 8.2. Cumulus

density estimates were on average less than 8 cm2 apart, but for almost 120 mammo-

grams were over 15 cm2 when comparing reader 3 with the two other readers. Differences

were lower among the readers 1 and 2, and differences between assessments of at least 15

cm2 were recorded only on 8% of the mammograms. Cumulus percent dense estimates

were on average approximately 10 units apart between readers, with differences of over

20% for about 1 mammogram in 10. Again, readers 1 and 2 had the better agreement,

whereas reader 2 and reader 3 disagreed more often.

Table 8.2: Absolute differences in Cumulus density estimates between readers

Readers Obs. Mean SD Min Max 1st decile 9th decile

Absolute density (cm2)
r1-r2 2073 5.86 6.33 .00 53.09 .651 13.65
r1-r3 1172 6.90 6.90 .00 52.63 .744 15.65
r2-r3 1181 7.51 7.34 .00 59.97 .831 17.03

Percent density (% )
r1-r2 2073 8.39 7.83 .00 56.94 1.11 18.48
r1-r3 1172 9.45 8.61 .00 57.48 1.01 20.91
r2-r3 1181 11.05 9.38 .00 57.20 1.34 23.62

The ICC was 82% (95% CI (81%, 83%)) for both absolute and percent dense area, indi-

cating considerably more variance between subjects than between measures on the same

subjects, and suggesting reproducibility of density assessed with Cumulus by trained

readers, both in absolute and percent terms.

Table 8.3: Weighted Cohen’s kappas for visual density estimates between readers

Expected
Readers Agreement Agreement Kappa Std. Err. Z Prob>Z

r0-r1 90.19% 67.95% .69 .014 50.77 <.001
r0-r2 86.14% 67.87% .57 .014 41.51 <.001
r0-r3 87.15% 66.86% .61 .019 32.8 <.001
r1-r2 88.74% 70.30% .62 .013 46.32 <.001
r1-r3 88.76% 68.88% .64 .018 35.5 <.001
r2-r3 87.15% 69.87% .57 .018 31.22 <.001
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Table 8.4: Absolute differences in visual percent (to the nearest 5%) density estimates
between readers

Readers Obs. Mean SD Min Max 1st decile 9th decile

r0-r1 2090 9.81 9.06 0 80 0 20
r0-r2 2090 13.86 12.89 0 95 0 30
r0-r3 1180 12.85 12.44 0 75 0 30
r1-r2 2090 11.26 12.26 0 85 0 25
r1-r3 1180 11.24 11.06 0 65 0 25
r2-r3 1180 12.85 12.14 0 80 0 25

Visual classification (21 categories) showed excellent inter-rater agreement between read-

ers, between 86% and 90% (Table 8.3). There was on average a distance of 2 categories

(over 10%) for every pair of readers (Table 8.4), except for the pair composed by reader0

and reader 1 who had an average smaller distance (9.8%), that suggests a better agree-

ment. In around 10% of cases, two readers would classify the mammograms at least

four units apart (a difference of 20% or more). In particular, reader 2’s assessments

were the furthest from reader 0’s, who was considered as the gold standard because of

her experience.

The intraclass correlation coefficient, calculated over all four readers, was 81% (80%,

82%), supporting the reliability of visual density assessments.

Figure 8.3: Correlation in visually assessed percent density between first and second
reading by reader 0
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Figure 8.4: Absolute differences in visually assessed percent density between first and
second reading by reader 0

Intra-reader agreement was assessed on reader 0 repeated assessments (Figure 8.3), and

appeared especially strong (weighted Cohen’s kappa: 90.2%, p<.01). In particular first

and second assessments differed on average by less than 10%, and in 70% of cases the

mammograms would be reclassified either in the same category or in 1 or 2 categories

apart (Figure 8.4). The intraclass correlation coefficient also suggests the high reliability

in intra-reader visual assessment, being 89% (88%, 90%).

8.2.3 Discussion

There are differences in Cumulus estimates according to reader, however the overall re-

producibility of this method was high for both absolute and percent estimates. Likewise

visual assessments appeared reliable, with good agreement both inter- and intra-reader.

Although we had good agreement on average, the fact that there were a few mammo-

grams for which the readings differed of up to 60 cm2 or 60% in Cumulus absolute and

percent density respectively, and even 80% or more in visual assessments, suggests that

these methods are still subjective and have room for improvement in reproducibility, if

they are to be used for individual risk prediction and management.
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8.3 Adjusting for measurement error in estimating odds

ratios associated with volumetric density measures from

Quantra

Fully-automated volumetric methods are anticipated to resolve issues regarding repro-

ducibility of measurements and to provide a more precise estimate of the amount of

fibroglandular tissue; for this reason several have been or are being developed [36–

42, 236]. However the results so far suggest that volumetric methods provide similar

or weaker risk prediction than the area-based measures [201]. Recent evidence suggests

that this problem in volumetric breast density estimation may be due to inaccuracy

in assessing the thickness of the breast, as an effect of compression when performing a

mammogram [264, 265]. A particular challenge, “paddle tilt”, which occurs when com-

pression is applied with a flexible compression paddle, allowing the upper plate to tilt,

results in variation in breast thickness from the chest wall to the outer side of the breast

[265].

Our case-control study of the fully automated Quantra volumetric density measures

[Chapter 5] found only moderate association with risk. Since fully automated density

analysis is still very much in development, it is reasonable to hypothesise that measure-

ment error is at least partially responsible for the weakness of Quantra’s risk predictions.

In this section we attempt to correct the risk estimates for random measurement error

using established statistical methods in our case-control study [Chapter 5]. More specif-

ically we apply a modification of Rosner’s and colleagues’s method [257–259] to the

case-control data, estimating the necessary components of the variance from our longi-

tudinal dataset of repeated Quantra measurements on a similar population [Chapter 6].

In addition, since for Quantra we observed a weaker association with risk than was shown

in previous studies using Cumulus, we estimated how substantial the measurement error

in Quantra estimates would need to be in order to have a strength in the association

with risk similar to the that of Cumulus in Stone et al.’s study [266].
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8.3.1 Materials and Methods

8.3.1.1 Data Collection

We used the two datasets [Chapters 5 and 6] collected from women attending breast

cancer screening at Princess Grace Hospital. All the subjects underwent digital mam-

mography and their breast density was assessed using Quantra software, as described in

[Chapter 5], providing estimates in cubic centimetres for total breast volume and dense

breast tissue volume (absolute density). Percent density (%) and non-dense volume

(cm3) were computed by division and subtraction respectively.

The first dataset is described in Chapter 5 and was used to evaluate the association

between density estimates and risk. The second dataset had a longitudinal structure

with repeated measurement [Chapter 6] and thus allowed us to estimate the variance

components. In the case-control study [Chapter 5] details were recorded of 200 cases,

female patients with histopathologically verified breast cancer, and 200 matched con-

trols. The longitudinal dataset [Chapter 6] comprised information on 332 women, (231

younger than 50 years and 101 aged 50 or more years) undergoing two mammographic

examinations, typically 12-24 months apart. See Chapter 6 for further details.

8.3.1.2 Statistical Analyses

We used the method of Rosner and colleagues, based on the method of moments, to

correct for measurement error [257–259].

Suppose the model relating our true amount of fibroglandular tissue (mammographic

density) X, the probability (risk) of developing breast cancer B and the probability of

not developing breast cancer B̄ is of logistic form, whereby

ln

(
Pr(B|X)

Pr(B̄|X)

)
= α+ βX (8.1)

where ln(·) is the natural logarithmic function, α and β are unknown parameters. From

now on we refer to ln
(
Pr(B|X)
Pr(B̄|X)

)
simply as Y .

Furthermore, suppose that a linear relationship is assumed to exist between true density

X and observed, error-prone, density Z that is of the form

Z = X + ε (8.2)
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where ε is the random error and has a standardised Normal distribution (N(0, σ2)).

Note that in equation (8.2) there is no fixed intercept or coefficient for X because that

would indicate the presence of a systematic error whereas in this case we suppose that

the measurement error is random (unbiased) and distributed as normal with mean 0.

In the empirical application, the assumption of random error is an approximation, but it

is a reasonable one. While it is known that density reduces with age, in the longitudinal

dataset, the average values of the two consecutive density measures did not differ signif-

icantly. It is thus reasonable to assume that the differences between the two consecutive

measures on the same subjects are mainly due to random variation and that the time

between masurement is not sufficient for changes in density with age to contribute ma-

terially to the differences. We refer to this as measurement error, although it may come

from two sources: (1) random error of determination of density by the measurement tool

(including position of the subject); and (2) fluctuation of the breast composition over

time, around a central “average” or typical composition.

Since the true density X is mistakenly observed as Z, the relationship between density

and breast cancer risk which we estimate is not equation (8.1), but as follows

Y = α+ β̃Z. (8.3)

Hence we focus on the relationship between β and β̃.

In a linear regression equation (8.1) with true density X, β is commonly estimated as

β =
σxy
σ2
x

(8.4)

where σxy is the covariance between X and Y , and σ2
x the variance of X. However, in

our observed data (8.3) Z is replacing X, therefore

β̃ =
σzy
σ2
z

. (8.5)

where σzy is the covariance between Z and Y and σ2
z the variance of Z. Since the

measurement error here is assumed independent from Y and X we can conclude that

equation (8.5) resolves as follows

β̃ =
σxy

σ2
x + σ2

ε

. (8.6)
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Consequently, a corrected estimate β∗ is

β∗ =
σ2
x + σ2

ε

σ2
x

β̃ =
β̃

λ
where λ =

σ2
x

σ2
x + σ2

ε

. (8.7)

In a longitudinal dataset, where no significant change in density is observed over time,

we could estimate σ2
ε as the variance of measurements within the same subject (vari-

ance WITHIN ), whereas σ2
x represents the variance between the subjects (variance BE-

TWEEN ). Therefore λ represents an estimate of the reliability of Z and is also called

the intraclass correlation coefficient (ICC).

Since we have a logistic link, the exact correction would not be in closed form. However,

Rosner et al. [257] show that the above formula (8.7) is a second order Taylor approxi-

mation to the true value β∗.

The variance of the new adjusted β∗ is then computed and the confidence interval varies

accordingly, following the next formulas [257]:

var(β∗) = var(
β̃

λ
) =

1

λ2
var(β̃) +

β̃2

λ4
var(λ) (8.8)

CI95%(β∗) = [β∗ ∓ 1.96SE(β∗)] =

[
β̃

λ
∓ 1.96SE(

β̃

λ
)

]
. (8.9)

The confidence limits for the associated odds ratio exp(β∗) are given by

CI95%(OR) = exp[β∗ ∓ 1.96SE(β∗)]. (8.10)

After verifying and justifying the comparability of the population in the two datasets,

i.e. that it is reasonable to use the estimates of ICC from the longitudinal study to

correct estimates in the case-control study, we applied this method empirically. The

case-control dataset was used to estimate the association of the observed density with

risk (β̃), and then the longitudinal study provided the data necessary to compute λ, that

is the ICC. The variance of β̃ was calculated by logistic regression, and the variance of

λ was estimated using Smith’s method [267].

Menopause affects the characteristics of mammographic appearance [21, 89, 90], and

therefore the variance of density. For this reason the different age composition in the

two datasets may lead to different variances. Thus analyses were run separating the

subjects into those aged less than 50 and those aged 50 or more, considering baseline

age in the longitudinal study.
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The focus of the analyses here is on the absolute density, because not only was its asso-

ciation with breast cancer risk in our case-control study stronger, it is also less affected

by confounding with BMI [33, 226] [Chapter 5].

For the second part of our investigation, we compared the odds ratios estimating breast

cancer risk associated with increasing quintiles from our case-control data, with those

of Stone and colleagues’ [266] which used the Cumulus interactive thresholding method

to assess breast dense area. To promote a more direct comparison between the two

assessing techniques, we considered whether to transform the volumetric measures into

areas, by the approximating assumption that volumes are spherical, using the following

formulas:

V =
4

3
πr3 ⇒ r =

(
3V

4π

) 1
3

Therefore: A = π

(
3V

4π

) 2
3

where V is volume, A is area and r stands for radius. However, Stone et al. presented

the ORs per quintile and, since the transformation of volumes into areas is monotonic,

it would not affect the ranking of the measures and, consequently, the ORs per quintile.

In view of this, we retained the volumetric estimates.

We also used equation (8.7), to obtain the λ, or ICC, which would be required to give a

corrected association of the same strength as that of Stone and colleagues. In this case

there was no age-stratification, since only overall results were available [266].

All analyses were performed with STATA software version 12.1.

8.3.2 Results

Previous Chapters 5 and 6 reported the analysis of these two datasets from the Princess

Grace Hospital in more detail. The longitudinal data [Chapter 6] was used to investigate

both the change in breast composition by time and age, and the relationship between

breast components, i.e. density and non-dense volume, and age. In the case-control

study [Chapter 5], we examined the relationship between risk of breast cancer and

mammographic density measures. According to the results, absolute density had a

stronger association with breast cancer risk than percent density and the final OR per

10 extra cm3 of dense tissue was 1.04 (95% CI(1.00 , 1.08)).

Descriptive statistics for absolute density in the two studies are summarised in Table

8.5. The means and standard deviations obtained among controls and in the longitudi-

nal study were similar in the younger group (Wilcoxon rank-sum test: p=.85). Women
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Table 8.5: Characteristics of the study samples in the two datasets

Case-control study Longitudinal study
cases controls at baseline

N=200 N=200 N=332
mean (SD) mean (SD) mean (SD)

Under 50
Absolute density (cm2) 111.38 (59.76) 104.17 (71.49) 102.91 (72.11)

50 or more
Absolute density (cm2) 99.18 (60.54) 82.33 (49.11) 96.48 (52.02)

Overall
Absolute density (cm2) 103.88 (60.39) 90.74 (59.53) 100.96 (66.63)

in the older groups of the two studies had significantly different means (p=.02), possibly

due to a different age composition (mean age: 62 years in the case-control study and 58

in the longitudinal study). Consequently we performed a linear regression of absolute

density on a categorical variable identifying the two studies, in order to explain absolute

density differences due to the two studies after age-adjustment. Results would suggest

that subjects in the longitudinal study would have higher absolute density (linear re-

gression coefficient β=+ 12.6 cm3), yet not significant (p=.07). In any case, we require

the two studies to be comparable mainly in terms of variability rather than absolute av-

erage, as the longitudinal study is used to estimate the variance components. Standard

deviations were similar in both groups (controls from the case-control study and subjects

in the longitudinal study), suggesting that the two samples can be used together. This

is as we would expect since the subjects were both selected from the same population,

the Princess Grace Hospital breast surveillance service.

Step 1: Estimate β. Coefficients for association between breast cancer risk and the

observed absolute density were obtained from the case-control study (Table 8.6) using

conditional logistic regression.
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Table 8.6: Coefficients from the conditional logistic regression models using Quantra
absolute density

Coefficient SE [95% Confidence Interval] P> |z|

Under 50, N=154
.0017 .0025 -.0032 .0066 .493

50 or more, N=246
.0056 .0024 .0008 .0104 .022

Step 2: Compute the intraclass correlation coefficient. Table 8.7 displays the

ICCs obtained in the longitudinal study. These values are the estimates of λ in the two

age groups.

Table 8.7: Intraclass correlation coefficients, for absolute density, estimated in the
longitudinal study

ICC SE [95% Confidence Interval ]

Under 50, N=231
.887 .014 .859 .914

50 or more, N=101
.930 .013 .904 .956

Step 3: Compute the adjusted β∗. Following equations (8.7), (8.8) and (8.9) we ob-

tained the adjusted coefficient for absolute density and relative variance and confidence

intervals.

For women aged under 50:

β∗ =
β̃

λ
=
.0017

.887
= .0019

var(β∗) = var(
β̃

λ
) =

1

.8872

(
.0025 ∗

√
154
)2

+
.00172

.8874

(
.0141 ∗

√
231
)2

= .0012

CI95%(β∗) = [β∗ ∓ 1.96SE(β∗)] =

[
.0019∓

√
.0012

154

]
= [−.0036, .0075]
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Similarly for the subjects 50 or more:

β∗ = .0060, var(β∗) = .0017 CI95%(β∗) = [.0009, .0112].

Step 4: Obtain the ORs and 95% CIs. Finally, from equation (8.10), among

younger women (Under 50) an extra 10 cm3 of fibroglandular tissue would lead to an

OR of 1.020 (.965, 1.078), whereas in the 50 or more group it would be 1.062 (1.009,

1.118), Figure 8.5. The original ORs per 10 cm3 were 1.017 (.968, 1.069) in the group

aged under 50 and 1.058 (1.008, 1.110) for the women 50 or more.

Figure 8.5: Comparison of the ORs before and after adjustment

Table 8.8 compares the association of Quantra density estimates with breast cancer risk

[Chapter 5] with that of dense area assessed with interactive thresholding by Stone et

al. [266].

From equation (8.7), we obtained that an ICC in Quantra density estimates of .83 (.30,

1) would be needed to give an adjusted association with breast cancer risk similar to

Stone et al.’s findings, whereas in our data the ICC was .89 (.87, .92).

ICC = λ =
β̃

β∗
=
log(1.18)

log(1.22)
=
.1653

.1989
= .8315

That is, the correction for measurement error, as estimated from repeat Quantra mea-

sures, is not sufficient to give results compatible with Stone’s area based estimates. In

other words we would need a more substantial measurement error in our data for the
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Table 8.8: ORs estimating breast cancer risk associated with increasing quintiles of
mammographic density

Measuring method Odds Ratio [95% Conf. Interval] P>z

Quantra case-control data [Chapter 5], unadjusted
dense volume 1.18 1.03 1.36 .020

Stone’s and colleagues’ data (interactive thresholding) [266]
dense area 1.22 1.11 1.33 <.001

adjusted estimates to replicate Stone and colleagues’s findings. However, the difference

in coefficients per quintile is modest, and it might be due to variation in the population,

rather than a truly poorer risk association for Quantra.

8.3.3 Discussion

Estimates of association between risk and Quantra absolute density did not change sig-

nificantly after correction per measurement error. ORs per 10 cm3 of dense tissue went

from 1.017 to 1.020 in the under 50 group and from 1.058 to 1.062 in those aged 50

or more. There is an important qualification to interpretation of these results. The

relatively high ICC’s, 89% and 93% in subjects aged respectively under 50 and 50 or

more, suggests that there is strong repeatability and reliability, and, therefore, low mea-

surement error. However, it may not be error around the quantity at which it is aimed,

that is to say, although we get very similar measurements when we repeat the method

on the same individual, it may not be measuring density, or the aspect of density which

is relevant to breast cancer risk. Thus both before and after correction for measurement

error, we still have a relatively weak relationship of the measure with breast cancer risk.

There are very strong correlations between density for left and right breast, and between

density measures for the same breast from two different views, and as we have seen here,

between successive measures taken a year or so apart. All this is evidence that Quantra

is measuring some aspect of breast appearance with considerable precision, but it might

not be capturing the aspect which most strongly relates to breast cancer risk. In this

case, help from statistical methods is limited and it is the density estimation algorithm

that needs further correction. Studies [48, 50, 248] comparing Quantra volumetric as-

sessments to MRI breast density [47] observed a low correlation between measures of

absolute density [50, 248] and also suggested that Quantra significantly overestimates
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density in low dense breasts, in comparison to MRI [48]. These findings give us a bet-

ter understanding of the accuracy of Quantra density estimates, nevertheless should be

validated in a larger datasets.

The comparison with Stone’s and colleagues’ findings also highlighted that measurement

error is lower than one would expect in order to observe an association between den-

sity and breast cancer risk as strong as recorded in literature [6]. This should further

encourage improvement to the algorithm for breast density assessment. That said, the

risk of breast cancer assessed by quintile is not radically different between Stone et al.’s

area based estimate and our Quantra volume estimate.

From this, doubts arise again as to whether a single radiological view of the breast could

be sufficient to construct a volumetric measure of density, since it seems to be a very

ambitious aim. The use of breast MRI and the development of breast tomosynthesis and

automated tomosonography [268–270] could lead to opportunities for volumetric density

estimation which uses more complete three-dimensional information in construction of

the density measure.

There is another possible explanation for the slightly poorer risk prediction than area-

based measures even after correction for measurement error. The correction method

assumes random, non-differential measurement error acting in an additive manner. If

the measurement error is systematically related to the true value (for example, overesti-

mated at low values, underestimated at high), our correction would be inadequate [271].

However, the relatively low variation within persons and between occasions suggests that

it is not so much measurement error that is the problem, rather it is the phenomenon

being measured.

Currently, several other novel fully-automated volumetric approaches [36–42, 236] have

been or are undergoing validation. When evaluating them it is important to consider

the potential measurement error and take action to adjust for it. In particular in re-

gression analysis, regression coefficients of error-prone variables are usually attenuated,

and treatment effects are potentially estimated with bias in either direction when we in-

clude error-prone covariates [272]. We used the method of moment correction [257], but

other methods are available, for instance regression calibration [273] that estimates the

unknown true value X by developing and fitting a calibration model for on the observed

covariates. It was not possible to apply regression calibration to our data because it

requires an external dataset comprising details on the true, or gold standard, measures

of dense volume, and not only there was no such dataset available for this analysis, but

also to date there is no agreement on what is the most reliable measure of fibroglandular

volume.
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8.4 Relationship between two- and three-dimensional den-

sity measures

The high intraclass correlations and the surprisingly low within-screenee variation in

Quantra measures observed in the previous section, suggest that classical random mea-

surement error is not responsible for the relatively modest associations with breast cancer

risk.

The range of Quantra measures between screenees also seems small, but of course this

will depend on the population under study, in particular the age range, as well as on the

properties of the measurement method. If there really is considerably lower variability

between women’s Quantra densities than between their densities as measured by other

methods, this may indicate that an aspect of individual breast composition which re-

flects individual risk of breast cancer is not captured by the Quantra measure.

In our data the Quantra and BIRADS assessments were not strongly related [Chapter 5].

Given the processing of the digital mammography, visual assessment of these mammo-

grams for density is fraught with difficulties of interpretation. We can, however, obtain

some indirect evidence, by comparing the average and variation of Quantra densities in

our population with visual density assessment from film mammography by individual

year of age. The conditioning on individual year of age renders the populations more

comparable.

Percent breast density was visually assessed on 10,046 women aged 50 and over, in the

CADET1 study of computer aided detection in breast screening. The subjects attended

breast screening in Aberdeen and Manchester in the late 1990’s [274]. Breast density was

assessed by each of the eight radiologists involved in the study using a linear analogue

scale. For further details of the density component of the study see Duffy et al. [4].

Since the visual assessment is based on area, and Quantra on volume, we need to trans-

form one of these. As in the previous section, we adopt the approximating assumption

that volumes are spherical. In particular if the dense portion of the breast were spherical

with radius r1 and the total breast volume were spherical with radius r2, the percentage

area and volume are

A =
r2

1

r2
2

and

V =
r3

1

r3
2

.

From this

V = A
3
2 .
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Table 8.9: Characteristics of percent density in the two studies [Chapter 6] [4], ac-
cording to age

Visually assessed Transformed Automated
Age percent dense area percent dense area percent dense volume

Obs. Mean (SD) Range Mean (SD) Range Obs. Mean (SD) Range

50 736 39 (22) 0-96 27 (21) 0-94 13 25 (14) 10-62
51 845 40 (23) 0-98 28 (22) 0-97 6 28 (8) 17-42
52 706 38 (22) 0-96 26 (21) 0-94 6 19 (6) 12-29
53 581 37 (21) 0-96 25 (20) 0-94 6 25 (7) 15-32
54 577 35 (21) 0-96 24 (19) 0-94 3 15 (2) 13-16
55 516 33 (22) 0-98 22 (20) 0-97 4 19 (6) 12-24
56 508 33 (21) 0-98 22 (19) 0-97 10 16 (6) 11-31
57 541 32 (21) 2-94 21 (20) 0.3-91 7 16 (8) 10-33
58 595 31 (19) 0-96 19 (17) 0-94 3 17 (4) 14-21
59 681 32 (20) 0-90 20 (18) 0-85 8 22 (16) 9-55
60 681 30 (19) 0-90 19 (17) 0-85 8 23 (9) 11-39
61 674 30 (18) 0-96 18 (16) 0-94 4 20 (7) 12-29
62 682 30 (19) 0-92 19 (17) 0-88 4 20 (7) 13-27
63 660 29 (19) 0-92 18 (17) 0-88 3 17 (4) 14-21
64 689 30 (19) 0-96 19 (17) 0-94 2 22 (5) 18-25

Overall 9672 33 (21) 0-98 22 (19) 0-97 86 21 (10) 9-62

The situation is complicated by the fact that neither the breast nor the dense portion of

the breast are spherical. However, since one measure is in two dimensions and the other

in three, one might expect to achieve a comparison approximately on the same scale by

first expressing the visual percent dense area as a proportion (between 0 and 1 rather

than 0 and 100), raising it to the power of 3
2 and converting back to a percentage.

Table 8.9 shows the mean, SD and absolute range of densities in the two populations by

individual year of age, for the visual percent area density, the volumetric percent density

and the former transformed as noted above. Because the CADET1 mammograms were

taken within the UK National Breast Screening Programme, which at the time had a

policy of inviting ages 50-64, very few mammograms for individual years of age greater

than 64 were available. We therefore show results for ages 50-64 only.

The numbers of subjects in each age group are small in the Quantra dataset. However,

certain observations are clear: first, the average transformed percent areas are similar

in absolute size to the average Quantra volumes; second, that all three measures de-

cline in mean value with age; and third, that both overall and for each year of age, the

transformed area-based measures are considerably more variable between subjects than
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the Quantra volumetric estimates. Overall, the coefficients of variation were 0.64 for

visual percent density, 0.86 for transformed visual percent density and 0.48 for Quantra

volumetric percent density. In the Quantra case-control dataset [Chapter 5], breast den-

sity in absolute terms (cm3) showed a stronger association with breast cancer risk than

percent breast density, therefore it could be interesting to explore also the relationship

between absolute dense volume and absolute dense area. Unfortunately these data were

not available in the CADET1 study. Another observation is that spherical approxima-

tion may not be the most appropriate solution to transform dense volume into dense

areas.

While not conclusive, these observations are consistent with the visual percent dense

area representing a wider variability among women, and this may contain significant

individual risk information, in addition to an inevitable quantity of purely random er-

ror. Further support for this comes from a study which calculated area and volumetric

densities on the same subjects, using a different volumetric measurement tool, the Stan-

dard Mammographic Form [275]. In this study in 1,830 women without breast cancer

the mean percent dense area using the Cumulus interactive threshold method [256] was

24 with an SD of 18. The average percent volume using the Standard Mammographic

Form was 24 again, but with an SD of 7.

8.5 Comparison of density measures in their association

with breast cancer risk

In this thesis we had the opportunity of analysing the association of breast density and

breast cancer risk using a variety of measures (visual and Cumulus assessments in Chap-

ter 2, Cumulus percent and absolute estimates in Chapter 4, Quantra and BIRADS in

Chapter 5 and Volpara in Chapter 7) in a number of studies. In the present section, we

investigate their performances in terms of association with breast cancer risk.

In order to promote a more straight-forward interpretation of the results we used stan-

dardised ORs. In other words, every measure of density was divided by its standard

deviation so that all the density estimates and ORs were expressed on the same scale, i.e.

per unit of standard deviation. BIRADS was excluded from this analyses because of its

categorical nature. The standardised ORs presented in Table 8.10 are all age-adjusted

(either by analysis or matching). In case of percent density in IBIS-I we also adjusted for

BMI, as BMI confounding effect may lead to underestimating the association between

percent density and breast cancer risk [12, 25]. Absolute density estimates instead do
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not require this adjustment, being less affected by changes in BMI [33, 75] [Chapters

4, 5 and 7]. We included Kallemberg et al.’s results for an external comparison of our

results with a more extensive dataset (N=53,975) [276].

We also compared the ability of the density measures to discriminate cases from controls,

using the areas under the ROC curve (AUCs).

Table 8.10: Standardised measure ORs for developing breast cancer after age-
adjustment

Density measure OR [95% Conf. Interval] P>z AUC

IBIS-I case-control study, N=1065 (case=123) [Chapter 2]
Visual assessment (21-category) 1.32 1.08 1.61 .006 .58
Visual assessment (21-category)* 1.49 1.20 1.86 <.001 .60
Cumulus percent dense area 1.23 1.01 1.51 .043 .57
Cumulus percent dense area* 1.35 1.08 1.69 .009 .58

FH01 case-control study, N=292 (cases=101) [Chapter 4]
Cumulus absolute dense area 1.24 .99 1.57 .064 .56

Quantra, N=400 (cases=200) [Chapter 5]
Automated absolute dense volume 1.26 1.02 1.55 .030 .57

Volpara, N=366 (cases=182) [Chapter 7]
Automated absolute dense volume 1.26 1.01 1.56 .038 .55

Kallenberg et al.’s Volpara study, N=53,975 [276]
Automated absolute dense volume† 1.25 1.17 1.33 not available -

Notes: ORs are expressed per unit of standard deviation;
(*) adjusted for age and BMI;
(†) adjusted for age and total breast volume;

Table 8.10 reports the results of this comparison. Similarities, both in terms of stan-

dardised ORs and AUCs, among the different methods are noticeable, especially among

the automated volumetric measures and the computer-assisted Cumulus. All the AUCs

have low values indicating an overall poor discriminatory ability of the methods here

compared. It should be noted though that in general predictive models for breast cancer

struggle to get near 1 [167], and also there has been discussion on whether the AUC is

the most appropriate statistic to evaluate the predictive ability of a model [172, 173].

Nevertheless in our analyses, visual classification appeared as the best predictor, both

in terms of standardised OR and AUC, especially when adjusting also for BMI.

This finding would suggest that there is still something in the parenchymal patterns

that is missed by computerised techniques, but that appears more obvious to a trained
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eye. It could be speculated that the risk factor is not just pure dense tissue but it

depends also on the texture or other aspects of pattern on the mammogram. Never-

theless there is no doubt that, for a better use of information on density in a clinical

setting, an automated measure would be preferable and more practical. For this reason

several alternative automated methods have been proposed. Nielsen et al. developed

a software that extracts textural information from all pixels of segmented breast im-

ages, yielding a mammographic texture resemblance marker which was strongly related

to breast cancer risk [56]. Their findings showed that this measure of mammographic

texture was independent of mammographic density and that it may provide additional

information on breast cancer risk. Likewise Schmidt and colleagues designed CIRRUS,

a fully-automated predictor of breast cancer risk, that tries to identify the features in

a mammographic image that best predict breast cancer risk [57]. Heine et al. had a

simpler but still effective approach [58]. They worked on an algorithm for estimating

the “variation measure”, i.e. the standard deviation of calibrated pixel values, that

appeared to have an association with breast cancer risk at least as strong as percent

density assessed with Cumulus [58]. That is, the more variable the pixels values, the

higher the risk.

8.6 Conclusions

In this chapter we have discussed inter- and intra-reader agreement in visual and computer-

assisted density assessments. We evaluated the measurement error in a fully-automated

volumetric density assessment software tool and attempted to address this issue math-

ematically with Rosner’s method [257–259]. Then, we studied the relationship between

two- and three-dimensional density estimates. Finally, we compared different methods

for assessing density according to their association with breast cancer risk, on an equiv-

alent scale, and their accuracy in discriminating cases from controls.

In conclusion we observed ICCs in excess of 80% in both visual and Cumulus density

estimates when performed by trained readers, which gives some confidence in the re-

producibility of results in studies based on film mammograms. Secondly, according to

our results, Quantra estimates have a limited measurement error, and they suggest that

it might be productive to revise the algorithm, as it may not be measuring the tissue

component most relevant to breast cancer risk. Volumetric estimates appeared to have a

much lower variability than two-dimensional estimates, and this is expected to affect the

discriminatory power of density in risk prediction contexts. Finally, in our comparison,
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visual density estimates resulted the method more strongly associated with breast can-

cer risk, suggesting that there are some aspects of mammographic appearance relevant

for breast cancer development, that are missed by computerised methods.

Further, all these assessments are based on mammography which is designed to detect

tumours, not to measure density. For instance, during mammographic examinations we

compress the breast and consequently the dense tissue is also compressed, possibly mak-

ing its measurement more difficult. Hence, it may be that a tool specifically designed

to measure the amount of fibroglandular tissue in the breast would improve noticeably

both the density and the risk-prediction estimates. Also alternatives to mammography

examinations, such as MRI, automated ultrasound, electrical impedance or tomosyn-

thesis, should also be considered for deriving density indicators [43–50, 54, 59–61, 248].

Although these examinations are often more time and resource consuming, they could

provide more accurate 3D estimates of breast composition. It may be that dual MRI

measures of fibroglandular volume and background parenchymal enhancement have com-

plementary relationships to breast cancer risk. Both are positively associated with risk

[49]. The effect of background parenchymal enhancement on risk was observed to re-

main significant after adjustment for fibroglandular tissue volume but not vice versa

in a study with 39 breast cancer cases and 116 controls [54]. However, the ORs for

fibroglandular tissue volume remained substantially higher than unity, and it may be

that larger numbers of cases would show independent effects of both measures. If this

were the case, MRI-based risk determination from breast composition might well be a

major improvement upon mammographic measures.

As a matter of fact, methods for density estimation from these new 3D breast imaging

systems, in particular tomosynthesis, are currently being developed. The research on

this topic has just started moving its first steps and currently there is scarce published

evidence of their association to risk, which is the ultimate validation of their usefulness

in clinical practice.

An important implication of Table 8.10 is that the automated and semi-automated meth-

ods all seem to have similar propensity for risk prediction. Thus, if they were to be used

as part of individual risk prediction management or surveillance planning, it would be

reasonable to use any of the measures. For example, the fully automated methods are

almost as strongly associated with risk as the more labour-intensive semi-automated

methods. It is desirable, however, to identify the additional risk information picked up

by expert visual assessment and incorporate this into the automated methods.
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Chapter 9

Conclusions

9.1 Introduction

Mammographic density has been known as a risk factor for breast cancer since 1976,

when Wolfe first suggested an association between parenchymal patterns and risk of de-

veloping a tumour in the breast [5]. In the past decades mammographic density has been

the object of many studies that have enriched our knowledge on the subject, although

the causal pathway linking enhanced fibroglandular tissue and risk of breast cancer has

not yet been fully explained. As summarised in the literature review in Chapter 1,

mammographic density is a strong independent risk factor for breast density in terms of

both relative and attributable risk and appears to have potential for improving not only

screening and risk management programs, but also selection for chemoprevention trials

and other disease-control policies. Despite this, its use is still currently limited mainly

because of a lack of a practical standardised method of measuring density.

Hence, this research project focused on providing further insights of mammographic

density as a biomarker of breast cancer risk, its potential in risk-prevention and disease-

control trials, and its association with tumour sub-types and other risk factors. Ad-

ditionally, the project investigated the two main automated volumetric methods for

assessing density on the market (Quantra and Volpara).
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9.2 Part I: Mammographic density as a biomarker for breast

cancer risk

In Chapter 2 we investigated whether mammographic density reduction is a valid sur-

rogate marker, including whether it fulfilled Prentice’s criteria [185], in the IBIS-I risk-

prevention trial, using a nested case-control dataset. The results (PIG=89%) suggested

that a reduction in density of at least 10% could be an effective indicator of the success

of tamoxifen chemoprevention.

Chapter 3 presents the results of analyses on 601 post-menopausal women enrolled in

the ATAC study. On these data we observed that higher levels of mammographic den-

sity were not associated with enhanced risk of recurrence. Similarly, and in contrast to

the IBIS results, change in the proportion of dense tissue, over 1, 2 or 5 years, did not

predict the outcome of the treatment. We also investigated the relationship between

density and tumour characteristics, and found that the associations were mostly not

significant. However results suggested that subjects with poorly differentiated primary

invasive breast cancer experienced smaller density reductions in the years following di-

agnosis. Furthermore, higher baseline levels of cell proliferation, indicated by levels of

Ki-67, were associated with lesser significant changes in breast composition.

Chapter 4 focused on a different population, that of a case-control study of 298 women

aged between 40 and 49 enrolled in the FH01 study because of their enhanced familial

risk of breast cancer. In this dataset absolute density (cm2) was more effective than

percent density in discriminating cases and controls. In addition, absolute dense area

was not associated with most of the risk factors, such as age at menarche or parity,

that percent dense area was, making it a simpler risk-predictor and less affected by

confounding factors. Moreover, the association between breast cancer risk and absolute

density was not altered after adjusting for Tyrer-Cuzick 10-year risk estimates. This

result supports the belief that mammographic density could add information to the ex-

isting risk-prediction models for breast cancer even in populations already known to be

at increased risk and should be useful in the design of more tailored screening programs.

The studies analysed in this part of the thesis differ significantly from one another

because of design, purpose and population. Mammographic density at baseline was a

strong predictor for risk of developing breast cancer in both IBIS-I and FH01 case-control



C onclusions 214

studies. Eligible subjects for both studies were at enhanced familial risk, and FH01 fo-

cused on women aged 40-49. Our findings suggest that breast density has the potential

to provide an additional discriminatory power in the standard risk-prediction models

for breast cancer, and thus support the belief that density should be introduced in such

models to improve the identification of subjects at enhanced risk, who could benefit

from preventive interventions or extra screening examinations (e.g. magnetic resonance

imaging or MRI, digital breast tomosynthesis and ultrasound). A possible future tactic

might be to use a woman’s first mammogram in the programme (at age 47-52 in the UK

programme) to provide risk information, contribute to individual surveillance planning,

and possibly inform primary prevention intervention.

Our findings from the IBIS-I study indicate that mammographic density reduction is a

good predictor of the efficacy of tamoxifen therapy. In practical terms, mammographic

examination, including density assessment, should be carried out at baseline, then re-

peated regularly from a year after beginning the treatment, so that changes in density

can be assessed and incorporated into the decision making process for continuing this

therapy or switching to a different treatment. For instance, a woman might switch to

an aromatase inhibitor in order to achieve a better outcome, if density indicated non-

response to tamoxifen.

There was no association between density and risk of recurrence in the ATAC data.

This could be evidence of the fact that breast density may not be an important factor

once the neoplastic process has started [63, 82]. In addition to this, most of the sub-

jects involved in the study underwent treatments such as chemotherapy or radiotherapy

which are known to influence breast composition, not only in terms of appearance but

also of susceptibility to recurrence. Moreover these treatments may modify response of

the breast radiological appearance to hormonal treatment, since mammographic density

reduction was not an indicator of the success or failure of the tamoxifen therapy, unlike

in the IBIS-I and other studies [17–19].

These possibilities for using density in surveillance, prevention and disease-control pro-

grams are contingent on an accepted and practicable, in terms of resource use, method

for assessing density. Most popular techniques currently in use present limitations and

are often too resource-intensive for routine population-based programmes. For this rea-

son automated methods of density measurement were evaluated in the second part of

this thesis.
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9.3 Part II: Automated volumetric assessment of mammo-

graphic density

Chapter 5 describes the findings from a study on 400 age-matched cases and controls,

evaluating the risk-predictive potential of density assessed with Quantra, a novel auto-

mated volumetric method, and comparing it with BIRADS, a well-established method

based on visual classification. The main result is that absolute density (cm3) was the

most promising predictor for breast cancer, performing better than percent density.

Surprisingly, there was no overall association between Quantra measures and BIRADS.

Among cases, unexpectedly, BIRADS category increased with increase in non-dense and

total breast volume, and as percent density correspondingly declined. Since in this study

the association between BIRADS and breast cancer risk was weaker than in previous

literature [6], we speculated that visual classification might be affected by the use of

processed digital mammograms, that have already been altered to lesser the effect of

density on diagnostic accuracy.

In Chapter 6 the analyses involved 332 healthy women, aged 34-81, who underwent two

mammographic examinations, 1 to 5 years apart. On both occasions density was assessed

with Quantra, and we investigated the change in breast composition between screens

and according to age at baseline. The main findings suggested that the effect of time

and age was especially evident on non-dense volume (cm3), which increased steadily,

whereas no substantial change was seen in percent and absolute density. These results

within subject may be partly due to the limited time interval between screens, but they

support the hypothesis that for risk assessment, absolute density should be preferred

to percent density because it appears more stable. The lack of substantial change in

absolute density across ages (cross-sectional analysis) is in contrast to previous literature

[88] and may indicate an area where the Quantra algorithm could be improved.

Most of the mammograms from the Quantra case-control study were reassessed using

Volpara, another novel fully-automated volumetric measure. These data were then anal-

ysed focusing on the relationship between Volpara density measures and breast cancer

risk, on their association with BIRADS classification and on a comparison with Quantra

measures. Results are reported in Chapter 7. In brief, findings from this dataset were

very similar to those from the previous Quantra case-control study. Volpara absolute

density was a strong breast cancer risk predictor, that should be preferred to percent

density, and there was no strong relationship between Volpara and BIRADS measures.
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In addition to this, the association between breast cancer risk and Volpara absolute

density was similar in strength to that observed for Quantra absolute density, as the

analyses with standardised odds ratios highlighted. In general the two measures ap-

peared strongly related.

In both Quantra datasets and in the one including Volpara assessments we also consid-

ered the relationship between breast composition and area of residence to verify the hy-

pothesis of an “urban effect”. Results showed no significant difference, between women

living in London or in other UK regions, in terms of amount of fibroglandular tissue

(cm3), but London residents had consistently lower amounts of fatty tissue (non-dense

breast volume). This suggests a lower body mass index in London residents when com-

pared to subjects from another UK region, confirming previous findings [249].

As it was highlighted previously, it is crucial for introducing density assessment for risk-

prediction in routine population-based screening that we have a standardised, reliable

and precise measuring method, feasible to be performed in such a context, i.e. one that

is not onerous in terms of time, labour and costs. For this reason, Chapter 8 addresses

some of the measurement and risk prediction issues raised regarding both visual assess-

ments and volumetric measures.

In this chapter we estimated inter- and intra-reader agreement in visual and computer-

assisted density assessments, observing over 80% reliability in both visual and Cumulus

density estimates, when performed by trained readers, that is reassuring about the re-

producibility of data in studies based only on film mammograms.

We, then, evaluated measurement error in Quantra fully-automated volumetric density

assessments. Our findings indicated that Quantra estimates have limited measurement

error, although it is not clear what they are measuring; thus our results might suggest

further development of the algorithm. Then, we studied the relationship between two-

and three-dimensional density estimates. Results showed that volumetric estimates ap-

peared to have a much lower variability than bi-dimensional estimates, and this may

affect the discriminatory power of density in risk prediction contexts. Finally, in our

comparison of different density measuring methods, visual assessment appeared as the

strongest predictor of breast cancer risk. This suggests that there are aspects of the

mammographic appearance relevant to breast cancer risk that are missed by the comput-

erised methods but not by a trained eye. For this reason, several alternative automated

methods [56–58], that have recently been proposed, consider features of mammographic

appearance other than density, for instance textural information or variation in pixel
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values.

The comparison of risk prediction propensities was based on standardised odds ratios,

that computed all the methods “fairly”, on the same scale, and AUCs. One notable

finding was that the association of the volumetric density measures with risk was only

slightly weaker than that of the more resource-intensive interactive thresholding method,

Cumulus. Since the latter is considered the gold standard by many researchers, the im-

plication of this is that for only a small loss in predictive potential, a significant gain in

resources could be achieved by use of the fully automated volumetric methods. With the

growing prevalence of digital mammography, it would appear reasonable, if density is to

be measured routinely in the screening programme, to use one of the fully automated

methods.

That said, the notably better prediction from visual assessment suggests that there is

room for improvement in automated assessment. Also a phenomenon we observed in

both volumetric automated methods, Quantra and Volpara, is the limited variability in

their density estimates [Chapter 8]. Further analyses on the correlation between non-

dense and total breast volume revealed that between these two measures exists an almost

deterministic relationship (Pearson’s correlation coefficient: .99 for Quantra and 1.00 for

Volpara). This result adds further incentive for continuing evolution of the automated

algorithms.

9.4 Implications and policy for future research

In the 1980s, the American Cancer Society recommended a baseline mammogram for

women at average risk who were aged 35-40 years to provide a comparison image that

would be available when regular screening began at age 40 or older. This recommenda-

tion was dropped in 1992 after a consensus meeting reviewed the evidence on screening

recommendations and agreed that there was little evidence to support a benefit of the

baseline screening before age 40 years [277]. Since the harms of such a strategy might

exceed the benefits, instead we suggest to exploit the potential for density assessed at

the first available mammogram (around age 50 in the UK). Over the past two decades

research has led to more detailed and accurate information on predictors of breast cancer

risk, and made them available more easily and at a lower cost. Hence now we should

probably reconsider the idea of a baseline risk-assessment for breast cancer, based on
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known risk factors, such as age at menarche, parity and family history, as well as mam-

mographic density and possibly SNPs, when a women is invited for her first screen

examination at around age 50. This could help design optimal tailored screening plans,

varying starting age, interval and possibly adopting new methods of examination, such

as MRI and tomosynthesis [150], as supplementary or alternative investigations. This

could also contribute to decisions in relation to primary prevention. A reasonable ap-

proach might be to pilot such an early risk assessment including mammographic density,

in an experimental design similar to the introduction of the breast screening age exten-

sion in the UK.

The results from the standardised odds ratio analysis suggest that it would be safe to

use one of the fully automated methods in the first instance. However, evaluation of

this should be built into such a pilot, and in parallel research should continue on further

development of fully automated methods.

A risk assessment, based on density, would also facilitate decision making when consid-

ering primary prevention treatments, such as tamoxifen. In this case a mammographic

density assessment, a year into the treatment, is recommended to compare with baseline

and verify whether the subject is responding positively to the therapy or would benefit

more from a different prevention regimen, e.g. anastrozole. On the basis of results here

and elsewhere, mammographic density reduction does not seem to be useful as a sur-

rogate marker in case of treatment of existing breast cancer with aromatase inhibitors,

however it has been suggested that a measure of the amount of fibroglandular tissue

obtained from breast MRI may be more sensitive to treatment-induced changes in this

case [200]. Although MRI is unlikely to be used in general population surveillance in the

near future, there is no reason why its use should not be expanded in follow-up of cases

of breast cancer. Whether density might be a marker of primary prevention effective-

ness with aromatase inhibitors should be investigated in the IBIS-2 study in the future.

Findings from the ATAC trial [278] revealed that another useful biomarker suggesting a

positive response to anastrozole therapy might be the appearance of new vasomotor or

joint symptoms within the first three months of treatment. Further studies are needed

to confirm or dismiss these hypotheses.

In any case, these tailored strategies for breast screening and disease-control can be

rendered more attractive by improving the methods of measuring density. Quantra and

Volpara absolute dense volume estimates appear promising for predicting risk, without

being significantly affected by measurement error; nevertheless both algorithms would

benefit from further improvement. Automated approaches considering textural features
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could also represent a valid alternative. Further studies with richer and larger datasets

are needed.

A fully validated objective means of assessing density and an agreed and clear policy

regarding how to use this detail in clinical practice should be the primary goals of re-

search in this field. Without this knowledge informing of their density women undergoing

screening could cause more harm than good, thus the introduction of Breast Density

Inform Law, which is currently spreading across the US, may be premature. Firstly,

a standardised automated density assessment tool is essential in order to ensure that

all women access the same information. Secondly, an accurate risk predicting system,

incorporating density, is required to be able to discuss effectively with the subject about

their risk and evaluate their options, avoiding unnecessary anxiety, especially until there

is an established health policy strategy comprising additional examinations or preven-

tive treatments.

Although other technologies such as MRI clearly have great potential in breast compo-

sition determination, resources arguably prohibit their use in mass screening, although

this may not always be the case. Also, their use in high risk groups means that such

populations might have individual risk more accurately predicted by incorporation of

MRI-based measures of breast composition in risk assessment. As noted in Chapter 8,

it may be that the dual effect of background parenchymal enhancement and fibroglan-

dular tissue volume can substantially improve our current mammographic density as a

risk predictor. Confirming or refuting this should be a target for future studies.

One technology which has potential to radically improve automated volumetric density

is digital breast tomosynthesis [279, 280]. Unlike MRI, the incorporation of tomosynthe-

sis into mass screening is feasible, and the technology can in principle provide much more

three-dimensional information on breast composition than two-view mammography. It

would therefore seem timely to develop and evaluate methods of density measurement

from three-dimensional tomosynthesis data.

As stated above, the priority in research on breast density and its clinical applications

should be to identify the most appropriate standardised method to assess it. For this

reason in Chapter 8 we presented a comparison of the methods available in this thesis

and their association to risk, bearing in mind that this analyses had the major weakness

of not being performed on the same dataset. Thus an ideal future study would require

a case-control dataset, where cases are screen-detected, to limit potential masking bias,

and density is assessed using several methods, primarily: visual classification (21 cate-

gories), Cumulus that would be used as current reference, secondly automated methods
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such as Quantra and Volpara, and, possibly, the newly presented methods based on

pattern or variation measures. It would be interesting also to have data for at least

a portion of these women on fibroglandular volume and background parenchymal en-

hancement measured with MRI, in order to see which of the afore-mentioned methods is

the more accurate, to clarify what each method is actually measuring and to understand

how they differ. Nevertheless, for practical reasons, the priority must be to identify the

density measure with the strongest association with risk, as there is still an ongoing de-

bate about the measure of breast composition in terms of risk prediction and association

with pathology. Such a study should be feasible in the near future as there are currently

really large studies, such as PROCAS and TOMMY, collecting multiple density mea-

sures using different tools. These have great promise in terms of answering this question.
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