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Abstract. We study mean curvature flow in Sn+1
K , the round

sphere of sectional curvature K > 0, under the quadratic curva-
ture pinching condition |A|2 < 1

n−2H
2 + 4K when n ≥ 4 and

|A|2 < 3
5H

2 + 8
3K when n = 3. This condition is related to a fa-

mous theorem of Simons [28], which states that the only minimal
hypersurfaces satisfying |A|2 < nK are the totally geodesic hyper-
spheres. It is related to but distinct from the “two-convexity” con-
dition studied in [10, 21]. Notably, in contrast to two-convexity, it
allows the mean curvature to change sign. We show that the pinch-
ing condition is preserved by mean curvature flow, and obtain a
“cylindrical” estimate and corresponding pointwise derivative esti-
mates for the curvature. As a result, we find that the flow becomes
either uniformly convex or quantitatively cylindrical in regions of
high curvature. This allows us to apply the surgery apparatus de-
veloped by Huisken and Sinestrari [21] (cf. [16]). We conclude that
any smoothly, properly, isometrically immersed hypersurface M
of Sn+1

K satisfying the pinching condition is diffeomorphic to Sn or
the connected sum of a finite number of copies of S1 × Sn−1. If
M is embedded, then it bounds a 1-handlebody. The results are
sharp when n ≥ 4.

Contents

1. Introduction 2
Acknowledgements 4
2. Preliminaries 4
3. Preserved curvature conditions 11
4. The key estimates for smooth flows 15
5. The key estimates for surgically modified flows 32
6. Existence of terminating surgically modified flows 36
References 37

2000 Mathematics Subject Classification. Primary 53C44.
1



2 MAT LANGFORD AND HUY THE NGUYEN

1. Introduction

Beginning in the late 1960’s, Simons [28] and others [1, 13, 14, 27]
obtained rigidity theorems for minimal and constant mean curvature
hypersurfaces in the sphere under certain bounds on the second funda-
mental form (depending on the dimension and the value of the mean
curvature). The results are obtained by exploiting Simons’ identity,
a Bochner-like formula which relates the Hessian of the mean curva-
ture (which vanishes for a constant mean curvature hypersurface) to
the Laplacian of the second fundamental form. Simons’ theorem, for
example, states that the only minimal hypersurfaces of Sn+1 satisfying
|A|2 ≤ n, where A denotes the second fundamental form, are the to-
tally geodesic hyperspheres (which satisfy |A|2 ≡ 0) and the Clifford
hypersurfaces (which satisfy |A|2 = n).

Such results can be improved upon using curvature flows, which re-
move the constant mean curvature restriction. Indeed, Huisken [20]
showed that, under mean curvature flow, hypersurfaces of the sphere
Sn+1
K of sectional curvature1 K, n ≥ 2, satisfying the quadratic curva-

ture pinching condition

(1.1)

{
|A|2 < 1

n−1
H2 + 2K if n ≥ 3 ,

|A|2 < 3
4
H2 + 4

3
K if n = 2

shrink, preserving the inequality, either to a “round” point in finite time
or to a totally geodesic hypersphere in infinite time. In case n ≥ 3,
this behaviour is sharp in the sense that there exist hypersurfaces of
the form S1(r) × Sn−1(s), r2 + s2 = 1, on which |A|2 − 1

n−1
H2 can be

made arbitrarily close to 2. Andrews [2] obtained a sharper result when
n = 2: he showed that, under a different (fully nonlinear) curvature
flow, positive sectional curvature (which is equivalent to the inequality
|A|2 < H2 + 2) is preserved, and solutions converge either to round
points in finite time, or totally geodesic spheres in infinite time.

We will develop these results further by allowing a weaker curvature
pinching condition. Namely, we study, for n ≥ 3, hypersurfaces of Sn+1

K

satisfying

(1.2)

{
|A|2 < 1

n−2
H2 + 4K if n ≥ 4 ,

|A|2 < 3
5
H2 + 8

3
K if n = 3 .

The analysis is much more complicated under the weaker condition
(1.2), since we can no longer expect solutions to shrink to a round

1We find it convenient to work without normalizing the curvature K, as it serves
as a natural scale parameter.
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point at a finite time singularity — further singularities and topolo-
gies are possible. The purpose of the pinching condition (1.2) is to
ensure that the only additional singularities are (possibly degenerate)
“neck-pinch” singularities. In this respect, our results are sharp (when
n ≥ 4), since there exist hypersurfaces of Sn+1 the form S2(r)×Sn−2(s),
r2 + s2 = 1, on which |A|2− 1

n−2
H2 can be made arbitrarily close to 4.

Once this is established, we are able to make use of the robust surgery
construction of Huisken and Sinestrari [21], which allows us to replace
the singular neck regions by almost spherical caps, and thereby con-
tinue the flow (cf. [10]). Since the estimates hold in the presence of
surgeries, with constants that do not depend on the maximal time of
existence, we find, after a finite number of surgeries, that the initial
hypersurface has decomposed into a finite number of components, each
of which is either a “small” Sn, the Cartesian product of S1 with a
“small” Sn−1, or a “large” Sn. As a consequence, we obtain a classifica-
tion of diffeomorphism types for hypersurfaces satisfying the pinching
condition.

Theorem 1.1. Every properly, isometrically immersed hypersurface
X :M→ Sn+1

K of Sn+1
K satisfying (1.2) is diffeomorphic either to Sn or

to a connected sum of finitely many copies of S1 × Sn−1. Indeed, there
exists a 1-handlebody Ω and an immersion X : Ω→ Sn+1

K such that ∂Ω
is diffeomorphic to M and X|∂Ω = X. If X is an embedding, then so
is X.

Our arguments follow those of Huisken and Sinestrari [21] — we first
establish a cylindrical estimate (Theorem 4.1) by way of Stampacchia
iteration, and then use this to obtain pointwise derivative estimates for
the curvature using the maximum principle (Theorems 4.8 and 4.11).
These estimates allow us to apply, virtually unmodified, the Huisken–
Sinestrari surgery algorithm after pulling the flow locally up to the
tangent space to Sn+1

K . In particular, we do not use positive mean
curvature and convexity estimates follow as a consequence of the cylin-
drical estimates.

The cylindrical estimate may be viewed as a partial generalization
of Simons’ famous theorem mentioned above. It also implies a new
rigidity theorem for ancient solutions to mean curvature flow in the
sphere (Corollary 4.4). The key to proving it is a Poincaré-type in-
equality for W 2,2-functions supported away from “cylindrical” points
of the hypersurface (Proposition 2.2).

We also obtain novel noncollapsing estimates (Corollary 3.3) which
are preserved by the surgery algorithm (see §5.1). These are not ac-
tually required for the proof of Theorem 1.1, but we include them
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here as they may be of some use in obtaining further applications
(cf. [11, 12,24]).

The work of Huisken and Sinestrari was generalized in a different
direction by Brendle and Huisken [10] who, building upon earlier work
of Andrews [3], studied the evolution (with surgeries) by a certain fully
nonlinear flow of hypersurfaces in compact Riemannian ambient spaces
satisfying the two-convexity condition

λ1 + λ2 > 2
√
−K ,

where λ1 ≤ λ2 ≤ · · · ≤ λn are the principal curvatures of the hyper-
surface and K ≤ 0 is a lower bound for the sectional curvatures of the
ambient space. For hypersurfaces of the sphere, this becomes ordinary
two-convexity,

λ1 + λ2 > 0 .

A consequence of their work is a version of Theorem 1.1 for hyper-
surfaces with the quadratic pinching condition (1.2) replaced by two-
convexity. Note that two-convexity is neither stronger nor weaker than
the quadratic pinching condition (1.2). Indeed, unlike two-convexity,
the quadratic condition (1.2) is invariant under orientation reversal,
and therefore allows the mean curvature to change sign. Moreover,
the Brendle–Huisken approach holds only for embedded hypersurfaces,
since they require noncollapsing estimates (see [4, 7, 9]) to obtain a
gradient estimate for the curvature (cf. [15]).
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2. Preliminaries

2.1. Hypersurfaces of Sn+1
K . Here we recall the fundamental identi-

ties for immersed hypersurfaces X : M → Sn+1
K of the sphere Sn+1

K of
sectional curvature K > 0. First, recall the Gauss equation

Rmijkl = AikAjl − AilAjk +K(gikgjl − gilgjk) ,(2.1)

where A2
ij := Ai

pApj, and its traces

Rcik = (HAik − A2
ik) + (n− 1)Kgik

and

Sc = H2 − |A|2 + n(n− 1)K .
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The Codazzi equation,

∇kAij = ∇iAkj ,

implies that the covariant differential ∇A of the second fundamental
form is totally symmetric.

Combining the Gauss and Codazzi equations yields Simons’ identity

∇(i∇j)Akl −∇(k∇l)Aij = AijA
2
kl − AklA2

ij +K(gijAkl − gklAij),(2.2)

where brackets indicate symmetrization about the enclosed compo-
nents, and its trace

∆Aij = ∇i∇jH +HA2
ij − |A|2Aij −K(Hgij − nAij) .(2.3)

By splitting ∇A into is trace and trace-free parts, we obtain the
Kato inequality

|∇A|2 ≥ 3

n+ 2
|∇H|2.(2.4)

2.2. Mean curvature flow in Sn+1
K . Next, we recall the fundamental

identities for a family of hypersurfaces X :M× I → Sn+1
K evolving by

mean curvature flow. We make use of the time-dependent connection
of Andrews and Baker [5], which differentiates time-dependent tangent
vector fields V on M in space-time directions ξ ∈ T (M× I) in the
obvious way:

dX(∇ξV ) :=
(
Dξ

[
dX(V )

])>
,

where D is the pullback to M× I of the ambient connection, dX is
the differential of X and ( · )> the projection onto dX(TM). Observe
that

∇ξV = [∂t, V ]−HA(V ) ,(2.5)

where [ · , · ] denotes the Lie bracket and we conflate the second funda-
mental form with the Weingarten map.

Note that ∇ξ agrees with the Levi-Civita covariant derivative on the
spatial tangent bundle {ξ ∈ T (M× I) : dt(ξ) = 0} (which we conflate
with TM) when ξ has no ∂t component, where ∂t is the canonical
tangent vector field to I. The main advantage of working with the
time-dependent connection (as opposed to the Lie derivative) is that
the induced metric tensor g is ∇t-parallel:

∇tg = 0 ,

where ∇t := ∇∂t .
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Denote by XRm the curvature tensor of the pullback connection XD
and let U and V be any pair of time-dependent tangent vector fields.
Observe, on the one hand, that

XRm(∂t, U)V = dX [Rm(∂t, U)V + A(U, V )∇H −∇VHA(U)]

+
[
∇tA(U, V )−∇U∇VH −HA2(U, V )

]
ν ,(2.6)

where we conflate ∇H with the gradient of H. On the other hand,

XRm(∂t, U)V = Rm(dX(∂t), dX(U))(dX(V ))

= −HRm(ν, dX(U))dX(V )

= HKg(U, V )ν .

Resolving (2.6) into tangential and normal components, we obtain the
“temporal” Gauss-Codazzi equations

Rm(∂t, U)V = ∇VHA(U)− A(U, V )∇H(2.7)

and

∇tA = ∇2H +HA2 +KHg ,(2.8)

respectively, where in (2.8) both sides are understood as tensors on the
spatial tangent bundle.

Combining the Codazzi identity (2.8) with the contracted Simons
identity (2.3) yields an evolution equation for the second fundamental
form:

(∇t −∆)A = (|A|2 + nK)A− 2nK(A− 1
n
Hg) ,(2.9)

where ∆ is the spatial Laplacian. Tracing yields

(∂t −∆)H = (|A|2 + nK)H ,(2.10)

which immediately yields

(∂t −∆)H2 = − 2|∇H|2 + 2(|A|2 + nK)H2 .(2.11)

Since g is ∇t-parallel, (2.9) immediately yields

(∂t −∆)|A|2 = − 2|∇A|2 + 2(|A|2 + nK)|A|2(2.12)

− 4nK(|A|2 − 1
n
H2),

where ∇A is the spatial covariant differential of A.
Given tensor fields S and T , we denote by S ∗ T any tensor field

resulting from linear combinations of metric contractions of S⊗T . By
(2.5) and (2.7),

∇t(∇T ) = ∇(∇tT ) + A ∗ A ∗ ∇T + A ∗ ∇A ∗ T.
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By (2.1),

∆(∇T ) = ∇(∆T ) + A ∗ A ∗ ∇T +K ∗ ∇T + A ∗ ∇A ∗ T .

Thus,

(∇t −∆)(∇A) = ∇ [(∇t −∆)A] + A ∗ A ∗ ∇A+K ∗ ∇A
= A ∗ A ∗ ∇A+K ∗ ∇A ,

and hence, by Young’s inequality,

(∂t −∆)|∇A|2 ≤ − 2|∇2A|2 + cn(|A|2 + nK)|∇A|2 ,(2.13)

where cn is a constant that depends only on n.
Similarly,

(∇t −∆)(∇2A) = A ∗ A ∗ ∇2A+ A ∗ ∇A ∗ ∇A+K ∗ ∇2A ,

and hence

(∂t −∆)|∇2A|2 ≤− 2|∇3A|2+ cn
[
(|A|2+ nK)|∇2A|2+ |∇A|4

]
,(2.14)

where cn is a constant that depends only on n.
Similar inequalities hold for higher derivatives ofA since, by a straight-

forward induction argument,

(∇t −∆)(∇mA) = K ∗ ∇mA+
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA .(2.15)

The following “Bernstein estimates” are a standard application of
the “rough” evolution equations (2.15). For a proof in the Euclidean
case (which carries over with minor modifications) see, for example, [6,
Theorem 6.24].

Proposition 2.1 (Bernstein estimates). Let X :M×[0, λK−1]→ Sn+1
K

be a solution to mean curvature flow. If

max
M×[0,λK−1]

|A|2 ≤ Λ0K ,

then

tm|∇mA|2 ≤ ΛmK ,

where Λm depends only on n, m, λ and Λ0.

2.3. A Poincaré-type inequality. The following Poincaré-type in-
equality (cf. [18, 5.4 Lemma]) is crucial to obtaining the cylindrical
estimate (via Stampacchia iteration) in Section 4.1.

Proposition 2.2. Given n ≥ 3, α ∈ (0, 1) and η ∈ (0, 1
n−2+α

− 1
n−1

)
there exists γ = γ(n, α, η) > 0 with the following property: Let X :
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Mn → Sn+1
K be a smoothly immersed hypersurface and let u ∈ W 1,2(M)

be a function satisfying sptu ⊂ Uα,η, where, introducing the functions

f1,η := |A|2 −
(

1

n− 1
+ η

)
H2

and

g2,α := |A|2 − 1

n− 2 + α
H2 − 2(2− α)K ,

the “acylindrical” set Uα,η ⊂M is defined by

Uα,η := {x ∈M : f1,η(x) ≥ 0 ≥ g2,α(x)} .
For any r ≥ 1,

γ

∫
u2W dµ ≤

∫
u2

(
r−1 |∇u|2

u2
+ r
|∇A|2

W
+K

)
dµ,

where

W :=

(
1

n− 2 + α
− 1

n− 1
− η +

α

2n(n− 1)

)
H2 + 2(2− α)K .

Proof. By a straightforward scaling argument, it suffices to prove the
claim when K = 1. By a standard approximation argument, we may
assume that u is smooth.

Recall Simons’ identity

∇(i∇j)Akl −∇(k∇l)Aij = Cijkl ,

where the brackets denote symmetrization and

C := A⊗ A2 − A2 ⊗ A+ (g ⊗ A− A⊗ g) .

We claim that

(2.16) γ W 3 ≤ |C|2 + 1 in Uα,η

on any immersed hypersurface X : Mn → Sn+1 for some positive
γ = γ(n, α, η). Indeed, if this is not the case, then there is a sequence

{~λk}k∈N of vectors ~λk ∈ Rn (corresponding to principal curvatures of a
sequence of hypersurfaces) satisfying

f1,η(~λ
k) := |~λk|2 − 1

n− 1
tr(~λk)2 − η tr(~λk)2 ≥ 0

and

g2,k(~λ
k) := |~λk|2 − 1

n− 2 + k
tr(~λk)2 − 2(2− k) ≤ 0 ,

where tr(~λ) :=
∑n

i=1 λi, but

|C(~λk)|2 + 1

W 3(~λk)
→ 0
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as k →∞, where

|C(~λ)|2 :=
n∑

i,j=1

(λj − λi)2(λiλj + 1)2

and

W (~λ) :=

(
1

n− 2 + α
− 1

n− 1
− η +

α

2n(n− 1)

)
tr(~λ)2 + 2(2− α) .

Set r2
k := W (~λk)−1 → 0 and λ̂k := rk~λ

k. Observe that

|λ̂k| ≤ 2n(n− 1)

α(n− 2)
=: c(n, α)

and hence, up to a subsequence, λ̂k → λ̂ ∈ Rn. Computing(
|λ̂k|2 − 1

n− 1
tr(λ̂k)2

)
− η tr(λ̂k)2 = r2

kf1,η(~λ
k) ≥ 0

and (
|λ̂k|2 − 1

n− 2 + α
tr(λ̂k)2

)
− 2(2− α)r2

k = r2
kg2,α(~λk) ≤ 0 ,

we find

(2.17)

(
|λ̂|2 − 1

n− 1
tr(λ̂)2

)
≥ η tr(λ̂)2

and

(2.18)

(
|λ̂|2 − 1

n− 2 + α
tr(λ̂)2

)
≤ 0 .

On the other hand,
n∑

i,j=1

(
λ̂ki λ̂

k
j (λ̂

k
j − λ̂ki )

)2

+ 2r2
kλ̂

k
i λ̂

k
j (λ̂

k
j − λ̂ki )2 + r4

k(λ̂
k
j − λ̂ki )2 = r6

k|C(~λk)|2

so that

(2.19)
n∑

i,j=1

(
λ̂iλ̂j(λ̂j − λ̂i)

)2

= 0 .

Together, (2.17), (2.18) and (2.19) are in contradiction: (2.19) implies

that λ̂ has a null component of multiplicity m and a non-zero compo-
nent, κ say, of multiplicity n −m. The inequalities (2.17) and (2.18)
then yield (

n−m− (n−m)2

n− 1

)
κ2 ≥ η(n−m)2κ2 > 0
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and (
n−m− (n−m)2

n− 2 + α

)
κ2 ≤ 0 .

which together imply that m ∈ (1, 2 − α], which is impossible. This
proves (2.16).

Using (2.16), we can estimate

γ

∫
u2Wdµ ≤

∫
u2

W 2

(
|C|2 + 1

)
dµ

=

∫
u2

W 2

(
C ∗ ∇2A+ 1

)
dµ

=

∫
u2

W 2

(
∇u
u
∗ C +

∇W
W
∗ C +∇C

)
∗ ∇Adµ+

∫
u2

W 2
dµ

≤ C

[∫
u2

W 2

(
W

3
2
|∇u|
u

+W
1
2 |∇W |+W |∇A|

)
|∇A| dµ

+

∫
u2 dµ

]
≤ C

[∫
u2

(
|∇u|
u

+
|∇A|
W

1
2

)
|∇A|
W

1
2

dµ+

∫
u2 dµ

]
,

where C denotes any constant which depends only on n, α and η. The
claim now follows from Young’s inequality. �

2.4. The Sobolev inequality. We shall also require the following
Sobolev inequality for the Stampacchia iteration argument in Section
4.1. It may be obtained from [17, Theorem 2.1] (cf. [23]) by the sub-
stitution u 7→ u2.

Theorem 2.3. Let X : M → Sn+1
K , n ≥ 3, be a hypersurface of the

sphere of sectional curvature K > 0 and let u : M → R a W 1,2 be
function. If

µ(spt(u)) ≤ ωn
n+ 1

K−
n
2 ,

then

(2.20)

(∫
u2∗dµ

) 1
2∗

≤ cn

∫ (
|∇u|2 + u2H2

)
dµ ,

where q∗ := nq
n−q , and cn is a constant that depends only on n.
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3. Preserved curvature conditions

3.1. Quadratic curvature condition. If the strict quadratic curva-
ture inequality (1.2) holds on a hypersurface of Sn+1

K , n ≥ 3, then we
can find some α > 0 such that

|A|2 ≤ 1

n− 2 + α
H2 + 2(2− α)K .(3.1)

This inequality is preserved under mean curvature flow when n ≥ 3
(note that α > 2

3
when n = 3).

Proposition 3.1 (Cf. [19, 1.4 Lemma]). Let X :Mn× [0, T )→ Sn+1
K ,

n ≥ 3, be a solution to mean curvature flow such that (3.1) holds on
Mn × {0} for some α ∈ (0, 1). If n ≥ 4, or if n = 3 and α ≥ 2

3
, then

(3.1) holds on Mn × {t} for all t ∈ [0, T ).

Proof. Suppose that (3.1) holds on M×{0} for some α ∈ (0, 1) when
n ≥ 4 or some α ∈ (2

3
, 1) when n = 3. Setting

an :=
1

n− 2 + α
and bn := 2(2− α) ,

we compute, using (2.11) and (2.12),

(∂t −∆)
(
|A|2 − anH2

)
= − 2

(
|∇A|2 − an|∇H|2

)
+ 2bnK(|A|2 + nK)

+ 2(|A|2 − anH2 − bnK)(|A|2 + nK)

− 4nK
(
|A|2 − 1

n
H2
)
.

Since 2
2n−bn = an and n

2n−bn ≤ 1, we can estimate

2bnK(|A|2 + nK)− 4nK
(
|A|2 − 1

n
H2
)

= 2K
(
(bn − 2n)|A|2 + 2H2 + bnnK

)
= − 2K(2n− bn)

(
|A|2 − 2

2n−bnH
2 − nbn

2n−bnK
)

≤ − 2K(2n− bn)
(
|A|2 − anH2 − bnK

)
.

Estimating 2
2n−bn ≤

3
n+2

and applying (2.4), we arrive at

(∂t −∆)
(
|A|2 − anH2 − bnK

)
≤ 2

(
|A|2 + (bn − n)K

) (
|A|2 − anH2 − bnK

)
.

The claim now follows from the maximum principle. �
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3.2. Rigidity. The quadratic curvature condition (1.2) is optimal for
cylindrical estimates and connected sum theorems in dimensions n ≥
4. Indeed, consider the hypersurfaces Mk,n−k(r, s) = Sk(r) × Sn−k(s),
r2 + s2 = 1, of Sn+1, where Sk(r) is the k dimensional sphere of radius
r. The second fundamental forms have eigenvalues λ, with multiplicity
k, and µ, with multiplicity n− k, such that λµ = −1.

Consider the case k = 2. In this case,

|A|2 =
2s4 + (n− 2)r4

r2s2

and

H =
(n− 2)r2 − 2s2

rs
,

so that

H2 =
(n− 2)2r4 + 4s4 − 4(n− 2)r2s2

r2s2
,

which then yields

|A|2 − 1

n− 2
H2 − 4 =

2(n− 4)

(n− 2)

s2

r2
.

Thus, in every dimension n ≥ 4, we can find, for any ε > 0, a hyper-
surface of the topological type S2 × Sn−2 satisfying

|A|2 − 1

n− 2
H2 − 4 ≤ ε .

So the quadratic bound (1.2) in Theorem 1.1 is the best that can be
achieved when n ≥ 4.

3.3. Inscribed/exscribed curvature pinching. We now present a
noncollapsing estimate for mean curvature flow under the quadratic
pinching condition (1.2). As mentioned in the introduction, this will
not actually be required to obtain the main result (Theorem 1.1).

As in [7,9], we define the inscribed and exscribed curvatures k and k
of an embedded hypersurface M ↪→ Sn+1

K by

k(p) := sup
q 6=p

2 〈p− q, ν(p)〉
‖p− q‖2 and k(p) := inf

q 6=p

2 〈p− q, ν(p)〉
‖p− q‖2 ,

respectively, where the inner product and norm are those of Rn+2. Note
that, under orientation reversal, k 7→ −k and k 7→ −k. Observe also
that

k(p) ≥ lim sup
q→p

2 〈p− q, ν(p)〉
‖p− q‖2 = λn
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and

k(p) ≤ lim inf
q→p

2 〈p− q, ν(p)〉
‖p− q‖2 = λ1 .

In particular,
k ≥ 1

n
H and k ≤ 1

n
H .

In [7] (cf. [8, Proposition 2.1]), it was shown that

(3.2) (∂t −∆)k ≤ (|A|2 + nK)k − 2nK
(
k − 1

n
H
)

and

(3.3) (∂t −∆)k ≥ (|A|2 + nK)k + 2nK
(

1
n
H − k

)
in the viscosity sense along a solution to mean curvature flow.

By the calculations in §3.1, the function

(3.4) F :=

√
4K +

1

n− 2
H2 − |A|2

is positive and satisfies

(3.5) (∂t −∆)F ≥ (|A|2 + nK)F − (2n− 4)KF

on a solution to mean curvature flow which initially satisfies the pinch-
ing condition (3.1). Thus, for such a solution,

(∂t −∆)
k

F
≤ − 4K

(
k

F
− 1

2

H

F

)
+ 2

〈
∇ k

F
,∇ logF

〉
≤ − 4K

(
k

F
− C

)
+ 2

〈
∇ k

F
,∇ logF

〉
in the viscosity sense, where

C2 :=
(n− 2)(n− 2 + α)

4α
.

Since the pinching condition is invariant under orientation reversal, the
maximum principle then yields the following noncollapsing estimates.

Proposition 3.2. Let X : M× [0, T ) → Sn+1
K , n ≥ 3, be a solution

to mean curvature flow such that X0 : M → Sn+1
K is embedded and

satisfies (3.1) with α ∈ (0, 1) when n ≥ 4 or α ∈ (2
3
, 1) if n = 3. If

max
M×{0}

k

F
≥ −µ and max

M×{0}

k

F
≤ µ

for some µ ≥ C :=
√

(n−2)(n−2+α)
4α

, then

(3.6)
k

F
(p, t) ≥ −C− (µ−C) e−4Kt and

k

F
(p, t) ≤ C+(µ−C) e−4Kt
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for all (p, t) ∈M× [0, T ).

Corollary 3.3. For any solution X : M × [0, T ) → Sn+1
K to mean

curvature flow in Sn+1
K , n ≥ 3, with embedded initial condition satisfying

(3.1), there is a constant µ = µ(n, α, min
M×{0}

k

|H|+
√
K
, max
M×{0}

k
|H|+

√
K

) <∞

such that

k ≥ −µ
(
|H|+

√
K
)

and k ≤ µ
(
|H|+

√
K
)
.

3.4. The surgery class. Given n ≥ 3, K > 0, α ∈ (0, 1), V < ∞
and Θ <∞, we shall work with the class CnK(α, V,Θ) of hypersurfaces
X :M→ Sn+1

K satisfying

(1) max
Mn×{0}

(
|A|2 − 1

n−2+α
H2
)
≤ 2(2− α)K2,

(2) µ0(Mn) ≤ V K−
n
2 , and

(3) max
Mn×{0}

H2 ≤ ΘK,

where µt is the measure induced by X(·, t). Every properly immersed
hypersurface of Sn+1

K which satisfies the strict quadratic pinching con-
dition (1.2) lies in the class CnK(α, V,Θ) for some choice of parameters
α, V , and Θ (with α > 2

3
when n = 3). The first two conditions are

preserved under mean curvature flow; the third is not. However, it is
possible to preserve the class CnK(α, V,Θ) under mean curvature flow-
with-surgery in the following sense. Given an initial hypersurface in the
class CnK(α, V,Θ), we will be able to choose Θ3 > Θ2 > Θ1 (depending
only on n, α, V and Θ) such that, if we stop the flow when H2 reaches
the threshold Θ3K, then regions of squared mean curvature at least
Θ1K form ‘necks’ of such quality that they may be replaced by high
quality ‘caps’, resulting in a new hypersurface in the class CnK(α, V,Θ2).
Since the estimates pass, with the same constants, to flows modified by
such surgeries, the procedure can be repeated with the same constants
each time H2 reaches the threshold Θ3K.

If, in addition, the initial datum X0 : M → Sn+1
K is an embedding,

then we can also find µ > 0 such that the inscribed and exscribed
curvatures are µ-pinched, in the sense that

min
M×{0}

k

|H|+
√
K
≥ −µ and max

M×{0}

k

|H|+
√
K
≤ µ .

These inequalities are preserved under mean curvature flow in the sense
of Corollary 3.3.

Remark 3.4. The class CnK(α, V,Θ) is defined slightly differently than
the class C(R,α0, α1, α2) of hypersurfaces of Rn+1 introduced in [21].
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We have found it convenient to use K as the scale parameter here; for-
mally, it is related to the scale parameter R by the equation R−2 = ΘK.
The parameter α corresponds to α0 and V corresponds to α3Θ

n
2 . The

parameter α1 (a scale covariant lower bound for the mean curvature)
is not required here — it is needed in [21] in order to bound the time
of existence T from above. Our estimates do not depend on a bound
for T and, indeed, some components of the flow may exist for all time.

4. The key estimates for smooth flows

4.1. The cylindrical estimate. The following estimate provides a
suitable analogue of the Huisken–Sinestrari “cylindrical estimate” [21,
Theorem 5.3].

Theorem 4.1 (Cylindrical estimate (Cf. [18,20,21,25])). Let X :M×
[0, T )→ Sn+1

K , n ≥ 3, be a solution to mean curvature flow with initial
condition in the class CnK(α, V,Θ). Assume, further, that α > 2

3
when

n = 3. There exist δ = δ(n, α) > 0, η0 = η0(n, α) > 0 and, for every
η ∈ (0, η0), Cη = Cη(n, α, V,Θ, η) <∞ such that

|A|2 − 1

n− 1
H2 ≤ ηH2 + CηK e−2δKt in Mn × [0, T ) .(4.1)

Remark 4.2. Note that, unlike the Euclidean analogue [21, Theorem
5.3], the constant Cη does not depend on a bound for the maximal time
(which is controlled by the minimum of H at the initial time in [21]),
and the zeroth order term becomes negligible for large times. This is
because, as in [20, 2.1 Theorem], the coercive term in (4.2) gives rise to
an exponential decay term in the “L2-estimate”, which we are able to
exploit. This observation is useful here since, unlike in the Euclidean
setting, solutions satisfying the initial conditions (1)-(3) can exist for
all time (e.g. stationary hyperequators).

Remark 4.3. As a Corollary of the cylindrical estimate, we find that
any minimal hypersurface of Sn+1

K , n ≥ 3, satisfying (1.2) must be
totally geodesic. This is a special case of Simons’ Theorem [28]. More
generally, any hypersurface X0 :M→ Sn+1

K satisfying (1.2) which flows
for all time under mean curvature flow (e.g. if X0(M) is embedded and
divides the area of Sn+1

K in two) must converge to a hyperequator.
We also find that |A|2 − 1

n−1
H2 ≤ 0 for any uniformly quadratically

pinched ancient solution X : M × (−∞, 0) → Sn+1
K with uniformly

bounded area and curvature as t → −∞. A theorem of Huisken and
Sinestrari [22, Theorem 6.1] then implies that X :M×(−∞, 0)→ Sn+1

K

is either a stationary hyperequator or a shrinking hyperparallel.
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Corollary 4.4. Let X :M× (−∞, ω)→ Sn+1
K be an ancient solution

to mean curvature flow. If

– lim sup
t→−∞

max
M×{t}

(|A|2 − 1
n−2

H2) < 4K,

– lim sup
t→−∞

µt(M) <∞, and

– lim sup
t→−∞

max
M×{t}

H2 <∞,

then X :M× (−∞, ω) → Sn+1
K is either a stationary hyperequator or

a shrinking hyperparallel.

Motivated by [20, 2.1 Theorem] and [21, Theorem 5.3], we will prove
the estimate (4.1) by obtaining a bound for the function

fσ,η :=

[
|A|2 −

(
1

n− 1
+ η

)
H2

]
W σ−1

for some σ ∈ (0, 1) and any η ∈
(

0, (2−α)(n−α)
2n(n−1)(n−2+α)

)
, where, setting

a :=
1

n− 2 + α
− 1

n− 1
− η +

α

2n(n− 1)
and b := 2(2− α) ,

the function W is defined by

W := aH2 + bK .

Observe that W > 0 and fσ,η ≤ W σ. The final term in the constant
a is chosen in order to obtain the good gradient and reaction terms in
the following lemma.

Lemma 4.5. There exists δ = δ(n, α) > 0 such that

(∂t −∆)fσ,η ≤ 2σ(|A|2 + nK)fσ,η − 4δKfσ,η

− 2δfσ,η
|∇A|2

W
+ 2(1− σ)

〈
∇fσ,η,

∇W
W

〉
(4.2)

wherever fσ,η > 0.

Proof. Set fη := |A|2−( 1
n−1

+η)H2. Basic manipulations (independent
of the precise form of fη and W ) yield

(∂t −∆)fσ,η = W σ−1(∂t −∆)fη − (1− σ)fσ,ηW
−1(∂t −∆)W

+ 2(1− σ)

〈
∇fσ,η,

∇W
W

〉
− σ(1− σ)fσ,η

|∇W |2

W 2
.

The final term will be discarded.
Applying (2.12) and (2.11), we compute

(∂t −∆)W = 2
(
|A|2 + nK

)
(W − bK)− 2a|∇H|2
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and

(∂t −∆)fη = 2
(
|A|2 + nK

)
fη − 4nK

(
|A|2 − 1

n
H2
)

− 2
(
|∇A|2 −

(
1

n−1
+ η
)
|∇H|2

)
.(4.3)

Combining the preceding three identities and estimating fσ,η ≤ W σ,
|∇H|2 ≤ n+2

3
|∇A|2 and σ < 1 yields

(∂t −∆)fσ,η ≤ 2σ(|A|2 + nK)fσ,η + 2(1− σ)

〈
∇fσ,η,

∇W
W

〉
+ 2W σ−1

(
bK(|A|2 + nK)

fη
W
− 2nK(|A|2 − 1

n
H2)

)
− 2fσ,η

(
1− n+ 2

3

[
1

n− 1
+ η + a

])
|∇A|2

W
.

Consider the term

Z := (2− α)
(
|A|2 + nK

) fη
W

+H2 − n|A|2

≤ (2− α)

(
1

n− 2 + α
H2 + bK + nK

)
fη
W

+H2 − n|A|2 .

Noting that

na = (2− α)

(
1

n− 2 + α
− 1

2(n− 1)

)
− nη ,

and estimating fη ≤ W , we find

Z ≤ nfη +

([
2− α

2(n− 1)
+ nη

]
H2 +

[
2− α− n

2

]
bK

)
fη
W

+H2 − n|A|2

≤ −
(

1

2(n− 1)
H2 +

[
α +

n

2
− 2
]
bK

)
fη
W

.

Now set

δ := min

{
1− n+ 2

3

[
1

n− 2 + α
− α

2n(n− 1)

]
,

a−1

2(n− 1)
, α +

n

2
− 2

}
> 0 . �

We wish to bound e2δKtfσ,η from above. It will suffice to consider
points where fσ,η > 0. To that end, we consider the function

f+ := max{e2δKtfσ,η, 0}.
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Lemma 4.6. There exist constants ` = `(n, α, η) < ∞ and C =
C(n,K, α, V,Θ, σ, p) such that∫

fp+ dµ ≤ C e−δpKt(4.4)

so long as σ ≤ `p−
1
2 and p > `−1.

Proof. Applying (4.2) yields

d

dt

∫
fp+ dµ = p

∫
fp−1

+ ∂tfσ,η dµ−
∫
fp+H

2 dµ

≤ − p(p− 1)

∫
fp−2

+ |∇fσ,η|2 dµ− 2δp

∫
fp+
|∇A|2

W
dµ

+ 2σp

∫
fp+|A|2 dµ− 2δpK

∫
fp+ dµ

+ 2p

∫
fp+
|∇fσ,η|
fσ,η

|∇W |
W

dµ

≤ − p(p− p
1
2 − 1)

∫
fp−2

+ |∇fσ,η|2 dµ

− (2δp− 4anp
1
2 )

∫
fp+
|∇A|2

W
dµ

+ 2σp

∫
fp+|A|2 dµ− 2δpK

∫
fp+ dµ .(4.5)

To estimate the penultimate term, we apply Proposition 2.2. Setting
u2 = fp+ and r = p

1
2 , this yields

2

∫
fp+|A|2 dµ ≤ C

∫
fp+W dµ

≤ C

∫
fp+

(
p

3
2
|∇fσ,η|
f 2
σ,η

+ p
1
2
|∇A|2

W
+K

)
dµ ,

where C depends on n, α and η, and we thereby arrive at

d

dt

∫
fp+ dµ ≤ − p(p− Cσp

3
2 − p

1
2 − 1)

∫
fp−2

+ |∇fσ,η|2 dµ

− (2δp− Cσp
3
2 − 4anp

1
2 )

∫
fp+
|∇A|2

W
dµ

− (2δ − Cσ)pK

∫
fp+ dµ .
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Choosing σ ≤ `p−
1
2 and p ≥ `−1, for ` = `(n, α, η) sufficiently small,

we can arrange that

d

dt
log

(∫
fp+ dµ

)
≤ − δpK

and hence ∫
fp+ dµ ≤ e−δpKt

∫
fp+(·, 0)dµ0 ≤ Ce−δpKt ,(4.6)

where C = C(n,K, α, V,Θ, σ, p). �

This L2-estimate (for v := f
p
2

+ ) can be bootstraped to an L∞-estimate
using Stampacchia iteration.

Proof of Theorem 4.1. Given k ≥ 0, consider

v2
k :=

(
e2δKtfσ,η − k

)p
+

and Vk(t) := {x ∈Mn : vk(x, t) > 0}

and set

u(k) :=

∫ T

0

∫
v2
k dµ dt and U(k) :=

∫ T

0

∫
Vk

dµ dt .

Note that, for any h > k > 0,

(h− k)pU(h) ≤ u(k) .(4.7)

So we need an estimate for u(k). Computing as in (4.5), we can
estimate
d

dt

∫
v2
k dµ+

∫
Vk

|∇vk|2 dµ+

∫
Vk

H2v2
k dµ ≤ 2σp

∫
Vk

fp+(|A|2 + nK) dµ

≤ cnσp

∫
Vk

fp+W dµ(4.8)

for any k > 0 if p > 2, where cn depends only on n.
We shall exploit the good gradient term using the Sobolev inequality

(Theorem 2.3). Indeed, since (4.6) implies that

|Vk| ≤ k−p
∫
fp+ dµ ≤ Ck−p ,

we can apply (2.20) to obtain

1

cn

(∫
v2∗

k dµ

) 1
2∗

≤
∫ (
|∇vk|2 +H2v2

k

)
dµ

so long as

k > k0 :=

(
(n+ 1)C

ωn
K

n
2

)p
.
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Recalling (4.8), we arrive at

(4.9)
d

dt

∫
v2
k dµ+

(∫
v2∗

k dµ

) 1
2∗

≤ cnσp

∫
Vk

fp+W dµ

for k > k0. Assuming that k0 > supM×{0} fσ,η, integration then yields

(4.10) sup
[0,T )

∫
v2
k dµ+

∫ T

0

(∫
v2∗

k dµ

) 1
2∗

≤ cnσp

∫ T

0

∫
Vk

fp+W dµ

for k > k0.
Using the interpolation inequality, we can estimate∫

v
2(n+2)
n

k dµ ≤
(∫

v2
k dµ

) 2
n
(∫

v2∗

k dµ

) 2
2∗

so that, by Young’s inequality,(∫ T

0

∫
v

2(n+2)
n

k dµ dt

) n
n+2

≤

(
sup
t∈[0,T )

∫
v2
k dµ

) 2
n+2
(∫ T

0

(∫
v2∗

k dµ

) 2
2∗

dt

) n
n+2

≤ 2
n+2

sup
t∈[0,T )

∫
v2
k dµ+ n

n+2

∫ T

0

(∫
v2∗

k dµ

) 2
2∗

dt

≤ cnσp

∫ T

0

∫
Vk

fp+W dµ .(4.11)

Set σ′ := σ+ 1
p
. p−

1
2 . Given r > 1 (to be determined momentarily),

we may choose ` slightly smaller if necessary, depending now also on r,
so that Hölder’s inequality and the L2-estimate (4.6) yield∫ T

0

∫
Vk

fp+W dµdt ≤ U(k)1− 1
r

(∫ T

0

∫
Vk

fpr+ W
r dµ dt

) 1
r

= U(k)1− 1
r

(∫ T

0

∫
Vk

(fσ′,η)
pr
+ dµ dt

) 1
r

≤ U(k)1− 1
r

(
C

∫ T

0

e−δprKt dt

) 1
r

=

[
C

δprK

(
1− e−δprKT

)] 1
r

U(k)1− 1
r(4.12)

for p ≥ `−1 and σ ≤ `p−
1
2 , where C = C(n,K, α, V,Θ, σ, p).
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Since, by Hölder’s inequality,

u(k) ≤ U(k)
2

n+2

(∫ T

0

∫
v

2(n+2)
n

k dµ dt

) n
n+2

,

the estimates (4.11) and (4.12) yield

u(k) ≤ C U(k)
2

n+2
+1− 1

r(4.13)

for k > k0, where C = C(n,K, α, V,Θ, σ, p, r). We conclude from (4.7)
that

(h− k)p U(h) ≤ C U(k)γ ,

where γ := 1 + 2
n+2
− 1

r
and C = C(n,K, α, V,Θ, σ, p, r).

At this point, we fix r > 1 + 2
n

(so that γ > 1), p−1 = `(n, α, η), and

σ = `p−
1
2 = `

3
2 . Stampacchia’s Lemma [29, Lemma 4.1] then yields

U(k0 + d) = 0 ,

where

dp := 2pγ/(γ−1)CU(k0)γ−1 .

Estimating via (4.6) (assuming k0 ≥ 1)

U(k0) ≤ k−p0

∫ T

0

∫
fp+ dµ dt ≤ C(n,K, α, V,Θ, η) ,

we conclude that

e2δKtfσ,η ≤ C(n,K, α, V,Θ, η) .

Young’s inequality then yields

|A|2 − 1

n− 1
H2 ≤ 2ηH + C(n,K, α, V,Θ, η)e−2δKt .

The theorem follows by the scaling covariance of the estimate. �

4.2. The gradient estimate. Next, we derive a suitable analogue
of the “gradient estimate” [21, Theorem 6.1]. We need the following
a priori interior estimates for solutions with initial data in the class
CnK(α, V,Θ).

Proposition 4.7. Let X : M× [0, T ) → Sn+1
K be a maximal solution

to mean curvature flow with initial condition in the class CnK(α, V,Θ).
Defining Λ0 and λ0 by

(4.14) Λ0/2 :=
1

n− 2 + α
Θ2 + 2(2− α) and e2nλ0 := 1 +

n

n+ Λ0

,
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we have

(4.15) e2nKT ≥ 1 +
2n

Λ0

,

and

(4.16) max
M×{λ0K−1}

|∇kA|2 ≤ ΛkK
k+1

for every k ∈ N, where Λk depends only on n, k and Λ0.

Proof. Since

max
M×{0}

|A|2 ≤ Λ0K/2 ,

a straightforward ode comparison argument applied to the inequality

(∂t −∆)|A|2 ≤ 2(|A|2 + nK)|A|2

yields

max
M×{t}

|A|2 ≤ nK(
1 + 2n

Λ0

)
e−2nKt − 1

.

We immediately obtain (4.15) and

|A|2( · , t) ≤ Λ0K for all t ≤ λ0K
−1 .(4.17)

The claim (4.16) now follows from the Bernstein estimates (Proposition
2.1). �

Modifying an argument of Huisken [18, Theorem 6.1] and Huisken–
Sinestrari [21, Theorem 6.1], we can now obtain a pointwise estimate
for the gradient of the second fundamental form which holds up to the
singular time.

Theorem 4.8 (Gradient estimate (cf. [21, Theorem 6.1])). Let X :
M × [0, T ) → Sn+1

K , n ≥ 2, be a solution to mean curvature flow
with initial condition in the class CnK(α, V,Θ). There exist constants
δ = δ(n, α), c = c(n, α,Θ) < ∞, η0 = η0(n) > 0 and, for every
η ∈ (0, η0), Cη = Cη(n, α, V,Θ, η) <∞ such that

(4.18) |∇A|2 ≤ c
[
(η + 1

n−1
)H2 − |A|2

]
W + CηK

2e−2δKt

in M× [λ0K
−1, T ), where λ0 is defined by (4.14).

Remark 4.9. As for the cylindrical estimate, the constants do not
depend on a bound for the maximal time, and the zeroth order term
becomes negligible for large times.
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Note that the conclusion is not vacuous since, by Proposition 4.7,
the maximal existence time of a solution with initial data in the class
CnK(α, V,Θ) is at least 1

2nK
log
(

1 + 2n
Λ0

)
> λ0K

−1.

Setting η = 1, say, yields the cruder estimate

(4.19) |∇A|2 ≤ C(H4 +K2),

where C = C(n, α, V,Θ).

Proof of Theorem 4.8. We proceed as in [21, Theorem 6.1]. By (2.13),

(∂t −∆)|∇A|2 ≤ − 2|∇2A|2 + cn
(
|A|2 + nK

)
|∇A|2 .

We will control the bad term using the good term in the evolution
equation for |A|2 and the Kato inequality (2.4).

By the cylindrical estimate, given any η > 0 we can find a constant
Cη = Cη(n, α, V,Θ, η) > 2 such that

|A|2 − 1

n− 1
H2 ≤ ηH2 + CηKe−2δKt ,

and hence

Gη := 2CηKe−2δKt +

(
η +

1

n− 1

)
H2 − |A|2 ≥ CηKe−2δKt > 0 .

Similarly, there is a constant C0 = C0(n, α, V,Θ) > 2 such that

|A|2 − 1

n− 1
H2 ≤ 2(n− 2)

(n+ 2)(n− 1)
H2 + C0K ,

which ensures that

G0 := 2C0K +
3

n+ 2
H2 − |A|2 ≥ C0K > 0 .

By (4.3),

(∂t −∆)Gη = 2(|A|2 + nK)(Gη − 2CηKe−2δKt) + 4nK
(
|A|2 − 1

n
H2
)

+ 2
[
|∇A|2 −

(
η + 1

n−1

)
|∇H|2

]
− 2δCηK

2e−2δKt .

Since Gη ≥ CηKe−2δKt, we can estimate Gη− 2CηKe−2δKt ≥ −Gη. By
the Kato inequality (2.4), we can estimate

|∇A|2 −
(

1
n−1

+ η
)
|∇H|2 ≥ n+2

3

[
3

n+2
− 1

n−1
− η
]
|∇A|2

≥ β
2
|∇A|2 ,

where

(4.20) β :=
1

2

(
3

n+ 2
− 1

n− 1

)
,
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so long as η ≤
(

1− 3
4(n+2)

)
β. Estimating, finally,

2δCηK
2e−2δKt ≤ 2δKGη ,

we arrive at

(∂t −∆)Gη ≥ − 2(|A|2 + nK)Gη + β|∇A|2 − 2δKGη .

Similarly,

(∂t −∆)G0 ≥ − 2(|A|2 + nK)G0 .

We seek a bound for the ratio |∇A|2
GηG0

. Note that, at a local spatial

maximum of |∇A|
2

GηG0
,

0 = ∇k
|∇A|2

GηG0

= 2
〈∇k∇A,∇A〉

GηG0

− |∇A|
2

GηG0

(
∇kGη

Gη

+
∇kG0

G0

)
.

In particular,

4
|∇A|2

GηG0

〈
∇Gη

Gη

,
∇G0

G0

〉
≤ |∇A|

2

GηG0

∣∣∣∣∇Gη

Gη

+
∇G0

G0

∣∣∣∣2 ≤ 4
|∇2A|2

GηG0

.

Suppose that |∇A|
2

GηG0
attains a parabolic interior local maximum at (x0, t0).

Then, at (x0, t0),

0 ≤ (∂t −∆)
|∇A|2

GηG0

=
(∂t −∆)|∇A|2

GηG0

− |∇A|
2

GηG0

(
(∂t −∆)Gη

Gη

+
(∂t −∆)G0

G0

)
+

2

GηG0

〈
∇|∇A|

2

GηG0

,∇(GηG0)

〉
+ 2
|∇A|2

GηG0

〈
∇Gη

Gη

,
∇G0

G0

〉
≤ |∇A|

2

GηG0

(
(cn + 4)(|A|2 + nK) + 2δK − β |∇A|

2

Gη

)
and hence

|∇A|2

GηG0

≤ (cn + 4)(|A|2 + nK) + 2δK

2C0K + 3
n+2

H2 − |A|2
.

Since

|A|2 ≤ 1

n− 2 + α
H2 + 2(2− α)K ,

we obtain, at (x0, t0),

|∇A|2

GηG0

≤ C ,

where C depends only on n and α.
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On the other hand, since G0 > C0K and Gη > CηKe−2δKt, if no
interior local parabolic maxima are attained, then, by Proposition 4.7,
we have for any t ≥ λ0K

−1

max
M×{t}

|∇A|2

G0Gη

≤ max
M×{λ0K−1}

|∇A|2

G0Gη

≤ max
M×{λ0K−1}

|∇A|2

C0CηK2e−2δλ0

≤ Λ1eλ0

C0Cη

≤ Λ1eλ0 .

The Theorem now follows from Young’s inequality. �

The following simple lemma illustrates the utility of scale-invariant,
pointwise gradient estimates for the curvature.

Lemma 4.10. Let X :M→ Sn+1 be an immersed hypersurface. If

sup
M

|∇H|
H2

≤ c] <∞ ,

then

(4.21)
H(p)

2
≤ H(q) ≤ 2H(p)

for all q ∈ B 1
2c]H(p)

(p), the intrinsic ball of radius 1
2c]H(p)

about p.

Proof. For any unit speed geodesic γ : [0, s] → M joining the points
y = γ(0) and x = γ(s), we have

∇γ′H
−1 ≤ c] .

Integrating yields

−c]s ≤ H−1(x)−H−1(y) ≤ c]s

or, if s ≤ 1
2c]H(x)

,

H(x)

2
≤ H(x)

1 + c]H(x)s
≤ H(y) ≤ H(x)

1− c]H(x)s
≤ 2H(x) .

The claim follows. �
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4.3. Higher order estimates. The gradient estimate can be used to
bound the first order terms which arise in the evolution equation for
∇2A. A straightforward maximum principle argument exploiting this
observation yields an analagous estimate for ∇2A.

Theorem 4.11 (Hessian estimate (cf. [18,21])). Let X :M× [0, T )→
Sn+1
K , n ≥ 4, be a solution to mean curvature flow with initial condition

in the class CnK(α, V,Θ). There exists C = C(n, α, V,Θ) such that

|∇2A|2 ≤ C(H6 +K3) in M× [λ0K
−1, T ) .(4.22)

Proof. We proceed as in [21, Theorem 6.3]. By (2.14),

(∂t −∆)|∇2A|2 ≤ c
(
W |∇2A|2 + |∇A|4

)
− 2|∇3A|2 ,

where c depends only on n. It follows that

(∂t −∆)
|∇2A|2

W
5
2

≤ c

W
5
2

[
W |∇2A|2 + |∇A|4

]
− 2
|∇3A|2

W
5
2

− 5a
|∇2A|2

W
7
2

[
(|A|2 + nK)H2 − |∇H|2

]
+

5

W
7
2

〈
∇|∇2A|2,∇W

〉
− 25

2

|∇2A|2

W
7
2

|∇W |2

W
.

We can use the good third order term on the first line to absorb the
penultimate term, since

5

W
7
2

〈
∇|∇2A|2,∇W

〉
≤ 10

W
7
2

|∇3A||∇2A||∇W |

≤ 1

W
1
2

(
|∇3A|2

W 2
+ 25

|∇2A|2|∇W |2

W 4

)
.

Estimating
|∇W |2

W
≤ 4a|∇H|2

then yields

(∂t −∆)
|∇2A|2

W
5
2

≤ c

W
5
2

[
W |∇2A|2 + |∇A|4

]
− |∇

3A|2

W
5
2

+ 55a
|∇2A|2

W
7
2

|∇H|2.

Estimating the first order terms using Theorem 4.8 then yields

(∂t −∆)
|∇2A|2

W
5
2

≤ c1
|∇2A|2

W
3
2

+ C1K
2 |∇2A|2

W
7
2

e−δKt

+
c1H

4W 2 + C1K
4e−2δKt

W
5
2

− |∇
3A|2

W
5
2

,

where c1 depends only on n, α and Θ, and C1 depends also on V .
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Similar arguments yield

(∂t −∆)
|∇A|2

W
3
2

≤ c2H
2W 3 + C2K

4e−2δKt

W
5
2

− |∇
2A|2

W
3
2

,

and

(∂t −∆)
|∇A|2

W
7
2

≤ c
|∇A|2

W
9
2

(
W 2 + |∇H|2

)
− |∇

2A|2

W
7
2

≤ c3H
2W 3 + C3K

4e−2δKt

W
9
2

− |∇
2A|2

W
7
2

,

where c2 and c3 depend only on n, α, and Θ, and C2 and C3 depend
also on V .

Setting

f :=
|∇2A|2

W
5
2

+ c1
|∇A|2

W
3
2

+ C1K
2 |∇A|2

W
7
2

and estimating W ≥ K, we obtain

(∂t −∆)f ≤ c1H
4W 2 + C1K

4e−2δKt

W
5
2

+ c1
c2H

2W 3 + C2K
4e−2δKt

W
5
2

+ C1K
2 c3H

2W 3 + C3K
4e−2δKt

W
9
2

≤ (c1a
2 + c1c2 + c3C1)H2W 3 + (C1 + c1C2 + C1C3)K4e−2δKt

W
5
2

≤ (c1a
2 + c1c2 + c3C1)H2W

1
2 + (C1 + c1C2 + C1C3)K

3
2 e−2δKt

≤ c4(|A|2 + nK)H + C4K
3
2 e−2δKt .

Thus,

(∂t −∆)

(
f − c4H +

C4

2δ
K

1
2 e−2δKt

)
≤ 0 .

The maximum principle and Proposition 4.7 then yield

max
M×{t}

(f − c4H) ≤ max
M×{λ0K−1}

(f − c4H) +
C4

2δ
K

1
2

(
e−2δλ0 − e−2δKt

)
≤ C5K

1
2

for all t ≥ λ0K
−1, where C5 depends only on n, α, V , and Θ. We

conclude that

|∇2A|2 ≤ cHW
5
2 + CK

1
2W

5
2 in M× [λ0K

−1, T ) ,

where c and C depend only on n, α, V , and Θ. The claim now follows
from Young’s inequality. �
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Applying the Hessian estimate in conjunction with the the evolution
equation (2.9) for A yields an analogous bound for ∇tA, and hence,
in particular, for the time derivative of H. Thus, in high curvature
regions, we obtain the following a priori bounds for ∇H and ∂tH.

Corollary 4.12. Let X : M× [0, T ) → Sn+1
K , n ≥ 2, be a solution

to mean curvature flow with initial condition in the class CnK(α, V,Θ).
There exist h] = h](n, α, V,Θ) and c] = c](n, α, V,Θ) such that
(4.23)

H(x, t) ≥ h]
√
K =⇒ |∇H|

H2
(x, t) ≤ c] and

|∂tH|
H3

(x, t) ≤
c2
]

2
.

This is a very useful estimate in light of the following ‘parabolic’
version of Lemma 4.10.

Lemma 4.13. Let X : M × [0, T ) → Sn+1
K be a solution to mean

curvature flow. If, given c] <∞,

|∇H|
H2

≤ c] and
|∂tH|
H3

≤
c2
]

2
,

then

(4.24)
H(p, t)

10
≤ H(q, s) ≤ 10H(p, t)

for all (q, s) ∈ P 1
10c]H(p,t)

(p, t), the intrinsic parabolic cylinder in M×
[0, T ) of radius 1

10c]H(p,t)
about (p, t).

Proof. Fix γ ∈ [1
2
, 1). As in Lemma 4.10, given any r ≤ 1−γ

c]H(p,t)
,

γH(p, t) ≤ H(p, t)

1 + c]H(p, t)r
≤ H(q, t) ≤ H(p, t)

1− c]H(p, t)r
≤ γ−1H(p, t)

for all q ∈ Br(p, t), the gt-intrinsic ball of radius r about the point p.
Given q ∈ Br(p, t), set h(t) := H(p, t). Then

−c2
] ≤ (h−2)′(s) ≤ c2

] .

Since r ≤ 1−γ
c]H(p,t)

≤ γ
c]H(p,t)

≤ 1
c]H(q,t)

, integrating between s ∈ (t− r2, t]

and t yields

H(q, t)√
1− c2

]H
2(q, t)r2

≤ H(q, s) ≤ H(q, t)√
1− c2

]H
2(q, t)r2

and hence

H(p, t)√
γ−2 + c2

]H
2(p, t)r2

≤ H(q, s) ≤ H(p, t)√
γ2 − c2

]H
2(p, t)r2
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for all (q, s) ∈ Pr(p, t), so long as r ≤ γ
c]H(p,t)

. The claim follows upon

choosing, say, γ = 1/2. �

An inductive argument, exploiting estimates for lower order terms in
the evolution equations for higher derivatives of A as in Theorem 4.11,
can be applied to obtain estimates for spatial derivatives of A to all
orders. The evolution equation for A then yields bounds for the mixed
space-time derivatives (cf. [21, Theorem 6.3 and Corollary 6.4]). We
state these estimates here, however they will not actually be needed in
the construction of the surgically modified flows.

Theorem 4.14 (Higher-order estimates). Let X :M× [0, T )→ Sn+1
K ,

n ≥ 4, be a solution to mean curvature flow with initial condition in the
class CnK(α, V,Θ). There exist, for each pair of non-negative integers k
and `, constants Ck,` = Ck,`(k, `, n, α, V,Θ) such that

|∇k
t∇`A|2 ≤ Ck,`(H

2+4k+2` +K1+2k+`) in M× [λ0K
−1, T ).(4.25)

4.4. Neck detection. The cylindrical and gradient estimates imply
that, in regions of very high curvature, solutions either form high qual-
ity ‘neck’ regions, or else become locally uniformly convex.

Lemma 4.15 (Curvature necks (cf. [21, Lemma 7.4])). Let X : M×
[0, T ) → Sn+1

K be a solution to mean curvature flow with initial con-
dition in the class CnK(α, V,Θ). Given ε ≤ 1

100
, there exist parameters

η] = η](n, α, V,Θ, ε) > 0 and h] = h](n, α, V,Θ, ε) < ∞ with the fol-
lowing property. If

H(p0, t0) ≥ h]
√
K and λ1(p0, t0) ≤ η]H(p0, t0) ,

then

Λr0,k,ε(p0, t0) ≤ εrk+1
0

for each k = 0, . . . , b2
ε
c, where r0 := n−1

H(p0,t0)
,

Λr,0,ε(p, t) := max
Bε−1r(p,t)×(t−104r2,t]

√√√√λ2
1 +

n∑
j=2

(λn − λj)2 ,

and, for each k ≥ 1,

Λr,k,ε(p, t) := max
Bε−1r(p,t)×(t−104r2,t]

|∇kA| .

Proof. The proof is essentially that of [21, Lemma 7.4].
Suppose that the claim does not hold. Then for some n ≥ 3 there

must exist parameters α, V and Θ, some ε0 < 1
100

, a sequence of
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solutions Xj : Mj × [0, Tj) → Sn+1
Kj

to mean curvature flow with

Xj(· , 0) ∈ CnKj(α, V,Θ), and points (pj, tj) ∈Mn
j × [0, Tj) such that

Hj(pj, tj) ≥ (n− 1)j
√
Kj and

λj1
Hj

(pj, tj) ≤ j−1 ,

and yet

(4.26) Λj
rj ,kj ,ε0

(pj, tj) ≥ ε0r
k+1
j

for some kj ≤ bε−1
0 c for each j, where rj := n−1

Hj(xj ,tj)
and we denote

objects defined along Xj using the a sub- or superscript j. After passing
to a subsequence, we may arrange that (4.26) holds for some fixed
kj = k0 ≤ bε−1

0 c for all j. After translating the points (Xj(xj, tj), tj)
to the space-time origin in Rn+2 × R and rotating so that the tangent
plane to the sphere at the origin is Rn+1 × {0} with upward pointing
normal, and parabolically rescaling by rj, we obtain a sequence of flows

X̂j :Mn
j × [−r−2

j tj, r
−2
j (Tj − tj))→ Sn+1

r2jKj
− r−1

j K
− 1

2
j en+2

given by

(4.27) X̂j(x, t) := r−1
j Oj(Xj(x, r

2
j t+ tj)−Xj(xj, tj)) ,

where Oj ∈ SO(n + 1). Each X̂j is in the class Cn
r2jKj

(α, V,Θ) and

satisfies X̂j(xj, 0) = 0,

(4.28) Ĥj(xj, 0) = n− 1 , and
λ̂j1

Ĥj

(xj, 0) ≤ j−1,

but

(4.29) Λ̂j
1,k0,ε0

(xj, 0) ≥ ε0 ,

where we denote objects defined along X̂j using a ˆ( · ) and the sub- or
superscript j. We claim that the new sequence subconverges locally
uniformly in the smooth topology to a shrinking cylinder solution in
the Euclidean space Rn+1×{0}, in contradiction with (4.29). First note
that, by (4.15), Kjtj ≥ C(n, α,Θ) > 0 and hence −r−2

j tj → −∞ as

j →∞. We claim that the mean curvature of X̂j is uniformly bounded
on an intrinsic parabolic cylinder of uniform radius about (xj, 0), so
long as j is sufficiently large. Indeed, by Theorems 4.8 and 4.11, we
can find constants c] (depending only on n, α and Θ) and C (depending
only on n, α, V and Θ) such that

|∇̂jĤj| ≤
c]
2
Ĥ2
j + Cj−2 and |∂tĤj| ≤

c2
]

4
Ĥ3
j + Cj−3
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inMj× [−r−2
j tj + j−2/4, 0]. Thus, given any ρ > 0, we can find j0 ∈ N

such that

|∇̂jĤj| ≤ c]Ĥ
2
j and |∂tĤj| ≤

c2
]

2
Ĥ3
j

in Mn
j × [−ρ, 0] for j ≥ j0. Lemma 4.13 now implies that

n− 1

10
=
Ĥj(xj, 0)

10
≤ Ĥj(y, s) ≤ 10Ĥj(xj, 0) = 10(n− 1)

for any (y, s) ∈ Pj 1
10c]

(xj, 0) for all sufficiently large j. It follows that

some subsequence of the restricted mean curvature flows X̂j|Pj 1
10c]

(xj ,0)

converges locally uniformly in the smooth topology to a limiting mean
curvature flow X̂ : U × (− 1

100c2]
, 0] → Rn+1 × {0} (which may not be

proper). We claim that the limit flow is part of a shrinking cylinder.

We shall denote objects defined along the limit using a ˆ( · ). Indeed, by

the cylindrical estimate (Theorem 4.1), X̂ satisfies

|Â|2 − 1

n− 1
Ĥ2 ≤ 0 .(4.30)

In particular, λ̂1 is non-negative. On the other hand, by (4.28), λ̂1

vanishes at the origin. Thus, by the splitting theorem, X̂ splits locally
off a line. But then (4.30) implies that the cross section of the splitting
is umbilic. We need to extend the convergence to a sufficiently large
region. This can be achieved since, a posteriori, the mean curvature
could not have increased very much in Pj 1

10c]

(due to the convergence

to a shrinking cylinder solution). That is,

Ĥj(y, s) ≤ 2(n− 1)

for all (y, s) ∈ P 1
10c]

(xj, 0) so long as j is sufficiently large. Applying

the gradient estimates as before, we obtain uniform bounds for Ĥj on

the uniformly larger neighborhood Pj 2
10c]

(xj, 0). Repeating the previous

argument, we conclude that a subsequence of the flows X̂j|Pj 2
10c]

(xj ,0)

converge to a part of shrinking cylinder. After repeating the argument
a finite number of times, we obtain convergence of a subsequence of
the flows X̂j|Pj

2ε−1
0

(xj ,0) to a part of a shrinking cylinder. Since the

convergence is smooth on compact subsets of spacetime, this violates
(4.29). �
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Definition 4.16. Let X :M→ Sn+1
K ⊂ Rn+2 be an immersed hyper-

surface of Sn+1
K . A point p ∈M lies at the center of an (ε, k, L)-neck of

size r if the map exp−1
r−1X(p) ◦(r

−1X) is ε-cylindrical and (ε, k)-parallel

at all points in the induced intrinsic ball of radius L about p in the
sense of [21, Definition 3.9].

By [21, Propositions 3.4 and 3.5], these “curvature” necks can be
integrated to obtain “hypersurface” necks in the tangent space, which
can be replaced by a pair of “convex caps” in a controlled way (see [21,
Section 3]).

5. The key estimates for surgically modified flows

We need to show that suitable versions of the key estimates still
hold in the presence of surgeries. In the following definition, surgery is
performed on the middle third of a neck of size r in the obvious way:

(i) First scale by r−1 and precompose with exp−1
r−1X(p) to obtain a

neck in Tr−1X(p)Sn+1
r2K ,

(ii) Perform the surgery on the middle third of this neck in Tr−1X(p)Sn+1
r2K

as described in [21, Section 3],
(iii) Re-embed in Sn+1

K by composing with expr−1X(p) and scaling by r.

Definition 5.1. A surgically modified (mean curvature) flow in Sn+1
K

with neck parameters (ε, k, L), surgery parameters (τ, B), and surgery
scale r is a finite sequence {Xi :Mn

i × [Ti, Ti+1]→ Sn+1
K }N−1

i=1 of smooth
mean curvature flows Xi :Mn

i × [Ti, Ti+1]→ Sn+1
K for which the (i+1)-

st initial datum Xi+1(·, Ti+1) : Mi+1 → Sn+1
K is obtained from the

i-th final datum Xi(·, Ti+1) : Mi → Sn+1
K by performing finitely many

(τ, B)-standard surgeries, in the sense of [21, Section 3], on the middle
thirds of (ε, k, L)-necks with mean curvature satisfying n−1

10r
≤ H ≤

10(n−1)
r

, and then discarding finitely many connected components that
are diffeomorphic either to Sn or to S1 × Sn−1.

5.1. Quadratic and inscribed/exscribed curvature pinching. For
a suitable range of neck and surgery parameters, and surgery scales, the
surgery procedure of [21, Section 3] preserves the quadratic pinching
condition (1.2). Indeed, the surgery replaces a nearly cylindrical Eu-
clidean neck satisfying |A|2 ' 1

n−1
H2 with a pair of Euclidean convex

caps satisfying |A|2 ' 1
n
H2 (these estimates are carried out precisely

in [26, Corollary 3.20]). Since the surgery scale may be taken arbitrarily
small, the same can be ensured after re-embedding in Sn+1

K .
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When X0 : M → Sn+1
K is an embedding, we can also preserve the

inscribed curvature pinching

max
M×{0}

k

F
≤ µ0

for any constant µ0 ≥
√

(n−2)(n−2+α)
4α

. Indeed, by Proposition 3.2,

maxM×{0}
k
F

does not decay between surgeries. Moreover, using [21,
Theorem 3.26], we can arrange, for suitable neck and surgery parame-
ters, and surgery scales, that

k

F
≤
√

(n− 2)(n− 2 + α)

4α

on the regions modified or added by surgery. A similar argument ap-
plies to the exscribed curvature.

5.2. The cylindrical estimate. We first note that the function (fσ,η)+

is pointwise non-increasing in regions modified by surgery.

Lemma 5.2. Given n ≥ 3 and K > 0, there exist parameters η0 > 0,
σ0 ∈ (0, 1), neck parameters ε0 > 0, k0 ≥ 2, surgery parameters τ , B,
and a surgery scale r0 > 0 such that, for any σ ∈ (0, σ0] and η ∈ (0, η0],
the function (fσ,η)+ is

– zero on regions added by, and
– non-increasing on regions modified by

standard surgery with parameters τ0, B on an (ε, k, L)-neck with mean

curvature satisfying H ≥ (n−1)
10r

for any ε ∈ (0, ε0], k ≥ k0, L ≥ 10 and
r ∈ (0, r0].

Proof. This follows readily from [21, Proposition 4.5] and the Gauss
equation. �

In the following theorem, we assume that the parameters η, σ, the
neck parameters ε, k, L, the surgery parameters τ , B, and the surgery
scale r are chosen within the range for which Lemma 5.2 applies.

Theorem 5.3 (Cylindrical estimate for surgically modified flows (Cf.
[21, Theorem 5.3])). Let {Xi :Mn

i × [Ti, Ti+1] → Sn+1
K }N−1

i=1 , n ≥ 3, be
a surgically modified flow with initial condition in the class CnK(α, V,Θ)
(with α > 2

3
when n = 3). For every η ∈ (0, η0) there exists Cη =

Cη(n, α, V,Θ, η) <∞ such that

|A|2 − 1

n− 1
H2 ≤ ηH2 + CηK in Mi × [Ti, Ti+1](5.1)

for all i.
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Proof. Proceeding as in the proof of Theorem 4.1 but with δ taken to
be zero, we obtain an analogue of (4.9) on each time interval (Ti, Ti+1),

with vk replaced by (fσ,η − k)
p
2
+. By Lemma 5.2, this can be integrated

from T1 = 0 to TN = T to obtain an analogue of (4.10). The remainder
of the proof of the cylindrical estimate then applies unmodified. �

Henceforth, when we refer to a surgically modified flow, we will as-
sume that the neck and surgery parameters, and the surgery scale, are
fixed within a suitable range, which we progressively refine.

5.3. The gradient estimate. Since the derivatives of the second fun-
damental form are zero on round Euclidean cylinders and spherical
caps, the derivative estimates also pass to surgically modified flows.

Theorem 5.4 (Gradient estimate for surgically modified flows (Cf. [21,
Theorem 6.1])). Let {Xi : Mn

i × [Ti, Ti+1] → Sn+1
K }N−1

i=1 , n ≥ 3, be a
surgically modified flow with initial condition in the class CnK(α, V,Θ)
(with α > 2

3
when n = 3). There exists C = C(n, α, V,Θ) < ∞ such

that

|∇A|2 ≤ C(H4 +K2) in Mn
i × [Ti, Ti+1](5.2)

for all i.

Proof. We proceed as in the proof of Theorem 4.8, but with δ taken to
be zero and fixed η = β, where β is defined by (4.20). First observe
that, since |A|2 − 1

n−1
H2 ≡ 0 on a round cylinder in Euclidean space,

we may choose a suitable range of neck and surgery parameters, and
surgery scales, so that

|A|2 − 1

n− 1
H2 ≤ β

2
H2

on regions modified or added by surgery. We may therefore arrange
that

Gβ :=

(
1

n− 1
+ β

)
H2 − |A|2 + 2CβK ≥

β

2
H2

and

G0 :=
3

n+ 2
H2 − |A|2 + 2C0K ≥

3β

2
H2.

Furthermore, since |∇A|2 ≡ 0 on a round cylinder in Euclidean space,
we may choose a suitable range of neck and surgery parameters, and
surgery scales, so that, on regions modified or added by surgery, |∇A|2 ≤
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µ0H
4, where µ0 is a constant which depends only on n. Thus, in regions

modified or added by surgery,

|∇A|2

G0Gβ

≤ 4µ0

3β2
.

Since the surgically modified flow remains in a fixed surgery class,
we may proceed as in the proof of Theorem 4.8 in the time intervals
(Ti, Ti+1). �

5.4. Higher order estimates. Proceeding similarly as in Theorem
5.4 (cf. [21, Theorem 6.3]) yields estimates for higher derivatives of A
along surgically modified flows.

Theorem 5.5 (Hessian estimate for surgically modified flows (cf. [21,
Theorem 6.3])). Let {Xi : Mn

i × [Ti, Ti+1] → Sn+1
K }N−1

i=1 , n ≥ 3, be a
surgically modified flow with initial condition in the class CnK(α, V,Θ)
(with α > 2

3
when n = 3). There exists C = C(n, α, V,Θ) such that

|∇2A|2 ≤ C(H6 +K3) in M× [λ0K
−1, T ) .(5.3)

Proof. Proceed as in Theorem 4.11 between surgeries and use the fact
that, for suitable neck and surgery parameters, and surgery scales,
|∇2A|2/H6 is small in regions modified or added by surgery. �

Analogues of the higher order estimates (4.25) also pass to surgically
modified flows, but, as mentioned above, they will not actually be
needed in the construction.

5.5. Neck detection. The conclusion of the neck detection lemma
4.15 also holds for surgically modified flows, so long as we work in
regions which are not affected by surgeries (cf. [21, Lemma 7.4]).

In the following theorem, a region U×I is free of surgeries if at each
surgery time Ti ∈ I, i ∈ {2, . . . . , N − 1}, we have U ⊂ Mi−1 ∩Mi

and Xi−1|U(·, Ti) = Xi|U(·, Ti) (and hence Xi−1 and Xi may be pasted
together to form a smooth mean curvature flow in U × I).

Theorem 5.6 (Neck detection for surgically modified flows (cf. [21,
Lemma 7.4])). Let {Xi : Mn

i × [Ti, Ti+1] → Sn+1
K }N−1

i=1 , n ≥ 3, be a
surgically modified flow with initial condition in the class CnK(α, V,Θ).
Given ε, θ, L and k, there exist positive η], h] with the following prop-
erty: If

(ND1) |H(p0, t0)| ≥ h]
√
K and λ1(p0,t0)

|H(p0,t0)| ≤ η], and

(ND2) the neighbourhood P
(
p0, t0,

(n−1)(L+1)
H(p0,t0)

, θ
H2(p0,t0)

)
is free of surg-

eries,
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then (p0, t0) lies at the centre of an (ε, k, L)-neck.

Proof. The proof of Lemma 4.15 applies using Theorems 5.3, 5.4 and 5.5
in lieu of Theorems 4.1, 4.8 and 4.11, due to the hypothesis (ND2). �

6. Existence of terminating surgically modified flows

We say that a surgically modified flow {Xi : Mn
i × [Ti, Ti+1] →

Sn+1
K }N−1

i=1 terminates at the final time T := TN <∞ if either

– each connected component of XN−1(MN−1, TN) is diffeomor-
phic to Sn or to S1 × Sn−1, or

– after performing surgery on XN−1(MN−1, TN), each connected
component of the resulting hypersurface is diffeomorphic to Sn
or to S1 × Sn−1.

Theorem 6.1 (Existence of terminating surgically modified flows). Let
X :M→ Sn+1

K , n ≥ 3, be a properly immersed hypersurface satisfying
the quadratic pinching condition (1.2). There exists a surgically mod-
ified flow {Xi : Mn

i × [Ti, Ti+1] → Sn+1
K }N−1

i=1 with X1(·, 0) = X which
terminates at time T = TN .

Proof. Given the cylindrical and gradient estimates, and the neck de-
tection lemma, and a sufficiently small choice of the surgery scale r,
we can proceed as in [21, Section 8] using the machinery developed
in [21, Sections 3 and 7], with only minor modifications required. These
are:

1. In order to reconcile our data CnK(α, V,Θ) with those of [21], we

replace the parameter K by introducing the scale factor R := 1/
√

ΘK.
Our data α and V can then be related to their α0 and α2, respectively.
The constant α1 which appears in [21] is not needed here. Since the
surgery scale may be taken as small as needed, we may then choose
the surgery parameters (albeit with slightly worse values) as explained
in [21, pp. 208–209].

2. Since our ambient space is non-Euclidean, the proof of the neck
continuation theorem requires modification in two places. These are
explained and carried out in detail in a more general setting in [10,
Section 8].

3. Since the maximal time is not a priori bounded in the present set-
ting, the surgery algorithm may not terminate “on its own”. Observe,
however, that the maximum of the mean curvature must eventually
drop permanently below the scale which triggers the surgery; indeed,
if this were not the case, then an infinite number of surgeries would
be carried out, an impossibility since we began with a finite amount of
area, area is non-increasing under the flow, and each surgery decreases
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area by at least a certain fixed amount. The flow can then be smoothly
continued indefinitely. Since the curvature remains uniformly bounded,
standard arguments imply that each connected component converges,
along some sequence of times approaching infinity, to a minimal hyper-
surface. The cylindrical estimate (Theorem 4.1) applied independently
to each connected component then implies that each component of the
limit is a totally geodesic hypersphere. So the flow must terminate
afterall. �
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