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Abstract

Harmony is the aspect of music concerned with the structure, progression, and relation of

chords. In Western tonal music each period had different rules and practices of harmony.

Similarly some composers and musicians are recognised for their characteristic harmonic

patterns which differ from the chord sequences used by other musicians of the same period or

genre. This thesis is concerned with the automatic induction of the harmony rules and patterns

underlying a genre, a composer, or more generally a ‘style’.

Many of the existing approaches for music classification or pattern extraction make use of

statistical methods which present several limitations. Typically they are black boxes, can not

be fed with background knowledge, do not take into account the intricate temporal dimension

of the musical data, and ignore rare but informative events. To overcome these limitations we

adopt first-order logic representations of chord sequences and Inductive Logic Programming

techniques to infer models of style.

We introduce a fixed length representation of chord sequences similar to n-grams but based

on first-order logic, and use it to characterise symbolic corpora of pop and jazz music. We

extend our knowledge representation scheme using context-free definite-clause grammars,

which support chord sequences of any length and allow to skip ornamental chords, and test it

on genre classification problems, on both symbolic and audio data. Through these experiments

we also compare various chord and harmony characteristics such as degree, root note, intervals

between root notes, chord labels and assess their characterisation and classification accuracy,

expressiveness, and computational cost. Moreover we extend a state- of-the-art genre classifier

based on low-level audio features with such harmony-based models and prove that it can lead

to statistically significant classification improvements.

We show our logic-based modelling approach can not only compete with and improve on

statistical approaches but also provides expressive, transparent and musicologically meaningful

models of harmony which makes it suitable for knowledge discovery purposes.
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CHAP T E R 1

INTRODUCTION
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Music like other online media is undergoing an information explosion. Massive online

music stores such as the iTunes Store1 or Amazon MP32, and their counterparts, the streaming

platforms, such as Spotify3, Rdio4 and Deezer5, offer more than 30 million6 pieces of music to

their customers, that is to say anybody with a smart phone. Indeed these ubiquitous devices

offer vast storage capacities and cloud-based apps that can cater any music request. As Paul

Lamere puts it7:

“we can now have a virtually endless supply of music in our pocket. The ‘bottomless iPod’

will have as big an effect on how we listen to music as the original iPod had back in 2001.

But with millions of songs to chose from, we will need help finding music that we want to

hear [...]. We will need new tools that help us manage our listening experience.”

Retrieval, organisation, recommendation, annotation and characterisation of musical data is

precisely what the Music Information Retrieval (MIR) community has been working on for

at least 15 years (Byrd and Crawford, 2002). It is clear from its historical roots in practical

fields such as Information Retrieval, Information Systems, Digital Resources and Digital

Libraries but also from the publications presented at the first International Symposium on Music

Information Retrieval in 2000 that MIR has been aiming to build tools to help people to navigate,

explore and make sense of music collections (Downie et al., 2009). That also includes analytical

tools to support for instance computational musicology, in which the user is then an expert, a

musicologist.

1http://www.apple.com/itunes/
2http://www.amazon.com/MP3-Music-Download/b?node=163856011
3https://www.spotify.com
4http://www.rdio.com/
5http://www.deezer.com/
6http://thenextweb.com/media/2013/11/06/deezer-debuts-new-mac-app-discovery-features-hits-5m-

subscribers-12m-monthly-active-users
7in Is that a million songs in your pocket, or are you just glad to see me? posted on September 2, 2010

in Music Machinery: http://musicmachinery.com/2010/09/02/is-that-a-million-songs-in-your-pocket-or-are-
you-just-glad-to-see-me/

http://www.apple.com/itunes/
http://www.amazon.com/MP3-Music-Download/b?node=163856011
https://www.spotify.com
http://www.rdio.com/
http://www.deezer.com/
http://thenextweb.com/media/2013/11/06/deezer-debuts-new-mac-app-discovery-features-hits-5m-subscribers-12m-monthly-active-users
http://thenextweb.com/media/2013/11/06/deezer-debuts-new-mac-app-discovery-features-hits-5m-subscribers-12m-monthly-active-users
http://musicmachinery.com/2010/09/02/is-that-a-million-songs-in-your-pocket-or-are-you-just-glad-to-see-me/
http://musicmachinery.com/2010/09/02/is-that-a-million-songs-in-your-pocket-or-are-you-just-glad-to-see-me/
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1 . 1

Motivation

1.1.1 Music Characterisation

If MIR field remains largely application oriented, it however seems like the end user himself

has been neglected (Schedl et al., 2013). We believe this is due to MIR approaches

focusing often too much on the result, the prediction as the end goal. Retrieval methods

are evaluated on their precision and recall. Classification techniques are judged on their

accuracy. Recommendations are gauged on their mean absolute error. They are assessed

upon their predictive capacities, while neglecting to tap into the descriptive power of the

models they employ. If many of them are nonetheless based on acoustical or musicological

concepts, the signal-based and statistical tools generally adopted to represent and model

those concepts are often obfuscating the underlying musical phenomena which then remain

invisible to the end-user. One example of this that we will describe further in Chapter 2

is the Bag-of-Features, the most popular approach to genre classification. The underlying

properties of timbre, pitch or rhythm it uses are reduced to low-level representations through

signal-based descriptors, and lose their temporal dimension as they are processed by statistical

models. Such unexpressive black-boxes result in opaque predictions. This goes against what

the Expert Systems (Swartout et al., 1991) and later the Recommender Systems (Herlocker

et al., 2000; Sinha and Swearingen, 2002) communities suggested, which is to provide users

with explanations for the predictions. As Tintarev and Masthoff (2007) summarise it in their

survey of explanations in recommender systems:

“among other things, good explanations [for recommendations] could [and do (as shown

in the survey)] help inspire user trust and loyalty, increase satisfaction, make it quicker

and easier for users to find what they want, and persuade them”.

Accordingly, we focus in this work on adding description to prediction, by concentrating

on music characterisation, which is an intrinsically transparent MIR task. What we try to

characterise in the music is what we call style, the underlying common traits of a genre, a

composer, a musical period, or even a user’s preference.



1.1. Motivation | 17

1.1.2 The Expressive Power of Logic-based Modelling

Automatic characterisation of music requires machine learning modelling techniques to

support the discovery and extraction of patterns from data, that is to say inductive learning.

Since we are pursuing transparency we need tools that enable it. This is precisely what a

logic-based representation can bring. Logic rules are written in a symbolic language that has

the advantage of being human readable. Automatically extracted musical patterns expressed

in logical formulae can be transmitted to musicologists who can in turn analyse them. In the

musical domain we could obtain rules describing the relationship between musical phenomena

and structured descriptions of local musical content. When using first-order (or relational)

logic those descriptors can be not only low level concepts but also high level ones involving

relations between individual data points. For example temporal relations between local

musical events can easily be represented.

To extend this expressive power from the representation of the data to the representation

of models and even to the inductive learning process discovering them, Inductive Logic

Programming (ILP) is a fitting framework. This field, that we will describe in more details in

Chapter 3, is at the intersection of Machine Learning and Logic Programming (Muggleton,

1991). It “is concerned with inductive inference. It generalizes from individual instances/observations

in the presence of background knowledge, finding regularities/hypotheses about yet unseen instances”

(Džeroski and Lavrac, 2001a). Inductive inference learns relations from a training dataset to

be applied on new data points. The use of prior knowledge is one of the distinctive strengths

of ILP. Moreover the expression of this background information is quite natural thanks again

to the use of a relational representation. It is also compact as only a fraction of it has to be

explicitly expressed and the rest can be derived as part of the mining process.

This short presentation of the expressive power of logic modelling triggers our first research

question:

RQ1: How can logic and in particular ILP support music characterisation? How can musical

properties be represented and extracted?

1.1.3 The Characterisation Power of Harmony

Having found a tool for characterisation, we need now to find a set of features from which

patterns can be extracted which capture an important aspect of music. We could focus on

some characterising aspects such as rhythm, melody or timbre but this thesis will limit its
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scope to another one, harmony. Harmony is a high level descriptor of music focusing on

the structure, progression, and relation of chords. In Western tonal music, to which this

thesis will limit its scope, harmony can be used to characterise a musical period (e.g. Baroque

music) or a musical genre. Indeed, as depicted by Piston (1987), each period had different

rules and practices of harmony. Some harmonic patterns forbidden in a period became

common practices afterwards: for instance the tritone was considered as diabolus in musica

until the early 18th century and became later on a key component of the tension/release

mechanism of the tonal system. “Modern” musical genres are also characterised by typical

chord sequences: if the pop-rock tunes mainly follow the tonic-subdominant-dominant chord

sequence, jazz standards usually follow more complex chord progressions. Similarly some

composers, musicians and bands are recognised for their characteristic harmonic patterns

which differ from the chord sequences used by other musicians of the same period or genre.

Despite its richness, harmony is a concept that can be understood not only by experts but

also amateur musicians, through simplified notations such as lead sheets or tabs containing

chord charts. The availability of guitar tabs all over the internet and their success with the

amateur guitarists attests a popular interest and understanding of at least basic harmonic

concepts.

Hence we believe harmony has a good discriminative (can distinguish between genres)

and expressive power (can be understood by experts and amateurs). This paragraph leads to

our second research question:

RQ2: Is it possible to leverage harmony’s descriptive and expressive power to characterise music

automatically? To what extent can harmony be used by itself to characterise styles?

1 . 2

Research Goal

Our working hypothesis is that we can combine ILP and harmony to build characterisation

models of musical styles. As mentioned above a widely spread way of thinking of harmony

is as sequences of chords. There is obviously more to harmony than sequences of chords,

and we will describe more harmony concepts such as tonality in Chapter 2, but at its core

harmony describes chords and temporal patterns between them. Sequences imply temporal
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Figure 1.1: Logic-based framework for musical rule induction.

relations, which can be represented in ILP. This brings us to the next research question:

RQ3: Which representation schemes are suited to represent harmony and in particular chord

sequences in ILP?

The idea in this work is to create high-level music descriptors based on logical expressions.

High-level harmony descriptors are closer to the description of music given by musicologists

than the low-level signal-based descriptors commonly used in MIR which are unintelligible and

can not be presented to non-technical users. By use of ILP on a learning database representing

a particular style we derive logical rules describing this style. Therefore the goal of this thesis

is to build a harmony- and logic-based reasoning framework for music characterisation.

An illustration of this framework is given in Figure 1.1. It takes as input a database of

examples to characterise. Notice that these examples can either be audio signals or symbolic

examples. They are then analysed by a musical event extractor using either symbolic or audio

features. Finally the relational description of the examples resulting from this analysis is given

to an inference system which derives musical rules that cover the examples. To implement

this framework we need to answer the question:

RQ4: Which induction algorithms can best extract logic rules from Harmony?

1 . 3

Contributions

This thesis describes the development, tuning and testing of such a harmony- and logic-based

framework for musical style characterisation. The main contributions can be found in Chapters
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4, 5 and 6. To build our framework we answer our research questions with an explorative

approach. Throughout the thesis, we experiment in five main directions:

• representation of chord sequences

• ILP induction method

• granularity of the musical styles to characterise (looking at different levels of a genre

taxonomy)

• different datasets representing these styles

• symbolic and audio domains

The first representation scheme for chord sequences is presented in Chapter 4. It consists

of using fixed-length blocks of chord progressions of length four. We introduce in that chapter

the idea of expressing various chord properties to describe the chord progressions: root note,

bass note, chord category, root interval, bass interval and degree. If in Chapter 5 we use the

same chord properties, we however exchange the chord progression representation for a more

flexible one. We relax the constraints to allow for chord sequences of any length and add

the concept of gap to skip non-characterising chords. Inspired by biological studies, this is

implemented with a context-free definite-clause grammar and a difference-list representation.

For each induction method we exploit an existing ILP piece of software. In Chapter

4 we base the research on Aleph, an inverse entailment ILP tool. Our experiments show

our implementation scales to datasets of musicologically meaningful sizes while keeping

computation short and lightweight. However Aleph can not infer rules from flexible length

chord progressions. As a consequence, in Chapter 5, we move to TILDE, an ILP decision tree

induction software. We consider both single tree models and random forests.

We explore characterisation of an artist, in this case actually a band, The Beatles, thanks

to Harte’s dataset (2010), containing transcriptions of the 180 songs featured on all their 12

studio albums (Section 4.2). We also differentiate genres with several datasets:

• transcriptions of 244 Jazz standards from the Real Book (various, 2004), representing

Jazz – presented in Section 4.2

• the Perez-9-genres dataset consisting of 856 pieces of music representing three main

genres (popular, jazz and academic music), that are further separated into 9 subgenres

(pop, blues and Celtic; pre-bop, bop and bossanova; Baroque, Classical and Romantic

periods) (Pérez-Sancho, 2009) – presented in Section 5.2.3
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• the GTZAN database which contains 1000 audio recordings equally distributed across

10 music genres (Tzanetakis and Cook, 2002) – presented in Section 6.3

• the dataset created for the ISMIR 2004 Genre Classification Contest which covers seven

genre classes with varying numbers of audio recordings per classe (ISMIR, 2004), from

which we use 447 pieces – presented in Section 6.3.

Additionally we develop techniques to cover both symbolic and audio data types. Symbolic

data in our case comes in several formats: the Real Book and the Perez-9-genres datasets are

encoded in the Band in a Box file format, while the Beatles dataset is in a Resource Description

Framework (RDF) format. They are both described in more details in Section 2.2.2. To extend

our framework from symbolic to audio data, which are more readily available and are the main

target of industrial applications, we use a chord transcription algorithm from Mauch (2010).

We investigate in Chapter 5 the use on audio data of ILP models trained on symbolic files, but

obtain better results with models trained on audio files. The audio datasets we run experiments

on are: Perez-9-genres, GTZAN and ISMIR 2004 Genre Classification Contest.

From the experiments, the following research question arises:

RQ5: How can characterisation accuracy be evaluated?

Our first attempt at answering it is to examine the transparent models resulting from the

experiments where we confirm that the logical rules in them agree with generally accepted

musicological findings. This work can be read in Section 4.3 and 5.3.5. If Computational

Musicology is not the focus of this thesis, this analysis shows automatic rule generation

assisting musicology could still be an application of our research. We contribute to the field

not only the methods, but also the sets of transparent and human readable rules generated

from our experiments that characterise various styles.

In order to get a quantifiable measure of accuracy we pursue in Chapter 5 the neighbouring

task of genre classification, focusing on extracting transparent models of classification to

still allow for characterisation. This task of genre classification has the advantage of having

established measures of success, due to its clear binary classifying decision (matching predicted

labels with ground truth labels). Moreover as described in more details in Section 2.3.2 the

genre classification task has received a lot of interest from the MIR community, which allows us

to test our classification methods on multiple existing and well studied datasets. In Chapter

5 we compare our transparent approach to classification with some of the many statistical
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methods applied on the same datasets. We show that our level of accuracy is equivalent to

those other methods.

Finally in Chapter 6, in order to improve on a state of the art genre classifier we pair

our harmony models with more traditional low level signal-based descriptors, resulting in a

meta-classifier which obtains statistically significantly better results than the same framework

without our contributed models.

In a nutshell, this thesis work brings the following novel points to the state-of-the-art:

• A variable- and arbitrary-length representation of chord sequenceswhich enriches the

fixed-length approaches (n-grams or similar) employed up to now for their representa-

tion. The original use of context-free definite-clause grammars is the key ingredient for

such a flexible representation.

• Amodelling of gaps of unspecified length in between harmonic sequences of interest

to skip ornamental and passing chords, which we were the first to introduce. We capture

gaps of flexible length thanks to the recursive power of Inductive Logic Programming.

• The proof of the appropriateness and usefulness of the combination of degree

and chord category in automatic characterisation and classification of style. We

show that despite the complexity of such models including both a function relative

to the tonality (degree) and the chords internal structure (category), they obtain

statistically significantly better results when used for genre classification. This composite

representation also result in less complex models requiring smaller computation times.

Finally we also show that it is also more musicologically meaningful than using each

component independently.

• The incorporation of harmony models into state-of-the-art signal-based genre clas-

sifiers. Where current genre-classification approaches suffer from a semantic gap due

to acoustical low-level features, ours includes a temporal modelling of harmony to retain

musical meaning. This results in a statistically significant increase in genre classification

accuracy of up to 2.5%.

• Automatically generated datasets of harmony rules characterising several genres and

styles for further musicological studies. Our experiments produce sets of rules for all

characterisation and classification problems we study. These are available upon request

to musicologists and other researchers, either in a human-readable format or as logic

programs.
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1 . 4

Related Publications by the Author

We list below those of our publications that have influenced the work and writing of this thesis.

When they were the results of collaborations, the contributions of the co-authors are also

specified accordingly.

Simon Dixon was the author’s supervisor and provided guidance, support and feedback for

the entire duration of her thesis. Rafael Ramirez acted as her local supervisor for the 2-month

research exchange she spent at the Music Technology Group (Universitat Pompeu Fabra,

Barcelona) in January-March 2009 and for the subsequent publications.

Peer-Reviewed Conference Papers

(Anglade and Dixon, 2008a) – Amélie Anglade and Simon Dixon. Characterisation

of Harmony with Inductive Logic Programming. In Proceedings of the 9th International

Conference on Music Information Retrieval (ISMIR), pages 63–68, Philadelphia, PA, USA, 2008.

The poster presenting this publication at the ISMIR 2008 conference also received the Best

Poster Award at the London Hopper Colloquium for women in computing research, British

Computer Society Headquarters, London, 2009.

(Anglade and Dixon, 2008b) – Amélie Anglade and Simon Dixon. Towards Logic-

based Representations of Musical Harmony for classification, Retrieval and Knowledge

Discovery. In Proceedings of the 1st International Workshop on Machine Learning and Music

2008 (MML), co-located with the 25th International Conference on Machine Learning (ICML), the

24th Conference on Uncertainty in Artificial Intelligence (UAI) and the 21st Annual Conference on

Learning Theory (COLT), pages 11–12, Helsinki, Finland, 2008.

(Anglade et al., 2009b) – Amélie Anglade, Rafael Ramirez and Simon Dixon. First-

order Logic Classification Models of Musical Genres Based on Harmony. In Proceedings

of the 6th Sound andMusic Computing Conference (SMC), pages 309–314, Porto, Portugal, 2009.

(Anglade et al., 2009c) – Amélie Anglade, Rafael Ramirez and Simon Dixon. Genre
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classification using harmony rules induced from automatic chord transcriptions. In

Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR),

pages 669–674, Kobe, Japan, 2009.

(Barthet et al., 2011) – Mathieu Barthet, Amélie Anglade, Gyorgy Fazekas, Sefki Kolozali

and Robert Macrae. Music Recommendation for Music Learning: Hotttabs, a Multimedia

Guitar Tutor. In Proceedings of the 2nd Workshop on Music Recommendation and Discovery

(WOMRAD), co-located with the 5th ACM Recommender Systems Conference (ACM RecSys),

pages 7–13, Chicago, IL, USA, 2011.

This publication describes a web application developed at the London Music Hack Day

2009 and Barcelona Music Hack Day 2009. All co-authors have built or provided pieces

(algorithms or infrastructure) of the application and worked on their integration together.

The author’s work lies mainly in the design, implementation and refinement of the guitar

tab clustering component, as well as the conceptualisation of the original idea for the web

application and contribution to the definition and refinement of its functionalities.

Journal Article

(Anglade et al., 2010) – Amélie Anglade, Emmanouil Benetos, Matthias Mauch and Simon

Dixon. Improving Music Genre Classification Using Automatically Induced Harmony

Rules. Journal of New Music Research, 39(4):349–361, 2010.

Emmanouil Benetos and the author equally collaborated on this work. Emmanouil Benetos

provided his prior implementations of the signal-based features and statistical classification

algorithms, while the author contributed her harmony-based ILP classification models.

The integration of those components as well as the experimental design, execution and

interpretation were the fruit of their collaboration. Matthias Mauch contributed the chord

transcription algorithm and ran the transcription tasks.

Other Publications

(Anglade et al., 2009a) – Amélie Anglade, Rafael Ramirez and Simon Dixon. Computing

genre statistics of chord sequences with a flexible query system. Demo at the SIGMUS

Symposium, 20098.

(Dixon et al., 2011) – Simon Dixon, Matthias Mauch and Amélie Anglade. Probabilistic

8http://www.sigmus.jp/SIG/sig200911listofdemos-e.html

http://www.sigmus.jp/SIG/sig200911listofdemos-e.html
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and Logic-Based Modelling of Harmony. In Ystad, S., Aramaki, M., Kronland-Martinet, R.,

and Jensen, K., editors, Exploring Music Contents, 7th International Symposium, CMMR 2010,

volume 6684 of Lecture Notes in Computer Science, pages 1–19. Springer Berlin Heidelberg,

2011.

This publication provides a summary and comparison of Matthias Mauch’s and the author’s

thesis research.

1 . 5

Thesis Outline

Chapter 1: Introduction

In this chapter we describe the context and motivation for this work. The research goal and

research questions are presented and the thesis contributions are discussed.

Chapter 2: Background and Related Work in Music Information Retrieval

In this chapter we define music theory and in particular harmony-related concepts that will

be used in the remainder of the thesis. We also review prior work in the field of Music

Information Retrieval focusing on music characterisation and classification.

Chapter 3: Background and Related Work in Inductive Logic Programming

This chapter covers the theory, background as well as related work in Inductive Logic

Programming. A review of related logic-based approaches to musical tasks concludes the

chapter.

Chapter 4: Automatic Characterisation of the Harmony of Song Sets

Based on work also published (Anglade and Dixon, 2008a) and (Anglade and Dixon, 2008b).

In this chapter we present a style characterisation approach using chord sequences of

fixed-length as representation scheme, and Aleph as ILP induction algorithm. We study and

characterise a band, the Beatles represented by their entire studio albums, and a genre, Jazz,

represented by a set of pieces from the Real Book. A qualitative analysis of the extracted

rules, as well as a comparison with a statistical study of the same corpora is provided. We

conclude with an analysis and description of the constraints and limitations of this approach.
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Chapter 5: Automatic Genre Classification

Extends work published in (Anglade et al., 2009b) and (Anglade et al., 2009c).

In this chapter we move to the task of genre classification, and use the TILDE algorithm

which is designed for building decision tree models. We introduce a new Context-Free

Definite-Clause Grammar scheme to represent harmony sequences of any length including

gaps. We report on the results of classification experiments on 9 genres, comparing the

discriminative power of several chord properties but also of single decision trees vs. random

forests. We also perform a comparison of our method with another study on the same

dataset using a statistical approach. We conclude with a musicological analysis of some of the

extracted rules.

Chapter 6: Improving on State-of-the-art Genre Classification

Based on work also published in (Anglade et al., 2010).

In this chapter we present a new meta-classification framework extending a state-of-the-art

statistical genre classifier based on timbral features with our harmony models. The latter

are the first-order random forests built in the previous chapter using the best representation

scheme and trained on audio data. Tests on two new genre datasets (not used in our previous

experiments) indicate that the proposed harmony-based rules combined with the timbral

descriptor-based genre classification system lead to significantly improved genre classification

rates.

Chapter 7: Conclusions

This chapter provides a summary of our findings and discusses future research topics and

applications of this work.
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2 . 1

Introduction

In this chapter we review background music theory concepts as well as related work in the

field of Music Information Retrieval. We begin by providing music theory definitions which

are essential to the understanding of our work. We particularly have a close look at harmony-

related concepts, terms and notation conventions which we will later use. We go on to

summarise and discuss MIR research to date covering the two tasks we are interested in,

namely automatic characterisation and music genre classification. We provide a description of

those tasks and how they relate to each other, a review of state-of-the-art approaches to tackle

them as well as a discussion of their limitations and recent endeavours to overcome them.

2 . 2

Musical Concept Definitions

The work done in this thesis is based on music theory concepts that we define here. We

will limit those definitions to the scope of this work, which as seen in Chapter 1 does not

have musicological goals but instead borrows useful concepts from musicology for music

information retrieval purposes – some of which might be of interest to musicologists too.

Particularly, if our work spans three genres – classical, jazz and popular music – which have

their own independent bodies of musicological research, it is outside the scope of this work to

explain in detail how their views of the following concepts differ and instead we will focus on

their common traits.

The pitch is the perceptual interpretation of the frequency of a sound wave. It consists of

a pitch-class, notated with the 7 pitch labels of the diatonic scale (A, B, C, D, E, F, G) which

can all be altered with one or several sharps (♯) or flats (♭), and the octave in which the pitch is

found. In this work we will often omit the octave and treat pitch and pitch-class as synonyms.

Similarly for a musical note, which consists of a pitch and a duration, we will often omit the

duration and use it to refer to its pitch-class. If in music tone is usually the audio instantiation

of a note, here we will only employ that term to refer to the intervals called semitone and (whole)
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tone. A semitone is the distance between adjacent notes in the chromatic scale, as on the piano

keyboard, or also the distance between a note and the same note altered by one sharp (raising

by a semitone) or one flat (lowering by a semitone). A tone equals two semitones.

2.2.1 Harmony-Related Terms

The main musical concept addressed throughout this work is harmony. In music, harmony

is concerned with the study of chords and of their structures, progressions and relations. In

Western Music, harmony is one of the fundamental elements of music, clearly as important

as melody and rhythm to which it is linked, the three supporting each other. We use the

most generally accepted definition for a chord: the simultaneous combination of 3 or more

notes. We will exceptionally extend this definition to some 2-note chords when it is clear from

their context that the third note is implied. Another important building block of harmony

is the interval, “the distance between two notes” as Piston (1987) defines it. When the two

tones are sounded simultaneously, he calls it a harmonic interval, which he uses to provide

another definition of the chord: “the combination of two or more harmonic intervals”. A

(non-exhaustive) list of the most important harmonic intervals is provided in Table 2.1.

Table 2.1: List of the most important harmonic intervals. 4 and 5 in the pitch names symbolise
the (fourth and fifth) octave, where the fourth octave extends from middle C up to, but not
including, the next C.

Name diatonic steps semitones Examples

Perfect unison 0 0 C4-C4
Minor second 1 1 C-D♭, B-C, E-F
Major second 1 2 C-D
Minor third 2 3 C-E♭, A-C, E-G
Major third 2 4 C-E
Diminished fourth 3 4 C-F♭, C♯-F
Perfect fourth 3 5 C-F
Augmented fourth 3 6 C-F♯, F-B
Diminished fifth 4 6 C-G♭, B-F
Perfect fifth 4 7 C-G
Augmented fifth 4 8 C-G♯, C♭-G
Minor sixth 5 8 C-A♭, A-F
Major sixth 5 9 C-A
Minor seventh 6 10 C-B♭, A-G
Major seventh 6 11 C-B
Perfect Octave 7 12 C4-C5
Minor ninth 8 13 C4-D♭5, B4-C5
Major ninth 8 14 C4-D5
Perfect eleventh 10 17 C4-F5
Major thirteenth 12 21 C4-A5

In this thesis we will focus on a limited number of chord types, or as we will refer to them,
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Figure 2.1: Types of triads (and neutral chord) used in this work.
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maj 6th
min 7th

min 3rd
maj 3rd
min 7th

maj 3rd
min 3rd
maj 7th

Figure 2.2: Types of seventh and major sixth chords used in this work.

chord categories. They are defined and characterised by the number of notes and specific (up

to octave equivalence) intervals they contain. We will work with triads, seventh chords and

major sixth chords. Triads are chords of three notes that are separated by 2 intervals of a third.

Figure 2.1 illustrates the types of triads that will be used in the next chapters: major, minor,

diminished, augmented, suspended, neutral (when the third is neither present nor suspended).

A seventh chord is a triad with an additional note a third above the top note, which is also a

seventh above the root note. The root note is the note used to name the chord, and the lowest

note in that chord when it is played in its root position, i.e. when all notes are separated by

thirds. The chord is inverted when its notes are reorganised. The lowest note in an inverted

chord is called the bass note. Figure 2.2 shows the types of seventh chords that will be used

in this thesis: dominant 7th, minor 7th, major 7th. Finally we also use the major sixth chord,

also known in classical music as an added sixth chord and in popular music as a sixth chord,

which is a triad with an added sixth interval from the root. It is included in our study due

to its extensive use in modern popular music. It can also be found in Figure 2.2. Hence we

only consider tertian chords, i.e. chords which are built of superimposed thirds, their inversions

and chords based on tertian chords where some intervals are omitted (such as the 3rd in the

“neutral” triad), replaced with other intervals (e.g. suspended triads where the 3rd is replaced

with a 2nd or a 4th) or added (such as the added 6th in the major sixth chord). Moreover it is

noticeable that chords with larger intervals than the 7th (such as 9th, 11th and 13th chords)

have the same functions as the 7th chords they contain and extend, which is why we omit them

from our vocabulary of chords for our experiments and instead focus on the underlying seventh

and triad chords. We acknowledge though that it is a simplification and at the perception level

these more complex chords would still sound different and can be used by composers and

musicians to add harmonic colours to their music.
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Figure 2.3: Example of the major mode: C Major scale, with pitch labels and degrees.

Another essential concept in harmony is tonality, the hierarchical organisation of pitches

in a scale and around a tonal centre called the tonic. In harmony analysis the seven pitches of

a diatonic scale are identified with roman numerals which correspond to their position in the

scale, also called their degree, the tonic being the first degree (I). The full list of degrees and

their names is provided in Table 2.2. Each chord can then be characterised by its type, its

root note or degree of its root note and potentially its inversion or bass note. When degrees

are used we talk about Roman numeral analysis which allows to identify patterns across music

pieces with different tonal centres. The tonic together with the type of scale, the mode, are

grouped into the key. Although some of the genres studied for this work might occasionally

use different modes, we will limit the modes used to those of common practice: major and

minor. This has the advantage of providing a common referential in which we can compare

various genres that have all been represented or transcribed into those two modes. Studies

comparing genres sharing other modes could however employ those as well or instead. Major

and minor modes are characterised by the respective positions of the tones and semitones in

the diatonic scale which are illustrated in Figures 2.3 and 2.4. The tuning system assumed

to be underlying all pieces studied in this work is the 12-tone equal temperament, in which the

octave is divided in 12 equal semitones, or chromatic intervals, allowing for transposition to

other keys: movement of the tonal centre and all pitches while keeping the intervals between

all notes identical. When a change of tonal centre is only temporary and occurs inside a piece

of music then we talk about modulation.

Table 2.2: Diatonic scale degrees.

Degree Name

I Tonic
II Supertonic
III Mediant
IV Subdominant
V Dominant
VI Submediant
VII Leading note
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tone
tone

semitone
tone

tonetone
semitone

I II III IV V VI VII VIII

Figure 2.4: Example of the minor mode: A (natural) minor scale, with pitch labels and degrees.

Finally higher level concepts of harmony that will be mentioned in this thesis are cadence

and harmonic rhythm. A harmonic cadence is a chord sequence that acts as a punctuation

mark at the end of a musical phrase or a musical piece. Specific examples of cadences will be

introduced in later chapters when they will be needed or identified. Harmonic rhythm refer to

either the specific rhythm (original definition) or more generally the tempo at which the chord

changes are happening in a piece of music.

2.2.2 Chord Notations

To study and analyse the harmony of a piece of music one looks at all the chords it contains and

labels them. In classical music all the individual notes are usually provided in the score, without

explicit notation of their harmonic function, and it is the task of the musician or musicologist

to group them together into chords and then perform harmonic analysis to identify degrees,

types and inversions of the chords, with notation conventions such as classical Roman numeral

analysis. In popular music and jazz however it is more common to directly represent the

chords in a shorthand fashion without specifying the individual notes, and root note is often

preferred over degree. Those shorthand labels are explicit so that they can be played at sight.

They juxtapose root note, chord type and inversion (preceded by a forward slash: “/”). Such

jazz/pop/rock shorthand chord labels are found in lead sheets (e.g. on top of lyrics) and real or

fake books for instance. The various chord syntaxes mentioned here are illustrated in Figure

2.5 (taken from (Harte et al., 2005) where they are also described in more detail).

The datasets we use for our experiments were provided by their creators in what can

be considered as standard formats now in the Music Information Retrieval community.

The first format is the Band in a Box file format. Band in a Box1 is an accompaniment

software for musicians who need a computer generated “band” to play along with them. The

general interface displays a list of bars in which the user can type in chords (annotated in

a jazz/pop/rock shorthand fashion). More parameters allow the user to define the tempo,

the style, the repetitions, etc. Thus, a Band in a Box file contains a user supplied list of

1http://www.pgmusic.com/products_bb.htm

http://www.pgmusic.com/products_bb.htm
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Figure 2.5: A short extract of music in C major with different harmony notations: a) Musical
score b) Figured bass, c) Classical Roman numeral, d) Classical letter, e) Typical Popular music
guitar style, f) Typical jazz notation. From (Harte et al., 2005).

pairs (time, chord) and as such can be seen as a simplified music score. The second format

is the chord notation introduced by Harte et al. (2005) which was then integrated into the

Music Ontology (Raimond et al., 2007) as the Chord Ontology2 to allow for structured RDF

(Resource Description Framework) descriptions of harmonic events. In this representation

each harmonic event (or chord) is associated with a start time, an end time and a web identifier

from which one can retrieve an RDF description of the chord. As shown in Figure 2.6, in

the Chord Ontology each RDF description of a chord contains in turn none (if the chord is

unknown), one or several of the following:

• the root note of the chord,

• the bass note of the chord,

• the component intervals of the chord (additive description), or a base chord (i.e. maj, 7,

sus4, etc.) and optionally the intervals from that base chord that are not contained in

the current chord (subtractive description).

All datasets used in our experiments will be pre-processed with specific parsers or converters

extracting from the aforementioned formats the chord types and transforming them into

jazz/pop/rock shorthand representations of the chord types. The shorthand notations for the

2http://motools.sourceforge.net/chord/

http://motools.sourceforge.net/chord/
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Figure 2.6: Model of a chord in the Chord Ontology. From http://motools.sourceforge.
net/chord/ licensed by Christopher Sutton, Yves Raimond and Matthias Mauch under
Creative Commons Attribution 1.0 Generic.

chord categories used in this work are shown in Table 2.3. All parsers and converters will be

described and introduced in later chapters, together with the datasets they will be used on.

Table 2.3: Shorthand notations of main chord categories as used in this work.

Full chord name frequently abbreviated as shorthand label

major triad major chord maj
minor triad minor chord min
diminished triad diminished chord dim
augmented triad augmented chord aug
suspended (second or fourth) triad sus chord sus
“neutral” triad neutral chord neut
dominant seventh dominant chord or dominant 7th dom or 7
major seventh major 7th maj7
minor seventh minor 7th min7
major sixth major 6th maj6

2 . 3

Related Work in Music Information Retrieval

http://motools.sourceforge.net/chord/
http://motools.sourceforge.net/chord/
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In this section we describe the Music Information Retrieval state-of-the-art approaches to the

tasks of characterisation and classification and how they relate to each other.

2.3.1 Characterisation

The discussion of music theoretical terms in the previous section is important because as Piston

(1987) describes it in the introduction of his book, Harmony, “a secure grounding in [music]

theory is [...] a necessity [...], since it forms the basis for any intelligent appraisal of individual styles

of the past or present”, suggesting that harmony is one of the areas of music theory that allows

to identify both common practices and individual styles. The act of finding and “describ[ing] the

distinctive nature or features of” an item or concept is what the Oxford Dictionary defines as

characterisation. Because of its descriptive nature, in Music Information Retrieval, the task

of automatic characterisation lies at the border with computational (ethno)musicology. For

instance it is for its descriptive power that Taminau et al. (2009) employ the rule learning

technique Descriptive Subgroup. It enables them to discover in a dataset of folk tunes

both subgroups and interpretable rules describing them. The latter are of great importance

for ethnomusicologists. Characterisation studies are also conducted on composers (van

Kranenburg, 2006), genres (Pérez-Sancho, 2009) and on musical corpora representing or

exhibiting specific styles. For instance in search of chord idioms, Mauch et al. (2007) made

an inventory of chord sequences present in the Real Book (a corpus representing an entire

genre, Jazz) and in the Beatles’ studio albums (a corpus representing a specific band). Their

approach is entirely statistical and resulted in an exhaustive list of chord sequences together

with their relative frequencies.

Additionally the methods employed for characterisation often belong to the pattern

recognition domain, since, as van Kranenburg (2006) describes it, it fits within Meyer’s theory

of musical style which states that “style is a replication of patterning, whether in human behavior

or in the artifacts produced by human behavior, that results from a series of choices made within some

set of constraints” (Meyer, 1989). McKay and Fujinaga (2007) for instance have developed

an entire computer-based framework implementing state-of-the-art Pattern Recognition and

Data Mining techniques. It is meant to be used by musicologists for exploratory analysis

of large amount of data and considering many musical aspects (or features) at a time.

Furthermore for accuracy reasons many of those pattern recognition studies are conducted

on symbolic data, extracted from scores or score-like data (e.g. extracted from audio by mean

of transcription techniques), such as in (Pérez-Sancho, 2009) where naïve Bayes and n-grams

models are first tested on symbolic melodic and harmonic data and then extended to audio
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data using polyphonic transcription and chord recognition algorithms respectively.

However if what we mean precisely by characterisation in this work is the descriptive

analysis whose goal is the (human-readable) description itself, it is important to notice

that characterisation techniques are often used to another end. Indeed the result of a

characterisation process, the description itself can be seen and used as model of the style

it represents. Cope (1996), after modelling characteristic compositional traits of various

classical composers, automatically composed new musical works in their styles with impressive

results. Similarly, after characterising Johann Sebastian Bach’s fugue compositions and those

of 9 other composers (his son and students) using 20 features mostly focusing on polyphonic

characteristics, van Kranenburg (2006) use a Fisher-transformation to project the multi-

dimensional representations of the fugues onto a 2 dimensional space where the compositions

of each composer are expected to form a separate cluster. As seen in this work a few of

Bach’s disputed compositions actually cluster closer to other composers which means that this

characterisation technique is a useful tool for discussions of authorship attribution. Finally,

the most common application of characterisation is certainly to the task of classification.

2.3.2 Automatic Genre Classification

In Music Information Retrieval, classification consists in the automatic tasks of learning and

assigning labels to pieces of music. Because genre is a characteristic of music that has been

historically and widely used to organise music, and even though it is a “ill-defined” concept that

even experts would not agree on (Aucouturier and Pachet, 2003), music genre classification –

also sometimes called music genre recognition – has been one of the earliest and most widely

investigated MIR tasks (Lee et al., 2009; Sturm, 2012). Most of the works in music genre

classification to date focus on the task of assigning a single label to each piece of music

– which we will also limit this work to – but some work on multi-label and multi-domain

approaches to this problem have also been published (Lukashevich et al., 2009). Other MIR

classification tasks include mood and emotion classification which are outside the scope of

this work. Automatic tagging – cf. (Bertin-Mahieux et al., 2010) for an overview – is a larger

problem that we will also not describe here.

The topic of music genre classification itself being so popular we can not possibly cover the

entire music genre recognition literature but we refer the reader to surveys such as the one

from Scaringella et al. (2006), as well as the thorough review work from Sturm (2012) who,

even though he focuses on evaluation of music genre recognition algorithms, references all

publications up to December 2012 on this topic.
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Bag-of-Frames / Bag-of-Features Approach

The majority of genre classification systems are signal-based – cf. (Scaringella et al., 2006) for

an overview of these systems – and most of them are based on the so-called “Bag-of-Frames”

or “Bag-of-Features” (BOF) approach. It proceeds as follows:

1. Each class is represented by several audio examples.

2. For each of these examples, the acoustic signal is cut into short overlapping frames

(typically ∼50 ms frame with an overlap of 50%).

3. For each frame a feature vector is computed (typically spectral features such as Mel

Frequency Cepstrum Coefficients).

4. These feature vectors are given to a statistical classifier (e.g. Gaussian Mixture Models)

which models the global distributions or average values of these vectors over the whole

piece or passage for each class. Interestingly such distributions have not only been used

to separate the examples into classes but also to compute similarity measures between

examples for tasks such as retrieval or recommendation (Aucouturier and Pachet, 2008),

making the background literature on music genre classification and music similarity

indissociable.

Typically the features used in the BOF are low level descriptors of music, focusing mostly on

timbral texture (Aucouturier and Pachet, 2004), rhythmic content (Gouyon and Dixon, 2005),

pitch content (melody or harmony) (Gómez, 2006) or, as suggested by Tzanetakis and Cook

(2002), and in accordance with the modular architecture of music processing in the human

brain pointed out by the neuroscientists Peretz and Coltheart (2003), a combination of the

three (Basili et al., 2004; Berenzweig et al., 2004; Cano et al., 2005; Shen et al., 2006).

One interesting example of the use of the BOF is the Extractor Discovery System (EDS),

an expert system developed at Sony CSL (Zils, 2004). Its particularity lies in optimising

combinations of signal processing features with genetic programming. It is able to distinguish

sounds with different timbres, even when they are played on the same instrument with only

slight modifications of timbre (Roy et al., 2007), to learn subjective measures such as the

perceived intensity (Zils and Pachet, 2003) and to build a classifier “modelling [urban sounds]

to near-perfect precision”, but fails in classifying polyphonic music with the same precision

(Aucouturier et al., 2007).

It has indeed been suggested by many that the BOF presents a glass-ceiling, or in other

words a maximum accuracy that can not be surpassed, even when optimising its various steps
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(e.g. design of the signal-based features, feature selection, etc.) (Aucouturier and Pachet,

2004). Other reported and connected limitations of the BOF include the creation of false

positive hubs (Aucouturier and Pachet, 2008) and false negative orphans (Pampalk, 2006),

respectively abnormally similar and dissimilar to any other piece. Explanations for these

behaviours such as the curse of dimensionality – the feature space being high-dimensional

– (Karydis et al., 2010), as well as fixes for them e.g. using mutual proximity (Flexer et al.,

2012) have also been provided by the community.

If those shortcomings are purely statistical, the MIR community has also criticised the

BOF approach for ignoring the musical nature and properties of the content it classifies.

For instance Aucouturier and Pachet (2008) explain that most of the time there is no direct

mapping between the acoustical properties and mental representation of a musical entity, such

as genre or mood. They also point out that contrary to the bag-of-frames assumption the

contribution of a musical event to the perceptual similarity is not proportional to its statistical

importance – rare musical events can even be the most informative ones to determine its

genre (Aucouturier et al., 2007). Moreover the bag-of-frames approach ignores the temporal

organisation of the acoustic signal. Indeed rarely does time modelling go beyond delta features

– comparing values of the current frame with those of the preceding one. And yet when

comparing pieces from similar genres or passages of a same song it is crucial in the retrieval

process to use sequences and not only average values or global statistical distributions of

features over a whole passage or piece (Casey and Slaney, 2006). In summary, the BOF

approach, based on low-level signal-based content descriptors, lacks high-level, contextual

concepts which are equally important for the human perception and characterisation of music

genres (McKay and Fujinaga, 2006).

Combining Low and Higher Level Descriptors/Features

Thus, recently, several attempts have been made to use, or integrate with state-of-the-art

low-level audio features, such higher-level or contextual features, including: long-time audio

features (Meng et al., 2005), statistical (Lidy et al., 2007) or distance-based (Cataltepe et al.,

2007) symbolic features, text features derived from song lyrics (Neumayer and Rauber, 2007),

cultural features or contextual features extracted from the web (Whitman and Smaragdis,

2002), social tags (Chen et al., 2009) or combinations of several of these high-level features

(McKay and Fujinaga, 2008).
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Using Sequences

When dealing with symbolic data, the Bag-of-Frames approach can obviously not be applied.

However, as Hillewaere et al. (2009) explain, much of the work on genre classification of

symbolic musical data uses global features, i.e. features at the level of the entire piece of music.

They nonetheless show that models using event features, i.e. features representing the pieces

of music as sequences of events, outperform global feature models. In their case the models

employed with such event features are n-grams, and also their own multiple viewpoint model.

Pérez-Sancho et al. (2009) also employ n-grams to represent melodic and harmonic sequences

and perform genre classification on symbolic data. They also prove that the same sequence-

based approach can be applied to audio data (Pérez-Sancho et al., 2010).

Harmony-Based Approaches to Music Genre Classification

Although some harmonic (or chord) sequences are famous for being used by a composer or

in a given genre, harmony is scarcely found in the automatic genre recognition literature as

a means to that end. Pérez-Sancho et al. (2008) investigated whether stochastic language

models of harmony including naïve Bayes classifiers and 2-, 3- and 4-grams could be used

for automatic genre classification on both symbolic and audio data. They reported better

classification results when using a richer vocabulary (i.e. including seventh chords), reaching

3-genre classification accuracies on symbolic data of 86% with naïve Bayes models and 87%

using bi-grams (Pérez-Sancho et al., 2009). To deal with audio data generated from MIDI they

used a chord transcription algorithm and obtain accuracies of 75% with naïve Bayes (Pérez-

Sancho, 2009) and 89% when using bi-grams (Pérez-Sancho et al., 2010). Earlier attempts at

using harmony include Tzanetakis et al. (2003), who introduced pitch histograms as a feature

describing the harmonic content of music. Statistical pattern recognition classifiers were

trained to extract the genres. Classification of audio data covering 5 genres yielded recognition

rates around 70%, and for audio generated from MIDI files rates reached 75%. However

this study focused on low-level harmony features. Only a few studies have considered using

higher-level harmonic structures, such as chord progressions, for automatic genre recognition.

In (Shan et al., 2002), a frequent pattern technique was used to classify sequences of chords

into three categories: Enya, Beatles and Chinese folk songs. The algorithm looked for

frequent sets, bi-grams and sequences of chords. A vocabulary of 60 different chords was

extracted from MIDI files through heuristic rules: major, minor, diminished and augmented

triads as well as dominant, major, minor, half and fully diminished seventh chords. The best

two way classifications were obtained using sequences with accuracies between 70% and
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84%. Lee (2007) considered automatic chord transcription based on chord progression. He

used hidden Markov models on audio generated from MIDI and trained by genre to predict

the chords. It turned out he could not only improve chord transcription but also estimate

the genre of a song. He generated 6 genre-specific models, and although he tested the

transcription only on the Beatles’ songs, frame rate accuracy reached highest level when using

blues- and rock-specific models, indicating that models could be used to identify genres.

2 . 4

Conclusions

In this chapter we have provided definitions and context information for the music theory

and musicological concepts and terms we will be using in the following chapters. Harmony

being the domain we have decided to explore as a high-level descriptor of music we have

taken the time to define and explain the terms and notations associated with it, including

in particular chord symbols and notation conventions. We also reviewed related work on

style characterisation and music genre classification which are the tasks we will explore

using harmony only in Chapters 4 and 5 respectively. We saw that what we defined as

characterisation, the task of analysing and extracting patterns of interest in pieces of music

representing a unified musical style, has not only been explored by the MIR community as a

task in itself for its musicological and ethnomusicological applications, but has also been used

as an intermediate step in retrieval and identification tasks. The most popular of such tasks

is the extensively studied problem of music genre classification which we have also reviewed

and for which we have also described the most commonly employed approaches. Many of

those in fact build models which are black-boxes (due to the low-level signal based-features

they employ) and ignore high-level and temporal musical properties of the items they classify.

We saw that promising solutions in music genre classification have employed either high-level

and contextual features or sequences of musically meaningful events. It is at the intersection

of these that harmony-based music genre classification approaches lie. It is clear from our

literature review that most of those harmony-based methods use n-grams or other statistical

sequential models of fixed-length. If such sequential harmony models have shown to have

a distinctive characterisation power which we shall build upon in this thesis, much could be
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done to better capture of the essence of harmony. One limitation of these models is their

lack of flexibility, which we address by applying techniques from another domain to both

represent and infer harmony-based models for characterisation and classification: Inductive

Logic Programming, which we will now review in Chapter 3.
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CHAP T E R 3

BACKGROUND AND RELATED WORK IN

INDUCTIVE LOGIC PROGRAMMING
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3 . 1

Introduction

Inductive Logic Programming (ILP) is a field at the intersection of Machine Learning and

Logic Programming (Muggleton, 1991). It is a technique that learns from examples (i.e.

which induces general rules from specific observations). Based on a first-order logic framework

it permits to express concepts that might not be formulated in a traditional attribute-value

framework (Lavrac and Džeroski, 1994). Moreover it supports background knowledge and

can handle imperfect data. At first, ILP was restricted to binary classification tasks but recently

it has been adapted to many more data mining tasks. Finally ILP has already been successfully

used for knowledge discovery and to build expert/reasoning systems in various engineering and

research domains including MIR.

3 . 2

A Definition of ILP

To define what Inductive Logic Programming is we first describe the tasks of inductive concept

learning (without and with background knowledge) and relational learning.

3.2.1 Inductive Concept Learning

Given a universal set of objectsU , a conceptC is a subset of objects inU (C ⊆ U). The problem

of inductive concept learning can be defined as follows: given instances and non-instances of

C, find a hypothesis able to tell for each x ∈ U whether x ∈ C.

To perform an inductive concept learning task one needs to specify a language of examples LE

which defines the space of instances considered (i.e. U) and a language of concept description

LH which defines the space of hypotheses considered. If an example e expressed in LE is an

instance of the concept C then e is a positive example of C otherwise it is said to be a negative

example ofC. A coverage relation between LH and LE , covers(H, e) needs also to be specified.

It returns true when the example e belongs to the concept defined by the hypothesis H and
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false otherwise. We can then define a new relation:

covered(H,E) = {e ∈ E|covers(H, e) = true}

which returns the set of examples E which are covered by H. So the problem of inductive

concept learning can be reformulated as follows: given a set of examples E containing positive

(set E+) and negative (set E−) examples of a concept C expressed in a given language of

examples LE , find a hypothesis H described in a given language of concept description LH

such that:

• every positive example e ∈ E+ is covered by H (completeness): covered(H,E+) = E+

• no example e ∈ E− is covered by H (consistency): covered(H,E−) = ∅

3.2.2 Inductive Concept Learning with Background Knowledge

When a concept learner has also access to prior knowledge, this prior knowledge is called

background knowledge.

The task of inductive concept learning with background knowledge is described as follows:

given a set of examples E and background knowledge B, find a hypothesis H described

in a given language of description LH such that it is complete and consistent with respect

to the set of examples E and the background knowledge B (covered(B,H,E+) = E+ and

covered(B,H,E−) = ∅).

Notice that the covers relation is extended as follows: covers(B,H, e) = covers(B ∪H, e).

3.2.3 Relational Learning

One class of learning systems is the class of relational learners. They deal with structured

concepts and structured objects defined in terms of their components and relations among

them. These relations constitute the background knowledge.

The languages of examples and of concept description used by relational learners are typically

subsets of first-order logic. When the hypothesis language used by a relational learner is the

language of logic programs (Lloyd, 1987) it is called an inductive logic programming system. It

turns out that in most ILP systems not only the hypotheses are expressed in logic program

form but also the examples and the background knowledge (with additional restrictions for

each of the languages).

So in the case of ILP the coverage relation can be written: covers(B,H, e) ≡ B ∧H |= e where

|= stands for logical implication or entailment.
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Figure 3.1: Michalski’s train problem. From (Michalski, 1980).

3.2.4 A Simple Inductive Logic Programming Problem

To understand in more detail how ILP works we illustrate its principle using a simple and well-

known relational learning problem: Michalski’s train challenge (Michalski, 1980).

Descriptions are provided for ten trains, five eastbound trains and five westbound trains.

Each description contains information about the number of carriages of a train, the length of

each carriage (which can be long or short), the roof of each carriage (open or closed roof), the

number of wheels each carriage has, and the loads carried or not in each carriage (information

about their presence and about their shapes). The description of these ten trains is illustrated

in Figure 3.1. The challenge consists in finding a way to generalise from the examples and

automatically distinguish the eastbound trains from the westbound trains (binary classification

problem).

An ILP system can learn a rule that defines what is an eastbound train. In ILP the positive

examples are described as Prolog facts, so in this problem the positive examples can be

expressed as follows1:

eastbound(eastTrain1).

eastbound(eastTrain2).

eastbound(eastTrain3).

eastbound(eastTrain4).

eastbound(eastTrain5).

Similarly the negative examples (i.e. facts that are false) are:

eastbound(westTrain1).

eastbound(westTrain2).

1the predicates employed in this example are the ones used by Srinivasan (2003) to express the same problem.
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eastbound(westTrain3).

eastbound(westTrain4).

eastbound(westTrain5).

Then we need to store the descriptions of each train in our background knowledge. For

instance the description of the first eastbound train in Prolog facts can be expressed as follows:

has_car(eastTrain1,car_11).

has_car(eastTrain1,car_12).

has_car(eastTrain1,car_13).

has_car(eastTrain1,car_14).

short(car_12).

closed(car_12).

long(car_11).

long(car_13).

short(car_14).

open_car(car_11).

open_car(car_13).

open_car(car_14).

shape(car_11,rectangle).

shape(car_12,rectangle).

shape(car_13,rectangle).

shape(car_14,rectangle).

load(car_11,rectangle,3).

load(car_12,triangle,1).

load(car_13,hexagon,1).

load(car_14,circle,1).

wheels(car_11,2).

wheels(car_12,2).

wheels(car_13,3).

wheels(car_14,2).

Notice that the background knowledge is not limited to facts and can contain rules. For

instance imagine that we want to add information about the carriages’ positions in the train in

terms of which carriage follows which other carriage. We could add the following facts:

succ(car_12,car_11).
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succ(car_13,car_12).

succ(car_14,car_13).

where succ(X,Y) means X follows Y.

Using the predicates from the positive examples, negative examples and background

knowledge the ILP system can then generate the following hypothesis which covers all the

positive examples and none of the negative examples:

eastbound(A) :- has_car(A, B), short(B), closed(B).

which says that an eastbound train always has a carriage which is short and closed.

3 . 3

ILP Techniques and Frameworks

Let us go back to the basic ILP problem of relational rule induction. To induce a hypothesis

H which is complete and consistent with respect to a set of examples E and background

knowledge B without enumerating all the possible results, several ILP techniques have been

developed including least general generalisation, inverse resolution, inverse entailment. It is

beyond the scope of this thesis to enumerate and explain all the possible ILP techniques to

search the space of clauses. For a good overview and description of these techniques we refer

the reader to (Džeroski et al., 2000).

The goal of this thesis is not to develop a new ILP technique or framework. That is why

we looked at established ILP frameworks, starting from the in-depth comparison provided

in (Maclaren, 2003, Section 3.2). After testing we selected Aleph (Srinivasan, 2003) for its

usability, responsiveness of its user community and existing examples of its use in MIR tasks.

We later moved on to TILDE as we wanted to perform classification. TILDE not only is a

classification algorithm, it also benefits from a very active and responsive maintenance team

which constantly optimises its performance. The few other candidates were rejected for their

non-maintained state, lack of support or poor performance.

Aleph (used in Chapter 4) is based on inverse entailment. Inverse entailment consists in

selecting an uncovered example, saturating it (i.e. looking for all the facts that are true about

this example using the example itself and the background knowledge) to obtain a bottom clause

(the disjunction of all the facts found in the saturation phase) and searching the space of clauses
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that subsumes this bottom clause in a top-down manner starting from the shortest clauses. The

clause that covers the maximum number of positive examples and the minimum number of

negative examples (i.e. which maximises a score function based on the number of positive and

negative examples covered by this clause) is kept as a hypothesis. The examples covered by

this hypothesis are removed and the next uncovered example is selected to be saturated, and so

on until no uncovered example is left. Finally Aleph returns a set of hypotheses that covers all

the positive examples. Note that like most of the recent ILP systems, Aleph is able to handle

noise and imperfect data. One of the parameters the user can change is the noise level, which

is the amount of negative examples that can be covered by a hypothesis.

In order to build classification model, we use in Chapter 5 TILDE. It is a first order logic

extension of the C4.5 decision tree induction algorithm (Quinlan, 1993). Like C4.5 it is a

top-down decision tree induction algorithm. The difference is that at each node of the trees

conjunctions of literals are tested instead of attribute-value pairs. At each step the test (i.e.

conjunction of literals) resulting in the best split of the classification examples is kept. As

explained in (Blockeel and De Raedt, 1998) “the best split means that the subsets that are obtained

are as homogeneous as possible with respect to the classes of the examples”. By default TILDE uses

the information gain-ratio criterion (Quinlan, 1993) to determine the best split. TILDE builds

first-order logic decision trees expressed as ordered sets of rules (or Prolog programs). For an

example illustrating the induction of a classification tree from a set of examples covering three

musical genres, we refer the reader to the Figure 5.2 in Chapter 5.

3 . 4

Relational Data Mining

If relational rule induction was the first and is still the most common task of ILP, it is no

longer restricted to it. The ILP approach has been extended to most data mining tasks. For

each data mining technique using a propositional approach a relational approach using first-

order logic has been suggested and classified under the umbrella term Relational Data Mining

(Džeroski and Lavrac, 2001b). Note that there is a trade-off between the expressiveness of

first-order logic and computational complexity of the algorithms using such an approach. This

explains why these relational data mining techniques were successfully developed only recently.

Džeroski (2006) gives an overview of all the relational data mining techniques one can now
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use. Among them:

• induction of relational classification rules – with the ICL software (Van Laer and De

Raedt., 2001),

• relational classification using nearest-neighbors – with RIBL (Emde and Wettschereck,

1996) and RIBL2 (Horváth et al., 2001; Kirsten et al., 2001),

• relational decision trees – TILDE (Blockeel and De Raedt, 1998),

• first-order random forests (Van Assche, 2008) – also implemented in TILDE,

• relational regression trees and rules – TILDE, S-CART (Kramer, 1996) and RIBL2,

• relational clustering (Kirsten et al., 2001)

• frequent pattern discovery (Dehaspe, 1999),

• discovery of relational association rules (Dehaspe and Toivonen, 1999, 2001).

3 . 5

Applications of ILP

3.5.1 A Tool Used in Many Disciplines

ILP has been successfully used for knowledge discovery and to build expert/reasoning systems

in various engineering and research domains. For instance it has been used to learn rules for

early diagnosis of rheumatic diseases (using examples and background knowledge provided

by an expert), to design finite element meshes (by constructing rules deciding appropriate

mesh resolution, a decision usually made by experts), to predict protein secondary structure,

to design drugs (by finding structure-activitiy relations of the chemical components), to learn

diagnosis rules from qualitative models. For a detailed description of these examples we refer

the reader to (Lavrac and Džeroski, 1994) and (Bratko and Muggleton, 1995). It is also

extensively used in Natural Language Processing (Džeroski et al., 2000; Claveau et al., 2003).
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3.5.2 Musical Applications of ILP

Not surprisingly, ILP and similar inductive logic approaches have also been successfully used

on musical data.

Widmer worked on identifying relevant rules of expressive performance from MIDI

recordings of W.A. Mozart’s sonatas performed by different pianists on a Bösendorfer SE290

computer-monitored grand piano (Widmer et al., 2003). Because it was not possible to

build completely discriminative models, which would mean that the artists who perform are

“perfectly consistent and predictable” (Widmer, 2001), he developed the PLCG (for Partition

Learn Cluster Generalize) algorithm, an inductive rule learning system which builds partial

models, i.e. models that explain only the examples that can be explained (Widmer, 2003).

The target was to learn local rules (i.e. for each note) concerning the tempo (accelerando or

ritardando), dynamics (crescendo or diminuendo) and articulation properties (staccato, legato or

portato) of the note. To illustrate each concept, positive examples were given to the system and

they were also used as negative examples of the competing classes. The background knowledge

was fed with descriptions of each note containing information about intrinsic properties (e.g.

as duration, metrical position) and information about the context of the note (such as the

interval between a note and its predecessor, and the duration of surrounding notes). The

PLCG algorithm extracted 17 expressive performance rules (2 for accelerando, 4 for ritardando,

3 for crescendo, 3 for diminuendo, 4 for staccato, 1 for legato) among which some were surprising

but nevertheless relevant performance rules, such as:

“Given two notes of equal duration followed by a longer note, lengthen the note (i.e., play

it more slowly) that precedes the final, longer one, if this note is in a metrically weak

position [...]; none of the existing theories of expressive performance were aware of this

simple pattern”.

In a similar study, Dovey (1995) analysed and extracted rules from piano performances of

Rachmaninoff recorded in the 1920’s on an Ampico Recording Piano. For that he used the

PROGOL ILP system.

His work was extended by Van Baelen and De Raedt (1996) who used both Ampico recordings

and MIDI performance data analysed using the Sound Harmony Melody Rhythm and Growth

(SHMRG) model (LaRue, 1970). With additional context information (i.e. more background

knowledge containing also non-local rules) coming from the analysis of the MIDI pieces they

obtained better rules of performance regularities than Dovey’s and used them to predict the
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performance of each note. These predictions were then encoded as MIDI information. A

listening analysis of these files showed that at expressive performance was not modelled well

at a global level, but at a local level, some bars were actually very well interpreted by the

automatic system.

But Inductive Logic Programming has not only been employed for musical performance

analysis. Morales (1997) implemented a pattern-based first-order inductive system called

PAL to learn counterpoint rules. The system looks for patterns in the notes, described

by their pitch (including octave) and voice, using background knowledge restricted to

the classification of intervals between pairs of notes into perfect or imperfect consonant,

and dissonant, valid and invalid intervals. PAL was fed with a small number of examples of

the four counterpoint rules of the first species and was able to induce those rules automatically.

The most recent work using ILP for MIR is Ramirez’s. His first ILP based application learns

rules in popular music harmonisation using Aleph (Ramirez, 2003). The rules were constructed

at a bar level (and not at a note level) to capture chord patterns. The structure (i.e. musical

phrases) of the songs given as examples was manually annotated, which provided the system

with a rich background knowledge containing not only local but also global information. The

system proved to be capable of inducing very simple and very general rules. But the fact that

manually annotated data is necessary limits the scalability of such a system.

Later on, Ramirez et al. (2004) studied Jazz performance but starting from audio examples

this time. Monophonic recordings of jazz standards were automatically analysed, extracting

low level descriptors (instantaneous energy and fundamental frequency), performing some

note segmentation and using those results to compute note descriptors. The positive and

negative examples given to the ILP system (Aleph) were these automatically extracted note

descriptors. Ramirez et al. were interested in differences between the score indication and

the actual interpretation of a note. So they asked the system to induce rules related to the

duration transformation (lengthen, shorten or same) of a note, its onset deviation (advance,

delay, or same), its energy (soft, loud and same) and note alteration which refers to alteration

of the score melody by adding or deleting notes (consolidation, ornamentation and none). The

background knowledge was composed of information about the neighbouring notes and the

Narmour group(s), i.e. basic melodic structural units based on the Implication-Realisation

model of Narmour (1990), to which each note belongs. The tempo of the performance was

also given to the ILP system in order to study if it had an influence on the performance rules.
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Some rules induced by the system turned out to have a high coverage which confirmed the

presence of pattern in jazz expressive performance.

Finally, following Van Baelen and De Raedt’s idea, Ramirez and Hazan (2006)

implemented a framework which analyses classical violin performance by means of both

an ILP technique (the relational decision tree learner called TILDE) and a numerical

method. Another component of this system then uses these results to synthesise expressive

performances from unexpressive melody descriptions.

3 . 6

Conclusions

In this chapter we have provided an introduction to Inductive Logic Programming and its core

concepts through definitions and a simple example. We have also chosen and described two

ILP techniques that we will use in our experiments. We finally reviewed applications of ILP,

emphasising on its use in MIR.

We have seen that harmony has been already modelled with ILP with promising results.

Additionally the numerous studies on musical performance with ILP allowed us to compare

and identify interesting practices and algorithms. Building on the experience gathered by

Ramirez et al. we will combine harmony and the ILP systems Aleph and TILDE in our own

experiments in Chapters 4 and 5.
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CHAP T E R 4

AUTOMATIC CHARACTERISATION OF THE

HARMONY OF SONG SETS
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4 . 1

Introduction

In this chapter we present our first attempt at describing sets of songs using harmony-based

representation and relational induction of logical rules. The starting point of this first approach

is a paper by Mauch et al. (2007) in which the authors study two distinct corpora of two distinct

genres which might still exhibit shared harmony practices. The two genres are British pop,

represented by The Beatles, and jazz represented by a set of songs from the Real Book songs.

We extract their respective most common chord sequences using a statistical approach. We

present here our own analysis of the exact same symbolic corpora which is in our case entirely

based on Inductive Logic Programming and compare the two approaches, stating how our

methodology overcomes theirs. In Section 4.2 we explain our methodology to automatically

extract logical harmony rules from manually annotated chords. In Section 4.3 the details and

results of our automatic analysis of the Beatles and Real Book with ILP are presented. As in

the next chapters the primary focus is on methodology and knowledge representation, rather

than on the presentation of new musical knowledge extracted by the system. However we

qualitatively evaluate the characterisation power of our methodology by performing a short

musicological analysis of the harmony rules we automatically extracted. We conclude with

an analysis and description of the constraints and limitations of the specific Inductive Logic

Programming software used in this study, Aleph, and explaining how that led us to experiment

with other knowledge representations and ILP induction techniques and software (Section

4.4).

4 . 2

Methodology

As seen in Section 2.3.1, in search of chord idioms, Mauch et al. (2007) made an inventory

of chord sequences present in a subset of the Real Book and in The Beatles’ studio albums.

Their approach is entirely statistical and resulted in an exhaustive list of chord sequences

together with their relative frequencies. To compare the results of our relational methodology
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with their results obtained with a statistical method, we examine RDF (Resource Description

Framework) descriptions of the two manually annotated collections they use:

• Harte’s transcriptions of the 180 songs featured on the Beatles’ studio albums1 containing

a total of 14,132 chords (Harte, 2010),

• transcriptions of 244 Jazz standards from the Real Book2 containing 24,409 chords

(various, 2004).

These transcriptions constitute a compact symbolic representation of the songs: the chords

are manually labelled in a jazz/pop/rock shorthand fashion (explained in more details in Section

2.2.2) and their start and end times are provided.

The steps to extract harmony rules from these songs transcriptions are summarised

as follows: First the RDF representation of the harmonic events is pre-processed and

transcribed into a logic programming format that can be understood by an Inductive Logic

Programming system. This logic programming representation is passed to the ILP software

Aleph (Srinivasan, 2003) which induces the logical harmony rules underlying the harmonic

events.

4.2.1 Harmonic Content Description

The RDF files describing the Beatles and Real Book songs we study contain a structured

representation of the harmonic events based on the Music Ontology (Raimond et al., 2007)

as described in Section 2.2.2.

We implemented an RDF chord parser to transcribe RDF chord representation into Prolog

files that can be directly given as input to Aleph. For each of these chords it extracts the root

note, bass note, component intervals (extracted from the additive or subtractive description

of the chord), start time and end time from the RDF description. It then computes the chord

category and degree (if key is given) of a chord and the root interval and bass interval between

two consecutive chords.

As we do not know in which octaves the root and bass notes are (since this is not relevant

to our harmony analysis), we chose to measure all intervals upwards, i.e. assuming that the

second note always has a higher pitch than the first one. For instance the interval between C

and Bb is a minor seventh (and not a downward major second). Similarly the interval between

G and C is a perfect fourth (and not a downward perfect fifth). This choice guarantees that

we consistently measure intervals and can find interval patterns in the chord sequences.

1these RDF files are available at http://isophonics.net/content/reference-annotations-beatles
2available at http://www.omras2.org/chordtranscriptions

http://isophonics.net/content/reference-annotations-beatles
http://www.omras2.org/chordtranscriptions
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For this study we limit the chord categories (or chord types) to ‘major’, ‘minor’, ‘aug-

mented’, ‘diminished’, ‘suspended’, ‘dominant’, ‘neutral’ (when the 3rd is neither present nor

suspended) and ‘unknown’ (for every chord that does not belong to the previous categories).

For each chord, the intervals are analysed by the RDF chord parser which then assigns the

chord to one of these categories. First it reduces the chord to a 7th chord and checks if this

reduced chord is a dominant 7th, in which case the chord is labeled ‘Dominant’. Otherwise

the chord is reduced to a triad and the type of this triad is kept as the chord category.

The degrees are computed by our RDF chord parser using the current key. Key information

was added by hand when available. We only had access to tonality information for the Beatles,

so no degree details were added for the Real Book songs. For the Beatles we performed two

studies: one without degree over the whole set of songs and one with degree in which only the

songs where there was no key modulation were kept. In this second study we also filtered out

the songs which were not tonal songs (i.e. songs that were not following major or minor scales)

which yielded a remaining dataset of 73.9% of the Beatles’ songs.

Our sole interest is in sequences of chords between which there is a harmonic modification

(i.e. at least the root, bass or chord category differs from one chord to the next one). Although

harmonic rhythm is important (cf. Section 2.2.1) we do not take it into account in this work.

4.2.2 Rule Induction with ILP

We restrict our focus to chord sequences of length 4 as in Mauch et al.’s study (2007). A four-

chord sequence is a typical phrase length for the studied corpora. This choice is also the result

of an empirical process: we also studied shorter sequences, but the results consist of only a few

rules (25 for the Beatles and 30 for the Real Book) with high coverage and little interest (such

as ‘2 consecutive major chords’ covering 51% of the Beatles chord sequences of length 2). For

longer sequences, the extracted patterns are less general, i.e. have a smaller coverage and thus

are less characteristic of the corpus. The concept we want to characterise is the harmony of a

set of songs e.g. all the Beatles songs, all the Real Book songs. Therefore the positive examples

given to the ILP system are all the chord sequences of length 4 (predicate chord_prog_4/4)

found in such a set of songs. These chord sequences overlap: from a chord sequence of length

n, with n ≥ 4 we extract n− 4 + 1 overlapping chord sequences of length 4. For instance the

Aleph file containing all the positive examples for the Beatles looks like this:

chord_prog_4(chord1_1_1,chord1_1_2,chord1_1_3,chord1_1_4).

chord_prog_4(chord1_1_2,chord1_1_3,chord1_1_4,chord1_1_5).

chord_prog_4(chord1_1_3,chord1_1_4,chord1_1_5,chord1_1_6).
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chord_prog_4(chord1_1_4,chord1_1_5,chord1_1_6,chord1_1_7).

chord_prog_4(chord1_1_5,chord1_1_6,chord1_1_7,chord1_1_8).

...

chord_prog_4(chord1_1_56,chord1_1_57,chord1_1_58,chord1_1_59).

chord_prog_4(chord1_1_57,chord1_1_58,chord1_1_59,chord1_1_60).

chord_prog_4(chord1_2_1,chord1_2_2,chord1_2_3,chord1_2_4).

chord_prog_4(chord1_2_2,chord1_2_3,chord1_2_4,chord1_2_5).

...

chord_prog_4(chord1_14_110,chord1_14_111,chord1_14_112,chord1_14_113).

chord_prog_4(chord2_1_1,chord2_1_2,chord2_1_3,chord2_1_4).

...

chord_prog_4(chord12_12_77,chord12_12_78,chord12_12_79,chord12_12_80).

Where chordX_Y_Z means the Zth chord in the Yth song of the Xth album. These are Prolog

atoms which uniquely identify each chord in each song. Hence all chord sequences of length

4 starting from any position of any song from any album of The Beatles (at least all those in

our annotated corpus) are listed in this file.

The background knowledge is composed of the descriptions of all the chords previously

derived by the RDF chord parser. So for each of those uniquely identified chords a full

description of its attributes is stored in the background knowledge, in the following format:

chord(chord1_1_1).

has_category(chord1_1_1,maj).

has_root(chord1_1_1,[e,n]).

has_bassNote(chord1_1_1,[e,n]).

startingTime(chord1_1_1,2.612267).

has_degree(chord1_1_1,[1,n]).

rootInterval(chord1_1_1,chord1_1_2,[4,n]).

bassInterval(chord1_1_1,chord1_1_2,[4,n]).

pred(chord1_1_1,chord1_1_2).

This code says that the first chord of the first song of the first album of the Beatles is a chord

(first line), which is a major chord (second line), whose root note is E (third line) and bass

note is E (fourth line). That chord starts 2.612267 seconds into the song (fifth line) and it is on

the tonic, i.e. degree I (sixth line). Then the next lines describe the connections between that

first chord and the second one: there is a perfect fourth between the root notes of chord1_1_1
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and chord1_1_2 (seventh line) and similarly for the bass notes (eighth line) and chord1_1_1

precedes chord1_1_2 (ninth line).

In the ILP system we use to induce harmony rules, Aleph (Srinivasan, 2003), we can either

provide negative examples of a concept (in our case, chord progressions of length 4 from

another set of songs not included in the current one) or force Aleph to explain the positive

examples using a well-designed negative example (we will refer to this mode as the one negative

example mode). In the latter case our negative example consists of the first chord sequence of

our corpus in which we exchanged the position of the first and second chords as shown below:

chord_prog_4(chord1_1_2,chord1_1_1,chord1_1_3,chord1_1_4).

It is a valid negative example because in our background knowledge the position of each

uniquely identified individual chord relative to the other chords is specified, using the predicate

pred/2. So it is impossible for the second chord in the first song of the corpus (chord1_1_2) to

precede the first one (chord1_1_1). We found out that by limiting the set of negative examples

to this very simple one we obtained a more complete set of rules than when using the positive

examples only mode of Aleph which randomly generates a limited number of negative examples.

To generate hypotheses Aleph uses inverse entailment (cf. Section 3.3 for more details).

It consists of selecting an uncovered example, saturating it to obtain a bottom clause and

searching the space of clauses that subsumes this bottom clause in a top-down manner starting

from the shortest clauses. The clause that is kept as a hypothesis is the one that maximises the

evaluation function, which in our case is the default Aleph evaluation function called ‘coverage’

and equal to P −N , where P , N are the number of positive and negative examples covered by

the clause. The examples covered by the found hypothesis are removed and the next uncovered

example is selected to be saturated, and so on until no uncovered example is left. Finally Aleph

returns a set of hypotheses that covers all the positive examples. The set of generated rules

depends on the order in which the examples are selected by Aleph (which is the order in which

the examples are given to Aleph). So the resulting set of rules is only one of the sets of rules that

could be induced from the set of examples. However since Aleph looks for the most general

rules at each step, the final set of rules is a sufficient description of the data (it explains all chord

sequences) and is non-redundant (no subset of the rules explains all the chord sequences). This

minimal sufficient description of a data set could be very useful for classification purposes since

only a few characteristics need to be computed to classify a new example. This is one of the

advantages of our method against the purely statistical method employed by Mauch et al.

(2007) which only computes the frequencies of each chord sequence and does not try to build

a sufficient model of the corpora.
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To obtain meaningful rules we also constrain Aleph to look for a hypothesis

explaining the chord progressions only in terms of specific root note progressions

(root_prog_4/8), bass note progressions (bassNote_prog_4/8), chord category progressions

(category_prog_4/8), root interval progressions (rootInterval_prog_3/7), bass interval

progressions (bassInterval_prog_3/7) and degree progressions (degree_prog_4/8). The

following lines of code in the background knowledge file tell Aleph that chord_prog_4/4 can

only be described with the six predicates aforementioned:

:-determination(chord_prog_4/4,root_prog_4/8).

:-determination(chord_prog_4/4,bassNote_prog_4/8).

:-determination(chord_prog_4/4,category_prog_4/8).

:-determination(chord_prog_4/4,rootInterval_prog_3/7).

:-determination(chord_prog_4/4,bassInterval_prog_3/7).

:-determination(chord_prog_4/4,degree_prog_4/8).

Additionally each of these six predicates is described, again in the background knowledge file,

with the predicates used to describe the individual or pairs of chords:

category_prog_4(Chord1,Chord2,Chord3,Chord4,Cat1,Cat2,Cat3,Cat4):-

pred(Chord1,Chord2),pred(Chord2,Chord3),pred(Chord3,Chord4),

has_category(Chord1,Cat1),has_category(Chord2,Cat2),

has_category(Chord3,Cat3),has_category(Chord4,Cat4).

root_prog_4(Chord1,Chord2,Chord3,Chord4,Root1,Root2,Root3,Root4):-

pred(Chord1,Chord2),pred(Chord2,Chord3),pred(Chord3,Chord4),

has_root(Chord1,Root1),has_root(Chord2,Root2),

has_root(Chord3,Root3),has_root(Chord4,Root4).

bassNote_prog_4(Chord1,Chord2,Chord3,Chord4,BassNote1,BassNote2,BassNote3,BassNote4):-

pred(Chord1,Chord2),pred(Chord2,Chord3),pred(Chord3,Chord4),

has_bassNote(Chord1,BassNote1),has_bassNote(Chord2,BassNote2),

has_bassNote(Chord3,BassNote3),has_bassNote(Chord4,BassNote4).

degree_prog_4(Chord1,Chord2,Chord3,Chord4,Degree1,Degree2,Degree3,Degree4):-

pred(Chord1,Chord2),pred(Chord2,Chord3),pred(Chord3,Chord4),
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has_degree(Chord1,Degree1),has_degree(Chord2,Degree2),

has_degree(Chord3,Degree3),has_degree(Chord4,Degree4).

rootInterval_prog_3(Chord1,Chord2,Chord3,Chord4,RootInterval1,RootInterval2,

RootInterval3):-

rootInterval(Chord1,Chord2,RootInterval1),

rootInterval(Chord2,Chord3,RootInterval2),

rootInterval(Chord3,Chord4,RootInterval3).

bassInterval_prog_3(Chord1,Chord2,Chord3,Chord4,BassInterval1,BassInterval2,

BassInterval3):-

bassInterval(Chord1,Chord2,BassInterval1),

bassInterval(Chord2,Chord3,BassInterval2),

bassInterval(Chord3,Chord4,BassInterval3).

4 . 3

Experiments and Results

4.3.1 Independent Characterisation of The Beatles and Real Book Chord

Sequences

We run two experiments. In the first experiment we want to characterise the chord sequences

present in the Beatles’ songs and compare them to the chord sequences present in the Real

Book songs. Therefore we extract all the chord sequences of length 4 in the Beatles’ tonal

songs with no modulation (10,096 chord sequences), all the chord sequences of length 4 in all

the Beatles’ songs (13,593 chord sequences) and all the chord sequences of length 4 from the

Real Book songs (23,677 chord sequences). Then for each of these sets of chord sequences we

induce rules characterising them using the one negative example mode in Aleph. It is important to

realise that we run our experiments on all chord sequences of each group without considering

the individual songs they are extracted from anymore.

Our system induces sets of 333 and 267 rules for each of the Beatles collections (all chord

sequences in tonal songs with no modulation, all chord sequences in all songs) and a set of
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646 rules for the Real Book. The positive coverage of a rule is the number of positive examples

covered by this rule. We want to consider only the patterns characteristic of the corpus, i.e.

the ones occurring in multiple songs. For that we leave out the rules with a too small coverage

(smaller than 1%). The top rules for our first experiment are shown in Tables 4.1 and 4.2. For

analysis purposes they have been re-ordered by decreasing coverage.

For readability we show here a compact representation of the body of rules:

• degrees are represented with roman numerals,

• “/ ” precedes a bass note as in jazz chord notation,

• the intervals between roots (written first) or bass notes of the chords (following a “/”) are

put on top of the arrows,

• a bullet symbolises the absence of information about some characteristics of the chord.

In accordance with Mauch et al.’s conclusions (2007), some patterns extracted in these

experiments are very common pop and jazz harmonic patterns. For instance, the Beatles rule

with the highest coverage (more than a third of the chord sequences) is a sequence of 4 major

chords. The minor chord is the second most frequent chord category in the Beatles and the

dominant chord ranks quite low in the chord category rules (rule 25). For the Real Book, the

rule with the highest coverage is a sequence of three perfect fourth intervals between chord

roots. An interpretation of this rule is the very common jazz progression ii-V-I-IV. Another

common jazz chord progression, I-VI-II-V (often used as a “turnaround” in jazz), is captured

by rule 8 in Table 4.2. Moreover the dominant chord is the most frequent chord category in

the Real Book which clearly distinguishes the jazz standards of the Real Book from the pop

songs of the Beatles.

Note that due to the fact that the chord sequences overlap and due to the cyclic nature of

some of the pop and jazz songs, many rules are not independent. For instance rules 2, 3, 6 and

7 in Table 4.1 can represent the same chord sequence maj-maj-maj-min repeated several times.

Moreover we can also derive rules that make use of degree information. For this we

constrain Aleph to derive rules about the intervals between the chord roots associated with

chord category in order to capture harmonic patterns which can then be interpreted in term

of scale degrees. The top root interval and category rules for each corpus are presented in

Tables 4.3 and 4.4. Furthermore, since we have key information for some of the Beatles songs

we can actually obtain degree rules for them and an analysis of the degree rules allows us to
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Table 4.1: Beatles harmony rules whose coverage is larger than 1%. C1 and C2 represent the
positive coverage over all the Beatles songs and over the Beatles tonal songs with no modulation
respectively. “perfU” means perfect unison.

Rule C1 C2

1. maj → maj → maj → maj 4752 (35%) 3951 (39%)
2. maj → maj → maj → min 632 (4.65%) 431 (4.27%)
3. min → maj → maj → maj 628 (4.62%) 448 (4.44%)

4. •
perf4th−→ •

perf5th−→ •
perf4th−→ • 586 (4.31%) -

5. •
/perfU−→ •

/perfU−→ •
/perfU−→ • 584 (4.30%) -

6. maj → min → maj → maj 522 (3.84%) 384 (3.80%)
7. maj → maj → min → maj 494 (3.63%) 363 (3.60%)

8. •
/perf5th−→ •

/perf4th−→ •
/perf5th−→ • 463 (3.41%) 346 (3.43%)

9. maj → maj → min → min 344 (2.53%) 217 (2.15%)

10. •
perfU−→ •

perfU−→ •
perfU−→ • 336 (2.47%) 237 (2.38%)

11. min → min → maj → maj 331 (2.44%) 216 (2.14%)
12. maj → min → min → maj 308 (2.27%) 197 (1.95%)

13. •
perf4th−→ •

maj2nd−→ •
perf4th−→ • 260 (1.91%) 209 (2.07%)

14. •
maj2nd−→ •

perf4th−→ •
perf4th−→ • 251 (1.85%) 195 (1.93%)

15. /A → /A → /A → /A - 176 (1.74%)
16. min → maj → min → maj 232 (1.71%) 167 (1.65%)
17. min → min → min → min 226 (1.66%) 104 (1.03%)

18. •
perf4th−→ •

perf4th−→ •
perf4th−→ • 219 (1.61%) 146 (1.45%)

19. •
perf4th−→ •

perf4th−→ •
perf5th−→ • 216 (1.59%) 165 (1.63%)

20. maj → min → maj → min 212 (1.56%) 157 (1.56%)

21. •
perf4th−→ •

perf4th−→ •
maj2nd−→ • 211 (1.55%) 160 (1.58%)

22. min → maj → maj → min 205 (1.51%) 132 (1.31%)
23. min → min → min → maj 204 (1.50%) 113 (1.12%)
24. maj → min → min → min 203 (1.49%) 119 (1.18%)
25. maj → dom → maj → maj 200 (1.47%) 174 (1.72%)
26. maj → maj → dom → maj 192 (1.41%) 170 (1.68%)

27. •
perf5th−→ •

min7th−→ •
perf5th−→ • 188 (1.38%) -

28. maj → maj → maj → dom 187 (1.38%) 166 (1.64%)
29. dom → maj → maj → maj 183 (1.35%) 153 (1.52%)
30. min → min → maj → min 176 (1.29%) 86 (0.85%)

31. •
perfU−→ •

perf4th−→ •
perf5th−→ • 172 (1.27%) -

32. •
perf4th−→ •

perfU−→ •
perf4th−→ • 169 (1.24%) 112 (1.11%)

33. •
perf4th−→ •

perf5th−→ •
perf5th−→ • 163 (1.20%) 152 (1.51%)

34. min → maj → min → min 163 (1.20%) 92 (0.91%)

35. •
perf5th−→ •

perf4th−→ •
perf4th−→ • 160 (1.18%) -

36. dom → dom → dom → dom 147 (1.08%) 110 (1.09%)

37. •
/perf5th−→ •

/perf5th−→ •
/min7th−→ • 142 (1.04%) 132 (1.31%)

38. I → V → IV → I - 111 (1.10%)

39. •
perf4th−→ •

perfU−→ •
perfU−→ • 138 (1.02%) 88 (0.87%)

40. •
perfU−→ •

perf4th−→ •
perfU−→ • 138 (1.01%) 100 (0.99%)

41. •
perf4th−→ •

perfU−→ •
perf5th−→ • 135 (0.99%) 112 (1.11%)

42. •
perf5th−→ •

perfU−→ •
perf4th−→ • 114 (0.84%) 103 (1.02%)
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Table 4.2: Real Book harmony rules whose coverage is larger than 1%. C is the positive
coverage.

Rule C

1. •
perf4th−→ •

perf4th−→ •
perf4th−→ • 1861 (7.86%)

2. min → dom → min → dom 969 (4.09%)
3. min → dom → maj → min 727 (3.07%)
4. dom → min → dom → min 726 (3.07%)
5. min → min → min → min 708 (2.99%)
6. dom → dom → dom → dom 674 (2.85%)

7. •
perf4th−→ •

perf4th−→ •
perfU−→ • 615 (2.60%)

8. •
maj6th−→ •

perf4th−→ •
perf4th−→ • 611 (2.58%)

9. •
perf4th−→ •

perf5th−→ •
perf4th−→ • 608 (2.57%)

10. dom → min → dom → maj 594 (2.51%)
11. dom → maj → min → dom 586 (2.47%)

12. •
perf4th−→ •

perfU−→ •
perf4th−→ • 579 (2.45%)

13. •
/maj6th−→ •

/perf4th−→ •
/perf4th−→ • 547 (2.31%)

14. maj → min → dom → maj 478 (2.02%)

15. •
/maj7th−→ •

/perf4th−→ •
/perf4th−→ • 477 (2.01%)

16. •
/perf4th−→ •

/maj6th−→ •
/perf4th−→ • 440 (1.86%)

17. •
perf4th−→ •

perf4th−→ •
maj6th−→ • 436 (1.84%)

18. min → dom → maj → dom 424 (1.79%)
19. min → min → dom → maj 413 (1.74%)

20. •
perfU−→ •

perf4th−→ •
perf4th−→ • 395 (1.67%)

21. •
maj2nd−→ •

perf4th−→ •
perf4th−→ • 366 (1.55%)

22. •
/perfU−→ •

/perfU−→ •
/perfU−→ • 358 (1.51%)

23. dom → maj → min → min 357 (1.51%)

24. •
perf4th−→ •

perf4th−→ •
maj2nd−→ • 351 (1.48%)

25. maj → min → min → dom 317 (1.34%)
26. maj → min → dom → min 300 (1.27%)

27. •
perf4th−→ •

maj2nd−→ •
perf4th−→ • 292 (1.23%)

28. min → min → min → dom 290 (1.22%)
29. min → dom → min → min 288 (1.22%)

30. •
perf4th−→ •

perf4th−→ •
perf5th−→ • 272 (1.15%)

31. •
/aug4th−→ •

/perf4th−→ •
/perf4th−→ • 272 (1.15%)

32. min → dom → maj → maj 272 (1.15%)
33. min → min → dom → min 267 (1.13%)
34. dom → maj → dom → maj 251 (1.06%)
35. dom → dom → min → dom 247 (1.04%)

36. •
/perf5th−→ •

/perf4th−→ •
/perf5th−→ • 245 (1.03%)

37. dom → min → dom → dom 241 (1.02%)

38. •
perf4th−→ •

maj7th−→ •
perf4th−→ • 240 (1.01%)

39. •
perf5th−→ •

perf4th−→ •
perf4th−→ • 238 (1.01%)

40. maj → dom → min → dom 236 (1.00%)
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Table 4.3: Beatles root interval and chord category rules (whose coverage is larger than 1%)
and the associated degree and chord category rules. C1 and C2 represent the positive coverage
over all the Beatles songs and over the Beatles tonal songs with no modulation respectively.

Rule C1 C2

1. maj
perf4th−→ maj

perf5th−→ maj
perf4th−→ maj 3.13% 3.79%

I maj → IV maj → I maj → IV maj - 2.47%
V maj → I maj → V maj → I maj - 1.00%

2. maj
perf5th−→ maj

perf4th−→ maj
perf5th−→ maj 2.94% 3.61%

IV maj → I maj → IV maj → I maj - 2.43%
I maj → V maj → I maj → V maj - 0.84%

3. maj
perf4th−→ maj

maj2nd−→ maj
perf4th−→ maj 1.38% 1.75%

I maj → IV maj → V maj → I maj - 1.59%

4. maj
maj2nd−→ maj

perf4th−→ maj
perf4th−→ maj 1.21% 1.47%

IV maj → V maj → I maj → IV maj - 1.15%

5. maj
perf5th−→ maj min7th−→ maj

perf5th−→ maj 1.04% 1.28%
I maj → V maj → IV maj → I maj - 0.69%
IV maj → I maj → bVII maj → IV maj - 0.52%

6. maj
perf4th−→ maj

perf4th−→ maj
maj2nd−→ maj 0.93% 1.11%

V maj → I maj → IV maj → V maj - 1.03%

7. maj
perf4th−→ maj

perf4th−→ maj
perf5th−→ maj 0.91% 1.09%

V maj → I maj → IV maj → I maj - 0.83%

Table 4.4: Top ten Real Book harmony rules when considering root interval progressions and
chord category progressions. C is the positive coverage.

Rule C

1. maj
maj6th−→ min

perf4th−→ min
perf4th−→ dom 190 (0.80%)

2. dom
perf4th−→ min

perf4th−→ dom
perf4th−→ maj 176 (0.74%)

3. min
perf4th−→ dom

perf4th−→ min
perf4th−→ dom 174 (0.73%)

4. min
perf4th−→ min

perf4th−→ dom
perf4th−→ maj 171 (0.72%)

5. min
perf4th−→ dom

perf4th−→ maj
maj6th−→ min 170 (0.72%)

6. dom
perfU−→ min

perf4th−→ dom
perf4th−→ maj 133 (0.56%)

7. maj
maj2nd−→ min

perf4th−→ dom
perf4th−→ maj 126 (0.53%)

8. min
perf4th−→ dom

perf5th−→ min
perf4th−→ dom 124 (0.52%)

9. min
perfU−→ min

perfU−→ min
perfU−→ min 124 (0.52%)

10. dom
perf4th−→ maj

maj6th−→ min
perf4th−→ min 121 (0.51%)
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match each root interval rule (with no tonal centre information) with the degree rules which

are covered by it. The result of this matching process between degree and root interval rules

is presented in Table 4.3 (top rules only). So for instance in Table 4.3 the instances of the root

interval rule 5:

maj
perf5th−→ maj min7th−→ maj

perf5th−→ maj

are for 54% of them instances of the degree rule:

I maj → V maj → IV maj → I maj

and for 41%, instances of the degree rule:

IV maj → I maj → bVII maj → IV maj

4.3.2 Characterisation of The Beatles vs. Real Book Songs

For the second experiment we want to know the Beatles chord sequences that are not present

in the Real Book. Aleph is provided with all the Beatles chord sequences of length 4 as positive

examples and all the Real Book chord sequences of length 4 as negative examples. It returns

1679 rules which characterise all the chord sequences that only appear in the Beatles songs.

The top ten rules are shown in Table 4.5. Some of these rules are correlated. For instance the

3 chord cyclic pattern I-IV-V-I-IV-V-I..., very common in the early compositions of the Beatles

(see for instance the song Please Please Me of the album Please Please Me), is covered by rules

1, 2 and 4. Similarly the cyclic pattern I-V-IV-I-V-IV-I... is covered by rules 3, 7 and 8. Note

also that the “back and forth” pattern between the first and fourth degree or between the fifth

and first degree mentioned by Mauch et al. (2007) and identified in rule 1 of Table 4.3 appears

in rules 5 and 10 (and also to some extent in rule 9) of Table 4.5.

As in the previous experiment we also try to characterise the chord sequences in terms of

root intervals and chord categories and obtain a set of 1520 rules. The top ten rules are shown

in Table 4.6. The first seven rules were also in Table 4.5 and have been interpreted above.

Additionally rule 8 in Table 4.6, can be interpreted as the so-called fifties progression (I)-vi-IV-V-

I, where the first tonic is missing due to the 4-chord length constraint when building the rules.

The I-vi-IV-V-I turnaround is extensively used in Western popular music, for instance in our

case in the chorus of the Beatles’ “Happiness Is a Warm Gun”. Rule 9, which we interpret as

IV-V-I-V, can be seen as a variant on the last four chords of a eight-bar blues: I-V-I-V. Finally

rule 10 is again related to the cyclic progression I-IV-V-I-IV-V-I... mentioned in the previous

paragraph.
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Table 4.5: Top ten Beatles harmony rules when the Real Book is taken as the source of negative
examples. C is the positive coverage.

Rule C

1. maj
perf4th−→ maj

maj2nd−→ maj
perf4th−→ maj 188 (1.38%)

2. maj
maj2nd−→ maj

perf4th−→ maj
perf4th−→ maj 165 (1.21%)

3. maj
perf5th−→ maj min7th−→ maj

perf5th−→ maj 141 (1.04%)

4. maj
perf4th−→ maj

perf4th−→ maj
maj2nd−→ maj 126 (0.93%)

5. A maj → D maj → A maj → D maj 114 (0.84%)
6. maj/A → maj/A → maj/A → maj/A 110 (0.81%)

7. maj min7th−→ maj
perf5th−→ maj

perf5th−→ maj 108 (0.79%)

8. maj
perf5th−→ maj

perf5th−→ maj min7th−→ maj 102 (0.75%)

9. maj
perfU−→ maj

perf4th−→ maj
perf5th−→ maj 99 (0.73%)

10. D maj → G maj → D maj → G maj 92 (0.68%)

Table 4.6: Top ten Beatles root interval and chord category rules when the Real Book is taken
as the source of negative examples. C represents the positive coverage over all the Beatles
songs.

Rule C

1. maj
perf4th−→ maj

maj2nd−→ maj
perf4th−→ maj 188 (1.38%)

2. maj
maj2nd−→ maj

perf4th−→ maj
perf4th−→ maj 165 (1.21%)

3. maj
perf5th−→ maj min7th−→ maj

perf5th−→ maj 141 (1.04%)

4. maj
perf4th−→ maj

perf4th−→ maj
maj2nd−→ maj 126 (0.93%)

5. maj min7th−→ maj
perf5th−→ maj

perf5th−→ maj 108 (0.79%)

6. maj
perf5th−→ maj

perf5th−→ maj min7th−→ maj 102 (0.75%)

7. maj
perfU−→ maj

perf4th−→ maj
perf5th−→ maj 99 (0.73%)

8. min min6th−→ maj
maj2nd−→ maj

perf4th−→ maj 63 (0.46%)

9. maj
maj2nd−→ maj

perf4th−→ maj
perf5th−→ maj 57 (0.42%)

10. maj
maj2nd−→ maj

perf4th−→ maj
perfU−→ maj 54 (0.40%)

4.3.3 Considerations About the Size of the Corpora and the Computation Time

Such an ILP approach has never been applied on such a scale: we dealt with data-sets a

musicologist would typically be interested in studying (unified corpora of songs commonly

accepted as representative of a composer/band/genre).

Although ILP systems are usually known to be resource intensive, the computation time

of the ILP system was not a limiting factor in this case. Aleph computed all the rules in

less than a minute on a regular desktop computer. We see our framework as a useful tool

for musicologists since manual harmonic annotation and analysis of a whole musical corpus
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can take several years of musicological work3 whereas the automatic extraction of the chord

progression patterns using ILP takes only seconds, allowing the user to concentrate on the

interpretation of the results.

4 . 4

Discussion and Conclusions

If the computation time of our models was fast with the representation scheme described in

this chapter, it however was not true for the less specific representation paradigms we first tried

feeding Aleph with. In ILP both the concept and the vocabulary to describe it (or background

knowledge) need to be defined in advance. Thus, two different vocabularies result in different

descriptions of the concept. The vocabulary described in this chapter – which is the result of an

iterative process, during which we manually refined the vocabulary further at each step until the

resulting rules were meaningful and the computation time was reasonable – is very specific: the

concept, “chord sequence (of length 4) in a corpus” (chord_prog_4/4), can be described only in

terms of “chord category sequence of length 4” (category_prog_4/8), “root interval sequence

of length 3” (rootInterval_prog_3/7), etc. The major restriction of that representation is that

the length of the rules is necessarily fixed (always to the same length n = 4 throughout the

whole set of rules or model). Ideally we want to be able to have patterns of all lengths in our

models, e.g. some of length 4, some of length 3, some of length m, whatever fits best the data

(and not whatever works best for the induction system). We tried to overcome this restriction

in our earlier attempts by using only low level concepts, e.g. using independent descriptions of

each chord, linked only by a “predecessor” predicate, without any sequence-related predicates

in our vocabulary. But it failed to provide meaningful descriptions of the target concept in

a reasonable amount of time (or at all). As we were refining the vocabulary we felt we were

inevitably reducing the problem to a pattern matching task and not to a pattern discovery task

as we had intended, allowing us to validate or refute hypotheses about the concept but not to

make any really novel (knowledge) discoveries. In other words, with our restricted vocabulary

in this approach we did not make use of the recursive power of ILP as it turned out to be too

computationally expensive. That led us to move away from Aleph to a computationally more

3for instance Alan Pollack’s analysis of the full corpus of the Beatle’s songs took over 10 years to complete: http:
//www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-notes_on.shtml

http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-notes_on.shtml
http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-notes_on.shtml
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powerful ILP system called TILDE (Blockeel and De Raedt, 1998). Additionally since TILDE

builds classification models, the evaluation of their accuracy allowed us to quantitively assess

the performance of our approach. We also changed our representation scheme, allowing to

describe the concepts with patterns of flexible length and introducing the possibility of having

gaps in the harmony patterns. Those experiments are described in the next chapter.
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CHAP T E R 5

AUTOMATIC GENRE CLASSIFICATION
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5 . 1

Introduction

In Chapter 4 we qualitatively evaluated the characterisation power of our harmony-based

models by examining them and describing their musicological relevance. Unfortunately this

method does not scale when comparing multiple representations and learning algorithms.

In this chapter we therefore perform classification in order to quantitatively evaluate our

models. We also introduce a new flexible harmonic representation paradigm based on context-

free definite-clause grammars in the form of variable- and arbitrary-length chord sequences

containing gaps (Section 5.2.1). To support classification and more demanding computations

we use a new induction system, TILDE, which builds ILP decision-trees and random forests

(Section 5.2.2). With an additional dataset, the Perez-9-genres Corpus (Section 5.2.3), we not

only study symbolic but also audio data. To that end a chord transcription step is performed

(Sections 5.2.4 and 5.2.5). We run experiments on several subsets of the dataset requiring

advanced statistical comparison tools (Section 5.3.1). In these experiment we compare

several representation schemes for the harmonic steps (Section 5.3.2), as well as evaluate the

performance of our method on symbolic and audio data (Section 5.3.3). We experiment further

by extending our decision tree induction approach to random forests (Section 5.3.4). Finally,

we inspect and conduct a musical analysis of some the rules extracted from our decision-tree

models (Section 5.3.5).

5 . 2

Learning Harmony Rules

5.2.1 Representing Harmony with Context-Free Definite-Clause Grammars

Characteristic harmony patterns or rules often relate to chord progressions, i.e. sequences of

chords. However, not all chords in a piece of music are of equal significance in harmonic

patterns. For instance, ornamental chords (e.g. passing chords) can appear between more

relevant chords. Moreover, not all chord sequences, even when these ornamental chords are
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removed, can be typical of the genre of the piece of music they are part of: some common

chord sequences are found in several genres, such as the perfect cadence (moving from the

fifth degree to the first degree) which is present in all tonal Classical music periods, jazz, pop

music and numerous other genres. Thus, the chord sequences to look for in a piece of music

as hints to identify and characterise its genre are sparse, can be punctuated by ornamental

chords, might be located anywhere in the piece of music, and additionally, they can be of any

length. Our objective is to describe these distinctive harmonic sequences of a style. To that end

we adopt a context-free definite-clause grammar representation which proved to be useful for

solving a structurally similar problem in the domain of biology: the logic-based extraction of

patterns which characterise the neuropeptide precursor proteins (NPPs), a particular class of

amino acid sequences (Muggleton et al., 2001). Indeed NPPs share common characteristics

with musical pieces (represented as chord sequences): these sequences are highly variable in

length, they tend to show almost no overall sequence similarity and the class (NPPs or non-

NPPs in the case of amino acids sequences, musical genres in the case of pieces of music) to

which a given sequence belongs is not always clear (some NPPs have not yet been discovered

and experts can disagree on the genre of a given piece). Both because of these similarities in

the data and because context-free definite-clause grammars can be induced using Inductive

Logic Programming, we choose to adopt this representation scheme.

In this formalism we represent each piece of music as the list or sequence of chords it

contains and each genre as a set of music pieces. We then look for a set of harmony rules

describing characteristic chord sequences present in the musical pieces of each genre. These

rules define a Context-Free Grammar (CFG). In the linguistic and logic fields, a CFG can

be seen as a finite set of rules which describes a set of sequences. Because we are only

interested in identifying the harmony sequences characterising a genre, and not in building

a comprehensive chord grammar, we use the concept of ‘gap’ (of unspecified length) between

sub-sequences of interest to skip ornamental chords and non-characteristic chord sequences in

a musical piece, as done by Muggleton et al. (2001) when building their grammar to describe

NPPs. Notice that like them, to automate the process of grammar induction we also adopt

a Definite Clause Grammar (DCG) formalism to represent our Context-Free Grammars as

logic programs, and use Inductive Logic Programming (ILP), which is concerned with the

inference of logic programs (Muggleton, 1991).

We represent our DCGs using the difference-list representation, and not the DCG repre-

sentation itself, as this is what TILDE, the inference system we use, returns (more details in

the following section). In our formalism the terminal symbols are the chords labelled in a
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jazz/pop/rock shorthand fashion (e.g. G7, D♭, BM7, F#m7, etc.). Properties of the chords are

described using predicates (i.e. operators which return either true or false). In the difference-list

representation these predicates take at least two arguments: an input list, and an output list.

The predicate and the additional arguments (if there are any) apply to the difference between

the input list and the output list (which could be one or several elements). For instance,

degree(1,[cmaj7,bmin,e7],[bmin,e7],cmajor) says that in the key of C major (last argument,

cmajor) the chord Cmaj7 (difference between the input list [cmaj7,bmin,e7] and the output

list [bmin,e7]) is on the tonic (or first degree, 1).

The predicates that can be used by the system for rule induction are defined in the

background knowledge:

• for each chord in a chord sequence its root note is identified using the rootNote/4

predicate: rootNote(Root,InputList,OutputList,Key) (the key which is not needed to

define the root note is included in this predicate in order to define the degree in the

degree/4 predicate, cf. Table 5.1);

• the root interval between two chords is defined using the rootInterval/3 predicate:

rootInterval(Interval,InputList,OutputList);

• degrees are expressed with the degree/4 predicate which definition is based on the

rootNote/4 predicate (cf. Table 5.1): degree(Degree,Root,InputList,OutputList,Key);

• chord categories (e.g. min, 7, maj7, dim, etc.) are identified using the category/3

predicate: category(ChordCategory,InputList,OutputList);

• degrees and categories are united in a single predicate degreeAndCategory/5:

degreeAndCategory(Degree,ChordCategory,InputList,OutputList);

• the gap/2 predicate matches any chord sequence of any length, allowing to skip

uninteresting subsequences (not characterised by the grammar rules) and to handle large

sequences for which otherwise we would need larger grammars and more training data:

gap(InputList,OutputList).

Figure 5.1 illustrates how a piece of music, its chords and their properties are represented

in our formalism, when using only the degreeAndCategory/5 and gap/2 predicates (other

predicates from our formalism could be used in a similar way).

Additionally notice that some of those predicates are defined from others, and these

definitions are also provided in the background knowledge. Table 5.1 provides a snippet of

such a background knowledge.
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Table 5.1: Background knowledge used in the first-order logic decision tree induction
algorithm.

% Notation conventions:
% - Sharps are represented by ’s’, while flats are represented by ’b’
% - Chord categories are those used in jazz shorthand notation, e.g. min is minor, maj is major
% - Chord symbols are represented by the root note, any accidental affecting the root note,
% and the chord category, aggregated together in one term without space or symbols in between,
% e.g. csmin represents a C# minor chord
% - As it is the case in jazz shorthand notation major is omitted in a chord name,
% e.g. c represents a C major chord
% - To distinguish the terms used for the chords and those for the root notes,
% an underscore ‘_’ is used between the note and its potential accidental,
% e.g. c_ is the note C, c_s is the note C#
% - Tonalities are represented by the juxtaposition of the tonic and the mode in full,
% e.g. cmajor is the tonality C major
% - Degrees are represented by a number which similarly to the root notes can be affected by
% a accidental attached to it with an underscore,
% e.g. 1_ is the tonic
% - Intervals are represented by abbreviations of their quality (min, maj, etc.) followed by
% an underscore and an abbreviation of their diatonic number (sec, third, etc.),
% e.g. maj_sec is a major second

rootNote(c_,[c|T],T,Key).
rootNote(c_,[cmin|T],T,Key).
rootNote(c_s,[cs|T],T,Key).
rootNote(c_s,[csmin|T],T,Key).
…
category(min,[cmin|T],T).
category(maj,[c|T],T).
category(min,[csmin|T],T).
category(maj,[cs|T],T).
…
degree(1_,A,B,cmajor) :- rootNote(c_,A,B,cmajor).
degree(1_s,A,B,cmajor) :- rootNote(c_s,A,B,cmajor).
…
degreeAndCategory(Deg,Cat,A,B,Key) :- degree(Deg,A,B,Key), category(Cat,A,B).

rootInterval(min_sec,A,B):- rootNote(c_,A,B,_), rootNote(d_b,B,C,_).
rootInterval(maj_sec,A,B):- rootNote(c_,A,B,_), rootNote(d_,B,C,_).
…
gap(A,A).
gap([_,A],B) :- gap(A,B).
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... Emin7 Cmaj Fdim ... G7 ... Dmin7 Faug ...Cmaj7

A

B
gap(A,B)

C

degreeAndCategory(3,min7,B,C,cmajor)

D

E

F
gap(E,F)

G

degreeAndCategory(5,7,F,G,cmajor)

etc.

gap(K,L)

degreeAndCategory(1,maj,C,D,cmajor)

degreeAndCategory(4,dim,D,E,cmajor)

Figure 5.1: A piece of music (i.e. list of chords) assumed to be in C major, and its Definite
Clause Grammar (difference-list Prolog clausal) representation.

5.2.2 Learning Algorithm

To induce the harmony grammars we apply the ILP decision tree induction algorithm TILDE

(Blockeel and De Raedt, 1998) described in chapter 3. Each tree built by TILDE is an ordered

set of rules which is a genre classification model (i.e. which can be used to classify any new

unseen musical piece represented as a list of chords) and describes the characteristic chord

sequences of each genre in the form of a grammar. The system takes as learning data a set of

triples (chord_sequence, tonality, genre), chord_sequence being the full list of chords present

in a musical piece, tonality being the global tonality of this piece and genre its genre.

TILDE does not build sets of grammar rules for each class but first-order logic decision trees

expressed as ordered sets of rules (or Prolog programs). Each rule is simply a program following

the path from the root of the tree to one of its leaves. Each tree covers one classification

problem (and not one class), so in our case rules describing harmony patterns of a given genre

coexist with rules for other genres in the same tree (or set of rules). That is why the ordering of

the rules we obtain with TILDE is an essential part of the classification: once a rule describing

genre g is fired on an example e then e is classified as a piece of genre g and the following rules

in the grammar are not tested over e. Thus, the rules of a model can not be used independently

from each other.
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In the case of genre classification, the target predicate given to TILDE, i.e. the one we want

to find rules for, is genre/4, where genre(G,A,B,Key) means the piece A (represented as its full

list of chords) in the tonality Key belongs to genre G. The output list B (always an empty list),

is necessary to comply with the difference-list representation. The training dataset provided

to TILDE contains several values for G (all the genres of the current classification problem)

and several examples (i.e. input list A) per genre. We constrain the system to use at least

two consecutive degree or two degreeAndCategory predicates or one rootInterval predicate

between any two gap predicates. This guarantees that we are considering local chord sequences

of at least length 2 (but also larger) in the pieces of music. Here is an example in Prolog

notation of a grammar rule built by TILDE for Classical music (extracted from an ordered set

containing rules for several genres):

genre(classical,A,Z,Key) :-

gap(A,B), degreeAndCategory(2,7,B,C,Key),

degreeAndCategory(5,maj,C,D,Key),

gap(D,E), degreeAndCategory(1,maj,E,F,Key),

degreeAndCategory(5,7,F,G,Key), gap(G,Z).

Which can be translated as : “Some Classical music pieces contain a dominant 7th chord on the

supertonic (II) followed by a major chord on the dominant, later (but not necessarily directly) followed

by a major chord on the tonic followed by a dominant 7th chord on the dominant”.

Or: “Some Classical music pieces can be modelled as: ... II7 - V ... I - V7 ...”.

Thus, complex rules combining several local patterns (of any length greater than or equal to

2) separated by gaps can be constructed with this formalism.

A simple example illustrating the induction of a decision tree in TILDE for a 3-genre

classification problem is provided in Figure 5.2.

For each classification task we perform a 5-fold cross-validation (except where explicitly

stated otherwise). We adopt the best minimal coverage of a leaf learned from previous

experiments: we constrain the system so that each leaf in each constructed tree covers at

least five training examples. By setting this TILDE parameter to 5 we avoid any overfitting

– as a smaller number of examples for each leaf means a larger number of rules and more

specific rules – and in the same time it is still reasonable given the size of the dataset – a larger

value would have been unrealistically too large for the system to learn any tree, or would have

required a long computation time for each tree.
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∧ degreeAndCategory(6_,min,E,F,Key)

g1 g2

?

degAndCat(1_,maj,A,C,Key)
degAndCat(7_,min,A,C,Key)
gap(A,C) ∧ degAndCat(1_,maj,C,D,Key)
   ∧ degAndCat(5_,7,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(6_,min,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(2_,min,D,E,Key)
gap(A,C) ∧ degAndCat(7_,min,C,D,Key)
   ∧ degAndCat(1_,maj,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(3_,min,D,E,Key)
gap(A,C) ∧ degAndCat(3_,min,C,D,Key)
   ∧ degAndCat(5_,7,D,E,Key)

 g1g2g2 | g1g3
 g1g3 | g1g2g2

g1g1g2g2 | g3 * 

g1g1g2 | g2g3

 g2 | g1g1g2g3

 g1g3 | g1g2g2

 g2 | g1g1g2g3

 g2 | g1g1g2g3

Learning examples : [C,G7,Am] g1      [C,G7,Dm] g2      [Bm,C] g3      [Bm,C,G7,Am] g1      [C,G7,Em,G7,Am] g2

degAndCat(6_,min,E,F,Key)
degAndCat(2_,min,E,F,Key)
degAndCat(3_,min,E,F,Key)
gap(E,F) ∧ degAndCat(3_,min,F,G,Key)
    ∧ degAndCat(5_,7,G,H,Key)
gap(E,F) ∧ degAndCat(5_,7,F,G,Key)
    ∧ degAndCat(6_,min,G,H,Key)

 g1g1 | g2g2 * 

 g2 | g1g1g2

 g2 | g1g1g2

 g2 | g1g1g2

 g2 | g1g1g2

gap(A,C) ∧ degreeAndCategory(1_,maj,C,D,Key)
               ∧ degreeAndCategory(5_,7,D,E,Key)

g3

Equivalent set of rules (Prolog program):
genre(g1,A,B,Key) :- 
  gap(A,C),degAndCat(1_,maj,C,D,Key),
  degAndCat(5_,7,D,E,Key),degAndCat(6_,min,E,F,Key),!
genre(g2,A,B,Key) :- 
   gap(A,C),degAndCat(1_,maj,C,D,Key),
   degAndCat(5_,7,D,E,Key),!
genre(g3,A,B,Key).

gap(A,C) ∧ degreeAndCategory(1_,maj,C,D,Key)
              ∧ degreeAndCategory(5_,7,D,E,Key)

g3?
True False True False

True False

Figure 5.2: Schematic example illustrating the induction of a first-order logic tree for a 3-genre
classification problem. The three genres (g1, g2 and g3) are illustrated with the 5 learning
examples at the top. At each step the partial tree (top) and each literal (or conjunction of
literals) considered for addition to the tree (bottom) are shown together with the split resulting
from the choice of this literal (e.g. g1g1g2|g2 means that two examples of g1 and one of g2 are
in the left branch and one example of g2 is in the right branch). The literal resulting in a the
best split is indicated with an asterisk. The final tree and the equivalent ordered set of rules
(or Prolog program) are shown on the right. The key is C Major for all examples. For space
reasons degAndCat is used to represent degreeAngCategory.

5.2.3 Dataset

The data used to train our harmony-based genre classifier has been collected, annotated and

provided by the Pattern Recognition and Artificial Intelligence Group of the University of

Alicante. It consists of a collection of Band in a Box files (format as described in Section

2.2.2) covering three genres – popular, jazz, and “academic” music and has sometimes been

referred to as the Perez-9-genres Corpus (Pérez-Sancho, 2009). We use our own internal Band

in a Box converter1 to extract the lists of shorthand chord symbols from this proprietary format.

In the Perez-9-genres dataset the popular music set contains pop, blues, and Celtic (mainly

Irish jigs and reels) music; jazz consists of a pre-bop class grouping swing, early, and Broadway

tunes, bop standards, and bossanovas; and “academic”2 music consists of Baroque, Classical

and Romantic period music. All the categories were defined by music experts who also

collaborated in the task of assigning meta-data tags to the files and rejecting outliers. The

total amount of pieces used for our experiments is 856 (Baroque period 56; Classical period

50; Romantic period 129; pre-bop 178; bop 94; bossanova 66; blues 84; Celtic 99; pop 100).

The Perez-9-genres dataset also contains 856 audio files generated from the Band in a Box

1developed by Simon Dixon and Matthias Mauch, with some help from Bas de Haas (from Universiteit Utrecht)
2although “Classical” would be a more appropriate name for this genre we kept the name “academic” to match

the original name given by the dataset’s authors because it has been used in several other publications including
(Pérez-Sancho et al., 2009), (Pérez-Sancho, 2009) and (Pérez-Sancho et al., 2010). This also avoids confusion with
the Classical period (1750-1820).
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files according to the following workflow: the Band in a Box software allows for ”exportation

with arrangement” of its files into MIDI files that were then synthesised into audio files using

the TIMIDITY++3 software. Both the MIDI and the audio files generated in the process

contain interpretations (i.e. expressive performances) of the original pieces thanks to the Band

in a Box ‘style’ parameter (that can take on hundreds of values) controlling the arrangement,

rhythmic interpretation, etc. of each piece of music.

Additionally since Band in a Box exports the repetitions in the MIDI files too, these are

also played in the audio files generated with TIMIDITY++. To match the symbolic and audio

file, our internal converter can also detect repetitions in the Band in a Box file format and

write the duplicated chord sequences in the symbolic files. Hence all files, symbolic and

audio, contain repetitions in our experiments.

The classification tasks that we are interested in are relative to the three main genres of this

dataset: academic, jazz and popular music. For all our experiments we consider each time

the 3-way classification problem and each of the 2-way classification problems. In addition we

also study the 3-way classification problem dealing with the popular music subgenres (blues,

Celtic and pop music). We do not work on the academic subgenres and jazz subgenres as

these two datasets contain unbalanced subclasses. Because of this last characteristic removing

examples to get the same number of examples per class would lead to poor models built on

too few examples. Moreover resampling can not be used as TILDE automatically removes

identical examples. Finally for comparison purposes we also consider the 9-way classification

problem dealing with all the subgenres at once.

5.2.4 Chord Transcription Algorithm

To extract the chords from the synthesised audio dataset an automatic chord transcription

algorithm is needed. We use an existing automatic chord labelling method, which can

be broken down into two main steps: generation of a beat-synchronous chromagram and

an additional beat-synchronous bass chromagram, and an inference step using a musically

motivated dynamic Bayesian network (DBN). The following paragraphs provide an outline of

these two steps. Please refer to (Mauch, 2010, Chapters 4 and 5) for details.

The chroma features are obtained using a prior approximate note transcription based on

the non-negative least squares method (NNLS). First a log-frequency spectrogram (similar

to a constant-Q transform) is calculated, with a resolution of three bins per semitone. As is

3http://timidity.sourceforge.net

http://timidity.sourceforge.net
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frequently done in chord- and key- estimation (e.g. Harte and Sandler, 2005), this spectrogram

is adjusted to compensate for differences in the tuning pitch. The tuning is estimated from the

relative magnitude of the three bin classes. Using this estimate, the log-frequency spectrogram

is updated by linear interpolation to ensure that the centre bin of every note corresponds to the

fundamental frequency of that note in equal temperament. The spectrogram is then updated

again to attenuate broadband noise and timbre. To determine note activation values a linear

generative model is assumed in which every frame Y of the log-frequency spectrogram can be

expressed approximately as the linear combination Y ≈ Ex of note profiles in the columns

of a dictionary matrix E, multiplied by the activation vector x. Finding the note activation

vector that approximates Y best in the least-squares sense subject to x ≥ 0 is called the non-

negative least squares problem (NNLS). A semitone-spaced note dictionary with exponentially

declining partials, and the NNLS algorithm proposed by Lawson and Hanson (Lawson and

Hanson, 1974) to solve the problem and obtain a unique activation vector are used. For treble

and bass chroma mapping different profiles are chosen: the bass profile emphasises the low

tone range, and the treble profile encompasses the whole note spectrum, with an emphasis on

the mid range. The weighted note activation vector is then mapped to the twelve pitch classes

C,...,B by summing the values of the corresponding pitches. In order to obtain beat times

an existing automatic beat-tracking method (Davies et al., 2009) is used. A beat-synchronous

chroma vector can then be calculated for each beat by taking the median (in the time direction)

over all the chroma frames whose centres are situated between the same two consecutive beat

times.

The two beat-synchronous chromagrams are now used as observations in the DBN, which

is a graphical probabilistic model similar to a hierarchical hidden Markov model. The DBN

jointly models metric position, key, chords and bass pitch class, and parameters are set

manually according to musical considerations. The most likely sequence of hidden states

is inferred from the beat-synchronous chromagrams of the whole piece using the BNT4

implementation of the Viterbi algorithm (Rabiner, 1989). The method detects the 24 major

and minor keys and 121 chords in 11 different chord categories: major, minor, diminished,

augmented, dominant 7th, minor 7th, major 7th, major 6th, and major chords in first and

second inversion, and a ‘no chord’ type. The chord transcription algorithm correctly identifies

80% (correct overlap, Mauch, 2010, Chapter 2) of the chords in the MIREX audio chord

recognition dataset and was rated first in its category in the 2009 and 2010 MIREX evaluations.

4http://code.google.com/p/bnt/

http://code.google.com/p/bnt/
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5.2.5 Data Post-Processing

To match the symbolic data (i.e. coming from the Band in a Box files) to the audio

transcriptions we can get from the chord transcription algorithm, the extensive set of chord

categories found in the Band in a Box dataset is reduced to eight categories before training:

major, minor, diminished, augmented, dominant 7th, minor 7th, major 7th, major 6th. This

reduction is done by mapping each category to the closest one in term of both number of

intervals shared and musical function. Similarly, for the audio transcription dataset, since

chord inversions and “no chord” are not used in the Band in a Box dataset we replace after

transcription the major chords in first and second inversion with major chords and the sections

with no chords are simply ignored. Finally in both datasets repeated chords are merged to a

single instance of the chord.

5 . 3

Experiments and Results

In this section we describe the set of experiments we performed on the Perez-9-genres dataset,

with the goal to assess the best knowledge representation scheme in various conditions. We

also compare our results with related work performed on the same dataset (Pérez-Sancho,

2009). Notice that the results presented here are better than those we initially reported in

(Anglade et al., 2009b) and (Anglade et al., 2009c). The differences can be explained by

the use of 10-fold cross-validation in the experiments reported here vs. 5-fold cross-validation

then, but also a richer chord vocabulary (allowing diminished and augmented triads) both in

symbolic and audio data due to the use of a new, more accurate, chord transcription algorithm

from Mauch (2010), when we previously used the one from Gómez (2006).

5.3.1 Statistical Considerations

In the following sections we will compare several approaches to the problem of genre

classification (changing the knowledge representation for instance). As such we are performing

a multi-classifier comparison, which is analogous to comparing multiple algorithms over

multiple datasets, the null hypothesis being that they all perform equally well on those datasets.

Arguably we only use one dataset, however since we are considering several classification tasks
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with different classes (3-main-genre, 2-main-genre, 9-subgenre and one of the 3-subgenre

problems) we can still consider those are separate datasets due to the difference in focus when

building the classification rules for each one of them (leading to different rules themselves).

The musicological interest in looking at sub classification tasks is the following: in the case of

the 2-genre classification tasks for instance we are looking at core differences between genres,

while the 3-main-genre and 9-subgenre classification rules will highlight distinguishing features

of each genre (in comparison to all others). It is nonetheless noticeable that these datasets are

not entirely independent, but can be considered as such, which allows us to apply statistical

significance tests (described below) and get some indication of the significance of the results.

The widely used t-test (Student, 1908), as described by Dietterich (1998), “has an

elevated probability of type I error”, usually higher than the target level, even when used in

conjunction with 10-fold cross-validation. Furthermore as explained in (Demšar, 2006) we

do not fall into the trap of performing all pairwise t-tests. Indeed this implies running a large

number of tests which increases the chances of rejecting the null hypothesis due to random

chance, a phenomenon known as the multiplicity effect. As suggested by Salzberg (1997), the

Bonferroni correction would be a way to deal with this but Demšar (2006) warns against

its conservatism and weakness and recommends “more powerful specialized procedures” for

comparing multiple classifiers over multiple datasets, such as the repeated-measures ANOVA

(Fisher, 1956) and the Friedman test (Friedman, 1937).

If ANOVA is the most commonly used statistical test for comparing more than 2

algorithms, it was pointed out by Demšar (2006) that it is based on assumptions that are

usually violated when considering classification: assumptions of normality of the distribution

and sphericity, which “due to the nature of the learning algorithms and data sets [...] cannot be

taken for granted”. He recommends to use instead the non-parametric Friedman test, which

by definition does not rely on a particular data distribution.

Additionally, once the null-hypothesis is rejected by the Friedman test, a post-hoc test

can be applied to identify which pairwise differences between classifiers performances are

statistically significant. In our case we do not have a control classifier, to which all other

classifiers can be compared, so we need a post-hoc test to compare all classifiers to each

other. Demšar (2006) suggests the Nemenyi test (Nemenyi, 1963) to perform all pairwise

comparisons. But as pointed out by García and Herrera (2008), this test is “very conservative

and it may not find any difference in most of the experimentations”. This is why we here follow

García and Herrera’s suggestion and use the most powerful of the post-hoc tests that they

compare in their paper: Bergmann and Hommel procedure (Bergmann and Hommel, 1988).
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García and Herrera also provide a script5 that we will use which computes Friedman’s and

Iman-Davenport’s statistics as well as adjusted p-values based on the post-hoc test. In statistics,

a p-value indicates if a statistical test is significant by comparing it to a significance level α, to

which it needs to be smaller. The smaller the more statistically significant. Adjusted p-values

(Wright, 1992) are modified p-values so that the multiple comparisons are taken into account,

reflecting the process of the post-hoc test it depends on itself. Similarly to p-values, adjusted

p-values can then be directly compared to the significance level α. We will use α = 0.05 except

when stated otherwise.

In each of the following experiments we perform 10-fold cross-validation. The folds were

separately built with a script performing random selection and not directly using TILDE. That

allowed us to save those folds and always use the same ones across all experiments. Note

however that we started off building separate sets of folds for the symbolic data and for the

audio data, as those experiments were not supposed to be linked and it was sometimes difficult

to match files between datasets. So the folds for those two kinds of experiments do not match.

We have nonetheless later on built a second set of folds from the audio data that matches the

folds of the symbolic data, referred to as “Audio Examples by Symbolic Folds”. This set of

folds was used when evaluating the symbolic models on audio data (cf. Section 5.3.3) hence

making sure none of the example musical pieces used for training the symbolic models were

present (in their audio representation) in the evaluation (or test) folds.

In the following section the tables contain, for each knowledge representation and for each

classification problem, the average and standard deviation over the 10 folds of the following

measures: accuracy, run time, number of nodes in the tree, number of literals in the tree. In

some cases (identified by ‘(*)’ in the tables) computing models for some folds was taking

an extremely long time and the computation was stopped. The previous measures were

then averaged and their standard deviation were computed over the folds for which models

were built, and the number of folds on which these measures were computed is indicated in

parentheses.

5.3.2 Choosing the Knowledge Representation

As described in Section 5.2.1 we consider several knowledge representation schemes: har-

monic steps are represented as sequences of intervals between root notes, sequences of

degrees, or sequences of degrees and chord categories. These 3 representations will be

referenced in the rest of this chapter as Root Interval, Degree, Degree & Category respectively.

5http://sci2s.ugr.es/keel/multipleTest.zip

http://sci2s.ugr.es/keel/multipleTest.zip
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To compare these 3 representations we first run all 6 classification problems described in

Section 5.2.3 on clean data, i.e. on the manual chord transcriptions contained in the Band in

a Box files. The results of those experiments on symbolic data are shown in Table 5.2.

Table 5.2: Classification results on symbolic data using 10-fold cross-validation. b is the
baseline. Values are average ± standard deviation over the folds. Highest accuracy is shown
in bold. (∗): Experiments stopped after one of the iterations (folds) run for too long; these
results were averaged over a few folds (exact number of folds is provided) only and are only
given as indications.

Root Interval Degree Deg. & Cat.

3 main genres
Accuracy (b = 0.395) 0.706 ± 0.047 0.695 ± 0.060 0.834 ± 0.038
Runtime (in CPU seconds) 141,429 ± 108,452 20,610 ± 36,681 3,744 ± 683
# nodes in the tree 33.7 ± 4.4 38.8 ± 8.1 26.9 ± 3.1
# literals in the tree 55.5 ± 8.6 116.4 ± 24.3 80.3 ± 8.8

academic/jazz
Accuracy (b = 0.590) 0.845 ± 0.041 0.846 ± 0.025 0.949 ± 0.016
Runtime (in CPU seconds) 2,256 ± 166 419 ± 53 544 ± 88
# nodes in the tree 11.3 ± 2.2 19.3 ± 3.0 8.3 ± 1.1
# literals in the tree 17.9 ± 3.3 57.9 ± 9.1 24.7 ± 3.0

academic/popular
Accuracy (b = 0.545) 0.750 ± 0.067 0.795 ± 0.049 0.855 ± 0.073
Runtime (in CPU seconds) 59,629 ± 105,742 689 ± 339 896 ± 322
# nodes in the tree 17.3 ± 3.4 15.0 ± 3.1 11.2 ± 1.3
# literals in the tree 29.9 ± 5.9 45.0 ± 9.4 33.6 ± 4.0

jazz/popular
Accuracy (b = 0.547) 0.819 ± 0.045 0.801 ± 0.035 0.895 ± 0.033
Runtime (in CPU seconds) 5,806 ± 9,499 450 ± 126 1,470 ± 272
# nodes in the tree 17.7 ± 4.1 13.5 ± 2.5 12.5 ± 1.5
# literals in the tree 31.6 ± 6.3 40.5 ± 7.4 37.5 ± 4.5

blues/Celtic/pop
Accuracy (b = 0.355) 0.709 ± 0.100 0.730 ± 0.060 0.762 ± 0.062
Runtime (in CPU seconds) 479 ± 56 115 ± 142 189 ± 29
# nodes in the tree 10.1 ± 1.6 13.5 ± 2.7 16.1 ± 1.9
# literals in the tree 18.1 ± 3.1 40.5 ± 8.1 47.7 ± 5.1

9 subgenres (1 fold) (4 folds)
Accuracy (b = 0.208) (0.447∗) (0.437∗ ± 0.055∗) 0.542 ± 0.054
Runtime (in CPU seconds) (905,792∗) (46,266∗ ± 74,871∗) 80,505 ± 51,237
# nodes in the tree (64.0∗) (63.8∗ ± 6.9∗) 68.5 ± 3.9
# literals in the tree (97.0∗) (191.3∗ ± 20.8∗) 201.3 ± 11.5

For all classification problems the Degree & Category representation obtains the highest

accuracy. Furthermore we perform a statistical significance analysis. García and Herrera’s

script provides the following average ranking values for each knowledge representation: 2.5

(Root Interval), 2.5 (Degree) and 1 (Degree & Category). Friedman’s statistics is χ2
F = 9.0

from which Iman-Davenport’s statistics is computed: FF = 15.0. With 3 algorithms and 6

datasets FF is distributed according to the F distribution with 3−1 = 2 and (3−1)(6−1) = 10
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degrees of freedom. The critical value of F (2, 10) for α = 0.05 is 4.10 so we can reject the null

hypothesis that all algorithms are equivalent and can proceed with the post-hoc Bergmann and

Hommel test.

García and Herrera’s script computes the following adjusted p-values based on Bergmann

and Hommel’s procedure: 0.028 (Root Interval vs. Degree & Category), 0.028 (Degree vs.

Degree& Category) and 1.0 (Root Interval vs. Degree). So the two first hypotheses are rejected

since their adjusted p-values are below the statistical significance level α = 0.05, meaning that

Degree & Category perform statistically significantly better than the Root Interval and Degree

representations.

Additionally if we look at the runtimes for each representation and classification problem,

we can see that there is no fixed time cost. The figures in Table 5.2 are only examples of what

the runtimes could be, as the sometimes large standard deviation values attest (especially for

the 9-genre classification problem). What this shows is that the computation time of a model is

very much dependant on the specific examples and the order in which they are processed by the

system. However notice that in average the Degree & Category models are often computed

more quickly than the Root Interval representation, while computation times are comparable

for Degree and Degree & Category. The Degree & Category representation is also the only

one for which all folds in the 9-genre classification problem were processed fully, and the other

representations yield to very lengthy computation times for that same problem and had to be

stopped.

Moreover as the number of nodes and literals present in a tree gives an estimation of

its complexity, we can compare the complexity of the models resulting from the various

representations. As can be seen in Table 5.2, all models need a few number of nodes and

literals per tree: in average 14 nodes and 35 literals for the 2-class problems, 33 nodes and 80

literals for the 3-main-genre problem, and 65 nodes and 163 literals for the 9-class problem.

Additionally all representation schemes on symbolic data result in similarly simple trees. This

is interesting as the Degree & Category representation contains more information than the

other two (the category), so the rules are inherently more specific which could result in models

containing more rules to cover all possible cases. But this is not the case, suggesting that this

representation fits the data more closely.

We obtain respectively 83.4% (academic/jazz/popular), 94.9% (academic/jazz), 85.5%

(academic/popular), 89.5% (jazz/popular), 76.2% (blues/Celtic/pop) and 54.2% (9 subgenres)

accuracy. The confusion matrices for the 6 classification tasks when using the Degree &

Category representation are shown in Tables 5.3 and 5.4. The best results are obtained when



5.3. Experiments and Results | 84

trying to distinguish jazz from another genre (academic or popular). The biggest difficulty

that appears in both the 3-class task and the 2-class tasks is to distinguish academic music

from popular music. Indeed the harmony of these two genres can be very similar, whereas

jazz music is known for its characteristic chord sequences, very different from other genres’

harmonic progressions. A close look at the 9-subgenre classification results in Table 5.4 show

that classification errors between popular and academic music (and vice-versa) can be further

refined as classification errors between Romantic and pop music.

Table 5.3: Confusion matrices (test results aggregated over all folds) for all main-genre
classification problems using the Degree & Category representation on the symbolic dataset.

Real/Predicted academic jazz popular Total

academic 189 3 43 235
jazz 3 296 39 338
popular 29 25 229 283

Total 221 324 311 856

academic 221 14 235
jazz 15 323 338

Total 236 337 573

academic 192 43 235
popular 32 250 282

Total 224 293 517

jazz 321 17 338
popular 48 232 280

Total 369 249 618

Let us summarize our findings and compare the 3 knowledge representation schemes we

evaluated here:

• The root interval representation is the simplest to implement as it does not require

key estimation. However it is ambiguous; one unique root interval covers several

degree sequences. This ambiguity might be the reason for the greater complexity and

computation time of the models using it (as seen before) since the harmony sequences

can not fully be captured by this representation.

• The Degree representation is one step closer to solving the ambiguity, since the degree

is explicitly stated. However since the tonality is not stated in the models, the problem

of distinguishing between minor and major thirds is still there; chord categories on every

degree differ in minor and major keys. So this representation is still ambiguous while it

nonetheless requires key estimation, so additional information or computation.
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Table 5.4: Confusion matrices (test results aggregated over all folds) for 9-subgenre and
popular subgenres classification problems using the Degree & Category representation on
the symbolic dataset.

Real/Pred. Baroq. Class. Rom. pre-bop bop bossa. blues Celtic pop Total

Baroque 10 11 23 0 0 0 1 3 8 56
Classical 3 24 16 0 0 0 1 4 2 50
Romantic 11 18 68 1 1 0 4 10 16 129

pre-bop 0 0 1 144 13 16 0 0 4 178
bop 1 0 1 32 24 8 3 12 13 94
bossanova 0 0 1 24 17 19 0 2 3 66

blues 0 0 4 3 5 0 59 7 6 84
Celtic 0 0 5 0 3 0 1 81 9 99
pop 3 1 16 5 9 4 4 23 35 100

Total 28 54 135 209 72 47 73 142 96 856

blues 66 1 16 83
Celtic 1 81 17 99
pop 11 21 68 100

Total 78 103 101 282

• Finally the Degree & Category representation is the only non-ambiguous representation

of all three. Indeed the category captures the difference between the minor and major

triads. It also allows to capture chords that do not belong to the main key (e.g. due to local

modulations) which would not be possible with the Degree representation, even when

adding the main key to the Degree models. Additionally there is no limit to the number

of chord categories one can use with the Degree & Category representation, while

the Degree representation does not make any distinction between chords of different

category types on the same degree (e.g. maj and maj7 chords).

So for both musicological and statistical reasons the Degree & Category representation seems

to be the best one to tackle the problem of genre classification.

To conclude this section we compare the classification results obtained with our context-

free definite-clause grammar models and those obtained by the creators of the dataset, namely

Pérez-Sancho et al. who applied n-gram classifiers on the same data (cf. Section 2.3.2 for more

details on their approach). We use the results presented in (Pérez-Sancho et al., 2010) focusing

here on the “groundtruth classification” results they obtained on symbolic data. Their “4-note

Degree chords” correspond to our Degree & Category representation. They obtain their best

results with 2-grams with 87% accuracy on the 3-class problem and 51% accuracy on the 9-

class problem respectively. Since we do not have access to their specific results per fold we
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can not use the McNemar test which would be the most precise test to compare the results of

two classifiers on the same dataset. The Wilcoxon signed-ranks test requires to compare the

algorithms on more than 5 datasets, and we only have 2, the 3-class problem and the 9-class

problem. Additionally since our classifier outperforms theirs on the 9-class problem but theirs

outperforms ours on the 3-class problem, neither system appear to be generally superior. If the

performance of the two approaches are equivalent, we argue that our representation is richer

and more flexible, allowing for longer patterns of chord sequences potentially containing gaps

and having variable length (with no upper limit on the length). On the other hand Pérez-

Sancho et al.’s n-gram representation only allows for patterns of size n and below to be taken

into account (without gaps) in one model. We show that this enables us to discover and

represent interesting chord patterns that could not be captured with an n-gram representation.

Examples of such chord patterns are provided and discussed in Section 5.3.5.

5.3.3 From Symbolic Data to Automatic Chord Transcriptions

For such a method to be usable in more situations we need to be able to analyse audio data

as well as symbolic data. In this section we study whether the approach previously tested on

symbolic data performs equally well on automatically transcribed chords from audio data. We

first directly apply to the automatic chord transcriptions the models trained on symbolic data

from Section 5.3.2. The results can be found in Table 5.5.

Notice that the unique symbolic model for Root Interval and 9 genres (due to large

computation times only one fold was computed then, cf. Table 5.2) required too many

resources to evaluate its coverage on audio data and we had to cancel its evaluation. Looking

at this model closely one explanation for this would be that contrary to more complex models

(i.e. models containing more nodes and literals overall) which successfully run, this one starts

with very specific rules which means a lot of literals to evaluate against each new input, when

more complex models would often successfully classify a new input with one of the simple

rules it starts with. One possible way to solve this issue would be to recompute the model(s)

changing the order of the training examples, since the order of the rules directly depends on

it.

Overall the symbolic models still perform higher than the baseline on audio data but there

is a clear degradation in accuracy compared to the results they obtain on symbolic data. This

is probably due to the noisy data resulting from the automatic transcription process. The

best knowledge representation still seems to be Degree & Category in average but this time

the Degree representation often performs equally well or even better, such as in the case of
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Popular subgenres. This is not surprising since the Degree & Category representation requires

a correct estimation of both the Degree (or chord root note) and the chord category while the

Degree representation only requires the former making the data used by this representation

less likely to be noisy and hence more likely to match the rules of its symbolic-trained models.

The statistical significance analysis using García and Herrera’s script provides the following

average ranking values: 2.6 (Root Interval), 1.8 (Degree) and 1.6 (Degree & Category).

Friedman’s statistic isχ2
F = 2.8 fromwhich Iman-Davenport’s statistic is computed: FF = 1.56.

With 3 algorithms and 5 datasets (since there is no complete comparison of the 3 knowledge

representations on 9 subgenres) FF is distributed according to the F distribution with 3−1 = 2

and (3−1)(5−1) = 8 degrees of freedom. The critical value of F (2, 8) for α = 0.05 is 4.46 so we

can not reject the null hypothesis that all algorithms are equivalent. None of the knowledge

representation schemes outperforms the others when applying the symbolic models on audio

data.

Table 5.5: Classification results of models trained on symbolic data when tested on audio
data. All symbolic models previously built during the 10-fold cross-validation experiments of
Table 5.2 are tested on audio data matching each time the 10th testing fold. b is the baseline.
Values are average ± standard deviation over the folds. Highest accuracy is shown in bold.
(∗): Experiments stopped after one of the iterations (folds) run for too long; these results
were averaged over a few folds (exact number of folds is provided) only and are only given as
indications.

Root Interval Degree Deg. & Cat.

3 main genres
Accuracy (b = 0.414) 0.515 ± 0.050 0.536 ± 0.054 0.653 ± 0.057

academic/jazz
Accuracy (b = 0.621) 0.563 ± 0.039 0.615 ± 0.087 0.642 ± 0.066

academic/popular
Accuracy (b = 0.571) 0.650 ± 0.106 0.648 ± 0.065 0.701 ± 0.085

jazz/popular
Accuracy (b = 0.553) 0.725 ± 0.063 0.747 ± 0.052 0.570 ± 0.049

blues/Celtic/pop
Accuracy (b = 0.368) 0.543 ± 0.100 0.706 ± 0.070 0.684 ± 0.084

9 subgenres (4 folds)
Accuracy (b = 0.216) – (0.283∗ ± 0.037∗) 0.335 ± 0.087

Another approach one can take is to train new models directly on audio data. The results

of such an approach are provided in Table 5.6. The accuracies are higher than when using

symbolic models on audio data, which was predictable as systematic errors of the transcription

algorithm are now probably captured by such models. Once more the Degree & Category

gets better results on average than the other knowledge representations, and when not at least

similar results as the best approach. However a statistical significance analysis (using García
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and Herrera’s script) reaches similar conclusions as for the symbolic models on audio data.

The average ranking values are 2.1 (Root Interval), 2.4 (Degree) and 1.5 (Degree & Category).

Friedman’s statistic is χ2
F = 2.10 from which Iman-Davenport’s statistic FF is equal to 1.06.

The critical value of F (2, 8) for α = 0.05 being 4.46 we can not reject the null hypothesis that

all algorithms are equivalent. However the computation times for the Degree & Category

models are often lower than for the other models. Likewise the complexity of the audio models

using this representation is often lower than the other ones, making it still the most interesting

representation.

This approach does not compare though with the n-gram approach used by Pérez-

Sancho et al. (2010) which reaches higher accuracies when trained and used on audio

data: 82% accuracy (3 genres) and 58% accuracy (9 subgenres) using their 4-chord Degree

representation, whereas we obtain 70.4% (3 genres) and 46.3% (9 subgenres) accuracy. Notice

that they use a different chord recognition algorithm (supporting different chord categories)

making those results not directly comparable.

In general it is important to notice that in our method the chord transcription algorithm

employed, its coverage and accuracy do affect the classification accuracy and content of the

classification models. As chord recognition algorithms will become more accurate and will

cover more chord categories, so will classification models built with our approach, and their

content, exempt of noise, will tend to be more musicologically meaningful.

5.3.4 Towards Ensemble Methods

We investigate in this section if an ensemble method using several trees, namely Random

Forests (Breiman, 2001), would improve the results over single decision trees. Random Forests

consist of several decisions trees, each constructed from a sample of the training dataset and

a new randomly restricted feature set for each node in each tree. No pruning of the individual

trees is performed, and the random forest prediction is obtained by taking the mode vote of

all trees. Breiman reports “significant improvements in classification accuracy” when using

Random Forests over using single trees. As seen in Section 3.4, Van Assche (2008) developed

a Relational Learning version of (First-Order) Random Forests which has been integrated with

TILDE in the ACE-ilProlog system. We use this implementation, set the number of trees to

30 and the query sampling probability to 0.25 in all experiments, and obtain the results shown

in Table 5.7.

As expected Random Forest models are computationally more expensive than single-tree

models to the extent that most Root Interval models and some of the Degree models could
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Table 5.6: Classification results of models trained and tested on audio data using 10-fold cross-
validation. b is the baseline. Values are average ± standard deviation over the folds. Highest
accuracy is shown in bold. (∗): Experiments stopped after one of the iterations (folds) run for
too long; these results were averaged over a few folds (exact number of folds is provided) only
and are only given as indications.

Root Interval Degree Deg. & Cat.

3 main genres (4 folds)
Accuracy (b = 0.413) (0.670∗ ± 0.036∗) 0.675 ± 0.048 0.704 ± 0.045
Runtime (in CPU seconds) (94,204∗ ± 113,713∗) 108,205 ± 203,027 8,116 ± 5,731
# nodes in the tree (28.0∗ ± 2.4∗) 56.3 ± 4.5 47.9 ± 5.1
# literals in the tree (45.0∗ ± 2.9∗) 168.9 ± 13.4 143.2 ± 15.4

academic/jazz
Accuracy (b = 0.621) 0.784 ± 0.060 0.780 ± 0.041 0.893 ± 0.062
Runtime (in CPU seconds) 12,030 ± 23,496 188 ± 20 1,646 ± 171
# nodes in the tree 17.2 ± 4.2 24.6 ± 1.6 16.1 ± 2.4
# literals in the tree 28.3 ± 7.3 73.8 ± 4.7 48.3 ± 7.3

academic/popular
Accuracy (b = 0.571) 0.737 ± 0.064 0.739 ± 0.047 0.732 ± 0.077
Runtime (in CPU seconds) 66,502 ± 450,151 4,004 ± 4,245 3,581 ± 4,998
# nodes in the tree 21.0 ± 3.2 27.4 ± 5.2 22.6 ± 1.9
# literals in the tree 34.4 ± 5.5 82.2 ± 15.7 67.2 ± 5.7

jazz/popular
Accuracy (b = 0.552) 0.808 ± 0.057 0.807 ± 0.040 0.808 ± 0.046
Runtime (in CPU seconds) 7,458 ± 3,573 244 ± 21 2,468 ± 234
# nodes in the tree 15.6 ± 4.8 29.7 ± 6.0 22.6 ± 3.5
# literals in the tree 28.4 ± 8.3 89.1 ± 18.0 67.2 ± 10.0

blues/Celtic/pop
Accuracy (b = 0.368) 0.658 ± 0.094 0.621 ± 0.112 0.662 ± 0.063
Runtime (in CPU seconds) 920 ± 216 1,640 ± 3,677 237 ± 20
# nodes in the tree 15.0 ± 2.1 16.8 ± 3.2 16.2 ± 2.1
# literals in the tree 27.1 ± 3.5 50.4 ± 9.7 48.4 ± 6.2

9 subgenres
Accuracy (b = 0.216) (–) 0.390 ± 0.029 0.463 ± 0.049
Runtime (in CPU seconds) (–) 28,782 ± 79,044 7,974 ± 540
# nodes in the tree (–) 79.9 ± 5.7 80.2 ± 7.2
# literals in the tree (–) 239.7 ± 17.1 237.8 ± 21.5

Average ranking
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Table 5.7: Classification results of Random Forests models trained and applied on symbolic
data, trained on symbolic data and applied audio data, and trained on audio data and applied
on audio data. 10-fold cross-validation is used in all cases with matching symbolic and audio
folds. The number of trees is equal to 30, and query sampling probability is equal to 0.25 for
each model. b is the baseline. Values are average ± standard deviation over the folds. Highest
accuracy is shown in bold. (∗): Experiments stopped after one of the iterations (folds) run for
too long; these results were averaged over a few folds (exact number of folds is provided) only
and are only given as indications. (−): Experiments stopped during the first iteration due to
long computation times and for which we have no results.

Root Interval Degree Deg. & Cat.

Symbolic models

3 main genres (3 folds)
Accuracy (b = 0.395) (0.727∗ ± 0.063∗) 0.763 ± 0.046 0.877 ± 0.038
Runtime (in CPU seconds) (478,395∗ ± 37,709∗) 41,436 ± 13,379 38,433 ± 3,392
# nodes in the tree (610.0∗ ± 4.5∗) 709.2 ± 30.2 535.1 ± 9.2
# literals in the tree (1,042.3∗ ± 0.5∗) 2,127.6 ± 90.6 1,583.7 ± 23.8

9 subgenres
Accuracy (b = 0.208) (–) (–) 0.596 ± 0.071
Runtime (in CPU seconds) (–) (–) 89,154 ± 18,938
# nodes in the tree (–) (–) 1,124.9 ± 24.7
# literals in the tree (–) (–) 3,310.3 ± 69.2

Symbolic models on audio

3 main genres (3 folds)
Accuracy (b = 0.414) (0.628∗ ± 0.085∗) 0.622 ± 0.063 0.628 ± 0.060

9 subgenres
Accuracy (b = 0.216) (–) (–) 0.388 ± 0.058

Audio models

3 main genres
Accuracy (b = 0.413) (–) 0.719 ± 0.039 0.761 ± 0.042
Runtime (in CPU seconds) (–) 58,437 ± 37,464 43,647 ± 3,158
# nodes in the tree (–) 986.4 ± 37.8 887.6 ± 30.9
# literals in the tree (–) 2,959.2 ± 113.3 2,650.8 ± 90.9

9 subgenres
Accuracy (b = 0.216) (–) 0.439 ± 0.062 0.494 ± 0.056
Runtime (in CPU seconds) (–) 175,566 ± 191,545 55,148 ± 1,292
# nodes in the tree (–) 1,319.7 ± 39.1 1,353.2 ± 25.7
# literals in the tree (–) 3,959.1 ± 117.4 4,033.2 ± 79.5
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not be computed in a reasonable amount of time (see empty cells in Table 5.7). All Degree &

Category models were computed with computation times varying between 1.1 and 10 times the

computation time of single-tree models on the same classification problems. When results for

several knowledge representations are available, here again Degree & Category outperforms

the others in accuracy and computation time, even if no in-depth statistical significance

analysis can be performed due to the limited number of results for the other representations.

A statistical significance analysis of the single-tree and Random Forest accuracies on all

classification problems available (3- and 9-genres; symbolic models, symbolic models on audio,

and audio models) using the Degree & Category knowledge representation allows us to further

refine our conclusions. Since we are only comparing two algorithms, we use the Wilcoxon

signed-ranked test, which like the Friedman test is a non-parametric test. We compute the

differences in performances of the two approaches in Table 5.8 and rank them from the smallest

to the largest difference (ignoring the signs). The sum of the ranks of the positive differences

is R+ = 2 + 3 + 4 + 5 + 6 = 20 and the sum of the ranks of the negative differences is

R− = 1. According the table of critical values for the Wilconxon test for a confidence level

of α = 0.05 and 6 datasets the difference between the classifiers is significant if the smaller

of these sums is equal to 0, or in other words if one of the algorithms always outperforms the

other, which is not the case. So the results obtained with the Random Forests are marginally,

but not significantly, higher than those with singles trees. Additionally the parameters used

here, i.e. number of trees in a random forest and query sampling probability were not tuned

and simply chosen by hand, due to the computational overheads of running multiple tuning

experiments on separate tuning datasets. Hence we expect we could obtain even better results

by automatically fine-tuning those parameters.

Table 5.8: Comparison of classification accuracies for Single Tree (SG) and Random Forest
(RF) models with Degree & Category representation. r is the rank.

Classification problem Baseline ST RF difference r

Symbolic models – 3 main genres 0.395 0.834 0.877 +0.043 3
Symbolic models – 9 subgenres 0.208 0.542 0.596 +0.054 5

Symbolic models on audio – 3 main genres 0.414 0.653 0.628 −0.025 1
Symbolic models on audio – 9 subgenres 0.216 0.335 0.388 +0.053 4

Audio models – 3 main genres 0.414 0.704 0.761 +0.057 6
Audio models – 9 subgenres 0.216 0.463 0.494 +0.031 2

Finally we evaluate how the Random Forest approach compares to the n-gram approach

employed by Pérez-Sancho et al. (2010). We already know from Section 5.3.2 that we can

not use the McNemar test on the Pérez-Sancho et al.’s test results. Furthermore we can only
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compare the two approaches on 4 experiments, symbolic and audio models applied to the 3-

genre and 9-subgenre datasets, meaning that we can not apply the Wilcoxon signed-ranked

test. But we can compute the signed differences in accuracy between the algorithms on each

dataset. Accuracies and signed differences can be found in Table 5.9. The Random Forest

approach outperforms the n-gram one on symbolic data, but the opposite is true on audio

data, with the largest difference each time being 8.6% on the 9-genre problem.

Table 5.9: Comparison of classification accuracies for our Random Forest (RF) models and
Pérez-Sancho et al.’s n-gram models

Classification problem Baseline n-grams RF difference

Symbolic models – 3 main genres 0.395 0.870 0.877 +0.007
Symbolic models – 9 subgenres 0.208 0.510 0.596 +0.086
Audio models – 3 main genres 0.414 0.820 0.761 −0.059
Audio models – 9 subgenres 0.216 0.580 0.494 −0.086

However the Random Forest approach seems the most promising one involving relational

learning and a logic-based representation.

5.3.5 Examples of Rules

In this section we study the rules and models we get from these experiments and describe

the general musical patterns they exhibit. Our conclusions are drawn from all the models

generated, i.e. we consider the five models resulting from the 5-fold cross-validation generated

for each classification task.

We provide here human-readable versions of the rules where:

• each chord is represented by its juxtaposed degree and category,

• “...” represents a gap (of any length per definition of a gap in this study).

Since the classification models are trees (or ordered sets of rules) a rule in itself can not

perform classification both because of having a lower accuracy than the full model and because

the ordering of rules in the model is important to the classification (i.e. some rule might never

be used on some example because one of the preceding rules in the model covers this example).

Hence for each of the following example rules only the local coverage is shown. This is the

coverage provided in the model, and represents the coverage of the rule on the remaining

examples once all examples covered by previous rules in the model are removed.

In all models the academic music is characterised by rules that establish the tonality: the

tonic (first degree of the scale), the dominant (fifth degree) or quite often both of these
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degrees are present in a vast majority of the academic rules. As explained by Piston (1987)

tonic and dominant (together with subdominant, fourth degree of the scale) “are called the

tonal degrees of the scale, since they are the mainstay of the tonality”. If all 3 main genres

are characterised by the V-I cadence in music theory, in our rules, this pattern associated with

triads distinguishes well academic from jazz. Examples of academic rules of this kind include:

[ local coverage: academic=131/131=1; jazz=0 ]

... Imaj V7 Imaj ...

or more simply:

[ local coverage: academic=126/127=0.99; jazz=1/127=0.01 ]

... Vmaj Imaj ...

which both contain the perfect cadence (V-I), and:

[ local coverage: academic=27/27=1; jazz=0 ]

... Vmaj Imin ...

which is the perfect cadence in minor keys.

Some of the jazz rules use the dominant and the tonic as well but with more complex and

colourful chords than the academic rules which often only use triads:

[ local coverage: jazz=156/161=0.97; academic=0; popular=5/161=0.03 ]

... V7 Imaj6 ...

Notice that the above example is almost a perfect cadence, except for the chord category of

the tonic chord (which should be major or minor triad). Because of the major sixth chord,

we do not know which cadence we are looking at: it could be interpreted as V7-Imaj or as

V7-VImin, both equally plausible. The extra note is adding more possibilities (to the chords

that could come next), turning the chord sequence into a more unstable one with multiple

functions, which is typical of jazz music.

Even when they do not convey ambiguity the chords used in the jazz rules are more “colourful”,

like in the following rules where the minor (respectively major) 7th chord is used on the tonic
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(instead of a simple minor or major triad):

[ local coverage: jazz=27/27=1; academic=0; popular=0 ]

... V7 Imin7 ...

[ local coverage: jazz=35/37=0.95; academic=0; popular=2/37=0.05 ]

... V7 Imaj7 ...

The jazz rules are less about the tonality and more about what can be called harmonic

“colour”: they contain a larger variety of chord categories including a lot of seventh (i.e.

minor seventh, major seventh and dominant seventh) chords, less common triads (such as

augmented and diminished triads) but also major sixth and some (seventh) chords that, even

though there are no 9th chords in our vocabulary, can be interpreted as 9th chords on another

degree than the one they are officially attached to. For instance in the following rule:

[ local coverage: jazz=4/6=0.67; academic=0; popular=2/6=0.33 ]

... IVmin7 bVII7 ...

for instance in C major, the bVII7 chord is BbDFAb which can also be interpreted as a

rootless minor ninth chord on the dominant (Vmin9) borrowed from the parallel minor (i.e.

C minor when in C major): (G)BbDFAb. This chord progression (IVmin7 - bVII7 going to I)

is known in jazz as the backdoor progression.

Other typical jazz harmonic patterns also appear in these models. For instance the tritone

substitution – a principle according to which a dominant 7th chord may be replaced by

another dominant 7th chord whose root is a tritone away from its root – is most frequently

used in the context of IImin7-V7-I which becomes IImin7-bII7-I, a pattern that we found in

several models:

[ local coverage: jazz=5/5=1; academic=0; popular=0 ]

... IImin7 bII7 ...

[ local coverage: jazz=5/5=1; academic=0; popular=0 ]

... bII7 Imaj7 ...
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Popular music harmony tends to have simpler harmonic rules, or even tends to be defined

by the absence of the other rules that characterise academic music and jazz. This is natural as

melody is predominant in this style.

The system is also able to find rules spanning longer time periods that a human might not

spot easily, due to the arbitrary-sized gaps they contain:

[ local coverage: academic=89/90=0.99; jazz=0; popular=1/90=0.01 ]

... II7 Vmaj ... Imaj V7 ...

which is a modulation to the dominant, followed eventually by a return to the tonic

key.

On subgenres the system extracts rules such as the following characterising blues:

[ local coverage: blues=38/40=0.95; Celtic=0; pop=2/40=0.05 ]

... I7 IV7 ...

which is part of a typical 12-bar blues progression.

Working from audio data, even though the transcriptions are not fully accurate, the

classification and rules still capture the same general trends as for symbolic data.

5 . 4

Conclusions

In this chapter we showed that it is not only possible to automatically discover patterns

in chord sequences which characterise a corpus of data but also to use such models as

classifiers. This was made possible by the ILP decision tree induction algorithm TILDE

which we used to build both single decision trees and random forests. We presented a new

and more expressive representation scheme of harmonic sequences based on context-free

definite-clause grammars that allowed chord sequences of any length to coexist in the same

model, allowed uninteresting sequences to be skipped with the use of gaps, but also allowed

context information, such as key, to be captured. Our experiments, on several 2-, 3- and 9-
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genre classification problems, found that the more musically meaningful Degree & Category

representation gave better classification results than using root intervals, or degree alone, while

not increasing the complexity of the models or the computation times which remain low. All

results are significantly above the baseline, but performance clearly decreases for more difficult

tasks. The results using transcription from audio data were encouraging in that although some

information was lost in the transcription process, the classification results remained well above

the baseline, and thus this approach is still viable when symbolic representations of the music

are not available. On both symbolic and audio data the best results were reached with Random

Forests which outperform the single decision trees and came on par with a n-gram approach

applied to the same dataset. Our logic-based models however were more flexible and could

discover and capture complex chord patterns that n-grams could not, or that even humans

might not spot easily.

Perfect classification is not to be expected from harmony data, since other aspects of

music such as instrumentation (timbre), rhythm and melody are also involved in defining and

recognising musical genres. Additionally the audio used in these experiments was synthesised

from MIDI, which might have an effect on the classification results. Nevertheless, the positive

results of the experiments described in this chapter encouraged further experiments that will

tackle those two limitations. In the next chapter we will integrate a state-of-the-art genre

classification system, employing signal-based timbre, rhythm and melody features, with the

current harmony-based classification approach, and test whether the addition of a harmony

feature could improve genre classification on real (and not synthesised) audio data.
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6 . 1

Introduction

In this chapter we take a different approach and instead of testing if harmony can be used

alone to model genres as we did in Chapter 5, we consider it as being only one feature of

a larger classification framework. We propose the combination of a state-of-the-art statistical

genre classifier based on timbral features with harmony- and logic-based random forest models

resulting from the work presented in Chapter 5, in an effort to improve on genre classification

performance using the chord sequences as an additional source of data. To our knowledge no

attempt to integrate signal-based features with high-level harmony descriptors has been made

in the literature.

The outline of the chapter is as follows. In Section 6.2, a standard state-of-the-art

classification system, its signal-based features, together with the fusion procedure to integrate

the harmony models are described. Section 6.3 presents the datasets used for both training and

testing of the framework together with data post-processing. Section 6.4 assesses and discusses

the performance of the proposed fused classifier against the standard classifier. Conclusions

are drawn in Section 6.5.

6 . 2

Combining Audio and Harmony-based Classifiers

In this section, we describe the standard state-of-the-art classification system we employed in

our experiments in combination with the harmony-based classifier previously described. Its

extracted features are listed in Section 6.2.1, the feature selection procedure is described in

Section 6.2.2 and finally the fusion procedure is explained and the employed machine learning

classifiers are presented in Section 6.2.3.
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6.2.1 Feature Extraction

In feature extraction, a set of vectors is computed to describe aspects of an audio recording

(Tzanetakis and Cook, 2002). Extracting features is the first step in pattern recognition

systems, since any classifier can be applied afterwards. In most genre classification experiments

the extracted features belong to 3 categories: timbre, rhythm, and melody (Scaringella et al.,

2006). For our experiments, the feature set proposed in (Benetos and Kotropoulos, 2010) was

employed, which contains timbral descriptors such as energy and spectral features, as well as

pitch-based and rhythmic features, thus being able to accurately describe many aspects of the

audio signal. The complete list of extracted features can be found in Table 6.1.

Table 6.1: Extracted Features

Feature # Values per segment

Short-Time Energy (STE) 1× 4 = 4

Spectral Centroid (SC) 1× 4 = 4
Spectral Rolloff Frequency (SRF) 1× 4 = 4
Spectral Spread (SS) 1× 4 = 4
Spectral Flatness (SF) 4× 4 = 16
Mel-frequency Cepstral Coefficients (MFCCs) 24× 4 = 96
Spectral Difference (SD) 1× 4 = 4
Bandwidth (BW) 1× 4 = 4

Auto-Correlation (AC) 13
Temporal Centroid (TC) 1
Zero-Crossing Rate (ZCR) 1× 4 = 4
Phase Deviation (PD) 1× 4 = 4

Fundamental Frequency (FF) 1× 4 = 4
Pitch Histogram (PH) 1× 4 = 4

Rhythmic Periodicity (RP) 1× 4 = 4

Total Loudness (TL) 1× 4 = 4
Specific Loudness Sensation (SONE) 8× 4 = 32

Total number of features 206

The feature related to the audio signal energy is the Short-Time Energy (STE). Spectral

descriptors of the signal are the Spectral Centroid (SC), Spectral Rolloff Frequency (SRF),

Spectral Spread (SS), Spectral Flatness (SF), Mel-frequency Cepstral Coefficients (MFCCs),

Spectral Difference (SD) – also known as spectral flux – and Bandwidth (BW). Temporal

descriptors include the Auto-Correlation (AC), Temporal Centroid (TC), Zero-Crossing

Rate (ZCR), and Phase Deviation (PD). As far as pitch-based features are concerned, the

Fundamental Frequency (FF) feature is computed using maximum likelihood harmonic

matching, while the Pitch Histogram (PH) describes the amplitude of the maximum peak

of the folded histogram (Tzanetakis et al., 2003). The Rhythmic Periodicity (RP) feature
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was proposed in (Pampalk et al., 2004). Finally, the Total Loudness (TL) feature and the

Specific Loudness Sensation (SONE) coefficients are perceptual descriptors which are based

on auditory modeling.

All in all, 206 feature values are extracted for each sound recording. For the computation of

the feature vectors, the descriptors are computed on a frame basis and their statistical measures

are employed in order to result in a compact representation of the signal characteristics. To be

specific, their mean and variance are computed along with the mean and variance of the first-

order frame-based feature differences over a 1 sec texture window. The same texture window

size was used for genre classification experiments in (Tzanetakis and Cook, 2002). Afterwards,

the computed values are averaged for all the segments of the recording, thus explaining the

factor 4 appearing in Table 6.1. This is applied for all extracted features apart from the AC

values and the TC, which are computed for the whole duration of the recording. In addition,

it should be noted that for the MFCCs, 24 coefficients are computed over a 10 msec frame

(which is a common setting for audio processing applications), while 8 SONE coefficients are

computed over the same duration – which is one of the recommended settings in (Pampalk

et al., 2004).

6.2.2 Feature Selection

Although the 206 extracted features are able to capture many aspects of the audio signal, it is

advantageous to reduce the number of features through a feature selection procedure in order

to remove any feature correlations and to maximise classification accuracy in the presence of

relatively few samples (Scaringella et al., 2006). One additional motivation behind feature

selection is the need to avoid the so-called curse of dimensionality phenomenon (Burred and

Lerch, 2003).

In this work, the selected feature subset is chosen as to maximise the inter/intra class ratio

(Fukunaga, 1990). The aim of this feature selection mechanism is to select a set of features

that maximises the sample variance between different classes and minimises the variance for

data belonging to the same class, thus leading to classification improvement. The branch-

and-bound search strategy is employed for complexity reduction purposes, being also able to

provide the optimal feature subset. In the search strategy, a tree-based structure containing

the possible feature subsets is traversed using depth-first search with backtracking (van der

Hedjen et al., 2004).

For our experiments, several feature subsets were created, containingΘ = {10, 20, . . . , 100}

features. In Table 6.2, the subset for 10 selected features is listed, where it can be seen that
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Table 6.2: The subset of 10 selected features.

No. Selected Feature

1. Variance of 1st order difference of 7th SONE
2. Variance of BW
3. Mean of SD
4. Variance of PH
5. Mean of 7th MFCC
6. Variance of 5th MFCC
7. Mean of SS
8. Variance of 1st order difference of 9th MFCC
9. Variance of FF
10. Variance of 1st order difference of 1st SONE

Audio files

Chords

Low-level signal-
based features

Harmony 
feature

Genre 
classification

Training 
database

Harmony 
rules

Figure 6.1: Block diagram of the genre classifier

the MFCCs and the SONE coefficients are some of the most discriminative features.

6.2.3 Classification System

Figure 6.1 represents the steps that are performed to build our genre classification system. The

proposed classifier combines the extracted and selected features presented in Sections 6.2.1

and 6.2.2 with the output of the harmony-based classifier described in Chapter 5. Considering

the extracted feature vector for a single recording as v (with lengthΘ) and the respective output

of the harmony-based classifier as r = 1, . . . , C, where C is the number of genre classes, a

combined feature vector is created in the form of v′ = [v r]. Thus, the output of the harmony-
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based classifier is treated as an additional feature used, along with the extracted and selected

audio features, as an input to the learning phase of the overall genre classifier.

Two machine learning classifiers were employed for the genre classification experiments,

namely Multilayer Perceptrons (MLPs) and Support Vector Machines (SVMs). For the MLPs,

a 3-layered perceptron with the logistic activation function was utilized, while training was

performed with the back-propagation algorithm with learning rate equal to 0.3 for 500 training

epochs, with momentum equal to 0.1. A multi-class SVM classifier with a 2nd order polynomial

kernel with unit bias/offset was also used (Schölkopf et al., 1999). The experiments with the

aforementioned classifiers were conducted on the training matrix V′ = [v′1 v′2 · · · v′M], where

M is the number of training samples.

6 . 3

Datasets

To run our final genre classification from audio experiments we decided to use two datasets

common employed in the literature for genre classification experiments. Firstly, the GTZAN

database was used, which contains 1000 audio recordings distributed across 10 music genres,

with 100 recordings collected for each genre (Tzanetakis and Cook, 2002). All recordings

are single channel, are sampled at 22.05 kHz rate and have a duration of approximately 30

sec. The second dataset that was used was created for the ISMIR 2004 Genre Classification

Contest (ISMIR, 2004). It covers 7 genre classes with varying number of audio recordings

per classes. The duration of the recordings is also not constant, ranging from 19 seconds to

14 minutes. The recordings were sampled at 22kHz rate and were converted from stereo to

mono.

As for training the harmony features we chose to use the Perez-9-genres Corpus that was

used in Chapter 5, as we already knew what sort of models we could get from it and how well

they were performing genre classification by themselves. As shown in our previous experiments

presented in Section 5.3.3, audio-trained models outperformed symbolic-trained models when

used on audio data, so we used the synthesised audio version of the Perez-9-genres Corpus.

From those three datasets we extracted and grouped classes so that we could have a

common taxonomy over all datasets made of 3 classes: classical, jazz/blues and rock/pop. From

the 10 genre classes of the GTZAN dataset, 3 were selected for the experiments, namely the
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classical, jazz, and pop classes (with 100 recordings each). In the ISMIR04 dataset 3 were

used: classical (319 recordings), jazz/blues (26 recordings), and pop/rock (102 recordings).

Finally we re-organised the Perez-9-genres Corpus into the following three classes, in order

to train our harmony-based classifier on classes that match the testing dataset’s classes:

classical (the full classical dataset from the Perez-9-genres Corpus, i.e. all the files from its 3

sub-classes), jazz/blues (a class grouping the blues and the 3 jazz subgenres from the Perez-

9-genres Corpus) and pop (containing only the pop sub-class of the popular dataset from the

Perez-9-genres Corpus). Thus we do not use the celtic subgenre.

6 . 4

Experiments

6.4.1 Training Results

We first simultaneously train our random forest classifier and estimate the best results it could

obtain on clean and accurate transcriptions by performing a 5-fold cross-validation on the

restricted and re-organised symbolic and synthesised audio dataset we created from the Perez-

9-genres Corpus (cf. Section 6.3). The resulting confusion matrices are given in Table 6.3 and

Table 6.4. The columns correspond to the predicted music genres and the rows to the actual

ones. The average accuracy is 84.8% for symbolic data, and 79.5% for the synthesised audio

data, while the baseline classification accuracies are 55.6% and 58%, when attributing the most

probable genre to all the songs. The classifiers detects the classical and jazz/blues classes very

well but only correctly classifies a small number of pop songs. We believe that this is due to

the shortage of pop songs in our training dataset, combined with the unbalanced number of

examples in each class: the jazz set is twice as large as the classical set which in turn is twice

as large as the pop set. Performance of these classifiers on real audio data will be presented in

Section 6.4.2.

6.4.2 Testing on Real Audio Data

Secondly the harmony-based classifier (trained on both the re-organised symbolic and syn-

thesised audio Perez-9-genres datasets) was tested on the two audio datasets. The results are

shown in Tables 6.5, 6.6, 6.7 and 6.8. For the GTZAN dataset, the classification accuracy
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Table 6.3: Confusion matrix (cumulative results over the 5 folds of the cross-validation) for the
harmony-based classifier applied on the classical-jazz/blues-pop restricted and re-organised
version of the Perez-9-genres Corpus (symbolic dataset).

Real/Predicted classical jazz/blues pop Total

classical 218 15 1 234
jazz/blues 9 407 2 418
pop 26 61 13 100

Total 253 483 16 752

Table 6.4: Confusion matrix (cumulative results over the 5 folds of the cross-validation) for the
harmony-based classifier applied on the classical-jazz/blues-pop restricted and re-organised
version of the Perez-9-genres Corpus (synthesised audio dataset).

Real/Predicted classical jazz/blues pop Total

classical 181 20 1 202
jazz/blues 34 373 1 408
pop 31 57 5 93

Total 246 450 7 703

using the harmony-based classifier is 41.67% (symbolic training) and 44.67% (synthesised

audio training), while for the ISMIR04 dataset it is 57.49% (symbolic training) and 59.28%

(synthesised audio training). These results are not very impressive: on the ISMIR04 dataset

they are lower than the baseline (71.36%), while for the GTZAN dataset they are just above

the baseline (33.3%). This however does not mean that as an additional feature in a larger

classifier, our harmony models can not help improve the classification accuracy. This is what

we will investigate in the remainder of this chapter.

Like for synthesised audio in Chapter 5, when tested on real audio data, the classifiers

trained on symbolic data obtain worse results than the ones trained on synthesised audio

data. Given these results we will use the classifier trained on synthesised audio data in the

experiments merging the harmony-based and the audio feature based classifiers.

Table 6.5: Confusion matrix for the harmony-based classifier trained on symbolic data and
applied on the GTZAN dataset.

Real/Predicted classical jazz pop Total

classical 38 47 15 100
jazz 19 72 9 100
pop 24 61 15 100

Total 81 180 39 300

Then experiments using the SVM and MLP classifiers with 5x5-fold cross-validation were

performed using the original extracted audio feature vector vwhich does not include the output
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Table 6.6: Confusion matrix for the harmony-based classifier trained on synthesised audio data
and applied on the GTZAN dataset.

Real/Predicted classical jazz pop Total

classical 59 39 2 100
jazz 21 70 9 100
pop 22 73 5 100

Total 102 182 16 300

Table 6.7: Confusion matrix for the harmony-based classifier trained on symbolic data and
applied on the ISMIR04 dataset.

Real/Predicted classical jazz/blues pop/rock Total

classical 207 34 78 319
jazz/blues 8 10 8 26
pop/rock 47 15 40 102

Total 262 59 126 447

Table 6.8: Confusion matrix for the harmony-based classifier trained on synthesised audio data
and applied on the ISMIR04 dataset.

Real/Predicted classical jazz/blues pop/rock Total

classical 233 61 25 319
jazz/blues 9 16 1 26
pop/rock 27 59 16 102

Total 269 136 42 447

of the harmony-based classifier. First these classifiers were tested on the synthesised Perez-

9-genres Corpus which is described in Section 5.2.3. The full set of 206 audio features was

employed for classification. For the SVM, classification accuracy is 95.56%, while for the MLP

classifier, the classification accuracy is 95.67%. While classification performance appears to be

very high compared to the harmony-based classifier for the same data, it should be stressed

that the Perez-9-genres dataset consists of synthesised MIDI files. These files use different sets

of synthesised instruments for each of the 3 genres, which produce artificially high results when

a timbral feature-based classifier is employed.

Finally, experiments comparing results of the SVM and MLP classifiers with and without

the output of the harmony-based classifier (trained on synthesised audio data) were performed

with the various feature subsets on the SVM and MLP classifiers using 5x5-fold cross-

validation. The average accuracy achieved by the classifiers using 5x5-fold cross-validation

for the various feature subset sizes using the GTZAN dataset is shown in Figure 6.2, while

the average accuracy for the ISMIR04 dataset is shown in Figure 6.3. In Table 6.9 the best
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Figure 6.2: Classification accuracy for the GTZAN dataset using various feature subsets.

accuracy achieved for the various feature subsets and classifiers is presented. The SVM-H and

MLP-H classifiers stand for the standard feature set v (without harmony), while the SVM+H

and MLP+H classifiers stand for the feature set v′ (with harmony).

Table 6.9: Best mean accuracy achieved by the various classifiers for the GTZAN and ISMIR04
datasets using 5x5-fold cross-validation.

Classifier GTZAN Dataset ISMIR04 Dataset

SVM-H 88.66% (60 Features) 93.77% (70 Features)
SVM+H 91.13% (50 Features) 95.30% (80 Features)
MLP-H 87.19% (60 Features) 91.45% (90 Features)
MLP+H 87.53% (60 Features) 91.49% (Full Feature Set)

For the GTZAN dataset, the highest classification accuracy is achieved by the SVM+H

classifier using the 50 feature subset, reaching 91.13% accuracy. The MLP classifiers fall

behind the SVM classifiers for most feature subsets, apart from the subsets containing 70,

80, or 90 features. For the ISMIR04 dataset, the highest accuracy is also achieved by

the SVM+H classifier, reaching 95.30% classification accuracy, for the 80 feature subset.

The SVM-H classifier reaches 93.77% for the same subset. In most cases, the SVM+H

and MLP+H classifiers display increased classification rates over the SVM-H and MLP-H
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Figure 6.3: Classification accuracy for the ISMIR04 dataset using various feature subsets.

classifiers, respectively. There are however some cases where the classification rate is identical,

for example for the MLP classifiers using the 60 features subset for the ISMIR04 dataset.

In order to compare the performance of the employed feature set with other feature

sets found in the literature, the extracted features from the MARSYAS (Tzanetakis, 2007)

toolbox were employed, which contain the mean values of the spectral centroid, spectral

rolloff, spectral flux, and the mean values of 30 MFCCs for a 1sec texture window. Results

on genre classification using the MARSYAS feature set with 5x5-fold cross-validation on both

datasets and using the same classifiers (SVM, MLP) and their respective settings can be seen

in Table 6.10, where it can be seen that for the MLP classifier, the classification accuracy

between the MARSYAS feature set and the employed feature set is roughly the same for both

datasets. However, when the SVM classifier is used, the employed feature set outperforms

the MARSYAS features by at least 3% for the GTZAN case and 4% for the ISMIR04 set. It

should be noted however that no feature selection took place for the MARSYAS features.

Insight into the performance of the best cases of the various classifiers using both datasets

is obtained from the confusion matrices determined for each classifier run of the 5-fold cross-

validation. The confusion matrices using the best SVM-H and SVM+H classifiers for the

GTZAN and ISMIR04 datasets are presented in Tables 6.11, 6.12, 6.13 and 6.14. For the
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Table 6.10: Mean accuracy achieved by the various classifiers for the GTZAN and ISMIR04
datasets, using the MARSYAS feature set and 5x5-fold cross-validation.

Classifier GTZAN ISMIR04

SVM 85.66% 91.51%
MLP 85.00% 91.96%

GTZAN dataset most misclassifications occur for the pop class, in both cases. However,

the SVM+H algorithm rectifies some misclassifications of the pop class compared to the

SVM-H classifier. For the ISMIR04 dataset, most misclassifications occur for the jazz/blues

class for both classifiers. Even for the SVM+H classifier, when taking normalized rates, the

jazz/blues class suffers the most, having only 63.58% correct classification rate. It should be

noted though that the SVM+H classifier has 6 more jazz/blues samples correctly classified

compared to the SVM-H one. The classical class on the other hand, seems largely unaffected

by misclassifications.

Table 6.11: Confusion matrix for one 5-fold cross validation run of the SVM-H classifier
applied on the GTZAN dataset using the 60 selected features set.

Real/Predicted classical jazz pop Total

classical 97 3 0 100
jazz 8 91 1 100
pop 3 19 78 100

Total 108 113 79 300

Table 6.12: Confusion matrix for one 5-fold cross validation run of the SVM+H classifier
applied on the GTZAN dataset using the 50 selected features set.

Real/Predicted classical jazz pop Total

classical 97 3 0 100
jazz 8 90 2 100
pop 3 10 87 100

Total 108 103 89 300

Table 6.13: Confusion matrix for one 5-fold cross validation run of the SVM-H classifier
applied on the ISMIR04 dataset using the 70 selected features set.

Real/Predicted classical jazz/blues pop/rock Total

classical 319 0 0 319
jazz/blues 10 11 5 26
pop/rock 12 1 89 102

Total 341 12 94 447
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Table 6.14: Confusion matrix for one 5-fold cross validation run of the SVM+H classifier
applied on the ISMIR04 dataset using the 80 selected features set.

Real/Predicted classical jazz/blues pop/rock Total

classical 317 0 2 319
jazz/blues 6 17 3 26
pop/rock 7 3 92 102

Total 330 20 97 447

Concerning the statistical significance of the improvement in results due to the use of the

proposed feature vector v′ compared to the performance of the standard feature vector v, the

McNemar test (McNemar, 1947) was employed, which is applied to 2x2 contingency tables

for a single classifier run. We consider the cases exhibiting the highest classification rates, as

shown in Table 6.9. For the GTZAN dataset, the SVM-H classifier using the 60 feature set is

compared against the SVM+H classifier using the 50 feature set. For the ISMIR04 dataset,

the SVM-H classifier using 70 features is compared against the SVM+H classifier using 80

features. The contingency tables for the GTZAN and ISMIR04 datasets are respectively:264 10

2 24

 and

416 10

3 18

 (6.1)

The binomial distribution is used to obtain the McNemar test statistic, where for both cases

the null hypothesis (the difference between the two classifiers is insignificant) is rejected with

95% confidence.

6.4.3 Discussion

This improvement of the classification results might come as a surprise when one considers

that the harmony-based classifier by itself does not perform sufficiently well on audio data.

However, harmony is only one dimension of music which despite being relevant for genre

identification can not capture by itself all genres’ specificities. We believe that the classification

improvement lies in the fact that it covers an aspect of the audio-signal (or rather of its musical

properties) that the other (low-level) features of the classifier do not capture.

In order to justify that the combination of several features improves classification accuracy

even when each feature’s classification accuracy is lower than the baseline, the mean of the

5th MFCC was employed as an example feature. 5-fold cross-validation experiments were

performed on the GTZAN and ISMIR04 datasets based on this single feature using SVMs.

Results indicated that classification accuracy for the GTZAN dataset was 31.33%, while for the

ISMIR04 dataset it was 71.36%, both of which are below the baseline. However the feature,
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being one of the selected ones, when combined with several other features manages to report

a high classification rate as shown in Section 6.4.2. Thus, the inclusion of the output of the

harmony-based classifier, while being lower than the baseline by itself, still manages to provide

improved results when combined with several other descriptors. In order to compare the

addition of the harmony-derived classification to the feature set with an additional feature,

the Total Loudness (TL) was added into the SVM-H classifier using the 70 features subset (TL

is not included in the set). Using the GTZAN dataset for experiments, classification accuracy

for the 70 features subset is 82%, while adding the TL feature it increased by 0.66%, where the

performance improvement is lower compared to the harmony-based classifier addition (which

was 1.66%).

6 . 5

Conclusions

In this chapter, an approach for automatic music genre classification was proposed, combining

low-level features with a first-order logic random forest based on chord transitions and built

using the Inductive Logic Programming algorithm TILDE. Three-class genre classification

experiments were performed on two commonly used datasets, where an improvement was

reported for both cases when the harmony-based classifier was combined with a low-level

feature set, using support vector machines and multilayer perceptrons. The combination of

these low-level features with the harmony-based classifier produces improved results despite

the fact that the classification rate of the harmony-based classifier is not sufficiently high

by itself. For both datasets when the SVM classifier was used, the improvement over the

standard classifier was found to be statistically significant when the highest classification rate

is considered. All in all, it was shown that the combination of high-level harmony features with

low-level features can lead to genre classification accuracy improvements and is a promising

direction for genre classification research.
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In this chapter we summarise the experiments and findings described throughout the thesis

(Section 7.1). We then share our conclusions and answers to our research questions (Section

7.2), and go on to suggest directions for future research to expand on this work (Section 7.3).

7 . 1

Summary

In this thesis we have explored how to characterise music leveraging the expressiveness

and characterisation power of both logic and harmony. Throughout our experiments we

developed, refined and tested a harmony-based Inductive Logic Programming framework for

characterisation and classification of musical styles.

We first experimented in Chapter 4 with the concept of a logic-based representation of

harmony combined with logical inference of characterisation models on symbolic data using

as inference system Aleph (Srinivasan, 2003).

Our objective was to characterise the harmony of the 180 songs featured on the Beatles’

studio albums (Harte’s transcriptions) and of 244 jazz standards from the Real Book. We

analysed manually annotated chord data available in Resource Description Framework format

giving us access to the root, bass and component intervals of the chords and keys. We pre-

processed these data to obtain chord category (e.g. major, minor, suspended), degree (e.g.

tonic, dominant) and intervals between chords, before passing them to Aleph which extracted

the underlying harmony rules. For computational reasons we focused on characterising only

the chord sequences of length 4 in these corpora.

We ran comparison experiments using the chord sequences of one corpus as positive

examples and those of the other as negative examples. We also independently characterised

each dataset, but instead of the built-in positive examples only mode (the system generates

random negative examples) we preferred the one negative example mode that we developed,

providing to the system one impossible example as the only negative example. Aleph models

the positive examples in a sufficient and non-redundant way. This is one of the advantages of

our method against the purely statistical one employed on the same datasets by Mauch et al.

(2007).

Varying the form of the rules we extracted with this framework a total of 3667 harmony

rules characterising the Real Book songs and the Beatles music. Encouragingly some of these
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rules cover well-known pop or jazz harmonic patterns such as the I-IV-I-V pattern (for the

Beatles) and ii-V-I-IV and the “turnaround” pattern I-VI-II-V (for the Real Book). It was

also possible to identify patterns specific to the Beatles such as the extensive use of major

chords (the predominant maj-maj-maj-maj pattern) and the cyclic patterns (e.g. I-IV-V-I-IV...)

characterising their early compositions.

Focusing on fixed-length chord sequences constrained the search space, leading to

short computation times, but also meant that the patterns were limited in both size and

content. However our attempts at using a less constraining representation with independent

descriptions of each chord, linking the chords only with a ‘predecessor’ predicate proved to

be impossible in a reasonable amount of time with Aleph.

To overcome this knowledge representation difficulty, in Chapter 5 we moved on to a

context-free definite-clause (CFDC) grammar representation. We encoded pieces of music

as lists of chords, adopted a difference-list representation, and combined them with the

concept of gaps of unspecified length between sub-sequences of interest. As a consequence

we obtained a new flexible representation scheme that allows us to look at patterns of chord

sequences of any length located anywhere in the music and even themselves containing gaps.

In Chapter 4 the evaluation of the performance of the characterisation was qualitative. In

Chapter 5 classification replaced pure characterisation to serve as a quantifiable measure of

our method. We applied the ILP decision tree induction algorithm TILDE, which builds first-

order decision trees which are equivalent to ordered sets of rules. As such CFDC grammars

can be represented in this formalism and TILDE used to induce CFDC grammars.

The classification data consisted of 856 pieces of music in both symbolic and synthesised

audio format containing three genres further subdivided into nine subgenres (Perez-9-genres

Corpus). On these we considered the 3-way classification problem and all the 2-way

classification problems on the main genres. In addition we studied the 3-way classification

problem dealing with popular music subgenres (blues, Celtic and pop music) and the 9-way

classification problem dealing with all the subgenres at once. We adapted our algorithm

from the symbolic to the audio domain using a state-of-the-art chord transcription algorithm

(Mauch, 2010).

A first round of experiments tested all the harmonic chord characteristics defined in

Chapter 4. They showed that the representation merging degree and chord category performs

genre classification statistically significantly better than the other representations. In all tasks

it got a higher accuracy, correctly classifying 83.4% in the main genres case when the other
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harmonic representations only reached around 70%. In the most difficult case of the 9-

subgenre classification, it was the only one to even successfully run all cross-validation folds,

while still scoring much better than the baseline (54.2% vs. 20.8%). More importantly, despite

being a composite descriptor, it built less complex models in shorter computation times,

leading us to conclude that it best captures the harmonic properties of genres. We also showed

that these findings agree with musicological considerations.

The second round of experiments showed that audio data classification, although less

performant due to transcription inaccuracies still reaches satisfying levels. Applying the models

trained on symbolic data to audio displayed poor results, where models specifically trained on

audio returned 70.4% accuracy on the 3 genre classification, while reaching 46.3% on the 9

subgenre one.

While the first experiments were using single decision trees, we then explored random

forests to improve classification results. With 30 trees without further tuning, we obtained

higher results : on symbolic data 87.7% (3 genres) and 59.6% (9 subgenres), and on synthesised

audio data 76.1% and 49.4%.

Finally we compared the random forest implementation against the state-of-the-art n-

gram algorithms of the dataset creators. We found equivalent results, outperforming them

on symbolic data where the n-grams scored 87% (3 genres) and 51% (9 genres), while the

opposite was true on synthesised audio data: 82% and 58% for the n-grams.

After showing similar performance, we detailed several rules highlighting the added value

of our approach over n-grams. For instance we found simple and well-known rules such as

the backdoor progression (IVmin7 - bVII7 going to I) known in jazz, but also some spanning

longer sequences not easily spotted by human beings due to their internal gaps (e.g. II7 -

Vmaj ... Imaj - V7).

In Chapter 6 we first took our random forest models from Chapter 5 trained on the

Perez-9-genre Corpus and tested them on real (i.e. not synthesised) audio files from the

GTZAN and ISMIR 2004 Genre Classification Contest datasets. On real audio as well,

the synthesised audio trained models outperformed the symbolic trained models. And yet

tests of the synthesised audio models on real audio data yielded unimpressive results: 44.67%

(GTZAN) and 59.28% (ISMIR 2004) on a three-way classification involving the genres

classical, jazz/blues and pop/rock.

Harmony is only one dimension of music, and hence cannot capture all genres’ specificities.

However it covers some that are left out by established low level features usually employed
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in state-of-the-art genre classifiers. That is why we integrated our harmony and logic based

random forest models in such a state-of-the-art genre classifier. The original classifier follows

the typical bag-of-features paradigm. It describes the audio content by means of 206 timbral,

pitch-based and rhythmic features, on which we performed feature selection. The harmony

random forests models were integrated as an additional feature after this selection. We worked

with two established statistical classifying algorithms: Multilayer Perceptrons and Support

Vector Machines. This new enriched classifier showed on both datasets and both algorithms

an increased accuracy compared to the regular one, even reaching statistical significance in the

SVM case: from 88.66% (without harmony) to 91.13% (with harmony) on the GTZAN, and

from 93.77% (without harmony) to 95.30% (with harmony) on ISMIR 2004. The performance

improvement turned out to be three times higher than when extending the feature set by one

signal-based feature.

7 . 2

Conclusions and Answers to Research Questions

As this summary shows, we have investigated and answered our research questions across

multiple chapters. We provide here the conclusions we reached for each one of them, also

highlighting the core contributions of this thesis.

RQ1: How can logic and in particular ILP support music characterisation? How can musical

properties be represented and extracted?

In ILP knowledge representation is relational. One of the key relational concepts in

music is time, for instance scores express, among other things, the temporal chaining

between musical events. ILP can capture their succession, using for instance predecessor and

successor predicates (specifying that a term follows another) or lists which are intrinsically

ordered. ILP enables then a representation of music close to the musical score. Furthermore,

logical truths in the studied domain can be encoded as background knowledge in ILP,

and as part of the mining process they are applied to the data. This can be seen as a data

preprocessing or analysis step to extract a higher level understanding of the data. It is akin

to a musicological analysis of scores in our case. In the specific case of the work of this

thesis, the score is a list of chords (similar to chords in a lead sheet or tab), the background
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knowledge contains chords properties such as root and bass note, category and degree

as well as relations between successive chords such as interval between their root notes.

Therefore in the induction phase, the ILP system, reasoning on these basic facts, extracts

higher-level harmonic models based on chord properties instead of the bare chords themselves.

RQ2: Is it possible to leverage harmony’s descriptive and expressive power to characterise music

automatically? To what extent can harmony be used by itself to characterise styles?

Based on the observations made in Chapter 1 and the statistical work of Mauch et al.

(2007), we reduced harmony to its most descriptive component: chord sequences. We

experimented with several chord properties to represent those chord sequences. We discovered

that the one combining both degree and chord category led to the best classification accuracy,

the least complex models (fewer rules) and the fastest computation times. All this was achieved

despite it being the richer representation (composite characteristic). This result was a notable

discovery of this thesis as tonality (necessary to compute a chord degree) is very seldom

employed in harmony-based genre classification.

As for characterising styles, our thesis work determined that, on symbolic or synthesised

audio data, harmony-only models achieve results comparable to a state-of-the-art n-gram

approach. However these models do not perform adequately on real audio data. Nevertheless,

this thesis work introduces the idea of combining ILP generated harmony models as additional

features to standard signal-based and statistical genre classifiers. We furthermore proved the

additional high-level dimension statistically significantly improves the classification accuracy.

RQ3: Which representation schemes are suited to represent harmony and in particular chord

sequences in ILP?

The harmony representation established in this work is our most noteworthy contribution.

Unlike common representations of chord progressions, we produced a variable- and arbitrary-

length representation of chord sequences, interspersed with gaps of unspecified length. We

implemented a Context-Free Definite-Clause grammar representation which we integrated in

the ILP software TILDE through a difference list paradigm. The gaps allowed us to capture

musicological patterns spanning across an entire piece of music, while non fixed lengths added

more freedom in the discovery of meaningful patterns. This scheme not only reproduces the

human harmonic pattern analysis, but potentially extends its reach with patterns harder to

identify manually.
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RQ4: Which induction algorithms can best extract logic rules from Harmony?

As far as fixed length chord progressions are concerned, the Inverse Entailment software

Aleph achieved fast lightweight computation but did not scale to the richer variable-length

representations. The decision-tree induction algorithm TILDE overcame this difficulty

by computationally supporting our CFDC grammar design. The most satisfying results,

competing with statistical algorithms, were obtained when taking advantage of multiple

decision trees at once in the ensemble method Random Forests.

RQ5: How can characterisation accuracy be evaluated?

We approached the evaluation both qualitatively and quantitatively. This work delivered a

succinct musical analysis of the generated rules, identifying well known chord sequences and

patterns in various genres for all experiments supporting our approach. In doing so we made

available several databases of rules, both for fixed- and variable-length sequences. Generated

on three datasets, this type of database could help musicologists in their harmony analysis of

genres and composition styles.

Classification, as a binary task, provided a quantitative measure of the discriminative power

of our characterisation. We performed extensive numerical studies evaluating the rigour, the

limitations and the accuracy of our approach, providing, we hope, a solid basis for future

research building on our findings.

7 . 3

Directions for Future Research

During the course of this thesis work, several research ideas for extensions and applications of

this work have emerged. We share here a selection of them as potential directions for future

research.

7.3.1 Further Developments of our Approach

There are various ways in which our harmony and ILP based approach to music characterisa-

tion could be expanded or further refined.

One shortcoming of the Random Forests is their complexity. The models comprising
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several decisions trees are more difficult to comprehend than single decision trees (which

can be represented as simple sets of rules). Hence if by using them we increased the

classification accuracy of our models we also reduced their characterisation power. The

difficulty of getting a human-readable description of the models when involving more than one

tree has been addressed by Van Assche and Blockeel (2007). Using a method that they called

RISM (standing for Relational Interpretable Single Model) they successfully approximated an

ensemble of trees with a single interpretable tree capturing the same information, “retaining

some of the accuracy gains of the ensemble, while providing a model that keeps most of the

comprehensibility of a single model directly learned on the data”. We could not test the RISM

algorithm as it was not yet publicly available at the time but believe it is a promising technique

for turning our more accurate random forests into interpretable models.

Automatically generated rules from examples may still not yet be on the same foot as rules

tailored by experts, closer to a musician’s understanding of harmony. We believe that extending

the simple representation of harmony as a list of chord symbols, with the introduction of

deeper harmonic concepts such as voice leading, would help capture other important aspects

of harmonic style. It seems to us that inductive approaches like ours are still using simplistic

representations of harmony, while the neighbouring domain of computational models of

harmony applies their rich expert models to small hand-picked examples. Examples of such

rich models can be found in the seminal work of Steedman (1984) as well as in more recent

studies such as (Bergeron, 2010; de Haas, 2012; Mearns, 2013; Granroth-Wilding, 2013). A

long-term plan would be to merge the strong points of both these branches of research.

Moreover harmony is only one dimension of music. As we have shown studying the case of

harmony, ILP relational representation makes it possible to capture the temporality of musical

events as a score would do, while the background knowledge inherent to ILP systems ensures

that a pre-analysis of the musical data is performed and that the final models incorporate

higher-level musical properties. The same approach could be applied to other musicological

concepts requiring a preprocessing step consisting of a musical analysis of score-like data, such

as rhythmic, melodic or musical structure concepts. Exploring those other musical facets, as

well as combining several of them in such a framework could lead to powerful characterisation

models. We imagine such a multi-faceted ILP system could induce rules such as this one:

IF 12_bar_structure(X) AND blues_scale(X) AND syncopation(X) THEN blues(X)

where X is a piece of music.

Chapter 6 showed the advantages of combining a logic-based approach with a statistical

one. We believe that combinations of relational and statistical or probabilistic approaches
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could be further explored in order to model for instance uncertainty or simultaneity. Hence

one could extend our genre classification framework to perform multi-label classification.

We would recommend tapping into the fields of Statistical Relational Learning (Getoor and

Taskar, 2007) and Probabilistic Inductive Logic Programming (De Raedt et al., 2008), which

have been concerned with the development of such hybrid induction methods, to replace our

traditional relational decision trees and random forests.

Furthermore the MIR community has recently been focusing on large-scale datasets to

ensure algorithms realistically scale to the size of commercial music databases (Bertin-Mahieux

et al., 2011). In our case, we could not only extend our work to experiments on large-scale

audio datasets, but could also like Macrae (2012) tap into “the data deluge that is the web”

by collecting online large quantities of free crowd-sourced tabs and lead sheets, and running

large-scale tests of our characterisation approach on them.

7.3.2 Potential Applications of our Work

We envision several applications for our work, some of which build on initial experiments we

performed ourselves.

Exploiting the flexible chord progression representation we introduced in this thesis,

we have already demonstrated a simple query-by-chord-sequence system at the SIGMUS

workshop 2009 in Tokyo (Anglade et al., 2009a). Implemented in Prolog it tapped directly

into the list representations of the pieces of music and the background knowledge built for our

9 genre experiments and was deployed on the Perez-9-genre dataset. Here is a description of

that query system from (Anglade et al., 2009a):

“Through a friendly interface the user can query chord sequences of any length, specifying

for each chord either the root note, the category, the degree or a combination of these. One

extreme but admissible example of chord sequence to query is: [A7 IV B Vmin]. Sequences

containing gaps such as [Amin G7 ... C9 ... Emaj7] are also allowed. Depending on

the task the coverage of a chord sequence on each genre/subgenre or on only one given

genre can be looked at. The name of the music pieces and the precise location of the chord

sequence in the piece can be displayed if required. The user can also specify if he wants to

consider only pieces in a given mode (major or minor).”

We believe such a query system could become an assisting tool for musicologists who would

want to explore a dataset and collect statistics and examples of chord patterns they have in

mind.
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Similarly the human-readable sets of rules generated by our experiments in Chapter 4,

5 and 6 could be further analysed by musicologists to identify and discover chord sequences

characterising the Beatles and the various genres we have studied. A small project could consist

in building an interface to facilitate their browsing.

Moreover, as harmonic modelling has proven to be useful for search and retrieval purposes

(Pickens et al., 2002), we could further extend the query system presented above to support

querying by symbolic or audio examples, placing our own models of harmony at the core of

the retrieval process. We imagine the resulting meta-query system could then support queries

going both directions (from examples to characteristic chord sequences and vice versa) but

also retrieving similar music pieces based on their harmonic properties.

Lastly we believe our approach could have several automatic recommendation applications.

Indeed as pointed out in Section 1.1.1, the transparency and expressiveness of first-order logic

is very suitable for automatic recommender systems. Moreover harmony can be an interesting

and innovative approach to recommend music.

One obvious way of using harmony in recommender systems would be to recommend chord

progressions to a composer who wants to write in some particular style. As they are now our

models of genres are not generative since they contain gaps of unspecified length. They can

however be used to support the composition process by identifying parts of characteristic chord

progressions and suggesting the chords that would complement them to the composer.

Another recommendation application would be to embed a chord progression clustering

algorithm in an e-learning program for guitarists. As a side research project, we have

contributed to Hotttabs, a multimedia guitar tutor (Barthet et al., 2011). It makes use of

the vast amount of guitar tabs and lead sheets available online to provide guitarists with scores

of recent popular songs. One of its key features is for each song to retrieve many tablatures

and cluster them by difficulty, making it easier for users to pick one that matches their skills

or one that would help them learn new, more difficult chord progressions. As it is now the

clustering is only based on the size of the chord vocabulary on each tablature. We would like

to extend it to clusters of tabs that share similar chord sequences, allowing the user to easily

identify differences in styles, such as the ones found in cover songs or arrangements to other

musical genres, expanding their guitar learning experience.

Finally since harmony captures some elements of style we believe that even for a casual user

who does not necessarily know much about harmony, browsing, recommending and playlisting

music collections based on their frequent chord sequences could be a new and interesting way
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of discovering or rediscovering music.
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