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ABSTRACT 
ATP-Binding-Cassette (ABC) transporters are primary active pumps that typically couple the 

binding and hydrolysis of ATP to the translocation of compounds across cellular membranes. 

Some, like ABCB1, ABCC1 and ABCC3, are polyspecific and can efflux clinically important drugs 

which may contribute to their therapeutic failure.  

In this study I have investigated (1) the mechanism of ABC transporter function, (2) studied 

the potential for regulation by ubiquitin ligases (both using ABCB1 as a model), and (3) tested 

the involvement of ABCC1 and ABCC3 in autocrine signalling in cancer. (1) In 1966, Jardetzky 

et. al [1] proposed that membrane pumps function by exposing their ligand-binding pocket 

alternately on different sides of the membrane. For ABC transporters, this coupling of the 

aspect and affinity of the ligand-binding cavities of the two transmembrane domains (TMDs) 

to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the 

transport mechanism but is poorly understood at the molecular level. Structure data suggest 

signals are transduced through intracellular loops of the TMDs which slot into grooves on the 

top surface of the NBDs. At the base of these grooves is the Q-loop. By analysing the function 

of Q-loop mutants in combination with ligand binding cavity mutants I have discovered that 

the Q-loops are crucial to the transport cycle and that they are required to couple ligand 

binding to conformational changes at the NBDs necessary to drive the transporter into an 

inward closed state.  
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(2) ABCB1 is known to be a key component of chemical barrier separating the circulation from 

the cerebrospinal fluid. It has also been reported to transport β-amyloid across the lumenal 

membrane and into the circulation. Loss of ABCB1 from the barrier with age has therefore 

been suggested to play a role in Alzheimer’s Disease. The ubiquitin ligase Nedd4-1 has been 

implicated in the post-translational regulation of ABCB1 abundance in cells. Here, I report that 

ABCB1 can be ubiquitinated by Nedd4-1 in vitro and identify the residues modified (by mass 

spectrometry).  

(3) Lysophosphatidylinositol (LPI) is an autocrine metabolite produced by cancer cells that 

binds to the G-protein coupled transmembrane receptor GPR55 on the surface of cells. 

Stimulation of GPR55 activates a signalling cascade that induces proliferation and metastases 

of the cancer cells. How LPI is released from the cells was not known. In this study I show that 

ABCC1 and ABCC3, which are known to be expressed in ovarian and pancreatic cancers, can 

transport LPI into inside-out vesicles suggesting a new role for these “drug resistance” 

transporters in cancer biology. 
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1.1.   Transport ATPases 
 

Transport ATPases comprise four distinct classes; P-, F- & V-type and ABC transporters [2]. 

The history of transport ATPases reach back to 1957 with the discovery of the P-type 

Na⁺/K⁺ ATPase [3]. The P-type ATPases are a large group of ion and lipid pumps which are 

vital for life. The P-type ATPases, also known as E1-E2 ATPases, are named from the 

covalent phosphorylated intermediate in their reaction cycle which makes this class distinct 

from the other transport ATPases [4]. The reason they are also described as E1-E2 ATPases 

is because they all appear to switch between two different conformations, denoted by E1 

and E2. In E1, the pump has high affinity for the exported substrate and low affinity for the 

imported substrate and vice versa in E2. The prominent examples of P-type ATPases are; 

Na⁺/K⁺-ATPase, H⁺-ATPase, H⁺/K⁺ ATPase, Ca²⁺ ATPase [5].     

The F-type ATPases (also called F₀F₁ ATPases) are found in bacteria, chloroplasts and in the 

inner mitochondrial membrane in eukaryotes and do not generally function as ATPases but 

mainly as ATP synthases. They synthesize ATP in the electron transport chain reaction in 

eukaryotes. The F₀ domain is embedded in the membrane and F₁ domain is the soluble 

portion [6]. Proton flux across the membrane is necessary to drive the synthesis of ATP 

from ADP by F-type ATPases. ATP synthesis by F-type ATPases can be reversed and, 

especially in bacteria, ATP hydrolysis can be performed to provide a proton gradient.   

The V-type ATPases are found in intracellular vacuoles and lysosomes of eukaryotic cells 

and these ATPases are named in reference to vacuolar localization but can also be found in 

the plasma membrane of prokaryotes and eukaryotic cells. The V-type ATPases are proton 

pumps and they play a variety of roles in pH homeostasis and proton-coupled transport. 
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They comprise 14 protein subunits arranged in two domains, the V0 and the V1 domain. 

The V0 domain is the membrane embedded domain which is responsible for proton 

translocation across the membrane, whereas the V1 domain is the cytoplasmic domain 

which is responsible for ATP hydrolysis [7]. 

The ATP-binding cassette (ABC) transporters were first coined in 1991 to describe this 

superfamily’s most conserved feature, the ATP binding domains [8]. The ABC transporters 

transport a wide range of ligands that are important for cellular functions. The transport 

direction of ABC transporters varies from bacteria to humans. In bacteria, there are both 

importers and exporters whereas there appear to be only exporters in humans. 

 

 1.2.   ATP-binding cassette (ABC) Transporter 

Proteins 
 

The first characterized ABC transporters were binding protein dependent transporters of E. 

coli [9, 10]. Bacteria have both importer and exporter ABC transporters. All species of 

bacteria use a large number of ABC transporters to obtain essential nutrients and to efflux 

metabolic products and toxins [8]. The bacterial ABC transporter research is important for 

humans because some of the ABC transporters in bacteria can function to form resistance 

against antibiotics. For example, the ABC transporter MsrA causes erythromycin resistance 

of Staphylococcus [11]. 
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In humans, only the ABC exporter class is found [12]. There are 49 human ABC transporter 

genes encoding 42-44 ABC transporter complexes. Phylogenetic analysis has allowed the 

human ABC gene superfamily to be divided into seven subfamilies, entitled A to G [13].  The 

typical ABC transporter contains two Nucleotide Binding Domains (NBD) which are highly 

conserved across the superfamily and two Transmembrane Domains (TMD) which are not 

necessarily conserved throughout the superfamily; but all of the human TMDs are related. 

Distinct from the other classes, most of the ABCC class ABC transporters have a third 

additional transmembrane domain at the amino terminus (TMD0) [14]. There are also half-

transporters which only contain one NBD and one TMD and they need to form dimers to 

function [12]. Some ‘half-transporters’ form heterodimers to function, which is why the 

gene count for ABC transporters is greater than the transporter number.  

Some of the human ABC exporters are very specific for particular ligands but some are poly-

specific for multiple ligands and those generally protect the body from exotoxins and can 

therefore cause resistance to multiple therapeutic drugs. 

 

1.3.   Multidrug Resistance 
 

Multidrug resistance (MDR) is referred to as the resistance of pathogenic microorganisms 

against distinct antimicrobials and also the resistance of tumour cells against antineoplastic 

drugs in humans. MDR in tumour cells can be an ATP dependant mechanism which is due 

to the overexpression of certain types of ABC transporter proteins. In 1973, Dano et al. 

demonstrated the active efflux of daunomycin from MDR tumor cells [15]. Further studies 

on MDR provided the discovery of ABCB1 in 1976 [16], the first described ABC protein in 

humans. ABCB1 causes resistance against a wide range of drugs.  In 1992, ABCC1 was 
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discovered in a small cell lung carcinoma cell line which was resistant to anthracyclines [17] 

and ABCC2, another ABCC class MDR protein, was identified in 1995 while searching for the 

hereditary defect of the hepatobiliary excretion of anionic conjugates by transport-

deficient mutant rat hepatocytes [18]. ABCC3 which has common ligands with ABCC1 was 

described in 1997, together with ABCC4 and ABCC5 by a search of the human expressed 

sequence tag database [19]. ABCC1, ABCC2 and ABCC3 have an extra N-terminal 

transmembrane domain (TMD0) which is specific to ABCC class proteins. Another ABC MDR 

protein was also described by the search of the human expressed sequence tag database in 

1996 and its gene was mapped to Chr4q22 [20]. This protein was described in 1998 in an 

anthracycline-resistant human breast cancer cell line and is a half-transporter with a single 

NBD at the N-terminus followed by a single TMD which is today known as ABCG2 [21]. From 

these MDR proteins, ABCB1, ABCC1 and ABCC3 will be discussed in this thesis (Please see 

Table 1.1 for ABC MDR proteins).  

Human ABC Transporter Family Multidrug Resistance Proteins 

Nomenclature Common Alias Domain sequence References 

ABCB1 P-glycoprotein, MDR1 TMD-NBD-TMD-NBD [22, 23] 

ABCC1 MRP1 TMD-TMD-NBD-TMD-NBD [17, 24, 25]  

ABCC2 MRP2 TMD-TMD-NBD-TMD-NBD [26] 

ABCC3 MRP3 TMD-TMD-NBD-TMD-NBD [27] 

ABCC4 MRP4 TMD-NBD-TMD-NBD [28] 

ABCC5 MRP5 TMD-NBD-TMD-NBD [29] 

ABCG2 BCRP, MXR, ABCP NBD-TMD [12] 
 

Table 1.1: Multidrug resistance ABC transporters and their domain sequences. 
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1.4.   ABCB1 
 

Currently, four full transporters including ABCB1 and seven half transporters have been 

identified in the ABCB transporter class which is the only human ABC transporter class to 

have both types of transporters [13]. 

1.4.1.   Introduction to ABCB1 
 

The function of ABCB1 (P-glycoprotein), the main subject of this thesis, was first described 

by Dano et al. in 1973 by the discovery of active export of daunomycin by drug resistant 

Ehrlich ascites tumor cells. These cells were resistant to anthracyclines and also some other 

chemotherapeutic agents such as vinca alkaloids [15]. Later, in 1976, Juliano and Ling 

identified a 170 kDa protein in drug-resistant Chinese hamster ovary cell membranes and 

termed it P-glycoprotein (phosphoglycoprotein) [16]. In 1982, Debenham et al. suggested 

that P-glycoprotein was correlated to the multidrug resistance phenotype of mouse L cells 

[30] and in 1986, P-glycoprotein was shown to be the product of the multidrug resistance 

(MDR1) gene (later to be renamed ABCB1) [22, 23].  



22 
 

 

Figure 1.1: ABCB1 2D model. ABCB1 consists of two halves, each comprising one NBD and 

one TMD, connected by a linker region. In the first extracellular loop, ABCB1 has three N-

glycosylation residues.    

 

The ABCB1 (MDR1) gene is located on Chromosome 7q21.12 and has 29 exons, 27 of which 

are coding. The ABCB1 product is 1280 amino acids long and consists of four domains: two 

TMDs and two NBDs, arranged as two homologous halves connected by a short, 

phosphorylated, linker region. Each half has one TMD followed by one NBD (Figure 1.1 and 

Figure 1.2). 
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Figure 1.2:  ABCB1 homologue mouse Abcb1a in an inwardly open state (left hand side, 
pdb ID 3G60), ABCB1 homologue S. aureus Sav1866 in outwardly closed (nucleotide (ADP) 
bound) conformation (right hand side, pdb ID 2HYD). 

 

1.4.2.   Regulation of ABCB1 
 

1.4.2.a.   Transcriptional Level  

 

The ABCB1 gene has 11 different transcripts, 10 of which are alternatively spliced mRNAs 

and 1 is the unspliced form. From these 11 mRNAs, 2 were shown to be expressed at the 

protein level producing 1280 and 1216 amino acid proteins. Both of the two protein 

encoding mRNAs have 29 exons and they differ from each other by truncation of the 5' end 

or the 3' end, various splicing of 3 exons and/or splicing or retention of one intron. The 

mRNA encoding the full length protein (1280 amino acids) (hereafter referred to as ‘the 

first mRNA’) has 2 exons in the 5' end region before the common exons start whereas the 

mRNA encoding the 1216 amino acid protein (hereafter referred to as ‘the second mRNA’) 

has 3. The reason for this is the second intron of the second mRNA is not spliced and is 

conserved within the second exon of the first mRNA. Other than this, the 7th exon of the 
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first mRNA is spliced in the second mRNA forming the 7th intron of the second mRNA and 

29th exons of each mRNA are different than each other (Figure 1.3) 

(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&term=ABCB1&su

bmit=Go, accessed on 15.08.2014). 

 

Figure 1.3: Comparison of two ABCB1 expressing mRNAs. The full-length, 1280 amino acid 

protein synthesizing mRNA (upper figure) has same number of exons as the 1216 amino 

acid synthesizing mRNA (lower figure).   

 

Research on ABCB1 regulation has shown that hypomethylation of CpG sites in the 

promoter region of ABCB1 gene is important for its expression. Demethylating agent 5-

azadeoxycytidine (5aC) activated the ABCB1 promoter to allow detection of mRNA levels 

[31, 32].  The two most likely ways that DNA methylation can affect the transcription levels 

of genes are direct physical prevention of transcription proteins binding to the DNA or the 

attraction of methyl-CpG-binding domain proteins which can then attract additional 

proteins to the site, such as histone deacetylases that can modify histones and form 

heterochromation. It has been established that methyl-CpG binding protein 2 (MeCP2) is 

involved in methylation-dependent silencing of human ABCB1 [33]. In the repressed state 

the ABCB1 promoter is embedded in chromatin enriched with MeCP2 and deacetylated 

histone. Histone deacetylase inhibitor trichostatin A (TSA) induces significant acetylation of 

histones H3 and H4 but did not activate transcription. However, 5aC induced DNA 

demethylation leads to the release of MeCP2, promoter acetylation, and partial relief of 

repression. ABCB1 expression is significantly increased following combined 5aC and TSA 
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treatments [33]. These data suggest that both methylation of DNA and acetylation of 

histones have roles in ABCB1 regulation with the former being more important than the 

latter. Another study has suggested that ABCB1 expression is strongly regulated via mRNA 

stability [34]. Up-regulation of ABCB1 mediated by mRNA stability does not appear to result 

in immediate protein expression but requires prolonged drug exposure. However, a further 

study has demonstrated that ABCB1 up-regulation is regulated by transcriptional activation 

in a very low level ABCB1 expressing acute T-cell leukemia cell line; CEM-Bcl2 and also in 

the high level ABCB1 expressing colon carcinoma cell line; SW620 [35]. In the CEM-Bcl2 

cells ABCB1 is also regulated by mRNA stability. 

Pregnane X receptor (PXR), which is also known as steroid and xenobiotic sensing nuclear 

receptor (SXR), is a transcriptional regulator of the cytochrome P450 gene CYP3A4 which is 

important in the metabolism of xenobiotics. PXR binds to the response element of the 

CYP3A4 promoter as a heterodimer with retinoid X receptor (RXR) to induce CYP3A4 

activation and it is activated by several ligands including dexamethasone and paclitaxel 

[36]. It has recently been found that PXR can also regulate ABCB1 [37].  This common 

transcriptional regulator in the CYP3A4 and ABCB1 regulation systems supports the 

potential coordination of two xenobiotic handling systems (metabolism and efflux). ABCB1 

has also been shown to be regulated by vitamin D response elements (VDREs) located 

between -7880 and -7810 basepairs upstream of the promoter region, providing binding 

sites for vitamin D receptor (VDR)/retinoid X receptor α (RXRα) heterodimers. In a 1α, 25-

dihydroxyvitamin D₃ mediated manner, VDR/RXRα binding to VDREs has been shown to 

induce ABCB1 expression [38]. A forkhead transcription factor, FOXO3a which binds to the 
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proximal promoter region of ABCB1 was later shown to induce ABCB1 expression in K562 

leukemic cells at protein, mRNA and gene promoter levels [39].  

1.4.2.b.   Post-translational Level 

 

i.   Glycosylation 

In eukaryotes and archaea, N-Linked glycosylation usually occurs at asparagine (Asn) 

residues in Asn-X-Ser/Thr sequons where X cannot be proline (Pro) [40]. ABCB1 has ten 

putative N-glycosylation sites, only three of which are extracellular. The three extracellular 

sites, the only ones that will be exposed to glycosyltransferases in the E.R. lumen, reside in 

the first extracellular loop at asparagine residues 91, 94, and 99 and all three are 

glycosylated [41]. N-glycosylation has been shown to have no role in the transport function 

of ABCB1, because glutamine substitutions of the relevant asparagines have no impact on 

ligand transport. However, N-glycosylation has an effect on the protein, either improving 

ABCB1 trafficking to membrane or stabilizing it [41]. Later, it has been suggested that 

unglycosylated ABCB1 results in a fraction of the protein being improperly folded and 

degraded by the proteasome although the protein expressed at the cell surface remains 

functional [42]. Another study supported these findings via inhibition of glycosylation by 

tunicamycin, which inhibits the addition of N-linked oligosaccharide chains in the E.R., and 

which was shown to increase ubiquitination and turnover of ABCB1 [43].  
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ii.   Phosphorylation 

ABCB1 is phosphorylated at serines (Ser) 661, 667, 671, 675 and 683, all of which reside in 

the linker region [44]. The linker region of ABCB1 is 75 amino acids long and connects the 

two homologous halves of the protein. Deletion of this central core has no effect on ABCB1 

expression levels but the protein is no longer functional [45]. Ser661, Ser667 and Ser671 

can be phosphorylated by protein kinase C (PKC) and Ser667, Ser671 and Ser683 can be 

phosphorylated by cyclic AMP dependent protein kinase (protein kinase A, PKA) [46]. 

Previously, by using protein kinase C inhibitors like staurosporine and calphostin C that 

inhibit ABCB1 phosphorylation, ABCB1 ligands were observed to accumulate inside the 

cells. These results suggested that phosphorylation has a role in ABCB1 function [47, 48]. 

However, Germann et al. and Goodfellow et al., in 1996 found that phosphorylation might 

not be important for ABCB1 transport function. They substituted the phosphorylated five 

serine residues with alanine or aspartic acid residues and showed that non-

phosphorylatable ABCB1 is still fully functional and that the presence of neutral or charged 

residues in these positions had no effect on function [49, 50]. The limitation of this study is 

in the selection of wild-type or mutant ABCB1 expressing cell lines with long 

chemotherapeutic agent exposure. In 1999, Castro et al. showed that protein kinase C 

inhibitors that interfere with ABCB1 function compete with transport ligands to bind and 

inhibit ABCB1 function [51]. The role of phosphorylation and why phosphorylation is 

condensed in the linker region is unclear but it was suggested that phosphorylation might 

affect ABCB1 half-life or substrate specificity but further study revealed phosphorylation 

has no role in protein half-life via the ubiquitination-proteasome degradation pathway [43].  
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iii.   Ubiquitination 

ABCB1 has a half-life of 14 to 17 hours and is considered as a relatively stable protein, at 

least in the four different human and hamster multidrug resistant cell lines used [52]. 

ABCB1 is subject to ubiquitination-proteasomal degradation that does not involve the 

lysosome in ABCB1 turnover [43]. Ubiquitin is a small 8.5 kDa protein (76 amino acids long) 

found in almost all tissues in eukaryotic organisms [53]. The linkage is formed between the 

carboxyl group of the C-terminal glycine (Gly76) in ubiquitin and the ԑ-amino group of 

lysine in the substrate protein [54]. Ubiquitination of a protein can trigger the 26S 

proteasome degradation cascade or endocytosis of the protein. Ubiquitination requires 

three types of enzymes; the ubiquitin activating enzyme E1, the ubiquitin-conjugating 

enzyme E2 and an ubiquitin E3 ligase which catalyses the binding of ubiquitin to the target 

protein [55]. ABCB1 is shown to interact with the E3 ligase FBXO15, by co-

immunoprecipitation and siRNA knock-down studies in human colorectal cancer cells HCT-

15 and SW620 [56]. Ubiquitination of ABCB1 by the E3 ligase Nedd4-1 was tested in the 

course of my study and is reported in chapter 4 of this thesis. 

 

1.4.3.   Structure of ABCB1 
 

1.4.3.a.   The Nucleotide Binding Domain Structure and Its Relevance to 

ATP Catalysis 

 

The NBDs show extensive amino acid sequence similarity throughout the ABC superfamily. 

Each NBD has two subdomains termed the core subdomain and the α-helical subdomain. 

The protein fold of the core subdomain is similar to the equivalent domains of other 

transport ATPases and includes highly conserved motifs called the Walker A and Walker B 
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motifs found in many ATPases and also the A-, D-, Q- and H- loops that are unique to ABC 

transporters. Also unique to ABC transporters, is the ABC signature motif which is a feature 

of the α-helical subdomain. Two ATP molecules bind between the two NBDs in an 

arrangement referred as the ‘ATP sandwich dimer’ (Figure 1.4) [57]. This dimer forms two 

ATP binding pockets between the Walker A, Walker B, Q- and H- loops of one NBD and the 

D-loop and ABC signature motif of the other NBD [58, 59]. A complex communication web 

is formed between these motifs and the bound ATPs, some parts of which remain to be 

elucidated [60, 61]. From the high resolution structures of bacterial NBDs, it is evident that 

the Walker A and Walker B motifs make the most significant contacts to the bound 

nucleotides. The glutamate residue in the Walker B motif is also known as the catalytic 

carboxylate and it is located near the γ phosphate of the ATP molecule. Single mutations of 

the Walker B glutamate residues (i.e. replacing the glutamate in either NBD1 or NBD2) 

inactivate the protein. The A-loop (also known as the stacking aromatic) stacks with the 

adenine ring of the nucleotide [62]. The D-loop of one NBD is hydrogen bonded to the 

peptide backbone of the Walker A motif of the second and provides a coordinating residue 

that interacts with the γ phosphate of ATP through a water molecule or through the 

divalent cation which is important for hydrolysis [63, 64]. The Q-loop has also been shown 

to interact with ATP attacking water molecule [63] though it is later contradicted [65, 66]. 

The Q-loop links the core subdomain and the α-helical subdomain of the NBDs, and also 

lines the base of a groove into which intracellular loops of the TMDs insert. This interaction 

is likely to be important for the conformational changes required for ligand transport and 

the structural data on isolated NBDs in the apo and ATP-bound forms suggest that the Q-

loop acts like a flexible hinge. To bind nucleotide in the ATP sandwich dimer conformation, 

the α-helical subdomains are proposed to rotate around the Q-loops to contact nucleotide 
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that is bound by the core subdomain of the apposed NBD [60]. This is likely to be coupled 

to conformational changes of the TMDs to couple ligand binding to distinct NBD 

conformations and vice versa, but this needs to be investigated further and it is the subject 

of chapter 3 of this thesis. 

 

Figure 1.4: ‘ATP sandwich dimer’ showing the conserved motifs converging at the NBD-
NBD interface. A model of the human ABCB1 homologue Sav1866 structure (pdb ID 
2HYD) is viewed from above with the TMDs hidden for clarity. Well-conserved residues of 
the NBDs are indicated in different colors. Nucleotide (2x ADP) bound at the interface of 
the two NBDs are shown in stick format. 
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1.4.3.b.   The Transmembrane Domains 

 

The TMDs are not necessarily homologous in all ABC transporters although all of the human 

ABC transporters are likely to have a common ancestral TMD. The TMDs are often 

important in ligand selection of a particular ABC transporter. ABCB1 has been described as 

a ‘hydrophobic vacuum cleaner’ in 1990 because it transports a wide range of hydrophobic 

and amphipathic ligands, effluxing them directly from the lipid bilayer [67]. The TMDs of 

ABCB1 form the transport ligand binding site(s) [68]. As mentioned above, ABCB1 

comprises two homologous halves, each with one TMD and one NBD. When ABCB1 was 

first cloned and sequenced, its internal duplication was suggested to be important in giving 

rise to two distinct ligand binding sites (one per TMD) thereby increasing the range of 

transported ligands [69]. However, biochemical and structural data suggest that the 

situation is more complicated [68, 70-72]. By X-ray crystallography, Aller et al. (2009) 

showed that the ABCB1 homologue, mouse Abcb1a, can bind two ligands (actually 

stereoisomeric inhibitors of the transporter, QZ59-RRR and QZ59-SSS) at the same time but 

at the interface formed between the two TMDs. QZ59-RRR was found to bind to a central 

site and QZ59-SSS bound to two different sites (both of which overlap with the QZ59-RRR 

binding site) of a large ligand binding cavity formed by the TMDs  [70]. The transported 

ligands of the ABCB1 vary greatly in size and for the small ligands to bind to this large cavity 

and induce the transport cycle, a cholesterol fill-in model has been proposed. In this model, 

which also explains the dependency of ABCB1 on cholesterol, cholesterol occupies the 

empty space in the ligand binding cavity of ABCB1 when small ligands bind [73].  

Each ABCB1 TMD has 6 transmembrane helices which extend from the membrane into the 

cytoplasm. The TMDs cross the membrane as two bundles of transmembrane helices 
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(TMH); each bundle comprises helices from both TMDs. The TMDs are thought to change 

conformation in order to bind and transport ligand and this movement is coupled to ATP 

binding and hydrolysis. In the crystal structure model of mouse Abcb1a which is nucleotide-

free and in an inwardly open conformation, TMH 1, 2, 3 and 6 of TMD1 cross the 

membrane in association with TMH 10 and 11 of TMD2, and the remaining helices of 

TMD1, TMH 4 and 5, cross the membrane with TMH 7, 8, 9 and 12 of TMD2 (Figure 1.5). In 

the nucleotide bound, inwardly-closed S. aureus Sav1866 structure (an ABCB1 homologue), 

TMH 1 and 2 of TMD1 cross the membrane with TMH 9, 10, 11 and 12 of TMD2, while 

TMD2 TMH 7 and 8 cross with TMH 3, 4, 5 and 6 of TMD1 (Figure 1.6).  Thus assuming that, 

these two structures represent different intermediates in the transport cycle, two TMH 

from one TMD and four TMH from the other, form a helical bundle, and the TMH content 

of the bundles changes during the transport cycle.  
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a. 

 

b. 

 

Figure 1.5: ABCB1 homologue mouse Abcb1a (pdb ID 3G60); top down view (a. NBDs are 
removed for clarity) and side view (b.) TMD1; yellow, TMD2; magenta, NBD1; green, 
NBD2; cyan. TMH 1, 2, 3 and 6 of TMD1 cross the membrane with TMH 10 and 11 of 
TMD2. TMH 7, 8, 9, 12 of TMD2 cross the membrane with TMH 4 and 5 of TMD1. 
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a. 

 

b. 

 

Figure 1.6: ABCB1 homologue S. aureus Sav1866 (pdb ID 2HYD); top-down view (a. NBDs 
are removed for clarity) and side view (b.) TMD1; yellow, TMD2; magenta, NBD1; green, 
NBD2; cyan. TMH 1 and 2 of TMD1 cross the membrane with TMH 9, 10, 11 and 12 of 
TMD2. TMH 7 and 8 of TMD2 cross the membrane with TMH 3, 4, 5 and 6 of TMD1. 
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1.4.4.   ABCB1 Transport Mechanism 
 

1.4.4.a.   Interdomain Communication 

 

Communication between the TMDs and NBDs is suggested by the X-ray structure data [57] 

to be mediated by the four, long, intracellular loops of the TMDs. The first two intracellular 

loops (ICL); ICL1 and ICL2 belong to the first TMD and ICL3 and ICL4 extend from the second 

TMD. The first intracellular loops of both TMDs (ICL1 and ICL3) contact the NBDs directly 

below the TMD (NBD1 and NBD2, respectively) whereas the second ICLs of each TMD cross 

over to contact the apposed NBDs (Figure 1.7). Thus ICL4 from TMD2 sits in the groove on 

the top surface of NBD1 alongside ICL1 from TMD1, and the second ICL of TMD1 (ICL2) 

interacts in a similar manner on the top surface of NBD2 alongside ICL3 of TMD2. 

Importantly, the Q-loop motifs of the NBDs are at the base of the grooves occupied by ICL2 

and ICL4 (the latter is shown on Figure 1.7) [74].  
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Figure 1.7: Human ABCB1 homologue S. aureus Sav1866 (pdb ID 2HYD) showing the 
conformational relationship between the Q-loop in NBD1 and intracellular loop 4 (ICL4) 
of TMD2. Interface view of NBD1 from NBD2. During conformational changes ICL4 of 
TMD2 should sit in the groove formed in NBD1 between the α-helical and the core 
subdomains which are linked by the Q-loop. The side chain of the glutamine of Q-loop is 
shown in red stick. Other motifs are indicated. ADP is also in stick format. 
 

Using molecular dynamics simulations, Becker et al. (2009) have suggested two different 

possible NBD to TMD communication pathways [75]. The first potential communication 

pathway starts from the adenine ring of the nucleotide which is in contact with the NBD 

stacking aromatic residue of the A-loop. From the aromatic residues of NBD1 the signal 

would be conducted to ICL1 of TMD1 and then to ICL4 of TMD2 (the pathway would flow 

through ICL3 of TMD2 and ICL2 of TMD1 when initiated from the aromatic residue of 

NBD2). The second possible pathway starts from the ATP phosphates and from there, the 

signal communicates directly with the Q-loop motif of the same core subdomain, or via the 

Q-loop of the apposed NBD via the ABC signature motif of the apposed NBD. From the 
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NBD1 or NBD2 Q-loop, the energy would flow through ICL4 of TMD2 or ICL2 of TMD1, 

respectively [75]. The same group also suggests that the Q-loop is important for triggering 

signal transduction from the NBDs following dissociation of nucleotide [76]. These 

molecular modelling studies need to be tested by biochemical studies. Signal transduction 

pathways within ABCB1 are explored in chapter 3 of this thesis. 

 

1.4.4.b.   ATP Catalysis, NBD: TMD Signal Transduction and the Transport 

Cycle 

 

Exactly when and how ATP binding and hydrolysis is coupled to ligand transport is still 

debated. Among the different transport cycle models, the ‘ATP switch model’ arguably fits 

best to the biochemical and structural data [77]. In this model, ABCB1 has a low affinity for 

ATP and a high affinity for ligand binding in its basal state (Figure 1.8). Ligand binds to the 

high affinity ligand binding cavity of the inwardly-open transporter from the inner leaflet of 

the membrane [75] and triggers the transport cycle. Ligand binding to the TMDs must 

trigger signal transduction to the NBDs, otherwise ATP binding and hydrolysis would occur 

independently from ligand transport and ABCB1 would perform futile ATP hydrolysis cycles 

[78]. Utilization of fluorescent nucleotide derivatives has shown that ligand binding 

increases the affinity of nucleotides to the transporter up to 4 fold [79]. In the ATP switch 

model the next step is the nucleotide binding which in this model considered the power 

stroke of the transport cycle. By binding nucleotide, the NBDs change conformation and 

form the inwardly-closed dimer state, the ATP sandwich dimer [58, 61]. The study of Martin 

et al. has shown that binding of ATP analogues results in a decreased affinity for transport 

ligand which suggests that binding of the nucleotide rather than its hydrolysis is enough for 

the transporter to export its ligands [80]. Vanadate (Vi) trapping and subsequent cross 
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linking of 8-azido-ADP to the protein has shown that ABCB1 displays low affinity for 

vinblastine when 8-azido-ADP and Vi are bound to mimic the post hydrolytic state, but the 

high-affinity ligand binding is restored upon dissociation of phosphate [81]. Disulphide 

cross-linking between transmembrane helices has also shown that ATP binding results in 

ABCB1 conformational change and its subsequent hydrolysis and dissociation resulted in 

further distinct conformational changes presumably to reset the transporter back to its 

basal state [82]. Nevertheless, it is theoretically possible that different power strokes may 

result in transport of different ligands and the three steps in ATP catalysis (ATP binding, 

hydrolysis and ADP/Pi release), may reconfigure the binding sites for different ligands at 

different stages. 
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Figure 1.8: Cartoon of the ATP switch model. ABCB1 is in a high-affinity ligand binding 
state in its basal state (top). When the ligand binds (right), it turns into a high-affinity 
nucleotide binding state and binds two molecules of ATP which results in conformational 
change and ligand dissociation (bottom). Nucleotide hydrolysis and product (Pi then ADP) 
release returns the protein back to its inwardly open basal state. Orange elliptical shape 
represents TMD1 and purple elliptical shape represents TMD2, green shape represents 
NBD1 and cyan shape represents NBD2 and dark red hexagon symbolizes transport 
ligand. 
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Today, there is clear evidence that the closed dimer conformation adopted by the NBDs 

induces conformational changes in the TMDs that result in ligand export [82-85] but there 

is still little evidence to show how ATP hydrolysis is triggered. There might be 

communication from the TMDs to the NBDs after ligand dissociation to induce catalysis or 

another possibility is the autohydrolysis of the nucleotides following formation of the ATP 

sandwich dimer. Even though the details of the ATP catalysis is not known, hydrolysis itself 

does not appear to be sufficient to restore the basal state of the transporter [86]. The 

observation that vanadate can replace Pi and can trap the protein in the ADP bound state, 

suggests that Pi dissociates before ADP. The ADP-vanadate trapped conformation retains a 

low affinity for ligand [87], therefore only after Pi and ADP dissociate sequentially, is the 

protein likely to return to the inwardly open basal state and restore the high-affinity ligand 

binding cavity. 

 

1.4.5.   Functions of ABCB1 
 

ABCB1 is widely expressed on many cell types, but is particularly abundant in the adrenal 

gland and especially in the adrenal cortex (http://biogps.org/#goto=genereport&id=5243, 

accessed on 15.08.2014). Other expression sites include the apical membranes of epithelial 

cells of liver, intestine and kidney [88]. ABCB1 is also found on barrier-function sites like the 

blood-brain barrier [89], the blood-testis barrier [90], the blood-inner ear barrier [91] and 

the maternal-foetal barrier [92] forming a protective shield against drugs and exotoxins. Its 

function can also be detrimental by inducing multidrug resistance against 

chemotherapeutic agents [12]. Other than multidrug resistance there is no known 

pathological condition related to altered ABCB1 expression or function [13]. 
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1.4.5.a.   Transported Ligands 

 

ABCB1 is a multidrug transporter protein which deserves its ‘Hydrophobic Vacuum Cleaner’ 

description [93]. ABCB1 can transport a wide range of ligands, which are generally 

nonpolar, amphipathic compounds, including anticancer drugs, antibiotics, steroids, linear 

and cyclic peptides (Table 1.2). 
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     ABCB1 Transport Ligands, Inducers and Inhibitors 

Transported Ligands Inducers of Expression Inhibitors of Transport 

Anticancer Agents 

Actinomycin D   

Daunorubicin Daunorubicin  

Doxorubicin Doxorubicin  

Etoposide Etoposide  

Paclitaxel   

Teniposide   

Vinblastine Vinblastine Vinblastine 

Antihypertensive agents 

Diltiazem Diltiazem Diltiazem 

Losartan   

Anti-arrhythmics 

Digoxin   

Verapamil Verapamil Verapamil 

Antimicrobial agents 

Erythromycin Erythromycin Erythromycin 

Itraconazole  Itraconazole 

Ketoconazole  Ketoconazole 

Levofloxacin   

Rifampicin Rifampicin  

Anti- HIV agents 

Indinavir Indinavir  

Anticonvulsants 

Phenobarbital Phenobarbital  

Phenytoin Phenytoin  

Anti-emetics 

Ondansetron   

H₂ antagonists 

Cimetidine   

Immunosuppressants 

Cyclosporine Cyclosporine Cyclosporine 

Tacrolimus Tacrolimus Tacrolimus 

Valspodar  Valspodar 

Neuroleptics 

Chloropromazine  Chloropromazine 

Steroid hormones 

Aldosterone   

Cortisol  Cortisol 

Dexamethasone Dexamethasone  

  Progesterone 

Phospholipid Messenger 

Platelet-activating Factor (PAF)   
 

Table 1.2: Selected ABCB1 transport ligands, inducers of ABCB1 expression and inhibitors 
of transport (References; [94-96]).  
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1.4.5.b.   Physiologic Role 

 

i.   Lipid Signalling and Transport of Platelet Activating Factor 

Platelet activating factor (PAF, acetyl-glyceryl-ether-phosphorylcholine) is an important 

signal transmitter, as a mediator and activator of inflammation, allergic response, 

thrombosis, angiogenesis and potentially metastasis. It is synthesized in two ways; by a de 

novo pathway or by cleavage from a membrane phospholipid precursor. The cleavage 

pathway is the most common source and is thought to be the primary source of PAF under 

pathological conditions while the de novo pathway is used to maintain PAF levels during 

normal physiologic conditions. Using phosphatidylcholine as a starting material, 

phospholipase A2 (PLA2) removes a fatty acid, most commonly arachidonic acid, from the 

sn-2 position [97]. Removal of arachidonic acid from phosphatidylcholine produces the 

intermediate lysophosphatidylcholine. Addition of an acetyl group to the sn-2 position 

carbon atom of this intermediate by an acetyltransferase produces PAF [98].  

The PLA2s are a diverse family with different regulation and substrate specificities [99]. The 

group IVA cytosolic PLA2 (cPLA2α) is calcium-dependent and selective for arachidonic acid, 

so it is activated during transient intracellular calcium rise to produce arachidonic acid and 

lysophosphatidylcholine, and consequently PAF, rapidly and in large quantities. On the 

other hand, the group VI calcium-independent PLA2s (iPLA2) which are secreted, hydrolyse 

sn-2 fatty acids slowly and continuously result in PAF generation [99]. Three different 

groups of PLA2 have been shown to induce PAF synthesis. Group V secreted PLA2 (sPLA2) 

which has been shown to be activated by VEGF [100], a secreted PLA2; iPLA2 which is 

thrombin-stimulated [101] and the cytosolic PLA2 (cPLA2α) which has been shown to 

synthesize PAF and arachidonic acid in neutrophils [102]. 
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ABCB1 has been shown to transport PAF from a mesangial cell line which expresses 

endogenous ABCB1 [103] and an epithelial cell line which is transfected with a plasmid 

encoding the ABCB1 gene [104]. Numerous studies have demonstrated that PAF is secreted 

from cancer cells [105-107] although opposing results exist [108]. A more recent study 

showed that the PAF receptor is important in UVB mediated skin cancer, in which 

inflammation is an important factor in tumorigenesis [109]. Like ABCB1, PAF and G protein-

coupled PAF receptor (PAFR) are also found in most cell types but especially in myeloid 

cells, in contrast ABCB1 is more abundant on lymphoid cells. Within the lymphocyte class, 

PAF level is more prominent in B cells whereas ABCB1 is expressed better on T cells and 

natural killer cells (http://biogps.org/#goto=genereport&id=5243 accessed on 15.08.2014, 

http://biogps.org/#goto=genereport&id=5724 accessed on 15.08.2014). Although ABCB1 

can transport PAF, the differential abundance on different cell types suggests a more 

complicated relationship that is not understood.  

Lysophosphatidylinositol (LPI) is one of the products of phosphatidylinositol hydrolysis by 

cytosolic PLA2 and transport of LPI is analysed in chapter 5 of this thesis. Like PAF, LPI is 

also a cytokine, and also a product formed during arachidonic acid synthesis. It is exported 

from prostate and ovarian cancer cells and recognised by protein coupled receptor GPR55 

through which it functions as part of an autocrine loop important in tumorigenesis [110]. 
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ii.   Abundance in Adrenal Gland 

ABCB1 is most abundant in the adrenal gland, especially in the adrenal cortex. In 1992, it 

was revealed that ABCB1 can transport cortisol, dexamethasone and aldosterone. 

Progesterone can also interact with ABCB1 but inhibits its function [111].  

In the mouse, there are two ABCB1 homologues; Abcb1a and Abcb1b. Abcb1a mRNA is 

more prominent in the intestine, liver, brain, testis and Abcb1b mRNA is more prominent in 

the adrenal gland, placenta, ovarium and uterus and in the other tissues both Abcb1a and 

Abcb1b mRNAs are similarly prominent [112]. Mice lacking both Abcb1a and Abcb1b show 

no signs of disease, are normally viable and fertile under physiologic conditions [113]. 

Recently however, the role of glucocorticoids under stress conditions has been studied in 

the Abcb1a/1b knock-out mice [114]. Behavioural tests to quantify the fight or flight 

response times were performed and Abcb1a/1b double knock-out mice were shown to 

respond slower than wild-type mice. Corticosterone injection resulted in significant 

reductions of immobility of the knock-out mice under stress conditions. It was also shown 

that corticosterone concentrations were lower in knock-out mice under both naïve and 

stress conditions and glucocorticoid receptor expression in brain tissue was increased 

[114]. These results suggest that ABCB1 might have a role in the hypothalamic-pituitary 

adrenal feedback axis under stress conditions in mice. 

iii.   Barrier- function 

As mentioned above, ABCB1 is found on barrier-function sites of the body, like the blood-

brain barrier [89], the blood-testis barrier [90], the blood-inner ear barrier [91] and the 

maternal-foetal barrier [92]. The presence of ABCB1 in the luminal membrane of the 

vascular endothelial cells is thought to protect the body against xenobiotic entry and 

accumulation. 
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In Abcb1a knock-out mice, the sensitivity of orally administered drugs and accumulation of 

ABCB1 ligands in the brain tissue increased [115]. However, when Abcb1a is knocked out, 

Abcb1b expression levels can increase. Abcb1b levels were studied in both female and male 

mice, demonstrating very low or no expression of Abcb1b in the male kidney whereas the 

female kidney has a prominent Abcb1b expression. As a result of the Abcb1a knock-out, in 

both sexes, Abcb1b levels increased and also became more prominent in male kidney 

[115]. As Abcb1b is prominent in the adrenal gland and more prominent in female mice, it 

may also have a role under stress conditions during development in utero. ABCB1 is 

expressed on the syncytiotrophoblasts of the human placenta and its expression levels 

decrease with advanced gestation [116, 117]. The highest expression levels exist in the first 

trimester and decrease with the increase of progesterone and decrease of β-human 

chorionic gonadotropin (β-hCG) [117]. These findings have raised the question of whether 

ABCB1 is important in protecting the foetus from excess maternal corticosteroids under 

stress conditions [116]. 

 

1.4.5.c.   Multidrug Resistance in Cancer Cells 

 

ABCB1 has been shown to cause multidrug resistance in many different cancers. A meta-

analysis study showed that ABCB1 expression in breast cancer cells is associated with a 

poor response to chemotherapy [118]. A clinical study which examined 73 ovarian cancer 

patient samples at stage 3 of the International Federation of Obstetricians and 

Gynaecologists (FIGO) staging system, prior to and after chemotherapy, concluded that 

ABCB1 expression is a marker for chemotherapy resistance and a poor prognosis in ovarian 

cancer [119]. In a retrospective study, detectable levels of ABCB1 were correlated with 
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poor prognosis in children with soft tissue sarcoma [120]. Another study which examined 

lymphoblasts from bone marrow or peripheral blood samples of 352 newly diagnosed 

acute myeloid leukemia (AML) patients showed that high ABCB1 expression and AML 

resistant to chemotheraphy were highly related [121]. Trials to inhibit ABCB1 function in 

cancer patients have almost always failed to date due to side effects causing high toxicity 

largely because the inhibitors used were not particularly specific for ABCB1 but also inhibit 

cytochrome P450; CYP3A4 [122]. As a result of cytochrome P450 inhibition, 

pharmacokinetics of the co-administered therapeutic drugs alter significantly.   

 

1.5   ABCC1 and ABCC3: 
 

A new field of multidrug resistance research began when a non-ABCB1-mediated multidrug 

resistance was discovered in the doxorubicin-selected small cell lung cancer cell line, H69AR 

[17].  This new finding raised the possibility that other ABC drug transporters might exist 

and indeed, additional drug transporters were identified as ABCC subfamily members. The 

ABCC subfamily contains 13 full transporters with a wide functional spectrum from ion 

diffusion to multidrug resistance. ABCC1 and ABCC3 transport glutathione conjugates 

and/or other organic anions [13]. ABCC1 and ABCC3 are mostly localized to the basolateral 

membrane in polarized cells and activities of both ABCC1 and ABCC3 have been shown to 

result in multidrug resistance in vitro [123, 124]. 
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1.5.1.   Introduction to ABCC1 and ABCC3 
 

ABCC1 was first discovered on a small cell lung carcinoma cell line called H69AR which is 

resistant to anthracyclines and which does not overexpress ABCB1 [17]. The predicted 

molecular weight of ABCC1 is between 170 to 190 kDa and it is encoded on chromosome 

16p13.1. Sequencing of ABCC1 resulted in its classification with CFTR (ABCC7) which 

encodes a channel protein rather than an active transporter [125]. Despite classified in a 

different subfamily than ABCB1, ABCC1 works in a similar fashion. ABCC1 can export a 

different  but overlapping range of ligands which may be glucuronidated, sulphated, or 

ligands which are co-transported with glutathione [126]. ABCC3 was first cloned in 1997 

[19] . It is a 170 kDa protein, encoded on Chr 17q21.33 and has 31 exons. Like ABCC1, 

ABCC3 is also overexpressed in various cancer cells and cause multidrug resistance [127, 

128]. 

 

1.5.2.   Structure of ABCC1 and ABCC3 
 

ABCC1 has two NBDs which are less similar to each other than many of the other ABC 

proteins but they function  in a similar fashion and are likely form the ATP-sandwich dimer 

to bind and hydrolyse ATP [129]. Specific to some C subclass ABC proteins, ABCC1 has an 

extra N-terminal transmembrane domain (TMD0) which is predicted to contain 5 

transmembrane helices (Figure 1.9).  
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Figure 1.9: Predicted 2D structure model of ABCC1 with the 5 TMH topology of TMD0 

[130]. N-glycosylation sites are predicted to exist on the first extracellular loops of TMD0 

and TMD2. The pink arrow indicates the L0 linker region which is located between TMD0 

and TMD1 and the black arrow indicates the second linker region which is between NBD1 

and TMD2. 

 

N-linked glycosylation inhibition studies with tunicamycin showed that ABCC1 was 

glycosylated [131]. Later, N-linked glycosylation of the amino-terminal first 32 amino acids 

was supported by epitope insertion studies. In Muller et al. study, two of the inserted FLAG 

epitopes in extracellular loops of the TMD0 or TMD2 were only accessible upon removal of 

N-glycosylation sites (N to Q mutations at positions 17, 23, and 1006, respectively) [132]. 

Surprisingly, an IgG1 monoclonal antibody (IU2H10) generated against the amino terminus 

(amino acids between 8th and 17th residues), presumed to be extracellular, could not access 

its epitope when the cells were not permeabilized, suggesting a new structural model for 

the amino terminus of ABCC1 [133]. The same study has also suggested a 31 amino acid β-

strand structure in the amino terminus of the protein, which will need a β-turn to form a U-

shape. Prediction algorithms for β-turns suggests that Asp13, Pro14, Leu15, and Trp16 

residues may form this potential β-turn [134]. Another study has also suggested that the 
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amino terminus forms a U-shaped structure with the bottom of the U-shape facing 

cytoplasm and both ends residing in the extracellular space [135]. This was determined by 

inserting a hemagglutinin (HA) epitope at the carboxyl end of the amino terminus which 

resulted in a protein that is more resistant to vinblastine, adriamycin, colchicine and VP-16. 

As a result, they suggested that the U-shaped fold may plug a putative gate-access channel 

in wild-type ABCC1 and that the HA epitope may have forced the gate to open and allow 

the protein to transport anticancer drugs more efficiently. Deletion of the entire 32 amino 

acids of the amino terminus resulted in higher multidrug resistance than that conferred by 

wild-type ABCC1. 

A 25 Å resolution crystal structure of ABCC1 has shown ABCC1 in homodimers [136]. This 

may be an artefact of crystallization, however another study also showed that ABCC1 can 

exist as homodimers using biochemical methods such as gel filtration chromatography, 

perfluoro-octanoic acid polyacrylamide gel electrophoresis (PFO-PAGE), non-denaturing 

PAGE, chemical cross-linking, co-immunoprecipitation and sucrose density gradient 

sedimentation [137]. The same study has also suggested that the dimerization domain is 

likely to exist in the first 281 amino terminal amino acids. However, a derivative of ABCC1 in 

which the entire TMD0 region (the amino-terminal 204 amino acids) has been deleted, is 

still functional whereas the protein lacking TMD0 and the loop between the TMD0 and 

TMD1 (the amino-terminal 281 amino acids) is not [137]. This suggests that the loop linking 

TMD0 to the TMD1 is an important region of the protein but whether or not it is relevant to 

dimerization remains to be determined.  
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ABCC1 is also post-translationally modified with several phosphorylation and ubiquitination 

sites and one acetylation site (lysine residue 498) as shown by proteomic-discovery mode 

mass spectrometry 

(http://www.phosphosite.org/proteinAction.do?id=8736&showAllSites=true, accessed on 

15.08.2014).         

ABCC3 is also an ABCC subfamily protein with an extra N-terminal transmembrane domain 

(TMD0). It has the highest sequence identity to ABCC1 within ABCC subfamily proteins (58% 

amino acid identity) [27]. It has three predicted N-glycosylation sites two on the possible 

first extracellular loop of the TMD0 and the other on the first extracellular loop of TMD2. 

The predicted 2D membrane topology is similar to the predicted membrane topology 

model of ABCC1 (Figure 1.9).  

 

1.5.3.   Function of ABCC1 and ABCC3 
 

As a multidrug resistance protein ABCC1 can transport a wide range of ligands. The first 

described ligand of ABCC1 was Leukotriene C₄ (LTC₄) [24] which is an eicosanoid important 

in inflammation. However, ABCC1 double knock-out mice (ABCC1 (-/-)) studies has shown 

that ABCC1 is not essential because these mice are vital and fertile and develop no 

pathology under physiologic conditions but they had a decreased inflammatory response 

[138]. Expression of ABCC1 was later shown to be important in dendritic cell trafficking 

from skin to lymph nodes and the migration can be restored by exogenously added LTC₄ 

and LTD₄ [139].  
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ABCC1 is widely expressed in the human body 

(http://biogps.org/#goto=genereport&id=4363, accessed on 15.08.2014) and like ABCB1 it 

is also expressed in the blood-tissue barriers like the maternal-foetal barrier, the blood-CSF 

barrier and the blood-inner ear barrier and knocking out ABCC1 results in xenobiotic 

accumulation in these sanctuary sites of the body [140-143].  

Glutathione can stimulate the transport of some ABCC1 ligands with which it can be co-

transported or it can also be transported itself as glutathione disulphide [144, 145]. An 

extremely diverse range of glutathione, glucuronide and sulphate conjugates of xenobiotics 

have been shown to be transported by ABCC1 in subsequent years [126].  

A pathophysiological role for ABCC1 has been suggested for some cancers where it was 

shown that ABCC1 expression was increased in small cell and non-small cell lung cancer 

specimens after chemotherapy [146]. ABCC1 also may have a role in early-stage breast 

cancer in which its expression correlates with shorter relapse-free survival times and 

decreased overall survival in patients treated with cyclophosphamide, methotrexate, and 

fluorouracil (CMF chemotherapy) [147].  

ABCC3 is also widely expressed in the human body but it has a prominent expression in 

adrenal gland and cortex (like ABCB1) and is also highly expressed in colon and pancreas 

(http://biogps.org/#goto=genereport&id=8714, accessed on 15.08.2014).  ABCC3 

transports a wide range of ligands and it shares some ligands with ABCC1, for example; LTC₄ 

and estradiol-17-β-D-glucuronide, but glutathione is not transported by ABCC3 and 

glutathione conjugates are poorly transported [148, 149]. 
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Previously, it was thought that ABCC3 is highly expressed in the liver but 

immunohistochemistry of frozen sections has revealed that in healthy liver, there are only 

modest levels of ABCC3, especially in the basolateral membranes of cholangiocytes and 

hepatocytes surrounding the portal tracts [27]. Studies demonstrating up-regulation of 

ABCC3 mRNA levels, but curiously not protein levels, in the liver during cholestatic 

conditions suggest that ABCC3 is important in the cholehepatic circulation of bile salts [150-

152]. During cholestasis, bile salts start to accumulate in the hepatocytes which might be 

the triggering mechanism that switches on efflux of bile salts back into the portal vein 

across the basolateral membrane by ABCC3. 

In relation to cancer, ABCC3 mRNA has been shown to be upregulated in pancreatic 

carcinoma and was correlated with tumor grading [127]. It is also associated with a poor 

outcome in childhood acute lymphoblastic leukemia (ALL) [128]. 

The putative role of both ABCC1 and ABCC3 in an autocrine loop important in cancer 

proliferation and metastasis is studied and discussed further in chapter 5. 
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1.5.4.   Ligands of ABCC1 and ABCC3 
 

ABCC1 and ABCC3 are both organic anion transporters and they transport a wide variety of 

overlapping ligands, please see the selected ligands in Table1.3. 

ABCC1 Transport Ligands ABCC3 Transport Ligands 

                                                       Antineoplastic Drugs 

Doxorubicin Doxorubicin 

Daunorubicin Daunorubicin 

Etoposide Etoposide 

Vincristine Vincristine 

Vinblastine Vinblastine 

Methotrexate Methotrexate 

 Cisplatin 

 Paclitaxel 

                                                             Antiviral Drugs 

Ritonavir  

                                                                  Metalloids 

Sodium Arsenite  

Sodium Arsenate  

                                                                      Toxins 

Aflatoxin B₁  

                                                                     Folates 

Folic acid Folic acid 

                                                                    Peptides 

Glutathione  

                                          Endogenous Eicosanoids and Hormones 

Leukotriene C₄ (glutathione conjugated) Leukotriene C₄ 

Estradiol-17-β-D-glucuronide Estradiol-17-β-D-glucuronide 

Estrone 3-sulfate Estrone 3-sulfate 

Prostaglandin (glutathione conjugated)  

 Taurocholate 
 

Table 1.3: Selected transport ligands of ABCC1 [126] and ABCC3 [153-155]. 
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Chapter Two 
 

 

 

 

 

 

 

 

 

 

 

 

2.   Materials and Methods 
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2.1.   Bacterial culture 
 

XL10-Gold® Ultracompetent E.coli cells: 

Tetracycline and chloramphenicol resistant XL-Gold strain has the following genotype; Tetr 

D (mcrA) 183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F¢ 

proAB lacI qZDM15 Tn10 (Tetr) Amy Camr]. 

2.1.1.   S.O.C. medium 
 

After plasmid transformation into XL10-Gold® Ultracompetent E.coli cells, they were grown 

in S.O.C. medium to help survival of transformed bacteria. Super Optimal Broth with 

Catabolite repression (S.O.C.) is Super Optimal Broth (S.O.B.) medium with added glucose, 

obtained by adding 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 

10 mM MgCl₂, 10mM MgSO₄ and 20mM glucose in 1000 mL dH₂O. 

2.1.2.   LB medium  
 

Lysogeny broth (LB) medium consists of 1% (w/v) NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast 

extract (Fisher Scientific Ltd, UK; BPE1427-500). 20 g LB powder resuspended in 1000 ml 

dH₂O and autoclaved at 121°C for one 15 minute cycle. The medium was allowed to cool 

below 55°C before 100 µg/ ml ampicillin (Sigma-Aldrich, UK) was added.   

2.1.3.   LB agar plates 
 

1.5% (w/v) bactoagar (BD Biosciences, UK) was added into LB medium prior to autoclaving 

to make LB agar plates. Before pouring the agar into plates, it was cooled below 55°C and 

100 µg/ ml ampicillin (Sigma-Aldrich, UK) was added. Plates were stored up to one month. 
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2.1.4.   Culture Conditions 
 

Bacterial cultures were grown overnight at 37°C, shaking at 220 rpm. For large-scale 

cultures, a starter culture of 5 ml was grown for at least 5 hours before inoculation into a 

larger culture. 

 

2.2.   Insect cell culture 
 

2.2.1.   Insect cells; Sf21 and Hi5 
 

The Sf21 insect cell line isolated from ovarian tissue of the fall army worm, Spodoptera 

frugiperda embryos, was cultured in suspension and in T75 flasks with TC-100 medium 

(Gibco, UK) or Sf-900™ II SFM medium (Gibco, UK) at 27°C. The High Five insect cell line 

originating from Trichoplusia ni embryonic tissue was grown in EX-CELL® 405 serum-free 

medium (Sigma-Aldrich, UK) again at 27°C. 

2.2.2.   Media and reagents 
 

Sf-900™ II SFM and TC-100 insect cell media were purchased from Gibco. EX-CELL® 405 

serum-free medium was purchased from Sigma. Penicillin-streptomycin solution and foetal 

calf serum (FCS) were purchased from Invitrogen.  

 

 

 



58 
 

2.2.3.   Culture conditions 
 

Penicillin-Streptomycin Solution was added to all insect cell tissue culture media to a final 

concentration of 100 units/ml penicillin G, and 100μg/ml streptomycin sulphate. In 

addition, TC-100 was supplemented with 10% FCS, unless otherwise stated. All 

manipulations were performed in a sterile environment, with disposable plasticware and 

glassware reserved specifically for the purpose. 

All suspension cultures of insect cells were grown in round-bottom glass flasks at 27°C, 

shaking at 120 rpm. All monolayer insect cell cultures were grown in non-vented T75 flasks 

(BD biosciences, UK) at 27°C. 

2.2.4.   Insect cell co-transfection 
 

Sf21 cells were co-transfected using flashBAC (Oxford Expression Technologies, UK) or 

ProFold™-ER1 (AB vector, UK) as instructed by the manufacturer. 1.5x10⁶ cells were plated 

onto a 35 mm tissue culture dish (BD Biosciences,UK) in TC-100 medium. 

For each co-transfection with flashBAC, the following reagents were mixed: 

100 ng flashBAC DNA 

500 ng transfer plasmid (pBacPAK9-based vector) 

5 μl Lipofectin® transfection reagent (Invitrogen, UK) 

1 ml TC-100 without serum or antibiotics 
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The solution was mixed and incubated for 30 minutes at room temperature. The culture 

medium was then aspirated and washed twice with TC-100 medium without serum or 

antibiotics and then the transfection mixture was carefully added to the insect cell 

monolayer. Each dish was then incubated for 5 hours at 27°C in a sealed box containing a 

layer of paper wetted with 10mM EDTA. Following this, 1ml TC-100 (with 10% FCS and 

antibiotics) was added to each dish and the dishes were placed back inside the sealed box 

which was incubated at 27°C for 120 hours in total.  

The protocol for ProFold™-ER1 co-transfection was the same as for flashBAC except, 200 ng 

ProFold™-ER1 DNA was substituted for 100 ng flashBAC DNA. 

Following incubation, the medium was aseptically transferred into 5 ml bijou containers 

and retained as cotransfected (Co-T) baculovirus. 

2.2.5.   Amplification of baculovirus 
 

The rationale for baculoviral amplification is to infect insect cells with low ratio of 

baculovirus (multiplicity of infection; MOI) to allow cell growth and duplication to continue 

while multiple cycles of viral infection and release occur. The steps are similar for both 

flashBAC and ProFold™-ER1. 
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2.2.6.   Amplification of Co-T baculovirus to intermediate stock 
 

A suspension culture containing 25 ml Sf21 cells at a density of 2x10⁶ cells/ ml in Sf-900™ II 

SFM media was infected with 0.5 ml Co-T baculovirus. The cells were incubated overnight, 

before dilution with 25 ml fresh Sf-900™ II SFM media. After 5 days, the cells were removed 

by centrifugation at 500 g for 10 minutes (Hettich rotanta 46R), and the supernatant was 

stored at 4°C as ‘intermediate stock’ baculovirus. At this stage the virus titre was calculated 

by plaque assay. 

2.2.7.   Amplification of intermediate stock to working stock 
 

A suspension culture containing 100ml Sf21 cells in Sf-900™ II SFM media  at a density of 

2x10⁶ cells/ ml (in total 2x10⁸ cells) was infected at a MOI of 0.1 with intermediate stock 

baculovirus. The cells were incubated overnight, before dilution with 100ml fresh Sf-900™ II 

SFM. After 5 days, the cells were removed by centrifugation at 500 g for 10 minutes 

(Hettich rotanta 46R), and the supernatant was stored at 4°C as ‘working stock’ baculovirus. 

2.2.8.   Plaque assay to quantify viral load of recombinant 

baculovirus 
 

For each baculovirus, 35mm tissue culture dishes (BD Biosciences,UK) were seeded with 

1x10⁶ Sf21 cells in TC-100 medium with 10% FCS, and left to adhere on a flat surface. While 

the cells were settling, a series of dilutions were prepared using intermediate baculovirus 

stocks (10⁴, 10⁵, 10⁶ dilutions) to a final volume of 1 ml in TC-100. The culture medium was 

aspirated from the dishes, and 100 μl of each dilution was added. The cells were incubated 

for 45 minutes at room temperature, and during this step, 4% low melting point agarose 
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(LMP agarose; Sigma-Aldrich, UK) was melted in a microwave oven and placed in a 37°C 

water bath. The TC-100 medium was also preheated to 37°C in a water bath prior to the 

next step. 

The 4% LMP agarose was diluted to 1% using the prewarmed TC-100. The medium covering 

the Sf21 monolayer was aspirated and each dish was layered with 1.5 ml 1% LMP agarose 

in TC-100 media. The dishes were placed on a flat surface and incubated at room 

temperature till the agarose solidified. Following this, 2 ml TC-100 with 10% FCS was added 

onto the agarose layer and the dishes were placed inside a sealed box containing a layer of 

paper wetted with 10mM EDTA, and incubated at 27°C for 72 hours. Later, a solution 

containing 0.03% neutral red (Sigma-Aldrich, UK) in PBS was added to each dish (2.5 ml) 

after aspirating the overlaying media and incubated for 3 hours. The dye on the surface of 

the agarose plug was then aspirated and the dishes were inverted and left overnight in the 

dark at room temperature. The neutral red stains live cells, allowing the visualisation of 

virus-induced ‘plaques’ of lysed or dying cells as clear regions of the monolayer.  

To estimate the titre of each viral intermediate stock, the plaque numbers on each dish 

were counted. The titre (in plaque forming units/ml; pfu/ml) is equal to the plaque count 

multiplied by the dilution factor.  
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2.2.9.   Large-scale infection for protein production 
 

A suspension culture containing 100 ml Sf21 serum-free cells at a density of 2x10⁶ cells/ ml 

(in total 2x10⁸ cells) in Sf-900™ II SFM media or 100 ml Hi5 cells at a density of 1x10⁶ cells/ 

ml (in total 1x10⁸ cells) in EX-CELL® 405 serum-free medium was infected with working 

stock baculovirus. The volume of virus added was calculated from western blot results of 

infection ratios of incremental volumes of viruses to insect cells. The cells were incubated 

overnight, before being diluted with fresh Sf-900™ II SFM or EX-CELL® 405 serum-free 

media to a volume of 200 ml in total. The cells were harvested after a total of 72 hours 

following initial infection. 

 

2.3.   Mammalian cell culture 
 

2.3.1.   HEK293T mammalian cells 
 

Transformation of cultures of human embryonic kidney cells with sheared adenovirus 5 

DNA resulted in HEK 293 cells [156]. A variant of this cell line, HEK293T cell line, in addition 

contains SV40 large T antigen allowing for the amplification of transfected plasmids 

containing the SV40 origin of replication. HEK293T cells were obtained from Imperial 

Cancer Research Fund, cell production unit. 
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2.3.2.   Media and reagents 
 

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) with glutamax 

(Invitrogen, UK) supplemented with 10% foetal bovine serum (FBS) (Sigma-Aldrich, UK). 

Cells were detached from the plasticware using TrypLe Express (Invitrogen, UK). 

2.3.3.   Culture conditions 
 

HEK293T cells were grown in T75 vented flasks (VWR, UK) in 10% FBS supplemented DMEM 

and incubated in 5% CO₂ incubator at 37°C. Cells were passaged every 3-4 days in 1/20 

dilution. All studies were performed under sterile conditions.  

2.3.4.   Transfection reagents 
 

25kDa polyethyleneimine (PEI; Sigma-Aldrich, UK) solution (45 mg PEI dissolved in 8 ml H₂O 

corrected to pH 7.2 with dilute HCl) was used to transfect HEK293T cells. 

2.3.5.   Transfection conditions 
 

For transfections in a T25 vented tissue culture flask (BD Biosciences, UK), HEK293T cell 

monolayers were grown to 70% confluency. Polyethyleneimine (PEI)–DNA complexes: 10 

µg DNA and 2 µl 5% glucose were mixed with 3 µl 25 kDa PEI solution in a total volume of 

20 µl (topped up with sterile dH₂O). The complexes were diluted in 5 ml DMEM with FBS 

and added to the cell monolayer. The cells were either harvested after 48 hours and 

reseeded into 8-well chamber slides (Millipore, UK) for microscopy experiments and/or 

harvested 72 hour post-transfection with TrypLE Express (0.5ml) and 4.5 ml DMEM with 

FBS for transport assays.  T75 vented flasks (BD Biosciences, UK) were used for membrane 
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vesicle preparations. Transfection conditions were the same with cell number and 

transfection reagents tripled.  

2.4.   Plasmids 
 

For mammalian cell transfection with ABCB1 expression, twelve histidine (12-His) tagged 

wild-type or mutant ABCB1 cDNA encoded by the pCI-neo mammalian expression vector 

(Promega, WI, USA) was used (Figure 2.1) [157].  

 

Figure 2.1: Mammalian cell transfection vector; ABCB1-12His cDNA inserted pCI-neo.  

 

Wild-type ABCC1 or ABCC3 cDNA expressed from pcDNA3.1 vectors were kind gifts from 

Prof. Susan Cole Lab (The Cancer Research Institute, Queen’s University, Canada)[158, 159].  
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For baculoviral infections of insect cells, pBacPAK9 vector encoding 12-histidine tagged 

wild-type ABCB1 cDNA was used (Figure 2.2) (Please see section 2.8.). 

 

 

Figure 2.2: Wild-type ABCB1 encoding pBacPAK9 vector for protein expression in insect 

cell lines.  

 

2.5.   Primer list 
 

The primers for Q-loop or ligand binding cavity mutants were designed and introduced by 

Dr. Zolnerciks (Linton lab, personal communication). The primers for single Walker B 

mutant introduction into Q132R/Q1118A mutant, were designed and introduced by myself 

and the lists of all primers can be found in the related chapters. Oligonucleotide-directed 

mutations were introduced into wild-type ABCB1 expressing pCI-neo vector by 

QuickChange II XL site directed mutagenesis kit (Agilent Technologies, UK) described in 

section 2.7.  
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2.6.   Isolation of plasmid DNA from E.coli cells 
 

2.6.1.   Small scale 
 

Small-scale plasmid DNA preparations were generated using the GenElute HP Plasmid 

Miniprep Kit as described by the manufacturer (Sigma-Aldrich, UK). Bacterial cells from a 5 

ml overnight culture were harvested by centrifugation for 1 min at 12,000 g (EBA 12, 

Hettich; Germany). The cell pellet was then resuspended in 200 μl Resuspension Solution 

with 100 μg/ ml RNase A. Lysis Buffer (200μl) was then added and the solution was mixed 

by 3-4 times inversion. The alkalinity of the Lysis Buffer causes the denaturation of the 

nucleic acids and protein within the lysate. After 3-5 minutes incubation at room 

temperature, Neutralization Buffer (350 μl) was added, causing the aggregation of insoluble 

genomic DNA and high molecular weight RNA, and the precipitation of protein-SDS (sodium 

dodecyl sulphate) complexes. The lysate was then centrifuged for 10 minutes at 12,000 g. 

GenElute HP Miniprep Binding Columns were prepared by adding 500 μl Column 

Preparation Solution and centrifuging for 1 min at 12,000 g. The supernatant from the cell 

lysate was then added to the column and the supernatant was passed through the columns 

by centrifugation at 12,000 g for 1 min. The columns were washed by adding Wash Solution 

(500 μl) and centrifuged for 1min at 12,000 g. Then, the columns were centrifuged as 

before in order to remove any traces of Wash Solution. Plasmid DNA was eluted by adding 

100 μl Elution Solution (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) to the column and centrifuged 

for 1min at 12,000 g. 
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2.6.2.   Large scale 
 

Large-scale bacterial cultures were inoculated from a starter culture with a dilution factor 

of 1/500 to 1/1000. The Plasmid Mega Kit (Qiagen, UK) was used to generate DNA from 

large scale cultures as described by the manufacturer. 500 ml overnight culture was 

harvested by centrifugation for 15 minutes at 6000 rpm, 4°C in a Sorvall RC-5B centrifuge 

(Fiberlite* F12-6x500 LEX Rotor; Sorvall LLC, DE, USA). The cell pellet was resuspended in 50 

ml Resuspension Solution (Buffer P1 - Resuspension Buffer; 50mM Tris-Cl, pH 8.0, 10mM 

EDTA, 100ug/mL RNase A), then 50ml Lysis Buffer (Buffer P2 - Lysis Buffer; 200 mM NaOH, 

1% SDS) was added before mixing by inversion and incubating for 5 minutes at room 

temperature. Following addition of 50 ml Neutralization Buffer (Buffer P3 - Neutralization 

Buffer; 3.0 M potassium acetate, pH 5.5), the solution was then mixed by 4-6 times 

inversion, and incubated on ice for 30 minutes. The resulting lysate was cleared by 

centrifugation for 40 minutes at 20,000 g, 4°C. During the centrifugation, a QIAGEN-tip 

2500 equilibrated by applying 35 ml Column Equilibration Buffer (Buffer QBT; 750 mM 

NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol, 0.15% Triton X-100), and allowed the column 

to empty by gravity flow. The cleared supernatant was poured onto the column, then 

washed with 200ml Wash Buffer (Buffer QC - Wash Buffer; 1.0 M NaCl, 50 mM MOPS, pH 

7.0, 15% isopropanol) before the DNA was eluted using 35ml Elution Buffer (Buffer QF-

Elution Buffer; 1.25 M NaCl, 50 mM Tris-HCl, 15% isopropanol, pH 8.5). Room-temperature 

isopropanol (24.5ml) was added to the elute and the DNA precipitate was pelleted by 

centrifugation for 30min at 15,000 g, 4°C in a Sorvall RC-5B centrifuge (SS-34 rotor). The 

pellet was washed using 70% ethanol (7ml), centrifuged for 10 minutes at 15,000 g, 
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4°C,then air-dried, and resuspended in 500μl TE buffer (10 mM Tris•Cl, pH 8.0; 1 mM 

EDTA). 

2.7.   Site directed mutagenesis 
 

Mutations were introduced into a plasmid encoding human ABCB1 with a C-terminal twelve 

histidine tag (pCIneo-wtABCB1-12His) by QuikChange II XL site-directed mutagenesis kit 

(Agilent Technologies, UK) using oligonucleotides in the primer lists (Table 3.1 and Table 

3.3). 

The QuikChange II XL site-directed mutagenesis method is performed using PfuUltra high-

fidelity (HF) DNA polymerase. The template DNA is PCR amplified using a pair of mutagenic 

primers, each complementary to opposite strands of the vector, extended during 

temperature cycling by PfuUltra HF DNA polymerase to generate the mutant strands. 

Thermal cycling reactions were set up in the thin walled PCR tubes (Sigma-Aldrich, UK). 

Each reaction was set up as listed in Table 2.1 and cycled using the parameters outlined in 

Table 2.2. 
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QuickChange Reaction Volume (μl) 

Reaction Buffer (10x) 5 μl 

dsDNA template 1 μl (10 ng) 

Primer #1 1 μl (125 ng) 

Primer #2 1 μl (125 ng) 

dNTP mix 1 μl  

QuikSolution 3 μl 

ddH₂O To 50 μl final volume 

Pfu Turbo DNA Polymerase 1 μl 
 

Table 2.1: Protocol for the QuickChange II XL site-directed mutagenesis kit (Agilent 
Technologies, UK). This protocol was used to introduce the required mutations into pCI-
neo wild-type ABCB1 vector. Reaction Buffer (1x): 200 mM Tris-HCl (pH 8.8), 20 mM 
MgSO₄, 100 mM KCl, 100 mM (NH₄)₂SO₄, 1% Triton X-100, 1 mg/ml nuclease freebovine 
serum albumin (BSA).   

 

 

Time (sec) Temperature (°C) No. of Cycles Cycles 

60 95 1 Denaturation 

50 95  
18 

 
Amplification 50 60 

600 68 

420 68 1 Extension 
 

Table 2.2: PCR programme used to mutagenize pCI-neo wild-type ABCB1 vector. 

 

Following PCR amplification, endonuclease digestion of methylated and hemi-methylated 

DNA is carried out using Dpn I endonuclease (target sequence: 5 ́-Gm⁶ATC-3 ́). Since the 

template plasmid DNA is generated using dam⁺ E.coli strain, whereas PCR-synthesised DNA 

is unmethylated, the template is susceptible to Dpn I digestion. Thus only the newly 

synthesised DNA is transformed into XL-10 Gold E.coli. 
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2.8.   Subcloning 
 

The wild-type ABCB1-12-His cDNA encoded by the pCI-neo mammalian expression vector 

(Promega, UK) was subcloned into pBacPAK9 vector using the NheI and BstEII (New England 

Biolabs, UK) restriction enzyme sites at the 5'- and 3'-ends of the gene. 

DNA ligases catalyse the formation of a phosphodiester bond between the 3' hydroxyl and 

5' phosphate of adjacent DNA residues. The DNA ligase from bacteriophage T4 is the ligase 

most-commonly used in laboratories. T4 ligase can ligate cohesive (sticky) ends or blunt 

ends of DNAs. Ligations in this thesis were carried out using T4 DNA ligase (400U) in ligation 

buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 1mM ATP, 10 mM dithiothreitol) overnight at 

16°C. 

2.9.   Agarose gel electrophoresis of DNA 
 

1% agarose gels were prepared by melting the necessary amount of agarose powder (DNA 

grade; Invitrogen, UK) in  Tris base, acetic acid and EDTA (TAE) buffer (40 mM Tris-acetate, 

1 mM EDTA), by heating in a microwave until clear. The melted solution was cooled before 

ethidium bromide (0.5 µg/ ml) or GelRed™ Nucleic Acid Gel Stain (10,000X in Water; VWR, 

UK) was added and poured into a gel tray (Owl Seperation Systems, Thermo Fisher 

Scientific, MA, USA) to allow solidification. Prior to loading into the gel, the samples were 

mixed with 1/6th volume of Gel Loading Dye, Orange (6X stock; 2.5% Ficoll®-400,11 mM 

EDTA, 3.3 mM Tris-HCl, 0.017% SDS, 0.15% Orange G, pH 8.0, at 25°C; NEB, UK). The DNA 

fragments were separated by electrophoresis at 100 V. The DNA fragments were visualised 
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by a UV transilluminator and images were recorded with The MultiImage® Light Cabinet 

(Alpha Innotech Corporation, CA, USA).  

2.10.  Isolation of DNA from agarose gels 
 

Desired DNA fragments were excised from agarose gel with a clean blade taking care to 

minimise the amount of gel around the DNA. The DNA fragments were isolated from the 

gel using GenElute™ Gel Extraction system (Sigma-Aldrich, UK). Briefly, the gel slice was 

weighed and incubated at 50-60°C for 10 minutes with three gel volumes (w/v) of Gel 

Solubilisation Buffer was added. During incubation, the GenElute Binding Column G was 

prepared by adding 500 µl of the Column Preparation Solution and centrifuged at 12,000 g 

for 1 minute. After the gel was solubilised, one gel volume (w/v) of 100% isopropanol was 

added, mixed until homogenous and loaded onto the column and centrifuged at 12,000 g 

for 1 minute. The column was washed by adding 700 μl wash solution and centrifuged for 1 

min. The DNA was eluted from the column by the addition of 50 μl pre-warmed Elution 

Buffer (10 mM Tris-HCl, pH 8.5), and centrifugation for 1 min at 12,000 g. 

2.11.  Determination of DNA yield and quality 
 

DNA yield in nucleic acid preparations was determined by measuring absorbance using the 

NanoDrop® Spectrophotometer ND-1000 V3.5 (Thermo Fisher Scientific, MA, USA). 

Estimation of the purity of the plasmid DNA was carried out by measuring the ratio of 

OD₂₆₀/OD₂₈₀ or OD₂₆₀/OD₂₃₀. An absorbance ratio of ~ 1.8 at 260 and 280 nm is accepted as 

‘pure’ DNA and an absorbance ratio in the range of 1.8-2.2 is accepted as pure at 260 and 

230 nm. If the ratio is lower in either case, this may indicate the presence of contaminants.  
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2.12.  DNA sequencing 
 

2.12.1.  Automated DNA sequencing 
 

Automated DNA sequencing was out-sourced and performed by Source Bioscience 

LifeSciences, UK. 

2.12.2.  In-house sequencing 
 

In-house sequencing was performed by using BigDye® Terminator v3.1 Cycle Sequencing 

(Invitrogen, UK).   

2.12.2.a.  cycle sequencing on plasmid DNA 

 

Each reaction mixture was prepared by mixing; 1 µl oligonucleotide (3.2 pmol/ µl), 2 µl 

BigDye Sequencing Buffer, 250 ng DNA template, 0.5 µl Ready Reaction Premix and dH₂O to 

a final volume of 10 µl. Cycle sequencing was performed with RoboCycler® Gradient 40 

Thermal Cycler (Stratagene, CA, USA) which saves temperature ramping time with four 

blocks set to different desired temperatures. The cycles set for plasmid DNA sequencing 

starts with one cycle of 1 minute at 96 °C and continued with 25 cycles of 30 sec at 96°C, 15 

sec at 50°, 4 minutes at 60°C. After the cycling is complete, the samples were kept at 4°C in 

the robocycler.  
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2.12.2.b.  ethanol/ EDTA precipitation of DNA 

 

Prior to electrophoresis, to remove unincorporated dye terminators which can obscure 

data, ethanol/EDTA precipitation of DNA was performed.  

The amplified products in 10 µl volumes were centrifuged briefly, before sequential 

addition of 2.5 µl 125mM EDTA (Sigma-Aldrich, UK) and 30 µl 100% ethanol (Sigma-Aldrich, 

UK). The tubes were mixed by 4 times inversion, incubated at room temperature for 15 

minutes and centrifuged for 10 minutes at 17,000 g, 4°C (Heraus Fresco 17; Thermo Fisher 

Scientific, MA, USA). The supernatant was discarded and the samples were air-dried for 30 

minutes in the dark. After 30 minutes, the samples were resuspended in 10 µl Hi-Di™ 

Formamide (Applied Biosystems, UK) and loaded into MicroAmp® Optical 96-Well Reaction 

Plate (Invitrogen, UK).    

2.12.2.c.  sample electrophoresis 

 

The samples were heated to 96°C for 5 minutes to denature DNA and then rapidly cooled 

for 1 minute by placing the 96-well plate on ice. Automated sample electrophoresis and 

sequencing analyses were performed with ABI Prism® 4-capillary 3130xl Genetic Analyzer 

(Applied Biosystems, UK). The sequencing protocol ‘sequencing_600bp_POP7’ and the 

analysis protocol ‘3130 POP7_BDTU3-KB_DENOVO_V.5.2’ were selected.  

2.12.2.d.  sequencing data analyses 

 

Sequencing data analyses were performed using MacVector with Assembly (version 11.1.0). 
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2.13.  Isolation of whole-cell or membrane 

protein fraction 
 

2.13.1.  Insect cell monolayer culture and HEK293T whole-cell 

extracts 
 

At the desired time point (72 hours for insect cells and 48 hours for HEK293T cells post 

infection/transfection), cell monolayers were washed three times with phosphate-buffered 

saline (PBS; Sigma-Aldrich, UK) and then lysed in an appropriate volume (500 µl for 30 mm 

dish and 1 ml for T25 flasks) of lysis buffer (2% sodium dodecyl sulphate in PBS 

supplemented with protease inhibitors (cOmplete, Mini, EDTA-free; Roche, UK) and 25 U/µl 

Benzonase® (Merck Millipore, DE, USA)). After 15 minutes of incubation on ice to allow the 

endonuclease to function, the samples were centrifuged in 1.5 ml eppendorf tubes 

(Eppendorf, UK) at 17,000 g, 4°C for 8 minutes to remove any insoluble material. The 

supernatants were either processed directly to western blotting or stored at -20 °C. For 

western blotting, 4X SDS gel loading buffer was added to a final concentration of 50 mM 

Tris-HCl, 100 mM dithiothreitol (DTT), 2% SDS (w/v), 0.1% bromophenol blue (v/v), 10% 

glycerol (v/v). The samples were incubated at 37°C for 15 minutes prior to loading. 

2.13.2.  Insect cell suspension culture membrane extracts 
 

Sf21 or Hi5 cell suspension cultures (200 ml) were separated into four 50 ml centrifuge 

tubes (BD Biosciences, UK) 72 hours post-infection and centrifuged at 1000 g for 10 

minutes (4°C; Hettich rotanta 46R). The supernatant was discarded and each of the cell 

pellets were washed with 5 ml lysis buffer (10 mM Tris pH 7.4, 250 mM sucrose, 0.2 μM 

CaCl2, 40 μM leupeptin, 2 mM benzamidine, 2 μM pepstatin A). The cells were centrifuged 
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as before and all four pellets were resuspended in a total of 16 ml lysis buffer. The cell 

suspension was homogenized on ice using an Ultra-Turrax T25 (IKA Labortechnik, 

Germany). The homogenizer was used, at full speed, for ten times in ten second bursts, 

with 30 second gaps between bursts. The homogenate was then centrifuged at 500 g for 10 

minutes (4°C; Hettich rotanta 46R) to pellet any residual whole cells and large organelles. 

The crude membrane fraction was isolated from the resulting supernatant by 

ultracentrifugation in T865 rotor (Sorvall Discovery 90 Ultracentrifuge, Thermo Fisher 

Scientific, MA, USA) at 100,000 g for 1 hour, and was resuspended in 10 ml ice-cold 

resuspension buffer (10 mM Tris-HCl, pH 7.4, 250 mM sucrose, 10% glycerol, 40 μM 

leupeptin, 2 mM benzamidine, 2 μM pepstatin A). The membrane preparation was 

homogenized by repeatedly passing through a syringe with a 25G needle. Membrane 

preparations were stored at –80°C. 

2.13.3.  HEK293T membrane vesicle preparation 
 

Monolayers of HEK293T cells were grown in T75 flasks were harvested at 48 hours post-

transfection with 2 ml TrypLE Express (Invitrogen, UK) and diluted with 8 ml DMEM 

(supplemented with 10% FBS) for membrane vesicle preparation. The samples were 

centrifuged at 1000 g for 10 minutes (4°C; Hettich rotanta 46R). The supernatant was 

discarded and the cell pellets were washed with 10 ml of lysis buffer (10 mM Tris-HCl, 250 

mM sucrose, 3 mM KCl, 0.25 mM MgCl2, pH 7.5, 40 μM leupeptin, 2 mM benzamidine, 2 

μM pepstatin A) twice. The cells were centrifuged as before and all pellets were 

resuspended in 5 ml lysis buffer. The cell suspension was homogenized on ice with 60 

propels using large clearance pestle of all-glass dounce tissue grinder (Sigma-Aldrich, UK). 

The homogenate was then centrifuged at 500 g for 10 minutes (4°C; Hettich rotanta 46R) to 
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pellet any residual whole cells and large organelles. The crude membrane fraction was 

isolated from the resulting supernatant by ultracentrifugation in T865 rotor (Sorvall 

Discovery 90 Ultracentrifuge, Thermo Fisher Scientific, MA, USA) at 100,000 g for 1 hour, 

and resuspended in 3 ml ice-cold resuspension buffer (50 mM Tris-HCl, 250 mM sucrose, 

pH 7.5, 40 μM leupeptin, 2 mM benzamidine, 2 μM pepstatin A). The membrane vesicles 

were made by repeatedly passing the resuspended homogenate through a syringe with a 

27G needle. Membrane vesicles were stored at –80°C for up to two weeks. 

2.14.  Protein biochemistry 
 

2.14.1.  Protein quantitation 
 

Protein concentration of samples was measured using the Bio-Rad DC Protein Assay (Bio-

Rad, UK). The assay is based on the Lowry method [160] and was carried out according to 

the manufacturer’s protocol. Samples were diluted where necessary, and complemented to 

a constant volume of 20 μl with dH2O. A range of bovine serum albumin (BSA; Sigma-

Aldrich, UK) concentrations (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1 μg/ µl) were used to 

produce a standard curve and the concentrations of samples were analysed by Synergy™HT 

spectrophotometer (BioTek, VT, USA) at 750 nm. 
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2.14.2.  ABCB1 purification 
 

Insect cell membrane preparations were pelleted by centrifugation at 4°C, 100,000 g for 45 

minutes (Sorvall Discovery 90 Ultracentrifuge, Thermo Fisher Scientific, MA, USA) and then 

solubilized at a concentration of 5 mg protein/ ml in solubilisation buffer. Solubilisation 

buffer was prepared by, first, mixing 1120 µl total E.coli lipid (100mg/ml in 3:1 v/v 

chloroform: methanol; Avanti Polar Lipids, AL, USA) and 280 µl cholesterol (100mg/ml in 

3:1 v/v chloroform: methanol; Sigma-Aldrich, UK). The sample was mixed in a round-

bottom glass tube and dried under N₂. The lipid film was then dried in a vacuum desiccator 

overnight. The lipid film was resuspended in a total volume of 35 ml in Buffer 1 (150 mM 

NaCl, 20 mM Tris, 1.5 mM MgCl₂, 20% glycerol (v/v), 40 μM leupeptin, 2 mM benzamidine, 

1 μM pepstatin, pH 6.8)  containing 2% n-Dodecyl β-D-maltoside (DDM; Merck Serono, UK) 

(w/v). 18 ml of the solubilisation buffer (72 mg total lipid (E.Coli lipid:cholesterol ratio is 

4:1) resuspended in 150 mM NaCl, 20 mM Tris, 1.5 mM MgCl₂, 20% glycerol, 2% DDM  

buffer with protease inhibitors) was used to homogenize. Membrane preparations were 

solubilised by repeated extrusion cycles with a 25G needle, on ice. The insoluble fraction 

was pelleted by centrifugation at 4°C, 100,000 g for 30 minutes (Sorvall Discovery 90 

Ultracentrifuge, Thermo Fisher Scientific, MA, USA). Ni-NTA Agarose (Qiagen, UK) was 

washed with dH₂O (2 ml of 50% slurry/ 100 mg protein) and pre-equilibrated in 

solubilisation buffer with 10 mM imidazole, at a volumetric ratio of 1:10 (packed resin: 

buffer). To prevent non-specific interactions between proteins and resin, imidazole was 

added to the soluble fraction at a final concentration of 10 mM. The solubilised protein and 

resin were incubated with continuous mixing for 1 hour at 4°C to ensure the binding of the 

12-His-tagged ABCB1. After centrifugation at 500 g for 2 minutes, the non-bound proteins 
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were decanted (flow-through), and to remove non-specifically bound proteins the resin bed 

was washed four times with 20 bed volumes of ice-cold imidazole (washes 1-4; 40 mM, 80 

mM, 100 mM, 120 mM imidazole), all in Buffer 2 (similar to Buffer 1 but at pH 8 and 0.1% 

DDM added). The resin was washed a final time with 20 bed volumes of Buffer 1 with 0.1% 

DDM, in the presence of 5 mM imidazole, to alter the pH for optimum elution (Elution 0). 

Bound protein was eluted in a further 3 washes in Buffer 1 with 0.1% DDM, in the presence 

of 500 mM imidazole (elutions 1-3). 

2.14.3.  Protein concentration 
 

Amicon® Ultra-4 Centrifugal Filter Units (for proteins above 100 kDa; Merck Millipore, DE, 

USA) were used to concentrate purified ABCB1 protein, depending on the manufacturer’s 

instructions. Briefly, 4 ml of sample was centrifuged at 4000 g for 15 minutes to obtain 35 

µl of concentrated sample and subsequent centrifugation cycles with 4 ml of 10 mM Tris pH 

7.4 were carried out to dilute the imidazole concentration within the sample.  

2.14.4.  Trichloroacetic acid (TCA) precipitation 
 

Purified ABCB1 protein was concentrated by trichloroacetic acid (TCA) precipitation for 

quantification in SDS-PAGE gels. 0.15% sodium deoxycholate (0.1 volumes of sample 

volume (v/v)) was added to the protein sample and incubated at room temperature for 5 

minutes. Following this, 0.1 (v/v) of room-temperature 72% trichloroacetic acid was added, 

mixed, and incubated for 10 minutes at room temperature. Protein was recovered by 

centrifugation at 17,000 g for 8 minutes (Heraus Fresco 17; Thermo Fisher Scientific, MA, 

USA). The supernatant was carefully removed and discarded, and the pellet resuspended in 
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15 μl resuspension buffer (4% SDS, 0.2 M Tris pH 7.4, 0.15 M NaOH). Samples were either 

directly loaded into SDS-PAGE gels or stored in -20°C for later analysis. 

2.14.5.  SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel 

electrophoresis) 
 

For separating proteins in SDS-polyacrylamide gels, Tris –glycine electrophoresis buffer (25 

mM Tris base, 250 mM glycine, 0.1% SDS (w/v)) was used. The protein samples were 

loaded into vertical 1 mm thick polyacrylamide gels which were composed of two parts; 

stacking gel (4% acrylamide (v/v), 125 mM Tris pH 6.8, 0.1% SDS (w/v) and 1% ammonium 

persulfate (w/v) polymerised with 0.1% N,N,N’,N’-tetramethylethylenediamine (TMED)) 

and resolving gel (7.5% acrylamide (v/v), 375 mM Tris pH 8.8, 0.1% SDS (w/v), 1% 

ammonium persulphate (w/v) polymerised with 0.08% TMED). Mini-PROTEAN® 

Electrophoresis System (Bio-Rad, UK) was used to perform protein separation in SDS-

Polyacrylamide gels. Precision Plus Protein™ All Blue Standards (Bio-Rad, UK) was used to 

determine the molecular weight and the samples were run at 100V. 

2.14.6.  Colloidal blue staining 
 

Protein visualisation following separation by SDS-PAGE was carried out by Colloidal Blue 

Staining (Invitrogen, UK), according to the manufacturer’s instructions. Briefly, the SDS-

PAGE gel was placed in a clean staining tray with colloidal blue solution (per gel: 20 ml 

Stainer A which contains ammonium sulfate and phosphoric acid, 5 ml Stainer B which 

contains Coomassie G-250, 20 ml 100% methanol, 55 ml dH₂O), and incubated for 3-12 

hours at room temperature on a rocking platform. The gel was then washed several times 
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with dH₂O at room temperature, rocking, in order to de-stain and allow visualisation of the 

proteins. The visualisation process was performed by ODYSSEY® (LI-COR Biosciences, UK). 

2.14.7.  Western blot 
 

Proteins separated by SDS-PAGE were electroblotted onto a polyvinylidene fluoride (PVDF) 

membrane (immobilon-P; Millipore, Billerica, MA), which was pre-soaked to 100% 

methanol for 1 minute. Electroblotting was carried out either overnight at 20V or at 100V 

for 1 hour in transfer buffer (25 mM Tris-HCl, 192 mM glycine, 20% methanol) with Mini-

PROTEAN® wet-transfer system (Bio-Rad, UK). Following electroblotting, the PVDF 

membrane was incubated in blocking buffer (5% skimmed milk powder in PBS-T (0.2% 

Tween20 in PBS)) for 1 hour at room temperature on a rocking platform. The membrane 

was then incubated with 1 ml blocking buffer with primary antibody in 1:1000 dilution 

(ABCB1 primary antibody C219 (Cambridge Bioscience, UK), ABCC1 primary antibody QCRL1 

(Alexis, UK), ABCC3 primary antibody C-18 (Santa Cruz, UK)) inside a heat-sealed bag 

overnight at 4°C on a rocking platform. The membrane was given three 10 minutes washes 

with PBS-T before incubation with anti-mouse (to detect ABCB1 and ABCC1 primary 

antibody) or anti-goat (to detect ABCC3 primary antibody) secondary antibody (Dako UK 

Ltd, UK), conjugated to horseradish peroxidase (HRP). The secondary antibodies were also 

diluted 1:1000 in 1 ml blocking buffer and the membrane was incubated with a secondary 

antibody in a heat-sealed bag for 1 hour at room temperature on a rocking platform. The 

membrane was given three 10 minutes washes in PBS-T before visualisation of the protein-

bound HRP by enhanced chemiluminescence (ECL), as directed by the manufacturer (GE 

Healthcare, UK), together with Amersham Hyperfilm ECL (GE Healthcare, UK). 
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2.15.  Flow cytometry 
 

ABCB1 transport ligand Rhodamine123 was purchased from Sigma, BODIPY® FL-taxol, 

BODIPY® FL-verapamil and BODIPY® FL-vinblastine were purchased from Invitrogen. Each 

ABCB1 mutant and wild-type ABCB1 was assessed for function using end point drug 

accumulation assay. HEK293T cells expressing ABCB1 were incubated with BODIPY® FL-

verapamil (0.8 μM; Invitrogen, UK), BODIPY® FL-taxol and BODIPY® FL-vinblastine (0.4 μM; 

Invitrogen, UK) or Rhodamine123 (5 μM; Sigma-Aldrich, UK) in DMEM/F12 (Invitrogen, UK) 

supplemented with 1% FBS for 30 minutes at 37°C before analysing with a FACScan or BD 

LSR II flow cytometer (Becton Dickinson, NJ, USA). BODIPY® FL conjugated to verapamil, 

vinblastine and taxol has an excitation and emission wavelength of 503 and 512 nm, 

respectively. Rhodamine123 excitation and emission wavelengths are 511 and 534 nm, 

respectively. The cells were gated for normal size and granularity from forward scatter 

(FSC), side scatter (SSC) channels. Data was collected for 50,000 normal cells. Drug 

accumulation was measured by using FL-1 (green, 515-545 nm) channel and antibody 

binding was assessed from FL-2 (red, 543-627 nm) channel. Flow cytometry data were 

acquired using CellQuest Pro Software (BD Biosciences, San Jose, CA) and analysed using 

FlowJo (Tree Star, OR, USA). As each population of transfected cells contain both 

transfected (ABCB1-expressing) and untransfected (ABCB1-negative) cells, and each 

subpopulation could be clearly distinguished on the basis of 4E3 (ABCB1 primary antibody, 

1 μg of 4E3 antibody at 250 μg/ ml concentration was added to saturate all ABCB1 on 1x10⁶ 

cells; AbD Serotec, UK ) and R-Phycoerythrin conjugated antibody (5 μg of polyclonal goat 

anti-mouse immunoglobulin at a concentration of 1 mg/ ml was used to saturate all 4E3 

primary antibody, Dako UK Ltd, UK) binding, the untransfected subpopulation could be 
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used as an internal control for measuring drug accumulation. The optimal concentration of 

antibody, which was titrated by Dr. Zolnerciks, was important to label all the ABCB1 on the 

cell surface [157]. ABCB1 transport activity was therefore assessed as the fold difference in 

drug accumulation between the ABCB1 expressing and non-expressing cell populations 

within each population of transfected cells. UIC2-PE (Immunotech, Beckman Coulter, CZ, 

USA) binding was carried out due to the manufacturer’s instructions; saturating amounts of 

UIC2-PE (25 μl from a concentration of 15 μg/ ml for 1x10⁶ cells) was added to double-Q-

loop mutant and wild-type ABCB1 expressing cells to reveal their ligand binding state. The 

samples were incubated with the antibodies for 30 minutes at 4°C. At least three 

experiments were carried out for each mutant and different condition and statistical 

analyses were carried out using GraphPad PRISM® V5.0 software (Graphpad Software, CA, 

USA). Student’s two-tailed t-test was used to analyse differences between means, whereas 

differences among means were analysed using one-way ANOVA followed by pairwise 

Student-Newman-Keuls post hoc testing. ABCC1 and ABCC3 calcein-AM (0.5 μM; 

Invitrogen, UK) transport data were acquired in a similar way, except no antibody was used 

for these experiments so only the FL-1 (green) channel was used. 
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2.16.  Microscopy 
 

For detection of ABCB1, primary antibody (4E3, AbD Serotec, UK) was directly conjugated 

to Alexa633 dye using the Mix-n-Stain (Biotium, CA, USA) according to the manufacturer’s 

instructions (conjugation was carried out by Dr. Snippe, Linton lab, personal 

communication). Transfected HEK293T cells were split, 24 hours post-transfection, onto 8-

well glass-chamber slides (Lab-Tek, Thermo Fisher Scientific, MA, USA). 48hrs post-

transfection, the live cells were washed 3 times in DMEM/F12 medium (Invitrogen, UK) 

then incubated with the Alexa633-conjugated 4E3 antibody (1/100 dilution in DMEM/F12 

medium) plus BODIPY®FL-verapamil (0.8 μM) or BODIPY®FL-vinblastine (0.4 μM) for 30 min 

at 37°C, 5% CO₂. The cells were washed a further 3 times, then imaged using a Zeiss 

LSM510 inverted confocal laser scanning microscope. Images were obtained using a plan-

apochromat 63x oil objective with a numerical aperture of 1.4. For excitation of BODIPY® 

FL, the Argon laser (488 nm laser line) was used at a current of 6.1 Amp; for Alexa633 the 

HeNe laser (633 nm) was used. Emission was detected using the HFT UV/488/543/633 main 

dichroic beam splitter in combination with a band pass filter (BP 505-530) for BODIPY® FL 

or a NFT 545 secondary beam splitter and a long pass filter (LP650) for Alexa633. The 

pinhole was set at approximately 1 airy unit (AU). Operating in multitrack mode allowed for 

crosstalk-free imaging of the two dyes.  
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2.17.  Transport of ³H-Estradiol 17-β-D-

glucuronide and ³H-Lysophosphatidylinositol 

(LPI) 
 

Tritium (³H) labelled transport experiments were carried out in the radioactivity suite of the 

Blizard Institute (Barts and the London School of Medicine and Dentistry, UK). Membrane 

vesicles containing  60 µg of total protein prepared from HEK293T cells were incubated in a 

reaction mixture of 150 µl containing 10 mM ATP (Sigma-Aldrich, UK), 10 mM MgCl₂ 

(Sigma-Aldrich, UK), 100 µg/ml creatine kinase (Roche, UK), 10 µM creatine phosphate 

(Roche, UK), 400 nM estradiol 17-β-D-glucuronide (Sigma-Aldrich, UK) with 40 nCi ³H-

estradiol 17-β-D-glucuronide (Perkin Elmer, MA, USA) or lysophosphatidylinositol (cold-LPI 

amount depends on the quantity of cold-LPI already exists in the ³H-LPI sample; Sigma-

Aldrich, UK) with 0.5 nCi ³H-lysophosphatidylinositol (Prof. Falasca, personal 

communication) including or excluding 100 µM vanadate (Sigma-Aldrich, UK) or 100 µM 

glutathione (Sigma-Aldrich, UK). The vesicles were incubated at 37°C for 15 minutes. The 

reaction was stopped by adding 1 ml of ice-cold transport buffer (50mM Tris-HCl, 250 mM 

sucrose, pH 7.5) and immediately filtered through cellulose nitrate filter discs (0.2µm pore 

size, 25mm diameter Whatman; Fisher, UK) using a 1225 Sampling Manifold (Millipore, UK) 

and washed 4 times with 3 ml of ice-cold transport buffer. The cellulose nitrate filter discs 

were recovered and placed into scintillation tubes with 5 ml of scintillation fluid Optiphase 

HiSafe 3 (Perkin Elmer, MA, USA).The radioactivity content of each sample was analysed in 

a Beckman LS 6000SC scintillation counter (Beckman Coulter, UK). Each experiment was 

performed in triplicates and at least three independent experiments were carried out. 
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Statistical analyses were performed by one-way ANOVA (analysis of variance) using 

GraphPad PRISM® V5.0 software (Graphpad Software, CA, USA). 

 

2.18.  Nedd4-1 ubiquitination  
 

Nedd4-1 ubiquitination of purified ABCB1 was carried out by Dr. Sullivan. Briefly, ABCB1 (20 

μg in 50 μl final volume of reaction solution) was mixed with 5 μg of methylated ubiquitin, 

100 ng of ubiquitin-activating enzyme (E1, Boston Bichem, MA, USA), 100 ng of ubiquitin-

conjugating enzyme (E2) and 20 μl of Nedd4-1 (the ubiquitin ligase (E3)) at a concentration 

of 500 ng/ μl in a reaction solution of 50 mM Tris pH 7.4, 10 mM ATP, 10 mM MgCl₂ and 

incubated at 37°C for 2 hours. As a control, methylated ubiquitin was not added to the 

reaction mixture of one ABCB1 sample. After two hours, the reaction was stopped by 

adding 50 µl of SDS sample buffer (4 gr SDS, 20 ml glycerol, 50 ml Buffer A (Tris 30.24 gr, 

SDS 2 gr, pH 6.8 in 1000 ml in dH₂O), 5 ml β-mercaptoethanol, 0.05%bromophenol blue 

(w/v) complemented to a total volume of 100 ml with dH₂O) and the samples were loaded 

onto 8% Precise™ tris- glycine gel (Thermo Fisher Scientific, UK). Electrophoresis was 

performed using a Mini-PROTEAN® Electrophoresis System (Bio-Rad, UK). Colloidal blue 

staining was performed as described in section 2.14.6. 
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2.19.  Mass Spectrometry 
 

Following electrophoresis and staining of purified wild-type ABCB1 after Nedd4-1 

treatment with and without methylated ubiquitin, the protein was excised and placed in 

sealed 1.5 ml eppendorf tubes (Eppendorf, UK) and sent to the mass spectrometry analysis 

facility (Birmingham Science City Translational Medicine:  Experimental Medicine Network 

of Excellence project, with support from Advantage West Midlands). Mass spectrometry 

was couriered by a Thermo Fisher Scientific LTQ Orbitrap Velos ETD mass spectrometer. 

Following excision from the tris-glycine gel, the protein was digested using trypsin, yielding 

peptide fragments of known size. The tryptic fragments were dissolved in 0.1% formic acid 

and injected onto the reverse-phase liquid chromatography (RPLC). Subsequently, Dionex 

Ultimate 3000 with a NCS pump (Thermo Fisher Scientific, Germany) is used to provide a 30 

minutes linear gradient from 3.2% to 44% mobile phase B (acetonitrile (JT Baker, UK) with 

0.1% formic acid (Sigma Aldrich, UK)) and a nanoflow of 350 nL/min. The spray voltage of 

1.7 kV is applied to the triversa nanomate and the sample is dispersed into highly charged 

droplets. The transfer line temperature is 250°C and 0.3 psi nitrogen is used. This gas helps 

to direct the sample ions to the mass spectrometer. The nano-charged droplets diminish in 

size by solvent evaporation and at this point the ions are transferred to the gas phase and 

introduced to the mass spectrometer under high vacuum for analysis. Then the results 

were analysed with SearchGUI [161] and peptide-shaker [161, 162] programmes. 
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Chapter Three 
 

 

 

 

 

 

 

 

 

 

 

3.   Molecular Communication 

Pathways Between ABCB1 Domains  
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3.1.   Introduction 
 

The latest biochemical and pharmacological evidence suggests that ABCB1 has two ligand 

binding cavities and that they can be separated by mutagenesis [163]. Parveen et al.  (2011) 

identified two glutamine residues (Q132 and Q773) in symmetric positions in TMH 2 and 8, 

respectively, which gate entry into the two ligand binding cavities (Figure 3.1). They 

hypothesized that mutating these glutamines into the positively charged arginines should 

repel positively-charged ligands and block entry into that cavity. As controls they replaced 

the glutamines with neutral alanine residues. They then determined the first order rate 

constants for efflux of fluorescent drugs in wild-type and mutant ABCB1s by flow 

cytometry. In the mutant with both residues replaced by arginine, Rhodamine123 efflux 

activity was absent but when the residues were substituted with alanine the transport 

activity was similar to the wild-type level, confirming their hypothesis. The single arginine 

mutations of Q132 and Q773 behaved differently, and Rhodamine123 transport was more 

affected by the Q773R mutation. They also measured IC50 values of propafenone analogs 

and also verapamil and vinblastine for inhibition of Rhodamine123 export. The IC50s of the 

three inhibitors were lower in the Q773R mutant than in the Q132R mutant suggesting that 

these drugs have a higher affinity for the Q132-lined cavity (i.e. the wild-type cavity of the 

Q773R mutant). As a result, they concluded that different drugs bind to symmetrical but 

divergent binding cavities within the TMDs of ABCB1 with different affinities [163]. 
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Figure 3.1: Human ABCB1 homologue mouse Abcb1a (pdb ID 3G60). Pharmacological 

labeling and modeling studies suggest the presence of two ligand binding cavities. This is 

a top down view of the membrane spanning helices showing, the prospective ligand 

binding cavities (dashed black lines) and the conserved glutamines (Q132 and Q773) that 

gate entry into the cavities which when mutated to arginine inhibit binding to the 

adjacent cavity by electrostatic repulsion [163]. TMD1, yellow; TMD2, purple. 

 

The Q-loop glutamines of the NBDs have attracted attention as residues localized very near 

to the attacking water molecule required for ATP hydrolysis and also as highly conserved 

residues between ABC proteins (see discussion). A study of Q-loop mutants in which mouse 

Abcb1a (mouse homologue of ABCB1) was expressed in yeast P. pastoris, purified and 

reconstituted into proteoliposomes, suggested that the single mutants lost nearly all 

(between 90-98%) of their drug (verapamil, vinblastine and tetraphenylphosphonium)-

stimulated ATPase activity and that alanine mutations were more affected than glutamate 

mutations [164]. In the study by Urbatsch et al., cells expressing wild-type or mutant 

Abcb1a were disrupted with glass beads to make membranes and then solubilised using n-

dodecyl β-D-maltoside (DDM). To purify the expressed proteins, Ni-affinity chromatography 

and Diethylaminoethyl (DEAE)-cellulose ion exchange chromatography were performed 
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and the purified protein was concentrated by pressure filtration. To reconstitute the 

activity, Abcb1a was incubated with 8 mM DTT and 1% (w/v) Escherichia coli lipids with a 

final ratio of 100/1 of lipid/protein and ATPase activity was measured by the method of Van 

Veldhoven and Mannaerts [165].   

Dr. Zolnerciks (Linton lab, unpublished data), recently demonstrated that the purified Q-

loop single mutants (Q475A, Q1118A) of human ABCB1 behave similarly to the mouse 

mutants and retain only 8-9% of drug-stimulated ATPase activity in vitro (Figure 3.2) The 

experimental design of this study involved human ABCB1 expression in insect cells, 

solubilisation of insect cell membranes by DDM and Ni-affinity chromatography for 

purification. The Chifflet method was used to measure the ATPase activity of purified and 

reconstituted wild-type or mutant ABCB1[166]. However, these data did not correlate with 

studies of ATP turnover in live cells. Verapamil-stimulated ATP turnover in live HEK293T 

cells expressing wild-type or mutant ABCB1 was determined using extracellular acidification 

rate (ECAR) measurements (Figure 3.3) [167] and compared to mock-transfected cells. The 

single Q-loop mutants appeared to retain 35-50% of wild-type ABCB1 drug-stimulated 

ATPase activity (Figure 3.4). ECAR data was applied to a kinetic model based upon a 

modified Michaelis-Menten equation;  (Cs; ECAR as a function 

of the drug concentration, V0; basal ECAR in the absence of drug, V1; maximum ECAR 

assuming only activation, V2; activity at infinite drug concentration, K1; drug concentration 

giving half-maximum activation, K2; drug concentration giving half-maximum reduction) in 

which verapamil stimulates the ATPase activity at low concentrations and inhibits at high 

concentrations [168]. The double Q-loop mutant (Q475A/Q1118A) showed no activity in 

either the in vitro or cellular ATPase measurements (data not shown). 
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Figure 3.2: In vitro ATPase activity of wild-type and single Q-loop mutants. Measurement 

of nicardipine-stimulated ATPase activity using purified NBD1-Q475A and NBD2-Q1118A 

mutant ABCB1 upon reconstitution into proteoliposomes reveals over 90% loss of 

nicardipine-stimulated activity (Vmax = 160 nmol Pi/min/mg and 140 nmol Pi/min/mg, 

respectively, versus 1.7 μmol Pi/min/mg for wild-type ABCB1). (Dr. Zolnerciks, personal 

communication) 

 

 

Figure 3.3: Measuring ECAR in live cells using a cytosensor microphysiometer [169]. Left 

panel shows HEK293T cells sandwiched between polycarbonate filters in a flow chamber. 

Unbuffered medium (± drug) is allowed to flow over cells. Right panel shows that when 

the flow of medium through chamber is stopped, a reduction in pH is measured due to 

excretion of acidic metabolites. The rate of pH change is dependent on cellular 

metabolism (ATP turnover).  
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A. 

 

B.                                                                            C. 

                        

D.                                                                            E. 

                         

Figure 3.4: Verapamil-stimulated ATPase activity measurements of wild-type and mutant 

ABCB1 in live HEK293T cells. Verapamil-stimulated ATP turnover in live HEK293T cells 

expressing ABCB1 was determined using extracellular acidification rate (ECAR) 

measurements [167] and compared to mock transfected cells. (A) When examined in live 

cells, NBD1-Q475A and NBD2-Q1118A mutant ABCB1 exhibited 50% and 35% maximal 

verapamil-stimulated ATPase activity, respectively. Plots are shown as a function of time, 

with increasing verapamil concentration indicated above each experimental peak. (B-E) 
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Representative plots from a single experiment, performed in duplicate with error bars 

indicating standard deviation, are shown using cells expressing (B) wild-type, (C) NBD1-

Q475A, (D) NBD2-Q1118A, and (E) Q475A/Q1118A ABCB1. The ATPase activity of single 

Q-loop mutants suggest that the loss of activity seen using purified protein (Figure 3.2) 

results from inactivation of the Q-loop mutants during the purification process. (Dr. 

Zolnerciks, personal communication)   

 

ABCB1 modelling studies suggest the importance of the Q-loops in the communication 

cascades between the ATP catalytic domains and the ligand binding domains, and also 

between the two subdomains of the NBDs [75, 76]. The Q-loops sit at the base of the 

grooves occupied by the second intracellular loops of each TMD and because the double Q-

loop mutant has no activity (drug transport or ATPase activity), it is hypothesized that the 

ligand binding cavities communicate with the NBDs through their Q-loops to influence the 

ATP binding and/or catalysis. The studies of Dr. Zolnerciks demonstrated that single Q-loop 

mutations are not inactive as suggested previously and that they may be capable of ligand 

transport. 

 

3.2.   Aims 
 

 To test the drug transport functionality of the single Q-loop mutants. 

 To investigate the coupling between the ligand binding cavities and the ATP catalytic sites. 
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3.3.   Results 
 

3.3.1.   Generation, Combination and Expression of Gating Mutants 

with Q-loop Mutants  
 

The codons for the ligand binding cavity mutations Q132R (NBD1) and Q773R (NBD2) were 

introduced into the cDNAs encoding the ABCB1 Q-loop mutant Q475A (NBD1) and Q1118A 

(NBD2) to investigate possible signal transduction pathways and determine the effect on 

transport activity. The introduced mutants are shown in Table 3.1, some of which contain 

introduced restriction endonuclease sites to allow screening by agarose gel electrophoresis. 

The sequencing data for a selected mutant is shown in Figure 3.5. The integrity of the 

whole wild-type and mutant ABCB1 coding regions were verified by careful inspection of 

the electropherograms. 
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Table 3.1: The mutagenic oligonucleotides designed to introduce mutations of interest 

(Dr. Zolnerciks, personal communication). The mutations of Q-loop or ligand binding 

cavity residues were introduced into wild-type human ABCB1 cDNA and combined 

mutations were obtained by introducing ligand binding cavity mutations into the relevant 

Q-loop mutant cDNAs. The Walker B mutants were engineered for use as negative 

controls in each experiment performed. The silent nucleotide changes to introduce 

restriction endonuclease sites are underlined. 
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A. 

 

B. 

 

Figure 3.5: Electropherogram of DNA sequencing of wild-type ABCB1 (A) and the putative 

Q475A mutant (B). Glutamine (CAG) at position 475 in the amino acid sequence of wild-

type ABCB1 has been replaced with alanine (GCT) following successful mutagenesis.   
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3.3.2.   The Mammalian Expression Vector, pCI-neo 
 

To express the wild-type and mutant ABCB1, a high throughput transient transfection 

system was chosen. The cDNA coding sequence for wild-type ABCB1 was previously 

introduced into the pCI-neo vector to generate the plasmid pABCB1-12His [157]. This 

vector was used to produce functional ABCB1 (with a twelve histidine tag at the carboxy 

terminus) in mammalian cells and was also used as a template for mutagenesis of the 

ABCB1 cDNA and expression of mutant ABCB1. The pCI-neo vector is bi-functional and 

contains an origin of replication and encodes β-lactamase to amplify the plasmid and 

confer ampicillin resistance in bacterial cells, respectively. The human cytomegalovirus 

(CMV) immediate-early enhancer/promoter ensures constitutive expression of the ABCB1 

cDNA in mammalian cells. In addition, a chimeric intron is located downstream of the CMV 

enhancer/promoter. Studies have shown that the presence of such intronic sequences 

flanking a target gene can increase expression levels [170, 171]. The pCI-neo vector also 

contains an SV40 late polyadenylation signal downstream of the multiple cloning region. 

This feature is thought to enhance RNA stability and increase levels of translation [172, 

173]. The plasmid also encodes a neomycin resistance gene for neomycin 

phosphotransferase which can be used to select stably-transfected cell lines, but was not 

used in this study (Figure 3.6). 
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Figure 3.6: pABCB1-12His vector based on pCI-neo from Promega. 

 

3.3.3.   Polyethylenimine Transfection and Expression of ABCB1 In 

a Mammalian Cell Line 
 

The branched polycation PEI was first identified as a transfection agent by Boussif and co-

workers [174]. It generates a very high efficiency of transfection, considered to arise from 

the ability of DNA/PEI complexes within endosomes to avoid the degradative lysosomal 

pathway [175]. As a quick and inexpensive reagent, PEI was chosen as a suitable 

transfection reagent to introduce wild-type and mutant pABCB1-12His into cells. The 

human embryonic kidney (HEK293T) cell line was chosen to express human ABCB1. 

HEK293T cells do not endogenously express ABCB1 and stably express the SV40 large T 

antigen, allowing maximal expression from the pCI-neo vector. 
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3.3.4.   Flow Cytometric Analysis 
 

Flow cytometry uses a fluidics system which contains a central narrowing channel through 

which the cells pass. This channel is surrounded by an outer sheath that contains faster 

flowing fluid which forces cells within the narrowing channel into a capillary with single-line 

flow by hydrodynamic focusing. To identify an epitope of interest, different varieties of 

fluorochrome-conjugated antibodies can be used. Fluorochromes can also be covalently 

attached to drugs to measure their uptake by cells. Fluorochromes are essentially dyes 

which accept light energy at a given wave length and re-emit it with a longer wavelength 

but lower energy state.  

 

3.3.5.   Gating the Cells of Normal Size and Granularity 
 

The experimental model requires the transiently-transfected cells to be viable to show the 

active export of the transport ligands by ABCB1. In this transport assay the cells were 

harvested, labelled with antibody to measure the abundance of ABCB1 on the cell surface, 

and incubated with the transport ligand. During this process some cells might die and these 

cells are excluded from the experimental measurements by gating only on cells with normal 

size and granularity using the forward and side scatter channels. This helps to differentiate 

live cells from dead or unhealthy, dying cells without affecting the experimental design and 

the transport activity of ABCB1. Figure 3.7 shows the gating process used. 
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Figure 3.7: Gating viable cells in BD LSR II (left panel) and FACScan (right panel). 

 

 

3.3.6.   Gating the Cells of Interest That Express Equal Levels of 

ABCB1 on Cell Surface  
 

PEI generates a very high efficiency of transfection of HEK293T cells (see section 3.3.3.), 

however there is always a population of untransfected cells. To measure the transport 

activity of cells expressing wild-type or mutant ABCB1, the untransfected cells are 

differentiated from the transfected population using R-phycoerythrin (R-PE) conjugated to 

an anti-ABCB1 antibody (4E3; FL-2 channel; Figure 3.8). Conditions were previously 

determined to ensure that the antibodies were in saturating quantities such that the higher 

level of the antibody bound to the cell surface, the higher the level of ABCB1 is expressed. 

Transient expression of wild-type or mutant ABCB1 results in a heterogeneous population 

of cells with potentially varying levels of surface expression, and the introduction of 

mutations in membrane proteins may affect the folding and trafficking of the protein.  
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As the expression levels of wild-type or mutant ABCB1 can affect end-point ligand 

accumulation within the cells, it is important to measure the expression levels. Saturating 

concentrations of primary (4E3) and secondary antibodies were titrated by Dr. Zolnerciks 

previously [157]. The mutants studied in this chapter have similar levels of surface protein 

expression, but the experiment is designed to allow gating on cell populations expressing 

equivalent levels of ABCB1 even in cases where the mean expression levels varied (so long 

as there is overlap in the level of expression). This is achieved by selecting level of 

expression in the antibody binding channel that is common to all the mutants and controls 

in the experiment (Figure 3.8).  The primary mouse monoclonal antibody 4E3, which 

recognises an extracellular epitope of ABCB1, does not interfere with ABCB1 function [176]. 

When incubated with green fluorescent drug, cells that express wild-type ABCB1, fluoresce 

less in the FL-1 channel (all of the ABCB1 transport ligands used, emit fluorescence in FL-1 

channel) because the transport ligands are pumped out of the cells by ABCB1. 
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Figure 3.8: Differentiating between transfected and untransfected cells. The left panel 

dotplot in which each dot represents an individual cell, shows the two populations in the 

antibody binding (FL-2) and BODIPY® FL-verapamil accumulation (FL-1) channels.  The 

antibody bound population in the upper left quadrant accumulated less drug, a 

characteristic of cells expressing wild-type ABCB1. The second population in the lower 

right quadrant is the untransfected population. The histogram on the right shows the 

antibody binding channel (FL-2), wild-type and double mutant ABCB1 used in this study 

express similar levels of surface protein. 

 

3.3.7.   Single Q-loop mutants, Q475A and Q1118A are capable of 

BODIPY® FL-verapamil transport 
 

The verapamil-stimulated ATPase activity measurements of single Q-loop mutants recorded 

in cells (Figure 3.4, Dr. Zolnerciks) suggested that these mutants might be capable of ligand 

transport and to test this hypothesis transport activity measurements of single Q-loop 

mutants were performed.  

Verapamil is an L-type calcium channel blocker. It is a transport ligand of ABCB1 and higher 

concentrations of verapamil have also been used to inhibit ABCB1 function. BODIPY® FL-

verapamil is the fluorescent form of this drug which is covalently bound to BODIPY® FL 

(Figure 3.9). Cells transfected with pABCB1-12His were incubated with 0.8 μM BODIPY® FL-
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verapamil in each independent experiment. The transport efficiency of wild-type and 

mutant ABCB1 expressing cells was measured by flow cytometry in a two-colour 

experiment in which the ABCB1 expression level on the plasma membrane was measured 

in the FL-2  channel (R-PE conjugated 4E3 antibody) in parallel with the quantification of 

BODIPY® FL-verapamil accumulation (measured in the FL-1 channel).  

The activity of wild-type and mutant ABCB1 was calculated by measuring mean values of 

BODIPY® FL-verapamil accumulation in the untransfected and transfected populations 

within the same sample and calculating the fold difference in BODIPY® FL-verapamil 

accumulation in these two populations. One-way ANOVA followed by pairwise Student-

Newman-Keuls post hoc testing was used to measure the significance of the differences 

among means of BODIPY® FL-verapamil accumulation in wild-type and mutant ABCB1 

expressing cells. The verapamil transport activity of the single Q-loop mutants was not 

significantly different to the wild-type protein but the double Q-loop mutant had no activity 

(Figure 3.10). Each experiment includes, as negative controls, the inactive single Walker B 

mutants, E556Q and E1201Q which are unable to hydrolyse ATP. The inactivity of the 

double Q-loop mutant implies that the Q-loops are important for function, but the activity 

of the single mutants demonstrates that there is redundancy in the molecular mechanism. 

Intriguingly, in all of the experiments Q475A/Q1118A showed an apparent increase in 

BODIPY® FL-verapamil accumulation with a fold difference compared to the  untransfected 

cells of less than one (the reason for this is described in section 3.3.14.). 
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Figure 3.9: BODIPY (boron-dipyrromethene) structure. 

 

 

 

Figure 3.10: BODIPY® FL-verapamil transport activity of wild-type (black bar) and Q-loop 

mutant ABCB1. Flow cytometry data showing the fold reduction in BODIPY® FL-verapamil 

accumulation in wild-type and mutant ABCB1 expressing cells compared to untransfected 

cells. Single Q-loop mutants are fully active but the Q475A/Q1118A double mutant is 

significantly impaired. Inactive single Walker B mutants (E556Q and E1201Q) were 

included as negative controls. p values calculated with respect to wild-type activity; n≥4,  

*** p<0.001, ns p>0.05. 
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3.3.8.   Single Ligand Binding Cavity Mutants are Functional 

whereas the Double Mutant has diminished BODIPY® FL-verapamil 

Transport Activity 
 

The ligand binding cavity mutants previously described by Parveen et al. (see section 3.1.) 

were combined with the Q-loop mutants to reveal possible signal transduction pathways 

between the ligand binding cavities of the TMDs and the Q-loops of the NBDs. The ligand 

binding cavity Q132 and Q773 alanine mutants (Q132A, Q773A, Q132A/Q773A), introduced 

as controls, had no effect or very little effect on BODIPY® FL-verapamil transport activity, 

indicating that the wild-type glutamines are not critical for BODIPY® FL-verapamil transport 

(Figure 3.11). The Q132R mutant showed a decrease in BODIPY® FL-verapamil export while 

the Q773R mutant was not significantly different to the wild-type, indicating that BODIPY® 

FL-verapamil has a higher tendency to be effluxed from the Q132-lined ligand binding 

cavity (Figure 3.12). The transport activity of double Q132R/Q773R mutant was reduced by 

50%. The remaining 50% transport activity might be indicative of a third binding site for 

BODIPY® FL-verapamil or, perhaps, the positive charge on the verapamil was partially 

masked by the BODIPY® FL moiety. 
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Figure 3.11: BODIPY® FL-verapamil transport activity of wild-type (black bar) and ligand 

binding cavity mutants (light blue bars). Flow cytometry data showing the fold reduction 

in BODIPY® FL-verapamil accumulation in cells expressing wild-type or ligand binding 

cavity mutant ABCB1 compared to untransfected cells. The activities of single Q132A or 

Q773A mutants are not significantly different to the wild-type protein and the 

Q132A/Q773A mutant has little impact on transport activity. Inactive single Walker B 

mutants (E556Q and E1201Q) were included as negative controls. p values calculated 

with respect to wild-type activity; n≥4, * p<0.05, ns p>0.05. 
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Figure 3.12: BODIPY® FL-verapamil transport activity of wild-type (black bar) and ligand 

binding cavity mutants of ABCB1. Flow cytometry data showing the fold reduction in 

BODIPY® FL-verapamil accumulation in wild-type and mutant ABCB1 expressing cells 

compared to untransfected cells. The Q773R mutant is fully active while the Q132R 

mutant has reduced activity similar to the previous report by Parveen et al. [163]. The 

double mutant has further diminished activity. Inactive single Walker B mutants (E556Q 

and E1201Q) were included as negative controls. p values calculated with respect to wild-

type activity; n≥4, *** p<0.001, * p<0.05, ns p>0.05. 

 

3.3.9.   The Q773-lined Ligand Binding Cavity Communicates 

Primarily With the First NBD Q-loop To Efflux BODIPY® FL-

verapamil 
 

The combination of ligand binding cavity Q132R and Q773R mutants with the single Q-loop 

mutants indicated a signal transduction pathway between the NBDs and the TMDs for 

BODIPY® FL-verapamil transport. When the Q132 residue was mutated to arginine and 

combined with the first NBD Q-loop mutant, the transport activity of the double mutant 

was diminished by 65% whereas combination of Q132R with the second NBD Q-loop 

mutant had no effect on activity (Figure 3.13). This indicates that the wild-type Q773-lined 

cavity of these mutants communicates only via the first NBD Q-loop and not the second 
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NBD Q-loop during BODIPY® FL-verapamil transport. In contrast, the Q132-lined ligand 

binding cavity appears to require both Q-loops because both the Q475A/Q773R and 

Q773R/Q1118A mutants have greatly diminished activity and are not significantly different 

to each other. 

 

Figure 3.13: BODIPY® FL-verapamil Transport. Black bar, wild-type ABCB1; yellow bars, Q-

loop mutants; blue bars, ligand binding cavity mutants; blue and yellow striated bars, Q-

loop and ligand binding cavity combined mutants. p values calculated with respect to 

wild-type activity; n≥4, *** p<0.001, * p<0.05, ns p>0.05. 
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3.3.10.  Does the transporter interact with different transport 

ligands in the same way? 
 

Different classes of ABCB1 transport ligands were selected to test whether the signal 

transduction pathways differ for different transport ligands. To achieve this aim, two 

additional positively charged ligands were studied; Rhodamine123 and BODIPY® FL-

vinblastine, and also the neutral BODIPY® FL-taxol (Table3.2).  

Transport Ligands MW Role Classification Charge at pH 7.4 

Rhodamine123 380.83 mitochondria tracer Xanthene 66.4% positive 

BODIPY® FL-verapamil 769.177 L-type Ca⁺² channel blocker Phenethylamine 99.5% positive 

BODIPY® FL-vinblastine 1043.02 mitotic inhibitor  
(inhibitor of microtubule assembly) 

Vinca Alkaloid 99.5% positive 

BODIPY® FL-taxol 1024 mitotic inhibitor 
(microtubule stabilizer) 

Taxoid 99.5% neutral 

Table 3.2: Features of selected ABCB1 transport ligands. Charge at pH 7.4 was acquired 

with JChem and Marvin Software (ChemAxon, MA, USA). 

 

3.3.11.  Rhodamine123 Transport Is From the Q773-lined Cavity 

and Requires Both Q-loops 
 

Rhodamine123 is a cationic dye normally used to label mitochondria in living cells and it is 

an ABCB1 transport ligand. In the Parveen et al. study which first described the Q132R and 

the Q773R mutants, Rhodamine123 was used as the ligand for real time efflux assays; they 

also measured apparent transport activity of other transport ligands by competitive 

inhibition of Rhodamine123 transport [163]. 

In the end point assay used herein, wild-type ABCB1 was able to reduce accumulation of 

Rhodamine123 by 15 fold compared to untransfected cells and the ligand binding cavity 

Q132 and Q773 alanine mutants (Q132A, Q773A, Q132A/Q773A), introduced as controls, 

had no effect on Rhodamine123 transport activity, indicating that the wild-type glutamines 
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have no direct involvement in Rhodamine123 transport, as demonstrated previously by 

Parveen et al.(Figure 3.14).  

 

Figure 3.14: Rhodamine123 transport activity of wild-type (black bar) and ligand binding 

cavity mutants (light blue bars). Flow cytometry data showing the fold reduction in 

Rhodamine123 accumulation in cells expressing wild-type or ligand binding cavity 

mutants of ABCB1 compared to untransfected cells. The Q132A, Q773A or Q132A/Q773A 

mutants are not significantly different from the wild-type Rhodamine123 transport 

activity. Inactive single Walker B mutants (E556Q and E1201Q) were included as negative 

controls. p values calculated with respect to wild-type activity; n=3, ns p>0.05. 

 

The double binding cavity mutant with arginines introduced instead of the wild-type 

glutamines (Q132R/Q773R) had a large effect on transport activity permitting only a 2-fold 

reduction in Rhodamine123 accumulation that is not statistically different by one-way 

ANOVA analysis from the inactive Walker B mutants, indicating that the positively-charged 

arginines can effectively repel Rhodamine123 from the ligand binding cavities. The 

transport activity of the Q132R mutant decreased Rhodamine123 accumulation to 14 fold 

preserving 93% of the wild-type protein function, while the Q773R mutant was significantly 
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impaired and only able to reduce Rhodamine123 accumulation to 5-fold compared to 

untransfected cells. This suggests that Rhodamine123 binds to and is efficiently effluxed 

from the Q773-lined cavity with comparatively little transported via the Q132 cavity. These 

data from the ligand binding cavity mutants are consistent with the earlier results of 

Parveen et al. [163] (Figure 3.14). The single Q-loop mutants (Q475A and Q1118A) had 

significantly reduced transport activity but still supported a 5 to 6 fold decrease in 

Rhodamine123 accumulation, while the double Q-loop mutant was inactive (Figure 3.15). 

 

Figure 3.15: Rhodamine123 Transport. Black bar, wild-type ABCB1; yellow bars, Q-loop 

mutants; blue bars, ligand binding cavity mutants; blue and yellow striated bars, 

combined Q-loop and ligand binding cavity mutants. p values calculated with respect to 

wild-type activity; n=3, *** p<0.001, * p<0.05. 

 

The effect on Rhodamine123 transport activity was similar when single Q-loop mutations 

were combined with either of the two ligand binding cavity mutation, suggesting that both 

Q-loops are required to complete the Rhodamine123 export cycle.   
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3.3.12.  BODIPY® FL-vinblastine Transport Requires Both Q-loops

  
Vinblastine is a vinca alkaloid which inhibits microtubule assembly in the mitotic spindle. It 

is used as an antineoplastic agent and is transported by ABCB1.  Like BODIPY® FL-verapamil, 

it is conjugated to BODIPY® FL fluorescent moiety for use in this study. 

The ligand binding cavity Q132 and Q773 alanine mutants (Q132A, Q773A, and 

Q132A/Q773A), introduced as controls, had no or very little effect on BODIPY® FL-

vinblastine transport activity, indicating again that the wild-type glutamines have little 

direct involvement in BODIPY® FL-vinblastine transport (Figure 3.16). Cells expressing the 

ligand binding cavity mutants, Q132R or Q773R, have 50% of BODIPY® FL-vinblastine 

transport activity of the wild-type ABCB1. However, there is no further reduction in activity 

when both mutants were combined (Q132R/Q773R) and as single Q-loop mutants are 

unable to transport BODIPY® FL-vinblastine any further investigation of the signal/energy 

transduction pathway was precluded (Figure 3.17). 
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Figure 3.16: BODIPY® FL-vinblastine transport activity of wild-type (black bar) and ligand 

binding cavity mutants (light blue bars). Flow cytometry data showing the fold reduction 

in BODIPY® FL-vinblastine accumulation in cells expressing wild-type or ligand binding 

cavity mutants of ABCB1 compared to untransfected cells. The activities of single Q132A 

or Q773A mutants are not significantly different to the wild-type protein and the 

Q132A/Q773A mutant only just reaches significance. Inactive single Walker B mutants 

(E556Q and E1201Q) were included as negative controls. p values calculated with respect 

to wild-type activity; n=3, * p<0.05, ns p>0.05. 
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Figure 3.17: BODIPY® FL-vinblastine Transport. Black bar, wild-type ABCB1; yellow bars, 

Q-loop mutants; blue bars, ligand binding cavity mutants. p values calculated with 

respect to wild-type activity; n=3,  *** p<0.001. 

 

BODIPY® FL-vinblastine transport assays suggest that both Q-loops of ABCB1 are vital for 

BODIPY® FL-vinblastine export because each single Q-loop mutant is unable to efflux the 

BODIPY® FL-vinblastine and is not significantly different to the inactive Walker B mutants 

(E556Q and E1201Q) (Figure 3.17). Similar to the observations made with BODIPY® FL-

verapamil, cells expressing the double Q-loop mutant appeared to accumulate more 

BODIPY® FL-vinblastine than untransfected cells (see below).  
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3.3.13.  Arginines Introduced into the Ligand Binding Cavities are 

Unable to Prevent BODIPY® FL-taxol Transport  
 

Paclitaxel (Taxol) is a mitotic inhibitor which inhibits the disassembly of microtubules. It is 

used as an antineoplastic agent and it is also a transport ligand for ABCB1. Taxol is 

conjugated with BODIPY® FL to form the fluorescent BODIPY® FL-taxol for use in flow 

cytometry.  

BODIPY® FL-taxol is different in one important feature from the other ABCB1 transport 

substrates selected that it is neutral. It is a high molecular weight compound of similar size 

to vinblastine (vinblastine has a molecular weight of 810.9 g/mol and paclitaxel has a 

molecular weight of 853.9 g/mol).  

Mutant ABCB1 showed a new pattern of transport for BODIPY® FL-taxol. The single Q-loop 

mutants reduced BODIPY® FL-taxol efflux from cells, as compared to the wild-type protein, 

and the second NBD Q-loop mutant (Q1118A) affects function more than the Q475A 

mutant. The double Q-loop mutant showed no transport activity again indicative of the 

importance of the Q-loops for the mechanism of ABCB1. The ligand binding cavity single 

and double arginine mutants were found to have much less impact on BODIPY® FL-taxol 

transport although the activities of the single and double mutants were significantly 

different to the wild-type transporter. The lack of inhibition observed for the double 

binding cavity mutant Q132R/Q773R was probably due to the neutral charge of BODIPY® 

FL-taxol, and precluded further investigation of the signal/energy transduction pathways 

for this drug (Figure 3.18). 
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Figure 3.18: BODIPY® FL-taxol Transport. Black bar, wild-type ABCB1; yellow bars, Q-loop 

mutants; blue bars, ligand binding cavity mutants. p values calculated with respect to 

wild-type activity; n=3, *** p<0.001, ** p<0.01. 

 

3.3.14.  Cells expressing the Q475A/Q1118A Mutant Accumulate 

More BODIPY® FL-verapamil and BODIPY® FL-vinblastine 
 

As reported in related sections, the double Q-loop mutant was unable to efflux 

Rhodamine123, BODIPY® FL-verapamil, BODIPY® FL-vinblastine and BODIPY® FL-taxol and it 

appeared that cells expressing this mutant accumulated more BODIPY® FL-verapamil and 

BODIPY® FL-vinblastine than mock transfected cells. Dot plots showing the fluorescence of 

individual cells for ABCB1 expression levels and for BODIPY® FL-verapamil accumulation are 

shown in Figure 3.19.  Cells that express more double Q-loop mutant accumulate more 

drug. The mean fold differences in BODIPY® FL-verapamil and BODIPY® FL-vinblastine 

accumulation between untransfected and transfected cells are shown in Figure 3.20. This 
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increase in ligand accumulation is less obvious but still apparent when cells were loaded 

with 10 μM of BODIPY® FL-verapamil (Figure 3.21). BODIPY® FL-verapamil accumulation in 

cells expressing the double Q-loop mutant can be obscured when non-competitive inhibitor 

elacridar (GF120918; 1 μM) [177] or cyclosporin A (100 μM) which is a transport ligand of 

ABCB1 and a competitive inhibitor at higher concentrations, are co-administered possibly 

due to the inhibition of BODIPY® FL-verapamil interaction with the transporter (Figure 

3.22). The increase in accumulation of BODIPY® FL-verapamil or BODIPY® FL-vinblastine 

could be due to either the import of these drugs into the cell by the double Q-loop mutant, 

or because drugs bind to the mutant transporter but do not dissociate and the mutant 

protein therefore provides extra binding sites for the drugs in the membrane. 
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Figure 3.19: The double Q-loop mutant Q475A/Q1118A accumulates more BODIPY® FL-

verapamil than mock transfected cells. Dot blot from two-colour flow cytometry 

experiments show the relationship between ABCB1 surface expression (4E3 labelling) and 

BODIPY® FL-verapamil accumulation. Each dot represents an individual cell. In the 

population of cells (red, top left panel) that was transiently-transfected with plasmid 

encoding wild-type ABCB1, increased surface labelling with 4E3 (and so increased ABCB1 

expression) correlates with decreased accumulation of BODIPY® FL-verapamil (the group 

to the bottom right of the plot are non-transfected cells within the population). Cells 

expressing the catalytically inactive Walker B mutant E1201Q (gold, top centre panel) 

accumulate BODIPY® FL-verapamil to the same level as mock transfected (or non-

expressing cells within the E1201Q transfection experiment). In contrast cells expressing 

the double Q-loop mutant Q475A/Q1118A (green, top right panel) accumulate more 

BODIPY® FL-verapamil than cells expressing the E1201Q mutant, and the level of 

accumulation goes up with increasing expression of Q475A/Q1118A. Direct comparison 

of the level of BODIPY® FL-verapamil accumulation of cells expressing Q475A/Q1118A, 

with mock transfected cells (blue) and cells expressing E1201Q is given in the overlay 

plots to the bottom left and bottom right, respectively. 
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A.  

 

B. 

 

Figure 3.20: (A) BODIPY® FL-verapamil transport (B) BODIPY® FL-vinblastine transport. 

The x-axes indicate the different ABCB1 mutants expressed. The y-axes indicate the fold 

difference in drug accumulation between the transfected and the untransfected cells 

within each sample. The fold difference of Q475A/Q1118A mutant as compared to 

untransfected cells gives a value ~0.4 which means the cells expressing the 

Q475A/Q1118A mutant accumulate more drug than untransfected cells. p values 

calculated with respect to drug accumulation in untransfected HEK293T cells; n=6 for 

BODIPY® FL-verapamil transport data and n=3 for BODIPY® FL-vinblastine transport data , 

** p<0.01, ns p>0.05. 
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A. 

 

B. 

 

Figure 3.21: The increase in BODIPY® FL-verapamil accumulation in cells expressing 

Q475A/Q1118A is less apparent when 10 μM BODIPY® FL-verapamil is used. A. 1 μM 

BODIPY® FL-verapamil. B. 10 μM BODIPY® FL-verapamil.  

 

 

 

 

 

 

 

 



121 
 

 

Figure 3.22: ABCB1 inhibitors Cyclosporin A (100 μM) and Elacridar (1 μM) can inhibit the 

increased BODIPY® FL-verapamil (0.8 μM) accumulation pattern observed when cells 

express the Q475A/Q1118A mutant ABCB1. BODIPY® FL-verapamil accumulation in cells 

expressing the Q475A/Q1118A mutant in the absence of inhibitor (green), and in the 

presence of the competitive inhibitor Cyclosporin A (orange) or noncompetitive inhibitor, 

Elacridar (red), as compared to mock cells (blue).  

 

3.3.15.  Can Single Q-loop Mutants Short Circuit in the Transport 

Cycle? 
 

The retention of wild-type levels of BODIPY® FL-verapamil efflux activity by the single Q-

loop mutants despite at least a 50% reduction in ATP hydrolysis activity (Dr. Zolnerciks, Dr. 

Linton, unpublished data, Figure 3.4) and because transport of BODIPY® FL-verapamil from 

the Q773-lined ligand binding cavity only requires the Q475 Q-loop motif, might suggest a 

change in stoichiometry and that single Q-loop mutants may power the transport cycle by 

hydrolysing just one ATP, as depicted by the short-circuit in Figure 3.23. It has been 

suggested previously that ABCB1 may hydrolyse only one ATP to return to the basal state 

[178]. If this is the mechanism used by single Q-loop mutants, they might be insensitive to 

mutation of one of the Walker B catalytic glutamates which normally results in an inactive 
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protein. To investigate this, single Walker B mutants (E556Q and E1201Q) were introduced 

into Q132R/Q1118A mutant (Table 3.3). These mutants only have the NBD1 Q-loop vital for 

the transport of BODIPY® FL-verapamil from the Q773-lined cavity, and one or other of the 

Walker B catalytic glutamates. Transport assays showed a significant decrease in activity of 

both triple mutants; Q132R/E556Q/Q1118A and Q132R/Q1118A/E1201Q, compared to the 

original Q132R/Q1118A mutant, however the transport activity of the 

Q132R/Q1118A/E1201Q mutant showed a subtle increase over the Walker B, E1201Q 

mutant. The difference was significant according to two-tailed Student’s t-test (Figure 3.24) 

and suggests partial rescue of the Walker B mutant. However, the increase in activity is 

much less than might be expected if the transport mechanism had been short-circuited to 

no longer require hydrolysis of the ATP in the E1201 pocket. Alternatively, it is possible that 

the Walker B glutamate is involved in a further step in the mechanism other than ATP 

catalysis.   
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Figure 3.23: Possible scheme for the transport cycle of ABCB1. Inward-open (io) ABCB1 

binds drug which, communicating through the Q-loops via the coupling helices, allows 

closure of the two NBDs around two molecules of ATP. The ATPs may already be bound 

to the F1-core subdomains of the NBDs, but the conformation of the coupling helices 

prevents closure of the NBD:NBD interface in the absence of drug. The drug-dependent 

and ATP-dependent inward-closed (ic) conformation of ABCB1 causes a conformational 

change in the TMDs which results in release of drug, and also occludes one of the ATPs 

committing it for hydrolysis. Dr. Zolnerciks’ ECAR data imply that both ATPs are 

hydrolysed in concert in the wild-type transporter, but there may be circumstances, for 

example when drug is only bound to the Q773-lined cavity, or in the absence of one of 

the Q-loop glutamines, when the transporter short circuits and commits only one ATP to 

hydrolyse and loses the other from the non-occluded pocket. 
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Table 3.3: Oligonucleotides designed to introduce Walker B mutants into the plasmid 

encoding the Q132R/Q1118A mutant.  

 

 

 

Figure 3.24:  BODIPY® FL-verapamil transport activity of the Q132R/Q1118A/E1201Q 

mutant is significantly different from the single Walker B mutant E1201Q according to 

two-tailed Student’s t-test. p values calculated with respect to  Q132R/Q1118A/E1201Q 

mutant activity; n=3, ** p<0.01.  
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3.3.16.  UIC2 Antibody Binding Suggests Q475A/Q1118A is Trapped 

in the ‘Basal State’ 
 

Mouse monoclonal UIC2 antibody was first described in 1992 to recognize a moiety on the 

first extracellular loop of ABCB1 [179]. In the study by Mechetner et al., UIC2 antibody 

inhibited the transport of drugs from mouse BALB/c 3T3 cells transiently expressing ABCB1 

and increased their cytotoxicity, whereas no effect was detectable with other anti-ABCB1 

antibodies. It was shown that UIC2 reactivity with ABCB1 was increased by the addition of 

ABCB1 transport ligands or ATP-depleting agents and also by mutation of the Walker A 

motif lysine residues [180]. Mutation of the Walker A motif lysine residues to methionine 

had previously been shown to prevent ATP binding [181]. This suggested that the UIC2 

epitope is obscured in the ATP bound form of ABCB1, which equates to the inwardly-closed 

nucleotide bound conformation as observed in the crystal structure of the ABCB1 

homologue Sav1866 [57]. The addition of transport ligands to the wild-type ABCB1 is 

thought to drive the transporter through the transport cycle and this increases UIC2 

binding because it involves conformational change to the inwardly-open conformation 

[180]. 

3.3.16.a.  Titration and Use of the UIC2 Antibody 

 

The UIC2 antibody was titrated to saturate all wild-type or mutant ABCB1 on cell surface.  

Cells were transfected with pABCB1-12HIs, as described in section 2.3.5., and after 

harvesting the cells were aliquoted into eight fractions, each containing 1x 10⁶ cells. These 

fractions were then labelled with 0, 0.5, 2.5, 5, 12.5, 25, 50, 100 μl of UIC2 antibody which 

was conjugated to phycoerythrin (PE) (stock UIC2 supplied by Immunotech was at a 
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concentration of 15 μg/ ml) in the presence of 0.8 μM BODIPY® FL-verapamil to drive 

ABCB1 through the transport cycle. The cells were incubated for 30 minutes at 37oC, then 

washed and the fluorescence associated with the cells was measured by flow cytometry. 

Fluorescence from antibody bound non-specifically to untransfected cells was subtracted 

from the fluorescence associated with from ABCB1-expressing cells to reveal the specific 

binding of UIC2 antibody. From this data, it was concluded that 0.375 μg of UIC2 per 1x10⁶ 

cells was sufficient to saturate the ABCB1 on the surface of cells, as any increase above this 

level resulted in a minimal increase in fluorescence (Figure 3.25).    

 

Figure 3.25: Titration of UIC2 antibody binding to HEK293T cells expressing wild-type 

ABCB1. 1x10⁶ cells transfected with p-ABCB1-12His were labelled with UIC2 antibody 

conjugated to PE for 30 minutes at 37°C in the presence of 0.8 μM BODIPY® FL-verapamil. 

After washing, UIC2 binding was determined by flow cytometry and specific UIC2 binding 

was calculated by subtracting corresponding FL-2 fluorescence values from untransfected 

cells labelled in the same manner. 
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To investigate the conformation of the Q475A/Q1118A mutant, the conformation-specific 

antibody UIC2 was used. HEK293T cells were transfected transiently to express either the 

wild-type ABCB1, the single or double Q-loop mutants or the NBD2 Walker B mutant 

(E1201Q). The cells were labelled with 4E3 antibody to measure the total amount of ABCB1 

on the cell surface (Figure 3.26A). This showed that all mutants express to a similar level as 

the wild-type protein.  The BODIPY® FL-verapamil transport activities of single Q-loop 

mutants (Q475A and Q1118A) are similar to wild-type protein, and the NBD2 Walker B 

mutant (E1201Q) was unable to transport the drug. As before, the double Q-loop mutant 

accumulates more drug than mock transfected cells or cells expressing the NBD2 Walker B 

mutant (Figure 3.26B). UIC2 binding was significantly higher in the Q475A/Q1118A 

expressing cells (Figure 3.26C), while the NBD2 Walker B mutant bound less UIC2 than wild-

type ABCB1. The simplest interpretation of this data is that a larger fraction of double Q-

loop mutant is in the inwardly-open conformation with a high-affinity for UIC2, while the 

Walker B single mutant which has previously been shown to be trapped in the ATP-bound 

conformation [182] has a low-affinity for UIC2.  
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Figure 3.26: Conformation-specific UIC2 antibody differentiates the conformations of the 

wild-type, Walker B and double Q-loop mutant. (A) HEK293T cells expressing wild-type 

ABCB1, Q-loop mutants NBD1-Q475A, NBD2-Q1118A and Q475A/Q1118A, and the 

Walker B mutant E1201Q, together with mock transfected cells were labelled with the 

ABCB1-specific antibody 4E3. (B) The effect of the wild-type and mutant ABCB1 on 

BODIPY® FL-verapamil accumulation. (C) Labelling of HEK293T cells expressing wild-type 

ABCB1, the double Q-loop mutant Q475A/Q1118A, the Walker B mutant E1201Q, and 

mock transfected cells with the conformation-sensitive ABCB1 antibody UIC2. 
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3.3.17.  Confocal Microscopy Shows Drug Bound to the 

Q475A/Q1118A Mutant in the Membrane and Confirms the 

Inward-open Conformation of This Mutant 
 

Confocal microscopy was invented by Marvin Minsky in 1955, based on the main idea of 

rejection of the out-of focus light [183]. It uses a point-by-point image construction by 

focusing on a point of light in the specimen and this avoids most of the unwanted scattered 

light from indeterminate points when the entire specimen is illuminated. Additionally, the 

returning rays from the visualised point of the specimen pass through a second pinhole 

before detection ensuring that only light from the focal point is measured which is why the 

pinhole size is critical. These two systems; a first pinhole to illuminate a single point and a 

second before the detector that eliminates the out of focus light, is why the microscope is 

referred as ‘confocal’. The focussed light rays are then collected by a photomultiplier and 

the image is gradually constructed.  

Confocal microscopy was performed to determine whether the Q475A/Q1118A mutant 

binds drug, or binds and internalises drug. Cells expressing the Q475A/Q1118A mutant 

were found to accumulate BODIPY®FL-verapamil or BODIPY®FL-vinblastine in the plasma 

membrane where it co-localises with the signal from the ABCB1-specific antibody 4E3 

(Figure 3.27 and Figure 3.28, respectively). Consistent with the UIC2 binding data, this 

implies the double Q-loop mutant ABCB1 binds BODIPY® FL-verapamil or BODIPY®FL-

vinblastine but is unable to progress in the transport cycle, and so is trapped in the inward-

open conformation which has a high affinity for drug. Consistent with this interpretation, 

neither BODIPY® FL-verapamil nor BODIPY®FL-vinblastine could be visualised bound to the 

Walker B E1201Q mutant, supporting the conclusion drawn from the UIC2 binding 
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experiments that the single Walker B mutant is trapped in the ATP-bound inwardly-closed 

conformation which would be expected to have a low affinity for drug. 
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Figure 3.27: Transiently-transfected HEK293T cells were used to investigate the 

subcellular location of accumulated drug. The red-fluorescence reports ABCB1 antibody 

binding (4E3), and green fluorescence is BODIPY®FL-verapamil accumulation. The right 

hand panel shows the merged image of red and green fluorescence. Wild type ABCB1 is 

highly active and exports BODIPY®FL-verapamil out of the cell such that very little, if any, 

drug accumulation can be seen in the cell or cell membrane. The Q475A/Q1118A double 

Q-loop mutant binds drug and the merged image shows drug accumulation in the plasma 

membrane overlapping with the bound antibody. In contrast, the Walker B mutant 

(E1201Q) looks similar to untransfected cells and has no detectable drug in the plasma 

membrane. 
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Figure 3.28: Transiently-transfected HEK293T cells were used to investigate the 

subcellular location of accumulated drug. The red-fluorescence reports ABCB1 antibody 

binding (4E3), and green fluorescence is BODIPY®FL-vinblastine accumulation. The right 

hand panel shows the merged image of red and green fluorescence. Wild type ABCB1 is 

highly active and exports BODIPY®FL-vinblastine out of the cell such that no drug 

accumulation can be seen in the cell or cell membrane. The Q475A/Q1118A double Q-

loop mutant binds drug and the merged image shows drug accumulation in the plasma 

membrane overlapping with the bound antibody. In contrast, the Walker B mutant 

(E1201Q) looks similar to untransfected cells and has no detectable drug in the plasma 

membrane. 
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3.4.   Discussion and Conclusions 
 

The early structural data showed that the Q-loop motif glutamines (Q475 and Q1118A) 

were in close proximity to the putative attacking water molecule in the Rad50 and HisP 

crystal structures [63, 184]. Mg2+ was not present in the HisP structure, but water- 407 was 

thought to occupy the location of Mg2+, and the Q-loop glutamine was in close proximity to 

this water molecule [63]. In the Rad50 structure, in which the non-hydrolyseable Mg2+-

AMP-PNP nucleotide analogue was co-crystallised, the Q-loop glutamine (Gln-140) co-

ordinated both the Mg2+ and the putative attacking water molecule [184]. This led to the 

interpretation that the Q-loops might activate the attacking water molecule or have a role 

in the coordination of Mg+2.  The crystal structures focussed attention on the Q-loop motif 

which was subsequently analysed by biochemical studies after purification and 

reconstitution into proteoliposomes. Urbatsch et al. showed that the single Q-loop mutants 

of the mouse homologue of human ABCB1 lost nearly all of their ATPase activities in vitro. 

The residual activity was dependant on Mg2+ and inhibitable by vanadate [164]. However, 

the dramatic loss of ATPase activity in the single Q-loop mutants was contradicted later by 

ECAR measurements in live cells (Dr. Zolnerciks, see section 3.1.). The single Q-loop 

mutants retain the ability to hydrolyse ATP in live cells (up to 50% of the wild-type activity) 

but this is largely lost during purification, which is likely due to inactivation of the single Q-

loop mutants during the purification process.  
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Subsequent analyses of ABCB1 and other ABC transporters has clearly identified that the 

Walker B glutamate is more important for ATP hydrolysis and most likely activates the 

attacking water for catalysis [185, 186], but this need not exclude a role for the Q-loop 

glutamine in the process.  

The structural data suggest a potential role for the Q-loops in signal transduction between 

the ATP catalytic sites and ligand binding cavities. The Q-loop resides in close proximity to 

the intracellular coupling loops of the TMDs [57]. The second intracellular loop of both 

TMDs sits in a groove on the top surface of the juxtaposed NBD, with the Q-loop at the 

base of each groove. In the crystal structure of the E. coli vitamin B12 importer BtuCD, the 

Q-loop of BtuD is in contact with the cytoplasmic loop of BtuC which also suggests an 

interaction important for NBD:TMD communication in ABC importers [187]. 

The Q-loop also links the core and the α-helical subdomains of the NBDs and has been 

suggested to function as a flexible hinge to allosterically couple the two nucleotide binding 

pockets. The α-helical subdomains are suggested to rotate around the Q-loops to contact 

nucleotide that is bound by the core subdomain of the apposed NBD [60]. With the Q-loop 

serving as a hinge, any conformational change to bind ATP or release the products of ATP 

hydrolysis can theoretically be transmitted to the TMDs via the coupling helices. These 

mechanistic interpretations of X-ray crystallographic data fit well with the observed 

phenotype of the Q-loop mutants of ABCB1. If the double Q-loop mutant is unable to 

influence conformational change at the NBDs after drug binding then the mutant 

transporter will not be able to efflux drug, but the drug may remain bound to the TMDs in 

the plasma membrane. This is evident in the flow cytometry transport studies which show 

that this mutant is unable to efflux drug, and in the confocal microscopy data that localises 
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the additional drug accumulation to the plasma membrane in cells expressing this mutant. 

The inability of the double Q-loop mutant to change conformation is also supported by the 

high level of UIC2 binding, consistent with the transporter adopting the inward-open 

conformation. However, the single mutants retain transport function because the 

hypothesised conformational change induced by drug binding can still be transmitted to 

the NBDs via the remaining wild-type Q-loop. 

My data also shows that different transport ligands interact with ABCB1 to stimulate the 

transport cycle in different ways. The drug binding sites are considered to be a property of 

the TMDs, yet single mutations in the Q-loops of the NBDs have distinct effects on the 

transport of different drugs. The Q-loop is a critical motif for function shown by the 

complete inactivity of the double Q-loop mutants (Q475A/Q1118A) for all drugs. However, 

there is redundancy in the mechanism for BODIPY® FL-verapamil with wild-type levels of 

efflux activity for the single Q-loop mutants, and partial but significant activity for the efflux 

of Rhodamine123 and BODIPY® FL-taxol. Most surprisingly, BODIPY® FL-vinblastine efflux 

activity is absent for single Q-loop mutants. The situation is further complicated when point 

mutations (Q132R and Q773R) are introduced into the TMDs to dissect the pseudo-

symmetrical ligand binding cavities [163].  

The Q132R and Q773R mutations separate pseudosymmetric drug binding sites for 

BODIPY® FL-verapamil, and in combination with the single Q-loop mutants, distinct inter-

domain communication pathways were identified: the Q132-gated verapamil binding cavity 

communicates with both Q-loops but the Q773-gated verapamil binding cavity 

communicates primarily with the Q475 of the NBD1 Q-loop to transport the bound drug 

(Figure 3.29). This suggested that the NBD2 Q-loop mutant might short-circuit the transport 
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cycle when only the Q773-gated binding cavity is available to bind BODIPY® FL-verapamil 

(ensured by mutation of the Q132 residue to arginine). If the transport cycle can be short-

circuited and only one molecule of ATP is hydrolysed, it was hypothesised that one of the 

Walker B motifs might no longer be necessary. Both single Walker B mutants were 

therefore introduced into the Q132R/Q1118A mutant. Transport assays of the new 

mutants showed that both Walker B motifs were necessary for wild-type levels of BODIPY® 

FL-verapamil transport activity. Mutation of the NBD1 Walker B catalytic glutamate 

completely inhibited BODIPY® FL-verapamil transport, but mutation of the NBD2 Walker B 

motif was not fully penetrant, and the Q132R/Q1118A/E1201Q retained a residual 

transport activity that was significantly different to either single Walker B mutant. This 

rescue of the NBD Walker B mutant phenotype, albeit subtly, might suggest that the 

Q132R/Q1118A mutant is capable of short-circuiting the ATP catalytic cycle and hydrolyses 

only one ATP to transport BODIPY® FL-verapamil. Mechanistically, this could be explained if 

the NBD2 Q-loop glutamine was required to co-ordinate the γ-phosphate in order to 

position the ATP for attack by the water activated by the Walker B glutamate. But why 

would full activity not be restored in the triple mutant? Hypothetically, this may be 

explained if the Walker B motif is also important for a conformational step post hydrolysis. 

Evidence for such a role for the Walker B motif may be found in the crystal structure of 

HlyB from E. coli solved with ADP bound, in which the Q-loop glutamine (Q550) forms a 

direct interaction with the peptide backbone of residue T633 in the presence of ADP. T633 

is towards the carboxyl end of the Walker B motif suggesting a role for the Walker B motif, 

and a further role for the Q-loop, in the outward rotation of α-helical subdomain [61]. If the 

E1201Q mutant changes the conformation or positioning of the Walker B motif then the 

involvement of the latter in the outward rotation may be impaired and the 
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Q132R/Q1118A/E1201Q triple mutant might therefore struggle to complete the transport 

cycle even after hydrolysis of the (single) ATP.  

 

Figure 3.29: Communication paths during BODIPY® FL-verapamil transport. 

 

Combining the Q132R ligand binding cavity mutant with each of the two NBD Q-loop 

mutants Q475A and Q1118A had little impact on the already impaired Rhodamine123 

transport activity of each single Q-loop mutant. This is as expected because Rhodamine123 

does not appear to be transported via the Q132 cavity. Combining the Q773R mutant with 

each of the Q-loop mutants further impaired the transport activity of the transporter (the 

transport activities of these mutants were not significantly different to the inactive Walker 

B mutants). The impact of the Q-loop mutations on the ability of the Q773R mutant to 

efflux Rhodamine123 was symmetrical, implying that Rhodamine123 by the Q773-lined 

cavity transduces energy through both Q-loops to engage the ATP catalytic cycle. 
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In conclusion, it was shown that different drugs trigger the transport cycle in different 

ways. Rhodamine123 transport via the Q773-lined cavity requires both Q-loops whereas 

BODIPY® FL-verapamil transport from the same cavity is dependent largely on the Q-loop of 

NBD1. In addition to these data, single Q-loop mutants can transport BODIPY® FL-

verapamil, Rhodamine123 and BODIPY® FL-taxol, but cannot transport BODIPY® FL-

vinblastine. It was also shown by flow cytometry and confocal microscopy, and also by the 

use of the conformation-specific antibody UIC2, that the double Q-loop mutant is trapped 

in the basal state which retains affinity for BODIPY® FL-verapamil and BODIPY® FL-

vinblastine. In contrast, the single Walker B mutants are likely trapped in the ATP-bound 

state and do not bind drug. The Walker B mutants have previously been shown to be 

unable to hydrolyse ATP [185] and these mutants are therefore likely to be trapped in a 

state resembling the inwardly-closed ATP-bound conformation, and consequently should 

have a low-affinity for transport ligand entirely consistent with the microscopy data 

included herein.  
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Chapter Four 
 

 

 

 

 

 

 

 

 

 

 

 

4.  The Potential Role of ABCB1 in 

Alzheimer’s Disease and the Potential 

Regulation of ABCB1 by Ubiquitination  
 

 

 

 

 

 

 

 



140 
 

4.1.   Introduction 
 

Alzheimer’s disease is characterised by the accumulation of β-amyloid within the brain and 

one contributory factor for this is reduced clearance [188]. Transport of the β-amyloid 

peptide requires transporters and clearance across the blood-brain barrier from brain to 

blood is a two-step process. β-amyloid must first pass through the abluminal membrane of 

endothelial cells forming blood-brain barrier and then the luminal membrane. Low density 

lipoprotein receptor-related protein 1 (LRP1) has been suggested to be responsible for β-

amyloid transport across the abluminal membrane [189]. In the luminal membrane, the 

transport of β-amyloid into blood has been suggested to be mediated by ABCB1 [190-192]. 

In a mouse model of Alzheimer’s disease (the human amyloid precursor protein (hAPP)-

overexpressing Tg2576 strain) the loss of mouse ABCB1 homologue was shown to correlate 

with accelerated accumulation of β-amyloid in the brain [193]. In the same study, it was 

also shown that inhibition of Abcb1 by PSC833 (a potent ABCB1 inhibitor) resulted in 

decreased transport of β-amyloid into the lumen of brain capillaries isolated from wild-type 

mice. The data from animal studies parallels data from human studies. Studies of 

Alzheimer’s disease patients show decreased level of ABCB1 at the BBB suggesting a 

progressive loss and an inverse correlation between ABCB1 expression and deposition of β-

amyloid in the brains of Alzheimer’s disease patients [194, 195]. These findings suggest that 

reduced ABCB1 on luminal membranes of blood-brain barrier epithelial cells contributes to 

β-amyloid accumulation in the brain. Internalisation of proteins from the membrane is 

often regulated by ubiquitination and in the Linton Lab, it was shown by one of my 

colleagues that ABCB1 can be ubiquitinated by Nedd4-1 (Prof. Linton, personal 
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communication) (Figure 4.1) and another colleague has shown that expression of Nedd4-1 

reduces surface expression of ABCB1 expressed stably in Flip-IN cells (Figure 4.2). 

 

Figure 4.1: Wild-type ABCB1 purified from insect cells was ubiquitinated by Nedd4-1 in 

vitro and the ubiquitination status was investigated by SDS-PAGE and western blotting 

(Dr. Tasha Ritchie, Linton Group, personal communication).  The left lane shows the 

purified untreated wild-type protein and the right lane represents the Nedd4-1 treated 

protein. The mobility shift between the two lanes suggests that ABCB1 can be 

ubiquitinated by Nedd4-1. 

 

 

Figure 4.2: Histogram showing that Nedd4-1 expression in cells lowers ABCB1 density at 

the plasma membrane. Flip-in-ABCB1 cells stably expressing ABCB1 were transiently-

transfected with pmCherry-Nedd4.1 or control plasmid. The level of ABCB1 at the plasma 

membrane was measured by flow cytometry after incubating the cells with saturating 

levels of anti-ABCB1 monoclonal antibody 4E3 and a red-fluorescent secondary (Linton 

Lab, unpublished data). 

Herein, I extend these observations, and identify the residues ubiquitinated by Nedd4-1. 

This was achieved by purification of wild-type human ABCB1 and mass spectrometry after 

ubiquitination by Nedd4-1 in vitro. This required a multistep approach described in Figure 

4.3. 
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Figure 4.3: Multistep approach used in this study. 

4.2.   Ubiquitination 
 

Ubiquitination is a post-translational modification which regulates several cellular 

functions. Although the first identified role of ubiquitination was to target proteins for 

degradation by the 26S proteasome, further roles in regulating many diverse cellular 

processes have been revealed. These processes include protein quality control, cell-cycle 

progression, membrane protein trafficking and control of protein subcellular localization, 

internalization of signal receptors, gene transcription and even in some cases prevention of 

protein degradation [54, 196-198]. Post-translational modification by ubiquitin can be 

formed in three ways; monoubiquitination, multi-monoubiquitination or polyubiquitination 

(Figure 4.4).  
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Figure 4.4: Ubiquitination modifications. 

 

Ubiquitin is a 76 amino acid polypeptide which is most commonly attached covalently to 

target protein lysine residues. The sequential activation of three enzymes is required for 

ubiquitination: the ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzymes 

(E2s), and the ubiquitin ligases (E3s). In an ATP-dependent pathway, the E1 enzyme 

activates the C-terminus of ubiquitin which forms a thiol-ester bond between ubiquitin and 

the active site Cys residue of E1. The E2 enzyme carries the activated ubiquitin from the E1 

enzyme to the E3 enzyme. The E3 enzyme recognizes the target substrate(s) and transfers 

the activated ubiquitin from the E2 enzyme to a lysine or, rarely, to a cysteine residue of 

the substrate [199], or to the growing end of a polyubiquitin chain on a substrate protein. 

The E3 ligase catalyses the formation of an isopeptide bond between the carboxyl group of 

glycine residue 76 of the ubiquitin and the ε -amino group of a lysine residue within the 

substrate [54] (Figure 4.5). All three steps are necessary for all ubiquitination reactions, 

whatever the fate of the substrate. Polyubiquitination studies showed that all seven lysine 

residues (K6, K11, K27, K29, K33, K48, K63) in the ubiquitin protein can be used for 
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polyubiquitin chain formation and that K63-linked chains can result in nonproteolytic 

outcomes such as trafficking or lysosomal degradation, whereas K48-linked 

polyubiquitination usually results in 26S proteasomal degradation [200]. Ubiquitination is a 

reversible process; the human genome encodes deubiquitinating enzymes which can cleave 

ubiquitin from its substrates [201]. 

 

 

Figure 4.5: The ubiquitination cascade. Free ubiquitin (Ub) is activated by the ubiquitin-

activating enzyme (E1), resulting in formation of a thioester bond between the C-terminal 

glycine of Ub and the active site cysteine residue of E1. Activated Ub is then transferred 

to the active site cysteine residue of the ubiquitin-conjugating enzyme (E2). Then, Ub is 

transferred from E2 to the ubiquitin ligase (E3) which is bound to the target protein, 

forming an isopeptide linkage between Ub and the ε-amino group of a lysine in the target 

protein.  
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4.3.   The Human Nedd4 Family 
 

There are two main classes of E3 enzymes; the RING (Really Interesting New Gene) finger 

and the HECT (Homologous to E6-AP Carboxy Terminus) domain E3s. The RING E3s mediate 

the E2-substrate interaction to promote ubiquitin transfer directly from E2s to substrates 

[202]. The HECT domain was first characterized in the human ubiquitin protein ligase E6-AP 

(E6-associated protein) [203] and, unlike RING fingers, HECT domains are always located C-

terminally, and provide a catalytic contribution to transfer the ubiquitin to the substrate 

from a thiol-ester intermediate formed with a conserved cysteine residue within the E3 

ligase [204]. 

Nedd4 (Neural precursor cell Expressed, Developmentally Down-regulated 4) is a HECT 

domain E3 ligase which was first described in 1992 in a screen for developmentally down-

regulated genes in the early embryonic mouse central nervous system [205]. In the study 

by Kumar et al., ten cDNA clones were isolated and described as Nedd 1 to 10. Although 

the expression of Nedd4 mRNA levels decrease gradually in adult central nervous system, it 

is expressed in almost all adult tissues.  
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In human, there are 9 distinct members of the Nedd4 family (Figure 4.6) [206]. The domain 

organization of all 9 members is similar, each contain a C2 domain, 2-4 WW domains, and a 

C-terminal HECT domain. The C2 domain was first described in classical protein kinase C 

isoforms as a Ca²⁺-dependent phospholipid binding domain [207, 208]. This domain is 

involved in protein localization and trafficking and it has been shown that N-terminally 

deleted Nedd4 localizes to the nucleus whereas full-length Nedd4 localizes in the cytosolic 

periphery [209]. The WW domain is a small protein-protein interaction module 

(approximately 40 amino acids), named for the presence of two highly conserved 

tryptophan residues approximately 20-22 amino acids apart. [210]. The WW domains 

mediate substrate recognition and are classified based on their recognition sequences. 

Class I WW domains, which include the Nedd4 family WW domains, bind PxY motifs, Class II 

domains bind PPLP sequences, Class III domains bind [R]-R/K/x-PP or PP-R/x-[R]  protein 

sequences and Class IV domains bind (phospho-S/T)P sequences [211]. 

 

Figure 4.6: The human Nedd4 family. The C2 domain is represented by a blue box, the 

WW domain is depicted by pink circles and the HECT domain by a green bar. Diagrams 

are not to scale (modified from Ingham et al. [206]). 
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In the human genome, from the 9 distinct members of the Nedd4 proteins, Nedd4-1 and 

Nedd4-2 are the two most closely related. The phylogenetic analysis of the two proteins 

indicates that Nedd4-1 is the ancestral member of the family with a single homologue in S. 

cerevisiae whereas D. melanogaster has four members of the Nedd4 family but no 

orthologue of Nedd4-2 [212]. Nedd4-1 and Nedd4-2 share 64% identity and 74% similarity 

at the protein level and both have four WW domains that recognize the PY motif (PxY) 

[213]. While Nedd4-1 is ubiquitously expressed, Nedd4-2 expression is more restricted, 

being high in liver and kidney, and expressed to a lesser extent in heart, brain, and lung 

[214]. 

4.4.   Expression of Recombinant Protein 
 

To identify the ABCB1 residues ubiquitinated by Nedd4-1, required first the purification of 

ABCB1. Four different protein expression hosts are commonly used to express recombinant 

proteins: bacteria, yeast, insect cell or mammalian cell expression systems. To purify 

membrane proteins each has its own advantages and disadvantages.  

Bacterial and yeast protein expression systems are easy to cultivate and quick to grow in 

large amounts and are relatively inexpensive. On the other hand, their cell walls need to be 

broken down either by lysozyme, a glycoside hydrolase or high-pressure homogenization or 

sonication. In addition, membrane protein post-translational modifications in bacteria 

differ from mammalian post-translational modifications which can lead to misfolding and 

degradation of the recombinant membrane protein. Another important difference is that 

the yeast cell membrane does not contain cholesterol but ergosterol and zymosterol which 

might affect insertion and localization of the membrane protein. 
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Insect and mammalian cell protein expression systems are more expensive to grow, and 

insect cells need to be infected with baculovirus which is also expensive and time-

consuming to generate, but insect cells remain simpler to maintain as large-scale cultures 

than mammalian cells. Both insect and mammalian cells have complex post-translational 

modifications. Mammalian cells tend to glycosylate with complex N-glycans including 

mannose, N-acetyl glucosamine, galactose and, terminally, sialic acid, whereas insect cells 

glycosylate essentially with mannose [215]. Nevertheless, insect cells are arguably a more 

natural host than yeast for recombinant mammalian proteins. Although mammalian cell 

protein expression would be the most natural for ABCB1, the protein yield is often poor 

compared to insect cells and this is the reason why insect cell expression was chosen for 

this study. Once the membrane protein of interest is expressed and the cell membrane 

fraction has been collected (by homogenization and differential centrifugation), the protein 

needs to be solubilized from the membrane to enable purification. This is routinely 

achieved by the use of detergents and sonication. 
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4.5.   Detergent Solubilisation of Membrane 

Proteins 
 

Detergents are amphipathic molecules, consisting of a polar head group that determines 

the detergent’s class and a nonpolar hydrophobic tail having aliphatic or aromatic 

character. The ionic character of the polar head group designates the detergent as either 

ionic (charged, either anionic or cationic), nonionic (uncharged) or zwitterionic (both 

positively and negatively charged groups but with a net charge of zero). 

Membrane proteins have regions of high hydrophobicity which are embedded in the 

membrane under physiologic conditions and thus they have limited solubility in aqueous 

solutions. Because of this, membrane proteins need to be solubilised with detergents which 

break the membrane structure. Lipids are also included to mimic the physiologic 

environment of the protein and help maintain its stability [216]. The choice of the 

detergent is the crucial part of solubilisation; it must be strong enough to solubilise the 

membrane effectively, but gentle enough not to denature or unfold the protein. Within the 

available detergent range, zwitterionic or non-ionic detergents are the detergents of 

standard use for most membrane proteins because of their ability to retain the function of 

the protein [217].   

The detergents exhibit unique properties in aqueous solutions such as forming 

thermodynamically stable, non-covalent aggregates called micelles when the detergent 

monomer concentration increases above a critical narrow-range concentration called the 

critical micellar concentration (CMC) [218]. Detergents solubilize membrane proteins by 

mimicking the natural lipid bilayer environment physiologically inhabited by the protein to 
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generate protein-detergent micelles [219]. The process involves several steps. Initially, the 

detergent monomers bind and disrupt the cell membrane and then solubilisation begins 

above the critical solubilisation concentration (CSC) at which very small membrane sheets 

or mixed detergent-lipid-protein micelles are formed. After reaching the CMC, the 

membrane is fully solubilized and detergent-lipid and detergent-protein micelles are 

formed [220].  

 

4.6.   Baculovirus Expression Systems 
 

The Baculovirus expression system is a viral system which has been used to express 

heterologous genes from different sources in insect cells. The Baculoviridae is a family of 

occluded DNA viruses which are pathogenic, predominantly to holometabolous insects. 

They are enveloped, double-stranded DNA viruses with rod shaped nucleocapsids. 

Taxonomically, baculoviruses divide into three subgroups; A, B and C, depending on their 

virion deposition. Subgroup A can have many virions occluded within single intranuclear 

crystals called polyhedra and are therefore described as the nuclear polyhedrosis viruses 

(NPVs). NPVs are subdivided into two further classes depending on the extent of their 

nucleocapsids within the envelope; present as either single (SNPVs) or multiple (MNPVs). 

The most extensively studied baculovirus strain is the Autographa californica multiple 

nuclear polyhedrosis virus (AcMNPV). Subgroup B are the granulosis viruses (GVs) which 

have only one single virion within each polyhedron. Subgroup C is the nonoccluded 

baculoviruses (NOBs) which have no occlusion bodies surrounding the virions [221].  
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The polyhedra, which are also known as the occlusion bodies, are composed of 29 kDa 

polyhedrin proteins and are very stable to protect the virus outside the host. In the life 

cycle of NPVs, there are two virion phenotypes; the polyhedra-derived virus (PDV) 

(occluded virus) which is found within the polyhedra and budded virus (BV) (nonoccluded 

virus) which is found in the host cells [221]. Envelopes of PDVs are specialized for 

interaction with polyhedrin and for infection of the columnar epithelial cells of the insect 

midgut whereas BV envelopes are specialized for infection of the rest of the tissues in 

insect cell body. PDVs enter midgut epithelial cells by fusion whereas BVs enter cells by 

adsorptive endocytosis. Only the BV envelopes contain a glycoprotein called gp64 which is 

highly important for BV endocytosis and infectivity [222]. Infectivity of the BVs is much 

higher than the PDVs [223]. The BVs are therefore the virion of choice for in vitro 

experiments, and for safety reasons (to limit survival outside of the lab), the polyhedrin 

gene is typically replaced with the gene of interest. PDVs cannot therefore be formed by 

recombinant virus under tissue culture conditions. 

4.6.1.   The Baculoviral Genome 
 

The replication cycle of baculoviruses is generally regulated at the transcriptional level. 

Baculoviral transcription is divided into three stages, called early, late and very late. 0-8 

hours post infection is the early stage and is driven by cellular RNA polymerase II to 

produce enzymes that will support viral DNA replication. The start of viral DNA synthesis 

terminates the early stage and initiates the late stage which takes place between 8-18 

hours post infection. In the late stage, genes encoding structural proteins of the BVs are 

expressed and BVs are assembled and released from the host cell during this time.  
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In the very late stage, although some BVs are produced, the pattern of transcription 

changes in favour of PDVs. Genes important in PDV assembly in occlusion bodies, such as 

P10 and polyhedrin, are expressed in the very late stage. 

The two baculoviral genomes used for the work described herein are AcMNPVs, which have 

a circular, double-stranded, super-coiled DNA genome that encodes about 150 open 

reading frames (orfs) [224].  

These expression systems have been engineered to differentiate the parental from the 

recombinant virus. The E. coli lacZ (β-galactosidase) gene has been inserted into the virus 

genome so the recombinant viral plaques could be distinguished by X-gal staining. Then a 

unique restriction endonuclease site (Bsu36I) was introduced at the polyhedrin locus (Ac8) 

to linearize the virus genome prior to insertion of the gene of interest via a transfer vector 

[225]. Later, the polyhedron gene was replaced by the lacZ gene that included a Bsu36I site 

to allow the selection of the clear plaques of recombinant virus. Following this, two Bsu36I 

sites were introduced, covering lacZ gene at the polyhedrin locus and a section of ORF1629 

which is vital for virus replication [226]. This led to a very high efficiency of recombinant 

virus acquisition because after Bsu36I digest, non-recombinant virus loses the ability to 

replicate unless the ORF1629 is rescued by recombination with the transfer vector, which is 

also used to introduce the gene of interest (described below). 
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4.6.2.   flashBAC 
 

The flashBAC genome contains a bacterial artificial chromosome (BAC) at the polyhedrin 

gene locus, replacing the polyhedrin gene and lacks a section of the essential ORF1629. In 

addition, it also lacks the baculoviral chitinase gene (ORF121, Ac126) which is involved in 

liquefaction of insect tissues with the help of cathepsin, but is considered to limit the 

expression of recombinant secreted or membrane proteins because it competes for 

translation sites on the rough endoplasmic reticulum (ER). It is compatible with most of the 

baculovirus transfer vectors.  

4.6.3.   ProFold™-ER1 
 

The ProFold™-ER1 genome contains the lacZ gene in place of the polyhedrin gene and it 

also lacks a section of the essential ORF1629. In addition to these, the ProFold™-ER1 

genome encodes calreticulin (to aid protein folding in the ER and efficient trafficking to the 

Golgi), protein disulphide isomerase (which improves protein folding by the formation and 

breakage of disulphide bonds), and the Aequorea victoria green-fluorescent protein (GFP, 

for the monitoring of recombinant baculovirus infection). Simultaneous high level 

expression of four recombinant proteins was provided by localising these genes far away 

from each other in the baculovirus genome. The ProFold™-ER1 baculovirus expression 

system is compatible with most transfer vectors including BacPAK9 which can also be used 

with flashBAC system. 
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4.7.   Mass Spectrometry 
 

Mass Spectrometry is an analytical tool used for measuring the mass of a molecule by 

separation of its ions according to the mass/charge ratios (m/z). It was used in this study to 

identify Nedd4-1 ubiquitination sites on ABCB1 (the mass spectrometry was outsourced but 

the raw data was analysed by myself). Mass spectrometry is used in various applications 

such as pharmaceutical, clinical and environmental assays and also in biotechnology. In 

biotechnology, mass spectrometry can be used for amino acid sequencing, oligonucleotide 

sequencing or to investigate protein structure or post-translational modifications like 

glycosylation, phosphorylation and ubiquitination.  

There are several different types of mass spectrometer available but the basic principal is 

always the same. Within a mass spectrometer, the sample molecules are ionized by an 

ionisation source to easily affect their deviation while passing through an electric or 

magnetic field. The ions are then accelerated to have the same kinetic energy and deflected 

by the analyser (electric or magnetic field) according to their masses. The lighter they are, 

the more they are deflected and the vice versa for heavier molecules. Other than mass, the 

charge of these ions is also important. The more charge, the more the ion is deflected. 

These factors are combined into mass/charge ratio (m/z) which is detected by a detector.  

 

 

 



155 
 

4.7.2.   Linear Ion Trap Quadrupole with Orbitrap Mass 

Spectrometry 
 

Linear Ion Trap Quadrupole (LTQ) Orbitrap Velos (Thermo Fisher Scientific, Germany) is a 

high resolution tandem mass spectrometer (MS/MS). The combination of a Linear Ion Trap 

Quadrupole (LTQ) Velos™ (dual-pressure ion trap assembly) and the Orbitrap™ allows fast 

isolation and high capture efficiency into the linear ion trap and high accuracy and 

resolution analysis in the Orbitrap. 

A TriVersa Nanomate chip-based electrospray device (Advion, NY, USA) connected to the 

LTQ Orbitrap Velos is used to provide the electrospray ionisation (ESI). ESI is a soft 

ionisation method that produces multiply charged ions [227]. 

The LTQ can store, isolate, and fragment ions and later send them to the orbitrap for 

further analysis. The LTQ uses a collision induced dissociation (CID) technique in which a 

neutral gas (helium in this study) is used to fragment the ions. In this technique, the ions 

are accelerated to a high kinetic energy and then collisions occur between the ions and 

helium which result in an increase in internal energy of the ions and subsequent 

dissociation producing b and y ions. From the linear ion trap to the Orbitrap™, ions move 

through gas-free octapole into the gas-filled curved linear trap (C-Trap). The Orbitrap™ 

consists of an outer barrel-like electrode and an inner spindle-shaped central electrode that 

form an electrostatic field to trap ions in an orbit around the central electrode [228]. The 

outer electrode is split in half to detect the image current produced by axial oscillating ions. 

The detected image current is digitized and converted into frequency and then mass 

spectra by Fast Fourier Transformation (FFT). The instrument acquires the frequencies of 

these axial oscillations and therefore the mass-to-charge ratios of the ions (Figure 4.7). 
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Figure 4.7: Schematic figure of LTQ Orbitrap XL™ (Thermo Fisher Scientific, Germany). 

Electrospray ionization introduces the sample to the square quadropole which filters the 

ions according to the mass/charge (m/z) ratio by an oscillating electrical field. The 

selected ions are fragmented in the collision chamber of LTQ linear ion trap where 

collision induced dissociation (CID) with helium was used to fragment ions. From the 

linear ion trap to the Orbitrap™, ions move into the gas-filled curved linear trap (C-Trap) 

to identify the m/z ratio of the fragments.  

 

4.8.   Aims 
 

 To express recombinant ABCB1 and compare the protein yield from flashBAC and ProFold™-

ER1. 

 To purify recombinant human ABCB1. 

 To identify the ABCB1 residues that are ubiquitinated by Nedd4-1. 

 To identify putative binding site(s) for Nedd4-1 on ABCB1. 
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4.9.   Results 
 

4.9.1.   Transfer vector generation, pBacPAK9 
 

As described in section 2.8., the coding cDNA for wild-type ABCB1-12His was excised from 

the pCI-neo mammalian expression vector by BstEII and NheI digests (Figure 4.8). The 3.9 

kb cDNA fragment was then ligated between the BstEII and NheI sites of the pBacPAK9 

vector to generate pBacPAK9-ABCB1-12His (Figure 4.9). Putative clones were digested with 

BalI and those matching the expected restriction digest profile were sequenced to confirm 

the veracity of BacPAK9 ABCB1-12His (Figure 4.10).  

 

 

Figure 4.8: NheI and BstEII digest of pCI-neo ABCB1-12His. After NheI and BstEII digest, 

pCI-neo ABCB1-12 His should release two DNA fragments of 3888 and 5542 basepairs 

(bp). (Please see Figure 2.1 for the vector map of pCI-neo ABCB1-12His.) 
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Figure 4.9: pBacPAK9 ABCB1-12His. 

 

 

 

Figure 4.10: BalI digest of BacPAK9 ABCB1-12His. The expected fragments should 

measure 6658 and 2878 basepairs (bp).  
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4.9.2.   Generation of recombinant baculovirus 
 

To generate a recombinant baculovirus, the linear baculoviral genomes (flashBAC and 

ProFold™-ER1) must recombine with the transfer vector (BacPAK9 ABCB1-12His) to reform 

ORF1629 that is vital for virus replication (see section 4.6.1.). This helps to ensure pure 

samples of recombinant baculovirus.   

 

4.9.3.   Amplification and titration of working stocks 
 

As detailed in section 2.2. the rationale for baculoviral amplification is to infect insect cells 

with a low ratio of baculovirus to cell number (multiplicity of infection; MOI) to allow cell 

growth to continue while multiple cycles of viral infection and release occur. To determine 

the titre of the virus samples, plaque assays were performed as described in the materials 

and methods section (section 2.2.8.).  Briefly, monolayers of Sf21 cells were infected with a 

series of dilutions of the baculovirus intermediate stock and overlayed with low melting 

point agarose, then incubated at 28°C for 3 days. After 3 days, the cells were stained with 

neutral red and as the infected dead cells do not internalise the dye, the dead cell 

populations were visualised as clear plaques in a red monolayer. After acquiring the virus 

titre, suspension cultures were infected at a low MOI of 0.1 (1 virus to 10 cells) to acquire 

the intermediate and working stocks.  

Insect cells were then infected with incremental volumes of the baculoviral working stock 

to determine the optimal ratio for ABCB1 expression (Figure 4.11). Recombinant flashBAC 

or ProFold™-ER1 working stock baculoviruses engineered to express human ABCB1 were 

used to infect Sf21 cells at a density of 1x10⁶ cells in 35mm dishes to compare protein 
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expression levels. After 72 hours post infection, the insect cells were solubilised in equal 

volumes (500 µl) of 2% SDS lysis buffer. Equal volumes of the whole cell lysates were 

diluted with loading buffer (please see section 2.13.1.), the protein separated by SDS-PAGE 

and blotted onto nitrocellulose membrane. All immunoblots were probed with C219 anti-

ABCB1 antibody (Cambridge Bioscience, UK). Infection with 150 μl of flashBAC and 20 μl of 

ProFold™-ER1 working stocks were found to give the highest levels of ABCB1 expression 

from 1x10⁶ cells. 

 

A. 

 

B. 

 

Figure 4.11: Titration of baculovirus working stocks by western blotting for ABCB1 

expression. A. ABCB1 expression of flashBAC working stock baculovirus in incremental 

amounts B. ABCB1 expression of ProFold™-ER1 working stock baculovirus in incremental 

amounts. Microliters indicate the volume of virus added to 1x10⁶ Sf21 cells in Sf-900™ II 

SFM media. All the expression experiments were performed by seeding equal amounts of 

insect cells (1x10⁶) in 35 mm dishes. After 72 hours post infection, the cells were lysed 

and equal volumes of each sample were loaded onto SDS-PAGE gels. 
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4.9.4.   Time course for ABCB1 expression in insect cells 
 

The optimal post-infection harvest time, to obtain the maximum recombinant protein yield, 

was determined by a time course assay. Sf21 cells were infected with flashBAC or 

ProFold™-ER1 virus in four different 35 mm dishes. The cells were harvested 24, 48, 72 and 

96 hours post-infection (Figure 4.12).  

 

A. 

 

B. 

 

Figure 4.12: Time course for ABCB1 expression in Sf21 cells with flashBAC (A) and 

ProFold™-ER1 (B) baculoviruses. (p.i. indicates post infection). flashBAC baculovirus 

ABCB1 expression was highest at 72 hours post infection whereas ProFold™-ER1 

baculovirus ABCB1 expression levels are similar at 48, 72 and 96 hours post infection. 
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4.9.5.   Expression yield from ProFold™-ER1 is better than flashBAC 
 

After determining the optimal virus titre and the harvest time to acquire the highest 

protein yield, the two recombinant baculoviruses (flashBAC and ProFold™-ER1) were 

compared with each other. 1x10⁶ Sf21 cells were seeded into 35 mm dishes and infected 

with flashBAC or ProFold™-ER1 virus. After 72 hours incubation, the monolayer cultures 

were harvested and ABCB1 was quantified by immunoblotting. ABCB1 expression was 

highest with ProFold™-ER1 virus compared to flashBAC virus (Figure 4.13). Two protein 

forms were visible in the immunoblots of flashBAC expressed ABCB1, the larger form 

migrating at 140 kDa likely corresponds to the mature ABCB1 and the smaller 90 kDa form 

was probably due to degradation. Only one single protein form migrating as a 140 kDa 

species consistent with mature full-length ABCB1 was observed with ProFold™-ER1 virus 

infection.  

 

Figure 4.13: Comparison of ABCB1 expression from ProFold™-ER1 and flashBAC 

baculovirus. The same number of cells were infected under the same conditions. Whole 

cell lysates were prepared in equal volumes of 2% SDS and equivalent fractions were 

loaded onto the gel.  
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4.9.6.   Expression in Sf21 Vs. Hi5 cells 
 

ProFold™-ER1 virus was shown to give a higher yield of ABCB1 than flashBAC and before 

growing large scale cultures, the expression levels in Sf21 cells and Hi5 cells were analysed. 

The two insect cell lines (1x10⁶ cells in 35 mm dishes or 100 ml suspension culture at a 

density of 1x10⁶ cells/ml) were infected with equal volumes of ProFold™-ER1 virus (20 μl 

virus per 1x10⁶ insect cells). After 72 hours, monolayers and suspension cultures were 

harvested and tested for ABCB1 expression by western analysis. Sf21 cells in Sf-900™ II SFM 

media generated significantly more ABCB1 compared to Hi5 cell in EX-CELL® 405 serum-

free medium (Figure 4.14). ImageJ densitometry analysis (Rasband, W.S., ImageJ, U. S. 

National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-

2014.) showed that Sf21 cell suspension or monolayer cultures express 2.4 times more 

ABCB1 than Hi5 cells.    

 

 

Figure 4.14: ProFold™-ER1 virus infection of suspension and monolayer cultures of Hi5 

and Sf21 cells in duplicates which were run on the same gel.   
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4.9.7.   Large scale ABCB1 expression from the ProFold™-ER1 

baculovirus 
 

Large scale infections of Sf21 cells in Sf-900™ II SFM media were performed in round 

bottom glass flasks shaking at 27°C. Suspension cultures of 2x10⁶ Sf21 cells/ ml in Sf-900™ II 

SFM media were infected with 20 μl virus/ 1x10⁶ cells and harvested 72 hours post-

infection. Membrane fractions were prepared by mechanical homogenisation.  

 

4.9.8.   Purification of recombinant ABCB1 from Sf21 insect cells 
 

4.9.8.a.   Membrane fractionation 

 

Insect cell suspension cultures were lysed by homogenisation using an Ultra-Turrax T25 

homogeniser. Membrane fractions were obtained by a high speed centrifugation following 

a low speed centrifugation step to first remove unbroken cells and nuclei.  

 

4.9.8.b.   Quantification of total protein yield 
 

The protein content of membrane fractions resuspended in ‘resuspension buffer’ was 

measured using bovine serum albumin (BSA) standards and spectrophotometry (see 

section 2.14.1.). 
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4.9.8.c.   Solubilisation 
 

n-dodecyl β-D-maltoside (DDM) is a water soluble, non-ionic detergent. It has been widely 

used with ABC proteins and in ABCB1 purification studies as a non-denaturing detergent. A 

recent study suggested that DDM is the most effective detergent in extracting ABCB1 from 

SF+ insect cells from a panel of 15 non-ionic detergents [229]. Previous studies have shown 

that ABCB1 is particularly sensitive to the removal of lipids during the purification process 

[230] and also to the level of cholesterol [231, 232]. The membrane preparations were 

therefore solubilised with a mixture of DDM and E. coli lipids, supplemented with 20% 

cholesterol. The solubilisation buffer also contained 20% (v/v) glycerol, which has been 

shown to act as an osmolyte protectant [233]. DDM at a concentration of 2% with 72 mg 

lipid (4:1 ratio of total E. coli lipid:cholesterol) was used to solubilise crude membrane 

preparations in a volume of 18 ml per 100mg protein. The membrane fractions were 

resuspended and solubilised by repeated syringing through a 25G needle at 4°C (on ice). 

The insoluble fraction was pelleted by high speed ultracentrifugation and the supernatant 

recovered as the solubilised protein fraction.  

4.9.8.d.   Nickel-NTA affinity chromatography 

 

The recombinant ABCB1 includes a 12-His tag at its C-terminus. This was exploited to purify 

the recombinant protein by metal affinity chromatography.  The polyhistidine tag will bind 

to divalent cations, in this case nickel, which is immobilised in a nitroloacetic acid (NTA) 

resin. This interaction binds and immobilizes the recombinant protein to the resin and can 

be eluted later with imidazole. Imidazole competes with the polyhistidine tag to bind to the 
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nickel. The solubilised membrane protein fraction was incubated with Ni-NTA resin (2 ml, 

50% slurry per 15 ml soluble membrane protein) for over an hour at 4°C.  

A low concentration of imidazole (10 mM) was used during the binding reaction to limit 

non-specific binding of other proteins and higher concentrations (40-500 mM) were used to 

wash the resin and extract the bound ABCB1. 

Following incubation of the Ni-NTA resin with the solubilised protein, the resin was pelleted 

by slow speed centrifugation and the unbound material was decanted. The resin was then 

washed four times with 20 bed volumes of wash buffer containing incremental 

concentrations of imidazole (40 mM, 80 mM, 100 mM, 120 mM) to remove protein bound 

non-specifically. The remaining bound material that comprised ≥ 95% pure ABCB1-12 His 

was eluted with 500 mM imidazole (Figure 4.15).   

Protein fractions and purified ABCB1 were TCA precipitated, resolubilised and separated by 

SDS-PAGE. The gel was stained with colloidal blue and visualised by ODYSSEY® (Figure 4.15). 

The yield of purified protein was quantified using BSA standards (Figure 4.16).  From 100mg 

of total membrane protein 45 µg of ABCB1 was purified. The main losses were observed in 

the unbound flow through material and also in the third and the fourth washes (Figure 

4.17). 
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Figure 4.15: Polyacrylamide gel stained with colloidal blue and visualised by ODYSSEY®, 

showing the proteins from each fraction. Lane: 1, 30 μl crude membrane preparation (0.6 

% of total volume); 2, 30 μl resuspended membrane preparation (0.15 % of total volume); 

3, 30 μl solubilised membrane preparation (0.2 % of total volume); 4, 200 μl unbound Ni-

NTA resin flow through (1.3 % of total volume); 5-8, 500 μl washes 1-4 (2.5 % of total 

volumes); 9, 500 μl elution 0 (buffer pH change; 2.5 % of total volume); 10-12, 30 μl 

elutions 1-3 (1.5 % of total volume); a-f increasing BSA concentrations (0.1 μg, 0.2 μg, 0.4 

μg, 0.6 μg, 0.8 μg, 1 μg respectively).   

 

Figure 4.16: BSA standard curve for protein assay. Pixel values of 0-1 μg of BSA were 

measured by ImageJ densitometry (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014.) and compared 

with the purified wild-type ABCB1-12His. The first eluate has a concentration of 19 μg/ml 

protein and the second has a concentration of 3.5 μg/ml. 
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Figure 4.17: Protein losses during purification showed by SDS-PAGE. FT stands for flow through, 

W1 wash1, W2 wash2, W3 wash3, W4 wash4, E0 elution zero and E1 for first elution. 300 μl 

unbound Ni-NTA resin flow through (2 % of total volume); 500 μl washes 1-4 (2.5 % of total 

volumes); 500 μl elution 0 (2.5 % of total volume); 10 μl elution 1 (0.5 % of total volume). Major 

losses occurred during the third and the fourth washes and also in the unbound Ni-NTA resin 

flow through and an amount close to 20% of the purified ABCB1 in the first eluate was lost in 

each of these three steps.  

 

4.9.8.e.   Concentration of the purified ABCB1 

 

The purified protein was concentrated using centrifugal filters and the imidazole 

concentration in the resulting sample was decreased by repeated dilution-concentration 

cycles and visualised by ODYSSEY® after SDS-PAGE and colloidal blue staining (Figure 4.18). 

19 μg/ml purified ABCB1 (corresponding to the first eluate fraction in Figure 4.15) was 

concentrated 21 fold to 400μg/ml in a final volume of 25 μl (from 1 ml of eluate). 

 

Figure 4.18: SDS PAGE of the concentrated ABCB1 sample. Lane: 1, 5 μl from 

concentrated ABCB1 (20 % of total); a, 2 μg of BSA; b, 2.5 μg of BSA.     
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4.9.9.  In vitro Ubiquitination of ABCB1 by Nedd4-1 
 

Ubiquitination of purified ABCB1 was performed in vitro by the addition of essential 

enzymes (E1 and E2), methylated ubiquitin (which cannot form polyubiquitin chains), and 

Nedd4-1 in the presence of ATP and MgCl₂ (Dr. Sullivan, personal communication).  After 

the ubiquitination reaction, the samples were loaded onto an 8% Precise™ tris- glycine gel 

(Thermo Fisher Scientific, UK). The proteins were separated by electrophoresis and stained 

with colloidal blue. Protein migrating with a mobility of 140 kDa and above was excised 

from the gel and sent for mass spectrometry (Birmingham Science City Translational 

Medicine:  Experimental Medicine Network of Excellence project). 

 

4.9.10.   Preparation of protein for mass spectrometry 
 

Protein preparation and tandem mass spectrometry was carried out by Birmingham 

Science City Translational Medicine:  Experimental Medicine Network of Excellence project.  

Briefly, following excision from the tris-glycine gel, the protein was digested using trypsin, 

yielding peptide fragments of known size (Table 4.1). The tryptic fragments were dissolved 

in 0.1% formic acid and loaded onto the mass spectrometer. 
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 Sequence Peptide Start Peptide End 

1 MDLEGDRNGGAKKK 1 15 

2 DLEGDRNGGAKKKNFFK 2 19 

3 NFFKLNNKSEK 15 26 

4 LNNKSEKDK 19 28 

5 KEKKPTVSVFSM 28 40 

6 EKKPTVSVFSMFRYSNWLDK 29 49 

7 YSNWLDKLYMVVGTLAAIIHGAGLPLMM 42 70 

8 DLMSNITNRSDINDTGFFMNLEEDMTR 87 114 

9 CLAAGRQIHK 137 147 

10 KQFFHAIMR 149 158 

11 QEIGWFDVHDVGELNTR 158 175 

12 LTDDVSKINEGIGDKIGMFFQSM 175 198 

13 INEGIGDKIGMFFQSMATFFTGFIVGFTR 182 211 

14 FFTGFIVGFTRGWK 200 214 

15 WAKILSSFTDKELLAYAK 232 250 

16 ILSSFTDKELLAYAKAGAVAEE 235 257 

17 ELLAYAKAGAVAEEV 243 258 

18 AGAVAEEVLAAIR 250 263 

19 TVIAFGGQKKELER 263 277 

20 ELERYNKNLEEAKRIGIKK 273 292 

21 QVLTVFFSVLIGAFSVGQASPSIEAFANAR 330 360 

22 AFANARGAAYEIFKIIDNKPSIDSYSK 354 381 
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23 GAAYEIFKIIDNKPSIDSYSKSGHKPDNIK 360 390 

24 IIDNKPSIDSYSK 368 381 

25 GHKPDNIKGNLEFR 382 396 

26 NVHFSYPSR 396 405 

27 GLNLKVQSGQTVA 412 425 

28 VQSGQTVALVGNSGCGK 417 434 

29 STTVQLMQR 434 443 

30 SGCGKSTTVQLMQRLYD 429 446 

31 LYDPTEGMVSV 443 454 

32 QLMQRLYDPTEGMVSVDGQDIR 438 460 

33 EIIGVVSQEPVLFATTIAENIR 468 490 

34 YGRENVTMDEIEKAVK 490 506 

35 EANAYDFIMKLPHK 506 520 

36 FDTLVGERGAQLSGGQKQRIAIAR 520 544 

37 NPKILLLDE 548 557 

38 EATSALDTESEAVVQVALDKARK 556 579 

39 TTIVIAHRLSTV 581 593 

40 NADVIAGFDDGVIVEKGNHDELMKEK 594 620 

41 GIYFKLVTMQTAG 620 633 

42 EVELENAADESK 634 646 

43 SEIDALEMSSNDSR 646 660 

44 SSLIRK 660 666 

45 RSTRRSVRGSQAQDR 666 681 
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46 LSTKEALDESIPPVSFWRIMK 682 703 

47 IIFSKIIGVFTRIDDPETK 730 749 

48 IIGVFTR 735 742 

49 IDDPETKRQ 742 751 

50 QNSNLFSLLFLALGI 750 765 

51 GIISFITFFLQGFTFGK 763 780 

52 GKAGEILTKR 778 788 

53 RLRYMVFR 787 795 

54 SMLRQDVSWFDDPK 795 809 

55 NTTGALTTR 809 818 

56 LANDAAQVKGAIGS 818 832 

57 LAVITQNIAN 833 843 

58 VPIIAIAGVVEMKMLSGQALK 865 886 

59 MKMLSGQALKDK 876 888 

60 ELEGSGKI 889 897 

61 IATEAIENFR 896 906 

62 TVVSLTQEQK 906 916 

63 FEHMYAQSLQVPYR 916 930 

64 NSLRKAHIFGITFSFTQAMMYFSYA 930 955 

65 GCFRFGAYLVAHK 955 968 

66 LMSFEDVLLVFSAVVFG 968 985 

67 AMAVGQVSSFAPDYAK 985 1001 

68 AKISAAHIIMIIEKT 1001 1016 



173 
 

69 PDIPVLQGLSLEVKK 1048 1063 

70 GQTLALVGSSGCGK 1064 1077 

71 STVVQLLER 1077 1086 

72 FYDPLAGK 1086 1094 

73 KVLLDGKEIK 1093 1103 

74 RLNVQWLR 1103 1111 

75 AHLGIVSQEPILFDCSIAENIAYGDNSR 1111 1139 

76 VVSQEEIVRAAKEANIHA 1139 1157 

77 ESLPNKYSTK 1159 1169 

78 VGDKGTQLSGGQKQR 1169 1184 

79 QPHILLLDEATSALDTESEK 1193 1213 

80 VVQEALDK 1213 1221 

81 HRLSTIQNADLIVVFQNGRVK 1232 1253 

82 EHGTHQQLLAQK 1253 1265 

83 GIYFSMVSVQAGTKRQ 1265 1281 

84 QGHHHHHHTGHHHHHH 1280 1296 

 

Table 4.1: Complete tryptic digestion of wild-type ABCB1 results in 84 fragments. The five 

very high probability ubiquitinated lysines are highlighted in yellow (Fragments 19, 38, 

46, 69). The three high probability ubiquitinated lysines are underlined and indicated in 

red letters (Fragment 59).  
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4.9.11.  Analyses of Mass Spectrometry Data 
 

The mass spectrometry results were obtained from Birmingham Science City Translational 

Medicine in the mgf file format. The SearchGUI programme was used for proteomics 

identification along with peptide-shaker to interpret the proteomics data. The mass 

spectrometry data identified trypsin-digest products that covered 88% of the ABCB1 

protein sequence which also confirmed that purification was successful. Fragments 

covering the 70-87th, 138-148th, 214-232nd, 292-330th, 460-467th, 579-581th, 703-730th, 

843-865th, 1017-1048th, 1185-1192nd and 1221-1233rd residues were therefore missing 

from the analysis (Figure 4.19). The analysis system was set to accept up to 2 missed trypsin 

cleavage sites and capture fragments with 2 to 4 precursor charges. Carboxymethylation of 

cysteine was allowed as a fixed modification because the mass spectrometer introduces 

this modification. Oxidation of methionine, phosphorylation and ubiquitination were set as 

variable modifications. Analysis of phosphate groups showed that previously described [44] 

serine residues within the linker region 661, 671, 675 and 683 were phosphorylated and, in 

addition, serine residue 658 was phosphorylated (Figure 4.20). 

 Five lysine residues (K271, K272, K575, K685, K1062) were identified as Nedd4-1 

ubiquitinated with very high probability. These sites were not modified in the control 

sample to which methylated ubiquitin was not added (Figure 4.21). Three lysine residues 

were identified as ubiquitinated with high probability (K877, K885, K887). These residues 

were also observed as modified in the control sample but with very low probability (Figure 

4.22). All three of these residues are located towards the cytosolic face of TMH10 in very 

close proximity to a PxY motif (residues 995-998) of ABCB1 (Figure 4.23). Lysine residues 

that were also ubiquitinated in the control sample, to which methylated ubiquitin was not 
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added were ignored. Insect cell ubiquitin ligases can also ubiquitinate the recombinant 

protein. A large number of lysines were found to be modified in the host cell (lysine 

residues 31, 48, 149, 242, 279, 285, 372, 380, 384, 389, 416, 502, 515, 519, 550, 609, 619, 

624, 702, 779, 786, 808, 895, 915, 1002, 1014, 1061, 1093, 1102, 1220, 1264, 1278). For 

each site it was also possible to identify the equivalent fragment without ubiquitination in 

the untreated sample demonstrating that ubiquitination by insect cell ubiquitin ligases is 

not complete. However, this does suggest that the specific Nedd4-1 sites are 

underestimated.  

Nedd4-1 is therefore capable of ubiquitinating more than one lysine residue of ABCB1 and 

because ABCB1 has only one PxY motif (PDY), it was hypothesized that this motif may be a 

potential binding site for Nedd4-1.   
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Figure 4.19: Cartoon of ABCB1 modelled on the structure of the homologous drug efflux 

pump Sav1866 from S. aureus. (pdb ID 2HYD) [234, 235]. Regions highlighted in red show 

the tryptic digest fragments that were not identified by mass spectrometry. 
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A. 

 

 

B. 

 

 

Figure 4.20: Phosphorylation of linker region. Examples of peptide fragments covering the 

linker region of ABCB1 (corresponding to tryptic digest fragment 43 to 46 shown in Table 

4.1). Red lines indicate the y ions identified and blue lines indicate the b ions. Serines 

highlighted in red were found to be phosphorylated. (A) Residues 646 to 666, Ser 658 and 

Ser661 are phosphorylated. (B) Residues 670 to 699, serines 671, 675 and 683 were found 

to be phosphorylated. 
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Figure 4.21: Very high probability Nedd4-1 ubiquitination sites on ABCB1. Cartoon model 

of ABCB1 as before (pdb ID 2HYD) [234, 235]. K271, K272 are located in the intracellular 

loop between TMH4 and TMH5, K575 is in NBD1 and K1062 is in NBD2. K685 cannot be 

shown because it is in the linker region separating the two halves of the transporter and 

is not present in Sav1866 (and was not resolved in Abcb1a). TMD1; yellow, TMD2; 

magenta, NBD1; green, NBD2; cyan. Homology model of ABCB1 [234, 235]. 
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A. 

 

B. 

 

Figure 4.22: (A) Fragmentation of peptide extending intracellularly from TMH10 that 

contains three ubiquitinated lysines. Red lines indicate the y ions and blue lines indicate the 

b ions identified. The N-terminal methionine is oxidized and three lysines (Lys 877, 885 and 

887) in this fragment are ubiquitinated. (B) Raw mass/charge spectra of the relevant peptide 

fragment 
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Figure 4.23: High probability Nedd4-1 ubiquitination sites preceding TMH10. The green 

spheres represent lysine residues that were ubiquitinated by Nedd4-1 and red spheres 

represent the PxY motif in ABCB1 that is hypothesized as a possible Nedd4-1 binding site 

(TMD1; yellow, TMD2; magenta, NBD1; green, NBD2; cyan). Homology model of ABCB1 

(pdb ID 2HYD) [234, 235]. 
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4.10.  Discussion and Conclusions 
 

In this chapter, it was shown that the ProFold™-ER1 baculovirus system results in improved 

ABCB1 expression in insect cells compared to flashBAC. One of the differences between 

ProFold™-ER1 and flashBAC is that the flashBAC genome does not include chitinase. In an 

infected insect, chitinase together with cathepsin facilitate host cuticle breakdown and 

tissue liquefaction at the very late stages of infection allowing the virus to be released to 

infect more hosts. Chitinase is known to target to the endoplasmic reticulum where it 

remains in paracrystalline form. This is considered to limit the function and the efficiency of 

the secretory pathway [236]. In insect cell culture conditions, chitinase is not necessary and 

its deletion should improve protein trafficking to the plasma membrane and secretion. 

However, in this study, it does not appear to be an important factor that limits the 

expression of ABCB1. Chitinase and cathepsin act together and it is possible that they are 

stored together in the endoplasmic reticulum. Deletion of the cathepsin gene in addition to 

chitinase deletion might be necessary to achieve improved membrane protein expression. 

Other differences between ProFold™-ER1 and flashBAC are that ProFold™-ER1 has been 

engineered to express protein disulphide isomerase and calreticulin. Protein disulphide 

isomerase is important in regulation of disulphide bridging between two cysteine residues. 

Calreticulin is an ER chaperone protein that improves the folding efficiency of membrane 

and secreted proteins. This is likely the key factor that provides a higher yield of ABCB1 

expression in cells infected with ProFold™-ER1, because ABCB1 does not contain any 

disulphide bridges.   
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In this study, n-Dodecyl-β-D-maltoside (DDM), a water soluble, non-ionic detergent, was 

used to solubilise ABCB1 from insect cell membranes. DDM has been previously shown to 

be very effective for ABCB1 extraction from insect cells [229]. From 100 mg of total 

membrane protein, only 45 µg of ABCB1 was purified but at a high state of purity. A prior 

study by Kodan et.al which used SF+ insect cells to express ABCB1, reported maximal 

purification of 2.25 mg ABCB1 from 100 mg of crude membrane fraction by immobilized 

metal chelate affinity chromatography (IMAC) [229]. This yield, the best reported to date, is 

75 fold higher than achieved in the current study. Kodan et. al, used a different baculovirus 

expression system (BD BaculoGold, Pharmingen, CA, USA)  and expressed in SF+ cells that 

are engineered for maximal expression.  In the current study, significant loss of protein was 

mainly observed in the flow through and the third and fourth washes suggesting either that 

insufficient Ni-NTA resin was used or that the 12 histidine carboxy-terminal tag was not 

intact. This could have been addressed by increasing the concentration of carboxy-

peptidase inhibitors (the likely cause of tag loss without significant change to the apparent 

molecular weight of the protein). A combination of these factors likely contribute to the 

poor yield attained, however, sufficient ABCB1 was purified to allow ubiquitination and 

mass spectrometry including the appropriate controls. The purified ABCB1 was 

concentrated and the imidazole concentration reduced (by dilution and concentration 

cycles) to avoid inhibition of the Nedd4-1 ligase. Purified Nedd4-1 ligase was used to 

ubiquitinate ABCB1 and the products were separated by SDS-PAGE, stained with colloidal 

blue and excised from the gel for mass spectrometry. The mass spectrometry revealed the 

phosphorylation of serine residues within the linker region (Ser661, 671, 675, 683 as 

described previously [44], and also Ser658). The recognition of these sites by insect cell 

kinases suggests that the recombinant protein has adopted its native fold.  
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Analyses of the mass spectrometry data revealed five very high probability Nedd4-1 

ubiquitination residues (K271, K272, K575, K685, K1062) that are all located on the exposed 

surface of cytosolic domains of ABCB1, suggesting that the protein is likely to be in its 

native fold and also that these residues could be ubiquitinated in cells under physiological 

conditions. Three high probability ubiquitination sites were also identified; lysines at 

positions 877, 885 and 887. These residues are located on the same planar surface in close 

proximity to the only PxY motif in ABCB1. It was hypothesized that this motif may be a 

binding site for Nedd4-1 allowing ubiquitination of the lysines in TMH10. It is debatable 

whether the high probability sites can be ubiquitinated from the same binding site. Some 

may have been modified during random collision with the ligase in vitro. However, these 

should still be considered putative Nedd-4-1 ubiquitination sites because Nedd4-1 is known 

to ubiquitinate target proteins that do not have a PxY motif, but with which it can interact 

via an adaptor protein to facilitate Nedd4-1 binding [237].   With potential future 

experiments, it may be possible to test directly the Nedd4-1 binding site and whether 

ubiquitination of ABCB1 effects protein levels at the plasma membrane and/or whether 

ubiquitination can inhibit protein function. 

In conclusion, it was shown that Nedd4-1 is able to ubiquitinate ABCB1. Further analysis will 

be required to address the importance of this mechanism in regard to protein function and 

trafficking, and ultimately in the progression of Alzheimer’s Disease by inhibition of β-

amyloid export from neuronal tissue into blood vessels (please see General Discussion). 
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Chapter Five 
 

 

 

 

 

 

 

 

 

5.   ABCC1 and ABCC3 in Carcinogenesis  
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5.1.   Introduction 
 

Lysophosphatidylinositol (LPI) is a lysophospholipid which is mainly synthesized by the 

activation of cytosolic phospholipase A2 (PLA2). By catalysing the hydrolysis of 

phosphatidylinositol, PLA2 forms LPI and arachidonic acid. Arachidonic acid is converted 

into more complex eicosanoids and prostaglandins which are important in vasoconstriction 

and vasodilation. LPI was first accepted as only a modulator of ion channels and membrane 

curvature due its function in altering the mechanical properties of lipid bilayers [238]. 

However, the stimulatory effect of LPI on insulin release was later reported and oncogenic 

Ras activation resulting in LPI accumulation was shown later in 1988 [239-241]. In 2007, a 

G-protein coupled transmembrane receptor; GPR55 was identified as the receptor for LPI 

and it was shown that LPI induces a rapid phosphorylation of ERK and also causes Ca²⁺ 

mobilization in the cell [242]. LPI-induced intracellular calcium mobilisation was supported 

by other studies [243, 244] and the effect of LPI on cell proliferation and migration was also 

shown [241, 245-247]. LPI has been suggested to have a role in different signalling cascades 

such as phosphorylation of ERK1/2 [248], activation of Rho [244] and activation of various 

transcription factors such as; NFAT, CREB, NF-κB, ATF-2 [244, 248]. 
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G protein-coupled receptors (GPCRs), or 7 transmembrane proteins, exert their functions 

by associating with a family of heterotrimeric proteins called G proteins (consisting of α, β, 

and γ subunits) that are capable of binding and hydrolysing guanosine triphosphate (GTP). 

After ligand binding, GPCRs undergo conformational changes that are mechanically 

transduced to the G proteins and activated G proteins can then positively or negatively 

modulate ion channels or second messengers. LPI binds to and activates GPR55 and 

simulation studies suggested that LPI adopts a tilted head orientation by inserting its fatty 

acid tail deep within TM helices 2, 3, 6, and 7 of the receptor [249]. 

A clinical study which compared plasma lysophospholipid levels in ovarian cancer patients 

and healthy controls has shown that LPI levels increase significantly in the first, second and 

third stages of ovarian cancer [250]. LPI has also been shown in prostate cancer cells to 

induce a calcium influx via TRPV2 channels which results in migration [246]. LPI was also 

shown to have a role in migration, orientation and polarization of human breast cancer 

cells via GPR55 activation [247].  These lines of evidence suggest that LPI has a role in 

carcinogenesis via GPR55 activation, however its pathway is still unclear. In 2011, Pineiro et 

al. suggested that LPI acts in an autocrine loop in which activation of GPR55 by LPI results in 

mobilisation of intracellular calcium, Akt activation and ERK1/2 phosphorylation inducing 

prostate and ovarian cell proliferation [110]. In the Pineiro et al. study, siRNA knock-down 

of GPR55 resulted in the complete loss of LPI activity in prostate and ovarian cancer cell 

lines showing that LPI is not a signalling molecule and its specific receptor is GPR55. One 

gap in the characterisation of this autocrine loop is definitive proof of how LPI is released 

from the cell. In the Pineiro et al. study, siRNA knock-down of the ABC transporter ABCC1 

resulted in a significant decrease in LPI release to the culture media, pointing to the 
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importance of ABC transporters in this pathway (Figure 5.1). ABCC1 and ABCC3 have been 

shown to be up-regulated in prostate and ovary cancer patient samples and cell lines [251-

253]. They have also been implicated as possible mediators of multidrug resistance but, as 

yet, there is little evidence for their clinical importance in this role. 

 

Figure 5.1: Suggested LPI autocrine loop in cancer cells (Figure modified from Pineiro et 

al. [110]).  

 

5.2.   Aim 
 

 To test directly whether ABCC1 and/or ABCC3 transport LPI. 
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5.3.   Results 
 

5.3.1.   Expression of functional ABCC1 and ABCC3 in HEK293T cells 
 

In order to test the transport of new substrate it was first necessary to demonstrate 

expression of ABCC1 and ABCC3 in a naïve host cell and show that they are functional. 

Wild-type ABCC1 and ABCC3 encoded by recombinant pcDNA3.1 plasmids (kind gifts from 

Prof. Susan Cole [158, 159]) were transfected-transiently into HEK293T cells. ABCC1 and 

ABCC3 expression was demonstrated by western blot (Figure 5.2). Western blot shows that 

ABCC1 or ABCC3 are not expressed in naïve HEK293T cells. The molecular weights of ABCC1 

and ABCC3 are similar and between 170 to 190 kDa, depending on the level of 

glycosylation. The same volumes of cell fractions were loaded into each well and probed 

with ABCC1 (QCRL1, Alexis) or ABCC3 (C-18, Santa Cruz) antibodies.  

 

Figure 5.2: ABCC1 and ABCC3 expression in HEK293T cells. Left panel shows a western 

blot probed with ABCC1 antibody (ab; QCRL1, Alexis) and right panel shows a western 

blot probed with ABCC3 antibody (ab; C-18, Santa Cruz). UT indicates untransfected 

HEK293T cell lysate, C1 indicates whole cell lysate prepared from HEK293T cells 

transiently-transfected with ABCC1 and C3 indicates whole cell lysate prepared from 

HEK293T cells transiently-transfected with ABCC3. 
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Both ABCC1 and ABCC3 are known to transport calcein-AM [254, 255] so calcein-AM was 

used as a control transport substrate to show the activity of the expressed wild-type 

proteins (Figure 5.3). End-point flow-cytometric transport assays were performed as 

explained in section 2.15. Both proteins are able to export calcein-AM from cells but with 

different efficiencies. The ABCC1 expressing HEK293T cells accumulate less calcein-AM than 

the ABCC3 expressing HEK293T cells most likely because ABCC1 is more efficient at 

exporting calcein-AM. The transiently-transfected HEK293T cell populations also show two 

peaks that differ in their abilities to export calcein-AM. These likely represent transfected 

and untransfected cells within same sample when cells are transfected with ABCC1. When 

transfected with ABCC3 a single peak with a pronounced shoulder results from the overlap 

of two peaks very close to each other. 

 

 

Figure 5.3: Both ABCC1 and ABCC3 are capable of calcein-AM transport. The left panel 

shows the calcein-AM accumulation in cells transiently-transfected with ABCC1 (blue) and 

untransfected cells (black) and right panel shows the calcein-AM accumulation in cells 

transiently-transfected with ABCC3 (red) and untransfected cells (black). 
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5.3.2.   Transport of  Tritiated Estradiol 17-β-D-glucuronide and LPI 

by ABCC1 and ABCC3 
 

5.3.2.a.   Membrane Vesicle Preparation 

 

Human ABC transporters are all exporters and they transport their ligands actively from the 

cytosol to the outside across the cell membrane or into the organelles. Inside-out 

membrane vesicles in which the NBDs of the ABC transporter is on the outside of the 

vesicle and accessible to ATP in the reaction medium, can be used to measure transport of 

their ligands from the reaction medium into the vesicle lumen [24]. Membrane vesicles can 

be used to demonstrate transport of radio-labelled, fluorescent or non-labelled 

compounds. The transport ligand accumulated in the vesicle can be quantified directly by 

liquid scintillation counter, fluorescence plate reader or high-performance liquid 

chromatography (HPLC), respectively. This is a well-defined transport assay technique 

which allows direct evaluation of the ABC transporter activity in the presence or absence of 

ATP or specific inhibitors in the reaction medium and has been used previously to study the 

transport of estradiol-17β-glucuronide by ABCC1 [256]. To establish this technique in our 

lab, it was first necessary to express ABCC1 and ABCC3 in HEK293T cells and demonstrate 

that the transporters in the vesicle preparations were functional. 
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Untransfected HEK293T cells and HEK293T cells expressing ABCC1 and ABCC3 were 

homogenised with a glass-dounce homogeniser and membrane fractions were collected by 

high speed centrifugation after the unbroken cells and large organelles were discarded 

(detailed in section 2.13.3.). The membrane fractions were then syringed to, likely, produce 

a mixture of three forms; open lamellar membranes which did not form vesicles, right-side-

out vesicles which will not have a role in the transport assay as the NBDs cannot access ATP 

in the medium and inside-out vesicles which should be capable of ATP-dependent 

radioactive ligand accumulation within the vesicles (Figure 5.4). 

 

Figure 5.4: Cartoon showing the likely membrane forms after syringing. Left figure shows 

the right-side-out vesicles which do not contribute to radioactivity measurements as they 

cannot access ATP molecules. Middle figure shows the open lamellar form which cannot 

trap radioactive ligand. Right figure shows the inside-out membrane vesicles which will 

accumulate the radioactive ligand inside the vesicles. Blue oval shape, TMD0; orange oval 

shape, TMD1; purple oval shape, TMD2; green shape, NBD1; light blue shape, NBD2; 

arrow represents the direction of transport and red star represents ligand.  
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5.3.2.b.   The Vesicles Contain Functional ABCC1 or ABCC3  

 

Tritiated estradiol 17-β-D-glucuronide (³H-E2-17βDG) is a well-defined transport ligand of 

both ABCC1 and ABCC3 and has been used in membrane vesicle transport studies 

previously [155, 256]. The activities of the transporters in the membrane vesicles were 

therefore tested by the use of ³H-E2-17βDG as a control ligand. The transport assays were 

performed as described in section 2.17. Briefly, the membrane vesicles were loaded with 

³H-E2-17βDG for 15 minutes at 37°C. The transport reaction was stopped immediately with 

a large volume of ice-cold transport buffer and trapped on filter discs by rapid filtration and 

washed 4 times with 3 ml transport buffer. First, ³H-E2-17βDG concentration was titrated to 

identify the optimum for measuring transport efficiency (Figure 5.5). The data show that 

ABCC1 was active in the vesicle preparation. 400 nM ³H-E2-17βDG was found to be the 

optimum concentration for detection  of ³H-E2-17βDG accumulation in membrane vesicles 

prepared from ABCC1-expressing cells and easily distinguishable from untransfected cells. 

The concentration of 400 nM was also used by other research groups [256]. For later 

reference, 400 nM cold (non-radioactive) E2-17βDG was used with 40 nCi ³H-E2-17βDG to 

ensure optimal transport efficiency but with less radioactive material used. 



193 
 

 

Figure 5.5: Titration of ³H-E2-17βDG concentration to reveal the optimum concentration 

for detection of ³H-E2-17βDG accumulation between membrane vesicles prepared from 

ABCC1-expressing and untransfected cells. Green line represents the ³H-E2-17βDG 

accumulation in membrane vesicles of ABCC1-expressing cells and black line represents 

the ³H-E2-17βDG accumulation in membrane vesicle of untransfected cells.   

 

5.3.2.c.   Transport of ³H-E2-17βDG is dependent on ATP 

 

The ³H-E2-17BDG transport data indicated that the membrane vesicles prepared from 

ABCC1 and ABCC3 expressing cells accumulated significantly more ³H-E2-17βDG than 

vesicles prepared from untransfected cells and that ABCC1 and ABCC3 are capable of ³H-E2-

17βDG transport (Figure 5.6). 

 



194 
 

 

Figure 5.6: 3H-E2-17βDG accumulation in membrane vesicles prepared from ABCC1 or 

ABCC3 expressing cells and untransfected cells. UT represents vesicles prepared from 

untransfected cells, ABCC1 represents vesicles prepared from ABCC1 expressing cells and 

ABCC3 represents vesicles prepared from ABCC3 expressing cells. 3H-E2-17βDG 

accumulation in vesicles of transfected cells is significantly different to untransfected 

cells. p values calculated with respect to 3H-E2-17βDG accumulation in the membrane 

vesicles prepared from untransfected cells; ** p<0.01, * p<0.05, ns p>0.05. 

 

To test whether the ³H-E2-17βDG accumulation in membrane vesicles prepared from 

ABCC1- and ABCC3-expressing cells is a result of primary active event, vanadate was used. 

Vanadate replaces the phosphate formed after ATP hydrolysis and inhibits ABC 

transporters by preventing completion of the ATP catalytic cycle which depends on 

sequential release of Pi and ADP.  The data shows that transport activity obtained from 

membrane vesicles prepared from ABCC1 and ABCC3-expressing cells is an active event and 

can be inhibited by vanadate (Figure 5.7 and Figure 5.8). 
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Figure 5.7: Fold difference 3H-E2-17βDG accumulation in membrane vesicles prepared 

from ABCC1-expressing cells and untransfected cells. The 3H-E2-17βDG transport activity 

of ABCC1 and inhibition of transport in the presence of 100 μM vanadate are shown. p 

values calculated with respect to fold difference 3H-E2-17βDG accumulation in the 

membrane vesicles prepared from ABCC1-expressing cells and untransfected cells; *** 

p<0.001. 

 

 

Figure 5.8: Fold difference 3H-E2-17βDG accumulation in membrane vesicles prepared 

from ABCC3-expressing cells and untransfected cells. The 3H-E2-17βDG transport activity 

of ABCC3 and inhibition of transport in the presence of 100 μM vanadate are shown. p 

values calculated with respect to fold difference 3H-E2-17βDG accumulation in the 

membrane vesicles prepared from ABCC3-expressing cells and untransfected cells; *** 

p<0.001. 
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5.3.2.d.   Transport of Radiolabelled LPI 

 

Tritiated LPI was prepared by Professor Falasca [241]. Briefly, prostate or ovary cancer cells 

(PC-3 and OVCAR3, respectively) were fed tritiated myo-inositol and 3H-LPI released by the 

cells was extracted by acid medium extraction and isolated by thin layer chromatography 

[110]. The ovary and prostate cancer cells synthesize and release LPI endogenously which is 

non-radioactive and cannot be measured by scintillation counting. Cold LPI (non-

radioactive) was added to provide the ligand concentration within 1500 nM to 2500 nM at 

which the reaction rate is quantifiable. The transport assays were performed as described 

above. Cellulose nitrate filter discs on which the membrane vesicles are trapped by rapid 

filtration were found to also bind a small but measurable amount of the 3H-LPI and this 

background radioactivity was substracted from the measured radioactivity. The membrane 

vesicles prepared from ABCC1 and ABCC3 expressing cells accumulated significantly more 

3H-LPI than vesicles of untransfected cells (Figure 5.9).  
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Figure 5.9: Radioactive LPI accumulation in membrane vesicles prepared from ABCC1 or 

ABCC3 expressing cells and untransfected cells. UT represents vesicles prepared from 

untransfected cells, ABCC1 represents vesicles prepared from ABCC1 expressing cells and 

ABCC3 represents vesicles prepared from ABCC3 expressing cells. 3H-LPI accumulation in 

vesicles of transfected cells is significantly different to untransfected cells. p values 

calculated with respect to 3H-LPI accumulation in the membrane vesicles prepared from 

untransfected cells; * p<0.05, ns p>0.05. 

 

Vanadate was used to reveal if the 3H-LPI accumulation in membrane vesicles prepared 

from ABCC1 or ABCC3 expressing cells was dependant on ATP hydrolysis (Figure 5.10 and 

Figure 5.11). Glutathione can also stimulate the transport of some ABCC1 ligands [144] and 

to test if LPI transport is dependent on co-transport of glutathione, 100 μM glutathione 

[257] was added to the reaction mixture (Figure 5.10). The data show that LPI transport of 

ABCC1 and ABCC3 is dependent on ATP and LPI transport of ABCC1 does not require 

glutathione. 
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Figure 5.10: Fold difference 3H-LPI accumulation in the vesicles prepared from ABCC1 

expressing cells compared to untransfected cells. The LPI transport activity of ABCC1 in 

the presence or absence of 100 μM glutathione or 100 μM vanadate are shown. p values 

calculated with respect to fold difference LPI accumulation in the membrane vesicles 

prepared from ABCC1 expressing cells and untransfected cells; ** p<0.01, ns p>0.05. 

 

As described above ABCC3 is also over-expressed in pancreatic cancer cell lines and clinical 

samples and could also potentially contribute to the secretion of the LPI. Its ability to 

transport LPI was therefore also tested. ABCC3 was found to transport LPI into inside-out 

vesicles. The level of accumulation was similar to that achieved by ABCC1 and the 

mechanism was also inhibited by vanadate (Figure 5.11). 
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Figure 5.11: Fold difference 3H-LPI accumulation in the vesicles prepared from ABCC3 

expressing cells compared to untransfected cells. The LPI transport activity of ABCC3 in 

the presence or absence of 100 μM vanadate is shown. p values calculated with respect 

to fold difference LPI accumulation in the membrane vesicles prepared from ABCC3 

expressing cells and untransfected cells; ** p<0.01. 

 

5.3.2.e.   Inhibition of ABCC3 and ABCC1 transport activity by drugs 

 

MK-571 competitively inhibits the binding of leukotriene C4 (LTC4) to ABCC1 and is more 

specific for ABCC1 than vanadate [258]. MK-571 was therefore used as a further test that 

LPI transport in these vesicles was mediated by ABCC1. MK-571 at a concentration of 10 

µM caused a statistically significant decrease in E2-17βG transport. LPI transport was 

similarly affected (Figure 5.12). 
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Figure 5.12: Fold difference E2-17βDG and LPI accumulation in the vesicles prepared from 

ABCC1 expressing cells compared to untransfected cells and inhibition of transport by 

MK-571. Left figure indicates the E2-17βDG transport activity of ABCC1 and inhibition of 

E2-17βDG transport in the presence of 10 μM MK-571. Right figure indicates the LPI 

transport activity of ABCC1 in the presence of 10 μM MK-571 or 100 μM vanadate. p 

values calculated with respect to fold difference triated ligand accumulation in the 

vesicles prepared from ABCC1 expressing cells to untransfected cells; *** p<0.001, ** 

p<0.01, * p<0.05. 

 

A study by Zhang et al., [154]  identified taurocholate as a transport substrate of ABCC3 

when used at a concentration of 30 μM. The same study also showed that, at 80 μM, 

taurocholate would behave as a competitive inhibitor for transport of E2-17βDG [154]. To 

test whether taurocholate could also inhibit the transport of 3H-E2-17βDG and 3H-LPI it was 

added to the vesicle preparations at a concentration of 100 μM prior to transport assays 

(Figure 5.13). Taurocholate was able to inhibit 3H-E2-17βDG transport of ABCC3 to a 

significant level but 3H-LPI transport by ABCC3 was unaffected. 
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Figure 5.13: Fold difference E2-17βDG and LPI accumulation in the vesicles prepared from 

ABCC3 expressing cells compared to untransfected cells and inhibition of transport by 

taurocholate. Left figure indicates the E2-17βDG transport activity of ABCC3 and 

inhibition of E2-17βDG transport in the presence of 100 μM taurocholate. Right figure 

indicates the LPI transport activity of ABCC3 in the presence of 100 μM taurocholate or 

100 μM vanadate. Taurocholate at a concentration of 100 μM is not able to inhibit LPI 

transport of ABCC3. p values calculated with respect to fold difference in triated ligand 

accumulation in the vesicles prepared from ABCC3 expressing cells and untransfected 

cells; *** p<0.001, ** p<0.01, ns p>0.05. 
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5.4.   Discussion and Conclusions 
 

Prior to the discovery of a receptor specific for lysophosphatidylinositol (LPI), LPI was only 

considered as a byproduct of the arachidonic acid production pathway. After the LPI 

receptor, GPR55 was discovered, LPI and its potential functions in the cell attracted 

attention. It was shown that LPI can induce migration, proliferation and cell survival of 

ovary, prostate and breast cancer cell lines [246, 247, 250]. The Pineiro et al. study [110] 

also showed that siRNA knockdown of GPR55 results in growth restriction of ovary (OVCAR-

3) and prostate (PC-3) cancer cell lines supporting that proliferation of cancer cells is 

dependent on the LPI autocrine loop. Specimens and plasma samples from ovarian cancer 

patients at different stages have shown that LPI concentration increases by the stage of the 

tumour except the last stage (stage 4) [250]. Pinero et al., also implicated ABCC1 as an 

efflux transporter for LPI because siRNA knockdown of human ABCC1 led to a significant 

decrease in LPI in the culture media of the PC-3 prostate cancer cell line. Although the 

siRNA knockdown studies performed by Prof. Falasca’s group only targeted ABCC1 [110], 

ABCC3 is also over-expressed in pancreatic cancer cell lines and it shares a wide range of 

transport ligands with ABCC1 [127]. It was therefore important to test directly whether 

ABCC1 and ABCC3, which are up-regulated in many cancer lines and tumour samples, can 

transport LPI.  
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In this chapter, I have demonstrated that ABCC1 can transport LPI and this transport 

activity can be inhibited by both vanadate and the ABCC1 inhibitor MK-571 indicating the 

transport activity is specific to ABCC1.  One limitation of this study was that the 

concentration and specific activity of the radioactive LPI was unknown.  This prevented 

determination of the Km and Vmax of LPI transport by ABCC1 and ABCC3. A study by 

Sullivan et al. has shown that ABCC1 expression increases in patient specimens as the stage 

of prostate cancer progresses [251]. The study by Pineiro et al. and the results presented in 

this chapter indicate that increased expression of ABCC1 in prostate cancer cells can result 

in increased LPI secretion and cancer cell proliferation. Zalcberg et al. have also shown that 

ABCC1 is the predominant multidrug resistance protein in two prostate cancer cell lines; 

DU-145 and PC-3 [252] and Monet et al. have shown that LPI causes Ca2+ influx and 

stimulates migration of prostate cancer cell line PC-3  [246]. This relation of ABCC1 and 

ABCC3 over-expression, together with increased LPI secretion also appears to be true for 

ovarian cancer; LPI and ABCC1 and ABCC3 mRNA levels increase with an unfavourable 

clinical outcome [250, 253].  These results indicate that an inhibitor specific to ABCC1, 

which can be used in vivo, might increase the survival rate of prostate and ovary cancer 

patients. In this chapter, it was shown that MK-571 can inhibit ABCC1 transport of LPI. In 

vivo studies will be required to show LPI transport inhibition and direct effects of MK-571 

on tumour proliferation and migration. It should be noted that MK-571 can also inhibit 

ABCC2 and it also induces LTD4-induced bronchoconstriction which might be an obstacle 

for its therapeutic use.  
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ABCC3 shares 58% amino acid identity with ABCC1 which makes it the closest relative of 

ABCC1. Other than the amino acid sequence identity, ABCC1 and ABCC3 share a wide 

variety of common ligands. The main difference between the two proteins is that 

glutathione can be transported or co-transported by ABCC1 and it can also stimulate the 

transport of several ABCC1 ligands. Glutathione is not transported by ABCC3 and does not 

influence the transport of other compounds by this transporter. Like ABCC1, ABCC3 is also 

highly expressed in several cancers such as pancreatic carcinoma [127]. As shown in the 

results section, LPI is also transported by ABCC3 and this transport is inhibited by vanadate.  

However, LPI transport by ABCC3 could not be inhibited by taurocholate. Taurocholate acts 

as a competitive inhibitor for E2-17βDG transport but perhaps it does not affect the binding 

of LPI. It is also possible that the relative affinities of taurocholate and LPI for ABCC3 make 

taurocholate a poor inhibitor at 100 µM. Further elevation of the taurocholate 

concentration was considered but was not tested largely because, as a strong detergent, 

high concentrations are likely to affect the integrity of the vesicles.  The high expression 

level of ABCC3 in pancreatic carcinoma specimens [127] and the demonstration that 

inhibition or siRNA knockdown of GPR55 results in reduced pancreatic cancer cell 

proliferation (Prof. Falasca, personal communication) suggests that the LPI autocrine loop 

also operates in pancreatic carcinoma. To elucidate this, a specific inhibitor of ABCC3 is 

required.   

In conclusion, I have shown that ABCC1 and ABCC3 can both transport LPI, strengthening 

the argument that they are important in the LPI autocrine loop in cancer cells supporting a 

new role for an ABC transporter in cancer progression other than in chemotherapeutic drug 

resistance.  
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Chapter 6 
 

 

 

 

 

 

 

 

 

 

 

 

6.   General Discussion and Future 

Work 
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This thesis describes different aspects of the function and regulation of three related 

members of the ATP-binding cassette superfamily of proteins; ABCB1, ABCC1 and ABCC3. In 

chapters 3 and 4, the molecular mechanism of ABCB1 (specifically the importance of the Q-

loop for interdomain communication) and its potential regulation by post-translational 

modification was investigated. In chapter 5, transport of lysophosphatidylinositol (a 

signalling molecule implicated in carcinogenesis) by ABCC1 and ABCC3 was tested. The data 

generated was discussed in each of results chapters. Here the data are summarised and the 

wider implications and potential future directions for the research are considered.  

 

6.1.   Interdomain Communication within ABCB1 
 

As described in the introduction and chapter 3, the Q-loop motifs are located at the base of 

the grooves occupied by second ICLs of TMDs (ICL2 of the TMD1 and ICL4 of the TMD2). 

The Q-loop is also located between the core subdomain of the NBD, which facilitates 

nucleotide binding via the Walker-A and -B motifs, the A-loop, D-loop and H-loop and the 

α-helical subdomain which interacts via its ABC signature motif with the nucleotide bound 

by the core subdomain of the apposed NBD.  During the transport cycle it is thought that 

this interaction requires the α-helical subdomain to rotate around the Q-loop to form the 

ATP sandwich dimer of NBDs. The Q-loop is therefore in a suitable position to facilitate 

conformational changes and transduce signals from the ligand binding sites to the NBDs. 

The role of the Q-loops for the mechanism of ABCB1 was therefore tested by mutagenesis 

and analysed by drug efflux assay. 
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The inactivity of the double Q-loop mutant supports the hypothesis that the Q-loops are 

critical for the transport cycle of ABCB1. It was also shown that double Q-loop mutant is 

trapped in a conformation consistent with the inwardly-open state which is reactive to the 

conformation-sensitive antibody UIC2. As the inward-open state has a high affinity for 

drugs, this provides additional binding sites in the plasma membrane for verapamil and 

vinblastine. In contrast, Walker-B mutants adopt an inwardly-closed conformation which 

lack affinity for drugs and UIC2. The functionality of the single Q-loop mutants (in contrast 

to the previously published data on equivalent mutants in related ABC transporters) 

allowed the communication pathway(s) linking the drug binding sites and the ATP catalytic 

cycle to be determined. 

Identification of two ligand binding cavities and their separation by mutagenesis showed 

that different ligands have different tendencies to bind to these two cavities [163]. 

Introduction of these cavity mutations into the single Q-loop mutants, showed that the Q-

loop glutamines were critical for communication between the drug binding cavities of the 

TMDs and the ATP catalytic cycle of the NBDs. Surprisingly, the signal transduction path 

was found to differ depending on the drug bound. BODIPY® FL-verapamil, BODIPY® FL-taxol 

and Rhodamine123 were found to be transported by single Q-loop mutants but BODIPY® 

FL-vinblastine was not. BODIPY® FL-verapamil transport by ABCB1 from the Q773-lined 

ligand binding cavity was also found to require only the NBD1 Q-loop glutamine. These 

results indicate that the signal communication pathway to perform a transport cycle varies 

for different ligands both with respect to the binding cavity used, and also the chemistry of 

ligand/binding site interaction which likely affects the trigger mechanism. The interaction of 

a ligand with the TMDs triggers conformational change that is transmitted through one or 
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both of the coupling helices via the Q-loops to facilitate the allosteric binding of two 

molecules of ATP and bring the two NBDs together.  

These data position the Q-loop at the centre of the transport cycle where it controls the 

coupling of the aspect and affinity of the drug binding cavities to the ATP catalytic cycle. 

The side chain amide of the Q-loop glutamine may also be necessary to tether the bound 

ATP (via a hydrogen bond to the γ-phosphate) in order to allow hydrolytic attack by a water 

molecule activated by the Walker B glutamate. Evidence for this was found in the subtle 

but statistically-relevant rescue of BODIPY® FL-verapamil transport from the E1201Q 

Walker B mutant by the Q1118A Q-loop mutant.  

6.1.1.   Future Work 
 

The experiments described in chapter 3 of this thesis have uncovered important 

information regarding the role of the Q-loop motif in the communication pathway between 

the NBDs and the TMDs of ABCB1. Dr. Zolnerciks has previously shown that the single ABC-

signature mutant ABCB1 and the single D-loop mutant ABCB1 have wild-type levels of 

BODIPY® FL-taxol transport activity whereas double mutants of both motifs are inactive. 

The extracellular acidification rate (ECAR) data suggest that single ABC-signature or D-loop 

mutants cannot hydrolyse ATP in vivo and this suggests a mechanism in which ATP 

hydrolysis and transport function is uncoupled, although it is also theoretically possible that 

these mutants hydrolyse ATP constitutively (unpublished data, Prof. Linton Lab, personal 

communnication). However, Furman et. al has investigated the role of D-loop in Pdr5, a 

drug resistance gene from S. cerevisiae, and has suggested that NBD2 D-loop mutant has 

nearly wild-type levels of ATPase activity and has a level of transport activity [259]. They 

also showed that mutation of well-conserved Aspartate residue in the D-loop into 
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Asparagine or Glutamate has different consequences. During imazalil transport D1042E 

mutant has nearly wild-type levels of transport activity whereas D1042N mutant is dead 

and the transport activity of these two mutants differ depending on the transported ligand.  

Separation of the two ligand binding cavities by mutagenesis could also enable 

investigation of the potential roles of the D-loop or ABC signature motif in the signal 

transduction pathway of ABCB1 and can help us to understand the mechanism of this 

uncoupling.  

Single Q-loop mutations inhibit the export of BODIPY® FL-vinblastine but not BODIPY® FL-

verapamil, BODIPY® FL-taxol or Rhodamine123. The mechanism for transport of BODIPY® 

FL-vinblastine must therefore be different to BODIPY® FL-verapamil and the other drugs 

used in this study. This is most likely due to the chemistry of the interaction of the drugs 

with the binding cavities and through that interaction their capacity to trigger formation of 

the inward closed conformation. It may only be possible to fully understand the differences 

if the transporter can be co-crystallised with these drugs in the binding cavities. However, 

the capacity of NBD mutations to change the apparent drug specificity of the transporter 

should be considered in future experiments particularly where the ATPase activity is 

characterised by stimulation in vitro and a different drug is used to measure binding or 

transport. The different mechanism underlying the BODIPY® FL-vinblastine transport can 

also be tested with single ABC-signature or D-loop motif mutants.   
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6.2.   Post-translational Regulation of ABCB1 by 

Nedd4.1 
 

All membrane proteins are likely recycled and as such are therefore regulated post-

translationally. Ubiquitination by ubiquitin ligases commonly marks proteins for 

internalisation from the membrane from where they can be recycled back to the 

membrane or targeted for degradation. This can have pathological consequences and it has 

been hypothesised that loss of ABCB1 from the luminal membrane of the BBB can 

exacerbate Alzheimer’s disease.  Alzheimer’s disease is characterised by the accumulation 

of a neurotoxic peptide, β-amyloid, in the brain and it has previously been shown that β-

amyloid can be effluxed by ABCB1 across the luminal membrane of the endothelial cells of 

the BBB [190-192]. The loss of ABCB1 from the BBB has been observed in human patients 

with Alzheimer’s disease and also in rodent models of the disease prompting the 

suggestion that ABCB1 may be targeted for internalisation from the lumenal membrane by 

ubiquitination. Prior studies in the Linton Lab had indicated that ABCB1 could be 

ubiquitinated by the ubiquitin ligase, Nedd4-1 in vitro (Prof. Linton; personal 

communication). In the current study, I extended the earlier work by purifying recombinant 

human ABCB1 from the membrane, incubating it with the ligase complex and identified the 

ubiquitinated residues by mass spectrometry. Five very high probability residues K271, 

K272, K576, K685, K1063 and also three high probability residues K877, K885 and K887 

were identified as putative ubiquitination sites.   

Nedd4 ubiquitin ligases commonly recognise PY motifs (PxY) on target proteins. ABCB1 has 

a PDY motif, residues 996-998 in the intracellular loop of TMH12 which, is very close to the 
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three Nedd4-1 ubiquitinated residues K877, K885 and K887 in the tertiary structure of the 

transporter.  

6.2.1   Future Work 
 

One aspect of the study that could be tested in the future is the hypothesis that the PDY 

motif is a Nedd4-1 binding site. This hypothesis could be tested in HEK293T cells following 

co-expression of a PDY motif point mutant ABCB1 with Nedd4-1 and comparison of the 

expression level of the mutant ABCB1 at the plasma membrane with a wild-type control in 

the presence and absence of Nedd4-1. This would probably be best achieved using stably 

transfected cells (that express a low but consistent level of wild-type or PDY mutant ABCB1) 

and introduction of Nedd4-1 and ubiquitin by transient transfection. This approach could 

be complemented by purification of the PDY motif mutant for in vitro studies, to test 

whether Nedd4-1 can still ubiquitinate the transporter. The mobility of the Nedd4-1 

treated material on SDS-PAGE may give the first indications of whether the protein is 

ubiquitinated followed by mass spectrometry to confirm.  

Other potential for future work is to test the relevance of ABCB1 ubiquitination in a more 

physiologically-relevant cell line. The human brain microvascular endothelial cell line 

hCMEC/D3 cells express ABCB1, ABCC4, ABCC5 and ABCG2 typical for brain endothelium, as 

observed in freshly isolated human brain microvessels. ABCC1 has also been detected in 

this cell line suggesting that in vitro culturing may induce non-physiological expression of 

this gene [260]. One recent study has used the hCMEC/D3 cell line to show β-amyloid efflux 

as a model of the blood-brain barrier and also compared β-amyloid clearance in human 

brain microvascular endothelium (hCMEC/D3) with mouse brain endothelial cell line 

(bEnd3) [261]. The hCMEC/D3 cell line could therefore be useful as a model of the blood-
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brain barrier for potential future experiments of this study. In my study, Nedd4-1 was used 

as the ubiquitin ligase for ABCB1 ubiquitination but as described in chapter 4, the ‘Human 

Nedd4 Family’ consists of nine distinct members that all have similar domain organisation. 

hCMEC/D3 cells may help to discover which of the nine human Nedd4 ligases are expressed 

in human brain endothelial cells and which are elevated on challenge with β-amyloid. 

hCMEC/D3 cells could also be useful to test whether overexpression of the relevant Nedd4 

can down-regulate ABCB1 at the plasma membrane and whether siRNA knockdown of the 

relevant Nedd4 ligase is able to prevent reduction of ABCB1 density at the plasma 

membrane. Beyond these potential future experiments, the regulation of the relevant 

Nedd4 could be studied and whether this regulatory network could be targeted in the 

future as a potential therapy for Alzheimer’s Disease.      
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6.3.   Lysophosphatidylinositol Autocrine Loop 
 

A Lysophosphatidylinositol (LPI) autocrine loop has been recently been identified as an 

important signalling cascade in cancer cell proliferation and migration [241, 245-247].  This 

cascade uses GPR55 as the receptor for LPI. Once triggered, holo-GPR55 induces Akt and 

Rho activation, ERK phosphorylation and Ca²⁺ mobilization in the cell. The only gap in this 

cascade was definitive identification of the transporter which exports LPI from cells. siRNA 

knock down of ABCC1 inhibited proliferation in prostate cancer cells similar to the effect of 

GPR55 knock down  and also resulted in a significant decrease in LPI release to the culture 

media [110]. The proliferative block could be rescued by the addition of exogenous LPI 

suggesting that ABCC1 was responsible for secretion of the LPI. ABCC3 is also often over-

expressed in pancreatic cancer cell lines and it shares a wide range of transport ligands with 

ABCC1 [127]. Recently, siRNA knock-down of ABCC3 was also shown to result in down-

regulation of proliferation in pancreatic cancer cell lines suggesting it may also be 

important in carcinogenesis (Prof Falasca, personal communication). 

To confirm the role of ABCC1 and ABCC3 in LPI transport I expressed the transporters 

transiently in HEK293T cells and prepared inside-out vesicles. I have shown that tritiated-

LPI is a transport substrate of both ABCC1 and ABCC3. The transport activity is inhibitable 

by vanadate, and ABCC1 transport of LPI can be inhibited by MK-571. These data support 

the conclusion ABCC1 and ABCC3 do indeed transport LPI and that they are likely to be 

important in various cancers, (in particular ABCC1 in prostate cancer and ABCC3 in 

pancreatic cancer, and both in ovarian carcinoma), for the LPI autocrine loop which 

promotes migration and proliferation (Figure 6.1) 
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Figure 6.1: LPI autocrine loop in cancer cells. In this thesis, it was shown that ABCC1 and 

ABCC3 can both transport LPI. 

.  

6.3.1   Future Work  
 

Translation of this knowledge into potential therapeutics should be the focus of the future 

work. Blockage of LPI release by ABCC1 and/or ABCC3 or blockage of GPR55 are potential 

targets for intervention and may result in therapeutic benefit. Putative drugs can be tested 

by vesicle transport assays and promising candidates can be tested on well-defined cell 

lines and animal models of cancer, before clinical trials in humans. 
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