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Zusammenfassung

Diese Arbeit behandelt quantitative eindeutige Fortsetzungsprinzipien (engl.: “quan-
titative unique continuation principles” bzw. “UCPs”) und deren Anwendungen. Für
geeignete Mengen ω ⊂ Ω ⊂ Rd beweisen wir in Abschnitt 3 Ungleichungen der Form∫

Ω

|f(x)|2dx ≤ C

∫
ω

|f(x)|2dx,

für alle f aus einem Spektralraum kompakter Energie des Schrödingeroperators
−∆+V mit beschränktem Potential V auf L2(Ω). Die Abhängigkeit der Konstante C
von dem spektralen Teilraum, von V und von der Geometrie von ω und Ω wird explizit
angegeben. Wir verbessern existierende UCPs, da wir alle spektralen Teilräume
endlicher Energie sowie Schrödingeroperatoren auf unbeschränkten Teilmengen von
Rd betrachten. Die Konstante C ist skalenfrei und uniform über eine große Klasse von
Geometrien (Ω, ω). Die Frage der Optimalität ihrer Abhängigkeit von der Energie
und von V wird erörtert. Zudem beweisen wir eine Verallgemeinerung von spektralen
Teilräumen hin zum Definitionsbereich gewisser Funktionen des Schrödingeroperators.

Als erste Anwendung zeigen wir in Abschnitt 4 untere Schranken an die Verän-
derung des Spektrums – insbesondere des essentiellen Spektrums – von Schrödinger-
operatoren unter gewissen nicht-negativen Störungen. Zu diesem Zweck beweisen
wir abstrakte Sätze über die Störung von Spektra selbstadjungierter Operatoren.

Die zweite Anwendung in Abschnitt 5 betrifft zufällige Schrödingeroperatoren. Es
werden für neue Klassen zufälliger Schrödingeroperatoren Wegner-Abschätzungen
hergeleitet. Dies ist ein wichtiger Schritt um Anderson-Lokalisierung für diese Modelle
zu beweisen. Ein Beispiel ist das “random breather model”, bei welchem das zufällige
Potential aus Indikatorfunktionen von Bällen mit zufälligen Radii besteht. Darüber
hinaus beweisen wir Wegner-Abschätzungen für das sogenannte “crooked magnetic
alloy-type model” und für das “Landau-breather model”.

Die letzte Anwendung, in Abschnitt 6, handelt von Kontrolltheorie für Gleichungen
vom Wärmeleitungstyp mit innerer Kontrolle. Zunächst wird im abstrakten Rah-
men Null-Kontrollierbarkeit bestimmter Cauchy-Probleme mit expliziter Schranke
an die Kontrollkosten bewiesen. Unsere Abschätzung an die Kosten ist – unseres
Wissens nach – die derzeit beste. Wir kombinieren diese dann mit quantitativen
UCPs und erhalten explizite Abschätzungen an die Kontrollkosten von Gleichungen
vom Wärmeleitungstyp auf beschränkten und unbeschränkten Gebieten zu allen
Zeiten. Dieses quantitative Resultat ist sogar für die klassische Wärmeleitungsgle-
ichung neu und ermöglicht es, das asymptotische Verhalten der Kontrollkosten im
Homogenisierungs- und im komplementären Regime zu studieren.
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Abstract

This thesis treats quantitative unique continuation principles (UCPs) and their
applications. For suitable ω ⊂ Ω ⊂ Rd we prove in Section 3 inequalities of the form∫

Ω

|f(x)|2dx ≤ C

∫
ω

|f(x)|2dx,

for all f in a compact energy spectral subspace of the Schrödinger operator −∆+V in
L2(Ω) with bounded potential V . The dependence of the constant C on the spectral
subspace, on V , and on the geometry of ω and Ω is explicit. We improve existing
UCPs by treating all finite energy spectral subspaces and Schrödinger operators on
unbounded subsets of Rd. The constant C is scale-free and uniform over a large class
of geometries (Ω, ω) and the optimality of its dependece on the energy and on V is
discussed.
As a first application we establish in Section 4 lower bounds on the movement

of spectra – in particular of the essential spectrum – of Schrödinger operators
under particular non-negative perturbations. For that purpose, abstract results on
perturbations of spectra of self-adjoint operators are proved.
The second application in Section 5 is about random Schrödinger operators. We

prove a Wegner estimate, an important step in proving Anderson localization, for
new classes of random Schrödinger operators. A particular example is the random
breather model, where the random potential consists of characteristic functions of
balls with random radii. Furthermore, we prove Wegner estimates for so-called
crooked magnetic alloy-type operators with bounded magnetic potential and for the
Landau-breather model.

The last application in Section 6 concerns control theory for equations of heat-type
with interior control. First, in an abstract framework, null-controllability of some
Cauchy problems with explicit estimates on the control cost at all times is proved.
Our estimate on the control cost is – to our knowledge – best with respect to the
existing literature. Then, combining this with quantitative UCPs, we obtain explicit
estimates on the control cost of heat-type equations on bounded and unbounded
domains at all times. This result in this quantitative form is new even for the classic
heat equation and enables to study asymptotics of the control cost in homogenization
and the complementary regime.
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Preface

This thesis consists of two introductory sections and four main section devoted to
results and proofs. Section 1 presents the topics and main results in an abbreviated
form while Section 2 introduces standard notation and recalls some facts from the
spectral theory of self-adjoint operators which will be used frequently. Section 3 is
devoted to the name-giving quantitative unique continuation principles. Sections 4, 5,
and 6 contain applications of these unique continuation principles to the perturbation
of spectra, random Schrödinger operators, and control theory. Each of the Sections 3
to 6 can be read independently. Parts of this thesis are based on and coincide
with the following publications and preprints by the author, obtained partially in
collaborations with Ivica Nakić, Albrecht Seelmann, Martin Tautenhahn,
and Ivan Veselić:

[NTTV15] I. Nakić, M. Täufer, M. Tautenhahn, and I. Veselić. Scale-free
uncertainty principles and Wegner estimates for random breather
potentials. C. R. Math., 353(10):919–923, 2015.

[NTTV18a] I. Nakić, M. Täufer, M. Tautenhahn, and I. Veselić. Scale-free unique
continuation principle, eigenvalue lifting and Wegner estimates for
random Schrödinger operators. Anal. PDE, 11(4):1049–1081, 2018.

[NTTV18b] I. Nakić, M. Täufer, M. Tautenhahn, and I. Veselić. Unique contin-
uation and lifting of spectral band edges of Schrödinger operators
on unbounded domains (With an Appendix by Albrecht Seelmann).
arXiv:1804.07816 [math.SP], 2018.

[Täu17] M. Täufer. Laplace-eigenfunctions on the torus with high vanishing
order. arXiv:1710.09328 [math.AP], 2017.

[TT17] M. Täufer and M. Tautenhahn. Scale-free and quantitative unique
continuation for infinite dimensional spectral subspaces of Schrödinger
operators. Commun. Pur. Appl. Anal., 16(5):1719–1730, 2017.

[TT18] M. Täufer and M. Tautenhahn. Wegner Estimate and Disorder
Dependence for Alloy-Type Hamiltonians with Bounded Magnetic
Potential. Ann. Henri Poincaré, 19(4):1151–1165, 2018.

[TTV16] M. Täufer, M. Tautenhahn, and I. Veselić. Harmonic analysis and
random Schrödinger operators. In Spectral theory and mathematical
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physics, volume 254 of Oper. Theory Adv. Appl., pages 223–255.
Birkhäuser/Springer, [Cham], 2016.

[TV15] M. Täufer and I. Veselić. Conditional Wegner estimate for the
standard random breather potential. J. Stat. Phys., 161(4):902–914,
2015. arXiv:1509.03507.

[TV16a] M. Täufer and I. Veselić. Wegner estimate for Landau-breather
Hamiltonians. J. Math. Phys., 57(7):072102, 8, 2016.

We will indicate in the text at the beginnings of the respective sections or subsections
whether they contain material from these publications.
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1. Introduction

1. Introduction

The main object we study in this work are scale-free quantitative unique continu-
ation principles (UCPs) for spectral subspaces of Schrödinger operators and their
applications to three different fields: Perturbation of spectra, random Schrödinger
operators, and control theory for heat-type equations.
Let us start by explaining unique continuation principles which will be treated

in detail in Section 3. Our results presented in this section have partially already
been published in [NTTV15, NTTV18a, TT17, Täu17, NTTV18b]. The quantitative
unique continuation principles we prove are inequalities of the form∫

Γ

|φ(x)|2dx ≤ Cucp

∫
Sδ,Z(Γ)

|φ(x)|2dx (1)

where Γ ⊂ Rd is a generalized rectangle in Rd (e.g. a hypercube, infinite strip,
half-space, Rd itself, etc.), Sδ,Z(Γ) is a subset of Γ, consisting of a union of small
δ-balls which are arranged on the centers of a so-called equidistributed sequence Z,
see Definition 3.26 below for details, and φ is a function in the spectral subspace of
a Schrödinger operator RanP−∆+V (E) where −∆ + V for some real-valued V ∈ L∞,
denotes the Schrödinger operator in L2(Γ) with potential V and self-adjoint boundary
conditions. Inequality (1) implies in particular that any such function which vanishes
on Sδ,Z(Γ) must be zero on all of Γ. This means that functions in the function space
RanP−∆+V (E) are determined only by their values in Sδ,Z(Γ) and justifies the term
unique continuation principle. However, the statement above is stronger since it
also quantifies how much a function can deviate from zero by means of the norm of
its restriction on Sδ,Z(Γ). Therefore, it is called a quantitative unique continuation
principle. In addition to that, we also have an explicit expression for the constant
Cucp: it is of the form

Cucp = δ−C(1+‖V ‖2/3∞ +
√

max{E,0}).

Let us underline some important features and improvements we achieved compared to
existing results: Our estimates hold uniformly for all functions in spectral subspaces
RanP−∆+V (E) and not only for single eigenfunctions or eigenfunctions in a small
energy window. While previous research usually focused on operators on bounded
subsets of Rd, we also treat Schrödinger operators on unbounded domains. In this
case, there might not exist an orthonormal basis of eigenfunctions any more and
the space RanP−∆+V (E) might be infinite dimensional. The constant Cucp does
neither depend on Γ nor on the particular choice of the equidistributed sequence

1



1. Introduction

whence we call it scale-free. Furthermore, Cucp depends on V only via its L∞ norm.
Another feature is that the dependence of Cucp on the energy E is explicit and
optimal. We discuss this as well as the issue of optimality of the dependence of
Cucp on ‖V ‖∞ in Subsection 3.3. Finally, we also included a generalization of the
statement from spectral subspaces to the domain of exponential functions of (a
square root of) the Schrödinger operator D

(
exp(κ

√
max{−∆ + V, 0})

)
⊂ L2(Rd)

in the sense of spectral calculus. Our results are in particular motivated by earlier
research from [RMV13, Kle13] and improve results therein. In Subsection 3.1, we
present a more comprehensive history of results which have led to our work. Our
proofs rely on particular Carleman estimates with explicit weight functions and a
technique that we call “ghost dimension” and which allows to naturally treat spectral
subspaces instead of single eigenfunctions. In order to deal with operators that
do not have an orthonormal basis of eigenfunctions, we resort to abstract spectral
calculus as a natural generalization of sums of eigenfunctions that have previously
played an important role in unique continuation for spectral subspaces. The section
is concluded by a brief survey in Subsection 3.5 of existing unique continuation
principles which are partially diametrical to our results. These are on the one hand
scale-free unique continuation principles for some magnetic Schrödinger operators
and on the other hand the Logvinenko-Sereda theorem from Fourier analysis.

Section 4 is devoted to perturbations of the spectrum of self-adjoint operators. It
is based on the preprint [NTTV18b]. We first prove abstract results on perturbations
of spectra which we believe are interesting in their own right and then combine
them with the unique continuation principle from Section 3. Let us first explain
the abstract results: We choose a self-adjoint operator A in a Hilbert space and a
bounded, symmetric perturbation B. If A is lower semibounded with purely discrete
spectrum and if we denote the eigenvalues of an operator T by λ1(T ) ≤ λ2(T ) ≤ . . .,
counting multiplicities, then it is well-known that |λk(A+B)− λk(A)| ≤ ‖B‖. Now,
if furthermore, B is assumed to be positive on a spectral subspace with respect to
A+B (but not necessarily positive everywhere), then one can prove estimates of the
form

λk(A+B) ≥ λk(A) + C

for appropriate k ∈ N and a certain C > 0, see Subsection 4.1.1 for more details.
This leads to lower Lipschitz bounds on the function t 7→ λk(A+tB). While in case of
lower semibounded operators with purely discrete spectrum this seems to be relatively
well-known, the case where the operator A has nonempty essential spectrum is much
less understood. In fact, in this case, the situation becomes much richer. One can

2



1. Introduction

again study the movement of isolated eigenvalues under perturbations, but the more
interesting and new aspect is now the essential spectrum. The connected components
of the essential spectrum of A have upper and lower edges. Again, it can be seen that
these edges are locally stable under bounded perturbations A+ tB and that they can
be parametrized by locally Lipschitz continuous functions. Now, assuming that the
operator B is positive on certain spectral subspaces, we provide in Subsections 4.1.2
and 4.1.3, lower Lipschitz bounds on the movement of such spectral edges. The
tools we use are special min-max principles for eigenvalues in spectral gaps as well as
some results from subspace perturbation theory. Unique continuation principles as
in Ineq. (1) can be understood as positivity of non-negative, but not positive definite
perturbations of a Schrödinger operator on spectral subspaces. Thus, combining the
abstract results with our unique continuation principles from Section 3, we conclude
lower bounds on the movement of components of the spectrum and in particular of
edges of the essential spectrum of Schrödinger operators. These new lower bounds
complement the more classic upper bounds in terms of the norm of the perturbation.
Section 5 is devoted to random Schrödinger operators. It presents contents

of [TV15, NTTV15, TV16a, NTTV18a, TT18]. Random Schrödinger operators are
random families of operators Hω = H0 + Vω, ω ∈ Ω, where H0 is a deterministic
Schrödinger operator (mostly the negative Laplacian −∆) and {Vω}ω∈Ω is a random
potential parametrized by a probability space (Ω,P). An key phenomenon is Anderson
localization, that is the emergence of pure point spectrum with exponentially decaying
eigenfunctions at some energies due to randomness. In Physics, Anderson localization
is interpreted as an explanation how randomness leads to bad transport of charge and
as an explanation for electric resistance. A key ingredient in many proofs of Anderson
localization are Wegner estimates. These are upper bounds on the expected number
of eigenvalues in small energy intervals of finite volume restriction of Hω and serve
as a non-resonance condition in proofs of localization, see Subsection 5.1 for more
details. Most results on random Schrödinger operators focus on one particular model
of randomness, namely the alloy-type model or continuum Anderson model where
the random potential is generated by a periodic arrangement of copies of a bump
functions u which are linearly coupled to a sequence of independent and identically
distributed random variables at every site j ∈ Zd

Vω(x) =
∑
j∈Zd

ωju(x− j), x ∈ Rd.

Historically, in the first proofs of Wegner estimates, periodicity and the linear coupling
have played important roles. Recently, unique continuation principles have turned out

3



1. Introduction

to be useful tools in order to relax the assumption of periodicity or ergodicity of the
random potential Vω, cf. [RMV13, Kle13]. We use the unique continuation principle
from Section 3 to obtain Wegner estimates for a new class of models which we call
random Schrödinger operators monotone in the randomness. This class contains the
classic alloy-type model as well as non-ergodic variants, but also new models such as
the (standard) random breather model where the random potential is generated by
characteristic functions of balls of random radii

Vω(x) =
∑
j∈Zd

1B(j,ωj)(x).

The unique continuation principles from Section 3 were the key new ingredient,
in order to pass from linear coupling of the random variables to models with a
non-linear dependence on the random variables {ωj}j∈Zd . Moreover, we consider in
Subsection 5.4 random operators where the background operator H0 is a magnetic
Schrödinger operator (−i∇+A0)2. In case of a bounded magnetic potential, we prove
Wegner estimates for the so-called crooked magnetic alloy-type model. Furthermore,
we treat so-called Landau operators (Schrödinger operators with homogeneous
magnetic field in dimension d = 2) with random breather potential and obtain Wegner
estimates, however only in the so-called small disorder regime, see Subsection 5.4.2
below for details. The methods used here are different from the ones we apply in the
context of models monotone in the randomness and exploit either the linear coupling
in the alloy-type model or the small disorder regime for the breather model to prove
Wegner estimates. This is due to the fact that for magnetic Schrödinger operators
we have less powerful UCPs at our disposal.

The last Section 6 is about control theory for equations of heat-type. The heat
equation on a domain Γ ⊂ Rd with Dirichlet boundary conditions and interior control
on S ⊂ Γ is 

∂
∂t
u−∆u = 1Sf, u, f ∈ L2([0, T ]× Γ),

u = 0 on ∂Γ× (0, T ],

u(0) = u0 u0 ∈ L2(Γ)

(2)

where the function f is called a control function. It is known that under reasonable
assumptions on Γ and S, for every T > 0, the system is null-controllable in time
T > 0. This means that for every time T > 0 there exists a control function f such
that the unique solution u of system (2) satisfies u(T ) = 0. We are going to study
the more general situation where the negative Laplacian in the diffusion term −∆u is
replaced by a Schrödinger operator −∆ + V with bounded potential V . We call this

4



1. Introduction

a heat-type equation or heat equation with generation term. In this context, we will
provide very explicit estimates on the control cost, i.e. upper bounds on the norm of
the required control function f in terms of the initial state ‖u0‖, in terms of the time
T , and in terms of the geometry of Γ and S. A central role will again be played by
the unique continuation principle. In fact, in Subsection 6.2 we will consider abstract
control problems and, assuming a so-called spectral inequality, we will deduce precise
estimates on the control cost. This itself is a new result since in contrast to existing
results it takes all model parameters into account, improves existing bounds, works
for all times T > 0, and avoids assumptions such as purely discrete spectrum of
the corresponding operators. Going back to heat-type equations, we see that our
unique continuation principles from Section 3 are such spectral inequalities. Thus,
in Subsection 6.3 we deduce estimates on the control cost of the system (2) where
Γ is a generalized rectangle and S ⊂ Γ is a union of equidistributed δ-balls or a
so-called thick set as in the Logvinenko-Sereda theorem. These estimates enable us
to study the control cost of heat-type equation in the homogenization regime where
the control set S ⊂ Γ becomes more and more equidistributed within Γ while keeping
its overall density, as well as in the de-homogenization or coarsening regime where
fluctuations on finite scales in the density of the control set S become larger while
the overall density in Rd remains constant. To our knowledge, this is the first time
that such limits have been studied in the context of the control cost. Among other,
we deduce that in the homogenization limit (homogenization of the control set), the
effect of any bounded potential V will be reduced to its effect on the ground state
energy of −∆ + V , i.e. to the effect of a constant potential.

5



2. Preliminaries

2. Preliminaries

This section introduces frequently used notation and recalls some facts on the spectral
theory of self-adjoint operators which will be used throughout Sections 3 to 6.

2.1. Notation and definitions

For t ∈ R, we write t+ for its positive part, i.e. t+ := max{t, 0}. Equally, for a
real-valued function f , we write f+(x) := (f(x))+.
We use the Euclidean norm, the 1-norm, and the supremum norm on Rd or Cd,

defined as

|x| :=

(
d∑
i=1

|xi|2
)1/2

, |x|1 :=
d∑
i=1

|xi|, and |x|∞ :=
d

max
i=1
|xi|.

Given x ∈ Rd and r > 0, we denote by B(x, r) := {y ∈ Rd : |y − x| < r} the
open ball of radius r, centered at x, and for L > 0, we denote by ΛL(x) := {y ∈
Rd : |y − x|∞ < L/2} the open d-dimensional cube of side length L, centered at x.
If x = 0, we use the shorthands B(r) and ΛL. Given U ⊂ Rd and M > 0, we write
MU := {x ∈ Rd : x/M ∈ U} for its dilation by the factor M . We also denote by
]U the cardinality of U and, if U ⊂ Rd is measurable, we write |U | for its Lebesgue
measure.
If U ⊂ Rd is open, we writeM(U,R) andM(U,C) for the set of R- or C-valued,

measurable functions on U , respectively, and set

L2(U) =
{
φ ∈M(U,C) : ‖φ‖L2(U) <∞

}
,

where ‖φ‖L2(U) = (
∫
U
|φ|2)1/2.

If a function g : R→ R or C is (once, twice, etc.) differentiable , we will write g′, g′′,
etc. for its first, second, etc. (classic) derivative. By ∂i := ∂/∂xi , we denote the weak
partial derivative with respect to the i-th coordinate and if α = (α1, . . . , αd) ∈ Nd

0 is
a multiindex, we write ∂α for the weak derivative ∂α1

1 · · · ∂
αd
d . Sometimes, if t is a

variable, we will also write ∂t := ∂/∂t for the derivative with respect to t. The k-th
order Sobolev space is

Hk(U) =
{
φ ∈ L2(U) : ∂αφ ∈ L2(U) for all multiindices α ∈ Nd

0 with |α|1 ≤ k
}

and for φ ∈ H1(U), we define its 1-Sobolev norm

‖φ‖H1(U) :=

(∫
U

|φ|2 + |∇φ|2
)1/2

.
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2.1. Notation and definitions

If V ⊂ U and φ |V∈ L2(V ), we will write

‖φ‖L2(V ) :=

(∫
V

|φ|2
)1/2

and accordingly, if φ |V and ∇φ |V are in L2(V )

‖φ‖H1(V ) :=

(∫
V

|φ|2 + |∇φ|2
)1/2

.

Furthermore, we will use

L∞(U) := {φ ∈M(U) : ‖φ‖∞ <∞}

where

‖φ‖∞ = esssup
x∈U

|φ(x)| := sup
{
t ∈ R : λd{x ∈ Rd : |φ(x)| ≥ t} > 0

}
is the supremum norm and λd is the d-dimensional Lebesgue measure. Sometimes,
we write L∞ := L∞(Rd). By L∞c (U) we denote the space of bounded functions with
compact support.
We use the symbol 〈·, ·〉 for the scalar product in a Hilbert space. This could be

for instance Rd, Cd, or L2(U). If a Hilbert space is complex, then we stick to the
mathematical physics convention stating that a scalar product is antilinear in the
first and linear in the second entry.
The following definition will be central in our main results:

Definition 2.1. Let M > 0 and δ ∈ (0,M/2). We call a sequence Z = {zj}j∈MZd

(M, δ)-equidistributed, if for every j ∈MZd we have

B(zj, δ) ⊂ ΛM(j).

The cubes {ΛM(j)}j∈MZd are called elementary cells of the lattice MZd. For such a
(M, δ)-equidistributed sequence Z = {zj}j∈MZd and an open subset A ⊂ Rd, we set

Sδ,Z(A) =
⋃

j∈MZd : ΛM (j)⊂A

B(zj, δ).

Definition 2.2. A generalized rectangle Γ ⊂ Rd is a set of the form

Γ =
d×
i=1

(ai, bi)

where ai, bi ∈ R ∪ ±∞ and ai < bi for i ∈ {1, . . . , d}.

7



2. Preliminaries

B(zj, δ)

Figure 1: Example of an equidistributed arrangement Sδ,Z of δ-balls

Definition 2.3. For a generalized rectangle Γ ⊂ Rd, we denote by ∆ = ∂2
1 + . . .+ ∂2

d

the Laplace operator or Laplacian in L2(Γ) with one of the following choices of
self-adjoint boundary conditions

• Either Dirichlet boundary conditions, i.e. D(−∆) = {φ ∈ H2(Γ) : φ = 0 on ∂Γ},

• or Neumann boundary conditions, i.e. we define

D(−∆) = {φ ∈ H2(Γ) : ∂νφ = 0 on ∂Γ}

where ∂ν is the outer normal derivative, i.e. ∂νφ = ν · ∇φ where ν is the outer
normal unit vector of Γ.

If for all i ∈ {1, . . . , d}, we have ai > −∞ if and only if bi <∞ we can also prescribe

• periodic boundary conditions, i.e.

D(−∆) =

φ ∈ H2(Γ) :

φ(x1, . . . , ai, . . . , xd) = φ(x1, . . . , bi, . . . , xd),

∂iφ(x1, . . . , ai, . . . , xd) = ∂iφ(x1, . . . , bi, . . . , xd)

for all i ∈ {1, . . . , d} with ai <∞ and bi <∞.


These identities are to be understood in trace sense, cf. [Eva98]. Since in our main

results in Section 3, the choice of boundary conditions plays no role, we refrain from
defining symbols for the Laplace operator with different boundary conditions here.
Occasionally, in applications and when citing research by other authors, we will have
to restrict to particular choices of boundary conditions and we will indicate whenever
we do so.

Given a real-valued V ∈ L∞(Γ) and a generalized rectangle Γ ⊂ Rd, the operator of
multiplication by V is a bounded perturbation of −∆ on L2(Γ). Hence, the operator

H := −∆ + V

is a lower semibounded, self-adjoint operator in L2(Γ) with the same domain as −∆.
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2.2. Spectral calculus

Remark 2.4. In the literature, in particular in the context of random Schrödinger
operators, restrictions of a Schrödinger operator to subdomains of Rd (with self-
adjoint boundary conditions) are often written with a reference to the domain. For
instance, the notation HL is often used to denote the restriction of a Schrödinger
operator H from L2(Rd) to L2(ΛL) with appropriate boundary conditions. In order to
keep the notation as lean as possible we will refrain from doing so and adopt instead
the following convention: As soon as a generalized rectangle Γ ⊂ Rd and a real-valued
function V ∈ L∞(Γ) are specified, then H will denote the operator −∆ + V in L2(Γ)

with Dirichlet, Neumann, or (if this is possible) periodic boundary conditions. Unless
stated otherwise, statements hold for all these boundary conditions. Occasionally,
when there is risk of confusion or when we cite research by other authors, it will be
necessary to make exceptions from this convention. We will indicate whenever we do
so.

2.2. Spectral calculus

We now recall some classic facts on spectral calculus of self-adjoint operators which
can be found, e.g. in [Sch12]. Let H be a Hilbert space and denote by B(R) the
Borel-σ-Algebra on R.

Definition 2.5 (cf. [Sch12, Chapter 4.2.1]). A spectral measure on B(R) is a map
P from B(R) into the orthogonal projections on H such that

(i) P (R) = Id, where Id denotes the identity operator, and

(ii) P is countably additive, i.e. P (∪∞n=1An) =
∑∞

n=1 P (An) for all mutually disjoint
sequences (An)n∈N ⊂ B(R).

Since {(−∞, E]}E∈R is an intersection stable generator of B(R) it is sufficient to
describe the spectral measures on the sets (−∞, E] and with some abuse of notation,
we write

P (E) := P ((−∞, E]).

The family {P (E) : E ∈ R} is called the resolution of identity, corresponding to the
spectral measure P .
For a spectral measure P and φ ∈ H, one defines the (real-valued) measure
〈φ, P (·)φ〉. Furthermore, one can define for any f ∈M(R,R) the spectral integral∫

R
f(λ)dP (λ).

9



2. Preliminaries

This is a possibly unbounded, self-adjoint operator in H with domain{
φ ∈ H :

∫
R
|f(λ)|2d 〈φ, P (λ)φ〉 <∞

}
,

see [Sch12, Chapter 4.3] for more details. The spectral theorem establishes a connec-
tion between self-adjoint operators and spectral measures.

Theorem 2.6 (Spectral theorem, see [Sch12, Theorem 5.1]). Let A be a self-adjoint
operator in H. Then there is a unique spectral measure P = PA on B(R) (and a
unique resolution of identity) such that

A =

∫
R
λ dPA(λ)

where the integral is understood in the strong sense.

We can now define functions of an operator: For a self-adjoint operator A in H
and f ∈M(R,R), we write

f(A) :=

∫
R
f(λ)dPA(λ).

Note that
D(f(A)) =

{
φ ∈ H :

∫
R
|f(λ)|2d 〈φ, PA(λ)φ〉 <∞

}
.

If f(λ) = a0 + λa1 + . . .+ λkak is a real-valued polynomial, and A is a bounded
operator, then f(A) coincides with the usual, algebraic polynomial, i.e.

f(A) = a0Id + a1A+ . . .+ akA
k.

Furthermore, for any measurable U ⊂ R, we have

1U(A) = PA(U).

We also define for a self-adjoint operator A its positive part A+ as A+ := max{A, 0}
in the sense of spectral calculus.

2.3. The spectrum and spectral subsets

The spectrum σ(A) of an operator A is the set of all points λ ∈ C such that the
operator A− λ · Id has no bounded inverse. Its complement is called the resolvent
set and it is easy to see that the resolvent set is open whence the spectrum is closed.
For self-adjoint operators it is well-known that the spectrum is a subset of R and we
have, cf. [Tes09, Theorem 3.8]

σ(A) = {λ ∈ R : PA([λ− ε, λ+ ε]) 6= 0 for all ε > 0}

There are several ways to decompose the spectrum of a self-adjoint operator.
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2.3. The spectrum and spectral subsets

Definition 2.7 (cf. [Sch12, Chapter 8.4]). Let A be a self-adjoint operator. The
essential spectrum is the set

σess(A) = {λ ∈ R : dim RanPA([λ− ε, λ+ ε]) =∞ for all ε > 0}

where Ran denotes the range of an operator, and the discrete spectrum is

σd(A) = σ(A)\σess(A).

Note that σess(A) is closed while σd(A) coincides with the set of all isolated eigenvalues
of finite multiplicity and does not need to be closed.

Of course, since σ(A) = σess(A) ∪ σd(A) is a decomposition of σ(A) into disjoint
components, one could define the corresponding spectral projectors PA(σess(A)), and
PA(σd(A)). This would yield an orthogonal decomposition

H = RanPA(σess(A))⊕ RanPA(σd(A)).

However, if one wants to describe the dynamics of the (time dependent) Schrödinger
equation i∂tφ = Aφ, there is a more suitable decomposition of H. We present it,
following the exhibition in [Tes09, Chapter 3]. First, we recall the following definition
from measure theory:

Definition 2.8. A Borel-measure µ on R is called

• absolutely continuous with respect to the Lebesgue measure if µ(B) = 0 for all
B ∈ B(R) with Lebesgue measure zero,

• singular with respect to the Lebesgue measure if it is supported on a set
B ∈ B(R) of Lebesgue measure zero,

• pure point if it singular and is a (countable) linear combination of Dirac-
measures δx, where δx(B) = 1 if x ∈ B and 0 else,

• singularly continuous with respect to the Lebesgue measure if it is singular
and no point x ∈ R has positive measure.

Every Borel-measure µ on R has a unique decomposition

dµ = dµac + dµsc + dµpp

where µac is absolutely continuous with respect to the Lebesgue measure, µsc is
singularly continuous with respect to the Lebesgue measure, and µpp is pure point.
Given φ, we consider the Borel-measure dµφ = d 〈φ, P (·)φ〉 on R.
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2. Preliminaries

Definition 2.9. Let A be a self-adjoint operator in the Hilbert H. We define

Hac := {φ ∈ H : µφ is absolutely continuous},

Hsc := {φ ∈ H : µφ is singularly continuous},

Hpp := {φ ∈ H : µφ is pure point}.

There is the following Lemma:

Lemma 2.10 ([Tes09, Lemma 3.19]). We have

H = Hac ⊕Hsc ⊕Hpp.

Sometimes, we will also write Hc := Hac ⊕Hsc, since the decomposition

H = Hc ⊕Hpp

plays an important role in the so-called RAGE Theorem, see Theorem 5.3 below.
We also define

σac(A) := σ(A |Hac), σsc(A) := σ(A |Hsc), σpp(A) := σ(A |Hpp).

Note that σac(A), σsc(A), and σpp(A) are closed subsets and that they are not
necessarily disjoint. Furthermore, σpp(A) = {Eigenvalues of A}, cf. the discussion
in [RS80, Chapter VII.2], where we emphasize that our definition of σpp(A) and the
one given therein differ.
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3. Quantitative and scale-free unique continuation

3. Quantitative and scale-free unique continuation

This section contains material from [NTTV15, NTTV18a, TT17, Täu17, NTTV18b].
It is structured as follows: We start with an introduction to unique continuation in
Subsection 3.1. Then, our main results of this section are presented in Subsection 3.2.
We discuss these results and their optimality in Subsection 3.3. After the proofs in
Subsection 3.4, we provide in Subsection 3.5 some overview over other results on
scale-free quantitative unique continuation which will be used in later sections.

3.1. Unique continuation

Unique continuation is a manifestation of the fact that some function spaces have a
rigidity property: if a function in these spaces vanishes on a non-empty, open subset,
then it must vanish everywhere. Examples of such function spaces include holomor-
phic functions on C, harmonic functions on Rd and – more generally – solutions of
certain partial differential expressions. While properties such as holomorphy and
analyticity have been known for centuries, an important milestone in the history of
unique continuation was the work of Carleman [Car39] who introduced inequalites
which are refered to as Carleman estimates. Originally, Carleman treated unique
continuation for a system of differential equations of order one in two dimensions.
This was generalized to the Laplacian in [Mül54] and subsequently to a larger class
of elliptic differential operators. We refer to [Hör69] for an introduction on classic
aspects regarding unique continuation.

Let us illustrate by means of an example how a Carleman estimate leads to unique
continuation. In [KRS87], see also [Ken87], the following Carleman estimate is
proved:

Proposition 3.1 ([KRS87, Theorem 3.1]). Let d ≥ 3, p = 2d/(d + 2), and q =

2d/(d− 2). Then there is a constant C > 0 such that for all ν ∈ Rd, all λ ∈ R and
all functions u with eλ〈ν,·〉u ∈ H2,p(Rd) we have

‖eλ〈ν,·〉u‖Lq(Rd) ≤ C‖eλ〈ν,·〉∆u‖Lp(Rd)

As in [KRS87], Proposition 3.1 implies the following unique continuation result:

Proposition 3.2 (Unique continuation for a half-space, [KRS87, Corollary 3.1]).
Let d ≥ 3, p = 2d/(d + 2) and V ∈ Ld/2(Rd). Then every u ∈ H2,p(Rd) satisfying
|∆u| ≤ |V u| which vanishes in a half-space must vanish everywhere.

For the sake of a complete exposition, let us reproduce here the proof from [KRS87].
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3. Quantitative and scale-free unique continuation

Proof of Proposition 3.2. By translation and rotation we may assume that u van-
ishes in the half-space {x ∈ Rd : x1 < 0}. It suffices to show that there exists
ρ > 0 such that u also vanishes in the strip Sρ := {x ∈ Rd : 0 ≤ x1 < ρ}, since
then, by iterating this argument, we find u ≡ 0. For that purpose, we choose ρ > 0

sufficiently small such that ‖V ‖Ld/2(Sρ) ≤ 1/(2C) where C is the constant from
Proposition 3.1. We estimate, using Proposition 3.1, the inequality |∆u| ≤ |V u|, and
Hölder’s inequality for every λ > 0

‖e−λx1u‖Lq(Sρ) ≤ C‖e−λx1∆u‖Lp(Rd)

≤ C‖e−λx1V u‖Lp(Sρ) + C‖e−λx1∆u‖Lp(Rd\Sρ)

≤ C‖V ‖Ld/2(Sρ) · ‖e−λx1u‖Lq(Sρ) + C‖e−λx1∆u‖Lp(Rd\Sρ)

≤ 1

2
‖e−λx1u‖Lq(Sρ) + Ce−λρ‖∆u‖Lp(Rd).

Bringing the term with the 1/2 factor to the other side and multiplying by eλρ, we
find

‖eλ(ρ−x1)u‖Lq(Sρ) ≤ 2C‖∆u‖Lp(Rd) for all λ > 0.

This can only hold if u ≡ 0 in Sρ.

The above proof contains two important aspects of the application of Carleman
estimates which we will encounter again in the proofs below: The first one is the free
parameter λ in the Carleman estimate. It was essential for the concluding argument
that in the Carleman estimate the parameter λ ∈ (0,∞) could be sent to infinity.
In the proofs below, we will optimize over this parameter in order to obtain more
refined statements. The second theme is the choice of the geometry, more precisely
of the width ρ. It allowed to make a term sufficiently small such that it could be
absorbed on the left hand side of an inequality. We will encounter similar arguments
when we choose the geometry in Lemmas 3.30 and 3.31 below.

Over the years, Carleman estimates and unique continuation have led to numerous
applications for partial differential equations. Among others, they have been used for
uniqueness in the context of the Cauchy problem [Cal58, Hör58], absence of positive
eigenvalues for Schrödinger operators, [JK85], inverse problems [IY98], boundary
value problems [Tat96], control theory for the heat equation [LR95, FI96], the wave
equation [TY02], and non-linear systems, see e.g. [LT97].
There are also slightly different notions of unique continuation such as strong

unique continuation, see [Esc00], [KT02] and the surveys [Wol93, TTV16] for more
on this matter.

14



3.1. Unique continuation

Furthermore, recently, there has been a focus on quantitative unique continuation.
In quantitative unique continuation, one attempts to establish inequalities of the
type

‖f‖L2(V ) ≤ C‖f‖L2(U) for all f ∈ F

with some constant C where U ⊂ V ⊂ Rd and F ⊂ L2(V ) is a function space.
Originally also motivated by control theory, quantitative unique continuation has
been introduced to random Schrödinger operators by Bourgain and Kenig [BK05].

Let us now present a sequence of results which can be considered as predecessors
to our results in Subsection 3.2 below. Since the early 2000s, there has been an
increasing interest in so-called multi-scale variants of quantitative unique continuation,
that are unique continuation estimates which hold with a uniform constant in a
variety of geometric configurations (“scales”). This development has been mainly
driven by applications in the context of random Schrödinger operators, see Section 5
below for more on these applications. As a starting point, let us cite the following
result from [CHK03] which has been used in proofs of so-called Wegner estimates
in [CHK03, CHK07].

Proposition 3.3 (cf. [CHK03, Section 4]). Let V0 : Rd → R be Zd-periodic such that
the operator H = −∆ + V0 has the unique continuation property in the sense that
every function φ satisfying Hφ = Eφ for some E ∈ R and which vanishes on a non-
empty open set must vanish everywhere. Let V : Rd → R be a bounded, Zd-periodic,
nonnegative function which is strictly positive on some open set. For L ∈ Nodd denote
by HL the restriction of H onto ΛL with periodic boundary conditions and by VL the
restriction of V to ΛL. Then, for every bounded interval I ⊂ R, there is a constant
C = C(I, V, V0), such that for every L ∈ Nodd, and every φ ∈ RanPHL(I), we have∫

ΛL

|φ|2 ≤ C

∫
ΛL

VL|φ|2.

Proposition 3.3 is called scale-free because the constant C does not depend on the
scale L. If we choose V as the characteristic function of a Zd-periodic arrangement
Sδ,per of δ-balls, then the statement of Proposition 3.3 will read

‖φ‖2
L2(ΛL) ≤ C‖φ‖2

L2(Sδ,per)
for all φ ∈ RanPHL(I).

The statement has been generalized to some examples of magnetic Schrödinger
operators, cf. [CHK03, CHK07]. The proof of Proposition 3.3 in [CHK03] uses
Floquet theory and a compactness argument in the dual torus or the Brillouin
zone to turn the qualitative statement of unique continuation into a quantitative
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one. While this method has the advantage that it immediately allows for spectral
subspaces RanPH(I) rather than single solutions of an eigenvalue equation, and that
it allows for a large class of background potentials V0 (it is only required that a
unique continuation property for −∆ + V0 holds), it suffers from the restriction that
only periodic V and V0 are allowed. Furthermore, due to the compactness argument,
the resulting constant C = C(I, V, V0) is non-explicit in terms of I, V , and V0. We
also emphasize that in the proof of Proposition 3.3, the underlying tools which imply
unique continuation have somewhat been hidden in the machinery of the proof: It
suffices to have a qualitative statement on unique continuation for distributional
solutions of the eigenvalue equation Hφ = Eφ. In summary, Proposition 3.3 smartly
uses periodicity to boost (classic, qualitative) unique continuation properties for single
eigenfunctions and turns them into a quantitative, scale-free unique continuation
estimate – however without providing explicit information on the constant involved.

In [BK05], Bourgain and Kenig used unique continuation in a more direct manner.
Their goal was to solve the longstanding open problem of Anderson localization for the
Bernoulli-Anderson model. As an important step in their proof they established lower
bounds on the vanishing rate of solutions of the stationary Schrödinger equation:

Proposition 3.4 (Special case of [BK05, Lemma 3.10]). Assume ∆u = V u in Rd

and
u(0) = 1, ‖u‖∞ ≤ C, ‖V ‖∞ ≤ C.

Let x0 ∈ Rd with |x0| = R > 1. Then, there is a constant c′ > 0, such that

max
|x−x0|≤1

|u(x)| > c′ exp(−c′(lnR)R4/3).

Proposition 3.4 can be interpreted as a quantitative lower bound on the vanishing
rate of eigenfunctions with respect to maxima over balls. Before discussing Proposi-
tion 3.4 in more detail, we also cite the following Proposition 3.5 which has been
used used by Germinet and Klein in [GK13] and by Bourgain and Klein in [BK13].
It uses similar techniques as Proposition 3.4 and can be considered as an L2-variant
thereof.

Proposition 3.5 ([BK13, Theorem 3.4], see also [GK13, Theorem A.1]). Let Ω ⊂ Rd

be open and ‖V ‖∞ ≤ K <∞. Let ψ ∈ H2(Ω) be real-valued, and let ξ ∈ L2(Ω) be
defined by

−∆ψ + V ψ = ξ,

Let Θ ⊂ Ω be a bounded, measurable set where ‖ψ‖L2(Θ) > 0. Set

Q(x,Θ) := sup
y∈Θ
|y − x| for x ∈ Ω.
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3.1. Unique continuation

Consider x0 ∈ Ω\Θ such that

Q = Q(x0,Θ) ≥ 1 and B(x0, 6Q+ 2) ⊂ Ω.

Then, given

0 < δ ≤ min

{
dist(x0,Θ),

1

24

}
,

we have

(
δ

Q

)m(1+K2/3)

(
Q4/3+log

‖ψ‖2
L2(Ω)

‖ψ‖2
L2(Θ)

)
‖ψ‖2

L2(Θ) ≤ ‖ψ‖2
L2(B(x0,δ))

+ δ2‖ξ‖2
L2(Ω) (3)

More precisely, in [GK13], the results of [BK05] were generalized to Anderson
Hamiltonians with singular random potentials while in [BK13], continuity of the
so-called density of states for Schrödinger operators with bounded potentials in
dimensions one to three was proved. For more details on the density of states, we
refer again to Section 5 below.
Propositions 3.4 and 3.5 both rely on the following Carleman estimate:

Proposition 3.6 ([BK05, Lemma 3.15], see also [EV03]). There are constants C1,
C2, C3, depending only on the dimension, and an increasing function w = w(|x|) > 0

satisfying for 0 < |x| < 10
1

C1

<
w(|x|)
|x|

< C1

such that for all real-valued f ∈ C∞0 (B(0, 10)\{0}), α > C2 we have

α3

∫
w−1−2αf 2 ≤ C3

∫
w2−2α(∆f)2.

Similar to the Carleman estimate, Proposition 3.1 above, Proposition 3.6 estimates
f from above by ∆f – but with radially symmetric weight functions instead of eλ〈µ,·〉

and in terms of L2-norms instead of Lp and Lq norms. In the proof of the main
result of this section, Theorem 3.17 below, we will apply a slightly stronger variant
of this Carleman estimate which carries an additional gradient term on the left hand
side and an additional scaling parameter ρ.

There is an interesting aspect regarding Proposition 3.6. In [BK13], continuity of
the density of states of Schrödinger operators is proved in dimensions only up to
three. The technical obstacle preventing a similar result in higher dimensions is the
factor Q4/3 in the exponent of Ineq. (3) which itself is due to the Carleman estimate,
Proposition 3.6. As discussed in [BK13], if this was Qβ for β > 1, they would obtain
continuity of the density of states in dimensions d < β/(β − 1). In other words, if
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one managed to prove a variant of Proposition 3.5 with Q4/3 replaced by Qβ for all
β > 1, then continuity of the density of states in all dimensions would follow. Even
though Bourgain and Klein claim in the introduction of [BK13] that it is reasonable
to assume that analogs of Proposition 3.5 should hold for all β > 1, this turns out to
be not an easy task. In fact it seems impossible to achieve this by merely improving
the Carleman estimate Proposition 3.6 since it is known that such an improved
Carleman estimate would lead to yield lower bounds on the vanishing rate of solutions
of ∆u = V u at infinity which contradict a counterexample by Meshkov [Mes92], see
also the discussion in Section 3 of [BK05] and our discussion in Subsection 3.3.2
below. There are still possible loopholes around this since Meshkov’s counterexample
relies on a complex-valued V , but it illustrates the difficulty here. We stress these
points since in our main results, Theorems 3.9, 3.13, and 3.17 below, a similar effect
occurs which yields a term ‖V ‖2/3

∞ in the unique continuation constant.
In 2013, Rojas-Molina and Veselić applied Proposition 3.6 to remedy the restriction

of Proposition 3.3 to periodic situations, however only for single solutions of an
eigenvalue inequality. Recall the definition of (1, δ)-equidistributed sequences in
Section 2.1. Then Rojas-Molina and Veselić proved:

Proposition 3.7 ([RMV13, Theorem 2.1]). There is a constant C, depending only
on the dimension, such that for all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences
Z, all L ∈ Nodd, all KV ≥ 0, all measurable and bounded V : Rd → [−KV , KV ], and
all real-valued ψ which are in the intersections of the domains of the Laplacian with
Dirichlet and periodic boundary conditions on ΛL, and which satisfy

|∆ψ| ≤ |V ψ| (4)

we have

‖ψ‖2
L2(ΛL) ≤

(
δ

C

)−C(1+K
2/3
V )

‖ψ‖2
L2(Sδ,Z∩ΛL). (5)

Proposition 3.7 does not require periodicity as in Proposition 3.3 above any more
and the constant carries an explicit dependence on δ and KV . However, in contrast
to Proposition 3.3 which yields a statement on spectral subspaces, Ineq. (4) is more
restrictive. If ψ is an eigenfunction of a Schrödinger operator H = −∆ + V0 to the
eigenvalue λ ∈ R, then we have indeed

|∆ψ| ≤ |(V0 + λ)ψ|

whence Ineq. (5) holds with KV = |E| + ‖V0‖∞. However, if one would like to go
beyond single eigenfunctions and for instance linear combinations of eigenfunctions in
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3.1. Unique continuation

some energy interval, i.e. spectral subspaces, then Proposition 3.7 is not sufficient. We
also emphasize that the constant in (5) is polynomial in δ and carries the term K

2/3
V

in the exponent which is related to the factor Q4/3 in Proposition 3.5, originating from
the Carleman estimate Proposition 3.6 as discussed above. As already mentioned, we
will encounter this polynomial dependence on δ and the 2/3 in the exponent later, see
Subsection 3.3.2 below. While allowing to pass beyond periodic situations which was
crucial for the application to non-ergodic operators as in [RMV13], Proposition 3.7 is
not necessarily an improvement compared to Proposition 3.3 since the statement is
essentially restricted to eigenfunctions. Therefore, in [RMV13], the authors asked as
an open question if an analogous result also holds for finite energy spectral subspaces.
In [Kle13], the restriction to single eigenfunctions was partially removed by using a
perturbation argument.

Proposition 3.8 ([Kle13, Theorem 1.1]). Let V ∈ L∞(Rd), δ ∈ (0, 1/2), Z a (1, δ)-
equidistributed sequence, E0 > 0, and L ∈ Nodd with L ≥ 72

√
d. Set H = −∆ + V

and denote the restriction of H to ΛL with Dirichlet or periodic boundary conditions
by HL. Then there exists a constant M > 0, depending only on the dimension, such
that for γ = γ(d,K, δ) > 0 defined as

γ2 =
1

2
δM(1+K2/3), K = 2‖V ‖∞ + E0

we have for every closed interval I ⊂ (−∞, E0] of length at most γ, and every
φ ∈ RanPHL(I) that

‖ψ‖2
L2(ΛL) ≤ γ−2‖ψ‖2

L2(Sδ,Z∩ΛL).

In comparison to Proposition 3.7, Proposition 3.8 holds for all functions in certain
spectral subspaces. This positively answers the questions posed in [RMV13] in the
special case of small energy intervals and immediately leads to an improvement of
the Wegner estimate of [RMV13] and to localization at low energies, cf. [Kle13].
However, Proposition 3.8 carries a smallness condition on the lenght γ of the

energy interval in terms of the parameters δ and K. There are applications where
this is still not sufficient. These applications include lower bounds of the sensitivity
of the spectrum under perturbations, random Schrödinger operators, and control
theory and are the subjects of Sections 4, 5, and 6, respectively. The main results of
the following section remove this smallness condition on γ. In particular Theorem 3.9
below affirmatively answers the question from [RMV13] in full generality.
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3. Quantitative and scale-free unique continuation

3.2. Main results

The following results have partly been published in joint works with Ivica Nakic,
Martin Tautenhahn and Ivan Veselić, [NTTV15, NTTV18a, TT17, NTTV18b]. More
precisely, Theorems 3.9 and 3.13 have been stated and proved in the joint publica-
tions [NTTV15, NTTV18a, NTTV18b] with Ivica Nakić, Martin Tautenhahn, and
Ivan Veselić, and Theorem 3.16 has been published in the joint publication [TT17]
with Martin Tautenhahn. Theorem 3.17 is a new result that covers these previous
results.
For the sake of readability, we start by citing special instances, namely Theo-

rems 3.9, 3.13, and 3.16, before turning to the most general result of this section,
Theorem 3.17. After Theorem 3.17, we briefly explain how to deduce the other
results. Theorem 3.17 itself is proved in Subsection 3.4.

Let us recall the notation introduced in Section 2.1: Given a generalized rectangle
Γ ⊂ Rd and a bounded and real-valued potential V , the operator H = −∆ + V is
the corresponding self-adjoint Schrödinger operator with potential V in L2(Γ) with
Dirichlet, Neumann and (if possible) periodic boundary conditions.

3.2.1. Scale-free, quantitative uniqe continuation for spectral subspaces

The following theorem removes the smallness assumption on the energy intervals
in [Kle13]. It has been announced in [NTTV15] and published in [NTTV18a]. It com-
bines techniques developed in [RMV13] and [Kle13] with a technique from [LRL12]
which allows to treat linear combinations of eigenfunctions by using an additional
“ghost dimension”, see Subsection 3.4.1 for details.

Recall that for L > 0, ΛL = (−L/2, L/2) denotes the centered hypercupe of
side length L. For a (M, δ)-equidistributed sequence Z, we have introduced in
Definition 3.26 the set Sδ,Z(ΛL) as the union of δ-balls with centers at the points
of Z whose elementary cells are entirely contained in ΛL, see also Figure 2, and its
characteristic function Wδ,Z(ΛL).

Theorem 3.9 ([NTTV15, Theorem 2.1], [NTTV18a, Theorem 2.2 and Corol-
lary 2.3]). There is C > 0, depending only on the dimension, such that for all
M > 0, all δ ∈ (0,M/2), all (M, δ)-equidistributed sequences Z, all L ∈ MN, all
V ∈ L∞(ΛL), all E ≥ 0 and all φ ∈ RanPH(E) we have

‖φ‖2
L2(Sδ,Z(ΛL)) ≥

(
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

‖φ‖2
L2(ΛL) (6)
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3.2. Main results

B(zj, δ), j ∈ Zd

Sδ,Z(Γ) ⊂ Γ

Elementary cell

Γ

Figure 2: The set Sδ,Z(Γ) ⊂ Γ consists of all δ-balls such that the corresponding elementary
cells are entirely contained in Γ.

where Γ = ΛL, i.e. H is the Schrödinger operator −∆ + V in L2(ΛL) with Dirichlet,
Neumann or periodic boundary conditions.

The following corollary is an immediate consequence:

Corollary 3.10. Under the assumptions of Theorem 3.9 we have

PH(E)Wδ,ZPH(E) ≥
(
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

PH(E) (7)

in quadratic form sense.

Remark 3.11. Note that since RanPH((−∞, E]) ⊂ RanPH((−∞, 0]) for all E < 0,
the assumption E ≥ 0 is in fact no restriction. Furthermore, given any measurable
B ⊂ (−∞, E], we can multiply Ineq. (7) from both sides with PH(B) and immediately
deduce

PH(B)Wδ,ZPH(B) ≥
(
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

· PH(B).

The constant in the unique continuation principle (6) now carries an improved
(compared to Propositions 3.7 and 3.8 above) dependence on the energy E: While in
the latter ones, the energy enters as E2/3

0 in the exponent, see the discussion after
Proposition 3.7, it is now of order E1/2. The reason for that is that Propositions 3.7
and 3.8 rely on techniques developed for single solutions of partial differential
expressions and they include the energy E by absorbing the eigenvalue into the
potential whence they end up with an order E2/3. The order E1/2 in the exponent is
optimal, see Subsection 3.3 below for a discussion.
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3. Quantitative and scale-free unique continuation

However, one can use this trick to further optimize the constant in Theorem 3.9:
Replacing the potential V by V − λ0 for some λ0 ∈ R corresponds to an energy shift.
In fact, we have

P−∆+V (E) = P−∆+V−λ0(E − λ0)

which allows to minimize over an additional parameter λ ∈ R. This leads to the
following corollary.

Corollary 3.12. There is C > 0, depending only on the dimension, such that for
all M > 0, all δ ∈ (0,M/2), all (M, δ)-equidistributed sequences Z, all L ∈MN, all
V ∈ L∞(ΛL), all E ∈ R, all λ0 ∈ R, and all φ ∈ RanPH(E) we have

‖φ‖2
L2(Sδ,Z(ΛL)) ≥

(
δ

M

)C(1+M4/3‖V−λ0‖2/3∞ +M(E−λ0)
1/2
+ )

‖φ‖2
L2(ΛL).

In the application to control theory in Section 6 below, it will be convenient to
make the choice λ = inf σ(H).
Theorem 3.9 has led to some applications: a Wegner estimate for the so-called

standard random breather model [TV15, NTTV15, NTTV18a] and estimates on the
control cost for the heat equation in a multi-scale setting [NTTV18a]. The Wegner
estimate will be discussed in Section 5 below while the control cost estimate will be
analyzed in an even more general situation in Section 6.

Finally let us stress that for every L > 0, the operator H = −∆ + V in L2(ΛL) is
lower semibounded with purely discrete spectrum. Thus, all φ ∈ RanPH(E) turn out
to be finite linear combinations of eigenfunctions. This expansion into eigenfunctions
has been used in [NTTV18a].

3.2.2. Generalization to unbounded domains

If one wants to extend Theorem 3.9 to more general geometric situations such as
operators living on the whole space Rd, one is confronted with the difficulty that these
operators will – in general – exhibit continuous spectrum. Of course, one can deduce
statements on single eigenfunctions, cf. [TV16b] where an analog of Proposition 3.7
for eigenfunctions of the full-space operator is deduced. However, eigenfunctions, if
any exist at all, might span only a subspace. Therefore, a concrete description of
spectral subspaces PH(E) might become more challenging since functions in these
spaces are not finite linear combinations of eigenfunctions any more. However, the
spectral calculus provides appropriate tools to also treat unbounded situations. This
is done by the next theorem which is contained in the joint work [NTTV18b] with
Ivica Nakić, Albrecht Seelmann, Martin Tautenhahn, and Ivan Veselić.
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3.2. Main results

Theorem 3.13 (Infinite volume, finite energy [NTTV18b]). There is C > 0, de-
pending only on the dimension, such that for all M > 0, all δ ∈ (0,M/2), all
(M, δ)-equidistributed sequences Z, all generalized rectangles Γ containing at least
one elementary cell of MZd, all V ∈ L∞(Γ), all E ≥ 0 and all φ ∈ RanPH(E) we
have

‖φ‖2
L2(Sδ,Z(Γ)) ≥

(
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

‖φ‖2
L2(Γ).

Again, this theorem can be reformulated in terms of quadratic forms:

Corollary 3.14. Under the assumptions of Theorem 3.13 we have

PH(E)Wδ,ZPH(E) ≥
(
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

PH(E)

in quadratic form sense.

Obviously Remark 3.11 holds analogously here and we find the analogon of
Corollary 3.12:

Corollary 3.15. There is C > 0, depending only on the dimension, such that for
all M > 0, all δ ∈ (0,M/2), all (M, δ)-equidistributed sequences Z, all generalized
rectangles Γ containing at least one elementary cell of MZd, all V ∈ L∞(Γ), all
E ≥ 0, all λ ∈ R, and all φ ∈ RanPH(E) we have

‖φ‖2
L2(Sδ,Z(Γ)) ≥

(
δ

M

)C(1+M4/3‖V−λ0‖2/3∞ +M(E−λ0)
1/2
+ )

‖φ‖2
L2(Γ).

3.2.3. Beyond finite energy

Besides extending it to infinite domains, there is another natural way to extend
Theorem 3.9 to infinite dimensional subspaces. In [JL99, Theorem 14.10], and
[LRL12, Proposition 5.6], the observation was made that certain infinite series of
eigenfunctions with rapidly decaying coefficients have a unique continuation property.
Building upon this observation, in [TT17], the following multi-scale, quantitative,
series-of-eigenfunctions analog of Theorem 3.9 was proved.

Theorem 3.16 (Finite volume, infinite energy, [TT17, Theorem 2.2]). There is C >

0, depending only on the dimension, such that for all κ > 0, all M ∈ (0, κ/(18e
√
d)],

all δ ∈ (0,M/2), all (M, δ)-equidistributed sequences Z, all L ∈MN, all V ∈ L∞(ΛL),
all D ≥ 1, and all φ ∈ L2(ΛL) satisfying∑

k∈N

exp
(
κ
√

(λk(H))+

)
|αk|2 ≤ D

∑
k∈N

|αk|2 = D‖φ‖2
L2(ΛL),
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3. Quantitative and scale-free unique continuation

where Γ = ΛL and λk(H) denotes the k-th eigenvalue of the operator H in L2(ΛL),
enumerated increasingly and counting multiplicities with normalized eigenfunction ψk
and αk = 〈ψk, φ〉, we have

‖φ‖2
L2(Sδ,Z(ΛL)) ≥

(
δ

M

)C(1+M4/3‖V ‖2/3∞ +lnD
)
‖φ‖2

L2(ΛL).

We will comment on the condition M ∈ (0, κ/(18e
√
d)] later in Subsection 3.3.3

when discussing optimality of the results. Theorem 3.16 again relies on the fact that
on finite volume boxes, the operator H has purely discrete spectrum. Note that the
inequality ∑

k∈N

exp
(
κ
√

(λk(H))+

)
|αk|2 ≤ D

∑
k∈N

|αk|2 <∞

in Theorem 3.16 is in particular satisfied for some D if

φ ∈ D
(

e
κ
2

√
H+

)
,

see Subsection 2.2 on spectral calculus above. Thus we see immediately that the
following Theorem 3.17 is a generalization of Theorem 3.16. It is the most general
statement of this section and we explain below how it implies Theorems 3.9 and 3.13.

Theorem 3.17. There is C > 0, depending only on the dimension, such that for all
κ > 0, all M ∈ (0, κ/(18e

√
d)], all δ ∈ (0,M/2), all (M, δ)-equidistributed sequences

Z, all generalized rectangles Γ that contain at least one elementary cell of MZd, all
V ∈ L∞(Γ) and all

0 6= φ ∈ D
(

e
κ
2

√
H+

)
,

we have

‖φ‖L2(Sδ,Z(Γ)) ≥
(
δ

M

)C(1+M4/3‖V ‖2/3∞ +lnD(φ))

‖φ‖L2(Γ)

where

D(φ) =
‖e

κ
2

√
H+φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

.

We already explained above that Theorem 3.16 is a special case of Theorem 3.17.
Let us now explain how Theorems 3.9 and 3.13 follow from Theorem 3.17: LetM > 0

and set κ := 18e
√
dM . Then, for every E ∈ R, we have

RanPH(E) ⊂ D
(

e
κ
2

√
H+

)
,
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see Subsection 2.2, and

ln

‖eκ2√H+φ‖2
L2(Γ)

‖φ‖2
L2(Γ)

 ≤ ln

(
eκ
√
E‖φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

)
≤ 18e

√
dM
√
E.

Hence, Theorems 3.9 or 3.13, respectively, follow with C replaced by 18e
√
dC.

3.3. Discussion on optimality

Before turning to the proof of Theorem 3.17 in Section 3.4, let us make some remarks
on optimality of the above results. Parts of this subsection are based on parts
of [Täu17, TT17].

3.3.1. Dependence on energy

We first argue that the bounds in Theorems 3.9, and 3.13 are sharp in terms of the
energy dependence exp(

√
E). For that purpose, we cite [LRL12, Proposition 5.5],

see also [JL99, Proposition 14.9] for an earlier, but less explicit version.

Proposition 3.18 ([LRL12, Proposition 5.5]). Let Ω be a bounded, open set in Rd,
denote by −∆ the negative Laplacian on Ω with Dirichlet or Neumann boundary
conditions and let ω ⊂ Ω be non-empty and open with ω 6= Ω. Then there exist C > 0

and E0 > 0, such that for all E ≥ E0 there exists a function φ ∈ RanP−∆(E) with

‖φ‖2
L2(Ω) ≥ C exp(CE1/2)‖φ‖2

L2(ω). (8)

Comparing this with our estimate in Theorem 3.9

‖φ‖2
L2(Sδ,Z(ΛL)) ≥

(
δ

M

)C(1+M4/3‖V ‖2/3∞ +M
√
E)

‖φ‖2
L2(ΛL) ≥ c exp(cE1/2)‖φ‖2

L2(ΛL),

and choosing Ω = ΛL, ω = Sδ,Z(ΛL), we see that the order exp(
√
E) is sharp and

cannot be improved.
However, there exist other approaches to weaken or even get rid of the E-

dependence in the bound (
δ

M

)C(1+M4/3‖V ‖2/3∞ +ME1/2)

For instance, in [EV16] it has been suggested to consider spectral projectors corre-
sponding to closeby eigenvalues, i.e. φ ∈ RanPH([E −w,E]) for some w > 0 instead
of φ ∈ RanPH(E). In [EV16], the authors provide some indications to possibly prove
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3. Quantitative and scale-free unique continuation

the following: Fix L, δ, and a function w(E), tending sufficiently fast to 0 as E →∞.
Then for every E ≥ 0, we have

‖φ‖2
L2(Sδ,Z(ΛL)) ≥ C‖φ‖2

L2(ΛL) for all φ ∈ RanPH([E − w(E), E]) (9)

with a uniform C > 0. There are even hints that in some situations and for small
dimensions one might be able to choose w(E) constant, see [EV16] and the references
therein. However, the L-dependence and – more crucially – the δ-dependence are non-
explicit in this reasoning. One question is whether one can still recover a polynomial
dependence in δ as in Theorems 3.9 and 3.13 since this polynomial dependence
turned out to be crucial in our application to Wegner estimates in Section 5. This
encouraged Egidi and Veselić to ask a question, a special case of which we cite here:

Question (Special case of [EV16, Question 3]). Let L > 0, V ∈ L∞(ΛL), and fix
w ∈ (0,∞). Denote by H the operator −∆ + V in L2(ΛL) with periodic boundary
conditions. Is there a constant M , which may depend on w and V , such that for all
E ∈ R, all 0 < δ < L/2, and all f ∈ RanPH [E − w,E], the estimate∫

B(δ)

|f |2 ≥ δM
∫

ΛL

|f |2.

holds true?

In [Täu17], we showed that in dimension d ≥ 2, the answer to this question in no.

Theorem 3.19. The answer to Question 3 in [EV16] is no in dimension d ≥ 2.

The proof of Theorem 3.19 can be found in Appendix A.1. It relies on the
observation that the spectral subspaces RanP−∆([E − w,E]) can have arbitrarily
high dimension which allows to construct counterexamples. In fact, a similar idea
an be found in [Kir87]. In dimensions d ≥ 3, this high dimensionality of subspaces
can be deduced from Weyl asymptotics. However, in order to also cover the case
d = 2, we pursue a different approach and use a number theoretic argument to find
eigenvalues of high multiplicity. As a byproduct of identifying high dimensional
eigenvalues, it follows that even if the subspaces RanP−∆+V ([E−w,E]) are replaced
by RanP−∆+V ([E − w(E), E]) with w(E) → 0 as E → ∞, the answer will still
be no. In conclusion, we see that a relaxation of the assumption φ ∈ RanPH(E)

of Theorems 3.9 and 3.13 in the spirit of (9) is not possible without loosing the
polynomial δ-dependence.
We now turn to Theorems 3.16, and 3.17. They establish that all functions in

the domain of operators of the form exp(
√
H+), H being a Schrödinger operator,
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have a quantifiable rigidity. An interesting question is whether one can still expect
a result as in Theorems 3.16 or 3.17 if the condition φ ∈ D(eκ

√
H+) is replaced by

φ ∈ D(Hn
+) for some n ∈ N, i.e. if we replace exponential integrability of the spectral

measure d 〈φ, PH(·), φ〉 by polynomial integrability. We now show that this is also
not possible. The following lemma shows that in this situation, every φ ∈ C∞0 (ΛL) is
in some D(Hn

+).

Lemma 3.20 ([TT17, Lemma 4.1]). Let L > 0, V ≡ 0, κ > 0, φ ∈ C∞0 (ΛL). Denote
by λk and ek, k ∈ N the eigenvalues and corresponding normalized eigenfunctions of
−∆ on L2(ΛL) and write φ =

∑
k αlek. Then there is C = C(φ, L, κ) > 0 such that∑
k∈N

|λk|κ|αk|2 < C.

The proof of Lemma 3.20 can be found in Appendix A.2. Choosing φ ∈ C∞0 (ΛL)

non-zero and vanishing on Sδ,Z(ΛL), we see that the function φ satisfies∑
k∈N

|λk|κ|αk|2 ≤ D‖φ‖2
L2(ΛL)

with D := C/‖φ‖2
L2(ΛL), but not ‖φ‖2

L2(Sδ,Z(ΛL)) ≥ Csfuc‖φ‖2
L2(ΛL). Therefore:

Corollary 3.21. Under the assumptions of Theorems 3.16 and 3.17, one cannot
replace the condition φ ∈ D(eκ

√
H+) by φ ∈ D(Hn

+) for any n ∈ N.

3.3.2. The term ‖V ‖2/3
∞

We now discuss whether the term ‖V ‖2/3
∞ , appearing in the exponent in Theorems 3.9,

3.13, 3.16, and 3.17 can be improved. One can at best hope to reduce this to
‖V ‖1/2

∞ , since if the exponent was smaller than 1/2, then constant potentials (which
correspond to an energy shift) would lead to a contradiction to the optimal energy
dependence exp(

√
E) discussed in the previous subsection.

Let us discuss where the term ‖V ‖2/3
∞ comes from. Looking at the proof of

Theorem 3.17, more precisely at (45), we see that the ‖V ‖2/3
∞ contribution stems

from the fact that the parameters α1 and β2 are chosen of order ‖V ‖2/3
∞ . From

now on, we focus on the parameter α1 which is due to the Carleman estimate in
Proposition 3.28. The parameter β2 originates from another Carleman estimate,
Proposition 3.27, and leads to an analogous discussion. The reason for choosing
α1 of order ‖V ‖2/3

∞ is that in the proof of Lemma 3.31 a term with a factor ‖V ‖2
∞

has to be absorbed on the left hand side of (24). Since the corresponding term on
the left hand side of (24) has an α3 prefactor, stemming from Proposition 3.28, the
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3. Quantitative and scale-free unique continuation

choice α ≥ α1 ∼ ‖V ‖2/3
∞ is required. In summary, we can say that the exponent 2/3

corresponds to the relation between the prefactor α3 on the left hand side of the
Carleman estimate, Proposition 3.27, and the fact that |∆Φ|2 = |V Φ|2 ∼ ‖V ‖2

∞.
So, one thinkable venue how to improve the term ‖V ‖2/3

∞ would be attempting to
increase the parameter α3 on the left hand side of Proposition 3.28 to αθ, θ ∈ (3, 4].
In this case, the term ‖V ‖2/3

∞ in the exponent of our main results would improve to
‖V ‖2/θ

∞ .
Unfortunately, this would be a futile task. In fact, an improved Carleman estimate

would also lead to an improvement of [BK05, Lemma 3.10] which would itself
contradict a counterexample by Meshkov [Mes92]. In fact, one can prove the following
meta-theorem:

Proposition 3.22. Assume that an improved variant of the the Carleman estimate
Proposition 3.27 holds where α3 on the left hand side has been replaced by αθ for
some θ > 0. Then, for all u, V ∈ L∞(Rd) satisfying ∆u = V u in Rd, and u(0) = 1,
all R > 1, and all x0 ∈ Rd with |x0| = R we would have

max
|x−x0|≤1

|u(x)| > C exp(−C log(R)R4/θ), for some C > 0. (10)

Proof. One can follow literally the proof of [BK05, Lemma 3.10] with the obvious
modification that α ∼ 4/3 needs to be replaced by α ∼ R4/θ.

However, in [Mes92, Section 2], Meshkov gave an example of functions u, V ∈
L∞(R2,C) ∩ L2(R2,C) which satisfy u(0) 6= 0, ∆u = V u and

max
|x|≥R
|u(x)| ≤ C exp(−CR4/3). (11)

Comparing (10) and (11), we deduce the following corollary:

Corollary 3.23. An improved variant of the Carleman estimate, Proposition 3.27,
where the exponent α3 on the left hand side is replaced by αθ for some θ > 3 cannot
hold.

This illustrates the limitations of the Carleman approach and explains why new
ideas will be required in hope of improving the term ‖V ‖2/3

∞ . There is one silver lining
here: Meshkov’s examples relies on a complex-valued potential V . Since we have
a real-valued potential V , in our situation the problem enjoys additional structure
which might be exploited in the future.
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3.3.3. Relation between κ and M

In Theorems 3.16 and 3.17, the parameters κ (decay rate of prefactors of high
energy modes) and M (grid size) must satisfy M/κ ≤ 18e

√
d. At first sight, this fits

the intuition of uncertainty principles: delocalization in momentum space (large κ)
corresponds to localization in position space, i.e. a fine grid (small M) is required in
order to obtain an estimate as in Theorems 3.16 and 3.17. It also seems that this
condition on M and κ occurs naturally when using Carleman estimates. In fact, a
similar assumption is required in an analog result for solutions of variable coefficient
second order elliptic operators with Lipschitz continuous coefficients, see [BTV15].
There, the Lipschitz constant assumes (on a technical level) the role of 1/κ from our
setting. Thus, our condition corresponds into a smallness condition on the Lipschitz
constant in the main result of [BTV15]. Of course, the factor 18e

√
d seems somewhat

arbitrary and it could be slightly improved by optimizing the covering arguments
in the proof of Proposition 3.33 below. Since we do not believe that this will yield
anything optimal, we refrained from doing so.
However, instead of considering a quantitative tweaking of the factor 18e

√
d, one

could ask if the relation between κ and M can be qualitatively improved, i.e. if a
quantitative unique continuation principle as in Theorems 3.16 and 3.17 holds for
every pair (κ,M). An indication for this is Proposition 5.6 in [RL12] where the
following statement is proved in the special case V ≡ 0: Let ω ⊂ ΛL be open and
κ > 0. Then for all functions u =

∑
k∈N αkφk with |αk| ≤ exp(−κ

√
Ek), k ∈ N, we

have u ≡ 0 if u|ω ≡ 0. Even though it would be possible without effort to turn this
qualitative into a quantitative statement of the form

‖u‖2
L2(ω) ≥ C‖u‖2

L2(ΛL),

the method in [RL12] does not provide any control over the constant C in terms
of δ, L, and κ, which is of special interest. Thus, the question, if the relation
M/κ ≤ 18e

√
d in Theorems 3.16, and 3.17 can be dropped, remains open.

3.4. Proof of Theorem 3.17

We will first prove Theorem 3.17 in the special case where M = 1 and where φ is
subject to an energy cutoff, i.e.

φ ∈ RanPH(E) ∩ D
(

eκ
√
H+

)
= RanPH(E)

for some E ≥ 0. In Section 3.4.5 we will deduce the general case.
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3. Quantitative and scale-free unique continuation

3.4.1. Ghost dimension and the function Φ

In this section, we take a function φ ∈ RanPH(E) and turn it into a V -harmonic
function Φ by extending it to an additional dimension. This is a technique, inspired
by [RL12, Theorem 5.4], see also [JL99], and allows to directly apply the Carleman
formalism to the function Φ. We will define the function Φ via spectral calculus
whence it is convenient to first describe the construction in an abstract setting.

Let H be a Hilbert space and A a self-adjoint operator on H with domain D(A).
We define a family of operators (Ft)t∈R on H as

Ft =

∫ ∞
−∞

st(λ)dPA(λ) where st(λ) =


sinh(

√
λt)/
√
λ, λ > 0,

t, λ = 0,

sin(
√
−λt)/

√
−λ, λ < 0.

The operators Ft are self-adjoint operators with RanPA([a, b]) ⊂ D(Ft) for −∞ <

a < b <∞. For φ ∈ PA([a, b]) we define the function Φ: R→ H as

Φ(t) = Ftφ.

Fix T > 0 and define the operator Â in L2((−T, T );H) on D(Â) = {Ψ: t 7→
A(Ψ(t))− (∂2

t Ψ)(t) ∈ L2((−T, T );H)} by

(ÂΦ)(t) = A(Φ(t))− (∂2
t Φ)(t).

where ∂2
t Φ denotes the second H-derivative with respect to t.

Lemma 3.24. For all a, b ∈ R with a < b and all φ ∈ RanPA([a, b]) we have:

(i) The map R 3 t 7→ Φ(t) ∈ H is infinitely H-differentiable. In particular,

(∂tΦ)(0) = φ. (12)

(ii) For all T > 0 we have Φ ∈ D(Â) and

ÂΦ = 0. (13)

Proof of Lemma 3.24. We aim to identify the L2(Rd)-derivative and calculate by a
standard application of the dominated convergence theorem

lim
h→0

∥∥∥∥∫ b

a

(
st+h(λ)− st(λ)

h
− ∂tst(λ)

)
dPA(λ)φ

∥∥∥∥2

H

= lim
h→0

∫ b

a

∣∣∣∣st+h(λ)− st(λ)

h
− ∂tst(λ)

∣∣∣∣2d〈φ, PA(λ)φ〉 = 0.
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3.4. Proof of Theorem 3.17

The calculation for higher derivatives is analogous and we find for k ∈ N0 that

(∂kt Φ)(t) =

(∫ b

a

∂kt st(λ)dPA(λ)

)
φ ∈ H.

Since A is self-adjoint and FtPA([a, b]) is bounded, the operator AFtPA([a, b]) is
closed. For part (ii) we infer from [Sch12, Theorem 5.9] that

AFtPA([a, b])φ = AFtPA([a, b])φ =

(∫ b

a

λst(λ)dPA(λ)

)
φ ∈ H,

which implies that φ ∈ D(AFtPA([a, b])). Hence FtPA([a, b])φ = Φ(t) ∈ D(A). We
then calculate using λst(λ)− ∂2

t st(λ) = 0∫ T

−T
‖A(Φ(t))− (∂2

t Φ)(t)‖2
Hdt =

∫ T

−T

∫ b

a

|λst(λ)− ∂2
t st(λ)|2d‖PA(λ)φ‖2dt = 0

Remark 3.25. We will apply Lemma 3.24 with H = L2(Γ), A = H, a = −‖V ‖∞, and
b = E ≥ 0. Then L2((−T, T );H) = L2(Γ× (−T, T )), i.e. Φ can be understood as a
map from Γ× (−T, T ) to C and we have

Â = −∆ + V on L2(Γ× (−T, T ))

with corresponding boundary conditions on (∂Γ)× (−T, T ) where we extended V
constantly to the extra dimension, i.e. V (x, t) = V (x) for all t ∈ (−T, T ). Since
Φ ∈ D(Â) by Lemma 3.24, we find Φ ∈ H1(Γ× (−T, T )).

In case where Γ 6= Rd, we define extensions of V and Φ from Γ× (−T, T ) to the
supersets Rd × (−T, T ), and Γ(k) × (−T, T ), k ∈ N where

Γ(k) :=
d×
i=1

(ai − k · (bi − ai), bi + k · (bi − ai)).

We first extend V and Φ to Rd× (−T, T ) and then possibly restrict to Γ(k)× (−T, T ).
The way these extensions are defined depends on the type of boundary conditions:

• In case of Dirichlet boundary conditions, V is extended by symmetric and Φ

by antisymmetric reflections on the boundary surfaces {xi = ai} and {xi = bi}
whenever ai or bi are finite.

• In case of Neumann boundary conditions, both V and Φ are extended by
symmetric reflections on the boundary surfaces {xi = ai} and {xi = bi}
whenever ai or bi are finite.
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3. Quantitative and scale-free unique continuation

• In case of periodic boundary conditions, both V and Φ are extended periodically
in every direction where both ai and bi are finite.

Iterating this procedure yields extensions to Rd× (−T, T ) which we then restrict to
Γ(k) × (−T, T ). We will use the same symbol for the original as well as the extended
V and Φ. By construction, we have

(−∆ + V )Φ = 0 on Γ(k) × (−T, T ). (14)

The extended Φ is in H2(Γ(k) × (−T, T )) and satisfies the corresponding boundary
conditions on ∂Γ(k).

Definition 3.26. Given a (1, δ)-equidistributed sequence Z and a generalized rect-
angle Γ which contains at least one elementary cell of Zd, let

Ŝδ,Z(Γ) = ∪j∈Zd : Λ1(j)⊂Γ{zj}.

Obviously,
Sδ,Z(Γ) = ∪z∈Ŝδ,Z(Γ)B(z, δ).

3.4.2. Carleman and doubling estimates

In this section, we state two Carleman estimates, Propositions 3.27 and 3.28, and
deduce local doubling estimates for the function Φ. They will ultimately play different
roles in the proof of Theorem 3.17: While Proposition 3.28 will perform the actual
unique continuation step for the function Φ, Proposition 3.27 contains a boundary
term which is going to serve as a ticket back to Rd and back to the original function
φ by exploiting the relation ∂d+1Φ |t=0= φ.
Since we aim for a quantitative result, we need to keep control over the model

parameters. Therefore, it is paramount to have explicit expressions for the corre-
sponding weight functions and carefully keep track of the geometry of their level
sets. This requires particular choices of two Carleman estimates. Let us now fix
some notation: We denote by Rd+1

+ := {(x, t) ∈ Rd+1 : t ≥ 0} the d+ 1-dimensional
half-space and by B+

r := {(x, t) ∈ Rd+1
+ : |(x, t)| < r} the d+ 1-dimensional half-ball.

For functions F ∈ C∞(Rd+1
+ ) we use the notation F0 = F |t=0.

In the appendix of [LR95], Lebeau and Robbiano state a Carleman estimate for
complex-valued functions with support in B+

r by using a real-valued weight function
u ∈ C∞(Rd+1) satisfying the two conditions

∀(x, t) ∈ B+
r : (∂d+1u)(x, t) 6= 0, (15)
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3.4. Proof of Theorem 3.17

and for all ξ ∈ Rd+1 and (x, t) ∈ B+
r the

2〈ξ,∇u〉 = 0

|ξ|2 = |∇u|2

 ⇒
d+1∑
j,k=1

(∂jku)
(
ξjξk + (∂ju)(∂ku)

)
> 0. (16)

As in [JL99] we choose r < 2−
√

2 and the special weight function u : Rd+1 → R,

u(x, t) = −t+
t2

2
− |x|

2

4
. (17)

Note that u(x, t) ≤ 0 for all (x, t) ∈ B+
2 . This function u indeed satisfies the

assumptions (15) and (16). Condition (15) is trivial for r < 1. In order to show the
implication (16) we show

|ξ|2 = |∇u|2 ⇒
d+1∑
j,k=1

(∂jku)(ξjξk + (∂ju)(∂ku)) > 0. (18)

We use the hypothesis of (18) and calculate

d+1∑
j,k=1

∂jku(ξjξk + ∂ju∂ku) = −1

2

d∑
i=1

ξ2
i + ξ2

d+1 −
1

8
|x|2 + (t− 1)2

=
3

2
ξ2
d+1 −

1

4
|x|2 +

1

2
(t− 1)2.

Since |x|2 ≤ r2 and (t − 1)2 ≥ (1 − r)2, assumption (18) is satisfied if r < 2 −
√

2.
Now let

C∞c,0(B+
r ) =

{
F : Rd+1

+ → C : F ≡ 0 on {t = 0},

∃φ ∈ C∞(Rd+1) with suppφ ⊂ {(x, t) ∈ Rd+1 : |(x, t)| < r} and F ≡ φ on Rd+1
+

}
.

Hence, using that F ≡ 0 on {t = 0} we deduce the following Carleman estimate with
a boundary term as a corollary of Proposition 1 in the appendix of [LR95].

Proposition 3.27 (Simplified version of [LR95], Proposition 1 in the Appendix).
Let u ∈ C∞(Rd+1,R) be as in Eq. (17) and ρ ∈ (0, 2−

√
2). Then there are constants

β0, C1 ≥ 1 such that for all β ≥ β0, and all F ∈ C∞c,0(B+
ρ ) we have∫

Rd+1

e2βu
(
β|∇F |2 + β3|F |2

)
≤ C1

(∫
Rd+1

e2βu|∆F |2 + β

∫
Rd

e2βu0|(∂d+1F )0|2
)
.

We will need another Carleman estimate with a weight function the level sets of
which can be explicitly controlled.
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3. Quantitative and scale-free unique continuation

Proposition 3.28 ([EV03, BK05, NRT15, Dav14, KT16]). Let ρ > 0 and define
v : Rd → R, v(x) = |x|

ρ

∫ |x|/ρ
0

1−e−t
t

dt. In particular,

∀x ∈ B(ρ) :
|x|
ρe
≤ v(x) ≤ |x|

ρ
.

Then there are constants α0, C2 ≥ 1, depending only on the dimension, such that for
all α ≥ α0, and all G ∈ H2(Rd+1) with support in B(ρ) \ {0} we have∫

Rd+1

(
αρ2v1−2α|∇G|2 + α3v−1−2α|G|2

)
dx ≤ C2ρ

4

∫
Rd+1

v2−2α |∆G|2 dx.

While this Carleman estimate can essentially be found in [EV03] and [BK05], the
variants stated therein are not quite sufficient for our purpose. The estimate in
[EV03] lacks a quantitative statement about the admissible functions G, while in
[BK05] the gradient term on the left hand side is missing. Even though it would be
possible to modify the proofs of [EV03, BK05] without employing new techniques,
we cite [NRT15] for a complete proof. We also mention that this estimate is stated
without proof in [KT16, Lemma 2.1] and that also [Dav14] contains a Carleman
estimate which is less explicit than Proposition 3.28, but would still be sufficient for
our purpose.

Remark 3.29. Note that it would be possible to prove Theorem 3.17 solely relying on
Proposition 3.27. However, the geometry of the level sets of the weight function in
Proposition 3.27 is more complicated (hyperbolas) than in Proposition 3.28 (balls).
Thus, using only Proposition 3.27 would unnecessarily complicate later steps of the
proof without improving the final result.

We now use the Carleman inequalities, Propositions 3.27, and 3.28 to deduce two
doubling estimates for the function Φ in a very precise geometric setting. To do so,
we introduce some more notation. For δ ∈ (0, 1/2), we set

u1 = −δ2/16, u2 = −δ2/8, u3 = −δ2/4,

r1 =
1

2
− 1

8

√
16− δ2, r2 = 1, r3 = 8.5e

√
d,

R1 = 1− 1

4

√
16− δ2, R2 = 8

√
d, R3 = 9e

√
d,

and define for i ∈ {1, 2, 3} the sets

Ui :=
{

(x, t) ∈ Rd+1 : u(x, t) > ui, t ∈ [0, 1]
}
⊂ Rd+1

+
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3.4. Proof of Theorem 3.17

and

Vi := B(Ri) \B(ri) ⊂ Rd+1.

The sets Ui are cusps of hyperbolas while the sets Vi are annuli. Furthermore, we
have

U1 ⊂ U2 ⊂ U3 ⊂ B+
δ ⊂ Rd+1

+ .

Lemma 3.30. For all δ ∈ (0, 1/2), all V ∈ L∞(Rd), all Φ ∈ H2(U3) with ∆Φ(x, t) =

V (x)Φ(x, t), we have

e2βu1‖Φ‖2
H1(U1) ≤ 24C1Θ2

1e2βu2‖Φ‖2
H1(U3) + 2C1‖(∂d+1Φ)0‖2

L2(B(0,δ))

for all β ≥ β1 where β1 is given in Eq. (21), C1 is the constant from Proposition 3.27
and Θ1 is given in Eq. (19).

Proof. We choose a cutoff function χ ∈ C∞(Rd+1, [0, 1]) which is symmetric with
respect to the d+ 1-st coordinate, suppχ ∩ Rd+1

+ ⊂ U3, χ(x) = 1 if x ∈ U2 and

max{‖∆χ‖∞, ‖|∇χ|‖∞} ≤
Θ̃1

δ4
=: Θ1, (19)

where Θ̃1 = Θ̃1(d) depends only on the dimension. This is due to the fact that the
distance of U2 and Rd+1

+ \ U3 is bounded from below by δ2/16, see Appendix B. We
want to apply Proposition 3.27 with F = χΦ. However, the restricion of χΦ onto
Rd+1

+ is not in C∞c,0(B(ρ)) but merely in H2(Rd+1
+ ) and we need to approximate it

appropriately.
Since χΦ ∈ H2(Rd) there is a sequence (Fn)n∈N of C∞0 (Rd+1)-functions such that

Fn → χΦ, ∇Fn → ∇(χΦ), ∆Fn → ∆(χΦ) in L2(Rd+1) and (∂d+1Fn)0 → ∂d+1(χΦ)0

in L2(Rd), cf. [Eva98, Chapter 5.3 for approximation and Chapter 5.5 for convergence
of the traces on Rd]. The function χΦ is symmetric with respect to the d + 1-st
coordinate whence we may assume that the Fn are also symmetric (else replace
Fn(·, xd+1) by the symmetrized (Fn(·, xd+1) + Fn(·,−xd+1))/2). We may also assume
that suppFn ⊂ B(δ) whence the restrictions of Fn onto Rd+1

+ are in C∞c,0(B+
δ ). Thus,

we can apply Proposition 3.27 with F = Fn and ρ = 1/2, take the limit n→∞ and
obtain for all β ≥ β0 ≥ 1∫

U3

e2βu
(
β|∇(χΦ)|2 + β3|χΦ|2

)
≤ C1

∫
U3

e2βu|∆(χΦ)|2+

+ βC1

∫
B(δ)

e2βu0 |(∂d+1(χΦ))0|2.
(20)
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3. Quantitative and scale-free unique continuation

Note that β0 and C1 only depend on the dimension. For the first summand on the
right hand side we have the upper bound∫

U3

e2βu|∆(χΦ)|2 ≤ 3

∫
U3

e2βu
(
4|∇χ|2|∇Φ|2 + |∆χ|2|Φ|2 + |∆Φ|2|χ|2

)
≤ 3e2βu2

∫
U3\U2

(
4Θ2

1|∇Φ|2 + Θ2
1|Φ|2

)
+

∫
U3

3e2βu|V Φχ|2

≤ 12Θ2
1e2βu2‖Φ‖2

H1(U3) + 3‖V ‖2
∞

∫
U3

e2βu|χΦ|2.

The second summand is bounded from above by βC1

∫
B(δ)
|(∂d+1Φ)0|2, since Φ = 0

and u ≤ 0 on {xd+1 = 0}. Hence,

β

∫
U3

e2βu|∇(χΦ)|2 + (β3 − 3‖V ‖2
∞C1)

∫
U3

e2βu|χΦ|2

≤ 12C1Θ2
1e2βu2‖Φ‖2

H1(U3) + C1β‖(∂d+1Φ)0‖2
L2(B(δ)).

Additionally to β ≥ β0 we choose β ≥ (6‖V ‖2
∞C1)1/3 =: β̃0. This ensures that for all

β ≥ β1 := max{β0, β̃0} (21)

we have

1

2

∫
U3

e2βu
(
β|∇(χΦ)|2 + β3|χΦ|2

)
≤ 12C1Θ2

1e2βu2‖Φ‖2
H1(U3) + C1β‖(∂d+1Φ)0‖2

L2(B(δ)).

Since β ≥ 1, U3 ⊃ U1, χ = 1 and e2βu ≥ e2βu1 on U1, we obtain

e2βu1‖Φ‖2
H1(U1) ≤ 24C1Θ2

1e2βu2‖Φ‖2
H1(U3) + 2C1‖(∂d+1Φ)0‖2

L2(B(δ)).

Lemma 3.31. For all δ ∈ (0, 1/2), all V ∈ L∞(Rd), all Φ ∈ H2(U3) with ∆Φ(x, t) =

V (x)Φ(x, t), we have

‖Φ‖H1(V2) ≤ 24C2R
3
3

[
Θ2

2

(
eR2

r1

)2α−2

‖Φ‖2
H1(V1) + Θ2

3

(
eR2

r3

)2α−2

‖Φ‖2
H1(V3)

]

for all α ≥ α1 where α1 is given in eq. (25), C2 is the constant in Proposition 3.28
and Θ1, Θ2 are given in equations (19) and (22).

Proof. We choose a cutoff function χ ∈ C∞c (Rd+1, [0, 1]) with suppχ ⊂ B(R3)\B(r1),
χ(x) = 1 if x ∈ B(r3) \B(R1),

max{‖∆χ‖∞,V1 , ‖|∇χ|‖∞,V1} ≤
Θ̃2

δ4
=: Θ2 (22)
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3.4. Proof of Theorem 3.17

and
max{‖∆χ‖∞,V3 , ‖|∇χ|‖∞,V3} ≤ Θ3, (23)

where Θ̃2 depends only on the dimension and Θ3 is an absolute constant, see
Appendix B. We set G = χΦ. We apply Proposition 3.28 with ρ = R3 to the function
G and obtain for all α ≥ α0 ≥ 1∫

B(R3)

(
αR2

3v
1−2α|∇G|2 + α3v−1−2α|G|2

)
dx ≤ C2R

4
3

∫
B(R3)

v2−2α|∆G|2dx.

Since v ≤ 1 on B(R3) we can replace the exponent of the weight function v at all
three places by 2− 2α, i.e.∫

B(R3)

(
αR2

3v
2−2α|∇G|2 + α3v2−2α|G|2

)
dx ≤ C2R

4
3

∫
B(R3)

v2−2α|∆G|2dx =: I. (24)

For the right hand side we use

∆G = 2(∇χ)(∇Φ) + (∆χ)Φ + (∆Φ)χ

and ∆Φ = V Φ to obtain

I ≤ 3C2R
4
3

∫
B(R3)

v2−2α
(
4|(∇χ)(∇Φ)|2 + |(∆χ)Φ|2 + ‖V ‖2

∞|χΦ|2
)

dx =: I1 + I2 + I3.

If we choose α sufficiently large, i.e.

α ≥
(
6C2R

4
3‖V ‖2

∞
)1/3

=: α̃0,

we can subsume the term I3 into the left hand side of Ineq. (24). We obtain for all

α ≥ α1 := max{α0, α̃0} (25)

the estimate ∫
B(R3)

(
αR2

3v
2−2α|∇G|2 +

α3

2
v2−2α|G|2

)
dx ≤ I1 + I2.

For the “new” left hand side we have the lower bound

I1 + I2 ≥
∫
B(R3)

(
αR2

3v
2−2α|∇G|2 +

α3

2
v2−2α|G|2

)
dx ≥ 1

2

(
R3

R2

)2α−2

‖Φ‖2
H1(V2).

For I1 and I2 we have the estimates

I1 ≤ 3C2R
4
3

[
4Θ2

2

(
eR3

r1

)2α−2 ∫
V1

|∇Φ|2 + 4Θ2
3

(
eR3

r3

)2α−2 ∫
V3

|∇Φ|2
]
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3. Quantitative and scale-free unique continuation

and

I2 ≤ 3C2R
4
3

[
Θ2

2

(
eR3

r1

)2α−2 ∫
V1

|Φ|2 + Θ2
3

(
eR3

r3

)2α−2 ∫
V3

|Φ|2
]
.

Putting everything together, the Carleman estimate from Proposition 3.28 implies
for α ≥ α1

‖Φ‖2
H1(V2) ≤ 24C2R

4
3

[
Θ2

2

(
eR2

r1

)2α−2

‖Φ‖2
H1(V1) + Θ2

3

(
eR2

r3

)2α−2

‖Φ‖2
H1(V3)

]
. (26)

3.4.3. Interpolation inequalities

We will now sum shifted variants of the inequalities in Lemma 3.30 and 3.31 and
turn the sum on the right hand side into a product by an appropriate choice of the
parameters α and β. Before doing so, let us introduce the following notation. For
x ∈ Rd and i ∈ {1, 2, 3} we define

Ui(x) = {(y, t) ∈ Rd+1 : (y − x, t) ∈ Ui} and Vi(x) = {(y, t) ∈ Rd+1 : (y − x, t) ∈ Vi}

as well as
Wi(Γ, Z) := ∪z∈Ŝδ,Z(Γ)Ui(z).

Furthermore, we define the set

X1 := Γ× (−1, 1) ⊂ Rd+1,

let dR3e denote the least integer larger or equal than R3 and

X̃R3 := ΓdR3e × (−R3, R3) ⊂ Rd+1.

Proposition 3.32. For all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences Z, all
measurable and bounded V : Rd → R, all φ ∈ L2(Γ), satisfying φ ∈ RanPH(−∞, E])

for some E ∈ R we have

‖Φ‖H1(W1(Γ,Z)) ≤ D1‖φ‖1/2

L2(Sδ,Z(Γ))‖Φ‖
1/2

H1(W3(Γ,Z)),

where D1 is given in Eq. (31).

Proof. We apply Lemma 3.30 to the translates Ui(z) where z ∈ Ŝδ,Z(Γ) and sum up:

e2βu1

∑
z∈Ŝδ,Z(Γ)

‖Φ‖2
H1(U1(z)) ≤24C1Θ2

1e2βu2

∑
z∈Ŝδ,Z(Γ)

‖Φ‖2
H1(U3(z))+

+ 2C1

∑
z∈Ŝδ,Z(Γ)

‖(∂d+1Φ)0‖2
L2(B(z,δ)).
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Since Ui(z) ∩ Ui(z′) = ∅ for z, z′ ∈ z ∈ Ŝδ,Z(Γ) with z 6= z′ and by the definition of
Wi(Γ, Z) and Sδ,Z(Γ), we have for all β ≥ β1

‖Φ‖2
H1(W1(Z,Γ)) ≤ D̃1‖Φ‖2

H1(W3(Z,Γ)) + D̂1‖(∂d+1Φ)0‖2
L2(Sδ,Z(Γ)),

where
D̃1(β) = 24C1Θ2

1e2β(u2−u1) and D̂1(β) = 2C1e−2βu1 . (27)

We choose β such that

eβ =

[
1

12Θ2
1

‖(∂d+1Φ)0‖2
L2(Wδ,Z(Γ)

‖Φ‖2
H1(W3(Z,Γ))

] 1
2u2

. (28)

Now we distinguish two cases. If β ≥ β1 we obtain by using u1 = 2u2

‖Φ‖2
H1(W1(Z,Γ)) ≤ 8

√
3C1Θ1‖Φ‖H1(W3(Z,Γ))‖(∂d+1Φ)0‖L2(Sδ,Z(Γ)). (29)

If β < β1 we use Lemma 5.2 of [LRL12]. In particular, one concludes from Eq. (28)
that

‖Φ‖2
H1(W3(Z,Γ)) <

1

12Θ2
1

e−2β1u2‖(∂d+1Φ)0‖2
L2(Sδ,Z(L)).

This gives us in case β < β1

‖Φ‖2
H1(W1(Z,Γ)) ≤ ‖Φ‖2

H1(W3(Z,Γ)) <
e−β1u2

√
12Θ1

‖Φ‖H1(W3(Z,Γ))‖(∂d+1Φ)0‖L2(Sδ,Z(L)). (30)

Using (∂d+1Φ)0 = φ and setting

D2
1 = max

{
8
√

3C1Θ1,
e−β1u2

Θ1

√
12

}
, (31)

we conclude the statement of the proposition from Ineqs. (29) and (30).

Proposition 3.33. For all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences Z, all
measurable and bounded V : Rd → R, all φ ∈ L2(Γ) satisfying φ ∈ Ran(PH((−∞, E])

for some E ∈ R we have

‖Φ‖H1(X1) ≤ D2‖Φ‖γH1(W1(Z,Γ))‖Φ‖
1−γ
H1(X̃R3

)
,

where γ and D2 are given in Eq. (41) and (42).

Proof of Proposition 3.33. Let us start by emphasizing that we now work with the
extended function Φ : Rd+1 → C. We apply Lemma 3.31 to translates Vi(z) and sum
over z ∈ Ŝδ,Z(Γ) to obtain

∑
z∈Ŝδ,Z(Γ)

‖Φ‖2
H1(V2(z)) ≤ 24C2R

4
3

Θ2
2

(
eR2

r1

)2α−2 ∑
z∈Ŝδ,Z(Γ)

‖Φ‖2
H1(V1(z))

+Θ2
3

(
eR2

r3

)2α−2 ∑
z∈Ŝδ,Z(Γ)

‖Φ‖2
H1(V3(z))

 . (32)
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V1(z) V2(z) V3(z)

Figure 3: Sketch of the annuli V1(z), V2(z), V3(z) in dimension d = 2

We now further estimate the three sums in Ineq. (32). First, we note that since
R1 < δ, the sets V1(z), z ∈ Ŝδ,Z(Γ), are mutually disjoint. Furthermore we have
V1(z) ∩ Rd+1

+ ⊂ U1(z), hence ∪z∈Ŝδ,Z(Γ)V1(zj) ∩ Rd+1
+ ⊂ W1,Z . Together with the

antisymmetry of Ψ in the (d+ 1)-coordinate, this yields∑
z∈Ŝδ,Z(Γ)

‖Ψ‖2
H1(V1(z)) = ‖Ψ‖2

H1(
⋃
z∈Ŝδ,Z (Γ) V1(z))

= 2‖Ψ‖2
H1(

⋃
z∈Ŝδ,Z (Γ) V1(z)∩Rd+1

+ )
≤ 2‖Ψ‖2

H1(W1,Z).

Moreover, for every (x, t) ∈ X̃R3 = ΓdR3e × (−R3, R3), there are at most (2R3 + 2)d

points z ∈ Ŝδ,Z(Γ) such that (x, t) ∈ V3(z). Thus, we have∑
z∈Ŝδ,Z(Γ)

‖Ψ‖2
H1(V3(z)) ≤ (2R3 + 2)d‖Ψ‖2

H1(X̃R3
)

=: Kd‖Ψ‖2
H1(X̃R3

)
.

Finally, we claim that ∑
z∈Ŝδ,Z(Γ)

‖Ψ‖2
H1(V2(z)) ≥ ‖Ψ‖2

H1(X1), (33)

Since the sets V2 are rather large (they are annuli with outer radius R2 = 8
√
d and

inner radius 1), and the points z ∈ Ŝδ,Z(Γ) are equidistributed, Ineq. (33) is quite
credible but in particular if Γ is “small”, it turns out to be a bit technical to provide
a rigorous proof. Note that if the boundaries of Γ coincided with the boundaries
of the underlying lattice Zd as in [NTTV18a], then Ineq. (33) would follow almost
immediately. Also, if we had chosen a larger R2, the following argument would
be substantially simpler. However, this would have forced us to also choose the
parameter R3 larger which itself would have led to a more restrictive assumption on
κ and M in Theorems 3.16, and 3.17.
Ineq. (33) is best seen by distinguishing cases:

• Let us first assume that Γ is sufficiently large, i.e. there there is at least one
direction k ∈ {1, . . . , d} such that bk − ak ≥ 5. We will then show that for
every x ∈ Γ, there is z ∈ Ŝδ,Z(Γ) such that

1 < |x− z| < 7
√
d. (34)
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3.4. Proof of Theorem 3.17

Then, since V2(z) = B(z, 8
√
d)\B(z, 1), it will follow that {x}×(−1, 1) ⊂ V2(z).

Consequently, identifying such a point z ∈ Ŝδ,Z(Γ) for every x ∈ Γ, we find
X1 = Γ × (−1, 1) ⊂

⋃
z∈Ŝδ,Z(Γ) V2(z). To find such a z ∈ Ŝδ,Z , we proceed as

follows: The point x is contained in an elementary cell Λ1 + j0, j0 ∈ Zd, of
the lattice Zd. Note that this elementary cell does not need to be contained
entirely in Γ. However, since Γ contains an elementary cell of Zd and has side
length at least 5 in one dimension, the set Λ5(j0)\Λ3(j0) (which is a union of
(5d − 3d) elementary cells) contains at least one elementary cell Λ1(j), j ∈ Zd,
which is entirely in Γ. The corresponding z = zj ∈ Ŝδ,Z then satisfies (34).

• In the other case, we have bk − ak < 5 for all k ∈ {1, . . . , d}. Now, the set
∪j∈Ŝδ,Z(Γ)V2(zj) does not necessarily cover X1 = Γ× (−1, 1) but we claim that
it will cover a translate Γ̃× (−1, 1). Ineq. (33) then follows from the symmetry
properties of the extension of Φ since ‖Φ‖H1(Γ̃×(−1,1)) = ‖Φ‖H1(Γ×(−1,1)). Let us
first consider this in dimension d = 1, i.e. Γ = (a, b), where b− a < 5

– If 3 ≤ b − a < 5, then there is a point z1 ∈ Ŝδ,Z(Γ) ∩ (b − 3, b − 1) and
a point z2 ∈ Ŝδ,Z(Γ) ∩ (b− 2, b), since both intervals have side length 2.
Note that z1 and z2 might coincide. For all x ∈ Γ̃ = (b, b + (b − a)) we
then have

either 1 < |x− z1| ≤ 7 or 1 < |x− z2| ≤ 7

whence for all x ∈ Γ̃ = (b, b+(b−a)) and all t ∈ (−1, 1), there is j ∈ {1, 2}
such that

1 < |(x, t)− (zj, 0)| ≤
√

72 + 1 < 8, i.e. (x, t) ∈ V2(zj).

– If 1 ≤ b− a < 3, then there is a point z ∈ Ŝδ,Z(Γ) which has distance at
most 1.5 to either a or b. Without loss of generality let |z − b| ≤ 1.5. We
then choose Γ̃ := (b+ (b− a), b+ 2(b− a)) and for every x ∈ Γ̃ and every
t ∈ (−1, 1) we have

1 < |(z, 0)− (x, t)| ≤
√

7.52 + 1 < 8, i.e. (x, t) ∈ V2(zj).

In either case, this implies ∪j∈Ŝδ,Z(Γ)V2(zj) ⊂ Γ̃× (−1, 1) and we found (33) for
d = 1. Let us now assume d ≥ 2. We distinguish again two subcases:

– Let us first assume that there is z ∈ Ŝδ,Z with distance larger than 1 to
the boundary ∂Γ of Γ. We then choose Γ̃ to be a neighboring translate
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3. Quantitative and scale-free unique continuation

ΓΓ̃

zj

Γ

zj

V2(zj) Domain covered by V2(zj)

Figure 4: The annuli V2(zj) either each already cover another elementary cell in Γ, such
that all of Γ will be covered, or Γ is so small that an annulus V2(zj) already
covers an entire translated copy Γ̃. In this figure, the outer radii of V2(zj) are
not drawn in scale.

of Γ, touching Γ on a boundary surface and find for all x ∈ Γ̃ and all
t ∈ (−1, 1)

1 < dist ((z, 0), (x, t)) =
√
|z − x|2 + t2 ≤

√
52(d− 1) + (4 + 5)2 + 1

=
√

25d+ 57 < 8
√
d

where the last inequality is easily verified by an elementary calculation
using d ≥ 2.

– If this is not the case, i.e. every point z ∈ Ŝδ,Z(Γ) has distance less than
1 to the boundary of Γ, then in at least one direction k ∈ {1, . . . , d} we
must have bk − ak ≤ 4. Without loss of generality, let this be the x1

direction. We choose z ∈ Ŝδ,Z(Γ) and Γ̃ as a next-to-one neighboring copy
of Γ in x1-direction, i.e. Γ̃ = Γ + 2(b− a)e1 where ek is a unit vector in x1

direction. For every point x ∈ Γ̃, there is a point z ∈ Ŝδ,Z(Γ) such that
z + 2(b− a)e1 ∈ Γ̃ has distance at most 2 in every coordinate direction to
x. Therefore, we find for all x ∈ Γ̃ and all t ∈ (−1, 1)

1 < dist ((z, 0), (x, t)) ≤
√

22(d− 1) + (2 + 8)2 + 1

=
√

4d+ 97 < 8
√
d

where the last step follows again by an elementary calculation and the
fact that d ≥ 2.

We thus showed Ineq. (33). Going back to Ineq. (32), we therefore established
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‖Φ‖2
H1(X1) ≤ D̃2(α)‖Φ‖2

H1(W1(Z,Γ)) + D̂2(α)‖Φ‖H1(X̃R3
), (35)

where

D̃2(α) = 48C2R
4
3Θ2

2

(
eR2

r1

)2α−2

and D̂2(α) = 24C2R
4
3Θ2

3Kd

(
eR2

r3

)2α−2

. (36)

If we let c1 = 48C2Θ2
2R

4
3r

2
1/(eR2)2, c2 = 24C2Θ2

3KdR
4
3r

2
3/(eR2)2,

p+ = 2 ln

(
eR2

r1

)
> 0 and p− = 2 ln

(
eR2

r3

)
< 0,

then Ineq. (35) reads

1

5d
‖Φ‖2

H1(X1) ≤ c1ep
+α‖Φ‖2

H1(W1(Z,Γ)) + c2ep
−α‖Φ‖2

H1(X̃R3
)
. (37)

We choose α such that

eα =

(
c2

c1

‖Φ‖2
H1(X̃R3

)

‖Φ‖2
H1(W1(Z,Γ))

) 1
p+−p−

. (38)

If α ≥ α1 we obtain from Ineq. (37) that

1

5d
‖Φ‖2

H1(X1) ≤ 2cγ1c
1−γ
2 ‖Φ‖2γ

H1(W1(Z,Γ))‖Φ‖
2−2γ

H1(X̃R3
)
, where γ =

−p−

p+ − p−
. (39)

If α < α1, we proceed as in the last part of the proof of Proposition 3.32, i.e. we
conclude from Eq. (38) that

‖Φ‖2
H1(X̃R3

)
<
c1

c2

eα1(p+−p−)‖Φ‖2
H1(W1(Z,Γ))

and thus

‖Φ‖2
H1(X1) ≤ ‖Φ‖

2 p
+−p−

p+−p−

H1(X̃R3
)
< ‖Φ‖2(1−γ)

H1(X̃R3
)

(
c1

c2

eα1(p+−p−)

)γ
‖Φ‖2γ

H1(W1(Z,Γ)). (40)

We calculate
γ =

ln 2

ln(r3/r1)
, (41)

set

D2
2 = max

{
5d192 · 94C2Θ2

3Kde
4d2

(
2Θ2

2r
2
1

Θ2
3Kdr2

3

)γ
,

(
2Θ2

2

Θ2
3Kd

(
r3

r1

)2(α1−1)
)γ}

(42)

and conclude the statement of the proposition from Ineqs. (39) and (40).
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3.4.4. Proof of Theorem 3.17 in the special case

In this section, we use the interpolation inequalities, Proposition 3.32, and 3.33 to
prove Theorem 3.17 in the special case where M = 1 and φ ∈ RanPH(E) for some
E ≥ 0. We shall need one more ingredient: The following proposition uses the special
structure of φ and Φ to show that the norms of φ and Φ are comparable.

Proposition 3.34. For all E ∈ R, φ ∈ RanPE(H) and τ > 0 we have

τ

2
‖φ‖2

L2(Γ) ≤ ‖Φ‖2
H1(Γ×(−τ,τ)) ≤ 2τ(1 + (1 + ‖V ‖∞)τ 2)‖e2τ

√
H+φ‖2

L2(Γ).

Proof. For the function Φ : Γ× R→ C we have for τ > 0

‖Φ‖2
H1(Γ×[−τ,τ ]) =

∫ τ

−τ

∫
Φ

(
|∂d+1Φ|2 + |∇dΦ|2 + |Φ|2

)
dx.

By Green’s theorem and Lemma 3.24 we have∫
Γ

|∇dΦ|2dx′ = −
∫

Γ

(∆dΦ)Φdx′ −
∫

Γ

V |F |2dx′ +

∫
Γ

(∂2
t Φ)Φdx′

for all t ∈ R. First we estimate

‖Φ‖2
H1(Γ×(−τ,τ)) =

∫ τ

−τ

∫
Γ

(
|∂d+1Φ|2 − V |Φ|2 + (∂2

t Φ)Φ + |Φ|2
)

dx

≤
∫ τ

−τ

∫
Γ

(
|∂d+1Φ|2 + (∂2

t Φ)Φ + (1 + ‖V ‖∞)|Φ|2
)

dx

= 2

∫ E

−∞
I(λ)d‖PH(λ)φ‖2

L2(Γ),

where

I(λ) :=

∫ τ

0

(
(1 + ‖V ‖∞)sλ(t)

2 + s′λ(t)
2 + s′′λ(t)sλ(t)

)
dt

= (1 + ‖V ‖∞)

∫ τ

0

sλ(t)
2dt+ s′λ(t)sλ(t).

In particular, the above integral is finite since I is bounded on (−∞, E]. For λ ≤ 0,
we estimate using sλ(t) ≤ t and s′λ(t)sλ(t) ≤ t for t > 0

I(λ) ≤ (1 + ‖V ‖∞)τ 3/3 + τ ≤ ((1 + ‖V ‖∞)τ 3 + τ)e2τ
√
λ.

For λ > 0 we use sinh(
√
λt)/
√
λ ≤ t cosh(

√
λt) for t > 0 and cosh(

√
λt)2 ≤ e2

√
λt to

obtain

I(λ) = (1 + ‖V ‖∞)

∫ τ

0

sinh2(
√
λt)

λ
dt+ sinh(

√
λτ) cosh(

√
λτ)/
√
λ

≤ ((1 + ‖V ‖∞)τ 3 cosh2(
√
λτ) + τ cosh2(

√
λτ)) ≤ ((1 + ‖V ‖∞)τ 3 + τ)e2τ

√
λ.
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This shows the upper bound. For the lower bound we drop the gradient term and
obtain

‖Φ‖2
H1(Γ×(−τ,τ)) ≥

∫ τ

−τ

∫
Γ

(
|∂d+1Φ|2 + |Φ|2

)
dxdt = 2

∫ E

−∞
I(λ)‖PH(λ)φ‖2

L2(Γ),

where
Ĩ(λ) :=

∫ τ

0

(
sλ(t)

2 + s′λ(t)
2
)

dt.

If λ = 0, the lower bound Ĩ(λ) ≥ τ follows immediately. Else, we have sλ(t)2 ≥
sin2(

√
|λ|t)/|λ| and s′λ(t)2 ≥ cos(|λ|t) whence

Ĩ(λ) ≥
∫ τ

0

sin2(|λ|t)
|λ|2

+ cos2(|λ|t)dt ≥
∫ τ

0

cos2(|λ|t)dt =
τ

2
+

sin(2|λ|τ)

4|λ|
.

Now, if 2|λ|τ < π, the sin term is positive and we drop it to find Ĩ(λ) ≥ τ/2. If
2|λ|τ ≥ π, we have sin(2|λ|τ) ≥ −1 and estimate

Ĩ(λ) ≥ τ

2
− 1

4|λ|
=
τ

2
− π

4π|λ|
≥ τ

2
− T

2π
≥ τ

4
.

We are now ready to prove Theorem 3.17 in case M = 1 and φ is in some
RanPH(E).
We have

‖Φ‖2
H1(X̃R3

)
≤ dR3ed‖Φ‖2

H1(Γ×(−R3,R3)

whence we find by Proposition 3.34

‖Φ‖2
H1(X̃R3

)

‖Φ‖2
H1(X1)

≤ dR3ed4R3(1 + (1 + ‖V ‖∞R2
3)
‖e2R3

√
H+φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

= dR3ed4R3(1 + (1 + ‖V ‖∞R2
3)D̂(φ) =: D2

3.

Using this estimate, Propositions 3.33 and 3.32, and W3(Γ, Z) ⊂ X̃R3 , we find

‖Φ‖H1(X̃R3
) ≤ D3‖Φ‖2

H1(X1) ≤ D2D3‖Φ‖γH1(W1(Z,Γ))‖Φ‖
1−γ
H1(X̃R3

)

≤ Dγ
1D2D3‖φ‖γ/2L2(Sδ,Z(Γ))‖Φ‖

γ/2

H1(W3(Γ,Z))‖Φ‖
1−γ
H1(X̃R3

)

≤ Dγ
1D2D3‖φ‖γ/2L2(Sδ,Z(Γ))‖Φ‖

1−γ/2
H1(X̃R3

)
.

Dividing by ‖Φ‖1−γ/2
H1(X̃R3

)
and raising to the power 2/γ yields

‖Φ‖H1(X̃R3
) ≤ (Dγ

1D2D3)2/γ‖φ‖L2(Sδ,Z(Γ)).
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By Proposition 3.34, we have

‖φ‖2
L2(Γ) ≤

2

R3

‖Φ‖2
H1(Γ×(−R3,R3)) ≤

2

R3

‖Φ‖2
H1(X̃R3

)
. (43)

This finally yields

‖φ‖L2(Γ) ≤
√

2

R3

(Dγ
1D2D3)2/γ‖φ‖L2(Sδ,Z(Γ)) =

√
2

R3

D2
1D

2/γ
2 D

2/γ
3 ‖φ‖L2(Sδ,Z(Γ)). (44)

It remains to see that there is C > 0 such that√
2

R3

D2
1D

2/γ
2 D

2/γ
3 ≤ δ−C/2(1+‖V ‖∞+ln D̂(φ)).

Recall that

D2
1 = max

{
8
√

3C1Θ1,
e−β1u2

Θ1

√
12

}
,

D2
2 = max

{
5d192 · 94C2Θ2

3Kde
4d2

(
2Θ2

2r
2
1

Θ2
3Kdr2

3

)γ
,

(
2Θ2

2

Θ2
3Kd

(
r3

r1

)2(α1−1)
)γ}

,

D2
3 = dR3ed4R3(1 + (1 + ‖V ‖∞R2

3)D̂(φ),

γ =
ln 2

ln(r3/r1)
,

as well as

Θ1 =
Θ̃1

δ4
,

Θ2 =
Θ̃2

δ4
,

α1 ≥
(
6C2R

4
3‖V ‖2

∞
)1/3

= α̃0

β1 ≥ (6‖V ‖2
∞C1)1/3 = β̃0,

u2 = −δ2/8

r1

r3

=
1
2
− 1

8

√
16− δ2

8.5e
√
d

∈
[
δ2

64

1

8.5e
√
d
,
δ

64

1

8.5e
√
d

]
⊂ (0, 1).

(45)

where C1, C2, R3, Θ̃1, Θ̃2,Θ3, Kd are constants that depend only on the dimension.
In the following, we will denote by C̃i positive constants, depending only on the
dimension. We easily deduce

2/γ ≤ −C̃1 ln δ
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and

D2
1 ≤ C̃2

(
δ−4 + δ4eC̃3‖V ‖2/3∞ δ2

)
≤ C̃2

(
δ−4 + δ−C̃3‖V ‖2/3∞

)
≤ C̃4δ

−C̃5(1+‖V ‖2/3∞ ), (46)

D
2/γ
2 ≤ C̃6

(
C̃

2/γ
7 δ4 + δ−8(α1−1)

)
≤ C̃6

(
C̃−C̃1 ln δ

7 + δ−C̃8‖V ‖2/3∞
)

(47)

= C̃6

(
δ−C̃1 ln C̃7 + δ−C̃8‖V ‖2/3∞

)
≤ C̃9

(
δ−C̃10(1+‖V ‖2/3∞

)
,

D
2/γ
3 ≤

(
C̃11(1 + ‖V ‖∞)D̂(φ)

)−C̃1 ln δ

= δ−C̃1 ln(C̃12(1+‖V ‖∞)D̂(φ)) (48)

≤ δ−C̃12(1+‖V ‖2/3∞ +ln D̂(φ))

where we used δ < 1/2, the identity ab ln δ = δb ln a and ln(1 + ‖V ‖∞) ≤ ‖V ‖2/3
∞ .

Combining ineq. (44) with (46), (47), (48), and using

t = 2log2(t) ≤ δ− log2(t).

for all t > 0, we find

‖φ‖2
L2(Γ) ≤ C̃13δ

−C̃14(1+‖V ‖2/3∞ +ln D̂(φ))‖φ‖2
Sδ,Z(Γ) ≤ δ−C(1+‖V ‖2/3∞ +ln D̂(φ))‖φ‖2

Sδ,Z(Γ).

This concludes the proof of Theorem 3.17 in the special case where M = 1 and
where φ is subject to some energy cutoff.

3.4.5. Limiting and scaling argument

We now deduce the general statement of Theorem 3.17. Let us first explain how to
relax the condition φ ∈ RanPH(E) to φ ∈ D(e

κ
2

√
d
√
H+). For this purpose, we need

the following lemma.

Lemma 3.35. Assume φ ∈ D
(

e18e
√
d
√
H+

)
Then, for all E ∈ R

‖e18e
√
d
√
H+PH(E)φ‖2

L2(Γ)

‖PH(E)φ‖2
L2(Γ)

≤
‖e18e

√
d
√
H+φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

(49)

where we use the convention 0/0 = 0.

Proof. Noting that

‖e18e
√
d
√
H+PH(E)φ‖2

L2(Γ) =

∫ E

−∞
e18e

√
d·
√
E+d‖PH(E)φ‖2

L2(Γ)

and

‖PH(E)φ‖2
L2(Γ) =

∫ E

−∞
d‖PH(E)φ‖2

L2(Γ),
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3. Quantitative and scale-free unique continuation

we need to see that the map

R 3 E 7→
∫ E
−∞ e18e

√
d·
√
E+d‖PH(E)φ‖2

L2(Γ)∫ E
−∞ d‖PH(E)φ‖2

L2(Γ)

is nondecreasing. This follows from∫ E+ε

−∞ s(E)dµ(E)∫ E+ε

−∞ dµ(E)
−
∫ E
−∞ s(E)dµ(E)∫ E
−∞ dµ(E)

=

∫ E+ε

E
s(E)dµ(E)

∫ E
−∞ dµ(E)−

∫ E+ε

E
dµ(E)

∫ E
−∞ s(E)dµ(E)

µ((−∞, E + ε]) · µ((−∞, E])

≥ µ([E,E + ε])

∫ E
−∞ s(E)− s(E)dµ(E)

µ((−∞, E + ε]) · µ((−∞, E])
≥ 0

for every finite Borel measure µ, every non-decreasing function s : R→ [0,∞), every
E ∈ R and every ε > 0.

We are now ready to prove Theorem 3.17 in case M = 1, but with the relaxed
assumption φ ∈ D(e18e

√
d
√
H+) instead of φ ∈ RanPH(E).

Proof. Assume that
0 6= φ ∈ D

(
e18e

√
d
√
H+

)
.

Since φ 6= 0, there is E0 ∈ R such that ‖PH(E)φ‖L2(Γ) 6= 0 for all E ≥ E0 and we
have by Lemma 3.35

D̂(PH(E)φ) =
‖e18e

√
d
√
H+PH(E)φ‖2

L2(Γ)

‖PH(E)φ‖2
L2(Γ)

≤
‖e18e

√
d
√
H+φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

= D̂(φ).

By the finite energy case of Theorem 3.17, which we proved above, and using δ < 1,
we find

‖PH(E)φ‖L2(Sδ,Z(Γ)) ≥ δC(1+‖V ‖2/3∞ +ln D̂(PH(E)φ))‖PH(E)φ‖L2(Γ)

≥ δC(1+‖V ‖2/3∞ +ln D̂(PH(E)φ))‖PH(E)φ‖L2(Γ)

≥ δC(1+‖V ‖2/3∞ +ln D̂(φ))‖PH(E)φ‖L2(Γ).

Since

lim
E→∞
‖PH(E)φ‖2

Sδ,Z(Γ) = ‖φ‖2
Sδ,Z(Γ), and lim

E→∞
‖PH(E)φ‖2

L2(Γ) = ‖φ‖2
L2(Γ),

Theorem 3.17 (in case M = 1) follows by taking the limit E →∞.

It remains to perform a scaling argument and drop the condition M = 1.
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3.4. Proof of Theorem 3.17

Proof. Let κ,M, δ, Z,Γ, V, E and φ be as in Theorem 3.17. We define Ṽ : M−1Γ→ R
by Ṽ (x) = M2V (Mx), the operator H̃ = −∆ + Ṽ in L2(M−1Γ) with its resolution
of identity {PH̃(E) : E ∈ R}, the bounded operator S : L2(Γ) → L2(M−1Γ) by
(Sf)(x) = f(Mx), and φ̃ ∈ L2(M−1Γ) by φ̃ = Sφ. By a straightforward calculation
one obtains H̃ = M2SHS−1. We also define the map R 3 E 7→ P̂ (E) := SPH(E)S−1.
Then {P̂ (E) : E ∈ R} is the resolution of identity corresponding to the operator
SHS−1 = M−2H̃. This follows by verifying the defining properties of the resolution
of identity, cf. [Sch12, Chapters 4 and 5], using in particular that {PH(E) : E ∈ R}
is a resolution of the identity of H, and the formula S∗ = M−dS−1. Now,

‖PH(E)φ‖2
L2(Γ) =

〈
φ̃, (S−1)∗PH(E)S−1φ̃

〉
= Md

〈
φ̃, SPH(E)S−1φ̃

〉
= Md

〈
φ̃, PH̃(E/M2)φ̃

〉
= Md‖PH̃(E/M2)φ̃‖2

L2(M−1Γ).

Using this, the transformation formula for spectral measures, cf. [Sch12, Prop. 4.24],
with E 7→ E/M2, and κ ≥M · 18e

√
d, we obtain

‖e18e
√
d
√
H̃+φ̃‖2

L2(M−1Γ) =

∫ ∞
−∞

e18e
√
d
√
E+d‖PH̃(E)φ̃‖2

L2(M−1Γ)

=

∫ ∞
−∞

eM ·18e
√
d
√
E+d‖PH̃(E/M2)φ̃‖2

L2(M−1Γ)

= M−d
∫ ∞
−∞

eM ·18e
√
d
√
E+d‖PH(E)φ‖2

L2(Γ)

≤M−d
∫ ∞
−∞

eκ
√
E+d‖PH(E)φ‖2

L2(Γ)

= M−d‖eκ
√
H+φ‖2

L2(Γ) <∞.

This establishes φ̃ ∈ D(e18e
√
d
√
H̃+). Applying the Theorem in case M = 1 with δ/M ,

M−1Z, M−1Γ, Ṽ and φ̃ leads to

‖φ‖2
L2(Sδ,Z(Γ)) = Md‖φ̃‖2

L2(M−1·Sδ,Z(Γ))

≥Md

(
δ

M

)C(1+‖Ṽ ‖2/3∞ +ln D̂(φ̃))

‖φ̃‖2
L2(M−1Γ)

≥
(
δ

M

)C(1+M4/3‖V ‖2/3∞ +lnD(φ))

‖φ‖2
L2(Γ)

where we used δ/M < 1/2 and

D̂(φ̃) =
‖e18e

√
d
√
H̃+φ̃‖2

L2(M−1Γ)

‖φ̃‖2
L2(M−1Γ)

≤
‖eκ
√
H+φ‖2

L2(Γ)

‖φ‖2
L2(Γ)

= D(φ).

This concludes the proof of Theorem 3.17.
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3. Quantitative and scale-free unique continuation

3.5. Related results on scale-free unique continuation

Let us conclude this section by citing some results which are neither implied by our
main results nor stronger, but will be used in later sections.

We start with a generalization of Proposition 3.7 (the UCP for functions satisfying
an eigenvalue inequality from [RMV13]), and Proposition 3.8 (the unique continuation
principle on boxes ΛL for spectral intervals with a smallness condition on the interval
length from [Kle13]) to some operators with magnetic field. It is proved in [BTV15].
In fact, the results therein are stated in even greater generality, namely for some
second order elliptic partial differential expressions with variable coefficients. However,
we are only going to need the special case in which the leading term is the pure
Laplacian. Let

Hu := −∆ + bT∇u+ cu

with b ∈ L∞(Rd;Cd) and c ∈ L∞(Rd;C). For L > 0 we denote by D(∆L) the domain
of the Laplace operator in L2(ΛL) subject to Dirichlet boundary conditions. For
L > 0 we define the differential operator HL : D(∆L)→ L2(ΛL) by HLψ = Hψ. If b
and c satisfy

b = ib̃ and c = c̃+ i div b̃/2 (50)

for some b̃ ∈ L∞(Rd,Rd) and c̃ ∈ L∞(Rd), then HL is a self-adjoint operator in
L2(ΛL). The following proposition is a special case of Theorems 13 and 14 in
[BTV15].

Proposition 3.36. Let the above assumptions and in particular (50) be satisfied.
Then for all L ∈ Nodd, all measurable and bounded V : ΛL → R, all ψ ∈ D(∆L) and
ζ ∈ L2(ΛL) satisfying |Hψ| ≤ |V ψ| + |ζ|, all δ ∈ (0, 1/2), all (1, δ)-equidistributed
sequences Z, and all ψ ∈ RanPHL([E − γ,E + γ]) with

γ2 = δN1

(
1+|E|2/3+‖b‖2∞+‖c‖2/3∞

)
we have

‖ψ‖2
L2(Sδ,Z(ΛL)) ≥ γ2‖ψ‖2

L2(ΛL).

Here N1 ≥ 1 is a constant depending only on the dimension.

Remark 3.37. The careful reader might notice that by extracting the statement
of [BTV15, Theorems 13 and 14], one ends up with a term γ/2 instead of γ2 in
the last inequality. However, since γ < 1/2, the version we state is an immediate
consequence. We stated it in this way since it makes notation more transparent in
later applications.
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3.5. Related results on scale-free unique continuation

Recall that for the union Sδ,Z(ΛL) of δ-balls within ΛL, distributed according to
a equidistributed sequence, we had defined Wδ,Z(ΛL) as the operator of multipli-
cation by the characteristic function 1Sδ,Z(ΛL). In Subsection 5.4.1, we will apply
Proposition 3.36 in the form of the following quadratic form corollary:

Proposition 3.38. Let (50) be satisfied, E0 ∈ R, δ ∈ (0, 1/2), and

γ2 = δN1

(
1+|E0|2/3+‖b‖2∞+‖c‖2/3∞

)
.

Then for all I ⊂ (−∞, E0] with |I| ≤ 2γ, and all (1, δ)-equidistributed sequences Z,
we have

PHL(I)Wδ,Z(ΛL)PHL(I) ≥ γ2PHL(I).

Beyond results relying on Floquet theory or Carleman estimates there are scale-
free quantitative unique continuation results for a particular operator, namely for
the Landau Hamiltonian. This is the self-adjoint operator HB = (−i∇− A)2 with
A = (B/2)(x2,−x1) in L2(R2) where B > 0 is called the magnetic field strength.

Since b := −2iA and c := (−i(∇A) +A2) are bounded on every cube ΛL and since
one can rewrite

(−i∇− A)2φ = (−∆− i∇ · A− iA · ∇+ A2)φ

= −∆φ− 2iA · (∇φ) + (−i(∇A) + A2)φ

this would put us into the situation of Proposition 3.36. However, since ‖A |ΛL‖∞
grows linearly with L, also ‖b‖∞ and ‖c‖∞ would grow whence the length γ of the
energy interval in Proposition 3.36 would exponentially tend to 0 as L→∞. This is
not good enough for our purposes.
Thus, we proceed differently. We define a scale LB > 0 by choosing

KB := 2d
√
B/(4π)e, LB = KB

√
4π/B, and NB = LBN

where dte denotes the least integer larger or equal than t. Physically, this means
that cubes of side length L ∈ NB have integer magnetic flux. Now, for L ∈ NB,
the spectrum of the Landau Hamiltonian on ΛL with periodic boundary conditions
consists of an increasing sequence of isolated eigenvalues of finite multiplicity at
the Landau levels B(2n− 1), n = 1, 2, ..., see for instance [GKS07, Section 5]. We
denote the spectral projector onto the n-th Landau level by Πn,L. Furthermore, for
L ∈ NB and x ∈ R2/LZ2, we write 1̂x,L for the characteristic function of the cube
with side length L, centered at x on the torus R2/LZ2. The following proposition is
[GKS07, Lemma 5.3] which is an adaptation of [CHKR04, Lemma 2] which in turn
uses results from [RW02b, RW02a].
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3. Quantitative and scale-free unique continuation

Proposition 3.39. Fix B > 0, n ∈ N, R > r > 0 and η > 0. If κ > 1 and L ∈ NB

are such that L > 2(LB + κR) then for all x ∈ ΛL we have

Πn,L1̂x,rΠn,L ≥ C0Πn,L

(
1̂x,R − η1̂x,κR

)
Πn,L + Πn,LẼxΠn,L

where C0 = C0(n,B, r, R, η) > 0 is a constant and the symmetric error operator

Ẽx = Ẽx(n, L,B, r, R, η)

satisfies
‖Ẽx‖ ≤ Cn,B,r,R,ηe

−mn,BL

for some constants Cn,B,r,R,η > 0 and mn,B > 0 not depending on x.

In Subsection 5.4.2, we will use this in the form of the following lemma:

Lemma 3.40 ([TV16a]). Fix B > 0, and n ∈ N. Then there exist C1 = C1(n,B, r) =

C0(n,B, r, 4, 1/162)/4, and L0 = L0(n,B, r) > 0 such that for all L ∈ NB with
L ≥ L0, all r ∈ (0, 1/2) and all r-equidistributed sequences we have

Πn,LWδ,Z(ΛL)Πn,L ≥ C1Πn,L.

Remark 3.41. This bound can also be found in [RM12, Lemma 5.3], where it is used
to prove a Wegner estimate for the Delone-alloy-type model with the method from
[CHK07].

Proof. We choose a large L ∈ NB to be determined later and apply Proposition 3.39
with r, R = 4, κ = 2 and η = 1/162. Recall that r < 1/2 < R. We estimate

Πn,LWδ,Z(ΛL)Πn,L ≥
∑

j∈Z2:B(xj ,r)⊂ΛL

Πn,L1̂xj ,rΠn,L

≥ C0

∑
j∈Z2:B(xj ,r)⊂ΛL

(
Πn,L(1̂xj ,4 − η1̂xj ,8)Πn,L + Πn,LẼxjΠn,L

)
.

Since xj ∈ Λ1(j) for all j ∈ Z2, we have for L ≥ 3 that for every x ∈ ΛL there is
j ∈ Z2 with B(xj, r) ⊂ ΛL such that x ∈ Λ4(xj). Therefore,⋃

j∈Z2:B(xj ,r)⊂ΛL

Λ̂4(xj) ⊃ R2/LZ2, (the L− torus).

Furthermore, given x ∈ ΛL, there are at most 81 elementary cells Λ1(j) of Z2 in
which 1̂xj ,8 can be non-zero. Hence, we can bound the sum from below by

C0 (Πn,L − η81Πn,L) +
∑

j∈Z2:B(xj ,r)⊂ΛL

Πn,LẼxjΠn,L =
C0

2
Πn,L + Πn,LELΠn,L (51)
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3.5. Related results on scale-free unique continuation

with a symmetric error operator EL satisfying

‖EL‖ ≤ Cn,B

(
L

LB

)2

e−mn,BL.

This implies that there is L̃0 > 0 such that for all L ∈ NB with L ≥ L̃0 we
have ‖EL‖ ≤ C0/4 whence in particular EL ≥ −C0/4 · Id in quadratic form sense.
Since we used L ≥ 3 and since inequality (51) requires L ≥ 2(LB + 8), we need
L ≥ L0 := max{L̃0, 2(LB + 8), 3} to deduce the estimate

Πn,LWδ,Z(ΛL)Πn,L ≥
C0

4
Πn,L.

The last type of unique continuation principle we want to state is from the realm
of Fourier analysis: the so-called Logvinenko-Sereda theorem. It has been proved on
R by Logvinenko and Sereda in [LS74], and independently by Kacnel’son in [Kac73],
improved to Rd in [Kov00], and recently, a scale-free variant on finite cubes with
periodic boundary conditions (or tori) has been proved in [EV16]. We also refer to
the recent [BPJ18] for a related result. It is an analog of Theorems 3.9 and 3.13
which relies on tools from Fourier analysis. While it has the drawback that it is a
priori restricted to the pure Laplacian, its advantage over the results in Sections 3.2,
and 3.5 is that it allows for a more general geometry, namely thick sets instead of
equidistributed union of δ-balls as in Definition 3.26.

Definition 3.42. Let a = (a1, . . . , ad) ∈ Rd with aj > 0 for all j = 1, . . . , d, and
γ ∈ (0, 1]. A measurable subset S ⊂ Rd is (γ, a)-thick if for every parallelepiped
P = [x1 − a1/2, x1 + a1/2]× . . .× [xd − ad/2, xd + ad/2] ⊂ Rd we have

|S ∩ P | ≥ γ|P |.

We can now state the multi-dimensional Logvinenko-Sereda theorem. It holds for
Lp spaces. However, in Section 6, we will only use the L2 variant.

Proposition 3.43 ([Kov00]). Let f ∈ Lp(Rd) with p ∈ [1,∞], S ⊂ Rd be a (γ, a)-
thick set, and assume that the Fourier transform f̂ of f satisfies

supp f̂ ⊂
d×
j=1

[
xj −

bj
2
, xj +

bj
2

]
for some xj ∈ R and bj > 0, j ∈ {1, . . . , d}.

Then
‖f‖Lp(S) ≥

( γ

Cd

)C(d+〈a,b〉)
‖f‖Lp(Rd).

Here C is a constant, and 〈a, b〉 denotes the standard Euclidean scalar product of
a, b ∈ Rd.
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3. Quantitative and scale-free unique continuation

There is an analog variant on Lp(ΛL) or more precisely on L2 of the torus TdL := Rd/

(2πLZd). For f ∈ Lp(TdL), its Fourier coefficients f̂(k), k ∈
(

1
L
Z
)d, are given by

f̂

(
k1

L
, . . . ,

kd
L

)
=

1

(2πL)d

∫
TdL

f(x)e−
i
L
x·kdx

if they exist. We say that f̂ has support in B ⊂ Rd, if f̂(ξ) = 0 for all ξ ∈ 1
L
Zd\B.

It is important to note that if L varies, then also the set on which the sequence of
Fourier coefficients of f ∈ L2(TdL) is supported, will change.

Proposition 3.44 ([EV16]). Let L > 0, TdL = [0, 2πL]d, f ∈ Lp(TdL) with p ∈ [1,∞],

supp f̂ ⊂
d×
j=1

[
xj −

bj
2
, xj +

bj
2

]
for some xj ∈ R and bj > 0, j ∈ {1, . . . , d},

and S ⊂ Rd be a (γ, a)-thick set with 0 < aj ≤ 2πL for j ∈ {1, . . . , d}. Then

‖f‖Lp(S∩TdL) ≥
( γ

Cd

)Ca·b+ 6d+1
p ‖f‖Lp(TdL)

Here C is a constant, and a · b denotes the standard Euclidean scalar product of
a, b ∈ Rd.

An important observation is that the Fourier transform or the sequence of Fourier
coefficients are related to the Laplacian in L2(Rd) or on L2(TdL) with periodic
boundary conditions, respectively. In fact, for any Borel-set B ⊂ R, the orthogonal
projector P−∆(B)) is the orthogonal projector onto the closed subspace{

f ∈ L2(Rd) or L2(TdL) : supp f̂ ⊂ {ξ ∈ Rd : |ξ|2 ∈ B}
}
⊂ L2(Rd) or L2(TdL).

This yields the following corollary, see also [EV18, Section 5]:

Corollary 3.45. Let d ∈ N, Γ = TdL/(2π) = ΛL for some L > 0 or Γ = Rd, and
denote by ∆ the Laplacian on Γ, where we impose periodic boundary conditions if
Γ = ΛL. Let S ⊂ Rd be a (γ, a)-thick set with aj ≤ L for j ∈ {1, . . . , d}, and let
E ≥ 0. Then, for all f ∈ RanP−∆(E), we have

‖f‖L2(Γ∩S) ≥
( γ

Cd

)3d+ 1
2

+|a|
√
E

‖f‖L2(Γ).

where C > 0 is a universal constant.

Let us note that by passing to a cube of side length 2L, it is rather straightforward
to pass from periodic boundary conditions to Dirichlet and Neumann boundary
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3.5. Related results on scale-free unique continuation

conditions. We recover the statement of Theorems 3.9, and 3.13, however only in
cases Γ = Rd or Γ = ΛL and V ≡ 0. The advantage of Corollary 3.45 is that it requires
a less restrictive geometric setting S (thick sets) than our results, which require
subsets of unions of equidistributed δ-balls. Recent results on necessary and sufficient
conditions for null-controllability of the heat equation on Rd [WWZZ17, EV18]
indicate that thick sets should be the optimal geometric configuration to expect here.
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4. Application to perturbation of spectral edges

4. Application to perturbation of spectral edges

This section is based on the joint preprint [NTTV18b] with A. Seelmann, I. Nakić,
M. Tautenhahn, and I. Veselić. The purpose of this section is to apply the unique
continuation principles from the previous section to establish lower bounds on
the sensitivity of the spectrum of self-adjoint operators with respect to certain,
non-negative perturbations. For that goal, we start with some abstract results on
perturbation of spectra of self-adjoint operators in Section 4.1 before combining them
with our unique continuation estimates in Section 4.2 below.

4.1. Perturbation of spectra of self-adjoint operators

Throughout this section all operators are defined on the same Hilbert space H and
we recall that the domain of an operator A is denoted by D(A). If A is a self-adjoint
operator, B a bounded, symmetric perturbation, and λ = λ(A) an isolated (single)
eigenvalue of A, then by a standard Neumann series argument, there is a well-defined,
real analytic map t 7→ λ(A + tB) in a neighborhood of t = 0 which describes the
movement of the isolated eigenvalue under the perturbation, see for instance [Ves08b]
and [See14b] for some background.

Similarly, we can consider edges of connected components of the essential spectrum
or briefly spectral edges. The following lemma formulates the fact that such spectral
edges are locally stable under perturbations and establishes that there exists a
Lipschitz continuous function t 7→ f(t) describing the spectral edge of A+ tB.

Lemma 4.1. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative.
Let a ∈ σess(A) and let b > a be such that (a, b) ∩ σess(A) = ∅. Let t0 = (b− a)/‖B‖.
Then f : (−t0, t0)→ R, f(t) = sup (σess(A+ tB) ∩ (−∞, b− t−‖B‖)) satisfies for all
t ∈ (−t0, t0),

(a) f(0) = a,

(b) f(t) ∈ σess(A+ tB),

(c) (f(t), b− t−‖B‖) ∩ σess(A+ tB) = ∅, where t− = max{0,−t},

(d) f is Lipschitz continuous with Lipschitz coefficient ‖B‖.

In fact, Lemma 4.1 describes left edges of components of the essential spectrum.
One can also consider right edges, i.e. the analogous situation where (a, b)∩σess(A) = ∅
and b ∈ σess(A), cf. Cor. 4.18. Lemma 4.1 holds as well in case of indefiniteB, provided
one replaces t0 by (b− a)/(2‖B‖) and (c) by (f(t), b− |t|‖B‖) ∩ σess(A+ tB) = ∅.
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4.1. Perturbation of spectra of self-adjoint operators

Lemma 4.1 follows immediately from

Lemma 4.2. Let A be self-adjoint and B bounded and non-negative. If (a, b) ⊂ R,
then

(a, b) ∩ σess(A) = ∅ ⇒ (a+ ‖B‖, b) ∩ σess(A+B) = ∅, (52)

and
(a, b) ∩ σess(A) 6= ∅ ⇒ (a, b+ ‖B‖) ∩ σess(A+B) 6= ∅. (53)

Here we use the convention that (c, d) = ∅ if c ≥ d.

Remark 4.3. Since the essential spectrum is closed, the statements of the Lemma 4.2
also hold if the corresponding intervals are replaced by closed or semi-closed intervals.
Furthermore, analogous statements for negative perturbations −B follow by applying
the contraposition of (52) and (53).

Proof of Lemma 4.2. Let us assume (a, b) ∩ σess(A) = ∅. Then for every ε > 0, A
has at most finitely many eigenvalues with finite multiplicity in (a+ ε, b− ε). Thus,
there is a finite rank perturbation T such that (a+ ε, b− ε) ∩ σ(A+ T ) = ∅. From
Proposition 2.1 in [See17] we infer that (a + ε + ‖B‖, b − ε) ∩ σ(A + T + B) = ∅.
Since finite rank perturbations leave the essential spectrum unchanged, we obtain

(a+ ε+ ‖B‖, b− ε) ∩ σess(A+B) = ∅ for all ε > 0.

This shows (52). The relation (53) is equivalent to (52) by contraposition.

Lemma 4.1 yields an upper bound on the maximal movement of spectral edges,
namely the norm of the perturbation. Our goal is now to complement this by
lower bounds on the lifting of spectral edges and eigenvalues in gaps of the essential
spectrum. All these results will hold under an abstract positivity condition on the
perturbation.

4.1.1. Below the essential spectrum

In order to explain the underlying mechanism we first consider the infimum of the
essential spectrum and eigenvalues below it. For a lower semibounded self-adjoint
operator A, we set λ∞(A) = inf σess(A). Note that λ∞(A) = ∞ if σess(A) = ∅.
Moreover, we denote by {λk(A)}k∈N the sequence of eigenvalues of A below σess(A),
enumerated non-decreasingly and counting multiplicities. If there are exactly N ∈ N0

eigenvalues in (−∞, λ∞(A)) then we set λk(A) = λ∞(A) for all k ∈ N with k > N . If
A has purely discrete spectrum then the sequence λk(A), k ∈ N, is the non-decreasing
sequence of eigenvalues of A.
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4. Application to perturbation of spectral edges

Lemma 4.4. Let A be self-adjoint and lower semibounded, B bounded and symmetric,
E ∈ R, κ ∈ R, and

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞} such that λk(A+B) < E, we have

λk(A+B) ≥ λk(A) + κ.

Proof. Let ε0 = E − λk(A+B) > 0. Then we have by assumption

λk(A+B) = inf
0<ε≤ε0

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

(〈x,Ax〉+ 〈x,Bx〉)

≥ inf
0<ε≤ε0

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

〈x,Ax〉+ κ.

Since dim RanPA+B(λk(A+B)+ε) ≥ k for ε > 0, we have by the standard variational
principle

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

〈x,Ax〉 = sup
L⊂RanPA+B(λk(A+B)+ε)

dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanPA+B(λk(A+B)+ε)

dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉

≥ inf
L⊂D(A)
dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉 = λk(A).

4.1.2. Ordering from right to left in gaps

If one considers eigenvalues in gaps of the essential spectrum, the situation becomes
more intricate. In every such gap, A may have finitely or infinitely many eigenvalues
with possible accumulation points at the upper and lower edge of the gap. Therefore,
the notion of the k-th eigenvalue in a gap might become meaningless and we introduce
a different concept in order to count eigenvalues by fixing a reference point γ ∈ R
and counting eigenvalues below or above γ. We start by considering eigenvalues
below a reference point.
For a self-adjoint (not necessarily semibounded) operator A, and γ ∈ ρ(A) ∩ R,

we set λ←∞,γ(A) = sup{λ < γ : λ ∈ σess(A)}. If there is no essential spectrum below γ

this means λ←∞,γ(A) = −∞, otherwise λ←∞,γ(A) is the right edge of the component
of σess(A) below γ. Moreover, we denote by {λ←k,γ(A)}k∈N the sequence of eigenval-
ues of A in (λ←∞,γ(A), γ), enumerated non-increasingly and counting multiplicities.
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4.1. Perturbation of spectra of self-adjoint operators

If there are infinitely many eigenvalues inside (λ←∞,γ(A), γ), then it follows that
λ←∞,γ(A) = infk λ

←
k,γ(A) = limk λ

←
k,γ(A). If there are exactly N ∈ N0 eigenvalues inside

(λ←∞,γ(A), γ) we set λ←k,γ(A) = λ←∞,γ(A) for all k ∈ N with k > N . Moreover, we define

M−
γ = {M : M is a maximal (A− γ)-non-positive subspace of D(A)}.

Here, a subspaceM⊂ H is called A-non-positive if 〈x,Ax〉 ≤ 0 for all x ∈M and
M is called maximal if there is no A-non-positive subspace which properly contains
M.
For γ ∈ ρ(A) ∩ R we define

dist←(γ, σ(A)) = dist(γ, σ(A) ∩ (−∞, γ]) = γ − sup (σ(A) ∩ (−∞, γ]) , and

dist→(γ, σ(A)) = dist(γ, σ(A) ∩ [γ,∞)) = inf(σ(A) ∩ [γ,∞))− γ.

Note that dist←(γ, σ(A)) = ∞ if γ < inf σ(A), and that dist→(γ, σ(A)) = ∞ if
γ > supσ(A).

Lemma 4.5. Let A be self-adjoint, γ ∈ ρ(A) ∩ R, B bounded and symmetric,
satisfying either

(i) ‖B‖ < 1
2

dist(γ, σ(A)), or

(ii) 0 ≤ B < dist(γ, σ(A)).

Then RanPA+B(γ) ∩ D(A) is a maximal (A− γ)-non-positive subspace of D(A).

Proof. For all x ∈ RanPA+B(γ) ∩ D(A) with ‖x‖ = 1 we have

〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≤ − dist←(γ, σ(A+B))− 〈x,Bx〉.

If (ii) is satisfied, this is clearly negative. If (i) is satisfied, we use dist←(γ, σ(A+B)) ≥
dist(γ, σ(A))− ‖B‖ and conclude

〈x, (A− γ)x〉 < − dist←(γ, σ(A)) + ‖B‖ − 〈x,Bx〉 ≤ − dist←(γ, σ(A)) + 2‖B‖ < 0.

Hence, RanPA+B(γ) ∩ D(A) is an (A− γ)-non-positive subspace of D(A).
Let us assume it is not maximal. Then we can choose x ∈ RanPA+B(γ)⊥ ∩ D(A)

satisfying ‖x‖ = 1 and 〈x, (A− γ)x〉 ≤ 0. In case (i), we use ‖B‖ < dist(γ, σ(A))/2,
to obtain

〈x, (A+B − γ)x〉 ≥ dist(γ, σ(A+B)) ≥ dist(γ, σ(A))− ‖B‖ ≥ 1

2
dist(γ, σ(A)).
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4. Application to perturbation of spectral edges

This leads to the contradiction

0 ≥ 〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≥ 1

2
dist(γ, σ(A))− ‖B‖ > 0.

In case (ii), we use 〈x, (A+B − γ)x〉 ≥ dist→(γ, σ(A)), and find the contradiction

0 ≥ 〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≥ dist→(γ, σ(A))− ‖B‖ > 0.

We are again going to apply a variational principle for eigenvalues, however this
time, we shall need a more sophisticated variant, suitable for eigenvalues in spectral
gaps. The following proposition is a reformulation of Theorem 3.1 in [LS16], obtained
by replacing T by −T , and by working with operator domains instead of quadratic
form domains.

Proposition 4.6. Let A be self-adjoint. For all γ ∈ ρ(A) ∩ R and k ∈ N we have

λ←k,γ(a) = inf
M∈M−γ

inf
L⊂M

dimL=k−1

sup
x∈M
x⊥L
‖x‖=1

〈x,Ax〉. (54)

Remark 4.7. Let us briefly comment on the (trivial) situation where γ < inf σ(A)

and explain that formula (54) still makes sense. In this case, by definition we have
λ←k,γ(A) = −∞. Since we also haveM−

γ = {0}, the last supremum on the right hand
side of Eq. (54) is taken over the empty set. Hence, the right hand side of Eq. (54)
is as well minus infinity as it should be.

With Lemma 4.5 and Proposition 4.6 at our disposal we are prepared to prove

Theorem 4.8. Let A be self-adjoint, γ ∈ ρ(A)∩R, κ ∈ R, B bounded and symmetric,
satisfying either

(i) ‖B‖ < 1
2

dist(γ, σ(A)), or

(ii) 0 ≤ B < dist(γ, σ(A)).

Assume further
∀x ∈ Ran(PA+B(γ)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞}, we have

λ←k,γ(A+B) ≥ λ←k,γ(A) + κ.
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4.1. Perturbation of spectra of self-adjoint operators

Proof. First consider k ∈ N. Since ‖B‖ < dist(γ, σ(A)) we have γ ∈ ρ(A+B). We
apply the standard variational principle to −(A+B)|RanPA+B(γ) and obtain

λ←k,γ(A+B) = inf
L⊂RanPA+B(γ)∩D(A)

dimL=k−1

sup
x∈RanPA+B(γ)∩D(A)

x⊥L
‖x‖=1

〈x, (A+B)x〉

≥ inf
L⊂RanPA+B(γ)∩D(A)

dimL=k−1

sup
x∈RanPA+B(γ)∩D(A)

x⊥L
‖x‖=1

〈x,Ax〉+ κ.

By Lemma 4.5, the subspace RanPA+B(γ)∩D(A) is a maximal (A−γ)-non-positive
subspace of D(A). Hence,

λ←k,γ(A+B) ≥ inf
M∈M−γ

inf
L⊂M

dimL=k−1

sup
x∈M
x⊥L
‖x‖=1

〈x,Ax〉+ κ.

For k ∈ N, the statement of the theorem follows from Theorem 4.6.
If there are infinitely many eigenvalues λ←k,γ(A+B) in (λ←∞,γ(A+B), γ) then

λ←∞,γ(A+B) = inf
k∈N

λ←k,γ(A+B) ≥ inf
k∈N

λ←k,γ(A) + κ = λ←∞,γ(A) + κ.

In case of a non-negative perturbation, one would actually expect such lifting
estimates as long as the norm of B ≥ 0 is smaller than the distance between the
reference point γ ∈ ρ(A) ∩ R and the closest spectral value below γ. This is the
statement of the following theorem which, however, requires a stronger assumption
on the positivity of B.

Theorem 4.9. Let A be self-adjoint, γ ∈ ρ(A) ∩ R, κ ∈ R, B bounded and sym-
metric satisfying 0 ≤ B < dist←(γ, σ(A)). Let n be the smallest integer larger than
‖B‖/ dist→(γ, σ(A)), and assume that

∀x ∈
n⋃
j=1

Ran(PA+jB/n(γ)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞}, we have

λ←k,γ(A+B) ≥ λ←k,γ(A) + κ.

Proof. First assume additionally that B < dist→(γ, σ(A)). Then 0 ≤ B <

dist(γ, σ(A)) and the statement follows from Theorem 4.8.
Now we drop the assumption B < dist→(γ, σ(A)), and consider the case k ∈

N ∪ {∞} and 0 ≤ B < dist←(γ, σ(A)). Recall that n ∈ N satisfies 0 ≤ B/n <

dist→(γ, σ(A)). It follows that

0 ≤ B/n < dist(γ, σ(A+ jB/n)) for j ∈ {0, . . . , n− 1},
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4. Application to perturbation of spectral edges

see [See17, Proposition 2.1]. We now apply the result obtained above iteratively for
j ∈ {0, . . . , n− 1} to the operator A+ jB/n instead of A, with the perturbation B
replaced by B/n, and with κ replaced by κ/n.

We now turn to σess(A) itself. If we are only interested in a lifting estimate for
edges of σess(A) the location of eigenvalues within the gap of σess(A) should be
irrelevant. Theorem 4.10 below makes this precise.

Theorem 4.10. Let A be self-adjoint, (a, b) ∩ σess(A) = ∅, a ∈ σess(A), κ ≥ 0, and
B bounded and symmetric satisfying 0 ≤ B < b− a. Assume that

∀x ∈
⋃
t∈[0,1]

RanPA+tB(b) : 〈x,Bx〉 ≥ κ‖x‖2.

Then
[a+ κ, b) ∩ σess(A+B) 6= ∅.

Proof. Define ε = b− a− ‖B‖ > 0. We define a sequence of disjoint intervals

Ik =

(
b− ε+

ε

2k
, b− ε+

3ε

2k+1

)
, k ∈ N.

Note that by (52) in Lemma 4.2, for all t ∈ [0, 1] we have σess(A+ tB)∩ (b− ε, b) = ∅.
Choose γ1 ∈ ρ(A) ∩ I1 and s1 = min{dist←(γ1, σ(A))/‖B‖, 1}. We will now

recursively define sequences

(γn)n∈N ⊂
⋃
k∈N

Ik and (sn)n∈N ⊂ [0, 1].

For that purpose, we will denote by kn ∈ N, the (unique) index such that γn ∈ Ikn .
If sn = 1, we set sm = 1 and γm = γn for all m > n. Else, given n ∈ N, γn and
sn < 1, we chooseγn+1 = γn if σ(A+ snB) ∩ [sup Ikn+1, γn) = ∅,

γn+1 ∈ Ikn+1 ∩ ρ(A+ snB) else,

and set sn+1 = min{sn + dist←(γn+1, σ(A+ snB))/‖B‖, 1}. The sequence (sn)n∈N is
monotone increasing and bounded by 1.

Assume that limn sn = s < 1. If there is n0 ∈ N such that γn = γn0 for all n ≥ n0,
then for all n ∈ N, sn+1− sn is bounded from below by the distance between In0 and
In0+1 which is a fixed positive number for all n ≥ n0. Hence, the sequence (γn)n∈N

cannot become stationary. This implies that A has infinitely many eigenvalues in
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4.1. Perturbation of spectra of self-adjoint operators

(b− ε−‖B‖s, γ1). This is a contradiction, since σess(A)∩ [b− ε−‖B‖s, γ1] = ∅. This
shows limn sn = 1.
By Lemma 4.2, we have λ←∞,γ(A + tB) = λ←∞,γ̃(A + tB) for all t ∈ [0, 1] and

γ, γ̃ ∈ ρ(A + tB) ∩ (b− ε, b). Given n ∈ N, we apply Theorem 4.9 with γ = γn, A
replaced by A+ snB and B replaced by (sn+1 − sn)B and obtain

λ←∞,γn(A+ snB) = λ←∞,γn(A+ sn−1B + (sn − sn−1)B)

≥ λ←∞,γn(A+ sn−1B) + (sn − sn−1)κ

= λ←∞,γn−1
(A+ sn−1B) + (sn − sn−1)κ.

Iteratively, we obtain for all n ∈ N that λ←∞,γn(A+ snB) ≥ λ←∞,γ1
(A) + snκ = a+ snκ,

which implies
[a+ snκ, a+ sn‖B‖] ∩ σess(A+ snB) 6= ∅.

Using (53) from Lemma 4.2 and 0 ≤ (1− sn)B ≤ B this yields in particular

(a− δ + snκ, a+ ‖B‖+ δ) ∩ σess(A+B) 6= ∅, for all δ > 0

and since σess(A+B) is closed, we find

[a+ snκ, b) ∩ σess(A+B) 6= ∅.

The statement follows by taking the supremum over n ∈ N.

Finally, combining the last theorem with Lemma 4.1, we arrive at two sided
Lipschitz estimates on the sensitivity of upper edges of the essential spectrum.

Corollary 4.11. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative,
a ∈ σess(A), b > a such that (a, b)∩ σess(A) = ∅, and t0 = (b− a)/‖B‖. Assume that

∀x ∈
⋃
t∈[0,1]

RanPA+tB(b) : 〈x,Bx〉 ≥ κ‖x‖2.

Then f(t) = sup (σess(A+ tB) ∩ (−∞, b)) satisfies

κε ≤ f(t+ ε)− f(t) ≤ ‖B‖ε for all t ∈ [0, t0) and ε ∈ [0, t0 − t).

4.1.3. Ordering from left to right in gaps

We now turn to eigenvalues above a reference point and to lower edges of components
of the essential spectrum.

Let A be self-adjoint. For γ ∈ ρ(A)∩R we set λ→∞,γ(A) = inf{λ > γ : λ ∈ σess(A)}.
If there is no essential spectrum above γ this means λ→∞,γ(A) =∞, otherwise λ→∞,γ(A)
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is the lower edge of the component of σess(A) above γ. Moreover, we denote by
{λ→k,γ(A)}k∈N the sequence of eigenvalues of A in (γ, λ→∞,γ(A)), enumerated non-
decreasingly and counting multiplicities. If there are infinitely many eigenvalues
inside (γ, λ→∞,γ(A)) it follows that λ→∞,γ(A) = supk λ

→
k,γ(A) = limk λ

→
k,γ(A). If there

are exactly N ∈ N0 eigenvalues inside (γ, λ→∞,γ(A)) then we set λ→k,γ(A) = λ→∞,γ(A)

for all k ∈ N with k > N .
The two main results of this subsection are the following theorems, dealing with

indefinite and non-negative perturbations, respectively.

Theorem 4.12. Let A be self-adjoint, B bounded and symmetric, γ ∈ ρ(A) ∩ R,
‖B‖ ≤ dist(γ, σ(A))/2, κ ∈ R, E > γ, and

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞} with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ λ→k,γ(A) + κ.

If the perturbation B is non-negative, only the distance between γ and the closest
spectral value below γ should matter which allows to relax the condition on the norm
of B. This is the statement of the following theorem:

Theorem 4.13. Let A be self-adjoint, γ ∈ ρ(A) ∩ R, κ ∈ R, B bounded and
symmetric satisfying 0 ≤ B < dist←(γ, σ(A)), E > γ, and

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞} with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ λ→k,γ(A) + κ.

Now we turn to the proofs of the two Theorems. As in the previous subsection,
we will apply a variational principle for eigenvalues. This time, we will employ a
variant, proved by Albrecht Seelmann in the Appendix of [NTTV18b].

Proposition 4.14 ([NTTV18b, Theorem 3.16 and Theorem A.2]). Let A be self-
adjoint, B be bounded and symmetric, and γ ∈ R. If

(i) 〈x, (A− γ)x〉 ≤ 0 for all x ∈ RanPA+B(γ) ∩ D(A) and

(ii) ‖P⊥A+B(γ)PA(γ)‖ < 1,
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4.1. Perturbation of spectra of self-adjoint operators

then
λk(A|RanP⊥A (γ)) = inf

L⊂RanP⊥A+B(γ)∩D(A)

dim(L)=k

sup
x∈L⊕RanPA+B(γ)∩D(A)

‖x‖=1

〈x,Ax〉

for all k ∈ N with k ≤ dim(RanP⊥A+B(γ)).

Remark 4.15. One might wonder whether instead of Proposition 4.14 one could
appropriately adapt Proposition 4.6 above. One would naturally try to transform
one variational principle into the other, e.g. by using the sign-flip A− γ 7→ −A+ γ.
However, this does not work directly, because the assumption

B ≥ κ > 0 on RanPA+B(E)

is not symmetric under the sign flip.
There also exist other variational principles which might be used instead of

Proposition 4.14, e.g. the variational principles in [GLS99] or [MM15], which are
formulated for quadratic forms. However, we use the above variant since at least
a direct adaptation of the mentioned results does not seem to yield the optimal
critical value for the norm of the perturbation ‖B‖. Furthermore, the hypotheses
of Proposition 4.14 are particularly easy to verify. In fact, in our application the
criteria are ensured by the Davis-Kahan sin 2Θ theorem on the perturbation of
spectral projections. This opens up an interesting perspective on a connection
between perturbations of spectral subspaces in the context of sin Θ theorems, and
perturbation theory for eigenvalues, which to our knowledge has not yet been
exploited.

Before turning to the proofs of Theorem 4.12 and 4.13, we isolate the following
step which is used is both proofs:

Lemma 4.16. Let A be self-adjoint, B bounded and symmetric, γ ∈ ρ(A+B) ∩ R,
E > γ, κ ∈ R, and let

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ inf
L⊂RanP⊥A+B(γ)∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉+ κ. (55)
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Proof. By assumption, we have for ε0 = E − λ→k,γ(A+B)

λ→k,γ(A+B) = inf
0<ε<ε0

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x, (A+B)x〉

≥ inf
0<ε<ε0

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x,Ax〉+ κ.

For an self-adjoint operator A we use the notation PA(E1, E2]) := 1(E1,E2](A). Since

RanPA+B((γ, λ→k,γ(A+B) + ε]) ∩ D(A)

is a subspace of RanP⊥A+B(γ) ∩ D(A) and has dimension at least k for all ε > 0, we
further estimate

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x,Ax〉

= sup
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε])∩D(A)

dimL≥k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ sup
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε)])∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε])∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanP⊥A+B(γ)∩D(A)

dimL=k

sup
x∈L⊕RanPA+B(γ)∩D(A)

‖x‖=1

〈x,Ax〉.

We are now ready to prove Theorems 4.12 and 4.13

Proof of Theorem 4.12. We first consider the case k ∈ N. Since ‖B‖ < dist(γ, σ(A))

we have γ ∈ ρ(A+B). We can thus apply Lemma 4.16 and obtain Ineq. (55) for all
k ∈ N with λ→k,γ(A+B) < E. Since λ→k,γ(A) = λk(A|RanP⊥A (γ)), it now suffices to check
the assumptions of Proposition 4.14. For all normalized x ∈ RanPA+B(γ) ∩ D(A)

we have by the assumption ‖B‖ ≤ dist(γ, σ(A))/2 that

〈x, (A+B)x〉 ≤ sup(σ(A+B) ∩ (−∞, γ]) ≤ γ − dist(γ, σ(A+B))

≤ γ − dist(γ, σ(A)) + ‖B‖ ≤ γ − ‖B‖ ≤ γ + 〈x,Bx〉 .

This shows that assumption (i) of Proposition 4.14 is satisfied. It remains to check
assumption (ii) of Proposition 4.14. This is a consequence of the Davis-Kahan sin 2Θ
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theorem [DK70, Theorem 8.2]. We apply a version given in [See14a, Remark 2.9],
and obtain

‖P⊥A+B(γ) · PA(γ)‖ ≤ ‖PA+B(γ)− PA(γ)‖

≤ sin

(
1

2
arcsin

(
2

‖B‖
dist(γ, σ(A))

))
≤ 1√

2
< 1.

The case k =∞ follows by taking the supremum.

Proof of Theorem 4.13. First we consider claim (1) and the case k ∈ N. Since
0 ≤ B < dist←(γ, σ(A)) we have γ ∈ ρ(A + B), see [See17, Proposition 2.1].
Applying Lemma 4.16, we arrive at Ineq. (55) for all k ∈ N with λ→k,γ(A+B) < E.
Since B is non-negative, assumption (i) of Theorem 4.14 is satisfied. Assumption (ii)
of the same theorem follows in a similar way as in in the proof of Theorem 4.12, but
using the sin 2Θ theorem for non-negative perturbations in [See17, Theorem 1]. This
shows the statement for k ∈ N.

By mimicking the proof of Theorem 4.10, we also find the following theorem.

Theorem 4.17. Let A be self-adjoint, (a, b) ∩ σess(A) = ∅, b ∈ σess(A), κ ≥ 0, and
B an operator satisfying 0 ≤ B < b− a. Assume that

∀x ∈
⋃
t∈[0,1]

RanPA+tB(b+ ‖B‖) : 〈x,Bx〉 ≥ κ‖x‖2.

Then
[b, b+ κ) ∩ σess(A+B) = ∅.

This allows us to describe the movement of an lower edge of a component of the
essential spectrum.

Corollary 4.18. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative,
b ∈ σess(A), b > a such that (a, b) ∩ σess(A) = ∅, and t0 = (b− a)/‖B‖. Assume that

∀x ∈
⋃
t∈[0,1]

RanPA+tB(b+ ‖B‖) : 〈x,Bx〉 ≥ κ‖x‖2.

Then f(t) = inf (σess(A+ tB) ∩ (a+ t‖B‖,∞)) satisfies

κε ≤ f(t+ ε)− f(t) ≤ ‖B‖ε for all t ∈ [0, t0) and ε ∈ [0, t0 − t).
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4.2. Perturbation of spectral band edges and eigenvalues of Schrödinger
operators

We now consider again consider Schrödinger operators H = −∆ + V in L2(Γ)

with Dirichlet, Neumann or periodic boundary conditions as in Section 2.1, where
Γ ⊂ Rd is a generalized rectangle containing at least one elementary cell of MZd.
We perturb this operator by a non-negative potential W which is strictly positive
on the equidistributed set Sδ,Z ⊂ Γ. Since the perturbation W is positive only on
a subset, it is not immediately clear if the spectrum will be lifted at all. However,
combining the results from the previous Section 4.1 with the unique continuation
principle Theorem 3.13 above, we obtain lower bounds on the lifting of eigenvalues
and of the edges of the essential spectrum, see Theorem 4.19.
Moreover, we consider the family of operators H + tW with coupling constant

t ∈ R. As seen in Lemma 4.1 one can locally parametrize the edges of the essential
spectrum of H + tW as a function t 7→ f(t). In Corollary 4.20 we conclude that
t 7→ f(t) is strictly monotone, and provide upper and lower bounds in terms of linear
functions of t.

Theorem 4.19. Let G > 0, Γ ⊂ Rd be G-admissible, δ ∈ (0, G/2), Z be a (G, δ)-
equidistributed sequence, V ∈ L∞(Γ) be real-valued, and W ∈ L∞(Γ) be real-valued
such that

W ≥ ϑ1Sδ,Z

for some ϑ > 0. Moreover, for s ∈ R and with N as in Theorem 3.13 we set

κ(s) = ϑ

(
δ

G

)N(1+G4/3(‖V ‖∞+‖W‖∞)2/3+G
√
s+

)
.

(a) Lifting of spectral values not exceeding inf σess(H). Let E ∈ R. Then for
all k ∈ N ∪ {∞} such that λk(H +W ) < E, we have

λk(H +W ) ≥ λk(H) + κ(E).

(b) Lifting of eigenvalues (counted decreasingly) in gaps of σess(H). Let
γ ∈ ρ(H) ∩ R and ‖W‖∞ < dist←(γ, σ(H)). Then for all k ∈ N ∪ {∞}

λ←k,γ(H +W ) ≥ λ←k,γ(H) + κ(γ).

(c) Lifting of eigenvalues (counted increasingly) in gaps of σess(H). Let
γ ∈ ρ(H) ∩ R, ‖W‖∞ < dist←(γ, σ(H)), and E > γ. Then for all k ∈ N ∪ {∞}
such that λ→k,γ(H +W ) < E, we have

λ→k,γ(H +W ) ≥ λ→k,γ(H) + κ(E)
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(d) Lifting of a lower edge of a gap in σess(H). Let (a, b) ∩ σess(H) = ∅,
a ∈ σess(A) and assume that ‖W‖∞ < b− a. Then

[a+ κ(b), b) ∩ σess(H +W ) 6= ∅.

(e) Lifting of an upper edge of a gap in σess(H). Let (a, b) ∩ σess(H) = ∅,
b ∈ σess(A) and assume that ‖W‖∞ < b− a. Then

[b, b+ κ(b+ ‖W‖∞)) ∩ σess(H +W ) = ∅.

The parameter κ neither depends on the set Γ nor on the choice of the equidis-
tributed sequence and depends on the potentials V and W only by their L∞-norm.
We also note that analogously to the argument leading to Corollary 3.12 above, we
can introduce a spectral shift parameter λ and replace κ by the optimized

κ̃(s) = ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+‖W‖∞)2/3+G
√

(s−λ)+

)
≥ κ(s).

Proof. By Theorem 3.13, for all t ∈ [0, 1], s ∈ R and x ∈ RanPH+tW (s), we have

〈x,Wx〉 ≥ ϑ
〈
x,1Sδ,Zx

〉
≥ ϑ sup

λ∈R

(
δ

G

)N(1+G4/3‖V+tW−λ‖2/3∞ +G
√

(s−λ)+

)
‖x‖2

≥ ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+‖W‖∞)2/3+G
√

(s−λ)+

)
‖x‖2.

Then the statements (a)–(e) follow by applying Lemma 4.4 and Theorems 4.9, 4.13,
4.10, 4.17, respectively.

In the language of Lemma 4.1 we obtain the following corollary.

Corollary 4.20. Under the assumptions of Theorem 4.19, let a, b ∈ σess(H), and
b > a such that (a, b) ∩ σess(H) = ∅, and define t0 = (b − a)/‖W‖∞. Then,
f± : (−t0, t0)→ R,

f−(t) = sup (σess(H + tW ) ∩ (−∞, b− t−‖W‖∞)) ,

f+(t) = inf (σess(H + tW ) ∩ (a+ t+‖W‖∞,∞)) ,

are Lipschitz continuous with Lipschitz constant ‖W‖∞ and satisfy

tκ ≤ f−(t+ ε)− f−(t) ≤ t‖W‖ for all t ∈ (0, t0) and ε ∈ [0, t0 − t),

t‖W‖ ≤ f−(t+ ε)− f−(t) ≤ tκ for all t ∈ (−t0, 0) and ε ∈ [0, t0 + t),

tκ ≤ f+(t+ ε)− f+(t) ≤ t‖W‖ for all t ∈ (0, t0) and ε ∈ [0, t0 − t),

b+ t‖W‖ ≤ f+(t+ ε)− f+(t) ≤ b+ tκ for all t ∈ (−t0, 0) and ε ∈ [0, t0 + t),
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where

κ = ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+t0‖W‖∞)2/3+G
√

(2b−a−λ)+

)
,

and, for real t ∈ R, we set t+ = max{0, t} and t− = max{0,−t}.
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5. Application to random Schrödinger operators

This section contains parts of published work by the author. More precisely, Subsec-
tions 5.2 and 5.3 are based on the author’s publications [TV15, NTTV15, NTTV18a]
while Subsection 5.4 contains material from [TV15, TV16a, TT18].

We start with an introduction to random Schrödinger operators in Subsection 5.1.
After that, in Subsection 5.2 we introduce a class of random Schrödinger operators
which we call operators monotone in the randomness and state a Wegner estimate
which we prove in Subsection 5.3. Subsection 5.4 is devoted to Wegner estimates for
some random Schrödinger operators with magnetic field.

5.1. Some basics on random Schrödinger operators

The topic of random Schrödinger operators and Anderson localization goes back to
the work of physicist Philipp Warren Anderson [And58] from 1958 who was awarded
the Nobel Prize for Physics in 1977 for his work on localization. He argued that
in the presence of disorder lattice operators modeling the dynamics of electrons in
solids exhibit absence of diffusion of mass or charge. This is in stark contrast to the
situation in the corresponding periodic systems where typically transport occurs.
Since then, the notion of Anderson localization has been the subject of intensive study
in Physics as well as in Mathematics. In fact, it seems almost impossible to provide a
complete list of relevant references. Therefore, we will focus on important milestones
and on results which are relevant for our purpose of providing an introduction to the
field.
Mathematically, the notion of localization can be interpreted from a spectral or

a dynamical point of view. In order to properly define the notion of localization,
it is convenient to start by properly defining random operators and by introducing
ergodic random operators.

Definition 5.1 (cf. [KM82, CL90]). A random operator in L2(Rd) is a measurable
map

Ω 3 ω 7→ Hω

where all Hω are self-adjoint operators in L2(Rd). By measurable, we mean that
the mappings ω 7→ f(Hω) are weakly measurable for all bounded, real-valued Borel-
measurable functions f . If there is no risk of confusion, we will simply write Hω for
the random family {Hω}ω∈Ω.
A family of measure-preserving transformations {τi}i∈I on Ω is ergodic if all events
which are invariant under this family are of probability zero or one.
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We call the family Hω a Zd-ergodic random operator if there is an ergodic family of
measure preserving transformations {τy}y∈Zd on Ω such that

U(y)HωU
∗(y) = Hτy(ω) for all y ∈ Zd. (56)

where U(y) : L2(Rd)→ L2(Rd) denotes the unitary operator of translation by y.

In general, ergodicity of a measure preserving family of transformation is not
easy to verify. However, if a measure preserving family of transformations satisfies
identity (56), and if restrictions of the random operator Hω on sufficiently far apart
open domains B1, B2 ⊂ Rd are independent, then the family {τy}y∈Zd is ergodic by
Kolmogorov’s zero–one law, cf. [Kle14, Chapter 2.3]. This property is also called
independence at distance and holds for all examples of random Schrödinger operators
which we treat below. We note however, that below, we will occasionally treat
non-ergodic models of random Schrödinger operators such as the crooked alloy-type
model.
An important consequence of ergodicity is that the spectrum is almost surely

deterministic, i.e. there is a set Σ ⊂ R such that σ(Hω) = Σ with probability
one. Furthermore, the decomposition of the spectrum into pure point, absolutely
continuous and singular continuous spectrum is deterministic, i.e. there are sets
Σpp,Σac,Σsc ⊂ R such that with probability one, we have σpp(Hω) = Σpp, σac(Hω) =

Σac, and σsc(Hω) = Σsc, cf. [KM82, CL90].
Obviously, the same statements hold for Zd-periodic operators such as the pure

negative Laplacian with periodic potential (this can be considered as “trivial” ergodic
randomness). In this case, the operator typically exhibits purely absolutely continuous
spectrum and ballistic transport. Anderson’s main contribution can be summarized
by the statement that when passing from periodic to random ergodic operators,
localization typically occurs.
Let us start with a weak form of localization:

Definition 5.2. An ergodic random operator exhibits spectral localization in an
interval I ⊂ R if it has only pure point spectrum in I. This means that Σac ∩ I =

Σsc ∩ I = ∅, and Σ ∩ I = Σpp ∩ I 6= ∅.

The reason why pure point spectrum is refered to as spectral localization is
due to the so-called RAGE theorem, named after Ruelle, Amrein, Georgescu and
Enss [Rue69, AG74, Ens78]. Let us recall that the time-dependent Schrödinger
equation is

i
∂

∂t
φ = Aφ (57)
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where A is a self-adjoint operator on a Hilbert space H. If we are given an initial
state φ(0) ∈ H, then the solution of (57) is given by

φ(t) = e−itAφ(0), t ∈ R.

The group of unitary operators e−itA thus determines the time evolution of the
system. The RAGE theorem describes the effect of the time evolution on initial
states, depending on which spectral subspace they are from:

Theorem 5.3 (RAGE Theorem). Let A be a self-adjoint operator on a Hilbert space
H and let Kn, n ∈ N, be a sequence of relative A-compact operators which converges
strongly to the identity. Then for the decomposition H = Hc⊕Hpp of H it holds that

Hpp =

{
ψ ∈ H : lim

n→∞
sup
t≥0
‖(Id−Kn)e−itAψ‖ = 0

}
,

Hc =

{
ψ ∈ H : lim

n→∞
lim
T→∞

1

T

∫ T

0

‖Kne−itAψ‖dt = 0

}
.

If A is a Schrödinger operator in L2(Rd) (for simplicity with bounded potential),
then one may choose KR as the operator of multiplication by the characteristic
functions of a ball with radius R for R ∈ N. In this case, the statement of the RAGE
theorem becomes:

ψ ∈ Hpp ⇔ lim
R→∞

sup
t≥0

∫
|x|≥R
|e−itAψ(x)|2dx = 0,

ψ ∈ Hc ⇔ lim
R→∞

lim
T→∞

1

T

∫ T

0

∫
|x|<R
|e−itAψ(x)|2dxdt = 0.

This can be interpreted as follows: if an ergodic, random operator Hω in L2(Rd) has
only pure point spectrum in an interval I with probability one, then the mass (or
the electric charge) of every normalized initial state ψ with energies in I will almost
surely stay essentially locally confined under the time evolution e−itHω generated
by the random operator, uniformly in time. This justifies the notion of spectral
localization.

The term Anderson localization has been originally used in the mathematical com-
munity to describe spectral localization with exponentially decaying eigenfunctions,
but nowadays it is also used collectively for stronger versions of localization. In fact,
there is a whole hierarchy of notions of localization, cf. [Kle08] for a more detailed
overview. Let us merely cite the following variants:

Definition 5.4. An ergodic random operator Hω exhibits
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• dynamical localization in an interval I ⊂ R if Σ ∩ I 6= ∅ and for P-almost every
ω ∈ Ω, every compact interval J ⊂ I and every ψ ∈ L2(Rd) with compact
support, we have

sup
t∈R

∥∥(1 + |x|2)n/2PHω(J)e−itHωψ
∥∥2
<∞ for all n ≥ 0.

• strong dynamical localization in an interval I ⊂ R if Σ ∩ I 6= ∅ and for every
compact interval J ⊂ I and every ψ ∈ L2(Rd) with compact support, we have

E
[
sup
t∈R

∥∥(1 + |x|2)n/2PHω(J)e−itHωψ
∥∥2
]
<∞ for all n ≥ 0.

Strong dynamical localization implies dynamical localization which implies spectral
localization, but the reverse implication is not true in general.

There is a variety of models in the continuum for which localization in its various
manifestations has been established. The first such model would be the natural
generalization of the lattice analogs to the continuum: the alloy-type model or
continuum Anderson model. Some more complicated models include the random
displacement model [KLNS12], the Poisson potential [GHK07], and the Bernoulli-
Anderson model [BK05]. Another research direction is when the potential is assumed
to be generated by a random Gaussian field [Uek04, FHLM97, FLM00, Ves11].
Further examples where localization has been proved include Schrödiner operators
with random δ-interaction [BTV18] as well as acoustic and Maxwell operators in
random media [FK94, CHT99, KK01, KK04].
The first mathematically sound proof of localization was given in [GMP77] for

dimension one. However, the techniques used therein are restricted to the one-
dimensional situation. Methods of wider applicability are the multi-scale anal-
ysis [FS83, FMSS85, Dre87, vDK89] and the fractional moment method [AM93,
Aiz94, AFHS01, AEN+06, BNSS06].

In the following we focus on the multi-scale-analysis. It has originally been
developed for operators on lattice graphs in [FS83], but was soon generalized to the
continuum in [HM84]. Furthermore, the first proofs of localization via multi-scale
analysis only yielded spectral localization with exponentially decaying eigenfunctions,
but later it has been improved to stronger forms of localization [GDB98, DS01, GK01].

The multi-scale method is an inductive process over growing boxes which establishes
that almost surely generalized eigenfunctions of the operator Hω in an energy region
turn out to be L2(Rd)-eigenfunctions. Apart from some standard analytical and
probabilistic tools, it requires two important ingredients: the initial length scale
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estimate, which serves as an induction anchor and the Wegner estimate for the
induction step.
Wegner estimates are bounds of the form

P (σ(Hω,L) ∩ I 6= ∅) ≤ C|I|αLβd, (58)

where Hω,L is the restriction of the random operator Hω to ΛL with Dirichlet,
Neumann, or periodic boundary conditions, I is a bounded interval, C > 0 a constant
depending only on the maximum of I, 0 < α ≤ 1, and β ≥ 1. We will deduce the
slightly stronger variant

E
[
Tr
[
PHω,L(I)

]]
≤ C|I|αLd (59)

where E denotes the expectation with respect to the probability measure P. Clearly,
since Tr

[
PHω,L(I)

]
is the number of eigenvalues of Hω,L in I, Ineq. (59) is stronger

than Ineq. (58) by Chebyshev’s inequality. We also note that in (59), the factor Ld

is optimal as can be seen by the Weyl asymptotics for eigenvalues. Wegner estimates
with such an optimal volume dependence are helpful when studying another object of
interest in the context of random operators: the Integrated Density of States (IDS)
N . For a lower semibounded Schrödinger operator H on L2(Rd), its IDS is defined
as

N(E) := lim
L→∞

TrPHL(E)

Ld
= lim

L→∞

#{No. of eigenvalues of HL below E}
Ld

, E ∈ R,

if this limit exists, where HL denotes the restriction of H to ΛL with Dirichlet,
Neumann, or periodic boundary conditions. The IDS (if it exists) is left continuous
and monotone increasing. Ergodic random Schrödinger operators Hω have an almost
sure IDS [Pas71] which means that there is a function N : R→ [0,∞) such that for
almost every ω ∈ Ω, the IDS of Hω exists and is equal to N . We also refer to [Ves08a]
for more on the IDS.

Recently, there has also been interest in non-ergodic random Schrödinger operators.
Even though the lack of ergodicity makes the question of spectral localization
and the existence of the IDS more delicate [GMRM15], there have been recent
results [RM12, RMV13, Kle13, GMRM15, TT18] on localization and on the IDS.
Scale-free quantitative unique continuation has played an important role in this
context.
Our main results in this section are Wegner estimates for several models in

Theorems 5.6, 5.14, 5.16, and 5.24. More precisely, Theorems 5.6 and 5.24 treat
random Schrödinger operators where a sequence of elementary random variables

75



5. Application to random Schrödinger operators

generates a random potential in a non-linear way: the so-called random breather model.
In fact, Theorem 5.6 treats a more general situation, namely random Schrödinger
operators monotone in the randomness. Theorems 5.14, 5.16 and 5.24 are concerned
with magnetic Schrödinger operators. This means that the negative Laplacian −∆

is replaced by a magnetic Schrödinger operator (−i∇ + A0)
2. We also note that

Theorems 5.6, 5.14, 5.16 describe models which typically are non-ergodic.
Beyond Wegner estimates, we also comment on the IDS, on initial scale estimates,

and on localization.

5.2. A Wegner estimate for operators monotone in the randomness

This subsection presents results and proofs from [TV15, NTTV15, NTTV18a]. We
establish Wegner estimates for a new class of models of random Schrödinger operators
which we call random Schrödinger operators monotone in the randomness, see Defini-
tion 5.5. Special cases of this class include the the classic alloy-type model [HM84],
the Delone-alloy-type model [RM12], and the crooked Anderson Hamiltonians [Kle13].
However, it also contains new example such as the standard random breather model.
For this model, we also obtain localization by combining it with recent results of
Schumacher and Veselić [SV17] and applying the multi-scale analysis.
Let us now define the model:

Definition 5.5. Let {uj}j∈Zd be a sequence of measurable mappings uj : [0, 1]×Rd →
R such that the following properties hold:

(a) There is umax such that for all j ∈ Zd and all t ∈ [0, 1], we have ‖uj(t, ·)‖∞ ≤ umax.

(b) There is M > 0 such that suppuj ⊂ (−M/2,M/2)d for all j ∈ Zd.

(c) There are α1, β1 > 0 and α2, β2 ≥ 0 such that for all j ∈ Zd, and all 0 ≤ s < t ≤ 1,
there exists a point x0 = x0(j, t, s) ∈ Rd such that

uj(t, ·)− uj(s, ·) ≥ α1(t− s)α2 · 1B(x0,β1(t−s)β2 )(·) ≥ 0. (60)

Now let 0 ≤ ω− < ω+ < 1 and let {ωj}j∈Zd be an independent sequence of random
variables on the probability space

(Ω,A,P) =

×
j∈Zd

R,
⊗
j∈Zd
B(R),

⊗
j∈Zd

µj


where the µj are probability measures with support in [ω−, ω+] and with uniformly
bounded Lebesgue densities νj . This means that the independent random variables ωj
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is distributed according to the probability measure µj . Furthermore let V0 ∈ L∞(Rd).
We then define the random potential

Vω(x) = V0 +
∑
j∈Zd

uj(ωj, x−Mj), ω ∈ Ω,

and the random Schrödinger operator

Hω = −∆ + Vω = −∆ + V0 +
∑
j∈Zd

uj(ωj, · −Mj), ω ∈ Ω.

We call this a random Schrödinger operator monotone in the randomness. Finally, for
L > 0, we define Hω,L as the restriction of Hω to L2(ΛL), where ΛL = (−L/2, L/2)d,
with Dirichlet boundary conditions.

The main result is the following Wegner estimate.

Theorem 5.6. Let Hω be a random Schrödinger operator monotone in the random-
ness and let E0 ∈ R. Then there are constants C > 0, κ ∈ [0, 1), and ε0 > 0, such
that for all L ≥M , all 0 < ε ≤ ε0, and all E ∈ R such that [E−ε, E+ε] ⊂ (−∞, E0],
we have

E
[
Tr
[
PHω,L(I)

]]
≤ Cεκ|ln ε|dLd.

In particular, the constants only depend on d, E0, M , umax, α1, α2, β1, β2, ω+,
supj∈Zd‖νj‖∞, and on ‖V0‖∞. Furthermore, their dependence on ‖V0‖∞ is monotone.

An easy consequence is local Hölder continuity of the IDS:

Corollary 5.7. Let {Hω}ω∈Ω be a random Schrödinger operator monotone in the
randomness and assume that its IDS N : R→ [0,∞) exists. Then, for every E0 ∈ R,
the function N is κ̃-Hölder continuous in (−∞, E0] for every exponent κ̃ < κ, where
κ ∈ (0, 1] is as in Theorem 5.6.

Let us now provide some examples of random Schrödinger operators monotone in
the randomness as in Definition 5.5.

Standard random breather model: Let µ be the uniform distribution on the
interval [0, 1/4], and let ut(x) = 1B(0,t), j ∈ Zd. Then Vω =

∑
j∈Zd 1B(j,ωj) is the

characteristic function of a disjoint union of balls with random radii. This model has
been introduced in [TV15].

General random breather models Let 0 ≤ u ∈ L∞0 (Rd) and define ut(x) =

u(x/t) for t > 0 and u0 ≡ 0, and assume that the family {ut : t ∈ [0, 1]} satisfies
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(60). Then Vω(x) =
∑

j∈Zd uωj(x − j) is a sum of random dilations of a single-site
potential u at each lattice site j ∈ Zd. Natural examples of functions u, satisfying
(60) include

• characteristic functions of bounded convex sets,

• the hat-potential (1− |x|)1{|x|<1},

• or the bump function exp (1/(|x|2 − 1))1{|x|<1},

see also Appendix C for details.

Alloy-type model Random Schrödinger operators monotone in the randomness
also naturally treat the classic alloy-type or continuum Anderson model. Let 0 ≤
u ∈ L∞0 (Rd), u ≥ α > 0 on some open set and let ut(x) := tu(x). Then Vω(x) =∑

j∈Zd ωju(x− j) is a sum of copies of u at all lattice sites j ∈ Zd, multiplied with
ωj.

Crooked Anderson Hamiltonians and Delone-alloy-type model Also non-
ergodic systems such as crooked Anderson Hamiltonians [Kle13] and the Delone-
alloy-type model [RM12] are also a special case. However, while Theorem 5.6 does
not have an optimal (i.e. linear) dependence of the upper bound in terms of the
length of the energy interval, there are stronger results for this model, cf. [Kle13],
which do have an upper bound optimal in the length of the energy interval.

Remark 5.8 (Initial scale estimate and localization). For these models, as soon as the
Wegner estimate is complemented by an appropriate initial scale estimate, we can
perform the bootstrap multi-scale analysis and obtain localization (spectral localiza-
tion with exponentially decaying eigenfunctions, dynamical, and strong dynamical
localization), cf. [GK01, GK03]. We emphasize that this procedure also works for the
non-ergodic operators considered above, cf. [RM12]. In [NTTV18a, Theorem 2.10],
an initial scale for operators monotone in the randomness is proved under the addi-
tional assumptions that the probability distributions µj are sufficiently thin near the
bottom of their support. Hence, localization at low energies immediately follows in
this case, albeit under a technical condition on the probability measure.

Initial scale estimates can also be inferred from so-called Lifshitz tail estimates on
the asymptotic behavior of the IDS near the bottom of the almost sure spectrum.
For the standard random breather model, Lifshitz tails are proved (without the
technical condition on the thinness of the probability distribution near the infimum
of its support) in [SV17]. Therefore, localization near the bottom of the almost sure
spectrum follows for this model.
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5.3. Proof of Theorem 5.6

We define δ0 = 1− ω+ > 0. Given ω = (ωj)j∈Zd ∈ [ω−, ω+]Z
d and 0 ≤ δ ≤ δ0, we set

ω + δ = {ωj + δ}j∈Zd ∈ [0, 1]Z
d . Let us first note that from Definition 5.5 it follows

for all ω ∈ [ω−, ω+]Z
d , and all δ ≤ δ0 that

0 ≤ α1δ
α2 · 1S ≤ Vω+δ − Vω ≤ umax

for some set S = Sβ1δβ2 ,Z which is a union of (β1δ
β2)-balls, distributed according to

a (M,β1δ
β2)-equidistributed sequence Z = Z(ω, δ). Furthermore, it holds that

‖Vω‖∞ ≤ ‖V0‖∞ + umax.

Fix L ≥M and let k ∈ N such that λk(Hω,L) ≤ E0. Then,

λk(Hω+δ,L) ≤ λk(Hω,L) + umax,

and by the eigenvalue lifting estimate, Theorem 4.19 a), we have

λk(Hω+δ,L) ≥ λk(Hω,L) + α1δ
α2

(
β1δ

β
2

M

)N(1+M4/3(‖V0‖∞+umax)2/3+M
√
|E0+umax|)

≥ λk(Hω,L) + δκ

for a constant κ > 0. We emphasize that κ depends on V0 only via ‖V0‖∞ and the
dependence is monotone. We choose ε̃0 = δκ0/4. This implies for all 0 < ε ≤ ε̃0

λk(Hω+δ,L) ≥ λk(Hω,L) + 4ε where δ = (4ε)1/κ. (61)

Let now ρ ∈ C∞(R, [−1, 0]) be a smooth, non-decreasing function with ρ = −1 on
(−∞;−ε] and ρ = 0 on [ε;∞). We can assume ‖ρ′‖∞ ≤ 1/ε. It holds that

1[E−ε;E+ε](x) ≤ ρ(x−E + 2ε)− ρ(x−E − 2ε) = ρ(x−E − 2ε+ 4ε)− ρ(x−E − 2ε)

for all x ∈ R and together with (61) this implies

E
[
Tr
[
PHω,L([E − ε;E + ε])

]]
≤ E [Tr [ρ(Hω,L − E − 2ε+ 4ε)− ρ(Hω,L − E − 2ε)]]

≤ E [Tr [ρ (Hω+δ,L − E − 2ε)− ρ (Hω,L − E − 2ε)]] .

(62)

Now let Λ̃L := {j ∈ Zd : ΛM + j ∩ ΛL 6= ∅} be the set of indices which can
influence the potential within ΛL. Note that |Λ̃L| ≤ (L + 2M)d ≤ 3dLd. We
enumerate the points in Λ̃L by k : {1, . . . , |Λ̃L|} → Zd, n 7→ k(n). The upper bound
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5. Application to random Schrödinger operators

in (62) will be expanded in a telescopic sum by changing the |Λ̃L| indices from
ωj to ωj + δ successively. In order to do so, we introduce the following notation:
Given ω ∈ [ω−, ω+]Z

d , n ∈ {1, . . . , |Λ̃L|}, δ ∈ [0, δmax] and t ∈ [ω−, ω+], we define
ω̃(n,δ)(t) ∈ [ω−, 1]Z

d inductively by defining

(
ω̃(1,δ)(t)

)
j

:=

t if j = k(1),

ωj else,

and for j ∈ {2, . . . , |Λ̃L|}

(
ω̃(n,δ)(t)

)
j

: =

t if j = k(n),(
ω̃(n−1,δ)(ωj + δ)

)
j

else.

The function ω̃(n,δ) : [ω−, 1] → [ω−, 1]Z
d is the rank-one perturbation of ω in the

k(n)-th coordinate with the additional requirement that all sites k(1), . . . , k(n− 1)

have already been increased by δ. We also define

Θn(t) := Tr
[
ρ
(
Hω̃(n,δ)(t),L − E − 2ε

)]
, for n = 1, . . . , |Λ̃L|.

Note that

Θ1(ωk(1)) = Tr [ρ (Hω,L − E − 2ε)] ,

Θn(ωk(n)) = Θn−1(ωk(n−1) + δ) for n = 2, . . . , |Λ̃L| and

Θ|Λ̃L|(ωk(|Λ̃L|) + δ) = Tr [ρ (Hω+δ,L − E − 2ε)] .

Hence the upper bound in (62) is

E [Tr [ρ(Hω+δ,L − E − 2ε)]− Tr [ρ(Hω,L − E − 2ε]]

= E
[
Θ|Λ̃L|(ωk(|Λ̃L|) + δ)−Θ1(ωk(1))

]
=

|Λ̃L|∑
n=1

E
[
Θn(ωk(n) + δ)−Θn(ωk(n))

]
.

Using the product structure of the probability space, we apply Fubini’s Theorem to
each summand and obtain

E
[
Θn(ωk(n) + δ)−Θn(ωk(n))

]
= E

[∫ ω+

ω−

Θn(ωk(n) + δ)−Θn(ωk(n))dµ(ωk(n))

]
.

Note that Θn : [ω−, 1] → R is monotone and bounded. We will further estimate
each summand by means of the following Lemma.
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5.3. Proof of Theorem 5.6

Lemma 5.9. Let −∞ < ω− < ω+ ≤ +∞. Assume that µ is a probability distribution
with bounded density νµ and support in the interval [ω−, ω+] and let Θ be a non-
decreasing, bounded function. Then for all δ > 0∫

R
[Θ(λ+ δ)−Θ(λ)] dµ(λ) ≤ ‖νµ‖∞ · δ [Θ(ω+ + δ)−Θ(ω−)] .

Proof of Lemma 5.9. We calculate∫
R

[Θ(λ+ δ)−Θ(λ)] dµ(λ)

≤‖νµ‖∞
∫ ω+

ω−

[Θ(λ+ δ)−Θ(λ)] dλ = ‖νµ‖∞
[∫ ω++δ

ω−+δ

Θ(λ)dλ−
∫ ω+

ω−

Θ(λ)dλ

]
=‖νµ‖∞

[∫ ω++δ

ω+

Θ(λ)dλ−
∫ ω−+δ

ω−

Θ(λ)dλ

]
≤ ‖νµ‖∞ · δ [Θ(ω+ + δ)−Θ(ω−)] .

Thus, we find for all n = 1, . . . , |Λ̃L|∫ ω+

ω−

[
Θn(ωk(n) + δ)−Θn(ωk(n))dµ(ωk(n))

]
≤ ‖νj‖∞ · δ [Θn(ω+ + δ)−Θn(ω−)] .

It now suffices to estimate the differences Θn(ω+ + δ)−Θn(ω−). This will be done
by the following result. Its proof relies on the so-called spectral shift function, see,
e.g., Theorem 2 in [HKN+06] and [TV15, Proposition 3.4] where some more details
are provided in a special case.

Proposition 5.10. Let H0 := −∆ + A be a Schrödinger operator with a bounded
potential A ≥ 0, and let H1 := H0 + B for some bounded potential B ≥ 0 with
compact support. Denote the corresponding Dirichlet restrictions to Λ by HΛ

0 and
HΛ

1 , respectively. There are constants K1, K2 depending only on d and monotonously
on diam suppB such that for any smooth, bounded function g : R→ R with compact
support in (−∞, E0] and the property that g(HΛ

1 )− g(HΛ
0 ) is trace class we have

Tr
[
g(HΛ

1 )− g(HΛ
0 )
]
≤ K1eE0 +K2

(
ln(1 + ‖g′‖∞)d

)
‖g′‖1.

where ‖g′‖1 =
∫
R|g
′|.

Proposition 5.10 implies

Lemma 5.11. Let 0 < ε ≤ ε̃0. Then Θn(ω+ + δ)−Θn(ω−) ≤ (K1eE0 + 2dK2)|ln ε|d,
where K1, K2 are as in Proposition 5.10 and thus only depend on d and on M .
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5. Application to random Schrödinger operators

Proof of Lemma 5.11. Let g(·) := ρ(· − E − 2ε). By our choice of ρ, g has support
in (−∞, E0], ‖g′‖∞ ≤ 1/ε and ‖g′‖1 = 1. We define the operators

HΛ
0 := H

(
ω̃(n,δ)(ω−), L

)
and HΛ

1 := H
(
ω̃(n,δ)(ω+ + δ), L

)
.

They are lower semibounded operators with purely discrete spectrum and since g has
support in (−∞, E0], the difference g(HΛ

1 )− g(HΛ
0 ) is trace class. By the previous

proposition

Θn(ω+ + δ)−Θn(ω−) = Tr
[
g(HΛ

1 )− g(HΛ
0 )
]
≤ K1eE0 +K2 (ln(1 + 1/ε))d .

To conclude, we set ε0 = min{ε̃0, 1/2} which implies in particular ε ≤ ε0 ≤ 1
2
. Thus

ln(1 + 1/ε) ≤ 2|ln ε| and 1 ≤ |ln ε| ≤ |ln ε|d.

Putting everything together and recalling δ = (4ε)1/κ we find

E
[
Tr
[
PHω,L([E − ε, E + ε])

]]
≤
(
K1eE0 + 2dK2

)(
sup
j∈Zd
‖νj‖∞

)
δ |ln ε|d |Λ̃L|

≤
(
K1eE0 + 2dK2

)(
sup
j∈Zd
‖νj‖∞

)
(4ε)1/κ |ln ε|d 3dLd.

This shows the statement of Theorem 5.6.

5.4. What to do in the presence of magnetic fields

This subsection contains proofs and theorems from [TV15, TV16a, TT18].
In Theorem 5.6 we used the unique continuation principles from Section 3 to

deduce a Wegner estimate. However, so far, we have only discussed Schrödinger
operators where the non-random part was the negative Laplacian. In this subsection,
we consider the situation where the Laplacian is replaced by the magnetic Schrödinger
operator (−i∇+A)2, A being a vector field. In this situation, A is called a magnetic
vector potential. It can be considered as a 1-form and the physically relevant
magnetic field B can be considered as a 2-form, obtained via B = dA, where d

denotes the exterior derivative [AHS78]. Note that in a d-dimensional space, 2-forms
are isomorphic to

(
d
2

)
= d(d − 1)/2-dimensional vector valued functions, i.e. it is

only in dimension d = 3 that the dimension of the magnetic field and the space
dimension coincide. In this case, we have in particular B = CurlA. In dimension
d = 2, the magnetic field is a scalar-valued function, while for d ≥ 4, magnetic fields
are described as vector fields on a higher dimensional space. A simple generalization
of Theorem 5.6 is the following statement, a special case of which can be found
in [TV15, Theorem 1.3].

82



5.4. What to do in the presence of magnetic fields

Theorem 5.12. Let A ∈ L2
loc(Rd) and define the operator H0 := (−i∇ + A)2.

Assume that for all L ∈ N, all E ≥ 0, all δ ∈ (0, 1/2), all V ∈ L∞(Rd), and all
(1, δ)-equidistributed sequences Z we have the unique continuation principle

PH0+V |ΛL (E) ≥ δCPH0+V |ΛL (E)Wδ,Z(ΛL)PH0+V |ΛL (E) (63)

in quadratic form sense, where the constant C = C(‖V ‖∞, E) depends in a monotone
way on ‖V ‖∞ and on E. Then the Wegner estimate of Theorem 5.6 holds with −∆

replaced by (−i∇+ A)2.

Proof. Let E0 ∈ R. By Lemma 4.4, the unique continuation principle implies for all
L ∈ N, all ω ∈ Ω, all sufficiently small δ > 0, and all k ∈ N such that λk(Hω+δ,L) ≤ E0

that
λk(Hω+δ,L) ≥ λk(Hω,L) + δC .

The rest of the proof is completely analogous to the proof of Theorem 5.6 above,
see also [TV15], where it is elaborated for the special case of the standard random
breather model. The only issue to address is that Proposition 5.10 has to be replaced
by an appropriate variant for magnetic Schrödinger operators. Such estimates are
known in the literature, see for instance [TV15, Corollary 2.5].

There is one problem with Theorem 5.12: it outsources one main difficulty since
the proof of Ineq. (63) requires a magnetic analogon of Theorem 3.9.

As discussed in Subsection 3.5, such magnetic analogs seem to be in reach in the next
years by applying appropriate Carleman estimates. However, the Carleman formalism
is exponentially sensitive to the infinity norm of the parameters of the operator
involved and thus the magnetic UCPs are expected to carry a term proportional to
exp(supx∈ΛL

|A(x)|). This dependence would then be inherited by the upper bound
in the Wegner estimate. But for the multi-scale analysis, this would not be sufficient.
Thus, the applicability of Theorem 5.12 would be restricted to bounded (or strictly
speaking to logarithimically growing) magnetic potentials A which already excludes
the physically most relevant case of a homogeneous magnetic field since in this case,
the potential grows of order L.

For the rest of this section, we focus on results that can be achieved with existing
tools. First, we use Proposition 3.38, the magnetic variant of Proposition 3.8 which
has recently been proved in [BTV15] to study so-called crooked magnetic alloy-
type potentials with bounded magnetic fields. We also comment on the disorder
dependence of the appearing constants which might hint to the limitations of the
multi-scale analysis. Then, we consider the special case of the Landau Hamiltonian
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5. Application to random Schrödinger operators

(homogeneous magnetic field in two dimensions). Wegner estimates and localization
for the Landau Hamiltonian with (ergodic and non-ergodic) alloy-type potentials has
been established in [CHKR04, CHK07, RM12]. However, due to the structure of the
spectrum of the Landau Hamiltonian it is even possible to obtain Wegner estimates
for some random breather models in the small disorder regime, see Theorem 5.24.
We emphasize that this trick is not possible when the background operator is the
non-magnetic pure Laplacian.

5.4.1. Wegner estimate and disorder dependence for alloy-type models with
bounded magnetic potential

This subsection is based on the work [TT18]. Let us define the class of random
Schrödinger operators studied in this subsection. It is a generalization of the models
studied in [Kle13].

Definition 5.13. Let H0 be a magnetic Schrödinger operator of the form

H0 = (−i∇+ A0)2 + V0

in L2(Rd) with a real-valued and bounded electric potential V0 ∈ L∞(Rd), and a
bounded magnetic vector potential A0 ∈ L∞(Rd,Rd) such that div(A0) is bounded
and inf σ(H0) = 0. Note that we can rewrite H0 to H0 = −∆ + bT0∇+ c0 where

b0(x) = −2iA0(x) and c0(x) = V0(x) + |A0(x)|2 − i div(A0)(x), (64)

for bounded functions b : Rd → Cd, and c : Rd → C. Now let {ωj}j∈Zd be an
independent sequence of random variables on the probability space

(Ω,A,P) =

(
×
j∈D

R,
⊗
j∈D

B(R),
⊗
j∈D

µj

)

where µj, j ∈ Zd, are probability measures on R with suppµj ⊂ [0, ω+] for some
ω+ > 0 and all j ∈ Zd. We write Sµ(t) := supa∈R µ([a, a+ t]) for the concentration
function of a probability measure µ and set for t ≥ 0

SL(t) := sup
j∈ΛL∩Zd

Sµj(t).

Furthermore, we assume that the µj are non-singular which means that for all L > 0

we have SL(t)→ 0 as t→ 0.
Let now δ− ∈ (0, 1/2) and Z = (zj)j∈Zd ⊂ Rd such that

∀j ∈ Zd : B(δ−, zj) ⊂ Λ1(j).
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5.4. What to do in the presence of magnetic fields

For each ω ∈ Ω, the crooked alloy-type potential Vω : Rd → R is defined by

Vω(x) =
∑
j∈Zd

ωjuj(x− zj),

where the single-site potentials (uj)j∈Zd , are measurable and real-valued functions on
Rd satisfying

u−1B(δ−) ≤ uj ≤ 1Λδ+ (0)

for some u− ∈ (0, 1] and δ+ > 0. For each ω ∈ Ω and λ > 0 we define the self-adjoint
operator

Hω = H0 + λVω

in L2(Rd), and call the family of operators (Hω)ω∈Ω the magnetic crooked alloy-type
model. For L > 0 we denote by Hω,L the restrictions of Hω to L2(ΛL) subject to
Dirichlet boundary conditions.

For later use, we also define the non-negative functions

U(x) :=
∑
j∈Zd

uj(x− zj) and W (x) :=
∑
j∈Zd

1B(δ−,zj),

as well as their restrictions UL and WL to ΛL for L > 0.

Theorem 5.14. Let {Hω}ω∈Ω be a crooked magnetic alloy-type Hamiltonian as in
Definition 5.13. Let E0 > 0 and set

γ =
1

2
δ
N1

(
1+|E0|2/3+‖b0‖2∞+(‖c0‖∞+λω+(2+δ+)d)

2/3
)

− (65)

where N1 > 0 is the constant from Theorem 3.38 and b0, c0 are as in Eq. (64).
Then there is a constant C2 = C2(d, δ+, ‖V0‖∞) such that for any closed interval
I ⊂ (−∞, E0] with |I| ≤ 2γ, any λ > 0, and any L ∈ Nodd with L ≥ 2 + δ+, we have

E
[
TrPHω,L(I)

]
≤ C2

(
u−2
− γ

−4(1 + E0)
)2

1+
log d
log 2

SL(λ−1|I|)|ΛL|.

Theorem 5.14 is an adaptation of [Kle13, Theorem 1.5] to the magnetic setting.
Hence, as in [Kle13], we shall need the following lemma for its proof.

Lemma 5.15. Let I ⊂ (−∞, E0] be a closed interval and L ∈ Nodd, L ≥ 2 + δ+.
Suppose that there is κ > 0 such that

PHω,L(I)ULPHω,L(I) ≥ κPHω,L(I) with probability one.
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5. Application to random Schrödinger operators

Then there is a constant
C4 = C4(d, δ+, ‖V0‖∞)

such that

E
(
TrPHω,L(L)

)
≤ C4

(
κ−2(1 + E0)

)2
1+

log d
log 2

SL(λ−1|I|)|ΛL|.

Proof of Lemma 5.15. One can follow verbatim the proof of Lemma 3.1 in [Kle13]
which partially relies on a result from [CHK07]. The latter one applies to the class
of magnetic Schrödinger operators as considered here as well. The only issue to
address is the dependence of C4 on the various parameters. In Eqs. (3.8) and (3.17)
of [Kle13], constants from Combes-Thomas estimates (for non-magnetic Schrödinger
operators) which depend only on d, δ+ and on ‖V0‖∞ enter the final constant C4.
Combes-Thomas estimates for magnetic Schrödinger operators do not depend on the
magnetic potential A0, see Theorem 4.6 of [She14]. Therefore the constant C4 will
not depend on the magnetic potential A0.

Proof of Theorem 5.14. We follow the proof of Theorem 1.5 in [Kle13]. Given
E0 > 0, define γ as in Eq. (65). Proposition 3.38 yields for all ΛL with L ∈ Nodd, all
intervals I ⊂ (−∞, E0] with |I| ≤ 2γ and almost all ω ∈ Ω the estimate

PHω,L(I) ≤ γ−2PHω,L(I)Wδ−,Z(ΛL)PHω,L(I) ≤ u−1
− γ

−2PHω,L(I)ULPH0,L
(I).

The statement now follows from Lemma 5.15.

An interesting aspect of Wegner estimates as in Theorem 5.14 is the behavior of
the constant in the large disorder regime which to the author’s knowledge has first
been discussed in [Kle13]. In order to discuss the disorder dependence, we introduce
some notation: For t ≥ 0 we define

H0(t) := H0 + t
∑
j∈Zd

uj(· − zj) = H0 + tU(·),

and set

E0(t) := inf σ(H0(t)) and E0(∞) := lim
t→∞

E0(t) = sup {E0(t) : t ≥ 0} .

The next result is a similar Wegner estimate as in Theorem 5.14, but it will be
motivated by the discussion on the disorder dependence, cf. Remark 5.19 below.

Theorem 5.16. We have E0(∞) > 0. Let E1 ∈ (0, E0(∞)) and set

κ0 = sup
s>0:E0(s)≥E1

E0(s)− E1

s
> 0.
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5.4. What to do in the presence of magnetic fields

Then for any Borel set B ⊂ (−∞, E1], any λ > 0, any L ∈ Nodd, and almost all
ω ∈ Ω we have

PHω,L(B)
( ∑
j∈ΛL∩Zd

uj(· − zj)
)
PHω,L(B) ≥ κ0PHω,L(B). (66)

Moreover, for any closed interval I ⊂ (−∞, E1], any λ > 0, and for any L ∈ Nodd

with L ≥ 2 + δ+, we have

E
[
TrPHω,L(I)

]
≤ C3

(
κ−2

0 (1 + E1)
)2

1+
log d
log 2

SL(λ−1|I|)|ΛL|, (67)

where C3 > 0 is a constant depending on d, δ+, ‖V0‖∞, ‖b0‖∞, and ‖c0‖∞.

For the proof of Theorem 5.16, we shall need an abstract uncertainty relation for
Schrödinger operators at the bottom of the spectrum which has been developed in
[BLS11]. The following lemma is a slight generalization thereof, see Lemma 4.1 of
[Kle13].

Lemma 5.17. Let H be a self-adjoint operator on a Hilbert space H, bounded from
below, and let Y ≥ 0 be a bounded operator on H. Let H(t) = H + tY for t ≥ 0,
and set E(t) = inf σ(H(t)) and E(∞) = limt→∞E(t) = supt≥0E(t). Suppose that
E(∞) > E(0). For E1 ∈ (E(0), E(∞)) let

κ = κ(H, Y,E1) = sup
s>0: E(s)>E1

E(s)− E1

s
> 0.

Then for all bounded operators V ≥ 0 on H and Borel sets B ⊂ (−∞, E1] we have

PH+V (B)Y PH+V (B) ≥ κPH+V (B).

We recall that H0(t) = H0 + t
∑

j∈Zd uj(· − zj) for t ≥ 0, E0(t) = inf σ(H0(t)), and
E0(∞) = limt→∞E0(t) = supt≥0E0(t).

Lemma 5.18. We have E0(∞) > 0.

Proof. By monotonicity of t 7→ E0(t), it suffices to show E0(t0) > 0 for some t0 > 0.
Now, for all t ≥ 0, we have E0(t) = limL→∞E0,L(t) where E0,L denotes the restriction
of H0 + tU to ΛL with Dirichlet boundary conditions. This can for instance be seen
by using a Weyl sequence argument. Furthermore, since E0(0) = 0 by assumption it
now suffices to establish

E0,L(t0) ≥ E0,L(0) + t0u−δ
N1

(
2+‖b0‖2∞+‖c0+t0U‖2/3∞

)
−
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for all sufficiently large L ∈ Nodd. For that purpose, we choose t0 > 0 such that
defining

γ2 = γ(t0)2 := δ
N1

(
2+‖b0‖2∞+‖c0+t0U‖2/3∞

)
− ,

which is of the form of the term in Proposition 3.36 with E = 1, we have γ(t0) ≥
t0‖U‖∞. This is possible since γ(t0) converges to a positive constant as t0 ↘ 0.

We then have E0,L(t0) ∈ [E0,L(0)−γ,E0,L(0)+γ]. Choosing L sufficiently large and
using γ ≤ δ− ≤ 1/2, we furthermore may assume that E0,L(0) ≤ 1. Proposition 3.36
then implies for all ψ ∈ RanPH0,L(t0)(E0,L(t0)) that

〈ψ, t0Uψ〉 ≥ t0u− 〈ψ,Wψ〉

= t0u−‖ψ‖L2(Sδ−,Z(L)) ≥ t0u−γ
2‖ψ(t)‖2

L2(ΛL).

From Lemma 4.4 we conclude E0,L(t0) ≥ E0,L(0) + t0u−γ(t0)2.

Proof of Theorem 5.16. By Lemma 5.18 we have E0(∞) > 0 and hence κ0 > 0. For
L ∈ Nodd we denote by H0,L(t) the restriction of H0(t) to L2(ΛL) subject to Dirichlet
boundary conditions with domain D(∆L), and set E0,L(t) = inf σ(H0,L(t)). Using
0 ≤ E0(t) ≤ E0,L(t) we obtain

κ0,L := sup
s>0:E0,L(s)≥E1

E0,L(s)− E1

s
≥ κ0 = sup

s>0:E0(s)≥E0(1)

E0(s)− E1

s
> 0.

Hence, the assumptions of Lemma 5.17 are satisfied with H = H0,L and Y =∑
j∈Zd uj(· − zj), and we obtain Ineq. (66). Ineq. (67) now follows from Ineq. (66)

and Lemma 5.15.

Remark 5.19. The Wegner estimates in Theorems 5.14 and 5.16 can be used as
ingredients for the multi-scale analysis [FS83, vDK89, GK01, GK03, GK06]. Let us
emphasize that the multi-scale analysis requires that the concentration functions SL,
L ∈ N, are sufficiently regular, e.g. with a uniformly bounded density, or uniformly
Hölder continuous, cf. the just mentioned references. The multi-scale analysis is an
induction argument to establish localization in its various manifestations (spectral,
dynamical, etc.). Hence, if the concentration functions SL are sufficiently regular,
Theorems 5.14 and 5.16 will imply localization at energies where an appropriate
initial scale estimate is satisfied, see [GK01, GK03] for the bootstrap multi-scale
analysis, and [RM12] for the adaptation to the non-ergodic setting. If the constant
in the Wegner estimate becomes small at large disorder, the initial scale estimate
will follow from the Wegner estimate at sufficiently large disorder as observed in
[vDK89], see also [Kir08, Kle13].
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The upper bound in Theorem 5.14 grows as the disorder λ increases. This is
not sufficient to deduce an initial length-scale estimate and localization at large
disorder. In contrast to that, the upper bound in Theorem 5.16 converges to 0 as the
disorder parameter λ tends to ∞. Hence, an initial scale estimate and localization at
large disorder follow, albeit only for energies below E0(∞). Note that if a covering
condition

U(·) =
∑
j∈Zd

uj(· − zj) ≥ ε > 0

is satisfied, then E0(∞) =∞ and the statement of Theorem 5.16 holds at all energies,
see [CH94] which is formulated in the special case of vanishing magnetic field. Thus,
in case of a covering condition, for every energy E ≥ 0, we find a disorder strength
λ0 = λ0(E) such that for disorder λ ≥ λ0, we have localization in a neighborhood of
E. In contrast, E(∞) might be finite if we do not assume a covering condition.

Corollary 5.20. Let 0 ≤ E0 < E0(∞). Then there is λ0 > 0, such that for all
disorder strengths λ ≥ λ0, we have localization (spectral localization with exponentially
decaying eigenfunctions and strong dynamical localization) in Σ ∩ (−∞, E0].

Remark 5.21. Since Wegner estimates with a disorder dependence as in Theorem 5.16
provide a relatively simple path to localization at large disorder, it is natural to ask
if such a disorder dependence can be expected at all energies, even if no covering
condition is assumed. However, so far one was not able to prove such a Wegner
estimate for alloy-type models with and without magnetic field above the threshold
E(∞), cf. [Sto10, BLS11, Kle13].
Our next theorem shows that this is indeed not possible. A disorder dependence

as in Theorem 5.16 holds if and only if we consider energy intervals below E0(∞). In
particular this shows that at high energies and at high disorder there is a fundamental
difference between alloy-type models with and without a covering condition. This is
a new result, even in the special case of vanishing magnetic potential (A0 = 0) and
ergodic potential (V0 periodic, zj = j, uj = u0, and µj = µ0).

Theorem 5.22. Let E2 ∈ R. The following are equivalent:

(i) E2 ≤ E0(∞).

(ii) For all sufficiently large L > 0, and all closed intervals I ⊂ (−∞, E2], we have

E
(
TrPHω,L(I)

)
→ 0 as λ→∞. (68)
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5. Application to random Schrödinger operators

Proof. The implication (i) ⇒ (ii) is the statement of Theorem 5.16. In order to
show the converse, we prove the contraposition: Let E2 > E0(∞), and I = (−∞, E2].
Note that for almost all ω ∈ Ω, we have Hω,L ≤ Hη,L, where η ∈ Ω, ηk = ω+ for all
k ∈ Zd, hence

E
(
TrPHω,L(I)

)
≥ TrPHη,L(I).

Since
lim
t→∞

lim
L→∞

E0,L(t) < E2,

there are L0 > 0 and λ0 > 0 such that for all λ > λ0 we have

1 ≤ TrPHη,L0
(I) ≤ E

(
TrPHω,L0

(I)
)
.

Hence, (68) cannot hold.

5.4.2. Wegner estimate for Landau-breather models at small disorder

This subsection is based on [TV16a]. The previous Subsection 5.4.1 treated mag-
netic Schrödinger operators with bounded vector potential. However, this does
by far not cover all magnetic fields. The most important example are magnetic
Schrödinger operators with homogeneous magnetic field. In dimension d = 2, the
magnetic Schrödinger operator with homogeneous magnetic field is called the Landau
Hamiltonian. Fortunately, for this operator, some explicit calculations are possible
which allows to deduce unique continuation principles as in Lemma 3.40. We use
them to prove Wegner estimates for the Landau-breather model, albeit only for small
disorder. See Remark 5.28 below on a discussion why our result is restricted to this
regime.

Definition 5.23. The Landau Hamiltonian is the self-adjoint operator HB = (−i∇−
A)2 with the vector field A = (B/2) ( x2

−x1
) on L2(R2) where B > 0 is the magnetic

field strength. We define a scale LB > 0 such that corresponding squares have integer
flux by letting

KB := 2d
√
B/(4π)e, LB = KB

√
4π/B, and NB = LBN

where dae denotes the least integer larger or equal than a. Now let {ωj}j∈Zd be an
independent sequence of random variables on the probability space

(Ω,A,P) =

(
×
j∈D

R,
⊗
j∈D

B(R),
⊗
j∈D

µ

)
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5.4. What to do in the presence of magnetic fields

where µ is a probability measure with support in [ω−, ω+] ⊂ [0, 1/2) and with
uniformly bounded Lebesgue density νµ. For the single-site potential u : R2 → [0,∞)

we make the following assumptions:

(i) u is measurable, bounded and compactly supported.

(ii) For every t ∈ [ω−, ω+], the map x 7→ ∂tu(x/t) exists for almost every x ∈ R2.

(iii) There is Cu > 0 such that for every t ∈ [ω−, ω+] we find x0 = x0(t) ∈ Λ1 with

∂

∂t
u
(x
t

)
≥ Cu1B(x0(t),r)(x) for almost every x ∈ R2. (69)

Now, we define the random breather potential as

Vω(x) :=
∑
j∈Z2

uωj(x− j) where ut(x) := u
(x
t

)
.

The Landau-breather Hamiltonian is the random operator Hω
B = HB +λVω, ω ∈ Ω,

where λ > 0 is the disorder parameter. Let HB,L and Hω
B,L be restrictions of the

operators HB and Hω
B to L2(ΛL) with periodic boundary conditions, respectively.

In Remark 5.26 we comment on these assumptions and provide some explicit
examples.

Theorem 5.24 (Wegner estimate for the Landau-breather model at small disorder).
Assume that u satisfies the hypotheses (i)–(iii) above and let B > 0, E0 ∈ R, θ ∈ (0, 1).
Then there is λ0 > 0 such that for all 0 < λ < λ0 we find C = C(B,E0, θ) > 0 and
L0 ∈ NB such that for all intervals I ⊂ (−∞, E0] with |I| ≤ B/2 and all L ∈ NB

with L ≥ L0 we have
E
[
Tr
(
PHω

B,L
(I)
)]
≤ C|I|θ|ΛL|.

The critical disorder parameter λ0 only depends on B, E0 and u and is explicitly
given in inequality (75).

Since the Landau-breather Hamiltonian is ergodic with respect to magnetic shifts,
it has an almost sure IDS N(·). We have the following corollary:

Corollary 5.25. Fix B > 0, E0 ∈ R and θ ∈ (0, 1). Then, for all disorder
parameters 0 < λ ≤ λ0 the IDS N : R→ [0,∞) of the Landau-breather Hamiltonian
satisfies

N(E)−N(E − ε) ≤ C · |ε|θ for all ε > 0, E ≤ E0.
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5. Application to random Schrödinger operators

Thus, the IDS of Hω
B is locally Hölder continuous in (−∞, E0] with respect to

any Hölder exponent θ ∈ (0, 1). In the context of the Landau Hamiltonian this is
somewhat more remarkable than for – say – random Schrödinger operators where
the background operator is the negative Laplacian. While −∆ has a continuous IDS,
the IDS of the Landau Hamiltonian is a step function with jumps at the Landau
levels 2(n− 1)B, n ∈ N, cf. [Nak01, HLMW01, RW02a], and Corollary 5.25 states
that arbitrarily small random perturbations make the IDS continuous.

Remark 5.26. Note that in condition (69) the radius r and the constant Cu need to
be t-independent, while we can allow x0 to vary with t. Condition (69) translates
into

−x/t2 · (∇u)(x/t) ≥ Cu1B(x0,r)(x) for all x ∈ R2, t ∈ [ω−, ω+]

or equivalently

−y · ∇u(y) ≥ Cut1B(x0,r)(ty) = Cut1 1
t
B(x0,r)

(y) for all y, t

and can be compared to the condition on the breather potential

u ∈ C1(R2 \ {0}), −x · ∇u ≥ ε0u for all x ∈ R2\{0}

with fixed ε0 > 0 in [CHN01] which implies a singularity at the origin which we do
not have.
Let us give two examples of single-site potentials u satisfying our assumptions.

• The smooth function

u(x) = exp

(
− 1

1− |x|2

)
1|x|<1,

since, using ω− ≤ t ≤ 1/2

−x/t2 · (∇u)(x/t) = x/t2 · exp

(
− 1

1− |x/t|2

)
2(x/t2)

(1− |x/t|2)2
· 1|x|<t

≥ 2e−4/3|x|2 · 1|x|<t/2 ≥
|x|2

2
1ω−/4≤|x|<ω−/2 ≥

ω2
−

32
1B(x0,ω−/8)

for every point x0 with |x0| = 3ω−/8.

• The hat potential u(x) = 1|x|<1(1− |x|), since

−x/t2 · (∇u)(x/t) =
|x|
t3

1|x|<t ≥
1t/2≤|x|<t

2t2
≥ 1

2ω2
+

1B(x0,ω−/4) ≥ 21B(x0,ω−/4)

for every point x0 with |x0| = 3t/4.
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5.4. What to do in the presence of magnetic fields

Unfortunately, our assumptions are not satisfied for the standard random breather
potential from Subsection 3.2.
We start the proof of Theorem 5.24 with the following abstract theorem:

Theorem 5.27. Let H be a lower semibounded self-adjoint operator with purely
discrete spectrum, V a bounded symmetric operator, and I ⊂ J ⊂ R two intervals.
We assume that there are C2 > 0 and a positive, symmetric operator W such that

PH(J)WPH(J) ≥ C2PH(J). (70)

Then, for ‖V ‖∞ < dist(I, J c)
√
C2/(C2 + 1 + ‖W‖∞) there is C3 depending only on

C2, dist(I, J c) and on ‖V ‖∞ such that

Tr [PH+V (I)] ≤ C3 Tr(PH+V (I)(W +W 2)) (71)

More precisely, we have

C3 =
dist(I, J c)2

C2 dist(I, J c)2 − ‖V ‖2
∞(C2 + 1 + ‖W‖∞)

.

Proof. We decompose

Tr(PH+V (I)) = Tr(PH+V (I)PH(J)) + Tr(PH+V (I)PH(J c)(H)). (72)

We estimate the term in (72) containing PH(J c) by expanding the trace in eigen-
functions φj in the range of PH+V (I).
From the eigenvalue equation (H + V − Ej)φj = 0 we deduce

−(H − Ej)−1PH(J c)V φj = PH(J c)φj.

This yields

Tr (PH+V (I)PH(J c)) =
∑
j

〈φj, PH(J c)φj〉 = (73)

∑
j

〈
φj,

(
V

PH(J c)

(H − Ej)2
V

)
φj

〉
≤ ‖V ‖2

∞
dist(I, J c)2

Tr (PH+V (I)) .

Now we turn to the first summand on the right hand side of (72). Using the
assumption (70), we have

Tr(PH+V (I)PH(J)) ≤ 1

C2

Tr(PH+V (I)PH(J)WPH(J))

=
1

C2

[Tr(PH+V (I)W ) + Tr(PH+V (I)PH(J c)WPH(J c))

− 2 Re(Tr [PH+V (I)PH(J c)W )]

≤ 1

C2

[Tr(PH+V (I)W ) + ‖W‖∞Tr(PH+V (I)PH(J c))

+ Tr(PH+V (I)PH(J c)) + Tr(PH+V (I)W 2)].
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5. Application to random Schrödinger operators

In the last step, we used −Re(x) ≤ |x|, cyclicity of the trace, the Hölder inequality
for traces, and the fact that 2ab ≤ a2 + b2 to estimate

−2 Re(Tr(PH+V (I)PH(J c)W ) ≤ 2|Tr (PH+V (I)PH(J c)WPH+V (I))|

≤ Tr(PH+V (I)PH(J c)) + Tr(PH+V (I)W 2).

This simplifies to

Tr(PH+V (I)PH(J)) ≤

≤ 1 + ‖W‖∞
C2

Tr(PH+V (I)PH(J c)) +
1

C2

Tr(PH+V (I)(W +W 2)).
(74)

Combining (72) with (73) and (74) we find

Tr(PH+V (I)) ≤
(

1 +
1 + ‖W‖∞

C2

)
‖V ‖2

∞
dist(I, J c)2

Tr(PH+V (I))

+
1

C2

Tr(PH+V (I)(W +W 2)),

that is

Tr(PH+V (I)) ≤

≤ dist(I, J c)2

C2 dist(I, J c)2 − ‖V ‖2
∞(C2 + 1 + ‖W‖∞)

Tr(PH+V (I)(W +W 2)).

We are now ready for the proof of Theorem 5.24.

Proof of Theorem 5.24. Given B > 0 and E0 ∈ R, there are finitely many Landau
levels below E0 +B/4. Let L ∈ NB, L ≥ L0 as in Lemma 3.40. Take

C̃ := min{C1(n,B, r) from Lemma 3.40 : n ∈ N with B(2n− 1) ≤ E0 +B/4}.

Let I = [I−, I+] ⊂ (−∞, E0] with I+ − I− ≤ B/2. For every constellation {ωj}j∈Z2 ,
we apply Theorem 5.27 with V = λVω and J = [I− −B/4, I+ +B/4] and

W =
∑

j∈Z2 : B(xj+j,r)⊂ΛL

1B(x0(ωj)+j,r)

where the x0(ωj) are the points from (69). Note that J contains at most one Landau
level. Hence, (70) holds by Lemma 3.40 with C2 = C̃. We find

Tr(PH+V (I)) ≤ C3 Tr(PHω
B,L

(I)W ),

where
C3 =

(B/4)2

C̃(B/4)2 − ‖Vω‖2
∞λ

2(C̃ + 2)
.
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5.4. What to do in the presence of magnetic fields

We have ‖Vω‖∞ ≤ V∞ := dmax suppue2‖u‖∞. For

λ ≤ λ0 := B

√
C̃/(32V 2

∞(C̃ + 2)), (75)

it holds that C3 ≤ 2/C̃. We have estimated so far

Tr(PH+V (I)) ≤ 2

C̃
Tr(PHω

B,L
(I)W ).

Now we take a monotone decreasing function f ∈ C1(R) with f ≡ 1 on (−∞, I− −
B/4] and f ≡ 0 on [I+ +B/4,∞) such that −C4|I|f ′(x) ≥ 1I(x) for some C4 > 0.

Then

Tr(PHω
B,L

(I)W ) ≤ −C4|I|Tr(f ′(Hω
B,L)W )

≤ −C−1
u C4|I|

∑
j∈Z2∩ΛL

Tr(f ′(Hω
B,L)

∂

∂ωj
uωj(x− j))

= −C−1
u C4|I|

∑
j∈Z2∩ΛL

Tr(
∂

∂ωj
f(Hω

L)).

We take the expectation and obtain

E
[
Tr(PHω

B,L
(I)W )

]
≤ −C−1

u C4|I|
∑

j∈Z2∩ΛL

E
[
∂

∂ωj
Tr(f(Hω

B,L))

]
.

We evaluate the expectation in every summand with respect to the random variable
ωj

0 ≤ −E
[
∂

∂ωj
Tr(f(Hω

B,L))

]
= −E

[∫ ω+

ω−

∂

∂ωj
Tr(f(Hω

B,L))dωj

]
≤ ‖νµ‖∞E

[
|Tr
(
f(Hω

B,L |ωj=ω+)− f(Hω
B,L |ωj=ω−)

)
|
]
.

Analogously to [CHK03], Appendix A we find for every θ ∈ (0, 1) a constant Cθ > 0

such that ∣∣Tr
(
f(Hω

B,L |ωj=ω+)− f(Hω
B,L |ωj=ω−)

)∣∣ ≤ Cθ|I|θ−1.

All together we found

Tr
(
PHω

B,L
(I)
)
≤ 4

CuC̃
C4|I|Cθ|I|θ−1#{ΛL ∩ Z2} = C|I|θ|ΛL|.

Remark 5.28. Let us explain why our result is restricted to the small coupling regime
and discuss possible approaches how to remove the condition on the disorder strength
λ. One candidate for replacing the smallness condition on ‖V ‖∞ in Theorem 5.27,
which is necessary to ensure positivity of C2 dist(I, J c)2 − ‖V ‖2

∞(C2 + 1 + ‖W‖∞),
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5. Application to random Schrödinger operators

would be a largeness condition on dist(I, J c). In the application (i.e. in the proof of
Theorem 5.24) an upper bound on dist(I, J c) is due to the fact that J should contain
at most one Landau level. Therefore, it would be desirable to improve Lemma 3.40
to something like(

n∑
k=1

Πn,L

)
Wδ,Z(ΛL)

(
n∑
k=1

Πn,L

)
≥ C

(
n∑
k=1

Πn,L

)
,

where C = C(n,B, r) behaves asymptotically for large n as

C(n,B, r)� n−2.
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6. Application to control theory for heat-type equations

6. Application to control theory for heat-type equations

In this section, we apply the scale-free, quantitative unique continuation principle
from Theorem 3.13 and the Logvinenko-Sereda theorem to controlled heat-type
equations with interior control in a multi-scale setting on bounded and unbounded
domains.

We first give an introduction to the controlled heat equation in Subsection 6.1. After
that, in Subsection 6.2, which is based on unpublished work with Ivica Nakić, Martin
Tautenhahn, and Ivan Veselić, we prove null-controllability with explicit estimates
on the control cost in a general setting: We consider abstract controlled Cauchy
problems satisfying a so-called spectral inequality. We emphasize that our abstract
result is interesting in its own right since it improves and unifies existing results and
is applicable beyond the scope of heat-type equations. Heat-type equations however
are a special case of such controlled Cauchy problems and the unique continuation
principles from Section 3.2 are a special case of spectral inequalities. Thus, in
Subsection 6.3, we deduce estimates on the control cost of heat-type equations and
discuss its asymptotic behavior in certain regimes, namely in the homogenization
and in the de-homogenization or coarsening regime.

6.1. A brief introduction to the controlled heat equation

In order to present the setting and to better motivate our results below, we start with
an introduction on control theory for the (standard) heat equation. We emphasize
that the amount of relevant literatur in this context is substantial and we do not
claim to provide a full list of references, but rather focus on results relevant for our
results below.
Let Ω ⊂ Rd be a (open, connected) domain and ω ⊂ Ω. Given a time T > 0, the

controlled heat equation with interior control on ω is
∂tu−∆u = 1ωf, u ∈ L2([0, T ]× Ω),

Bu = 0, for all t ∈ (0, T ),

u(0, ·) = u0, u0 ∈ L2(Ω),

(76)

where Bu = 0 stands for boundary conditions which make the operator ∆ self-adjoint
in L2(Ω). This could be for instance Dirichlet, Neumann or periodic boundary
conditions. If Ω = Rd then no boundary conditions are required and the condition
Bu = 0 is void. The function f ∈ L2([0, T ] × Ω) is called control function and
since its action on the system is penalized by the indicator function 1ω, it can be
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6. Application to control theory for heat-type equations

considered as a function f ∈ L2([0, T ]× ω). It is easy to see that for fixed u0 and f ,
the unique mild solution of the system (76) in L2([0, T ],Ω) is given by

u(t) = e∆tu0 +

∫ t

0

e(t−s)∆(1ωf(s))ds, t ∈ [0, T ]. (77)

The fundamental motivation in control theory revolves around the following question:
Given an initial state u0, and a target state uT , does there exist a control function f ,
such that the solution (77) of system (76) satisfies u(T ) = uT ? And if the answer is
yes: What can be said about such a function f?

The first important observation is that it is convenient to restrict the attention
to null-controllability i.e. to the target state uT = 0. A formal definition of null-
controllability will be given in Definition 6.3 below. The following lemma seems to
be folklore, however, for convenience we provide a short proof:

Lemma 6.1 (Null-controllability implies controllability on the range of the semi-
group). Assume that for every u0 ∈ L2(Ω) there exists a control function such that
the solution of system (76) with initial state u0 satisfies u(T ) = 0. Then, for every
pair (u0, uT ) where u0 ∈ L2(Ω), and uT is in the range of the operator eT∆ there
exists a control f such that the solution of system (76) with initial state u0 satisfies
u(T ) = uT .

Proof. By assumption, we have uT = eT∆v0 for some v0 ∈ L2(Ω). We choose a
null-control f = fu0−v0 , driving the initial state u0 − v0 to zero in time T . Then,
by (77)

0 = eT∆(u0 − v0) +

∫ T

0

e(T−s)∆1ωf(s)ds

whence

uT = eT∆v0 = eT∆u0 +

∫ T

0

e(T−s)∆1ωf(s)ds = u(T ).

For bounded and connected domains Ω, it is well-established that system (76) is
null-controllable in all times T > 0 as soon as ω is non-empty and open [FI96, LR95].
In [AE13, AEWZ14], it is proven that for bounded domains Ω, it suffices ω to have
positive Lebesgue measure. If Ω = Rd, it has recently been proved [WWZZ17, EV18]
that the system (76) is null-controllable if and and only if the set ω ⊂ Rd is thick, as in
Definition 3.42 in the context of the Logvinenko-Sereda theorem above. Furthermore,
in [EV18], the control cost of the heat equation on cubes with thick control sets in
a multiscale setting has been considered for the first time. We will study the same
situation in Theorem 6.8 below.
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Our results below focus on several aspects. First, instead of the pure heat equation
we consider the heat-type equation or the heat equation with generation term where
the generator −∆ of the free evolution semigroup in (76) has been replaced by the
operator −∆ + V with V ∈ L∞. Even though such operators have been considered
and null-controllability has been established in [FI96], the analysis – in particular in
the large time regime – is more challenging since the operator −∆ + V might not be
semidefinite any more which is a common assumption in control theory. A second
important aspect is that we simultaneously treat bounded and unbounded domains.
On unbounded domains, the operator −∆ +V will have essential spectrum and there
does not necessarily exist an orthonormal basis of eigenfunctions any more – a fact
which is prominently used in many proofs of null-controllability. Finally, the most
important aspect of our results is that we provide explicit estimates on the so-called
control cost in terms of all model parameters – in particular parameters describing
the geometry of the sets Ω and ω – and which are to our knowledge the best with
respect to the existing literature. Estimates on the control cost are upper bounds on
the norm of the control function f ∈ L2([0, T ]× ω), see Definition 6.3 below for a
proper definition of the control cost. There exist many results in the literature which
estimate the control cost and some also derive parameter dependences. A plethora
of articles has studied the dependence of the control cost on the time parameter
T [Güi85, FZ00, Phu04, TT07, Mil06, Mil04, Mil10, EZ11, Lis12]. Hence, today its
dependence on T and ‖V ‖∞ in the T → 0 regime is well understood [FI96, FZ00],
see also [Zua07, Chapter 5]. It has emerged that the control cost of the heat equation
has an exp(C/T ) singularity at T = 0 [FZ00]. Furthermore, if V 6≡ 0 and −∆ is
replaced by −∆ + V for some bounded V , then at least in even space dimension,
there must be a exp(C‖V ‖2/3

∞ ) contribution to the control cost [DZZ08]. Let us
emphasize that many existing results focus on the small time regime and that few is
known about the dependence of the control cost on the geometry.

In a number of recent publications [Mil10, Mil17, BPS18, TT11] the issue of null-
controllability has been studied in an abstract setting. In these, controlled Cauchy
problems are considered and under the abstract assumption of a so-called spectral
inequality, controllability is proved. This is motivated by the aim to develop a general
framework which then allows to systematically treat controllability of linear systems
– of the classic heat equation as well as for instance for the fractional heat equation
where the negative Laplacian −∆ is replaced by a fractal version (−∆)α. There exists
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a classic equivalence between controllability and so-called observability estimates,
that are estimates of the form

‖eT∆φ‖2
L2(Ω) ≤ Cobs

∫ T

0

‖et∆φ‖2
L2(ω)dt, φ ∈ L2(Ω),

and the square root of the constant Cobs in the observability estimate is an upper
bound on the control cost. Observability estimates themselves can be deduced from
spectral inequalities. The unique continuation principles from Subsection 3.2 and
the Logvinenko-Sereda theorem from Subsection 3.5 turn out to be special cases of
spectral inequalities. Since we have the quantitative unique continuation principles
from Section 3 with an explicit control on all occurring parameters at our disposal
such abstract estimates on the control cost will be useful to us. However, some of
the above mentioned abstract control results impose conditions such as the small
time regime [Mil10], or are not sufficiently explicit in the control cost and restricted
to operators with purely discrete spectrum [TT11]. In order to study phenomena
such as homogenization, we will have to remove these restrictions and develop our
own framework for null-controllability and explicit estimates on the control cost for
abstract Cauchy problems in the following Subsection 6.2. It is inspired by and has
a more explicit constant that the result in [TT11].

This general result is interesting in its own right since it can be seen to be optimal in
many regards. Combining the abstract results with the unique continuation principles
from Section 3, we will then show null-controllability with explicit estimates on the
control cost in a multi-scale setting in Subsection 6.3 and discuss homogenization as
well as de-homogenization of the control set.

6.2. Abstract observability, null-controllability and control cost

Let X and U be Hilbert spaces with inner products 〈·, ·〉 and 〈·, ·〉U and norms ‖·‖
and ‖·‖U , respectively. Let A ≥ 0 be a self-adjoint operator in X with domain D(A).
Let β ≤ 0. We define on X the inner product

〈x, y〉β =
〈
(I + A2)β/2x, (I + A2)β/2y

〉
(78)

and denote by Xβ ⊃ X the extrapolation space obtained as the completion of X
with respect to the norm induced by the inner product (78). Clearly, X0 = X.
Furthermore, we denote by X−β := D(I + A2)−β/2 ⊂ X the interpolation space,
endowed with the scalar product

〈x, y〉−β =
〈
(I + A2)−β/2x, (I + A2)−β/2y

〉
.
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Let B ∈ L(U,Xβ), the space of bounded linear maps from U to Xβ. The spaces
X−β ⊂ X ⊂ Xβ form a Gelfand triple and we will take the dual of B with respect to
the pivot space X = X0, i.e. B∗ ∈ L(X−β, U).
We study null-controllability of an abstract parabolic equation of the form

∂

∂t
u+ Au = Bf, u(0) = u0 ∈ X. (79)

Remark 6.2. In our application in Subsection 6.3, we will choose X = L2(Γ) for
a generalized rectangle Γ ⊂ Rd, U = L2(S) ⊂ L2(Γ) for an appropriate S ⊂ Γ,
A = −∆ + V , where V ∈ L∞ with self-adjoint boundary conditions on ∂Γ, and
B = 1S the canonical injection of L2(S) into L2(Γ). We note that in this case, we
even have B ∈ L(U,X) and thus the construction of the interpolation space Xβ

is unnecessary in this setting. However, for the sake of flexibility of our abstract
result, we stick to this generalization. In fact, if one wants to treat the controlled
heat equation on a bounded domain with boundary control, then the corresponding
operator B will be an inverse boundary trace and merely relatively bounded with
respect to a power of the Laplacian. In order not to exclude such systems in our
abstract setting, we included the formulation with the interpolation space Xβ.

Definition 6.3. We say that the system (79) is null-controllable in time T > 0 if
for all u0 ∈ X there exists a function f ∈ L2([0, T ];U) such that the solution of (79)
satisfies u(T ) = 0. Moreover, we define the control cost as

C = C(T ) = sup
u0 6=0

inf{‖f‖L2([0,T ];U) : the solution of (79) satisfies u(T ) = 0}
‖u0‖

.

Theorem 6.4. Assume that there are d0 > 0 , d1 ≥ 0 and γ ∈ (0, 1) such that for
all λ > 0 and all φ ∈ X we have

‖PA(λ)φ‖2 ≤ d0ed1λγ‖B∗PA(λ)φ‖2
U . (80)

Then for all T > 0 and all φ ∈ X we have the observability estimate∥∥e−ATφ
∥∥2 ≤ C2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt, (81)

where Cobs satisfies

C2
obs =

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)

with K1 = 2d0e−β‖B‖2
L(U,Xβ) +1.

Here, Ci > 0, i ∈ {1, 2, 3, 4}, are constants depending only on γ. They are explicitely
given by Eq. (93). Moreover, for all T > 0 the system (79) is null-controllable in
time T with costs satisfying C ≤ Cobs.
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Some words should be said on well-definedness of (80) and (81) since B∗ ∈
L(X−β, U) and X−β ⊂ X. It is straightforward to verify that Ran e−At and RanPA(λ)

ar subsets of X−β for all β ≤ 0, t > 0 and λ ∈ R. Hence, for every φ ∈ X, the
expressions B∗PA(λ)φ and B∗e−Atφ are well-defined as elements in U . An analogous
reasoning shows well-definedness of corresponding expressions appearing in the
subsequent proof.

We also note that in the applications below, we will always work in the case where
β = 0. The proof of Theorem 6.4 is based on techniques developed in the proof
of [TT11, Theorem 1.2].

Proof of Theorem 6.4. Let T > 0. For φ ∈ X, t ∈ (0, T ], and λ > 0 we use the
notation

F (t) =
∥∥e−Atφ

∥∥2
,

Fλ(t) =
∥∥e−AtPA(λ)φ

∥∥2
,

F⊥λ (t) =
∥∥e−At(Id− PA(λ))φ

∥∥2
,

G(t) =
∥∥B∗e−Atφ∥∥2

U
,

Gλ(t) =
∥∥B∗e−AtPA(λ)φ

∥∥2

U
,

G⊥λ (t) =
∥∥B∗e−At(Id− PA(λ))φ

∥∥2

U
.

Since A ≥ 0 we have F (t1) ≥ F (t2), Fλ(t1) ≥ Fλ(t2), and F⊥λ (t1) ≥ F⊥λ (t2) if t1 ≤ t2

and λ > 0. By monotonicity and our assumption (80), we obtain for all t ∈ (0, T ]

and all λ > 0

Fλ(t) =
2

t

∫ t

t/2

Fλ(t)dτ ≤
2

t

∫ t

t/2

Fλ(τ)dτ ≤ 2d0ed1λγ

t

∫ t

t/2

Gλ(τ)dτ. (82)

By spectral calculus we have

G⊥λ (t) ≤ ‖B‖2
L(U,Xβ)‖e−At(I − PA(λ))φ‖2

X−β

= ‖B‖2
L(U,Xβ)‖(I + A2)−β/2e−At(I − PA(λ))φ‖2

= ‖B‖2
L(U,Xβ)

∫ ∞
λ

(1 + µ2)−βe−2µtd‖PA(µ)φ‖2.

Recall that β ≤ 0. Let Θ > 0 to be specified later. For µ, t > 0 we estimate

(1+µ2)−βe−µt ≤

(
1 +

(
−2β

t

)2
)−β
≤ exp

(
CΘ

tΘ
− β

)
, CΘ = 2Θ(−β)Θ+1

(
2 + Θ

Θ

)
,

where the first inequality follows by maximizing with respect to µ, and the second
one follows from the inequality ln(1 + x) ≤ (2/Θ + 1)xΘ/2 + 1 for x ≥ 0. Hence,

G⊥λ (t) ≤ ‖B‖2
L(U,Xβ)

∫ ∞
λ

eCΘ/t
Θ−β−µtd‖PA(µ)φ‖2 ≤ ‖B‖2

L(U,Xβ)e
CΘ/t

Θ−β−λt/2F (t/2).

(83)
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Similarly we find

F⊥λ (t) =

∫ ∞
λ

e−2µtd‖PA(µ)φ‖2 ≤ e−3λt/2

∫ ∞
λ

e−µt/2d‖PA(µ)φ‖2 ≤ e−3λt/2F (t/4).

From the last inequality and Ineq. (82) we obtain

F (t) = Fλ(t) + F⊥λ (t) ≤ 2d0ed1λγ

t

∫ t

t/2

Gλ(τ)dτ + e−3λt/2F (t/4).

Since Gλ(t) ≤ 2(G⊥λ (t) +G(t)) and by Ineq. (83) we obtain for all t ∈ (0, T ] and all
λ > 0

F (t) ≤ 4d0ed1λγ

t

∫ t

t/2

(G⊥λ (τ) +G(τ))dτ + e−3λt/2F (t/4)

≤ 4d0ed1λγ

t

∫ t

t/2

G(τ)dτ +
4d0e−βed1λγ‖B‖2

L(U,Xβ)

t

∫ t

t/2

F (τ/2)

eλτ/2−CΘ/tΘ
dτ +

F (t/4)

e3λt/2
.

Since F (τ/2) ≤ F (t/4), e−λτ/2 ≤ e−λt/4, and eCΘ/τ
Θ ≤ e2ΘCΘ/t

Θ for τ ≥ t/2, we
obtain

F (t) ≤ 4d0ed1λγ

t

∫ t

t/2

G(τ)dτ + e−λt/4+2ΘCΘ/t
Θ
(

2d0e−βed1λγ‖B‖2
L(U,Xβ) + 1

)
F (t/4)

≤ 4d0ed1λγ

t

∫ t

t/2

G(τ)dτ + e−λt/4+2ΘCΘ/t
Θ+d1λγ

(
2d0e−β‖B‖2

L(U,Xβ) + 1
)
F (t/4).

With the notation

D1(t, λ) =
4d0ed1λγ

t

∫ t

t/2

G(τ)dτ, and

D2(t, λ) = e−λt/4+2ΘCΘ/t
Θ+d1λγ

(
2d0e−β‖B‖2

L(U,Xβ) + 1
)

we can summarize that for all t ∈ (0, T ] we have

F (t) ≤ D1(t, λ) +D2(t, λ)F (t/4). (84)

This inequality can be iterated. For k ∈ N0 let λk = ναk with ν > 0 and α > 1 to be
specified later. In particular, applying Ineq. (84) with t = T and λ = λ0 at the first
place, the term F (4−1T ) on the right hand side can then be estimated by Ineq. (84)
with t = 4−1T and λ = λ1. This way, we obtain after two steps

F (T ) ≤ D1(T, λ0) +D2(T, λ0)
(
D1(4−1T, λ1) +D2(4−1T, λ1)F (4−2T )

)
= D1(T, λ0) +D1(4−1T, λ1)D2(T, λ0) +D2(T, λ0)D2(4−1T, λ1)F (4−2T ).
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After N + 1 steps of this type we obtain

F (T ) ≤ D1(T, λ0)+
N∑
k=1

D1(4−kT, λk)
k−1∏
l=0

D2(4−lT, λl)+F (4−N−1T )
N∏
k=0

D2(4−kT, λk).

(85)
In order to study the limit N → ∞, we assume that 4Θ+1 ≤ α, αγ ≤ α/4, and
νT > 2Θ+2CΘT

−Θ + d1ν
γα. This ensures that the constants

K1 = 2d0e−β‖B‖2
L(U,Xβ)+1, K2 = νT/4−2ΘCΘ/T

Θ−d1ν
γ, K3 =

K2

α/4− 1
−d1ν

γ

(86)
are positive. Then we have that

N∏
k=0

D2(4−kT, λk) = KN+1
1

N∏
k=0

e−ν(α/4)kT/4+2ΘCΘ4Θk/TΘ+d1νγ(αγ)k

≤ KN+1
1

N∏
k=0

e(α/4)k(−νT/4+2ΘCΘ/T
Θ+d1νγ) = KN+1

1

N∏
k=0

e−K2(α/4)k

(87)
Since K1, K2 > 0 and α > 4 this tends to zero as N tends to infinity. From Ineq. (87)
and the Definitions of D1(4

−kT, λk) and K3, we infer that the middle term of the
right hand side of Ineq. (85) obeys the upper bound

N∑
k=1

D1(4−kT, λk)
k−1∏
l=0

D2(4−lT, λl)

≤
∫ T

0

G(τ)dτ
N∑
k=1

4k+1d0 exp(d1ν
γ(α/4)k)

T
Kk

1 exp

(
−K2

(α/4)k − 1

α/4− 1

)

=

∫ T

0

G(τ)dτ
4d0

T
exp

(
K2

α/4− 1

) N∑
k=1

(4K1)k exp
(
−K3(α/4)k

)
. (88)

Letting N tend to infinity we obtain from Ineqs. (85), (87) and (88) that

∥∥e−ATφ
∥∥2 ≤ C̃2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt,

where

C̃2
obs =

4d0ed1νγ

T
+

4d0

T
exp

(
K2

α/4− 1

) ∞∑
k=1

(4K1)k exp
(
−K3(α/4)k

)
. (89)

We choose α and ν as in (90) and conclude the observability inequality (81) from
Lemma 6.5.
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It remains to establish null-controllability. This follows by the Hilbert Uniqueness
Method (HUM) as in [TT11]. In fact, we define the operator G ∈ L(L2([0, T ], U), X)

by its adjoint
(G∗φ)(t) = B∗e−Atφ.

Note that ‖G∗φ‖2 = G(t). Applying Ineq. (81) we obtain

‖e−ATφ‖2 ≤ Cobs‖G∗φ‖2
L2([0,T ],U).

By Lemma 2.1 from [TT11] we infer that there is H ∈ L(X,L2([0, T ], U)) such that
GH = −e−AT . Moreover, the norm is bounded by ‖H‖L(X,L2([0,T ],U)) ≤ Cobs. We now
choose a control function f ∈ L2([0, T ], U) via f(T − t) = (Hz)(t). Then we have
for all φ ∈ X

〈e−AT z, φ〉 = −〈Hz,G∗φ〉L2([0,T ],U) = −
∫ T

0

〈f(T − t), B∗e−Atφ〉Udt

=

∫ T

0

〈e−A(T−t)Bf(t), φ〉dt.

Hence, the solution of the system (79) with our choice of f satisfies

u(T ) = e−AT z +

∫ T

0

e−A(T−s)Bu(s)ds = 0.

Lemma 6.5. Let d0 > 0 , d1 ≥ 0, γ ∈ (0, 1), T > 0,

Θ =
γ2

1− γ
, α = 8 · 4

1
1−γ , and ν =

(
αd1

T
+

D

T 1−γ +
E

T

) 1
1−γ

, (90)

where

D = (3α ln(4K1))1−γ, E =

(
8 · 2ΘCΘ

D

) 1−γ
γ

, CΘ = 2Θ(−β)Θ+1

(
2 + Θ

Θ

)
,

and K1 = 2d0e
−β‖B‖2

L(U,Xβ) + 1. Then we have 4Θ+1 ≤ α, αγ ≤ α/4, and νT >

2Θ+2CΘT
−Θ + d1ν

γα. Moreover, for all T > 0 the constant C̃2
obs from (89) satisfies

C̃2
obs ≤

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)
.

Here, Ci > 0, i ∈ {1, 2, 3, 4}, are constants depending only on γ. They are explicitely
given by Eq. (93).
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Proof. It is easy to see that 4Θ+1 ≤ α, and αγ ≤ α/4. For the constant K3 from
(86) we have

K3 =
νT/4− 2ΘCΘ/T

Θ − d1ν
γα/4

(α/4− 1)

=
νγ

α− 4

[(
αd1

T
+

D

T 1−γ +
E

T

)
T − 4 · 2ΘCΘ

TΘ

(
αd1

T
+

D

T 1−γ +
E

T

)− γ
1−γ

− d1α

]

≥ νγ

α− 4

[
DT γ − 4 · 2ΘCΘ

TΘ

E
−γ
1−γ

T
−γ
1−γ

]
=

νγDT γ

2(α− 4)
.

This shows in particular that νT > 2Θ+2CΘT
−Θ + d1ν

γα. We further estimate

K3 ≥
(

D
T 1−γ

)γ/(1−γ)
DT γ

2(α− 4)
=
D1/(1−γ)

2(α− 4)
.

For the constant K2 from (86) we estimate using α ≥ 8

K2

α/4− 1
≤ νT/2 =

T

2

(
αd1

T
+

D

T 1−γ +
E

T

) 1
1−γ

≤ α
1

1−γ

2

(
αd1 + E

T γ
+D

) 1
1−γ

.

Let us now note that for all A > 1, and B > 0 we have

∞∑
k=1

Ake−B2k ≤
(

2 lnA

Be ln 2

) lnA
ln 2 1

B
, (91)

since
∞∑
k=1

e−
B
2

2k ≤
∞∑
k=1

e−kB =
e−B

1− e−B
=

1

eB − 1
≤ 1

B

and
∞∑
k=1

Ake−B2k ≤ sup
x≥1

(Axe−
B
2

2x)
∞∑
k=1

e−
B
2

2k =

(
2 lnA

Be ln 2

) lnA
ln 2

∞∑
k=1

e−
B
2

2k .

We use α ≥ 8 and apply Ineq. (91) with A = 4K1 > 1, and B = K3 to obtain

∞∑
k=1

(4K1)k exp
(
−K3(α/4)k

)
≤

∞∑
k=1

(4K1)k exp
(
−K32k

)
≤
(

2 ln(4K1)

K3e ln 2

) ln(4K1)
ln 2 1

K3

.

(92)
By the above estimate on K3 and since α > 4 we find

2 ln(4K1)

K3e ln 2
≤ 2

e ln 2

ln(4K1)2(α− 4)

D1/(1−γ)
=

2

e ln 2

2(α− 4)

3α
≤ 1.
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Note that the exponent ln(4K1)/ ln 2 in (92) is positive, and that D ≥ 1. Hence, the
right hand side of (92) is bounded from above by 2(α− 4). Using this, α ≥ 8, and
d1ν

γ ≤ d1ν
γ +K3 = K2/(α/4− 1), we find

C̃2
obs =

4d0ed1νγ

T
+

4d0

T
exp

(
K2

α/4− 1

) ∞∑
k=1

(4K1)k exp
(
−K3(α/4)k

)
≤ 4d0

T
(1 +K−1

3 ) exp

(
K2

α/4− 1

)
≤ 4d0

T
(1 + 2(α− 4)) exp

(
α

1
1−γ

2

(
αd1 + E

T γ
+D

) 1
1−γ
)
,

Since (a+ b)x ≤ 2x−1(ax + bx) for x > 1 and a, b ≥ 0 we obtain

C̃2
obs ≤

4d0

T
(1 + 2(α− 4)) (4K1)3α

2−γ
1−γ 22Θ+3

× exp

(
α

2
1−γ 4

γ+Θ+2
1−γ

(
Θ + 2

Θ

) 1
1−γ
(
d1 + (−β)Θ+1

T γ

) 1
1−γ
)
.

(93)
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Theorem 6.4 translates spectral inequalities into null-controllability of the corre-
sponding controlled Cauchy problem with explicit estimates on the control cost
in all times. In the situation where A = −∆ + V , a Schrödinger operator on a
generalized rectangle Γ, and B is the characteristic function of a set Sδ,Z(Γ) as in
Definition 3.26, the unique continuation principles in Subsection 3.2 are precisely such
spectral inequalities. Furthermore, if Γ is Rd or a cube ΛL with periodic boundary
conditions, and S is a thick set as in Definition 3.42, then the Logvinenko-Sereda
theorem is a spectral inequality. We will now combine these ingredients.

We assume that Γ ⊂ Rd is a generalized rectangle as in Definition 2.2 and S ⊂ Γ is
a suitable control set to be specified below. For V ∈ L∞ we consider the controlled
heat equation with heat generation term (−V ).

∂

∂t
u−∆u+ V u = f1S, u(0, ·) = u0 ∈ L2(Γ), (94)

where, T > 0, V ∈ L∞(Γ) is non-negative, and ∆ stands for the self-adjoint Laplace
operator in L2(Γ) subject to Dirichlet, Neumann or periodic boundary conditions. If
Γ = Rd, ∆ denotes the standard Laplace operator in L2(Rd) with domain H2(Rd).
Note that we simultaneously treat bounded and unbounded domains such as Rd,
half-spaces, infinite strips, or cubes.
We will consider two geometric situations for the control set S ⊂ Γ.
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Situation 1: There exist M > 0 such that the set Γ contains an elementary cell of
the lattice MZd, a parameter δ < M/2, and a (M, δ) equidistributed sequence
Z. In this case, we set S = Sδ,Z(Γ), the union of δ-balls defined in Definition 3.26
above.

Situation 2: We set V ≡ 0 and let Γ ∈ {ΛL,Rd} where ΛL is equipped with
periodic boundary conditions. We set S = Γ ∩ F where F is a (ρ, a)-thick
set as in Definition 3.42. In case Γ = ΛL, we further assume aj ≤ L for all
j ∈ {1, . . . , d}.

The spectral inequality is then satisfied - either by the scale-free quantitative unique
continuation principle from Subsection 3.2, Theorem 3.13, or by the Logvinenko-
Sereda theorem in the form of Corollary 3.45, discussed in Subsection 3.5. This is
summarized by the following proposition:

Proposition 6.6. Let either Situation 1 or Situation 2 from above hold. Then for
all λ ≥ 0 and all φ ∈ L2(Γ) we have

‖P−∆+V (λ)φ‖2
L2(Γ) ≤ d0ed1λρ‖1S∩ΓP−∆+V (λ)φ‖2

L2(Γ)

where

d0 =

(
M

δ

)C(1+M4/3‖V ‖2/3∞ )

, d1 = M ln

(
M

δ

)
in Situation 1,

d0 =

(
C̃d

ρ

)Cd

, d1 = 4C̃|a|1 ln

(
C̃d

ρ

)
in Situation 2.

Here, C ≥ 1 is a constant depending only on the dimension, and C̃ ≥ 1 is an absolute
constant.

Note that in Situation 2, Proposition 6.6 is essentially the statement of Theorems 7
and 8 in [EV18]. We also emphasize that Theorem 6.4 requires that the operator
A is non-negative. Thus, in Situation 1, in order to combine Theorem 6.4 with
Proposition 6.6, we need to assume that the operator −∆ +V is non-negative, which
is definitely ensured by assuming V ≥ 0. It is rather straightforward to naively
adapt Theorem 6.4 to lower semibounded operators. However, if the operator A
is merely lower semibounded, then the dynamics of the system will dramatically
depend on the sign of the lower bound. If the operator A satisfies A ≥ λ0 > 0, then
the uncontrolled system will have a natural tendency to exponentially converge to
the zero state and the cost of null-controllability in large times will be exponentially
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decaying. Conversely, if A has some spectrum in (−∞, 0), then the free system will
have a tendency to exponentially blow up in time and the control cost is expected to
be much larger (in fact, it will not converge to zero, even in the large time limit). In
order to deduce optimal estimates in both these situations, a careful discussion is
required which we perform below in the context of Theorems 6.11 and 6.14.

6.3.1. Nonnegative generator

Let us first dwell on the situation when −∆ + V is non-negative (or, more precisely
when V ≥ 0) without yet exploiting possible positive definiteness of −∆ + V . In
this situation, we can already discuss homogenization as well as de-homogenization.
Theorem 6.4 and Proposition 6.6 yield:

Theorem 6.7 (Equidistributed sets). Let Situation 1 from above hold and assume
additionally that 0 ≤ V . Then, for all φ ∈ L2(Γ) and all T > 0, we have

‖e(∆−V )Tφ‖2
L2(Γ) ≤ Cobs

∫ T

0

‖e(∆−V )tφ‖2
L2(Sδ,Z(Γ))dt,

where

Cobs =
C1

T

(
δ

M

)−C2(1+M4/3‖V ‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T

)
.

Here, C1, C2, and C3 are positive constants depending only on the dimension. More-
over, for all T > 0 and all u0 ∈ L2(Γ) system (94) with S = Sδ,Z(Γ) is null-controllable
in time T with cost C ≤

√
Cobs.

Theorem 6.8 (Thick sets). Let Situation 2 from above hold. Then for all φ ∈ L2(Γ),
and all T > 0 we have

‖e∆T‖2
L2(Γ) ≤ Cobs

∫ T

0

‖e∆tφ‖2
L2(S∩Γ)dt,

where

Cobs =
C1

T
ρ−C2d exp

(
C3|a|21 ln2(Cd

4/ρ)

T

)
Here, C1, C2, C3, and C4 are absolute positive constants. Moreover, for all T > 0 and
all u0 ∈ L2(Γ) the system (94) is null-controllable in time T with cost C ≤

√
Cobs.

Theorem 6.8 is an improvement of Thoerems 3 and 4 in [EV18] in the sense that
the expression for Cobs is sharper. More precisely in Theorem 6.8, the argument
of the exponential term in Cobs is proportional to |a|21 whereas the constant in the
corresponding expression in [EV18] is not. We are going to see in the discussion and
the examples below that the of the exponent on |a|1 as in Theorem 6.8 is natural.
Let us now discuss some consequences of Theorems 6.7 and Theorem 6.8.
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Example 1 (Homogenization counteracts the exponential singularity of the control
cost in time T = 0). We consider the controlled (classic) heat equation in Rd or
on a hypercube ΛL with periodic boundary conditions, where the control set becomes
more and more homogenized. More precisely, we fix a time T > 0 and a density
ρ ∈ (0, 1). Given a vector a with positive entries, we choose a (ρ, a)-thick set Sa.
Then, Theorem 6.8 yields null-controllability of the heat equation with control on Sa
with cost satisfying

C2 ≤ C1

T
ρ−C2d exp

(
C3|a|21 ln2(Cd

4/ρ)

T

)
We could also work with Theorem 6.7, equidistributed sets and V = 0, but thick sets
are more general, whence we stick to them here. Homogenizing now means that we
let the vector a tend to zero while keeping ρ constant. This corresponds to reducing
local fluctuations in the density of the control set Sa while keeping the overall density
of the control. The estimate on the cost in this case tends to

C ∼

√
C1

ρC2d2

1√
T
. (95)

While the large time asymptotic behavior stays roughly the same, the small time
behavior is improved in the a→ 0 limit. We conclude that homogenization counteracts
the exp(1/T ) singularity of the control cost in time T = 0.

Remark 6.9. Another way to interpret Example 1 is that homogenization effectively
reduces the control cost of the system to the control cost of a one-dimensional system.
Let us explain this: We choose the Hilbert space C and study the system

∂

∂t
u = Cf, u(0) = u0 ∈ C, (96)

where u, f ∈ L2([0, T ]) and C is a positive constant. We claim that for every T > 0,
this system has control cost C = (C

√
T )−1 in time T > 0.

This can be seen as by a simple calculation: for u0 ∈ C, and T > 0 the function
f(t) = −u0/(CT ) is a null-control and we have

‖f‖L2([0,T ]) =
|u0|
CT

(∫ T

0

dt

)1/2

=
|u0|
C
√
T
, which implies C ≤ (C

√
T )−1.

Conversely, assume that we have u0 ∈ C and a control f ∈ L2([0, T ]) such that the
solution of (96) satisfies u(T ) = 0. Then

0 = u(T ) = u0 + C

∫ T

0

∂

∂t
u(t)dt = u0 + C

∫ T

0

f(t)dt
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6.3. Explicit control cost of heat-type equations

whence by the Cauchy-Schwarz inequality

|u(0)| ≤
√
TC‖f‖L2([0,T ]), which implies C ≥ (C

√
T )−1.

Comparing this with the homogenization limit of the control cost, obtained in (95),
we conclude that in the homogenization regime, our estimate on the control cost
tends to the control cost of the controlled one-dimensional ODE system (96) where
the constant C is polynomial in the density ρ of the thick set.

Example 2 (Homogenization annihilates the effects of non-negative potentials on
the control cost). We now assume that V ≥ 0 is a non-negative potential and study
the control cost of the heat-type equation on a generalized rectangle Γ (e.g. on Γ = Rd)
in the homogenization regime. For sufficiently small M > 0, and δ < M/2, we choose
a (M, δ)-equidistributed sequence Z and the set Sδ,Z(Γ) as the union of δ-balls. Then,
Theorem 6.7 yields null-controllability of the system (94) with cost

C2 ≤ C1

T

(
δ

M

)−C2(1+M4/3‖V ‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T

)
.

Homogenization now means sending M and δ to zero while keeping δ/M constant.
In this limit, we have for our estimate on the control cost

C ∼
√
C1

T

(
δ

M

)−C2/2

which is independent of V . In particular, homogenization of the control set will make
the effect of the potential on the control cost disappear. We emphasize that apart
from boundedness, no regularity assumption on V has been made.

Example 3 (De-homogenization or coarsening). For this example let us go back to the
situation of Example 1 above, i.e. V = 0, and Γ = Rd. Instead of homogenizing, we
now want to de-homogenize or study the coarsening regime of the (ρ, a)-equidistributed
control set by letting a tend to infinity while keeping ρ constant. This corresponds to
an increase in fluctuations of the density of the control set on all finite scales while
the overall density remains constant. It is unsurprising that for fixed time T , our
upper bound on the control cost will in general increase since the diffusive nature of
the heat equation makes it harder for components of the control set to exert control
in larger and larger areas where there is no or only little control. Let us now have a
closer look at the estimate on the control cost from Theorem 6.8

C ≤ C1

T
ρ−C2d2

exp

(
C3|a|21 ln2(Cd

4/ρ)

T

)
.
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6. Application to control theory for heat-type equations

−→ −→

Figure 5: Homogenization limit δ,M → 0 with δ/M = const

There are three model parameters here: the parameters ρ and a, describing the
geometry of the control set, and the time T . Since we already chose ρ and a, the only
remaining way to accommodate for the increase in our upper bound when a tends to
infinity is to modify the remaining parameter T by choosing

T ∼ |a|21

(with a small, logarithmic correction in order to compensate for the 1/T term in
front of the exponential). We have recovered the relation between time and space
derivatives

∂

∂t
u = ∆u

from the underlying heat equation. This is an indication that our estimates on the
control cost with respect to time and space parameters are close to being optimal.

6.3.2. Lower semibounded generator

So far, we have investigated the situation where V was assumed to be non-negative.
However, our estimates did not distinguish between non-negative V and potentials
V which are strictly positive and bounded away from zero. Furthermore, we now
also want to be able to treat the case of possibly negative V .

For this purpose, let us denote λ0 := inf σ(−∆ + V ). Depending on the sign of λ0,
there are two very different situations:

If λ0 > 0: In this case, the semigroup e(∆−V )t describing the evolution of the free
system is strictly contractive and if T tends to ∞, solutions will exponentially
tend to zero. Of course, one could simply resort to Theorem 6.7 above, but this
would be non-optimal since it does not take the strict positivity of −∆ + V

into account. In fact, a good control strategy for large times T would be to
first let the system evolve without control until a time T0 < T and then use
Theorem 6.4 and apply control for times t ∈ (T − T0, T ).
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6.3. Explicit control cost of heat-type equations

If λ0 < 0: In this case, the semigroup e(∆−V )t will not be contractive. Initial states
from the negative spectral subspace of −∆ + V will grow exponentially under
the time evolution. Thus, there is a conflict of interest between “quickly killing
the expanding part”, which is expensive (remember the exp(1/T ) singularity
in the control cost in time T = 0) and “taking as much time as possible” to
reduce the cost for killing the positive energy part of the system.

Before generalizing Theorem 6.7 to these situations, let us start by providing some
lower bounds on the control cost. They shall serve as benchmarks for us.

Lemma 6.10. Let V ∈ L∞, let Ω ⊂ Rd be an open, bounded domain and let ω ⊂ Ω

such that the system

∂

∂t
u−∆u+ V u = 1ωf, u(0) = u0 ∈ L2(Ω), (97)

is null-controllable in every time T > 0 where we put Dirichlet or – if the geometry
allows for it – Neumann or periodic boundary conditions on ∂Ω. Denote λ0 :=

inf σ(−∆ + V ). Then, for every T > 0, the control cost of system (97) in time T is
at least

•
√
|2λ0|, if λ0 < 0,

•
√

2λ0 exp(−λ0T ), if λ0 > 0,

•
√
T
−1
, if λ0 = 0.

Proof. The operator ∆ + V in L2(Ω) has eigenvalues {λk}k∈N, where λ1 = λ0, with
corresponding normalized eigenfunctions {φk}k∈N. We choose u0 := φ1 as initial state
and pick for T > 0 a control function f ∈ L2([0, T ]×Ω) such that the solution of (97)
satisfies u(T ) = 0. We want to lower bound ‖f‖L2([0,T ]×ω) = ‖1ωf‖L2([0,T ]×Ω). For
that purpose, we expand the function 1ωf in the eigenfunction basis of −∆ + V , i.e.
(1ωf)(t) =

∑∞
k=1 αk(t)φk for t ∈ [0, T ] with αk(·) ∈ L2([0, T ]) for all k ∈ N. Then,

by (77), we have

0 = exp(−λ0T )φ1 +

∫ T

0

∞∑
k=1

exp(−λk(T − s)αk(s)φkds.
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6. Application to control theory for heat-type equations

Projecting onto φ1, and using the Cauchy Schwarz inequality in L2([0, T ]) yields for
λ0 6= 0

exp(−λ0T ) = −
∫ T

0

exp(−λ0(T − s))α1(s)ds

≤
(∫ T

0

exp(−2λ0(T − s))ds
)1/2

·
(∫ T

0

|α1(s)|2ds

)1/2

=

(
−e−2λ0T − 1

2λ0

)1/2

·
(∫ T

0

|α1(s)|2ds

)1/2

≤
(
−e−2λ0T − 1

2λ0

)1/2

· ‖f‖L2([0,T ]×Ω).

Rearranging, we find

‖f‖2
L2([0,T ]×Ω) ≥

−2λ0 exp(−2λ0T )

exp(−2λ0T )− 1
=

−2λ0

1− exp(2λ0T )
.

If λ0 < 0, this is bounded away from zero, uniformly in T , and if λ0 > 0, the cost
cannot converge to zero faster than ∼ exp(−2λ0T ). The statement for λ0 = 0 follows
by a completely analogous calculation.

In particular, we see that if λ0 < 0, the control cost is strictly bounded away from
zero in all times – in contrast to the situation λ0 ≥ 0, where the control cost vanishes
in the large time limit. However, it remains unclear whether the lower bound

√
|2λ0|

is optimal.
Equipped with the lower bounds of Lemma 6.10, we can now discuss upper bounds

on the control cost. We start with the case λ0 ≥ 0.

Theorem 6.11 (Control cost if λ0 ≥ 0). Let M > 0, Γ ⊂ Rd a generalized rectangle,
containing at least one elementary cell of the lattice MZd, δ ∈ (0,M/2), Z a (M, δ)-
equidistributed sequence Z, and V ∈ L∞(Γ) such that inf σ(−∆+V ) = λ0 ≥ 0. Then,
for all φ ∈ L2(Γ), and all T > 0, the system (94) is null-controllable in time T with
cost satisfying

C2 ≤ inf
T0∈(0,T )

C1

T − T0

(
δ

M

)−C2(1+M4/3‖V ‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T − T0

− 2λ0T0

)
.

Proof. By contractivity of the semigroup we have for all u0 ∈ L2(Γ) that

‖e(∆−V )T0φ‖L2(Γ) ≤ e−2λ0T0‖φ‖L2(Γ).

Applying no control in [0, T0] implies that ‖u(T0)‖2 ≤ e−2λ0T0‖u0‖2. Applying then
Theorem 6.4 and Proposition 6.6 with the initial state u(T0) in the remaining time
interval of length T − T0 yields the result.
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6.3. Explicit control cost of heat-type equations

Remark 6.12. If λ0 > 0, one could now optimize over T0. We refrain from doing so
and merely note that for large times T , the choice T0 = T − 1 shows that

C ≤ C1

(
δ

M

)−C2(1+M4/3‖V ‖2/3∞ )

exp
(
C3M

2 ln2(δ/M) + 2λ0 − 2λ0T
)
∼ exp(−2λ0T ).

This means that in the large time limit, the upper bound coincides (up to a T -
independent factor) with the lower bound of Lemma 6.10.

In the situation where λ0 < 0, we have to go one step further back, namely to
the level of the observability estimate. The following proposition generalizes the
observability estimate from Theorem 6.4:

Proposition 6.13. In the situation of Theorem 6.4 assume that the operator A is
only lower semibounded by λ0 < 0 and that for all λ ≥ λ0 and all φ ∈ X we have the
spectral inequality

‖PA(λ)φ‖2 ≤ d0ed1(λ−λ0)γ‖B∗PA(λ)φ‖2
U . (98)

Then for all T > 0 and all φ ∈ X we have the observability estimate∥∥e−ATφ
∥∥2 ≤ Cobs

∫ T

0

e−2λ0(T−t)∥∥B∗e−Atφ∥∥2

U
dt

≤ Cobse
−2λ0T

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt

with Cobs as in Theorem 6.4.

Proof. Clearly, PA(λ) = PA−λ0(λ− λ0). Hence, we have for all µ ≥ 0 that

‖PA−λ0(µ)φ‖2 ≤ d0ed1µγ‖B∗PA−λ0(µ)φ‖2
U

and since the operator A − µ is non-negative, we obtain from Theorem 6.4 the
observability estimate∥∥e−(A−λ0)Tφ

∥∥2 ≤ Cobs

∫ T

0

∥∥B∗e−(A−λ0)tφ
∥∥2

U
dt = Cobs

∫ T

0

e2λ0t
∥∥B∗e−Atφ∥∥2

U
dt

Dividing by e2λ0T yields the result.

One could now proceed as in Theorem 6.4. Combining the previous proposition
with Corollary 3.15, it would follow that in every time T > 0 the system (94) is
null-controllable with cost satisfying

C2 ≤ C1

T

(
δ

M

)−C2(1+M4/3‖V−λ0‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T
− 2λ0T

)
. (99)
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Uncommented, this would be a rather non-optimal statement: Since λ0 < 0, the
upper bound increases exponentially with large times. However, the control cost
must be nonincreasing in time: If there exists a control function that drives the
system to zero in time T , then this function, continued by zero, will also work for all
larger times.
Therefore, we arrive at the following theorem:

Theorem 6.14 (Control cost if λ0 < 0). Let M > 0, Γ ⊂ Rd a generalized rectangle,
containing at least one elementary cell of the lattice MZd, δ ∈ (0,M/2), Z a (M, δ)-
equidistributed sequence Z, and V ∈ L∞(Γ) such that inf σ(−∆+V ) = λ0 < 0. Then,
for all φ ∈ L2(Γ), and all T > 0, the system (94) is null-controllable in time T with
control cost satisfying

C2 ≤ min
T ′∈(0,T ]

C1

T ′

(
δ

M

)−C2(1+M4/3‖V−λ0‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T ′
− 2λ0T

′
)
. (100)

Proof. Let T > 0 and T ′ ∈ (0, T ]. Corollary 3.15 implies the spectral inequality

‖φ‖2
L2(Γ) ≤ d0ed1(λ−λ0)1/2‖φ‖2

L2(Sδ,Z(Γ))

for all λ ≥ λ0 and all φ ∈ RanP−∆+V (λ) where

d0 =

(
M

δ

)C(1+M4/3‖V−λ0‖2/3∞ )

, and d1 = M ln

(
M

δ

)
.

We combine this spectral inequality with Proposition 6.13 and use the HUM
method as at the end of Theorem 6.4 to deduce null-controllability in time T ′ with
control cost satisfying

C2 ≤ C1

T ′

(
δ

M

)−C2(1+M4/3‖V−λ0‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T ′
− 2λ0T

′
)
.

Since any control function null-controlling the system in time T ′ can be extended
by zero in (T ′, T ] and hence null-controls the system in time T ≥ T ′, we obtain
null-controllability in time T with the same cost.

In order to discuss this bound, let us define the following quantity:

Definition 6.15. The control cost in infinite time C∞ is

C∞ := lim
T→∞
{Control cost C in time T} = inf

T>0
{Control cost C in time T}.
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From Theorems 6.7 and 6.11 it follows that if λ0 ≥ 0, the quantity C∞ is zero and
thus trivial. In case where λ0 < 0, Lemma 6.10 shows that the control cost in this
case is strictly positive and at least

√
|2λ0|. Thus, in this case, it is worthwhile to

study upper bounds on C∞. By elementary calculus, it is easy to see that the term

C1

T ′

(
δ

M

)−C2(1+M4/3‖V−λ0‖2/3∞ )

exp

(
C3M

2 ln2(δ/M)

T ′
− 2λ0T

′
)
,

on the left hand side of (100) in Theorem 6.14 takes its overall minimum over
T ′ ∈ (0,∞) at

T ′ =
1 +

√
1− 8λ0C3M2 ln2(δ/M)

−4λ0

whence we find

−2λ0 ≤ C2
∞ ≤

≤ −4λ0C1

(
δ

M

)−C2(1+M4/3‖V−λ0‖2/3∞ ) exp

(
1 +

√
1− 8λ0C3M2 ln2(δ/M)

)
1 +

√
1− 8λ0C3M2 ln2(δ/M)

in the situation of Theorem 6.14. Comparing the λ0-dependence, we see that for
λ0 → −∞, there is still a discrepancy between the upper and the lower bound.
We conclude this section by discussing homogenization and de-homogenization,

analogous to Examples 1 to 3.

Example 4 (Homogenization for all λ0). Let us assume that V 6≡ 0 and that Γ ⊂ Rd

is a generalized rectangle. We study the heat-type equation on Γ (where we put
Dirichlet, Neumann or periodic boundary conditions if Γ has non-empty boundary).
For sufficiently small M and δ < M/2, we pick a (M, δ)-equidistributed sequence
and choose S = Sδ,Z(Γ) as union of δ-balls. Then, Theorems 6.11 and 6.14 show
null-controllability of the system 94 with control cost

C2 ≤


inf

T0∈(0,T )

C1

T−T0

(
δ
M

)−C2(1+M4/3‖V ‖2/3∞ )
exp

(
C3M2 ln2(δ/M)

T−T0
− 2λ0T0

)
if λ0 ≥ 0,

min
T ′∈(0,T ]

C1

T ′

(
δ
M

)−C2(1+M4/3‖V−λ0‖2/3∞ )
exp

(
C3M2 ln2(δ/M)

T ′
− 2λ0T

′
)

if λ0 < 0.

Considering again the homogenization limit, i.e. letting M and δ tend to 0 while
keeping δ/M constant, we see that as in Example 1, homogenization will send the
term which is responsible for the exponential singularity of the control cost in T = 0

to zero.
Furthermore, similarly to Example 2, we see that homogenization reduces the effect

of the potential V up to the shift of the ground state energy of the system, caused by
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V . In other words, by homogenizing the control set, we can reduce the effect of the
potential on C to the effect of a constant potential.
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A. Proof of Theorem 3.19 and Lemma 3.20

In this appendix, we prove Theorem 3.19, and Lemma 3.20. We use statements
and proofs from [Täu17] and [TT17]. For our arguments below, it is convenient to
explicitly know the eigenvalues and eigenfunctions of the negative Laplacian −∆L in
L2(ΛL). Depending on the boundary conditions we choose a index set I = N in case
of Dirichlet boundary conditions, I = N0 in case of Neumann boundary conditions,
and I = 2Z in case of periodic boundary conditions. Then, the eigenvalues of −∆L

are given by
λy =

(π
L

)2

|y|22, y ∈ Id, (101)

with corresponding normalized eigenfunctions

ey(x) =



‖ey‖−1

d∏
l=1

sin
(πyl
L

(xl + L/2)
)

in case of Dirichlet b.c.,

‖ey‖−1

d∏
l=1

cos
(πyl
L

(xl + L/2)
)

in case of Neumann b.c.,

‖ey‖−1 exp

(
iπ

L
y · x

)
in case of periodic b.c..

(102)

The normalization constants ‖ey‖−1 can be easily calculated, though we will not
need them. Moreover, there exists a bijection p : N→ Id such that

λp(k), k ∈ N,

is the k-th eigenvalue of −∆L enumerated in increasing order counting multiplicities.
This bijection is unique up to permutations of sites y ∈ Id with the same Euclidean
norm |y|.

A.1. Proof of Theorem 3.19

We will consider the case L = 2π and V = 0 and periodic boundary conditions. We
say that a function f : ΛL → C vanishes to order N > 0 at x0 ∈ ΛL if

lim sup
δ→0

supy∈B(x0,δ)|f(x)|
δN

<∞.

Theorem A.1. Let d ≥ 2. For every N > 0 there is a nonzero function f ∈ L2(ΛL)

with −∆f = λf for some λ > 0 such that f vanishes to order at least N at 0.
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Proof. For λ ≥ 0 let Idλ := {k ∈ Zd : |k|2 = λ} and recall (101), and (102). A
function f ∈ L2(Td) is an eigenfunction to the eigenvalue λ ≥ 0 if and only if f is of
the form

f =
∑

k/2∈Idλ
k∈I

,

µkek =
∑
k∈Idλ

µk exp(ik·), µk ∈ C.

We expand the functions x 7→ exp(ikx) in a Taylor series around 0

exp(ikx)(x) =
∑
α∈Nd0

1

α!
(Dα exp(ik·))(0) · xα =

∑
α∈Nd0

(ik)α

α!
xα

where we used multindex notation, i.e. given α = (α1, ..., αd) ∈ Nd
0, we write

α! := α1! · . . . ·αd!, Dα := ∂α1
x1
. . . ∂αdxd , k

α := kα1
1 · . . . · k

αd
d , |α|1 := α1 + . . .+αd. Then,

f can be expressed as

f(x) =
∑
k∈Idλ

µk exp(ikx) =
∑
α∈Nd0

(ix)α

α!

∑
k∈Idλ

µkk
α

 .

Since the Taylor series is locally absolutely convergent, f vanishes to order N at 0 if
for all α ∈ Nd

0 with |α|1 ≤ N , we have∑
k∈Idλ

µkk
α = 0.

This is a system of finitely many linear equations, indexed by α, with variables
{µk}k∈Iλ . More precisely, we have

]{equations} = ]{α ∈ Nd
0 : |α|1 ≤ N} =: C(N), fixed, once we chose N,

]{variables} = ]{k ∈ Zd : |k|2 = λ}.

If ]{variables} > ]{equations} then there will be a non-trivial solution {µk}k∈Iλ .
This will yield a function f which vanishes to order N at 0. Since f is a nontrivial
linear combination of orthogonal ψk, it is non-zero in L2(ΛL) sense.
Thus, it remains to show that for every C ∈ N, there is λ ≥ 0 such that ]{k ∈

Zd : |k|2 = λ} ≥ C. Clearly, it suffices to establish this in dimension d = 2 and in
this case, the task boils down to finding λ ≥ 0 such that the number of all pairs
(x, y) ∈ Z2 satisfying x2 + y2 = λ exceeds C. For λ ∈ N, this number is explicitly
given by the so-called sum-of-squares theorem, sometimes also referred to as Gauss’s
formula, which can be found in [Gau01]. See also [Fri82, Chapter 1] for a more
modern reference. The sum-of-squares theorem states that for λ ∈ N with prime
factor decomposition

λ = pa1
1 · . . . · p

ak
k · q

b1
1 · . . . · q

bl
l · 2

c,
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where pi are primes of the form 4k + 1 and qi are primes of the form 4k + 3, the
number of pairs (x, y) ∈ Z2 with x2 + y2 = λ is4 · (1 + a1) · . . . · (1 + an) if all bi are even,

0 else.

Choosing e.g. λ = 5C , this implies

]{(x, y) ∈ Z2 : x2 + y2 = λ} = 4 · (1 + C) ≥ C.

An analogous argument works if the Laplacian on the torus is replaced by the
Laplacian on a hypercube with Dirichlet or Neumann boundary conditions.
The above notion of vanishing to order N at a point x0 can be understood as

vanishing with respect to the sup norm. The UCPs we are interested in are then
bounds on the vanishing order with respect to the L2 norm, i.e. estimates of the
form ∫

B(δ)

|f |2 ≥ δM
∫

ΛL

|f |2, 0 < δ ≤ π. (103)

The following lemma clarifies the connection between functions of high vanishing
order and counterexamples to (103).

Lemma A.2. If 0 6= f ∈ L2(ΛL) vanishes of order N at 0, then (103) cannot hold
with M = 2N .

Proof. We estimate by Hölder’s inequality

lim
δ→0

∫
B(δ)
|f |2

δ2N
≤ lim

δ→0
Vol(B(δ)) ·

(
supB(δ)|f |

δN

)2

= 0

where we used that the second term on the right hand side remains bounded as
δ → 0. Thus, Ineq. (103) cannot hold for M = 2N .

Proof of Theorem 3.19. It suffices to consider V = 0, i.e. the case of the pure
Laplacian. By the above lemma, it suffices to find for every N ≥ 0 a function f ∈
RanP−∆([E0−ω,E0]) for some E0 ∈ R that vanishes to order N at 0. Eigenfunctions
are definitely in some RanP−∆([E0 − ω,E0]) and by Theorem A.1, we find an
eigenfunction f , vanishing to order N at 0.

A.2. Proof of Lemma 3.20

Proof of Lemma 3.20. Since the eigenfunctions and eigenvalues of −∆ on ΛL are
explicitly given in (101) and (102), we can replace the sum on the left hand side by∑

k∈N

|Ek|κ|αk|2 =
∑
y∈Id

(π
L

)2κ

|y|2κ2 |〈ey, φ〉|2 ≤
(π
L

)2κ∑
y∈Id
|y|2N2 |〈ey, φ〉|2
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where N ∈ 2N is the least even integer larger than κ. For the eigenfunctions, see
Eq. (102), we have ∂Ni ey = −(π/L)N |yi|Ney for i ∈ {1, · · · , d}. We calculate using
integration by parts

∑
y∈Id
|y|2N2 |〈ey, φ〉|2 ≤ N

d∑
i=1

∑
y∈Id
|yi|2N |〈ey, φ〉|2 = N

(
L

π

)2N d∑
i=1

∑
y∈Id
|〈∂Ni ey, φ〉|2

= N

(
L

π

)2N d∑
i=1

∑
y∈Id
|〈ey, ∂Ni φ〉|2 = N

(
L

π

)2N d∑
i=1

‖∂Ni φ‖2
ΛL
.

B. Constants in the proof of Theorem 3.17

In this appendix, we provide some technical aspects which have been omitted in the
proof of Theorem 3.17. This appendix coincides with [NTTV16, Appendix B], the
preprint of [NTTV18a]

B.1. Cutoff functions

Let f, ψ : R→ [0, 1] be given by

f(x) =

e−1/x x > 0,

0 x ≤ 0,
and ψ(x) =

f(x)

f(x) + f(1− x)
.

Note that the function ψ is C∞(R) and satisfies

sup
x∈R

ψ′(x) ≤ 2 =: C ′, sup
x∈R

ψ′′(x) ≤ 10 =: C ′′, and ψ(x) =

0 if x ≤ 0,

1 if x ≥ 1.

For ε > 0 we define ψε : R→ [0, 1] by

ψε(x) = ψ(x/ε).

Let now A ⊂ Rd+1 and hA : Rd+1 → R with hA(x) ≥ dist(x,A) if x 6∈ A and
hA(x) ≤ 0 if x ∈ A. For ε > 0 we define χ : Rd+1 → [0, 1] by

χA,ε(x) = ψε
(
ε− hA(x)

)
.

Of course, hA(x) := dist(x,A) is a possible choice, but in applications we will require
hA to have certain additional properties. By construction we have (cf. Fig. 6)

χA,ε(x) =

1 if x ∈ A,

0 if dist(x,A) ≥ ε.
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A

χA,ε ≡ 1

ε

χA,ε ∈ [0, 1]

dist(A, x) ≥ ε
χA,ε ≡ 0

Figure 6: Cutoff function χA,ε

B.1.1. The constants Θ2 and Θ3

We want to construct a cutoff function χ ∈ C∞c (Rd+1; [0, 1]) with suppχ ⊂ B(R3)\{0}
and χ(x) = 1 if x ∈ B(r3)\B(R1). We set Ã = B(r3), 2ε̃ = R3− r3, hÃ(x) = |x|− r3

and define
χ̃(x) = χÃ,ε̃(x).

Note that

χ̃(x) =

1 if x ∈ B(r3),

0 if x 6∈ B((r3 +R3)/2).

For the partial derivatives we calculate

(∂iχ̃)(x) = −1

ε̃
ψ′(1− hÃ(x)/ε̃)

xi
|x|
,

(∂2
i χ̃)(x) =

1

ε̃2
ψ′′(1− hÃ(x)/ε̃)

x2
i

|x|2
− 1

ε̃
ψ′(1− hÃ(x)/ε̃)

(
1

|x|
− x2

i

|x|3

)
.

Hence, using ∆χ̃(x) = 0 if x 6∈ B(R3) \B(r3) and 2ε̃ = R3 − r3 = 3e
√
d, we obtain

‖∇χ̃‖∞ ≤
C ′

ε̃
=

4

R3 − r3

=
4

3e
√
d
≤ 1,

‖∆χ̃‖∞ ≤
C ′′

ε̃2
+
C ′

ε̃

d

r3

≤ 80 + 4d

18e2d
≤ 84

18e2
≤ 1.

Analogously we find a function χ̂ with values in [0, 1], χ̂(x) = 0 if x ∈ B(r1), χ̂(x) = 1

if x 6∈ B(R1) and, using R1 − r1 = r1 ≥ δ2/64,

‖∇χ̂‖∞ ≤
C ′

R1 − r1

≤ 128

δ2
,

‖∆χ̃‖∞ ≤
C ′′

(R1 − r1)2
+

C ′

(R1 − r1)

d

r1

≤ 10 · 642

δ4
+

2d642

δ4
≤ 12d642

δ4
.
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|x′|

xd+1

δ√
2

1− a2
0

xhU2(x)

dist(x,U2)
U2

Figure 7: Distance to U2

Our cutoff function χ ∈ C∞c (Rd+1; [0, 1]) with suppχ ⊂ B(R3) \ {0} and χ(x) = 1 if
x ∈ B(r3) \B(R1) can be defined by

χ(x) =


χ(x) = χ̂(x) if x ∈ B(R1) \B(r1),

χ(x) = 1 if x ∈ B(r3) \B(R1),

χ(x) = χ̃(x) if x ∈ B(R3) \B(r3),

and has the properties (recall Vi = B(Ri) \B(ri))

max{‖∆χ‖∞,V1 , ‖|∇χ|‖∞,V1} ≤
12d642

δ4
=:

Θ̃2

δ4
=: Θ2

and
max{‖∆χ‖∞,V3 , ‖|∇χ|‖∞,V3} ≤

4

3e
=: Θ3.

B.1.2. The constant Θ1

We choose A =2, ε = δ2/16 and

hU2(x) = xd+1 − 1 +

√
a2

2 +
|x′|2

2
.

Obviously, hU2(x) ≥ dist(x,U2) if x 6∈ U2 and hU2(x) ≤ 0 if x ∈ U2, cf. Fig. 7. Since
the distance between the sets U2 and Rd+1

+ \ U3 is bounded from below by δ2/16, see
Appendix B.1.3, we find that

χU2,ε(x) =

1 if x ∈ U2,

0 if x ∈ Rd+1
+ \ U3.

For the partial derivatives we calculate for x ∈ U3 \ U2

(∂iχ)(x) = −1

ε
ψ′(1− hU2(x)/ε)

xi
2

(
a2

2 + |x′|2
2

)−1/2

if i ∈ {1, . . . , d},

1 if i = d+ 1,
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and find by using |x′|2 ≤ 1/4 for x ∈ U3 \ U2 and a2
2 ∈ [15/16, 1]

‖∇χU ,ε‖2
∞ ≤

16

466

(
C ′

ε

)2

, hence, ‖∇χU ,ε‖∞ ≤
6

δ2
.

For the second partial derivatives we calculate for i ∈ {1, . . . , d}

(∂2
i χ)(x) =

1

ε2
ψ′′(1− hU(x)/ε)

x2
i

4

(
a2

2 +
|x′|2

2

)−1

− 1

ε
ψ′(1− hU(x)/ε)

[
1

2

(
a2

2 +
|x′|2

2

)−1/2

− x2
i

4

(
a2

2 +
|x′|2

2

)−3/2
]
,

and ∂2
d+1χ(x) = (1/ε2)ψ′′(1− hU(x)/ε). Hence, using |x′|2 ≤ 1/4 for x ∈ U3 \ U2 and

a2
2 ∈ [15/16, 1]

‖∆χ‖∞ ≤
C ′′

ε2
237

233
+

C ′

2εa2

(d+ 8/233) ≤ 162 · 11d

δ4
=:

Θ̃1

δ4
=: Θ1.

B.1.3. Distance of U2 and Rd+1
+ \ U3

The distance between the sets U2 and Rd+1
+ \ U3 is given by the distance between the

two hyperbolas

hi :
(x− 1)2

a2
i

− y2

b2
i

= 1, i ∈ {2, 3}

in {(x, y) ∈ R2 : x, y ≥ 0}, where ai and bi are given by

a2
2 = 1− δ2

4
, a2

3 = 1− δ2

2
and b2

i = 2a2
i .

See Fig. 8 for an illustration. By symmetry we can consider the case y ≥ 0 only. First
we show that in order to estimate the distance between h2 and h3 from below, it is
sufficient to consider the distance between the intersection point of h2 with the x-axis
and h3. For every point (x, y) on h2, we define the distance a(y) between h2 and h3

in x-direction and the distance b(x) in y-direction. This gives rise to a rectangular
triangle with catheti of length a and b. Due to concavity and monotonicity of h2

and h3, considered as functions of x, a lower bound for the distance of (x, y) to h3 is
given by the height of this rectangular triangle, given by

h(x) :=
a(x)b(x)√
a2(x) + b2(x)

.

By a straightforward calculation, we see that b(x) is strictly increasing as a function
of x while a(y) is strictly decreasing as a function of y. Thus, taking the triangle at
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y

x

δ

δ√
2

1− a31− a20
0

h3h2

a

b h

Figure 8: Distance between the hyperbolas h2 and h3

the point (0, δ/
√

2) and moving it along h2, the triangle will always stay below h3,
see Fig. 8. Hence, h evaluated at the point (0, δ/

√
2) is a lower bound for dist(h2, h3).

We have

a(δ/
√

2) = 1−
√

1− δ2

4
and b(0) =

(
1− 1√

2

)
δ.

Hence,

dist(h2, h3) ≥

(
1− 1√

2

)
δ

(
1−

√
1− δ2

4

)
√(

1− 1√
2

)2

δ2 +

(
1−

√
1− δ2

4

)2
.

We use δ2/8 ≤ 1−
√

1− δ2/4 ≤ δ/2 and obtain the bound

dist(h2, h3) ≥

(
1− 1√

2

)
δ2

8

√(
1− 1√

2

)2

+ 1/4

>
δ2

16
.

C. On single-site potentials for the breather model

This appendix coincides with [NTTV18a, Appendix A.1]. We discuss here our
conditions on the single-site potential in the random breather model in Subsection 5.2.
Recall that the ωj were supported in [ω−, ω+] ⊂ [0, 1) whence we consider t ∈ [ω−, ω+]

and δ ∈ [0, 1− ω+].
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Definition C.1. We say that a family {ut}t∈[0,1] of measurable functions ut : Rd → R
satisfies condition

(A) if the ut are uniformly bounded, have uniform compact support and if there
are α1, β1 > 0 and α2, β2 ≥ 0 such that for all t ∈ [ω−, ω+], δ ≤ 1− ω+ there is
x0 = x0(t, δ) ∈ Rd with

ut+δ − ut ≥ α1δ
α21B(x0,β1δβ2 ). (104)

(B) if ut is the dilation of a function u by t, defined as ut(x) := u(x/t) for t > 0

and u0 ≡ 0, where u is the characteristic function of a bounded convex set K
with 0 ∈ K.

(C) if ut is the dilation of a measurable function u which is positive, radially
symmetric, compactly supported, bounded with decreasing radial part ru :

[0,∞) → [0,∞) and such there is a point x̃ > 0 where ru is differentiable,
r′u(x̃) < 0 and ru(x̃) > 0.

(D) if ut is the dilation of a measurable function u which is positive, radially
symmetric, radially decreasing, compactly supported, bounded and which has
a discontinuity away from 0.

(E) if ut is the dilation of a measurable function which is non-positive, radially
symmetric, radially increasing, compactly supported, bounded, and such there
is a point x̃ > 0 where the radial part ru is differentiable, r′u(x̃) > 0 and
ru(x̃) < 0 .

Remark C.2. Condition (A) is the abstract assumption on random Schrödinger
operators monotone in the randomness in Definition 5.5. Conditions (B) to (E) are
relatively easy to verify for specific examples of single-site potentials. In particular,
(C) holds for many natural choices of single-site potentials such as the smooth
function 1|x|<1 exp (1/(|x|2 − 1)) or the hat-potential 1|x|<1(1 − |x|). Furthermore,
we note that if we have families {ut}t∈[0,1] and {vt}t∈[0,1] where ut satisfies (A) and
vt+δ − vt ≥ 0 for all t ∈ [ω−, ω+] and δ ∈ (0, 1− ω+], then the family {ut + vt}t∈[0,1]

also satisfies (A).

Lemma C.3. We have that each of the assumptions (B) to (E) implies (A).

Proof. Assume (B). We will show (A) with α1 = 1, α2 = 0, β2 = 1 and β1 = c, and
hence it is enough to show the existence of a cδ-ball in Kt+δ\Kt.
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For K ⊂ Rd and t > 0 we define Kt := {x ∈ Rd : x/t ∈ K} and K0 := ∅. Without
loss of generality let x := (1, 0, ..., 0) be a point in K which maximizes |x| over K.
For λ ∈ R define the half-space Hλ := {x ∈ Rd : x1 ≤ λ}, where x1 stands for the
first coordinate of x. By scaling, the existence of a cδ-ball in Kt+δ\Kt is equivalent to
the existence of a cδ/(t+δ)-ball in K\Kt/(t+δ). By maximality of (1, 0, ..., 0), we have
K ⊂ H1 and hence Kt/(t+δ) ⊂ Ht/(t+δ). Thus, it is sufficient to find a cδ/(t+δ)-ball in
K\Ht/(t+δ). By convexity of K, the set {z ∈ K : z1 = 1/2} is non-empty and since K
is open, we find z0 ∈ K with z1 = 1/2 and 0 < c < 1/2 such that B(z0, c) ⊂ K. We
define for λ ∈ [0, 1) the setX(λ) ⊂ Rd asX(λ) := B(z0+λ((1, 0, ..., 0)−z0), c·(1−λ)).
By convexity and the fact that (1, 0, ..., 0) ∈ K, we have X(λ) ⊂ K. In fact, let
{xn}n∈N ⊂ K be a sequence with xn → (1, 0, ..., 0). We define open sets Xn(λ) by
replacing (1, 0, ..., 0) by xn in the definition of X(λ). By convexity of K, every Xn is
a subset of K whence

⋃
n∈NXn(λ) ⊂ K. Furthermore we have X(λ) ⊂

⋃
n∈NXn(λ).

Thus X(λ) ⊂ K. We now choose λ := t/(t+ δ). Then X(λ) ∩Hλ = ∅. Noting that
c(1− λ) = cδ/(t+ δ), we see that X(λ) is the desired cδ/(t+ δ)-ball.
Now we assume (C). Let r′u(x̃) = −C1. Then there is ε̃ > 0 such that

ru(x̃+ ε)− ru(x̃) ∈
[
−2εC1,

−ε
2
C1

]
for all |ε| < ε̃. (105)

It is sufficient to prove the following: There are C2, C3 > 0 such that for every
0 ≤ t ≤ ω+ and every 0 < δ ≤ 1− ω+ there is x̂ = x̂(t, δ) such that

ru

(
x̂+ C2δ

t+ δ

)
− ru

(
x̂

t

)
≥ C3δ. (106)

Indeed, by monotonicity of ru, (106) implies that for every x ∈ [x̂, x̂+ C2δ] we have

ru

(
x

t+ δ

)
− ru

(x
t

)
≥ ru

(
x̂+ C2δ

t+ δ

)
− ru

(
x̂

t

)
≥ C3δ

whence (A) holds with x0 := (x̂+ C2δ/2)e1, α1 = C3, β1 = C2/2, α2 = β2 = 1.
In order to see (106), let x̂ = (t + δ)x̃. We choose κ ∈ (0, 1/4) and assume that

x̃− 4κε̃ > 0 (this is no restriction since (105) also holds for smaller ε̃). Furthermore,
we define C2 := κε̃. Now we distinguish two cases. If x̃δ/t ≤ ε̃, then (105) implies

ru

(
x̂+ C2δ

t+ δ

)
− ru

(
x̂

t

)
= ru

(
x̃+ κ

ε̃δ

t+ δ

)
− ru (x̃) + ru (x̃)− ru

(
x̃+ x̃

δ

t

)
≥ −2κC1

ε̃δ

t+ δ
+ C1

x̃δ

2t
≥ δ

C1

2

x̃− 4κε̃

t+ δ
.

If x̃δ/t > ε̃, we use ru(x̃)− ru(x̃+ x̃δ/t) ≥ ru(x̃)− ru(x̃+ ε̃) and (105) to obtain

ru

(
x̂+ C2δ

t+ δ

)
− ru

(
x̂

t

)
≥ −2κC1

ε̃δ

t+ δ
+C1

ε̃

2
=
C1ε̃

2

(
1− 4κδ

t+ δ

)
≥ C1ε̃

2
(1− 4κ) .
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Hence

ru

(
x̂+ C2δ

t+ δ

)
−ru

(
x̂

t

)
≥ C3δ, where C3 := min

{
C1(x̃− 4κε̃)

2
,
C1ε̃(1− 4κ)

2(1− ω+)

}
> 0.

The fact that (D) implies (A) is a consequence of (B). In fact, a functions u as in
(D) can be decomposed u = v+w where v is (a multiple of) a characteristic function
of a ball, centered at the origin, and w is positive, radially symmetric and decreasing.
Indeed, let x0 be the point of discontinuity with the smallest norm. Then we can
take v = (u(x0−)− u(x0+))1B(0,|x0|).

The function v satisfies (A) by (B) (since balls are convex) and we have wt+δ−wt ≥
0. By Remark C.2, the family {ut}t∈[0,1] = {vt +wt}t∈[0,1] also satisfies (A). The case
(E) is an adaptation of (C).
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