
 1

Scheduling of two-machine flowshop with outsourcing lead-

time

Eun-Seok Kima and Ik Sun Leeb,*
a School of Business and Management, Queen Mary University of London, United Kingdom

b School of Business, Dong-A University, Seo-gu, Busan 602-760, Republic of Korea

* Corresponding author. Tel.: +82-51-200-7425

E-mail addresses: e.kim@qmul.ac.uk (Eun-Seok Kim), lis1007@dau.ac.kr. (Ik Sun Lee)

Abstract

This paper considers a two-machine flowshop scheduling problem with outsourcing lead-time.

While the first operation of jobs can be either processed in-house or outsourced to subcontractors,

the second operation of jobs must be processed in-house. Outsourcing a job incurs a job-dependent

outsourcing cost as well as outsourcing lead-time, which implies that the outsourced job becomes

available for the second operation after its outsourcing lead-time. The objective is to minimize the

weighted sum of the outsourcing costs and the scheduling costs which is either makespan or total

completion time. The problems are shown to be NP-hard, and both exact and heuristic algorithms

are developed for the problems. Finally, computational experiments show that the proposed

algorithms provide efficient and effective solutions.

Keywords: Scheduling, Outsourcing, Two-machine flowshop, Branch-and-bound, Heuristic

 2

1. Introduction

Outsourcing is the business practice of hiring a party outside a company to perform services and

create goods that traditionally were performed in-house by the company's own resources. Since

outsourcing was first recognized as a business practice in 1989 (Drucker, 1989), it is playing a more

and more important role in recent manufacturing industries - proper outsourcing can shorten lead

time, reduce total costs, and make an organization more flexible (Lee and Choi, 2011).

Outsourcing opportunities may exist in different forms in general (Qi, 2011). Some

subcontractors may be able to provide services for all operations; some subcontractors may be

dedicated to one operation only. The manufacturer may fully outsource all jobs to a subcontractor

for one operation, or partially outsource a subset of the jobs. There are various variants of the

problems to be studied. However, the practice of outsourcing makes the problems more complicated

than the literature for various reasons. One reason is the transportation between the subcontractor

and the manufacturer. In many cases, the subcontractors have their own production schedules in a

different location from the manufacturer, which implies that it is unlikely the outsourced jobs to be

delivered on time the manufacturer wants. For this reason, it is important to consider the

outsourcing lead times.

This paper considers a two-machine flowshop model with jobs consisting of two operations.

While the first operation of the jobs can be either processed in the first in-house machine or

outsourced to a subcontractor, the second operation must be processed in the second in-house

machine. If the first operation of a job is outsourced to a subcontractor, then the half-finished job is

delivered from the subcontractor and completed in the second in-house machine. Outsourcing a job

incurs a job-dependent outsourcing cost as well as outsourcing lead-time which reflects necessary

production and delivery time from the subcontractor, and therefore the outsourced job becomes

available for the second operation after its outsourcing lead-time. The objective is to minimize the

 3

weighted sum of the outsourcing costs and the scheduling costs which is either makespan, that is,

the latest completion time of the second operations of the jobs or total completion time.

Many studies have considered the outsourcing strategy in the various production and scheduling

research area. Lee and Sung (2008a, b) studied single-machine scheduling to minimize the weighted

sum of various scheduling measures and the outsourcing costs within an outsourcing budget

constraint, where the scheduling measure is either one of the total completion time, the maximum

lateness and the total tardiness. Zhong and Huo (2013) studied a single machine scheduling problem

to minimize the weighted sum of total processing cost and either makespan or the number of tardy

jobs, where there exists a delivery time as a stepwise function of outsourcing time for an outsourced

job. Hong and Lee (2016) considered another single machine scheduling problem with

subcontractor selection, in order to minimize the total outsourcing cost by considering the due dates

constraints for each job and capacity limits of the subcontractors. Recently, Lu et al. (2020)

considered single machine scheduling problems with outsourcing under different fill rates or

quantity discount rates.

In the parallel machine environments, Chen and Li (2008) studied identical parallel scheduling

to minimize the outsourcing costs within the makespan upper-limit. Mokhtari and Abadi (2013)

considered parallel scheduling to minimize the weighted sum of total completion time and total

outsourcing costs, where the in-house facility has some unrelated parallel machines while each

subcontractor owns one single machine. Neto, Filho, and da Silva (2015) studied identical parallel

machine scheduling to minimize the sum of total outsourcing costs and the total weighted tardiness

within an outsourcing budget constraint. Liu, Lee, and Wang (2016) addressed identical parallel

machine scheduling to minimize the sum of the total resource consumption and the total outsourcing

costs within the upper-limit for the maximum tardiness of the jobs. Liao et al. (2020) studied a

parallel-machine group scheduling problem where non-identical jobs with arbitrary sizes and

inclusive processing set restrictions can be either processed on in-house parallel machines in the

 4

form of serial batch or outsourced with cost. Wang and Cui (2020) considered a robust version of

identical parallel machine scheduling with an outsourcing option.

In the job-shop machine environments, Guo and Lei (2014) minimized the sum of the total

tardiness and the total outsourcing costs, where a job can be outsourced as a whole to a single

subcontractor. Lei and Guo (2016) studied another job-shop scheduling problem to minimize the

total tardiness within an outsourcing budget constraint. Safarzadeh and Kianfar (2019) considered

job-shop scheduling to minimize the weighted sum of makespan and total outsourcing costs.

There are also some studies of two-machine flowshop scheduling. Qi (2009, 2011) considered

three types of outsourcing models to minimize the makespan in the two-machine flowshop: the first

model is to outsource both operations of a job to a subcontractor; the second model is to outsource

the first job-operations of all jobs to one subcontractor; the third model is to outsource the subset

of the first job-operations to one subcontractor. Qi (2009, 2011) considered an outsourcing model

where there is only one subcontractor with a single machine for the outsourcing strategy, and the

jobs are delivered in a batch to the company from the subcontractor, the outsourcing cost is

proportional to the processing time of an outsourced job. In fact the subcontractor is regarded as a

single machine that is geographically remote from the company.

Lee and Choi (2011) considered a two-stage production scheduling problem where any operation

of two stages in a two-machine flowshop can be outsourced to minimize the weighted sum of the

makespan and the total outsourcing costs. The outsourcing cost is proportional to the processing

time of the outsourced job. Choi and Chung (2011) and Chung and Choi (2013) analyzed some

two-stage flowshop scheduling problems to minimize the sum of the makespan and the total

outsourcing costs. These two studies assumed that when a job is outsourced, the both operations of

the job should be sent to a subcontractor. Neto and Filho (2011), Tavares Neto and Filho (2011),

Mokhtari et al. (2012) and Choi and Park (2014) studied several multi-stage permutation flowshop

scheduling problems to minimize the sum of the outsourcing costs and either makespan or total

 5

completion time. These studies also assumed that the entire operations of the job should be sent to

a subcontractor.

To the best of our knowledge, this is the first study to consider two-machine flowshop scheduling

with outsourcing lead-time. Completing a job including final quality assurance is one of core

operations in most manufacturing environment, and hence it is more sensible to consider an

outsourcing option on the first operations rather than the second operations. Moreover, this model

can be applied to situations where there are multiple subcontractors with different lead-time. The

remainder of the paper is organized as following. In Section 2, we provide a detailed problem

description as well as the formal notation. Sections 3 and 4 focus on the makespan and total

completion time minimization problems for the scheduling costs, respectively. Section 5 contains

numerical experiments testing the efficiency of the algorithms, followed by concluding remarks

and directions for future research in Section 6.

2. Problem Description

There are 𝑛 jobs with two serial operations in a two-machine flowshop scheduling

environments. The processing time of job j in the first in-house machine is (𝑗 = 1, . . . , 𝑛), and

if the first operation of job j is outsourced, then the outsourcing cost 𝑜! and the outsourcing lead-

time 𝑙! are needed. The outsourcing lead-time includes the production and delivery time of the

outside subcontractor, and so the second operation of the outsourced job j cannot start before the

outsourcing lead-time 𝑙!. The processing time of the second operation of job j is (𝑗 = 1, . . . , 𝑛).

Denote by 𝜋 the set of the outsourced jobs, then the total outsourcing costs can be expressed as

∑ 𝑜!!∈# . The objective of this paper is to minimize the weighted sum of the outsourcing costs and

the scheduling measure denoted by either one of makespan and total completion time. While the

jp

jq

 6

scheduling cost is based on time, the outsourcing cost is based on monetary terms. Therefore, the

constant δ denotes a weight factor between 0 and 1, and it can be determined by considering the

balance of the outsourcing costs and the scheduling measure. The objective function is represented

as follow.

Total cost (TC) = (1 − 𝛿)𝐶$%& + 𝛿∑ 𝑜!!∈# or (1 − 𝛿)∑𝐶! + 𝛿∑ 𝑜!!∈#

Note that Cmax is the makespan, and calculated as 𝐶!"# =𝑚𝑎𝑥1≤𝑗≤𝑛𝐶𝑗, where 𝐶! is the completion

time of job 𝑗 in the second machine. The constant 𝛿 is a weight factor between 0 and 1, which

can be determined by considering the balance of the outsourcing costs and the scheduling measure.

The standard classification scheme for scheduling problems (Graham et al, 1979) is 𝛼+|𝛼,|𝛼-

where 𝛼+ describes the machine structure, 𝛼, gives the job characteristics or restrictive

requirements, and 𝛼- defines the objective function to be minimized. We extend this scheme to

provide for the objective function by (1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 or (1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 where

𝑂𝐶 = ∑ 𝑜!!∈# . Our problem can be denoted as F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 and F2||(1 − 𝛿)∑𝐶! +

𝛿 ⋅ 𝑂𝐶.

In summary, this study first divides all jobs into outsourced jobs and in-house jobs. By

considering that outsourced jobs arrive at the second machine at lj time, the processing sequence of

all the jobs in the two-machine flowshop is determined to minimize the objective cost function. If

the first operations of a job is negligible (the processing time is very small or the operation can be

missed), then it is optimal to schedule the second operations of the job at time zero (or right after

the first negligibly small operation) for the makespan measure. However, for the total completion

time measure, it is not trivial to schedule the second operation because the problem is still NP-hard

(Garey et al, 1976). We now propose several properties of an optimal job schedule that will allow

us to develop efficient algorithms. In the following Property 1, the permutation schedule means that

the processing order in the first and second machine is identical.

 7

Property 1. The processing order of the in-house jobs follows the permutation schedule in the

flowshop system.

Proof. The proof can be easily seen by the pair-wise job interchange arguments. ■

Property 2. In an optimal schedule, there is no intermediate idle time on both the first in-house

machine and the second in-house machine.

Proof. There is no reason to have idle time in the first in-house machine for the in-house jobs.

Suppose that there exists an intermediate idle time between the operations on the second machine.

Then, the intermediate idle time can be removed by delaying all the operations before the idle time

without increasing the makespan. ■

3. Minimizing the makespan and the outsourcing costs

This section begins by proving that the problem F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 is NP-hard, as in

Theorem 1.

Theorem 1. The problem F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 is NP-hard even if all lj = 0.

Proof. The proof can be done in polynomial reduction from the Partition Problem (Garey and

Johnson, 1979), which is known to be NP-hard. The Partition Problem is stated as follows;

Given a set {a1,…, am} of positive integers, where ∑ 𝑎.$
./+ = 2𝐵 and 0 < ai < B, for i = 1,…, m,

does there exist a subset S ⊂{1,…, m} such that ∑ 𝑎..∈0 = 𝐵?

Now, consider the following instance of the given problem F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶;

n = m+1, 𝛿 = +
12+

,

pj = aj, qj = 0, oj = aj, lj = 0, for j = 1,…, m,

 8

pj = 0, qj = B, oj =(𝐵 + 1),, lj = 0, for j = m+1.

Denote by Q a threshold value which is set as

Q = B.

Therewith, it will be proved that there exists a feasible schedule π for the problem instance

satisfying the relation (1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 ≤Q if and only if there exists a solution to the

Partition Problem.

a) For if-part; suppose that there are two disjoint sets X and Y which comprise a solution to the

Partition Problem, such as {x1,…,x|X|} and {y1,…,y|Y|}, where x1+…+x|X| = y1+…+y|Y| = B, {x1,…,x|X|,

y1,…,y|Y|} = {a1,…, am} and |X|+|Y|=m. Then, the associated job sets 𝑋 ′ ={ 𝐽+3 ,…, 𝐽|3|
3 } and

𝑌5={𝐽+6,…,𝐽|6|
6 } represents the in-house jobs and outsourced jobs, respectively, where {𝐽+3,…, 𝐽|3|

3 ,

𝐽+6,…, 𝐽|6|
6 } = {J1,…, Jm}. Now, consider the schedule π as being represented by processing job m+1

and all jobs in 𝑋5 in the in-house machine in arbitrary order, and by outsourcing all jobs in 𝑌′.

Thus the associated processing time in 𝑋5 are {x1,…, x|X|}, and the associated outsourcing costs in

𝑌5 are {y1,…, y|Y|}. Note that qj = 0, j = 1,…, m and pm+1 = 0, then the completion time in the

schedule π is x1+…+x|X|=B in the first in-house machine and qm+1=B in the second machine. The

schedule π is depicted as in Figure 1. The total outsourcing cost in π is y1+…+y|X|=B. The objective

cost value of π is (1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 = (1 − 𝛿)𝐶$%& + 𝛿 ∑ 𝑜!!∈# =>1 − +
12+

? 𝐵 + +
12+

𝐵 =𝐵

which is equal to Q, satisfying the condition (1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 ≤Q.

>> Insert Figure 1 <<

b) For only if-part; suppose that a schedule π is feasible as satisfying the relation (1 − 𝛿)𝐶𝑚𝑎𝑥 +

𝛿 ⋅ 𝑂𝐶 ≤Q. Note that the job m+1 cannot be outsourced because the outsourcing cost 𝛿 ⋅ 𝑜$2+ =

+
12+

(𝐵 + 1), = 𝐵 + 1 is greater than the value Q. Note that pm+1=0, qm+1=B, and the remaining

 9

jobs satisfy the relations pj = aj, qj = 0, oj = aj, j = 1,…, m. Denote by {𝐽+7 , 𝐽,7 ,…, 𝐽|7|
7 } the

outsourced job set having the outsourcing costs {x1, x2,…, x|O|} and by {𝐽+8, 𝐽,8,…, 𝐽|8|
8 , 𝐽$2+} the

in-house processing job set having the processing time {y1, y2,…, y|P|} in the first machine,

respectively, where {x1, x2,…, x|O|, y1, y2,…, y|P|} = {a1, a2,…, am} and |O|+|P|=m.

Remind that the relations ∑ 𝑥.
|7|
./+ + ∑ 𝑦.

|8|
./+ = ∑ 𝑎.$

./+ = 2𝐵 hold, and consider the two

following cases;

i) the first case ∑ 𝑦.
|8|
./+ < 𝐵 and ∑ 𝑥.

|7|
./+ > 𝐵

Suppose that ∑ 𝑦.
|8|
./+ = 𝐵 − 𝑘 and ∑ 𝑥.

|7|
./+ = 𝐵 + 𝑘, then the makespan of the schedule π is

the value B, since the completion time in the second machine is the value qm+1=B, and the total

outsourcing costs are the value 𝐵 + 𝑘 . Therefore the total costs of the schedule π is

(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 =(1 − 𝛿)𝐵 + 𝛿(𝐵 + 𝑘)=𝐵 + 𝛿 ⋅ 𝑘 > 𝐵, which is a contradiction.

ii) the second case ∑ 𝑦.
|8|
./+ > 𝐵 and ∑ 𝑥.

|7|
./+ < 𝐵

Suppose that ∑ 𝑦.
|8|
./+ = 𝐵 + 𝑘 and ∑ 𝑥.

|7|
./+ = 𝐵 − 𝑘. The makespan of the schedule π is the

value 𝐵 + 𝑘, and the total outsourcing costs are the value 𝐵 − 𝑘. Therefore the total costs of

the schedule π is (1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 = 1
12+

(𝐵 + 𝑘) + +
12+

(𝐵 − 𝑘) = 𝐵 + 9(1;+)
12+

> 𝐵 ,

which is a contradiction.

From the two above cases, we conclude that the relations ∑ 𝑥.
|7|
./+ = ∑ 𝑦.

|8|
./+ = 𝐵 hold, which

means the relation ∑ 𝑎..∈3 = ∑ 𝑎..∈6 = 𝐵 should hold. This implies the existence of a solution to

the Partition Problem. ■

The problem F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶 can be expressed as the following mathematical

model.

Min (1 − 𝛿)𝐶𝑚𝑎𝑥 + 𝛿 ∑ 𝑜!(1 − 𝑦!)=
!/+ (1)

st. 𝐶$%& ≥ 𝐶! for all j (2)

 10

 𝐶! ≥ 𝑥!9𝑦!E𝑝! + ∑ ∑ 𝑝!′𝑥!′9′𝑦!′=
!′/+

9;+
9′/+ G + 𝑞! for all j, k (3)

 𝐶! ≥ 𝑙! ⋅ (1 − 𝑦!) + 𝑞! for all j (4)

 𝐶! ≥ 𝑥!9 ∑ 𝑥!′9;+𝐶!′=
!′/+ + 𝑞! for all j, k (5)

 ∑ 𝑥!9=
9/+ = 1 for all j (6)

 ∑ 𝑥!9=
!/+ = 1 for all k (7)

 𝑥!> = 0 for all j

 𝑥!9 , 𝑦! ∈ {0,1} for all j, k

Let 𝑦! denote the variable having the value 0 if the first operation of job j is outsourced, and 1

otherwise. Let 𝑥!9 denote the variable having 1 if job j is processed in the 𝑘th position in the

second machine, and 0 otherwise. Equation (1) represents the objective function of this paper, and

Constraints (2) calculate the makespan value of any schedule. Equation (3) means that if job i is

produced in-house, the processing in the second machine cannot start before the completion of the

processing in the first in-house machine. Equation (4) means that if job j is outsourced, the

processing in the second machine cannot start before the outsourcing lead-time. Equation (5)

represents that job j can start processing in the second machine after the completion of the previous

jobs. Constraints (6) and (7) imply that every job must be processed in the second machine.

We now suggest a way to identify jobs that can be excluded from consideration for outsourcing.

Property 3. If job j satisfies the following condition, job j can be excluded from outsourcing.

 δ𝑜! ≥ (1 − δ)E𝑝! + 𝑞!G (7)

Proof. If job j is outsourced, the minimum increment of the objective cost is δ𝑜! . Conversely, if

job j is processed in-house, the maximum increment of the objective cost is (1 − δ)E𝑝! + 𝑞!G. If

Eq. (7) holds, it means that the outsourcing cost of job j is too large, so it is more advantageous not

 11

to outsource job j. ■

This paper presents additional properties for the job outsourcing decision. Note that the following

Properties 4 and 5 are suggested originally by Lee and Sung (2008a) in a single machine

environment, and these properties can be also applied in the two-machine flowshop environment in

this paper.

Property 4. (Lee and Sung, 2008a) For any pair of two jobs i and j such that 𝑝. < 𝑝!, 𝑜. ≥ 𝑜! and

𝑙. ≥ 𝑙!, it is more cost-beneficial to outsource job j than job i.

Proof. Suppose that there are two jobs i and j such that 𝑝. < 𝑝!, 𝑜. ≥ 𝑜! and 𝑙. ≥ 𝑙!. Consider a

schedule S where job i is outsourced but job j is not outsourced. Then, the cost of the schedule S is

 Cost(S) = ∑ 𝑜99∈#(0);{!} + 𝑜! + 𝐶$%&(S),

where 𝜋(𝑆) is a set of outsourced jobs in the schedule S. Consider another schedule S’ where job

j is outsourced but job i is not outsourced. Then, the cost of the schedule S’ is

 Cost(S’) = ∑ 𝑜99∈#(0');{.} + 𝑜. + 𝐶$%&(S’).

Note that 𝜋(𝑆) = 𝜋(𝑆5). Since 𝑝. < 𝑝! , 𝑜. ≥ 𝑜! and 𝑙. ≥ 𝑙! , it holds that Cost(S) > Cost(S’).

Therefore, it is more cost-beneficial to outsource job j than job i. ■

Property 5. (Lee and Sung, 2008a) If ∑ 𝑝.=
./+ < 𝑚𝑖𝑛+A.A= 𝑙., then it is optimal to process all the

jobs on the in-house machine.

Proof. Suppose that job j is outsourced. Then, its outsourcing can make the positive and engative

contributions to the objective value. While the associated objective value will be increased due to

its outsourcing lead-time and the outsourcing cost, the associated objective value will be decreased

due to the associated work saving. The objective value increment is no less than

(1 − 𝛿)𝑚𝑖𝑛+A.A= 𝑙., and the decrement is no more than (1 − 𝛿)𝑝!. Since ∑ 𝑝.=
./+ < 𝑚𝑖𝑛+A.A= 𝑙.,

 12

(1 − 𝛿)𝑚𝑖𝑛+A.A= 𝑙. > (1 − 𝛿)∑ 𝑝.=
./+ > (1 − 𝛿)𝑝!,

which implies that the increment value is larger than the decrement value. Therefore, it is optimal

to process all the jobs on the in-houre machine. ■

The problem in this paper has two decision issues; the first is to classify the in-house jobs and

the outsourced jobs, and the second is to determine the processing order of the jobs in the two

machine flowshop. If the in-house jobs are already determined, the processing order of the in-house

jobs can be determined according to Property 6.

Property 6. The processing order of the in-house jobs can be determined optimally by the Johnson’s

rule.

Proof. Johnson’s rule is a well-known algorithm to find the optimal solution for the problem

F2||𝐶$%&. The detailed proof can be easily seen by the pair-wise job interchange arguments. ■

This section suggests a dynamic programming algorithm based on Property 6. By using the DP

algorithm A, we can further investigate the complexity of the considered problem F2|| (1 −

𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶.

DP Algorithm A

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: an optimal schedule and its solution value

3 Code:

4 Indexing: Sequence and index all the jobs in the Johnson’s order.

5 Value Function: fj(x1, y1, y2) = the minimum cost of a partial schedule for jobs 1,…, j which are

 13

processed during [0, x1] in the first in-house machine, and processed during

[y1, y2] time in the second machine.

6 Boundary Condition: f0(0, 0, 0) = 0.

7 Optimal Solution Value: 𝑚𝑖𝑛{(&(,C(,C))|>A&(A8,>AC(AC)AD}𝑓=(𝑥+, 𝑦+, 𝑦,)

 where 𝑃 = ∑ 𝑝!=
!/+ , 𝑄 = ∑ E𝑝! + 𝑞!G=

!/+ .

8 Recurrence Function: fj(x1, y1, y2) =

⎩
⎪⎪
⎨

⎪⎪
⎧∞, 𝑖𝑓	𝑥! >, 𝑝"

#

"$!
																																																																															(𝑖)

∞, 𝑖𝑓	𝑦% − 𝑦! <, 𝑞"
#

"$!
																																																																					(𝑖𝑖)

𝑚𝑖𝑛 6
𝑚𝑖𝑛&'()(*!+,"+-#.7𝑓#+!8𝑥! − 𝑝# , 𝑦!, 𝑦% − 𝑞# − 𝑘: + (1 − 𝛿)8𝑞# + 𝑘:>, 𝑖𝑓	𝑥! ≥ 𝑝# 	𝑎𝑛𝑑	𝑦% − 𝑥! ≥ 𝑞# 			(𝑖𝑖𝑖)

𝑚𝑖𝑛&'()(*!+,"+-#.7𝑓#+!8𝑥!, 𝑦!, 𝑦% − 𝑞# − 𝑘:> + (1 − 𝛿)8𝑞# + 𝑘: + 𝛿 ∙ 𝑜# , 𝑖𝑓	𝑦% − 𝑙# ≥ 𝑞# 													(𝑖𝑣)

In the recurrence function, the term (i) means the situation that there occurs an idle time in the

first in-house machine, which violates the optimality condition of Property 2. The term (ii)

represents an impossible situation, since the time period [y1, y2] in the second machine is not enough

to process jobs 1,…, j. The term (iii) represents that job j is processed in the first in-house machine,

and the term (iv) represents that job j is outsourced. The maximum number of DP states in DP

algorithm A cannot be over 𝑛𝑃𝑄,, so that the complexity order of DP algorithm A is O(𝑛𝑃𝑄,),

which is a pseudo-polynomial complexity.

From Property 6, we can see that the processing order of the in-house jobs can be determined as

the Johnson's Rule. The outsourced jobs are excluded in the first in-house machine and released at

the outsourcing lead-time lj in the second machine. The processing start-time of outsourced jobs in

the second machine can be determined based on Property 7.

Property 7. The in-house jobs have already been sequenced as Johnson's sequence. Let k be an

outsourced job with lead time lk and let RJ denote a set of jobs starting no sooner than lk in the pre-

 14

determined Johnson's sequence. Then the processing start-time of job k in the second machine can

be determined as follows;

(1) If the second machine is idle at lk, then job k starts immediately at lj. If the insertion of job

k causes conflicts in other jobs in the second machine, the processing of other jobs are

delayed as needed.

(2) If the second machine is processing a preceding job at lj, then the processing of job k starts

immediately after the completion of the preceding job. The processing of jobs in RJ is

delayed in the second machine as necessary since job k is interrupted.

Proof. At the time point lk, the outsourced job k can be considered as an in-house job with pk = 0

and qk > 0, which is the highest priority job in the Johnson's sequence, so job k should be processed

first no sooner than lk. Therefore the processing time of job k in the second machine can be

determined as the above (1) and (2). ■

Assume that IS denotes a set of the in-house jobs and OS is a set of the outsourced jobs. If IS and

OS are determined, then the remaining schedule can be obtained optimally by the Procedure SEQ

based on Property 7, as follows.

Procedure SEQ

1 Input: IS, OS

2 Output: a solution value of the schedule for given IS and OS

3 Code:

4 Sequence the jobs in IS as Johnson’s sequence and set a = 1.

5 Calculate the start-time sj in the second machine for each job in IS.

6 Select the job with the a-th smallest lj in OS, which is called as job x for convenience.

7 If all the sj values are less than lx, then job x is placed just after the last-positioned job in IS and

 15

added to IS, and go to Line 9.

8 Find the job with the smallest sj value satisfying 𝑠! ≥ 𝑙& in IS, which is called as job y. Job x

is placed just before job y and added to IS.

9 If a = |OS|, the algorithm is terminated. Otherwise update a = a + 1 and go to Line 5.

Now this paper proposes a constructive heuristic that can get solutions efficiently within a very

short time, which is the greedy-type. In the heuristic,
(+;E)F*
EG*

 is calculated for each job, and the

heuristic idea is that the larger the value, the greater the benefit of outsourcing. The detailed

procedure of the heuristic is as follows.

Heuristic HEU

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: a schedule and its solution value

3 Code:

4 Set OS to be empty, and assign all the jobs to IS, and calculate the value
(+;E)F*
EG*

 for each job.

5 Calculate the value
(+;E)F*
EG*

 for each job.

6 Find a schedule from Procedure SEQ for the sets IS and OS, and the objective cost of the

obtained schedule is called as S*, and set a = 1.

7 For a = 1 to |IS|

8 Select the job with the a-th largest
(+;E)F*
EG*

 in IS, which is called as job x.

9 Find a new schedule by Procedure SEQ for the sets ISx and OSx, where 𝐼𝑆& = 𝐼𝑆 − {𝑥} and

𝑂𝑆& = 𝑂𝑆 + {𝑥}, and the objective cost of the new schedule is called as Sx.

 16

10 If 𝑆& < 𝑆∗, then update the sets IS, OS and S* with ISx, OSx and Sx.

11 Return S*, IS and OS.

The optimal solution can be obtained from DP algorithm A, but the DP algorithm takes a lot of

time, so this paper proposes a branch-and-bound algorithm to find an optimal solution in a

reasonable time.

A node of the B&B algorithm in this paper corresponds to a subset of jobs including the in-house

jobs and the outsourced jobs. All the jobs are ordered and indexed by the Johnson's rule, and the

B&B algorithm selects the first job in the Johnson’s sequence in a node, and adds two new nodes

associated with two cases whether to process the job in-house or outsource it. The branching

mechanism of the B&B algorithm in this paper is shown in Figure 2, where ISr and OSr denote sets

of the in-house jobs and the outsourced jobs respectively in node r, and UDr is a set of undetermined

jobs in node r.

>> Insert Figure 2 <<

The jobs in UDr are ordered in Johnson’s sequence, and the first job j in UDr is selected, and the

B&B algorithm creates two new nodes (r+1) and (r+2) by either one of processing job j in-house

or outsourcing it. This paper uses the depth-first search for the node selection, which means that

the algorithm selects first a node with the smallest number of undetermined jobs in the branching

tree. If ISr and OSr are given in node r, then the production schedule can be determined by Procedure

SEQ, and the objective cost of the obtained schedule on node r is defined as TCr. In the algorithm,

 17

the fathoming rules are based on Properties 3, 4 and 5, which means that any node satisfying the

conditions from the properties will be fathomed. Denote by UB by the solution value from the

heuristic HEU, which is used as the initial upper bound. To improve the efficiency of the branch-

and-bound search, it is crucial to use a tight lowerbound. The lowerbound value of a node is

calculated as follows.

𝐿𝐵I = 𝑇𝐶I + (1 − 𝛿) ∑ 𝑞!!∈JK+ (8)

The overall procedure of the B&B algorithm is presented as follows.

The branch-and-bound algorithm

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: an optimal schedule and UB

3 Code:

4 Initialization

5 Sequence and index all the jobs as Johnson’s sequence.

6 Calculate the value UB, and set 𝑟 ← 0, 𝐼𝑆I ← ∅, 𝑂𝑆I ← ∅, 𝑈𝐷I ← {1, 2, … . , 𝑛}.

7 Node selection

8 In the branching tree, select node r from the depth-first search.

9 Dominance checking

10 Calculate the lowerbound value 𝐿𝐵I by using equation (8).

11 If 𝐿𝐵I ≥ UB then go to Line 20.

12 If any of Properties 3, 4, and 5 holds, then go to Line 20.

13 Branching

14 If 𝑈𝐷I = ∅, then go to Line 18.

15 Select a job j with the smallest index in UDr.

16 Set 𝐼𝑆I2+ = 𝐼𝑆I ∪ {𝑗}, 𝑂𝑆I2+ = 𝑂𝑆I, 𝑈𝐷I2+ ← {𝑗 + 1,… . , 𝑛}, and add node (r+1) to the

 18

branching tree.

17 Set 𝐼𝑆I2, = 𝐼𝑆I, 𝑂𝑆I2, = 𝑂𝑆I ∪ {𝑗}, 𝑈𝐷I2, ← {𝑗 + 1,… . , 𝑛}, and add node (r+2) to the

branching tree. Go to Line 20.

18 Update the upperbound

19 Calculate the objective cost TCr on node r. If 𝑇𝐶I < 𝑈𝐵, then set 𝑈𝐵 ← 𝑇𝐶I.

20 Node elimination

21 Delete node r from the branching tree.

22 If the branching tree is empty, then the B&B algorithm is terminated. Otherwise go to Line 7.

4. Minimizing the total completion time and the outsourcing costs

Since the problem F2||∑Cj has been a well-known NP-hard problem, the problem

F2||(1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 is NP-hard. Similarily to the mathematical formulation for F2||(1 −

𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶, the problem F2||(1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 can be formulated as follows.

Min (1 − 𝛿)∑ 𝐶!=
!/+ + 𝛿∑ 𝑜!(1 − 𝑦!)=

!/+

st. 𝐶! ≥ 𝑥!9𝑦!E𝑝! + ∑ ∑ 𝑝!′𝑥!′9′𝑦!′=
!′/+

9;+
9′/+ G + 𝑞! for all j, k

 𝐶! ≥ 𝑙! ⋅ (1 − 𝑦!) + 𝑞! for all j

 𝐶! ≥ 𝑥!9 ∑ 𝑥!′9;+𝐶!′=
!′/+ + 𝑞! for all j, k

 ∑ 𝑥!9=
9/+ = 1 for all j

 ∑ 𝑥!9=
!/+ = 1 for all k

 𝑥!> = 0 for all j

 𝑥!9 , 𝑦! ∈ {0,1} for all j, k

 19

Properties 4 and 5 in Section 2 are still valid for F2||(1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 , and this paper

suggests a way to recognize jobs that can be excluded from consideration for outsourcing as follows.

Property 8. If job j satisfies the following condition, job j can be excluded from outsourcing, where

Cmax(JS) is the makespan value of the Johnson’s rule for all the jobs.

 δ𝑜! + (1 − 𝛿)E𝑙! + 𝑞!G > (1 − 𝛿) ∑ (𝑝. + 𝑞.)=
./+ (9)

Proof. If job j is outsourced, the minimum increment of the objective cost is δ𝑜! + (1 − 𝛿)E𝑙! + 𝑞!G.

Conversely, if job j is processed in-house, the completion time of job j cannot exceed the value

(1 − 𝛿) ∑ (𝑝. + 𝑞.)=
./+ . If Eq. (9) holds, it means that the outsourcing cost of job j is too large, so it

is more advantageous not to outsource job j. ■

The problem F2||(1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 also has two decision issues; the first is to classify the

in-house jobs and the outsourced jobs, and the second is to determine the processing order of the

jobs in the two machine flowshop. Even if the set IS and OS have already been determined, it is still

not easy to determine optimally the processing order of jobs in IS. If IS and OS are determined, and

if the processing order of jobs in IS is determined already as any sequence α, then the processing

start-time of outsourced jobs in the second machine can be determined from the following Property

9.

Property 9. The in-house jobs have already been sequenced as sequence α. Let k be an outsourced

job with lead time lk and let RJ denote a set of jobs starting no sooner than lk in the sequence α.

Then the processing start-time of job k in the second machine can be determined as follows;

 20

(3) If the second machine is idle at lk, then job k starts immediately at lj. If the insertion of job

k causes conflicts in other jobs in the second machine, the processing of other jobs are

delayed as needed.

(4) If the second machine is processing a preceding job at lj, then the processing of job k starts

immediately after the completion of the preceding job. The processing of jobs in RJ is

delayed in the second machine as necessary since job k is interrupted.

Proof. The proof is the same as in Property 7. ■

Assume that all the in-house jobs are sequenced as in a given sequence α. The entire production

schedule can be obtained by the following Procedure SEQ(α) based on Property 9.

Procedure SEQ(α)

1 Input: 𝛼, IS, OS

2 Output: a schedule and its solution value

3 Code:

4 Sequence the jobs in IS as the sequence α and set p = 1.

5 Calculate the start-time sj in the second machine for each job in IS.

6 Select the job with the a-th smallest lj in OS, which is called as job x for convenience.

7 If all the sj values are less than lx, then job x is placed just after the last-positioned job in IS and

added to IS, and go to Line 9.

8 Find the job with the smallest sj value satisfying 𝑠! ≥ 𝑙& in IS, which is called as job y. Job x

is placed just before job y and added to IS.

9 If a = |OS|, the algorithm is terminated. Otherwise update a = a + 1 and go to Line 5.

Note that the Procedure SEQ(α) depends on the given sequence α. This paper uses the three

possible sequencing rules as follows.

 21

1) Johnson’s rule

2) SPT: a job with a small E𝑝! + 𝑞!G is processed firstly.

3) LPT: a job with a large E𝑝! + 𝑞!G is processed firstly.

Procedure SEQ(α) can be expressed as SEQ(Johnson), SEQ(SPT) and SEQ(LPT) depending on the

sequence α. This paper ultimately proposes three heuristics such as HEU(Johnson), HEU(SPT) and

HEU(LPT) depending on the sequence α as follows.

HEU(α)

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: a schedule and its solution value

3 Code:

4 Set OS to be empty, and assign all the jobs to IS, and calculate the value
(+;E)F*
EG*

 for each job.

5 Find a schedule from Procedure SEQ(α) for the sets IS and OS, and the objective cost of the

obtained schedule is called as S*, and set p = 1.

6 Select a job x with the p-th largest
(+;E)F*
EG*

 value in IS. Find a new schedule by Procedure

SEQ(α) for the sets ISx and OSx, where 𝐼𝑆& = 𝐼𝑆 − {𝑥} and 𝑂𝑆& = 𝑂𝑆 + {𝑥}, and the objective

cost of the new schedule is called as Sx.

7 If 𝑆& < 𝑆∗, then update the sets IS, OS and S* with ISx, OSx and Sx, respectively.

8 If p = |IS|, then terminate the algorithm. Otherwise set p = p+1 and go to Line 6.

Now this paper proposes a neighborhood exchange heuristic (NEH) in a two-phase approach.

The first phase determines the order of processing in-house jobs based on the NEH algorithm of

Nawaz et al. (1983). From the review paper by Ruiz and Maroto (2005), the NEH algorithm of

Nawaz et al. (1983) has been known to be the best constructive heuristic for the flowshop

 22

scheduling problem. The basic idea is to find a heuristic solution by comparing schedules through

inserting a job one-by-one to possible positions. The second phase determines which jobs to be

outsourced, which is based on the idea of HEU(α) in this paper. The two-phased approach is called

as NEH as follows.

NEH (Neighborhood Exchange Heuristic)

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: a schedule and its solution value

3 Code:

4 Phase I

5 All the jobs are ordered in ascending order of E𝑝! + 𝑞!G, which is called as sequence Ω.

6 Select the first two jobs in the sequence Ω. Then generate two possible sequences of the two

selected jobs and calculate the sum of completion time of the two sequences. Find the best

sequence among the two, which is called sequence α, and set k = 3.

7 Select k-th job in the sequence Ω, and generate k possible sequences by placing the job in the

possible k positions in the sequence α with former jobs, and calculate the sum of completion

time of the k sequences. Find the best sequence, and update the sequence α with the new

sequence.

8 If k = n, then go to PHASE II. Otherwise k = k + 1 and go to Line 7.

9 Phase II

10 Set OS to be empty, and assign all the jobs to IS, and calculate the value
(+;E)F*
EG*

 for each job.

11 Find a schedule from Procedure SEQ(α) for the sets IS and OS, and the objective cost of the

obtained schedule is called as S*, and set p = 1.

12 Select a job x with the p-th largest
(+;E)F*
EG*

 value in IS. Find a new schedule by Procedure

SEQ(α) for the sets ISx and OSx, where 𝐼𝑆& = 𝐼𝑆 − {𝑥} and 𝑂𝑆& = 𝑂𝑆 + {𝑥}, and the objective

cost of the new schedule is called as Sx.

 23

13 If 𝑆& < 𝑆∗, then update the sets IS, OS and S* with ISx, OSx and Sx, respectively.

14 If p = |IS|, then terminate the algorithm. Otherwise set p = p+1 and go to Line 12

Now this paper proposes a pair-wise exchange heuristic (PEH) in a two-phase approach. The first

phase determines the sequence of in-house jobs, and the idea of pair-wise exchange is to find a

better schedule by moving forward through exchanging two adjacent jobs in a given sequence. If a

better best schedule is found, then the given sequence is updated and go back to the beginning and

proceed by moving forward by exchanging two adjacent jobs. The second phase also determines

which jobs to be outsourced, which is based on HEU(α). The Procedure PEH (Pair-wise Exchange

Heuristic) is presented in detail as follows.

PEH (Pair-wise Exchange Heuristic)

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: a schedule and its solution value

3 Code:

4 Phase I

5 All the jobs are ordered in ascending order of E𝑝! + 𝑞!G, which is called as sequence α.

6 Set k = 1.

7 Select k-th and (k+1)-th jobs in the sequence α. Exchanging the two jobs in the sequence α, and

we can obtain a new schedule α’.

8 If α’ is better than α, then replace α with α’, and go to Line 6.

9 If k = n-1, then go to PHASE II. Otherwise k = k + 1 and go to Line 7.

9 Phase II

10 Set OS to be empty, and assign all the jobs to IS, and calculate the value
(+;E)F*
EG*

 for each job.

11 Find a schedule from Procedure SEQ(α) for the sets IS and OS, and the objective cost of the

obtained schedule is called as S*, and set p = 1.

 24

12 Select a job x with the p-th largest
(+;E)F*
EG*

 value in IS. Find a new schedule by Procedure

SEQ(α) for the sets ISx and OSx, where 𝐼𝑆& = 𝐼𝑆 − {𝑥} and 𝑂𝑆& = 𝑂𝑆 + {𝑥}, and the objective

cost of the new schedule is called as Sx.

13 If 𝑆& < 𝑆∗, then update the sets IS, OS and S* with ISx, OSx and Sx, respectively.

14 If p = |IS|, then terminate the algorithm. Otherwise set p = p+1 and go to Line 12

This paper derives a B&B algorithm for the problem. The depth-first search is used for the node

selection in the B&B algorithm. The B&B algorithm creates two new nodes for each undetermined

job in a node by either one of processing in-house or outsourcing the job. For example, if there are

|UDr| nodes in node r, then 2|UDr| nodes are newly created and added to the B&B tree, which is

depicted as in Figure 3.

>> Insert Figure 3 <<

In the algorithm, the fathoming rules are based on Properties 4, 5 and 8. Denote by UB by the

solution value from the Procedure NEH, which is used as the initial upper bound. To improve the

efficiency of the branch-and-bound search, the lowerbound value of a node is calculated as follows,

where 𝑞[!] is the j-th smallest processing time in the set UDr.

𝐿𝐵I = 𝑇𝐶I + (1 − 𝛿) ∑ (|𝑈𝐷I | − 𝑗 + 1)|JK+|
!/+ 𝑞[!] (9)

The overall procedure of the B&B algorithm is presented as follows.

The Branch-and-Bound algorithm

1 Input: 𝑛, 𝑝! , 𝑞! , 𝛿, 𝑜! , 𝑙!

2 Output: an optimal schedule and UB

 25

3 Code:

4 Initialization

5 Calculate the value UB from the Procedure NEH.

6 Sequence and index all the jobs as in the upperbound.

7 Set 𝑟 ← 0, 𝐼𝑆I ← ∅, 𝑂𝑆I ← ∅, 𝑈𝐷I ← {1, 2, … . , 𝑛}.

8 Node selection

9 In the branching tree, select node r from the depth-first search.

10 Dominance checking

11 Calculate the lowerbound value 𝐿𝐵I by using equation (9).

12 If 𝐿𝐵I ≥ UB then go to Line 22.

13 If any of Properties 4, and 5 holds, then go to Line 22.

14 Branching

15 If 𝑈𝐷I = ∅, then go to Line 20. Otherwise set p = 1.

16 Select the p-th job in UDr, which is called as job j.

17 Set 𝐼𝑆I2(,F;+) = 𝐼𝑆I ∪ {𝑗} , 𝑂𝑆I2(,F;+) = 𝑂𝑆I , 𝑈𝐷I2(,F;+) ← {𝑗 + 1,… . , 𝑛} , and add

node (r+2p-1) to the branching tree.

18 Set 𝐼𝑆I2,F = 𝐼𝑆I , 𝑂𝑆I2,F = 𝑂𝑆I ∪ {𝑗}, 𝑈𝐷I2,F ← {𝑗 + 1,… . , 𝑛}, and add node (r+2p)

to the branching tree.

19 If p = |UDr|, then go to Line 22. Otherwise set p = p+1, and go to Line 16.

20 Update the upperbound

21 Calculate the objective cost TCr on node r. If 𝑇𝐶I < 𝑈𝐵, then set 𝑈𝐵 ← 𝑇𝐶I.

22 Node elimination

23 Delete node r from the branching tree.

24 If the branching tree is empty, then the B&B algorithm is terminated. Otherwise go to Line 8.

 26

5. Computational Experiments

In this section, we conduct extensive numerical tests to analyze the performance of the DP,

heuristics, and branch-and-bound algorithms proposed in Section 2 and 3. The algorithms are coded

in C++, and run on a personal computer with Intel (R) Core (TM) i5-4590 processor with CPU

3.3GHz clock and 16GB RAM.

Since there is no computational study which considers the setting addressed in this paper in the

existing literature, we have adapted the data generation scheme used in Lee and Sung (2008a,

2008b). In Lee and Sung (2008a, 2008b), the authors study a single machine problem with an option

of outsourcing. We evaluate the performance of the proposed algorithms by considering the impact

of: number of jobs (n), processing time (pj and qj), cost parameter (𝛿), outsourcing cost (oj), and

outsourcing lead-time (lj). The parameters are set as follows.

1) The processing time pj and qj are generated from U[1, 30], where U[a, b] is an uniform

distribution between a and b.

2) The cost parameter 𝛿 is generated from U[0.3, 0.7].

3) The outsourcing cost oj is generated from U[1, 10].

4) The outsourcing lead-time lj is generated from U[0.1𝑃, 0.3𝑃], where P = ∑ 𝑝!=
!/+ .

Now for the first problem F2||(1 − 𝛿)𝐶$%& + 𝛿 ⋅ 𝑂𝐶, the number of jobs is set to 5, 10, 15, 20, 25,

30, 35, 40, 45, 50, 55, 60, 65, 70 75, 80, and 20 problem instances are randomly generated for each

job. For DP algorithm A in Table 1, “Aver. states” denotes the average number of states and “Aver.

time (sec)” denotes the average time until the optimal solution is obtained, and NO denotes the

number of problems that the associated algorithm finds the optimal solution within 3600 seconds.

For the B&B algorithm, “Aver. nodes” denotes the number of nodes until the optimal solution is

obtained, and “Aver. Out (%)” denotes the percentage of the outsourced jobs in the schedule

obtained by the associated algorithm. For the heuristic HEU, “Aver. Gap (%)” denotes the average

 27

gap (%) which is calculated by the following equation, where OPT is the optimal solution from the

B&B algorithm and SolHeu is a solution value obtained through the heuristic HEU.

Gap(%) = (-./!"#0123)
123

× 100.

The implications we can find from Table 1 are as follows. DP algorithm A was able to find the

optimal solutions for up to 25 jobs instances within 3,600 seconds. Since the DP algorithm does not

utilize the dominance properties or fathoming rules, it can be said that the number of 25 jobs is not

a small number. The B&B algorithm can solve up to 80 jobs problems within 3600 seconds, which

is an exceptional performance. For an NP-hard problem in the scheduling research area, it is not

easy for the B&B algorithm to solve the problems with large job-size. The reason why the

performance of the DP algorithm and B&B algorithm is so outstanding in this paper is probably

because the algorithms start with the Johnson's rule, which seems to reduce drastically unnecessary

searches. On average, less than 2% of jobs were outsourced in the optimal solutions by the B&B

algorithm, which means that the outsourcing cost is relatively large compared to the processing

time. It can be seen that the heuristic HEU has an average GAP (%) of 3% or less, which seems to

be very good performance as a constructive heuristic of the Greedy-type. Moreover, the GAP (%)

of the heuristic solutions decreased as the number of jobs increased, which is because the

outsourcing percentage approaches the optimal outsourcing percentage as the number of jobs

increases.

>> Insert Table 1 <<

The performance of the algorithms was analyzed for the fluctuation of the outsourcing cost. oj is

generated from U[10, 30], U[20, 40] and U[30, 50], and the computational results are summarized

in Table 2. Even though the outsourcing cost changes, the performance of the heuristic HEU and

the B&B algorithm does not seem to change significantly, and the outsourcing percentage also

 28

doesn't seem to fluctuate significantly. The authors speculated that if the outsourcing cost increased,

the outsourcing percentage would decrease, but actual experiments did not confirm such results.

>> Insert Table 2 <<

The performance of the algorithms was analyzed for the fluctuation of the delta 𝛿, which is

generated from U[0.3, 0,4], U[0,4, 0.5], U[0,5, 0.6] and U[0,6, 0.7], and the computational results

are summarized in Table 3. Even though the delta value changes, the performance of the heuristic

HEU and the B&B algorithm does not seem to change significantly. When the delta 𝛿 is at U[0.4,

0.5], the outsourcing percentage increases and appears to decrease in the rest.

>> Insert Table 3 <<

The performance of the algorithms was analyzed for the fluctuation of the processing time pj in

the first in-house machine, which are generated from U[10, 20], U[20, 30] and U[30, 40], and the

computational results are summarized in Table 4. The result shows that as the processing time in

the first in-house machine increases, the performance of the B&B algorithm and the heuristic

decreases. This is because if the processing time in the first in-house machine is zero or very small,

then our problem becomes a single machine scheduling problem to minimize Makespan or the total

completion time which can be solved in polynomial time, and this implies that the complexity of

the problem may increase as the processing time in the first in-house machine increases. It can be

observed that the outsourcing percentage increased significantly as the first processing time

increases.

>> Insert Table 4 <<

 29

For the second problem F2||(1 − 𝛿)∑𝐶! + 𝛿 ⋅ 𝑂𝐶 , we now analyze the performance of the

proposed heuristics and the B&B algorithm. For the test, the number of jobs is set to 5, 10, 15, 20,

25, 30, 35, and 20 problem instances are randomly generated for each case. The results of

experiments on the performance of the derived algorithms are summarized as in Table 5. The result

shows that B&B algorithm can find an optimal solution up to 35 jobs within 3600 seconds.

Compared to other Scheduling researches, finding the optimal solutions up to 35 jobs can be said a

considerable number. We can guess that the upperbound, lowerbound, and branching mechanisms

of this work are effective. In the heuristic performance, HEU(SPT) performed best on 5-job

instances, but NEH performed best on the rest. This can be thought of as effective job sequencing

in Phase I in NEH.

>> Insert Table 5 <<

The performance of the algorithms was analyzed for the fluctuation of the outsourcing cost. oj is

generated from U[10, 30], U[20, 40] and U[30, 50], and the computational results are summarized

in Table 6. The performance evaluation was conducted only on HEU(SPT), NEH, and PEH, which

appear to be performing well. It can be said that the greater the oj value, the greater the problem

complexity. This is because the time for the B&B algorithm to find the optimal solutions increases.

The more oj increases, the more complex the problem becomes, but the average Gap (%) in

heuristics tends to decrease. Among them, NEH shows the best performance. As oj grows, the

outsourcing ratio of all algorithms decreases, which can be said to be a natural result. Regardless

of the value of OC, NEH is showing the best performance.

>> Insert Table 6 <<

 30

The performance of the algorithms was analyzed for the fluctuation of the delta 𝛿, which is

generated from U[0.3, 0,4], U[0,4, 0.5], U[0,5, 0.6] and U[0,6, 0.7], and the computational results

are summarized in Table 7. The overall experimental results for the value 𝛿 show similarities to

those for OC. This is because an increase in the value of 𝛿 equals an increase in the outsourcing

cost. Table 7 shows that the increasing value of 𝛿 increases the time for the B&B algorithm to find

the optimal solutions, but decreases the solution gap of heuristics. It can also be observed that the

outsourcing ratio decreases as 𝛿 increases, and among the three heuristics, NEH has the best

performance.

>> Insert Table 7 <<

The performance of the algorithms was analyzed for the fluctuation of the processing time pj in

the first in-house machine, which are generated from U[10, 20], U[20, 30] and U[30, 40], and the

computational results are summarized in Table 8. Processing time pj and outsourcing cost oj have

conflicting relationships. This is because the advantage of outsourcing increases when the

processing time pj increases relatively, which means the outsourcing rate tends to increase. It can

be said that the larger the pj value, the higher the problem complexity, because the B&B algorithm

takes more time to find the optimal solutions. Although NEH was the best of the heuristics, the

performance of all heuristics tends to be similar as pj increases. This can be interpreted as a result

of the decrease in the importance of in-house job sequencing in Phase I as the out-sourcing jobs

increase.

>> Insert Table 8 <<

 31

6. Conclusion

This paper considers two stage flowshop scheduling to choose the in-house processing or

outsourcing in the first machine. It is assumed that there may be multiple subcontractors, and the

outsourced jobs are delivered at the outsourcing lead-time from subcontractors, and processed and

completed in the second in-house machine. This paper considers two types of scheduling problems;

the first problem is to minimize the weighted sum of the outsourcing costs and the makespan and

the second problem is to minimize the weighted sum of the outsourcing costs and the total

completion time.

For the first problem, this paper analyzes the problem complexity, and derives some solution

properties, and proposes a DP algorithm, a constructive heuristic and a B&B algorithm. The DP

algorithm was able to find the optimal solutions up to the problems of 25 jobs and the B&B

algorithm can solve very large size problems of 80 jobs within 3600 seconds. In the two-machine

flowshop, since the job sequence is fixed by the Johnson's rule, unnecessary searches are reduced

significantly, and so the performance of the B&B algorithm is considered to be excellent. It can

also be seen that the heuristic HEU has an average GAP (%) of 3% or less which can be said to be

very good performance as a constructive heuristic of Greedy-type.

For the second problem, this paper derives some heuristic algorithms such HEU(Johnson),

HEU(SPT), HEU(LPT), NEH and PEH, and a B&B algorithm. The HEU(Johnson), HEU(SPT) and

HEU(LPT) are constructive heuristics of the Greedy-type, but NEH and PEH are heuristics based

on the ideas of neighborhood search and pair-wise exchange, respectively. The B&B algorithm can

solve very large size problems of 35 jobs within 3600 seconds, and Among the five heuristics, we

can see that NEH shows the best performance.

Future research may focus on studying outsourcing lead-time in various multiple machine

environments with different scheduling criteria, such as total weighted completion time and total

 32

tardiness. Also, it would be interesting to develop other heuristics based on meta-heuristic

approaches such as Genetic Algorithm and compare performace of the heuristics in various settings.

 33

References

Choi, B.-C., and M.-J. Park. 2014. “Outsourcing Decisions in m-Machine Permutation Flow Shop

Scheduling Problems with Machine-Dependent Processing Times.” Asia-Pacific Journal of

Operational Research 31 (4): 1450028.

Choi, B. C., and J. Chung. 2011. “Two-machine flow shop scheduling problem with an outsourcing

option.” European Journal of Operational Research 213(1): 66-72.

Chung, D. Y., and B. C. Choi. 2013. “Outsourcing and scheduling for two-machine ordered flow

shop scheduling problems.” European Journal of Operational Research 226: 46–52.

Drucker, Peter F. 1989. "Sell the Mailroom", Wall Street Journal.

Garey, M.R., D.S. Johnson and R. Sethi. 1976. “The complexity of flowshop and jobshop

scheduling.” Mathematics of Operations Research 1(2): 117-129.

Guo, X., and D. Lei. 2014. “Bi-Objective Job Shop Scheduling with Outsourcing Options.”

International Journal of Production Research 52: 3832–3841.

Hong, J. M., and J. H. Lee. 2016. “Outsourcing Decisions in Single Machine Scheduling Problem

with Multiple External Facilities.” Journal of Marine Science and Technology 24: 603–609.

Lee K., and B. C. Choi. 2011. “Two-stage production scheduling with an outsourcing option.”

European Journal of Operational Research 213: 489–497.

Lee, I. S., and C. S. Sung. 2008a. "Single Machine Scheduling with Outsourcing Allowed."

International Journal of Production Economics 111: 623-634.

Lee, I. S., and C. S. Sung. 2008b. "Minimizing Due Date Related Measures for a Single Machine

Scheduling with Outsourcing Allowed." European Journal of Operational Research 186: 931-952.

Lei, D., and X. Guo. 2016. “A Shuffled Frog-Leaping Algorithm for Job Shop Scheduling with

Outsourcing Options.” International Journal of Production Research 54: 4793–4804.

Liao, B., Q. Song, J. Pei, S. Yang and P. M. Pardalos. 2020. "Parallel-machine group scheduling

with inclusive processing set restrictions, outsourcing option and serial-batching under the effect

 34

of step-deterioration." Journal of Global Optimization 78: 717–742.

Liu, Z., W.-C. Lee, and J.-Y. Wang. 2016. “Resource Consumption Minimization with a Constraint

of Maximum Tardiness on Parallel Machines.” Computers & Industrial Engineering 97: 191–201.

Lu, L., L. Zhang, J. Zhang and L. Zuo. 2020. "Single Machine Scheduling with Outsourcing Under

Different Fill Rates or Quantity Discount Rates." Asia-Pacific Journal of Operational Research

37: 1950033.

Mokhtari, H., and I. N. K. Abadi. 2013. “Scheduling with an Outsourcing Option on Both

Manufacturer and Subcontractors.” Computers & Operations Research 40: 1234–1242.

Mokhtari, H., I. N. K. Abadi, and M. R. Amin-Naseri. 2012. “Production Scheduling with

Outsourcing Scenarios: A Mixed Integer Programming and Efficient Solution Procedure.”

International Journal of Production Research 50: 5372–5395.

Nawaz, M., E. E. Enscore Jr., and I. Ham. 1983. “A heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem.” Omega 11(1): 91–95.

Neto, R. F. T., M. G. Filho, and F. M. da Silva. 2015. “An Ant Colony Optimization Approach for

the Parallel Machine Scheduling Problem with Outsourcing Allowed.” Journal of Intelligent

Manufacturing 26: 527–538.

Qi, X. 2009. “Two-stage production scheduling with an option of outsourcing from a remote

supplier.” Journal of System Science and System Engineering 18: 1-15.

Qi, X. 2011. “Outsourcing and production scheduling for a two-stage flowshop.” International

Journal of Production Economics 129; 43–50.

Ruiz, R., and C. Maroto. 2005. “A comprehensive review and evaluation of permutation flowshop

heuristics.” European Journal of Operational Research 165: 479–494.

Safarzadeh, H., and F. Kianfar. 2019. "Job shop scheduling with the option of jobs outsourcing."

International Journal of Production Research 54: 3255–3272.

Suliman, S. 2000. “A two-phase heuristic approach to the permutation flowshop scheduling

 35

problem.” International Journal of Production Economics 64: 143–152.

Tavares Neto, R.F., and M. G. Filho. 2011. “An ant colony optimization approach to a permutational

flowshop scheduling problem with outsourcing allowed.” Computers & Operations Research 38:

1286–1293.

Wang, S. and W. Cui. 2020. "Approximation algorithms for the min-max regret identical parallel

machine scheduling problem with outsourcing and uncertain processing time." International

Journal of Production Research, DOI: 10.1080/00207543.2020.1766721.

Zhong, W., and Z. Huo. 2013. “Single Machine Scheduling Problems with Subcontracting Options.”

Journal of Combinatorial Optimization 26: 489–498.

 36

Figure 1. The graphic representation of the schedule π.

Figure 2. The branching mechanism of the B&B algorithm.

Figure 3. The branching mechanism of the B&B algorithm.

The first
in-house machine

X ¢
X

X
X

XX xpxpxp === ,...,, 2211

()Bppp X
X

XX =+++ ...21

Jm+1

Bqm =+1

XJ1
XJ2

X
XJ

In-house processing, Cmax = B

Outsourcing jobs Y ¢

Total outsourcing costs

Booo

yoyoyo
Y
Y

YY

Y
Y
Y

YY

=+++Þ

===

...

...,

21

2211

The second
in-house machine

rNode

()1+rNode ()2+rNode

In-house processing of job j Outsourcing job j

In-house processing of job j Outsourcing job j

rNode

()1+rNode ()2+rNode

In-house processing of job n Outsourcing job n

𝑟 + 2 𝑈𝐷& − 1 𝑟 + 2 𝑈𝐷&

 37

< Table 1. The computational experiments on the proposed algorithms >

Job
DP algorithm A B&B algorithm HEU

Aver.
states

Aver. Time
(sec) No Aver. nodes Aver. Time

(sec)
Aver.

Out. (%) No Aver.
Gap (%)

Aver.
Out. (%)

5 62 0.0 20 17 0.0 2.00 20 2.94 12.00
10 2046 0.0 20 55 0.0 1.00 20 0.57 8.50
15 65534 0.1 20 169 0.0 2.00 20 1.86 8.67
20 2097150 3.9 20 350 0.0 0.75 20 0.58 7.50
25 67108862 165.5 20 345 0.0 0.60 20 0.26 6.00
30 (*) (*) (*) 113570 0.2 0.00 20 0.38 6.17
35 (*) (*) (*) 2440 0.0 0.00 20 0.00 8.43
40 (*) (*) (*) 105013 0.2 1.63 20 0.27 6.00
45 (*) (*) (*) 5858 0.0 1.11 20 0.19 4.44
50 (*) (*) (*) 69178 0.1 1.80 20 0.25 9.40
55 (*) (*) (*) 12464 0.0 0.00 20 0.00 2.73
60 (*) (*) (*) 519132 1.7 0.42 20 0.10 7.33
65 (*) (*) (*) 109381 0.3 0.00 20 0.00 3.00
70 (*) (*) (*) 1677784 6.5 0.71 20 0.22 3.64
75 (*) (*) (*) 475794 1.8 0.53 20 0.12 4.20
80 (*) (*) (*) 66988860 323.5 1.62 19 0.06 4.19

(*) means the problem instances which DP algorithm A cannot find the optimal solutions within 3600 seconds.

 38

< Table 2. The computational experiments of the algorithms according to the outsourcing costs >

oj Job

B&B algorithm HEU

Aver.
Nodes

Aver. Time
(sec)

Aver
Out. (%)

Aver.
Gap (%)

Aver
Out.
(%)

[10, 30]

10 93 0.00 7.00 0.10 8.00
30 641 0.01 4.25 0.02 4.25
50 20807 0.06 5.67 0.02 5.67

Aver. 7180 0.02 5.64 0.05 5.97

[20, 40]

10 19 0.01 1.50 0.03 1.50
30 21421 0.05 6.75 0.06 7.00
50 30147 0.09 4.00 0.01 4.17

Aver. 17195 0.05 4.08 0.03 4.22

[30, 50]

10 15 0.00 1.50 0.00 1.50
30 7427 0.02 7.25 0.06 7.25
50 7482 0.02 2.17 0.00 2.17

Aver. 4975 0.01 3.64 0.02 3.64

[100,
150]

10 10 0.00 0.00 0.00 0.00
30 31 0.00 0.00 0.00 0.00
50 54 0.00 0.00 0.00 0.00

Aver. 31 0.00 0.00 0.00 0.00

[500,
750]

10 10 0.00 0.00 0.00 0.00
30 30 0.00 0.00 0.00 0.00
50 50 0.00 0.00 0.00 0.00

Aver. 30 0.00 0.00 0.00 0.00

 39

< Table 3. The computational experiments of the algorithms according to the 𝛿 value >

δ Job
B&B algorithm HEU

Aver.
nodes

Aver. Time
(sec)

Aver Out.
(%)

Aver. Gap
(%)

Aver Out.
(%)

[0.01,
0.1]

10 1304 0.02 12.50 0.11 11.00
30 114249220 385.26 4.75 0.00 5.25
50 196625898 969.04 6.83 0.00 6.83

Aver. 103625474 451.44 8.03 0.04 7.69

[0.3, 0.4]

10 184 0.01 12.00 0.11 13.50
30 450 0.01 2.75 0.01 3.00
50 2968 0.02 4.67 0.00 4.67

Aver. 1201 0.01 6.47 0.04 7.06

[0.4, 0.5]

10 122 0.01 14.50 0.19 14.50
30 2749 0.01 5.50 0.04 5.50
50 22887 0.07 6.33 0.00 6.33

Aver. 8586 0.03 8.78 0.08 8.78

[0.5, 0.6]

10 60 0.00 8.00 0.17 9.00
30 1325 0.00 6.50 0.07 6.50
50 4176 0.01 5.50 0.01 5.67

Aver. 1853 0.00 6.67 0.08 7.06

[0.6, 0.7]

10 31 0.00 6.50 0.15 7.00
30 4661 0.01 6.00 0.02 6.25
50 16306 0.04 5.83 0.01 6.00

Aver. 6999 0.02 6.11 0.06 6.42

[0.9,
0.99]

10 11 0.00 2.00 0.00 2.00
30 238 0.00 4.00 0.00 4.00
50 112 0.00 1.00 0.00 1.00

Aver. 120 0.00 2.33 0.00 2.33

 40

< Table 4. The computational experiments of the algorithms according to the processing times >

pj Job
B&B algorithm HEU

Aver. nodes Aver. Time
(sec)

Aver Out.
(%)

Aver. Gap
(%)

Aver Out.
(%)

[10, 20]

10 313 0.00 15.00 0.37 17.00
30 16428 0.05 17.25 0.11 17.50
50 760663 1.95 16.00 0.09 16.17

Aver. 259135 0.67 16.08 0.19 16.89

[20, 30]

10 538 0.01 45.00 1.85 46.50
30 84514 0.18 48.50 1.40 51.00
50 36802298 103.10 47.17 1.01 49.00

Aver. 12295783 34.43 46.89 1.42 48.83

[30, 40]

10 448 0.00 59.50 4.10 60.00
30 70907 0.15 59.75 3.46 64.00
50 19604611 54.10 59.00 1.85 62.50

Aver. 6558655 18.08 59.42 3.14 62.17

 41

< Table 5. The computational experiments on the proposed algorithms >

Job

B&B algorithm HEU(Johnson) HEU(SPT) HEU(LPT) NEH PEH

Aver.
nodes

Aver.
Time
(sec)

Aver.
Out.
(%)

No
Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

5 22 0.01 29.0 20 11.0 53.0 2.9 34.0 18.9 68.0 3.5 32.0 3.2 30.0

10 261 0.00 22.5 20 11.3 48.5 5.1 29.5 31.7 62.0 4.2 28.5 4.9 28.0

15 1830 0.02 22.6 20 13.9 51.0 6.8 34.6 36.6 63.0 5.2 27.6 6.5 34.6

20 14579 0.18 21.2 20 16.3 55.0 8.3 31.0 37.6 63.5 5.9 30.7 7.2 31.5

25 106443 2.63 18.6 20 14.1 51.6 7.0 30.2 34.2 63.4 4.4 25.8 7.0 30.4

30 2532345 108.16 20.5 20 15.9 55.1 8.0 34.6 34.8 63.8 5.8 28.1 8.2 34.5

35 10889726 765.29 18.4 20 15.4 55.8 7.4 30.8 31.0 65.8 4.7 25.1 6.4 31.1

 42

< Table 6. The computational experiments of the algorithms according to the outsourcing costs >

oj Job

B&B algorithm HEU(SPT) NEH PEH

Aver. nodes
Aver.
Time
(sec)

Aver
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

[10,
30]

10 750 0.0 19.5 6.9 25.5 4.8 20.0 6.4 23.5

20 240457 3.3 16.3 8.3 23.5 6.0 15.0 8.5 21.5

30 40440739 1544.4 18.8 8.4 27.0 4.9 22.5 7.9 28.0

Aver. 13560648 515.9 18.2 7.9 25.3 5.2 19.2 7.6 24.3

[20,
40]

10 1417 0.0 13.5 7.1 19.0 4.7 12.5 5.7 18.0

20 9110402 102.1 19.0 9.0 26.0 7.0 21.0 8.4 25.3

30 38500173 1492.7 13.0 6.9 20.7 3.6 14.7 6.5 21.2

Aver. 15870664 531.6 15.2 7.7 21.9 5.1 16.1 6.9 21.5

[30,
50]

10 648 0.0 8.5 7.7 14.5 3.9 10.0 6.1 13.5

20 4006392 44.5 15.3 8.2 19.5 5.7 16.2 8.1 19.5

30 62629197 2321.4 13.5 6.6 20.0 3.4 16.3 6.3 19.8

Aver. 22212079 788.6 12.4 7.5 18.0 4.3 14.2 6.8 17.6

 43

< Table 7. The computational experiments of the algorithms according to the 𝛿 value >

δ Job

B&B algorithm HEU(SPT) NEH PEH

Aver.
nodes

Aver.
Time
(sec)

Aver
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

[0.3,
0.4]

10 259 0.0 27.0 6.7 41.5 6.1 39.0 8.4 42.5

20 7654 0.1 21.8 8.3 33.2 5.8 30.5 7.5 34.5

30 444574 21.0 22.5 8.0 38.2 5.5 35.3 7.9 35.2

Aver. 150829 7.0 23.8 7.7 37.6 5.8 34.9 7.9 37.4

[0.4,
0.5]

10 241 0.0 25.5 6.2 34.5 4.0 28.5 5.7 33.0

20 6558 0.1 18.8 7.5 34.0 4.6 24.0 7.1 32.5

30 2654507 117.5 19.0 7.8 33.2 4.5 25.3 7.2 31.8

Aver. 887102 39.2 21.1 7.2 33.9 4.4 25.9 6.7 32.4

[0.5,
0.6]

10 266 0.0 24.0 6.2 32.0 5.5 28.0 6.9 31.0

20 11424 0.2 22.8 7.1 32.5 5.8 29.5 7.9 31.0

30 903182 40.8 18.0 8.1 30.0 5.5 26.2 7.8 30.5

Aver. 304957 13.7 21.6 7.1 31.5 5.6 27.9 7.5 30.8

[0.6,
0.7]

10 326 0.0 20.5 6.4 31.0 5.5 24.5 5.6 27.5

20 17942 0.3 21.3 8.1 32.5 5.5 27.0 6.9 30.8

30 10205147 438.4 17.0 8.2 31.0 4.8 24.7 8.2 30.0

Aver. 3407805 146.2 19.6 7.6 31.5 5.3 25.4 6.9 29.4

 44

< Table 8. The computational experiments of the algorithms according to the processing times >

pj Job

B&B algorithm HEU(SPT) NEH PEH

Aver.
nodes

Aver.
Time
(sec)

Aver
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

Aver.
Gap
(%)

Aver.
Out.
(%)

[10,
20]

10 193 0.0 28.5 4.6 38.0 5.4 40.5 4.9 37.5

20 12995 0.2 24.0 10.6 31.0 8.2 32.3 9.8 32.5

30 903218 40.2 20.0 9.5 32.8 5.8 31.0 9.1 33.3

Aver. 305468 13.5 24.2 8.2 33.9 6.5 34.6 7.9 34.4

[20,
30]

10 266 0.0 38.5 5.6 52.0 7.1 54.5 5.8 52.5

20 54349 0.6 41.8 12.0 54.0 11.4 60.3 11.7 54.2

30 19254796 793.2 38.2 15.1 49.3 13.5 59.7 15.2 50.7

Aver. 6436470 264.6 39.5 10.9 51.8 10.7 58.2 10.9 52.5

[30,
40]

10 329 0.0 57.0 7.4 62.0 8.6 69.0 7.1 62.5

20 347630 4.1 54.8 12.5 63.0 12.6 71.3 12.9 61.0

30 56103903 2007.8 52.3 14.3 59.0 12.5 67.3 14.5 58.3

Aver. 18817287 670.6 54.7 11.4 61.3 11.2 69.2 11.5 60.6

