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Abstract

This article presents a new reduced order model (ROM) for the angular discretisation
of the Boltzmann transport equation. The angular ROM is built over a partitioning
of the space-angle phase-space, by generating independent, optimised angular basis
function sets for each partition. The advantage is that each basis function set is opti-
mised to represent the neutron flux distribution in a particular partition of space and
angle, rather than being optimised for the entire domain. This serves to reduce the
total number of basis functions required, and therefore the solve time. Two numerical
examples are presented to demonstrate the efficacy of the methods - a dog-leg duct
problem, involving particle streaming, and the Watanabe-Maynard problem, which
includes significant particle scattering. In both cases, it is shown that the method
reduces the angular flux error, for a given basis size or solve time, by around an or-
der of magnitude in comparison to other, similar ROM methods. An adaptive version
of the method is also presented, whereby the number of basis functions within each
space-angle partition can vary independently. It is shown to potentially provide further
significant reductions in error.

1 Introduction

Numerical and mathematical models play an essential role in the analysis of many systems
across a wide range of fields in science and engineering. They are utilised extensively in the
nuclear sector, where they are essential tools for design and analysis. For example, they can
be applied to predict neutron population distributions [1], radiation intensities [2], and the
flows of coolant and heat within reactor cores [3]. For complex problems, numerical models
can require significant computational resources due to the scale of the problems and the
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high dimensionality of the equations involved. For example, reactor cores are constructed
from many tens of thousands of fuel and control rods, so large spatial meshes are required
to resolve their full domain. Furthermore, predicting the distribution of neutrons within
cores accurately involves solving the Boltzmann transport equation (BTE), which has a
7-dimensional phase-space.

Over the years, many articles have been published which focus on the formulation of
efficient solutions to the BTE, such as the use of self-adaptive methods [4, 5, 6] which reduce
the total degrees of freedom by distributing resolution efficiently - that is, only where it
is beneficial. However, over the last decade reduced order methods (ROMs) have gained
popularity, as they are capable of forming and applying basis functions which are optimised
for a particular class of problem. They have been demonstrated to reduce problem sizes by
orders of magnitude, resulting in a similar scale of reductions to solve times.

ROMs have been applied extensively across many fields of engineering. Recent develop-
ments include the application of proper orthogonal decomposition (POD) to transient heat
conduction [7], turbulent supersonic jets [8], acoustic waves [9], incompressible magneto-
hydrodynamics [10], and many other problems. POD-based methods have been combined
with neural networks to model plasticity [11], unsteady flows in a combustion problem [12],
the viscous Burgers equation [13], and structural damage [14]. Purely neural network-based
ROMs have also been implemented, with applications including the modelling of biomass
fast pyrolysis [15] and pH reactors [16]. Many other model order reduction strategies have
been developed, including the Volterra [17] and Fourier [18] series expansions, space map-
ping [19], the Kriging [20] and harmonic balance [21] methods, and radial basis functions
[22]. Related to the work of this article, ROMs have also been developed that use and apply
basis functions over a domain decomposition, or localised regions of a problem. These have
been used to solve advection-diffusion problems [23], Maxwell’s equations [24], the Stokes
equations [25], and elliptic multi-scale problems. Mixed approaches have also been described
using both high-order methods and reduced order models over a domain decomposition,
applying ROMs over regions that they can resolve well, with high order methods used else-
where. Applications include solutions to the Laplace equations [26] and, more recently, the
compressible Euler equations [27].

The field of nuclear engineering and general radiation transport simulation, has made
use of ROMs to solve a variety of problems. Early examples of ROMs in the field include
[28], which used several ROM techniques to analyse the transient dynamics of reactor-driven
systems; [29], which applied them to one dimensional transient radiation problems; and [30],
which applied POD to the spatial dimensions of eigenvalue problems in the context of reactor
physics. Further developments include the application of POD to the angular dimension of
the BTE [31, 32, 33], space-angle ROMs for radiative heat transfer [34], and the use of range-
finding algorithms for the linear transformation of parameters in multiphysics problems [35].
More recently, POD has been used to model fuel burnup [36] and reactor power distributions
[37]. Many articles have also considered the problem of control rod movement using various
ROMs, including early work based on proper generalised decomposition [38], and recent
publications which employed POD [39], the empirical interpolation method [40], and neural
networks [41].

Recently, a new adaptive POD method known as discontinuous POD (DPOD) was de-
veloped, which applied angular POD functions to optimally resolve the angular dimension of
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the BTE over distinct partitions of the angular domain [42]. The method was demonstrated
to create stable basis sets which provided efficient solutions to multi-dimensional transport
problems. In this article, a simple but highly effective new modification is presented to
extend this capability, in order to improve the efficiency of the method by further reducing
the dimensionality of problems. Known here as regional discontinuous POD (RDPOD), the
new model forms and applies independent sets of angular basis functions, which are each
optimised to resolve different partitions of the space-angle phase-space of the BTE. That
is, the method forms separate angular POD functions over distinct regions of space, rather
than using a single basis set for all regions of space as developed in the previous method
[42]. Whilst this is a simple modification, it is of particular importance as the neutron flux
distribution often varies substantially over space and angle. Capturing the characteristics of
the neutron flux using a single set of basis functions can therefore place high demands on
the original ROM formulation. Partitioning the spatial and angular dimensions and creating
separate anguar ROMs for each partition can help to overcome this issue. As the variation
in neutron flux distributions within each partition is considerably smaller than the variation
across the entire problem, the number of basis functions required to resolve each distribution
is reduced substantially. This can lead to smaller systems of equations, and therefore reduce
solve times.

While there has been a large amount of research interest in developing ROMs which are
localised over decomposed domains, this is the first to do so using angular basis functions to
resolve the BTE. Furthermore, this article presents an implementation of angular adaptivity
for the RDPOD basis sets, adaptive RDPOD (ARDPOD), which allows the number of
RDPOD basis functions to appropriately vary between space-angle partitions. In addition,
this article presents a method which enables the efficient transfer of information between
regions with different angular basis sets.

The capabilities of these ROMs are demonstrated with two problems - one involving
only advection and absorption, and another which also includes scattering. It is shown
that the reduction in basis sizes and solve times for a given error can exceed an order of
magnitude in comparison to previous work on angular ROMs [31, 42]. Further significant
improvements were achieved through the use of adaptive resolution, which reduced error by
up to 2 orders of magnitude compared to the non-adaptive method in some cases. Whilst
these reductions are already significant, perhaps their benefits would be greater still when
applied to large-scale reactor physics problems with far greater levels of variation in their
neutron flux distributions.

The sections of this article are arranged as follows. Section 2 presents the BTE together
with its general angular and spatial discretisations. Section 3 presents the development
of the ROM, and describes the communication between different basis sets, as well as the
adaptive angular resolution procedure. Section 4 presents two numerical examples which
demonstrate the capabilities of each method. Section 5 completes the article by presenting
its conclusions.
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2 The Boltzmann Transport Equation and Space-Angle

Discretisation

The steady-state, mono-energetic Boltzmann transport equation governs the angular flux
ψ(~r,Ω) in direction Ω at position ~r,

Ω · ∇ψ(~r,Ω) + Σt(~r)ψ(~r,Ω) = qex(~r) +

∫
Ω′

Σs(~r,Ω
′ −→ Ω)ψ(~r,Ω′)dΩ′. (1)

The first term in equation 1 is the advection operator; the second is the removal term, which
accounts for losses from both absorption and scattering; the third denotes the isotropic
external source; and the fourth represents the scattering into the angle Ω from all angles
Ω′. The macroscopic scattering and total removal cross sections are given by Σs and Σt,
respectively. The symbols in brackets indicate the continuous dimensions associated with
each variable - ~r and Ω for spatial and angular continuity, respectively.

2.1 Angular Discretisation of the Boltzmann Transport Equation

As the process of discretisation closely follows that of [42], only a summary is presented
here. The Galerkin method is applied to discretise the angular dimension of equation 1.
The angular flux Ψ(~r,Ω) is approximated by a sum of Na angular basis functions Gj(Ω)
multiplied by the coefficients ψj(~r),

ψ(~r,Ω) ≈
Na∑
j=1

Gj(Ω)ψj(~r). (2)

The approximation in equation 2 is inserted into equation 1, which is then weighted and
integrated over all angles. The basis functions G are also used as weighting functions. Thus
equation 1 is expressed in the angularly discretised form,

(A · ∇+H(~r))Ψ(~r) = Q(~r), (3)

where A is a vector of matrices (Ax, Ay, Az), each containing the components of the unit
vectors Ω in the corresponding Cartesian axis. The removal and scattering terms are grouped
into the matrix H. The coefficients of the angular expansion are contained in the vector Ψ(~r),
and the angularly discretised source term is represented by the vector Q(~r). All matrices are
of size Na × Na, and all vectors besides A are of size Na. The components of each matrix
and vector in equation 3 are given in [42].

Each class of problem is resolved using the discrete ordinates (SN) method for np cases
with varying conditions, such as perturbations to the nuclear material cross-sections. The
vectors of SN angular coefficients are partitioned into sets according to the angular octant
Ωq of each angle,

Ψ(~r) =


Ψ1(~r)

...
Ψq(~r)

...
Ψ8(~r)

 , (4)
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where Ψq(~r) is a vector containing the Na/8 coefficients with associated directions within
the octant Ωq.

2.2 Spatial Discretisation of the Boltzmann Transport Equation

The discontinuous Galerkin finite element method is applied to discretise the spatial dimen-
sions of the BTE [42, 43]. The angularly discretised flux Ψ(~r) in equation 3 is approximated
as a sum of the Ns spatial basis functions Nj(~r) multiplied by the coefficients Ψj,

Ψ(~r) ≈
Ns∑
j=1

ΨjNj(~r). (5)

This approximation is inserted into equation 3, which is then converted to its weak form
by weighting with the set of basis functions N (~r) and integrating over the volume of each
element, Ve. Green’s theorem is applied to the advection term, splitting it into an integral
over Ve and another over the element boundary Γe. Finally, the boundary term is split into
inflow and outflow components, as first order upwinding is used to calculate the flow at
element boundaries [5, 44]. The result is a full order discretised formulation of the BTE,

Ns∑
j=1

{(
−
∫

Ve

∇Ni(~r)ANj(~r)dV +

∫
Ve

Ni(~r)H(~r)Nj(~r)dV
)

Ψj

+

∫
Γe

Ni(~r)(Ain · n̂)Nj(~r)dΓeΨ
in
j +

∫
Γe

Ni(~r)(Aout · n̂)Nj(~r)dΓeΨ
out
j

}
=

∫
Ve

Ni(~r)Q(~r)dV,

∀i ∈ {1, Ns}, (6)

where n̂ is the unit vector normal to the element boundary; Ψout
j is the outflow, given by

the angular flux vector of the element in question; and Ψin
j is the inflow, given by the

angular flux vectors of the element’s upstream neighbours. The matrices Ain = (Ain · n̂)
and Aout = (Aout · n̂) are formed to pass the correct incoming and outgoing information,
respectively, through the element’s surface. For SN , they are produced by simply retaining
the negative and positive diagonal elements, respectively, of the matrix (A · n̂). In the
general case, a Riemann approach can be employed [45]. Equation 6 gives the general form
of the BTE after discretisation in both space and angle, and can therefore be applied to any
arbitrary angular approximation.

3 The Discontinuous Angular Reduced Order Model

This section presents a new angular POD method that forms independent angular basis sets
which are each optimised to resolve a specific partition of the space-angle phase-space of the
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BTE. The angular domain Ω and spatial domain V are partitioned into the two sets,

Ω =
8⋃
q=1

Ωq and V =
nr⋃
r=1

Vr, (7)

where Ωq and Vr represent subsets of the angular and spatial domains, respectively, as
illustrated in figure 1. The DPOD method described in [42] corresponds to the use of
a single spatial region spanning the domain, that is, nr=1. If a single angular partition
spanning the full sphere is also used, then the standard angular POD method described in
[31] is recovered.

(a) An angular octant on the sphere. The red lines
delimit the boundaries. Each basis function is non-zero

in one out of eight octants.

(b) A spatial region within an 8x8 element domain,
using 4x4 regions. Dashed black lines are element

boundaries, solid black lines are element and region
boundaries, and the red square encloses the region which

takes snapshots from all elements shaded blue.

Figure 1: The spatial and angular discontinuities imposed by the RDPOD method.

In line with the DPOD method, the angular domain is partitioned into 8 octants. Each
spatial partition may in principle contain any arbitrary set of nr elements in the spatial
domain. A cross-product of the two partitions in equation 7 forms the space-angle partition
of the complete phase-space, which is given by,

Z =
⋃
q,r

Zq,r, (8)

where the phase-space partition spanning the angular octant Ωq and spatial region Vr is
denoted Zq,r.

The POD functions are formed for each partition via the method of snapshots [46]. The
angular coefficients from the SN model are used to form the snapshot matrices for each
partition. The angular coefficient vectors Ψ are partitioned by octant as shown in equation
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4, and each component Ψq is assigned to a spatial region Vr based on its position. Separate
snapshot matrices Sq,r are formed for each partition Zq,r, resulting in 8× nr matrices.

The snapshot matrices Sq,r also include vectors of angular coefficients from the elements
adjacent to Vr, as this helps to preserve information when mapping between regions. This
is shown in figure 1b, where the region enclosed in red takes snapshots from all elements
shaded in blue. For each Zq,r, the associated snapshot set is therefore defined as,

Sq,r =

 | | |
Ψq,r,1 Ψq,r,2 ... Ψq,r,ns

| | |

 , ∀q ∈ {1, 8},∀r ∈ {1, nr}, (9)

where each Ψq,r,i is a vector of sizeNa/8 containing the angular coefficients of the ith snapshot
associated with the partition Zq,r. The term ns, which may vary for each snapshot set,
denotes the total number of snapshots in Sq,r. This is given by ns = Nr × Np, where Nr is
the number of FEM basis nodes in partition Vr, including the neighbouring nodes as shown
in blue in figure 1b, and Np is the number of problem variations used to train the ROM.

The RDPOD basis sets for each Zq,r can now be formed through the SVD of each snapshot
matrix,

Sq,r = Uq,rΣq,rV
T
q,r, (10)

where Uq,r and Vq,r are unitary matrices of sizes Na/8×Na/8 and ns×ns, respectively. The
column vectors of Uq,r contain the optimised basis vectors that best represent the snapshot
data, ordered such that the first na columns form the optimal na basis vectors in the Frobe-
nius norm. Here, na is the same for all q and r, though this is not required. A method for
varying the number of basis functions by region and octant is described in section 3.1. The
RDPOD basis matrices Uq,r are formed by truncating each snapshot matrix such that only
the first na columns are retained. The fraction of the information in Uq,r which is retained
in Uq,r can be determined from the singular values,

Iq,r =

na∑
i=1

(Σq,r,i,i)
2

Na∑
i=1

(Σq,r,i,i)2

, (11)

where Iq,r varies from 0 to 1, with 1 being total capture of the snapshot information. The
matrices Uq,r can be used to map the angular coefficients between the full and reduced order
models through the relationship,

Ψq,r ≈ Uq,rαq,r, ∀q ∈ {1, 8},∀r ∈ {1, nr}, (12)

where αq,r contains a vector of na coefficients of Uq,r, for each node within Zq,r. The combined
mapping over all angular partitions in each region Vr can be expressed as,

Urαr =


U1,r 0 0 0 0

0
. . . 0 0 0

0 0 Uq,r 0 0

0 0 0
. . . 0

0 0 0 0 U8,r




α1,r

...
αq,r

...
α8,r

 =


U1,rα1,r

...
Uq,rαq,r

...
U8,rα8,r

 , ∀r ∈ {1, nr}. (13)
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Equations 4 and 12 enable this to be compactly written as,

Urαr(~r) ≈ Ψ(~r), (14)

which holds for any spatial position ~r inside region r.
Substituting equation 14 into equation 3 and premultiplying by UTr projects the angularly

discretised equations onto the POD space. This projection is applied to each region Vr
separately,

UTr (A · ∇+H(~r))Urαr(~r) = UTr Q(~r), ∀r ∈ {1, nr}. (15)

Equation 15 is then spatially discretised as described in section 2.1, resulting in the fully
discretised RDPOD formulation of the BTE.

The spatially discretised forms of equation 15, equivalent to projections of equation 6 onto
the RDPOD bases, are constructed separately for each spatial partition Vr using their own
optimised RDPOD angular basis sets. Communication between the elements within each
partition, and between neighbouring partitions, is implemented through the surface integrals
of equation 6. As mentioned, a Riemann approach can be employed to form the incoming
and outgoing matrices inside the surface integrals for a general angular discretisation. They
can also be obtained through pre- and post-multiplication of the full order matrices Ain and
Aout by the RDPOD mapping matrices UTr and Ur. For adjacent elements within the same
region Vr, the incoming and outgoing surface matrices of equation 6 are given by,

Ain = UTr AinUr, and Aout = UTr AinUr, (16)

respectively. To obtain an element’s incoming surface information from an adjacent element
belonging to a different region, say Vr′ , one must use the correct mapping to account for the
fact that the incoming vector employs a different RDPOD basis. This is simply achieved
by mapping the RDPOD coefficients αr′ from the incoming element to the full model space,
applying the (SN) incoming advection operator, then projecting the resulting vector onto
the basis of region Vr. That is, the incoming advection matrices in the RDPOD formulation
are given by,

Ainr,r′ = UTr AinUr′ . (17)

The matrices Ainr,r′ are precomputed for each pair of regions r and r′ with a common bor-
der. They can then be employed in equation 6, where the incoming surface integral can be
explicitly written as,

Ns∑
j=1

∫
Γe

Ni(~r)Ainr,r′Nj(~r)dΓeα
in
r′,j, ∀i ∈ {1, Ns}. (18)

As stated previously, in the case of a single spatial region spanning the domain, the DPOD
method presented in [42] is recovered. Using a single spatial region together with a single
angular region spanning the sphere, the original angular POD method in [31] is recovered.

3.1 Adaptivity in Angle

This section presents an adaptive algorithm using the RDPOD basis functions, known as
adaptive RDPOD (ARDPOD). Instead of utilising the same number of basis functions na
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throughout the domain, each partition Zq,r has an associated number of basis functions
nq,r, which can be modified independently. The adaptive algorithm uses an error metric to
estimate the effect of increasing nq,r for each Zq,r, and adds basis functions where they are
likely to minimise the total error.

The contribution of each basis function to the solution is dependent only on the magni-
tudes of its coefficients. The basis functions form a hierarchical set, which implies that the
coefficients of each successive function will tend towards zero as the approximation converges.
It can thus be inferred that additional basis functions are likely to be most beneficial in par-
titions where the coefficient of the final basis function currently included is large. However,
successive coefficients have been observed to oscillate between positive and negative about
zero, and so a single small coefficient does not guarantee convergence. The error metric
therefore considers the final two coefficients.

An initial solution is required in order to calculate the error metric and begin the adaptive
process, and so the problem in question is first solved with,

nq,r = 2, ∀q ∈ {1, 8},∀r ∈ {1, nr}. (19)

Next, the relative contribution from the final two basis functions is calculated for each
partition Zq,r,

Fq,r =
(αq,r,nq,r−1 + αq,r,nq,r)

8∑
q=1

nr∑
r=1

nq,r∑
i=1

αq,r,i

, ∀q ∈ {1, 8}, ∀r ∈ {1, nr}, (20)

where αq,r,i denotes the ith angular coefficient in the partition Zq,r. A threshold value τ is set
to some inital, relatively large value, typically 1. A variable known as the threshold divisor,
δτ , is set to some value greater than 1. In this article, δτ = 2. Each iteration, basis functions
are added according to the equation,

nq,r = nq,r + 1, ∀ (q, r) ∈ { (q′, r′) | Fq′,r′ > τ}. (21)

The number of basis functions added in this process, n∆, is counted and compared to the
minimum number of basis functions to add per iteration, n+. If n∆ < n+, then τ = τ/δτ
and equation 21 is applied again with the new value of τ . The process repeats until n∆ >
n+, at which point the next iteration can begin. Once nq,r has been adjusted, the process
repeats until a desired number of basis functions is reached. The complete adaptive method
is described by algorithm 1.
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Algorithm 1: Adaptive RDPOD

nq,r = 2 for all q and r.
/* Iterate until the desired number of basis functions is reached. */

while sum(nq,r) < maximumBasisFunctions do
Solve the ROM.
Calculate Fq,r.
n∆ = 0;
while n∆ < n+ do

/* Loop through partitions and add basis functions. */

for q = 0 to 8 do
for r = 0 to nr do

if Fq,r > τ then
nq,r += 1;
n∆ += 1;

end

end

end
/* Decrease the threshold value τ if necessary. */

if n∆ < n+ then
τ = τ/δτ ;

end

end

end

4 Numerical Examples

In this section, two numerical examples are presented in order to compare performance of
DPOD, RDPOD and ARDPOD. Uniform quadrilateral FEM spatial meshes are employed,
using discontinuous bilinear basis functions. The full order method employs the SN discreti-
sation, with a sufficiently high angular resolution to ensure that the solutions have converged
in angle.

A sweep based solver is employed for all methods, which solves for the unknowns of
each mesh element in turn, following the path of information flow. Standard sweeping is
employed for the full order model, where each ray is resolved individually and elements
visited in the order of information flow along the direction of the ordinate [47, 48]. For
the ROMs, as the angular coefficients are heavily coupled, all angular coefficients are solved
simultaneously for each element. Four sweep directions are used for the two dimensional
problems presented here when structured meshes are applied. Elements are swept from left
to right, top to bottom (and then in reverse), and top to bottom, left to right (and then
in reverse). However, the focus of this article is not on developing the most efficient solver
technology to resolve the various angular models. In fact, there are several ways to increase
efficiency, but each would require substantial development and warrant a separate article.
So, whilst solver times are provided, these should be considered conservative estimates, and
it is highly likely that reductions can and will be made in future. Thus the main purpose of
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this analysis is to demonstrate the methods’ increased accuracy for a given basis size when
compared with DPOD, which has previously been demonstrated to outperform both SN and
standard angular POD by the same metric [42].

In the examples presented, the spatial partitions used to construct the ROMs are of
regular structure, despite equation 8 allowing for any arbitrary partitioning to be used.
Whilst the ideal implementation would minimise the variation in angular flux profiles within
each partition, generating partitions in this manner would require significant additional work.
This article will instead focus on demonstrating that even regularly shaped partitions can
drastically improve modelling efficiency. This demonstration therefore forms a foundation
for future work on the generation of optimal partitions for further improvements to efficiency.

Finally, it is sufficient to say that the ROM’s computer memory requirements are rel-
atively small. The memory usage increases linearly with the number of regions, nr, since
each sub-region requires its own set of discretised angular matrices. However, as shown in
the numerical examples, the angular size of the reduced system should be typically small,
on the order of a few tens. Thus, taking a large angular ROM of size, say, 100, and using a
reasonably large set of partitions, say, nr = 1000, a matrix free solver would require less than
0.6 GiB RAM. Clearly, if parts of the matrix resulting from the spatially discretised equa-
tions had to be stored then the memory requirements would increase substantially. Whilst
a matrix-free solver is most desirable to avoid large memory requirements, particularly for
unstructured finite element meshes, this has yet to be developed. In this article, a uniform
structured mesh is used, which enables a single element-wise discretised matrix (from the
element-wise discretised equations 6) to be stored for each partition. Again using the exam-
ple of 1000 partitions and 100 angular POD functions, only 1.5 GiB of memory is required
for storage in this case.

4.1 The Dog-Leg Duct Problem

The first example is a dog-leg duct problem [49]. Figure 2a shows a schematic of the domain.
Region 1 is a source, region 2 is the duct, and region 3 is a heavy absorber. Vacuum boundary
conditions are applied to the top and right boundaries, and reflective boundary conditions
to the bottom and left boundaries. The spatial domain is discretised with a 140×180 mesh
of discontinuous linear quadrilateral elements. The full order solutions used for snapshots
and error calculations employed the S50 angular discretisation. Figure 2b shows the scalar
flux distribution of the S50 solution to the interpolation problem.
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(a) Dog-leg duct schematic (b) S50 scalar flux solution to interpolation problem

Figure 2: Schematic (a) and S50 scalar flux solution (b) for the dog-leg duct interpolation problem. Region
1 is the source, region 2 is the duct, and region 3 is a highly absorbing material.

Table 1 lists the material cross sections for the training and test problems. The snapshot
matrix was formed from all four training solutions, and the resulting RDPOD bases were
used to solve the test problems. The first test problem is referred to as the interpolation
problem, as its material properties are within the range for which snapshots were produced,
and the second is referred to as the extrapolation problem, as its material properties lie
outside of this range.

(a) Interpolation (b) Extrapolation

Figure 3: Angular flux error vs number of basis functions for S50 solutions to the dog-leg duct problems
with varying numbers of spatial regions. “a× b” indicates a spatial partitions in x and b in y, for a total of

a× b.

Figure 3 compares the L2-norms of the relative angular flux errors for the dog-leg duct
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interpolation and extrapolation problems using DPOD and RDPOD, with varying numbers
of basis functions and regions. The results show that RDPOD consistently reduces error
compared to DPOD for a given angular basis size. Furthermore, increasing the number of
spatial partitions consistently reduces the error. For the largest set of spatial partitions,
the error is reduced by approximately 1 order of magnitude with 16 basis functions. The
reduction in error compared to DPOD continues to grow as the angular resolution is increased
further.

(a) Interpolation (b) Extrapolation

Figure 4: Angular flux error vs solve time in seconds for S50 solutions to the dog-leg duct problems with
varying numbers of spatial regions. “a× b” indicates a spatial partitions in x and b in y, for a total of a× b.

Figure 4 presents the L2-norm of the relative angular flux error against the solve time for
both interpolation and extrapolation problems, for varying numbers of basis functions and
regions. Similar trends are observed, with RDPOD reducing the solve time required to
achieve a given error. For the largest spatial partition sets, the solve times are reduced by
over an order of magnitude with a relative error of around 10−5. The trends in the graph
indicate that greater efficiency will be achieved for lower error tolerances.

(a) Interpolation (b) Extrapolation

Figure 5: Angular flux error vs number of basis functions for S50 solutions to the dog-leg duct problems
with varying numbers of spatial regions using angular adaptivity.
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Figure 5 presents the relative angular flux error vs the mean number of basis functions per
node for DPOD, and for RDPOD and ARDPOD with varying numbers of regions. It is
shown that ARDPOD significantly reduces the error for a given angular basis size. With
just 12 basis functions, the error was reduced by approximately half an order of magnitude
compared to RDPOD, and by more than an order of magnitude compared to DPOD. By 84
basis functions, the reductions in error for a given basis size had increased to almost 2 orders
of magnitude compared to RDPOD and approximately 2.5 orders of magnitude compared
to DPOD.

(a) Interpolation (b) Extrapolation

Figure 6: Angular flux error vs solve time in seconds for S50 solutions to the dog-leg duct problems with
varying numbers of spatial regions using angular adaptivity. “a× b” indicates a spatial partitions in x and

b in y, for a total of a× b.

Figure 6 presents the relative angular flux error against the solve time for DPOD, RDPOD
and ARDPOD. The adaptive solve times show the time taken to complete the final iteration
of the adaptive process, starting from a zero solution. This gives an indication of the per-
formance of ARDPOD once the adaptive stage is complete and an efficient basis function
distribution has been generated. It is shown that the adaptive method drastically reduces
the solve time required to reach a given level of error in comparison to both DPOD and
RDPOD. At around 20 seconds of solve time, the ARDPOD errors are reduced by just over
an order of magnitude in comparison to RDPOD, and by around 2 orders of magnitude when
compared to DPOD.
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(a) Interpolation (b) Extrapolation

Figure 7: Angular flux error vs cumulative solve time in seconds for S50 solutions to the dog-leg duct
problems with varying numbers of spatial regions using angular adaptivity. “a× b” indicates a spatial

partitions in x and b in y, for a total of a× b.

Figure 7 presents the relative angular flux error against the total solve times using ARD-
POD. The total solve time is the time to complete the entire adaptive solution process. While
the ARDPOD solver is far from optimised, the graphs still show that ARDPOD reduces the
angular flux error by up to an order of magnitude for a given solve time when compared to
DPOD, and that the error exhibits a modest increase in order of convergence.
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(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 8: The number of ARDPOD basis functions per octant in each spatial region, for the dog-leg duct
extrapolation problem, with 70x90 regions and a mean of 84 basis functions per node in total.

Figure 8 shows the number of basis functions associated with each octant in each spatial
region, for the dog-leg duct extrapolation problem. The figures show that basis functions
have predominantly been added to high flux regions, such as inside the duct and at its
borders. This demonstrates that the adaptive method is successfully increasing the resolution
in regions where additional basis functions are likely to be most beneficial, and thus explains
the method’s success in reducing the error for a given number of basis functions.

16



4.2 The Watanabe-Maynard Problem

The second example is the Watanabe-Maynard problem [50]. Figure 9a depicts a schematic
of the spatial domain. Region 1 is the source, region 2 is a void, and region 3 is a moderate
absorber and scatterer. Table 2 shows the material properties of each region for the train-
ing and test solutions. Reflective boundary conditions are applied to the bottom and left
boundaries, and vacuum boundary conditions are applied to the top and right. The spatial
domain is discretised with a 160×160 mesh of discontinuous linear quadrilateral elements.
The S50 angular discretisation was employed to produce full order angular solutions. Figure
9b depicts the scalar flux distribution of the S50 solution to the interpolation problem.

(a) Schematic (b) S50 scalar flux solution

Figure 9: Schematic (a) and S50 scalar flux solution (b) for the Watanabe-Maynard interpolation problem.
Region 1 is the source, region 2 is a void and region 3 is a moderately absorbing and scattering material.

Table 2 lists the material cross sections for the training and test problems. As previously,
the snapshot matrix was formed from all four training solutions, and the resulting bases were
used to solve both an interpolation and an extrapolation problem.
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(a) Interpolation (b) Extrapolation

Figure 10: Angular flux error vs number of basis functions for S50 solutions to the Watanabe-Maynard
problems with varying numbers of spatial regions.

Figures 10a and 10b depict the L2-norm of the angular flux error for the Watanabe-Maynard
problems, for both DPOD and RDPOD with varying numbers of regions. As the figure
shows, increasing the number of RDPOD regions consistently reduces the angular flux error
for a given basis size, excluding 4 basis functions. With just 8 basis functions, the maximum
reduction in error is an order of magnitude, which increases steadily to 2 orders of magnitude
by 84 basis functions.

(a) Interpolation (b) Extrapolation

Figure 11: Angular flux error vs solve time in seconds for S50 solutions to the Watanabe-Maynard
problems with varying numbers of spatial regions. “a× b” indicates a spatial partitions in x and b in y, for

a total of a× b.

Figure 11 plots the relative angular flux error against the solve time for DPOD and RDPOD.
It is again shown that increasing the number of spatial regions consistently decreases the
error for a given solve time, with a maximum reduction of more than 2 orders of magnitude.

In some cases, moving from 4 to 8 basis functions decreased both the error and the solve
time, which was not expected. This is likely because the iterative solver converged slowly
for the bases with 4 functions, so adding a basis function to each octant not only reduced
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the error as expected, but also allowed the solver to converge in fewer iterations and thereby
reduced the solve time.

(a) Interpolation (b) Extrapolation

Figure 12: Angular flux error for adaptive S50 solutions to the Watanabe-Maynard problems with varying
numbers of spatial regions. “a× b” indicates a spatial partitions in x and b in y, for a total of a× b.

Figure 12 plots the relative angular flux error against the mean number of basis functions per
node for all three methods with varying numbers of regions. As the figure shows, ARDPOD
reduces the error compared to RDPOD in all cases, with a peak reduction of approximately
an order of magnitude. Compared to DPOD, ARDPOD reduces the error by approximately
2.5 orders of magnitude. The figure also shows, once again, that increasing the number of
regions consistently reduces error for both RDPOD and ARDPOD.

(a) Interpolation (b) Extrapolation

Figure 13: Angular flux error vs solve time in seconds for S50 solutions to the Watanabe-Maynard
problems with varying numbers of spatial regions using angular adaptivity. “a× b” indicates a spatial

partitions in x and b in y, for a total of a× b.

Figure 13 compares the relative angular flux error to the solve times for DPOD, RDPOD and
ARDPOD. As explained in the discussion of figure 6, the solve times given are for a single
iteration, and are intended to be indicative. The cumulative solve time is not considered,
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as the solver has not yet been optimised for this purpose. The figure shows that ARDPOD
drastically decreases the error for a given solve time, with a peak reduction of more than
3 orders of magnitude. This demonstrates that, while RDPOD and ARDPOD both reduce
error compared to DPOD for a given basis size, they do not significantly affect the solve
time. Similar anomalies to figure 11 are seen with 4 basis functions per node, likely for the
same reason.

(a) Interpolation (b) Extrapolation

Figure 14: Angular flux error vs cumulative solve time in seconds for S50 solutions to the
Watanabe-Maynard problems with varying numbers of spatial regions using angular adaptivity. “a× b”

indicates a spatial partitions in x and b in y, for a total of a× b.

Figure 14 presents the relative angular flux error against the cumulative solve time for
ARDPOD. As mentioned in the discussion of figure 7, the adaptive method is not yet fully
optimised, and significant improvements in this metric are likely possible. Despite this, the
graphs show that ARDPOD performs at least as well as DPOD in the case of 2x2 regions,
and significantly better with more regions. At best, it offers over an order of magnitude
reduction in error with the same solve time as DPOD.

5 Conclusions

This article has developed upon the method of DPOD proposed in a recent article [42]. A
new reduced order model for the angular dimension of the Boltzmann transport equation,
known as RDPOD, has been described. The novelty of RDPOD lies in its separation of the
spatial domain into multiple regions, each of which has its own optimised DPOD basis set.
A method of projecting flux between each reduced order basis without full order calculations
has also been derived and implemented. Finally, an adaptive algorithm based on the RDPOD
bases has been presented.

The RDPOD method is shown to consistently decrease the relative angular flux error for
a given solve time and basis size when compared to DPOD, by an amount proportional to the
number of spatial regions. This was the expected result, as increasing the number of regions
reduces the number of elements per region, and therefore allows each basis function to be
better optimised for the angular flux profiles it represents. The relative angular flux error for
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a given number of basis functions was reduced by up to an order of magnitude for the dog-leg
duct problem, and 2 orders of magnitude for the Watanabe-Maynard problem, demonstrating
that the method can benefit both advection and scattering problems. Similar results were
observed when comparing the error to the solve time, as RDPOD did not significantly affect
the solve time for a given basis size compared to DPOD.

The adaptive method, known as ARDPOD, was demonstrated to further reduce error
for a given basis size compared to RDPOD. The effect of adaptivity was significant - for
both numerical examples, the error was reduced by up to 3 orders of magnitude compared to
DPOD. Compared to RDPOD with the same number of regions, ARDPOD typically reduced
the error by up to an order of magnitude, and more in some cases. The same was true when
comparing the error to the solve time for each iteration. However, as previously mentioned,
the cumulative time to reach a given adaptive stage was not optimised. Additional optimi-
sation of the adaptive method could significantly reduce the cumulative solve time, but this
is left for future work.

6 Tables

Problem Material Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

1 1.00 0.50 0.00
1 2 0.00 0.00 0.00

3 0.00 0.50 0.00
1 1.00 1.50 0.00

2 2 0.00 0.00 0.00
3 0.00 1.50 0.00
1 1.00 0.50 0.00

3 2 0.00 0.05 0.00
3 0.00 0.50 0.00
1 1.00 1.50 0.00

4 2 0.00 0.05 0.00
3 0.00 1.50 0.00

1 1.00 1.00 0.00
Interpolation 2 0.00 0.025 0.00

3 0.00 1.00 0.00
1 1.00 2.00 0.00

Extrapolation 2 0.00 0.10 0.00
3 0.00 2.00 0.00

Table 1: Material properties for the dog-leg duct solutions. Material 1 is the source, material 2 is the duct,
and material 3 is a neutron absorbing material.
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Problem Material Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

1 6.40 0.01 0.19
1 2 0.00 0.00 0.00

3 0.00 0.01 0.19
1 6.40 0.01 0.21

2 2 0.00 0.00 0.00
3 0.00 0.01 0.21
1 6.40 0.03 0.19

3 2 0.00 0.00 0.00
3 0.00 0.03 0.19
1 6.40 0.03 0.21

4 2 0.00 0.00 0.00
3 0.00 0.03 0.21

1 6.40 0.02 0.20
Interpolation 2 0.00 0.00 0.00

3 0.00 0.02 0.20
1 6.40 0.02 0.22

Extrapolation 2 0.00 0.00 0.00
3 0.00 0.02 0.22

Table 2: Material properties for the Watanabe-Maynard solutions. Material 1 is the source, material 2 is a
void, and material 3 is moderately absorbing and scattering.
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