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Abstract

Class-incremental learning (CIL) aims at continuously
updating a trained model with new classes (plasticity) with-
out forgetting previously learned old ones (stability). Con-
temporary studies resort to storing representative exem-
plars for rehearsal or preventing consolidated model pa-
rameters from drifting, but the former requires an addi-
tional space for storing exemplars at every incremental
phase while the latter usually shows poor model general-
ization. In this paper, we focus on resolving the stability-
plasticity dilemma in class-incremental learning where no
exemplars from old classes are stored. To make a trade-
off between learning new information and maintaining old
knowledge, we reformulate a simple yet effective baseline
method based on a cosine classifier framework and recip-
rocal adaptive weights. With the reformulated baseline,
we present two new approaches to CIL by learning class-
independent knowledge and multi-perspective knowledge,
respectively. The former exploits class-independent knowl-
edge to bridge learning new and old classes, while the lat-
ter learns knowledge from different perspectives to facili-
tate CIL. Extensive experiments on several widely used CIL
benchmark datasets show the superiority of our approaches
over the state-of-the-art methods.

1. Introduction

Humans have the ability to incrementally learn unseen
new categories without forgetting already learned old cate-
gories to realize lifelong learning. Class-Incremental Learn-
ing (CIL) resembles this capability and aims at continuously
updating a trained model with samples from new classes
without forgetting old ones [42, 44, 32], where samples
from old classes are not available or only partially avail-
able. However, this is not a trivial task for the machine.
If we directly fine-tune a trained model with samples from
new classes, it will overfit to new classes and forget old ones
(see Fig. 1(a)); If we fix the feature embedding space of
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Figure 1. The stability-plasticity dilemma in class-incremental
learning, illustrated by top-1 accuracy and t-SNE [35] visualiza-
tion of embeddings. On CIFAR-100, we randomly use 50 classes
for training at the 1-st phase (P1), and then add 5 classes for incre-
mental training at the 2-nd phase (P2). (a) Directly fine-tuning a
trained model leads to overfitting to new classes; (b) Fix a trained
model cannot properly incorporate knowledge of new classes into
the model; (c¢) and (d) Our methods strike a balance between sta-
bility and plasticity, resulting in better performance.

a trained model without further training on new classes, it
cannot incorporate knowledge of new classes to improve its
generalization capability (see Fig. 1(b)). This is a stability-
plasticity dilemma [3, 14] — on the one hand, our model
should learn more new knowledge for the sake of plasticity,
while on the other hand, our model needs to maintain more
old knowledge for the sake of stability (without catastrophic
forgetting [27, 31]).

To resolve this problem, many CIL studies [32, 26, 2] re-
sort to storing some representative exemplars for rehearsal-
based model learning and using a distillation loss [15, 40]
for knowledge transfer. However, this approach is imprac-
tical in many resource-limited scenarios because it requires
to store exemplars of old classes. Besides, training a model
with a tiny number of old exemplars would lead to a class-
imbalanced learning problem [41, 18]. Instead of storing
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old exemplars, some works [20, 1, 25] propose to analyze
the importance of model parameters for preventing consol-
idated parameters from drifting. But this approach usually
suffers from poor model generalization in long-sequence in-
cremental learning due to the constraint of model parame-
ters. Recently, some studies turn to using better distillation
strategies (e.g., attention distillation [7]) or compensating
semantic drift in the embedding space [42], but they still
fail to make a better trade-off between learning new infor-
mation and maintaining old knowledge.

In this paper, we focus on resolving the stability-
plasticity dilemma in CIL where no samples from old
classes are stored. To this end, we reformulate a sim-
ple yet effective baseline method (called SPB) to make a
trade-off between learning new information and maintain-
ing old knowledge. SPB is built on a cosine classifier frame-
work [30] and reciprocal adaptive weights for incremen-
tally incorporating knowledge of new classes into a model
and effectively aligning feature embedding spaces. Previ-
ous studies [30, 38, 18] have shown the effectiveness of
cosine classifier based models for simultaneously optimiz-
ing an embedding space and class prototypes (i.e., weights
of cosine classifiers), but they still cannot well resolve the
stability-plasticity dilemma in CIL, especially when with-
out storing exemplars. In this work, the reformulated SPB
baseline addresses the problem by modulating the balance
between knowledge from old and new classes in model op-
timization, resulting in a trade-off between improving plas-
ticity and maintaining stability.

With the reformulated SPB baseline method, we in-
troduce two new approaches to further striking a balance
between stability and plasticity for CIL. Firstly, conven-
tional CIL studies mostly focus on learning knowledge
of new and old classes but ignore the fact that new and
old classes are typically not overlapping, resulting in sub-
optimal performance. Thus, to build a bridge between
new and old classes, we propose a SPB-I method that in-
corporates a class-independent learner into SPB for learn-
ing class-independent knowledge. This class-independent
learner provides additional instance-level supervision, so
SPB-I exploits more discriminative information as a bridge
for learning new and old classes independent from class la-
bels, resulting in better performance (see Fig. 1(c)). Sec-
ondly, since samples from old classes are not stored, re-
taining richer knowledge of samples from different perspec-
tives can help to improve the understanding of both old and
new classes. Thus, we propose a SPB-M method to ex-
ploit knowledge of samples from multiple perspectives' by
transforming each sample multiple times to generate multi-
perspective information and using multiple cosine classi-
fiers for aggregating knowledge, resulting in better perfor-
mance for CIL (see Fig. 1(d)).

! We term each transformation of a sample as a “perspective”.

Contributions. With the reformulated baseline method
(SPB) for resolving the stability-plasticity dilemma in CIL,
we introduce two new approaches (SPB-I and SPB-M) to
further striking a balance between stability and plasticity.
In SPB-I, we incorporate a class-independent learner into
SPB for learning class-independent knowledge to build a
bridge between new and old classes. In SPB-M, we ex-
ploit richer knowledge of samples from different perspec-
tives to improve the understanding of both old and new
classes. Our experiments show that our approaches (SPB,
SPB-I and SPB-M) outperform the state-of-the-art methods
on different CIL tasks.

2. Related Work

Task-Incremental Learning. Incremental learning is a ca-
pability of a model to continually learn from new data pre-
sented in a sequential fashion [24, 32, 2]. Traditional stud-
ies [24, 17, 1] prevailingly adopt a task-incremental learn-
ing fashion, which assumes the availability of task labels
during evaluation and optimizes different specific heads
(classifiers) for different tasks. Li et al. [24] propose a
learning without forgetting framework by distilling knowl-
edge between classifiers for new and old tasks. Aljundi et
al. [1] introduce an unsupervised manner to prevent impor-
tant model parameters from being overwritten during incre-
mental learning. However, task labels are not always avail-
able in practice, which makes it difficult to select a specific
classifier for deployment.

Class-Incremental Learning. Recent works [32, 42, 18]
tend to resolve incremental learning in a class-incremental
learning fashion where task labels are not available dur-
ing evaluation. To address catastrophic forgetting during
class incremental learning, one of the most popular ap-
proaches [44, 41, 4] is storing representative exemplars for
rehearsal and using a distillation loss to transfer knowledge
from an old model to a new one. However, maintaining
exemplars may be impractical and expensive in some sce-
narios (e.g., some storage-limited devices). Besides, opti-
mizing a model with large-scale new data and a tiny num-
ber of old data will cause a class-imbalanced learning prob-
lem [41, 18], resulting in performance degradation. As an
alternative method for storing exemplars, GAN [11] can be
used to synthesize exemplars for old classes on-the-fly [12],
but it usually results in poor performance due to the low
quality of generated exemplars.

On the other hand, some studies [7, 42] propose to con-
tinually update a model with new data without storing old
samples. In [42], Yu et al. modify some parameter-based
incremental learning methods [20, 1] for class-incremental
learning via optimizing embedding spaces for classification.
These parameter-based methods estimate the importance of
model parameters and adapt a trained model to new classes

1125



by preventing parameters from drifting. Although they do
not need to store old exemplars, they usually fail to improve
model generalization due to the constraint of model param-
eters. In [42], Yu et al. propose to compensate the semantic
drift of prototypes of old classes using samples from new
classes, but they still fail to make a good balance between
learning new and old knowledge.

Our work belongs to class-incremental learning without
storing any samples from old classes. Different from exist-
ing methods, we focus on resolving the stability-plasticity
dilemma in CIL by making a trade-off between learn-
ing new information and maintaining old knowledge. To
this end, with a reformulated simple yet effective base-
line method, we introduce two novel approaches to fur-
ther striking a balance between stability and plasticity by
learning class-independent knowledge and learning multi-
perspective knowledge.

3. Methodology

Problem Statement. In this work, we consider class-
incremental learning (CIL) where no samples from old
classes are stored and no task labels are available dur-
ing evaluation. We call each multi-class sequential learn-
ing process as a “phase”. At the 1-st phase, there
are no old classes, so a model is trained with samples
from base classes X1={(z;,y;),j={1,..., M{'}, y;€C1},
where x; is a sample from class y;, Cp is the base
classes, M7{" is the number of samples. Then, at the
i-th phase (i>1), we only have samples from new
classes X;={(z;,y,),j={1, ..., M]'},y,;€C;}, while sam-
ples from old classes {Xi,...,X;_1} are not available.
Here, C1 N ... N C;=9, i.e., new and old classes are not
overlapping. Our task is to continuously update a trained
model with new classes (C;) without forgetting previously
learned old ones ({C1, ..., C;_1}). Evaluation at each phase
is performed with all observed classes ({C1, ..., Ci—1, C;}).

3.1. SPB: A Simple yet Effective Baseline for Re-
solving Stability-Plasticity Dilemma in CIL

As aforementioned, previous studies [30, 38, 9, 18] have
shown the effectiveness of cosine classifier based models
for dynamically recognizing new classes. In [30], Qi et al.
employ cosine normalization in the last layer and use nor-
malized embeddings to imprint weights of a cosine classi-
fier for few-shot recognition. In [18], Hou et al. introduce
this idea to incremental learning with rehearsal exemplars
to alleviate bias for new and old classes. But these methods
still cannot well resolve the stability-plasticity dilemma in
CIL without storing exemplars. Thus, to make a trade-off
between learning new and old information, we reformulate
a simple yet effective baseline method built on a cosine clas-
sifier framework and reciprocal adaptive weights.
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Figure 2. An illustration of the effect of reciprocal adaptive
weights (RAW) for SPB (on CIFAR-100 (6 phases), see details
from the experiments in § 4). With RAW, training losses L. and
Lm are modulated, resulting in a better trade-off.

Baseline Method. At the i-th phase, given a model trained
with samples from old classes ({X7,..., X;-1}), we use
it to extract normalized embeddings of samples from new
classes (X;). Then, for each new class, we generate a pro-
totype by computing the mean of normalized embeddings
belonging to this class and use this prototype to initialize the
classification weight vector in the dynamically extended co-
sine classifier. After initializing weights of the cosine classi-
fier, we train the model with X; and compute classification
scores by performing cosine normalization on embeddings
from the feature extractor ¢(-) and weight vectors of the
classifier w,., which is formulated as:

exp(n-cos(d(z), w.))

) = S eaplncos(9(@), w.)

__ 1
_ eaplnd(@) w) .

Sec, cxp(no(@) W)

where ﬁ:% and Wc:ﬁﬁ are lo-normalized vec-
tors for the embedding vector ¢(z) of a sample = and the
classification weight w. of a class c respectively, 7 is a
learnable scalar parameter to control peak values of the
probability distribution since the range of cosine similarity
is restricted to [-1,1] [9]. To learn new classification infor-
mation and optimize the learnable prototype, we use p(z)
to compute a cross-entropy loss L. To transfer knowledge
from an old model to a new model, we constrain the distance
between normalized embeddings [19, 39] from the new
model (¢(x)™) and the old model (¢(z)°) as the embedding
supervision 10ss Lep, i.€., Lem=||d(x)™ — (Z)(J?)OHQ.

Therefore, the overall training objective £ can be defined
as L=L.. + L¢m,. However, this objective cannot well ac-
commodate class-incremental learning, because it does not
consider the amount of old knowledge and new information.
It easily results in overfitting to new classes (see Fig. 2(a)),
especially when there are lots of old classes and only a few
new classes. To alleviate this problem, we use reciprocal
adaptive weights to modulate £.. and L.,, based on the
number of new classes N"¢ and old classes N°:
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Figure 3. An overview of the proposed SPB-I for learning class-independent knowledge. (a) SPB-I is jointly optimized with class-level
supervision, embedding supervision and instance-level supervision. (b) and (c) are architecture designs of the class-independent learner.

In this formulation, when the number of new classes is
dominant, our model tends to learn more information from
new classes to improve “plasticity”, while the number of
old classes is dominant, our model tends to learn more
knowledge from old classes to maintain “stability”, result-
ing in a better trade-off (see Fig. 2(b)). Note that, this for-
mulation is different from [18] in that we use reciprocal
adaptive weights to modulate £.. and L., for resolving
the stability-plasticity dilemma, instead of using a compre-
hensive learning objective with rehearsal exemplars for ad-
dressing the imbalanced learning problem. Experiments in
§ 4.3 verify that the reformulated SPB baseline performs
significantly better than LUCIR [18] w/o stored exemplars
and is on par with LUCIR w/ stored exemplars.

3.2. Learning Class-Independent Knowledge

Although the reformulated SPB baseline can cope with
the stability-plasticity dilemma, it does not build a bridge
between learning new and old classes which are usually not
overlapping. Intuitively, we can maintain some knowledge
independent from classes, so that samples from new classes
possess inherent characteristics related to samples from old
classes. To this end, we propose a SPB-I method by in-
corporating a class-independent learner into SPB to pro-
vide instance-level supervision (L;;,,) for exploiting richer
class-independent knowledge. This differs from [43] which
learns prior information to aid CIL with simple rotation pre-
diction layers. As shown in Fig. 3(a), SPB-I is jointly opti-
mized with class-level supervision (L..), embedding super-
vision (L.,,) and instance-level supervision (L;,). Since
Ly, is inherently learning class-independent information to
improve stability and plasticity, the optimization objective
(Eq. (2)) is formulated as L=270Loe + N Lo + Lin.
Note that L, is also employed in the 1-st phase and L.,
is applied on all transformed samples. Next, we discuss two
designs for the class-independent learner §(+).

Contrastive Learning in the Normalized Space. Since
embedding vectors of samples in the normalized embedding
space lie on a unit hypersphere, a straightforward approach
to exploiting more instance-level knowledge is to pull each
instance closer to its positive variants and push away other
(negative) instances. This can be accomplished with a con-
trastive learning loss [6, 28]. While the conventional self-
supervised contrastive loss is used as a pretext task for un-
supervised representation learning, we employ it to provide
instance-level supervision (L;,) for encouraging a model
to learn class-independent knowledge and jointly optimize
it with other losses. As shown in Fig. 3(b), we use two
fully connected layers [6] as the class-independent learner
to map normalized embeddings to a latent space (e.g., a 128-
D latent space in the experiments). To generate positive
variants of each sample x, we perform additional strong in-
put transformations [6] on = and generate the positive pair
(z,2"), while the other instances and their transformations
are treated as negatives (X"™9). Thus, L, is formulated as:

crp(0(0(x) 3(3(a"))/7)
Y tane.ary cap(3(6(@)) 8(6(xr))/7)
3)
where 7 is a temperature parameter (we use 0.1 here). In
practice, we perform additional strong input transforma-
tions [3-1 times (we set 5=4) on each sample to generate
their positives and compute L;,, across all samples.

['in = —log

Self-Supervised Rotation Prediction in the Normalized
Space. In contrastive learning, additional strong input
transformations [6] may hurt the inherent semantic infor-
mation of x for classification (£..). Since our instance-level
supervision is jointly optimized with class-level supervision
and embedding supervision, class-independent knowledge
should be compatible with the inherent semantic informa-
tion. Geometric transformation is a natural solution to this
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problem. Thus, we construct the class-independent learner
based on self-supervision rotation prediction [10]. As
shown in Fig. 3(c), we use two residual BasicBlocks [13, 8]
and a cosine classifier to map embeddings to a latent space
for rotation prediction. We apply four 2D rotation transfor-
mations R(-) (R={0°,90°,180°,270°}) on  and compute
rotation prediction scores as:

cap(n3GRE) @)
5 e exp(n3(G(R(@))) w7)

where w, is l;-normalized weights of a rotation classifier.
We use ¢(R(z)) to compute a cross-entropy loss as the
instance-level supervision £;,. By default, SPB-I uses this
design, yielding better performance.

q(R(z)) = 4)

Remarks. Note that our goal is not to enlarge datasets
by using additional data augmentations [6, 10], but to
learn class-independent knowledge to build a bridge be-
tween learning new and old classes, so we do not compute
class-level classification loss (L..) on those additionally
transformed samples. As shown in the experiments § 4.3,
computing L.. on those additionally transformed samples
deteriorates the performance. Besides, conventional self-
supervised learning is a separate pretext task for representa-
tion learning [6, 10], while in SPB-I, the contrastive loss or
the rotation prediction loss is jointly optimized with other
losses for CIL. See § 4.3 for experimental comparison.

3.3. Learning Multi-Perspective Knowledge

Contemporary CIL studies mostly focus on “observing”
classes from a single “perspective”, e.g., after applying
standard data augmentation, a sample is directly used for
learning new and old knowledge. This hinders a model
from understanding old and new classes from multiple per-
spectives, resulting in sub-optimal performance. To ad-
dress this problem, we propose a SPB-M method by learn-
ing multi-perspective knowledge in SPB, which shares the
merit of [23] but we do not use self-distillation here. Specif-
ically, as shown in Fig. 4, we apply v times fixed input
transformations Fj(-) (e.g., rotations R and y=4) to gen-
erate different perspectives of a sample and extract embed-
dings with a feature extractor ¢(-). Next, instead of using
a single classifier for classifying all transformed samples,
we construct y cosine classifiers for learning each perspec-
tive knowledge. In other words, a sample with a specific
transformation (e.g., rotation 90°) is learned in a specific
perspective classifier. Then, we use a cross-entropy loss to
compute the multi-perspective supervision L, defined as:

1 2l
['mp = - Z'Cl;ea (5)
v b=1

where L2, is the cross-entropy loss for a transformed sam-
ple Fy(z). Here, L1, (rotation 0°) is the same as L., so we
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use Ly, to replace L. in all phases, i.e., the optimization
objective (Eq. (2)) is formulated as ﬁz%ﬁmp—k %Eem.
Here, L.,, is applied on all transformed samples. Dur-
ing evaluation, we use fixed Fy(-) to generate y-perspective
knowledge of each sample and sum predictions of each
sample from perspective classifiers, which differs from [22]
that uses max-pooling to generate one invariant feature with

multiple transformed features.

4. Experiments

To evaluate our approaches, we conduct extensive exper-
iments on several widely used CIL benchmark datasets.

Evaluation Metric. To measure the incremental perfor-
mance, we employ the common average incremental accu-
racy [32], which evaluates a model on all observed classes
in each phase. We report the average cumulative incremen-
tal accuracy over all phases and plot the incremental accu-
racy of each phase. All results are averaged over three runs.

Competitors. FT is an intuitive approach to CIL by di-
rectly fine-tuning a model with samples from new classes.
Joint is to assemble samples from both new and old classes
at each phase for training, which can be considered as an
upper bound. LwF-E, EWC-E and MAS-E are the embed-
ding network based versions of LwF [24], EWC [20] and
MAS [1] for CIL, respectively. As reported in [42], these
embedding based versions perform significantly better than
their original versions, so we compare with the embedding
versions here. SDC [42] is a state-of-the-art CIL method for
semantic drift compensation in embedding network based
methods. We use MAS-E as the backbone for SDC.

4.1. Incremental Image Classification

Datasets. CIFAR-100 [21] contains 100 classes and 60,000
images, in which each class contains 500 training images
and 100 test images. ImageNet-Subset [33, 32] contains 100
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classes randomly sampled from ImageNet (random seed
1993) and around 0.13M images. Following [42, 18], we
use a random seed (1993) to select the first 50 classes as the
1-st phase and evenly split the remaining 50 classes for K-
1 phases. Training images are with size 32x32 on CIFAR-
100 and resized to 256 X256 on ImageNet-Subset.
Implementation Details. Following [42], we use ResNet-
32 and ResNet-18 [13] as the backbone for CIFAR-100 and
ImageNet-Subset, respectively?. Module architectures of
the class-independent learner follow [6, 8]. We evaluate our
models with =6 and 11 phases on both datasets, i.e., after
the 1-st phase, we incrementally add 10 or 5 new classes
at each phase. We apply random crop and horizontal flip as
the standard augmentation and use strong transformations
(random color jitter and gray scale [6]) or rotations [10]
as the additional transformation. We use SGD as the opti-
mizer with momentum 0.9 (weight decay Se-4 for CIFAR-
100 and 1e-4 for ImageNet-Subset). On CIFAR-100, at the
1-st phase, we train our models 160 epochs (batch size 128)
and set the learning rate to 0.1 which is decayed by 0.1 at
{80, 120} epochs, while at the subsequent phases, we train
50 epochs and set the learning rate to le-3 for the feature
extractor and le-2 for the classifier (decayed by 0.1 at 30
epochs). On ImageNet-Subset, at the 1-st phase, we train
our models 90 epochs (batch size 128) and set the learning
rate to 0.1 which decayed by 0.1 at {30, 60} epochs, while
at the subsequent phase, we train 50 epochs (batch size 64)
and set the learning rate to le-3 for the feature extractor and
le-2 for the classifier (decayed by 0.1 at 30 epochs).
Comparison with the State-of-the-Arts. Table 1 shows
average cumulative incremental accuracies over all phases
on CIFAR-100 and ImageNet-Subset. Overall, SPB, SPB-I
and SPB-M achieve compelling performance. on CIFAR-
100, the reformulated SPB baseline improves the state-of-
the-arts by approximately 3%, while SPB-I and SPB-M
further improve SPB by about 2% and 5%, respectively.
On ImageNet-Subset, SPB, SPB-I and SPB-M significantly
outperform the state-of-the-arts, among which SPB-M per-
forms the best. Fig. 5 shows incremental accuracies plots
across all phases on CIFAR-100 and ImageNet-Subset. We
can see that overall SPB (green line), SPB-I (red line) and
SPB-M (blue line) achieve better performance at each phase
and are closer to the joint-training method.

4.2. Incremental Fine-Grained Classification

Datasets. CUB-200-2011 [37] is a fine-grained recogni-
tion dataset of 200 bird categories with 11,788 images.
Flower-102 [29] is another popular fine-grained recognition
dataset consists of 102 flower categories. Training images
on these datasets are resized to 256x256. On CUB-200-

2 We implement our approaches with Python and PyTorch. Implemen-
tations can be built on https://github.com/hshustc/CVPR19_
Incremental_Learning.

CIFARI100 | ImageNet-Sub

Methods ‘ K=6 K=l ‘ K=6 K=ll
FT 23 126 | 236 132
Joint 734 732 | 820 827

LwF-E [24,42] | 57.0 568 | 655  65.6
EWC-E [20,42] | 563 554 | 652  64.1
MAS-E [1, 42] 569 566 | 658 658

SDC [42] 57.1 56.8 | 656 657
SPB (ours) 609 604 | 687 672
SPB-I (ours) 62.6 627 | 70.1 69.8

SPB-M (ours) 655 652 | 71.7  70.6

Table 1. Comparisons with the state-of-the-art methods on CIFAR-
100 and ImageNet-Subset. Average cumulative incremental accu-
racies (top-1, %) over all phases are reported.
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Figure 5. Incremental accuracy plots across all phases on CIFAR-
100 and ImageNet-Subset.

2011/Flower-102, we use a random seed (1993) to select
the first 100/50 classes as the 1-st phase and evenly split
the remaining 100/50 classes for K-1 phases,
Implementation Details. Following [42], we use ResNet-
18 pretrained on ImageNet as the backbone and add a triplet
loss [16] to the optimization objective which results in bet-
ter performance for fine-grained recognition. We evaluate
models with K=6 and 11 phases. Data augmentation is
the same as that for ImageNet-Sub. We use SGD as the
optimizer with momentum 0.9 and weight decay le-4. On
CUB-200-2011, at the 1-st phase, we train our models 200
epochs (batch size 128) with the learning rate 1e-2 (decayed
by 0.1 at {80, 160} epochs), while at the subsequent phase,
we train 30 epochs (batch size 32) with the learning rate
le-4 for the feature extractor and le-2 for the classifiers
(decayed by 0.1 at 20 epochs). On Flower-102, at the 1-
st phase, we train our models 100 epochs (batch size 128)
with the learning rate to le-2 (decayed by 0.1 at {60, 80}
epochs), while at the subsequent phase, we train 50 epochs
(batch size 32) and set the learning rate to le-4 for the fea-
ture extractor (3e-4 in SPB-M) and 1e-2 for the classifier
(3e-2 in SPB-M), which decayed by 0.1 at 30 epochs.
Comparison with the State-of-the-Arts. From Table 2,
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CUB200 Flower
Methods ‘ K=6 K=l ‘ K=6 K=Il
FT 278 182 | 336 169
Joint 757 751 | 962 958

LwF-E [24,42] | 69.8 678 | 87.2 834
EWC-E [20,42] | 69.7 66.1 | 859 818
MAS-E [1, 42] 68.5 655 | 847 80.1

SDC [42] 700 658 | 86.8 80.4
SPB (ours) 707 689 | 920 88.0
SPB-I (ours) 727 714 | 922 89.2

SPB-M (ours) 71.0 69.1 92.7 87.8

Table 2. Comparisons with the state-of-the-art methods on CUB-
200-2011 and Flower-102. Average cumulative incremental accu-
racies (top-1, %) over all phases are reported.
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Zg 28 LwF-E
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40 40 MAS-E
30 30 -=-SDC
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(c) Flower (K=6) (d) Flower (K=11)

Figure 6. Incremental accuracy plots across all phases on CUB-
200-2011 and Flower-102.

we can see that overall, SPB, SPB-I and SPB-M perform
better than the state-of-the-art competitors. On CUB-200-
2011, the performance of SPB is on par with the state-of-
the-arts. SPB-M slightly improves SPB, while SPB-I sig-
nificantly improves SPB by approximately 2%. On Flower-
102, our approaches significantly outperform the state-of-
the-arts, among which SPB-M performs the best on K =6
while SPB-I performs the best on K=11. Here, SPB-I and
SPB-M learn more generalized knowledge which may not
be so helpful for distinguishing fine-grained details of birds
and flowers, but they still achieve good performance. Fig. 6
shows that SPB, SPB-I and SPB-M achieve compelling
performance compared with the state-of-the-arts across all
phases and are closer to the joint-training method.

4.3. Further Analysis and Discussion

Accurate for both New and Old Classes or Biased to-
wards Ones? As shown in Fig. 7, we also plot accuracies
of new and old classes at the last phase, which to some ex-
tent indicates the balance for learning stability (old classes)
and plasticity (new classes). From Fig. 7, we can see that
overall, SPB, SPB-I and SPB-M achieve better and more
balanced accuracies of new and old classes compared with

100 100
&80 80 3
) y 24
= 0" ISPB 2 a0 é‘ “XSPB
3 , |®SPB-1 | 3 | ®@SPB-1
320 /7 |MSPB-M| 3, /" |mSPB-M
2 / #SDC B 7 +SDC
o L2 Joint 0 L2 Joint
0 20 40 60 80 100 0 20 40 60 80 100
Acc New Class (%) Acc New Class (%)
(a) CIFAR100(K=6) (b) CIFAR100(K=11)
100 % 100 7
§ 80 § 80
g Y goo 2P
-[ASPB -[ASPB
g4 /|espR1 | E40 | @SPB1
320 /7 |MSPB-M| 35 " |mSPB-M
g P +SDC g P +SDC
0 Joint 0 Joint

0 20 40 60 80 100 0 20 40 60 80 100
Acc New Class (%) Acc New Class (%)
(c) ImageNet-Sub(K=6)  (d) ImageNet-Sub(K=11)
Figure 7. Accuracies (%) of new and old classes at the last phase

on CIFAR-100 and ImageNet-Subset.

forgetting ratio, % (top1/%)
20 (IEekne, ) 70
—SPB-I 60
15 | —SPB-M 50 FT (2T22y
—sDC —=_Joint (53 4)
10 Joint 40 | ——iCaRL* (33.3)
30 EEIL* (35.0)
—TOPIC* (39.6)
B - 20 | _SPB(512)
= 10 | ==SPB-I(51.7)
R~ o L==SPB-M (52.7) (phase) |
1'3456789@}3,561)1 1 2 3 45 6 7 8 9

(a) Forgetting ratio. (b) Few-shot CIL.
Figure 8. Evaluating (a) forgetting ratio across all phases on
CIFAR-100 (K=11) and (b) few-shot CIL on mini-ImageNet (5-
way 5-shot). In (b), average cumulative incremental accuracies
are shown in the legend. *: Results reported in [34].

the state-of-the-art SDC [42]. This further verifies the su-
periority of our methods, especially for striking a balance
between stability and plasticity. In addition, as shown in
Fig. 8(a), we plot the forgetting ratio [5] across all phases
on CIFAR-100. From Fig. 8(a), we can see that forgetting
of our method is moderate without catastrophic forgetting.

Evaluation on Few-Shot Class-Incremental Learning.
Few-shot CIL is a more challenging task where only a few
samples per class are available in the incremental phases.
We evaluate on mini-ImageNet [36] and use ResNet-18 as
the backbone following [34]. We adopt a 5-way 5-shot set-
ting by randomly selecting 60 classes as base classes (1-st
phase) and evenly split the remaining 100 classes (5 training
images per class) for 8 phases. As shown in Fig. 8(b), due
to the scarcity of samples in few-shot incremental phases,
the accuracies of all compared methods decrease dramati-
cally. Our methods still achieve significantly better perfor-
mance than some CIL methods (TOPIC [34], iCaRL [32],
EEIL [4]), which shows the advantage of our models.

Component Effectiveness Analysis. From Table 3, we can
see that: (1) Without reciprocal adaptive weights for mod-
ulating L., and L.,,, the performance of SPB decreases
significantly; (2) SPB performs better than LUCIR [18]
w/o stored exemplars and is on par with LUCIR [18] w/
stored exemplars; (3) Learning class-independent knowl-
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Components | Avg top-1(%)

SPB 60.9
SPB w/o reciprocal adaptive weights 36.4
SPB w/ LUCIR adaptive weight [18] 57.7
SPB + L;,, (Contrastive, SPB-I) 61.4
SPB + L;,, (Rotation, SPB-I) 62.6
SPB + L,,, (SPB-M) 65.5
LUCIR [18] w/o stored exemplars 52.2
LUCIR [18] w/ stored exemplars 63.6
iCaRL-CNN [32] (w/ stored exemplars) 49.9
iCaRL-NME [32] (w/ stored exemplars) 57.2

Table 3. Component effectiveness analysis on CIFAR100 (K=6).
Note that online transformed images in SPB-I and SPB-M require
more computational cost, but model sizes of SPB and SPB-M are
close while SPB-I slightly increases the model size.

Methods | Avg top-1(%)
SPB 60.9
SPB + more augmented samples (strong?) 60.7
SPB + more augmented samples (rotation) 58.2
SPB-I (Contrastive) 61.4
SPB-I (Contrastive) + L. for all samples* 60.2
SPB-I (Rotation) 62.6
SPB-I (Rotation) + L. for all samples* 59.6
SPB-M (Multi-perspective classifiers) 65.5
SPB-M (Single classifier) 58.2

Table 4. Comparison with straightforward dataset augmentation on
CIFAR100(K=6). *: original samples and the additionally trans-
formed samples. {: augmented with color jitter and gray scale.

edge (SPB + L;,) and multi-perspective knowledge (SPB
+ L) help to further improve SPB.

Comparison with Straightforward Dataset Augmenta-
tion. Although we use additional input transformations
in SPB-I and SPB-M, our goal is to learn auxiliary class-
independent knowledge or multi-perspective knowledge,
instead of enlarging training datasets with data augmenta-
tion. From Table 4, we can see that: (1) Directly using
rotation augmentation or strong augmentation to enlarge
training datasets deteriorates the performance of SPB; (2)
Computing classification losses for all augmented samples
also deteriorates the performance of SPB-I; (3) SPB-M with
multi-perspective classifiers performs better than SPB-M
with a single classifier for all augmented samples.

Comparison with Self-Supervised Pre-Training. In
our formulations, class-independent knowledge and multi-
perspective knowledge are jointly optimized in a compre-
hensive training objective rather than a self-supervised pre-
text task. As shown in Fig. 9(a), using self-supervised pre-
training as a separate pretext stage cannot bring distinct im-
provements to SPB, while jointly optimizing £;,, with L.
and L, in our formulations yields better results.

Impact of the Number of Transformations. As shown in
Fig. 9(b): (1) With more class-independent knowledge ()
from different transformations, SPB-I (rotation) achieves
better performance; (2) Learning knowledge from more per-
spectives () in SPB-M also helps to improve performance.

SPB | 60.9
SPB+SSPT(contrastive) |mummmm 58.6
SPB-I(contrastive, joint) |EE—— 6] .4

SPB+SSPT(rotation) |m——— 1.1

SPB-I(rotation, joint) |EE————— 62.6

Num of transformation
(%) 56 58 60 62 64 1 2 4

(a) Comparison with SSPT. (b) Transform number.
Figure 9. Comparison with (a) self-supervised pre-training (SSPT,
a separate stage for model pre-training) and (b) different numbers
of transformations on CIFAR100 (K=6). Top-1(%) is reported.
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(a) CIFAR100 (K=6) (b) ImageNet (K=6)
Figure 10. Comparison with exemplar-based methods on CI-
FAR100(K=6) and ImageNet(K=6). Average cumulative incre-
mental accuracies are in the legend. *: Hyper-parameters (e.g.,
20 exemplars per class and learning rates) follow LUCIR [18].

Comparison with Exemplar-Based Methods. Although
our methods do not aim at surpassing exemplar-based CIL
methods, it would be interesting to compare with exemplar-
based CIL methods to examine the efficacy. As shown in
Fig. 10, on CIFAR-100(K=6) [21] and ImageNet(ILSVRC
2012) (K=6) [33], our methods (SPB, SPB-I and SPB-M)
achieve comparable performance against exemplar-based
CIL methods (iCaRL [32], LUCIR [18], WA [44]+iCaRL),
showing the effectiveness of our methods for CIL.

5. Conclusion

In this work, we reformulate a simple yet effective base-
line method for CIL, which makes a trade-off between
learning new information and maintaining old knowledge.
With the reformulated baseline, we introduce two new ap-
proaches to CIL by learning class-independent knowledge
and multi-perspective knowledge, respectively. These ap-
proaches help to further improve model performance for
CIL. Extensive experiments on several widely used CIL
datasets show the superiority of our approaches over the
state-of-the-art methods. In-depth ablation analyses further
examine the efficacy of each component in our approaches.
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