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Abstract—In this paper we study the problem of motor imagery
(MI) decoding using electroencephalography (EEG) signals. The
spatial covariance matrix of EEG signals is a feature with
many applications on brain-computer interfaces. Several previous
works use EEG covariances directly as inputs to Riemannian
classifiers for MI decoding, restricting the potential models
that can be used for classification, to Riemannian geometry
frameworks. Other works use covariances either as inputs to
optimization objectives that derive spatial filters, or to perform
alignment with respect to reference states. Such methods discard
temporal information that is contained in EEG signals. We take
a different approach, and utilize covariances as a means to
concurrently align EEG signals and regularize a Convolutional
Neural Network (CNN) that is trained on MI classification.
Specifically, we randomly mix session-level and trial-level co-
variance matrices, traversing their geodesic on the Riemannian
manifold, and perform EEG signal alignment using the mixed
matrix. This is done during the training phase, effectively acting
as regularization on the CNN model, as the signals are augmented
using various transformation matrices to align them. We evaluate
our method on the dataset of BCI Competition IV-2a, showing
its superiority over traditional alignment.

Index Terms—brain-computer interface, electroencephalogra-
phy, motor imagery

I. INTRODUCTION

Nowadays, the technological developments in the field
of Brain-Computer Interfaces (BCI) are rendering the ac-
quisition of signals that measure brain activity through
Electroencephalography (EEG) increasingly accessible to re-
searchers and consumers. Many problems are addressed
through the analysis of EEG signals with machine learning
techniques, such as BCI-controlled wheelchairs [12], auto-
matic sleep staging [6] and predicting stroke patient reha-
bilitation outcome [18]. Among the most well-known EEG-
based paradigms for BCIs, is that of motor imagery (MI). In
the MI decoding problem, the goal is to analyze EEG signals
to predict the motor movement type that a subject imagines
(e.g. moving the left hand, right hand, feet or tongue). The
imagination of motor movements is closely related to brain
activity patterns of the sensorimotor cortex [8], indicating the
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Fig. 1: Mixing two covariance matrices, by traversing their
geodesic on the Riemannian manifold. The point correspond-
ing to matrix C, lies on the shortest path that connects A and
B.

need for methods with powerful spatial localization to detect
them.

Early works on MI decoding include spatial filtering
techniques, such as Common Spatial Patterns (CSP) [5],
[14], where the variances of the filtered signals are maxi-
mized/minimized over certain conditions (i.e. classes). CSP
methods involve computing the average covariance matrix of
the EEG signals for each class and jointly diagonalizing them.
Handcrafted feature vectors are extracted from the spatially
filtered signals, collapsing the temporal aspect by computing
the variance in the dimension of time. Then, typical classifiers
such as Linear Discriminant Analysis (LDA) and Support
Vector Machine (SVM) [22] are used. However, the family of
CSP methods presents poor cross-subject generalization and
is restricted by the discarding of temporal information that
occurs during feature extraction.

Instead of using EEG covariances to compute spatial filters,
another line of research inspired by Riemannian geometry,
directly uses them as features. Covariance matrices lie on the
Riemannian manifold of symmetric positive definite (SPD)
matrices, hence should be treated accordingly, refraining
from methods designed for Euclidean space data. Applying
Riemannian classifiers on covariance matrices, or projecting
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covariance matrices to the Euclidean space through tangent
space mapping [3], are two common approaches. Despite their
widespread use, Riemannian geometry frameworks are prone
to outliers due to the non-stationarity of EEG signals [25] and
do not allow temporal information extraction.

Training Convolutional Neural Networks (CNN) as feature
extractors towards MI classification, has been explored as an
alternative direction, instead of computing handcrafted features
from EEG signals. CNN models present strong performance
both in intra-subject [19] and cross-subject [16] settings of MI
decoding. Training CNNs on EEG time-series has facilitated
learning more robust representations, allowing to filter the
signals both temporally and spatially, in separate stages of
the feature extraction process. In this context, EEG covari-
ance matrices are used to perform data alignment [10], [26],
transforming the EEG signals. As a result, the covariance
matrix of the aligned EEG signals within each session (i.e.
domain) is the identity matrix, which can be viewed as
a domain generalization technique [15], suitable for cross-
subject transfer learning.

Our work is inspired from [1] and [15], and focuses on
network regularization. A common way to regularize neural
networks is data augmentation, generating new data points
either on the input space [27] or on the intermediate feature
space [23]. Our goal is to train a CNN architecture on
motor imagery classification from EEG time-series inputs,
combining alignment and regularization during training. This
is an unexplored research direction. Clearly, in such a case
alignment needs to be done before feeding the EEG signals to
the CNN, i.e. on the input space.

Building on the benefits of CNN-based learning and
covariance-based alignment, we introduce a method called
“CovMix”, that mixes session-wise and trial-wise covariances
to perform data augmentation on EEG time-series during train-
ing. We suggest an alignment process during training, where
we align each trial choosing randomly an SPD matrix that lies
on the geodesic between the session-wise and the trial-wise
covariance matrices. This is in contrast to the standard practice
of alignment, where the session-wise covariance matrix is used
to transform all the EEG trials of each session, in both training
and testing phases. Afterwards, the aligned trials are fed to
a CNN model that is trained to classify them. Along the
training process, the CNN model will receive each trial as
input multiple times, yet aligned using different SPD matrices
- although all of which will be lying on the same geodesic.
Effectively, this regularizes the CNN model by feeding it with
various transformations of each training sample. Inference is
performed using the standard alignment, to keep the process
being deterministic.

Our contributions are summarized as follows:
• We propose CovMix, a method that mixes session-wise

and trial-wise covariance matrices to jointly perform EEG
signal alignment and data augmentation during training.

• CovMix is performed before feeding the data to the
classification network, thus can me used in any method
that employs CNNs for motor imagery decoding .

• We evaluate networks trained on BCI Competition IV-
2a dataset [20] with cross-subject settings, showing that
adding CovMix acts as regularization to the classification
network, yields stronger generalization results compared
to the standard covariance-based alignment and other
techniques.

The rest of the manuscript is organized as follows. In
Section II we present an overview of the related work, while
in Section III we illustrate our proposed approach. In Section
IV we describe our evaluation setup and in Section V we
present results of our method on cross-subject experiments
and compare it with other techniques. Finally, in Section VI
we conclude the paper.

II. RELATED WORK

In this Section, we present an overview of previous works
for motor imagery decoding in cross-subject settings. Devel-
oping MI decoding models that are suitable for real-world
scenarios, requires being able to generalize on new sessions of
known subjects, as well as on entirely unseen subjects. Several
factors vary across sessions and subjects, including equipment-
related changes (e.g. EEG electrode positions/impedances),
changes in the mental state of subjects and different head
anatomies. Thus, several works in the recent literature [2],
[28] treat each session of EEG recordings as a separate data
domain, and cross-subject scenarios can be viewed a multi-
source domain generalization problem [15].

Non-DL covariance-based works: Data scarcity is an im-
portant issue in the field of EEG-based learning, as EEG data
collection is a non-trivial process. To address this problem,
a method of data augmentation on the Riemannian space
is introduced in [13], by interpolating on the log-Euclidean
geodesic between trial-wise covariance matrices. Among the
early covariance-based works that tackle MI decoding by
attempting to learn from multiple subjects, are variants of the
CSP algorithm. Lotte and Guan [17] propose incorporating
information from multiple subjects to regularize the covariance
matrices used in a CSP framework. However, for each target
subject the method requires selecting a subset of relevant
source subjects. Another work that builds on CSP, proposes
weighting source subjects based on their similarity to the target
subject [7].

Covariance-based alignment: When dealing with EEG
data, a common way to achieve generalization is to perform
covariance-based alignment. In the work of Zanini et al. [26],
the trial-wise covariance matrices of each session are re-
centered (i.e. aligned) with respect to a reference covariance
matrix that corresponds to the resting state. Ideally, each re-
centered covariance should reflect only the shift from the
reference state, that is induced by a task (e.g. the imagination
of a motor movement). Conforming to the nature of the data,
a Minimum Distance to Mean (MDM) Riemannian classifier
is employed. In [10], He and Wu examine several issues,
including: i) applying alignment on the EEG signals instead of
the covariance matrices ii) computing the reference covariance
matrix using the Euclidean mean instead of the Riemannian
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Fig. 2: Overview of our proposed method: Considering an EEG trial X that belongs to an EEG recording session S of the
training set, we want to transform it using CovMix before feeding it to the classification model of EEGNet. To derive the
transformation matrix W, we need to compute the trial-wise covariance matrix of X, and the session-wise SPD matrix (i.e.
the Riemannian mean of all trial-wise covariances for session S). CovMix mixes these two matrices following Eq. 4, using
the scalar α that is sampled from a uniform distribution. Then, to perform the alignment, the signals are multiplied with the
inverse square root of the mixed matrix, using Eq. 5, where the inverse square root of the session-wise SPD matrix is used).
Finally, the transformed EEG signals are fed to EEGNet to be classified. In the inference phase we do not mix covariance
statistics, and alignment is performed using Eq. 3.

mean and iii) computing the reference matrix using the im-
agery trials instead of the resting states. Their results show that
superior results can be obtained by aligning the EEG signals
and estimating the reference matrix from the imagery trials.
Moreover, the restriction of employing Riemannian classifiers
is overcomed.

Deep learning approaches: Banville et al. [1] adapt
the concept of covariance-based spatial filtering, to a deep
learning pipeline called “Dynamic Spatial Filtering” (DSF).
In essence, before feeding an EEG trial to a task-specific
CNN, the authors propose transforming the trial using deep
learned spatial filters, to ignore bad channels and promote
robustness to noise. The transformation is computed from the
DSF module that receives the trial covariance as input. In [15],
various techniques are investigated to improve generalization,
including label smoothing [11], covariance-based Euclidean
Alignment (EA) [10] and MixUp [27]. The technique of EA
is helpful for cross-domain knowledge transfer, as it projects
the data into a domain-invariant space. Their experiments
show that while EA is beneficial, MixUp seems to have

hardly any positive impact on the achieved accuracy, while
in several cases it is detrimental to the learning process. This
is in line with the findings of [9], where MixUp does not
yield performance improvements. Summing up, deep learning
methods can achieve strong performance on motor imagery
tasks and enable training on multiple source domains.

III. PROPOSED METHOD

Let {X1, . . . ,Xn} be the set of n band-pass filtered EEG
trials that a recording session S contains. Let Xi ∈ RC×T

be the i-th EEG trial of the session, where C is the number
of EEG channels and T is the number of samples in the
dimension of time. The covariance matrix Pi of trial Xi is
calculated as Pi = XiX

T
i . Covariance matrices lie on the

space of SPD matrices with dimension C, denoted as P(C),
which is a Riemannian manifold. Considering two points (i.e.
two SPD matrices) P1 and P2 on P(C), the Riemannian
distance metric [4] is defined in Eq. 1:

δ(P1,P2) =
( n∑

i=1

log2λi

) 1
2

(1)



where λi are the eigenvalues of P−1
1 P2. The Riemannian

mean P of the set {P1, . . . ,Pn}, is the SPD matrix that acts
as the reference state for the entire session. There is no closed-
form solution for the computation of P, thus it is solved as an
optimization problem, i.e. minimizing the Riemannian distance
between P and all the trial-wise covariances, according to
Eq. 2:

P = argmin
P∈P(C)

n∑
i=1

δ(Pi,P) (2)

Riemannian Alignment: Typically, alignment [10], [24]
on EEG signals is performed separately within each session,
applying the same session-specific transformation to all trials.
Considering the session-wise SPD matrix P and the trial-wise
signals Xi, the aligned signals X̂i in this paper are computed
as:

X̂i = P
− 1

2Xi (3)

CovMix Alignment: We propose an alternative method of
alignment, that transforms each trial differently over multiple
training steps. To provide diversity to the transformation
matrix, we derive it by traversing the geodesic connecting the
reference state (i.e. the session-wise SPD matrix P) and the
trial-wise covariance matrix Pi (instead of deriving it directly
from P). Having the reference state as starting point, ensures
that the finally picked points are still relevant to the session-
wise statistics. Picking points by traversing geodesics, ensures
that our method respects the Riemannian nature of covariance
matrix space.

We mix (i.e. interpolate) the session-wise SPD matrix P
with that of the i-th trial Pi, obtaining the mixed SPD
matrix Pmix. An illustration of performing interpolation on
the Riemannian manifold is provided in Fig. 1. We use a
scalar α, 0 ≤ α ≤ 1, which we call covariance mixing
coefficient, to control the distance between Pmix and P.
More specifically, we sample α from a uniform distribution
U ∼ [0, 1], and compute the weighted Riemannian average [4]
between matrices P and Pi as shown in Eq. 4, so that
δ(Pmix,P) = α · δ(Pi,P).

Pmix = P
1
2

(
P

− 1
2PiP

− 1
2

)α

P
1
2 (4)

We can control the regularization induced to the classifica-
tion network by CovMix, by restricting the range of values
that are sampled for α. To do so, we use the hyperparameter
αmax to set the maximum value of α, and sample from the
distribution U ∼ [0, αmax]. CovMix is applied only during
the training phase, similarly to data augmentation methods,
aligning the signals as follows:

X̂i = P
− 1

2

mixXi (5)

During the inference phase, we apply the Riemannian align-
ment and transform the signals using Eq. 3.

Let us note that our transformation matrix is not an arbitrary
deep learned matrix, but an SPD matrix obtained by traversing
on particular geodesics of the Riemannian manifold, that

connect session-wise and trial-wise covariances. This ensures
that the transformation matrix is close to the reference matrix
for each domain, to facilitate training on multiple source
domains as in [15]. Moreover, our transformation matrix does
not aim to suppress noise on EEG trials, as [1] does, but
to generate diverse augmentations of trials. Having done the
covariance mixing in the Riemannian space, we perform data
augmentation in the Euclidean space of EEG time-series. This
allows us to use classifiers such as CNN models, unlike the
method of [13] that generates augmented data points that
require Riemannian classifiers.

CNN architecture: We opt to use a modified version of
EEGNet [16] as our CNN architecture for motor imagery
classification. Specifically, we remove the batch normalization
layer at the temporal convolution stage, and use 3 fully
connected (FC) layers at the classification head.

The pipeline of performing CovMix, along with the com-
ponents of the CNN architecture, are shown in Fig. 2.

IV. EVALUATION SETUP

Dataset: We apply our method on the motor imagery
decoding problem, studying the dataset of BCI Competition IV
Dataset 2a (IV-2a) [20]. The dataset contains EEG recordings
of 9 participants, collected over two different days for each
subject (i.e. there are two sessions per participant), having 25
electrodes (22 EEG and 3 electrooculographic channels) and
a sampling frequency of 250Hz. The classes of the dataset
correspond to 4 different imaginary movement types that the
subjects performed, namely left hand, right hand, feet and
tongue. Each session contains 72 trials of each class. Our EEG
preprocessing pipeline has the following steps: 1) bringing the
EEG signals into the measurement unit of uV (microvolts) 2)
keeping only the channels of 22 EEG electrodes, discarding
the EOG electrodes 3) notch filtering to remove the 50Hz
component 4) bandpass filtering in the range 4-38 Hz and 5)
resampling signals to 100Hz. We crop the temporal window
[0.0, 4.0] seconds of each trial, where t = 0 is the event onset.
The size of each input sample is C×T , where C=22 (number
of EEG channels) and T=400 (number of time samples).
Evaluation is performed in a Leave-One-Subject-Out (LOSO)
manner, using both sessions for all subjects.

Comparison to other methods: We compare CovMix
with three other methods, namely Riemannian Alignment
(RA) [10], MixUp [27] and MixStyle [29]. We implement
RA as in [24], using the Riemannian mean of covariances
and transforming the EEG signals instead of re-centering the
covariances. For MixUp, considering two data samples xi, xj

and their labels encoded as one-hot vectors yi, yj we create
the augmented samples as x′ = λxi + (1 − λ)xj and y′ =
λyi + (1− λ)yj , where λ ∼ Beta(2.0, 2.0). We also evaluate
the method of MixStyle, which is a state-of-the-art domain
generalization technique that can be plugged in between CNN
layers. For MixStyle, let x be a batch of samples, and x̃ be
the randomly shuffled version of x across the batch dimension.
First, the feature statistics γmix = λσ(x) + (1 − λ)σ(x) and
βmix = λµ(x)+(1−λ)µ(x) are computed, using the operators



TABLE I: Evaluation of several methods on the motor imagery classification problem, using the dataset of BCI Competition
IV-2a. The dataset contains 9 participants, and columns S01-S09 correspond to the accuracy of LOSO evaluation on one
participant each time. All the number reported in this table are the average of 3 runs.

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Mean Acc. (%)
Baseline 68.98 38.02 71.47 45.02 36.34 38.54 45.19 67.99 69.50 53.45
Riemannian Alignment 75.80 35.36 81.25 49.13 45.08 44.09 49.24 70.08 71.35 57.93
MixUp 75.63 34.14 79.11 48.67 46.70 46.81 52.54 74.24 69.79 58.63
MixStyle 76.09 42.36 80.20 55.84 45.71 47.97 58.39 67.18 73.09 60.76
CovMix (default), αmax = 1.0 76.21 41.72 82.46 54.40 44.73 47.16 57.17 73.20 71.35 60.93
CovMix (best), αmax = 0.7 78.12 43.86 83.68 58.33 45.54 47.51 60.53 75.34 72.91 62.87

of µ(·) (mean value) and σ(·) (standard deviation) along the
temporal dimension, with λ ∼ Beta(0.1, 0.1). Then, MixStyle
is performed with a probability of 50% on training batches,
computing x′ = γmix

x−µ(x)
σ(x) + βmix and detaching the oper-

ators of µ(·) and σ(·) from the gradient computation. Upon
attempting to plug MixStyle in several convolutional stages
of EEGNet, we find that using it after the third convolutional
layer is the most effective choice, and report results with this
setting. We also report results of a baseline EEGNet model
trained without any signal aligning (mentioned as “Baseline”),
to serve as a reference for evaluating the benefits of alignment.

V. EXPERIMENTAL RESULTS

Training hyperparameters: Batch size is set to 64 and
training is conducted for 120 epochs. The cross-entropy loss
is used as the criterion for MI classification, where the targets
are 4 classes. Stochastic Gradient Descent is selected as the
optimizer (momentum=0.9, weight decay=0.01). We set the
dropout probability of EEGNet to 0.1.

Results: Table I shows the results of all methods on the
IV-2a dataset. Compared to the baseline model that is trained
without any alignment on the EEG signals, the Rieman-
nian Alignment (RA) method provides an accuracy boost
of +4.48% (from 53.45% to 57.93%). Training EEGNet
with CovMix using the default setting (αmax = 1.0), fur-
ther increases the performance by +3%. The regularization
method of MixUp improves the accuracy only by +0.70%
compared to RA, while the domain generalization approach of
MixStyle gives a more considerable increase of +2.83% over
RA. Overall, CovMix yields the highest accuracy of 60.93%
outperforming all other methods.

Considering the regularization effect of MixUp, we find it
to be insufficient. One drawback of applying MixUp in EEG
signals, is the existence of large inter-subject differences on
the channel-wise statistics. Thus, directly mixing signals from
different domains on the input space (i.e. the time-series)
may be detrimental for multi-source training. An indirect
solution to this issue, is to scale the signal values of each trial
in the range [−1,+1] as in [15], before applying MixUp.
Nevertheless this scaling is not consistent within each session,
as it depends on trial statistics. In contrast to MixUp that
transforms batch samples on the input space, MixStyle is
done on the space of intermediate layer features. Thus, it is
less prone to cross-domain differences on the input space.
Yet for MixStyle to be effective, it needs to be plugged

Fig. 3: The amount of regularization induced to the network
by CovMix, is controlled through the hyperparameter αmax.
The achieved performance obtained using CovMix, improves
as we increase αmax from 0.1 up to 0.7.

in to early layers of CNNs, where features mostly reflect
domain-related information (while late layers are expected to
be increasingly related to class label information). Differently
from MixUp and MixStyle, CovMix does not involve mixing
information stemming from different domains. The results
show that regularization can be effectively induced in an intra-
domain manner.

Ablation study: To examine the impact of hyperparameter
αmax on the performance of CovMix, we do an ablation study
and run experiments setting αmax from 0.1 to 1.0 with a step
of 0.1. Smaller values of αmax induce smaller regularization to
the network. The results of our sweep are shown in Fig. 3. We
observe that the performance of CovMix does not fall below
that of RA, for any value of αmax. Tuning αmax leads to even
better performance compared to the default setting of αmax =
1.0, reaching a maximum accuracy of 62.87% when αmax =
0.7. The test subjects benefit differently from the values of
αmax. In six out of nine subjects (specifically subjects 1, 3,



Fig. 4: Visualization of t-SNE embeddings from the trial-wise
covariance matrices and the mixed SPD matrices that were
obtained by performing random interpolations with CovMix.
We use EEG signals from the second session of subject 9.
Notice also the Riemannian barycenter of all trials (plotted
with marker “⋆”).

5, 7, 8 and 9), we achieve the highest test accuracies when
setting αmax between 0.6 and 0.8. However, for the rest three
subjects (2, 4 and 6) the highest test accuracies occur when
αmax is in the range of 0.1 to 0.3.

Visualization of augmented SPD matrices: In Fig. 4,
we provide a t-SNE [21] visualization of the covariances
corresponding to trials, and the SPD matrices generated using
CovMix with randomly sampled values of α. We can see that
the points corresponding to interpolated SPD matrices, mainly
occupy the space between the barycenter of the entire session
(i.e. all trials from all classes), and the points of trial-wise
covariance matrices.

VI. CONCLUSIONS

In this paper we discuss the problem of EEG-based MI
decoding in transfer learning scenarios. Alternatively to meth-
ods that extract handcrafted features from EEG signal time-
series, we use a CNN model as feature extractor. Through our
proposed method, we concurrently perform alignment on the
EEG signals and regularization on the CNN, applying different
signal transformations during the training phase. We use a
Riemannian framework to derive the transformation matrices,
mixing trial-level and session-level covariance statistics. We
conduct experiments on the BCI IV-2a dataset for MI classifi-
cation, showing that CovMix performs superiorly against the
traditional Riemannian Alignment, the regularization method
of MixUp, and the domain generalization method of MixStyle.
Our results indicate the potential of leveraging covariance-

based alignment as a means towards regularization of deep
neural networks.
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