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Abstract. Tropical ideals are a class of ideals in the tropical polynomial semir-
ing that combinatorially abstracts the possible collections of supports of all poly-
nomials in an ideal over a field. We study zero-dimensional tropical ideals I
with Boolean coefficients in which all underlying matroids are paving matroids,
or equivalently, in which all polynomials of minimal support have support of size
deg(I) or deg(I) + 1 – we call them paving tropical ideals. We show that paving
tropical ideals of degree d + 1 are in bijection with Zn-invariant d-partitions of
Zn. This implies that zero-dimensional tropical ideals of degree 3 with Boolean
coefficients are in bijection with Zn-invariant 2-partitions of quotient groups of
the form Zn/L. We provide several applications of these techniques, including
a construction of uncountably many zero-dimensional degree-3 tropical ideals in
one variable with Boolean coefficients, and new examples of non-realizable zero-
dimensional tropical ideals.
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1. Background

Investigating the connections between algebraic geometry and combinatorics has
been an exceptionally fruitful pursuit in many fields over the past few decades. Trop-
ical geometry has served as a very useful tool in this endeavor, allowing the study
of subvarieties of toric varieties by analyzing their corresponding tropicalizations –
finite polyhedral complexes that retain important information about the original
algebraic varieties. As explored in [GG16] and [MR20], this tropicalization process
can also be carried out algebraically, by sending the defining ideal of a subvariety
to an ideal in the semiring of tropical polynomials.

Tropical ideals, axiomatized by Maclagan and Rincón in [MR18], have been pro-
posed as a sensible class of tropical objects for developing the study of tropical
scheme theory. The class of tropical ideals includes all tropicalizations of classical
ideals, but it is in general much larger. In [MR18], and later in [MR], Maclagan and
Rincón established several essential properties of tropical ideals and their associated
tropical varieties, analogous to those of ideals in a polynomial ring and their alge-
braic varieties. These include the fact that tropical ideals satisfy the ascending chain
condition, have a Hilbert function that is eventually polynomial – and thus a notion
of dimension and degree – and define varieties that are finite balanced polyhedral
complexes. While these properties were known for tropicalizations of ideals of a
polynomial ring, called realizable tropical ideals, their proofs in the non-realizable
case require new careful combinatorial analyses. Part of this difficulty is related
to the fact that we know very few examples so far of non-realizable tropical ideals:
while it is easy to construct ideals over rings, constructing tropical ideals in a purely
tropical setting remains a more difficult task, as, for example, they are not closed
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under sums or intersections, nor do they admit a notion of finite generation that we
know of.

Studying zero-dimensional tropical ideals has been a first step in the exploration
of tropical ideals. These ideals play a very important role in the theory, as often
general properties of tropical ideals can be reduced to the zero-dimensional case.
In addition, their study is directly connected to an interesting moduli space – the
(tropical) Hilbert scheme of points. In her PhD thesis [Zaj18], Zajaczkowska studied
degree-2 zero-dimensional tropical ideals with coefficients in the Boolean semiring
B, and showed that they are in one-to-one correspondence with sublattices of Zn.
This result was used in [FGG] to study the space of all degree-2 zero-dimensional
homogeneous tropical ideals in two variables, what can be thought of as the tropical
Hilbert scheme of 2 points in trop(P1). Higher-degree zero-dimensional tropical
ideals have been studied in [Sil21] and [FGG] in the case of homogeneous ideals in
two variables, where interesting connections to Schur polynomials were developed
in the realizable case.

In this paper we study the class of zero-dimensional tropical ideals for which
all underlying matroids are paving matroids, which we call paving tropical ideals.
Equivalently, a zero-dimensional tropical ideal I is a paving tropical ideal if and
only if all polynomials of minimal support in I have support of size either deg(I)
or deg(I) + 1. In this sense, paving tropical ideals can be thought of as tropical
ideals that are very close to being the “generic” zero-dimensional tropical ideal in
which the underlying matroid is a uniform matroid and all polynomials of minimal
support have support of size equal to deg(I) + 1. We give more detailed definitions
in Section 2.

Throughout the paper we focus on the case of paving tropical ideals with coeffi-
cients in the Boolean semiring B. This allows us to focus purely on the combina-
torics of the underlying matroids, and provides already many interesting examples.
Understanding tropical ideals with Boolean coefficients is an important and useful
step, as general tropical ideals can be studied using them by taking initial ideals or
trivializing the valuation.

Paving matroids of rank d+1 over a ground set E are in bijection with d-partitions
of E – a generalization of the notion of partition that allows for intersections of size
less than d between subsets. We extend this bijection to prove the following result.

Theorem 2.9. There is a one-to-one correspondence between paving tropical ideals
of degree d + 1 with coefficients in the Boolean semiring B and d-partitions of Zn

that are invariant under the action of Zn.

Using the fact that any matroid of rank 2 with no loops is a paving matroid,
we recover the correspondence described in [Zaj18, Theorem 4.2.4] between zero-
dimensional degree-2 tropical ideals with Boolean coefficients and sublattices of Zn.

We also use these techniques to understand general zero-dimensional tropical
ideals of degree 3 with Boolean coefficients. Based on the fact that the simplifi-
cation of any rank 3 matroid is a paving matroid, we prove the following result.

Theorem 3.4. There is a one-to-one correspondence between zero-dimensional
tropical ideals of degree 3 with Boolean coefficients and pairs (L,P), where L ⊂ Zn

is a sublattice and P is a Zn-invariant 2-partition of the quotient group Zn/L.
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Finally, we use the fact that d-partitions have a natural notion of “generating
sets” to construct explicit examples of tropical ideals. This allows us to provide the
following applications:

• Proposition 4.2. There are uncountably many zero-dimensional tropical
ideals of degree 3 in B[x±1].
• Theorem 4.4. Any paving matroid on the set of variables {x1, . . . , xn} can

be extended to a zero-dimensional tropical ideal I ⊂ B[x±11 , . . . , x±1n ]. This
can be used to construct many examples of non-realizable tropical ideals.
• Proposition 4.8. There is a non-realizable zero-dimensional degree-2 trop-

ical ideal in B[x±11 , x±12 , x±13 ].

The paper is organized as follows. In Section 2 we provide all the basic definitions,
and we develop the correspondence between paving tropical ideals and d-partitions
stated in Theorem 2.9. In Section 3 we use these ideas to investigate general zero-
dimensional tropical ideals of degree at most 3, proving Theorem 3.4. Lastly, in
Section 4 we develop the applications listed above.

The results presented in this paper were obtained as part of the first author’s
MSc dissertation at Queen Mary University of London, under the supervision of the
second author.

2. Paving tropical ideals

We write R = (R ∪ {∞},⊕, ◦· ) for the tropical semiring, where the tropical
sum ⊕ is min and the tropical multiplication ◦· is +. The Boolean semiring is
B := {∞, 0} ⊂ R.

In this paper we focus on tropical ideals with coefficients in B. Given a polynomial
f =

⊕
u∈Zn cuxu ∈ B[x±11 , . . . , x±1n ], its support is

supp(f) := {u ∈ Zn : cu 6=∞}.

Definition 2.1. An ideal I in B[x1, . . . , xn] or B[x±11 , . . . , x±1n ] is a tropical ideal
if it satisfies the following “monomial elimination axiom”:

• For any f, g ∈ I and any u ∈ supp(f) ∩ supp(g), there exists h ∈ I such that

supp(f) ∆ supp(g) ⊂ supp(h) ⊂ (supp(f) ∪ supp(g))− {u},
where ∆ denotes symmetric difference of sets. Equivalently, I is a tropical ideal if
for any E ⊂ Zn finite, the collection

supp(I|E) := {supp(f) : f ∈ I and supp(f) ⊂ E} ⊂ 2E

is the collection of cycles (i.e. unions of circuits) of a matroid on the ground set E.
We denote this matroid by Mat(I|E).

Tropical ideals are combinatorial generalizations of the collections of supports of
all polynomials in an ideal with coefficients in a field. Indeed, if K is a field and
F ∈ K[x±11 , . . . , x±1n ], its tropicalization is the tropical polynomial

trop(F ) :=
⊕

u∈supp(F )

xu ∈ B[x±11 , . . . , x±1n ].

If J ⊂ K[x±11 , . . . , x±1n ] is an ideal, its tropicalization

trop(J) := 〈trop(F ) : F ∈ I〉 ⊂ B[x±11 , . . . , x±1n ]
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is a tropical ideal. A tropical ideal of the form trop(J) for J ⊂ K[x±11 , . . . , x±1n ] is
called realizable over the field K.

Tropical ideals have many properties analogous to those of ideals in a polynomial
ring over a field.

The Hilbert function of a homogeneous tropical ideal I ⊂ B[x0, . . . , xn] is the
map HI : N→ N given by HI(d) = rank(Mat(Id)), where Id is the degree-d part of
I. In other words, HI(d) is the maximal size of a subset B of monomials of degree
d with the property that B does not contain the support of any polynomial in Id.

This notion can be extended to arbitrary tropical ideals in B[x1, . . . , xn], and also
to tropical ideals in B[x±11 , . . . , x±1n ], as we now explain. The homogenization of a
tropical polynomial f =

⊕
cuxu ∈ B[x1, . . . , xn] is

f̃ =
⊕

x
d−|u|
0 ◦· cuxu ∈ B[x0, x1, . . . , xn],

where |u| :=
∑n

i=1 ui and d = max(|u| : cu 6= ∞). The homogenization of an ideal
I ⊂ B[x1, . . . , xn] is the homogeneous ideal

Ih := 〈f̃ : f ∈ I〉 ⊂ B[x0, x1, . . . , xn].

If I is a tropical ideal then Ih is a tropical ideal as well [MR, Lemma 2.1]. In
this case, the Hilbert function of I is defined as the Hilbert function of Ih. If J ⊂
B[x±11 , . . . , x±1n ] is a tropical ideal, the intersection J∩B[x1, . . . , xn] is a tropical ideal
in B[x1, . . . , xn], and the Hilbert function of J is defined as the Hilbert function of
J∩B[x1, . . . , xn]. The maps J 7→ J∩B[x1, . . . , xn] and I 7→ Ih just described induce a
one-to-one correspondence between tropical ideals in B[x±11 , . . . , x±1n ], tropical ideals
in B[x1, . . . , xn] that are saturated with respect to the product of the variables (i.e.,
tropical ideals I ⊂ B[x1, . . . , xn] for which xi◦· f ∈ I implies f ∈ I), and homogeneous
tropical ideals in B[x0, . . . , xn] that are saturated with respect to the product of the
variables; for details see [MR, Lemma 2.1].

In all these cases, the Hilbert function of a tropical ideal I agrees with a polynomial
PI(d) for d � 0, called the Hilbert polynomial of I. The dimension dim(I) of
I is defined as the degree of PI , and the degree deg(I) of I is defined as dim(I)!
times the leading coefficient of PI .

If I is a zero-dimensional tropical ideal, its Hilbert polynomial is a constant, and
the degree of I is equal to that constant. The degree of a zero-dimensional ideal
I is equal to the maximal size of a subset B of monomials with the property that
B does not contain the support of any polynomial in I; see [MR, Lemma 5.2]. In
particular, all polynomials of minimal support in a zero-dimensional tropical ideal
I have support of size at most deg(I) + 1.

A finitary matroid on a (possibly infinite) ground set E is a non-empty collec-
tion of subsets of E, called independent sets, which is closed under taking subsets,
satisfies the usual augmentation axiom for matroids, and furthermore, if all finite
subsets of a subset I are independent then I is independent. Equivalently, minimal
dependent sets (called circuits) are non-empty, non-comparable, satisfy the usual
circuit elimination axiom for matroids, and are finite. Maximal independent sub-
sets are called bases. A finitary matroid is said to have finite rank if all bases
are finite; in this case, all bases have the same cardinality, called the rank of the
matroid. For more on different cryptomorphisms for finite-rank matroids, finitary



PAVING TROPICAL IDEALS 5

matroids, and more general infinite matroids, see for example [Whi86, Section 2.4],
[Whi92, Chapter 3], and [BDK+13].

A tropical ideal I is naturally encoded by a finitary matroid on the set of mono-
mials, as described below.

Definition 2.2. Any tropical ideal I in B[x1, . . . , xn] or B[x±11 , . . . , x±1n ] has an
underlying finitary matroid Mat(I), whose ground set E is equal to the set Nn

or Zn, respectively. A subset A ⊂ E is independent in Mat(I) if it does not contain
the support of any polynomial in I. Equivalently, the circuits of Mat(I) are the
minimal supports of polynomials in I.

If the tropical ideal I is zero-dimensional then its underlying matroid Mat(I) has
finite rank, equal to deg(I). In this case, the rank of a subset X ⊂ E is

rank(X) := max{|A| : A ⊂ X is independent in Mat(I)} <∞.

In the most “generic” zero-dimensional degree-d tropical ideal, the underlying
matroid is a uniform matroid of rank d and all circuits have size d+ 1. In this paper
we investigate a class of zero-dimensional degree-d tropical ideals that are “almost
generic”, in the sense that circuits are also allowed to have size equal to d.

Definition 2.3. A finitary matroid M of finite rank rank(M) < ∞ is a paving
matroid if all the circuits of M have size rank(M) or rank(M) + 1.

Paving matroids have been widely studied in the literature. It is conjectured
that, asymptotically, most finite matroids are paving matroids, and there is strong
evidence to suggest this conjecture holds [Pv15].

For a finite rank matroid, the property of being paving is a local property, in the
following sense.

Proposition 2.4. A finitary matroid M of finite rank on the ground set E is a
paving matroid if and only if for all E ′ ⊂ E finite, the restriction M |E′ is a paving
matroid.

Proof. Suppose M is a paving matroid of rank-d on the set E. For any finite subset
E ′ ⊂ E, the circuits of M |E′ are the circuits of M contained within E ′. Since all
the circuits of M are of size d or d+ 1, this also holds for ME′ .

Conversely, suppose that M is a rank d matroid for which every finite restriction
M |E′ is a paving matroid, but M is not a paving matroid. Then M contains a
circuit C of size at most d− 1. Let B be a basis of M . The restriction M |B∪C then
has rank d, and has a circuit of size d− 1. This means that M |B∪C is not a paving
matroid, a contradiction. �

Definition 2.5. A zero-dimensional tropical ideal I is a paving tropical ideal if
the underlying matroid Mat(I) is a paving matroid, i.e., all polynomials of minimal
support in I have support of size equal to deg(I) or deg(I) + 1. Equivalently, I is
a paving tropical ideal if and only if the matroid Mat(I|E) is a paving matroid for
any finite set of monomials E.

Finite paving matroids of rank d+1 on a set E are known to be in correspondence
with collections of subsets of E called d-partitions. We now extend this correspon-
dence to include infinite paving matroids.
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Definition 2.6. Let E be a (possibly infinite) set with at least d + 1 elements. A
d-partition of E is a collection P of subsets of E satisfying

(P1) |P| ≥ 2,
(P2) |S| ≥ d for any S ∈ P , and
(P3) each d-element subset of E appears in a unique S ∈ P .

A subset S ∈ P is called a block of P .

Note that d-partitions are a generalization of the usual notion of partition of a set;
indeed, a partition of a set E is the same as a 1-partition of E (with the exception
of the trivial partition {E}).

A hyperplane of a finite-rank matroid M is a maximal non-spanning subset
of M , i.e., a maximal subset of rank rank(M) − 1. We denote the collection of
hyperplanes of M by H(M); this collection is enough to determine the matroid M .

For completeness, we recall the axioms that characterize collections of hyperplanes
of finite-rank matroids; see for example [Whi86, Proposition 2.4.2].

Proposition 2.7. A collection H of subsets of a (possibly infinite) set E is the
collection of hyperplanes of a finite-rank matroid over E if and only if H satisfies

(H1) E /∈ H.
(H2) Any two subsets in H are incomparable.
(H3) For every H1, H2 ∈ H with H1 6= H2, and every x ∈ E, there exists H3 ∈ H

such that (H1 ∩H2) ∪ {x} ⊂ H3.
(HF) If a subset X ⊂ E satisfies X 6⊂ H for all H ∈ H, then there exists a finite

X ′ ⊂ X satisfying X ′ 6⊂ H for all H ∈ H.

The following correspondence is well-known in the case of matroids on a finite
ground set. In fact, it is sometimes provided as the definition of a paving matroid
[Wel76, Chapter 2.3], and motivates the use of the name ‘paving’.

Proposition 2.8. There is a one-to-one correspondence between rank-(d+1) paving
matroids on a (possibly infinite) set E and d-partitions of E. Concretely, if M is
a paving matroid on E of rank d + 1 then its collection of hyperplanes H(M) is a
d-partition of E. Conversely, for any d-partition P of E there is a paving matroid
M(P) on E of rank d+ 1 whose collection of hyperplanes is equal to P.

Proof. Suppose that M is a paving matroid on E of rank d + 1. Hyperplanes of
M have rank d. As M has rank at least 2, the collection of hyperplanes H(M)
satisfies the d-partition axioms (P1) and (P2). To show that H(M) satisfies (P3),
take S ⊂ E of size d. Since all the circuits of M have size d+ 1 or d+ 2, the subset
S is independent in M and thus has rank d. The only hyperplane that contains S
is therefore span(S), showing that H(M) satisfies (P3).

Conversely, suppose that P is a d-partition of E. Axiom (P3) ensures that any
two subsets in P are incomparable, and thus P satisfies the hyperplane axioms (H1)
and (H2). To show that P satisfies (H3), take distinct S1, S2 ∈ P , and x ∈ E. By
axiom (P3) we have that |(S1 ∩ S2) ∪ {x}| ≤ d, and thus (S1 ∩ S2) ∪ {x} must be
contained in some S3 ∈ P . For axiom (HF), we must show that if X ⊂ E is infinite
and X 6⊂ S for all S ∈ P then X contains a finite subset X ′ with this property.
Take Y ⊂ X of size d. By (P3), we have Y ⊂ S for a unique S ∈ P . Since X 6⊂ S,
there exists x ∈ X \ S. The set X ′ := Y ∪ {x} is thus not contained in any S ′ ∈ P ,
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as otherwise Y would be contained in both S and S ′. This shows that P is the
collection of hyperplanes of a finite-rank matroid M on E. Finally, the fact that
every d-subset of E is contained in a unique hyperplane of M implies that M has
rank d+ 1 and every d-subset of E is independent in M , which means that M is a
paving matroid. �

We now use the previous general correspondence between paving matroids and
d-partitions to encode paving tropical ideals as special d-partitions of Zn.

The action of the additive group Zn on itself induces an action of Zn on subsets
of Zn, namely, if u ∈ Zn and S ⊂ Zn then

u + S := {u + v : v ∈ S}.
This in turn induces an action of Zn on collections of subsets of Zn: If u ∈ Zn and
P ⊂ 2Zn

, the collection
u + P := {u + S : S ∈ P}

is another collection of subsets of Zn. We say that P ⊂ 2Zn
is invariant under the

action of Zn if u +P = P for all u ∈ Zn. In a similar way, the action of Zn on itself
induces a natural action of Zn on finitary matroids on the ground set Zn.

Theorem 2.9. There is a bijection between tropical ideals in B[x±11 , . . . , x±1n ] and
finitary matroids on Zn that are invariant under the action of Zn, sending a tropical
ideal I to its underlying matroid Mat(I).

Consequently, there is a bijection between degree-(d + 1) paving tropical ideals in
B[x±11 , . . . , x±1n ] and d-partitions of Zn that are invariant under the action of Zn,
sending a paving tropical ideal I to the collection of hyperplanes H(Mat(I)) of its
underlying matroid.

Proof. If I is a tropical ideal in B[x±11 , . . . , x±1n ] then its underlying matroid Mat(I)
is a finitary matroid on the set Zn. Since I is invariant under multiplication by
any Laurent monomial, the matroid Mat(I) is invariant under the action of Zn. In
addition, note that any Zn-invariant finitary matroid M on Zn is the underlying
matroid of a unique tropical ideal I ⊂ B[x±11 , . . . , x±1n ], namely, the ideal consisting
of polynomials of the form f =

⊕
u∈C xu with C a cycle (i.e. union of circuits) of

M . This proves the first part of the theorem.

By definition, a tropical ideal I ⊂ B[x±11 , . . . , x±1n ] is a degree-(d + 1) paving
tropical ideal if and only if Mat(I) is a Zn-invariant rank-(d+ 1) paving matroid on
Zn. By Proposition 2.8, such matroids are in bijection with Zn-invariant d-partitions
of Zn, via the map that sends a matroid Mat(I) to its collection of hyperplanes
H(Mat(I)). �

Remark 2.10. It is worth mentioning without using any matroid terminology what
the correspondence in Theorem 2.9 is in the case of paving tropical ideals. If P
is a Zn-invariant d-partition of Zn, the degree-(d + 1) paving tropical ideal I ⊂
B[x±11 , . . . , x±1n ] corresponding to P has minimal-support polynomials of the form
f =

⊕
u∈C xu, where C ⊂ Zn has size d + 1 and is contained in a block S ∈ P , or

C has size d+ 2 and does not contain any such (d+ 1)-subset.

Example 2.11. Consider the ideal J := 〈x2 + x+ 1〉 ⊂ C[x±1]. Its tropicalization
trop(J) ⊂ B[x±1] is a paving tropical ideal, since deg(trop(J)) = deg(J) = 2 and
trop(J) contains no monomials, so polynomials of minimal support in trop(J) are
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either binomials or trinomials. The set of binomials in J comprises all binomials
of the form λxu − λxv with u − v ∈ 3Z and λ ∈ C. Following Remark 2.10, the
Z-invariant partition corresponding to trop(J) thus consists of the 3 cosets of the
subgroup 3Z in Z. ♦

Remark 2.12. Since degree-(d + 1) paving tropical ideals in B[x±11 , . . . , x±1n ] are in
correspondence with degree-(d + 1) paving tropical ideals in B[x1, . . . , xn] that are
saturated with respect to the product of the variables and also with homogeneous
degree-(d+ 1) paving tropical ideals in B[x0, . . . , xn] that are saturated with respect
to the product of the variables, Theorem 2.9 implies that these two classes of tropical
ideals are also in bijection with Zn-invariant d-partitions of Zn.

We conclude this section with a result about which subsets of Zn can be hyper-
planes of a paving tropical ideal.

Definition 2.13. We say a subset S ⊂ Zn is d-sparse if there exists no u ∈ Zn\{0}
such that |S ∩ (u + S)| ≥ d.

Proposition 2.14. Suppose P is a Zn-invariant d-partition of Zn. Then any block
S ∈ P is either d-sparse or a non-trivial affine sublattice of Zn, i.e. it has the form
S = v + L for v ∈ Zn and {0} ( L ( Zn a sublattice.

Proof. Fix a block S ∈ P . As P is Zn-invariant, for any u ∈ Zn we have u +S ∈ P .
Note that axioms (P2) and (P3) for d-partitions imply that u + S = S if and only
if |S ∩ (u + S)| ≥ d. The stabilizer of S under the action of Zn on the blocks of P
is then

L := {u ∈ Zn : u + S = S} = {u ∈ Zn : |S ∩ (u + S)| ≥ d},
which is a subgroup of Zn. The case when L is the trivial lattice L = {0} is exactly
the case when S is d-sparse. If L is non-trivial, fix v ∈ S. Note that S ⊃ v +L. For
any w ∈ S, we also have S ⊃ w + L, and thus (v −w) + S ⊃ v + L. This means
that S ∩ ((v − w) + S) ⊃ v + L, so |S ∩ ((v − w) + S)| ≥ |v + L| = ∞ ≥ d and
therefore v −w ∈ L. It follows that S = v + L, as desired. �

In view of Theorem 2.9, Proposition 2.14 says that any hyperplane of a degree-
(d+1) paving tropical ideal is either d-sparse or an affine sublattice of Zn. In Section
4 we will provide examples and applications based on constructing paving matroids
with specified d-sparse hyperplanes.

3. Zero-dimensional tropical ideals of low degree

In this section we use the setup developed in Section 2 to better understand
zero-dimensional tropical ideals in B[x±11 , . . . , x±1n ] of degree at most 3.

The case of zero-dimensional tropical ideals of degree at most 2 was studied by
Zajaczkowska in her PhD thesis [Zaj18]. There she showed that all zero-dimensional
tropical ideals in R[x±11 , . . . , x±1n ] of degree 1 are realizable, and are of the form
trop(〈x1−a1, . . . , xn−an〉) where a1, . . . , an are elements of a valued field K. (Note
that this statement includes the case of tropical ideals with non-Boolean coefficients.)
In fact, these ideals are exactly the maximal tropical ideals of R[x±11 , . . . , x±1n ], as
shown in [MR18, Example 5.19].

Zero-dimensional tropical ideals of degree 2 with Boolean coefficients were shown
in [Zaj18] to be in correspondence with sublattices of Zn. It was also proved that in
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the case of n = 1 they are all realizable, although as we will see in the next section,
this is not always the case if n > 1. The case of zero-dimensional tropical ideals
of degree 2 in one variable with coefficients in R was studied in depth in [FGG],
where the authors show that, while these tropical ideals are naturally parametrized
by points in a certain infinite-dimensional simplicial complex, the realizable ones
correspond only to a 1-dimensional subcomplex.

The correspondence between zero-dimensional tropical ideals of degree 2 and sub-
lattices of Zn follows directly from our results in Section 2, as we now explain.

Proposition 3.1. There is a bijection between zero-dimensional degree-2 tropical
ideals in B[x±11 , . . . , x±1n ] and proper sublattices L ( Zn. Under this correspondence,
the tropical ideal associated to a sublattice L has minimal-support polynomials of the
form xu⊕xv with u−v ∈ L, and xu⊕xv⊕xw with no pairwise difference between
u,v,w in L.

Proof. Note that zero-dimensional degree-2 tropical ideals of B[x±11 , . . . , x±1n ] contain
no monomials, and thus they are all paving tropical ideals. It follows from Theorem
2.9 that they are in bijection with Zn-invariant 1-partitions (i.e. non-trivial parti-
tions) of Zn. Suppose P is a Zn-invariant partition of Zn, and let L ∈ P be the
block containing 0. If L has size at least 2 then L is not 1-sparse, so by Proposition
2.14, L is a sublattice of Zn. The same is true, of course, if |L| = 1. As P is a
partition that is invariant under the action of Zn, it follows that P consists of all
the translates of L. This shows that non-trivial Zn-invariant partitions of Zn are in
bijection with proper sublattices of Zn. Finally, the concrete correspondence in the
statement follows from Remark 2.10. �

Example 3.2. As discussed in Example 2.11, the tropicalization trop(J) of the ideal
J := 〈x2 + x+ 1〉 ⊂ C[x±1] is a degree-2 paving tropical ideal, whose associated Z-
invariant partition consists of the 3 cosets of 3Z in Z. Under the correspondence
stated in Proposition 3.1, the degree-2 tropical ideal trop(J) thus corresponds to
the sublattice 3Z ⊂ Z. ♦

This approach can be extended to study all zero-dimensional degree-3 tropical
ideals with Boolean coefficients, based on the fact that all rank-3 matroids without
loops are paving matroids once parallel elements are identified.

Suppose M is a finitary matroid on the ground set E with no loops. Two elements
a, b ∈ E are called parallel in M , denoted a ∼ b, if a = b or {a, b} is a circuit of M .
This parallelism relation ∼ is an equivalence relation on E. The fact that a subset
{a1, . . . , ak} ⊂ E containing no parallel elements is a circuit of M depends only on
the equivalence classes [ai] of the ai, that is, {a1, . . . , ak} is a circuit of M if and
only if {b1, . . . , bk} is a circuit of M whenever bi ∼ ai for all i. The simplification
of the matroid M , denoted by si(M), is the finitary matroid whose ground set is the
set of equivalence classes E/∼, and whose circuits are the subsets {[a1], . . . , [ak]}
for which {a1, . . . , ak} is a circuit of M .

Definition 3.3. Let I be a tropical ideal in B[x±11 , . . . , x±1n ]. Its binomial lattice
is the sublattice of Zn given by

LI := {u− v ∈ Zn : xu ⊕ xv ∈ I} ∪ {0}.
The fact that LI is indeed a sublattice follows directly from the monomial elimination
axiom for I.
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Theorem 3.4. There is a one-to-one correspondence between zero-dimensional trop-
ical ideals in B[x±11 , . . . , x±1n ] of degree 3 and pairs (L,P), where L is a sublattice
of Zn and P is a 2-partition of the quotient group Zn/L which is invariant under
the action of Zn. This correspondence sends a zero-dimensional tropical ideal I of
degree 3 to the pair (LI ,H(si(Mat(I)))).

Proof. Suppose I is a zero-dimensional degree-3 tropical ideal in B[x±11 , . . . , x±1n ].
The underlying matroid Mat(I) has no loops, and its parallelism classes are the
cosets of the binomial lattice LI in Zn. The simplification si(Mat(I)) is then a rank-
3 paving matroid on the quotient subgroup Zn/LI . As Mat(I) is invariant under
the action of Zn, so is si(Mat(I)). By Proposition 2.8, the collection of hyperplanes
H(si(Mat(I))) is a 2-partition of Zn/LI that is invariant under the action of Zn.
Note that the matroid Mat(I), and thus the tropical ideal I, is determined by the
pair (LI ,H(si(Mat(I)))).

Conversely, suppose L is a sublattice of Zn and P is a Zn-invariant 2-partition of
Zn/L. By Proposition 2.8, P is the collection of hyperplanes of a Zn-invariant rank-
3 paving matroid M on Zn/L. This matroid is the simplification of a Zn-invariant
rank-3 matroid on Zn, and thus the pair (L,P) corresponds to a zero-dimensional
degree-3 tropical ideal in B[x±11 , . . . , x±1n ]. �

Example 3.5. Consider the degree-3 ideal J := 〈x3 + x2 + x+ 1〉 ⊂ C[x±1]. The
set of binomials in J consists of all binomials of the form λxu−λxv with u− v ∈ 4Z
and λ ∈ C. Moreover, the fact that a subset S ⊂ Z is the support of a minimal-
support polynomial in J depends only on the equivalence classes in Z/4Z of the
elements of S. As x3 + x2 + x+ 1 is a polynomial of minimal support, we see that,
other than the binomials described above, the polynomials of minimal support in J
are the quadrinomials of the form x4k3+3 +x4k2+2 +x4k1+1 +x4k0 . The simplification
si(Mat(trop(J))) of the underlying matroid of trop(J) is thus equal to the uniform
matroid of rank 3 on the ground set Z/4Z. Under the correspondence described
in Theorem 3.4, the degree-3 tropical ideal trop(J) therefore corresponds to the
sublattice 4Z ⊂ Z and the Z-invariant 2-partition of Z/4Z consisting of all subsets
of size 2. ♦

Remark 3.6. The proof of Theorem 3.4 can be directly generalized to show that
there is a one-to-one correspondence between zero-dimensional degree-(d+1) tropical
ideals in B[x±11 , . . . , x±1n ] whose polynomials of minimal support have supports of size
2, d+1, or d+2, and pairs (L,P), where L is a sublattice of Zn and P is a d-partition
of the quotient group Zn/L which is invariant under the action of Zn. As in the
d = 2 case, this correspondence sends such a zero-dimensional tropical ideal I of
degree d+ 1 to the pair (LI ,H(si(Mat(I)))).

We conclude this section with a remark about the structure of blocks in a Zn-
invariant d-partition of a quotient group Zn/L.

Remark 3.7. When d ≤ 2, the proof of Proposition 2.14 directly generalizes to
invariant d-partitions of a quotient group Zn/L:

• If d ≤ 2, L ⊂ Zn is a sublattice and P is a Zn-invariant d-partition of Zn/L,
then any block S ∈ P either has the form S = [v] + K with [v] ∈ Zn/L and K a
nontrivial proper subgroup of Zn/L, or satisfies |S∩([u]+S)| < d for all [u] ∈ Zn/L.
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• If d ≥ 3, this dichotomy no longer holds. As an example, suppose L ⊂ Z2 is the
1-dimensional sublattice generated by the vector (2d− 2, 0). Consider the subset

S := {[(x, y)] ∈ Z2/L : x ∈ {0, 2, . . . , 2d− 4}, y ∈ {0, 1}}.
The collection consisting of all subsets of the form S + [(i, j)] with i ∈ {0, 1} and
j ∈ Z, together with all d-subsets not contained in any such S + [(i, j)], is a Z2-
invariant d-partition of Z2/L. However, the block S of this d-partition is not of the
form S = [v] +K with [v] ∈ Z2/L and K a nontrivial proper subgroup of Z2/L, but
satisfies [(2, 0)] + S = S.

4. Examples

As discussed in Section 2, paving tropical ideals have a relatively simple struc-
ture encoded by Zn-invariant d-partitions of Zn. The fact that every “partial”
Zn-invariant d-partition can be canonically completed to a Zn-invariant d-partition
allows us to develop a notion of “generation” for paving tropical ideals.

Definition 4.1. Suppose A is a collection of subsets of Zn satisfying the following
properties:

(A1) Zn /∈ A.
(A2) |A| ≥ d for all A ∈ A.
(A3) If A1, A2 ∈ A and u ∈ Zn satisfy |A1 ∩ (u + A2)| ≥ d then A1 = u + A2.

In this case, it is not hard to check that A can be extended to a d-partition of Zn

that is invariant under the action of Zn, defined as

Pd(A) := (Zn +A) ∪ D,
where

Zn +A := {u + A : u ∈ Zn and A ∈ A}
and

D := {S ⊂ Zn : |S| = d and S 6⊂ X for all X ∈ Zn +A}.
We call Pd(A) the Zn-invariant d-partition of Zn generated by A. Note that
Proposition 2.14 implies that every subset in A is either d-sparse or a non-trivial
affine sublattice.

In this section we use this construction to provide several examples and applica-
tions of paving tropical ideals.

4.1. Uncountably many tropical ideals with Boolean coefficients. Our first
result shows that there are uncountably many paving tropical ideals of degree 3
with coefficients in B. By contrast, there are only countably many zero-dimensional
tropical ideals of degree 2 with Boolean coefficients, as they are in bijection with
sublattices of Zn; see Proposition 3.1.

Proposition 4.2. There are uncountably many degree-3 paving tropical ideals in
B[x±1].

Proof. Fix an integer m ≥ 2. For S ⊂ N with |S| ≥ 3, consider the set

mS := {ms : s ∈ S} ⊂ Z.
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It is easy to check that the one-set family AS := {mS} satisfies axioms (A1), (A2),
and (A3) from Definition 4.1 with d = 2; indeed, axiom (A3) follows from the fact
that mS is a 2-sparse subset: the value mi −mj uniquely determines the pair (i, j)
if i 6= j. The collection AS thus generates a Z-invariant 2-partition P2(AS) of Z,
which by Theorem 2.9, is the set of hyperplanes of a degree-3 paving tropical ideal
in B[x±1]. Since |S| ≥ 3, the map S 7→ P2(AS) is injective, and so there are at least
2|N| distinct such tropical ideals. �

Remark 4.3. The argument given above can be adapted to higher degrees, showing
that there are uncountably many zero-dimensional tropical ideals of any degree
d ≥ 3. This addresses the statement made in [Sil21, Remark 2.13] that, while there
are only countably many tropical ideals that are realizable, it may be the case that
there are uncountably many in general. It would be interesting to classify which of
the degree-3 paving tropical ideals described in Proposition 4.2 are realizable, if any
at all.

4.2. Extending matroids to tropical ideals. We now show that it is often pos-
sible to extend a paving matroid on a subset of Zn to a paving tropical ideal.

Theorem 4.4. Suppose E ⊂ Zn is a (possibly infinite) d-sparse subset, and M is a
paving matroid of rank d+ 1 on the ground set E. Then there exists a degree-(d+ 1)
paving tropical ideal I ⊂ B[x±11 , . . . , x±1n ] such that Mat(I|E) = M .

Proof. By Proposition 2.8, the collection H(M) of hyperplanes of M is a d-partition
of E. In particular, H(M) satisfies axioms (A1) and (A2) of Definition 4.1. To
show that H(M) satisfies (A3), suppose |H1 ∩ (u + H2)| ≥ d for H1, H2 ∈ H(M)
and u ∈ Zn. We then have |E ∩ (u + E)| ≥ d, and thus, since E is a d-sparse
subset, u = 0. We get |H1 ∩H2| ≥ d, which implies that H1 = H2 since H(M) is a
d-partition. This shows that H(M) also satisfies axiom (A3).

We can thus extend H(M) to a Zn-invariant d-partition Pd(H(M)) of Zn, as
in Definition 4.1. By Theorem 2.9, there is a degree-(d + 1) paving tropical ideal
I ⊂ B[x±11 , . . . , x±1n ] whose underlying matroid Mat(I) has hyperplanes Pd(H(M)).
The matroid Mat(I|E) is the restriction of Mat(I) to the subset E, and thus its
hyperplanes are the maximal sets of the form H ∩ E with H ∈ Pd(H(M)). These
are exactly the subsets in H(M), as any subset in Pd(H(M)) but not in H(M)
intersects E in less than d elements. It follows that Mat(I|E) = M , as desired. �

We note that the previous theorem can be used to easily construct examples of
non-realizable tropical ideals.

Example 4.5. The non-Pappus matroid is a non-representable paving matroid
of rank 3 on 9 elements. Let M be the non-Pappus matroid on the set E :=
{1, 2, 4, . . . , 28} ⊂ Z. Note that E is a 2-sparse subset of Z. By Theorem 4.4,
there is a degree-3 paving tropical ideal I ⊂ B[x±11 ] such that Mat(I|E) = M . In
particular, this implies that I is a non-realizable tropical ideal. ♦

4.3. A non-realizable zero-dimensional tropical ideal of degree 2 with
Boolean coefficients. It was shown in [Zaj18] that all zero-dimensional degree-
2 tropical ideals in B[x±1] are realizable. Below we show that this is not the case for
zero-dimensional degree-2 tropical ideals in more variables.
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We first state the following result about the restriction of a paving tropical ideal
to a subsemiring of tropical polynomials in fewer variables.

Proposition 4.6. Suppose I is a degree-(d+1) paving tropical ideal in the semiring
B[x±11 , . . . , x±1n , y±11 , . . . , y±1m ], corresponding to the Zn+m-invariant d-partition P of
Zn+m. Identify Zn with the sublattice Zn×{0} ⊂ Zn+m in the natural way. If there
is no S ∈ P such that Zn ⊂ S then I ∩ B[x±11 , . . . , x±1n ] is a degree-(d + 1) paving
tropical ideal, corresponding to the Zn-invariant d-partition of Zn

P|Zn := {S ∩ Zn : S ∈ P and |S ∩ Zn| ≥ d}.
If there is S ∈ P such that Zn ⊂ S then I ∩ B[x±11 , . . . , x±1n ] is the degree-d paving
tropical ideal corresponding to the uniform (d − 1)-partition of Zn consisting of all
subsets of size d− 1.

Proof. Denote I ′ = I ∩ B[x±11 , . . . , x±1n ]. The underlying matroid Mat(I ′) is the
restriction of the paving matroid Mat(I) to Zn, and so it is a paving matroid. The
collection P is the set of hyperplanes of Mat(I). If there is a hyperplane S ∈ P
such that Zn ⊂ S then Mat(I ′) is the uniform matroid of rank d, which corresponds
to the uniform (d − 1)-partition of Zn. If there is no hyperplane S ∈ P such that
Zn ⊂ S then Mat(I ′) has rank d + 1, and its hyperplanes are the maximal subsets
of the form S ∩ Zn with S ∈ P . As P is a d-partition, these are exactly the subsets
of the form S ∩ Zn with S ∈ P and |S ∩ Zn| ≥ d, as claimed. �

Recall that zero-dimensional degree-2 tropical ideals with Boolean coefficients are
in bijection with proper sublattices of Zn, as in Proposition 3.1.

Lemma 4.7. The zero-dimensional degree-2 tropical ideal I ⊂ B[x±1] corresponding
to the sublattice 4Z ⊂ Z is not realizable over any field of characteristic 2.

Proof. Suppose for a contradiction that I = trop(J) for an ideal J ⊂ K[x±1] with
K a field of characteristic 2. Let J ′ = J ∩K[x]. Note that I ′ := I ∩B[x] = trop(J ′).
Since K[x] is a principal ideal domain and x2 ⊕ x⊕ 0 ∈ I ′ is the unique polynomial
of minimal degree, we must have J ′ = 〈x2 + ax+ b〉 for some nonzero a, b ∈ K. The
tropical ideal I ′ also contains the polynomial x4⊕0, so x4 + e ∈ J ′ for some nonzero
e ∈ K. This implies that there exist c, d ∈ K such that

x4 + e = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd.

It follows that a = c, a2 + b + d = 0, and ad + ba = 0. The last equality implies
d+ b = 0, and so we get a2 = 0 from the second equality, a contradiction. �

Proposition 4.8. The zero-dimensional degree-2 tropical ideal I ⊂ B[x±11 , x±12 , x±13 ]
corresponding to the sublattice L ⊂ Z3 generated by (4, 0, 0), (0, 2, 0), (0, 0, 2) is not
realizable.

Proof. Suppose I = trop(J) for some ideal J ⊂ K[x±11 , x±12 , x±13 ] with coefficients in
a field K. We then have

I{1} := I ∩ B[x±11 ] = trop(J ∩K[x±11 ])

and
I{2,3} := I ∩ B[x±12 , x±13 ] = trop(J ∩K[x±12 , x±13 ]).
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The partition of Z3 corresponding to I is the collection of all translates of L. By
Proposition 4.6, the ideal I{1} ⊂ B[x±11 ] is the degree-2 paving tropical ideal cor-
responding to the partition of Z consisting of all the translates of L ∩ Z = 4Z,
so it is the zero-dimensional degree-2 tropical ideal corresponding to the sublattice
4Z ⊂ Z. It follows by Lemma 4.7 that K is a field of characteristic not equal to 2.
In a similar way, I{2,3} is the zero-dimensional degree-2 tropical ideal correspond-
ing to the sublattice of Z2 generated by (2, 0) and (0, 2). By [Zaj18, Proposition
5.2.8], this tropical ideal is not realizable over a field of characteristic other than 2,
a contradiction. �

It would be interesting to know whether all zero-dimensional degree-2 tropical
ideals in B[x±11 , x±12 ] are realizable over some field.
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