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Abstract

In this study, we compare distance measures with respect to their ability to
capture vertex community structure and the scalability of their computation.
Our goal is to find a distance measure which can be used in an aggregate
pairwise minimization clustering scheme. The minimization should lead
to subsets of vertices with high induced subgraph density. Our definition
of distance is rooted in the notion that vertices sharing more connections
are closer to each other than vertices which share fewer connections. This
definition differs from that of the geodesic distance typically used in graphs.
It is based on neighborhood overlap, not shortest path. We compare four
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distance measures from the literature and evaluate their accuracy in reflecting
intra-cluster density, when aggregated (averaged) at the cluster level. Our tests
are conducted on synthetic graphs, where clusters and intra-cluster densities
are known in advance. We find that amplified commute, Otsuka-Ochiai and
Jaccard distances display a consistent inverse relation to intra-cluster density.
We also conclude that the computation of amplified commute distance does
not scale as well to large graphs as that of the other two distances.

1 Introduction

The goal of this work is to find a suitable distance measure, to be used in clustering
(community detection). Given a graph G(V,E), we seek a transformation of
a graph’s adjacency matrix into a symmetric |V | × |V | distance matrix whose
elements are the pairwise distances between vertices, dij (≥ 0, dii = 0). This
transformation allows us to cluster vertices using distance minimization (similarity
maximization) techniques from the literature and obtain densely connected clusters.
The quadratic clustering problem presented by Fan and Pardalos [17, 16] and Fan
et al. [18] and the recent quadratic unconstrained binary optimization (QUBO)
K-medoids technique of Bauckhage et al. [5] are examples of such clustering
techniques.

We compare various node to node distances and assess their suitability as a
quantity to be minimized for the purpose of graph clustering. We seek a quantity
whose aggregate pairwise minimization through a graph clustering algorithm will
yield dense clusters. When averaged over a cluster, our chosen distance should
display a consistent inverse relation to intra-cluster density. It is important to note
that our definition of distance differs from that of the usual shortest path distance.
It measures the similarity in the neighborhoods of a pair of vertices, not the length
of the shortest path between them.

Clustering is an unsupervised learning taskwhich consists of grouping elements
deemed somehow similar. Although a formal definition of graph clustering remains
an unsettled matter, there is broad consensus that clusters (communities) should
form densely connected subsets of vertices (e.g., [46, 19, 44, 45]). Consequently,
graph clustering algorithms aim to group nodes into dense subsets. In this context,
distance (similarity) is measured by shared connections. Nodes sharing many
neighbors are considered more similar to each other than nodes which share fewer
neighbors. In the case of a representative clustering, the resulting subsets of vertices
(clusters) form dense induced subgraphs. These clusters should form subsets of
vertices that exhibit a high level of interconnection and a lower level of connection
to vertices in the rest of the graph. In terms of distance, this density pattern should
translate into shorter node to node distances within clusters than between clusters,
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on average.
Ease of computation is a very valuable feature for any distance used in graph

clustering. Most graph clustering formulations are known to be NP-hard. For
example, binary optimization-based graph clustering formulations fall into this
category of difficult problems [25]. In order for clustering to remain feasible,
computing distances should not impose additional onerous costs. For this reason,
we focus our examination on three distances whose computation does not require
the entire adjacency or Laplacian matrix.

However, because of its importance in graph theory (e.g., [10]) and to highlight
the computational challenges of all distances requiring matrix-based computations,
we also examine a recent correction of commute (resistance) distance known as
amplified commute distance [48, 43]. Nevertheless, we call the reader’s attention
to the fact that its computation requires matrix inversion. It cannot be computed
on a pairwise basis. In the context of the massive data sets being analyzed today,
most of which do not fit in the memories of even the most advanced computers, this
requirement is a major impediment to its use in practical applications.

This article expands the scope of our previous work on the topic of vertex to
vertex distance [39]. It includes a broader set of experiments and an examination
of weighted graphs, amplified commute distance, robustness to noise, statistical
interpretations and computational issues. It follows the groundwork of Fouss et
al. [22], Kivimäki et al. [32] and Sommer et al. [47], who all compared various
distances.

The remainder of this article is organized as follows. First, we end this section
by illustrating the need for vertex to vertex distances. Then, after a brief overview
of the literature, we present the distances under consideration. Next, we examine
their relationship to intra-cluster density. To perform this examination, we use
synthetic graphs where cluster membership and intra-cluster densities are known,
by construction. Finally, to illustrate and validate our distances, we compute each of
them for the vertex pairs of two well-know benchmark graph data sets, the Zachary
karate club graph [51] and the United States college football graph [24].

Throughout this document, we only consider connectundirected graphs with
no self-loops, which are either unweighted or weighted with non-negative edge
weights. We denote the set of clusters by C = {c1, c2, . . . , cK}. Individual
clusters are identified by the subscript k ∈ {1, . . . ,K}. The number of nodes in
an arbitrary cluster k is represented by nk and the total number of nodes on the
graph by N =

∑
k nk = |V |. The set of edges connecting two nodes in this same

arbitrary cluster is denoted as ek. Finally, graph density is denoted as K (capital
kappa),

K =
|E|

0.5×N × (N − 1)
.
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Similarly, for an arbitrary cluster k, intra cluster density is denoted by K(k)
intra,

K(k)
intra =

|ek|
0.5× nk × (nk − 1)

.

In the unweighted graph case, these densities can be interpreted as an empirical
estimate of edge probability. The graph’s overall density is the estimate of the
unconditional probability that two arbitrary nodes are joined by an edge. Intra-
cluster density is the estimate of the conditional probability that two nodes in a
given cluster k are connected. In weighted graphs, these quantities become mean
edge weights.

1.1 Motivation

In his article, Chebotarev [10] identified the need for a dissimilarity measure in
data analysis applications. More recently, Granata et al. [27] also made a similar
observation. Graph clustering, sometimes referred to as community detection, is
one such application. To illustrate this need, we examine two optimization-based
graph clustering formulations. Both formulations require a distance whose pairwise
minimization will lead to densely connected clusters, for all vertex pairs.

As mentioned earlier, it is widely understood that clusters are subsets of vertices
that form dense induced subgraphs with sparser connections to the remaining ver-
tices (e.g., [46, 19, 21, 44]). In accordancewith this broadly accepted understanding,
an intuitive optimization-based clustering formulation consists of assigning vertices
intoK (non-overlapping) clusters such that intra-cluster density is maximized. This
problem formulation consists of maximizing the objective function fo shown below.

fo =
K∑
k=1

|ek|
0.5× nk(nk − 1)

=

K∑
k=1

∑
i

∑
j xikxjkwij

0.5× (
∑

i xik) ((
∑

i xik)− 1)
,

where,

• xik ∈ {0, 1}: the (binary) decision variable which takes the value of 1 if
node i is assigned to cluster k (0 otherwise) and

• wij : the weight of the edge joining nodes i and j.

Unfortunately, this formulation is fractional. Worse, the objective function fo
is degenerate and may not be defined in many cases (e.g., empty clusters, single

4



node clusters), making its optimization impossible. Fortunately, some alternative
formulations exist. For example, Fan and Pardalos [17, 16] and Fan et al. [18]
present a formulation that is based on a binary quadratic distance minimization.
Their objective function (fo) is optimized by assigning vertices that aremore similar
or separated by shorter distances (dij) to the same clusters,

fo =

N∑
i=1

N∑
j=i+1

K∑
k=1

dijxikxjk

xik ∈ {0, 1},
K∑
k=1

xik = 1, ∀i ∈ V .

Another viable option is offered by the recently introduced quadratic K-medoids
formulation [5, 29],

min
z

{
fo = βzT∆1− α1

2
zT∆z + γ

(
zT1−K

)2}
zi ∈ {0, 1}, ∀i ∈ V ,

where,

• α, β, γ: are the (input) trade-off parameters,

• z (∈ RN ) is the vector of decision variables,

• zi ∈ {0, 1}: are the (binary) decision variables which take the value of 1 if
node i is selected as an exemplar (0 otherwise),

• 1 (∈ RN ) is a vector of ones and

• ∆ is an N ×N matrix of node-node distances.

Unlike the binary quadratic distance minimization formulation, the K-medoids
algorithm does not directly assign nodes to clusters. Instead, the algorithm identifies
K exemplars around which the clusters will be built.

While discussing K-medoids, in its original or QUBO formulations, it is im-
portant to note that this algorithm was not initially designed for graphs. Indeed,
it requires some metric space, in which distances between all covariates (nodes) is
available. It is through the work discussed here that this clustering technique can
be applied to graphs. Similarly, the binary quadratic distance minimization also
requires distances between all node pairs. While that formulation was presented in
the context of graphs, it assumes the availability of all-pairs distances.
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The topic of graph clustering algorithms is beyond the scope of this article. We
only describe two optmization-based techniques to illustrate the need for a quantity
whose minimization will lead to dense clusters. We also want to call the reader’s
attention to two distinguishing features of these formulations. First, they are or can
be cast as QUBO problems [25]. The QUBO formulation allows the use of newly
available purpose-built computational architectures which help circumvent the NP-
hardness of the clustering problem and of binary optimization in general. Through
the use of these novel architectures, we obtain very good heuristic solutions with
only short computation times [23, 46, 19, 36, 3, 29].

Another very appealing feature of these distance-based formulations is that
they do not depend on modularity and its well-documented shortcomings (e.g.,
[20, 1, 26, 31, 40, 41]), unlike the very popular Louvain technique [6]. In fact,
recent work has demonstrated these distance-based optimization techniques to be
superior to the Louvain method [38].

2 Previous Work

Typically, when distance is discussed in the context of graphs and complex networks,
it refers to shortest paths between nodes (e.g., [14, 10, 4, 2]). Another approach
in the literature consists of borrowing distance measures used in Euclidian space,
like the Euclidian or cosine distances (e.g., [46, 19]) for example. Unfortunately,
none of these interpretations is well-suited to clustering. They fail to capture the
similarity in the connectivity of vertices and community structure or the discrete
nature of graphs.

On the topic of shortest path distance, Akara-pipattana et al. [2] stated the
following: “While intuitive and visual, this notion of distance is limited in that
it does not fully capture the ease or difficulty of reaching point j from point i by
navigating the graph edges. It does not say whether there is only one path of
minimal length or many such paths, whether these paths can be straightforwardly
located, or whether alternative paths are considerably or only slightly longer.” A
few years earlier, in the course of their distance comparisons, Fouss et al. [22] also
made a similar statement. Several years earlier, while presenting their theorems,
Chebotarev and Shamis also highlighted the unsuitability of shortest-path distance
as a similarity measure [13]. We agree with these authors’ statements and also
illustrate them through a concrete example, in Section 3.

In the case of Euclidean space distance measures, like cosine or Euclidean
distances, we must note that graphs are not geometric objects. In fact, the “funda-
mental problem of mapping graphs to vectors” remains a topic of discussion in the
current literature (e.g., [35]). This representation mismatch between graphs and
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distances raises questions of interpretation. Of course, we can always treat rows
(or columns) of a graph’s adjacency or Laplacian matrix as vectors representing
vertices, but proceeding in such a manner distorts the meaning and definitions of
these measures. However, Burt’s [8] and Otsuka-Ochiai [42] distances, which we
explore in the article, can respectively be interpreted as set-theoretic versions of
Euclidean and cosine distances.

In an effort to consider all paths between two vertices, Chebotarev and Shamis
[13, 12, 11] introduced the “matrix-forest” theorems and “forest-accessibility” dis-
tance. Later, Chebotarev [10] established the link between a logarithmic transfor-
mation of the “forest-accessibility”, shortest path and resistance distances. Unfor-
tunately, computing forest-accessibility distance requires matrix inversions, a very
costly operation which can quickly become infeasible, when data sets grow too
large.

Several authors (e.g., [50, 37]) have also introduced and made use of a hybrid
distance that combines both shortest path and random walk distance, known as
“randomized shortest path” (RSP). In fact, Kivimäki et al. [32] not only reported
good clustering results with the use of RSP, they also offered an efficient computa-
tion technique for it. As well, these same authors found “free energy distance” (FE)
to offer a good reflection of graph structure. Sommer et al. [47] compared a total of
five distances, including RSP and FE, in the context of graph clustering, and came
to similar conclusions. In this discussion of RSP and FE, it must be highlighted
that to obtain these quantities, it is also necessary to perform matrix inversions.

Another approach to vertex distances and graph geometry more generally, hy-
perbolic network geometry, was proposed byKrioukov et al. [33] and also discussed
more recently by Boguñá et al. [7]. It consists of embedding graphs into hyperbolic
space. Although it allows a latent-space view of the graph, this method is not
immediately or easily applicable without significant further work.

Yet another distance measure was introduced by Estrada [15]. The author
begins by introducing the concept of “communicability” between nodes, a concept
rooted in random walks. Its computation requires the eigendecomposition of the
adjacency matrix. He then goes on to derive “communicability distance”, a metric.

The common challenge posed by these alternatives to shortest path distance is
the difficulty of applying them to larger graphs. As mentioned earlier, to obtain RSP
and FE, it is necessary to perform matrix inversions. To obtain communicability,
it is necessary to obtain the eigendecomposition of the adjacency matrix. Neither
of these matrix operations are easily scaled to large data sets. In today’s context
of “big data”, very large-scale graphs are not just hypothetical (e.g., [34]), which
makes computational overhead a fundamental topic. A more detailed discussion of
computation is included in Section 5.

Meanwhile, Fouss et al. [22] also compared several distances in the context of
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semi-supervised learning and recommenders. While they reported good resultswith
regularized commute-time, Markov diffusion and regularized Laplacian kernels,
computing any of these distances also requires several matrix-based operations.

Fortunately, some long-standing techniques borrowed from other areas of sci-
ence seem to capture vertex similarity and seem better suited to large data sets due to
their lower computational overhead. Burt’s distance [8], borrowed from sociology
and Jaccard distance [30], borrowed from botany, have both been suggested as valid
measures of vertex similarity [46, 19, 9]. Otsuka-Ochiai distance [42], borrowed
from zoology, can be understood as a set-theoretic analogue of cosine distance. The
operations involved in its computation are similar to those of Jaccard. A more in
depth description of these distances and their computation is provided in Sections 4
and 5.

Finally, commute (resistance) distance also seems to capture community struc-
ture. In fact, this distance, with roots in both probability theory and electrical
engineering, is ubiquitous in graph theory (e.g., [10]). However, it should be noted
that commute distance becomes inaccurate in the case of large graphs, which is
why some authors have suggested amplified commute distance instead [48, 49, 43].
Unfortunately, its computation, as in the cases of RSP, FE, communicability and the
kernels compared by Fouss et al. [22], is not well-suited to large graphs. We include
its examination in our experiments because of its importance in graph theory and
to highlight the computational advantage of the other distances we study.

3 Defining Distance

Clusters are sets of items which can be considered similar in some way. This
similarity is represented by shorter distances. In the case of graphs, this similarity
is captured by the number of shared neighbors. Consequently, in such a model,
vertices sharing a large number of neighbors should also be separated by smaller
distances than vertices sharing fewer connections. Accordingly, distance measures
similarity (overlap) in neighborhoods, not shortest path distance. For example, two
adjacent vertices with high degrees that do not share any neighbors have a shortest
path distance of one, but are dissimilar on the basis of their connectivity. At the
cluster level, shorter mean intra-cluster distances are indicative of more densely
connected vertices.

Figure 1 shows an instance of a graph that is arguably composed of two clusters,
one containing vertices v1, . . . , v4 (in blue) and one containing vertices v5, v6, v7
(in red). We observe that each cluster forms a dense induced subgraph. Most
notably, we also see that the shortest-path distance separating vertices v1 and v3
(i.e., d(1, 3) = 2, two blue edges) is greater than the distance separating v1 and v5
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Figure 1: Graph with two clusters

(i.e., d(1, 5) = 1, single green edge). Nevertheless, in the context of clustering, we
argue that v3 is closer, more similar, to v1 than to v5. As mentioned earlier, this
similarity or closeness is measured by the number of shared neighbors. Vertices v1
and v3 share two neighbors, while vertices v1 and v5 have no common neighbors.

4 Distance Measurements Under Study

We compare four different distance measurements from the literature and examine
how consistently they reflect connectivity patterns. Under our definition of distance,
mean node to node distance within a cluster should consistently vary in step with
intra-cluster density, but move in an opposite direction. Densely connected clusters
should display low mean node to node distances.

We then examine the relationship between mean Jaccard [30], Otsuka-Ochiai
[42], Burt’s [8, 19] and amplified commute [48] distances, on one hand, and intra-
cluster density, on the other. Because these distances are pairwise measures, we
compare their mean value for a given cluster to the cluster’s internal density.
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4.1 Burt’s Distance

Burt’s distance (Burt) between two vertices i and j, denoted as bij , is computed
using the adjacency matrix (A):

bij =

√∑
h6=i,j

(Aih −Ajh)2 .

At the cluster level, we denote the mean Burt distance as B. For an arbitrary
cluster k with nk vertices, it is expressed as

Bk =
1

0.5× nk × (nk − 1)

∑
i,j=i+1

bij .

4.2 Jaccard Distance

For unweighted graphs, the Jaccard distance (Jacc) separating two vertices i and j
is defined as

ζij = 1− |ai ∩ aj |
|ai ∪ aj |︸ ︷︷ ︸

sij

∈ [0, 1] .

Here, ai (aj) represents the set of all vertices with which vertex i (j) shares an
edge. The ratio sij is the well known Jaccard similarity. The Jaccard distance (ζij)
is its complement.

In the weighted case, the numerator |ai ∩ aj | is replaced by

N∑
h=1

min{eih, ejh} .

The denominator is replaced by

N∑
h=1

max{eih, ejh} .

For both quantities, N denotes the total number of vertices (N = |E|) and eih the
weight of the edge between nodes i and h.

At the cluster level, we compute themean distance separating all pairs of vertices
within the cluster, which we denote as J . Here too, for an arbitrary cluster ‘k’ with
nk vertices, we have

Jk =
1

0.5× nk × (nk − 1)

∑
i,j=i+1

ζij .
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4.2.1 Probabilistic and Statistical Interpretation of the Jaccard Distance

We begin by noting that Jaccard distance has a clear intuitive interpretation. It is
the complement of Jaccard similarity (sij). In the context of graph node pairs, the
quantity sij is the amount of shared connections expressed as a fraction of the total
number of connections of both nodes forming the pair.

For unweighted graphs, the expected value of the ratio sij can also be understood
to be a function of edge probabilities. The quantity ζij is the complement of this
expected value. In the weighed case (non-negative weights), the ratio sij represents
the proportion of edge weight (degree) that connects shared neighbors. Again, the
quantity ζij is the complement of this proportion.

Von Luxburg et al. [48] identified the breakdown in commute distance that
occurs in the case of larger graphs. They identified the problem of loss of inter-
pretability and even noted its occurrence in graphs with as little as 1,000 nodes.
Fortunately, Jaccard distance does not suffer from this limitation, although it can
also be affected by graph sizes in some cases. Empirically, we observe that it
remains interpretable with much larger graphs. The ones in our tests have 3,400
vertices.

Large graph behavior of the Jaccard distance can also be analyzed more closely,
by assuming a very simple probabilistic model, without loss of generality. Indeed,
the phenomena we observe under this simple model would also hold under more
complex edge-generation models as well. For clarity, we focus on the Jaccard
similarity portion (sij) and unweighted graphs. Our conclusions apply equally to
weighted graphs.

Let’s begin with a recall of the following definition:

ζij = 1− |ai ∩ aj |
|ai ∪ aj |︸ ︷︷ ︸

sij

.

We then define the following model:

• Let 1ik be an indicator function that takes the value of 1 if i is connected to
a node k ( 6= i), among the remaining N − 1 vertices (1ik = 0, if i = k, by
definition);

• Here again, N = |V | denotes the total number of nodes in the graph.

Under thismodelwe can express the expected value of node-node similarity,E (sij),
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as

E (sij) = E

(
|ai ∩ aj |
|ai ∪ aj |

)
= E

( ∑
k (1ik × 1jk)∑

k (1ik + 1jk − 1ik × 1jk)

)
.

As a verification, we observe that under the G(n, p) Erdős-Rényi model all
distances are equal in expectation, E (1ik) = E (1jk) = p, ∀i, k 6= i,∀j, k 6= j.
Under this model, edge probabilities are all equal to the fixed generative model
edge probability parameter, p. So we obtain uniform similarities (and distances)
between all node pairs:

E (sij) ≈
p

2− p
⇒ E (ζij) ≈ 1− p

2− p
∀i, j .

This modeling exercise highlights a scale-based effect in Jaccard distance.
We observe that, in cases where E(1ik) >> E(1jk) (∀i, k 6= i,∀j, k 6= j), the
denominator of the ratio sij increases at a much higher rate than the numerator,
pushing the pairwise similarity sij to zero and, consequently, distance ζij to one.
While this convergence to one is completely intuitive and reflective of disparate
connectivity patterns, it is amplified by graph sizes. Fortunately, however, nodes
belonging to the same cluster are expected to have E(1ik) ≈ E(1jk) (∀i, k 6=
i,∀j, k 6= j). In summary, it should be noted that pairwise distances are not
comparable across graphs, they are idiosyncratic to the graph to which they belong.
Also, very large distances, even within the same graph, may be difficult to interpret
and compare.

4.3 Otsuka-Ochiai Distance

Otsuka-Ochiai distance (OtOc) can be interpreted as the extension of cosine distance
to the discrete case. In the case of unweighted graphs, the distance separating two
vertices i and j is defined as (the ratio’s numerator is the same as the Jaccard
distance’s)

oij = 1− |ai ∩ aj |√
|ai| × |aj |

∈ [0, 1] .

In the weighted case, the numerator is modified in the same way as in the case
of the Jaccard distance. In the denominator, the quantities |ai| are replaced by the
weighted degree:

|ai| =
N∑

h=1

wih .

12



Here too, we obtain a cluster level measure of similarity by taking the mean
over each pair of nodes within a cluster. We denote this mean as O. Again, for an
arbitrary cluster ‘k’ with nk vertices, we have

Ok =
1

0.5× nk × (nk − 1)

∑
i,j=i+1

oij .

4.4 Amplified Commute Distance

Von Luxburg et al. [48] describe commute distance between two vertices as “the
expected time it takes a random walk to travel from the first to the second vertex
and back”. Unfortunately, it has been shown to be inaccurate in the case of larger
graphs [48, 49]. Amplified commute distance is a correction that seeks to address
its known shortcomings [48, 43].

The amplified commute distance between two vertices i and j, denoted as aij ,
is computed as

aij = Sij + uij

where,

Sij = Rij −
1

di
− 1

dj
,

Rij = Γ+
iiΓ

+
jj − 2Γ+

ij ,

Γ = L+
1

|V |
111

uij =
2wij

didj
− wii

d2i
− wjj

d2j
.

In the equations above,

• di is the degree of vertex i,

• Γ+ is the Moore-Penrose inverse of the matrix Γ,

• Γ+
ij is the element at the intersection of the i-th row and j-th column in the

Moore-Penrose inverse of Γ,

• L is the graph’s Laplacian matrix,

• 111 is a |V | × |V | matrix of ones and

• wij is the weight of the edge connecting nodes i and j (∈ {0, 1} in the
unweighted case).
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The cluster-level figure is denoted by A. As with the other distances, for an
arbitrary cluster k with nk vertices, it is computed as

Ak =
1

0.5× nk × (nk − 1)

∑
i,j=i+1

aij .

4.4.1 Other Interpretations of the (Amplified) Commute Distance

As mentioned earlier, amplified commute distance is a recently introduced cor-
rection to the well-known commute distance. Commute distance has roots in
Markovian processes and the study of electrical flows. It is the sum of two hitting
times,Hij +Hji. This sum corresponds to the expected time for a random walk to
travel from vertex i to vertex j (Hij) and return to its starting point i (Hji).

Commute distance is also equal (to a constant) to the resistance distance between
two nodes. It can be expressed as Cij = vol(G)Ωij , where Ωij represents the
resistance distance between nodes i and j and vol(G) is the volume of the graph
containing these nodes.

Amplified commute distance is a first-order correction. It reduces the domi-
nance of the local effect of node degrees on the pairwise distance and provides a
more macroscopic measure. Indeed, von Luxburg et al. [48] have shown that, in
larger graphs (|V | > ∼ 1, 000), commute distance Cij is dominated by each nodes’
degree.

4.4.2 Observed Degeneracies

In our initial experiments with amplified commute distance, we noted instances of
counter-intuitive results. It appears amplified commute distance breaks down in at
least one case, the case of path graphs.

5 Computational Complexity

As mentioned earlier, our comparison is also based on an examination of the
computational cost of each of the distances under study. Typically, graphs of
interest tend to be composed of a very large number of vertices. In addition, most
graph clustering formulations are known to be NP-hard. For these reasons, if we
hope to use a vertex to vertex distance in conjunction with an already costly distance
minimization routine, it must be easy to compute. In our analysis, we make the
simplifying assumptions that all arithmetic operations have constant (unit) cost and
look-ups have a cost of zero. Given that we are only interested in comparing time
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complexity as a function of graph size (number of vertices), these assumptions are
justified.

The most important element of this assessment is that all four of our distances
have the same asymptotic (big-O) upper bound of O(N3). Although in theory
computing any of these distances falls into the same complexity class, their true
computational costs vary greatly.

In the cases of Burt, Otsuka-Ochiai and Jaccard distances all computations are
pairwise computations that can be parallelized or processed in increments. They do
not require the storage of the entire adjacency or Laplacian matrix in memory or any
costly computations, like inversion or eigendecomposition. Distances between each
pair of vertices are computed independently by performing elementary arithmetic on
the elements of a pair of rows (columns) of the adjacency matrix. This computation
can be further broken down by using only portions of these rows (columns) and
proceeding iteratively until the entirety of the rows (columns) has been processed.
To speed computation this entire process can also very easily be parallelized.

In contrast, the bulk of the cost in computing amplified commute distance does
not come from pair-wise computations but from computations requiring the entire
graph (inverting Γ). This computational challenge is akin to the costs of computing
RSP, FE or communicability distance.

5.1 Burt’s Distance

For each vertex pair, we must compute N − 2 subtractions, N − 2 additions,
take the power of two and then the square root. Under our assumptions, the total
computational cost is 2(N − 2) + 2 = 2N − 2.

At the graph level, we have 0.5×N (N − 1) distances to compute. Therefore,
the total computational cost to convert an adjacency matrix into an all-pairs Burt’s
distance matrix is O(N3):

1

2
N(N − 1)(2N − 2) = N3 − 4N2 + 2N .

5.2 Jaccard Distance

The numerator of the Jaccard distance, |ai ∩ aj | or
∑N

h=1 min{eih, ejh} in the
weighted case requires N comparisons and N additions, for a total of 2N op-
erations. Similarly, the denominator, |ai ∪ aj | or

∑
k max{eih, ejh} requires N

comparison andN additions. Combining those two computations, taking their ratio
and subtracting it from 1, we obtain a total cost of 2N + 2N + 2 = 4N + 2 for
each pair. At the graph level, the total computational cost to convert an adjacency

15



matrix into an all-pairs Jaccard distance matrix is also O(N3), since

1

2
N(N − 1)(4N + 2) = 2N3 −N2 −N .

5.3 Otsuka-Ochiai Distance

The numerator of theOtsuka-Ochiai distance is the same as in the Jaccard distance’s.
It requires 2N operations. The denominator,

√
|ai| × |aj | or

√∑
hwih ×

∑
hwjh,

carries a cost of N +N + 2.
Adding the two costs plus the cost of taking the ratio and subtracting it from

1, we obtain a total cost per vertex pair of 4N + 4. At the graph level, the total
computational cost to convert an adjacency matrix into an all-pairs Otsuka-Ochiai
distance matrix is, once again, O(N3):

1

2
N(N − 1)(4N + 4) = 2N3 − 2N .

5.4 Amplified Commute Distance

Although it is not immediately apparent when examining theworst-case complexity,
amplified commute distance is by far the most costly to compute. To obtain it, we
must first obtain the Laplacian, which requires N(N − 1) +N2 operations. Then,
to obtain the matrix Γ, we must perform N2 + (N2 + 1) operations. We must
add to that the cost of obtaining the Moore-Penrose inverse, which requiresO(N3)
operations. These operations require the entire graph or Laplacian. Unlike with the
other distances, the large bulk of the computational cost does not come from easily
parallelizable node or node-pair operations.

Finally, for each pair of vertices, we must perform 17 additional arthimetic
operations. The total computational cost to obtain all-pairs amplified commute
distances is, here too, O(N3):

17×1

2
N(N−1)+N3+N2+(N2+1)+N(N−1)+N2 = N3+

25

2
N2−19

2
N+1 .

6 Numerical Comparisons

To compare the distance measures and assess the accuracy of each measure as a
reflection of intra-cluster density, we generate synthetic graphs with known cluster
membership, using the Python NetworkX library’s [28] stochastic block model
generator. In our experiments, we generate several graphs with varying graph and
cluster sizes and inter and intra-cluster edge probabilities.
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While the stochastic block model may, arguably, be described as simplistic or
not reflective of complex networks, our goal is to examine the effect of intra-cluster
edge probability (mean intra-cluster density) on mean intra-cluster distances. The
stochastic block model provides an excellent tool to study this relationship.

For each test graph in the experiments below, we compute each of our four
vertex to vertex distances, for every pair of vertices (generically denoted as dij).
We then compute mean distances within each cluster k:

D̄k =
1

0.5× nk × (nk − 1)

∑
i,j

dij .

We also compute intra-cluster density for each cluster, as shown in Section 1.
To obtain a graph-wide assessment, we then take the mean of all cluster quan-

tities (distances and densities) over the entire graph:

D̄ =
1

K

∑
k

D̄k and

K̄intra =
1

K

∑
k

K(k)
intra .

Although our clusters vary in size, we ensure our conclusions are not skewed
by disproportionately-sized clusters. As shown, both D̄ and K̄intra are simple
unweighted means. They remain unaffected by individual cluster sizes.

6.1 Test Data: Synthetic Graphs with Known Clusters

We use the stochastic block model to generate two sets of 18 graphs. For each
graph, we vary the probability of an intra-cluster (Pin) and inter-cluster (Pout) edge.
Details are shown in Table 1.

In the first set of 18 experiments, the graphs are unweighted. In the second
set of experiments, the graphs have the same characteristics but their edges are
weighted. Edges within clusters have a weight corresponding to the intra-cluster
edge probability, while edges across clusters carry a weight equal to the inter-cluster
edge probability.

Although our cluster sizes vary within the graph, they are kept constant in each
graph. Clusters c1, . . . , cK in graphs G1, . . . , G18 all have n1, . . . , nK nodes. All
our graphs have N = 3, 400 nodes, K = 45 clusters which contain nk ∈ [50, 88]
nodes.
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Table 1: Graph Characteristics
Graph Pin Pout
G1 0 0
G2 0.2 0
G3 0.4 0
G4 0.6 0
G5 0.8 0
G6 1 0
G7 0 0.1
G8 0.2 0.1
G9 0.4 0.1
G10 0.6 0.1
G11 0.8 0.1
G12 1 0.1
G13 0 0.2
G14 0.2 0.2
G15 0.4 0.2
G16 0.6 0.2
G17 0.8 0.2
G18 1 0.2
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Table 2: Burt unweighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 4.82 24.94 32.97
0.4 5.91 25.17 33.14
0.6 5.91 25.17 33.14
0.8 4.82 24.93 32.96
1 0.00 24.46 32.61

Table 3: Jaccard unweighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.89 0.95 0.89
0.4 0.75 0.93 0.88
0.6 0.58 0.91 0.87
0.8 0.35 0.89 0.86
1 0.03 0.85 0.84

6.2 Variations in Density and Distances

As mentioned earlier, we conduct several experiments with varying inter and intra-
cluster edge probabilities. Naturally, these variations are directly reflected in the
mean inter and intra-cluster densities. After all, these densities are an empirical
estimate of (inter/intra-cluster) edge probabilities.

We immediately note that Jaccard, Otsuka-Ochiai and amplified commute dis-
tances offer a good reflection of intra-cluster density and that their change under
variations in intra-cluster edge probability are in reverse lock-step with intra-cluster
density. Under all scenarios, these (mean) distances decrease monotonically, as we
increase intra-cluster edge probability (Pin) while keeping inter-cluster edge proba-
bility (Pout) constant. However, it must also be mentioned that amplified commute
distance is on a very different scale than the other two distances. Finally, we ob-
serve that Burt’s distance offers a very poor reflection of intra-cluster density. In
fact, Burt’s distance even increases with intra-cluster edge probability, under some
scenarios. These results are consistent with our previous work [39], in which we
also investigate the counter-intuitive behavior of Burt’s distance.

A visual summary is presented in Figures 2 and 3. Results for unweighted
graphs are shown in the plots on the left. Weighted graph results appear on the
right. Full numerical details are shown in Tables 2 to 5 for unweighted graphs and
in Tables 6 to 9 for weighted ones.
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Figure 2: Distance variations, Burt and Jaccard (unweighted on left, weighted on
right)
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Figure 3: Distance variations, OtOc and Amplified commute (unweighted on left,
weighted on right)
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Table 4: OtOc unweighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.80 0.90 0.80
0.4 0.60 0.88 0.79
0.6 0.41 0.84 0.78
0.8 0.21 0.80 0.75
1 0.01 0.74 0.72

Table 5: Amplified commute unweighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 9.58E-03 1.49E-05 3.48E-06
0.4 1.58E-03 1.34E-05 3.29E-06
0.6 4.59E-04 1.19E-05 3.09E-06
0.8 1.33E-04 1.03E-05 2.87E-06
1 5.85E-06 8.89E-06 2.64E-06

Table 6: Burt weighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.83 2.59 6.59
0.4 2.04 3.19 6.85
0.6 3.05 3.92 7.22
0.8 3.32 4.13 7.34
1 0.00 2.45 6.54

Table 7: Jaccard weighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.99 1.00 0.99
0.4 0.93 0.98 0.99
0.6 0.81 0.91 0.96
0.8 0.56 0.73 0.88
1 0.04 0.34 0.69
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Table 8: OtOc weighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.96 0.99 0.96
0.4 0.84 0.96 0.95
0.6 0.65 0.86 0.92
0.8 0.37 0.67 0.84
1 0.02 0.39 0.69

Table 9: Amplified commute weighted
Pin Pout = 0 Pout = 0.1 Pout = 0.2
0.2 0.899 0.051 0.012
0.4 0.147 0.042 0.011
0.6 0.042 0.032 0.010
0.8 0.012 0.024 0.009
1 0.000 0.017 0.008

6.3 Relative Variations and Inter-cluster Edge Probabilities

In order to compare all distances on an equal footing, regardless of their scale,
we compute their relative variations under the effect of increases in intra-cluster
and inter-cluster edge probabilities. These relative variations (δ) are computed as
follows:

δ =
dist after increase− dist before increase

dist before increase
.

In columns two, three and four of Table 10 and Table 11, we show the variations
in distance as a percentage of its value in the previous example. For example, the
first set of percentages are the variations of each quantity (Kintra, Burt,...) observed
when Pin is increased from 0.2 to 0.4, expressed as a percentage of those same
quantities when Pin was 0.2.

The last column (“Inter-cluster Effect”) contains the change in each quantity
when Pout is doubled, when it is increased from 0.1 to 0.2, for an equal level of Pin.
Again, this variation is expressed as a percentage of the same quantity when Pout
is 0.1. These percentages quantify the effect of added noise (higher inter-cluster
probability) on each distance and on our estimate of intra-cluster density (Kintra).

Predictably, we observe that noise has a negligible effect on intra-cluster den-
sities (K̄intra) and that variations are probably due to the random edge generation
process. On the other hand, noise seems to have a non-trivial effect on the dis-
tances. Thankfully, graphs that are clusterable, those displaying strong community
structure, are also typically expected to be sparse and have few inter-cluster edges.
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Table 10: Unweighted Graphs
Pout Inter-cluster Effect

Mean 0 0.1 0.2 (Pout0.1→ 0.2)
Pin0.2→ 0.4

K̄intra 100.53% 100.75% 98.69% -2.04%
Burt 22.63% 0.94% 0.53% -43.61%
Jacc -15.50% -1.20% -0.59% -50.54%
OtOc -24.85% -2.25% -1.06% -52.73%
Amplified -83.53% -10.37% -5.37% -48.16%

Pin0.4→ 0.6
K̄intra 49.16% 50.02% 49.57% -0.90%
Burt -0.13% 0.00% 0.00% 30.98%
Jacc -23.02% -2.12% -1.16% -45.08%
OtOc -32.41% -3.89% -2.06% -47.02%
Amplified -70.92% -11.54% -6.23% -46.00%

Pin0.6→ 0.8
K̄intra 33.06% 33.42% 33.30% -0.34%
Burt -18.41% -0.94% -0.54% -42.81%
Jacc -39.71% -3.09% -1.75% -43.25%
OtOc -48.10% -5.53% -3.07% -44.58%
Amplified -71.03% -12.76% -7.13% -44.17%

Pin0.8→ 1
K̄intra 25.05% 24.76% 24.92% 0.65%
Burt -100.00% -1.90% -1.08% -42.94%
Jacc -92.16% -4.13% -2.37% -42.59%
OtOc -93.46% -7.17% -4.08% -43.09%
Amplified -95.60% -13.98% -8.02% -42.66%
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Table 11: Weighted Graphs
Pout Noise Effect

Mean 0 0.1 0.2 (Pout0.1→ 0.2)
Pin0.2→ 0.4

K̄intra 300.70% 300.64% 298.99% -0.55%
Burt 145.44% 23.25% 4.00% -82.81%
Jacc -5.39% -1.70% -0.44% -74.14%
OtOc -12.30% -2.89% -0.77% -73.30%
Amplified -83.63% -17.43% -5.65% -67.60%

Pin0.4→ 0.6
K̄intra 123.71% 126.95% 124.57% -1.87%
Burt 49.79% 22.85% 5.36% -76.54%
Jacc -13.16% -7.05% -2.45% -65.31%
OtOc -23.21% -10.17% -3.52% -65.41%
Amplified -71.30% -23.04% -8.55% -62.89%

Pin0.6→ 0.8
K̄intra 77.31% 77.78% 78.05% 0.35%
Burt 8.80% 5.34% 1.62% -69.76%
Jacc -31.20% -19.34% -7.97% -58.82%
OtOc -42.30% -21.77% -8.97% -58.79%
Amplified -72.35% -25.95% -11.66% -55.05%

Pin0.8→ 1
K̄intra 56.46% 56.35% 56.21% -0.25%
Burt -100.00% -40.63% -10.89% -73.20%
Jacc -93.41% -53.49% -21.95% -58.96%
OtOc -94.99% -42.41% -18.13% -57.25%
Amplified -99.87% -26.73% -13.47% -49.59%
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Table 12: Zachary Karate Club
Mean Distance

Amp Burt Jacc OtOc

D
at
a All 0.18 2.50 0.85 0.76

Across 0.24 2.75 0.94 0.90
Within 0.11 2.24 0.75 0.61

Nevertheless, precautions should be taken when using any distance in a clustering
algorithm, especially when the graph under consideration is dense.

6.4 Illustrative Case Studies: Zachary’s Karate Club and US College
Football

Although our numerical tests using synthetic graphs were designed to show the
relationship between density and distance, we find it useful to illustrate, interpret and
validate our distances using real-world networks with known community (cluster)
structures. We compute our distances for the node pairs of two famous graph data
sets with known community labels for each node, Zachary’s karate club [51] and
the United States College Football Division IA games for the 2000 season [24]. We
then examine the mean distances separating nodes sharing the same community
(cluster) labeling and those separating nodes in different clusters.

The first network is a representation of the friendship links (edges) between
members (nodes) of a karate club which dissolved due to a conflict between the
instructor and the club’s administrator. The club then gave rise to twonew (sub)clubs
named “Mr. Hi” and “John A” (also sometimes labeled as “Officer”). These two
new (sub)clubs are considered node communities (clusters) and are often used as
“ground truth” in tests of clustering algorithms.

We use a version of the Zachary data set generated with the NetworkX library
[28]. Using this graph data set and its node-cluster membership labeling, we
compute the mean distances between members of the same (sub)clubs, between
members of the two different (sub)clubs and the overall mean between all nodes of
the graph. Results are reported in Table 12.

In Table 12, we clearly note that distances are greatest for nodes in different
(sub)clubs (Across) and that they are lowest for nodes in the same (sub)clubs
(Within). Naturally, the mean distance between all nodes (All), regardless of
their (sub)club membership, is in between these two extremes. These results are
consistent with our own earlier observations and with previous investigations into
this data set in the literature. They reflect the fact that members of the original
club tended to regroup into the new (sub)clubs formed along friendship lines. Our
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Table 13: Division IA College Football Games
Mean Distances

Amp Burt Jacc OtOc

D
at
a All 0.04 4.37 0.95 0.91

Across 0.04 4.45 0.97 0.94
Within 0.01 3.09 0.69 0.55

computations show that nodes within each of the two new (sub)clubs share a greater
number of connections (friendships) and are separated by shorter distances, than
nodes in the other (sub)club.

The second data set, the United States College Football Division IA games
for the 2000 season is a network representation of the regular season encounters
between 115 college football teams. These teams are represented by vertices and
grouped into 12 conferences (clusters). Edges connect teams that faced each other
at least once during the regular season. Teams within a conference all face each
other during regular season, while they do not necessarily face teams outside their
conference during the regular season. Therefore, there are more shared connections
between teams of the same conference than between teams in different conferences.

We perform the same computations as in the case of the Zachary data set, using
the football data set. We compute the mean distances separating teams within
the same conference, in different conferences and between all nodes on the graph.
Results are reported in Table 13. Here again, we note that nodes within clusters
(teams within conferences) are separated by noticeably shorter distances than nodes
in different clusters (conferences).

7 Our Chosen Distance

While our tests on real-world benchmark graphs in Section 6.4 show that all dis-
tances capture the community structure of the data, the remainder of our compu-
tational results in Section 6 reveal that Burt distance is an unreliable gauge of it.
This conclusion is also consistent with our prior work [39]. Meanwhile, Jaccard,
Otsuka-Ochiai and amplified distances all offer adequate reflections of intra-cluster
density. Clustering by minimizing any one should result in dense clusters. How-
ever, in practice, amplified commute distance is more costly to compute than the
other two distances.

Jaccard similarity and its complement, the Jaccard distance, are used widely
in a variety of different fields, including complex networks [9]. Because of this
widespread use, clear interpretability and availability of pre-built computational
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functions, we recommend the Jaccard distance as a vertex to vertex distancemeasure
for graph clustering. For example, the NetworkX library offers a Jaccard similarity
function, which we use in this work [28].

8 Conclusion

We show that Jaccard, Otsuka-Ochiai and amplified commute distances, when av-
eraged over clusters, follow the evolution of intra-cluster density monotonically.
They are all shown to vary in an opposite direction to intra-cluster density. How-
ever, amplified commute distance, unlike the other two distances, cannot easily be
decomposed into pairwise computations. Meanwhile, Burt’s distance displays a
very counter-intuitive behavior with respect to edge probability and intra-cluster
density variations.

Unfortunately, Jaccard, Otsuka-Ochiai and amplified commute distances all
seem to be sensitive to noise. Our future work will focus on a study of Jaccard and
Otsuka-Ochiai distances under the effect of noise and on larger scale graphs. We
will also investigate possible corrections that could render them more robust.

List of Abbreviations

N : total number of vertices in the entire graph
nk: number of vertices in cluster k
V : set of all vertices in the graph
|V |: cardinality of the set V (same as N )
K: number of (vertex) clusters in the graph
K: graph’s overall density
K(k)

intra: intra-cluster density in cluster k, density of the induced subgraph formed by
the vertices in cluster k
ek: set of edges connecting nodes in cluster k
|ek|: cardinality of the set ek
Burt: Burt’s distance
Jacc: Jaccard distance
OtOc: Otsuka-Ochiai distance
amp: Amplified commute distance
Gi: graph i, where i ∈ {1, . . . , 18}
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