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Abstract 50 
 51 
Background: Cardiovascular magnetic resonance (CMR) radiomics analysis provides 52 
multiple quantifiers of ventricular shape and myocardial texture, which may be used for 53 
detailed cardiovascular phenotyping. 54 
 55 
Objectives: We studied variation in CMR radiomics phenotypes by age and sex in healthy 56 
UK Biobank participants. Then, we examined independent associations of classical vascular 57 
risk factors (VRFs: smoking, diabetes, hypertension, high cholesterol) with CMR radiomics 58 
features, considering potential sex and age differential relationships. 59 
 60 
Design: Image acquisition was with 1.5 Tesla scanners (MAGNETOM Aera, Siemens). 61 
Three regions of interest were segmented from short axis stack images using an automated 62 
pipeline: right ventricle, left ventricle, myocardium. We extracted 237 radiomics features 63 
from each study using Pyradiomics. In a healthy subset of participants (n=14,902) without 64 
cardiovascular disease or VRFs, we estimated independent associations of age and sex with 65 
each radiomics feature using linear regression models adjusted for body size. We then created 66 
a sample comprising individuals with at least one VRF matched to an equal number of 67 
healthy participants (n=27,400). We linearly modelled each radiomics feature against age, 68 
sex, body size, and all the VRFs. Bonferroni adjustment for multiple testing was applied to 69 
all p-values. To aid interpretation, we organised the results into six feature clusters. 70 
 71 
Results: Amongst the healthy subset, men had larger ventricles with dimmer and less 72 
texturally complex myocardium than women. Increasing age was associated with smaller 73 
ventricles and greater variation in myocardial intensities. Broadly, all the VRFs were 74 
associated with dimmer, less varied signal intensities, greater uniformity of local intensity 75 
levels, and greater relative presence of low signal intensity areas within the myocardium. 76 
Diabetes and high cholesterol were also associated with smaller ventricular size, this 77 
association was of greater magnitude in men than women. The pattern of alteration of 78 
radiomics features with the VRFs was broadly consistent in men and women. However, the 79 
associations between intensity based radiomics features with both diabetes and hypertension 80 
were more prominent in women than men. 81 
 82 
Conclusions: We demonstrate novel independent associations of sex, age, and major VRFs 83 
with CMR radiomics phenotypes. Further studies into the nature and clinical significance of 84 
these phenotypes are needed. 85 
 86 
Keywords: cardiovascular magnetic resonance, radiomics, vascular risk factors, diabetes, 87 
hypertension, high cholesterol, smoking, sex, age.  88 
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Introduction 89 
Epidemiologic studies highlight cigarette smoking, high blood pressure, and high cholesterol 90 
as major modifiable risk factors for cardiovascular disease(1,2). The association of these risk 91 
factors with incident cardiovascular events has been widely reported in multiple settings and 92 
their modification linked to substantial reductions in cardiovascular mortality(2). 93 
 94 
There are important heterogeneities in cardiovascular disease patterns and clinical outcomes 95 
between men and women(3,4). These differences may be partly explained by differential 96 
biological consequences of vascular risk factors(5,6). Existing studies using cardiovascular 97 
magnetic resonance (CMR) have demonstrated distinct patterns of cardiovascular 98 
remodelling associated with classical vascular risk factors(7). Examining the potential sex 99 
differential impact of risk factors on cardiovascular phenotypes may provide insights into 100 
differences in cardiovascular disease patterns between men and women. However, this has 101 
not been addressed in existing work. 102 
 103 
The application of radiomics analysis to CMR images allows extraction of multiple indices of 104 
ventricular shape and myocardial texture(8). Previous work has demonstrated the feasibility 105 
of CMR radiomics models for discrimination of health from disease(9–12), including 106 
distinction of vascular risk factors(13). These studies have focused on development of 107 
machine learning models optimised for disease discrimination using CMR radiomics features 108 
as input variables. CMR radiomics analysis may also be used for detailed cardiovascular 109 
phenotyping, with the potential to provide novel insights into disease processes. However, the 110 
approach of existing work does not allow granular evaluation of independent associations of 111 
CMR radiomics features with individual risk factors. 112 
 113 
In this study, we demonstrate the utility of CMR radiomics analysis as a tool for detailed 114 
cardiovascular phenotyping. We characterise independent associations of sex, age, and key 115 
vascular risk factors with cardiovascular radiomics phenotypes and explore potential sex and 116 
age differential relationships.  117 
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Methods 118 
Setting and study population 119 
The UK Biobank is a very large cohort study comprising detailed characterisation of over 120 
500,000 men and women from rural and urban settings across the UK. Individuals aged 40-121 
69 years-old were identified from National Health Service (NHS) registers and recruited 122 
through postal invitation between 2006-2010. Individuals who were unable to consent or 123 
complete baseline assessment due to illness or discomfort were not included. There was 124 
baseline characterisation of demographics, lifestyle, and medical history of participants as 125 
well as blood sampling for selected biomarkers. The UK Biobank protocol is detailed in a 126 
dedicated document(14). The UK Biobank dataset is linked to routine national data sources 127 
including Hospital Episode Statistics (HES) and death registers, permitting continuous 128 
longitudinal tracking of incident health outcomes for the whole cohort(15). The UK Biobank 129 
imaging study, which includes, amongst other things, detailed CMR scanning, aims to image 130 
a random 20% (n=100,000) subset of the original participants. To date (June 2021), 131 
approximately 50,000 participants have completed the UK Biobank imaging study. 132 
 133 
Background to CMR radiomics 134 
The application of radiomics analysis to CMR images is a novel technique allowing 135 
extraction of quantitative measures of ventricular shape and myocardial texture. Image 136 
segmentations used for conventional image analysis may be used to define regions of interest 137 
for radiomics analysis, which typically include the ventricular cavities and the left ventricular 138 
(LV) myocardium. These segmentations are used to build 3D masks of the defined regions of 139 
interest, from which radiomics features are extracted. There are three categories of radiomics 140 
features: shape, first-order, and texture. The shape features provide advanced geometric 141 
quantification of the region of interest, including volume, axial dimensions, and quantitative 142 
descriptions of the overall shape (e.g., elongation, sphericity, flatness). The first-order and 143 
texture features are derived from analysis of the distribution and pattern of voxel signal 144 
intensity levels in the defined region of interest. The signal intensities in magnetic resonance 145 
images reflect magnetic properties of the underlying tissue, which are in turn influenced by 146 
tissue composition(16). Thus, radiomics signal intensity features applied to the LV 147 
myocardium may provide insight into myocardial tissue characteristics. First-order radiomics 148 
features describe the global distribution of signal intensities in the region of interest using 149 
histogram based statistics such as mean, variation, and skewness. Texture features rely on 150 
higher order statistics to describe local signal intensity patterns. Further details on CMR 151 
radiomics are provided in a dedicated review paper(8). 152 
 153 
CMR image acquisition 154 
The UK Biobank imaging study is performed using uniform pre-defined standard operating 155 
procedures, equipment, and staff training(17). CMR imaging was performed with 1.5 Tesla 156 
scanners (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, 157 
Germany), the acquisition protocol is published elsewhere(18). Cardiac function assessment 158 
comprised three long axis cines (horizontal long axis, vertical long axis, left ventricular 159 
outflow tract sagittal and coronal) and a complete short axis stack covering the left and right 160 
ventricles acquired at one slice per breath hold using balanced steady-state free precession 161 
(bSSFP) sequences. Typical acquisition parameters are as follows: TR/TE = 2.6.1.1 ms, flip 162 
angle 80°, Grappa factor 2, voxel size 1.8 mm × 1.8 mm × 8 mm (6 mm for long axis). The 163 
actual temporal resolution of 32 ms was interpolated to 50 phases per cardiac cycle (~20 164 
ms)(18). With the exception of distortion correction, no signal or image filtering was applied. 165 
 166 
 167 



 6 

CMR image segmentation 168 
The first 5,000 UK Biobank CMR scans were manually segmented using CVI42â post-169 
processing software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada). 170 
The analysis protocol has been previously published(19). In brief, LV endocardial and 171 
epicardial borders were contoured in end-diastole and end-systole in the short axis stack 172 
images. End-diastole was defined as the first phase of the acquisition. End-systole was 173 
selected as the cardiac phase at which the mid-ventricular LV intra-cavity blood pool 174 
appeared smallest by visual inspection. The LV papillary muscles were considered part of the 175 
blood pool (excluded from LV mass). The right ventricular (RV) endocardial borders were 176 
segmented in end-diastole and end-systole. The most basal slice for the LV was included in 177 
the segmentation if at least half of the LV blood pool circumference was surrounded by 178 
myocardium. The pulmonary valve plane was used to define the most basal RV slice, with 179 
volumes below the valve plane considered as part of the RV. This ground truth manual 180 
analysis set, was used to develop a fully automated image analysis pipeline with inbuilt 181 
quality control(20). Details of reproducibility performance of the automated algorithm are 182 
available in dedicated publications(19–21). This pipeline has been propagated to the first 183 
32,068 UK Biobank CMR studies, which, along with their corresponding segmentations, 184 
were available for inclusion in the present study. 185 
 186 
Radiomics feature extraction 187 
The segmentations from the short axis stack, described above, were used to define three 188 
regions of interest for radiomics analysis: RV cavity, LV cavity, LV myocardium. Features 189 
are calculated from 3D volumes of these ROIs. To reduce intensity level variations 190 
attributable to the acquisition process, we performed intensity normalisation of images 191 
through histogram matching, using as reference one of the studies from the dataset(22). For 192 
grey level discretisation, we used a fixed bin width of 25 intensity values. We extracted shape 193 
features from the RV and LV cavity. From the LV myocardium, we extracted signal 194 
intensity-based radiomics features (first order, texture). Radiomics features were extracted 195 
using the PyRadiomics open source platform version 2.2.0(23). Thus, a total of 237 radiomics 196 
features were included in the analysis for each CMR study (LV shape n= 26, RV shape n=26, 197 
LV myocardium first-order n=36, LV myocardium texture n=148). The full list of radiomics 198 
features included in the analysis is presented in Supplementary Table 1. 199 
 200 
Feature clustering 201 
As the number of radiomics was large, to aid interpretation, we grouped inter-correlated 202 
radiomics features using hierarchical cluster analysis (Figure 1)(24). More precisely, features 203 
were clustered using Ward’s algorithm (Ward.D linkage function in R) so that variance is 204 
minimized within clusters with distance measured via Pearson coefficient (1-r)(25). The 205 
clusters were defined using features derived from participants free from cardiovascular 206 
disease and vascular risk factors. The optimal number of clusters was selected via consensus 207 
clustering using the ConsensusClusterPlus v1.50 function in R which allows for calculating 208 
quantitative stability evidence for determining the number and membership of possible 209 
clusters in an unsupervised manner(26). We assessed the curve for the change in the area 210 
under the Consensus Cumulative Distribution Function (CDF) and chose the number of 211 
clusters at which the area under the CDF no longer appreciably increases (the elbow). At six 212 
clusters, the CDF curve levelled off and all but one cluster had high consensus (Table 1, 213 
Figure 1), so we chose six clusters. We then assigned descriptive names to each cluster based 214 
on the properties of its constituent features, as summarised in Table 1. 215 
 216 
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Additionally, we examined correlation of conventional CMR metrics with all the radiomics 217 
features (Figure 1, Panel B). Conventional metrics correlated most strongly with radiomics 218 
features in the “size” cluster; correlation with other radiomics features was weak and 219 
inconsistent. Indicating that although there is some overlap between CMR radiomics features 220 
and conventional metrics, there are also many areas where radiomics features provide 221 
information that is different and uncorrelated to conventional metrics. Notably, LV mass 222 
additionally showed significant correlations with features in the “local variance” and “global 223 
uniformity” clusters. This may reflect dependency of these signal intensity-based features on 224 
ROI size (LV mass reflects the size of the myocardium ROI from which the texture features 225 
are extracted). It is also possible, that these metrics represent myocardial tissue alterations 226 
present in individuals with elevated LV mass (e.g. myocardial fibrosis). 227 
 228 
Definition of the study sample 229 
We first considered variation in radiomics features by sex and age in a healthy subset of 230 
participants. This analysis included participants without cardiovascular disease or vascular 231 
risk factors at time of imaging. For analysis of associations with vascular risk factors, we 232 
considered individuals who had vascular risk factors, but not cardiovascular disease. To 233 
create a balanced analysis sample, individuals with at least one vascular risk factor were 234 
matched on age and sex with participants without vascular risk factors (Supplementary 235 
Figure 1). 236 
 237 
We considered cardiovascular disease as any ischaemic heart disease, non-ischaemic 238 
cardiomyopathy, valvular disease, or significant arrhythmia. These were ascertained from a 239 
combination of self-reported answers at baseline interview, UK Biobank algorithmically 240 
derived outcomes, and linked HES data codes (Supplementary Table 2). The following 241 
vascular risk factors were considered: hypertension, diabetes, high cholesterol, and current 242 
smoking. These were also defined by reference to a combination of self-reported answers, 243 
HES records, and blood biochemistry data (Supplementary Table 3). Age was taken as 244 
recorded at the time of imaging. Sex was taken from self-report at baseline. 245 
 246 
Statistical analysis 247 
Statistical analysis was performed using R version 3.6.222(27). Within the healthy subset, we 248 
estimated the independent associations of sex and age with individual radiomics features 249 
using multivariable linear regression models adjusted for body surface area. We calculated 250 
standardised beta coefficients, 95% confidence intervals, and p-values associated with age 251 
and sex for each radiomics feature. For ease of interpretation, we grouped these results within 252 
the previously defined feature clusters (Table 1). We calculated the average beta coefficient 253 
and confidence intervals for associations in each cluster. The full detail of associations of age 254 
and sex with individual radiomics features is presented in Supplementary Table 4. 255 
 256 
To examine the association of vascular risk factors with radiomics features, we created a 257 
balanced cohort comprising a 1:1 ratio of “risk factor” and “no risk factor” individuals. To 258 
accomplish this, we estimated propensity scores from a logistic glm predicting presence of at 259 
least one risk factor from age and sex. Subjects with at least one risk factor were paired with 260 
their nearest neighbour with no risk factor using the R package matchit 4.1.0(28). Thus, the 261 
analysis sample comprised an equal number of individuals with vascular risk factors and 262 
those without vascular risk factors matched on age and sex. Within this sample, we entered 263 
all the vascular risk factors in a mutually adjusted multivariable linear regression model to 264 
estimate the independent association of each risk factor with individual radiomics features 265 
adjusting for age, sex, and body surface area. As before, we organise these results within the 266 
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previously defined clusters, reporting the average beta coefficient and confidence interval for 267 
each cluster. We present the results for associations of each vascular risk factor with 268 
individual radiomics features in Supplementary Table 5. 269 
 270 
For all associations, we tested for potential differential relationships by sex and age, using 271 
interaction terms in fully adjusted models and explored the nature of any significant 272 
interactions in stratified analyses. We adjusted for multiple testing using a conservative 273 
Bonferroni correction per number of features (p*237). 274 
  275 
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Results 276 
Baseline participant characteristics 277 
CMR data was available for 32,068 UK Biobank participants, comprising 15,443 (48.2%) 278 
men and 16,625 women (51.8%) with average age of 63.3 ± 7.5 years (Table 2). The rates of 279 
diabetes, high cholesterol, hypertension, and smoking were 5.9%, 34.8%, 32.9%, and 3.6% 280 
respectively (Table 2). Ischaemic heart disease was the most common cardiovascular disease 281 
and was observed in 6.0% of participants (Table 2). Overall, there were 3,528 (11.0%) 282 
participants with documented cardiovascular disease (Supplementary Figure 1). 283 
 284 
Exclusion of individuals with cardiovascular disease and vascular risk factors, resulted in a 285 
sample of 14,902 participants, which were considered as the healthy subset. This cohort 286 
comprised 6,095 men and 8,807 women, with mean ages of 61.5 ± 7.6 years and 60.7 ± 7.1 287 
years, respectively (Table 2). The matched cohort comprised 13,700 individuals with at least 288 
one vascular risk factor matched 1:1 on age and sex to healthy participants creating a total 289 
analysis sample of 27,400 participants (Supplementary Figure 1, Table 2) 290 
 291 
Variation of radiomics features by age and sex in the healthy subset 292 
Associations of sex with radiomics features in the healthy subset 293 
We estimated the association of sex with radiomics features in the healthy subset, whilst 294 
adjusting for age and body size. Full details of all linear regression coefficients and p-values 295 
are presented in Supplementary Table 4. For ease of interpretation, we group associations 296 
into previously defined feature clusters and calculate the mean beta coefficient for each 297 
cluster (Table 3, Figure 2). 298 
 299 
There were significant associations between sex and radiomics features across all feature 300 
clusters. Compared to women, men had larger ventricular cavity sizes (“size” cluster, average 301 
beta: 0.58, 95% CI: 0.51, 0.66), with a less spherical overall shape of the ventricles (“shape” 302 
cluster, mean beta: -0.28, 95% CI: -0.36, -0.19), these shape alterations were broadly 303 
consistent for the LV and RV (Supplementary Table 4). There were also distinct differences 304 
in the distribution and patterns of signal intensities of the LV myocardium for men and 305 
women. Men had, on average, lower global signal intensity values (“global intensity” cluster, 306 
mean beta: -0.24, 95% CI: -0.33, -0.16) and less variation in intensity values (“global 307 
variance” cluster, average beta: -0.90, 95% CI: -0.97, -0.84). Furthermore, men showed 308 
enhanced measures of local dimness patterns (“local dimness” cluster, mean beta: 0.19, 95% 309 
CI: 0.02, 0.36) indicating greater relative presence of areas of low signal intensity in the LV 310 
myocardium compared to women. Consistent with this observation, men also had greater 311 
local uniformity of myocardial signal intensities (“local Uniformity” cluster, mean beta: 0.76, 312 
95% CI: 0.68, 0.84), indicating a more homogeneous appearance of myocardial signal 313 
intensity levels. Thus, overall, compared to women men had larger more elongated ventricles 314 
with dimmer and less texturally complex appearance of the LV myocardium intensities. 315 
 316 
Associations of age with radiomics features in the healthy subset 317 
We next considered, the association of age with each radiomics feature whilst adjusting for 318 
sex and body size. We report all linear modelling results in Supplementary Table 4. For ease 319 
of interpretation, we group associations into previously defined feature clusters and calculate 320 
the mean beta coefficient for each cluster (Table 3, Figure 2). Compared to associations 321 
between sex and radiomics features, there were fewer statistically significant associations 322 
with age and, in general, the magnitudes of effects were smaller. 323 
 324 
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As expected, older age was associated with smaller ventricular cavity size (“size” cluster, 325 
average beta: -0.12, 95% CI: -0.14, -0.10). The were no significant alterations of the overall 326 
ventricular shape with aging based on the mean associations within the shape cluster (beta: 327 
0.02, 95% CI: -0.00, 0.05). Examination of individual feature associations revealed 328 
association of increasing age with less spherical LV and more spherical RV shape 329 
(Supplementary Table 4). 330 
 331 
Older age was associated with greater variation in myocardial intensity levels (“global 332 
variance” cluster, mean beta: 0.07, 95% CI: 0.06, 0.09), but without significant alteration in 333 
the average myocardial brightness (“global intensity” cluster, mean beta: 0.02 95% CI: -0.00, 334 
0.05). Corresponding to the increased variance, average local uniformity in textures 335 
decreased with increasing age (“local uniformity” cluster, mean beta: -0.05, 95% CI: -0.07, -336 
0.03) and there was decrease in local dimness patterns (“local dimness” cluster, average beta: 337 
-0.02, 95% CI: -0.05, -0.00). Overall, myocardial signal intensity alterations with age appear 338 
mixed with a broad pattern indicating dimmer hearts in end systole and brighter hearts in end 339 
diastole. 340 
 341 
Sex differential age-related alterations in radiomics features 342 
We tested for potential sex differential age related alterations of radiomics features through 343 
consideration of interaction terms (sex*age) in models additionally adjusted for age, sex, and 344 
body size (Supplementary Table 4, Supplementary Figure 2, Table 3). Overall, aging related 345 
changes in radiomics features appeared consistent for men and women. Relatively few 346 
features show a significant sex-age interaction (n=55, 23%) and most clusters had a mean 347 
interaction effect close to zero (Supplementary Table 4, Supplementary Figure 2). 348 
 349 
To further visualize variation of radiomics features with age in men and women, we plotted 350 
the mean z-scored radiomics value within each cluster stratified by sex across all ages (Figure 351 
3). Overall, age-related changes in radiomics feature clusters were, on average, consistent for 352 
men and women. The local uniformity cluster had the largest number of features with 353 
statistically significant age-sex interactions (n=22). On average, men had higher local 354 
uniformity, which declined with age. Women had lower local uniformity compared to men 355 
with little change in the features within this cluster with aging. 356 
 357 
Variation of radiomics features with vascular risk factors 358 
In the matched cohort (n=27,400), we estimated the independent association of vascular risk 359 
factors with radiomics features in multivariable linear regression models mutually adjusted 360 
for all the risk factors and additionally adjusting for age, sex, and body surface area. 361 
Modelling results for the associations of the vascular risk factors with each radiomics feature 362 
are reported in Supplementary Table 5. For ease of interpretation, we group associations into 363 
previously defined feature clusters and calculate the mean beta coefficient for each cluster 364 
(Table 4, Figure 4). We discuss associations with each vascular risk factor in turn. 365 
 366 
Associations of diabetes with radiomics features 367 
The most prominent diabetes related alterations of radiomics features were within the size 368 
and global intensity clusters, with statistically significant associations in 93% (n=40) and 369 
81% (n=42) of features within these clusters respectively. Diabetes was associated with 370 
decreased size of the LV and RV cavities (“size” cluster, mean beta: -0.20, 95% CI: -0.23, -371 
0.17), decreased global intensity (“global intensity” cluster, mean beta: -0.17, 95% CI: -0.20, 372 
-0.14), lower global variance (“global variance” cluster, mean beta: -0.06, 95% CI: -0.07, -373 
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0.04), and greater local dimness (“local dimness” cluster, mean beta: 0.05, 95% CI: 0.02, 374 
0.08). 375 
 376 
Associations at the mean were not significant for the local uniformity and shape clusters. 377 
However, considering the clusters more closely (Figure 4), we see that diabetes drives a 378 
differential response with both local uniformity and shape clusters. Since there is some within 379 
cluster heterogeneity in what features quantify, we examined the coefficient of individual 380 
features within each cluster (Supplementary Table 5). For example, within the shape cluster, 381 
a number of features quantify intensity variance, and these features trend downward 382 
(Supplementary Table 5). This corresponds well with the observed small but significant trend 383 
in global variance. Examination of individual feature associations reveals less spherical LV in 384 
end-diastole and more elongated RV in both end-diastole and end-systole (Supplementary 385 
Table 5). Overall, diabetes was associated with decreased ventricular size, decreased 386 
myocardial intensity (brightness), decreased global variance (variation in intensity levels), 387 
and increased local uniformity. 388 
 389 
Sex and age differential associations of diabetes with radiomics features 390 
To examine the potential sex and age differential association of diabetes with radiomics 391 
features, we first considered the separately computed interaction terms (Supplementary Table 392 
6, Supplementary Figure 3). There was no evidence of an age differential relationship, with 393 
no significant interaction terms detected for any radiomics feature. For the most part, 394 
associations were also consistent for men and women, with a statistically significant 395 
interaction term observed in only 10% of radiomics features, the majority of these were from 396 
the size cluster (Table 4).  397 
 398 
To inspect further, we separated the beta boxplots by sex and compared the distributions of 399 
diabetes associations for each cluster (Supplementary Figure 4). We found that no feature 400 
showed a difference in direction of average association. For size specifically, women showed 401 
a lower average effect size than for men.  402 
  403 
Associations of high cholesterol with radiomics features 404 
High cholesterol had a unique signature of radiomic changes (Table 4, Figure 4). Like 405 
diabetes, high cholesterol was associated with smaller ventricular size (“size” cluster, mean 406 
beta: -0.09, 95% CI: -0.10, 0.08), however the magnitude of this association was smaller than 407 
that for diabetes and was not statistically significant. Examination of individual features 408 
within the “shape” cluster (specifically: sphericity, elongation, flatness), revealed differential 409 
shape associations in the LV and RV, with less sphericity of the former and greater sphericity 410 
of the latter (Supplementary Table 5). High cholesterol was also associated with decreased 411 
global intensity and slightly increased local dimness. Like diabetes, high cholesterol drives 412 
differential changes within the local uniformity cluster. Broadly, high cholesterol was 413 
associated with smaller ventricles, dimmer myocardium, and lower variance in myocardial 414 
intensities. 415 
 416 
Sex and age differential associations of high cholesterol with radiomics features 417 
We considered the impact of sex and age on the high cholesterol radiomics associations 418 
(Supplementary Table 6, Supplementary Figure 3). We identified few significant interaction 419 
effects for sex and age, 24% and 3% respectively (Table 4). The majority of the significant 420 
sex interactions were with features within the local uniformity (n=21) and global variance (n-421 
18) clusters (Table 4). We therefore explored sex differential relationships within these 422 
clusters (Supplementary Figure 4). For both clusters, the direction of associations was 423 
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consistent for men and women, however the degree of the association can differ between the 424 
sexes (Supplementary Figure 4). As with diabetes, women showed a slightly lower size 425 
decrease with high cholesterol compared to men. 426 
 427 
 428 
Associations of hypertension with radiomics features 429 
Like diabetes and high cholesterol, hypertension was associated with significant decreases in 430 
global intensity of the LV myocardium (“global intensity” cluster, average beta: -0.07 95% 431 
CI: -0.09, -0.04). Hypertension was also associated with decreased variation in intensity 432 
levels (“global variance”, mean beta: -0.14, 95% CI: -0.15, -0.13), increased local dimness 433 
(“local dimness, average beta: 0.07, 95% CI: 0.04, 0.10), and greater uniformity of local 434 
intensity levels (“local uniformity” cluster, average beta: 0.13, 95% CI: 0.11, 0.15). These 435 
myocardial alterations were the most consistent relationships observed with hypertension 436 
(Table 4, Figure 4).  437 
 438 
For both the shape and size feature clusters, the significant associations appeared at the 439 
extremes of the beta coefficient distributions within each cluster, rather than at the mean 440 
(Figure 4). With regards the shape feature cluster, hypertension was associated with more 441 
elongated, less spherical ventricular shapes based on the average cluster association (“shape” 442 
cluster, average beta: -0.04, 95% CI: -0.06, -0.01). Examining individual feature associations, 443 
these associations appeared significant for the LV, but not the RV (Supplementary Table 5). 444 
The average beta coefficient in the size cluster demonstrated no significant association with 445 
hypertension. However, there were significant associations with a number of features (n=23) 446 
within this cluster, which lie distal either side of the distribution (Table 4, Figure 4). 447 
 448 
Sex and age differential associations of hypertension with radiomics features 449 
We examined potential variation of the associations of hypertension with radiomics features 450 
by sex and age (Supplementary Table 6, Supplementary Figure 3). The associations with 451 
hypertension were largely consistent across age and for men and women. There were 452 
significant interaction terms for sex and age in 23% and 7% of features respectively. Most of 453 
the features with significant sex interaction terms belonged to the global variance cluster 454 
(Table 4, Figure 4). In stratified analysis, we demonstrate that for both men and women, 455 
hypertension is associated with lower global variance; however, women show a greater 456 
decrease in global variance than men (Supplementary Figure 4). 457 
 458 
Associations of smoking with radiomics features 459 
Unlike the three previously considered vascular risk factors, smoking showed little consistent 460 
effect on any of the clusters of radiomics features (Table 4, Figure 4). The mean effect within 461 
each cluster is near zero (Figure 4). However, individual features show definite dependence 462 
on smoking (Supplementary Table 5). For example, end systolic global intensity features 463 
(e.g., mean and median signal intensities) all decreased with smoking. Furthermore, there 464 
were significant associations with RV shape features, demonstrating association of smoking 465 
with less spherical, flatter, and more elongated RV in both end-diastole and end-systole. 466 
These shape associations were not statistically significant with the LV (Supplementary Table 467 
5).  468 
 469 
In general, signal intensity based associations with smoking trended in similar directions to 470 
the other vascular risk factors. Broadly, the myocardium of smokers tends to decrease in 471 
global intensity and increase in local uniformity. However, these relationships were not as 472 
prominent as those for the other risk factors. 473 
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 474 
Sex and age differential associations of smoking with radiomics features 475 
We found no evidence of differential associations of smoking with radiomics features by sex 476 
or age (Table 4, Supplementary Figure 3).  477 
 478 
 479 
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Discussion 480 
Summary of findings 481 
In this large study of UK Biobank participants free from cardiovascular disease, we report 482 
novel independent associations of CMR radiomics features with sex, age, diabetes, high 483 
cholesterol, hypertension, and smoking. 484 
 485 
Amongst healthy participants, whilst adjusting for sex and body size, men had larger more 486 
elongated ventricles with dimmer, more homogenous, and less texturally complex appearance 487 
of the myocardium compared to women. In healthy aging, we observed smaller ventricular 488 
sizes and greater variation in myocardial signal intensity levels with increasing age, 489 
independent of sex and body size.  490 
 491 
The pattern of associations with myocardial signal intensity features were broadly similar 492 
across vascular risk factors; all were associated with dimmer less varied myocardial signal 493 
intensities, greater uniformity of local intensity levels, and greater relative presence of low 494 
signal intensity areas. These independent associations with signal intensity phenotypes 495 
appeared most prominent with first hypertension and second diabetes. Both diabetes and high 496 
cholesterol were associated with smaller ventricular sizes, which appeared of greater 497 
magnitude for diabetes. Hypertension was associated with an overall less spherical, more 498 
elongated LV shape. Associations with smoking were of smaller magnitude than with other 499 
risk factors. Broadly, smoking was associated with significant alteration of RV, but not LV 500 
shape features. 501 
 502 
In general, these relationships appeared consistent for men and women and across ages. 503 
Trends with healthy aging appeared consistent for men and women, and sex interactions, 504 
generally, indicated greater rapidity of age-related phenotypic alterations in men. The 505 
associations of diabetes with smaller ventricular size were a prominent feature for diabetic 506 
men, but not for women, in whom myocardial intensity features dominated. The association 507 
of hypertension with myocardial signal intensity phenotypes also varied by sex with 508 
hypertensive women showing a greater decrease in global variance than men. 509 
 510 
Comparison with existing work 511 
Our findings of larger ventricular sizes in healthy men compared to women (after adjustment 512 
for body size) and reduced ventricular size in healthy aging are consistent with previous 513 
studies using conventional CMR measures(29,30). Our additional observations relating to 514 
greater elongation of male hearts as well as myocardial signal intensity variations have not 515 
been previously described. Notably the differences in signal intensity patterns of male hearts 516 
resemble alterations we observed in association with vascular risk factors. That is, both male 517 
sex and vascular risk factors were associated with dimmer myocardial signal intensities, less 518 
variation in intensity patterns, and a more homogeneous appearance of the myocardium. This 519 
indicates that, in general, adverse cardiovascular exposures have some common 520 
manifestations in radiomics myocardial signal intensity features, perhaps indicating a shared 521 
pathophysiological process. Indeed, in a previous study of the associations between meat 522 
intake and cardiovascular phenotypes, we observed association of greater red and processed 523 
meat intake (adverse exposures) with dimmer and less varied myocardial signal 524 
intensities(31). The observation of these same phenotypes in healthy men suggests either 525 
undiagnosed vascular risk factors in men, or generally a poorer exposure profile in men than 526 
women with regards non-classical risk factors. 527 
 528 
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The cardiovascular phenotyping of vascular risk factors using conventional analysis of non-529 
invasive imaging has been widely described. Our findings of smaller ventricular sizes 530 
associated with diabetes and high cholesterol are consistent with previous studies of the UK 531 
Biobank and the Multi-ethnic Study of Atherosclerosis (MESA) cohorts, using conventional 532 
CMR analysis(7,32). In addition, we demonstrate association of male sex and hypertension 533 
with alteration of the overall ventricular geometry towards a more elongated shape.  534 
 535 
Myocardial intensity alterations were a prominent phenotype of diabetes and hypertension in 536 
our study, indicating that myocardial level alterations are key features of these conditions. 537 
Previous studies using echocardiography have demonstrated alteration of myocardial acoustic 538 
properties, an indicator of myocardial fibrosis, in diabetes and the correlation of this feature 539 
with diabetic disease severity and associated complications(33,34). Similarly, CMR studies 540 
using global contrast enhanced myocardial T1 mapping methods, have demonstrated that 541 
greater myocardial fibrosis (shorter T1 on contrast enhanced T1 mapping) in patients with 542 
diabetes is associated with poorer global longitudinal strain and diastolic dysfunction(35). 543 
There are also multiple reports of myocardial scarring and diffuse fibrosis associated with 544 
hypertension detectable using contrast and non-parametric mapping CMR techniques(36–39).  545 
Thus, it appears likely that myocardial fibrosis is a key component of the pathophysiology of 546 
both diabetic and hypertensive cardiomyopathies and that this may be detected using non-547 
invasive imaging. The myocardial intensity alterations in our results also extended to high 548 
cholesterol, male sex, and (to a lesser extent) smoking. In a large study of the MESA cohort, 549 
Turkbey et al.(37) report associations of male sex, hypertension, and smoking with 550 
myocardial fibrosis detected by late gadolinium enhancement CMR images. The myocardial 551 
signal intensities in magnetic resonance imaging reflect the magnetic properties of underlying 552 
tissue, which in turn are determined by tissue characteristics(16). Thus, it is likely that our 553 
observations of signal intensity alterations reflect myocardial tissue characteristics, 554 
considered in the context of previous work, these may indicate diffuse myocardial fibrosis as 555 
a common pathophysiological process for the conditions considered. 556 
 557 
Overall, the patterns of associations were consistent for men and women. There was evidence 558 
of potential sex differential alterations for selected features in diabetes and hypertension. In 559 
general, myocardial intensity alterations appeared a more important manifestation of these 560 
conditions in women than men, possibly indicate greater myocardial fibrosis in women. This 561 
observation is consistent with clinical observations of greater propensity for heart failure and 562 
specifically heart failure preserved ejection fraction syndromes in women, particularly in the 563 
context of diabetes and hypertension(40–43). 564 
 565 
In summary, our findings with CMR radiomics analysis support previous reports using 566 
echocardiography and conventional CMR and provide more granular quantification of 567 
myocardial alterations and novel shape features associated with classical vascular risk factors 568 
in a low-risk group without clinically manifest cardiovascular disease.  569 
 570 
Technical considerations 571 
We adopted several technical approaches for increasing the clarity and statistical power of 572 
our results, but these approaches come with assumptions and limitations. First, to derive 573 
interpretable groups of related radiomics features, we clustered the features by their 574 
correlation in the healthy cohort. In doing this, we assumed that the healthy human 575 
population provided the best baseline to define the relationship between radiomics features. 576 
However, this approach skewed our identified clusters to group features that naturally 577 
correlate in human populations rather than features that correlate definitionally. For example, 578 
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myocardial intensity variance in end systole is in the Global Intensity cluster while 579 
myocardial intensity variance in end diastole is in the Global Variance cluster. If we had 580 
derived our clusters from digital phantoms instead (44), these two measures of intensity 581 
variance would have clustered together. We ultimately argue that clustering by human data 582 
works well for interpretability but encourage future studies to consider clustering on 583 
phantoms for better “ground truth” associations, although this may not always be feasible. 584 
 585 
Another assumption of our work is that controlling for a linear association with BSA is 586 
sufficient to control for the relationship between radiomics features and body size. The 587 
confounding association between radiomics features and ROI size is well known (45,46), and 588 
we accounted for this by adjusting our linear regression for participants’ BSA. However, it is 589 
also likely that radiomics features have complex nonlinear relationships with BSA. 590 
Therefore, a set of adjustments with nonlinear BSA terms in our linear modelling could 591 
produce better controls for BSA. However, an optimal approach to body size adjustment of 592 
radiomics features is yet to be established and adjustment for BSA in the context of the 593 
present study was deemed adequate. 594 
 595 
Strengths and limitations 596 
The large well characterised cohort in this study permitted reliable ascertainment of diseases 597 
and risk factors of interest. CMR image acquisition and segmentation was performed 598 
uniformly for the whole dataset minimising related technical variations. We demonstrate the 599 
feasibility of CMR radiomics and its application as a tool for deep cardiovascular 600 
phenotyping. Whilst previous studies do not consider confounding, we present associations 601 
adjusted for all vascular risk factors, body size, age, and sex. However, there may be other 602 
important confounds not considered here. This may be particularly relevant in understanding 603 
sex differences in associations, as we know that men and women differ in many other 604 
important ways not considered in our models. Associations of non-classical risk factors with 605 
radiomics phenotypes and their potential modifying effects on the relationships described in 606 
the present study is warranted. For instance, exploration of the influence of environmental, 607 
socio-demographic, and early life exposures on cardiac phenotypes may provide novel 608 
insights into the impact of these factors on cardiovascular health. The UK Biobank comprised 609 
a narrow age range, which may have limited our ability to detect age related alterations in 610 
CMR metrics. Exploration of age-related radiomics changes in a cohort with broader 611 
spectrum of ages is warranted. Furthermore, validation of our findings in different cohorts 612 
and within multi-centre settings is indicated in future work. A key avenue for future research 613 
is examining the correlation and incremental clinical value of CMR radiomics, particularly 614 
the signal intensity based features, against conventional measures of myocardial tissue 615 
character (e.g., native T1, late gadolinium enhancement). Due to the observational nature of 616 
the study, we cannot exclude residual confounding or infer causation (in either direction) 617 
from our results. Finally, there is need for dedicated studies to understand the biological and 618 
clinical significance of these radiomics phenotypes. Understanding the nature of these disease 619 
associations can be helpful for future studies with non-classical exposures, where the 620 
importance to cardiovascular health may not be so well understood. Additionally, 621 
investigating the incremental utility of radiomics analysis to predict incident health outcomes 622 
is a key research question in development of the technique as a novel imaging biomarker.  623 
 624 
Conclusions 625 
In this study we characterise novel associations of sex, age, and major vascular risk factors 626 
with cardiovascular radiomics phenotypes. These observations provide new insights into the 627 
impact of these risk factors on cardiovascular health, including potential sex differential 628 
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patterns of remodelling. Further studies into the nature and clinical significance of the 629 
defined phenotypes are needed. 630 
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Table 1. Summary of the six defined radiomics feature clusters including their assigned 
names, example features, and properties represented by the features within each cluster 
 

Cluster Name Example Features Description of feature properties Consensus D1 
Size Volume 

Surface Area 
Size of the ventricles 0.98 

Local 
Uniformity 

First-order Uniformity 
GLSZM Large Area Emphasis 

Size of areas with the same 
intensity level within myocardium 

0.67 

Global Variance First-order Variance 
GLCM Contrast 

Variance of myocardial intensity 
level distribution 

0.51 

Shape Shape Elongation 
Shape Sphericity 

Descriptors of overall ventricular 
shape 

0.96 

Local Dimness GLDM Low Gray Level 
Emphasis 
GLSZM Low Gray Level 
Zone Emphasis 

Relative presence of areas of low 
signal intensity level 

0.78 

Global Intensity First-order Mean 
First-order Energy 

Average brightness of myocardial 
intensity level 

0.70 

Table 1. GLCM: Gray Level Co-occurrence Matrix; GLDM: Gray Level Dependence Matrix; 
GLSZM: Gray Level Size Zone Matrix. Consensus D1 indicates the repeatability of cluster 
components on repeated clustering, that is the likelihood that the same features appear in the 
cluster if the clustering analysis is repeated. Higher values within the shape category indicate 
greater sphericity and less elongated ventricular shapes. Please note, for computational 
reasons in Pyradiomics the “flatness” and “elongation” features are reported as inverse 
values, thus higher elongation and flatness values indicate less elongated more spherical 
shapes (and vice versa).
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 Table 2. Baseline participant characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Continuous variables are summarised as mean ± standard deviation and count 
variables as number of participants (percentage of total).

 
All participants Healthy subset Matched vascular 

risk factor cohort 
Total Population 32068 14902 27400 
Men 15443 (48.2%) 6095 (40.9%) 13290 (48.5%) 
Women 16625 (51.8%) 8807 (59.1%) 14110 (51.5%) 
Age at imaging (years) 63.3 ± 7.5 61.0 ± 7.3 63.4 ± 7.2 
Body surface area (m2) 1.9 ±0.2 1.8 ± 0.2 1.9 ± 0.2 
Body mass index (Kg/m2) 26.6 ± 4.2 25.6 ± 3.8 26.6 ± 4.2 
Ischaemic heart disease  1937 (6.0%)   0 0 
Valvular heart disease 582 (1.8%) 0 0 
Non-ischaemic cardiomyopathies 59 (0.2%) 0 0 
Heart failure unspecified aetiology 191 (0.6%) 0 0 
Cardiac arrhythmia 1443 (4.5%) 0 0 
Diabetes 1881 (5.9%) 0 1471 
High cholesterol 11161 (34.8%) 0 8848 
Hypertension 10545 (32.9%) 0 8322 
Smoking (current) 1157 (3.6%) 0 1038 
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Table 3. Relationship of sex and age with radiomics features in the healthy subset expressed as the average association within each of the 
six radiomics feature clusters 

 
  Radiomics feature clusters  
Exposures 

 
Size Local Uniformity Global Variance Shape Local Dimness Global Intensity Totals 

Sex (Male) Mean Beta 0.58 0.76 -0.90 -0.28 0.19 -0.24 
 

 
95% CI 0.51, 0.66 0.68, 0.84 -0.97, -0.84 -0.36, -0.19 0.02, 0.36 -0.33, -0.16 

 

 
Significant features, n (%) 41 (95%) 45 (100%) 37 (100%) 34 (87%) 14 (70%) 43 (83%) 214 (91%) 

Age Mean Beta -0.12 -0.05 0.07 0.02 -0.02 0.02 
 

 
95% CI -0.14, -0.10 -0.07, -0.03 0.06, 0.09 -0.00, 0.05 -0.05, -0.00 -0.00, 0.05 

 

 
Significant features, n (%) 42 (98%) 37 (82%) 29 (78%) 27 (69%) 13 (65%) 46 (89%) 194 (82%) 

Sex*Age Mean Beta -0.01 -0.07 0.03 0.02 0.00 -0.01 
 

 
Lower CI -0.015, -0.00 -0.08, -0.06 0.01, 0.04 0.00, 0.03 -0.02, 0.03 -0.02, 0.00 

 

 
Significant features, n (%) 3 (7%) 22 (49%) 11 (30%) 7 (18%) 4 (20%) 8 (15%) 55 (23%) 

 Total features in cluster (n) 43 45 37 39 20 52 236 

 
Table 3. Results are the mean beta coefficient and 95% CI for associations of each exposure with the features within each cluster. Beta indicates 
standard deviation change in radiomics feature per 1 unit/standard deviation change in the exposure. Models are mutually adjusted for age and 
sex, and include additional adjustment for body surface area. The interaction term is from a separate fully adjusted model. For sex, the 
reference level is set as “female”. “Significant features” indicates the number and percentage of features with a statistically significantly 
association within each cluster, based on a Bonferroni adjusted p-value. CI: confidence interval.
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Table 4. Relationship of vascular risk factors with radiomics features in the healthy subset expressed as the average association within 1 
each of the six radiomics feature clusters 2 

  Radiomics feature clusters  
Exposure 

 
Size Local Uniformity Global Variance Shape Local Dimness Global Intensity Totals 

Diabetes Mean Beta -0.20 0.006 -0.06 -0.01 0.05 -0.17 
 

 
95% CI -0.23, -0.17 -0.039, 0.05 -0.07, -0.04 -0.05, 0.04 0.02, 0.08 -0.20, -0.14 

 

 
Significant features, n (%) 40 (93%) 15 (33%) 6 (16%) 17 (44%) 5 (25%) 42 (81%) 125 (53%) 

Diabetes*Sex Mean -0.13 -0.050 0.094 0.028 -0.028 0.019 
 

 
95% CI -0.15, -0.11 -0.08, -0.02 0.08, 0.11 -0.01, 0.06 -0.05, -0.01 -0.00, 0.04 

 

 
Significant features, n (%) 14 (33%) 4 (9%) 0 (0%) 3 (8%) 0 (0%) 2 (4%) 23 (10%) 

Diabetes*Age Mean 0.01 -0.00 0.01 -0.00 0.01 0.00 
 

 
95% CI 0.00, 0.01 -0.01, 0.00 0.00, 0.01 -0.01, 0.01 0.00, 0.01 -0.01, 0.01 

 

 
Significant features, n (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

High cholesterol Mean -0.09 -0.00 -0.01 0.00 0.05 -0.08 
 

 
95% CI -0.10, 0.08 -0.02, 0.02 -0.02, -0.01 -0.02, 0.02 0.04, 0.06 -0.09, 0.07 

 

 
Significant features, n (%) 40 (93%) 15 (33%) 3 (8%) 19 (49%) 12 (60%) 37 (71%) 126 (53%) 

High cholesterol*Sex Mean -0.04 -0.06 0.08 0.02 -0.01 0.01 
 

 
95% CI -0.05, -0.02 -0.08, -0.05 0.07, 0.09 0.00, 0.04 -0.04, 0.01 -0.00, 0.02 

 

 
Significant features, n (%) 10 (23%) 21 (47%) 18 (49%) 3 (8%) 0 (0%) 4 (8%) 56 (24%) 

High cholesterol*Age Mean 0.03 -0.00 0.01 0.01 -0.01 0.02 
 

 
95% CI 0.02, 0.03 -0.01, 0.00 0.01, 0.02 0.00, 0.02 -0.01, -0.01 0.02, 0.03 

 

 
Significant features, n (%) 7 (16%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (3%) 

Hypertension Mean -0.00 0.13 -0.14 -0.04 0.07 -0.07 
 

 
95% CI -0.02, 0.01 0.11, 0.15 -0.15, -0.13 -0.06, -0.01 0.04, 0.10 -0.09, -0.04 

 

 
Significant features, n (%) 23 (54%) 40 (89%) 37 (100%) 18 (46%) 15 (75%) 43 (83%) 176 (75%) 

Hypertension*Sex Mean -0.03 -0.03 0.11 0.03 0.04 0.02 
 

 
95% CI -0.05, -0.02 -0.05, -0.01 0.10, 0.13 0.01, 0.05 0.02, 0.07 0.01, 0.03 

 

 
Significant features, n (%) 5 (12%) 9 (20%) 25 (68%) 7 (18%) 2 (10%) 5 (10%) 53 (23%) 

Hypertension*Age Mean 0.02 -0.03 0.03 0.01 -0.01 0.02 
 

 
95% CI 0.01, 0.02 -0.03, -0.02 0.03, 0.04 -0.00, 0.01 -0.02, -0.01 0.01, 0.03 

 

 
Significant features, n (%) 1 (2%) 2 (4%) 7 (19%) 0 (0%) 0 (0%) 6 (12%) 16 (7%) 

Smoking Mean -0.03 0.06 -0.06 -0.04 0.00 -0.06 
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  Radiomics feature clusters  
Exposure 

 
Size Local Uniformity Global Variance Shape Local Dimness Global Intensity Totals  

95% CI -0.05, -0.01 0.04, 0.08 -0.07, -0.05 -0.07, -0.01 -0.02, -0.03 -0.08, -0.03 
 

 
Significant features, n (%) 6 (14% 14 (31%) 4 (11%) 12 (31%) 0 (0%) 12 (23%) 48 (20%) 

Smoking*Sex Mean -0.03 -0.01 0.05 0.05 0.05 -0.02 
 

 
95% CI -0.04, -0.01 -0.03, 0.00 0.04, 0.06 0.03, 0.07 0.02, 0.08 -0.04, 0.00 

 

 
Significant features, n (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Smoking*Age Mean -0.02 -0.00 -0.01 -0.01 0.04 -0.01 
 

 
95% CI -0.03, -0.01 -0.01, 0.01 -0.01, 0.00 -0.02, -0.00 0.04, 0.05 -0.02, -0.01 

 

 
Significant features, n (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)  
Total 43 45 37 39 20 52 236 

Table 4. Results are the mean beta coefficient and 95% CI for associations of each exposure with the features within each cluster. Beta indicates 3 
standard deviation change in radiomics feature per 1 unit/standard deviation change in the exposure. Models are mutually adjusted for all the 4 
risk factors (diabetes, high cholesterol, hypertension, smoking) and include adjustment for age, sex, and body surface area. Interaction terms 5 
are from separate fully adjusted models, separately for age and sex. “Significant features” indicates the number and percentage of features with 6 
a statistically significantly association within each cluster, based on a Bonferroni adjusted p-value. CI: confidence interval 7 
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Figure 1. Illustrating the clustering method and approach to defining the number of 
radiomics feature clusters for the radiomics features 

 
Figure 1. Panel A illustrates the relative change in area under the CDF (Consensus 
Cumulative Distribution Function) curve of the y axis with increasing number of clusters (k 
on x axis), with the curve levelling off at six clusters. Panel B is the correlation heatmap 
illustrating the six defined clusters, with the darkest purple indicating perfect positive 
correlation and darkest yellow perfect negative correlation. The dendrogram indicates the six 
clusters from hierarchical clustering. The ribbon on the right of Panel B illustrates 
correlation of each radiomics feature with the conventional metrics indicated on the x-axis. 
LVEDV: left ventricular end-diastolic volume; LVEF: left ventricular ejection fraction; 
LVESV: left ventricular end-systolic volume; LVM: left ventricular mass; RVEDV: right 
ventricular end-diastolic volume; RVESV: right ventricular end-systolic volume; RVSV: right 
ventricular stroke volume. 
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Figure 2. Associations of sex and age with radiomics features in the healthy subset 
grouped into clusters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Results are from linear regression models adjusted for age, sex, and body surface 
area. The y axis is standardised beta coefficients for associations of sex (left) and age (right) 
with radiomics features. Each dot represents point estimate of the association with a 
radiomic feature from a separate model. Black dots indicate statistically significant 
associations. Grey dots indicate non-significant associations. Statistical significance is based 
on Bonferroni adjusted p-value <0.05. Feature associations are grouped into previously 
defined clusters (Figure 1, Table 1). The dark line in the box plot indicates the median beta 
coefficient in the cluster, the box borders indicate limits of the interquartile range.  
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Figure 3. Mean standardised radiomics value for each feature cluster stratified by sex 
across all ages 

 
 

 
Figure 3. Men had larger (higher size values) and more elongated (higher shape values) 
ventricles than women. Men had dimmer less varied signal intensities at both a global (lower 
global intensity, lower global variance) and local (higher local uniformity, higher local 
dimness) level. Alteration of radiomics features with aging were generally consistent for men 
and women. There was more rapid decline in local uniformity in men with minimal age-
related change in this cluster for women.  
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Figure 4. Associations of diabetes, high cholesterol, hypertension, and smoking with 
radiomics features grouped into clusters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Results are from linear regression models adjusted for age, sex, and body surface 
area, diabetes, high cholesterol, hypertension, and smoking. The y axis is standardised beta 
coefficients for associations of vascular risk factors (diabetes, high cholesterol, hypertension, 
smoking) with radiomics features. Each dot represents point estimate of association with a 
radiomic feature from a separate model. Black dots indicate statistically significant 
associations. Grey dots indicate non-significant associations. Statistical significance is based 
on Bonferroni adjusted p-value <0.05. Feature associations are grouped into previously 
defined clusters (Figure 1, Table 1). The dark line in the box plot indicates the median beta 
coefficient in the cluster, the box borders indicate limits of the interquartile range 
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