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Abstract

Cognitive Radio Internet of Things (CR-IoT) has revolutionized almost every field of life

and reshaped the technological world. Several tiny devices are seamlessly connected in

a CR-IoT network to perform various tasks in many applications. Nevertheless, CR-IoT

suffers from malicious attacks that pulverize communication and perturb network perfor-

mance. Therefore, recently it is envisaged to introduce higher-level Artificial Intelligence

(AI) by incorporating Self-Awareness (SA) capabilities into CR-IoT objects to facilitate

CR-IoT networks to establish secure transmission against vicious attacks autonomously.

In this context, sub-band information from the Orthogonal Frequency Division Multi-

plexing (OFDM) modulated transmission in the spectrum has been extracted from the

radio device receiver terminal, and a generalized state vector (GS) is formed containing

low dimension in-phase and quadrature components. Accordingly, a probabilistic method

based on learning a switching Dynamic Bayesian Network (DBN) from OFDM trans-

mission with no abnormalities has been proposed to statistically model signal behaviors

inside the CR-IoT spectrum. A Bayesian filter, Markov Jump Particle Filter (MJPF),

is implemented to perform state estimation and capture malicious attacks.

Subsequently, GS containing a higher number of subcarriers has been investigated. In

this connection, Variational autoencoders (VAE) is used as a deep learning technique

to extract features from high dimension radio signals into low dimension latent space

z, and DBN is learned based on GS containing latent space data. Afterward, to per-

form state estimation and capture abnormalities in a spectrum, Adapted-Markov Jump

Particle Filter (A-MJPF) is deployed. The proposed method can capture anomaly that

appears due to either jammer attacks in transmission or cognitive devices in a network

experiencing different transmission sources that have not been observed previously. The

performance is assessed using the receiver operating characteristic (ROC) curves and the

area under the curve (AUC) metrics.
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Chapter 1

Introduction

The modern advancements in emerging wireless enabling technologies and the profound

growth of wireless devices have become the driving force to introduce a new paradigm,

known as the Internet of Things (IoT) [1]. Featured with ubiquitous and interactive

capabilities to link a massive number of electronic objects, IoT has facilitated a plethora

of fields such as healthcare, industry, farming control, environment monitoring, smart

cities, and many more [2]. Due to the evolution of successive wireless technologies,

Machine-to-Machine communication network (M2M), Vehicular-to-Vehicle (V2V) com-

munication, Unmanned Aerial Vehicle (UAV), and 6G mobile networks, and at the same

time, the motivation to deploy IoT functionalities into such networks will construct IoT

system more dense and heterogeneous [3],[4].

IoT network exposes to spectrum utilization challenges because of such significant esca-

lation in the number of devices connected in a network. Therefore, an inventive solution

is required to address spectrum-related issues. Cognitive Radio (CR) was devised in

1991 by Mitola and Maguire [5] to bestow the concept of intelligent radios capable of

learning, reasoning, and acclimating to the environment. An essential feature of CR is

the mastery of self-programming and autonomous learning. According to Haykin [6],

CR radio meliorates spectrum utilization by using brain-empower devices to achieve

1
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efficient exploitation of spectrum and reliable communication objectives. In essence,

it integrates model-based reasoning with software radio technologies to build adaptive,

smart, and self-configured radios that learn the operating environment parameters and

adapt changes accordingly.

Thereupon, it is imperative to acquaint the capability to learn, think, and action into

the IoT devices. Hence, unfolding a new paradigm, named Cognitive Radio Internet of

Things (CR-IoT) network [7] to deal with spectrum utilization and management chal-

lenges. Lately, it has been realized that embodying cognitive functionalities into CR

is exclusively not adequate due to the followings reasons [8]: (1) The nature of traffic

volume in the emerging CR-IoT network is highly dynamic due to the users’ demands

for several services (e-g voice, audio, text, image, or videos). Such highly vigorous data

desire brings a hurdle for CR to learn and predict accurately. (2) CR devices will require

time and cost (more hardware capacity) to learn the exhaustive and precise information

about the radio environment of highly dense CR-IoT and other wireless networks, con-

sisting of several base stations, mobile devices, and other cognitive objects. Therefore, it

is necessitous to incorporate more robust and diverse capabilities into CR by introducing

artificial intelligence (AI) functionalities. AI teaches Self-Awareness (SA) to the CR by

enhancing learning and reasoning functionalities [9].

Consequently, CR-IoT devices equipped with data-driven SA enabled capabilities based

on AI techniques autonomously learn models by observing their state and the variation

happening in the encircling ambient. The CR-IoT network is vulnerable to numer-

ous kinds of malicious attacks (jammer signals) during transmission. The fundamental

objectives of adversary attacks are to destroy communication, deplete the spectrum, and

mislead the CR devices. There has been considerable work that presents abnormality

detection, more specifically jammer detection in the CR spectrum. In this perspective,

numerous techniques, most prestigious include machine learning techniques [10],[11],

probabilistic Bayesian networks[12], and deep learning models [13],[14],[15] have been

proposed and presented to capture abnormalities in a network spectrum.

Machine learning methods have some limitations; such as distinct features that must be
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selected and extracted from the data to train the machine learning model [16]. On the

contrary, deep learning (DL) methods have gained recent attention due to capturing more

sophisticated and dense hidden features and retaining strong abilities in generalizing

raw data relationships for diversified IoT applications. Moreover, deep network models

exhibit satisfactory performance on a high volume of data. In contrast, machine learn-

ing models may encounter an over-fitting issue while handling a considerable amount of

information [17]. However, deep learning models can’t handle uncertainties and exploit

the temporal relationships in the data at different inference levels. In this context,

dynamic Bayesian networks allow to exploit temporal relationships in the data and per-

form inference at different levels (from low to high abstract levels), but they meet certain

limitations in the case of high dimensional data. Therefore, a joint framework is required

to take advantage of both deep learning models and probabilistic graphical models to

achieve abnormality detection tasks in the CR-IoT network spectrum.

1.1 Motivation and Objectives

As introduced in the precedent section, making CR devices more intelligent will build

the entire CR-IoT network robust, autonomous, and cognitive to next greater extent.

Mainly, SA endowment makes CR understand the normal signal transmission and, if

it deviates from the normal operation, ultimately detect such abnormal behavior inside

the spectrum. Under such situation, either a control system can then utilize the cap-

tured anomalous behaviors as abnormalities in a network to implement anomaly alle-

viation techniques, or the incorporated SA unit inside the cognitive device can learn

new dynamic models that demonstrate diverse scenarios not experienced previously, and

prevent attacks.

Implementing a data-driven SA-enabled module based on AI techniques into CR-IoT will

build an entire network secure and enable the system to conduct reliable transmission

against threats and attacks. The incorporated SA module facilitates the CR-IoT system

to detect vicious attacks in the spectrum at the physical layer (PHY-layer) and mitigate



Chapter 1. Introduction 4

their sequels, and it will furnish a road-map to bring a higher level of SA capabilities

into the future AI-enabled CR-IoT network.

The over all objectives are as follows:

• Building CR-IoT network more protective and attack-free to conduct secure trans-

mission.

• Making CR devices more intelligent, cognitive, and aware by proposing a method

to bring SA capabilities into the CR-IoT objects.

• Providing a probabilistic framework to statistically exploit CR signals and model

CR dynamic behavior inside a spectrum evolving with time.

• Capturing and detecting abnormalities at PHY-layer in CR-IoT network.

• Develop a data-driven approach that takes advantage of the deep learning method

to handle high dimensional radio signals and dynamic Bayesian model to provide

spectrum inference at continuous and discrete levels and perform state estimation

tasks. In addition to that, the proposed method should be capable of capturing

abnormalities in the CR-IoT network spectrum.

1.2 Thesis Key contributions

The work presents a framework toward the development of SA based AI-enabled CR-IoT

network. Incipiently, the entire approach consists of two phases investigating general-

ized state vectors, which contain Orthogonal Frequency Division Multiplexing (OFDM)

modulated sub-band information extracted from the radio spectrum for abnormalities

detection. The first phase addresses low dimension data (few sub-carriers). Notably, a

jammer detection method is proposed based on learning a switching Dynamic Bayesian

Network (DBN) from typical OFDM data transmissions capable of detecting abnormal

situations. This work aims to analyze signals behavior through Dynamic Bayesian Net-

work, realize a probabilistic switching model consisting of two hidden levels for each
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temporal slice, and to detect malicious signals inside the spectrum for the CR-IoT net-

work. The inferences at discrete and continuous levels of the spectrum is achieved using

a combination of Particle filter (PF) for the discrete level and Kalman Filter (KF)

respectively. After that, Single and Bank-Parallel DBN models have been implemented

to capture jammer in an OFDM modulated transmission. Features of all sub-carriers

have been learned in the form of a single generalized state vector in the Single DBN

approach. On the contrary, individual characteristics of each sub-carrier are learned as

a separate generalized state vector associated with each subcarrier in the Bank-Parallel

DBN method. Single-DBN is favorable in tracking a CR and keeping the device’s profile

history whereas, Bank-Parallel is more suitable to distinguish and characterize different

sources.

In essence, DBN learns switching models from data series to generalize state vectors

where different linear models are described with the switching variables. DBN exhibits

good performance when the data dimension is low, and several possible switching dynamic

models in DBN is confined. On the other hand, generative models from the deep learning

domain can efficiently deal with a significant quantity of dynamic models, but they are

impotent to address uncertainties. Therefore, a more robust and powerful method is

presented and developed during the second phase of the work, taking advantage of both

deep learning and probabilistic network, and giving an abnormalities detection frame-

work. Variational autoencoder (VAE) from the DL domain facilitates the achievement

of the data dimension reduction step, and the DBN from the Bayesian field fulfills the

need for state estimation tasks effectively for the CR-IoT spectrum. We deploy VAE to

transform high dimension data into low and compact representation. Then latent vari-

ables of VAE are clustered to learn temporal dependencies among them and constitute

a probabilistic representation. We use Adapted-Markov Jump Particle Filter (A-MJPF)

to perform state estimation, which considers the uncertainties in the spectrum and con-

sequently spot any malicious behavior that deviates from the standard etiquette in the

spectrum at the continuous level.

As far as we know, for the first time, generalized state vectors are explored and inves-
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tigated based on latent space information (encoding OFDM modulated data extracted

features) obtained from the trained VAE in this work. We deploy two VAEs, one for

signal and another for signal derivative.

Following are significant contributions:

• Abnormalities (Jammer attacks) detection at the PHY-layer of CR-IoT network.

• The proposed method can be deployed to less dense networks that generate low-

dimension data and a highly dense network containing significantly high dimension

data.

• The strength of the proposed methods provokes the motivation to implement such

strategies into the CR-IoT devices to develop autonomous devices where they fur-

nish an opportunity to select either of the methods depending on data dimensions.

• The probabilistic models are inevitably learned from complex data under different

scenarios by the proposed method that follows a data-driven approach.

• The proposed methods facilitate the development of the SA module in AI-enabled

CR-IoT by learning either DBN (low dimension signals) or VAE for obtaining com-

pact latent space representations and learning DBN (for high dimension signals)

and eventually deploy any of the method (based on application’s dimension) to

capture abnormalities in the CR-IoT spectrum.

Besides, the work describes the theoretical background along with relevant work in this

field. The thesis also highlights state-of-the art work.

1.3 Thesis structure

Fig.1.1 advertises the flow of work investigated throughout the research phase. Each

block shows stages with corresponding related work being carried out.

Chapter 2 unleashes IoT network proliferation in emerging networks such as M2M,

V2V, UAV, and 6G mobile networks. It highlights the importance of introducing intel-
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Stage 1 Stage 2 Stage 3 

Abnormality Detection (Jammer Detection)

Figure 1.1: Workflow investigated in this thesis

ligence into IoT devices, giving a new paradigm CR-IoT. The chapter also provides

insights into cognitive radio (CR) and its cognitive cycle. The chapter ends with notable

CR-IoT impacts in a plethora of fields.

Chapter 3 It exclusively discusses the security threat in CR and CR-IoT networks.

Specifically, related work covering jammer attacks with detecting methods have been

presented. It also discusses and highlights jammer detection work present in the litera-

ture for the CR-IoT network. Moreover, it describes the developed method’s motivation

and feasibility of the work investigated in this thesis compared to the current work.

Chapter 4 CR behavior inside the spectrum can be modeled through probabilistic

graphical models. Such a model facilitates predicting the current and future state of

an object (CR) by using probabilities theories. In this context, this chapter introduces

how CR can be modeled as an agent in the environment through dynamic models. This

chapter also presents and proposes a DBN model to detect abnormalities in a CR-IoT

spectrum. The proposed method deals with low-dimensional data and detect jammer

attacks in the spectrum.

Chapter 5 Nowadays, deep learning models have gained a lot of immersion due to
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promising performance achieved by such models in various fields. In this chapter, we

briefly discuss the motivation to bring consciousness into computing systems. Or, in

other words, introducing self-awareness into the network. Followed by this, bringing

cognitions into CR devices with a higher level of AI have been discussed. We demon-

strate the jammer signal classification method based on deep learning models (AlexNet

and GoogLeNet). Both models classify abnormal signals of the FFT and CWT based

images. Towards the end of the chapter, we discuss popular generative models such

as GAN, AE, and VAE. The current state-of-art work is also discussed throughout the

chapter wherever it was necessary.

Chapter 6 unveils firstly the abnormalities detection relevant work in the CR-IoT spec-

trum. Followed by this, high dimension approach combing deep learning and DBN for

abnormality detection is described in detail. The chapter discusses layered structure

implementation of the VAE model for signal and signal derivative to obtain latent space

information. In the derivative VAE, the decoder output is forced to reconstruct the

null version of the signal by introducing an activation regularizer in a network. Hence,

realizing architecture similar to the null force filter structure. The latent spaces are

then clustered to learn temporal relationship among them. We present an analysis of

the developed method in terms of Receiver Operating Characteristic (ROC) curves and

Area Under the Curve (AUC) metrics. Moreover, a comparison between VAE implemen-

tation with and without activation regularizer is described and demonstrated. Finally,

this chapter concludes by comparing VAE implementation (with and without activation

regularizer) under different scenarios such as varying jammer power and changing latent

space vector size.

Chapter 7 highlights the motivation of proposed methods based on data dimensions.

It explicitly describes the advantages and limitations of the proposed methods and

compares data-driven techniques and model-driven methods. The chapter ends with

the future directions and highlights the road-map for the next step in the investigated

research work.
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Chapter 2

Cognitive Radio Internet of

Things (CR-IoT) and its

applications

CR-IoT is an emerging technology connecting tiny objects and furnishes communication

for several applications. This chapter introduces the development and penetration of IoT

into many fields. Nevertheless, IoT network capabilities remain incomplete and incompe-

tent without cognitive abilities. Therefore, cognitive radio (CR) and its implementation

into IoT have been introduced, followed by some notable CR-IoT applications in this

chapter.

2.1 IoT-A new paradigm for seamless connectivity

Recent evolution in information and communication technologies invoked an emerging

method to connect diverse objects in a network smartly, known as the Internet of Things

(IoT) [1]. Such a network contains various devices to furnish ubiquitous connectivity

and grant access to end-users for multi-fold applications. In IoT, several things present

around us and, such items include tablets, sensors, smartphones, laptops, wireless head-

11
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phones, smartwatches, and other intelligent devices. IoT objects are empowered with

mighty data processing potency and use several communication protocols to avail any

service by using ideally any available link [2]. IoT is a rising and emerging network

that influences a plethora of domains, such as healthcare, smart cities, home automa-

tion, industrial process, intelligent transportation, and many more. From a fundamental

point of view, IoT connects everything to the internet in the world. Technically, the

“Internet of Things” can be explained as things or objects connected to the internet in

time than people [3]. More comprehensively, IoT can be perceived as a network dis-

pensing connectivity to non-internet-enabled devices or objects. IoT can connect heat

monitors, air conditioner, remote control, streetlights, cars, motorbikes, cycles, kitchen

appliances, and virtually anything to the network, as shown in Fig.2.1. IoT has been

evolving and, more smart devices will become part of the IoT network forthwith. More

formally, IoT can be defined as [4],

A blanket of connected objects operating in a smart environment using

autonomous links to communicate intelligently within environmental, social,

and user contexts.

Figure 2.1: IoT-paradigm is connecting a plethora of applications to the single
network.

The proliferation of IoT technology in the market is shown in Fig.2.2 and, is summarized

as follows [3],
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1) The number of connected devices/objects will reach approximately 10× 109 by 2020,

whereas, in 2018, 7× 109 devices were connected to the internet.

2) According to Gartner, 14 × 109 devices will be connected in 2019, and by 2021, this

connection will reach up to 25× 109.

3) The smartphones are the integral component in the IoT network, and according to

Newzoo, 3× 109 smartphones were connected to the network in 2018.

4) Most of the devices are being used in the IoT network at home, and such devices are

connected to Wireless Personal Area Networks (WPAN) such as Bluetooth, Zigbee.

There are myriad enabling technologies that have greased the implementation of IoT
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Figure 2.2: Total number of active connections worldwide [5].

network in numerous applications such as clouding computing, Wireless Sensor Network

(WSN), Wireless Sensor and Actuator Networks (WSAN), and Machine to Machine

(M2M) networks. Primarily, cloud computing provides the user with on-demand services

such as ubiquitous access, resource pooling, and service provision [6]. It is foreseen that

IoT functionalities will be brought by cloud-based IoT into the cloud servers whereas, the

IoT-centric cloud will import cloud functionalities into IoT. WSN has been identified as

a potential candidate for IoT networks over the few decades; particularly, IEEE 802.15.4,

which supports low power and less bit rate, is widely deployed in WSN networks to con-

nect tiny sensors. M2M communication has recently gained the popularity that provides

ubiquitous connections among devices and enables devices to interact without human



Chapter 2. Cognitive Radio Internet of Things (CR-IoT) and its applications 14

interaction [7]. IoT network comprises of several objects which autonomously operate

and adapt to changes according to the network requirements. Consequently, M2M tech-

nology has been the most relevant and vital option for IoT networks. IoT is supposed to

be a single global network; nonetheless, IoT comprises multiple independent and com-

plementary networks in various disciplines such as home automation, transportation,

industrial processes, and health care. IoT has penetrated many-particle applications

and has become an integral part of many technologies [8]. Such applications include

smart cities, environment control, industrial process, home appliances, and healthcare.

In smart cities, IoT potential use includes parking slot management, indoor localization,

traffic light management, and crowd movement analysis. In contrast, IoT in environment

control covers smart farming, air quality monitoring, and much more. Radio-Frequency

Identification (RFID) based object tagging is one of the main applications of IoT in the

industry. Fitness tracking, health monitoring, and baby monitoring come under the IoT

application for healthcare. The most exciting forms of IoT exist in a home for controlling

temperature, open/close doors, etc. Fig.2.3 shows IoT growth in certain applications [9].

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

Health care and others

Stores market

Telemetry

Agriculture and Farming

Smart Vechiles

Smart Airports

Figure 2.3: IoT growth in certain applications.

2.2 Bringing intelligence into the IoT devices

IoT network comprises various devices to furnish ubiquitous connectivity and grant

access for the multi-fold applications to the end-users. IoT-oriented mesh expedites the

substantial connectivity of billions of devices. In this regard, connectivity among IoT
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devices in a network can be hastened through wired or wireless technologies. Wherein

the wireless method is a more befitting and feasible solution for the connections among

devices due to the heterogeneous nature of the IoT network [10]. However, furnishing

wireless connection among devices in IoT is simply not adequate due to the following

reasons [11]. 1) Wireless connections endure from channel congestion sequel as there

remains a chance of spectrum under-utilization by the devices. Studies have revealed

that the spectrum is not exploited by the legitimate user most of the time and remains

unoccupied. In a nutshell, the wireless network meets spectrum management issues. 2)

IoT network is vulnerable to vicious attacks during the transmission that causes disrup-

tion to the communication and eventually deteriorates the overall network performance.

Thereupon, it is imperative to acquaint the capability to learn, think, and action into

the IoT devices. Hence, unfolding a new paradigm, named CR-IoT network. CR-IoT

empowers the existing IoT with a Brain for high-state intelligence as shown in Fig.2.4.

Invoking AI endowments into the CR-IoT system eventually settle the problem of spec-

trum under-utilization wherein devices equipped with a level of intelligence can efficiently

utilize the available channels and manage the spectrum.

Moreover, AI introduces a level of Self-Awareness (SA) into the CR-IoT network, which

ensures devices not only aware of their own state but their operating environment as well.

Accordingly, when intimidating signals appear in a system, devices will automatically

detect such abnormal behavior, combat such attacks, and learn a new model to avoid

such an experience. CR-IoT devices generate a large volume of data. AI methods act

as a catalyst that extracts useful information from that raw data and executes the intel-

ligent decision based on the information encoded in the data. We can formally defined

CR-IoT network as,

CR-IoT comprises objects that are seamlessly connected and interlinked in a

network with less or no external intervention. According to the CR cognitive

cycle, such devices equipped with cognitive capabilities learn, interact, and

perform several tasks.

Hence, CR-IoT networks are self-organized, self-configured, and self-adaptive due to the



Chapter 2. Cognitive Radio Internet of Things (CR-IoT) and its applications 16

AI techniques that yield consciousness into the devices.

Figure 2.4: Introducing intelligence into IoT devices.

2.3 The foundation of CR-IoT Network

CR-IoT has revamped the digital world by linking a plethora of technologies to bring

comfort to life. Nowadays, people can access various applications on their smartphones

and avail many services at any time, no matter where they are. Incontestably, cogni-

tive radio has paved the way for robustness, cognition, and level of awareness to the

IoT network. The significance of incorporating cognition capabilities into IoT devices

is inevitable, as mentioned in the precedent section 2.2. The term Cognitive Radio was

devised in 1991 by Mitola and Maguire [12] to sketch the concept of intelligent radios

capable of learning, reasoning, and acclimating to the environment. An essential fea-

ture of CR is the mastery of self-programming and autonomous learning. According to

Haykin [13], CR radio meliorates spectrum utilization by using brain-empower devices to

achieve fundamentally two objectives: 1) Efficient exploitation of spectrum. 2) Reliable

communication. We can formally define CR as,

Intelligent radio that continuously learns the operating environment, tune

parameters (modulation order, power level, coding schemes), and adapts the
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best transmission strategy to pursue smooth communication while effectively

utilizing the radio spectrum

The preeminent driving force to bring the CR into existence comes from the escalated

demand of data rates by the users to avail of different services such as Long-Term Evo-

lution (LTE), 5G network, Wireless Fidelity (Wi-Fi), Bluetooth, Local Area Network

(WLAN). Moreover, at the same time, new wireless technologies are being developed.

As a result, the radio spectrum has become clogged and overcrowded. However, the spec-

trum measurements have revealed that a major portion of the spectrum is not exploited

most of the time and can’t be accessed by other unlicensed users. Spectrum allocated

to the licensed user is never exploited by that user at its full extent. Therefore, one

way to prevail over such a problem is to build the radio intelligent and awake enough

to sense the spectrum proactively and access the vacant band when a licensed user is

not conducting transmission in the frequency band inside a spectrum and grant empty

channels to the secondary users. CR is one of the emerging wireless communication

technologies that intelligently boots the spectral efficiency by allocating vacant spaces

(also called spectrum holes) in the spectrum to the secondary user when a legitimate

user is not using the spectrum.

The CR network’s main actors are legitimate users (primary (PU) or license users),

Base Station

PU

PU

PUSU

SU

SU

PU
PU

PU

PU Primary User

SU  Secondary User

Figure 2.5: CR network consists of licensed user, non licensed user and a tower.

non-legitimate users (secondary users (SU)), and a base station. The legitimate agent

accesses the spectrum in the given network at any time and avails services. On the con-
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trary, a secondary agent scans the network spectrum and communicates opportunistically

whenever there is a vacant channel in the spectrum.

2.3.1 CR cognitive cycle

CR discovers all types of radio frequency (RF) activities in the functioning environment

and accomplishes cognitive tasks. Moreover, CR can’t conduct cognitive operations

without being conscious of its environment. In this perspective, spectrum sensing (SS)

is identified as a basic yet crucial process that acts as a bridge between CR and the radio

environment. In SS, CR senses the spectrum and gather the information. Recently, SS

has been perceived as the perception process in the modern intelligent communication

system [14]. Sensing the spectrum is a radio perception ability to gather information

about the network agents (PU and SU). In autonomous radios, the perception process

specifically targets spotting vacant channels in the spectrum for SU to grant access.

According to the crowning trends of AI in CR, we can classify the perception process in

the following two categories [14]: 1) Conventional Spectrum Sensing 2) Direct learning

from RF using deep learning/machine learning methods.

Conventional Spectrum Sensing

Conventional spectrum sensing has two potential classes based on the frequency band.

a) Narrowband SS: Narrowband SS is used when the frequency band is essentially nar-

row and the channel frequency response is flat. Technically, narrowband SS is preferred

when the bandwidth of the signal is smaller than the coherence bandwidth of the channel.

Specifically, in the SS process, CR senses the spectrum and detects vacant spaces, which

are also called spectrum holes. After detecting holes, characteristics of the detected holes

are estimated through spectrum sensing. Spectrum decision is then taken to select the

best available band inside the spectrum for the user with respect to its requirements.

The most popular narrowband SS methods are 1) Energy detection 2) Matched filtered

3) Feature detection.

b) Widdband SS: In wideband SS, SU scans the wide range of frequency channels sequen-

tially until a vacuous channel is discovered. SU exploits spectral opportunities in (time,
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frequency, space) over a wideband and detect multiple spectrum holes under one sensing

slot. Wideband SS techniques include 1) FFT-based detector 2) Wavelet-based detector

3) Filter band detector 4) Compressive sensing.

Direct learning from RF using deeplearning/machine learning methods

Due to the remarkable developments of machine learning (ML) and deep learning (DL)

techniques, it is now realizable to deploy such methods to learn the radio environment.

ML technique extracts patterns and learns the features from the huge volume of data.

Such features are then employed to learn the ML model, which adapt changes according

to the operating environment. Basically, ML methods have been classified into the fol-

lowing categories:1) Supervised ML 2) Unsupervised 3) Reinforcement learning.

Apart from perception, which makes CR wide-awake about ambient, learning, and rea-

soning are also an epicenter for overall CR operation to realize CR fully cognitive. Learn-

ing involves transmuting acquired spectrum information into valuable knowledge by using

classification methodologies along with certain hypotheses. Then such knowledge is used

to achieve certain objectives through reasoning. The reasoning is a CR potency to exploit

the knowledge obtained through learning to attain certain goals [12]. To sum-up over-

all CR operation: Perception is obtained through spectrum sensing measurements in

which CR becomes aware about RF activities. Followed by perception, CR learns the

patterns and observations information and transform such information into some useful

knowledge (classes or categories) through Learning. At last, Reasoning/Acting

facilitates CR to achieve specific goals based on knowledge acquired from learning pro-

cess. Perception, learning, and reasoning constitute a basic cognitive cycle, firstly avowed

by Mitola [12].

2.3.2 OFDM as a potential modulation candidate for CR

CR perception operation is heavily influenced by the waveform design, modulation

schemes, and propagation models for a particular network. In this regard, OFDM is the

most elegant modulation candidate for CR to meet its specific goals due to the adaptive

nature of OFDM modulation [15],[16]. OFDM has been implemented into many wire-



Chapter 2. Cognitive Radio Internet of Things (CR-IoT) and its applications 20

less technologies such as Long Term Evolution (LTE) mobile network, WiFi networks,

Wireless Regional Area Network in TV white spaces (TVWS), UAVs, and Vehicular tech-

nology [17]. OFDM fulfills the CR needs in a very elegant way where CR requirements

of spectrum sensing are provided by inherited FFT operation in OFDM. FFT module

in OFDM receiver can be deployed to accomplish spectrum sensing. Hence, there is

no need to use another technique to perform spectrum sensing explicitly. CR devices

efficiently utilize spectrum by minimizing interference between PU and SU. OFDM has

a feature to make subcarriers ON/OFF; thus, the waveform can be shaped to minimize

interference between PU and SU in the spectrum. Moreover, CR radios are adaptive,

and OFDM is an adaptive modulation technique in which FFT size, number of subcar-

riers, number of support antennas can be changed or modified according to the network

requirement. Such flexibility and adaptiveness have envisaged OFDM modulation as an

absolute choice for the PHY-layer modulation technique in the CR network [18]. In addi-

tion to this, the effect of propagation models on the operation of CR is diversified with

respect to the range of the deployed spectrum, such as cellular band, fixed wireless band,

and millimeter-wave. Therefore, the propagation model should be carefully selected for

the optimal CR operation [14].

Motivated by the aspiring performance and implementation of OFDM into

various notable technologies such as LTE, CR-IoT, UAV, V2V, and mm-wave

cognitive radio, we have considered OFDM modulated signal transmission to

develop an abnormality detection framework based on SA oriented ability for

AI-enabled CR-IoT network for our principle investigation of research work.

First of all, we analyze and investigate a few numbers of subcarriers and present a prob-

abilistic framework for jammer detection in the OFDM subcarriers.

After that, we take into consideration large of a number of subcarriers and develop an

approach that takes the advantages of generative models and the Bayesian networks

jointly to capture jammer attacks inside the CR-IoT network spectrum.
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2.4 CR-IoT applications

CR-IoT has been incorporated into a variety of applications [19].

In-Home CR-IoT will be incorporated into home appliances to improve quality of life.

Sensors will be deployed inside homes to perform home automation functions and home

energy management. Smart fridge, smart meters, and smart lights are an example

of intelligent home automation. For these examples, Wi-Fi access points are usually

installed, but this can cause severe Industrial Scientific and Medical (ISM) band inter-

ference. It is suggested to provide sensors with intelligent capabilities to alleviated

deterrent in the ISM band.

Smart Cities In cognitive cities, Information and Communication Technology (ICT),

and IoT are integrated to provide development in the cities. In smart cities, e-services to

users are provided to enhance their lifestyle. To provide e-services, continuous connectiv-

ity is required. Moreover, data gathering and user interaction are also important. Such

data acquisition and gathering requirements can be facilitated by deploying cognitive

capability in IoT.

Internet of Vehicles (IoV) IoV is a new paradigm in which vehicle control is achieved

through communication, power, and embedded systems with less or no human inter-

vention. The availability of spectrum for mobile vehicles is demanding to support and

facilitate IoV. Therefore, deploying CR functionalities into IoV will be an excellent solu-

tion to provide services on time.

Environmental Application The temperature measurement, waste management, pol-

lution monitoring, weather forecasting has been facilitated by deploying IoT network,

and developments are being reported in this field. A heterogeneous network with several

miniature devices are required to acquire such functionalities for environmental applica-

tions, and for such devices, static spectrum allocation is not viable. Therefore, IoT with

cognitive capabilities is a plausible solution for environmental applications.

Health Care In health care, temperature monitoring, fitness monitoring, heart rate sta-

tus has been around, and people are using such application to keep themselves streamline
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with their health conditions. However, spectrum allocation for such applications is static

and may become a challenge if a patient demands continuous monitoring of his/her health

condition. Therefore, in healthcare IoT, it is essential to deploy devices with cognitive

capabilities and functionalities to access the spectrum whenever it is required.

Social activities CR-IoT has been popular in social activities such as Intelligent Trans-

portation Systems (ITS), which use multiple sensors on the road and in vehicles to

monitor traffic and congestion on roads. In case of emergencies, Dedicated Short Range

Communication (DSRC) with a channel bandwidth of 10 MHz is allocated, which can

deliver small data over a short distance. Communication over longer distances requires

the exchange of huge data, and DSRC won’t be feasible. CR-IoT can eliminate this

problem in a more efficient way. The traffic light management system is also supposed

to incorporate cognitive capabilities in objects to perform a certain task related to traffic

on the road.

2.5 Summary

In this chapter, we discuss the significance of IoT network that has revolutionized the

technology world and has brought comfort to the people’s lives. Moreover, the demand to

incorporate intelligence and consciousness into cognitive devices inside the IoT network

has been described. We also discuss OFDM modulation as a potential candidate for

signal transmission in the CR-IoT network. Finally, the chapter highlights notable CR-

IoT applications that include home, healthcare, industrial, etc.
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Chapter 3

Physical Layer security in CR-IoT

network

Even though CR is a smart and intelligent network nonetheless, it can be vulnerable

to adversary attacks. This chapter describes the various threats in the CR network,

followed by attacks at CR’s physical layer. Afterward, security challenges for CR-IoT

are presented. More specifically, jammer attacks in CR-IoT are discussed, along with

the most relevant work associated with jammer detection techniques in the network.

3.1 Background

The proliferation of cognitive and smart wireless devices have panned out a high volume

of data. Due to such a climb in wireless traffic volume, efficient spectrum utilization

becomes critical and more exhausting. In this context, CR has emerged as a viable

solution to effectively manage spectrum-related challenges, as introduced in the last

section.2.3. Like other wireless networks, CR is vulnerable to various kinds of threats

and attacks. Basically, attacks in CR is an exertion to desolate legitimate user transmis-

sion.Accordingly, CR attacks include active threats in which invaders interact legitimate

users with wrong information. On the contrary, in passive threat of CR, attacker learns

25
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the communication medium and tries to obtain secure information. There has been

tremendous work being carried out to develop robust methods to make the CR network

attack-free. An overview of the attacks and detection methods for the CR network is

presented in [1].

Cognitive capability and reconfigurability attributes of CR are highly associated with

the security hazards in the network. Threats to CR’s cognitive ability include trans-

mitting the false report of sensing operation and blocking primary and secondary users

channels. In contrast, attacks related to the reconfigurability property of CR exploit

the configuration parameters during the acting phase of the CR operation and alter

parameters [2]. CR network suffers attacks on all layers (from the application layer to

the physical layer), and there are various attacks which are common to both CR and

traditional wireless network. We now present an overview of different kinds of threats

on all layers of the CR network.

1 − Physical Layer

The threats on this layer include Primary User Emulation Attacks (PUEA) [3], objective

function attacks [4] and jamming attacks [5].

2 − MAC Layer

Denial of serivices [6], Spectrum Sensing Data Falsification (SSDF) [7] and channel sat-

uration [8] are main threats at MAC layer.

3 − Network Layer

At this layer, Hello floods attacks [9], Sink hole attacks [10] are considerably frequent.

4 − Transport Layer

Threats include key depletion attacks [11].

5 − Application Layer

Software virus and malware are dominant threat at this layer [12].

Since our work mainly focuses on PHY-layer security, we will describe some notable

PHY-layer threats in CR network.



Chapter 3. Physical Layer security in CR-IoT network 27

3.2 PHY-Layer security threats in CR

Dynamic spectrum access (DSA) and spectrum sensing operations make security at PHY-

layer in CR more demanding and sophisticated. Therefore, various techniques have been

investigated and proposed by the researcher for the PHY-layer protection in CR. PHY-

layer security in CR cognitive cycle can be categorized into the following classes. 1)

Observation phase security 2) Action phase security.

Observation phase security

In the observation phase, spectrum sensing is vulnerable to various kinds of attacks.

The most notable perils are location-based attacks, Primary User Emulation Attacks

(PUEA), jamming attacks and Spectrum Sensing Data Falsification Attack (SSDF) [13].

PUEA attacks enforce SU to leave the PU channel or abstain from accessing the channel

by sending fake signals. There has been a lot of work being carried out in this area

that addresses PUEA attacks [3],[14] and [15]. Specifically, a localization-based defense

technique has been developed which authenticate legitimate user presence by observ-

ing location and signal characteristics [16]. The paper [17] describes a joint approach

that uses links based on location signature and cryptographic authentication method to

abstain from PUEA attacks in the CR network.

In SSDF threats, attackers transmit false information of sensing operation to the net-

work. SSDF attacks are common in cooperative sensing where false reports are being

sent by participating in secondary devices. The work [18] presents attack-aware collabo-

rative spectrum sensing approach against SSDF attacks in CR network. The paper [19]

describes method for the defense against SSFD attacks. Bayesian models based method

has been developed against SSDF attacks in CR [20].

Location-based threats include service denial attacks to the SU, which block the location

of the primary user [21]. Accurate location and tracking are necessary for PU in cognitive

radio so that SU can scan the activities of PU and consequently access the spectrum.

However, if there are attacks in the link, SU will be misled regarding the location and

existence of the PU, and eventually, interference between PU and SU will emerge. For
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accurate attack navigation, framework is presented in [22]. Jammer attacks are daunting

threats in the CR network that aim to block legitimate user transmission and degrade

overall network performance [23].

Acting phase security

Action-based security is considered during the action cycle of CR, and it is quite anal-

ogous to the conventional wireless communication network security. However, due to

the dynamic nature of CR, security is rather tough and complex as compared to other

wireless networks. Eavesdropping has been identified as a potential attack in the CR

network during secondary user transmission [24]. Consequently, there have been tech-

niques developed to combat such attacks, which include a multi-antenna-based method

and a relay-based technique.

3.3 CR-Network under attack-Jamming threats

Since its inception during world war II [25], the jammer has evolved as more power-

ful and intelligent than ever before in the wireless communication network field. In

this perspective, CR can be deployed to develop a smart jammer capable of learning

the behavior of adversary communication. On the contrary, CR can facilitate to learn

jammer behavior in the spectrum and, consequently, launch anti-jamming techniques to

eradicate jamming effects [26]. Primarily, jamming is a kind of interference caused by a

jammer (an external entity). Jammer aims to disrupts signal transmission by injecting

its own signals, thereby causing loss or change of information encoded in a signal, deplete

bandwidth, and degrade overall network performance. Jammer’s existence can be traced

back to world war II, where it was the first time utilized to block hostile transmission

and deceive pilots.

Jammer types and their associated model have been extensively investigated and studied

for the last couple of decades. Specifically, jammers for military and industrial applica-

tions have been an epicenter of many researchers and scientists [27]. We will focus on the

sensing-based jamming model. For more details regarding other jamming models refer
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[26]. There are two types of sensing-based jamming model [28].

1) Reactive Jammer: It starts sending signals whenever there is a transmission in the

wireless channel. Reactive jammer must precisely detects activities in the spectrum for

its operation to be effective. It is worth mentioning here that the reactive jammer is not

identical to the smart jammer. Smart jammer [29] is equipped with cognitive capabil-

ities capable of learning the environment and execute decisions. Smart jammer briskly

learns the transmission strategies, modulation type, and other main characteristics of

legitimate user signal.

2) Proactive Jammer: It transmits jamming signals with a pre-defined strategy with-

out having knowledge of the wireless channel.

There are more practical jammers exist that integrate multiple jamming functionalities

into one stand-alone jammer entity. In this context, a statistical jammer exploits tem-

poral activities in a channel and maintains a histogram of transmission. Based on such

knowledge, jammer launches attacks [30]. In [31], a strategic jammer is presented, which

learns anti-jamming strategies inside the network and seizes the user transmission. A

coordinated jammer is formulated in [32], which cooperates with other adversary agents

in a network to invade attacks jointly. There is a Markov jammer described in that

follows a Markov chain to pick a transmission band to be jammed [33].

After discussing potential jammer models and jammer types, we now present jammer

detection methods that have been investigated and developed in the literature. In this

perspective, [34], discusses method to reduce attacks in a wireless network. Spectral

contents based jammer detection is given in [35]. The [36] describes jammer detection

methods based on packet delivery ratio (PDR) and packet sensing ratio (PSR). These

methods detect random and reactive jammer. The authors present a synchronization

indicator in the transmission, which uses signal-to-jammer with noise ratio as a met-

ric to detect jammer [37]. In [38], a joint approach to jammer detection and spectrum

sensing is described and formulated. The work [5] and [39] consider jammer detection

based on cyclostationary features extracted from a wideband spectrum and using NN

technique. Table.3-A provides an over view of jammer type with associated detection
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Table 3-A: Different Jammer types at CR PHY-Layer with detection methods

Ref and Year
Jammer
Type

CR
Layer

Detection
Strategies

[40] 2012 Reactive Physical
Cross-layer
detection

[41] 2013 Reactive Physical
Cross-layer
detection

[42] 2013 Pulse Physical
Intrusion
detection

[38] 2015 Random Physical
Weight Energy

detection

[43] 2015 Spot Physical
Compressed sensing

and Energy detection

[44] 2015 Spot Physical
Compressed sensing
and Cylcostationary

features

[39] 2017 Spot Physical
Spectral correlation
and Neural Network

[45] 2019 Smart Physical
Dynamic Bayesian

approach

[23] 2019 Smart Physical
Dynamic Bayesian

approach

[46] 2020 Smart Physical
Dynamic Bayesian

approach

methods in CR network.

3.4 Security in CR-IoT

CR-IoT has acquired remarkable rendition in many applications ranging from home

automation to smart cities due to the manifestation of AI and cognitive capabilities

into IoT objects as introduced and discussed in section.2.2. CR-IoT covers a wide

range of applications such as health care, environment control, farming monitoring, and

many more. Even though CR-IoT is self-aware, intelligent, and more robust, it can be

vulnerable to various malicious threats. Consequently, the detection of such attacks and

then mitigating their effects during transmission is one of the fundamental objectives of

the CR-IoT network. In this perspective, [47] presents an overview of security challenges

in CR-IoT networks. The security requirements and their associated challenges have
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Table 3-B: Attacks on different layers in IoT network.

Sr.no Layers Attacks

01 Physical

Battery Drained [55]
Jammer Attacks [45]
Eavesdropping [56]

Hardware Malfunction [57]

02 MAC/NTW

Collision attacks [58]
Channel congestion [59]

Battery exhausted attacks [60]
Injecting false devices [61]

Message alteration attack [62]

03 Application
Malicious code [63]

Brute force attacks [54]
Cross-site scripting attacks [54]

been briefly discussed in [48]. The [49] describes a newly emerging framework based

on Software-Defined-Network (SDN) for security in IoT scenarios. The security and

privacy aspect of IoT networks have been investigated in [50] in which several attacks

are discussed in terms of complications and computation basis for the 5G IoT network.

A brief survey about the structure of malware attacks in CR-IoT networks has been

thoroughly described in [51]. Due to the ubiquitous connection of objects in IoT for

several applications, it is highlighted in [52] that the attacker can access and attack

user accessories (Google glasses, smartwatch, etc.) to learn the behavior of people.

Hardware vulnerabilities of IoT devices have been discussed and investigated in [53]. It

is mentioned that IoT devices remain exposed to physical interface and boot process

vulnerabilities, which can be manipulated remotely. Moreover, [54] discusses about the

security requirements and challenges for IoT network. Table.3-B gives an overview of

different attacks on layers in IoT network.

3.5 CR-IoT susceptible to Jamming attacks

Jamming attacks have been considered as most devastating and disrupting in the CR-IoT

network [26]. Jammer attempts to interrupt normal signal transmission and eventually
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corrupt the signals. Furthermore, jammer depletes the transmission bandwidth and

degrades overall network performance [64]. There has been relatively little work inves-

tigating and developing jammer detection techniques for the CR-IoT network in this

regard. The paper [65] studies jamming attacks for time-sensitive wireless applications

and present malicious attack detection based on jamming attack detection based on esti-

mation (JADE) scheme with implementation for a wireless network. A reactive jammer

detection scheme is presented in [66] for tactical wireless networks. A more recent work

related to the jammer detection for IoT scenario is discussed in [67] in which a reactive

jammer from another network access the transmission specification of a hidden terminal

and can interrupt with its terminal emulation (HTE) attack. Where as in [68] context-

aware hidden units attack for the CR-IoT network is presented. The effects of jamming

attacks on the IEEE802.11 network performance is investigated in [69]. The paper also

highlights the different types of jamming strategies. The authors propose a channel

assignment algorithm for the CR-IoT network under jamming attacks while considering

time-sensitive data traffic [70]. The work [71] describes jamming mitigation strategies for

multi-input-multi-output CR-IoT network. The paper [72] presents jammer resistance

technique that doesn’t require jammer knowledge in a system.

A Bayesian framework is developed by learning dynamic models of the spectrum data

based generalized state vector containing an OFDM modulation signals to detect jammer

for the CR-IoT network [45]. The proposed work detect jammer inside the subcarrier

of the OFDM modulation at two inferences levels of DBN model. Moreover, the work

[23] presents two implementations of the dynamic Bayesian network, namely, single and

bank-parallel DBNs for jammer detection in the CR-IoT network. The work proposes

to learn a dynamic model for subcarriers of OFDM either by using one single DBN or

deploying individual DBN (bank-parallel) for each sub-carrier of OFDM modulation.

Table.3-C highlights abnormalities detection (jammer) for CR and CR-IoT network.
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Table 3-C: Abnormalities (Jammer) detection in CR and CR-

IoT.

Note-able work for Abnormality detection

Ref and Year Approach Outcomes

[44] 2015 Cyclostationary Features Jammer Detection

[73] 2016 Q-Learning Approach Jammer Detection

[74] 2017 Neyman-Pearson Approach Jammer Detection

[45] 2019 Bayesian Inference Approach Jammer Detection

[23] 2019 Bayesian Inference Method Jammer Detection

[75] 2020 GAN and Bayesian Inference Abnormalities Detection

[76] 2020 Generative Model Abnormalities Detection

3.6 Proposed method comparison with other work

We aim to develop a jammer detection method based on deep learning and probabilistic

networks. Such a technique effectively handles higher dimension data and performs

state estimation. The proposed method is different from the work presented [43],[73],[27]

and [5]. In [39] jammer detection is achieved using cyclostationary feature extraction

and compressing sensing method. Whereas, [73] describes jammer detection method

based on Q-learning approach. The most recent approach for abnormality detection

(most probably jammer attacks) is presented in [76] based on generative models and [23]

presents jammer detection using dynamic Bayesian network. The generative models are

not good in dealing with uncertainties, and DBN can’t handle high dimensional data

[75]. Nevertheless, the modern intelligent network generates and communicates a vast

amount of wireless data. Therefore, a more robust and powerful method is presented

in this work by exploiting deep learning and probabilistic models jointly to perform

inference and prediction for high dimension signals and eventually detect abnormalities

in the spectrum. We proposed the DBN model for low-dimensional signals to capture
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jammer signals inside OFDM modulated transmission in the CR-IoT network presented

in chapter.4. chapter.6 then describes deep learning, and the DBN method is jointly

implemented to deal with high dimensional data to perform state estimation tasks and

eventually capture abnormalities and detect abnormalities.

3.7 Summary

This chapter presents security threats in the CR network, precisely several kinds of

attacks at the PHY-layer in the CR network. We discuss the limitations of the current

work related to the jammer detection in the CR-IoT network and highlight the proposed

method’s motivation in this thesis work.
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[38] J. Mohammadi, S. Stańczak, and M. Zheng, “Joint spectrum sensing and jamming

detection with correlated channels in cognitive radio networks,” in 2015 IEEE Inter-

national Conference on Communication Workshop (ICCW), 2015, pp. 889–894.

[39] T. Nawaz, D. Campo, M. O. Mughal, L. Marcenaro, and C. S. Regazzoni, “Jam-

mer detection algorithm for wide-band radios using spectral correlation and neural

networks,” in 2017 13th International Wireless Communications and Mobile Com-

puting Conference (IWCMC), 2017, pp. 246–251.

[40] C. Sorrells, L. Qian, and H. Li, “Quickest detection of denial-of-service attacks in

cognitive wireless networks,” in 2012 IEEE Conference on Technologies for Home-

land Security (HST), 2012, pp. 580–584.

[41] L. Qian, X. Li, and S. Wei, “Cross-layer detection of stealthy jammers in multi-

hop cognitive radio networks,” in 2013 International Conference on Computing,

Networking and Communications (ICNC), 2013, pp. 1026–1030.

[42] Z. M. Fadlullah, H. Nishiyama, N. Kato, and M. M. Fouda, “Intrusion detection sys-

tem (ids) for combating attacks against cognitive radio networks,” IEEE Network,

vol. 27, no. 3, pp. 51–56, 2013.

[43] M. O. Mughal, K. Dabcevic, L. Marcenaro, and C. S. Regazzoni, “Compressed sens-

ing based jammer detection algorithm for wide-band cognitive radio networks,” in

2015 3rd International Workshop on Compressed Sensing Theory and its Applica-

tions to Radar, Sonar and Remote Sensing (CoSeRa), 2015, pp. 119–123.

[44] M. O. Mughal, T. Nawaz, L. Marcenaro, and C. S. Regazzoni, “Cyclostationary-

based jammer detection algorithm for wide-band radios using compressed sensing,”

in 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP),



Chapter 3. Physical Layer security in CR-IoT network 39

2015, pp. 280–284.

[45] M. Farrukh, A. Krayani, M. Baydoun, L. Marcenaro, Y. Gao, and C. S. Regazzoni,

“Learning a switching bayesian model for jammer detection in the cognitive-radio-

based internet of things,” in 2019 IEEE 5th World Forum on Internet of Things

(WF-IoT), 2019, pp. 380–385.

[46] A. Krayani, M. Baydoun, L. Marcenaro, Y. Gao, and C. S. Regazzoni, “Smart

jammer detection for self-aware cognitive uav radios,” in 2020 IEEE 31st Annual

International Symposium on Personal, Indoor and Mobile Radio Communications,

2020, pp. 1–7.

[47] S. Hameed, F. Idris Khan, and B. Hameed, “Understanding security requirements

and challenges in internet of things (iot): A review,” Journal of Computer Networks

and Communications, vol. 2019, pp. 1–14, 01 2019.

[48] F. Khan and S. Hameed, “Understanding security requirements and challenges in

internet of things (iots): A review,” ArXiv, vol. abs/1808.10529, 2019.

[49] Y. Liu, Y. Kuang, Y. Xiao, and G. Xu, “Sdn-based data transfer security for internet

of things,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 257–268, 2018.

[50] O. Salman, I. Elhajj, A. Chehab, and A. Kayssi, “Iot survey: An sdn and

fog computing perspective,” Computer Networks, vol. 143, pp. 221 – 246,

2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128618305395

[51] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni, “Anatomy of threats

to the internet of things,” IEEE Communications Surveys Tutorials, vol. 21, no. 2,

pp. 1636–1675, 2019.

[52] J. Deogirikar and A. Vidhate, “Security attacks in iot: A survey,” in 2017 Inter-

national Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-

SMAC), 2017, pp. 32–37.

[53] G. Hernandez and D. Buentello, “Smart nest thermostat a smart spy in your home,”

2014.

[54] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash, “An in-depth

analysis of iot security requirements, challenges, and their countermeasures via

http://www.sciencedirect.com/science/article/pii/S1389128618305395
http://www.sciencedirect.com/science/article/pii/S1389128618305395


Chapter 3. Physical Layer security in CR-IoT network 40

software-defined security,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.

10 250–10 276, 2020.
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Chapter 4

Learning Dynamic Probabilistic

Models for CR-IoT Spectrum

To develop autonomous CR radios, it is essential to perceive how CR behaves in the

operating environment. In other words, understand how CR signals change as time

evolves and predicting the dynamic state of the CR in the system. Such understanding

facilitates estimating future states and assisting in modeling CR’s interaction with the

spectrum through dynamic models. This chapter introduces a framework based on the

Bayesian network to exploit temporal relationships among random variables involved in a

network. Dynamic Bayesian network is presented and proposed that model CR dynamic

behavior inside the spectrum with time evolution. Moreover, the abnormality detection

method is formulated and presented that provides a facility to detect abnormal signals

in the CR-IoT network spectrum.

4.1 CR-an actor in Interactive and Cognitive Environment

A cognitive radio (CR) is an adaptive and intelligent radio capable of learning the radio

environment and adjusting its operating parameters. An imperative feature of CR is the

strength of autonomous learning and self-programming. CR incorporates AI techniques

43
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based on machine learning (ML) and neuroscience methods to develop intelligent radio

devices. Such methods allow CR to tune its internal operating parameters according

to the variations and transitions occurring in the environment. In this perspective, CR

devices operate in a dynamic environment that imitates a spectrum evolving with time

and the interaction of CR with the spectrum encompasses a dynamic process driven by a

CR device. CR is an actor in the spectrum that imitates CR’s operating environment to

achieve specific goals (access channel for transmission). CR situates targets and strug-

gles to get those objectives by interacting with the spectrum and perform some actions.

Fig.4.1 shows CR as an agent which interacts with the radio environment and performs

certain actions to meet desire goals. CR, with its cognitive capabilities, tries to maintain

an equilibrium between its state and the environment. In this context, an Interactive

and Cognitive Environment (ICE) can be explained as [1],

A typical physical ambient equipped with cognitive capabilities and facilities

acquired from artificial intelligence endowment predicated on information

and communication technologies..

CR should be aware of its radio environment to achieve cognitive tasks, and in this

connection, spectrum sensing is considered a significant operation in CR. CR senses the

spectrum by sending signals using either single or multiple antennas during the cognitive

cycle and CR can be esteemed as an agent in the ICE, where the spectrum acts as an

environment for a CR. As time evolves, CR learns different models from experiences and

eventually becomes smarter by adapting the changes it has to apply to sustain dynamic

equilibrium and stability with the operating and external environment. CR should be

equipped with learning and reasoning abilities, and recent advancements in ML and

Software-Defined Radio (SDR) have expedited CR to achieve its learning and reason-

ing objectives successfully. SDR facilitates radio parameter implementation in software

that allows parameter tuning (transmit power, coding schemes, modulation schemes, and

sensing policy) in software without hardware intervention. ML provides the facility to

use learning algorithms that assist CR in regulating its parameters and adapt changes

according to the environment. To introduce a higher level of cognition and intelligence,
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self-awareness (SA) is introduced in CR devices as mentioned in section.2.3. Dynamic

environment evolves with time and encodes information about the dynamics of the sys-

tem for every time instant. Therefore, time statistics is a major ambassador that mimics

system dynamics. A time-frequency analysis tool can be deployed to extract dynamic

features from the signal to capture time information precisely [2]. Time-frequency retains

both time and frequency information of each signal inside the spectrum. Such features

may include bandwidth, frequency, and transmitting power. In the dynamic model, a

signal’s characteristics provide a method to discursively infer the hidden or unobservable

state for each entity. The spectrum represents a dynamic environment, while the signal

in the spectrum exhibits the observation through which the entity’s hidden state can be

measured. The signals inside the spectrum exhibit observations from which an impercep-

tible state of the objects can be measured in a dynamic environment. The representation

of the signal is the foundation that facilitates entities and interaction modeling. Signal

representation in terms of extracted features is prestigious and discerning in learning

dynamic models. Such features are heavily influential in the overall learning steps of

dynamic models. Therefore, features extracted to represent signal behavior together

with an associated model with optimal parameters are major steps to build a dynamic

model representing changing and interacting entities inside a spectrum. Stand-alone

models are used to represent single entities, while linked coupled models describe mul-

tiple entities in the ICE environment. Statistical and state estimation signal processing

techniques can be deployed to make CR capable of estimating observed entities’ current

state (including CR itself) and predicting future state. Such methods can be considered

as Bayesian filters to learn different models. Probabilistic Graphical Models (PGM)

employ Bayesian filters that are adaptive to model non-stationary objects’ actions and

behaviors where coupled multiple PGMs can be deployed to model interacting among

different entities.

PGM models have gained a lot of attention over the last decades to represent uncertainty

in many fields such as speech processing, computer vision, signal processing, sequential

data modeling, bioinformatics, probabilistic robotics, error-correcting coding theory, and
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Figure 4.1: CR as an agent in the operating radio environment [3].

artificial intelligence. PGM is a statistical model that captures the conditional inde-

pendent relationship between interacting random variables and encodes complex joint

multi-variant probability distribution using graphs. Inference and learning tasks can be

accomplished easily once the graph structure of PGM is known. Inference includes com-

puting the marginal distribution of one or more random variables, and learning covers

estimating the parameters of probability functions [4].

4.2 Probabilistic Graphical Models

For intelligent radio systems, machine learning and self-awareness are the fundamen-

tal building blocks where the chief objective is to capture hidden patterns or trends in

empirical data using statistical and computational techniques. Accordingly, the task

is to automatically identify and recognize data structure and learn a model based on

extracted features. Given new data samples, a learned model should generalize well

to provide useful information. To account for this, ML and SA heavily rely on many

fields such as statistical and probability theory, optimization methods, cognitive and

neuroscience, and calculus. PGM models are essential in all three learning types ( super-
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vised, unsupervised, and reinforcement) and have emerged to be the method of choice for

modeling uncertainty in many fields such as speech processing, computer vision, commu-

nication and signal processing, error coding, time-series modeling and etc. We can deal

with uncertainty in two ways, i-e, extensionally, and intensionally. Extension systems,

which are also called rule-based systems, are computationally efficient and robust, but

they are semantically weak in measuring uncertainty. In contrast, the intensional system

is computationally expensive and semantically strong.

Probability theory and graph theory have been integrated into PGM to provide a joint

probability distribution in terms of a well-represented graph model by exploiting condi-

tional independencies among the random variables. Graph models cope with uncertainty

and complexity problems efficiently and adequately in the field of engineering by relaxing

the computational burden of model learning and inference through conditional indepen-

dence assumptions [5].

There are many versions of graphical statistical models for instant, Bayesian network

(BN), dynamic Bayesian network (DBN), factor analysis (FA), Hidden Markov model

(HMM), factorial HMM, Kalman Filter (KF), Boltzmann machines, and the Ising model.

However, BNs present the most appropriate representation of relative influences among

real world facts and thus, has become one the method for solving problems contains

uncertainty [6]. BNs have been deployed in the field of AI to model complex interac-

tion among causes and interactions. However, Bayesian reasoning and inference methods

have recently gained attention and have become a method of choice in information fusion

obtained from different sources. We will focus on BN and explain its different versions

in the following sections.

4.3 A popular graph model defining relation among ran-

dom variables in a network

A model based on a graphical illustration that defines conditional dependence among a

group of random variables is known as BN. It is a special kind of model that is presented
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as a directed acyclic graph (DAG) [7]. In DAG, nodes show a graphical representation

of objects and events of the real world and are called variables or states. To describe

the causal relationship between nodes, an arc(edge) is used. For example, the causal

relationship between variables X̃1 and X̃2 is represented by an edge leading from the

cause variable directed toward the affected variable. Consider a graph model shown in

Fig.4.2 in which B̃ and C̃ are conditionally independent given Ã. A graphical model

comprises of group of nodes n̂ = [1, 2, 3....N̂ ], probabilities distribution P for each vari-

able and a set of dependencies (edges) between variables. Fig.4.2 depicts BN network

where nodes show a random variable, and the absence of arc describes conditional inde-

pendence assumption between variables. The probability of joint event P(B̃, C̃) is given

as [8],

P (B̃, C̃) = P(B̃ | C̃)P(C̃) (4.1)

The joint probability in a graph model is expressed as the product of the conditional

ሚ𝐴

෨𝐵 ǁ𝑐

Figure 4.2: A simple BN network.

probabilities for each node in a network [Ã1 , Ã2 , ....Ã1 ň] using the chain rule and is given

as,

P
(
Ã1 ...., Ãn̂

)
=

n̂∏
i=1

P
(

Ãi | Pa(Ãi)
)

(4.2)

Pa

(
Ãi

)
shows parent set of node. The joint probability distribution, the conditional

probabilities, and the structure of the BN can be deployed to find the likelihood of each

node holding one of its states. In the BN network, learning and inference are two main
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processes that are described in the following subsections.

4.3.1 Inference process in Bayesian Network

In BN, the inference is a process of finding the probability of each node’s state when

other variables are known. It is a process to infer the distribution adequately on a specific

group of variables provided other random variables are known in a network. To explain

inference, consider the partition H̃
L̂

= F̃
N̂
∪ G̃

M̂
and let F̃

N̂
= [f0, f1, f2, ...fN̂−1

] shows

set of hidden variables, and G̃
M̂

= [g0, g1, g2, ...gM̂−1
] represents visible variables, where

L̂ = M̂ + N̂ . Let R̃k be a subgroup of H̃
L̂

. The inference process aims to determine the

conditional distribution over R̃ given the observed variables G̃, which can be expressed

as P
(
R̃k | G̃

)
. if R̃k ⊆ G̃, we find that probability distribution function is trivially

equal to P
(
R̃k | G̃

)
=
∏K
k=1 δ(rk − gk), where δf = 1 for f = 0 and δf = 0 otherwise.

A nontrivial case arises when R̃k ⊆ F̃ . The Bayes rule is used to find the probability

distribution function (pdf) as [9],

P (R̃k | G̃) =
P (R̃k, G̃)

P (G̃)
(4.3)

The probability distribution function over R̃k and G̃ is obtained by marginalizing P (H̃
L̂

)

over the group of hidden variables as,

P (R̃k | G̃) =
∑
F̃ |R̃k

P (f, R̃k, G̃)P (G̃) (4.4)

Inference in BN can achieved by exact probability propagation in a single connected

network, and or by approximate inference such as Monte Carlo inference techniques,

Helmholtz machine inference, Gibbs sampling, variational inference, and etc.

4.3.2 Learning process in Bayesian Network

Learning includes the adjustment of the BN model parameters so that the pdfs defined

by the network adequately describe the observed data’s statistical behavior [9]. Learning
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techniques make it possible to complete the network’s missing beliefs in a case in which

conditional probabilities are unknown.

Consider M̆ i as a BN model associated with the parameters Φ̆i of some probability

distribution for the ith model with the given data Z̆i
L̂

. Let P (M̆) and P (Φ̆i | M̆ i) be the

prior distribution on the group of models and the space of parameters in these models,

respectively. Consider model generates some data, we can estimate a parameter Φ̆i over

a data Z̆i
L̂

as [9],

P (M̆ i | Z̆i
L̂

) =
P (M̆ i)

P (Z̆i
L̂

)

∫
Φ̆i

P (Z̆i
L̂
| Φ̆i)P (θ̆ | M̆ i)dΦ̆i (4.5)

The maximum likelihood estimate θ̆ for a given model M̆ is obtained from:

Φ̆i = argmax
Φ̆i

logP (Z̆i
L̂
| Φ̆i) (4.6)

We can define the goal of learning in scenario where all Z̆ are not observable in a model

as,

Φ̆i = argmax
Φ̆i

∑
χ

logP (Ỹ , X̃ | Φ̆i) (4.7)

P shows joint probability distribution specified by the model. The Expectation-Maximization

(EM) algorithm can be used to minimized cost function as:

J(Φ̆i) = −log
∑
χ

logP (Ỹ , X̃ | Φ̆i) (4.8)

4.4 Dynamic Bayesian Network

Dynamic Bayesian network (DBN) is preferable method in modeling the time-dependent

process, and it falls under the category of BN [10]. In the DBN model, conditional

dependencies between random variables are modeled across and within the time slots.

The Markovian condition should be satisfied for the states of any system to define it as

a DBN. We can express the hidden state variables X̃ and measured variables Ỹ over a
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time instant T̆ as,

P (X̃, Ỹ ) =
T̆−1∏
t=1

P (x̆t | x̆t−1)
T̆−1∏
t=1

P (y̆t | x̆t)P (x̆0) (4.9)

Three parameters are used to completely define DBN which are given as:

1 Transition pdfs that define temporal relativity between the occurrence of states.

2 Observation probability distributions that define observation node’s dependencies with

different nodes in a network at time t.

3 P (x̆0) shows initial probability distribution.

The nature of state variables (hidden and observable) form a DBN structure, which can

be continuous, discrete, or a mixture of both continuous and discrete. DBN undergoes

the following four tasks:

1. Inference: Given some known observation and initial probability distribution, esti-

mate pdf of hidden states.

2. Decoding: For the sequence of hidden states, determine the best-fitting probability

values.

3. Learning: Estimate the DBN parameters that best fit the observed data and deter-

mine the best model for the system.

4. Pruning: Determine the most important nodes in the DBN and eliminate less or

unimportant nodes from the network.

Some of the popular DBN models are now discussed in the following section.

4.4.1 The Markovian Model

HMM is a method for describing probability distribution on a sequence of observations

and has been implemented in many applications such as speech processing, computer

vision, time-series modeling, error correction and coding, and AI [11]. Fig.4.3 shows

HMM model where B̃1
t1 denotes observations over time t and Ã1

t1 is the hidden or latent

spaces from the observer. The probability distribution of a sequence of states and obser-
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vation is expressed in a HMM model jointly as [12],

P (ÃKt1:T , B̃
K
t1:T

) = P (Ã1
t1)P (B̃1

t1 | Ã
1
t1)

T∏
t=2

P (Ã1
t2 | Ã

1
t1)P (B̃1

t1 | Ã
1
t1) (4.10)

where, t ∈ [t1, t2, ....T ] shows time instants and k ∈ [1, 2, 3.......K] represent particular

ሚ𝐴𝑡1 ሚ𝐴𝑡2 ሚ𝐴𝑡3 ሚ𝐴𝑇

෨𝐵𝑡1 ෨𝐵𝑡2 ෨𝐵𝑡3 ෨𝐵𝑇

1 2 3 K

1 2 3 K

Figure 4.3: A simple HMM model.

state at time instant t. The state variable Ã1
t1 is discrete in HMM and can take integer

values. Given a sequence of observations in HMM we need to specify the followings:

probability distribution over initial state Ã1
t1 , the M×M matrix defining state transition

probabilities P (Ã1
t2 | Ã

1
t1) and the final network defining P (B̃1

t1 | Ã
1
t1). If the observations

are discrete symbols taking on one of D values, the output model can be fully specified

by a M × D observation matrix. P (B̃1
t1 | Ã

1
t1) can be modeled in many different form

such as Gaussian, mixture of Gaussian and neural network for real-value observation

vectors.

4.4.2 Linear filtering-Kalman Filter (KF)

KF is a well-known filter that is used to provide an estimation of unknown variables

provided some measurements observed over time. KF provides an estimation of a linear

dynamic system under Gaussian noise N ∼ (0, 1). The set of state-space equations can

define the state of an agent d to model its behavior as a linear dynamic system as [13],

X̃d
k = FX̃d

k−1 +BŨdk−1 + wk−1 (4.11)
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where F is a matrix which describes transition from previous state X̃d
k−1 to next state

X̃d
k , B is control input and wk−1 is noise which is wk−1 ∼ N(0, Q).

Z̃dk = HX̃d
k + vk (4.12)

where Z̃dk shows measurement or observation, H is a matrix containing measurement

values, and vk is measurement noise which is vk ∼ N(0, R). equation.(4.11) and equa-

tion.(4.12) present process model and measurement model respectively.

KF filtering comprises of prediction/propagate and update/correction stages. The pre-

diction stage is given as [13]:

Prediction

Prediction state estimation

X̃d
k = FX̃d

k−1 +BŨdk−1 (4.13)

Prediction error covariance

P dk = FP̂ dk−1F
T +Q (4.14)

Update

Measurement value

Ỹk
d

= Z̃dk −HX̃d
k (4.15)

Kalman Gain

Kk = P dkH
T (R+HP dkH

T )−1 (4.16)

Update state estimation

X̃d
k = X̃d

k−1 +KkỸ
d
k (4.17)

Update error covariance

P dk = (I −KkH)P dk−1 (4.18)

The term P is a state error covariance. In the update stage, Ỹk is calculated which is

measurement residual. Ỹk is also called as innovation and it is the difference between
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measurment Z̃k and the estimated measurement HX̂k.

To deal with non-linear systems, extended Kalman filter (EKF) [14] is a famous method

that deals with a non-linearity. Unlike KF, which deals with the linear systems, EKF uses

filtering based on Bayesian methods for the non-linear dynamic systems with Gaussian

noise.

X̃d
k = F(X̃d

k−1, U
d
k−1) + wk−1 (4.19)

Z̃d = H(X̃d
k ) + vk (4.20)

F and H are the non-linear functions and the goal is to make function linear using Taylor

series approximation. Given non-linear functions F and H, prediction and innovation are

computed respectively. To linearize the model about the current estimate, in each time

step, the first-order partial derivative of a function f with respect to a vector of each

model is determined to obtain Jacobian matrix as,

Fk−1 =
∂f

∂x
|xk−1,uk−1

(4.21)

Hk =
∂h

∂x
|xk (4.22)

To handle non-linear Gaussian problems, Cubature Kalman Filter (CKF), Unscented

Kalman Filter (UKF) can also be deployed as a variant version of KF. Particle filter is

also used in non-linear filtering problems.

4.5 Learning a Bayesian Model for Jammer Detection

CR can be considered as an agent of the IDE where spectrum represents an environment

in which CR signal changes and evolves with time, carrying information in frequency

bands. The interaction of CR with spectrum can be modeled as a dynamic process

driven by CR cognitive cycle. In this context, a probabilistic framework is considered

to devise and understand the dynamic relationship between CR and the spectrum. In a

generalized coordinate system, the moving agent state is defined as a generalized state
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vector comprising its position information and l times derivatives and can be expressed

as,

Xr = [xrẋr.......x
(r)
(l) ]T (4.23)

xεRd with d − dimension space. We can exploit the temporal dependence of the agent

by inferring current state dependence on the past values, i-e P (Xr,k|Xr,k−1). The Xr,k

describes the state of an agent(r) in a dynamic system at a given time instant k, and

Xr,k−1 shows agent state at previous time instant k − 1. Similarly, we can describe

CR behavior inside a spectrum evolving with time using generalized states (GS) vector

containing CR’s state information and derivatives. As mentioned in section.2.3.2, we

have considered OFDM modulation for PHY-layer transmission in a CR-IoT network.

The OFDM modulated signal consists of a set of N sub-carriers:

C = {C1, C2, . . . , CN}, (4.24)

each sub-carrier is divided into M symbols in time domain, forming a N × M time-

frequency grid respectively of the transmitted OFDM signal. For any given sub-carrier

consisting of M symbols, there is a temporal evaluation between consecutive symbols

that describe how amplitude and phase values are dynamically changing in a specific

sub-carrier. We can form a GS containing FFT information obtained from the received

OFDM signal in the receiver section. The motivation for choosing FFT output is

explained as:

First, to analyze the signal statistically using amplitude and phase infor-

mation.

Second, an anti-jamming technique can be implemented to detect jammer

before the signal goes to demodulation and mitigate jammer effect at this

level, thus reducing receiver complexity.

To evaluate the dynamics of the amplitudes and phases related to consecutive symbols

and how they are evolving with time we consider the derivatives (ȧ, ṗ) of both amplitudes
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(a) and phases (p), and the generalized state vector can be defined at each time instant

k for a specific sub-carrier as,

Xk,Cn = [ a p ȧ ṗ ] n = {1, 2, . . . , N}, Cn ∈ C (4.25)

Where a, p are amplitude and phase while ȧ, ṗ are corresponding derivatives. A set of

generalized state vectors corresponding to each sub-carrier is defined as:

X = {Xk,C1 , Xk,C2 , . . . , Xk,CN
}, (4.26)

After obtaining a set of state vectors describing the CR’s behavior in the spectrum

under normal situation (no abnormalities), the Switching Dynamic Bayesian Network

(SDBN) model can be implemented to model spectrum evolution as a dynamic system

and perform state estimation tasks. The proposed DBN is shown in Fig.4.4. DBN

𝒁𝒌−𝟏 𝒁𝒌

𝑿𝒌−𝟏 𝑿𝒌

𝑺𝒌−𝟏 𝑺𝑲

Time Evolution

P(𝑆𝑘|𝑆𝑘−1)

P(𝑋𝑘|𝑆𝑘)

P(𝑋𝑘|𝑋𝑘−1)

P(𝑍𝑘|𝑋𝑘)

Figure 4.4: Proposed DBN model comprises of two parts: (Discrete and Con-
tinuous) to detect jammer in the Spectrum.

enables to include dependencies between involved random variables as time evolves and

also facilitates the representation of different inference levels. Consequently, here the

lowest level of inference corresponds to the observed received carrier amplitude and

phase Zk information from the spectrum. States, Xk, represent a medium inference
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level which encodes continuous information. Super-states Sk correspond to the top level

of inference which manifest the discretization of the continuous states. Additionally,

arrows represent conditional probabilities between the involved variables. Vertical arrows

facilitate to describe causalities between both, continuous and discrete levels of inference

and observed measurements. Horizontal arrows explain temporal causalities between

hidden variables. For each temporal slice, DBN defines three conditional dependencies.

• P (Zk|Xk) defines the probability of obtaining an observation based on CR current

state inside the spectrum.

• P (Xk+1|Xk) shows the probability of moving to next state of a CR given current

state inside the spectrum.

• P (Xk|Sk) represents probability of being in a certain state given the active super-

state.

4.5.1 Steps to learn DBN model

Learning the switching DBN undergoes four essential steps. We now explain each step

in detail.

A) Learning superstates. Unsupervised learning alogirthm Self Organizing Maps

(SOMs) [15] is applied to obtain discrete regions of the spectrum named as superstates.

Discrete states or superstates acts as a switching variables that enable the activation of

associated dynamic models to predict future state (Xk+1). SOM receives Xk and pro-

duces a set of learned superstates S where similar information (quasi-constant deriva-

tives) are valid, such that:

S = {S1, S2, . . . , SL}, (4.27)

where Sk ∈ S and L is the total number of superstates. SOM can miniature multiple

dynamic patterns appearing on the same state-space coordinate.

B) Learn discrete transition models. By observing the activated superstate over

time, it is possible to estimate a set of temporal transition matrices encoding the prob-
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abilities of passing from a current superstate to another one. Such matrices take into

consideration the time spent in current superstate for encoding transition probabilities,

facilitating the estimation of P (Sk|Sk−1, tk), where tk encodes the time spent in the cur-

rent superstate Sk−1.

C) Regions properties. A region Sk is represented by the variables ξSk
, QSk

and ψSi
k

which encode the mean value, the covariance matrix of clustered states and a threshold

value where linear models are valid, respectively. Such a threshold is defined as,

ψSk
= E(dSk

) + 3
√
V (dSk

) (4.28)

dSk
contains distance between neighbouring super-states, E(.) and V (.) calculate mean

and variance of a input data respectively. This threshold describes a boundary that

determines where the model is valid.

D) Learn dynamic continuous models. Two models are required to analyze and

make inferences about a dynamic system evolving with time. These models are mea-

surement and dynamic models.

Measurement Model: This model defines the relation between observations Zk and

states Xk at time instant k and maps observations into a state such that:

Zk = HXk + vk (4.29)

where Zk shows measurement vector, H is a measurement matrix, and vk is measurement

noise that is assumed to be Gaussian, i-e vk ∼ N(0, R), and R is a covariance matrix.

Dynamic Model: The dynamic model describes the progression of the system state

with time. Basically, it explains the temporal dependence and exploits the relationship

between current and future state such that:

Xk = AXk−1 +BUSk−1
+ wk, (4.30)
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where A = [A1 A2] is a dynamic model matrix: A1 = [I2 02,2]ᵀ and A2 = 04,2. In

represents a square identity matrix of size n and 0l,m is a l × m null matrix. B =

[I2∆k I2]ᵀ is a control input model. wk represents the prediction noise which is assumed

to be Gaussian wk ∼ N(0, Q) for all Xk along with a covariance matrix Q. The variable

USk−1
is a control vector that encodes the spectrum’s action when it is inside a superstate

Sk and it depends on the super-state Sk corresponds to the active cluster at a time k,

such that:

USk
= [ȧSk

ṗSk
]ᵀ, (4.31)

Accordingly, it is possible to estimate the probability of obtaining a future spectrum’s

state given its present state P (Xk|Xk−1, Sk−1) for each superstate Sk−1.

4.5.2 Testing the learned DBN

To make inferences by employing the learned DBN, we proposed to use a probabilistic

switching model called Markov Jump Particle filter (MJPF) [16]. MJPF makes use of

Particle Filter (PF) with Sequential Important Resampling (SIR) algorithm along with

the bank of Kalman Filters (KF). Such a realization expedites an inference of random

variables at a discrete and continuous level in a coordinated fashion. Consequently,

MJPF provides inference at two levels.

Level 1: Continuous Layer: At this layer, the inference is achieved based on measure-

ments. Hence, it corresponds to the observed received spectrum information. Predictions

P (Xk|Xk−1) are performed by using a bank of KF according to the active super-state

Sk.

Level 2: Discrete Layer (Higher abstraction level): On this level, PF is used

to perform inference tasks to predict the next super-state based on the current active

super-state, i-e, P (Sk|Sk−1).

Applying MJPF makes it possible to detect abnormalities at two levels, i-e at continuous

and discrete layers. Accordingly, two abnormality measurements are defined for detect-

ing such abnormal behaviour inside the spectrum, based on the Bhattacharrya distance
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between prediction p(X∗k |X∗k−1(S∗k)) and

• probability of being inside the predicted superstate of particle p(X∗k |S∗k).

db1 = − ln

∫ √
p(X∗k |X∗k−1(S∗k))p(X∗k |S∗k)dX∗k ; (4.32)

• evidence p(zk|X∗k) to have solutions near the measurement:

db2 = − ln

∫ √
p(X∗k |X∗k−1(S∗k))p(Zk|X∗k)dX∗k ; (4.33)

where, (.)∗ indicates the considered particle and (S∗k) means that the prediction depends

on the superstate. The value of db1 relates to the similarity between prediction of the

state and the likelihood to be in the predicted superstate. The value of db2 relates to

the similarity between the state prediction and the continuous state evidence related to

the new observation in each superstate.

4.5.3 Performance evaluation of DBN under abnormal signals in CR-

IoT spectrum

In the last section, we introduce the GS to encode spectrum information as a state

and it’s first order derivative in the context of CR, and presented learning of DBN

based on GS. In the following section, we present the performance of DBN to detect

the abnormalities (jammer attacks) in the CR-IoT spectrum. Since we mentioned, DBN

provides anomalies at two levels; therefore, abnormalities are captured at two layers.

For the experiments, OFDM signal based on IEEE 802.11ah configurations is assumed

to be under consideration. The data is generated and modulated using 16-QAM, mapped

onto 64 sub-carriers, followed by cyclic prefix (CP) addition and transformed into the

time domain by using IFFT. The received signal is assumed to be affected by AWGN.

After CP is stripped off and FFT is performed and we form a GS according to the

equation.4.25. The output data is divided into two sets: one contains only the clean
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data (No jammer attack) for the training phase and the second set consists of the data

affected by the jammer attack for the testing phase. The jammer attacks any of the

sub-carriers in the OFDM signal according to the following scenarios.

• Scenario 0 (Normal Situation): This scenario is used to learn the DBN model

as shown in Fig.4.5(a) for the normal behavior of the CR network by applying the

clean data during the training phase. The learned DBN is utilized later on the

other scenarios to determine the deviations of the new behavior from the normal

situation. After learning the normal situation during the training phase we define

different scenarios to test the proposed method (testing phase). The anomalies

are detected based on the abnormality measurements db1 equation.4.32 and db2

equation.4.33.

• Scenario 1 (Single Jammer attack): When the jammer attempts to disrupt the

transmission of the primary user by attacking one symbol of the OFDM sub-carrier

as shown in Fig.4.5(b).

• Scenario 2 (Multiple Jammer attacks): In this case, the jammer attacks differ-

ent symbols of the OFDM sub-carrier, Fig.4.5(c).

• Scenario 3 (Jammer attack with low power): In this case, the jammer attacks

single symbol of the OFDM sub-carrier with low power, Fig.4.5(d).

The detection of the abnormal situation is based on a calculated threshold for each

abnormality measurement. Correspondingly, Fig.4.5(b) depicts the observation of Sce-

nario 1 where a single attack is present in the sub-carrier. By observing the abnormality

measurements, it is possible to detect and locate the attacked symbol in that sub-carrier

by comparing it with the threshold. The high peak means an abnormality and it is

greater than threshold as displayed in Fig.4.6(a) and Fig.4.6(b). In this case we are able

to detect the jammer at discrete and continuous levels.

In Scenario 2 the jammer attacks multiple symbols. Our model is able to detect mul-

tiple attacks at discrete and continuous levels as shown in Fig.4.7(a) and Fig.4.7(b).
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Figure 4.5: Different scenarios (a) Clean Data (b) Single Attack (c) Multiple
Attack (d) Single attack with low power.

The jammer in Scenario 3 attacks one symbol with lower power. In this situation, it is

possible to detect jammer only at discrete level (db1) as indicated in Fig. 4.8(a), while

at continuous level (db2) our method is not able to detect the attack, Fig.4.8(b).
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Figure 4.6: Scenario 1 Single attack (a) Abnormality detection at discrete level
(db1) (b) Abnormality detection at continuous level (db2).
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Figure 4.7: Scenario 2 Multiple attack (a) Abnormality detection at discrete
level (db1) (b) Abnormality detection at continuous level (db2).
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Figure 4.8: Scenario 3 Low power attack (a) Abnormality detection at discrete
level (db1) (b) Abnormality detection at continuous level (db2)

4.5.4 DBN comparison with conventional detector

Conventional Energy Detector (ED) has been the most popular spectrum sensing method

used in CR due to its simplicity. It compares the signal energy with a predefined threshold

to decide if the spectrum is occupied or not. Subsequently, we use adaptive version of

ED in order to provide a fair comparison with the proposed DBN. The detection is based

on two hypotheses:

H0 : r(t) = s(t); (4.34)

H1 : r(t) = sJ(t); (4.35)

r(t) is the received OFDM symbol. H0 represents the hypothesis of a normal situation

when the symbol is not attacked, while H1 represents the hypothesis of an abnormal

situation when the jammer has attacked the symbol. The decision of H0 and H1 is based

on a predefined threshold T compared with the energy of each received sample. The

performance of the ED is evaluated based on the probability of detection (Pd) which is
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calculated as follows:

Pd = P (Esi > T ) i = 1, 2, ...,M ; (4.36)

where Esi is the energy of the detected symbol i. We adopt the traditional ED provided

with a small memory, giving it a statistical knowledge of the symbol amplitude before

and after jamming. This knowledge gives us an adaptive threshold which is able to detect

the jammer. The threshold is obtained by calculating the difference values between the

amplitude of the attacked symbols before and after jamming, such that:

Di = ||si − sJi ||; (4.37)

where si represent the symbol before jamming and sJi after jamming. Accordingly, the

result is a set of euclidean distance D related to the symbols under attack, such that,

D = {D1, D2, . . . , DM}; (4.38)

The threshold (T ) is calculated as follows:

T = |E(D)|2; (4.39)

Where E is the mean value of (D). For ED we use the same data as for DBN in order

to see the difference between the two systems. As discussed in the previous sections, our

proposed DBN model is based on a statistical analysis of the sensed sub-carrier, it can

predict and estimate future states and deals with the whole OFDM symbols. On the

other hand, the conventional energy detector receives signal and performs energy test

statics for a given time instant. To make a fair comparison between the two systems

we provided the ED with a limited memory for memorizing previous and current state

(before and after an attack) of the symbol. The scenarios mentioned before are done

to see how our proposed DBN perform with different situations regarding the jammer

(changing its power, increasing the number of attacks). We compare the adaptive ED

with DBN by plotting the Probability of detection with respect to the number of attacks.
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The performance of ED degrade as the attacks increase where DBN is always able to
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Figure 4.9: Performance of ED and DBN in terms of Pd as the number of
attacks increases.

detect attacks with stable performance as shown in Fig.4.9. The advantage of our pro-

posed DBN model with respect to the adaptive ED is that it is able to detect and locate

attacked symbol in the sub-carrier, where the adaptive ED is not apt to identify affected

symbols. This is due to the fact that ED has a limited memory which allows it to sample

observed symbol at a given time instant.

4.6 Single and Bank-Parallel DBN implementation for N-

Subcarriers in OFDM

The investigation on multiple sub-carriers modulated with different M-ary QAM in the

OFDM signal under jammer attacks in the CR-IoT network was carried out and per-

formed further. In this context, the general objective while considering multiple sub-

carriers is to track the jammer’s behavior and analyze how it is jumping between differ-

ent sub-carriers, to detect the attacked frequency and predict the next sub-carrier that

the jammer might attack in the next time instant. Jammer detection is achieved by

implementing two proposed systems Single, and Bank-Parallel, and then performance

evaluation of both systems are examined. Additionally, the effect of changing SOM size

to QAM modulation is analyzed.
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The proposed DBNs realize a Probabilistic Switching Models (PSMs) which provide

agility to draw inference for each time slice about the spectrum at discrete and con-

tinuous levels by employing a combination of Particle Filter (PF) for discrete level and

Kalman Filter (KF) for the continuous level as briefly introduced in section.4.5. DBNs

are suitable for describing signals’ dynamics due to their capability of modeling future

instances based on observations in a probabilistic way. Such a characteristic is useful

when performing tracking and recognizing abnormalities in CR.

Accordingly, we consider a CR-IoT network consisting of a group of Cognitive Radio

Users (CRUs) and a jammer trying to disrupt the communication as shown in Fig. 4.10.

CRUs sense the spectrum continuously and try to detect the abnormal situation. The

radio spectrum contains OFDM waveforms based on IEEE 802.11ah standard, which is

adopted in this work. OFDM divides the band channel into many narrower sub-carriers

allowing different users to transmit simultaneously with different orthogonal frequencies.

In the work presented and discussed in 4.5, only one sub-carrier is picked to employ the

Jammer

N Sub-Carriers

Sub-Carrier 1
256- QAM modulated

Sub-Carrier 4
16- QAM modulated

Sub-Carrier 3
64- QAM modulated

Sub-Carrier 2
4- QAM modulated

Time ( Q  OFDM-Symbols )             

Jammer attacks

Figure 4.10: Spectrum of the M-ary QAM modulated OFDM users in the CR-
IoT Network under jammer attacks.

proposed method supposing that OFDM use 16-QAM for all the sub-carriers in the set

equation.4.26. Instead, here we consider multiple sub-carriers modulated with different

QAM (4, 16, 64, and 256-QAM according to the standard IEEE 802.11ah). Exploiting

FFT output which consists of amplitude and phase of each symbol makes the spectrum

sensing easier and less complex where CRUs can scan the entire grid. Moreover, by

using the Amplitude and Phase information at this level, permits to implement a jammer

detection technique before demodulation of the signal which reduces the receiver com-
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plexity. The jammer attacks at different time instants by jumping from one frequency

into another. We assume that there is perfect synchronization between the transmitter

and receiver. To evaluate the dynamics of the amplitudes and phases related to consec-

utive symbols and how they are evolving with time, we consider the derivatives (ȧ, ṗ) of

both amplitudes (a) and phases (p), and the generalized state vector is formed at each

time instant k for a specific sub-carrier as given in equation.4.25. To infer and detect

the jammer, we proposed to use the MJPF introduced in section.4.5.2. As mentioned

before, the MJPF uses Particle filter to make inferences at discrete level. Additionally,

each considered particle employs a Kalman Filter corresponding to the dynamic model

learned for the corresponding value of the superstate at the continuous level.

4.6.1 Single Dynamic Bayesian Network

As shown in figure 4.11, we use the set of state vectors corresponding to each sub-carrier

4.26 in to learn a single DBN. During the Offline Learning Process, X is considered

as input of the SOM which outputs a set of neuron S. In this approach, S consists of

the discretization of the entire spectrum. However, single DBN keeps a memory of the

spectrum’s behaviour in time and frequency domain. Additionally, a single abnormality

indicator is provided during the online process.

DBN𝜲
Offline Learning 

Process

Figure 4.11: Single DBN.

4.6.2 Bank-Parallel Dynamic Bayesian Network

In this approach, we don’t have any correlation between the sub-carriers, where the spec-

trum’s behaviour at each sub-carrier Xk,Cn is processed individually (Fig.4.12). Accord-
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Figure 4.12: Bank-Parallel System.

ingly, for each Xk,Cn we learn a DBN, such as:

DBN = {DBN1, DBN2, . . . , DBNN}, (4.40)

In the online process, a MJPF is applied on each DBNn providing an abnormality signal,

such as:

db1 = {db11, db12, . . . , db1N}, (4.41)

4.6.3 Simulation Parameters

We use the OFDM system based on the IEEE 802.11ah standard. We use a simulated

OFDM signal consists of N = 64 sub-carriers and Q = 1000 symbols. The source gener-

ates random independent data. Each sub-carrier of the OFDM signal is modulated with

different QAM modulation. For our experiments, we pick four sub-carriers with differ-

ent QAM modulation (4, 16, 64, 256). The received signal is assumed to be affected

by additive white Gaussian noise (AWGN) with zero mean and power spectral density

σ2
w. Data is cleaved into two data sets: first set contains clean data (without jammer

attacks) which is used during the training phase and the second one includes jammer’s

attacks which is used during testing, immediately after the cyclic prefix (CP) is removed

and FFT is performed on received data. We consider that jammer launches attacks into

multiple sub-carriers with equal power.
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Table 4-A: Precision measurements for a Single-DBN

SOM size 4 16 64 128 256 512 1024

AUC (%) 98.98 99.75 99.05 99.89 99.71 99.93 99.385

4.6.4 Performance evaluation of Single and Bank-Parallel DBN

The performance of Single and Bank-Parallel DBN models are evaluated under multiple

attacks and results are shown in terms of ROC curves which consist of Probability of

Detection (Pd) and Probability of False Alarm (Pf ), and Area Under Curve (AUC). The

abnormality measurement (db1) is used to calculate the (Pd) and (Pf ) respectively. (Pd)

is the number of times where abnormalities (related to jammer attacks) are correctly

identified, while (Pf ) are the times where anomalies are wrongly assigned to normal

symbols. 4.13 illustrates the ROC curve obtained from Single DBN when a different

number of neurons is selected. It is evident from 4.13 and Tab 4-A. that 1024 neurons

are the most appropriate for a Single DBN.
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Figure 4.13: ROC for a Single-DBN under attacks while varying SOM size.

Whereas, Fig.4.14(a), 4.14(b), 4.14(c) and 4.14(d) present Bank-Parallel DBN ROC

curves. For every ROC curve, each DBN deploys different QAM and optimum SOM size

is analyzed. In case of 4-QAM, the optimum SOM size is 4 (see Fig. 4.14(a) and Table.

4-B). In 16-QAM is 4 (refer Fig. 4.14(b) and Table. 4-B). For 64-QAM, is 8 (see Fig.
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4.14(c) and Table. 4-B), and for 256-QAM is 8 (refer Fig. 4.14(d) and Table. 4-B).

We believe that the optimum number of neurons depend on the data and the number of

symbols. For the simulated data used in our experiments and from the obtained results,

we can notice that the Bank-Parallel system performs well for a small number of neurons,

where the Single system performs well for a large number of neurons. This is due to the

fact that Single-DBN uses the generalized state vector consisting of a large number of

samples (4Q symbols), which is 4 times the number of symbols used in Bank-Parallel

system. After using the optimum number of neurons obtained previously to make a
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Figure 4.14: ROC FOR for an individual DBN in Bank-Parallel-DBN employs
different M-QAM under attacks while varying SOM size (a) 4-
QAM (b) 16-QAM(c) 64-QAM (d) 256-QAM.

fair comparison between the two systems. The performance of both systems is somehow

similar as shown in Fig. 4.15.
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Table 4-B: Precision measurements for a Bank-Parallel-DBN

SOM size

4 8 16 32 64 128 256
4-QAM 99.99 99.89 96.65 97.82 96.64 98.23 96.38
16-QAM 99.86 99.79 99.51 99.7 97.46 96.51 91.76
64-QAM 99.16 99.89 99.61 99.67 96.31 95.11 97.13
256-QAM 98.55 99.83 98.87 99.2 96.1 91.36 95.35

4.6.5 Discussion

We can deploy either of the proposed methods depending on the receiver complexity

and specific task. For instant, Single DBN learns single vocabulary for all sub-carriers,

whereas, Bank-Parallel DBN learns multiple vocabularies corresponds to each sub-carrier

which increases complexity. Subsequently, implementing bank parallel DBN is suitable

for the source characterization tasks. Tracking the jammer and keeping its profile history

in the entire spectrum is much more convenient in Single DBN.
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Figure 4.15: Performance comparison between Single-DBN and Bank-Parallel-
DBN in terms of ROC.



Chapter 4. Learning Dynamic Probabilistic Models for CR-IoT Spectrum 73

4.7 Dynamic switching models in the context of incremen-

tal learning framework

To introduce AI capabilities into CR devices facilitating a higher SA level, an incremen-

tal learning process of dynamic switching models is presented that considers new expe-

riences in the operating environment (i-e, abnormal signals, jammer signals, or change

of transmitting scheme by the source). An incremental process allows the CR agent

to learn a dynamic switching model from the stored data. The learned DBN model

can predict and estimate situations that deviate from the previously known scenarios

(yet learned models) and adopts to discover new experiences in an increment fashion.

Such a procedure can be achieved through incrementally learning of switching dynamic

models. A reference or initial model is esteemed that exhibits a dynamic equilibrium

situation between an agent and the environment (CR and the spectrum), and increment

learning is perceived as adding new knowledge to that standard reference model (initial

model). Consequently, abnormality arises when there is a deviation from the dynamic

equilibrium, and a new learned mode captures such an abnormal situation. An agent can

exploit such a new scenario when experiencing changes in the reference model’s dynamic

equilibrium due to the addition of new learned models. Fig.4.16 depicts an overview of

the incremental learning process. Such a scheme allows CR to learn models associated

with new experiences incrementally. We can embed such knowledge in CR devices by

using dynamic models to enhance intelligence, i-e, SA.

We can begin with a simple initial model lm = 0, (where lm ∈ [0, 1, 2, ....LM ], and LM )

are total learned model), in which an agent remains immobile over time. Under this

situation, an unmotivated KALMAN Filter (UKF) is deployed to track agent location.

UKF is based on a random walk model such that [17]:

Xk = FXk−1 + wk, (4.42)
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According to the equation, the agent remains in a quasi-static location, i-e Uk ∼ 0. In

this condition, only noise can affect an agent’s state. It is a similar realization of null

force filter (NFF). NFF [18] is an active filter that assumes a static agent behavior over

time, leading Xk+1 = Xk.

During the inference process, either a normal situation or an abnormal situation emerges.

In the case of a typical problem, the model uses equation.4.30 to perform state estimation

and there is no need to learn a new model as the situation is normal.

On the contrary, under an abnormal scenario, it is possible to learn a new model m+1 by

utilizing anomalous data. The new model is learned using GS, which contains extracted

abnormalities at time instant k and added to the learned model data-base. The overall

process evolves with a time that facilitates introducing SA capabilities into the CR

devices in a network and eventually incrementally detect abnormalities. We have
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Figure 4.16: Incremental Learning Process when low dimensional radio signals
are considered.

described attributes of the SA module for CR devices in Table.4-C. Accordingly, it can

be observed from the table that the SA module should be generative and discriminative,

and the DBN model provides these two properties where generative includes learning

of dynamic models based on generalized state, and the discriminating property involves
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Table 4-C: Proposed SA model attributes
Self-Awareness Properties Contribution

Generative
Learning models based on generalize

state vector
containing OFDM signal information

Discriminative
Abnormal signal measurements

(Jammer Signals)

Interactive
Interaction between user and

jammer signals
present in a Networt

Hierarchical
Three levels DBN

(Discrete state, Continuous state,
Observation state)

Temporal reasoning
Future state prediction by using

generalized state vector

Uncertain reasoning
DBN provides to make
probabilistic reasoning

abnormality signal measurements. SA should provide a different level of inferences,

and in this context, DBN gives inferences at three levels (continuous, discrete, and

observation). The fundamental ability of SA is to predict the future state of an entity,

and DBN hastens state estimation and indicates a future state of an object by using a

probabilistic framework. Finally, DBN facilitates uncertain reasoning, and such ability

is also a fundamental property of the SA model.

Undoubtedly, the proposed DBN expedites to acquaint SA abilities into CR-IoT devices,

implemented in an increment fashion where the equilibrium between states is maintained,

and some fluctuation arises, the abnormal situation is observed, and a new model is

learned based on abnormal condition.

4.8 Discussion

In this chapter, we begin with the motivation to model CR behavior inside the spec-

trum as a dynamic process evolving with time. We present note-able state estimation

methods such as PGM, BN, and DBN models, and highlight their role and impact in the

signal processing domain. Followed by, jammer detection framework is presented for the
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CR-IoT network spectrum. The proposed method uses DBN model comprised of dis-

crete and continuous levels to perform inferences about spectrum evolution. In addition

to this, Single and Bank-Parallel DBN systems have been introduced and discussed to

detect jammer attacks inside OFDM modulated signal transmission.

The proposed DBN model captures abnormalities and can effectively handle low-dimension

data (few subcarriers) of the OFDM signal transmission. Nevertheless, to deal with high-

dimensional data (a higher number of subcarriers), we proceed in a direction to investi-

gate deep generative models from the deep learning field. Consequently, deep learning

models, specifically generative models based on probabilistic inference such as VAE, have

been studied and analyzed to handle high dimensional data. In this context, Chapter.5

highlights deep generative models and their application. Chapter.6 presents a method

based on the generative model and DBN that deal with high dimensional data efficiently

and capture abnormalities in a CR-IoT spectrum. We also describe the realization of

NFF in the deep learning model(VAE) by introducing an activation regularizer (AR). AR

ensures learning of distinct latent spaces describing different situations. Such structure

facilitates learning the model incrementally and detects abnormal scenarios.

4.9 Summary

Overall, this chapter presents a probabilistic framework to model CR behavior inside

the CR-IoT network spectrum evolving with time. Popular probabilities models such as

PGM, BN, DBN, HMM, and Kalman Filters are described. In this work, a switching

DBN model is proposed, formulated, and implemented to capture jammer signals inside

the CR-IoT spectrum based on generalized state vectors. Followed by this, Single and

Bank-Parallel DBN models have been introduced and implemented for jammer detection

in the OFDM modulated CR signal. The proposed method deals with low dimension data

and detects jammer attacks. This chapter presents how DBN can facilitate SA ability

by exhibiting the SA model’s specific characteristics, implemented incrementally.
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Chapter 5

AI and Deep Generative Models

for CR-IoT network

This chapter gives insight into the SA implementation in computing systems to develop

an autonomous network. Various AI techniques for the CR network is described. Fol-

lowed by this, deep learning models are presented along with the jammer signal classifi-

cation framework. Moreover, the chapter also highlights popular generative models such

as GAN, AE, and VAE.

5.1 Computing systems with Self-Awareness concept

Latest advancements in the field of Internet of Things (IoT), Wireless Sensor Network

(WSN), Vehicle to Vehicle communication (V2V), UAV, and Software-Defined Networks

(SDN) have made computing systems highly complex, heterogeneous, diverse, decentral-

ized, and dynamic. Such a surge in the complexity of computing systems present obsta-

cles in discerning and perceiving system behavior during run time and anticipate system

response online. One of the emerging concepts to cope with this significant computing

system issue is to incorporate self-awareness (SA) in a system to introduce autonomous

characteristics. Such a facility allows the computing system to adjust its armature and

79
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tune parameters in the context of its functioning environment. In a nutshell, it enables

systems to remain conscious of themselves. SA has drawn a lot of attention over the

last couple of decades and has been penetrated in the field of computer vision and com-

munication engineering. As a result, SA has become a fundamental ingredient of the

Intelligent Computing and Communication System (ICCS). It can be defined as [1],

SA is a cognitive and intellectual characteristic of a human agent that observes

and processes self-information.

In the research and scientific avenue, the term “Autonomic Computing” has been used

to represent computing infrastructure that accustoms automatically to meet the applica-

tion’s requirements. Autonomic Computing has been inspired by the biological nervous

system and was introduced in 2001 [2] to represent self-managing systems. Autonomic

computing systems (ACS) can manage themselves without any human interaction to

meet the objectives. Such systems can acclimate to changes triggered by a system’s

state or state of its operating environment, and are are self-configurable, self-managed,

self-optimized, self-healing, and self-protected [3]. Fig.5.1 depicts basic ACS system

which include automatic controller to adapt changes in a system during run-time [4].

SA has also been proposed and implemented in software engineering and in robotics [6].

Knowledge

Analyze 

Monitor

Plan

Execute

Components

Sensors Influencer 

Managed Element

Automatic Controller 

Autonomic Element 

Figure 5.1: The basic architecture of Autonomic System [5].
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Where in robotics, much of the work focuses on replicating forms of self-awareness as

observed in humans. The other emanating applications such as cloud computing [7],

interactive music devices [8], Internet of Things [9],[10], wireless sensor networks [11],

automotive systems (self-driving cars) [12], mobile wireless network [13],and heteroge-

neous multi-core platforms on-the-fly computing [8], have employed SA functionalities

to deal gracefully with the issues of run-time resource limitations.

Implementing SA in the emerging future 5G wireless network is quite apparent because

of the resource constraints limitation, dynamic nature of the network, the high volume

of data, and adversaries attacks in a network. Specifically, SA has been identified as

a potential candidate in the CR-IoT network to deal with such challenges [14],[15] and

[16]. For instance, devices in a network equipped with SA capabilities will perform

self-monitoring in the operating environment to enhance spectral efficiency and adjust

parameters to minimize interference with the adjacent devices. SA-enabled CR system

can learn normal behavior inside the spectrum and detect any abnormal situation that

deviates from normal operation. Fig 5.2 shows SA capabilities equipped in a cognitive

device of CR-IoT network. In this context, refer section.4.5 which describes method

for low dimension data applications, and section.6.2 discusses approach based on gen-

erative model and Bayesian network for high dimension data application.

CR-IoT Network
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Pressure sensor
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Proximity sensorCamera
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Learned Self Aware (SA) Model 

SA-based AI capabilities into 
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Radio signals
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Memory

Exteroceptive sensors
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Figure 5.2: Bringing SA capabilities into cognitive mobile device in a CR-IoT
network.
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5.2 From Cognition to AI in CR-IoT network

The rapid proliferation and modern advancements in the Internet of Things (IoT) have

driven towards the accessibility and provision of smart sensors, ubiquitous connectivity,

and robust processing capabilities for many CR-IoT applications. Nevertheless, with-

out the ubiety of cognitive capabilities, many significant IoT applications may endure

limited or restricted. Consequently, it is imperative to equipped objects with cognitive

capabilities, thereby proposing and presenting a CR-IoT network. CR was introduced

in 1999 [17], and it is an emanating technology that has revolutionized the digital world.

CR is an adaptive, self-aware radio and aware radio which can configure and change

parameters in the pursuit of flexibility and adaptability according to the environment.

It is equipped with dynamic spectrum access and self-configuring network capabilities.

CR has been deployed in cognitive software defined networks [18], smart grid communi-

cation networks [19], intelligent cognitive vehicular communications and networks [20],

IoT networks [21]. The basic CR characteristics are given as follows:

1) Awareness (Perceptions or Observations) It collects information about the radio

environment and extracts parameters and their descriptions.

2) Adaptive (Reasoning or Reconfiguration) To optimize and improve network

operation, it alters and modifies the radio parameters.

3) Cognition (Learning) It does the following:

a) Perceive and interpret the environment

b) Execute the decisions on the actions and eventually learn the consequence of such

actions on the radio performance.

c) Assesses the performance of the network.

• Perceive and interpret the environment.

• Execute the decisions on the actions and eventually learn the consequence of such

actions on the radio performance.

• Assesses the performance of the network.
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In CR, Cognitive Engine (CE) integrates and incorporates the aforementioned attributes

and is liable to execute cognitive tasks. CE is a cognitive envoy in a CR that inspect

and evaluate the situation and find out the appropriate responses to the cognition and

carry out decisions. Wireless networks have become more sophisticated, dense, and com-

plicated because they offer various services (e-g text,images and videos) to users than

ever before [22],[23]. Consequently, CR meets the following challenges in the emerging

5G and wireless networks:

1) CR devices will require time and cost (more hardware capacity) to learn the exhaus-

tive and precise information about the radio environment of highly dense 5G and other

wireless networks, consisting of several base stations, mobile devices, and other cognitive

objects.

2) The nature of traffic volume in the 5G network is highly dynamic due to the users’

demands for several services (e-g voice, audio, text, image, or videos). Such highly vig-

orous data brings a hurdle for CR to learn and predict accurately.

3) With the evolving concept of cloud computing and remote servers in various wireless

networks, multi-dimensional resources (time, frequency, or spatial) at different layers

(physical or network layers) coordinate to provide users’ services. Hence, making the

CR job more complicated and sophisticated.

As limitations mentioned above, there has been a magnificent consideration and sub-

stantial motivation to incorporate more robust and diverse capabilities into CR by intro-

ducing AI functionalities. Inspired by implementing AI techniques into computer vision

and robotics fields, AI has become the best option for CR to achieve more assorted goals.

AI brings a facility of self-awareness to the CR devices by enhancing the level of learning

and reasoning. The main functions of AI in CR can be summarized as follows:

1) In a deep and divergent wireless network, it can learn a more rigorous environment

pattern and execute appropriate actions yet with insufficient and inaccurate information

of the environment.

2) Trace and track of CR devices in a network are accessible and possible because the

AI agent can maintain a network’s history and evolution profile. Therefore, it is easy to
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track back the activities of devices in a system.

3) AI agent can evade complex mathematical formulation due to the efficient reasoning

capability and hence, can instantly learn the impact of the action on the environment.

Motivated by AI agent benefits, it has been realized and implemented into various filed

of IoT networks. Following the discussion of SA into computing systems in this section,

we now present various AI techniques for the CR-IoT network.

5.3 Various AI technique in CR-IoT Network

Various AI techniques have been proposed and implemented to achieve awareness, learn-

ing, and CR’s reasoning functionalities. These AI techniques can be divided in to fol-

lowing categories according to the specific application and objectives.

5.3.1 Artificial Neural Network (ANN)

ANN is a parallel computing-structure comprised of non-linear functions with the tunable

parameters to achieve a target output. ANN consists of several artificial neurons called

perceptrons, developed in the early 1950s by the scientist Frank Rosenblat, inspired by

the work of neuro-physiologist W.Mccollach in 1943. ANN consists of neurons intercon-

nected and organized at different layers to perform specific tasks (such as prediction or

classifications) in a network. The most popular ANN networks for CR-IoT networks are

nonlinear perceptron networks (NPN) [24], radial basis functions network (RBFN) [25],

and multi-layer perceptron networks (MLP) [26].

ANNs are robust models that learn network dynamics and extract patterns, features,

and configurations from the objects. ANNs are highly adaptive and can be trained at

any time. Due to such flexible nature of ANN, they have been deployed into various

CR-IoT applications. For instance, [27], ANN model is used to hand off scheme in CR

networks [27]. ANN has been deployed to accomplish spectrum sensing tasks for CR-IoT

network [28]. Multi-dimensional spectrum sensing is presented for CR network using AI

technique in [29]. Data-driven for quality improvements for spectrum sharing in CR-IoT
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network [30].

5.3.2 Metaheuristic technique

A highly impenetrable and heterogeneous CR network contains search and optimization

problems that involve complexities such as large dimensionality, non-linearity, group of

mixed variables, and non-convexity. Therefore, classical algorithms based on a mathe-

matical formulation can either become ineffective or inapplicable. To endure such prob-

lems, optimization algorithms have been proposed that can find an approximate solution

while learning and establishing the relationship between various components in a CR net-

work. Such algorithms are called Metaheuristics [31] introduced for the first time in

1986 [32]. Metaheuristics techniques (MT) don’t explicitly provide the exact optimal

solution of a problem; instead, it gives the near-optimal solution in a computationally

efficient manner.

MT methods are implemented in the CR network, where finding an optimal solution

with objective function aim to identify a set of rules that follow the training examples

during learning. The overall objective is to find a hypothesis that maximizes the train-

ing example of the target concepts. MT methods such as genetic algorithm (GA), tabu

searching and ant colony optimization (ACO) have been very famous in CR-IoT network

to achieve several tasks. The work [33] describes spectrum allocation technique in CR

network using genetic algorithm. ACO algorithm is implemented to achieve spectrum

utilization and fairness in CR network [34], whereas, in [35] ACO is used to perform

energy optimization in mobile IoT network. The paper [36] discusses task allocation

strategies in CR-IoT network using ACO algorithm.

5.3.3 Rule-Based System

For a specific domain, rule-based systems (RBS) are implemented, which extract rules

according to the applications and apply such rules to the decision-making process inside

a system. RBS was introduced in early 1980 and comprised essentially two components,

a rule base, an inference engine. The deployment of RBS in CR is quite tempting and



Chapter 5. AI and Deep Generative Models for CR-IoT network 86

obvious. Using RBS, a radio can instantly learn or deduce actions for a given input. The

rule-base reasoning (RBR) system is designed and analyzed based on cognitive engine

(CE) for wireless rural area network applications. RBR CE has been implemented and

evaluated for cognitive radio networks [37].

5.3.4 Ontology-Based System

In the AI field, OBS has been used since the 1980s. OBS system provides format and

explicit depiction of a set of conceptions in a domain [37]. It is used to reason about

the attributes of the domain of interest. Following essential components constitute an

OBS system 1) Classes 2) Instances 3) Attribute 4) Relations. To facilitate machine

processing, ontology language has developed. In CR, a radio based on OBS can logically

deduce facts to understand the characteristics of itself and other radios in a network [38].

5.3.5 Probabilistic Models

Probabilistic models comprise statistical networks and have been implemented to analyze

the complex dynamic behavior of random processes [39]. PM contains observable and

hidden states of an inevitable process to characterize the occurrence of the observable

states. Such a model can be deployed to recognized observation with similar attributes

by selecting a model that will likely produce the observed sequence. Hence, PM can

be implemented as an observation model in the CR network to achieve awareness and

recognized received sequences. The work [40] describes variational Bayesian inference

method to achieve spectrum sensing in a cooperative manner for cognitive radio net-

works. Bayesian estimator is deployed to perform sensing operation in CR network [41].

Spectrum sensing in CR is accomplished using HMM model is presented in [42].

5.4 The principles of Deep Learning

Machine learning (ML) methods have reshaped human life and revolutionized many

fields such as IoT, vehicular to vehicular communication, healthcare, transportation etc.
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ML techniques are used for image classification, object detection, weather forecasting,

abnormality detection from the spectrum of CR-IoT networks, time-series prediction,

and many more. However, the ML technique meets certain limitations. For instance,

precise features must be selected, extracted, and transformed into an appropriate rep-

resentation vector from the raw data set. Such features are then used to train an ML

model to perform either classification or prediction tasks depending on the applications

[43]. On the contrary, deep learning methods have gained attention due to the ability to

extract more complex and dense hidden features (spatial, temporal) from the raw data

and possess powerful processing capabilities in generalizing the relationship of input

data. Moreover, deep learning models exhibit good performance on large scale data

while machine learning model may encounter over-fitting problem when dealing with

huge amount of data. This is due to the deep and complex architecture of deep learning

models.

Deep learning models are competent of erudition more complicated models and functions

in the form of multiple-level representation structures composed of non-linear modules

transforming the raw input from one level into another higher abstraction level. DL

models predict and cluster objects/things using a neural network (NN) network com-

prised of many layers of neurons trained on a given data set. The intuition behind deep

learning is an artificial neuron that mimics the human brain functionalities, as shown in

Fig.5.3. DL network comprises several layers containing many artificial neurons, and the

most common DL architectures consist of the following models: Multilayer Perceptrons

(MLP), Convolutional Neural Network (CNN), and Recurrent Neural Networks (RNN)

[44]. In DL, feed-forward comprises several artificial neurons oriented across multiple

layers inside a network that describes a process of mapping f(x0, φ) RN0 → RNL of

input vector x0 ∈ RN0 to an output vector xL ∈ RNL through L iterative processing

steps.

xi = fi(xi−1, φi), i = 1, 2, 3..I (5.1)
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Figure 5.3: Human brain versus artificial neuron.

where, xi = fi(xi−1, φi) : RNi−1 → RNI is essentially a mapping performed by the last

Ith layer in the NN network. The fi function may involve random variables, which makes

mapping stochastic. The Ith is known as fully-connected or dense layer and it can be

expressed as:

fi(xi−1, φi) = σ(Wixi + bi) (5.2)

where, bi ∈ RNI , Wi ∈ RNINI−1 and σ(.) is an activation function. Weights and bias

are the parameter of the fully connected layer. There are various kind of activation

functions which can be used according to the given problem for a specific application.

Such activation functions include: Linear, ReLU , Tan, Sigmoid and Softmax [45].

The training of NN network involves training set and label set which are deployed to

train the model. The goal of training is to minimize cost function with respect to the

parameter φ, which is expressed as,

L(φ) =
1

M

M∑
p=1

l(x∗I,P , xI,P ) (5.3)

Where, L(φ) is loss function and xI,P is an output of the NN.
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5.4.1 Deep Learning for PHY-Layer CR-IoT

ML techniques have been implemented in communication systems to perform signal pro-

cessing tasks at PHY-layer. Specifically, recent works also present many ML methods for

the PHY-layer CR-IoT network. Concurrently, DL methods have also evolved as one of

the potential techniques and have been deployed to attain cutting-edge results in various

CR-IoT applications. Signal processing techniques at PHY-Layer for communication

system possesses strong foundations in information theory and statistics. And such sig-

nal processing techniques use mathematical models that involve linearity and Gaussian

statistics. However, many practical communication systems encounter non-linearities

that arise due to devices in either transmitter or receiver. To address such challenges, it

is imperative to deploy DL, which doesn’t require an explicit mathematical model and

can achieve the optimal solution of non-linear problems.

Moreover, due to the significant advancements in Graphics Processing Unit (GPUs), it is

now possible to realized complex and dense NN network which are more energy efficient.

NNs have demonstrated to achieve high efficiency in resource utilization using high-

performance GPUs. Besides, DL methods are more robust in learning a full end-to-end

communication system and can optimize the entire communication model for PHY-layer

signal processing [46].

Various DL architectures such as CNNs, RNNs, and restricted Boltzmann machines have

been implemented into multiple fields and obtained remarkable results. Specially, CNN

network has gained significant attention in computer vision, image processing, and speech

recognition. CCN networks have evolved from NN that perform convolution operations

on a given input in any of its layers. CCN architecture essentially consists of several lay-

ers: pooling layer, convolution layer, and fully connected layer. The sparse connectivity

and parameter sharing characteristics of the convolution layer have drastically improved

the ML method’s capabilities and performance. The kernel filter dimension is less than

the input data dimension in sparse connectivity, which achieves sparsity connections

between input and output data. Such compact kernel dimensions increase efficiency and

lower memory demands. Parameter sharing makes use of the same parameters for several
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neurons inside a network. Fig.5.4 depicts CNN architecture comprises of several layers.

Extensive learning of CNN can be helpful in training and testing. Every image inputted

will go via a chain of convolution layers with filters (Kernals), pooling, and fully con-

nected layers (FC) and eventually apply Soft-max function to measure an object ranging

between 0 and 1 probabilistic values. The Fig.5.4 below depicts how CNN processes an

input image and classifies the object based on its value.

Features Learning Classification Input Data

Figure 5.4: A simple CNN architecture consisting of several layers.

5.4.1.1 Automatic Jammer signal classification in the spectrum of CR-IoT

network

Deep learning methods have recently gained attention for signal classification, automatic

modulation recognition, and classifying normal and abnormal signals in the CR-IoT spec-

trum [47],[48]. In the radio domain covering a broad range of networks from Bluetooth

to 5G networks, classification operations help infer signal identification, determine the

modulation type of a received signal, and discover abnormalities in the spectrum. There

has been a lot of work proposed and developed to perform radio signal classification

by the researcher community. [49] presents end-to-end learning model for radio signal

recognition. Signal identification for intelligent radios is demonstrated and discussed in

[50]. Zheng et al.[51] describes signal classification method for cooperative radio classi-
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fication. According to the recent advancements and developments in the signal classifi-

cation domain, classification techniques are categorized into the following categories as

follow:

1) Maximum likelihood estimation (MLE): MLE techniques exploit statisti-

cal knowledge and properties of the received signal to perform estimation based on

Maximum-Likelihood (ML) [52]. ML methods are quite complicated, but their perfor-

mance deteriorates in the dynamic radio environment [53].

2) Feature extraction based techniques: Feature extraction methods capture

relevant and noteworthy features from the signals of the radio spectrum. Such attributes

of the signal include (amplitude, phase, frequency, cyclo-stationary, and correlation coef-

ficients). Such features are used to train the ML model for classification. Havryliuk et

al. [54] presented a work which deploys wavelet transform and ANN classifier to track

audio frequency in a network. In [55], cyclostationary features are used for detection

and classification of OFDM signals. In [53] modulation techniques such as Binary Phase

Shift Keying (BPSK), Quadrature Phase-Shift Keying (QPSK), Frequency-Shift Keying

(FSK) and Minimum-Shift Keying (MSK) have been classified using S-transform based

features. Also the comparison between different classifiers is presented under different

range of Signal to Noise Ratio (SNR).

3) Deep learning models: The DL model’s capability has also mesmerized the

performance of signal classification output, and a lot of researchers have developed rev-

olutionary methods that demonstrate promising results. The inherent delicacy of the

DL method is its ability to learn automatically features from the data. Li et al.[56]

demonstrated deep learning model for modulations identification. In [57], high order

cumulants are used to learn deep learning model to perform modulation recognition.

Tang et al.[58] describes the method which uses DL model (GAN) to automatically

recognize modulation in cognitive radio network. [59] LSTM network is deployed as a

deep learning model to perform wireless signals classification. Wang et al.[60] present

data-driven approach which deploys CNN model for automatic modulation recognition
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in a CR. In [61] modulation classification is achieved using DL and signal constellation

diagrams. Deep learning methods can be deployed to classify legitimate and jammer

signals in the CR-IoT network spectrum.

In this context, we consider a CR-IoT network in which mobile devices are communicat-

ing with a base station (BS) using OFDM modulated signals. A smart jammer is also

hypothesized to be present in a network which launches malicious attacks during the reg-

ular transmission. Such attacks disrupt normal communication and mislead the devices.

Therefore, it is essential to perform classification operations to differentiate between

normal and abnormal signals. Hence deep convolution neural networks (DCCN) have

been used to accomplish classification tasks for the described scenario. In this work, two

popular models (AlexNet and GoogLeNet) have been investigated and deployed.

Motivated by the promising results of DL methods, following work has been

carried out:

1) Realize deep learning models (AlexNet and GoogLeNet) to classify normal

user transmission and jammer attacks (with high and low power) inside the CR-IoT

spectrum.

2) Collection of two features set of the OFDM modulated signal transmission. One

set is obtained using continuous Wavelet Transform (CWT) in terms of scalograms rep-

resenting spectrum contents in the form of an image. At the same time, the second set is

obtained using Fast Fourier Transform (FFT), which gives complex data samples. These

samples are then converted into the images to be used in the training of DL models.

3) Two models are trained based on two training sets and then tested. The perfor-

mance is evaluated in terms of ROC curves.

CWT transforms OFDM signals into scalograms, which represent images encoding time

and frequency information of the spectrum. Scalograms are obtained by taking abso-

lute value of CWT signal coefficients. CWT filter bank is computed first to create

the scalograms. Before acquiring the scalograms, the filter bank is deployed to obtain

the CWT of the 1000 successive samples of the OFDM data. After that, scalograms
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are obtained from the coefficients. The generated scalogram are transformed into RGB

images. Second data set is obtained using FFT transform. FFT operation provides com-

plex samples of OFDM signals. Therefore, it is necessary to convert such data samples

into RGB images. As mentioned, two deep learning models are used, which take images

as an input. We now describe both model’s configuration and their implementation

setup. Fig.5.5 shows scalogram (left side) and FFT based images (right figure).

Figure 5.5: Scalogram (left image) and FFT images (right image).

• AlexNet: AlexNet played a significant role in making CNN popular in computer

perception with its substantial and extensive architecture. The AlexNet structure

contains eight layers. The initial five layers are convolutional, and the final three

layers are fully-connected. Features are extracted by the first two convolutional

layers that are connected to overlapping max-pooling layers. The 3rd and 4th con-

volutional layers are directly linked to the fully connected layers. ReLu activation

function is applied to convolutional layers and fully connected layers. The final

output layer uses the Soft-max function that produces 1000 different label classes

[62]. AlexNet takes RGB images of size (256x256x3), where 256x256 shows image

pixels and 3 is RGB channels. The overall architecture contains approximately

650,000 neurons along with other 60 million parameters. Dropout layers are also

employed inside a network to avoid over-fitting during the training phase. Fig.5.6

depicts AlexNet architecture.
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Figure 5.6: Alexnet network architecture.

• GoogLeNet: GoogLeNet has been evolved as a result of inception networks that

are robust neural networks. Until now, three versions of inception networks or

modules have been released. GoogLeNet is a robust model for detection and clas-

sification tasks. The overall structure is oriented as 22 deep layers and 27 pooling

layers along with inception modules. The pooling layer is connected to each incep-

tion module at the end. There are a total of 7 million parameters in the GoogLeNet

structure. It takes an input of size (227x227x3) [63]. Fig.5.7 describes the archi-

tecture of inception model of GoogLeNet.

5.4.1.2 Implementation

The implementation phase consists of training and testing phases, as shown in Fig.5.8.

Parameters of both models are modified according to the given scenario and problem

in this work. The models are capable of classifying spectrum signals into the following

classes: reactive jammer with high power (RJHP ), reactive jammer with low power

(RJLP ), and normal signal spectrum (NSS). Accordingly, for AlexNet, the number of

the output layer is taken three instead of the default number, which is 1000. The other
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Figure 5.7: Inception model of GoogLeNet.

configuration parameters are set as, mini-batch size 64 with learning rate 0.0001, and

227 x 227 image resolution is taken for AlexNet. Adaptive Moment Estimation (ADAM)

is used as a learning method for both models as it combines the benefits of RMSPro

and momentum method and achieves high classification accuracy in comparison with

Stochastic Gradient Descent Method (SGDM) and RMsProp. For GoogLeNet, input

image resolution is 224 x 224, mini-batch size 64 with learning rate 0.0001 are selected

The training of both models follow the given steps: 1) Obtain the time-frequency repre-

sentation of the OFDM modulated signals using CWT and FFT technique. And, convert

the generated data into RGB images. 2) Each generated image is labeled according to

the classes. 3) For training, 10000 images per signal category are collected, and for test-

ing, 1000 labeled images per signal category. The training is done using the computing

system NVIDIA GEFORCE CPU CORE i7. After the models have been trained, a test

set is applied to infer the performance. The performance of models is analyzed in terms

of the ROC curves.

5.4.1.3 Performance Evaluation

To test the performance of both models (AlexNet and GoogLeNet), two data sets,

namely, FFT-based images, dataset, and CWT-based images dataset, are utilized to

conduct the experiments. Both models’ performance on two datasets is evaluated using
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Figure 5.8: Implemented scenario of deep learning models using FFT and
CWT based images to classify jammer signals.

a classification accuracy plotted against various SNR values as shown in 5.9(a) for FFT-

based image dataset and 5.9(b) CWT-based image dataset. It can be observed from

5.9(a), the classification accuracy of AlexNet model slightly better than the GoogLeNet

for FFT-based image dataset. On the other hand, for CWT-based image dataset,

GoogLeNet classification accuracy is more nuanced than the AlexNet, as depicted in

Fig.5.9(b). Fig.5.10 presents comparison analysis between deployed models and simple

CNN model (trained on both datasets). It can be observed that both DL models out-

perform the simple CNN model. Classification accuracy comparison is plotted at various

SNR values of all three models on both data sets. It can be analyzed that at 20dB SNR,

AlexNet performance is better than the GoogLeNet on FFT-dataset, and GoogLeNet

classifies better than the AlexNet on CWT-dataset. However, a simple CNN doesn’t

perform well on both datasets. Hence, we can deduce the following conclusion from the

implemented method:

Classification of abnormal signals (jammer attacks) can be achieved using either of the

deep learning models. However, the input data’s pre-processing technique for training

the DL model is crucial and must be selected according to the application. As pre-

sented in this work, there is a subtle difference in model performance on both datasets.
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Therefore, it is exceptionally motivating to use the FFT-based images dataset. This is

because most recent wireless technologies, such as WiFi, LTE, 5G, and CR-IoT networks,

etc., deploy OFDM as a potential modulation technique due to its various advantages.

Moreover, the OFDM communication system contains a built-in FFT-module. Thus,

it is easy to extract FFT information in the OFDM system receiver without deploying

any other transformation technique. Such information can then be converted into RGB

images and use to train the DL model as presented in this work.
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Figure 5.9: Accuracy plots a) ALexNet and GoogLeNet models performance
on FFT-based images b) ALexNet and GoogLeNet models perfor-
mance on CWT-based images.

5.5 Deep Generator Model

CR-IoT network deploying data-driven SA capabilities based on AI techniques will

achieve next-generation wireless networks requirements and eradicate prevailing issues of

the current wireless network (such as spectrum access and utilization challenges). These

wireless networks generate, exchange, and communicate diverse data (text, images, and

videos) in a massive quantity; therefore, it is essential to learn and discover the data

transmission pattern to develop autonomous and intelligent systems. In this context,

discriminative models have been very famous and made remarkable developments in

computer vision and smart systems domains. Discriminative models (DM) facilitate to
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Figure 5.10: Performance comparision of AlexNet and GoogLeNet with con-
ventional CCN model on FFT and CWT based images.

capture and discover hidden structure from the trove of data in an unsupervised fashion.

However, DM becomes limited in a machine learning problem where direct learning a

target is intractable. Moreover, DM models are not efficient in predicting out-of-samples.

For a data-driven AI models with such an enormous amount of data in a network, the

objective is to develop algorithms and build models to investigate and infer data in an

unsupervised manner. That brings the need to implement a new class of models known

as Generative Models (GM) [64]. GM models have been around for a long time and

recently gained attention in data-driven SA based on AI applications. GM apprehends

probability distribution from the input data samples and then samples from that prob-

ability distribution to generate output or target samples [65]. Such a generated output

samples follow the input data samples closely. To summarize, it does:

Generated sample pmodel(x̂) wants to be similar to training data pmodel(x̂)

DGM models have been implemented into robotics, speech recognition, and computer

vision. GMs are good at exhibiting the following functionalities [64]:

1) Producing artificial yet realistic images.

2) Generating contents with predefined sentences and words.

3) Predicting and completing the missing or incomplete segments of data.
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4) Capable of working with multi-modal targets or outputs.

5) GMs can manipulate original images based on specific features. They can change the

image events (image-to-image translation).

GMs have been classified into two classes:

A) Energy-based models: In an energy-based model, the energy function is

deployed to define the joint probability functions. Boltzmann machines and deep belief

networks are examples of energy-based models.

B) Cost function model: In this model, the cost function is used to define loss

between input and generated samples. It includes models such as GANs and AE.

The most popular deep GM models are now discussed.

5.5.1 Auto-encoder (AE)

AE is an outstanding GM class based on neural networks (NN) architecture that learns

a concise and compact representation from high dimensional data and transforms it into

low-dimensional data. AE encodes high dimension data into a low-dimension vector

and decodes the data from that low dimension vector into a high dimension. AE is

constructed and designed to learn data by extracting inherited regularities of a given

input sample. AE was proposed in the early 1980s [66] and became famous in recent

decade. The architecture of AE comprises of two networks [67]: Encoder and decoder,

as shown in Fig.5.11.

Encoder: It is a multi-layer NN architecture that transforms input data into the low-

dimension vector z. The low-dimension vector z is called a latent vector or bottleneck

layer.

Decoder: It is consisting of NN layers that essentially perform the opposite job of the

encoder, i-e, reconstructs output from the bottleneck layer.

The AE model is described by the encoder function g(.) and parameter φ and decoder

function f(.) and parameter θ. The latent space learns z = gφ(x) from input data and

reconstructs x̂ = fθ(gφ(x)). The loss or object function of AE is the difference between
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Figure 5.11: Autoencoder architecture comprise of encoder and decoder.

original and reconstructed output and is given as [68],

LAE(θ, φ) =
1

n

n∑
i=1

(xn − fθ(gφ(xn)))2 (5.4)

There are different types of AE present in the literature, such as sparse AE, denoising

AE, stacked AE, and variational AE. We shall be specifically describing VAE in the next

section.

5.5.2 Variational Auto-encoder (VAE)

VAEs are GMs that have emerged as one of the powerful and compelling techniques to

unsupervised learning of complex data distribution. VAEs are the type of AE based

on Bayesian and variational inference methods. The intuition behind VAE is that it

learns distribution in the form of z from the input data x, unlike traditional AE in which

input data is transformed into a smaller latent vector, and it reconstructs output data

x̂ by sampling from the latent space distribution of z. VAE has been implemented in

computer vision, speech processing, robotics, and IoT.

VAE comprises of encoder and decoder network as shown in Fig.5.12. W , W ′,b and b′
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represents weight matrices and bias vectors of encoder and decoder respectively. Addi-

tionally, φ = (W, b) and θ = (W ′, b′) are the training parameters use to train encoder

and decoder of VAE respectively. The encoder parameter qφ maps input data xk to the

latent vector zk which represents data in a more compact form. The decoder pθ attempts

to project back the latent vector zk to the input space and produce reconstructed data

x̂k. Therefore,

zk = qφ(zk) = f(Wxk + b), (5.5)

x̂k = pθ(x
k) = g(W ′zk + b′), (5.6)

where, f(.) and g(.) show activation functions of encoder and decoder respectively. We

𝜇

𝜎2

Encoder 𝑞∅( Τ
𝑧
𝑥) Decoder 𝑝𝜃 Τ𝑥 𝑧

Latent layer  

Input x
Reconstructed input 

𝒙z

Figure 5.12: VAE architecture comprise of encoder and decoder.

can define the relationship between input data x and the latent space z as 1) Prior

pθ(z), 2) Likelihood pθ(x|z), 3) Posterior pθ(z|x). To reconstruct or generate a

sample x̂ that approximate or closely follow input data x. We follow the following steps

by assuming that the real parameter θ∗ for the distribution is known.

1) From a prior distribution p∗θ(z), sample zi.

2) After that, xi is produced from a distribution p∗θ(x|z = zi).

Parameter θ∗ maximizes the probability of generating real data sample that is expressed
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as,

θ̂ = argmax
θ

n∑
i=1

logpθ(x
i) (5.7)

And, data generation process which involve encoding vector,

pθ(x
i) =

∫
θ
pθ(x

i|z)pθ(z)dz (5.8)

Computing p∗θ(x
i) is not traceable. Therefore, to narrow down value space to facilitate

faster search, a new approximate function pθ(z|x) in output is introduced parameterized

by φ. Hence in VAE, pθ(x|z) defines a probabilistic decoder of VAE, and qφ(z|x) defines

the encoder of VAE. Fig.5.13 show the graphical representation of VAE model.

The VAE loss is called as evidence lower bound (ELBO) loss which contains two part,

x z
𝒑𝜽 Τ𝒙 𝒛

𝒑𝜽 Τ𝒙 𝒛𝒒𝝋 Τ𝒛 𝒙
𝒑𝜽 𝒛

𝐳~𝑵(𝟎, 𝟏)

𝜽

∅

≈

Figure 5.13: VAE graphical model.

i-e, reconstruction loss which determines similarity between decoder output and input,

and Kullback–Leibler (KL) loss which defines the difference between two probability

distributions. Moreover, K.L ensures that learned µ and σ are closed to the target

distribution. The VAE loss is expressed as [69],

LossV AE = Eq(z/x
i)[Logpθ(x

i/z)]−DKL(qφ(z/xi)‖pθ(z)) (5.9)
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5.5.3 Generative Adversarial Network (GAN)

GANs have brought a state-of-the-art revolution to the deep generative models. GANs

are the popular class of GM and have proven potential methods in many fields due to

its remarkable data generation competence. GAN takes the advantages of unsupervised

machine learning that automatically devise and learn the structure in input data so that

model can be used to generate output probably could have been drawn from the origi-

nal data set. Theoretically, GAN deploys a supervised learning approach to accomplish

unsupervised learning by producing synthetic data. GANs are very effective in training

a GM by considering a given problem with two sub-networks: Generator Ggenerator and

discriminator network by D [70].

The two models are trained concurrently and establish a min-max game between gen-

erator Ggenerator and discriminator Ddiscriminator. The Ggenerator attempts to deceive

the Ddiscriminator by providing real-world images close to the original from random noise

vector z, whereas Ddiscriminator, gets better in distinguishing between real and synthetic

data. Both networks amend themselves in the best feasible way to obtain targets. The

GAN architecture is shown in Fig.5.14 [70]. The GAN model Ggenerator takes noise

Generator

G(z)𝒑𝒛 𝒛

𝑹𝒂𝒏𝒅𝒐𝒎𝑵𝒐𝒊𝒔𝒆 𝒛

Generated data 

Discriminator

D(x)

𝟏

𝟎
𝑹𝒆𝒂𝒍 𝒘𝒐𝒓𝒍𝒅 𝒅𝒂𝒕𝒂

𝒙 ~ 𝒑𝒅𝒂𝒕𝒂 𝒙

𝑹𝒆𝒂𝒍

𝑭𝒂𝒌𝒆

Figure 5.14: GAN model.

vector z as an input defined by prior probability pz and then train the model to learn
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the distribution of generator pg, by projecting back G(z, θg) from z to data space. The

Ddiscriminator takes an input image X̃, then determines a projecting back D(X̃, φd from

X̃) to a single scalar that is probability of the image X̃,pdata. Ddiscriminator output near

to 1 if X̃ is a real image from real data set pdata, whereas, it gives 0 means X̃ is from

pg. Ddiscriminator network aims to maximize its cost function and Ggenerator attempts to

minimize its cost value. The total object function is given as,

LossGAN = Epdata [Log(Ddis(X̃)] + Ez pz(z)[log(1−Ddis(Ggen(z))] (5.10)

5.5.4 Energy-based GM models

Energy-based GMs have been proposed and studied texture synthesis tasks and hand-

written digits classifications [64]. Boltzmann Machines are such models that are based

on energy functions, introduced in 1983 by Geoffrey Hinton et.al [71]. The energy func-

tion of a model describes the composition and configuration of the input data variables

and provides a scalar value demonstrating the awfulness status of such configuration or

composition. Therefore, the energy function corresponds to lower values to the correct

configurations and high values for the incorrect one. Predictions are made by selecting

the configurations that exhibit min values of energy.

The restricted Boltzmann machine based on binary Boltzmann machine is the founda-

tion of recent generation powerful deep generative models, and the most popular models

under this category are Deep Belief Networks (DBN) and Deep Boltzmann machine.

DBM comprises of a multi-layer network which is undirected. In this model, every unit is

associated to every other unit in a multi-layer architecture. DBM models are trained in

two steps: Pre-step in which each DBM is trained independently, and then a fine-tuning

step in which the whole network is trained using back propagation. DBN networks are

introduced in 2006 and are more complex and dense structure consisting of multi hidden

layers. DBN is trained using a popular greedy-layer wise fast algorithm.
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5.6 Summary

In this chapter, we briefly describe SA requirements in computing systems and the need

to bring intelligence to CR devices. Various AI techniques have been presented for

the CR-IoT network. We discuss deep learning principles and the motivation to use

deep learning models to perform signal processing tasks. Jammer signal classification by

using AlexNet and GoogLeNet models based on FFT and CWT based images have been

proposed and presented. In this chapter, we also discuss popular generative models such

as GAN, AE, and VAE.
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Chapter 6

Dynamic Deep Learning and

Probabilistic Models to capture

abnormalities in the CR-IoT

Spectrum

As we described and presented jammer detection for low dimension signals by learning

switching dynamic Bayesian model in chapter.4. This chapter describes the method

based on VAE and DBN to capture abnormalities at the CR-IoT network’s latent space

level for high dimension data. An in-depth description of the proposed model architecture

has been presented. The proposed method is assessed by using ROC curves and AUC

metrics.

6.1 Abnormalities in the CR-IoT spectrum

The fleet-footed proliferation of emerging technologies has prompted the significance to

incorporate AI techniques into an autonomous system and network because AI methods

113
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have achieved tremendous and remarkable results in performing several tasks such as

object detection and tracking in the field of computer vision, and modulations classi-

fication, signal classification, anomalies detection in the radio communication domain.

AI techniques have revolutionized many fields, including robotics, radar communication,

self-driving cars, UAV, self-aware and autonomous radios, vehicle to vehicle commu-

nication and intelligent systems. Following the recent AI framework trends, modern

communication systems have also witnessed the implementation of cognitive and self-

aware capabilities into the new wireless technologies such as CR-IoT, V2V, and 5G and

6G mobile networks. Unprecedented wireless networks are more adaptive, dynamic than

ever before due to such cognitive capabilities, incorporated not only at the network level

but also the device level. Incredibly, extensive work has been carried to develop AI

algorithms and models for the cognitive radio network at the physical layer. In this per-

spective, [1] describes a method using deep learning to achieve modulation classification

tasks. The work [2] presents a method based on modulation classification automatically

by deploying deep learning models ResNet-50 and Inception ResNet V2. The proposed

framework possesses the ability to distinguish various modulation such as, Amplitude

Shift Keying (ASK), Phase-Shift Keying (PSK), and Quadrature Amplitude Modulation

(QAM). For 5G communication network, modulation classification is performed using

CNN network in [3]. In [4], deep learning models are deployed to recognize OFDM based

intelligent radios. Deep learning models have been used to perform spectrum sensing

in cognitive radios in [5]. The paper [6] describes methods and techniques for develop-

ing context-aware radio systems based on deep learning. The work [7] and [8] present

complex machine learning algorithms for a CR with in-depth reasoning and learning

methods, and in [9] AI techniques are discussed for a CR. Reinforcement deep learn-

ing method is presented to perform coding and modulation selection tasks [10]. The

paper discusses how secondary users start interfering with the primary user in cogni-

tive radio and present a problem to PU select suitable modulation schemes. CNN is

deployed which is data-driven method to perform spectrum sensing to detect legitimate

user transmission in a cognitive radio [11]. The method doesn’t need primary user signal
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profile history and SNR of the channel. Like other wireless networks, which are prone to

malicious threats, CR-IoT is susceptible to jamming attacks as well. Therefore, making

the CR-IoT network secure is yet a fundamental but challenging task. Hence, there have

been several methods developed to autonomously detect attacks and intelligently com-

bats threats highlighted in section.3.5. From this standpoint, the work [12], describes

anomaly detection in a spectrum of the wireless network in an unsupervised manner using

the generative network’s approach. Anomalies detection in the crowd sourced sensors

in the CR network is demonstrated in [13]. In [14], HMM model is deployed to detect

abnormalities in a cognitive radio. Anomalies are detected using spectrum predictions

method have been presented and described in [15]. GAN based anomaly detection for

the radio spectrum is given in [16]. Signal anomalies detection using auto-encoder is

presented in [17]. The paper [18] presents an abnormality detection method in which

spectral contents and spectrograms of the radio signal have been extracted, and deep

neural network are trained based on extracted features and abnormalities are detected.

6.2 Deep Learning and Probabilistic Bayesian framework

to capture abnormalities in AI-enabled CR-IoT

Firstly, we begin our investigation to detect jammer inside the OFDM modulated trans-

mission by considering a single subcarrier under attack section.4.5. The proposed

method deploys DBN to perform state estimation at two levels, continuous and discrete,

and eventually captured abnormalities (jammer attacks) in the CR-IoT spectrum. Fol-

lowed by this, the succeeding work investigates single and bank-parallel DBN model

implementation, which consider more subcarrier under adversary threats section.4.6.

A more in-depth approach is carried out after this. Precisely, [19] describes a framework

to detect abnormality in the CR spectrum based on data dimensionality. The approach

investigates the DBN (Bayesian network) and GAN (Generative model) concurrently

to present a self-aware module framework at two different CR levels. Specifically, the

DBN approach addresses low dimension data, whereas; GAN handles high dimensional
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signals. DBN learns switching models from data series in the form of generalize state

vectors where different linear models are described with the switching variables. DBN

exhibits good performance when the data dimension is low, and several possible switch-

ing dynamic models in DBN is confined. Generative models felicitously address a large

quantity of various dynamic models, but they are impotent to deal with uncertain-

ties. Whereas, a recent work in the paper [20], the authors present deep learning-based

spectrum anomaly detection method for cognitive mmwave radio where Conditional (C)-

GAN, Auxiliary Classifier (AC)-GAN, and VAE are examined and investigated. How-

ever, the proposed approach does not provide a method to deal with uncertainties in the

cognitive spectrum. Nevertheless, the modern intelligent network generates and commu-

nicates a vast amount of wireless data. Therefore, a more robust and powerful method

is desirable, taking advantage of both deep learning and probabilistic network and pre-

senting abnormalities detection framework. In this context, VAE from the DL domain

facilitates the achievement of the data dimension reduction step, and the DBN from

the Bayesian field fulfills the need for state estimation tasks effectively in the CR-IoT

spectrum. We deploy VAE to transform high dimension data into low and compact rep-

resentation. Then latent variables of VAE are clustered to learn temporal dependencies

among them and constitute a probabilistic representation. We use Apated-Markov

Jump Particle Filter (A-MJPF) to perform state estimation, which considers the

uncertainties in the spectrum and consequently spot any malicious behavior that devi-

ates from the standard etiquette in the spectrum at the continuous level. For the first

time that generalized state vectors are explored and investigated containing latent spaces

information obtained from the trained VAE of OFDM modulated transmission in CR-

IoT to the best of our knowledge.

We deploy two VAEs, one for signal and another for signal derivative where the sec-

ond VAE implementation is associated to the null-force filter implementation. Fig.6.1

presents an incremental learning process of the proposed approach, which describes a

framework to introduce SA capabilities in the AI-enabled CR-IoT network. We present

incremental learning processes from low-dimensional radio signals in section.4.7 that
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describe model learning in an increment fashion. Under such a situation that deviates

from normal, a new model is learned based on abnormal data. In Fig.6.1, we consider

high dimension data, and we present steps involved in obtaining a low and compact

representation of high dimensional data using the VAE model in Fig.6.2. In addition to

that, Fig.6.2 describes steps that have been followed to learn the DBN model. Table.6-A

describes SA model properties when high dimensional data is considered.
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Figure 6.2: Step (a) of Fig.6.1: Transforming higher dimension data into low
dimension using VAE and learning DBN model.
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Table 6-A: Proposed SA model attributes for high dimensional data
Self-Awareness module Properties Contribution

Generative
Learning models based on

latent space (z) of
high dimension data

Discriminative
Abnormal signal measurements

(Jammer Signals)

Interactive
Interaction between user and

jammer signals
present in a Networt

Hierarchical
Three levels DBN

(Discrete state, Continuous state,
Observation state)

Temporal reasoning
Future state prediction by using

generalized state vector

Uncertain reasoning
z latent space vector

in VAE allows to
make probabilistic reasoning

6.3 Dense and Heterogeneous CR-IoT network model

In this work, we esteem a CR-IoT system model shown in Fig.6.3 consisting of a base

station B, two heterogeneous networks (HetNet1, HetNet2). The macro base station acts

as a gateway between HetNet1 and HetNet2. Each HetNet consists of several R devices

equipped with SA capabilities and a small tower (b1 for HetNet1 and b2 for HetNet2).

Both HetNets are assumed to be at a distance of min interference, i-e, no co-channel

interference. The base station B conducts OFDM modulated signal transmission, which

encodes voice data. The cognitive devices in each HetNet are continuously sensing the

environment and receive OFDM modulated signals from the respective towers (b1 or b2).

Let r(t) be the received OFDM signl at the terminal of any device r in a HetNet and

can be expressed as:

r(t) =

Lp−1∑
p=0

hlvm(t− δt − l)e−j2πfc(t−δt) + wm(t) (6.1)

where, m ∈ [1, 2, 3...M ] represents OFDM symbols, wm(t) is the complex additive white

noise with µ = 0 and σ2 = 1, (noise ∼ N(0, 1)), vm(t) shows transmitted OFDM signals
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which encode voice data, fc shows carrier frequency, δt denotes time delay and hl is the

channel gain. We assume there is no time delay as transmitter and receiver are perfectly

synchronized and hl doesn’t alter during sensing operation. The smart jammer is also

hypothesized to be present in each HetNet. We assume that the jammer aware of the

transmission protocol of the network and resource allocation scheme of the base station

and attacks the radio spectrum of the CR-IoT network. OFDM data is extracted at the

receiver section of the communication system and used as training and testing data for

the proposed method, which is described in the following sections.

Cognitive Radio Internet of Things Network

Macro Base station

(B)

Micro Base station

b1

Micro Base station           

b2

Jammer
Jammer

HetNet1D
HetNet1D

HetNet1D

HetNet1D

HetNet1D

HetNet1D

HetNet2D

HetNet2D

HetNet2D

HetNet2D

HetNet2D

HetNet2D

Heterogenous Network 1
Heterogenous Network 2

Figure 6.3: CR-IoT network composes of base station B, two heterogeneous
networks (HetNet1 and HetNet2), and a jammer in each HetNet.
Each HetNet consists of several cognitive devices and small towers
(b1 for HetNet1 and b2 for HetNet2).

6.4 The Proposed framework

The proposed method consists of training and testing phase. Fig.6.4(a) and 6.4(b)

depict the overview of the proposed framework for abnormality detection in the CR-

IoT spectrum.
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Figure 6.4: Proposed Model a) Training process of VAE and learning features
of generalized state vector consisting of latent space information
b) Testing process deploying trained VAE to obtain test latent
information generalize state vector and performing state estima-
tion using A-MJPF and detecting abnormalities.

6.4.1 Training Phase

The training phase consists of two stages. We first explain the motivation and imple-

mentation of the proposed model in the first stage. And then, we describe the learning

process of the DBN network in the second stage.

Stage 1 - Deployment of VAE To obtain a reduced dimensionality representation of

spectrum data, VAE is deployed. VAE learns a mapping between higher dimension into

low dimension latent space vector z̃ and automatically extracts relevant features from
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the original received signal. This work considers OFDM modulated signals transmis-

sion, multi-carrier in-phase and quadrature components of transmitted OFDM symbols

during communication in which jammer is absent are used to train VAE. The input to

the VAE so contains OFDM subcarriers SC and symbols M representing portions of a

spectrum and is expressed in terms of in-phase and quadrature components as,

γ̃k = [I(SC1
k), I(SC2

k), ...I(SCNk ), .....Q(SC1
k), Q(SC2

k).....Q(SCNk )]Tk=[1,2..M ] (6.2)

where, N and M show subcarriers and symbols of OFDM signal respectively, and γ̃k is

1000-dimensional vector. The decoder learning the likelihood function assumes that the

signal should be reconstructed as close to the input signal. In this variational approach,

we use generalized coordinates in which signal changes as time evolves. Such evolution

of a time is considered by providing the signal derivative of the original OFDM symbol

vectors to a separate VAE. In this context, the input to the second VAE can be written

as,

˜̇γk = [ ˙I(SC1
k), ˙I(SC2

k), ... ˙I(SCNk ), ... ˙Q(SC1
k), ˙Q(SC2

k)..... ˙Q(SCNk )]Tk=[1,2..M ] (6.3)

where, γ̃k =
γ̃L−1
k −γ̃L−1

k−1

∆k
and L shows Lth time derivative of the state. We consider only

first order derivative (i-e, L = 1). This is because we deploy DBN with limited memory,

which is a two-layered DBN so that dynamical models depend only on variables in the

preceding slice.

The second VAE estimates another Gaussian vector of variables mean µ and variance

σ2, representing the signal derivative encoded in latent space ˜̇z. However, in this case,

the decoder of the VAE is forced to reconstruct a null mean noise version of a derivative.

A regularization parameter ρ is needed to allow VAE weights not to collapse, which puts

constraints on the activation of the neurons in the latent layer [21]. Such constraints force

neurons to learn proper representation from the input data wherein all neurons remain

active and participate in the reconstruction of the signal in the decoder. This ensures the

learning process to reconstruct a latent space derivative component by which the different
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dynamics of symbols can be compared to a common reference, i.e., the null mean noise.

This scheme is inspired by the structure proposed for initial filters in incremental learning

procedures when low dimensionality signals are considered. In that case, a particular type

of Kalman filters, i.e., null force filter (NFF), is used that assumes an agent’s behavior is

locally static (i.e., its derivative should be null) [22]. For the training sequence, this can

be violated, so the prediction errors of the NFF can be used to learn different modalities

by which violations occur by unsupervised clustering of generalized states. In the case

of null reconstructed output VAE, the null derivative hypothesis allows forcing in the

loss function the constraint that each of the samples should have a comparable latent

derivative depending on different characteristics of the derivative signal. We expect that

latent variables differences back map deviations of derivatives in encoded variable and

vice versa. The overall architecture is given a name as, Layered-RVAE , where R means

regularized model. Both VAEs are individually trained, and after the training of both

VAEs, we form a generalized state vector ZTrain containing the original signal and its

derivatives; both encoded into the latent spaces and is expressed as,

ZTrain = [z̃k, ˜̇zk]
T (6.4)

Stage 2 - Learning Probablistic Dynamic Bayesian Network After training of

VAE and obtaining latent spaces in the form of the generalized state vector, which con-

tains signal information describing normal behavior of the signal in the spectrum, the

generalized state vector is used to learn the DBN network as shown in Fig.6.5. With the

time evolution, DBN defines a dependency between random variables. Different level

of inferences is extracted about the spectrum dynamics by using DBN. In this context,

Xk shows measurement, which is related to the lowest inference level corresponding to

the received OFDM signal. Continuous information of the spectrum is encoded into

latent space by using state Zk, associated with the medium level of inference. Super-

states Sk associated with the highest level of inference, which comprises of continuous

information discretization. Along with that, arrows in DBN represent conditional proba-
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bilities between involved variables. Vertical arrows expedite to define causalities between

both continuous and discrete levels of inference and observed measurements. Horizontal

arrows depict temporal antecedents between hidden variables. It is worth mentioning

here that for a DBN model introduced in section.4.5, Xk represents a medium level

of inference, and Zk corresponds to the lowest level of inference. Here, in this high

dimensional signals work, the medium level of inference is represented by Zk, which is

associated with the latent space of the VAE, and Xk is associated with the lowest infer-

ence level. An unsupervised clustering algorithm Growing Neural Gas (GNG) [23] is

used to obtain clusters, which takes a generalized state vector as an input and provides

a group of super-states S containing cognate data. The µk and µ̇k values are used in the

clustering process to take into consideration the signal and its dynamics with respect to

the next signal values. We can express a total number of clusters as;

S = {S1, S2, . . . , SC} (6.5)

where Si ∈ S and C is the total number of superstates.

Along with, mean M (S), covariance Q(S) and radius R(S) are learned as additional fea-

tures of each clusters (refer section4.5.1 for cluster features). A transition matrix TM

is also obtained which encodes transition probabilities from each cluster to other clusters.

To exploit the dynamics of GS which is corresponding to the continuous predictive model

for each cluster Si, a Recurrent Neural Network (RNN) network is deployed. For each

cluster, RNN is trained by taking µk an input and ˙µk+1 as an output where both [µ, ˙µk+1]

∈ S. The VAE provides σ2 of encoded information along with µ. To include uncertainty

of latent space and completely define Gaussian N(µ,σ2), 2D additional inputs and output

are considered as well, where D is latent state dimension. Hence sigma-points which are

associated with (µk, σ
2
k) can be expressed as [24],

µjk = µk + (
√

(D + λ)Σk)j j = 1, 2.......D (6.6)

µjk = µk − (
√

(D + λ)Σk)j j = D + 1..2D, (6.7)
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where λ is a scaling parameter and Σk = IDσ
2
k, where ID is identity matrix of dimension

D. Based on specific spectrum information captured inside each cluster, RNN learns

signal information in that particular spectrum portion and facilitates the prediction of

the next signal values. This can assist when the model takes a new observation and

that observation doesn’t follow the previously learned scenario encoded inside each RNN

network for every cluster; an abnormal situation will be emerged. This is due to the

reason that RNN predictions are not following the observations. Therefore, a model

should learn new situations and generate further information.
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Figure 6.5: DBN model entails discrete and continuous layers to make infer-
ences about spectrum evolution. At a discrete layer, a Particle
filter is deployed, whereas, at the continuous level an adapted
Kalman filter is employed.

6.4.2 Testing Phase

Fig.6.4(b) highlights the steps that have been followed in testing phase. At first, test

signal derivative is determined and than given to the trained Layered-RVAE (both signal

and it’s derivative). Generalized state (GS) ZTest is formed which contains latent space

information encoding both state and derivative values for each time instant k. After

obtaining, GS, A-MJPF [25] has been selected to perform inferences on DBN model as
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shown in Fig.6.5. Unlike MJPF [26] which deploys bank of KF at continuous level for

prediction and detection of abnormalities, A-MJPF employs a modified version of KF

which is Unscented Kalman Filter (UKF) to accomplish prediction tasks. Hence, at

continuous level, bank of UKF is implemented for prediction. The necessity to employ a

modified version of KF comes from the fact that a problem address in this work requires

a non-linear model for prediction and non-linear observation model solved by RNN and

VAE. Therefore, standard KF can’t be implemented at the state level. A-MJPF performs

prediction and update operation for each time instant k. A-MJPF essentially performs

prediction and update steps that are described as follows:

• Prediction: The prediction of next super-state P (Sk+1|Sk) at discrete level and

next GS (P (Zk+1|Zk) for each estimated particle at continuous level is done in the

predicted step of A-MJPF. A-MJPF employs PF to predict super-states employing

TM matrix information for each particle at discrete level. At continuous level

for each selected super-state Sk, RNN performs predictions, and UKF is used to

performs estimation as non-linear models are involved at continuous level.

• Update: When a new measurement is taken an update step is performed in A-

MJPF. The particles are re-sampled at discrete level. The details of update process

is given in [25].

6.4.3 Abnormality Measurements

At the continuous layer, predicted values are compared with the updates by determining

probabilistic distance measurements that allow the A-MJPF to estimate the abnormality.

In this work, we have used db2 as an abnormality measurement that defines the likeness

between the predicted state and successive observation at a continuous level in each

super-state, and it is expressed as,

db2 = − ln

∫ √
p(Z∗k |Z∗k−1(S∗k))p(Xk|Z∗k)dZ∗k ; (6.8)
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The prediction step aims to predict future signal values, and such predicted values

compliance the same rules which had been learned by a model during the learning phase.

If predictions don’t pursue the learned rules, an abnormal situation emerges.

6.5 Deep VAE network architecture and configuration

We conducted experiments on simulated data. We consider IEEE802.11 ah configura-

tions operating in 16 MHz channel BW , supporting 512 subcarriers with 64 − QAM

modulation. Our CR-IoT network contains several devices in both HetNets. We use

normalized power for both signal and jammer and evaluate the data at the receiver side

of the cognitive device. We divide data into two sets (Training and Testing): 1) Training

set contains standard data use to train Layered-RVAE model to get latent vectors for GS

formation and than learn the DBN model. 2) The test data contains abnormalities and

used during the testing phase. The VAE architecture comprises of an encoder network

and decoder network where the encoder is modelled with fully connected convolutional

neural network layers with LeakyReLU activation functions. For training, a learning rate

of 0.00001 is used with mini-batch size of 32 over the data size of 8192000, and an adap-

tive moment estimation (ADAM) optimizer is deployed. The latent space dimension 30

is selected after performing several experiments on different latent size and 30 turned out

to be an optimal value for our work. Similar configurations of the network and training

parameters are adopted for second VAE (in case of derivative as an input) except regu-

larizer parameter which we call as an activation regularizer ρ, and have selected values

0.1, 0.4, 0.6, 0.8, 1.0. The motivation of implementing activation regularizer is introduced

in the training process (refer section.6.4.1). We train our model in a normal situa-

tion (under no jammer). We use γtrain and ˙γtrain during the training process described

in section.6.4.1) and, consequently, obtain trained Layered-VAE from which clusters

and corresponding predictive models (RNN) are learned based on signal data under no

jammer attacks. We perform cluster evaluation by considering the different ρ values

and evaluating the impact of introducing the activation regularizer at the cluster level
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presented in the section.6.5.1. We now describe the considered scenarios in detail and

present abnormality detection by the proposed framework, followed by an evaluation of

the model in terms of the ROC curves and AUC tables.

Figure 6.6: Reference situation describes transmission under jammer less and
interference free environment. There are neither jamming attacks
nor interfering source signals in the communication.

Figure 6.7: Jammer launches malicious attacks in the HetNet1 transmission.

Figure 6.8: Jammer launches malicious attacks in the HetNet2 transmission.

• Scenario A (Jammer less or interference free environment): Fig.6.6 describes

a normal situation with no jammer attacks or any other interfering source. The

model is learned by applying normal data (no jamming signals) to the network

during a training phase. Afterward, the trained model is deployed to test different

abnormal situations, i-e, scenarios B,C,D and E, respectively.
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Figure 6.9: Devices in HetNet1 are receiving signals, and HetNet2 becomes
an interfering source for the devices in HetNet1. Eventually, for
the devices operating in HetNet1, source of transmission changes,
which is an abnormal situation.

Figure 6.10: Devices in HetNet2 are receiving signals, and HetNet1 becomes
an interfering source for the devices in HetNet2. Eventually, for
the devices operating in HetNet2, source of transmission changes,
which is an abnormal situation.

• Scenario B (HetNet1 under attack): Fig.6.7 presents HetNet1 under jamming

attacks. The jammer injects disruptive signals starting from 2500 time instant and

lasts up to 4000-time moments.

• Scenario C (HetNet2 under attack): This scenario illustrates the situation when

HetNet2 comes under the jamming attacks. Correspondingly, Fig.6.8 depicts Het-

Net2 transmission where jammer corrupts the signals starting from 200-time instants

and lasts until 1200-time instants.

• Scenario D (HetNet2 as a abnormality for HetNet1): Cognitive devices in Het-

Net1 receive signals from tower b1 and perceives it as a usual transmitting source

for all devices that exist in a HetNet1. However, if any device receives signals from

b2, which is the source transmitter of HetNet2, it appears as an abnormality for

the device operating in HetNet1. This is due to the reason that devices in respec-

tive network (HetNet1) expect signals from source b1. This situation is shown in
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Fig.6.9 where HetNet2 interference appears between 2500 and 4000-time instants

in the HetNet1 transmission.

• Scenario E (HetNet1 as a abnormality for HetNet2): A similar situation observes

for HetNet2 when any device of the respective networks catches signals from b1;

it appears as an abnormality for such device being operated inside HetNet2. This

scenario is illustrated in Fig.6.10 where HetNet1 becomes intervene with HetNet2

communication and explicitly appears from 3000 time instants.

6.5.1 Cluster analysis of the learned latent space models

Clustering techniques discover distinct and meaningful patterns in data. It is a process

that partition data into a group containing similar information [27]. Or in other words,

we can define clustering as a method that assigns data points from the given data set

D to N clusters or groups while minimizing the distance between each data point and

center of the cluster. Each cluster is also known as a node or a neuron. We can evaluate

the clustering algorithm’s performance based on different metrics such as minimum loss

function or several clusters required for a specific system.

In our work for low dimensional data introduced in section.4.5, we deploy SOM to

obtain discrete regions of a DBN during the learning phase. However, during learn-

ing, SOM exhibits some limitations: few dead neurons are produced that don’t perform

the system’s inference task instead consume resources. To deal with such an issue, we

employ the GNG clustering algorithm to cluster latent space vectors. We also perform

optimization of the GNG algorithm to select the best system configuration and parame-

ters. According to [28], we use utility function Ψ which is defined as ratio between min

utility and max error and can be expressed as,

eimax
uimin

> Ψ; (6.9)

∆ui0 = ei1 − ei2 is the difference between the two closest data nodes of the current data

point i. The threshold [29] removes irrelevant nodes frequently in a clustering algorithm.
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We select value of Ψ with respect to the minimum loss function as defined in [28].

In Fig.6.11(a), we plot loss function over the range of threshold Ψ for the different ρ

values. Note that the input to the clustering algorithm is a generalized state vector

equation.6.4 obtained after the training of VAE. During training, we select distinct ρ

values for the second VAE (for the derivative) and obtain generalized state vectors asso-

ciated with different values of ρ. It can be noted in Fig.6.11(a), the optimal value of Ψ

is 1.2, where the loss is minimum for all clustered latent spaces GS. It can be observed

that the ρ = 0.8 has min loss among all at Ψ = 1.2. In Fig.6.11(b) we evaluate the effect

of Ψ on network complexity. Given Ψ = 1.2, we select optimum number of cluster as 12

to perform clustering of latent space GS vectors.

We analyze the performance of clusters obtain for different ρ values given Ψ = 1.2 and

C = 12. It can seen that the clusters in case when ρ = 0.8 is good. However, clusters are

bad for ρ = [0.1, 0.4, 0.6]. Moreover, we can refer to transition matrices for different ρ

values. In case when ρ = 0.8, transition matrix is quite improved. Therefore, we deduce

the following conclusion that introducing activation regularizer during training of VAE

(when input is derivative) has facilitated to capture meaning full information from the

input data.
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Figure 6.11: Cluster evaluation a) Loss function by changing threshold b) Net-
work complexity verses cluster numbers.
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ρ = 0.1 ρ = 0.4 ρ = 0.6

ρ = 0.8 ρ = 1.0

Figure 6.12: Cluster analysis of latent spaces for different ρ values.

ρ = 0.1 ρ = 0.4 ρ = 0.6

ρ = 0.8 ρ = 1.0

Figure 6.13: Transition Matrices comparison for different ρ values.

6.6 Testing the learned model

The learned model is tested with new measurements. The prediction step aims to predict

future signal values, and such predicted values compliance the same rules which had been

learned by a model during the learning phase. If predictions don’t pursue the learned

rules, an abnormal situation emerges. In this perspective, we use abnormality measure-
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ment (db2) at the continuous level of the DBN model to identify new observations are

assenting with the learned rules or not.

It can be seen from Fig.6.14 and Fig.6.15 that the Layered-RVAE deep and probabilistic

model can detect abnormal behavior (jammer attacks) for HetNet1 and HetNet2 net-

works, respectively. Consequently, figures show abnormality signals at the continuous

inference layer. The abnormal signal is low when the probability of having a predic-

tion is close to the measurements (Likelihood of how much prediction is compliance by

the observation). On the contrary, the abnormality is high when predicted values are

not close to the measurements. Fig.6.14 and Fig.6.15 indicate that the filtering process

provides high abnormality signals for the time instants k where the jammer attacks are

present. The signal above the threshold is considered abnormal and it is determined by

calculating the mean of equation. (6.8) plus its standard deviation. Fig.6.16 presents an

abnormality detection for scenario D. For a given situation, cognitive devices are receiv-

ing a transmission from HetNet1. However, during HetNet1 communication, HetNet2

starts interfering with HetNet1 communication, and therefore, an abnormality condition

emerges. The proposed framework is competent to detect HetNet2 signals shown in

Fig.6.16 (prevailing between 2000 and 4500 time-instants). Similarly, HetNet1 becomes

a tampering source for the HetNet2 network and eventually detected by the model, as

shown in Fig.6.17.

Figure 6.14: Abnormality detection by the Layered-RVAE model when Het-
Net1 under jammer attack.

In this work, we perform simulations using different ρ values to evaluate the effect of

activation regularizer on the performance of second VAE (in case where input is the
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Figure 6.15: Abnormality detection by the Layered-RVAE model when Het-
Net2 under jammer attack.

HetNet1 Transmitting HetNet1 Transmitting

HetNet2 Transmitting

Threshold 

Figure 6.16: HetNet1 communication in which Hetnet2 becomes a source
of interference and start transmission. Such interference is an
abnormality for the HetNet1 and eventually detected by the
Layered-RVAE model.

HetNet1 Transmitting
HetNet1 

Transmitting

HetNet2 Transmitting

Threshold 

Figure 6.17: HetNet2 communication in which Hetnet1 becomes a source
of interference and start transmission. Such interference is an
abnormality for the HetNet2 and eventually detected by the
Layered-RVAE model.

derivative of the signal) and, consequently, on the over-all Layered-RVAE model. There-

fore, Figs.6.14, 6.15, 6.16 and 6.17 show abnormality signals using different values of

activation regularizer, i-e (0.1, 0.4, 0.6, 0.8, 1.0). We plot the accuracy scores against the



Chapter 6. Dynamic Deep Learning and Probabilistic Models to capture abnormalities
in the CR-IoT Spectrum 134

various value of the activation regularizer. It is evident from the Fig.6.18 that ρ = 0.8

is the best value of activation regularization for all scenarios (B,C,D and E). There is

a trade-off in the selection of the activation parameter. If we select ρ = 1, the model

becomes standard VAE. Under this situation, VAE for the derivative as an input will

neither exploit the hidden layer capacity nor put any constraints in decoding the signal.

On the contrary, when select ρ = 0, the VAE turns into the vanilla VAE and serves

all of its model capacity in sample generation. Subsequently, after extensive training

of the proposed model, we discovered 0.8 is the optimal value of ρ on which model is

demonstrating potential performance and capable of achieving high accuracy. It is worth

to mention here that we have introduced the activation parameter for the 2nd VAE that

is being trained on a derivative of the OFDM signal as an input.
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Figure 6.18: AUC scores for different value of activation regularizer under var-
ious scenarios.

6.6.1 Performance evaluation using ROC along with AUC

We use ROC curves along with area under the curve (AUC) as evaluation metrics to

assess the proposed model’s performance. Fig.6.19, and Fig.6.20 confirm the viability of

the proposed method and validate the excellent performance of the model. As mentioned

earlier, we found ρ = 0.8 is an optimal value, and it is evident from ROC curves that the

model achieves high detection with low Pfa for all scenarios when ρ = 0.8. Furthermore,

we extract the AUC values, which are listed in Table.6-B.
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Figure 6.19: ROC curves a) Detection performance of the Layered-RVAE
model when HetNet1 under jamming attacks b) Detection perfor-
mance of the Layered-RVAE model when HetNet2 under jamming
attacks.
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Figure 6.20: ROC curves a) Detection performance of the Layered-RVAE
model for HetNet1 communication in which Hetnet2 becomes a
source of interference b) Detection performance of the Layered-
RVAE model for HetNet2 communication in which Hetnet1
becomes a source of interference.

6.7 Layered-RVAE and Layered-VAE implementations

We now analyze the two implementations (standard VAE and regularized VAE). We call

the two realizations as Layered-VAE and Layered-RVAE, where RVAE indicates that

we have activation regularization implementation in the second VAE when the input is

OFDM signal derivative. We have selected the value of ρ = 0.8. We evaluate the perfor-
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Table 6-B: AUC for all scenarios (B,C,D,E)

AUC (%)

ρ Scenario B Scenario C Scenario D Scenario E
1.0 0.9016 0.8915 0.9132 0.8813
0.8 0.9513 0.9612 0.9416 0.9663
0.6 0.7625 0.7865 0.7614 0.7546
0.4 0.7412 0.7132 0.7613 0.7216
0.1 0.6534 0.6312 0.6214 0.6413

mance of both realizations by considering the following situations:

Situation A: HetNet1 communication under jamming threats. We have considered

single jammer transmission (SJT) and multiple jammer transmission (MJT) in the accu-

mulative transmission window of HetNet1.

Situation B: HetNet1 is transmitting, and HetNet2 becomes a source of interference

for the devices in HeTNet1. Similarly, HetNet2 communication wherein HetNet1 trans-

mission is an intervention for the HetNet2 devices.

Situation C: Changing SNR values for the communication for HetNet1 under single

jammer attack transmission.

Situation D: Investigating different latent space vector sizes, i-e, 10, 20, and 30 for

HetNet1 under single jammer jammer transmission (SJT).

Situation E: Jammer attacks with varying power, i-e, low, medium, and high power.

The high jammer power means the jammer is attacking the transmission with consider-

ably high power for HetNet1 communication and vice versa.

6.7.1 Performance evaluation

We analyse the performance in terms of ROC curves and AUC metrics. Accordingly,

Fig.6.21(a) and Fig.6.21(b) depict the detection probability of both realizations for sit-

uation A. The Layered-RVAE outperforms the Layered-VAE for SJT and MJT for

the HetNet1 network. The reason lies in the fact that Layered-RVAE deploys acti-

vation regularization, which facilitates to improve model performance as described in
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section.6.4.1. Correspondingly, Fig.6.22(a) and Fig.6.22(b) depict the models perfor-

mance for the situation B in which HetNet1 is transmitting, and HetNet2 becomes a

source of interference and appears as abnormality signals and vice versa.
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Figure 6.21: ROC curves a) Detection performance of Layered-RVAE and
Layered-VAE realizations for HetNet1 under single jammer trans-
mission (SJT) b) Detection performance of Layered-RVAE and
Layered-VAE realizations for HetNet1 under multiple jammer
transmission (MJT).
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Figure 6.22: ROC curves a) Detection performance of Layered-RVAE and
Layered-VAE realizations when HetNet1 transmitting while Het-
Net2 interfering b) Detection performance of Layered-RVAE and
Layered-VAE realizations when HetNet2 transmitting while Het-
Net1 interfering.

We consider the different values of SNR to take into account the channel effects on the

Layered-RVAE and Layered-VAE models performance. Consequently, 5,10, and 20 SNR
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values in (dB) have been selected situation C. Fig.6.23(a), (b) and (c) demonstrate

both implementation (Layered-RVAE and Layered-VAE) performance whereas, Table.6-

C gives AUC values on different SNR values.

situation D work investigates the implication of taking different latent space sizes, i-e,

10, 20, and 30. We implement both models by using different latent vector sizes and

evaluated the performance. consequently, Fig.6.24(a), (b) and (c) represent both model

performance. For latent space z = 10 Layered-RVAE and Layered-VAE performance are

comparable. Nonetheless, for z = 20 and 30, Layered-RVAE outperforms the Layered-

VAE. Table.6-D shows AUC values for the different latent size.

We inspect Layered-RVAE and Layered-VAE in the situation E when jammer bombards

attacks with varying strength. For simplicity, we have considered low, medium, and high

power of jammer. The high power describes the status when jammer power is relatively

higher than the signal power and low jammer power means jammer power is low as com-

pared to the standard transmission. Fig.6.25 and Fig.6.26 illustrates model performance

under low, medium, and high threats for single jammer transmission (SJT) and multiple

jammer transmission (MJT) in HetNet1, respectively. In every case, the Layered-RVAE

performance is better than the Layered-VAE model. Table.6-E and Table.6-F present

AUC values for SJT and MJT, respectively.
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Figure 6.23: Accuracy plots a) ROC for SNR 5dB b) ROC for SNR 10dB c)
ROC for SNR 15dB.
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Figure 6.24: Accuracy plots a) ROC for latent space size 10) ROC for latent
space size 20 c) ROC for latent space size 30.
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Figure 6.25: Accuracy plots a) ROC for Low Power) ROC for medium power
c) ROC for High power.
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Figure 6.26: Accuracy plots a) ROC for Low Power) ROC for medium power
c) ROC for High power.

Table 6-C: AUC Different SNR.

AUC(%)

SNR(dB) 5 10 15

Layered-RVAE 0.8982 0.9423 0.9698

Layered-VAE 0.8235 0.8683 0.8886
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Table 6-D: AUC Different Latent Size.

AUC(%)

Latent Space Size 10 20 30

Layered-RVAE 0.8432 0.9057 0.9317

Layered-VAE 0.8225 0.8436 0.8713

Table 6-E: AUC SJT.

AUC(%)

Single Jammer Transmission (SJT)

Jammer Power Low Medium High

Layered-RVAE 0.8714 0.9057 0.9260

Layered-VAE 0.8378 0.8499 0.8766

Table 6-F: AUC MJT.

AUC(%)

Multiple Jammer Transmission (SJT)

Jammer Power Low Medium High

Layered-RVAE 0.8714 0.9257 0.9694

Layered-VAE 0.8406 0.8713 0.9142

6.8 Summary

This chapter presents a joint framework based on deep learning and a probabilistic

model for abnormality detection in the CR-IoT spectrum. Accordingly, the proposed

method deals with high dimensional data that take advantage of VAE to obtain low-

dimensional latent spaces and then use DBN to perform state estimation and detect

abnormalities. We introduce an activation regularizer in the VAE realization, and we call

the proposed implementation as Layered-RVAE. We present cluster analysis of distinct

latent spaces obtained by using different ρ values. This chapter also discusses introducing

SA model properties by the proposed method for high dimensional data. The chapter

also presents various scenario analyses of the Layered-RVAE implementation compared

with the Layered-VAE model (with no activation regularizer).



Chapter 6. Dynamic Deep Learning and Probabilistic Models to capture abnormalities
in the CR-IoT Spectrum 141

References

[1] R. Yilmaz and A. E. Pusane, “Deep learning based automatic modulation classifi-

cation in the case of carrier phase shift,” in 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP), 2020, pp. 354–357.

[2] Y. Kumar, M. Sheoran, G. Jajoo, and S. K. Yadav, “Automatic modulation classi-

fication based on constellation density using deep learning,” IEEE Communications

Letters, vol. 24, no. 6, pp. 1275–1278, 2020.

[3] A. P. Hermawan, R. R. Ginanjar, D. Kim, and J. Lee, “Cnn-based automatic modu-

lation classification for beyond 5g communications,” IEEE Communications Letters,

vol. 24, no. 5, pp. 1038–1041, 2020.

[4] M. Fadul, D. Reising, and M. Sartipi, “Identification of ofdm-based radios under

rayleigh fading using rf-dna and deep learning,” IEEE Access, pp. 1–1, 2021.

[5] S. Zheng, S. Chen, P. Qi, H. Zhou, and X. Yang, “Spectrum sensing based on deep

learning classification for cognitive radios,” China Communications, vol. 17, no. 2,

pp. 138–148, 2020.

[6] F. Paisana, A. Selim, M. Kist, P. Alvarez, J. Tallon, C. Bluemm, A. Puschmann,

and L. DaSilva, “Context-aware cognitive radio using deep learning,” in 2017 IEEE

International Symposium on Dynamic Spectrum Access Networks (DySPAN), 2017,

pp. 1–2.

[7] L. Gavrilovska, V. Atanasovski, I. Macaluso, and L. A. DaSilva, “Learning and

reasoning in cognitive radio networks,” IEEE Communications Surveys Tutorials,

vol. 15, no. 4, pp. 1761–1777, Fourth 2013.

[8] T. C. Clancy and N. Goergen, “Security in cognitive radio networks: Threats and

mitigation,” in 2008 3rd International Conference on Cognitive Radio Oriented

Wireless Networks and Communications (CrownCom 2008), 2008, pp. 1–8.

[9] N. Abbas, Y. Nasser, and K. E. Ahmad, “Recent advances on artificial intelligence

and learning techniques in cognitive radio networks,” EURASIP Journal on

Wireless Communications and Networking, vol. 2015, no. 1, p. 174, Jun 2015.

[Online]. Available: https://doi.org/10.1186/s13638-015-0381-7

https://doi.org/10.1186/s13638-015-0381-7


Chapter 6. Dynamic Deep Learning and Probabilistic Models to capture abnormalities
in the CR-IoT Spectrum 142

[10] L. Zhang, J. Tan, Y. Liang, G. Feng, and D. Niyato, “Deep reinforcement learning-

based modulation and coding scheme selection in cognitive heterogeneous networks,”

IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3281–3294,

June 2019.

[11] J. Xie, C. Liu, Y. Liang, and J. Fang, “Activity pattern aware spectrum sensing: A

cnn-based deep learning approach,” IEEE Communications Letters, vol. 23, no. 6,

pp. 1025–1028, June 2019.

[12] S. Rajendran, W. Meert, V. Lenders, and S. Pollin, “Unsupervised wireless spectrum

anomaly detection with interpretable features,” IEEE Transactions on Cognitive

Communications and Networking, vol. 5, no. 3, pp. 637–647, 2019.

[13] S. Rajendran, V. Lenders, W. Meert, and S. Pollin, “Crowdsourced wireless spec-

trum anomaly detection,” IEEE Transactions on Cognitive Communications and

Networking, vol. 6, no. 2, pp. 694–703, 2020.

[14] W. Honghao, J. Yunfeng, and W. Lei, “Spectrum anomalies autonomous detection

in cognitive radio using hidden markov models,” in 2015 IEEE Advanced Informa-

tion Technology, Electronic and Automation Control Conference (IAEAC), 2015,

pp. 388–392.

[15] C. Ge, Z. Wang, and X. Zhang, “Robust long-term spectrum prediction with missing

values and sparse anomalies,” IEEE Access, vol. 7, pp. 16 655–16 664, 2019.

[16] L. Zhang, C. X. Huang, H. Tang, J. J. Yang, and M. Huang, “Dtv radio spectrum

anomaly detection based on an improved gan,” in 2020 XXXIIIrd General Assembly

and Scientific Symposium of the International Union of Radio Science, 2020, pp.

1–4.

[17] Q. Feng, Y. Zhang, C. Li, Z. Dou, and J. Wang, “Anomaly detection of

spectrum in wireless communication via deep auto-encoders,” The Journal of

Supercomputing, vol. 73, no. 7, pp. 3161–3178, Jul 2017. [Online]. Available:

https://doi.org/10.1007/s11227-017-2017-7

[18] N. Tandiya, A. Jauhar, V. Marojevic, and J. H. Reed, “Deep predictive coding

neural network for rf anomaly detection in wireless networks,” in 2018 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops), May 2018,

https://doi.org/10.1007/s11227-017-2017-7


Chapter 6. Dynamic Deep Learning and Probabilistic Models to capture abnormalities
in the CR-IoT Spectrum 143

pp. 1–6.

[19] A. Toma, A. Krayani, M. Farrukh, H. Qi, L. Marcenaro, Y. Gao, and C. S. Regaz-

zoni, “Ai-based abnormality detection at the phy-layer of cognitive radio by learning

generative models,” IEEE Transactions on Cognitive Communications and Net-

working, vol. 6, no. 1, pp. 21–34, 2020.

[20] A. Toma, A. Krayani, L. Marcenaro, Y. Gao, and C. S. Regazzoni, “Deep learning

for spectrum anomaly detection in cognitive mmwave radios,” in 2020 IEEE 31st

Annual International Symposium on Personal, Indoor and Mobile Radio Commu-

nications, 2020, pp. 1–7.

[21] A. Asperti, “Sparsity in variational autoencoders,” CoRR, vol. abs/1812.07238,

2018. [Online]. Available: http://arxiv.org/abs/1812.07238

[22] D. Campo, A. Betancourt, L. Marcenaro, and C. Regazzoni, “Static force field repre-

sentation of environments based on agents’ nonlinear motions,” EURASIP Journal

on Advances in Signal Processing, vol. 2017, 01 2017.

[23] I. J. Sledge and J. M. Keller, “Growing neural gas for temporal clustering,” in 2008

19th International Conference on Pattern Recognition, 2008, pp. 1–4.

[24] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear esti-

mation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,

Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.

[25] G. Slavic, D. Campo, M. Baydoun, P. Marin, D. Martin, L. Marcenaro, and C. Regaz-

zoni, “Anomaly detection in video data based on probabilistic latent space models,”

in 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS),

2020, pp. 1–8.

[26] M. Baydoun, D. Campo, V. Sanguineti, L. Marcenaro, A. Cavallaro, and C. Regaz-

zoni, “Learning Switching Models for Abnormality Detection for Autonomous Driv-

ing,” in 2018 21st International Conference on Information Fusion (FUSION), July

2018, pp. 2606–2613.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM

Comput. Surv., vol. 31, no. 3, p. 264–323, Sep. 1999. [Online]. Available:

https://doi.org/10.1145/331499.331504

http://arxiv.org/abs/1812.07238
https://doi.org/10.1145/331499.331504


Chapter 6. Dynamic Deep Learning and Probabilistic Models to capture abnormalities
in the CR-IoT Spectrum 144

[28] H. Iqbal, D. Campo, M. Baydoun, L. Marcenaro, D. Gomez, and C. Regazzoni,

“Clustering optimization for abnormality detection in semi-autonomous systems,”

10 2019.

[29] B. Fritzke, “A self-organizing network that can follow non-stationary distributions,”

in Artificial Neural Networks — ICANN’97, W. Gerstner, A. Germond, M. Hasler,

and J.-D. Nicoud, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp.

613–618.



Chapter 7

Discussion and Future Work

7.1 Introduction

In this research work, a joint framework based on deep learning and probabilistic models

has been investigated, dissected, and developed to capture abnormalities in the CR-

IoT network spectrum. The developed method unfolds the facility to introduce SA

capabilities into the cognitive devices of a network. Accordingly, we proposed a data-

driven scheme for the cognitive devices exposed to different data dimensionalities in the

network to realize autonomous CR-IoT network and eventually detect abnormalities.

Fig.7.1 depicts the overview of the implementation of the proposed methods in the case

of low and high dimension data applications.

7.2 Low dimensions AI-enabled CR-IoT application

As mentioned and discussed in the chapter.4, we commenced to investigate jammer

detection problem with low dimension data and proposed a DBN method to capture

abnormalities in a CR-IoT Spectrum. DBN network is capable of modeling not only

linear and non-linear system dynamics to the associated discrete switching variables,

allowing filtering with the Bayesian framework at different levels by using either combi-

145
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Proposed Method

Dynamic Bayesian Network (DBN) 
PMLd

Generative Model and DBN 
PMHd

Abnormality 

Detection

Low dimension signals

High dimension signals

Less dense network 

Highly dense 

network 

Figure 7.1: Method proposed in this thesis work.

nation of the Kalman filter and Particle filter (for linear problems) or modified Kalman

filter together with Particle filter (for scenarios dealing with non-linear problems). The

strength of a proposed approach lies in the fact that it provides inferences of the spec-

trum at a lower (continuous) level and a higher (discrete) level. Subsequently, jammer

signals are detected at two levels. To explain the concept, refer to Fig.7.1. If a cognitive

device is exposed to low-dimension data, i-e, operating in a less dense network using few

subcarriers, it automatically switches to deploy the DBN model perform state estima-

tion and detect abnormalities. We refer the low dimension method as PMLd, where Ld

represents a low dimension.

We compare the performance of DBN with the conventional energy detector (ED) [1],[2]

as shown in Fig.7.2 at discrete level and Fig.7.3 at continuous level under multiple jam-

mer attacks. Therefore, it is quite evident that PMLd outperforms the traditional ED

and significantly detect the attacks.
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Figure 7.2: Performance evaluation of the proposed PMLd with ED at discrete
level
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Figure 7.3: Performance evaluation of the proposed PMLd with ED at con-
tinuous level

7.2.1 Limitations

Undoubtedly, the PMLd has been performing well in detecting jammer attacks in a net-

work. Nevertheless, DBN meets some limitations, such as the model becoming complex

and intractable due to many switching variables generation to represent high dimension

data. As a result, DBN learning will require a longer time and produce a vast amount of

learned cluster features. Moreover, the parallel-DBN system also exhibits certain limita-

tions for high-dimension data because several DBNs models will be involved in learning

models for each carrier frequency and produce substantial cluster features. Hence, the

parallel-DBN model requires a longer time for training and ultimately consume more



Chapter 7. Discussion and Future Work 148

resources of the system. Therefore, to handle high dimension data, we propose to deploy

deep learning method to deal with high dimensional data and obtain compact latent rep-

resentations of the spectrum signal. Such latent representations are then clustered, and

the DBN model is learned based on low dimension latent space and eventually capture

abnormalities in the CR-IoT network.

7.3 High dimensions AI-enabled CR-IoT application

When cognitive objects are being operated in a dense environment in CR-IoT networks,

in this case, implementation of PMLd is somewhat limited as devices will be generating

and exchanging massive volume of data as mentioned in section.7.2.1. Therefore, we

take advantage of the DL (VAE) model discussed in chapter.6 to obtain a low and com-

pact representation of high dimensional data. VAE also facilitates in providing Bayesian

inferences of input data. We deploy two VAEs (for signal and its derivative). We have

also introduced an activation regularizer in the second VAE (when input is derivative)

to provide distinct derivative latent spaces associated with different dynamic situations.

After deploying VAE to acquire low and compact distinct latent spaces (using activa-

tion regularizer), we perform state estimation to predict the future state and capture

any abnormal behavior that does not follow communication rules learned during the

training process. Precisely, we deploy A-MJPF, which facilitates to infer the spectrum

evolution by employing PF at a discrete level and modified KF at a continuous level.

The abnormality (jammer attacks) is detected at the continuous layer by measuring the

probabilistic distance between observation and predicted signal values. We refer to the

higher dimension method as PMHd, where Hd describes high dimension as shown in

Fig.7.1. We present a comparison of PMHd with the model-driven approaches such as

conventional ED [2], maximum eigen value detection (MED) [3], and data-driven tech-

nique CNN [4] for HetNet1 and HetNet2 under jamming threats as shown in Fig.7.4 and

Fig.7.5 respectively. We consider the same configuration and parameters to set-up a fair

comparison among detecting techniques.
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The data-driven methods exhibit good performance compared to the model-driven tech-

nique because data-driven approaches exploit and discover hidden patterns from the

complex high dimension input data automatically by taking advantage of deep neural

network architecture. Nearly data-driven models utilize the dense and deep neural net-

work to train the model based on applied input data and provide promising results. It

can be deduced from the Fig.7.4 and Fig.7.5 that the proposed method outperforms not

only the data-driven models but also conventional model-driven approaches to detect

jammer attacks in the high dimension OFDM modulated radio signals in the CR-IoT

network.

The reason lies in the fact that the proposed method PMHd deploys a Layered-RVAE

structure with an activation regularizer of 0.8 to learn distinct latent spaces. After that,

latent space has been clustered using GNG clustering algorithm with optimized param-

eters selection, such as (threshold values Fig.6.11(a)and an optimal number of clusters

Fig.6.11(b)). GNG clustering algorithm has been shown to perform better than SOM, as

discussed in section.6.5.1. To improved and facilitate prediction for continuous predic-

tive models, RRN is learned as well for each cluster. Finally, we use A-MJPF to perform

state estimation and capture abnormalities during the testing phase. We have shown

in chapter.6 that PMHd capture abnormalities that either due to jammer attacks or

unknown sources appear in a network.
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Figure 7.4: Performance comparison between data-driven and model-driven
approaches when HetNet1 under jamming attacks.
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Figure 7.5: Performance comparison between data-driven and model-driven
approaches when HetNet2 under jamming attacks.

7.3.1 Limitations

The PMHd deals with high dimensional data effectively, performs state estimation, and

eventually captures abnormalities. However, the method is developed and investigated

at the latent space level. Under anomalies, when high dimension data is transformed

into a low dimension, we can’t explicitly locate the exact location of jammer attacks in

the spectrum. Therefore, to identify and trace jammer attacks, latent space needs to be

projected back at the spectrum level or, in other words, reconstruct the decoder output

and compare it with the input. Such work will facilitate navigating jammer attacks

across individual subcarriers. This information can be used by the resource allocation

unit in a transmitter to deactivate subcarriers jammed or change transmission strategies.

7.4 Future work and directions

The proposed work in this thesis work has provided a road map to build autonomous

radio devices equipped with SA capabilities. The next-generation wireless network will

exhibit a higher level of intelligence to provide services to end-users. More specifically,

new emerging networks will be more smart, cognitive, self-aware, and intelligent. More-

over, devices in such a network will be more conscious. Undoubtedly, our work facilitates

to bring intelligence with SA ability into CR devices to build autonomous CR-IoT net-
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work and furnish a way to make CR-IoT network secure by detecting abnormalities in

the spectrum. The future work will address abnormality detection at the signal level by

mapping latent spaces back to the full spectrum. Since we introduce activation regular-

izer to obtain distinct latent spaces corresponding to different scenarios in our work, more

in-depth investigation will be carried out to evaluate the effect of ρ on signal reconstruc-

tion and, eventually, detecting and locating jammer attacks in the CR-IoT spectrum.

Nevertheless, the investigated work in this research journey can be extended into several

directions. We now highlight the remarkable ideas with some illustrations to carry out

and extend the developed method.

• Realizing coupled Layered-RVAE structure: We can realize coupled Layered-

RVAE implementation as shown in Fig.7.6 The latent space z’ from the second

VAE is coupled with the latent space z of the first VAE, and then the DBN model

is learned based on a generalized state vector. After training, A-MJPF can be

deployed to perform state estimation and detect abnormalities.

• Incorporating LSTM into Layered-RVAE encoder and decoder: Long-

Short Term Memory (LSTM) has been a popular network to perform prediction

for time-series data. Recently, the LSTM network is shown to achieve good perfor-

mance when implemented inside the encoder and decoder architecture of the VAE

[5]. Hence, we can modify the Layered-RVAE encoder and decoder and incorpo-

rate LSTM inside the encoder and decoder nets of the VAE as shown in Fig.7.7.

Afterward, DBN can be deployed for spectrum inferences and capturing abnormal

behaviors.

• Abnormalities detection at higher abstract level: Since DBN provides infer-

ences at different levels, i-e, continuous and discrete layers, hence, abnormalities can

be detected at a higher abstract level as well. As mentioned earlier in chapter.4,

we obtain a discrete region of DBN by using a clustering algorithm. Therefore,

the abnormality can be determined by measuring the data point’s probabilistic

distance from the centre of the cluster. If the distance is low, it indicates that
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the data sample belongs to the same cluster class, and if not, it demonstrates that

abnormal sample appears in normal data.

• Considering jammer with different modulated signals: To address and deal

with more realistic and dynamic situations in which jammer changes its transmis-

sion strategies such as modulation technique to launch its attack inside the spec-

trum, the Layered-RVAE can be implemented to discover special jammer attacks

based on different modulation techniques. In this work, we have shown that the

Layered-RVAE is capable of detecting jammer with varying power in section.6.7.1.

Hence, more detailed characteristics of jammer signals can be detected with the

proposed method at latent space level, and at signal level by projecting back latent

spaces to full spectrum scale.
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Figure 7.6: Coupled Layered-RAVE structure.
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Figure 7.7: Layered-RAVE with LSTM structure.

Hence, the developed method in this work has opened directions to bring SA into the

CR-IoT network. With the further in-depth realization of the proposed method, the

CR-IoT network can be emerged as more autonomous, intelligent and cognitive. The

developed method is not only limited to deployment in CR-IoT network, but rather it can

be deployed into emerging technologies such as Unmanned Aerial Vehicle (UAVs), V2V,
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self-driving cars, and 6G mobile networks. For UAV applications, the proposed method

can help develop secure transmission among multiple drones communicating with on-

ground vehicles and several base stations. It can also facilitate V2V technology to provide

reliable communication for navigation and particular guidance assistance purposes under

emergencies to vehicles. Moreover, PMHd can enable the 6G mobile network to develop

an intelligent and secure network and furnish various applications to the end-users.
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Appendix A

Algorithms

1. Algorithm 1: MJPF that is implemented in chapter.4 (section.4.5).

2. Algorithm 2: Describes the training of deep learning models using FFT and

CWT images to classify jammer signals in the spectrum used on chapter.5 (sec-

tion.5.4.1.1).

3. Algorithm 3: Presents testing steps followed after deep models have been trained

and tested with test data set described in chapter.5 (section.5.4.1.1).

4. Algorithm 4: Describes the training of Layered-RVAE and DBN learning steps

implemented in chapter.6 (section.6.4.1).

5. Algorithm 5: Describes the testing of Layered-RVAE by using A-MJPF imple-

mented in chapter.6 (section.6.4.2).
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Algorithm 1: MJPF Algorithm

Input M (S)),Q(S)),R(S)) TM , N Total particles ;

Zt ← Observation or measurements from the spectrum. t = 1,2,3..T

for t = 1 to T ← Time evolution do

for n = 1 to N ← Particles do

wn = 1
N ← Particles weight

if t==1 ← initial state then

Sample X1 from P (X1)

Xt = X1 ← current state

estimate S∗t from P (Xt | St)

else

Predict S∗t by using TM

Xt = Xt−1 ← current state

Calculate d(Xt,M
(St−1)) ← euclidean distance

if if 1− d(Xt,M
(St−1))

R(S) < 0 ← outside the model then

USt−1 = 0 and Pt−1|t−1 = Rt ← Process noise

else

USt−1 = US∗
t−1

and Pt−1|t−1 = QS∗
t−1

Prediction:

Xt = AXt−1 +BUSt−1 ← state

Pt|t−1 = APt−1|t−1A
t + σt−1 ← covariance

Zt = (Zt −HtXt)

Kt = Pt|t−1H
T
t (HPt|t−1 +Rt)

−1

Update

Xt = Xt +KZt ← updated state

Pt|t = 1−KtHtPt|t−1 ← updated covariance

Calculate abnormality signals db1,db2

wn = wn
db1+db2

← update weights

SIR re-sampling

Output db1,db2



Appendix A. Algorithms 156

Algorithm 2: Training of Deep Learning Models

1. Begin;

2. Training of Deep Learning Models ;

3. Model Parameters: Learning Rate 0.0001, Batch Size=64, Learning Method

ADAM, η = [0, 1], 0 for FFT-based images and 1 for CWT-based images;

4. Receive OFDM modulated signal Y;

5. Obtain Time-Frequency representation of the Y using:

a) FFT transform to get complex data samples YFFT

b) CWT transform to get scalogram coefficients YCWT ;

6. Transform YFFT and YCWT data into RGB images and save as two separate

Data sets D = [YFFT ,YCWT ];

7. Divide data set into training and testing set;

TRAINING ;

while for all train set images do

while η = 0 do

for i = 1 to I do

-Feed the AlexNet and GoogLeNet model with FFT-based images

- Train models

Output: Trained models for FFT-based images

while η = 1 do

for k = 1 to N do

-Feed the AlexNet and GoogLeNet model with CWT-based images

-Train models

Output: Trained models for CWT-based images

Result: Trained Models
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Algorithm 3: Testing of trained deep learning models

1. Begin;

2. Jammer Signal Classification;

3. Trained AlexNet and GoogLeNet models, Test data set (containing FFT and

CWT images);

TESTING;

while for all test set images do

while η = 0 do

for i = m to G do

-Feed the FFT-based test images to the trained AlexNet and

GoogLeNet models

-Decision ← Classification Normal Signal, RJHP, RJLP

while η = 1 do

for p = 1 to P do

-Feed the CWT-based test images to the trained AlexNet and

GoogLeNet models

-Decision ← Classification Normal Signal, RJHP, RJLP

Result: Jammer signal classification
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Algorithm 4: Training of Layered-RVAE and DBN learning

1. Initialize: Learning Rate 0.00001, Batch size = 32, VAE ∈ [V AE1,V AE2]

ADAM optimizer,activation regularizer ρ =[0.1,0.4,0.6,0.8,1.0], latent space =

30, number of clusters = 12 ;

2. From the received high dimension OFDM signal r(t) Obtain:

a) γ̃ an input vector for the V AE1 b) ˜̇γ a derivative input vector for the

V AE2 ;

3.Train V AE1 on input vector γ̃;

φEncoder1 , θDecoder1 ← Initialize network parameter

while itr < Max iteration do

χ ← random-mini bact from Dataset, where χ ∈ γ̃

z ← Encoder1
φ(χ)

lossprior ← Dkl(q(z | x) ‖ p(z))

χ̃ ← Decoder1(z)

Update parameters

φEncoder1 ←5φEncoder1
: using ADAM optimizer

θDecoder1 ←5θDecoder1
: using ADAM optimizer

4.Train V AE2 on input vector ˜̇γ;

φEncoder2 , θDecoder2 ← Initialize network parameter

while itr < Max iteration do

χ ← random-mini bact from Dataset, where χ ∈ ˜̇γ
z′ ← Encoder2

φ(χ) ← ρ

lossprior ← Dkl(q(z’ | x) ‖ p(z))

χ̃ ← Decoder2(z′)

Update parameters

φEncoder2 ←5φEncoder2
: using ADAM optimizer

θDecoder2 ←5θDecoder2
: using ADAM optimizer

5.ZTrain = [zk, żk]
T ← Generalize state vector

6.M (S),Q(S),R(S) and RNN (S) ← Learned cluster features

Output: Trained Layered-RVAE model and learned features of ZTrain
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Algorithm 5: Layered-RVAE testing and A-MJPF

1. Input Trained Layered-RVAE, and Learned DBN features

M (S)),Q(S)),R(S)),RNN (S)), TM , N Total particles;

ZTest = [zk, żk]
T ← From trained Layered-RVAE

for k = 1 to T ← Time evolution do

for n = 1 to N ← Particles do

wn = 1
N ← Particles weight

if k==1 ← initial state then

Sample Z1 from P (Z1)

Zk = Z1 ← current state

estimate S∗k from P (Zk | Sk)

else

Predict S∗k by using TM

Zk = Zk−1 ← current state

Calculate d(Zk,M
(Sk−1)) ← euclidean distance

if if 1− d(Zk,M
(Sk−1))

R(S) < 0 ← outside the model then

USk−1
= 0 and Pk−1|k−1 = Rk ← Process noise

else

USk−1
= US∗

k−1
and Pk−1|k−1 = QS∗

k−1

Prediction:

Zjk+1 = AZjk +BRNN (S)(U jk) + wjk ← state

Zk+1|k =
∑2D

j=0W
j,mZk+1|k

Pk+1|k =
∑2D

j=0W
j,c
{
Zjk+1 − Z

j
k+1|k

}{
Zjk+1 − Zk+1|k

}T
PDk+1|k = Pk+1|k Update:

Kk+1 = [PDk+1; ID]t(P
D
t|k−1 + Σk+1)−1

Zk+1|k+1 = Zk+1|k +Kk+1(uk+1 − uk+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1(PDk+1|k + ΣK+1)KT
k+1

db2 = − ln
∫ √

p(Z∗k |Z∗k−1(S∗k))p(Xk|Z∗k)dZ∗k ← Abnormality

Measurement

wn = wn
db1+db2

SIR resampling

Output Abnormality signals db2
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