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Abstract

In this thesis we study certain random walks on the two-dimensional lattice, known as
the Manhattan and Lorentz Mirror models, and certain quantum spin systems which are
generalisations of the quantum Heisenberg model. The topics are united by the fact that
we use the Brauer and walled Brauer algebras, and the representation theory of these
algebras, to study both.

We give an overview of Brauer and walled Brauer algebras, as well as that of the
symmetric group and the classical groups, and the representation theory of general finite-
dimensional algebras. A key feature of the representation theory of the groups and algebras
studied in this thesis is called Schur-Weyl duality. We give an account of this theory, as
well as applying it to our work on quantum spin systems.

We study the Manhattan and Lorentz Mirror models on a cylinder of finite width. We
give an estimate on the vertical distance travelled by the walk along the cylinder, as the
cylinder width grows large. We use the Brauer algebra to depict paths of these walks
through the cylinder.

Our work on quantum spin systems is split into two parts, studying two classes of
models. The first is a class on the complete graph, and the second is an inhomogeneous
class, which includes models on the complete bipartite graph. In each case we give the
free energy, and formulae for certain magnetisation and total spin observables. We then
use these results to give formulae for points of phase transitions, as well as to describe
the phases of the models. For the complete graph models, we are able to draw phase

diagrams.
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Chapter 1
Introduction

Representation theory, as well as being a rich and diverse field in is own right, has found
countless interesting applications to probability and physics. In this thesis we present an
analysis of certain quantum spin systems, and certain random walks in random environ-
ments. The topics are unified by our applying the Brauer algebra, its subalgebra called the
walled Brauer algebra, and the representation theory of these algebras, to both of these
subjects.

While similar to the well-studied symmetric group algebra, the Brauer and walled
Brauer algebras are not group algebras, and their representation theory is often more
nuanced. The representation theory of all three algebras is summarised in Chapter 2. A
key part of their representation theory, called Schur-Weyl duality, proves crucial in our
applications to quantum spin systems. The main objectives of this work are firstly to
convey the results on the random walks and spins systems in Chapters 4, 5 and 6, and

secondly to deliver the unified account of Schur-Weyl duality found in Chapter 3.

Observe that a permutation o in the symmetric group .S, can be depicted as a diagram
of the form in Figure 1.1, which represents the permutation (24)(56) € Sg. Multiplication
ot of two permutations o and 7 is then given by concatenation of the diagrams - placing
the diagram of o above that of 7 and joining the lines together. Recall that the symmetric

group algebra CS,, is the vector space with basis given by permutations S,,.

| SEC X oo

Figure 1.1: The permutation (24)(56) € Sg.

The Brauer algebra B, ¢ is the vector space with basis given by a larger set of such
diagrams (so, B, g contains CS,, as a subalgebra); specifically, all diagrams which are pair-
ings of the 2n vertices. In particular, an upper vertex can be connected to another upper
vertex, and the same with lower vertices. Multiplication is still given by concatenation,
and one multiplies the result by the parameter 6 to the power of the number of internal
loops removed in the concatenation. See Figure 1.2 for an example.

Let 0 <m < n. The walled Brauer algebra B, ,,, ¢ is similar, but defined as the span

of the diagrams described above which have a certain property. Draw a line (a “wall”)
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Figure 1.2: Two diagrams by and by (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by 0.

separating the leftmost 2m vertices and the rightmost 2(n —m). See Figure 1.3. Then
the certain property is that an edge connecting two upper vertices (or two lower vertices)
must cross the wall, and an edge connecting an upper with a lower vertex must not cross

the wall. Multiplication is the same as in the Brauer algebra.

Figure 1.3: A diagram in the basis of the walled Brauer algebra Bg 3(¢). Notice that all
edges connecting two upper vertices (or two lower) cross the wall, and all edges connecting
an upper vertex to a lower vertex do not.

The Brauer algebra B, y was introduced by Brauer [19] as having Schur-Weyl duality
with the orthogonal group O(#). The original Schur-Weyl duality [104] intimately links
the representation theory of the symmetric group S, with that of the general linear group
GL(0). Specifically, it studies the action of the two groups on the vector space V" where
GL(0) acts diagonally and S,, acts by permuting the tensor factors. Among other things,
the theory gives the decomposition of tensor space V®" as a representation of either group,
or of the direct product of the two groups. Much more recently, the walled Brauer algebra
B,,.m,0 was introduced as having a Schur-Weyl duality with the general linear group in the
work of Turaev [99], Koike [60] and Benkart et al. [8]. The action of the general linear
group in this case is different: g € GL(0) acts diagonally, as itself on the first m tensor
factors, and as its inverse-transpose on the remaining n — m factors.

One of the aims of this thesis to give an account of Schur-Weyl duality in these three
instances (GL(0) — S,, O(0) — B, 9 and GL(0) — B,, ,,,9) which is streamlined, as self-
contained as possible, and unified (the latter in the sense that the account covers the
representation theory of both the classical groups and the Brauer and walled Brauer
algebras). This account is given in Chapter 3. Its need arises as a result of the major work
on the algebras being relatively recent (in particular the walled Brauer algebra).

The Brauer algebra and walled Brauer algebra have been studied extensively in their
own right. One key difference from the symmetric group algebra CS,, is that while CS,, is
semisimple, B,, y and B,, ,,, 9 are non-semisimple for some values of 8, essentially meaning
their representation theory is less straightforward. We encounter these non-semisimple
cases in the applications in Chapters 5 and 6. For a more comprehensive overview of the

two algebras, as well as an overview of their representations, see Sections 2.1.3 and 2.1.4.



Our first set of applications pertains to certain random walks on the two-dimensional
lattice, the Manhattan and Lorentz Mirror models. Chapter 4 presents the results of the
paper “The Manhattan and Lorentz Mirror Models - A result on the Cylinder with low
density of mirrors” [90].

For the Manhattan model, imagine the two-dimensional lattice with directions like
the streets and avenues of Manhattan (see the left diagram in Figure 1.4). With a fixed
number p between 0 and 1, at each intersection of the lattice, place, independently with
probability p, a mirror at 45° to the lattice, which reflects a walker left or right. The
orientation (i.e. whether it is pointing northwest or northeast) is always so that the walker
follows the directions of the lattice. If there is no mirror, the walker continues straight on.
For the Mirror model, the lattice has no directions (every road is a two-way street). We
still place mirrors at 45° to the lattice at each intersection, independently with probability
p, but each time we then toss a 50—50 coin to determine its orientation. The main question
of interest for these models is whether the walks are bounded or not, and beyond that,

the nature of the walks.
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Figure 1.4: Examples of the Manhattan model (left) and Mirror model (right), with mirrors
in blue, and a few paths of the walker highlighted in orange. Note that the orientation of
a mirror in the Manhattan case is determined by the Manhattan directions of the lattice.
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It is straightforward to see that when p = 1 the paths are bounded with probability 1
in the Manhattan model. Grimmett [46] gave a simple argument for the same result on
the Mirror model. For both models, the same result is expected to hold for all 0 < p < 1.
The two models do not have fully identical behaviour though. Kozma and Sidoravicius
[62] showed that for all p > 0, the probability that two points n steps apart are connected
by a path in the Mirror model decays slower than (2n + 1)~!. In contrast, Cardy et al.
[6] showed that for p > % this decay in the Manhattan model is exponential in n (and so
paths are bounded with probability 1), and the same is expected for all p > 0.

One approach that simplifies the models is by considering them on a lattice cylinder
(say, of width n). If the cylinder has height n too, one can transfer results back to the
planar lattice (see [62]). We consider in Chapter 4 the random variable V' given by the

highest row of the cylinder the walker reaches above its starting point. A crude argument

10



gives that P[V < k] <P[G < k], G a geometric random variable with parameter (£)", since
a path cannot pass through a street fully occupied by mirrors arranged appropriately. Li
[66] showed that for fixed p, V = O(n'?), with probability exponentially close to 1. The
approach we take in Chapter 4 is based on observing that the models on the cylinder
can be thought of as Markov chains on the basis of diagrams of the Brauer algebra (or
the walled Brauer algebra). Our result is for a low density of mirrors, specifically when

p<n~l. In this case, we find that V behaves like p~2: that is, for any a > 0,
P[V < ap 2] < Cre 2, (1.1)

for some constants C7,Cy depending on the model chosen. Note we also have the lower
bound, valid for all p < %:
P[V > ap™?] < 2a. (1.2)

See Theorem 4.1.1 for full details. Moving forward, one would like to extend this to a
theorem for fixed, small values of p on the cylinder, and approach a result on the square

cylinder to transfer to Z?2.

Our second set of applications is to quantum spin systems. Chapters 5 and 6 present,
respectively, the results of the papers “The free energy of a class of Osg,1(C)-invariant
spin % and 1 quantum spin systems on the complete graph” [89], and the joint work with
Jakob Bjornberg and Hjalmar Rosengren “Heisenberg models and Schur—Weyl duality”
[12].

Quantum spin systems are models which aim to derive the macroscopic properties
of matter from microscopic interactions of particles via their (quantum) spins, with the
particles arranged in a lattice. In particular, often the main goal is to find (and describe)
abrupt changes in the model when the parameters involved (for example, temperature)
are varied - these are called phase transitions. See the beginning of Chapter 5 for a more
detailed introduction to spin systems. In Chapters 5 and 6 we investigate phase transitions
for certain explicit classes of models. The results are of two types. Firstly, in each chapter,
we obtain for the models considered an explicit formula for a function known as the free
energy. The free energy is a function of the parameters of the model (i.e. temperature),
and points at which it is non-analytic indicate points of phase transition. The second type
of result uses the free energy results to give explicit formulae for points of phase transition,
and through the free energy and other working, investigates the properties of the models
in different regions of the parameter space. The models studied are generalisations of the
well-studied quantum Heisenberg model.

In the classical Heisenberg model, a particle at a site ¢ in a lattice of dimension d is
(1)
i

material being magnetised in the direction ¢;. Allow a parameter § to represent inverse

given a spin o; = (o ,UZ-(Q), UZ.(?’)) € S?, the two-sphere. This models particles of a magnetic
temperature. Then, for a given 3, the probability that a configuration o = (0;)1<i<n 0ccurs
is .
611,5(0) = $p(0) = == 1), (1.3)
IR Z(8)

11



Here the function Z(8) = [ do e #H(?) is called the partition function and is the normal-

isation constant which makes the measure a probability measure, and
H(o)=-) 00 (1.4)
?:7j

is the Hamiltonian describing the energy of the configuration, and the sum is over nearest
neighbours in the lattice. Spins want to be aligned: the more aligned the spins are, the
lower the energy from H. The configurations with lowest energy are those with the spins at
all vertices pointing in the same direction. These are relatively few in number, compared
with the vast number of configurations which would give a large energy, with neighbouring
spins being much less aligned. Tuning 8 determines which of these types of configuration
dominates the measure - for d > 3 there is a phase transition between these two behaviours.

See the beginning of Chapter 5 for more detail.

Two natural generalisations of the Heisenberg model are the XXZ model and the

bilinear-biquadratic model. The XXZ model has Hamiltonian

H(o) ==Y Ki(0:) M (o)) + Ka(0:) P ()P + K1 (04) P (05)®, (1.5)
.3

that is, we give a certain weight K9 to the interaction in the 2 direction, and a second
weight K7 to the other two directions. (In the literature the K5 term is often in the
3 direction - the model is equivalent either way. For technical reasons we prefer the 2
direction, and we will maintain this convention throughout this thesis.) For example, if
K; > 0 and Ky < 0, the system wants adjacent spins which point in the 1 — 3 plane to
be aligned, but those pointing in the 2-axis to be anti-aligned. The bilinear-biquadratic

Heisenberg model has Hamiltonian

HZ—Z(Jl(ai-aj)+J2(O'i-0'j)2). (16)

i,
From the first term, for J; > 0 adjacent spins want to align and for J; < 0 they want
to anti-align. The second term, for Jo > 0, prefers adjacent spins to be either aligned or

anti-aligned, but not orthogonal to one another, and vice-versa for Jo < 0.

A quantum spin system is analogous to a classical one, but described using an operator
of the form e #H (instead of a probability measure), acting on the phase space of the model,
which is a vector space V®", a tensor product of a local phase space V for each of the
n particles in the lattice. Here H the Hamiltonian is a Hermitian operator. Each of the
Heisenberg, XXZ, and bilinear-biquadratic models have their quantum analogues. The

analogue of the Heisenberg model (1.4) has Hamiltonian

H=-3(Si-8)), (1.7)
2y

where §; = (S{V, 87,5, (8-8;) = (8{V 8V +5P 5 + 5959y and §) are explicit

Hermitian operators acting on the i" tensor factor of V®". The quantum analogue of the

12



XXZ model (1.5) has Hamiltonian

H=-Y (K88 + k82 8@ 4 k5P 5). (1.8)

0.
The model can be shown to be equivalent to that with K5 on the 1 or 3 axis instead of
the 2 axis, and, if the underlying graph is bipartite, to the model with K7 replaced with
—-K;. On Z%, d >, a phase transition is expected for all parameters, and has been shown
for several cases, see for example Dyson, Lieb and Simon [38] and Kennedy [58]. Not all
cases have been shown to have a transition though, most notably the Heisenberg model

itself. The quantum analogue of the bilinear-biquadratic model (1.6) has Hamiltonian

H:_Z(Jl(s’i'Sj)+J2(SZ"Sj)2). (1.9)
i,J
The expected phase diagram of this model is given in Ueltschi’s paper [101]. Again tran-
sitions have been proved for some cases of the parameters, for example in [101] or Lees
[64], but not all.

A common simplification of a spin system is achieved by replacing the lattice with
the complete graph - known as the mean field approximation. Often results in the mean
field carry over to or approximate the behaviour of models on the lattice, and often the
approximation makes computations easier. Chapter 5 studies a model on the complete
graph which, for § = 2 is the XXZ model (1.8), and for 6 = 3 is the bilinear-biquadratic
model (1.9). Figure 1.5 and Figure 1.6 give the phase diagrams obtained from our free

energy results (Theorem 5.2.1) for these two models, respectively.

oY% Y%

¢ /\/;\\/,)’\

4 §4>2§)>><<

V0% % % % % %%

. KK P RIRKRKRK

7 QL SRRLIKRK

s 9% 009055 % %%
> Ky CXKKKIE, B

< GILRRLKK

XY KX

XX, 6565 %% % %%

07076 %20 76 % %4

0% % 9% % 2% % % %
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MY % 9% % % % %%}

% DX
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9.0.9.9.90.90.0.1 9% % % % %%}

(a) Ground state phase diagram (b) Finite temperature phase diagram

Figure 1.5: On the left, the ground state phase diagram for the quantum Heisenberg
XXZ model with # = 2 and with Hamiltonian (1.8). The line K; = K3 > 0 gives the
Heisenberg ferromagnet. On the right, the phases at finite temperature, where varying
temperature is given by varying the modulus ||3(K71, K2)||. Transitions between phases
(points of non-analyticity of the free energy) shown in red lines.

The right hand diagram in each case shows that the points of non-analyticity of the
free energy (and points of phase transition) are given by the red lines. The left hand

diagram describes the “ground state” behaviour - how the model behaves as temperature

13



approaches zero (5 approaches oo). For the XXZ model, quite intuitively, in the “Ising”
phase the Ko term of (1.8) dominates, and spins want to be aligned along the 2-axis. In
the “XY” phase, the K; terms dominate, and the spins want to be aligned, but in the 1-3
plane. For K;, K> <0, there is no phase transition, and the model remains “disordered”

for all temperatures.

T ']1
Ferromagnetic ~ Disordered

(0,-3) ¢

JQ = 2J1 ///

Fourth Phasé

Fourth Phase
(a) Ground state phase diagram

(b) Finite temperature phase diagram

Figure 1.6: On the left, the ground state phase diagram for the quantum bilinear-
biquadratic Heisenberg model with Hamiltonian (1.9), and 6 = 3. On the right, the
phases at finite temperature, where varying temperature is given by varying the modu-
lus [|8(J1, J2)||. Transitions between phases (points of non-analyticity of the free energy)
shown in red lines (proved in the region Jo > Ji, expected as shown for the rest of the
plane).

For the bilinear-biquadratic model, again fairly intuitively, in the “Ferromagnetic”
region, the J; term dominates, and the model behaves like the usual Heisenberg model
(1.7). In the “Nematic” region, the Jo term dominates. In the classical setting one would
expect spins to align or anti-align. See the introduction of Chapter 5 for more detail on
how this is expected to manifest in the quantum case. In the “Disordered” region, there
is no phase transition. In the “Fourth phase” the behaviour is unclear, although some
properties of the Ferromagnetic region are exhibited. Further work could investigate this
region further, in addition to attempting to transfer some of these results to the lattice
VAS

As noted above, the other results of Chapter 5 give further features of the model, and
support the interpretations of the phase diagrams above. See Theorems 5.2.3 and 5.2.4.
We also give the free energy and phase diagrams for versions of the model with 6 > 3; see
Theorem 5.2.2 and Figure 5.3b.

In Chapter 6 we study models very similar to those in Chapter 5, except essentially we
work on the complete bipartite graph rather than the complete graph. This is a step closer
to reality, since the lattice Z? is bipartite, and this step is indeed significant - observe that

for K = Ky = -1 in the XXZ model (known as the antiferromagnet), Figure 1.5 shows

14



there is no phase transition, whereas [33] shows that on Z¢, d > 3, there is one. This makes
intuitive sense, since for the antiferromagent, adjacent spins want to be anti-aligned, and
it is only possible for every pair of adjacent spins in the graph to be anti-aligned if the
graph is bipartite. The models studied in Chapter 6 are a general family, but for example
when 6 = 3 they are the two special cases of the bilinear-biquadratic model (1.9) where
J1 = Jo, and J; = 0. Again, we give free energy results, Theorems 6.1.1, 6.1.2 and 6.1.9,
and then (for certain values of the parameters involved) find formulae for the points of
phase transition. See Propositions 6.1.3, 6.1.4 and 6.1.5. We also give further features of
the models, which back up the presence of phase transitions and help describe the phases
of the models. See Theorems 6.1.7 and 6.1.8.

The key technical application of the Brauer algebra B,, y and walled Brauer algebra

B,,m,0 to the results of Chapters 5 and 6 is the following. Regardless of the underlying

_BH

graph, the operator e of the model in question (eg. (1.8) or (1.9)) can be written as the

action of a certain element of one of the algebras CS,,, B, g or B, ,;, 9. The free energy, the
key quantity in both papers, is given by the formula limy \Tl)l log Tr[e’ﬂH ] Here V is

the set of vertices of the underlying graph. It is not hard to see that an eigendecomposition

H

of the operator e ? on tensor space V" is very useful for computing the free energy.

Schur-Weyl duality, as noted above, gives a decomposition of the action of the algebras

-BH

on V®" into irreducibles, and so a block decomposition of e™**. When the underlying

graph is the complete graph or complete bipartite graph, e ? is the action of a central

(or nearly central) element of the algebra, so it acts on irreducibles as scalars. This means

the blocks of the decomposition of e #H#

—ﬁH.

are scalars, so we have an eigendecomposition of

e

For generic parameters considered, the block decomposition is slightly more nuanced
than described above, and requires the careful restriction of irreducibles of one of the
algebras to another one: for example, in Chapter 5, from the Brauer algebra B,, g to the
symmetric group CS,,. For some cases these restrictions are well-studied, for some we work
out complete, explicit formulae, and for some they are ill-understood (in particular B, g
to CS,,), and we can give formulae in some cases. In fact the main reason this problem is
difficult is the non-semisimplicity of B,, y for certain values of 6, as discussed above. See
Section 5.7 and Sections 6.2.1 and 6.2.2.

This approach of applying the representation theory of the algebra in question to
diagonalise the action of a central element is well-trodden, although has mostly been done
with group algebras in the past. The book of Diaconis [29] collects several examples of such
applications to problems in probability. Perhaps the most famous therein is the application
to shuffling cards via random transpositions [30], where Diaconis and Shahshahani obtain
the mixing time (the time when the cards become “well-shuffled”) by diagonalising the
action of a central element of CS,. A key insight in their work was interpreting the

shuffling as a random walk on the symmetric group.

There are strong links between random walks on the symmetric group and quantum
spin systems. Powers [83] showed that (the 6 = 2 version of) the quantum Heisenberg

model has a probabilistic representation as a continuous time version of the random walk
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studied by Diaconis and Shahshahani, known as the interchange process, with an added
weight depending on cycle lengths. Téth [97] used this probabilistic representation to
give a bound on the free energy of the model. Since then several models, including the
Heisenberg model for general § and (for certain values of the parameters) those studied in
Chapters 5 and 6 have been shown to have similar representations as random processes,
and results about the models have given rise to results about the processes, and vice-versa.
See Ueltschi [101] and Nachtergaele [77] for details.

The work of Chapters 5 and 6 follows a line of work approaching the interchange process
and the Heisenberg model with the representation theory of CS,. Alon and Kozma [3]
estimated the number of cycles of length k in the unweighted interchange process, on any
graph. Berestycki and Kozma [9] gave an exact formula for the same on the complete
graph, and studied the phase transitions present. In [4] Alon and Kozma gave a formula
for the magnetisation of the weighted process (equivalent to the § = 2 Heisenberg model) on
any graph, which simplifies greatly in the mean-field. Chapters 5 and 6 are most directly
inspired by the paper of Bjornberg [13], who showed a phase transition in the weighted
interchange process.

Looking forward, one would like to build on this work in a few ways. Certainly trans-
ferring some of the results to the models on the lattice is desirable. For 6 > 3 we only
have a partial phase diagram for the model of Chapter 5. Completing this picture requires
obtaining more information about the restriction of irreducibles from B,, 9 to CS,,, when
6 > 3. One would also like to apply similar methods to obtain results similar to those of [3]
on the interchange processes which are associated with the model of Chapter 5. Remark
5.2.11 details why there are nuances in obtaining certain such results. In Chapter 6 one
of the pleasantly surprising results is that two noticeably different models (6.5) and (6.10)
have exactly the same free energy. This is intriguing, and warrants further investigation -

perhaps the associated random processes have analogous similarities?
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Chapter 2

Representation Theory

2.1 Representation theory

2.1.1 Representation theory of finite-dimensional algebras

In this section we give an introduction to the representation theory of finite dimensional
algebras over C, giving results that we will use in later sections. We will not prove results
in this section. We follow mainly Etingof et al. [34], with some results from Fulton and
Harris [42], some from Sections 9 and 10 of Curtis and Reiner [26], and some from Lecture
notes of Fayers [35].

We follow Chapter 2 of [34] for this section on general representation theory of algebras,
unless stated differently. A (unital, associative) algebra over C is a vector space A with a
multiplication which is associative, distributive, has an identity, and satisfies (caq)(a2) =
(a1)(caz2) = c(arag) for all aj,as € A, and ¢ € C. The identity, which we denote by 1, is
unique. The centre Z(A) is the set of elements of A which commute with every element
of A.

A left (resp. right) ideal of A is a subspace I of A such that ab (resp. ba) lie in I for all
bel,aeA. A two-sided ideal, which we will usually just call an ideal, is a left ideal which
is also a right ideal. For A1, Ay two algebras, an algebra homomorphism from A; to As is
a linear map ¢ : A1 - Ay which sends identity to identity and satisfies ¢(ab) = ¢(a)p(b)
for all a,be Ajy.

A (left) representation (or module) of A is a pair (p, M), M a complex vector space, p :
A - End(M) an algebra homomorphism into the algebra of endomorphisms of M (linear
maps from M to M). We will use the terms representation and module interchangeably,
and often we will denote a module by only its vector space or its homomorphism. All the
representations we will consider will be finite-dimensional, so often we will assume without
stating that modules are finite-dimensional. For a module (p, M), and for a € A, v e M,
we will often denote p(a)v as a-v or av. A right module is the same as a left module,
except that p(ab) = p(b) o p(a), instead of p(ab) = p(a) o p(b) in the case of a left module.
We write its action as p(a)(v) = va. For two algebras A and B, an A — B bimodule is a
vector space M which is a left A-module and a right B-module, such that (av)b = a(vd)
forallae A, be B, ve M.

A submodule (or subrepresentation) N of a module M is a subspace N of M which is

sent to itself by any a € A. A irreducible (or simple) module is a module with no non-zero
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proper submodules. Given two representations (p1, M), (p2, M2) of A, the space M; & Mo
is a representation of A, with action p; ® p2. A non-zero module is indecomposable if it
cannot be written as a direct sum of two non-zero submodules (and decomposable if it
can be written as such). The regular module 4A of A is the space A itself, with action

given by left multiplication aj - as := ajas.

Lemma 2.1.1 (Schur’s lemma, Proposition 1.16 of [34]). Let S and T be two simple
modules of an algebra A. If ¢ : S — T is a module homomorphism, then ¢ =0 or ¢ is an

isomorphism.

Given two representations (p1, M), (p2, M2) of two different algebras A; and Ag re-
spectively, we call M| ® My the module of the algebra A; ® As with vector space M1 ® Mo,
and action p; ® pa(a; ® az) (v ® v2) = (a1v1) ® (agv2). The module M; ® My is irreducible
if M7 and M> are irreducible, and all irreducibles of A1 ® A are of the form M; x My, for
unique M; and Ms. Note we use the box tensor product to differentiate this representation
from the usual tensor products of representations of groups - see below.

We will occasionally use another tensor product. Let A, B be two algebras, and M
an A — B bimodule, N a left B module. Then we define the vector space M ®g N as the
vector space M ® N, quotiented by the relations mb® n = m ® bn, for all me M, n e N,
be B. Then M ®p N is an A module, with action a-(m ®n) = (am) ® n.

A module M is a semisimple module if it is a direct sum of simple modules; this is
equivalent to the statement that for any submodule N of M there is another submodule
N’ of M such that M = N@® N’, Nn N’ =0. One finds that any submodule or quotient
module of a semisimple module is also semisimple.

If a module M is semisimple and M = Y. T is a sum of a collection of simple

submodules, then every simple submodule of M is isomorphic to one of the T € T.

Theorem 2.1.2 (Artin-Wedderburn, Proposition 2.16 of [34]). The following are equiva-

lent:

1. An algebra A is semisimple if it is isomorphic to a direct sum of matriz algebras:

A= @), Mat,, (C);
2. The regular representation 4 A of A is semisimple.
If these properties hold we call the algebra A a semisimple algebra.

Theorem 2.1.3 (Density Theorem, Theorem 2.5 of [34]). Let A be an algebra, and
(p1,V1), -+, (pr, Vi) be pairwise non-isomorphic finite-dimensional simple modules of A.
Then the map p1 ® - ® pr: A — Eszl EndcV; is surjective.

Similarly, an algebra is called a simple algebra if it has no non-zero proper ideals.
Lemma 2.1.4. Let A be an algebra. The following are equivalent:
1. The algebra A is simple;

2. The algebra A is isomorphic to a matriz algebra: A 2 Mat,(C);
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8. There is some simple module S of A such that the reqular representation oA is iso-

morphic to S®" for some n e N.

We will encounter some representations (and algebras) which are not semisimple. Let
us define the radical of an A module M, rad M as the intersection of all maximal submod-
ules of M. One can prove that rad M = 0 if and only if M is semisimple. The quotient
M /rad M, called the head of M, is semisimple - it is essentially the “semisimple part” of M.

We follow Section 25 of [26] for the following paragraphs on idempotents. An element
e € A is an idempotent if e? = e. Two idempotents e, f are orthogonal if ef = fe =0. An
idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero
orthogonal idempotents. A primitive decomposition of an idempotent e is a finite set of
pairwise orthogonal idempotents which sum to e. Let us note: 0 and 1 are idempotents.
If e is an idempotent, 1 — e is an idempotent orthogonal to e. If e, f are orthogonal
idempotents, then e + f is an idempotent. If e, f are idempotents which commute, then
ef is an idempotent. The only invertible idempotent is 1. A central idempotent is an
idempotent that lies in the centre Z(A) of A.

If A is finite-dimensional, every idempotent e has a primitive decomposition, and eAe
is a subalgebra of A under the same operations as A, with identity element e. Then the

following are equivalent:
1. e is a primitive idempotent in A;
2. e is a primitive idempotent in eAe;
3. e is the only non-zero idempotent in eAe.

One can use idempotents to decompose an algebra. An algebra A is indecomposable if 1
is a primitive central idempotent (that is, 1 is a primitive idempotent in Z(A)). If A is

an algebra and F is a primitive decomposition of 1 in Z(A), then
1. E is the unique primitive decomposition of 1 in Z(A);
2. E consists of all the primitive central idempotents in A;
3. A has only finitely many central idempotents.

A primitive decomposition of 1 in Z(A) gives a unique decomposition
A=Ae; @ & Aey, (2.1)

into indecomposable algebras. Similarly, it gives a decomposition of a module M into
M =eiM & - ® e M, where e; M is annihilated by each Aej, ¢ # j. Let us note that
sometimes we do not need a primitive decomposition of 1 in Z(A) to give certain use-
ful decompositions. If {ej,...,ex} satisfy the weaker condition that they are primitive

idempotents in A summing to 1 which are “half-orthogonal”, then
AA=Ae @ D Aey, (2.2)
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decomposes 4 A into indecomposable modules. By half-orthogonal we mean the following:
for all 1 <i < j <k, we have e;je; = 0 (and not necessarily eje; = 0). We will find such
a decomposition of the symmetric group algebra in Lemma 2.1.7, where the idempotents

are the Young symmetrisers, and we will use it in Chapter 3.

We follow Chapters 3 and 4 of [34] for the following results on representations of groups.
A representation of a group G is a pair (p, M), M a complex vector space, p: G - GL(M)
a group homomorphism into the group of invertible linear maps on M. The definitions of
subrepresentations, simple/irreducible, semisimple and indecomposable representations,
direct sums and box tensor products of representations are all analogous to the equivalent
definitions for modules of algebras. In addition, we define the usual tensor product of
representations of a group, M1 ® My: For My, My two representations of a group G, let
g-(m1®my) = gmi ®gms for all g € G, my € My, mo € My, and extend linearly. The trivial
representation always exists: it is the module (p, C) with p(a) =1 for all a € A.

The group algebra CG of a group G is the vector space of formal finite sums ¥ ¢ ay9
(with all but finitely many of the scalars a4 equal to zero); CG is the vector space with
basis G. The multiplication in CG is the multiplication in G linearly extended. Group

algebras of finite groups are semisimple algebras.

A representation (p, M) of G is equivalent to a module (p’, M) of CG by linear exten-
sion p'(Xgeq g9) = Lgeq agp(g), or in reverse, simply restricting p’ to G; we will refer to
either as simply representations or modules of G. The finite dimensional irreducible rep-
resentations of G are therefore in bijection with the finite-dimensional irreducible modules
of CG.

Given any representation (p, M) of a group G, the dual representation is the pair
(p*, M*), where M* is the dual vector space of M, with p*(g) = (p(¢g7'))*, the adjoint
of the map p(g~'). Explicitly, for w € M*, v € M, p*(g)(w)(v) = (p(g™))*(w)(v) =
w(p(g™)(v)).

The character of a representation (p, M) of an algebra A is the function x : A - C as
x(a) = Tr(p(a)), the trace of the map p(a). We say x is irreducible (resp. indecomposable,
semisimple) if its associated representation is. Calculations yield that if x s, xn are the
characters of two modules M and N of an algebra A, then xyren = XM + XN, and for A a
group algebra, Xpmen = xMxN and Xa+ = XM-

The conjugacy classes of a group are the equivalence classes of the conjugacy relation:
g,h € G are conjugate if there is some 7 € G with 7 'gw = h. For G finite, the centre
Z(CG) is the span of the conjugacy class sums Y .c g, for conjugacy classes C. The
central elements of any algebra act as scalars on the irreducible representations. For
G finite, the irreducible characters of the group algebra form a basis for the space of
class functions (functions constant on conjugacy classes); hence the number of irreducible
representations of the group algebra of a finite group is the number of conjugacy classes.
Two representations of a semisimple algebra are isomorphic if and only if they have the
same character.

For G finite, there is a natural inner product on the space of class functions, («, ) =
ﬁ pIPe: a(g)m. The irreducible representations of G are orthonormal with respect to

this inner product. Let us note that when G is a classical group (defined later in this
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section), there is an analogous inner product (see Proposition 1.12 of [72]):

(@.8)= [ a(9)Bg)duts). (23

where p is the Haar measure on the group. The irreducible (finite dimensional) represen-

tations of G are orthonormal with respect to this inner product.

We follow Chapter 2 of [34] once again. A Lie algebra g is a vector space with a
multiplication [-,-] which is bilinear, satisfying [z,2] = 0 for all z € g, and the Jacobi
identity, [z, [y, z]] + [2,[=,y]] + [y,[2,2]] = 0 for all x,y,z € g. Similarly to the algebra
case, we can define Lie sub-algebras, direct sums and tensor products of Lie algebras, and
Lie algebra homomorphisms. For a vector space V', the general linear Lie algebra on V,
gl(V'), is the Lie algebra of linear maps from V to V, with multiplication given by the
Lie bracket [z,y] = xy — yx. A representation of a Lie algebra is a pair (¢, V) with ¢ a
Lie algebra homomorphism ¢ : g — gl(V'). Similarly to the algebra case, we can define
subrepresentations, direct sums of representations, irreducible/simple and semisimple rep-
resentations. Let us note that the tensor product of two representations of a Lie algebra g,

V1 and V4, is the vector space V) ® Vs, with the action z-(v; ®vy) = (z-v1) ®v2 +v1 ® (- v2).

The irreducible representations of all of the major groups and algebras in this thesis
are indexed by some set of partitions or tuples. For a given group or algebra G, we will
denote by ws the irreducible of G corresponding to the partition or tuple p. We will also

denote its character by X/C,; and its dimension by df.

2.1.2 The symmetric group

We follow James [57] for this section. For n € N, the symmetric group S, is the group
of bijections of the set NV = {1,...,n}, under composition. The symmetric group is a
fundamental feature of representation theory. One of its many interesting features is
its relationship with the general linear group, called Schur-Weyl duality, which is the
focus of Chapter 3. Let us recall a number of results on the symmetric group and its
representations.

We often call elements of S,, permutations. We often write o € 5, in disjoint cycle
notation: for example o = (1,3,4)(2,5) is the permutation exchanging 2 and 5, and sending
1 to 3, 3 to 4, and 4 to 1, while fixing all other numbers. The cycle type of ¢ is the tuple
given by the lengths of its cycles; the cycle type of o = (1,3,4)(2,5) € Sg is (3,2,1), the 1
from fixing the 6. We often drop any ones when describing cycle types, so we would write
our example as (3,2). The elements (i,7), the elements of cycle type (2), or (2,1%72),
called the transpositions, generate the symmetric group. Cycle type determines conjugacy
classes, ie. 0,7 € S,, are conjugate if and only if o and 7 have the same cycle type.

A partition A = (A\q,...,\s) of a natural number n is an ordered list of non-negative
integers which are non-increasing and which sum to n. We often denote partitions by the
Greek letters A, p, pu, 7, &, etc. By the working above, the conjugacy classes, and therefore
also the irreducible representations of S, are in bijection with partitions of n, that is,

tuples of non-negative, non-increasing integers A = (A1,..., A,) with ¥7_; \; = n. We write
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A+ n to denote A being a partition of n.

We can construct the irreducibles of S;, explicitly; they are called the Specht modules,
following [57]. We need some notation. For a partition A + n, the Young diagram of A
is the array of boxes with \; boxes in the i*" row, arranged with the first box of each
row above the first box of the next. When it is unambiguous, we will denote the Young
diagram of A simply by A. We will sometimes write |A| for the number of boxes in A,
that is, |A| = n is just another way of writing A - n. See Figure 2.1 for an illustration of
the Young diagrams of the partitions (5,5,3,1), (4,1,1) respectively. For a partition A,
the conjugate partition \' is the partition with Young diagram obtained by transposing

the diagram of A (so )\iT is the length of the i'® column of A\). A tableau of size n is

Figure 2.1: The Young diagrams of the partitions (5,5,3,1) and (4,1,1).

a Young diagram of some shape A\ - n with each box filled with a unique number from
N ={1,...,n}. We say such a tableau has shape A\. We call the set of tableaux of size n
T(N), and we sometimes write |7| = |A|, the number of boxes in 7 and \. Sometimes we
will require the numbers in the tableaux to be a subset U of N; in this case we call the
set of such tableaux 7 (U). Note |7| = |U| for all 7 € T(U). We label the set of tableaux
with shape A by 7,(U). We say a standard tableau is a tableau with its entries strictly
increasing along rows and down columns, and we denote by S7(U) the set of standard
tableaux with entries in U, and by ST,(U) the set of standard tableaux of shape A + |U],
with entries from U.

Let us now give a first definition of the Specht modules. The symmetric group acts on
tableaux by permuting the entries. Say 7,7" € T(N') are related if one can permute the
entries of each row of 7 to get 7. The symmetric group acts on the equivalence classes
of this relation, by o - {7} = {o7}. The vector space spanned by these classes is therefore
a module of S, (often denoted M7). The subrepresentation of M™ spanned by elements

(Xhec(rysgn(h)h)-{7}, where T has shape ), is called the Specht module, which we denote
Yy

Theorem 2.1.5 (Theorem 4.12 of [57]). For each X\ + n, the space 1,!1)5:" is an irreducible
representation of Sy, and w:\g” =" if and only if A = . Hence the Specht modules I/Jf",

for A+ n are a complete set of pairwise non-isomorphic irreducible representations of S,,.

We write Xi” for the character of the Specht module wfn, and d:\q" for its dimension.
For a subset U c N ={1,...,n}, and 7 € T(U), define the element

zr= > > sgn(h)hgeSym(U) < Sy, (2.4)
geR(7) heC(T)

where R(7) is the set of permutations in Sym(U) which preserve the rows of 7 (as sets),

and similar for C(7) and columns.
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Lemma 2.1.6. The element 2. satisfies (2.)? = c.2., for some c; € C.

Hence the element z, := - 2l is an idempotent, called the Young symmetriser with

Cr

tableau 7.

Lemma 2.1.7 (Theorem 4.3 of [42]). If A+ n, 7 € STA\(N), one can rewrite the Specht
module wf" as the span of the elements z;7, T standard, in the space spanned by all
tableauzr of shape A. Equivalently, ¥\ can be realised as the subspace given by CSpz; of

the regular representation cgs, CSy,.

Notice that the dimension df" of the Specht module is therefore the number of standard
tableaux of shape A. The Young symmetrisers are a set of primitive idempotents, but are
not in general orthogonal. They are, however, “half-orthogonal”, in the following sense.
For U c N, introduce a total order < on the set STy(U) with 7 < 7" if when reading the
entries left to right along consecutive rows, the first entries m of 7 and m’ of 7’ in the

same box with m # m’ have m <m/.

Lemma 2.1.8 (Proposition 2.3 of [43]). If 7,7’ € ST\(U) with 7 < 7" with respect to the

order described above, then z;z; =0. (And it is not true in general that z;z; = 0).

Lemma 2.1.9 (Theorem 4.3 of [42]). We have a decomposition CS;, = @res7(n) COn2r of
the group algebra CS,, into minimal left ideals, and therefore a decomposition of the reqular
representation cs,CSn = @res7(n) CSnzr, where each CSyz: is a copy of the irreducible
representation pr" of Sn, for T shape A.

We finish this section with a result which describes how a particular central element
of CS,, acts on irreducibles. For A\ + n, we label by ct(\) the sum of contents of the boxes

of the Young diagram of A, where the content of the box in row ¢ and column j is given

by j —1.

Lemma 2.1.10. The sum of all transpositions, ¥.1<;<j<,(i,7) € CSy acts on the irreducible
@bf” as the scalar ct(\).

2.1.3 The Brauer algebra

We follow several references for this section, but mainly Cox et al. [24]. The Brauer
algebra was introduced by Brauer [19] in 1937 as having the same relationship (Schur-Weyl
duality) with the orthogonal group as the symmetric group does with the general linear
group. See Chapter 3 for a full description of Schur-Weyl duality. The Brauer algebra
has been studied widely in its own right, particularly since the late 1980s. Broadly, its
representation theory (over the complex numbers) has been shown to be related to, but
more nuanced than, that of the symmetric group. Although the Brauer algebra has a
distinguished basis (see definitions below), it is not a group algebra, so there are several
results about group algebras which do not hold in general for the Brauer algebra. A key
such result is that over the complex numbers the algebra is not always semisimple.

In the semisimple case the irreducible representations and characters were found by
Brown [20] and Ram [84], respectively. The non-semisimple case was studied in a series

of papers by Hanlon and Wales [50], [51], [52] and [53]. The criterion for semisimplicity
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was worked on in these papers and by Wenzl [103], Doran, Hanlon and Wales [31] and
was settled over an arbitrary field by Rui [87]. The blocks (essential information on the
irreducible representations) of the algebras in the non-semisimple cases were determined
by Cox, de Visscher and Martin [24].

Let § € C. The Brauer algebra B, g is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 1N,2N, ... nN_ and the lower (southern) 1°,...,nS.
We call an edge connecting two northern vertices (or two southern) a bar, and an edge
connecting a northern vertex and a southern vertex a NS-path. The number of northern
bars in a diagram is the same as the number of southern bars, and we refer to either as
simply the number of bars of the diagram.

Multiplication of two diagrams is given by concatenation. If by, bo are two diagrams,
we align the northern vertices of b1 with the southern of bs, and the result is obtained by
removing these middle vertices (which produces a new diagram), and then multiplying the
result by 6/(°1:02) where | (b1,b2) is the number of loops in the concatenation. See Figure
2.2. This defines B, p as an algebra. One can readily check that the dimension of B,, g is
2nll=(2n-1)(2n-3)---5-3- 1.

) ) O O ) )

b

o o O O o o
1 1 ] ] ] ] — 01 = b1b2
) O O O ) )

ba
O o—o0 ™© O ©

Figure 2.2: Two diagrams b; and by (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by 6.

We call the set of diagrams (the basis of B, g) B,,. Note that diagrams with no bars are

S is connected

exactly permutations, where o € S, is represented by the diagram where ¢
to (i), so S, ¢ B,. Moreover the multiplication defined above reduces to multiplication
in Sy, so CS, is a subalgebra of B,, . We write id for the identity - its diagram has all its
edges vertical. We denote the transposition S,, swapping i and j by (7,j), and we write
(1,7) for the diagram with iN connected to jN, and i° connected to j°, and all other edges
vertical. See Figure 2.3. Note that just as the transpositions (7, j) generate the symmetric
group, the Brauer algebra is generated by the transpositions and the elements (4,7).
Occasionally we will write a diagram b € B,, in what we call edge notation, that is, as

a list of the pairs of vertices which are connected in the graph. In general, this looks like
b=T1(05.1)), (25)
j=1

where b;, b;- e {t* : €=N,S, 1<t<n}; this denotes the diagram with the pairs of vertices
(bj, b;) connected to each other, for all j =1,...,n. Note that for a diagram b € B,, there
are many such products which can represent it, in fact, any permutation of the n pairs

(bj,b;) and swapping the positions of any of the b; with b} gives the same diagram b. For
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example, the identity can be written as [T}, (J N %), the transposition can be written as
(i.4) = (™, 5%) (G, 3°) Trws s (KN, £°), and (7,7) = (Y, 5™) (%, 5°) Tges s (KN, £°).

o) o 0
[ ] ] —idess
o o o

o I OO o o

= (374)

O

OO o o

(@] (@]
>€< — (2.4) €5,
O (@) (@)

Figure 2.3: The identity element, the element (3,4), and the transposition (2,4) € Sg, all
lying in Bs.

O

Let us turn to representations. As noted at the beginning of this section, the Brauer
algebra is not always semisimple. To be precise, Wenzl [103] showed it is semisimple when
the multiplicative parameter € is not an integer, and for 6 € N, Brown [20] showed it is
semisimple if and only if § > n—1. The negative integers are less straightforward, although
it always holds that B,, 4 is semisimple for 6 < —2n + 4 - see Rui [87], who gave a criterion
for the Brauer algebra to be semisimple over any field. Brown [20] gave a description
of the irreducible modules in the semisimple case, and Ram [84] gave a description of
their characters. In this thesis we will need results in all cases (both semisimple and non-
semisimple). The Brauer algebra is what is known as a cellular algebra [45], and more
specifically, a tower of recollement [22]. While we will not explore this theory, we will
note that it gives an explicit description of a set of “standard” indecomposable modules,
called the cell modules, and the irreducible modules of a such an algebra. In particular,
generically (that is, when B,, 4 is semisimple), the cell modules are the irreducible modules,
although when B,, 4 is not semisimple, they are no longer all irreducible, and the irreducible
is then its head (the quotient by its radical). Let us describe the cell modules.

Notice that if b € B, is a diagram with k bars, then for any a € B,,, ab and ba are
both (scalar multiples of) diagrams with at least k bars. Hence, if we define Bfﬁbﬁ to be the
subspace of B, o spanned by diagrams in B,, with at least k bars, then IB%E’G is an ideal of

B,.¢. In fact, we have a descending chain of ideals:
Bog=Bl, 5B, oB.2) (2.6)

Let & = 0718 (i,n +1—1) (& is a idempotent). Notice that the ideal IB%ZG can be
written as By, &iBy, 9. Let Bp(k) be the set of diagrams in B,, with exactly k bars. The
quotient Aﬁﬂ = Bﬁﬁ /IB%];T@I is an algebra (we define AL%J = BL?GJ). One can easily picture
Aﬁ’e as the vector space with basis B, (k), with multiplication the same as B,, 9, except
that if two diagrams multiply to give a diagram with more than k bars, then the result is
set to zero. As a vector space, we have the decomposition:

Bro=Alg@A,L ;& AL%. (2.7)

Note Ag g is just the symmetric group algebra CS,,. Each AZ ¢ is also a module for B,, g, by
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left multiplication j it is a quotient of the submodule IB%TI;H of the regular representation).
Notice that the subspace of Afw spanned by diagrams with a fixed set of k£ southern bars is
a submodule of AZ,@- To decompose the representation Aﬁﬁ into indecomposable modules,
we use this observation, along with the Specht modules of the symmetric group.

Any diagram b € B,(k) (i.e. with k bars), is determined by its k northern bars, k
southern bars, and n — 2k NS-paths. For fixed northern and southern bars, the possible
n—2k NS-paths can be bijected with S,_ox by deleting the bars (along with their vertices),
and shifting the remaining vertices together. Hence each diagram b € By, (k) can we written
uniquely as b = 0 ® (an,as), for o € S,_ok, (an,as) € alN « af{s, where a®N is the set of
choices of k northern bars and aﬁ’s the set of choices of k southern bars on the 2n vertices.
As a vector space, we have Afw =CS, 9k ®C(aﬁ’N x aﬁ’s). Our observation above can now
be written as the fact that CS,,_9; ® C(afL’N ® ag) is a submodule of Aﬁﬂ for each ag € af{s
(and it is straightforward to prove that they are all isomorphic). These submodules are
decomposed using the Specht modules.

The following lemma was proved by Brown [20] in the semisimple case, and follows
from cellular theory in the general case. See [24]. Recall from the introduction of this
section that the head of a representation M is defined as the quotient M /rad M, where

rad M is the radical of M, the intersection of all maximal submodules of M.
Lemma 2.1.11.

1. Let A - n—-2k, 7 € STA\({1,...,n-2k}), and fir as € abS The space AIE”’O =
(CSn_gsz)®C(a];’;’N®a5) is a left ideal ofAﬁ 9> and an indecomposable representation
of both AZ(, and the Brauer algebra B, g.

2. As vector spaces, we have

B, im Bn,G
Buoz @ (Ay)2dmA"), (2.8)
0<k<| 5|
A-n—2k

3. The space 1/1%"’9 defined as the head of the representation AI;B"‘H is simple, and the
representations 1/}%”’9, An-2k, 0<k<|5]| are a complete set of irreducible

representations of Be.

Remark 2.1.12. A more concise way to write the above representation is in the following
way. Let &, = 07F Hle(m) (note & is an idempotent). Notice that the space B,, &,
is a By,  — £ B, &k bimodule from the multiplication in B,, y, and CS,,_o;, (and thereby its
submodules) is a left module for &B,, p&i = By_or g (i.e. any b € B,,_o; ¢ with a bar kills
CSy -2k, CS,_or acts by the regular representation). Then A]E"’g can be written as the
By, g-module By, ok ®¢,B,, o, (CS,,_2k27), with the action of left multiplication on the left

tensor factor.

So, the irreducible representations of the Brauer algebra B,, 9 are indexed by partitions

AFn—-2k, 0<k< [%L let us denote their characters by X]E"’g, and dimensions by dljf"’e.
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The analogue in the Brauer algebra of the sum of transpositions, and its action on

irreducibles (see Lemma 4.1 of [24]) is given by
By, _ .
A (Z((iv,y) - (fc,y))) = (ct(A) + k(1 - 0))id. (2.9)
.y
Since the irreducible w?"’o is a quotient of AIE”’G, it is clear that we also have

g (z«x,y) - (m))) = (ct(A) + k(1 - 0))id. (2.10)

x7y

2.1.4 The walled Brauer algebra

We follow [23] and [80] for this section. The walled Brauer algebra B, ,,, ¢ is a subalgebra
of the Brauer algebra B,, 9, introduced by Turaev [99], Koike [60] and [8] as having a Schur-
Weyl duality with the general linear group GL(6), when GL(6) acts on tensor space V&
as m tensor multiples of its natural representation, and n — m tensor multiples of the
dual of its natural representation. See Chapter 3 for a dull account of the Schur-Weyl
duality. As with the Brauer algebra, the walled Brauer algebra has a distinguished basis,
but is not a group algebra, and is not always semisimple over the complex numbers. In
the semisimple case, its irreducible representations (the cell modules) and their characters
were given by Halverson [47] - these are also studied by Nikitin [80]. Cox, de Visscher,
Doty and Martin [23] gave an account of the blocks of the walled Brauer algebra in a
similar manner to the paper [24] for the Brauer algebra, and also gave a semisimplicity
criterion over an arbitrary field.

Let m < n. Returning to the 2n labelled vertices we used to define the Brauer algebra,
draw a line (a “wall”) separating the leftmost 2m vertices and the rightmost 2(n—m). Let
B, be the set of diagrams in B,, with the condition that any bar must cross the wall, and
any NS-path must not cross the wall. See Figure 2.4. The walled Brauer algebra B, ,,, o
is the span of B, ,,, with multiplication as in the Brauer algebra. It is a straightforward
exercise to show that the property defining B,,,,¢ is preserved under concatenation of

diagrams, so B, ,,, ¢ is indeed a subalgebra of B, g.

D744 |

Figure 2.4: A diagram in the basis Bg3z of the walled Brauer algebra Bg3(#). Notice
that all edges connecting two upper vertices (or two lower) cross the wall, and all edges
connecting an upper vertex to a lower vertex do not.

The group algebra C[S,, x Sy_,] is a subalgebra of B,, ,, 9 whose basis Sy, x Sy—m
consists of those diagrams with no edges crossing the wall. The transposition (i, 7) lies in
the walled Brauer algebra if and only if 1<, <m or m+1<4,5j <n. The element (i, 7)
lies in the walled Brauer algebra if and only if 1 <i <m < j <n. The elements (7,;j) and
(i,7) generate the walled Brauer algebra.

The representation theory of the walled Brauer algebra is immensely similar to that
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of the Brauer algebra. The walled Brauer algebra B,, ,,, o is semisimple when 6 ¢ Z, and
when 6 € Z, it is semisimple if and only if |§] > n — 1 (Theorem 6.3 of [23]). The walled
Brauer algebra is also cellular and a tower of recollement, and its cell modules can be
defined analogously to those of the cell modules of the Brauer algebra. Again for each
cell module, the corresponding irreducible is defined to be the semisimple head of the cell
module. Let us be precise.

Analogous to the chain of ideals (2.12), in the walled Brauer algebra we have the
descending chain of ideals

5 Bmin{m,n—m}
n,m,0 )

IBn,m,9 = BO

n,m,0 (211)

1
) ]Bmm,Q D

where IB%Z m.o is the span of diagrams in B, ,, with at least k bars. The ideal IB%Z m.o Can
be written as B, ,, o&xBy, 9, where & = O FIIY,Gi,n+1—1). Let B, m(k) be the set of

+1
,m

diagrams in B,, ;, with exactly k bars. The quotient Af; mo = IB%Z .0 /IB%Z ¢ is an algebra

(we define AEH::L{;I mem B?E{gz ’n_m}). One can picture Aﬁ’m’g as the vector space
with basis By, ,,»(k), with multiplication the same as By, ,, 9, except that if two diagrams
multiply to give a diagram with more than k bars, then the result is set to zero. It is a
module for B,, ,,, o with action by this (left) multiplication. As a vector space, we have the
decomposition:

Bom,o = A @ A @ @ Alnig "™, (2.12)
N
C(Sm—k X Sn—m—k) ® C(aZ:m X

a'fl’?n), where aﬁ% is the set of choices of k northern bars (that all cross the wall) and afi’ﬂsn

Analogously to the Brauer algebra case, can write Afhm?e =
the same for southern bars. Once again, the space C(Sy,_k X Sp_m_k) ® (C(afl% ®ag) is a
submodule of Aﬁ,m,@ for each fixed ag € aﬁ’fn, and we further decompose these submodules
using the Specht modules. For A v m — k, u — n —m — k partitions, we write (\, ) +
(m—k,n—m~—k) for short. For two disjoint sets P,Q c N = {1,...,n}, we write STy ,(PuQ)
for the set of pairs of standard tableaux (7,7) of shape A, and entries from P and @

respectively, where A and p are partitions with size |P| and |Q)| respectively.
Lemma 2.1.13.

1. Let 0 < k <min{m,n-m}, (\,p) - (m-k,n-m-k), (r,7) € ST\ ,({1,...,m -
E}u{m-k+1,...,n-2k}), and fix as € ab° The space A —lamu := (CSy_p2r ®
CSpm-kzr) ® (C(af{”% ® as) is a left ideal of Afz’m’@, and an indecomposable repre-

sentation of both Afz m.o and the walled Brauer algebra B, ,,, ¢.

2. As vector spaces, we have

B

Br,m dim(A,™™¢

By m.g & D (A7) @A), (2.13)
0<k<min{m,n-m}

Ap)-(m-k,n-m—k)

3. The space wI(B;’u"S’G defined as the head of the representation AIE’;T”‘G is simple, and

the representations 1/11(8"””’9 (M) (m-k,n-m-k), 0<k <min{m,n-m} are a

Aw) 7
complete set of irreducible representations of By, ,.9.
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Remark 2.1.14. Similarly to the Brauer algebra case, we can write the above repre-
sentation AIEZ;’”’G in a more concise way. Let & = 07 *[1%,(i,n+1-14) (note & is an
idempotent). Notice that the space By, y, ¢&k is a By, 9 — £xBrm 08 bimodule from the
multiplication in By, ,,, 9, and C(Sy,—x X Sp-m-x) (and thereby its submodules) is a left
module for ngn,m,Gék = Br—2k,m—k.0- Then AIEZL’WQ can be written as B, ,, 9k OBy m.ok
(CSp—kzr ® CS,_ k21 ), with the action of left multiplication on the left tensor factor.

Hence, the irreducible representations of B, ,, o are indexed by
{\p) | Arm—=k, urn-m-k, k=0,...,min{m,n-m} }. (2.14)

Analogous to the sum of transpositions (2.1.10) for the symmetric group algebra and
(2.9), (2.9) for the Brauer algebra, we have (see, for example, Lemma 4.1 of [23]) in the

walled Brauer algebra

Brm .. -— .
Ay ? o) - Y @) = (ct(N) +ct(p) - kO)id. (2.15)
1<i<jsm 1<ism<j<n
m<i<jy<n

Since the irreducible ¢?)’f‘:§’0 is a quotient of AIET;’”’Q, it is clear that we also have

Br,m .o — .

spntl S G- X G| =) set(u) - k)id. (216)
1<i<j<m 1<ism<j<n
m<i<j<n

2.1.5 Classical groups

We follow Goodman and Wallach [44] for this section. We will study the representation
theory of the general linear and orthogonal groups (and in order to study the latter, the

special orthogonal group).

Let V' be a complex vector space of dimension 6. We define a classical group to be a
subgroup of GL(#) preserving some (symmetric or skew-symmetric bilinear, or Hermitian
or skew-Hermitian sesquilinear) form, as well as those groups intersected with the special
linear group of invertible maps on V' with determinant 1. As noted above, we will con-
centrate on the general linear, orthogonal and special orthogonal groups. Let GL(0) be
the group of invertible linear maps from V to V; each basis of V gives a realisation of
GL(0) as matrices. Fix (-,-), a non-degenerate, symmetric bilinear form on V. We will
use this form to define our orthogonal group, that is, O(6) is the set of g € GL(6) leaving
the form invariant: (gv,gu) = (v,u) for all v,u € V. The determinant of an element of the
orthogonal group is +1; the special orthogonal group SO(#) is the subgroup of O(6) of
maps whose determinant is 1.

Let V* be the dual space of V' (the vector space of linear functions from V' to C).
There is always a canonical isomorphism between V and (V*)* (the dual of V*), given
by L:V = (V*)* as L(v)($) = ¢(v). For any basis {f;}0_; of V, we write {f;}%, for the
dual basis of V*, that is, f/(fj) = d;;. With the form (-,-), there is a further canonical
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isomorphism, this time between V and V*, given by
L:V - V" with uw~ L(v)(u) = (v,u). (2.17)

We can therefore regard the dual basis { fi*}?:1 as elements of V. One can find a basis
{e;}0, satisfying e = e; for all i; we call this the standard basis with respect to the bilinear
form, or simply the standard basis. In this basis, g € O(#) if and only if its matrix satisfies
g =g, the inverse transpose of g. Sometimes we will use the following basis (which given
the form (-,-), always exists): {fi}?zl, where f = fpy1-; forall 1<i<6.

A rational (resp. polynomial) representation of a classical group G is a finite-dimensional
representation (p, M) of G such that, for all g € G, p(g) written as a matrix (in some basis
of M) is such that all its entries are rational functions (resp. polynomial functions) in
the functions g; j, 1 < 4,5 < 6 (the matrix entries of g). We note that this definition is

independent of the basis of M chosen.

Lemma 2.1.15. A finite-dimensional representation (p, M) of a classical group G is
rational if and only if for all g € G, the matriz entries of p(g) are polynomials in the
functions g; j, 1 <i,j <0, and det™, the function taking g € G to the inverse of its

determinant.

Note for G = SO(6), rational and polynomial representations are equivalent, since
all its matrices have determinant 1. The only representations of G we will consider are
(finite-dimensional) rational ones, so we will drop the word rational unless we need to be
specifically clear.

Each of the classical groups described has an associated Lie algebra. Recall that a Lie
algebra g is a vector space with a multiplication [-,-] which is bilinear, satisfying [x,z] =0
for all x € g, and the Jacobi identity, [z, [y, z]] + [z, [z, y]] + [y, [2,2]] = 0 for all z,y, z € g.
The general linear Lie algebra gl(#) is the Lie algebra associated with GL(#); it is the
space of 6 x  matrices with multiplication given by the Lie bracket [x,y] = xy — yz. The
general bilinear form (-,-) defined above, given a basis { f; le of V, defines a 0 x 6 matrix
S such that (v,w) = v" Sw for all v,w € V, where on the right hand side the vectors v and
w are written as column vectors in the chosen basis. The Lie algebra associated with the
orthogonal and special orthogonal groups is the same, s0(f), the space of 6 x § matrices
satisfying 'S + Sz = 0, with multiplication also given by the Lie bracket. Note that in
the standard basis, the matrix S is the identity, so so(#) is the space of skew-symmetric
matrices. In the basis { fi}le, where f = fg.1-; for all 4, S is the matrix with entries
Sij = 00+1-4,, for all 1< 4,5 <0.

Let us note that each representation of GL(#) or SO(#) is equivalently a represen-
tation of its associated Lie algebra, via the differential map. In particular, the natural
representation of each classical group G is defined to be the vector space V itself, with
g € G acting as itself. In this case, the corresponding representation of the Lie algebra g
is also the vector space V', with x € g acting as itself.

We will not give a full account of the representation theory of our chosen classical
groups; instead collecting important results that will be used in later parts of this work. We
follow Sections 3.1.4, 5.5.4 and 5.5.5 of [44]. Fix the basis of V, {fi}le, where f = fps1-
for all ¢; this fixes each of GL(6), O(8), SO(8) and gl(#) and so(#) as matrices. For each
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of the Lie algebras g, let hy be the Lie sub-algebra of diagonal matrices. Let r = [g] We

have the descriptions:

hg[(@) = {diag[a:l, . ,J,‘g] T x; € (C}’
Beo(o-2r+1) = 1diag[x1,...,zr, 1, ~2p,...,~21] * 2; € C}; (2.18)

bﬁu(H:QT) = {diag[‘rh ceey Tpy TLpy ey _xl] P T € C}7

the latter two cases differentiating between the cases 6 = 2r + 1 odd, and 6 = 2r even. For
each by, let by be the dual space. Fix a basis €;(z) = z; of hy (producing the it" entry on
the diagonal), for i = 1,...,60 in the gl(f) case and ¢ = 1,...,r in the s0(f) case. Note in
the s0(0) case, ¢; = —gg41-; for all 1 <i <6.

For g = gl(8),50(0), M a module of g, and A € by, then a vector v € M is called a
weight vector for g of weight A if for all z € by, x-v = A(x)v. For each of the groups GL(6),
SO(0), we define a set called its dominant integral weights; these are the weights

P+(GL(9))={)\= ()\181,...,)\989)6[];[(9) PN EL, M Z"‘Z)\g};
P+(SO(9=27“+1))={)\= ()\161,...,)\T€r)6[]:0(9) P NEZL, N Z"'Z)\TZO}; (2.19)
P+(SO(9:27“))={)\= (/\1517-~-7Ar5r)€h;0(9) P NEL, M Z"'Z’)\T‘ZO};

the latter two cases differentiating between the cases 6 = 2r + 1 odd, and 6 = 2r even.
We will often identify a weight A with its #-tuple or r-tuple which gives A in the basis of

functions ¢;. Let us define the simple root vectors of gl(#) to be the matrices
{Ej,j+1 : j=1,...,0—1}, (220)

(where E; ; is the matrix which has all entries zero except for 1 in the ¢, j entry), and those
of s0(0) to be

Er,r+1 - Er+l,r+2’ for 6 =2r+1

{Ej,j+1 : j=1,...,7"—1}U{ (221)

Er,r+2 - Er—l,r+17 for 6 = 2r.

We can now turn to irreducible rational representations of G = GL(#) and SO(0). The
theorem of the highest weight tells us the following.

Theorem 2.1.16 (Theorem of the highest weight).

1. For each of the groups G = GL(0), SO(0), every irreducible (finite-dimensional)
rational representation of G has a unique vector vy, known as the highest weight
vector, which is a weight vector for g (the Lie algebra of G) with some dominant
weight X\ € P.(G), and is killed by every simple root vector. We say that such a

representation has highest weight \.

2. For each of G = GL(0), SO(0), and for each \ € P.(QG), there is a unique irreducible
representation wf with highest weight .

Remark 2.1.17. To summarise, the irreducible rational representations of GL(f) are

indexed by #-tuples of non-increasing integers, and those of SO(#) are indexed by r-tuples
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of non-increasing, non-negative integers (where r = [g]), with the exception that in the

case 0 = 2r, the 7' entry can be negative.

We can also characterise the irreducible polynomial representations of GL(#) (recall

for SO(#), polynomial and rational representations are the same).

Lemma 2.1.18. An irreducible rational representation of GL(0) with highest weight \ is

polynomial if and only if all the entries \;, i =1,...,0, are non-negative.

Hence one can say that the irreducible polynomial representations of GL(#) are indexed
by partitions of any size, with at most 6 parts. For each irreducible rational representation
Y& of each of G = GL(#) and SO(A), let us denote its character and dimension by x& and
df respectively.

There is a second way to index the irreducibles of the general linear group GL(#). One
can biject the set of #-tuples of integers which are non-increasing with the set of pairs of
partitions (), ) of any size, satisfying A\] + ] < @. Indeed, given such a pair, let [\, ;2] be
a f-tuple defined as

[\ 1]i = Ni = pos1—i, (2.22)

for each 7 = 1,...,0. Conversely, given a f-tuple p, let \; = p; for all ¢ where p; > 0, and

Ai = 0 otherwise, and let p; = —pg1-; whenever pg,1-; <0, and p; = 0 otherwise.

Lemma 2.1.19 (Theorem 3.2.13 of [44]). If wGL(Q) is an irreducible representation of

GL(0) with highest weight [\, u], then its dual is the irreducible representation @b[C;L(]B)

GL(O) o, GL0)

RV

In particular, the dual of an irreducible polynomial representation 1

denoting the empty partition.

It remains to characterise the irreducible representations of the orthogonal group G =
O(6). These are based on those of SO(f). The irreducible rational representations of
O(0) are indexed by partitions A of any size satisfying A] + \J < @. For any such ), let
M be the same partition, with its first column A replaced by 6 — A]. Notice that A" = ),
and A = \ if and only if 6 = 2 and A] =, that is, A\ has r parts. In the case A # \’, one
of the pair A\, \" has its first column strictly shorter than r, and one strictly longer; let us
label these by A*, A\~ respectively. Let us also define a specific element go € O(0) ~ SO(0)
in the case 0 = 2r: gg fixes each basis vector f; of V', i # r,r + 1, and exchanges the basis
vectors fr, fr+1, where recall {f;}i<icp is the basis of V' with f = fg,1_; for all 1 <7 <.

Theorem 2.1.20. The irreducible rational representations 1/)5\)(0) of O(0) are indexed by
partitions A of any size satisfying )\i’-+ )\; < 0. For A+ X' (that is, 0 odd or 6 = 2r even
and \] # 1), we have the restriction

000 06) _  0(6) 0(0) _, SO0)

resgo gy ¥ar = 1850 ¥x- = Ui (2.23)
Further, when 0 is odd, the element —id € O(8) ~ SO(0) acts on 1/)5\)(0) as (-1)Mid, and
when 6 = 2r even, the element gy € O(0)~SO(0) acts on the (SO(0)) highest weight vector

in ¢)(\)i(9) as +id. In the case X\ =\ (this implies 0 = 2r even), we have the restriction

o0 O(0 SO(6 SO(6
1es20), 0O = 500) 4 4SO (2.24)
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where \° is X with A\, replaced with —\,..

For each irreducible representation %0(9) of O(0), let us denote its character and di-

mension by Xg(e), and df(‘g) respectively.

2.1.6 Branching rules

In the rest of this section we give useful results about restrictions of representations, known
as branching rules. Let A;, As be algebras over C, with As a subalgebra of A1, and let
(¢, M), be a representation of Ay, with character x. Then we define the restriction of
(v, M) to As, (resﬁé [¢], M), to be simply the function 1) restricted to Ay. We similarly
define the restricted character resﬁ; [x] = Tr(resﬁ; [4]).

The decomposition of restrictions of representations of CS,, to CS,,_1 and B,, g to B,,_1 ¢
are well studied. Let p = n, A= n -2k, 0 <k <[] Recall we denoted the irreducible
representations of CS,, and B,, y with partitions p and A by w‘;” and w?"’e respectively,
and the cell module of B,, 9 with partition A by A]E"’e. We have the following (see, for
example, Sections 4 and 5 (and Figures 1 and 2) of [32], and Proposition 1.3 of [78]):

ey (05 3 U5
n-1 r

p=p-0

(2.25)
resﬁz,fl , [AIETL,G] — Z AIEn—l,G;
' A=AxO0
and if \ further satisfies A{ + \J <6,
IBgn, Bn, B, ;
resg™’ [1,""] = A;ﬁ X\ (2.26)
AT+X2F$0

where in the first equality the sum is over all p - n -1 whose Young diagram can be
obtained from that of p by removing a box; in the second the sum is over A +n—1-2r,
0<r< [”T_IJ, whose Young diagram can be obtained from that of A\ by removing or adding
a box; and in the third the sum is the same as the second, except we are restricted to

those A with A] + AJ < 6.

We now describe how cell modules of B,, 9 decompose when restricted to CS,,; first we
need to describe the Littlewood-Richardson rule. See section 1.9 of Macdonald [68] for a
detailed exposition. The Littlewood-Richardson rule has several forms; we will describe
three of them here.

Firstly, we need to define induction of a representation - this is in some sense the
inverse process to restriction. Let Ai, Ao be algebras over C, with Ao a subalgebra of
Aq, and let (¢, M), be a representation of Ay, with character y. Then we define the
induction of (v, M) to Ay, (indﬁ; [¢], M), to be the tensor product A; ®4, M, with
action a- (b®v) = (ab) ® v for all a,b € Ay, v e M (recall Ay ® 4, M is the vector space
A1 ® M quotiented by the relations ajas ® v = a1 ® agv. We similarly define the induced
character indﬁé [x] to be the character of the induced representation.

Given a pair of representations v, of CS,, and s of CSs, there exists a product
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representation which we call ¥; x 1)y of CS,45 (given by the induction from CS, ® CSs to
CS,+s of the box-tensor product 1)1 ®12). When the two representations are irreducible,

their product is given by the Littlewood-Richardson rule:

TP SUAEEDY cfr,#i/)f”s, (2.27)

E-r+s

where cfw is the Littlewood-Richardson coefficient. For two Young diagrams &, u of any

size, such that p < ¢ (that is, u; <& for all rows i of both diagrams), the skew-diagram
&\ is the Young diagram of € with the boxes of y removed from it. For our purposes
we need only note that the Littlewood-Richardson coefficient cfw is non-zero only if w < £
and p < &, and it is determined by 7 and the skew-diagram & \ p. The formula (2.27) is

equivalent to the statement

resg i [ ] = D e m e, (2.28)

=7
s

the equivalence being a consequence of a general theorem called Frobenuis reciprocity, see
Section 5 of [34].

The product (2.27) is equivalent to, and often thought of as, the ordinary product of
symmetric polynomials. Let p - n have at most ¢ parts. Define the Schur polynomial s,
(on € symbols) to be the symmetric polynomial in the variables z1,...,zq as

% %

det [mpj+9_j]9 det [xpj+9_j]9
1,j=1 1,j=1

sp(x1,...,29) = (2.29)

det[:n'?_j]e Micicjen (@i = ;)
i i

The Schur polynomials are, in fact, the polynomial characters of the general linear group.

Lemma 2.1.21. Let g € GL(0) with eigenvalues x1,...,x9. Then for any partition p with

at most 0 parts,
XSL(G)(g) =sp(x1,...,2p). (2.30)

If sy, s, are the Schur polynomials associated with 7 and pu, then the second form of

the Littlewood-Richardson rule is
SeSp= . ci,#s@ (2.31)

Now since the Schur polynomials are the irreducible characters of GL(#), we have by

Lemma 2.1.21 that as a representation of GL(6),

WO @yt ® = @ &t (2.32)

Err+s
for all partitions 7, pu with at most 6 parts, which is our third form of the Littlewood-
Richardson rule. Let us note that the Schur polynomials, along with the characters of
the special orthogonal group, can be expressed in terms of tableaux. See, for example,
Sundaram [94]. Let U be a finite, totally ordered set, and let A + |U|. Then 7 is a
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semistandard tableau with shape A and entries from U if 7 is the Young diagram of A with
each box filled with an element of U, such that the entries are non-decreasing along rows
and strictly increasing down columns. (Note in contrast to standard tableaux, one can
have repeated entries in a semistandard tableau). Let SS,(U) be the set of semistandard
tableaux with entries from U with shape A, and SS,(U) = Uy, SSA(U). Then, letting
© ={1,...,0}, (see Theorem 2.2 of [94]) we have

(4
sp(x1,-..,m9) = >, [l=, (2.33)

eSS, (0) i=1

where m; is the number of times i € © appears in 7. There are several analogous formulae
for the characters of the special orthogonal group. One of them is a formula due to King
(Theorem 2.5 of [94]), which is stated in full in Chapter 5, see (5.48).

A special case of the Littlewood-Richardson rule, known as the Pieri rule, deals with
the case when one of the factors 1/1? has Young diagram 7 with only one row, or only one

column, that is, when 7 = (s) or (1%), for some s. In this case we have

s r+s s Sr+s
(T) X% = Z w w(lr Xl/}u = Z 1/}5 ) (2.34)
Err+s Err+s
where in the first equation, the sum is over all £ whose Young diagram can be obtained
from that of u by adding r boxes, no two of which are in the same column, and the first

equation the sum is over the same £ except that no two of the boxes one adds can be
GL(0) .

in the same row. A special case of this is the case when 7 = (1?) (here vy is the
1-dimensional determinant representation of GL(#)), in which case we have
GL(0) , . GL(§) _  GL(0)
Yoy @ UM =g 1, (2.35)

where € + 1 is the f-tuple with i*" entry equal to & + 1, for all i = 1,...,0. There exists
an equivalent Pieri rule for the orthogonal group (see Okada [81]); we will note only the

special case when s =1, that is, when 7 = (1):

v e = @ v (2:36)
A= 0
AT+A1<0

where the sum is over all partitions A\ satisfying A-lr + A-Qr < 0 which can be obtained from
A by adding or removing a box; in fact one appication of Schur-Weyl duality is that this

is equivalent to (2.26) - see Lemma 5.7.1.

We can now give the restriction of cell modules of B, 9 to CS,,. This result is from
Theorem 4.1 of Hanlon and Wales [52], and is a special case of Theorem 5.1 of [84]. We

call a partition 7 even if all its parts ; are even. Let A =n -2k, 0 <k <|5]. Then

in,0
reSEZ,G [A[En,a] - @(,l/)pn)@b)\,p - wfn—zk « @ 1/]521@7 (2.37)
pE w2k
T even
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or,

Note that as a consequence, Bz:z =0if XA £ p, and that B;:z is fully determined by the

skew-diagram p \ .

Now let us define the branching coefficients bz’i by

ress’“9 w/\"g @(wS”)EBbM (2.38)

pEn

There is no concise formula for the branching coefficients bi\lﬁ of the form (2.37), however
in the case )\I + )\-2'— < 0 and pI < 0, Okada (Proposition 2.5 and the orthogonal group
version of equation (5.1) of [81]) gives an explicit algorithm for calculating the coefficients
b’;:z in terms of the coefficients Bzz Note that the results in [81] are given in terms of
restriction from the General Linear group to the Orthogonal group - in Lemma 5.7.1 we

show that this is equivalent. This equivalence is a consequence of the Schur-Weyl duality.

The branching coefficients bz’z will prove to be crucial in the results on quantum spin
systems in Chapter 5; in particular we will need a condition for b;’z > (0. We give results

on this problem in Section 5.7.

Similar branching rules hold for the restriction of cell modules and irreducibles of the
walled Brauer algebra B,, .,y to the symmetric group algebra C(S,, x Sp—p). Corollary
7.24 of Halverson [47], restated in Lemma 4.1 of [23], gives

in,m,0
s AV @ @i ®ies, (230
(p,&)-(m,n-m)
where

nm0
D6 ECM Che:

imi : . n,m,0
Let us similarly define the branching coefficients b( ) () by
]Bnm B"ym, Sm Sn—m e)bn,m,e
resg,, XSen m[d’()\,u)e] = D (¢, R0 ) Qoo (2.40)

(p,{)l—(m,n—m)

n,m,0

), (p.6)°
contrast the the Brauer algebra case, in the case )\I + M1 < 6, an expression does exist.

There is no general, concise formula for the branching coefficients b however, in
This will be crucial to part of our work on quantum spin systems in Chapter 6. Let us
summarise the result here. For a #-tuple (which could be a partition) A\, and an integer
s, let us define the 6-tuple A + s as having " entry equal to \; + s, for each 1 < i < 6.
Recall that for two partitions A, u with length at most 8, we define [\, ] to be the 6-tuple
[\, 1]i = Ai = pgs1-4, and lastly recall that the irreducible representations of GL(#) can be
indexed by pairs of partitions A, u satisfying A\] + u{ < 6. The following lemma is from
Section 6.2.2.
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Lemma 2.1.22. Let p,& be partitions with at most 0 parts, and let

GL(G)

YGHO) ®¢GL(9) 99 b Vo (2.41)
>\T+;Z T<0
TN, m,r n,m,r [)\ u]+§ . . .
Then b[)\ W (mf) = b()\ () = Cr (o e]rer where the latter term is the Littlewood-Richardson
coefficient. a
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Chapter 3

Schur-Weyl duality

Schur-Weyl duality is a powerful theory which connects and explores the representation
theory of several pairs of groups, or pairs of algebras. In each instance, it is essentially
an example of a general theorem of representation theory, the double centraliser theorem.

Let us state this theorem.

Theorem 3.0.1 (The double centraliser theorem). Let W be a complex vector space. Let
A c End(W) be a semisimple subalgebra and let A" = Enda(W) := {b € End(W) : ab=

ba Ya e A}, its centraliser. Then:

1. A’ is also a semisimple algebra, and A" = A;

2. As a representation of A® A', W decomposes as

k
W=QUrV, (3.1)
i=1
where U; (resp. Vi), i = 1,...,k is an exhaustive list of pairwise mnon-isomorphic

irreducible representations of A (resp. A’).

The original version of Schur Weyl duality is for the pair of groups GL(6) and S,,. Let
V be a complex vector space of dimension . Briefly, the space V®" is a representation for
both GL(6) and S, and these actions are each others’ centralisers. The double centraliser
theorem then decomposes the space V®" as a module for GL(#) x Sy, into a direct sum of
irreducibles U; ® V;; this is the first half of the proof that we will give in this section. The
second half consists of using the Specht modules and highest weight theory from Chapter 2
to identify U; &V as the irreducible @DpGL(G) ¢§”, where, note, the partition p indexing the
irreducible of S, is the same as the #-tuple p indexing the highest weight of the irreducible
of GL(6). The irreducibles y5*?

at most # parts and each appears once each.

¢§" that appear are all those indexed by p + n with

One reason Schur-Weyl duality is powerful is that it gives a concrete realisation of every
irreducible polynomial representation of GL(f) in some tensor power of V', and gives a
concrete realisation of every irreducible representation of S, in V®", so long as 6 > n.
In particular, one can even define the irreducibles of GL(6) and S,, as those that appear
in Schur-Weyl duality (once one has proved the first part of the theorem, as described
above, using the double centraliser theorem) and then work towards the highest weight

theory and Specht module theory. As noted above, in our case, we will go the other way
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around, and identify the irreducibles in V®" using these theories. A second reason that
Schur-Weyl duality is powerful is that it intimately links the representation theories of
the two groups GL(0) and S,,. Statements about one group can often be transferred into
statements about the other. We will see examples of this in Sections 5 and 6, for example
Lemma 5.7.1 and Lemma 6.2.3.

There are many other versions of Schur-Weyl duality. We will study, (in addition to
the GL(0) - S, version), two of them. Richard Brauer [19] proved the version linking
the orthogonal group O(#) and the Brauer algebra B, g, where note, the dimension 6 of
V' is the same as the multiplicative parameter 6 of the Brauer algebra. The statement is
essentially the same as in the GL(#) - S,, version. The irreducibles wf\)(e) 1/1%"’9 appearing
in V®" are those A = n -2k, 0 <k <|5], such that Al +AJ < 6. Note that in this case,
for fixed n and 6, often not all irreducibles of B, y appear in tensor space. Let us note
that another version of Schur-Weyl duality analogously links the symplectic group Sp(6)
and the Brauer algebra B, ¢ for 6 > 0 even. Since we will not use this version in our
applications, we omit it from our treatment in this work; however we note that its proof

follows almost identical lines to that of the O(6) — B,, y version presented in this section.

The third version that we will study links GL(#) and the walled Brauer algebra B,, ,,, g,
proved by [60] and [8]. The statement is essentially the same as in the GL(6) - S,, version,
although the action of GL(#) is different. The irreducibles ¢[(§\Llf]6 ) 1p?;’5’0 appearing in
V® are those A - m —k, i -n—-m—k, 0 <k <min{m,n—m}, such that A\] +u{ <. Note
that as in the Brauer algebra case, for fixed n,m and 6, often not all irreducibles of B,, ,, ¢

appear in tensor space.

Let us recall that one of the objectives of this section is to present as unified, stream-
lined and self-contained an account of these Schur-Weyl dualities as possible, in particular
the O(0) - B,, 9 and GL(6) — B,, ,,, ¢ versions, which often appear in partial forms in the

literature.

This section is organised into three parts. In the first part we will prove the double
centraliser theorem 3.0.1, and state our the three versions of Schur-Weyl duality precisely,
Theorems 3.0.2, 3.0.3, and 3.0.5. As discussed above, in the second part we use the
double centraliser theorem and a classical theory called invariant theory to prove each
of the duality statements, up to the specific identification of the irreducibles concerned.
Invariant theory is the study of functions on a vector space which are invariant under
the action of a group, usually a classical group. That is, if f: V — C lies in the algebra
generated by V*, and a group G acts on V, then f is an invariant if f(gv) = f(v) for all
geG, veV. We usually denote the set of invariants by [V']“. In the third part we will
prove Propositions 3.0.8, 3.0.11, and 3.0.12, which use the representation theory of the
groups and algebras we explored in Chapter 2 to identify the irreducibles appearing in the

tensor space in each statement.

3.0.1 Proof of the double centraliser theorem, and statements of Schur
Weyl Duality

Let us prove the double centraliser theorem. We follow Kraft and Procesi [63].
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Proof of the double centraliser theorem. Recall A is a semisimple subalgebra of End(W),
W some complex vector space. Since A is semisimple, we can decompose W as a repre-

sentation of A into:

k
W=@Ue, (3:2)
i=1

where U; comprise an exhaustive list pairwise non-isomorphic irreducible representations

of A. By Schur’s lemma,
k
A" = End (W) = Enda(ef,U®"*) = @ Mat,, (C), (3.3)
i=1

the last isomorphism coming from the fact that Hom 4 (U;, U;) = §; ;C, where Hom 4 (U;, U;)
is the set of algebra homomorphisms from U; to U;. Hence by Artin-Wedderburn, A’ is
semisimple, with a complete list of pairwise non-isomorphic irreducible representations
given by V; 2C"™, ¢=1,...,k. Now

k
W=PU;aV, (3.4)
i=1

as a representation of A ® A’. The density theorem gives that A = @]_; Endc(U;) =
®F | Maty, (C), where s; = dim(U;). So as a representation of A’,

k
WPV, (3.5)
i=1
and then by a similar argument as before, Endg(W) = Endg (e}, V,**) = ®F | Mat,, (C) =
A, which completes the proof.

We can now begin to study the specific instances of the double centraliser theorem
known as Schur-Weyl duality. Let us define precisely the actions of the relevant groups

and algebras on tensor space, and state the theorems.

Let V be a complex vector space of dimension §. Let n > 1. A basis {fi}?_, of V
gives a basis {f;}, i = (i1,...,in), 1 <i; <6, for the space V®". Recall in Section 2.1.5 we
defined a standard basis {ei}le of V' as being its own dual e; = €], 1 <i <#, with respect
to a non-degenerate, symmetric, bilinear product (-,-). We call the basis {e;} the standard
basis of V®". Consider the action p&“(?) of GL(6) on the space V®" given by n tensor

copies of the natural representation, that is,
PO (g)(v1 @ @) = gu1 ® - ® gun. (3.6)

Let us note that the corresponding action of the lie algebra gl(#) is given by

n
X - (v1®®uy)=> 1@ ®Xv;®® up, (3.7)
i=1

for any X e gl(6). Consider the action p° of the symmetric group S, on the same space
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as
P (0) (01 @ ® V) = Vy-1(1) ®  ® Vo1 (), (3-8)

and extended linearly to CS,,; or, written differently, (and in particular in the standard

basis {e; } of V&™), for a diagram o € S,, written in edge notation (2.5), o = H?:I(jN, a(§)%),

n
Sh
(07" () iy = [ 10 i, s (3.9)
j=1
where iy = (in, ..., i,N), G5 = (435, ... ,0,s) and 1 <id, <6 for each £ =N,S, 1<t <n.

Theorem 3.0.2 (Schur-Weyl Duality for the symmetric and general linear groups). The
actions of GL(0) and S, on W = V®" centralise each other, that is, EndcaropW =
p5n(CS,), and Endeg, W = pSH O (CGL(0)). Moreover, as a representation of GL(0)xSh,

vers @ St i, (3.10)
pEN
pi<b

where @DEL(O)

the irreducible representation of Sy corresponding to p.

is the irreducible representation of GL(0) with highest weight p, and lbf" is

Let (-,-) be a non-degenerate, symmetric bilinear form on V', and recall the definition
of O(0) from Section 2.1.5. Recall also that the standard basis {e;}%_; of V' is its own dual,
e; =€, 1<i<6. We will also sometimes need the basis { f; ?:1 of V satisfying f;* = fo+1-i,
1 <4 <6, since we used it to construct the irreducibles of the orthogonal group.

One can check that if the standard basis {e;}%_; and another basis {fi}% , are related
by the change of basis matrix M (i.e. f; = Z?zl M; jej for all i), then {f7}%., and {e;}¢_, =

{ef ?:1 are related by M7, the inverse transpose of M. Then one can prove the equality
0 0
Zel-@ei:Zfi@fi* €V®2; (3.11)
i=1 i=1

or in other words, the vector Z?:l fi®f ¢ V®?2 is basis-independent.

Consider the action p@?) of O(0) on the space V" given by p@L(®) (3.6) restricted to
O(60). Note that this induces an action of s0(6) on V& too, as (3.7) restricted to so(f).
Consider the action p®¢ of the Brauer algebra B, ¢ on the same space as pBro ((i,5)) =T,
pPre((i,4)) = Qi j, where

Tij(v1® - ®v,®QUj®QUy)=(V1®QV; @ QU ® QUp)
0 (3.12)
Qij(V1® - ®V;® QU ® ®uy) = (v,V;) .Z;(Ul ®Qfi®Qf @ ®uy),
i
where we have written @; ; in terms of a general basis f; of V®", and it is well defined by
our observation (3.11). In particular, Q);; projects V®2 onto the one-dimensional space
spanned by the vector (3.11). Notice that when restricted to CS,,, the function p®n.e

becomes pn. Written differently (and in particular in the standard basis e; of V®), for
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a diagram b € B, written in edge notation (2.5), b = H;Ll(bj,b;-), where bj,b;. e {tt : €=
N,S, 1<t<n},

n
[an,e (b)]éN,is = H 5ibj ,ib;_ ) (3-13)
j=1
where iy = (in, ..., i,N), G5 = (435, ... ,0,s) and 1 <i, <6 for each £ =N,S, 1<t <n.

Theorem 3.0.3 (Schur-Weyl Duality for the Brauer algebra and Orthogonal group).
The actions of O(0) and B, g on W = V" centralise each other, that is, Endco@oyW =
pBro (B, ), and Endg, ,W = pPO(CO(0)). Moreover, as a representation of CO(0) ®

Bnﬂﬂ
5]

09 B,
vere @ vy ey, (3.14)
k=0 A\rn-2k
M+AT<o
where 1/))?(0), 1/)?"’0 are pairwise non-isomorphic irreducible representations of O(0) and

B, 9 respectively, each corresponding to the partition \.

Remark 3.0.4. Let us note that in this work we will not quite prove that the represen-
tation @Z)?"‘e that appears in Theorem 3.0.3 is the irreducible of B, 9 defined in Theorem
2.1.11; we will only prove that the w%”’e in Theorem 3.0.3 are pairwise non-isomorphic
irreducibles of B, g, and that each @ZJ?"’G is a quotient of the cell module A]E"’e. This will

be enough for the purposes of the applications of Schur-Weyl duality in Sections 5 and 6.

Recall that for a linear map A : V — V the adjoint of A with respect to (-,-) is the
linear map A* satisfying (Av,u) = (v, A*u) for all v,u € V. If A has matrix Ay in the
basis {f;}%_,, then A* has matrix AJTC (the transpose of Ay) in the basis {f;}2_,. So, with
both written in the standard basis, the matrix of A* is the transpose of the matrix of A.

Let n,m € N with 0 < m < n. Consider the action ¢“*() of GL(#) on the space
Ve g (V*)®"™ given by m tensor copies of the natural representation, and n—m tensor

copies of the dual of the natural representation, that is,
GL(0) _ —% —%
q ()@ ®Up ®Up+1 ® - ®Vy) = (g1 ® @ GUR ® G VU1 - ® g vy), (3.15)

where ¢™* is the adjoint of ¢! In the standard basis this is just ¢'7, the inverse transpose
of g (or, if we assume that ¢g~* is written in the dual basis of whichever basis we are
using for V', then ¢g=*
the lie algebra gl(#) is therefore the same as (3.7), but with X € gl(0) acting as —X* on

the tensor factors from V*. For example, in a given basis { fi}le, under the action of a

is the inverse-transpose of the matrix of ¢g). Note that the action of

diagonal matrix H = (hiﬂ;)?:l € gl(8), the basis vector f; is scaled by h;;, and the vector f;*
is scaled by —h; ;. Consider the action pB"’mﬂ of the walled Brauer algebra B, ,, 9 on the
same space as the restriction of p®n¢ from the Brauer algebra B, ¢ to the walled Brauer

algebra.

Theorem 3.0.5 (Schur-Weyl Duality for the walled Brauer algebra). The actions of
GL(9) and B, me on W = VO™ @ (V)™ centralise each other, that is, we have
EndegrgyW = pBrme (B, 1 0), and Endg, ,, W = gL (CGL(0)). Moreover, as a rep-
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resentation of CGL(6) ® By, 1.0,

min{m,n-m}

Ve (Ve Ty P fas) w[GL“’) R w(;;;", (3.16)
k=0 A-m— k ;u—n m—k
N +ul<o

where ¢G>\LM(]0) is the irreducible representation of GL(0) with highest weight [\, 1], and

@/)(" ™0 s the irreducible representation of B, mo corresponding to the pair (A, ).

Remark 3.0.6. Let us note that, similarly to the Brauer algebra case, in this work we

an

will not quite prove that the representation ¢( ) that appears in Theorem 3.0.5 is the
irreducible of B,, ;,, o defined in Theorem 2.1.13; we will only prove that the w("’"g in

m,0

1)
is a quotient of the cell module A( ; m)g This will be enough for the purposes of the

Theorem 3.0.5 are pairwise non-isomorphic irreducibles of B,, ,,, 9, and that each w( m

applications of Schur-Weyl duality in Sections 5 and 6.

As noted earlier in this section, we will present proofs of each of these Theorems 3.0.2,
3.0.3, and 3.0.5, each coming in two parts. In each case, the first part, in Section 3.0.2,
proves a decomposition of the form (3.1) using the double centraliser theorem and the
specific irreducible representations in the decomposition are not identified; we only prove
that they are irreducible and pairwise non-isomorphic. In order to employ the double
centraliser theorem, it needs to be proved in each case that the action of one of the algebras
(resp. groups) centralises the other. This is proved using invariant theory, in particular (the
multilinear versions of) the First Fundamental Theorems of invariant theory for GL(0)
and O(0), Theorems 3.0.9 and 3.0.10. Theorem 3.0.10 is the only statement which we do
not prove ourselves, since it would require a lengthy detour into invariant theory.

The second part of each of the proofs explicitly constructs and thereby identifies the
irreducibles, making use of Young symmetrisers, the Specht modules, and the highest
weight theory of Chapter 2. These second parts will be proved in Section 3.0.3. For the
invariant theory part we mainly follow Kraft and Procesi [63], and for the second part
we follow Benkart, Britten and Lemire [43], and Benkart et al. [8], with some ideas from
Goodman and Wallach [44].

3.0.2 Invariant theory proofs of Schur-Weyl duality

Proof of Theorem 3.0.2. In order to use the double centraliser theorem 3.0.1, we need to
show that Endg, W = p&L) (CGL(#)). By inspection, it is clear that the right hand side
is contained in the left; it remains to prove that this containment is equality. As noted
above, the rest of Theorem 3.0.2 (minus the identification of the irreducibles) follows from
the double centraliser theorem. The following lemma follows the lemma in Section 3.1 of
[63].

Lemma 3.0.7. Let V be a finite dimensional complex vector space. Then the linear span
of the tensors v®--®v € V" is the subspace X, of all tensors invariant under the action

pSn of Sp.

Proof. Let {f;}¢_, be a basis of V; then {f; = fGryin) @ 1450, 1<j<n}is a basis

of V®" which is stable under the action of S,. Each orbit of this action has a unique
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representative of the form flh1 ® - ® fahe, where hy +---+ hg = n. Let ry, 3, denote the
sum of the elements in this orbit; the set of these ry, . 3, is a basis 3,. We need to show
that the tensors v ® --- ® v span this space. It suffices to show that any linear functional
1 : X, = C which is zero on all tensors v ® --- ® v is the zero functional. Let v = Zle Vi fis

thenv®---®v = XS hi=n vfl---vggrhl,...,hg, SO

h
77(/1)@”) = hz: ah1,...,h91}?1"'7}997 (317)
> hi=n

where apn, . h, = 1(Thy . h,)- Hence n(v®") can be viewed as a polynomial in the coeffi-
cients vy, ..., vg; by assumption it vanishes on all v®", so it must be the zero polynomial,

so each ap, . p, must be zero, so 7 must be the zero functional. [ |

4

Now note that the algebra End(V®™) is canonically isomorphic to End(V)®". This
isomorphism induces a map from GL(6) to End(V)®": g € GL(0) sent to ¢®"; and an
action of S, on End(V)®": o € S5, acts as 0(41 ® - ® Ay) = Ag1(1) ® = ® A1)
Now the isomorphism of End(V®") and End(V)®" induces an isomorphism between the
set ¥, of maps in End(V)®" invariant under this action of S, and Endg, W. Then by
the lemma, the span of the image of the action of GL(0) is exactly X,. The statement
Endcgr )W =p°*(CS,) follows.

Now by the double centraliser theorem 3.0.1, we have
ko GLo)
Ve =P v, (3.18)
i=1

where 1/)Z-GL(0) (resp. 1/125 ") are an exhaustive list of pairwise non-isomorphic representations
of p¢LO(CGL(#)) (resp. p>(CS,)). These algebras are quotients of CGL(#) and CS,
respectively, so wiGL(O) (resp. wf”) are a (possibly not exhaustive) list of pairwise non-
isomorphic representations of GL(0) (resp. Sy). Theorem 3.0.2 now follows from the

following proposition, which identifies the specific irreducible representations 1/1Z.GL(0) and

Shn
(I [ |

Proposition 3.0.8. The irreducible representations wZGL(a) (resp. wZS”) appearing in (3.18)
are the irreducible representations ¢§L(9) with highest weight p (resp. 1#5’1 ) where p runs

over all partitions of n with at most 0 parts.

This proposition is the second part of the proof of Theorem 3.0.2. We will prove it in
Section 3.0.3.

Our working so far allows us to prove (the multilinear version of) the First Fundamental
Theorem of invariant theory (for GL(6)), which we will use in the proof of the walled
Brauer algebra version of Schur-Weyl duality. As noted earlier, invariant theory studies
functions on a vector space which are invariant under the action of a group. Specifically,
let G = GL(#) or O(f) act on W @ W* = VO @ (V*)®" as n direct summands of the
natural representation, and n direct summands of its dual. (Note the dual of the natural
representation of O(#) is itself). Then an invariant for G on W & W* is a function
f:W e W?* - C which lies in the algebra generated by the linear functionals (W & W*)*
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(i.e. polynomials of functionals), which satisfies f(gv) = f(v) forall ge G and ve WaeW™*.
We denote the set of invariants by [W @ W*]¥. An invariant is multilinear if it is linear

in each of the 2n arguments from the 2n direct summands.

Theorem 3.0.9 (Multilinear FFT for GL(6) [104]). Let n e N. Let GL() act on V®" &
(V*)®" as n direct summands of the natural representation, and n direct summands of
its dual. Let (-,-);n js(vin @ - ® Vv ® wys @ - & wys) = (vn,wys) = wys(vn) for each
1<i<n, 1<j<n, uyneV, wiseV*. Then the space of multilinear GL(0) invariants on
Vet @ (V)" ds spanned by @ = [T-1 () jn 5(j)s, where o € Sy,.

Proof. We follow Section 4 of [63]. Let W = V®" and W, = V. Let GL(A) act on
W @ W* as n tensor copies of the natural representation and n tensor copies of its dual;
let GL(6) act on W @ W™ the same, but with tensor products replaced with direct sums.
We have two canonical isomorphisms of vector spaces:

GL(0)

multi

Endear oW 2 [(We W) 190 = c[w, @ W] (3.19)

where [(W ® W*)*]9L) is the set of linear functionals on W ® W* that are invariant
under the action of GL(0), and C[W, & W:]gﬁl(g) is the set of multilinear polynomials
on W, @ W} invariant under the action of GL(6). The first isomorphism is given by
ao : EndegroyW — [(WeW*)*]%) as ag(A)(vew*) = w*(A(v)). Tt is straightforward
to check that o is linear. With the standard basis {e;} of V, we can write its inverse
as [a(;l(f)]z'mig = f(eiy ® ei) (and so in particular, ap is a bijection). The second
isomorphism is given by «ay : C[W, @ W:]GL(H) > [(W @ W*)*]GLO) a5

multi

a1 (F) (1@ @0, w1 @ @wy)=F(v1 & ®v, ®w; & dwy); (3.20)

once again «q is linear and its inverse is straightforward to write down. Now from our
working above in the proof of Theorem 3.0.2, the leftmost expression in (3.19) is p*»(CS,,),
and, using (3.9), it is straightforward to check that under the map oql o, the elements
p>n (o), o € Sy, are precisely the maps @ = IT7-1 (-, ) jn o(j)s- This completes the proof of
Theorem 3.0.9. u

Let us now state the equivalent statement for the Orthogonal group. This theorem is
due to Weyl [104]. We will not give a proof for this theorem, as it would require too long
a deviation into invariant theory; Kraft and Procesi [63] gives a full proof. Note that for
the Orthogonal group, the natural representation is self-dual, as each g € O(0) satisfies,
in the standard basis, g7 = g. Recall that we can identify V and V* via the canonical

isomorphism L (2.17), so the product (v,w) makes sense for any v,w eV or V*.

Theorem 3.0.10 (FFT for O(0) [104]). Let n e N. Let O(0) act on V¥ & (V*)®" as 2n
direct summands of the natural representation. Let (-,-)en(vin@ - @ UNn OV s® @ V,s) =
(ve,wy) for each §,m = iNori® 1<i<n, vin €V, v;s € V*. Then the space of multilinear
O(0) invariants on Ve & (V*)®" is spanned by b = H?zl(-,')ijb;, where b € By, and
b=T1j_1(bj,b;) written in edge notation (2.5).

We can now prove (the first parts of) Theorems 3.0.3 and 3.0.5, the Schur-Weyl dualities

for the Brauer and walled Brauer algebras. We follow Kraft and Procesi [63] and Lemma
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1.2 of Koike [60].

Proof of Theorems 3.0.3 and 5.0.5. Let W = V®" g (V*)® = VM @ V¥ and W, =
Vem g (V*)8n-m = y&m g 17n-m_ Recall that GL(0) and O(#) act on W (resp. W) as
m tensor powers (resp. direct summands) of the natural representation and n —m tensor
powers (resp. direct summands) of its dual (where, note, the natural representation of
0(0) is its own dual).

The proofs follow the structure of that of Theorem 3.0.2: we first prove the state-
ments Endco@gyW = pn0(B,, ) and EndcaroyW = pBrmo (B, mg), and then the double
centraliser theorem 3.0.1 gives us the rest, minus the identification of the irreducibles in
the decompositions of W. Note that for each statement Endcog)W = pBno (B, ) and
EndegroyW = pBr.m0 (B, 9), one can straightforwardly check that the right hand side
is contained in the left - what remains is to show that this containment is equality. The
proofs follow our proof above of the First Fundamental Theorem 3.0.9, but in reverse.
Indeed, we have two canonical isomorphisms of vector spaces:

EndceW = [(W e W*)* ]9 2 C[W, e WY (3.21)

multi’

where G = GL(0) or O(0), and the invariance is with respect to the actions of GL(6) and
O(0) described above. The isomorphisms are the same as the o and «; described in the
proof of Theorem 3.0.2; in particular for f € [(W @ W*)*]19 ag'(f) € EndceW as, in the
standard basis, [a(;l(f)]z'N,z's = f(eiy ®ei,). Now in the O(0) case, the First Fundamental
Theorem 3.0.10 gives a basis for the right hand side of (3.21) as b = M7 G, -)bj,b;, where
b € B,,. Now passing these functions through the isomorphism aal o a gives precisely
p®n0(b), b € B,; see the edge notation version of p®n¢(b) (3.13); this gives Endco@gyW =
pBn.o (Bnp). An identical proof can show EndcgrgyW = pBr.m.0 (By.,m.0), one only needs
to modify the First Fundamental Theorem 3.0.9 for GL(#) by rearranging the summands
V and V* to obtain:

CW: e Wf]iﬁl(g) = span {Z_) =T1¢, ')bjwb; tbe Bn,m} . (3.22)
j=1

Now the double centraliser theorem 3.0.1 gives us, in the two cases (G, A) = (O(0),B, )

and (GL(9),B, m0),
k
Ve = Pyf mef, (3.23)
i=1
where ¢1G (resp. 1/}{4) are a (possibly not exhaustive) list of pairwise non-isomorphic rep-
resentations of G (resp. A). Theorems 3.0.3 and 3.0.5 now follow from the following two

propositions, which will be proved in the following Section 3.0.3. ]

Proposition 3.0.11. The irreducible representations %0(0) (resp. @D?"’e) appearing in
(3.23) are the irreducible representations @bf(e) (resp. w?”’g) where A\ runs over all parti-
tions of n—2k, 0 <k <|2], and A] +AJ <.

Proposition 3.0.12. The irreducible representations z/JZ.GL(G) (resp. 1#?”’”’9) appearing in

GL(O) .7 4. ' g
[Mf]) with highest weight [\, 1] (resp. w(}\y,u),e)

where A, i run over all partitions of m—k,n—m-k, 0 <k < min{m,n-m}, with )\I+/J,I <4.

(3.23) are the irreducible representations ¢
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3.0.3 Constructing irreducibles in Schur-Weyl duality

In this section, we present constructive proofs of Propositions 3.0.8, 3.0.11, and 3.0.12.
We follow and adapt the arguments of Benkart, Britten and Lemire [43], Benkart et al.
[8], and Goodman and Wallach [44]. In the first two of those works, in the Brauer and
walled Brauer cases, the theorems are proved in the cases 8 > n. As noted in Section 2.1.3
and 2.1.4, in this range the Brauer and walled Brauer algebras are semisimple, and we
have a full description of their irreducible representations - they are the cell modules from
Lemmas 2.1.11 and 2.1.13. In the general case, the irreducibles are quotients of the cell
modules. Goodman and Wallach prove statements for arbitrary 6,n, but only study the
image of the Brauer algebra in tensor space, not the full algebra.

While the three proofs of the Propositions are very similar, we present the proof of
Proposition 3.0.8 first, as it is simpler and serves as a prototype for the other two. For
the rest of this section we will use the specific basis of V', { fi}?:l, where f;" = fpi1-; for all
1, as this is the basis used when we defined our representations of the classical groups in
Section 2.1.5.

Proof of 3.0.8. Recall the definition of the Young symmetriser z, (2.4), for 7 € ST(N)
the set of standard Young tableaux with entries AV = {1,...,n} and some shape p, p a
partition of n. Recall (2.1.9) we have

CSp= @ 2CSy, (3.24)
TeST(N)

where each z;CS,, is a minimal right ideal of CS,,. Now,

VO =CS, Ve = Y Ve (3.25)
TeST(N)
Consider the vector
2By € 2. V&, (3.26)

where 3; = f;, ®---® f;,,, where i; is equal to the row in which the number j appears in 7.
Let us break down what we will prove.

Lemma 3.0.13. 1. If 2. V®" is non-zero, then it is the irreducible module @DSL(Q) of

GL(6) with highest weight p, where p is the shape of T;

2. The space z-V®" is non-zero if and only if p has at most 0 parts, where p is the

shape of T;

3. The vectors z; 3+, as T ranges over ST (N') of shape with at most 0 parts, are linearly

independent;

4. The space M, spanned by the vectors z.3; with T shape p is a copy of the irreducible
Together, Parts 7 to 3 Lemma 3.0.13 shows us that the sum in (3.25) is direct (over

7 with shape having at most 6 parts), and that it is the decomposition of V®" into ir-
reducibles of GL(#). Adding part 4 gives us the decomposition of V®" from Theorem 3.0.2.
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Proof. Let us prove part I from the lemma. Indeed, since the actions of GL(6) and
S, commute, z,V®" is indeed a GL(f) module. If it is reducible, then there must be
a projection u onto a non-zero submodule. This u commutes with the action of GL(6),
so since we have already proved Endcgr o)W = p°n(CS,,), it must be the action of some
u' € CS,,. Now

0+ uzV® g2 V", (3.27)

which implies, by applying the z, on the left, which is the identity map on 2,V ®",
0% 2,uz, Ve g 2, VO (3.28)

Then 0 # z;uz,CS,, ¢ z:CS,,, which contradicts z;CS,, being a minimal right ideal of CS,,.
So z;V®" is indeed an irreducible of GL(6).

Recall the highest weight theorem (2.1.16). We can show that z.(; is a highest weight
vector in the representation z,V®" with weight p. A simple calculation shows that the
weight of ; is p, and since the action of GL(#) commutes with z;, 2,5, also has weight
p. To prove z.5; is maximal, it suffices to show that it is killed by each weight vector
E;j € gl(#). We have that E; ;3. is zero, or a sum of tensors . that look like (., but
with one f; changed to f;; for each o € R(7), and each ', there is some (z,y) € C(7)
which leaves o3, invariant - this gives E; jz;5; = 2. E; i3 = ¥ z; 4. = 0. Hence 2.0, is a
highest weight vector of weight p, and so by the highest weight theorem 2z, V®" is a copy
of Y5 ®,

Let us prove part 2 of the lemma, that z,V®" = 0 if and only if 7 has shape p, and p has
more than @ parts. Indeed, notice that z,V®" is a set of tensors which are antisymmetric
in the indices which appear in the first column of 7, so if p has more than 8 parts, then
2, V®" = 0. Say p has at most 0 parts. Notice that all the o € R(7) fix 8;, and only
id € C(7) does; the rest of o € C(7) sends 3, to other basis vectors of V®". Now expanding
2, B3> in the basis, we see that the coefficient of 3, is [R(7)|, so 2,3 # 0, and so z, V" £ 0.

Let us prove part 3 of the lemma, that these highest weights 2,3, (the ones which are

non-zero) are linearly independent. Assume

Z Z arz: By =0, (3.29)
PR 7¢ST (p)
pi<0
where the a, are a collection of complex coefficients. If 7,7’ have different shapes, then /3,
and (B have different tensor factors, and since the symmetrisers just permute the factors,

we can see that the sums of terms with different shape diagrams are linearly independent.

So assume

Z arz:fBr =0, (33(])

TeST (p)

for some p + n, pI < 0. Let 7' be the smallest 7 of shape p in the ordering < with a, # 0,
and recall Lemma (2.1.8) regarding this ordering. Then 0 = 2,0 = ¥ ST(p) Qr 2127 Br =

ar1 27171, since z;zp =0 if 7> 7', Now a, = 0, which is a contradiction; hence all a, = 0.

Part / of the lemma follows from the definition of the irreducible representation wgn

and part & of the lemma. [ ]
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Hence @;cs7()) 2, VO d)g:L(@) wgn, which gives the decomposition:

V®n — 69 EI; ZTv®’n ~ EI; ,gprL(@) prn7 (331)
P 7eST (p) pn
pi<o pi<o

which completes the proof of Proposition 3.0.8, and therefore also Theorem 3.0.2.
|

The proofs of the Brauer and walled Brauer cases, Propositions 3.0.11 and 3.0.12,
follow the basic structure of that of 3.0.8, with two exceptions: that the decomposition of
V®" is more complicated, and that the equivalent highest weight vectors to z,/3, are no
longer necessarily linearly independent. The latter reflects the fact that for 8 < n, the cell
modules of the Brauer algebra are sometimes no longer irreducible. The key step in the
proofs is showing that the decomposition is essentially given by decomposing a subspace of
tensor space known as the traceless or harmonic tensors. In order to define these tensors,
and to describe how the decomposition of tensor space is different from the S,, case, let
us introduce some notation.

Let Q(k) be the set of lists (¢,t), where ¢t = (t1,...,t), t' = (t],...,t}), the t;, t; e N =
{1,...,n} all distinct, ¢; increasing in ¢ and t; < t;. Let Q'(k) be the set of (¢,t') € Q(k)
such that t; <m <}, for all i = 1,... k. For a pair (¢,t") € Q(k), let (¢,t')¢ be the set of
elements of N which do not appear in ¢ or t'. For (t,t") € Q(k), define Q¢ = Qtl,t’l"‘th,t;-
This is the action of the diagram (t,t") := [15_; (¢;,t]) € B, on tensor space. Note if ¢ = (i),
t' = (j) then Q. = Q;;, and note that Q;y arises from the action of an element of the
walled Brauer algebra B, ,, ¢ if and only if (¢,¢") € Q'(k).

For ease of notation, let T, = V®" and W,, ,, = VE™ @ (V*)®"™. Let W} be the span
of all QW with |t| = |t/| = k. Note this is the image of Bﬁ,e in W,,, where recall Bfu@
is the span of diagrams in the Brauer algebra B,y with at least k bars. Then let [, ]*
be the subspace of W which is killed by any @, with [¢| = [¢/| = k + 1, or equivalently,
any Q;; with i,j € (tut)°. Then W = [W,]¥ @ W, The sets W} and [W;n]*
are defined similarly (i.e. only (¢,¢") € Q'(k) are allowed to act on W,,,,), and we have
W,’fm = [WumlF @ WTIL“J;,IL Note we define [W,,]l2] as just W}L%J (and [W,, , [in{mn=m} ag

W,in Tif;{m’n_m}). This provides direct sum decompositions

l3]
Wn = @[Wn]ka
’“fo{ . (3.32)
Wn,m = @ [Wn,m]k7
k=0

k (resp. [Wp.m]¥) is invariant under the action of both B,

and importantly, each [W,]
and O(0) (resp. By, 9 and GL(0)), so this is a decomposition of W,, (resp. W), ) into
submodules of CO(0)®B,, g (resp. CGL(0)®B,, ,,9). Combining this with (3.23), it suffices
to identify the irreducibles in(e) ¢?”’9 contained in each [W,,]* (resp. wGL(e) w]iB"’m’e

i
contained in each [W,,,,]*).

Proofs of Propositions 3.0.11 and 3.0.12. The key idea in the proof is that all the infor-

mation we need is in the decomposition of [I,,]° - this space is known as the traceless, or

49



harmonic, tensors. The proof therefore comes in two parts. The first part (Lemma 3.0.14)
will decompose the traceless tensors [W,]° (vesp. [Wy.n]°). Then the second part will
show that we can decompose the rest of the summands [W,,]* (resp. [W,,m]*) using the

decomposition of the traceless tensors.

Let us begin the first part, decomposing [W,,]° ¢ W, (resp. [Wym]° € Wim), which,
recall, is the space killed by all Q; ; (resp. Q;; with 1 <i<m<j<n).

Proposition 3.0.14. As a representation of CO(6) ® B, g (resp. CGL(0) ® B, 1, 0), we

have

Wl @ v}V my

A1
A +AT<0

0 ~ GL(6) n,myg
[Wn,m] = o u)'_%.ri nem) w()\ m) & ¢(A,p) ’
+u1 <0

(3.33)

Proof. As noted above, [W,,]° ¢ W,, (resp. [Wym]° € W,,.m) is invariant under the action
of CO(0) ® B, 4 (resp. CGL(6) ® B, n9). Moreover, since [W,,]° (vesp. [W, 1, ]°) is killed
by any be B, \ S, (resp. b€ By m N (Sm X Sp-m)), we must have that B, g acts as CS,, on
[(W,]° (resp. B, .m0 acts as C(Sp, x Sp—m) on [Wmm]o). Moreover from the definition of
the cell and irreducible modules (Lemma 2.1.11) any irreducible of 1/}?"’0 of B, 9 appearing

an

in [W,]° must have A - n (Similarly from Lemma 2.1.13, if Yinm)

appears in [W;, ,]°
we must have (A, u) + (m,n—-m)).

Recall we already know from the invariant theory parts of the proofs (3.23) that W,
(resp. Wi, m) decomposes intro irreducibles U;® V. So, as a representation of CO(6) ®B,, 9

(resp. CGL(0) ® By, 1m9),

B,
=@y my,
AeA T
0 GL(G) n,m,0
(Wim] ()\;EEEA' ¢()\,M) X w()\ 0

(3.34)

112

where A is some set of partitions A + n, with A some partition of some size satisfying
Al +AJ <0 (and respectively, A’ is a set of pairs of partitions (\,u) + (m,n —m), and
(A, p) is some #-tuple of non-increasing integers). Our first job is to identify the sets A and
A’,—that is, determine which irreducibles of By, g (resp. By, ;,,9) lie in the traceless tensors.
Let us recall from the GL(0) - S,, duality:

WTL ~ @ wEL(Q) ,llz)kpgn;

pEn
pi<0

~ GL(9) GL(G) S XSn-m
W = (/\,,u,)l—%,n—m) ( ® 1/1 ) (w(&u) ) ’

)\I,/LISG

(3.35)

where the second identity has used the dual of the first as a representation of GL(0) (recall

from Lemma 2.1.19 that the dual of wGL(e) ¢[C;Ll§]9))_

Notice that 1/)5” must either be a subspace of [W,,]°, or satisfy wf" N[W,]° = 0; indeed,
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since [W,,]° is preserved by S, we see that 1/)5” n[W;]° is a subrepresentation of ¢§”, SO
it must be all of w;q”, or zero. Similarly, wi{”:)s"‘m c [Wym]° or their intersection is zero.

The following lemma determines which 1/15" lie in [W,]" (resp. wg\":)s = lie in [Wim]°)-

Lemma 3.0.15. 1. The space 1/)5" is a subset of [W,]° if p + pa <0, and otherwise
¢an n [Wn](] = 07'

2. The space wg’\":f"’m is a subset of [Wym]® if \] +u] <0, and otherwise @bf"ﬁ[Wn]o =
0.

Proof. We follow the proof of Theorem 10.2.5 of [44]. For part 1, for each p +n, p! <6,
we take the (highest weight) vector z,3; (3.26) in ng” (for some 7 shape p), and show

that it lies in [W,]° if and only if p + pJ < #. Then by our remark above, the lemma
SmXSn-—m

follows. Similarly for part 2, we show the (highest weight) vector z;; ® 2z € w( )

lies in [W,]° if and only if \] + u] < 6; this suffices.
Notice that if we pick 7, shape A + n, with first column numbered 1,2, ..., )\I, second
column numbered A! +1,..., etc, then we can write the highest weight vector 2,3, (3.26)

as
2= (fi A A fyr) ©® (fi A A fy), (3.36)

where A has s columns. Similarly if 7 shape A - m, 7w shape u - n —m are defined

analogously to the 7 above, then

207 ® 2xfn = (fin-Afyr) @@ (finAfxr)®(fin—Afyr) @@ (fiaAfyr). (3.37)

Notice that for 1 < i < j < p, using Q;; = Q;;7T;; and the antisymmetry of the wedge
product,

Qi (fin-nfp)=QijTij(frnnfp)==Qij(f1 A A fp), (3.38)

so both sides are zero. Then consider Q; ;(fiA-Afp)®(fin-Afy), with1<i<p<j<p+q.
If p+ g < 0 then no pair of indices appears in the wedge product which sum to 6+ 1, so the
result is zero by the definition of Q; ; and the basis {f;}?_,. Now say p+¢> 6+ 1. Then
there is a pair ¢, j such that the indices at positions ¢ and j sum to 6 + 1. Calculations
then yield that

p ~ A
Qij(fin-Afp)®(fin-nfg)= > (fir-Afinnfp)®(fiAAforimiAAfy), (3.39)
l q

=0+1-

where the factors fl and fgﬂ,l mean that the factors f; and fy,1_; are omitted from the
wedge product, and instead just tensor multiplied by the remaining wedge product. This
sum is non-zero, since the summands are linearly independent, and at least one summand
is non-zero. Now applying this to (3.36) and (3.37), we see that Q; jz,5, = 0 for all 4, j if
and only if no two of the columns of A sum to more than 0, and Q; jz-3; ® z;3; = 0 for all
1<i<m<j<n if and only if no two columns, one from A and one from g, sum to more
than 6. [ ]

By Lemma 3.0.15, the irreducibles of By, g (resp. By, ) that appear in [W,]° (resp.
[Wy.m]%) are exactly those with partition A - n with A + A\J <6 (vesp. (\, i) - (m,n-m)
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with A] + ] <6). That is,

W’z @ vy @ mey

A1
A +AT<0

0 GL(Q) n,m,0
[Wo,m] o u)j.i - Yo BYoum"
M +ul<o

(3.40)

IR

where, recall, we have not yet identified the orthogonal group or general linear group
irreducibles. To that end, analogously to part I of Lemma 3.0.13, we can show straight-
forwardly that z,; 8, ®z, (3 € @b(/\ m>XSn-m is o highest weight vector for GL(8) of weight [\, ],

so (A, 1) = (\, i), that is, the component of [W,,,,,]° in (3.40) is exactly 1/1 (0) = 1/1( o 9.
This completes our decomposition of the traceless tensors, and the proof of Proposmon
3.0.14, in the GL(8) - By, ;¢ case:

Wom]® 2 GLO) g "m@
[ , ] (A,u)ké‘;@ n-m) w(%#) w( (341)
)\T+;J,T<9

The orthogonal group case takes a little more work. Recall it remains to prove that the
A appearing in (3.40) is actually A, that is, the irreducible representation of O(#) paired
with w)\" ’in (3.40) is 11}0(0)

Let us recall some notation. Let r = [g] For a partition A with A{ + AJ < 6, then \’
is A\ with its first column Al replaced with § — \]. Recall A = \. Note that A # \ if and
only if 4 is odd, or 6 is even and AI # 1 (A does not have r parts). Pair up the partitions \
with A] + A\J <@ into the pairs A and \'. If A # \', call \* the one of the pair \,\" with at
most r parts, and A~ the one with more than r parts. Recall from Remark 2.1.17 that the
irreducibles of SO(#) are indexed by partitions (of any size) with at most r parts, except
in the case 0 even, where we can allow the 7 part of the partition to be negative. Recall
from (2.23) that in the case A # X,

o(o O(0 o(o O(0 SO(0
1es0L0) yOL0) - 1es0L0) 4OU) _ y5000) (3.42)
In the case A = X' (6 even and \ with r parts), we have from (2.24) that

resgga()e)@bow) wSO(G) wSO(O) (3.43)

where \° is the r-tuple A with A, replaced with —\,. It is straightforward to show that
the vector z;0; € w?”’g is a highest weight vector under the action of SO(#), with weight
A*. In the case A = A" (6 even and X\ with 7 parts), this is enough to show that CO(0)z. 3,

is a copy of the irreducible w)(\)(e), which is what we wanted.

In the other case, A\ # X', equation (3.42) tells us that CO(0)z.f; is either @/JS(G) or
w/(\)’(e) (i.e. 1/}?}0) or w/(\),(e)). In order to tell which it is, Theorem 2.1.20 tells us we need
to ascertain how O(6) \ SO(09) acts on CO(0)z,3,. For 6 odd, it suffices to show how
-id € O(0) acts. Recall —id acts on %0(9) as (-1)Plid (since 6 is odd, |\| and || have
different parity). Now indeed —id does act on z; 8, as (-1)Mid, since —id acts on V as
itself, so it acts on W,, = V®" as (-1)"id, and A + n.
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In the remaining case, 6 even and )\I # r, it suffices to find how gy acts on the highest
weight vector z,(3,, where gg € O(6) \ SO(#) acts on V by fixing each basis vector f;,
1 #r,r+1, and exchanging f,. and f..1. Recall from Theorem 2.1.20 that gy multiplies the
highest weight vector in I/in(e) by +1. In the case A = A\* (that is, A has less than r parts),
notice that from the definition of 3., f. and f,,1 do not appear as tensor factors in (3,
S0 go fixes B;. As go commutes with the action of B,,, go also fixes z,;5,. Now let A = A\~
(that is, A has more than r parts). If A has s columns, then up to rearrangement of tensor

factors,
oo = (fi A A fig) 858 (fu A A fyp). (3.44)

Note f, and f.+1 appear here only in the leftmost wedge product, since all columns of A
except for the first have length strictly less than r. Now gg acts on this vector the same as
the transposition (7,7 + 1), which, by the antisymmetry of the wedge product, multiplies
the vector by (-1). This shows that when 7 has shape A\*, indeed gy multiplies 2.3, by
+1, so we can conclude in all cases that CO(0)z, /3, = 1/)?(0) . This completes the proof of

Proposition 3.0.14, our decomposition of the traceless tensors in the O(0) —B,, g case. m

This, in turn, completes the first part of the proof of Propositions 3.0.11 and 3.0.12.

Now for part two of the proofs of Propositions 3.0.11 and 3.0.12, we move on to the
summand [W,]* (resp. [Wym]*) in (3.32), k> 0.

Proposition 3.0.16. As a representation of CO(8) ® B, o (resp. CGL(0) ® B, 0), we

have

Wbz @ PP my e,

AFn—2k
M +AT<0 (3.45)
. GL(6) _ Bnm.e ’
[Wmm] = " #)F(m@ B ¢()\7M) w(A,u) .
’ ,\wase

Notice the dependence on k on both sides of the equations (3.45).

Proof. As noted earlier, we aim to show that all the information we need is contained in
our decomposition of [W,,]° (vesp. [Wy,.m]°) from (3.34). First, the image of a contraction
(1,2 on the tensor space Wy (resp. Wa 1), (which is spanned by the vector Zle fi® fF =
Y0 | fi ® fos1-i), is a copy of the trivial representation of O(6) (resp. GL(0)) under the
action g » g® g (resp. g® g~*). So, Qi W, = Wy,_2 as a representation of O(f), and
Qi jWhnm = Wy_2.m-1 as a representation of GL(#), for all 1 <i <m < j <n. Repeating
this argument we see that for any (¢,t") € Q(k) (resp. Q'(k)), as representations of O(9)
(resp. GL(6)),

Wy 2 Wk,
QW & Wn-a (3.46)
QL;’Wn,m = Wn-2k,m—k>»
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and moreover

[QueWnl” 2 [Wia]’,

(3.47)
[Q;,;’Wn,m]o [Wn72k,mfk:|oa

112

where [QMIWn]O is the set of vectors in Q; W, which are killed by any Q;; with i,j €
(tut')e, [Q;,yWn,m]O similar.

Second, we have a (perhaps not direct sum) decomposition of the space

[Wn]k = Z [Qg,yWn]O- (3.48)
(t,t)eQ(k)

Indeed, if [QLEIWn]l is those vectors in @y W, which are in the image of some (); ; with
i,j € (tut'), then

Wy = > Qt,t’Wn:( > [Qt,t’Wn]O)@( > [Qt,t’Wn]l)

(t,t")eQ(k) (t,t")eQ(k) (t,t")eQ(k) (3.49)

= ( Z [Qt,t’Wn]O) ® quH’

(t.t)eQ(k)

where we have used that W* = [IW,,]¥ @ W**1. Tt then suffices by dimension count to show
that Z(L;’)eQ(k)[QL;’Wn]O c [W,]*. Any vector in [Q; W, ] is of the form @ yv, and is
killed by any @Q;; with 4,5 € (£t Ut")®; we need to prove that this vector is killed by any
Qs (8,8) € Q(k+1). This follows from the fact that in B, g, the product of diagrams
(s,8")(t,t') is (some scalar multiple of) a diagram with a southern bar connecting i® and
js, with 4,7 € (tut’)®. In a very similar manner, we can prove a (not necessarily direct)
decomposition [W,, ;" = Z(M/)Egl(k)[QMIWn,m]O.

Now combining equation (3.48) with equation (3.47), we have, as a representation of
0O(0) (resp. GL(0)):

Wal"= Y QW2 Y W],

(t,t")eP(k) (t,t')eP(k) (3 50)
Woml = > [QuWaml’s Y Whoormi]”
(t,t")eP' (k) (t,t')eP’ (k)

But now, we know from the first part of our proof, Proposition 3.0.14, how the spaces
[QeyWi]° (resp. [QryWim]”) decompose as representations of O() (resp. GL(9)). The
irreducibles of O() (resp. GL(0)) appearing are all of the wg\)(e) with A - n—2k, A] +A\J <6
(resp. all of the ¥ with (A, 1) - (m - k,n —m - k) with AT + u] < 6). Formally, we

[An]
have
Walt= @ W e,
A-n—2k A
AT+l <0 (3.51)
k N GL(@) Bn,’m,@ '
o :()\M)D—(m@cn—m—k)w(%u) "Yow
T ATauT<o

where it now only remains to check that A = A and ()\:u) =(\p).
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Recall ST ((tut')¢) is the set of standard Young tableaux with entries in {1,...,n} \
(tut’). For fixed 0 <m <n and (¢,t') € Q'(k), define similarly the set ST'((tut’)¢) as the
set of pairs of standard Young tableaux (7,7) with 7 having entries in {1,...,m}\ (tut’),

and 7 having entries in {m+1,...,n}\ (tut’).

Using (3.34) and (3.50), the highest weight vector for each instance of wf(e) (resp.
GL(0)
(4

Dol ) is the vector

Yr i = 20 Q. Brirs (3.52)

Yrmyt = 2rm) Q@ Brm) s
for (t,t') € Q(k) (resp. Q'(k)), and 7 € ST((tut')°) (resp. (1,7) € ST ((tut')?)). Here
Z(rm) = 2r%m, and Br 4 is the basis vector f;; ® -+ ® f;, such that f;, = ftz = f1 for all
i=1,...,k, and if j € (¢,t')°, then 4; is the index of the row that j lies in in 7. The vector
B(r,x),ep 1 defined similarly: it is the basis vector f;; ® -~ ® f;, such that f, = f; = f1 for
alli=1,...,k, and otherwise f;, = f, if j lies in the p" row of T, or Ji; = for1p iflj lies in

the p row of .

Let M) be the space spanned by the vectors y, v, (t,t") € Q(k) and 7 € STy ((tut’)®),

and M) , similar. Then we have

W)= 3 v em,

A-n—2k
A +aT<0 (3 53)
k GL(9) ’
[anm] ) @) ,u)l—(mgl:c n-m-k) 1/}[)\,11] ? MA’H‘
T ATauT<o

It now remains to prove that M) is the irreducible representation w?”’e of B, 9, and M, ,

IB%n,m,Q
D)
Ay of B, g (resp. Ay, of By, 0), it is clear that M) is a quotient of Ay (and M) , is a

is the irreducible representation v of By, 6. By the definitions of the cell modules
quotient of Ay ). Let us show M) is irreducible; the proof for M) , is almost identical. We
follow Theorem 4.5 of Benkart et al. [8]. Take 0 # v € My. We want to show B,, gv = M.
Since B, g acts transitively on the vectors y, ., it suffices to show that one y,,, lies in

B, gv.

There exists a Qp with (¢,t') € Q(k) such that Q; v # 0. Indeed, if there were not,
then v would lie in [W,]*"! by definition. But by definition, y,;» € W¥, and [W,]*!n
Wk =0. So, say

0# Qo= > anlmpr- (3.54)
meSTA ((tut)°)

The right hand side follows from calculations using the relations in B,, y. Now we use the
same trick we used in the S, — GL(0) case: let 7 be minimal with respect to the ordering
< such that a,; # 0. Multiplying (3.54) by z, kills all terms apart from the 7 one by our
working with Young symmetrisers; hence y, ., € B, gv, which completes the proof. This

completes the proof of Proposition 3.0.16.
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Now putting together this result, along with equations (3.50), and (3.32), we have that

5]
Woz@® @ D=y,

k=0 A\rn-2k
M +al<o 3.55
N min{m,n-m} GL(9) Br,m,o0 .
Wn,m = @ @ w[)\uu] wo"”) ’
k=0 (A p)r(m—k,n-m—-k)
M +ul<o

which completes the proofs of Propositions 3.0.11 and 3.0.12, and thereby the proofs of
Schur-Weyl duality in the O(6) -B,, o and GL(0) -B,, ,,, ¢ cases, Theorems 3.0.3 and 3.0.5.
|
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Chapter 4

The Manhattan and Lorentz
Mirror Models

In this section, we present the results of the paper “The Manhattan and Lorentz Mirror
Models - A result on the Cylinder with low density of mirrors” [90]. This paper studies two
random walks on the two-dimensional lattice Z?, where the central question is whether
the walk is bounded or not. The Brauer and walled Brauer algebra B, ,, ¢ is made use
of, by viewing the walk on the cylinder as a Markov chain on its basis B, ,,. The main
result bounds the distance the walk can travel on the cylinder of width n, given that the

probability of mirrors (see below) decays at least as order n7!.

4.1 Introduction

The Manhattan and Lorentz mirror models [7], [62], are two very similar models, each
describing a random walk on the Z? lattice. Let 0 < p < 1. The walker is a particle of light
which bounces off mirrors placed at each vertex at 45°, independently with probability
p. For the Lorentz mirror model, the orientation of the mirror (NW or NE) is chosen
independently with probability % For the Manhattan model, the lattice is a priori given
Manhattan directions (see Figure 4.1), and the orientation of the mirror is determined by
its location (i.e. a NW mirror if the sum of the coordinates of the point is odd, and NE if
the sum is even), so that the walker always follows the directions of the lattice. The main
questions of interest in both models are whether the paths remain bounded or not, and
the nature of the motion of the walker.

We study the models on an infinite cylinder Z x (Z/nZ) of finite even width n. We are
interested in how the length of the paths vary with p. Note that on the cylinder, paths
are bounded with probability 1 - indeed, there is a positive probability that a horizontal
row is filled with mirrors such that no path can pass the row; one has to wait an expected
p~ " rows for this event. It is natural to hope that this bound can be improved. The result
of this paper, Theorem 4.1.1, shows that for both models, when p < Cn™', C' a constant,
the highest row reached by a path on the n-cylinder is order p~2. We wonder whether this
is true for all p.

We observe an underlying algebraic structure (valid for any value of p). The models

on the cylinder can be thought of as Markov chains on the Brauer algebra (in the mirror
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case), or its subalgebra the walled Brauer algebra (in the Manhattan case). While the
result of this paper can be obtained without these algebras, we suggest that the models’
association with different algebraic structures reflects their different behaviours. A third
model, on the L-lattice (see [6]), with different behaviour from the other two models, is
solved using percolation, and can be similarly thought of as a Markov chain on the (ex-

tended) Temperley Lieb algebra.

S -

\/

A

/

\/

Y \{ \{

Figure 4.1: Examples of the Manhattan model (left) and Mirror model (right), with mirrors
in blue, and a few paths highlighted in orange. Note that the orientation of a mirror in
the Manhattan case is determined by the Manhattan directions of the lattice.

Let us recap the existing results on both models (which are on Z2, unless otherwise
specified). The Mirror model was introduced by Ruijgrok and Cohen [88] as a lattice
version of the Ehrenfest wind-tree model. Grimmett [46] proved with a straightforward
argument that on Z2, if p = 1, then the path of the walker is bounded with probability
1. It is conjectured that this is also true for 0 < p < 1. This is supported by numerical
simulations, for example, in [106]. More recently, Kozma and Sidoravicius [62] showed that,
for any 0 < p < 1, the probability the walker reaches the boundary of the n-box [-n,n]? is
at least WIH To obtain this result, they study the model on an infinite cylinder of finite
odd width, where there is deterministically always an infinite path. The Manhattan model
cannot be neatly defined on a cylinder of odd width (it cannot remain rotation-invariant),
so this method cannot be applied (and indeed, the result is not true in the Manhattan

case - see below).

The Mirror model on the cylinder (often under the name the O(1) loop model) has
been studied using the Brauer algebra before, in several papers relating to a conjecture
(and variations thereof) by Razumov and Stroganov [85], [28], [27], which gives the entries
of the limiting distribution in terms of combinatorial objects such as alternating sign
matrices. A generalised mirror model (the O(#) loop model), where the distribution on
configurations is weighted by §71°P% 9 e C, is studied in [70], [79]; this is the model on the
Brauer algebra with parameter 0, B, 9. In these papers, the requirement of a Yang-Baxter

equation restricts the permissible values of the parameters - in our specific setup, only
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p= g qualifies (see the end of [79]).

The Manhattan model shares features of quantum disordered systems. The model was
introduced by Beamond, Cardy and Owczarek [6], in close relation to a quantum network
model on the Manhattan lattice. The quantum model has random Sp(2) = SU(2) matrices
on each edge of the lattice, and the classical model arises on averaging over this disorder.
In most classical models in two dimensions, localisation (bounded paths) is not observed,
whereas in the Manhattan (and Mirror) model, it is expected (see below). It is not clear
if the mirror model has a similar explicit relationship with a quantum model. For more
detail on the connection to quantum models, see Spencer’s review [92].

An argument from [6] for tackling the Manhattan model uses percolation. The place-
ment of the mirrors is exactly a Bernoulli percolation on the edges of Z?, rotated 45° and
scaled. The path of the walker stays within % of its closest dual cluster (see Figure 4.2).
The dual clusters are finite with probability 1 for p > %, so so are the Manhattan paths.

For p > %, the probability that two points are in the same dual cluster decays expo-
nentially in the distance, which gives the same for connection by a Manhattan path. This
is markedly different from the Mirror model’s polynomial decay. For p < %, this argument
is wholly inconclusive, since dual clusters are almost surely infinite. Recently, Li [65] gave
exponential decay in connection probabilities for p > % — ¢, for some € > 0. Numerical
simulations in [7] indicate that paths are finite for 0 < p < %, with exponential decay in
connection probabilities. Clearly for p = 0, the paths escape in straight lines to infinity.

On the cylinder, for both models, there is first the crude, simple bound given above.
Notably, after this paper was originally posted, Li [66] showed the following: for both
models, on the cylinder of even width n, and for fixed p, the walker reaches at most
O(n'%) rows from its startpoint, with probability exponentially close to 1. Let us note
that the results on the (even) cylinder (including this paper) are the same for the two
models, but on Z? they are different. To analyse the Z? case via the cylinder, one must
look at a cylinder of equal height and width (as in [62]); it is here that the models differ.

A A A

A

\/

A

\/

\ A\ \

Figure 4.2: The mirrors (in blue) in the Manhattan model as edges in Bernoulli percolation.
The green edges form the dual clusters. The two paths shown are restricted to stay within
% of one dual cluster.

Let us now state our result more precisely. Consider the models on the n-cylinder
ZInZ x 7 = {(i,t) : i,t € Z, 1 <i<n}, with n even. We label s; the horizontal row
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{(i,t) : 1<i<n} - the "t street". For the Mirror model, let V2" be the random
variable given by the smallest ¢ such that s; has no path connecting i‘E to the first street,
s1. In other words, the highest street a path from s; reaches is exactly mir _ 1. Let Vit
be defined identically for the Manhattan model. i i

Theorem 4.1.1. Let * represent mat or mair.

a) Let p< Cn~t, C>0 a constant. For all a >0,
1
P[Vi > ap 2] <24,e 507
2

where Apir = cosh(m), and Apat = sm?r&

b) For any p < % (not necessarily constrained by p < Cn~t), and for all a >0,

P [Vg < ap_Q] < 2a.

Let us give an informal overview of the proof of part a). Our argument uses the streets
which have at most two mirrors. As n — oo, for all p < Cn™!, and C small, the probability
of mirrors is small, and in particular, the probability that each street s; has at most two
mirrors is large. We show that the model is not changed too much if we actually condition
on each s; having at most two mirrors. This conditioning simplifies the model greatly, in
essence removing the cylindrical geometry, making the interactions on each street mean-
field (in the sense that if the particle arrives at street s; at the point (i,¢) and leaves from
(4,t), j # i, then j is uniformly distributed). This allows us to do explicit computations.
For C not small, the theorem still holds, but the bounds are less sharp; one needs to set «
exponentially large in C' to bring the bound to less than 1. Part b) is more straightforward;
it is proved by coupling Vi with a geometric random variable G' with parameter p?.

In section 4.2, we give2 key definitions, including the Brauer and walled Brauer alge-
bras. In section 4.3 we study the model assuming at most two mirrors per street, and

obtain the results needed to prove Theorem 4.1.1.

4.2 Definitions, and the Brauer algebra

Let us recall the algebraic structures and notation from Chapter 2 that we will use in this
section. The Brauer algebra B, ; (the special case of B,, g from Section 2.1.3 with 6 = 1)
(see, for example, [19], [20], [24], [103]) is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 1N,2N, ... nN and the lower (southern) 1°,...,n°.
We call an edge connecting two northern vertices (or two southern) a bar. The number
of bars in the north and south is always the same, and we refer to either simply as the
number of bars in the diagram. We call an edge connecting a northern and southern vertex
a NS-path.

Multiplication of two diagrams is given by concatenation. If b,c¢ are two diagrams,

we align the northern vertices of b with the southern of ¢, and the result is obtained by
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removing these middle vertices. See Figure 4.3. We let be denote the product (occasionally
b-c for clarity). This defines B, 1 as an algebra. Of course this is a special case of B, ¢
from Section 2.1.3, but for our purposes in this section we only need 6 = 1, which gives
the multiplication described above.

©) ©) O O ©) ©)

by

o o O O o o
1 1 1 1 1 1 = bl b2
0] O O O 0] 0]

by
O o—o0 ™© 0 ©

Figure 4.3: Two diagrams b; and b; (left), concatenated to produce their product (right).

We call the set of all diagrams B,,. We call the set of diagrams with exactly k bars
B, (k), and the set of diagrams with at least k bars BY. Notice that B,(0) is exactly
the symmetric group S,, and the concatenation multiplication exactly reduces to the
multiplication in S,. So CS,, is a subalgebra of B,, ;.

We write id for the identity in S, - its diagram has all its edges vertical. We denote
the transposition S,, swapping i and j by (i,7), and we write (7, ) for the diagram with

iN connected to jV, and i° connected to j°, and all other edges vertical. See Figure 4.4.

0 o 0
I I I ~ ide 5= By0)
o o O

o I O=——=0 o o

= (3,4) € By(1)
o O=——=0 o o

(e} (e} (e}
>€< = (2,4) € S5 = Bg(0)
O O O

Figure 4.4: The identity element, the element (3,4) € Bg(1), and the transposition (2,4) €
Se = Bgs(0).

Finally, we remark that if b has k bars, and ¢ is any diagram in B,,, then bc must have
at least k bars:
be B,(k) = bce Br. (4.1)

Let us now see how the Brauer algebra can be used to describe the models. Let n be
even from hereon in. Observe that given a configuration o; of mirrors on a street s; on
the n-cylinder, the paths through the street form a diagram b(o;) € B,. See Figure 4.5
for an illustration. Moreover, on any section of the cylinder, say, from street s;, to s,
given a configuration of mirrors o, ,, the paths through those streets form a diagram
b(ot,-t,). Crucially, we see that b(oy—t,) = b(or, )--b(0t,), where the multiplication on
the right hand side is in the Brauer algebra. See Figure 4.6.

Let each oy, the configuration of mirrors on the t** street, be distributed according to
the Manhattan or Mirror model. Then b(o;) is a random diagram in B,,. We can think of

the distribution of this random diagram as a (deterministic) element Z;y of the algebra:

Zyy = ZB: P[b(ot) = g]- g
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Figure 4.5: An example of a configuration of mirrors o; on street s; in the Manhattan
model (left), and the resulting diagram b(o;) (right).
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Figure 4.6: The paths through three consecutive streets in the Manhattan model (left),
the three resulting diagrams (upper right), and their product (lower right), which gives
the paths through the union of the three streets.
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The following lemma lets us describe the paths through any number of consecutive streets.
Note that it does not use the specific distributions of the random diagrams given by

different streets, it only uses that they are independent.

Lemma 4.2.1. The distribution of the random diagram b(ot,—+,) produced by the paths

through streets s¢,,...st, s given by the Brauer algebra element:

Zayy - Zayy = 3. Pb(01,-1,) =91+ 9,
geBn,

where the multiplication on the left is in the Brauer algebra.

Proof. We see that

2 P[b(atl—%z) = g] ‘g = Z P[b(atl)"'b(atz) = g] g

gEBn gEBn

= Z Z P[b(atl) = gtl]"'P[b(Jm) = gtz] * gt Gto

geBnp gty gte =g

=2ty Lta)s

where we use that the configurations on each street are independent. [ |
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We are interested in the highest (or most northerly) street reached by the paths starting
at the first street s;. One more than this is the first street which has no path connecting
it to s1. Using the notation above, this is the smallest ¢ such that the random diagram

b(o1-¢) has no NS-paths, ie:
n
2l

Let * represent mat or mir. Let o, 4+ (resp. o« ¢,-t,) denote the random configuration

b(o15¢) € Bp(

of mirrors on the street s; (resp. the streets s,,...,st,), in the corresponding model. Now,
in the Mirror model, the random configuration of mirrors oy, is iid for each street s;.
Let Zpr be the distribution of the random diagram b(c,r¢) (as an element of the Brauer
algebra) produced by the paths through this random configuration on one street. (Since

the opirs are iid, Zp, is independent of t). We note that, from Lemma 4.2.1,

anir = Z P[b(amir,l—nﬁ) = g] °g-
geBn,
Let Vkm" be the random variable given by the smallest ¢ such that b(omir1-¢) € Bp(k)
(this is the first street which has at most n — 2k paths reaching it from the first street sq).

We are primarily interested in Vi*".
2

The Manhattan model is almost identical in this regard, with two differences. The
first is that the random configuration of mirrors oy, on a street s; is dependent on
whether the street is directed eastbound or westbound. We can let Z(,4t,£), Z(mat,w)
the corresponding elements of the Brauer algebra (similar to the mirror case, each only
dependent on eastbound or westbound).

Secondly, the diagrams that arise in the Manhattan case actually live in a subalgebra
of B, 1. Note that each vertical column of the cylinder Z x {i},i=1,...,n, is southbound
for i odd, northbound for i even. This means that on a chosen street, the vertices i\ for
i odd, and i° for i even, can be thought of as “entrypoints” to the street. Similarly, each
jN for j even, j° for j odd can be thought of as “exitpoints” to the street. In particular,
in the diagram which results from the street, exitpoints must be connected to entrypoints.
This condition can also be thought of as: a NS-path must connect vertices of the same

parity, and a bar must connect vertices of different parity. See Figure 4.7.

T
x

A\

Figure 4.7: An example of paths through a street in the Manhattan model, with entry-
points coloured in yellow, and exitpoints in blue.

Let M, be the set of diagrams which satisfy the requirement that exitpoints are only

connected to entrypoints, and let M, ; be the (formal) complex span of M,,. This space
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ML, 1 is a subalgebra of B,, 1, indeed it is just the walled Brauer algebra IB%n%J from Section
2.1.4, where we have re-ordered the vertices of the diagram so that the vertices “to the
left of the wall” (see Figure 2.4) are now those with odd index, and those “to the right of
the wall” have even index. It is a straightforward exercise to prove that this reordering
is an isomorphism of algebras. Similar to the full Brauer algebra, let M, (k) be the set of
diagrams in M, with k bars, and let M” be those with at least k bars.

Let us assume that the first street, s;, is eastbound. Now let Vkm”t be the random
variable given by the smallest ¢ such that b(oyat,1-¢) € My (k). Note that the distribution

of the random diagram b(omqt,1¢) is described by the element of M, 1:

Z P[b(amat,l—nﬁ) = g] ‘g = Z(mat,E)Z(mat,W) Z(mat,E)"'

9eBn
t terms
t
(Z(mat,E)Z(mat,W)) ? t even
-1
(Z(mat,E)Z(mat,W)) 2 Z(mat,E) t Odd,

where the equality is included for clarity. We are primarily interested in Va4t

2

Now recall that our method is to condition on there being at most two mirrors per
street. Let Ug(;) be the event that there are at most two mirrors on a street s; (this event

has probability P[U<2] independent of the street, and the model we are considering). Let

<2 <2
o3 (resp. 055 L,

) be the random configuration of mirrors on the street ¢ (resp. the streets
Sty,-- -, St,) when conditioning on Uco. Let Xy, Xinar be the elements Z,,;,, Z(mat,E|W)
produced when conditioning on U, respectively. (In the Manhattan case, it actually
does not matter whether the street is eastbound or westbound). That is, X and X,a
describe the distributions of b(afnzim) and b(a,%at7t), respectively; for = denoting mir or

mat,

Xi= Y P(oio) =9 g
geBn

We can write these elements explicitly:

_\n—2
Xmir = (1 p)
P[U<2]

2
(np<1—p)+(1—p>2)-id+%( > <i,j>+<m>)],

1<i<j<n

and very similarly:

—p)2 N
Xmat:%[(np(l_p)+(1_p)2)'id+p2( Z (iaj)+ Z (%]))]7

P[USQ] j—1 even j—1 odd

where we recall that the diagrams (4, 7), (7,5), and id are given in Figure 4.4. Note that
Zmiry Z(mat,E/w) can also be explicitly written down as elements of the Brauer algebra

(for any p), they are just far more unwieldy.

Similar to above, let * denote mir or mat, and define W’ to be the random variable

<2
1t

how large W3 can be, and then we transfer these bounds to V.
2 2

given by the smallest ¢ such that b(c € B,(5). In the next section, we give bounds on
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4.3 Results

Let us first prove part b) of Theorem 4.1.1. Let * denote mir or mat. Let G be a geometric
random variable with parameter p?. We first show that P[V < 2] < P[G < z], for all z > 0.
2

Assume that b(0+ 1-¢) ¢ By (5), that is, after ¢ streets, there are at least two remaining
NS-paths. Consider the probability P[b(0+,1-¢+1) € Bn(5)], that after the next street, no
NS-paths remain. In order for b(o4 1-¢+1) € Bn(5) to hold, there certainly must be a mirror
on s;41 reflecting each of the remaining NS-paths - since there are at least two of these,

the probability of this is at most p?. Hence we can say that, given that b(c. 1) ¢ Bn(35),
n 2
P[b(0s1t41) € Bal5)] < 07

Now we can easily couple the process with one which enters B,(5) at each step with
n
2

probability exactly p?. The time taken for this process to enter B, (Z) can be described

. . 1
by G, and our claim IP’[V% <] <P[G < z] follows. Now for p< 3,
IP’[V%* <ap?]<P[G<ap?]=1-(1 —pQ)O"f2 < 2a,

the last inequality following from both functions taking the value 0 at a = 0, and the dif-
ferential of the first function being —(1 - pz)o‘p_2 log((l - pQ)p_z)7 whose value is less than

2 at a =0 and decreasing as « increases. This completes the proof of part b).

The rest of this section proves part a) of Theorem 4.1.1. We return to our simplified
model, assuming at most two mirrors on each street. Observe that if the random diagram
b(af?t) is multiplied with a diagram g which has k bars, the probability that the result has
k +1 bars is independent of the chosen diagram b. This is made precise in the following

lemma.

Lemma 4.3.1. a) Let g € By(k), a diagram with k bars. Then g - b(af?t) € B,(k)u
B,(k+1), and

grin = Plg-b(052,,) € Ba(k +1)] =

n—2k)
5 )

P’ n-
PlU2] 3(1 -p) 2(

b) Let ge M,(k), a diagram with k bars. Then g-b(c=2,,) € M,{k)u M, (k +1), and

mat,t

ma o T
gn,pfk = ]P)[g . b(O’TSnQat’t) € Mn(k + 1>] = p2(1 _p) 2(5 _ k)g

P[U<2]

Proof. Let us do part a) first. Let g € B, (k). It is clear that g(i,j) € B,(k). Further,

g(7,7) € By(k + 1) iff the vertices > and j° in g lie on NS-paths. There are ("_22]“) such

pairs. So,

2 n-2
< — .S .S . D (1_p) n -2k mar
]P’[b(a;i-r’t) =(4,7), i>,5> on NS paths in g] = ) —]P)[Usg] ( 5 = Ok

Part b) follows very similarly. Let g € M, (k). Then ¢(7,5) € M,(k + 1) iff the vertices
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i> and j° in g lie on NS-paths. There are (5 - k)? such pairs. So,

2 n-2
b 1 - P n ma
( ) (_ _k)2 t

P[b(c=2,.,) = (i,7), i°,° on NS paths in ¢] = . .
[(b(omat,e) = (i,7), ©°,5° on NS paths in g] PlUa] 2 In.p.k

Let * denote mir or mat. Let w; = W/, — W/[; this is the number of streets we have
to wait between the k™ and the k + 1" bar being added to the random diagram. Lemma

4.3.1 shows that w;, is a geometric random variable, with parameter g;p - Note that

n_q
Wi =%/, wi- The next theorem bounds the probability that Wx is large.
2 2

Theorem 4.3.2. Let + represent mat or mir. Let p < Cn~', C a constant. Then for all

a>0,
+ -2 P Torte)
IP)[W% >ap “] < Ase 102

where Apir = cosh(r), and Apar = M, and Cy = %02 +C+1.

Proof of Theorem /.3.2. Let us look at the Manhattan case. We first note that, using
p<Cn7t,
mat _

gt = 5ok)
ook gn2—gn+npl-n+p2-2pl+1

2
3y
T (3C2+C+1)p2?
n -
= (5 - k’)202 IPQ-

n_y
Now, recall that Wit = Yio w,@”at, and that w,Tat are independent and geometrically
2
distributed with parameter ¢™% . Recall also that the moment generating function of a

geometric random variable G with parameter A is given by

oA
E["] = 1-(1-A)et’

for t < —log(1-A). This inequality holds when we set ¢ = % and A = p?, since Cy =
%02 +C+1> % We have, using Chebyshev’s exponential inequality,

1o [ Ewpe
P(Wa > ap?]<e ©2"Ele'® %
2

21 mat
1 2
= 102° H Inp.k _
P
k=0 _ _ ,mat 1Cy
1-(1 gn7p,k)e4 ’
51 &
1 —
S I 1+ it
p
k=0 _ _ ,mat yTery
1 (1 gn,p,k)e4 2

Using e’ < 2t + 1, (which holds for ¢ = % < 1, which in turn always holds, since Cy > %),
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we have
1-(1-gyeh, )6402>1-(1—(—-k) 20y ") (5 Czlp +1)
>C—12 k)22
> G5 - - ),

which gives:

PIWE > ap 2] < e 103" T (1 305 '° )
2 k=0 Clp2((5-k)%-3)
1 % 1

=e 102 I (1 + )
3 1

< {1 )
k=1

< Smhﬂ({ﬁa

)
s

as desired. In the last inequality we used the product formula sin (7z) =7z ]2, (1 - 5—2),
with z =1.
The Mirror model case is almost identical; all the above working is the same except

the expression (% - k)? is replaced with (” 2k) This gives

n_1 1
3 P (2 ]
2 2 2

k=0

éaﬁ(l 4 )
<e 102 -
I ok@k -1

1
< cosh(m)e 72

as desired where for the last equality we used the product formula cos(wz) = T2 (1 -

@ 1)2) with z = 4.

We can now compare the full models with the models assuming at most two mirrors
per street. Let ¢t € N. Let 7(¢) be the random variable given by the number of the first
t streets which have at most 2 mirrors. We see that 7(¢) is binomially distributed with
parameters (t,P[U<z]). Essentially what we would like to say is that if we omit each street
which has more than 2 mirrors, we do not, in distribution, add any bars.

This sounds like it should follow from the remark (4.1), but it is more subtle. Let
us illustrate why: certainly if the product of two diagrams ab has k bars, then we can
conclude that each of a and b have no more than k bars. However, if abc has k bars, it is
very possible that ac has more than k bars. So, when removing factors from the middle

of a product, there is more to be proved.
Lemma 4.3.3. Let * denote mir or mat. Then P[V," <t] >P[W; <7(t)].
Recall that g € Bf; iff ¢ has at least k bars, and g ¢ Mﬁ similar. Note that V;* <t iff
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b(0+1-¢) € BY; similar for ", So Lemma 4.3.3 can be rewritten as:

Pb(01-1) € Byl 2 P[b(05% 1)) € BR]- (4.2)
We postpone the proof of Lemma 4.3.3, and first see how it is implemented, combining

with Theorem 4.3.2 in proving part a) of Theorem 4.1.1.

Proof of part a) of Theorem 4.1.1. Recall that we assume p < Cn~!, C' a constant. We
approximate b(c. 1-¢) with b(af?bT( t)), that is, we approximate by ignoring streets which
have more than two mirrors. Since the expected number of mirrors per street is at most
C', we expect (at least for C small) the proportion of streets with at most two mirrors to

be large. Indeed:

n—00 2

>l (1-p)7" 2 (A -p(1-p+0)+ S0 -p).

lim P[Usz] = lim (1-p)"~ ((1 —p)2+np(l-p)+ (")pQ)

the limit of which is (2)“(1+C + %2) =: (5. We can pick n € N such that P[Uc«] >

3%. Recalling 7(t) is binomially distributed with parameters (¢,P[U<2]), by Hoeffding’s

inequality,

P [T(t) < %] < exp [—Qt (P[Us2:| - %)2] < exp [—215 (%)2] , (4.3)

for n large enough.

Let t = ap™2. Now using Lemma 4.3.3,

where the second to last inequality is from Theorem 4.3.2 and equation (4.3), and the last

is for p small enough. [

It remains to prove Lemma 4.3.3.

Proof of Lemma 4.3.3. We prove the inequality (4.2). We fix n, and work by induction
on t and k. The inequality is trivially true for £ =0 (and any t), and for t =1 (and any k).

Assume the Lemma holds for the parameters (¢ —1,k), (t—1,k—1), and (t,k-1). The
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left hand side of equation (4.2) is:

Pb(01-4) € BE] = P[b(0111)b(00) € BE | UD] - (1-P[U])
+P[b(01201)b(0 ) € B | US| P[U]
> B[00 1200) € BY | US| (1-PlU2))
+]P>|:b(0*,1—>t—1)b(gf,2t) € B} | Ug(?] P[Us],
where we have noted that the number of bars in the product b(c. 15¢-1)b(0« ) cannot be

less that in b(0« 1¢-1), and that b(o. ) is equal to b(of?t when conditioned on Us(é). Now

the above is at least:

>P[b(03 o)) € BE | UQ ] (1= PU]) + Bb(o32 ) € BE | US] - P[U)]

= P[b(afi_,r(t)) € By,

where in the inequality we used the inductive assumption on ¢ and the final Lemma below,
and in the equality we used the fact that under Ug), 7(t) = 7(t-1). The proof of the final

Lemma therefore concludes the whole proof.

Lemma 4.3.4. We have that P [b(a*,bt,l)b(afi) e BE | US(;)] > ]P’[b(af%_w(t)) e BY | Us(?]'

Proof. To prove the claim, we split the left hand term based on whether or not b(af’gt
adds a bar to b(o«,15¢-1):
LHS = P[b(0w1201) € BE | US| g i+ P[blowioe) € BE | US)]
2P [b(afi_w(t_l)) € Bﬁ‘l | Ug(;)] “Inpk + P [b(af?l—n—(t—l)) € BS | Ug(;):l
=P[b(0F )00 € BE | U],
where in the inequality we used the inductive assumption on ¢ and k. Now recalling that

under Uco, 7(t) = 7(t - 1) + 1, the result follows. This concludes the proof of Lemma 4.3.3
and part a) of Theorem 4.1.1.
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Chapter 5

Quantum Spin Systems on the

complete graph

5.1 Classical and quantum spin systems

We give a short introduction here to the area of classical and quantum spins systems. We
follow Ruelle [86] and Friedli and Velenik [37]. Classical statistical mechanics attempts
to derive the macroscopic laws of nature (such as thermodynamics) from laws of the
interactions of particles on a microscopic scale. One of the remarkable and most studied
features of these systems is that there are sometimes abrupt changes in the behaviour of
the system, called phase transitions, as the parameters (such as temperature) are varied.
Practically, one uses mathematical models of such systems which are simplifications (to
varying degrees) of the reality, where the laws of interactions of the particles are given, from
which one attempts to derive macroscopic behaviours. Even with these simplifications, in
many models one can derive results, including rigorous ones, that show the models has
phase transitions. This is not observed mathematically for finite systems, but in taking
the limit of the models as the number of particles tends to infinity, phase transitions can

be observed.

A very illustrative example of a classical spin system comes in the form of the classical
Heisenberg model. This is a simplified model of ferromagentism, the phenomenon where
some materials, under some conditions, retain a magnetism after an external magnetic
field has been applied and then taken away. The model simplifies such a situation to
describe the material as a large number of particles arranged in a lattice, which do not
move, but interact via the directions in which they are magnetised. That is, particles
close together want to be magnetised in the same direction. Mathematically, the model
describes a probability measure on possible configurations of particles arranged on a lattice
(i.e. a large box in Z%), where a configuration assigns each particle an orientation (called

a spin) in 3D space (i.e. an element of S?).

More precisely, let G = (V,€) be a graph. It is illustrative to think of G as a finite box
in Z%; note that the behaviour of the model depends on the dimension d. A particle at a

site i € V is given a spin o; € S?, the two-sphere. Allow a parameter 3 to represent inverse

70



temperature. Then, for a given 3, the configurations o = (0;)1<i<n, Occur with density

1
— _ -BH (o)
o) = o) = e . 5.1

drgp(0) =ds(0) Z(G,B) (5.1)
Here the function Z(G, ) = [ do e PH(9) is called the partition function and is the nor-

malisation constant which makes the measure a probability measure, and

H(oc)=- > 00 (5.2)
{ij}e€

is the Hamiltonian, describing the energy of the configuration. Note that the sum is
over pairs of vertices ¢ and j which are nearest neighbours in the underlying graph G.
This function appropriately describes a ferromagnetic interaction, that is, an interaction
between spins where the spins want to be aligned: the more aligned the spins are, the lower
the energy. The configurations with lowest energy are those with the spins at all vertices
pointing in the same direction. These are relatively few in number, compared with the
vast number of configurations which would give a large energy, with neighbouring spins
being much less aligned. The Heisenberg model thereby models a (large) block of some
ferromagnetic material in dimension d made of many particles (arranged in a lattice),
where each particle is magnetised in some direction of 3-dimensional space. The particles
then exert magnetic forces on one another, which one assumes to have short range, so that

the assumption that only nearest neighbours interact is sensible.

For high temperatures (8 small), the many configurations with high energy dominate
the measure ¢g - their entropy overcomes the exponent [ - and the system is said to
be disordered. Ome of the central questions in studying spin systems is whether for low
temperatures (0 large), one finds that the low energy configurations dominate, in which
case the system is said to be ordered. This is indeed the case in dimensions d > 3, but
not for d = 1,2; the former is due to Frohlich, Simon and Spencer [38], and the latter is
due to the Mermin-Wagner theorem. We will state these results more precisely later in
this introduction. For d > 3, this is a heuristic description of an example of there being
two regions of parameter space where the measure ¢g behaves very differently. Further, it
turns out that these regions are separated by a critical temperature, say ., at which the
properties of the measure ¢g abruptly change - a phase transition. As noted above, such
abrupt changes are mathematically only observed when we take a limit of the measure ¢g
as the graph becomes infinite (for example when the box in Z% grows to become the whole
lattice).

There are many ways one can observe whether a phase transition occurs, that is, many
mathematical quantities one can derive from the model, which are in some sense sensible,
which show abrupt changes at the critical temperature. Let us describe four important
such ways. Note one can sometimes show that the various notions of a phase transition are
equivalent, but this is not always possible. The first way of observing a phase transition is
by studying how particles at large distances can affect one another. Imagine the classical
Heisenberg model, d > 3 in its ordered region (low temperature) as heuristically described
above, with it being very likely that all spins are aligned in some direction. It follows that

if we change the spin at one site, then with high probability all the others follow it - in
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particular spins arbitrarily far away from it change. In contrast, in the disordered, high
temperature region, it is perhaps natural to think that changing a spin at one vertex has
little effect on spins far away. Mathematically, we can study the correlation of the spins

at two distant particles. For the classical Heisenberg model, this is

oy Jim (04, 02, )11.6.5: (5-3)
where (f(0))m.g s is the expectation of f with respect to our probability measure. This
quantity being zero indicates the particles do not affect each other. Sometimes this quan-
tity is positive for low temperatures, and the point at which it becomes positive marks
a phase transition. This includes the case of the classical Heisenberg model, d > 3, and
this is the form in which the transition is proved in [38]. When d = 2 the limit (5.3) is
zero for all § > 0 (i.e. there is no phase transition of this type), and the decay to zero
of (5.3) is at least polynomial in speed for all temperatures, proved by McBryan and
Spencer [71]. We should note though that it is not yet proved whether or not there is
a more subtle transition in dimension d = 2 in the sense that for high temperatures, the
decay of (5.3) to zero is exponential, and for lower temperatures, it is a power law. Such
a transition, known as a Berezinskii-Kosterlitz-Thouless phase transition, does occur in
other two-dimensional models, including models with continuous symmetry, most notably
the “XY” model, which is the Heisenberg model with spins on the circle rather than the
sphere.

The second method of observing a phase transition is magnetisation. The “ferromag-
netism” described earlier is exactly an example of this. We study the model with an
infinitesimal external magnetic field, (i.e. an external magnetic field whose strength is

reduced to zero). To be precise, we can modify the classical Hamiltonian H (5.2):

H(oc)=- > 0i-0;-h) b-oy, (5.4)

{ij}ee iev

where b € S? denotes some direction in 3-space, and h € R is a strength parameter. This
models the spin at each vertex being pulled by an external field in some particular direction
b with strength h. One can imagine that turning on such a field pulls all the spins to point
in the direction b, with high probability; the question of interest is whether this structure

remains once the field is turned off. Mathematically, this is studied by analysing the

quantity

0®(5,h)

“on o (5.5
the magnetisation in the direction b, where ®(3,h) = limy|_ o |—)1/| log Z(G, B, h) is the free
energy (see below). In several models this can be shown to be equal to

o 1
lim lim((— Z o) b)H(h),gﬂ7 (5.6)

Vs hn0 ' [V =

(where we have highlighted the dependence of H on h), which is far more intuitive -
it is the expected average amount that all the spins are pointing in the direction b. If

magnetisation does not occur (which happens at high temperatures) this average is zero,
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and then, at low temperatures, one can ask whether it is strictly positive, that is, whether

magnetisation occurs.

A slightly less intuitive way to show a phase transition is through an expression called
the free energy. It is a function of 5, and a point where it is non-analytic indicates a phase
transition at that value of 8. For the graphs G we are most interested in, G = Z¢, we define
it as

B(B) = lim —

Jim, 5 105(£(G, ). (57)

for G taken to be successively large boxes in Z?. The free energy in some sense gives the
energy which dominates the measure at the given temperature; let us heuristically explain
how. Imagine that there are finitely many possible energies F; that the Hamiltonian H
can produce, and there are d; many configurations with energy FE;. Then we can write

\71| log Z(G, ) as a sum of the form

1

L 10g2(6,8) = 5

| A .
v log Y die PP = —log Y e PEivlosd:i, (5.8)
5 7

VI

Now taking the limit as [V| — oo essentially pulls out the largest —3E;+log d;, which indeed
in some sense marks the energy which dominates the measure at the given temperature,
and the expression, suitably, takes into account both the energy FE; and entropy d;. The
free energy is the quantity which we study in detail for our specific models in this and the

next chapters.

The fourth way we will describe to observe a phase transition is via Gibbs states.
In the classical Heisenberg model, a boundary condition is a fixing of the spins on the
boundary of G c Z%. One can study the possible suitable limits of the measure ¢g, if one
takes different boundary conditions or infinitesimal external magnetic fields (see Chapter
6 of [37] for formal definitions). These suitable limits are the infinite Gibbs measures,
or Gibbs states. For high temperatures (/5 small), there is usually a unique Gibbs state,
which corresponds to the idea that the system “forgets” the external magnetic field, or
boundary conditions. One can say there is a phase transition if at low temperatures, (3
large), there is more than one Gibbs state. This is what concerns the Mermin-Wagner
theorem noted above, which shows that for all positive temperatures, all Gibbs states are
invariant under the action of SO(3), see Theorem 9.2 of [37] (i.e. states in which the spins
tend to point in one direction are excluded). In the classical case defining Gibbs states
rigorously is done through the DLR (Dobrushin—Lanford—Ruelle) equations: a Gibbs state
is a measure ¢ on configurations on Z%, such that if one conditions on the spins outside
some finite set G, one obtains the measure (5.1) on G, with boundary conditions induced

by the spins outside G.

The study of a quantum spin systems cover the same phenomena as a classical one,
with the addition that quantum behaviour is accounted for. It should be noted that one
of the postulates of quantum mechanics is that the theory should in some way contain the

classical version, via some suitable limit.

Mathematically, instead of working with a probability measure, we work with Her-

mitian operators on some Hilbert space H. The Hamiltonian H is such an operator,
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and the possible energies are the spectrum of H. In place of the measure on configura-
tions, we study the operator %e’ﬁH, where Z(3) = Tr[e’ﬁH] is the partition function,
the normalisation constant which makes the operator have trace 1. In keeping with our
heuristics above, imagining that H has a finite spectrum {F; }, with each eigenvalue having

eigenspace of dimension d;, one has the same form for the partition function
Z(B) =Y die PP = 3 e Plitlosds, (5.9)
i i

One interpretation of classical models lying within the quantum setup is the following.
If the Hamiltonian is written as a sum of operators (see (5.10) for instance) which commute
with one another, then the operators share eigenspaces, and one can think of the model
as classical - as a probability measure on the eigenvalues with weights proportional to the
dimension of the associated eigenspace. We will see an instance of this in Section 5.2.2
when the ‘XXZ” model (5.15) becomes the classical Ising model when K; = 0. In contrast,
when the Hamiltonian is a sum of operators which do not commute, we say the model is
quantum.

Let Se %N. In the quantum Heisenberg model, the spins o; are replaced with Hermitian
operators on a copy of C25*1 at i ¢V, (C?S *1. The Hamiltonian is an operator acting on

tensor space (C2*1)®V, For the quantum Heisenberg model, the Hamiltonian is:

H== % (8-8), (5.10)
{i.j}e€

where 8; = (S, 8,5, (8;-8) = (S8 + 5P 5 4 505y and 5V, 51, 5
are explicit Hermitian operators acting on (C?S”. These operators are analogies of the
three co-ordinate components of the classical ¢;. The parameter S is called the spin
quantum number. When it is unambiguous, we will just refer to it as the spin. The four
methods of observing a phase transition described above for the classical case all have
their analogues in the quantum case.

The free energy in this setting is limjy|_q ﬁ log Z(G, ) = ﬁ log Tr[e_/BH], which one
can again think of as pulling out the largest of the values -G FE; +logd;, F; in the spectrum
of H, d; the dimension of its eigenspace. For observing magnetisation, one amends the

Hamiltonian (5.10) similarly to the classical case (5.4), as

H=- % (8-8;)-h) S;i-b, (5.11)
{i,j}e& i€V

where b € S? and S;-b = Z%zl kai(k). One then studies the quantity (5.5) using the quantum

version of the free energy, or quantities of the form of (5.6), ie:

1
lim ((— S 8,) by o, 5.12
M%o( IVI;:; )-bYr.G.s (5.12)

where for an operator A on the phase space V®", (A)yg s = m Tr[A . e‘ﬁH]. The

spin-spin correlations (5.3) have their analogue in the quantum case too:

lm  (Sy, - Suy) 6.5 (5.13)

|x1—12|—>oo
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As in the classical case, in dimensions 1 and 2 this limit is zero for all 8 > 0, see the lecture
notes of Ueltschi [100]. There is a notion of Gibbs states in the quantum case too. One
needs the theory of C*-algebras to define them rigorously. See [86] for formal definitions.
In [14], the authors give a certain heuristic argument which points towards the structure
of the Gibbs states of several models (including the quantum Heisenberg model). In both
this Chapter 5 and 6, we observe that we can make analogous heuristic arguments for the
models that we study in those chapters. See Sections 5.2.2, 5.2.3 and 6.1.5.

While models on Z¢ are already simplifications of the real-life situations that they
model, often working with them can be difficult. For example, the question of whether
there is a phase transition for the quantum Heisenberg model on Z%, d > 3, is an open
problem (let alone the nature of such a transition). Notice the difference from the classical
case. One way of gaining intuition for these models is via the mean field approximation,
where the effect of all particles on any one particle is approximated by a single, averaged
effect.

Mathematically, this amounts to studying the models on the complete graph on n
particles (i.e. all particles are neighbours of one another). Often, this makes computations
(for example computing the free energy) easier. Note that on the complete graph, some
of the methods for detecting phase transitions have workable analogues, and some do not.
The notion of Gibbs states is not well-defined, and correlations such as (5.13) do not have
meaning since the distance between any pair of particles is 1. However, an analogue of the
free energy is well-defined (and one can sometimes study its analyticity properties), and

expressions such as (5.12) make sense, and can often be computed.

In several models the mean-field approximation gives exactly the corresponding quanti-
ties for the model on Z¢, and in some cases it is a good approximation, particularly when
the interactions between particles are long range, or the dimension is high (both cases
meaning that the valency of a vertex in the underlying graph is high). In this Chapter 5,
we make such a mean field approximation, and study the free energy of a class of quantum
spin systems (which includes the spin S = % quantum Heisenberg model) on the complete
graph. We also compute certain observables of the form (5.12). In Chapter 6 we make a

similar approximation, studying models on the complete bipartite graph.

We will study three simple generalisations of the quantum Heisenberg model, which
will appear in, and indeed be a large focus of, this chapter. Equivalent classical models
exist for each of the three models, by amending the the Hamiltonians accordingly. Firstly,

the quantum Heisenberg antiferromagnet has Hamiltonian

H=+ % (8-85)), (5.14)
{ij}e€

the same as the ferromagnet but multiplied by (-1). This model favours adjacent spins
which are anti-aligned. On a bipartite graph, it is not hard to see that configurations (in
the classical model) with lowest energy are those with all spins aligned on one subgraph,
and all spins on the other subgraph aligned in the opposite direction. Dyson, Lieb and

Simon [33] showed a phase transition for a large class of models on 7%, d > 3, including
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the quantum Heisenberg antiferromagnet with spin S > 1, using the method known as
reflection positivity; this was extended to d >3, S > % by Kennedy, Lieb and Shastry [59].

Notice the contrast with the ferromagnet remaining an open problem.

Secondly, the Heisenberg XX7 model is the Heisenberg model with Hamiltonian tweaked

to become:
H=- Y (K880 + 1382 8% + 15059, (5.15)

{ij}e€

that is, we give a certain weight K» to the interaction in the S(?) direction, and a second
weight K7 to the other two directions. For example, if K1 > 0 and K5 < 0, the system
wants adjacent spins which point in the 1 — 3 plane to be aligned, but those pointing in
the 2-axis to be anti-aligned. The name “XXZ” is simply from there being two weights
the same and one different. Notice that the ferromagnetic Heisenberg model is the special
case K1 = K9 =1, and the antiferromagnet is K1 = Ko = —1. One can perform a unitary
transformation (conjugate the Hamiltonian by a unitary matrix) so that the Ky weight
appears in front of the S or the S®) term instead; another unitary transformation can
replace K with =K. See the lecture notes of Ueltschi [100] for details. Frohlich and Lieb
[39] and Kennedy [58] showed that for K3 > K; > 0, and for dimensions d > 2 there is
a phase transition in the spin S = % model in the sense that for low temperatures there
is long range order, that is, the limit lim‘ml_m‘_)oo(Sg)Sg))H’Zdﬂ (see (5.13)) is strictly
positive. Notice the difference from the ferromagnetic model, where there is no transition

in dimension d = 2.

Thirdly, the Heisenberg bilinear-biquadratic model has Hamiltonian

H-=- Z (Jl(SZSJ)-FJQ(SZSJ)Q) (5.16)
{i,j}€&€

This model is studied in spin S = 1, where it is the most general SU(2)-invariant model,
where here the invariance is the action on the spin operators. The first term in (5.16)
is essentially the ferromagnet for J; > 0 and the antiferromagnet for J; < 0, indeed the
ferromagnet is the special case J; =1, Js = 0, and the antiferromagnet is J; = -1, Jy = 0.
The second term, for Jy > 0, prefers adjacent spins to be either aligned or anti-aligned, but
not orthogonal to one another, and vice-versa for Jy < 0. Ueltschi [101] showed that there
is a phase transition for d > 3 and 0 < J; < %JQ, in the sense that for low temperatures,
there is a “nematic order”, and on the line J; = 0 < J5 there is a “Néel order”, both types of
long range order. Lees [64] showed that for d >3, J;1 <0< Jy and —J1/J2 < @ = a(d) some
constant depending on dimension, there is Néel order for low temperatures. See Section
7 of [101], as well as [102], for a full description and the expected phase diagram on Z¢,
d > 3. See [36], [54], [95], [98], for further work on this model.

One interesting difference between the quantum and classical model is the following.
In the nematic region in the quantum model, 0 < J; < Js, one expects the extremal Gibbs
states to be indexed by RP?. Following the classical intuition, one would expect these

extremal states to arise as limits, for b e S?:

() = lim |l}‘i£noo('>b,H(h,B,J1,Jg),Q? (5.17)
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where

H(h,B,J1, ) == Y. (Ji(Si-8;)+J2(Si-8;)%) = > h(S;-b)>. (5.18)
{i,j}€€ {i}eV

Here the magnetisation term encourages spins to be either aligned or anti-aligned in the
direction of b. However, in the quantum case, the correct Gibbs state is expected [102] to
arise with magnetisation term + 3 ;10 h(S; - b)? (with the sign changed to a plus), which

encourages spins to lie in the plane orthogonal to b.

We will study the latter two models in the rest of Chapter 5 as they are special cases

of the more general model (5.20) studied there.

5.2 Introduction to quantum spin systems on the complete

graph

The remainder of this Chapter 5 presents the results from the paper “The free energy
of a class of Ogg,1(C)-invariant spin % and 1 quantum spin systems on the complete
graph” [89]. We present the paper essentially unchanged, with references to our use of

representation-theoretic tools from the previous sections given as appropriate.

In this paper, we study a certain two-parameter family of quantum spin systems on
the complete graph which generalises the spin S = % quantum Heisenberg model, and
which in particular has a certain invariance under the action of the orthogonal group
0(0) = O(25 +1) = O2541(C), where 6§ = 25 + 1, and S is the spin of the model. It is
equivalent in spin S = % to the XXZ model, and in spin S =1 to the bilinear-biquadratic
Heisenberg model, defined above. The work is motivated by a paper of Bjérnberg, whose
model is GL(#)-invariant. In spin S = % and S =1 we give an explicit formula for the
free energy for all values of the two parameters, and for spin S > 1 for when one of
the parameters is non-negative. This allows us to draw phase diagrams, and determine
critical temperatures. For spins S = % and S = 1, we give a magnetisation, the left and
right derivatives of the free energy as the strength parameter of a certain magnetisation
term in the Hamiltonian similar to (5.11) tends to zero. We also give a formula for a
certain total spin observable in the style of a paper of Bjornberg, Frohlich and Ueltschi
[14]. We also give a certain heuristic argument which points towards the structure of the
Gibbs states in the models we study, analogously to an argument in [14].

The key technical tool used in this paper (and the next, in Chapter 6) is Schur-Weyl
duality. Fundamentally, the partition function of the model is the trace of the action
pBre (see 3.12) of some element of the Brauer algebra B,, ¢ on tensor space V®". We can
therefore use Schur-Weyl duality to write the partition function in terms of the irreducible
characters of the symmetric group and the Brauer algebra, which is instrumental in being
able to then take limits.

Let us present a more detailed introduction to this paper. Quantum spin systems and

their phase transitions have been studied widely. Mermin and Wagner showed that no

7



model with continuous symmetry has a phase transition in dimensions 1 and 2. This was
done in particular for the quantum Heisenberg model [74] and the classical model [73].
Dyson, Lieb and Simon [33] showed a transition for a large class of models on 7%, d >3,
including the quantum Heisenberg antiferromagnet with spin S > 1. A phase transition
on Z%, d > 3 for the ferromagnet remains unproved. Téth [97] and Aizenman-Nachtergale
[1] showed that the spin S = % Heisenberg ferro- and anti-ferromagnet (respectively) have
probabilistic representations as weighted interchange processes. Other spin systems have
been studied with probabilistic representations, and interchange processes have been stud-

ied widely in their own right; see, for example, [5], [48], [61], [91].

The free energy of the spin S = % Heisenberg ferromagnet on the complete graph was
determined by Téth [96] and Penrose [82]. This was extended by Bjoérnberg [13] to a class
of spin S € %N models, with Hamiltonian equal to the sum of transposition operators.
The model’s probabilistic representation is that of the interchange process, where T6th’s
weighting of 27l ig replaced by (25 + 1)#eyeles,

Motivated by [13], we give in Theorem 5.2.1 the free energy, on the complete graph
and in spins S = % and 1, of a model with Hamiltonian (5.20) given by linear combinations
of the sum of transposition operators, and the sum of certain projection operators. For
spins S > 1 we can apply a similar strategy to give in Theorem 5.2.2 the free energy in
the case that one of the parameters of the Hamiltonian is non-negative. In spin S = % the
model is equivalent to the Heisenberg XXZ model (Hamiltonian (5.25)). In spin S =1 it
is equivalent to the bilinear-biquadratic Heisenberg model (Hamiltonian (5.29)), which is
also known as the most general SU(2)-invariant spin S = 1 model (here SU(2)-invariance

means invariance under the action of SU(2) generated by the spin-operators). We give a
1
2
half of the diagram for S > 1 (the region where we have the free energy), giving the points of

full phase diagram in the two parameters of the Hamiltonian in the S = 5 and 1 cases, and
phase transitions in finite temperature, and ground state behaviour. These phase diagrams
differ notably in shape from those on Z%, since the complete graph is not bipartite. Indeed,
no phase transition is observed for the spin § = % Heisenberg antiferromagnet, in contrast
to Z¢, [33], and the expected phase diagram for the spin S = 1 model in Z¢ differs from
ours on the complete graph - see Ueltschi’s work [101] and [102]. In spins S = % and 1 we
give in Theorems 5.2.3 and 5.2.4 respectively expressions for a magnetisation and a total

spin observable. These are motivated by corresponding results of [13] and [14] respectively.

The Hamiltonian in [13] is GL(#)-invariant, which allows it to be studied using the
representation theory of the symmetric group (here and for the rest of the paper, by G-
invariance, we mean that G acts on tensor space by G 3 g = ¢®", and the Hamiltonian
in question commutes with this action). Bjornberg’s key technical step is to express the
partition function of the model in terms of the irreducible characters of the symmetric
group. Our Hamiltonian is only O(6)-invariant, which requires us to look for more tools,
as the symmetric group is not sufficient. (In fact, any O(6)-invariant pair-interaction
Hamiltonian must be of the form (5.20)). The key representation-theoretic step in finding
the free energy is to express the partition function in terms of the irreducible characters
of both the symmetric group and the Brauer algebra. Indeed, the Brauer algebra was
introduced by Brauer [19], as the algebra of invariants of the action of the orthogonal

group on tensor space. A key technical step in our proofs is solving the problem of finding
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when the Brauer algebra - symmetric group branching coefficients are non-zero; we have
a general solution for this problem in spins S = %, 1 in Propositions 5.7.6 and 5.7.8. For
higher spins more work is needed to answer the problem fully, and handle the remaining
parts of the phase diagram.

This paper is a continuation of several papers which analyse quantum spin systems and
their interchange processes using representation theory (including [13]). Alon and Kozma
[3] estimate the number of cycles of length k in the unweighted interchange process, on any
graph. Berestycki and Kozma [9] give an exact formula for the same on the complete graph,
and study the phase transitions present. In [4] Alon and Kozma give a formula for the
magnetisation of the 2#es weighted process (equivalent to the spin S = % ferromagnet)
on any graph, which simplifies greatly in the mean-field.

The model we study was introduced by Ueltschi [101], generalising T6th [97] and
Aizenmann-Nachtergaele [1]. Ueltschi showed, for certain values of the parameters, equiv-
alence with a weighted interchange process with “reversals”. For these parameters, the
model and interchange process have been studied on Z¢ [16], [25], trees [10], [17], [49],
graphs of bounded degree [76], and the complete graph [15], [14], the latter of which
computes many observables. Our methods allow us to deal with all values of the param-
eters, not just those for which the probabilistic representation holds. The implications of
our results for this interchange process seem to be limited to the following. In [15], the
authors show that the transition time is independent of the parameter giving the ratio
of “crosses” and “reversals”; our results indicate the same is most probably true for the
weighted process.

In Section 5.2.1, we describe our model and precisely state our results. In Section
5.3 we give an introduction to the Brauer algebra. In Section 5.4 we prove our main
result, Theorem 5.2.1, modulo the key ingredients Propositions 5.7.6 and 5.7.8 which are
proved in Section 5.7. In Section 5.5 we give the free energy in higher spins, and prove
our magnetisation and total spin results. In Section 5.6 we prove certain results on the
analyticity of the free energy, which follow from Theorem 5.2.1, and give calculations which

back up our interpretation of the phase diagrams.

5.2.1 Models and results

Let SM, 52 §G) denote the usual spin-operators, satisfying the relations:

[S1), 5] =8B 1§ g3 =g [5G g] =53
(SN2 + (8P + (8))? = 5(S + 1)id,

with ¢ = \/=1. For each S ¢ %N we use the standard spin S representation, with S,
j = 1,2,3, Hermitian matrices acting on V = C?, 6 = 25 + 1. We will broadly adopt the
bra-ket (-]-) statistical mechanical notation for vectors and operators on V and tensor
products of V. We fix a non-degenerate, symmetric, bilinear form on V', such that an
orthonormal basis of V' with respect to this form is given by the eigenvectors |a) of S ®),
with eigenvalues a € {-S,...,S}. Note we define the orthogonal group O(#) as the group
preserving this form, as in Chapter 2.

Let G = (V,&) be the complete graph on n vertices. We number the vertices 1,...,n.
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At each vertex 1 < i < n, we fix a copy V; = V, and let the space V = ®1<,,V; = V®".
Now an orthonormal basis of V is given by vectors |a) = ®1<j<n|a;), where each a; €
{=5,...,8}. If Ais an operator acting on V', we define 4; = A®idy. (;y acting on V (i.e.
Ai(01®®0;®Qvy) =1 ®® Av; ® - ®y, for all v; € V;, 1 < i < n, extending linearly).

We define T} ; to be the transposition operator, and @;; to be a certain projection

operator, first on V; ® Vj:

T; jlai, aj) = |aj, az),

(5.19)
(i, a;]Qij1bi, bj) = 0a;.a;00; b,

for basis vectors a;,a;,b;,b; of V;, V; as appropriate. We then identify T;; with T; ; ®
idy. (,j}, and Q;; similarly. Note these are just (3.12). Let our Hamiltonian be defined

as:

H=H(n,0,L1,L2) == (L1Ti; + L2Qi ;) , (5.20)
i?j
where L1, Lo € R, and the sum is over all pairs of vertices 1 < ¢ < j < n. We define the

partition function as
Zno(L1, L) = Tr[e—%H(n,G,Ll,Lg):l'

Note that usually we would write e’gH , for inverse temperature 5, but without loss of
generality this 5 can be incorporated into L; and Ls. One could think of 5 as being
expressed by the norm of the vector (Ly, Lo) € R2. The factor % compensates for the fact
that on the complete graphs there are order n? interactions (as opposed to Z%, where the
number of interactions is proportional to the volume).

We have the following results. The first and main result, Theorem 5.2.1, gives the free
energy when the spin S = % or 1, that is, 6 = 2,3. Theorem 5.2.2 gives the free energy for
all 8 > 2, but only for Lo > 0; its proof is very similar to that of 5.2.1. Theorems 5.2.3 and
5.2.4 give formulae for a certain magnetisation and a certain total spin, respectively. In
Theorems 5.2.5, 5.2.7 and 5.2.10 we analyse the free energies of Theorems 5.2.1 and 5.2.2
and discuss the phase diagrams that they produce.

Theorem 5.2.1. For 0 = 2,3, the free energy of the model with Hamiltonian given by
(5.20) is:

1 1 0 0
gl_)r{)lo - log Zy,6(L1, L2) = max (g y)en; I:a ((L1 + Lo) Exf - LQy%) - log(mi):l , (5.21)
i=1 i=1

where

Ay ={(x,y) = (x1,22,91) € [0,1]% | 21 > w2, z1 +22=1, 0<ys <x1 -T2},

Ay ={(x,y) = (1,29, 23,51) € [0,1]* | &1 > w9 > 23, Ty +a2+23=1, 0<y; <1 — 73}

(5.22)
From hereon in, we label the function being maximised by:
1 0 5 5 0
¢ =00.L1,L,(2,y) = 5 | (L1 + L) > x; = Loyt [ = Y wilog(a;). (5.23)
i=1 i=1
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Our result for higher spins covers only the range Lo > 0. As noted earlier in the
introduction, this restriction is due to our only having a partial solution to determining
when the Brauer algebra - symmetric group branching coefficients are non-zero, when the
multiplicative parameter of the Brauer algebra 6 = 25 +1 is greater than 3 (see Section 5.3

for the definition of the multiplicative parameter, and (5.37) for the branching coefficients).

Theorem 5.2.2. Let 6 > 2, and assume Lo > 0. Then the free energy of the model with
Hamiltonian (5.20) is:

Li+ Ly 9
. 223312—256110%(%‘)7
=1

i=1

1
lim —log Z, g(L1, L2) = maxgea,
n

n—oo
where Ag = {x € [0,1]° | 2; 2 241 20, £ 2 = 1},

Notice that for 6 = 2,3 this theorem is consistent with Theorem 5.2.1, since in (5.21),
for Lo > 0, we must set y; = 0 for all i. Note that when Lo = 0, Theorems 5.2.1 and
5.2.2 recover Bjornberg’s result (Theorem 1.1 from [13]), with our L equal to the 5 from
that paper. Results equivalent to our following results are obtained (for all ) for the
case Lo =0 in [14]. Note in particular that there the symmetry is different - the model is
GL(6)-invariant rather than the O(#)-invariance of our general Ls # 0 model. The paper
[14] also discusses the Gibbs states of the Ly = 0 model, which are expected to be indexed
by CPY~!, different from Lo # 0 (see discussion below).

We can give two additional results, both for 6 = 2, 3. The first gives the free energy of
the model when we add a certain magnetisation term with a real strength parameter h,
and its left and right derivatives at h = 0. Let us modify the Hamiltonian (5.20):

Hy, = Hy(n,0,Ly, Ly, W) = - Z (L1T; 5 + LoQi5) = h Z Wi, (5.24)
i,j i

where h is real, and W is a 6 x § skew-symmetric matrix (i.e. WT = ~W), with eigenvalues
1,-1 for 8 = 2, and 1,0,-1 for # = 3. In this theorem and the next, the limitation of W
being skew-symmetric is a technical one arising from the methodology. Note that 252.(2)
when 6 = 2, and SZ.@) when 0 = 3 is skew-symmetric with the appropriate eigenvalues. In
our interpretation of phase diagrams, we will think of this magnetisation term as that in
the S direction. This theorem relates to Theorem 5.2.1 as Theorem 4.1 from [13] does
to Theorem 1.1 from that paper.

Theorem 5.2.3. Let 0 =2,3, and let Z,, 9(L1,Lo,h) = Tr[e_%H’L]. The free energy of the
model with Hamiltonian Hy, (5.2/) is given by:

1
Q= QO(Lla Lo, h) = T}l_{go E log Zn,@(le Lo, h) = maX(x,y)eA; [¢9,L1,L2 ($, y) + |h|y1] :

Further, the left and right derivatives of this free energy with respect to h, at h =0, are
given by:

oh hx.O_y17 Oh h/O_yl’
where (z',y") is the maximiser of ¢ which maximises y1, and (x*,y*) the one which

minimaises yi .
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Note that y{, yi depend on Lq, Ly, and we will show that both are zero when L1, Lo
are small.

We now return to the model (5.20) with no magnetisation term. We give a total
spin observable (e% ZiWi) for skew-symmetric matrices 1. This theorem is an equivalent
of Theorems 2.1-2.3 from [14], and its proof follows similar lines of reasoning to that of
Theorem 2.3 from that paper, aided by the Brauer algebra technology that we develop in
this paper.

Theorem 5.2.4. Let 0 = 2,3, h € R, and W skew-symmetric with eigenvalues 1,-1 for
0 =2, and 1,0,-1 for 6 = 3. Assume that the function ¢g 1, 1, has a unique maximiser
(z*,y") € Ay. Then with H the Hamiltonian from (5.20), for L # 0,

Ao Wiy ._ 1
en &t = lim
< ) n—~oo  Z,9(L1,La)

sinh(hy’{) . _
T if 0 =3.

Te[er T Wi ] {cosh(hyﬁ, if6=2,

The quantity cosh(hyj) is related to Ising spin-flip symmetry, see below in Proposition

5.2.6 and the discussion thereafter; and the quantity Sm};lgiyf) is related to SU(2) (or O(3))
1

symmetry, see in Proposition 5.2.9 and the discussion thereafter, and in [14].

We now state our results in terms of two well known models, the spin S = % Heisenberg

XXZ model, and the spin S =1 bilinear-biquadratic Heisenberg model.

5.2.2 Phase diagram for spin S = %

Let S = %, so # = 2. We consider the Hamiltonian of the XXZ model, which will be

equivalent to (5.20). Let

1) o1 2) (2 3) (3

H':_(stf 's + K88 + 1 5P >), (5.25)
Z?]

with K1, Ko € R. Our result Theorem 5.2.1 leads us to the following theorem, which will

give information about the phase diagram of this model. See Figures 5.1a and 5.1b.

Theorem 5.2.5. The free energy of the model with Hamiltonian (5.25) is analytic every-
where in the (K1, K2) plane, except the half-lines K1 =4, Ko <4 and Ky =4, Ky <4, where
it is differentiable, but not twice-differentiable, and the half-line K1 = K9 > 4, where it is
not differentiable.

Note that the free energy is trivially continuous everywhere (it is concave or convex,
and in our case, the maximum of a smooth function).
Let us also formalise what we will prove about the magnetisation and finite volume

ground states, which will aid our discussion of the phase diagram below.
Proposition 5.2.6. Consider the spin S = % Heisenberg XXZ model (5.25).

1. The magnetisation y{ of Theorem 5.2.3 is positive if and only if Ko >4, Ko > K1,

and is zero elsewhere.

2. (a) For Ky >0, Ky > K, the finite volume ground states are spanned by the two
product states ®1<j<n(|3) +i| - 1)), (where i =/~1);
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(b) For K; >0, K| > K, the finite (even) volume ground state is the vector (5.28).

Note that the two vectors |3) 4| - 1) are the eigenvectors of 5@,

Theorem 5.2.5 splits the plane into three regions of analyticity, which we identify as
three phases of the model. We label the region K; < 4, K3 < 4 disordered (illustrated in
block pink in Figure 5.1b); the maximiser of the function ¢ in (5.21) is constant in this
region, and it maximises the entropy term (the logarithms) of ¢.

We label the region Ko > 4, Ko > K the Ising phase (illustrated in dotted yellow in
Figure 5.1b). It includes the half-line K; = 0, Ky > 4, where the model is the supercritical
classical Ising model, and further we will show the free energy in this region is independent
of K (it is perhaps slightly surprising that Ko dominates to such a complete extent). There
are two finite volume ground states in this region, the product states ®1Sjgn(|%) +1] - %))
Further, for small values of h, adding —-h }; SZ.(Z) to the Hamiltonian as in (5.24) forces a
unique ground state, ®1§j5n(|%) +i| - %)) when h > 0 and ®1$j§n(|%) —i|- %)) when h < 0.
The magnetisation y{ in the S direction from Theorem 5.2.3 is positive.

The authors of [14] give a heuristic argument that points towards an expected structure
of the set of extremal Gibbs states ¥ at inverse temperature 3 for several models on z4,
d > 3. The extremal Gibbs states in infinite volume are not well-defined on the complete
graph, so the working is by analogy. Specifically, their heuristics indicate two expected

equalities: first, that

h_ (2) (2)
An{nﬂ(@ >A v, e M(T/J) ( )

where dyu is the measure on Gibbs states corresponding to the symmetric state, S(()Q) is the
spin operator at the lattice site 0, and the left hand side is the limit of successively larger
boxes A € Z%: and second that

T (e 57)g = tim (em 5, (5.27)
where the left hand term is the observable on the complete graph. The left hand side of
(5.27) is computed rigorously on the complete graph, and then, with the expected structure
of W3 inserted, the right hand side of (5.26) is rigorously computed, and the two are shown
to be the same. This working is not a proof either of the expected equalities (5.26), (5.27)
or of the expected structure of ¥, but it points towards all three statements holding true.
We can take the same approach for our models in several of the phases, with one small
difference. We expect that the equality (5.27) holds for the complete graph models that
we study in this paper on the left hand side, and on the right hand side models on other
non-bipartite graphs, for example the triangular lattice, or the models on Z¢, d > 3, with
nearest and next-to-nearest neighbour interactions. For the Ising phase here, we can argue
that the extremal Gibbs states in the Ising phase are expected to be indexed by {+es},
where ez is the second basis vector in R?. Indeed, with magnetisation y; = (5’(()2))62 and
U3 = {+es}, the right hand side of this equality is cosh(hy]); the left hand side is the same
by Theorem 5.2.4.

We label the region Kj > 4, Ky > Ky the XY phase (illustrated in hatched blue in
Figure 5.1b). We expect the Si(l) and Si(?’) terms to dominate, and the extremal Gibbs
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states to be labelled by @ € S! in the 1 — 3 directions. The magnetisation y{ in the
SZ.(z) direction (from Theorem 5.2.3) is zero in this region, which is consistent with this
picture. Similarly to the Ising phase, with Wz = St, the right hand side of (5.26) is 1, as
is the left hand side by Theorem 5.2.4, so again we are encouraged in our labelling of the
extremal states, and of (5.26). Equivalent calculations in the ™) direction are done in

[14]. Interestingly, the ground state in finite (even) volume is the vector

n/2

Z ® Z |amivam§>7 (5.28)

mym' =1 g==1 1
where the sum is over all possible pairings (m,m’) of the vertices of V (that is, (m,m’) =
((ml,...,m%),(m'l,...,m'%)), with mum' =V, mnm' = @).

Note that the line K1 = Ko > 0 is the ferromagnetic Heisenberg model, and the ex-
tremal Gibbs states are expected to be labelled by @ € S?. Here we can prove that the
magnetisation y{ >0 iff Kj = Ko > 4. The heuristics of (5.26) are given in Theorem 2.1 of
[14].

The transitions from the disordered phase to each of the Ising and XY phases are
second order, and the transition from Ising to XY is first order. The ground state phase
diagram is illustrated in Figure 5.1a, and the finite temperature phase diagram is illus-
trated in Figure 5.1b.
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Figure 5.1: On the left, the ground state phase diagram for the Spin % Heisenberg XXZ
model with Hamiltonian (5.25). The line K; = K3 > 0 gives the Heisenberg ferromagnet.
On the right, the phases at finite temperature, where varying temperature is given by
varying the modulus ||(K7, K2)||. Transitions between phases (points of non-analyticity of
the free energy) shown in red lines.

5.2.3 Phase diagram for spin S =1
In spin S =1, we consider the bilinear-biquadratic Heisenberg model:
H”=—(Zjl(si'Sj)+J2(Si'Sj)2), (5.29)
2%
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with Jp,Jo € R. Our Theorem 5.2.1 leads us to the following theorem, which will give
information about the phase diagram of this model. See Figures 5.2a and 5.2b. We can
rigorously analyse the free energy in the Jo > Ji half of the phase diagram; on the other

half we have partial results and numerical simulations to support Remark 5.2.8.

Theorem 5.2.7. Within the region Jo > Jy of the (J1,J2) plane, the free energy of the
model with Hamiltonian (5.29) is analytic everywhere, except the half-line Jo =1log 16, J; <

log 16, where it is continuous, but not differentiable.

Remark 5.2.8. We strongly suspect that Theorem 5.2.7 extends to the following: that
the free energy of the model with Hamiltonian (5.29) is analytic everywhere in the (Ji, J2)
plane, apart from the half-lines Js = log16,J; < log16 and Jy = Js > log 16, where it is
continuous, but not differentiable, and a curve (that we label C) made up of the half-line
Jy =2J; —3<3/2 and a curve connecting the points (%, %) and (log 16,log 16), which (as
a function of Jj) is convex, with gradient in [2,3]. It is unclear whether it is analytic on
the half-line J; =0, Jo < -3.

Let us make clear what we will prove towards Remark 5.2.8 and the following discussion

of the phase diagram of the model.

Proposition 5.2.9. Consider the bilinear-biquadratic Heisenberg model with Hamiltonian
(5.29).

1. The region A of the Jy — Jy plane where the point (z,y) = ((%,%,%),(0,0,0)) 18
a mazximiser of ¢3 g, 1, (5.63) (the equivalent of ¢3 1, 1, (5.23) when we change
variables appropriately) is closed and convex, and its boundary is the half-line J; <

Jo =1log 16, and a curve C as described in Remark 5.2.8.

2. The magnetisation term yI of Theorem 5.2.3 is zero in the region A and the region
Jo > log16, Jy > Jy, and is positive in the region Ji > Jo, strictly to the right of the

curve C.

3. (a) For Jy >0, Jo > Jy, the finite (even) volume ground state is the vector (5.30);

(b) For Jy >0, J1 > Jo, the finite volume ground states are those vectors invari-
ant under Sy, and killed by all P;; (5.61), which include the product states

2 .
®1<icn |a), where ag —aja_y =0;

(c) For %JQ < J1 <0, the finite volume ground states are those vectors are spanned
by the vectors (5.31).

Let us now discuss the phase diagram. Theorem 5.2.7, Remark 5.2.8, and Proposition
5.2.9 divide the (J1,J2) plane into four regions, which we label as phases of the model.
We label the region A (illustrated in block pink in Figure 5.2b) the disordered phase. The
boundary of this region is made up of the half-line Js = log16,J; < log 16 and the curve
C. The maximiser of the function ¢ from (5.21) is constant in this region, and maximises
the entropy term.

We label the region of phase space to the right of the red line in Figure 5.2b, within
the region J; > Jo, Ji1 > 0, ferromagnetic (illustrated in dotted yellow in Figure 5.2b)

(in fact, for large ||(Ji,J2)||, this region is that which is expected to be ferromagnetic
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in Z3, see [101]). The finite volume ground states include the product states ®<i<y, |a),
where a — aja_1 = 0, (eg. the ferromagnetic [1), |- 1), as well as |1) +|0) +| - 1)). The
magnetisation y{ in the S direction (Theorem 5.2.3) is positive in this phase. We expect
that the extremal Gibbs states are indexed by @ € S?, in which case (with (5’52))82 =y7)
the right hand side of (5.26) equals %
maximiser y; of ¢ is unique in this phase,1 so the left hand side of (5.26) should be the

Numerical simulations suggest that the

same, by Theorem 5.2.4. This encourages our expectation that the extremal states are
indeed @ € S?, and that (5.26) holds true. This extends the same analysis of the J, = 0

case given in Theorem 2.1 of [14].

We label the region of phase space Ja > log 16, J2 > J; the nematic phase (illustrated in
hatched blue in Figure 5.2b); we expect the (S;-S8;)? term to dominate, and the extremal
Gibbs states to be given by a € RP?. The magnetisation in the S(?) direction (Theorem
5.2.3), y{, is zero in this phase, which matches the heuristics; we would expect to get
something non-zero, for example, by replacing S with its square. Interestingly, the

finite (even) volume ground state in this phase is the vector

nf2 1
Z ® Z |ami7(_1)a(_a)m;>7 (530)

m,m’ i=1 a=-1

where the sum is over all possible pairings (m,m'). This is the sum over all possible

products of singlet states.

The fourth phase (illustrated in checkerboard orange in Figure 5.2b) occupies the region
%Jg + % < Ji £0. This phase is somewhat more mysterious. While the magnetisation y{ is
positive in this phase, the finite volume ground states are complicated. They depend on

Jo 2
J1+J2 € [3’

the ratio o = 1], and are spanned by vectors of the form

(1-a")n/2 1

Zr[( X Iaé))®( X Zlamm(—l)“(—a)m;))], (5.31)

VN (mum’) i=1 a=-1

where o is a fraction with denominator n close to a, m,m’ is a pairing of (1-a’)n of the
vertices, a’ satisfies (a()? —aja’; =0, and 2, is a Young symmetriser corresponding to the
partition (a’n, (1-a’)n). The vector being symmetrised can be thought of as a proportion
« of the volume being taken up by a ferromagnetic ground state, and 1 — « being taken
up by a product of singlet states. However, it is difficult to interpret the vector once the

Young symmetriser is applied.

The transition from the disordered phase to the nematic phase is first order; we have
not been able to prove similar statements for the other transitions. The ground state
phase diagram is illustrated in Figure 5.2a, and the finite temperature phase diagram is

illustrated in Figure 5.2b.

5.2.4 Higher spins

Recall that we only have the free energy of the model with Hamiltonian 5.20 for spins
S > 1 in the region Ly. We can describe this half of the phase diagram in the (L, L2)
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Figure 5.2: On the left, the ground state phase diagram for the Spin 1 bilinear-biquadratic
Heisenberg model with Hamiltonian (5.29). On the right, the phases at finite temperature,
where varying temperature is given by varying the modulus [|(J1, J2)||. Transitions between
phases (points of non-analyticity of the free energy) shown in red lines (proved in the region
Ja > Jp, expected as shown for the rest of the plane).

plane for all spins as follows. Let

for 0 =2

5.32
(£1)log(6 - 1), for 0> 3, (5.32)

8 = Bu(6) { )

Theorem 5.2.10. Let S > % (so 0 > 2), and let . = B.(0) from (5.32). Within the
region Lo >0 of the (L1, L) plane, the free energy of the model with Hamiltonian (5.20) is
analytic everywhere, except the half-line L1+ Lo = B, where for spin S > 1 it is continuous,

but not differentiable, and for spin S = % it is differentiable, but not twice-differentiable.

We note that this theorem is a generalisation of Theorem 5.2.7 to spins S > 1, and
indeed it implies Theorem 5.2.7. This can be seen by a unitary transformation of the spin
S =1 Hamiltonian (5.29) which we describe in Section 5.6.

The Ly > 0 part of the phase diagram can be split into three phases. The disordered
phase occupies the region Lq + Lo < .. The maximiser of ¢g 1, r, (5.23) maximises the
entropy term (the logarithms) in this region. The region L; + Lo > 5., Lo > 0 is a second

phase. The finite (even) volume ground states include the vector

n/2

Z @ Z |amiaam;>v (5.33)

m,m' i=1 a=-5,8

where the sum is over all possible pairings (m,m’) of the vertices of V. The line Ly = 0,
L; > 0 is the quantum interchange model of [13]. The finite volume ground states are any

vector which is invariant under the action of S,.
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Figure 5.3: On the left, the ground state phase diagram for the spin .5 model with Hamilto-
nian (5.20), in the region Ly > 0. On the right, the phases for Lo > 0 at finite temperature,
where varying temperature is given by varying the modulus ||(L1, L2)||. Transitions be-
tween phases (points of non-analyticity of the free energy) shown in red lines.

Remark 5.2.11 (A remark on the Interchange process with reversals). As noted in the
introduction, for certain values of the parameters, the model with Hamiltonian (5.20)
has a probabilistic representation as an interchange process with reversals, re-weighed by
7 1°0Ps; gee [101]. To be precise, let Ly = 1 — Ly = u € [0,1), and introduce a temper-
ature parameter 3, that is, let Z, g(u, ) := Tr[e_BH("’97“’1_“)]. Then the corresponding
interchange process is that described in Section 2A of [101], with / translating to time in
the interchange process. It is natural to ask what our results imply, if anything, about
this process; we have one remark to make on this topic. In [15], the authors consider the
unweighted process with reversals, and prove that above a critical time 3, the rescaled
loop lengths converge to a Poisson-Dirichlet distribution, as n, the number of particles,
tends to infinity. In particular, the critical time (and indeed the limiting distribution) are
independent of the parameter u. Our result Theorem 5.2.10 indicates that a similar result
might hold for the re-weighed process, since the transition in the spin model occurs at
B = e (5.32), independent of w.

For completeness, we make the following final remark. In [14], the authors obtain ex-
pressions for total spin observables of the form of Theorem 5.2.4, and note they are equal
to certain observables of the corresponding interchange process, which are characteristic
functions of the lengths of loops. Then they check that the limits of these observables,
evaluated under the Poisson-Dirichlet distribution, are the same as the expressions ob-
tained for the total spin observables. This supports the hypothesis that the rescaled loop
lengths in the reweighed process are, in the limit, distributed is distributed according a
Poisson Dirichlet distribution. It is tempting to try to play the same game here; however,
we are unfortunately not able to with our specific total spin observables. Our total spin
observable is trivial in the region where the probabilistic representation holds; we can give
more details in the following.

In Theorem 2.3 of [14], the authors consider a total spin expression of the form of
Theorem 5.2.4 for the case u = 1, the “Quantum Interchange Model”, and for the matrix
W replaced with any 6 x § matrix, with eigenvalues hq,...,hy. That model has a proba-
bilistic representation as the Interchange process (without reversals) with configurations
re-weighed by 0% 1°°PS described in Section 3.3 of that paper. A configuration of that

process at time ( is given by a configuration of certain loops; we label the lengths of
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the loops [;, and the number of loops [(¢). The total spin in finite volume is shown to

Mbifn  eholi/m) " Now using

be equal to the expectation of the observable [];s1 el(%)(e
Theorem 4.6 from [84], one can obtain the same expression for our total spin in Theorem
5.2.4, except the length of a loop, which before was the number of vertices at time 5 =0 it
visits, is replaced by the modulus of its winding number. The winding number definition
comes from the algebraic equivalent in the Brauer algebra of the length of a cycle in the
symmetric group, in that it defines conjugacy classes in the Brauer algebra (see Section
5.3 and Theorem 3.1 of [84]). (In the case of the interchange process without reversals,
(and equivalently in the symmetric group) the length is the same as the modulus of the
winding number, so there is no issue; this is not the case when reversals are introduced).
Hence this observable does not tend to a function of the rescaled loop lengths, so cannot

be compared with the Poisson-Dirichlet distribution.

5.3 The Brauer algebra

We essentially prove Theorem 5.2.1 by identifying the eigenspaces of the Hamiltonian, their
dimensions, and their corresponding eigenvalues. We first observe that the Hamiltonian
is actually the action of an element of the Brauer algebra on V. Schur-Weyl duality gives
us information on the irreducible invariant subspaces of this action, which leads us to the
eigenspaces of the Hamiltonian.

In this subsection we will recall the definitions from Chapter 2 that will be of specific
use to this paper. We will recall the definition of the Brauer algebra, and how its irreducible
representations are enumerated, along with those of the symmetric group and the general
linear and orthogonal groups.

Let 0 € C. The Brauer algebra B,, 4 is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 17,2%,...,n", and the lower (southern) 17,...,n".
We call an edge connecting two northern vertices (or two southern) a bar.

Multiplication of two diagrams is given by concatenation. If by, bs are two diagrams,
we align the northern vertices of by with the southern of b, and the result is obtained by
removing these middle vertices (which produces a new diagram), and then multiplying the
result by 6/(1:2) where [ (b1,b2) is the number of loops in the concatenation. See Figure

5.4. This defines B,, y as an algebra.

O O O O O O
by
O o o—o o o _ . bty
O O O O O O
by
O O O O O O

Figure 5.4: Two diagrams b; and by (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by 6.

We call the set of diagrams B,,. Note that diagrams with no bars are exactly permu-

tations, where o € S, is represented by the diagram where x~ is connected to o(x)*, so
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S, ¢ B,. Moreover the multiplication defined above reduces to multiplication in S, so
CS,, is a subalgebra of B,, 9. We write id for the identity - its diagram has all its edges
vertical. We denote the transposition S, swapping x and y by (i,7), and we write (4,7)
for the diagram with 2" connected to y*, and 2~ connected to y~, and all other edges
vertical. See Figure 5.5. Note that just as the transpositions (7, j) generate the symmetric
group, the Brauer algebra is generated by the transpositions and the elements (4,7).

Let us note that the diagrams and multiplication depicted in Figures 5.4 and 5.5 mirror
the paths in the interchange process with reversals (see [1], [101] for definitions). In a
similar way to the interchange process without reversals being thought of as a continuous
time random walk on the symmetric group, this shows that the process with reversals can
be thought of as a random walk on the basis B,, of the Brauer algebra. See, for example,
Figure 1 from [101].

o) O O
[T ] _aes,
o O ©

®) I O=——=0 ®) ®)

= (34)
o—0 O O

o o
>€< = (24) € S,
O O O

Figure 5.5: The identity element, the element (34), and the transposition (24) € Sg, all
lying in Bs.

O

Let us turn to representations. A vector p = (p1,...,p:) € Z! is a partition of n (we write
prn) if p; > piy1 20 for all 4, and Yf_; p; = n. Recall that the irreducible representations
(and characters) of CS,, are indexed by partitions of n. The Young diagram of p + n is
the diagram of boxes of p with p; boxes in the 4" row. When it is unambiguous, will
denote the Young diagram of p simply by p. See Figure 5.6 for an illustration of the Young
diagrams of the partitions (5,5,3,1), (4,1,1) respectively. We label by ct(p) the sum of
contents of the boxes of the Young diagram of p, where the content of a box in row ¢
and column j is given by j —i. For a partition p, p! is the partition with Young diagram
obtained by transposing the diagram of p (so piT is the length of the i*" column of p). For
p + n a partition, let pr" be the irreducible representation corresponding to p, x;?" its

character, and df" its dimension. The irreducible representations of the Brauer algebra

Figure 5.6: The Young diagrams of the partitions (5,5,3,1) and (4,1,1).

B, ¢ are indexed by partitions A -n -2k, 0<k <[5] (see Chapter 2 or, for example, [84]
r [24]); let us denote them by w?"‘o, and their characters by XIE"’O, and dimensions by

Bn,@
4.
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We also recall that irreducible representations of the orthogonal group O(6) are given
by partitions A of any size such that A\] + AJ < 6 (see Theorem 1.2 from [84]). The irre-
ducible polynomial representations of GL(6) are given by partitions p of any size with at
most 0 parts. Lastly, we note that the irreducible representations of the special orthogonal
group SO(0) are indexed by partitions of any size with at most r = |0/2] parts, with the
exception that when 6 = 2r even, the r* part can be negative. For each of these three

groups G, for a given partition m we denote the irreducible corresponding to =, and its
G

character and dimension, by

, x& and d€ respectively.

In the following section we prove Theorem 5.2.1, and in the section after, Theorems
5.2.2, 5.2.3, 5.2.4, whose proofs are all based on that of 5.2.1. In Section 5.6 we prove
Theorems 5.2.5 and 5.2.7, which follow from Theorem 5.2.1. In Section 5.7 we prove
the two Propositions 5.7.6 and 5.7.8 which are key technical ingredients for the proof of
Theorem 5.2.1.

5.4 Proof of Theorem 5.2.1

In this section we prove our main Theorem 5.2.1, modulo Propositions 5.7.6 and 5.7.8,
whose proofs are postponed to Section 5.7. As noted above, our method is to identify the
eigenspaces of our Hamiltonian, their dimensions and associated eigenvalues. We start by
viewing the Hamiltonian (5.20) as the action of an element of the Brauer algebra B,, 9 on
V.

Let 6 > 2. The Brauer algebra acts on V = (C%)®Y = Ve by pBre(i7) = Qi
and pBn0(i,7) = T; j, where recall T}, Q; ; are given by (5.19). We therefore have H =
pBno (H), where

H=-%(L:(i,5) + L2(3,7))

]

= —(Ly + L) Y (4, §) + La Y ((i,4) - (7)) -

1,J 0,

Now H is a linear combination of two elements in B,, ¢: the sum of all transpositions, which
is central in CS,,, and the sum of all transpositions minus all elements (3, j), which is a
central element in B,, 9. A central element of an algebra acts as a scalar on the irreducible

representations of that algebra. Indeed, (from Lemma 2.1.10) for all p + n,

P (Z(i,j)) = ct(p)id, (5.34)

and (see (2.10)) for all A\+n -2k, 0 <k <|n/2],

o (Z((m) - m))) = (ct(A) + k(1 - 6))id. (5.35)
L

Finding the eigenspaces of the Hamiltonian requires two steps. First we find the irreducible
invariant subspaces w?"’e of the action pB»¢, on each of which the element in (5.35) acts as

. By,
a scalar. The element in (5.34) does not act as a scalar on these spaces ¢, *. Hence, the
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second step will be to further decompose these subspaces into smaller spaces (irreducibles
¥,"), on each of which the element in (5.34) does act as a scalar. These smaller spaces

are therefore the eigenspaces of the Hamiltonian.

The first step, the decomposition of pBr¢ is given by a classical theorem called Schur-
Weyl duality, which we now describe. The orthogonal group also has a natural action on
V; for g € O(0), v; € CY for each 1 <i < n, we have g(v; ® - ® v,) = gv1 ® - ® gv,. Recall
from Theorem 3.0.3 that Schur-Weyl duality states that the actions of the two algebras
B, ¢ and CO(f) on V centralise each other, and V can be viewed as a module of the tensor

product B,, y ® CO(#), which decomposes as:

V= @ v Pwmy (5.36)
)f\jl—:n)\fgke

(Note the square tensor symbol denotes a representation of the tensor product of two
algebras, as opposed to the circle tensor which denotes a representation of a single group or
algebra). Hence the action p®n¢ decomposes into irreducibles w?”’g (such that A +\J < 6),
each with multiplicity df\)(e). Note that a similar theorem (the original version of Schur-
Weyl duality) holds for the general linear and symmetric groups (see equation (5.71) in
Section 5.7). Here we only note that those representations of S, which appear in V are

all those with at most 8 parts.

For the second step, we need to restrict @D?”’g to the symmetric group and decompose
into irreducibles. For p+n and A +n -2k, 0 < k < |n/2], recall from (2.40)

ressne [gym0] = D W5 n)@bm (5.37)

pEn
where res denotes the restriction of a representation. The coefficients bg’z are the Brauer
algebra - symmetric group branching coefficients. The eigenspaces of the Hamiltonian

Oy 9 their

dimensions are d,f”, and their corresponding eigenvalues are —( L1 + Lo)ct(p) + Lg[ct(/\) +

are therefore indexed by pairs (), p), each appearing with multiplicity d

k(1-60)]. Taking exponentials and traces, we see that

Zno(Ly, Ly) = Tr [p0 (e )

_ ZdO“’)bn‘)dSnexp[ (L1 + Lo)ct(p) — Lo(ct(\) + k(1 - 0))]].
e

(5.38)

Now we need to take the limit of %log Zno(L1,Ls), which will essentially behave like
1 ~log of the largest term in the sum above. As n — oo, the behaviour of ct()), ct(p),

o) _, 0. It remains

and 1 = log dS” are given by Bjornberg [13] We will show that + ~logd;
to analyse the branching coefficients b/\:p. In particular, since we are interested in the
largest term in the sum above, and the sum is really only over those pairs (\, p) for which
bn 0 0, it is crucial that we have good knowledge of when these coefficients are non-zero.

Obtalnlng this knowledge is the main technical difficulty of this paper.

Let us introduce some notation. Define A,,(0) to be the set of pairs (A, p) of partitions
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with at most ¢ parts, A - n — 2k for some 0 <k < [2], with A] + ] <6, p+n. Let P,(0)
be the set of (A, p) € A,,(0) with the extra condition that bt\L:z >0. Let %Pn(e) be the set
of pairs (%, 2), for (A, p) € P,(0).

For 6 = 2,3, we give a detailed description of P,(6) in Propositions 5.7.6 and 5.7.8,
proved in Section 5.7. Essentially, (i.e. apart from a few edge cases which behave well),
(A, p) € Ap(2) lies in P,(2) iff 0 < A1 < p1 — p2, and (A, p) € Ap(3) lies in P,(3) iff
0 < A1 < p1—p3. As noted earlier, we do not know as much detail when 6 > 3 - we use what
we do know to prove Theorem 5.2.3 in Section 5.5.

We will need to take the limit of the sequence %PH(Q); let us make clear what we mean
by this. Let Ag c R% be the set of pairs (z,y) € ([0,1]%)? such that ¥, 2; = 1,2 > 441
for all 4, Z?zl y; € [0,1],y; > y;41 for all i, and y; = 0 for all i > [g] Equip R?? and subsets
thereof with ||-|| the co-norm, ||z|| = max??, |z, and consider the Hausdorff distance d (-, )
on sets in R?:

dg(U,W)=inf{e>0 | U c W and W c U},

where U€ = {z ¢ R? | ||z - u|| < € for some u € U}. Then Propositions 5.7.6 and 5.7.8 show
that %Pn(ﬁ) — Aj for 0 = 2,3 in this distance, where, recall,

A; = {(l’,y) € ([071]2)2 | T12T2, T1+XT2 = 17 Y2 = 07 0< Y1 <11 _mQ}a
A ={(x,y) e ([0,11*)? | 21 2x9 2 a3, z1+a2+23=1, y2,y3=0, 0<y; < x1 — 23}
(5.39)

The rest of the proof follows very similarly to Section 3 of Bjornberg [13]. As in that
paper, we prove a slightly more general convergence result, and then apply it to our setting.

Let A be any compact subset of RY, t € Nyg, and let P, ¢ A be a sequence of finite
sets with P, - A in the Hausdorff distance, and %log |P,| > 0,asn —>oo. Let o: A >R
continuous, and let ¢, : P, - R such that ¢, - ¢ in the sense that there exists 6, - 0
such that

|60 (Pn) = d(Pn)] < O, (5.40)

uniformly in p, € P,.

Lemma 5.4.1. Given the assumptions above, we have that

lim l log( Z eXp [n¢n(pn)]) = maXxeA¢(x)'

n—-oon pnePn

Proof. Let us first prove an upper bound. We have that

l log ( Z eXp[n¢n(pn)]) < % log (|Pn|maxpn€Pn {exp[non(pn)}])

n Pn€Pn
= maxp,ep, [Pn(pn)] +0(1)
< maxp, e, [6(pn)] + 6a + 0(1)

<maxgea[@(x)] + 0y + 0(1),

where in the second to last inequality we use that ¢, tends to ¢ (5.40), and in the last
we use simply that P, ¢ A. Hence we have limsup,,_, %log(zpnE P, €XP [nd)n(pn)]) <
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maxzaP(x). For the lower bound, we have:

%log(( Dy exp[mbn(pn)]) ~log (masp,cp, {explndn(pa)]})
=mMaXp,ep, [én(Pn)]

> maxp, ep, [¢(pn)] + On-

Now it suffices to prove that lim, .. max,, cp,[¢(pn)] = max,ea[@(z)], which follows
from convergence in the Hausdorff distance. Indeed, since A is compact, the maximum
max,A@(x) is attained, say, at x*. Then there exists a sequence of points p, € P, with
pn = =", Now ¢ (pn) < maxy,,ep,[¢(pn)] < maxzea[d(z)] = ¢(2), again in the last
inequality using the fact that P, c A, which gives the desired limit by continuity of ¢.
To conclude, liminf,, %log (anepn exp [noy (pn)]) > maxgzaP(x), which completes the
proof. [

Now we set A = AS, P, = LP,(0), ¢ = ¢g,1,,1, defined below (5.22), and ¢y, = ¢p0,1, L,

where

1 n 1
12 p) = ~log(d) ) + = log(B17) + = log(d5")

’ % ((L1 + L2)ct(p) = La(ct(A) + k(1 -6))).

Now using Lemma 5.4.1, in order to prove Theorem 5.2.1, we note that %Pn(e) - Aj in
the Hausdorff distance by Propositions 5.7.6 and 5.7.8, and it remains to prove ¢, 9.1, 1, =
®0,1.,,1, in the sense of (5.40). Noting that #(k(l -6)) — 0, the final two of the four terms
in ¢n.0,1,,1, give the desired limit; this is proved in Theorem 3.5 of [13], the salient points
of which are that as 2 - , —log(ds ) - —¥%  z;log(xz;), and ct(p) - %Zle z?. So it
remains to prove only that + log(do( )) %log(bgzﬁ) tends to zero as n — oo, uniformly in
(A, p). The second of these terms tends to zero by Corollaries 5.7.7 and 5.7.9 in Section
5.7. To show the first tends to zero, we note that Weyl’s formula gives the dimension
dfo(e) of the irreducible representation of SO(#) corresponding to A = (A1,...,A;), where

r =16/2] (see, for example, Section 7 of [44]). For 6 odd, and 7; =n —i + %,

SO(G) H ()\ +7TZ) ()\ +7T]) H )\ +7Tz

_ 2
1<i<j<r ﬂ—i 7rj 1<i<r T

and for m; =n —1, 6 even, we have

()\i + 7TZ')2 - ()\j + 7Tj)2

SO(6) _
dy =TI a2 _ 2

1<i<j<r i J

It’s straightforward to see that these dimensions are bounded above by (2n)%". Finally,
for \] <r recall from (2.23) that

L00) 00 _

L0(0) 0(0) _ . SO(®)
Sso(0) XA

re =reSgoXa = Xa s (5.41)

where )\ is identical to A, except its first column is replaced by 6 — /\I, except in the case
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when 6 = 2r even, and A, > 0, in which case recall from (2.24) that

oo o6 SO0 SO(6
re S(()()G)XA( =300 G, (5.42)
where \° is the same as A except with A, replaced with —\,. As a consequence, the di-

mensions df\)(e) are bounded above by 2(2n)%". This completes the proof of Theorem 5.2.1.

5.5 Proofs of Theorems 5.2.2, 5.2.3 and 5.2.4

Proof of Theorem 5.2.2. As noted above, the main technical difficulty in this paper is
finding a detailed description for P, (). For general 0, all of the working from the proof of
Theorem 5.2.1 in Section 5.4 holds, apart from the fact that we do not know what the set
P, (0) looks like for # > 3. For Ly > 0, it turns out that enough information in contained in
a theorem of Okada [81], which computes the coefficients b;”ﬁ in certain special cases. Note
that in [81], the coefficients are described in terms of the general linear and orthogonal

groups - in Lemma 5.7.1 we show that this formulation is equivalent to ours.

Remark 5.5.1. Okada’s result says: if A = (17), 7 =0,...,6, then b;’z =1 if p has exactly
j odd parts, and is zero otherwise (part (2) of Theorem 5.4 of [81]).

Now assume Ly > 0. Recall the decomposition of Z, ¢(L1, L2) from (5.38):

Zoo(Li, L) = 3 d;?(@)b;ﬁdsnexp[ [(Ly + Lo)ct(p) — Lo(ct(A) + k(1 9))]]
(Ap)ePrn(0)

(5.43)

Since the sum behaves like its maximal term, and Lo > 0, it is clear that we would like to
minimise ct(\). Remark 5.5.1 allows us to do this, since the partitions (17) have ct((17))
essentially zero.

Let us make this precise. Given p + n with plT < 0, let j(p) be the number of parts
of p of odd length. Then by Remark 5.5.1, the pair ((17(")), p) lies in P,(#). Now take
any pair (X, p) € P,(0). Tt is straightforward to show that ct(\) > ct((17(”))) - 3. Indeed,
ct((lj(p))) < 0, and since A has at most @ parts, it has at most #2 boxes with negative

content, and those contents must be at least —f. Substituting into (5.43) gives

Znp(L1, L) <
5 dO(e)b?\ f;dﬁ exp [l [(Ll + Ly)ct(p) = La(ct((17)) = 63 + k(1 - 9))]] .
(A\.p)ePn(6) "
(5.44)

The lower bound is trivial, simply take the term ((17(?)), p) from the sum to achieve

Zno(L1,La) >
Zd(ol(ﬁz))b?lf(p)) dS"eXp[ [(L1+L2)ct(p) Lo(ct((17®))) + k(1 - 9))]] (5.45)
<9
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O(6)
A

%logb;’z and n%(ct((lj(p))) 6%+ Ek(1-0)) all tend to zero as n — oo. ]

Now we can apply Lemma 5.4.1 to see the result, recalling that %log |Pn(0)], %logd

Proof of Theorem 5.2.3. Let 6 = 2,3, and let W be a skew-symmetric 6 x § matrix with
eigenvalues 1, -1 for § = 2, and 1,0,-1 for § = 3. Consider the model with Hamiltonian
Hy, given in (5.24), and let Z,, g(L1, L2, h) = Tr[e_%H]. The same working as in Section
5.4, taking traces in (5.36), gives us:

Zno(L1,La,h) =

n 1
> SO S exp [— [(L1 + La)et(p) - La(ct(A) + k(1 - 9))]] .
(\p)ePu(0) n

(5.46)

Now by Lemma 5.4.1, to prove the free energy part of the theorem, it suffices to prove

that as A/n -y (as n — o), we have
1 o(6
Elogx/\( )(ehw) = |h|y1. (5.47)

We prove a more general lemma, one which holds for all 6.

Lemma 5.5.2. Let 0 >2, let \+ n-2k, 0 < k <|n/2] with /\1T+)\2T <0, and let Xg(e) denote
the irreducible representation of O(0) indexed by A. Let W be any 0 x 0 skew-symmetric
matriz with real eigenvalues wy > -+ > wy (note w; = —wyi1-; for each i =1,...,0). Let

r=10/2] (note wy >-->w, 20). Then as n - oo and A\/n -y, we have
1 oo -
EIOgX,\( )(ehw) - |h|zwzyz
i=1

Proof. Notice that " € SO(#). Assume A < 6/2, and recall from (5.41) that in all cases
except 0 even and A\ = 0/2, we have that resg(ge()e) Xg(e) = resgée()e)xf,(e) = Xfo(e)’ where
the latter is the irreducible representation of SO(#) with highest weight A, and where \’
is identical to A, except its first column is replaced by 6 — )\I. In this case, a formula due

to King (see Theorem 2.5 of [94]) gives

XiO(G)(eﬁhuu’ o ’eﬂhwr) _ Z QW(T)eﬁh Yia1 wi(mi_mf)’ (5.48)
T

where the sum is over semistandard Young tableaux of shape A filled with indices 1 <1 <

2<2< - <r<T< o0, such that:
1. The entries of row i are all at least i,

2. If i and i appear consecutively in a row, then there is an 7 in the box directly above
the 1.

Here m(T) is the number of occurrences of i directly above 7 in the first column of the

tableau T, with ¢ in row 4, and m; is the number of times i appears in the tableau, m;

similar. We recall also that a semistandard Young tableau of shape A is a Young diagram

of shape A with each box filled with one of a set of indices, such that along rows the indices

are non-decreasing, and down columns they strictly increase. Let h > 0. The exponent in

(5.48) is maximised by the tableau with every box in row i containing i. Indeed, taking
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any tableau T, changing a single box in row ¢ to contain ¢ changes the exponent by either
h(w; —wj) (if the box contains j > i), h(w; +wj;) (if the box contains j > i) or hw; (if the
box contains co). These are all non-negative, since we ordered wy > -+ > w, > 0. In a very
similar way, if h < 0, the exponent is maximised by the tableau with i as each entry of row

i. In either case, the maximum exponent is |h| ¥;_; w;\;. Now we have

M Zi widi Xio(e)(ehwl, o 7ehws) < M Zig wiki Z 2m(T)’ (5.49)
T

and noticing that 2(T) is bounded, and the number of T, which is the dimension of the

irreducible representation, satisfies %log dfo(e) — 0, we have the key claim. [

This proves (5.47), and therefore proves the free energy part of the theorem. It remains
to prove the second part. Again we prove a more general lemma. Let r = [g], and let
A$ be the set of pairs (z,y)? € ([0,11%)2, with x; > 2441 > 0, Z?:l i =1, yi > yis1 20,

yi = 0,fori > 7, ¥0, y; € [0,1].

Lemma 5.5.3. Let h,Lq,Ls be real, and let wy > - > w, > 0, where r = |0/2]|. Define a

function ® as

r
b = @(Ll, LQ, h) = max(w,y)eAg (a;, y) |:¢0’L1’L2 + |h‘ ;wiyi s

where Ag is some compact subset of Ay. Then

0P 0P

il = ot 7=
Oh ‘hw ; il oh

S
_ o
|hT0 = Z;wlyi, (5.50)

where (x',y") is the mazimiser of ¢ in Ag which mazimises the inner product ;| w;y;,

and (z*,y") the one which minimises the inner product.

Proof. The proof follows the proof of Theorem 4.1 from [13] very closely. We prove the
case of the right derivative - the left derivative is almost identical. Note that (z',y") (resp.
(z*,y*)) may not be unique, but this does not matter for the proof; from hereon in by
(z',y") we mean one such maximiser. We have

(b(LlaLth)_q)(Ll:L%o) > (b(xvy)_(b(xT?yT)
h = max , o nf ; Yiw; + h . (5.51)

We denote the function being maximised on the right hand side by f(x,y;h). Clearly
its maximum is bounded below by Y., ylw;. For fixed h > 0, let (x(h),y(h)) maximise
f(z,y;h) (such a maximiser exists as x,y lie in compact sets, and f is continuous). It
suffices to show that as o ~ 0, (z(h),y(h)) - (z!,3"). Certainly (z(h),y(h)) must
tend to a maximiser of ¢(z,y); if it did not, then by continuity, ¢(z,y) - ¢(z',y") would
stay bounded away from zero (below some negative number), and the right hand side
of (5.51) would tend to —oo. This contradicts the lower bound we noted above. To
conclude, (z(h),y(h)) must tend to (z',3") (and not a different maximiser), since the

sum Y1, = y;w; defining y' appears in f(x,y;h). [ ]

This concludes the proof of Theorem 5.2.3. [
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Proof of Theorem 5.2.4. We have, taking traces in (5.36),

O(6 n By, n
iy EaxS O o
’ ZA do(g) Bnﬂ (e(h/n)W)

400 Bn n O(0) (o(h/m)W (5.52)
T ds () (e (h/ )W)X,\ d( e )
A

T d O (ehimwy

Using Lemma B.1 from [14], it suffices to show that for 6 = 3, xf\)(e)(e(h/”)w)/df\)(e) -
sinh(hy1)/hy1 as A/n — y, while for # = 2, the limit is cosh(hyi). Let 6 = 3. Using
the determinental formula for the character of the orthogonal group [84], and the Weyl

dimension formula [44], we have

XE\)(3)(e(h/n)W) . e(h/n)(M1+1/2) _ =(h/n)(M1+1/2) 1/2

d§(3) - eh/2n _ o=h/2n ’ A+ 1/27

which, on expanding the exponentials in the denominator, clearly tends to the desired
limit. The 6 = 2 case is simpler. The dimension dg@) = 2 for all \ except A = & or (12)
(the trivial and determinant representations), which are both one-dimensional. In the
latter two cases, XQ(Q)(e(h/")W)/dg@) =1, since ™MW ¢ §O(2), and in the former case,
Xf(z)(e(h/n)w)/df\)(z) = (eMM/m 4 e=hMi/m) 19 which has the desired limit. ]

5.6 Phase diagrams

In this section we prove Theorems 5.2.5, 5.2.7 and 5.2.10 and justify their descriptions of
the phase diagrams for their respective systems. We begin with proving Theorem 5.2.10,
and then show that Theorems 5.2.5 and 5.2.7 can be reduced to 5.2.10.

5.6.1 Higher spins; Proof of Theorem 5.2.10

Proof of Theorem 5.2.10. Recall the result Theorem 5.2.2, which gives the free energy of
the model with Hamiltonian 5.20 in the region Ls > 0:

1+L29 0

Z :1:12 - Z x;log(z;) |,

T}l_)rgo % log Z,, 9(L1, L2) = maxgen,
where Ay = {x € [0,1]? | & > 441 > 0, 2, 2; = 1}. Let us label the function being
maximised ¢™*. This function ¢™ is that from Theorem 1.1 of [13]. In that paper
and Lemma C.1 of [14], it is proved that the maximisers of ¢™ are always of the form
(z,4i= T Lse e 0 5-1), that for L1 + L # . the maximiser is umque and that at Ly + Lo = S,
there are exactly two maximisers, at x = 5 and x =1 - 5 (which become a single unique
maximiser when 6 = 2). Here f3. is given by (5.32). Moreover, it suffices to work with the
modified function ¢ (z1,...,x9) - "™ (5,...,5) = o™ (21,...,29) - L12+9L2 —log#, since we

are subtracting a smooth function of L + Lo independent of the variables z;. Combining
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the above facts, we can consider a function of one variable; let ¢:[0,1] - R as

&(z) = pgp(x) == (m +(6- 1)(2 Lf) ;) zlogz —(1- x)log(é 1) log 6,

and let ®(3) = y(p) = Max, (1 119 ¢(x). To prove Theorem 5.2.10, it suffices to prove that
Dy () is smooth for 5 # ., and is differentiable but not twice-differentiable at (3. for 6 > 3,

and is continuous but not differentiable at 3. for 6 = 2.

By [13], for all 8, ®(8) = 0 for all § < B.. Let us denote by z* = 2*(3) the unique
maximiser of ¢ for all 8 > §.. For 8> ., we can obtain a formula for § in terms of the

maximiser x*, indeed, setting g—i =0 gives

91 a*(0-1)),
B = 0x*-11°g( " ) (5.53)

1-2x

this function is smooth and increasing for z* € (1 - %, 1), tends to . as z* tends to 1 - %
and to +oo as ¥ tends to 1. By the inverse function theorem, z* is a smooth function
of f in the region (., 00). Hence ®y(5) = ¢(x*(/3)) is a smooth function on the interval
(Be, 00). We now turn to the behaviour at ..

Let 6 = 2. Recall that 8. = 2. To show & is differentiable at 8 = B., we need to
show that its right derivative exists, and equals 0. By expanding the Taylor series of the

logarithms, calculations yield that for x € (0, 1),

¢(x)——(2$ 1) +:01(21 22_1)(233—1)21'.

Noting that (% - ﬁ) < 0, we have

L) -0() L 6 (8)
B2+ 5-2 g2+ -2
1
< Jim 2 (20°(8) - 1)°,

which is zero, as *(8) — 3 as 8 N 2. The limit is also at least zero, since () - ®(2) >0
for all 8> 2 straightforwardly. Hence the right derivative of ® is 0 and ® is differentiable
at f = fe.

To show & is not twice-differentiable at 5. = 2, we show that for § € (2,2 + €1),
®(B) > f(B) for some smooth function f, with f(2) = 0 and a strictly positive right
derivative at 2. We have that

W) 5] =9 () ()

where g(z) = 1(22 - 1) and () is some function satisfying § < zo(8) < z*(8), the last
inequality coming from the monotonicity of g on the interval (%, 1). We claim that z¢(f) =
(3508 - 2))% + 3 is such a function. We then define f(8) := g(20(8)) = 15(8 - 2); clearly
f satisfies the required conditions. It remains to prove the claim that % <xo(B) <x*(B).
Consider the inverse function of zg, Sp(z) = 10(z - %)2 + 2. By calculating that the first

derivatives of fy and S(x*) (5.53) are both zero at %, and their second derivatives satisfy
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(’)’(%) > B”(%) >0, we see there exists an interval (%, % +¢0) on which fo(z) > B(x). Now

since both functions are also strictly increasing on this interval, there exists an interval
(2,2 +¢€1) on which their inverses have the reverse inequality, which is what we wanted to

prove.

Now let 6 > 3. The function ® is clearly continuous at 3 = .. Similarly to the 6 = 2
case, to show ® is not differentiable at § = (., we show that on an interval (5., ¢ + €2),
®(5) > f(B), where f is some smooth function with f(8.) = 0, whose right derivative at
Be is strictly positive. We have that

)= 1)

B(8) = 6(2" (8)) > 91 -

the inequality arising since x* is defined to be the maximiser of ¢. Lengthy calculations

yield % = %, which is clearly positive for r > 3. This concludes the proof of Theorem

5.2.10. .

Before finishing this subsection, let us prove that for L1+Lq > 0, Lo > 0, the finite (even)
volume ground state is the vector given in (5.33). In order to give explicit finite volume
ground states, we will need a concrete realisation of the eigenspaces of the Hamiltonian.
This comes from our working in the proof of Theorem 3.0.3 and Proposition 3.0.11. Recall
for m,m’ a pairing of 2k vertices in V, let Qums = 15, Qm; m;, and recall [Qum - V10 is
the set of vectors in Qy, m -V which are killed by any Q; ; with i,j € V\ (mum’). Recall
that by our working in Section 5.4, the eigenspaces of the Hamiltonian (5.20) (for any
6 > 2) are indexed by pairs (A, p), partitions of n—2k (0 < k <[5 ]) and n respectively, with
M+ M <0, pT <6, and (A, p) € P.(6). Let 7 and 7 be standard tableaux (see Chapter 2)
with shapes A, p, and entries from V \ (mum’) and V respectively. Following the proof

of Proposition 3.0.11, the eigenspace itself can be realised as the span of the sets

22+ Qo -V]O , (5.54)

where z; € CSjy\ (mum)| 15 @ Young symmetriser (see (2.4)) for the partition A acting on
®jev~(mum’) Vi, and z, € CS, is a Young symmetriser for the partition p acting on all of
V. While the formula (5.54) is complicated for general pairs (A, p), we will see that for

some explicit pairs it simplifies greatly. By our working in Section 5.4, the dimension of

the eigenspace is df\)(e)bz’ﬁdg”.
Let # >2, L1 + L1 >0, Ly > 0. By our working in Section 5.4, the eigenvalues of the

Hamiltonian are

—[(L1 + La)ct(p) — La(ct(A) + k(1 -0))], (5.55)

indexed by pairs (A, p) € P,(6), where A + n —2k. While (as noted in Section 5.5) we do
not know the structure of P, (#) for 6 > 3, calculations yield that for n even, the eigenvalue
is minimised in A, (€) at the pair (&, (n)), and by Remark 5.5.1, (&,(n)) € P,(0). Now
the dimension of the associated eigenspace is dg(e)bn’2 d?n =1, and using (5.54) it is

@,(n) ()
straightforward to check it is spanned by (5.33).
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5.6.2 Spin i, 0=2

29
Let us now prove Theorem 5.2.5, and justify the description of the phase diagram of the

spin S = % Heisenberg XXZ model illustrated in Figures 5.1a and 5.1b. Let S = %, so 0 = 2.
Recall the Hamiltonian of the Heisenberg XXZ model is given by

H =- (Z K150 + Ky 8 53 4 Kle3)Sj(3)) . (5.56)
0]

We use the two identities 4(5’@(1)53('1) + Si(Q)S](.Q) + SZ.(?’)SJ(.:S)) +id = 27} ; and 4(5’1.(1)51(.1) -

Si(Q)S](.z) + Si(g)SJ(.g)) +id = 2Q); ; (see, for example, Section 7 of [101]), which show that the

Hamiltonian H' is, up to addition of a constant,

1

H = H(n,Kl,Kz) = _Z (Z(Kl + KQ)T:L'J + (Kl - KQ)QiJ) . (557)
2%

Note that the line K; = K9 > 0 gives the spin S = % Heisenberg ferromagnet, and the line

K = Ky < 0 gives the antiferromagnet. Let Z, (K, Ks) = Tr[efiH], where H is from

(5.57). Setting L; = i(Kl +Ks), Ly = }L(Kl - K3) from Theorem 5.2.1 we have that the

free energy of the system with Hamiltonian H given by (5.57) is

1
lim —log Z, (K1, K2) = max(, y)eas 2, k1, k2 (2, Y),

n—>oo n,
where we have

1

2
b2,5,, 1> (71, 72), (¥1,0)) = 3 (2K1(af +23) + (Ko - K1)y?) - Y. @i log(),
=1

and Ay = {(z,y) € ([0,1)? |2y 220, 21 +22=1, y2=0, 0<y; <1 — a9}

Proof of Theorem 5.2.5. We analyse this free energy by considering different regions of
the (K1, K2) plane. If Ky > Ky we can set y; = 0. This is the region covered by Theorem
5.2.2, and the free energy is exactly that of Theorem 1.1 from [13], with § from that
paper replaced with % The result of Theorem 5.2.10 shows that in this region, the
free energy is smooth apart from at the line K; = 4, where it is differentiable, but not
twice-differentiable.

Note that if we insert the condition z9 = 1 — ;1 into (ZSQ’Kl’KQ(J;l) in this region K >
Ky (with y; = 0), we can rewrite it as ¢2 x, k,(z1) = K1(221 - 1)2 - z1log(xy) - (1 -
x1)log(1—x1). Now consider the region K5 > K;. We have to set y; = x1 — x5 in order to
maximise ¢. Rearranging, and inserting zs = 1 —x1 now gives almost the same function as
above, but with K; replaced with Ko:

¢2,K1,K2(1'1) = K2(2x1 - 1)2 + K1 — I log(ml) - (1 - xl)log(l - .1'1). (558)

The extra term K7 does not affect the location of the maximiser. So, in the region Ko > K1,
the free energy is (up to the addition of K1) that of Theorem 5.2.2 and Theorem 1.1 from
[13]. So by our proof of Theorem 5.2.10, it is smooth everywhere in the region K > K,

apart from the line K5 =4, where it is differentiable but not twice-differentiable.
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It remains to join the two regions K; > Ko and Ks > K; together. Clearly the free
energy is continuous on the whole plane. The above working shows that in the region
K1 <4, K9 <4, the maximiser of ¢3 g, g, is at ((%, %
in this region. To conclude, let us consider the free energy on a line K1 = C > 4 as it

),(0,0)), so the free energy is smooth

crosses the half-line K1 = Ko > 4. For K5 < 4 on this line it is constant by our working
above. If we denote the free energy by ®(K1, K2), then using (5.58), for Ky > 4,

00 _ O(¢2,r, K, (27)) . 0b2, K\, K
0K 0K T 0K

= (227 (K3) -1)? >0,

z*(K2)

the last inequality coming from our working in the proof of Theorem 5.2.10. Hence the
free energy is not differentiable on the half-line Ky = K» > 4, which completes the proof of

Theorem 5.2.5. ]

Proof of Proposition 5.2.6. Let us now comment on the phase diagram that Theorem 5.2.5
indicates, and in the process prove Proposition 5.2.6. We label the region K; <4, Ko <4
(the region where (z*,y*) = ((%, % ,(0,0)) maximises ¢ k, K, ) the disordered phase, since
it maximises the entropy term (the logarithms) in ¢s x, k,. It is illustrated as the solid
pink region in Figure 5.1b. The maximiser y; = (0,0) gives the magnetisation of Theorem
5.2.3 yl = 0.

We label the region Ko > K71, Ko > 4 the Ising phase, illustrated as the dotted yellow
region in Figure 5.1b. Proposition 5.7.8 and our working to prove Theorem 5.2.5 show
that the maximiser of ¢2 i, K, is unique in the Ising phase, and of the form (z*,y*) =
((z7,23), (z7 - x3,0)), with 27 > 23. Then the magnetisation y! of Theorem 5.2.3 is
strictly positive.

As ||(K1, K2)|| = oo, the maximiser of ¢2 k, i, tends to ((1,0),(1,0)). Recall that
from our working in Section 5.4 and Proposition 5.7.8, the eigenvalues of the Hamiltonian

(5.57) are given by
- [2Kict(p) — (K1 — K2)(ct(N) +k(1-0))], (5.59)

where (), p) are partitions of n -2k (0 < k < |%]) and n respectively, with A{ + AJ <2,
pI <2, and A\ < p1 — p2. It is not hard to see that for Ko > Ki, Ko > 0, the finite
volume ground states are the eigenspace corresponding to the pair (A,p) = ((n),(n)).
Using (5.54), this is the space of vectors invariant under the action of S, and killed by
any @;j, and has dimension d?n()z )b?ﬁ%,(n)d?;) = 2. A dimension count shows that it is
therefore spanned by the two product states ®i<j<n(|3) £ - 3)) (where i here is \/-1).
Further, if we consider the Hamiltonian with a magnetisation term —h Y 1<, 552) added,
since these product states are eigenvectors of the magnetisation term, for A small and
positive ®1§j§n(|%) +i| - %)) must be the unique ground state, and vice-versa for h small
and negative.

We label the region Ky > Ko, K1 > 4 the XY region, illustrated as the hatched blue
region in Figure 5.1b. By our working in the proof of Theorem 5.2.5, the maximiser of
b9k, 1¢, is unique and of the form ((z%,23), (0,0)), so the magnetisation y! from Theorem
5.2.3 is zero. As ||(K1,K>)|| = oo, the maximiser of ¢2 g, k, tends to ((1,0),(0,0)), and

as we have already shown in arbitrary spins, the finite volume ground states are given by
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the eigenspace corresponding to the pair (A, p) = (&, (n)). This space is one-dimensional,
0(2) _ X 2 dS

@,(n) ~ T(n)
On the half-line K; = Ky > 4 (the supercritical isotropic Heisenberg model), the y term

since dg =1, and using (5.54), is spanned by the vector (5.28).

in ¢2 K, K, disappears, so if (z*,y") is a maximiser of ¢2 , k,, then (z*,y) is too, so long
as (z*,y) € A;. Hence y{ = x] — x5 > 0 by the proof of Theorem 5.2.10, or [13]. This
concludes the proof of Proposition 5.2.6. [

From Theorem 5.2.5, the transition from the disordered to either of the other two
phases is second order, and from XY to Ising is first order. By our working above, the
transitions from the Ising to the other phases can also be observed in the quantities from
Theorems 5.2.3 and 5.2.4, since y{ = y7 > 0 in the Ising phase, and is zero in the other
phases. This transition in y{ =y is continuous in the Ising-disordered transition, and

discontinuous in the Ising- XY transition.

5.6.3 Spin 1;60=3

Proof of Theorem 5.2.7. Let S =1, and recall the Hamiltonian of the bilinear-biquadratic

Heisenberg model:

H" (EJl (S;-8;) + J2(S; - S)) (5.60)

4,7

where J1,J2 € R and S;- §; = 22:1 Si(k)S](-k). Let P;; be (a scalar multiple of) the spin-

singlet operator, given by
(@i, a| Py jlbs, bj) = (=1)" 64, —a, b, b, - (5.61)

Note that the line J; = 0 gives the Heisenberg ferromagnet (J; > 0), and antiferromagnet
(J1 <0). We use the relations S;-S; =T; ;- P; j and (S; - Sj)2 = P; j +id (see Lemma 7.1
from [101]) to show that Hamiltonian (5.29) is, up to addition of a constant,

H(n, Jl,JQ) = —(Z J1E7j+(<]2—<]1)f)i7jid). (5.62)
i,

Let Z,(J1,J2) = Tr[e_%H], where H is given by 5.62. Ueltschi (Theorem 3.2 of [101])
shows that for 6 odd, this partition function is the same as when P ; is replaced with
Q;,;. For completeness, we show that this equality can be derived from an isomorphism of
representations (Lemma 5.9.1). Now, setting Ly = Jy, Ly = Jo — J1, Theorem 5.2.1 shows
that the free energy of the model with Hamiltonian (5.62) is

1
lim — lOg Zn(!]l’ JQ) = maX(m,y)eA§ ¢3,J1,J2 (l‘, y)7

n—>o0o nN,

where we have
¢3,J17J2((a:1,a:2,x3),(yl,O,O)) = 2 (JQ ZIE +(J1—J2 ) szlog(atl) (563)

The proof of Theorem 5.2.7 now follows from Theorem 5.2.10 using the change of

variables above.
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Proof of Proposition 5.2.9. In the rest of this section we provide the proof of Proposition
5.2.9, which backs up Remark 5.2.8 and our description of the phases of the bilinear-
biquadratic Heisenberg model, illustrated in Figure 5.2b.

Let ¢ = ¢3,7,,7,- We define the disordered phase to be the set A of values of (Ji,J2)
such that ((%, %,% ,(0,0,0)) is a maximiser of ¢; this maximises the entropy term (the
logarithms) of ¢.

Let us prove Proposition 5.2.9 first in the region Jo > J;. Here, we set y; = 0, so ¢
reduces to ¢, and the disordered phase is the region Jy < log 16, by [13]. We label the
region Jo > J1, Jo > log16 the nematic phase. It is illustrated as the hatched blue region
in Figure 5.2b. As noted above, we must set y; = 0, so the magnetisation y{ in Theorem
5.2.3 is zero in this phase. We can say that the transition from disordered to nematic is
first order, by Theorem 5.2.7. Lastly, let us show that for Jy > Jy, Jy > 0, the finite (even)
volume ground state is the vector (5.30). By our working in Section 5.4 and Proposition

5.7.8, the eigenvalues of the Hamiltonian (5.62) are given by
= [Jact(p) + (J1 = J2)(ct(N) + k(1 -0))], (5.64)

where (A, p) are partitions of n -2k (0 < k < [5]) and n, respectively, with M+ <3,
pI <3, and A1 < p;1 —p3. For Jo > J1, Jo > 0, as we have already shown in arbitrary
spins, this is minimised by the pair (\, p) = (@, (n)), the corresponding eigenspace has di-
mension dg(s)bg’yz(n)dfg) =1, and using (5.54), the unique ground state of the transformed
Hamiltonian (i.e. (5.62) with P ; replaced with Q; ;) is the vector given by the sum over
all 2-fold tensor products of the vector ¥.o__; |a,a). Transforming this back to the original
Hamiltonian, we have the sum over all possible tensor products of singlet states, which is

precisely (5.30).

We can now turn to proving Proposition 5.2.9 in the region Jy < Jp; this region is more
complicated. The function ¢ does not reduce to ¢™'. We must let y; = 21 — x3. Setting

r3 =1-x1 — 22, we rewrite ¢ as a function of 1 and xs:

1
(;5 = ¢37J17J2 (1’1,1’2) = 5 (JQ(_2:I:% + 1:% — 23:1372 + 2:L’1) + J1(2:L’1 +XT9 — 1)2) (5 65)

—x1log(xy) — o log(zo) — (1 — 1 — x2) log(1 — 1 — x2).

Note we are analysing this function in the region R defined by x1 > 2o, 1 -z > 21 > 1-2x9
(see Figure 5.7).

In this region J; > Ja, the boundary of the disordered phase A is difficult to identify
- recall we will show it is a curve C made up of the half-line Jy =2J; -3 < % and a curve
connecting the points (%, %) and (log 16,log 16). Outside of the disordered phase A (within
the region J; > J3), we can show that yI from Theorem 5.2.3 is strictly positive. Indeed,
if (*,y*) is a maximiser of ¢3 s, s,, then yi = 2] — 23, meaning the only point with yj =0
is ((%, %, %), (0,0,0)), and the claim follows from the definition of the disordered phase A.
Numerical simulations suggest that y{ is a unique maximiser everywhere in J; > Jy except
for the curve between (%, %) and (log16,log16) which is part of the curve C, so the y;
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1 A

Figure 5.7: The region R.

form Theorem 5.2.4 would exist and be positive; we have not been able to prove this.
Let us consider the ground state behaviour outside the disordered phase. As||(J1, J2)|| =
oo, the logarithm terms in ¢ will become negligible. Let ¢g be ¢ with the logarithm terms

removed. We maximise ¢g in the region R. Setting x3 =1- 21 — 2, we have

? =(2J1 - J2)(221 + 22 — 1);

azl (5.66)
=70 = J1(2{L‘1 + T2 — 1) + JQ(IL‘Q —IL‘1).

81‘2

Now since 2J; - J2 > 0, (and as we take our limit we are beyond the conjectured boundary
C), so the maximum of ¢y must lie on the boundary line z; +z3 = 1 of R. Note this implies

x3 =0, and so y; = 1. Substituting x5 = 1 — x1, and rearranging, we have the quadratic

Jl + JQ ( J2 )2 J1J2
_ _ 5.67
do(e1) 2 ( o J1+ Jo " (J1+J2)2 )’ (5:67)

where recall we are concerned with the region z; € [%, 1].

Calculations yield that in the region Jy < Ji, Ji > 0, this quadratic has maximum
at £1 = 1. So the maximiser of ¢35, s, in this region as [[(Ji,J2)|| = oo tends to
((1,0,0),(1,0,0)). Indeed the finite volume ground states (of the transformed Hamil-
tonian (5.62)) are given by the eigenspace corresponding to the pair (A, p) = ((n),(n)).
This space has dimension d(on()3 )6?7’12)7 (n)df;)

invariant under S,, (equivalently, invariant under any 7; ;), which are killed by any Q; ;.

=2n+ 1, and using (5.54), is the set of vectors

The corresponding eigenspace of the original Hamiltonian is the set invariant under S,
and killed by any P;;. Straightforward analysis of P;; shows that the product states
Q1<icn la) with ag —aja_1 =0 lie in this set (although they do not span it), which include
the ferromagnetic |a) = |1) and |-1) as well as [1)+|0) +|-1). We label this region, Js < Ji,
J1 > 0 and to the right of the curve C, ferromagnetic. It is illustrated as the dotted yellow
region in Figure 5.2b.

Now consider the region 2J; -J2 > 0, and J; < 0, illustrated by the checkerboard orange

region in Figure 5.2b. In this case, the quadratic (5.67) has maximum at z; = a := ﬁ,
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which lies in the range [%, 1]. Then the maximiser of ¢3 7, 5, is ((, 1 - «,0),(a,0,0)).
While we do not label this fourth phase, occupying the region 0 > J; > %(3 — J3), this
phase has some similarity with the ferromagnetic phase.

In finite volume, calculations from analysing (5.64) show that the set of ground states

in the fourth phase is the eigenspace corresponding to a pair (), p) = ((¢/), (a/,1-¢a')),

Ja
Ji1+J2

eigenspace is spanned by vectors (5.31).

where o/ = A\i/n is close to a = (and tends to a as n — o0). Using (5.54), the

The rest of this section completes the proof of Proposition 5.2.9 by determining the

boundary of the disordered phase A within the region J; > Jo. Recall we will show it is a
9 3
12
and (log16,log16). From here till the end of the section we work with ¢ given in (5.65).

The partial derivatives of ¢ of first and second order are:

curve C made up of the half-line Jp = 2J; -3 < 3 and a curve connecting the points (

§—¢ =(2J1 - J2) (221 + 2 — 1) —log(z1) +log(1 — x1 — x2);
X1
09
8_ = J1(2$1 + X2 — 1) + JQ(.',UQ —.7,‘1) —log(xg) +log(1 - —.7,‘2);
x2
0%¢ 1 1
— =221 -J) - — - ———:
922 (2J1-J2) i p— (5.68)
0%¢ 1
=21 -Jy) - —;
6x18x2 ( ! 2) 1- 1 — X9
0%¢ 1 1
— =1+ - —
8:6% 1 r1 l-z1—29

Lemma 5.6.1. The point (z1,z2) = (%, %) s always an inflection point of ¢, and it is a
local mazimum point if 2J1 — Jo < 3, and if 2J1 — Jo > 3 it is not a local maximum point

and does not mazimise ¢ in R.

Proof. Setting (z1,x2) = (%, %) in the above shows it is always an inflection point. If § is

the Hessian matrix of ¢, then for any vector (p,q) € R?, we have

(0. )9, q)" = (p+q)*(2J1 - Jo = 3) + p*((2J1 = Jo = 3) + b°(2J2 — J1 - 3)),

11
3'3
) is not a local maximum, and it

which is negative for all 2J; — Jo < 3 in our region Jy < Ji, meaning ( ) is a local

11
33
cannot maximise ¢ in the region R. ]

maximum. Clearly for 2J; — Jy > 3, % > 0, so (

Let A’ be the region within the region .Jy < J; where (%,%

¢ in R (this is the region A intersected with Jo < J;). By the above, all of A" must lie
within the region 2.J; — J < 3, (or, not to the right of the line J; = 2J; - 3).

) is a global maximum of

Lemma 5.6.2. The set A’ is convex.

Proof. Let JM J3) be two points in A’. Let J = sJM + (1 -5)J®, 5¢[0,1]. Since ¢ is
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linear in Jp, Jo, we have that for any (z1,z2) € R,

G2, (21, 72) = 8 ) (w1, 22) + (1 = 8) Py s (T1,72)

<3¢2J(1)(; i13)+(1 5)¢2J<2>(1 1) ¢2J(; ;)

Lemma 5.6.3. If a point (Jl(o),Jz(O)) within the region Jy > Jo lies outside of A, then
the point (Jl(o), J2(0)) +v, when it lies within the region Jy > J, also lies outside of A’, for
any v =pu(1,2) +v(-1,-3), p,v>0.

Proof. We have that

2 ()
0
PYA (¢($1,$2) - ¢(é7 %))

Firstly, we consider:

(57 +27) (Here0 =0 (. 5)) - 3k + 5 - Glamam 1

which has single root and minimum at xy = % Let (Jl(o), J2(0)) lie outside of A, so there

exists some global maximiser (x7,z3) # (%, %) in R, ¢(zf,x5) > ¢(%, %) Now the above

shows that moving (J1(0)7J2(0)) in the direction (1,2) does not increase ¢ at (%, %) any

faster than at any other point of R, so for all u > 0, (Jl(o)7 JQ(O)) +u(1,2) cannot lie in A’.
Secondly,

0 0 1 A
(_8_‘]1_38_172):_5 (1 2.%'1 +.7}2 2$13§2+2x1_§)

()3 32

which takes the value zero exactly on the lines x1 = o and x1 = 1 — 2x9, two of the
boundary lines of R, and is positive in the rest of R. By the same argument as above, if
(JI(O), JQ(O)) ¢ A, then (Jl(o), J2(0)) +v(-1,-3) ¢ A, for all v> 0. The lemma follows. |

Lemma 5.6.4. The regz'on bounded by and including the line J; = Jo, J1 < log(16), the
lme 2J1—Jy=3,J9 < 2, and the straight line from the point (log(16),log(16)) to the point
4, 2) lies within A'.

Proof. To begin with, note that on the line J; = J2, we can use our results from the case
Jy > J1. This means all J; = Jo, J; < log(16) lie in A’. Now the previous lemma implies
that all 2J; — J < log(16) lies in A’, since if it were not true, we would be able to move
from a point not in A" in the direction (1,2) and arrive at a point in .A’. Now by the same
logic, and the fact that A’ is convex, it suffices to show that the point (Jy,.J2) = (2 T 2) lies
in A’. We show that at this point, there are no inflection points of ¢ besides ( 31 3), and
(%, %) maximises ¢ on the boundary of R.
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Set (J1,J2) = (4, 2) Substituting z = 1 —x1 -z, w = 1 into (5.68) glves =0 if and

only if z=1 or
_ —log(z)

30 (5.69)

Note that the region R is transformed into R’, given by %(% -1)>z> % -2, zw > 0.
The line z = 1 intersects R’ at the single point (w,z) = (%,1) which corresponds to

(z1,22) = (%, 3) Substituting (5.69) into (5.68) gives that, on the line where 3 ¢ =0, the

value of 59_¢> is:
T2

0¢ _ 3 log(z)(1+52) o -zlog(z2)
FrC RTe g lg( (1—z)+(1+z)1og(z))‘

Remark 5.6.5. Let r be the unique zero of 3(1-2)+ (1+2)log(z). This function 88_92('2)

is positive in the range (r,1), except at z = 1, where it is zero. (It is not defined in (0, r]).

Hence either there are no points of inflection in R, or (%, %) is the only one. Proving
Remark 5.6.5 by hand is difficult. However, a rigorous computer-assisted argument is

available, which is due to Dave Platt. See Appendix 5.8.

It remains to analyse ¢ on the boundary of R. Substituting x; = 1 — 222 into ¢, we
have
d(z2) = — — —xo+ —a5 — (1 - 222) log(1 — 2x9) — 222 log(x2),

which it is not hard to prove is maximised at x3 = l in the region x3 € [0, 1] Indeed, its

first derivative —( 21 + 63x2 + 8log(1 — 2x2) — 8log(x2)) is zero at w9 = 0, and its second

12622 —6222+8
8x2-4zx

the same function as above. As x1 + xo — 1, the first order derivatives of ¢ tend to —oo.

derivative is negative in the range. Substituting z; = x9 into ¢ gives exactly
Hence ¢ on the boundary of R must be maximised at (%, %) so the same holds over all R,
and so we can conclude that (2 T 2) e A’ which is what we wanted to prove; this completes

the proof of Lemma 5.6.4.

Combining the above lemmas give us the information we need about the boundary of
A’. Lemma 5.6.2 implies that its boundary exists, and adding Lemmas 5.6.3, 5.6.1 and
5.6.4 shows that its boundary is made up of the line J; = Jy < log(16), and a curve C
which (as a function of Jy) is a continuous, convex line, which is the line 2.J; - Jy = 3
for Jo < , and that its gradient lies in [2,3]. This curve must meet the line J; = Jo
at the point (log(16),log(16)). Indeed, recall A is the region of the whole plane where
((3,3,3),(0,0,0)) maximises our original ¢ s,, 5, (z,y); we have A" = An{Jy < J1}. Then
the same proof as above can be employed to show that A is convex, which is what we
need. This completes the description of the boundary of A, which in turn completes the

proof of Proposition 5.2.9. [ ]
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5.7 Branching Coefficients

As noted in Section 5.4, the aim of this section is to prove Propositions 5.7.6 and 5.7.8,
which determine the sets P,(#) and the limits %Pn(ﬁ), 0 = 2,3. Recall A, () is the set
of pairs of partitions (\,p), A = n -2k, 0 <k <[], p+ n, such that M+ A <0 and
pi < 6. Recall that b?\f) is the coefficient of the irreducible p in the restriction of the
irreducible A from B,, g to CS,,. Then P, (0) is the set of (), p) € A,,(6) such that bt\bﬁ > 0.
Most of the work in proving Propositions 5.7.6 and 5.7.8 is contained in three lemmas
which we begin this section with. The first shows that the coefficients b;:z are also the
branching coeflicients of the orthogonal and general linear groups. The second is a useful
recurrence relation, and the third determines bz:z for certain values of p, in terms of the

Littlewood-Richardson coefficients.

5.7.1 Useful lemmas for all §

Fix 6 > 2. First we rephrase the coefficients bzzz in terms of the general linear and orthog-
onal groups, using Schur-Weyl duality. Recall that the irreducible polynomial represen-
tations of GL(#) are indexed by p, partitions of any non-negative integer with at most
parts. Similarly, those of O(#) are indexed by A, partitions of any non-negative integer

whose first two columns sum to at most 6. Let p + n, and let g;’ﬁ denote the coefficient of

@bf(e) in the restriction of z/JEL(O) from GL(0) to O(0).

Lemma 5.7.1. The symmetric group-Brauer algebra and orthogonal group-general linear

group branching coefficients are the same. That is, for all (\,p) € An(6), we have that
n,0 _ ;n,0
Inp = b/\,p'

Proof. Recall that Schur-Weyl duality (5.36) states that as a module of B,, g ® CO,,(C),

V= @ v ryl®. (5.70)
A-n—2k
AT+AT<0

The equivalent statement for the symmetric and general linear groups says that as a
module of CS,, ® CGL,(C),
V=@ v myStO. (5.71)
pEN
piso
_ Bho . . GL(6) .
Restricting each ,™" in the first equation to CS,, and each v, in the second to
O, (C), we have, as a module of CS,, ® CO,,(C),

n,0 Sn o(o 0  Sp o(o
@ b)‘ pw;? w)\( ) = @ gA,p¢§ 17/})\( )7 (572)

)

and hence the result. [
From hereon in we simply use bf\b’z to denote either itself or g?’z. For X a partition with

A + A\ <0, recall X is the partition such that (\')] =6 - \[, and ()\')JT = )\JT for all 7 > 1.

Note that A" = \. We next prove a useful recurrence relation. Let
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Lemma 5.7.2. The symmetric group-Brauer algebra branching coefficients satz’sfy the

following recurrence relation. Let (X, p) € An(0), such that pg > 0. Then bz bz,zgl,
where 1 is the partition with all parts equal to 1.
Remark 5.7.3. Note that as a consequence, if (A, p) € A,(6), pg >0, then
b even
n,0 _ | Ap—pe Po
)\7/) B n,9
b/\,7p_p70 pp odd,
where pg is the partition with all parts equal to pg.
GL(0)

Proof. We use the fact that b 0 1s a coefficient in the restriction of the irreducible ¢,
of GL(0) to O(6). Recall the character orthogonality of the orthogonal group from (2.3).
We have

0l = [ SO (P (g) d 5.73
Ao Jog X (9)xy " (9) dg, (5.73)

where dg denotes the Haar measure on the orthogonal group. By the Pieri rule (2.35)

EL(G) = Xfﬁ(e) GL(G). Then

is the determinant character of GL(6) (or O(6), when restricted),

and that XO( ) 0(9) 3(9) (see, for example, the remark after Proposition 2.6 in [81]).
Substituting mto (5.73) completes the proof. |

(or, for example, the remarks after equation (1) of [93]), x

we note that XGL(Q)

The last lemma in this subsection gives us control of the coefficients b’}\’z for certain
values of p. In order to prove it, we need to introduce some more representation theory of

the Brauer algebra.

The Brauer algebra’s semisimplicity is dependent on the parameter 8. When 6 is a
positive integer, B,, y is semisimple if and only if § > n -1 and when 0 ¢ Z, it is always
semisimple. See [103], [87]. The Brauer algebra has indecomposable representations,
known as the cell modules (see [24]), indexed by partitions A =n -2k, 0 <k <|5]|. When
B, ¢ is semisimple, these are exactly the irreducibles. Their characters are described by
Ram [84]. Note that Ram’s results on the cell characters are stated for when the algebra

is semisimple, but they extend to the case when it is not.

When B, ¢ is not semisimple, the cell modules are not necessarily irreducible (in fact
they are not even necessarily semisimple). The irreducible representation corresponding
to A is then a quotient of the cell module corresponding to A. Let us denote the character

En,o

of the cell module corresponding to A by v,

The restrictions of representations of CS,, to CS,_1 and B,, 9 to B,,_; ¢ are well studied.
Let p=n, Arn-2k, 0< k< |5]. We have the following, in terms of characters, from
(2.25) and (2.26) (or, for example, Sections 4 and 5 (and Figures 1 and 2) from [32], and
Proposition 1.3 from [78]):

ress = Z Xp" L
p=p-0
I‘GSE:LG n 0 Z r}/*n 1, 9 (574)
A=)+0
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and if 6 > 2 is an integer and A further satisfies \{ + \J <0,

feSﬁZ’_g, 3] = > x?"“? (5.75)

A=Az0

X +Aa<0
where in the first equality the sum is over all p - n — 1 whose Young diagram can be
obtained from that of p by removing a box; in the second the sum is over X\ - n -1 - 2r,
0<r< [%J, whose Young diagram can be obtained from that of A\ by removing or adding
a box; and in the third the sum is the same as the second, except we are restricted to

those \ with XI + X;— <0.

We now describe how cell modules of B,, 9 decompose when restricted to CS,,. We call

a partition 7 even if all its parts 7; are even. Let A =n—2k, 0 <k <[%]. Then from (2.37):

resg™ (1] = SO = x Y (5.76)
pEn T2k
T even

or,

0 _ p
bkﬁ - 2: CAJF

-2k
T even
Let us make a few useful remarks.
Remark 5.7.4. 1. Since the irreducible representation of B,, 9 corresponding to A is a

quotient of the cell module corresponding to A, we have b’;f) < l;?;:g for all A, p.

2. Since cf\m is determined by 7 and the skew-diagram p \ A\, we have that B;:ﬁ is fully
determined by the skew-diagram p \ A.

3. If A £ p then cf)\’ﬂ =0, so as a consequence, Bzzﬁ =0 (and therefore szz =0)if A ¢ p.

4. Combining the above with Remark 5.7.3, we have that bt\L’Z =0 in the following cases:
if X\j > p;j — pp for j < |0/2], or if p; = pg, j > |0/2] with either pg odd, \; =0, or py

even, \; = 1.
Lemma 5.7.5. Let (\,p) € A, (0), such that p] +pJ <0+ 1. Then bz:z = Bzz

Proof. We work by induction on n. The base case, n = 1, is straightforward, since By g =
CS1. Assume the theorem is proved for n—1,n—2,.... Since pI + pg— <60 +1, in almost
all cases p = + O, (meaning the Young diagram of p can be obtained from a valid Young
diagram 7+ n—1 by adding a box), with 7r1r + ﬂ; < 0; the exception is the case where 6 is
odd, p] = pd = (0 +1)/2, and P(o+1)/2 2 3. We will deal with this exceptional case second,

and the former case now. Let

Bn,e Bn,G _ TL,G Sn—l Bnﬁ Bnﬁ _ ~’I’L,9 Sn—l
resg D"l = 20 ol resg [ ] = )0 At
T-n-1 ™—n

Note that in a similar way to part 1 of Remark 5.7.4, a;l’fr < dz’z for all A\, 7. Now fix a
7 +n-1with p=7+0, with 7] +7J < 6. We will exploit the fact that there are two ways

to restrict from the Brauer algebra B, o to CS,,_1; either by restricting first to B,,_; ¢, or
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first to CS,,. Formulaically, using (5.74) and (5.75), this reads:

0 -1,0 0
ayr= ) MU= Y 0N (5.77)
A=azo w=r+0
X Ay <0
and
1,0 7n-1,0 71,0
SR (5:75)
A=As0 =+l

Since WI + 7'[';— < 0, by part 3 of Remark 5.7.4, each \ with l;g_l’e > 0 must also have

Kis
T =T
Al + Ay < 0. Now the central sums in equations (5.77) and (5.78) are sums over the
same set of partitions \. Now by the inductive assumption, each b;flﬁ = ‘6;71’9, which
,TC

K
[
T

?  BEquating the right hand terms in the equations (5.77) and (5.78), and

4 n, —_ ~ M,
gives )’ = ay

T

recalling that by o - BZ’Q, for each 7 = 7w+ O. Since

,0 n,0 .
7 S b)\f, we must have the equality b)\j e

p=m+0, we are done.

It remains to prove the lemma for the special case where @ is odd, p] = ps = (6 +1)/2,
and pg.1)/2 > 3. Here, we let p = 7 + O, where the differing square lies on row (0 +1)/2.
Now 7] =7g = (6 +1)/2. The equations (5.77) and (5.78) still hold, but now there exists
one possible summand of the central sum in (5.78) where X-lr + X-Zr > . This summand
appears in the case when A\] = (0 +1)/2, \d = (6§ -1)/2, and the summand itself is ),
obtained by adding a box in row (6 +1)/2 (column 2). In other instances of A, we use the

same method as the first part of the proof.

Now, again employing the inductive assumption on the terms in the central sums of
(5.77) and (5.78), we have that a?’i#}%‘ﬂl’e = di\l’i, where A and ) are the specific partitions
described above. Plugging this into the right hand sides of (5.77) and (5.78), we have

7n-1,0 0 _ 71,0
b;,w + > b;bf = > b;}. (5.79)
T=m+0 m=m+0
Let 7* be 7 with one box added in row (6 +1)/2+1 (column 1). Note that 7* is the only
7 = 7 + O satisfying 7] +75 > 6+ 1. We will prove that bi\li + B;;rl,e - BZ:Z*. Then (5.79)
becomes
Z bn,@ _ E l;n,@
AT AT

T=m+0 T=m+0
TET

and similar to the first part of the proof, recalling bz’g < 522 gives bz’g = Bzg for all

T =7 +0, with ﬁ-lr +ﬁ-2r < 6+1. This covers p. So, it remains to prove bn:fr* + B;_ﬂl’o = B?i*
Now, Okada [81] gives an explicit algorithm for calculating bz’fr*. Working through

that algorithm, we find that b":fr* = EZ:Z* - ZN)Z:Z*, where ) is obtained from A by adding
two boxes, one in each of the first two columns. Now it is straightforward to see that
EZZ* = 5;;1’6, since 7% \ A and 7 \ X are identical skew-diagrams (remark 5.7.4). This
completes the proof. m

We can now determine the sets P, () for 6 =2, 3.
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5.7.2 Spin i;0=2

39
Recall A, (0) is the set of pairs of partitions (X, p), A+=n-2k, 0<k < |5 ]|, p+n, such that
M +A] <0 and pl <6. Recall the set P,(0) is given by (\,p) € A,(#) such that b;’z >0,

where b;’i is the coeflicient of the irreducible Xf;" in the restriction of X]E"’e from B, 5 to

CS,.

Proposition 5.7.6. For 0 = 2, the CS,,-B,, 2 branching coefficient bz’i is strictly positive if
and only if A\1 < p1 — p2, with the exceptions of A= @ or A= (1,1), in which case both rows
of p must be even or odd, respectively. Hence %Pn(2) — A5 in the Hausdorff distance,

where
Ay ={(z,y) € ([0,1]°)* | 21 229, 1 +a2=1, y2=0, 0<ys <31 — 22}

Proof. We prove first that the irreducible representation 1/1( ) of By, 2 restricts to the

-2k
symmetric group as:

I‘eSS X(n 2k) ZX(n 1,4)° (580)

Indeed, by Remark 5.7.3 (using (n—2k)" = (n—-2k)) and Lemma 5.7.5, we have b(n o), (neid) =
b?nQ;lf) (n-2i) = b?n%]?) (n-2i) = 1{0 < i < k}, the last equality coming from (5.76) and the
definition of the Littlewood-Richardson coefficients. Combining (5.80) and Okada’s re-
sult in Remark 5.5.1 gives the first part of the proof. The second is a straightforward

application of the definition of the Hausdorff distance. [
The proof of Proposition 5.7.6 also implies the following corollary.

Corollary 5.7.7. We have that for 6 = 2, lim,, %log(max(/\,p)mn(g)b;’i) =0.

5.7.3 Spin 1;0=3

Proposition 5.7.8. For 0 = 3, the CS,,-B,, 3 branching coefficient bt\lzi is strictly positive
if and only if A1 < p1 — p3, with the following exceptions:

1. If \=(n-2k), and p2 = p3 odd, or p1 = p2 odd, then bt\lzi =0;
2. If \=(n—-2k-1,1), and pa = p3 even, or p; = pa even, then b;:i =0;
3. If\=(17),j=0,...,3, then bz”i >0 if and only if p has j odd parts.

As a consequence, %Pn(?)) - A3 in the Hausdorff distance, where
A ={(z,y) € ([0,1]*)* | w1 > a9 > 23, 21 +a2+a3=1, yo=y3=0, 0<y <z - a3}

Proof. From Remark 5.7.3, we see that if Ay > p; — p3 then b;i = 0. For the rest of the first
part of the Proposition, let A = (n—2k) or (n—2k—-1,1), and let A\; < p; — p3. Then, using

Remark 5.7.3 and Lemma 5.7.5, b3 R = 33 , where
A(p1.p2,p3) TN, (p1-p3.p2-p3) A*,(p1—p3,p2—p3)

X* = X if pg even, A* = X if p3 odd. The cases where \* £ (p1 — ps, p2 — p3) (which give

i\l?pl’p%ps) 0) are the cases: A = (n—2k), po = p3 odd, and A = (n -2k -1,1), p2 = p3

evern.
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It remains to determine when BZ’?M ) is non-zero. We need to show that if A < p, it

is non-zero unless A = (n —2k), and p; = p2 odd, or A = (n -2k —-1,1), and p; = py even.
Recall the coeffiecient (from (5.76)) is given by

Nn’3 _ (P17P2)
O o) = T;jk et (5.81)
T even

Let us prove the A = (n —2k) case. By the Littlewood-Richardson rule (or its special case
the Pieri rule - see Section 1.9 of Macdonald [68]), B?ﬁ?:Zk),(pl,pz) is equal to |A|, where A is
the set of even partitions 7 + 2k, 7 < p, such that p\7 is a skew diagram with no two boxes
the same column. Wlog 7 = (2k — 2m,2m). For 7 € A, we must have 0 < 2m < py, and
p2 <2k —2m < py. (Note that we certainly have 2k > po, which follows from n — 2k < p;).
Now the only case where no such 7 exists is when p; = p2 odd, since in this case, any even
7 must give p\ 7 with two boxes in the last column. The case A\ = (n—-2k—-1,1) is obtained
in a similar way.

The third special case A = (17) is given by Okada [81] - see Remark 5.5.1.

The final part of the theorem now follows by applying the first part, and the definition
of the Hausdorff distance. ]

We also have the following corollary.

Corollary 5.7.9. We have that for 6 = 3, lim,,_, %log(maX(A7p)eAn(3)b§’i) =0.

m,3

N where m < n,

Proof. By Lemma 5.7.2 and 5.7.5, each non-zero b;’i is equal to some b
(V. p') € A (3), p' < p. Now b, is (from (5.76)):

/

im,3 _ P
b)\’,p’ - Z C)\’,T'
TH2j

T even
Since p'lT < 3, the number of 7 ~ 2§ with 7 < p’ is bounded by n3. Then the Littlewood-
Richardson coefficient c’;\’, . is bounded by n?, since A5, \; < 1, and \; = 0 for j > 4. Hence

5+2

IN)T,’i, is bounded by n°**, which gives the result. [

5.8 Numerical proof of Remark 5.6.5

Recall the function

09

o, () =

w(z) = 3 . log(2)(1+52) -zlog(2) ) '

2 T 41—z l°g(3(1 “ )+ (1+2)log(2)

We need to prove that this function w(z) is positive in the range (r,1), where 7 is the
unique root of 3(1-2) + (1+ z)log(z) in (0,1). This proof is due to Dave Platt.

Away from r and 1, this can be done straightforwardly using ARB, a C library for
rigorous real and complex arithmetic (see https://arblib.org/index.html). We split
the interval into small pieces, and use the program to show positivity on each piece. This
works on the interval [81714053/23,1013243800/23°]. Near r, the function is large, and we
can show by hand that it is positive. Indeed, log(z)(1+52)/(4(1-2)) and log(-zlog(z)) are
both increasing on the interval [r, 81714053/23], and their sum, plus 3/2, is easily bounded
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on the interval by 1 in magnitude. Then —log(3(1 - z) + (1 - z)log(z)) is decreasing on
the interval, and its value at 81714053/23" is far larger than 1.

It remains to show that w(z) is positive on [1013243800/2°,1]. The function’s first
three derivatives are zero at 1, and the fourth is positive at 1. We use the argument
principle, and compute the integral w'(z)/(2miw(z)) along a circle centre 1 and radius
1/16. There are no poles within this circle, and there are four zeros at 1, so computing
the integral to be 4 implies there are no more zeros within the circle. We use a double
exponential quadrature technique due to Pascal Molin. This approximates the integral to
a sum with an explicit error term. We use Theorem 3.10 from [75], with D =1, h =0.15
and n = 91, which, using ARB, gives the sum to be [4.00000 +5.24¢ — 6] + [+5.10e — 6] * I.
The integral must be an integer by the argument principle, and D = 1 means the explicit

error term is at most e~!, hence the integral must equal 4.

5.9 Equivalence of @Q;; and P, ;

In this second appendix we study a second representation of B, g, which we’ll prove is
isomorphic to the representation p=n.0 (3.12), for 6 odd, and not isomorphic for # even.
Recall

pP0(i,7) = Qi pPn (i, 5) = Ty ;. (5.82)

This will give the equivalence, in spin S = 1, between our model with Hamiltonian (5.20),
and the bilinear-biquadratic Heisenberg model with Hamiltonian (5.29); equality of their
partition functions was proved by Ueltschi ([101], Theorem 3.2).

Recall (a;, a;|P; j|bi, bj) = (—1)“i’bi6ai’_a.6bh,bj. Define pBr.¢ : B, 9 - End(V), given by

J

oo (i,7) = Pij, PO (i, ) = T . (5.83)

Lemma 5.9.1. For 0 odd, and all n, the representations per¢ and p®n0 of B9 are

isomorphic via a unitary transformation, and for 0 even, the two are not isomorphic.

Proof. Since the elements (i,5) and (7,;) generate the algebra B, g, it suffices to find an

invertible linear function v, : V - V such that
U Tijton = Tij, ' Qijtbn = Pij, (5.84)

for all 4, j. By the Schur-Weyl duality for the general linear and symmetric groups (5.71),
the first condition holds if and only if v, = ¥)®" for some ) € GL(#). Then the second
condition also holds if and only if (¢®%)71Q; ;4®% = P, ; for all 4, j, which holds if and only
if:

(_1)arbi 5ai,—aj 5bi,fbj = Z wai,nwaj )T 6ri,rj 551-,51- (¢71 )si,bi (w71 )sj,b]-

T'§,75,5:,55

Z ¢a¢,r¢aj,r(¢_1 )s,bi (w_l )s,bj

= (VU aga, ()T @by,
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Hence the two representations are isomorphic if and only if the two are isomorphic if and

only if there exists an invertible 6 x § matrix 1 such that

' (-1)°]
i (-1)5-!

¢¢ = )
(-1)!-8

[(-1)7°

and

(-1)%]
_1\8-1
(v HTy™t = o
(1)

|(-1)°

where recall # =25 + 1. For 6 odd the two matrices on the right hand sides above are the

same, so it suffices to note that we can set the central entry in %) to be 1, and the rest to

be made up of nested invertible 2x2 matrices g1, go, given by, for example,
1 -1 I
RV I ) L1 B

0 1 0 -1
T_ T_ '
9191 l]. 0]7 9299 l_l 0 ]

This shows that for 6 odd, the representations ptn¢ and pBr¢ are indeed isomorphic,

since

and since g1, g1 are unitary, so is ¢,. For 6 even, there are fractional powers of (-1)
appearing, so we have to make a choice, say, of (—1)% = +1, and then the rest of the entries
are determined by (-1)% = (—1)‘17%(—1)%. Whichever we choose though, 1T will always

be a symmetric matrix, and

_ e
(-1)°

(1)

[(-1)7F

will always be anti-symmetric (and non-zero), so the two cannot be equal. This concludes

the proof.
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Chapter 6

Quantum Spin Systems on the

complete bipartite graph

In this section we present the results of the paper “Heisenberg models and Schur—Weyl
duality” [12], which is joint work with Jakob Bjérnberg and Hjalmar Rosengren. As in
the previous section, we present the paper essentially unchanged, with references to our

use of representation-theoretic tools from the previous sections as appropriate.

6.1 Introduction and results

When Werner Heisenberg in 1928 introduced his famous model for ferromagnetism, he
described it in terms of an exchange interaction between neighbouring valence electrons
(“Austausch von Elektronen” [56]). In modern notation, for the spin S = % system he
was considering, this interaction can be written as T; j = 2(S; - Sj) + %, where T; ; acts on
a pure tensor v; ® v; in C? ® C? by transposing the factors, T; j(v; ® vj) = vj ® v;, and
S=(S 1) 5, 5(3)) are spin S = %-matrices. Two natural generalisations to higher spin
immediately suggest themselves: we can take the interaction to be the transposition T; ;
acting on C? ® C, or to be a (positive multiple of) S;-S;, where the S are now spin-S-
matrices and 6 = 25 +1. For § > %, these choices are no longer equivalent; while both
are natural generalisations, some authors usually reserve the name Heisenberg model for
the model with interaction S;-S;. The model with interaction T; ; has been called the
interchange model and is one of the main topics of this paper.

The name interchange model can be traced back to works by Harris [55], Powers [83],
and Téth [97], and is motivated by a probabilistic representation of the model. Powers [83]
was first to notice that the ferromagnetic (spin—%) Heisenberg model can be represented
in terms of a random walk on permutations generated by transpositions. The latter
random walk was constructed on infinite lattices by Harris [55]. Téth [97] was first to use
this representation to obtain an important result for the Heisenberg model: a bound on
the free energy of the model on Z3 that was the best known for many years [21]. The
underlying random walk on permutations has come to be known as the interchange process
in the literature on mixing times of Markov chains [2]. The present paper does not use
the probabilistic representation, however; indeed our methods apply also in cases where

such a representation is not available.
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For the antiferromagnetic spin S = % Heisenberg model, Aizenman and Nachtergaele
[1] discovered a similar probabilistic representation based on the identity P;; = % -25;-
S; where P is (twice) the projection onto the singlet subspace of C? ® C? (eigenspace
for the total spin operator with eigenvalue 0). On a bipartite graph, such as the line
Z considered by Aizenman and Nachtergaele, the Hamiltonian with interactions P ; is

unitarily equivalent to that with interactions @); ; defined by

(eal ® €a2|Qi,j|€a3 ® eoé4) = 60!1,04260(3,0447 (6'1)

where the e, are a basis for C2. The interaction ()i; has a natural interpretation in
terms of random loops, and plays a central role in the present work. The definition (6.1)

generalises straightforwardly to higher spin.

If we take the underlying lattice to be the complete graph K,,, consisting of n vertices
with an edge between each pair of distinct vertices, then the interchange model is a mean-

field system with Hamiltonian

1 > Tij, actingon V®" = (C®", 60> 2. (6.2)

M 1<i<j<n
This model was studied in the papers [13,14], where the key step of the analysis was to
note that the Hamiltonian (6.2) is a central element of the group algebra C[S,] of the
symmetric group, represented on the tensor space V®". This means that the eigenspace
decomposition for the Hamiltonian (6.2) coincides with the decomposition of V®" into
irreducible S,,-modules, which is well-studied. Ryan [89] implemented a similar approach

for the model with Hamiltonian

1
-— > (aT;;+bQ;;) acting on V", (6.3)
T 1<i<j<n
with a,b € R and 6 > 2, which can similarly be diagonalised using the irreducible represen-

tations of the Brauer algebra (defined below).
The unifying principle behind this approach is a classical algebraic theory called Schur—

Weyl duality. This term is used for specific instances of a general result in representation
theory called the double centraliser theorem, which states the following (see Theorem
3.0.1) [34, Theorem 4.54]. Let V be a finite-dimensional vector space, and A ¢ End(V) a
semi-simple algebra of linear mappings (endomorphisms) V — V. Then the centraliser B of
A, i.e. the algebra of endomorphisms commuting with all elements of A, is also semi-simple,

and as a representation of A ® B we have
V=U; eV, (6.4)

where the U; (respectively V;) are an exhaustive list of non-isomorphic irreducible rep-
resentations of A (respectively B). The most famous instances of this (and relevant in
the present work) are obtained by letting V = V®". If we let A consist of all invertible
endomorphisms of C?, acting diagonally on V, then B is generated by the permutations of
the tensor factors of V: this gives the Schur—Weyl duality between the general linear group
GL(0) and the symmetric group Sy, (see (6.54) for details) which facilitates the analysis of
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the interchange model (6.2). If instead we take A to consist of orthogonal matrices, then
B is the Brauer-algebra used in the analysis of (6.3).

Let us note that this work follows a line of papers analysing the interchange process and
Heisenberg model with algebraic methods (including the aforementioned [13], [14], [89]).
Alon and Kozma [3] analysed the interchange process on a general graph, and estimated
the number of k-cycles at a given time; Berestycki and Kozma [9] gave an exact formula
for the same on the complete graph; Alon and Kozma [4] gave an exact formula for the
magnetisation of the mean-field spin S = % Heisenberg model.

In this work we carry the methods described above further, to inhomogeneous models
on the complete graph where the coupling constants between different vertices take finitely
many different values. The models for which our analysis goes the deepest are what we
call two-block models, where coupling constants can take at most three values (one each
for the interactions within each of the two blocks, and one for interactions between the two
blocks). Our results on these models come in three parts: we first compute in Theorems
6.1.1 and 6.1.2 the free energy; in Propositions 6.1.3 to 6.1.6, we give results on phase
transitions, and, for certain values of the parameters, we compute a critical temperature;
finally in Theorems 6.1.7 and 6.1.8 we give a magnetisation and limits of certain correlation
functions. We then give the free energy for what we call multi-block models in Theorem
6.1.9, where coupling constants can take finitely many values, and we allow certain many-
body interactions. Finally, in Section 6.1.5, we give heuristics for descriptions of the
extremal Gibbs states for some of the models we study, and comment on their phase

diagrams.

6.1.1 Two-block models: Free energy

For a,b,c € R, and 1 < m < n, we define the AB-interchange-model, or AB-model for short,

through its Hamiltonian

HQRz-l(a Y T+b Y Ty+e Y Ty). (6.5)
Ny 1<icism m+1<i<j<n 1<i<m<j<n
For 8 > 0, introduce the partition function Z)®(3) = Tr [e’ﬁHﬁR]. We call this a two-block
model since we may think of it as a spin system on a graph with vertex set {1,2,...,n}
partitioned into the two blocks A = {1,...,m} and B = {m +1,...,n}. The form of
the Hamiltonian (6.5) means that spins at two vertices within A interact with coupling
constant a, spins at two vertices within B interact with coupling constant b, and the spin
at a vertex in A interacts with the spin at a vertex in B with coupling constant ¢. In
the homogeneous case a = b = ¢ we obtain the interchange model on the complete graph
(6.2), while if @ =b =0 and ¢ # 0 then we obtain a model on the complete bipartite graph
Kpn-m.-
We write
F(21,. ., 20391, -, Y0) = Loey (20 43), (6.6)

where z;,1y; > 0 and

f(z,y) =-zlogx —ylogy + g(ax2+by2 +20xy). (6.7)

119



We have the following result about the free energy:

Theorem 6.1.1. Let a,b,c € R be fizred. If n,m — oo such that m/n — p € (0,1), then the
free energy of the model (6.5) satisfies

;%B(a’ b, C) = r%l—glo % log Z;LAB(B) = max F(.’L‘l, sy LY YLs - - 73/6) (68)
where the mazximum is taken over x1,...,%g9,Y1,.--,Ys = 0 subject to Zle T; = 1—Z?=1 Yi = p-
Note that if (x1,...,2g;y1,...,ys) is a maximum point of F', and we order the z-entries

so that
T12T22- 21Xy, (6.9)

then for ¢ > 0 we necessarily have y; > --- > gy, while for ¢ < 0 we necessarily have
y1 < - < yp. Indeed, the only term in F' which is dependent on the relative order of the
entries is the term Z?:l x;1;, which is indeed maximised when the orders are the same and

minimised if they are reversed.

We next consider another two-block model but where the interaction “between” the
blocks uses the operator @) defined in (6.1). We let

HY = —%(a Yo Tij+b > Tij+c > Qz‘,j)- (6.10)

1<i<j<m m+1<i<j<n 1<i<m<js<n

Also let Z)®(p) = Tr[e’BH;:'B]. Let us note here that for all # > 2, this model is unitarily
equivalent to the same model with each @); ; replaced with P; ;, the latter being (# times)

the projection onto the singlet state:
(ear ® €y |Pijleas ® €ay) = (1) 00y ,—as004,-au- (6.11)

(Here we index the basis e, for C? with a € {-S,-S +1,...,S} where S = (6 - 1)/2.)
Indeed, for the model with ¢ = b = 0 and ¢ > 0 the equivalence of partition functions
was proved by Aizenman and Nachtergaele in [1]; we give an algebraic proof for general
a,b,c€R in Lemma 6.7.1. We use the notation wWB for this model as its analysis is based
on the representation theory of the walled Brauer algebra, see Section 6.2.2. Interestingly,

this model has the exact same free energy as the two-block interchange model:

Theorem 6.1.2. Let a,b,c € R be fized. If n,m — oo such that m/n — p€ (0,1), then the
free energy of the model (6.5) satisfies

5" (a,b,c) = lim Llog Z)"(B) = ®5°(a.b,c), (6.12)
where ®3°(a,b,c) is given in Theorem 6.1.1.

In the case 0 = 2, Theorem 6.1.2 can be deduced from Theorem 6.1.1 in the following

elementary manner. For 6 = 2 we have [101, Section 7.1]
1) o1 2) (2 3) (3
Tij=2(8-8)+3, Q=288 - 5P 1 g gy, 1 (6.13)
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Letting W = (% §) we have that W]711}7jo = —-Q;,; +1, so conjugating H,"(a,b,—c) with

Fema1 Wj gives H(a,b,¢) — em(n —m)/n. Thus ®5%(a,b,c) = ©5°(a,b,—c) + cp(1 -
p). This is consistent with Theorem 6.1.2 since (indicating the dependence on ¢ with a
subscript) Fo(a1, 22 1,42) - Fo(@t, 22; 92, 41) = c( + 22) (31 + ) = cp(1 - p), meaning
that by Theorem 6.1.1 we have ®3"(a, b, —c) +cp(1-p) = ®3"(a,b,c). However, for general
6 the rank of T; ; is #(0 + 1)/2 while the rank of Q; ; is 1, so when 6 > 2, conjugating T; ;

cannot give a linear combination of (); ; and the identity.

6.1.2 Two-block models: Phase transition and critical temperature

Next we discuss phase transitions as [ is varied, via the maximiser of the function F.
Essentially, when a transition is present, we expect the maximiser of F' to be fixed (at wp
(6.16)) for small 3, and then at some critical . to begin to move. This (3. then corresponds
to a point of phase transition in the model. For 8 = . it can happen either that wq is
unique or that there are other maximum points. We will see that the phase-transition
is also reflected in the behavior of observables (Theorem 6.1.7) and the magnetisation
(Theorem 6.1.8).

In Proposition 6.1.3, we characterise completely the values of a,b,c for which there
exists such a phase transition. When it exists, finding explicit formulae for 5. seems
difficult in general; we can do it in two cases, firstly in Proposition 6.1.4 when 6 = 2 (that

is, spin S = %), and secondly in Proposition 6.1.5 when ¢ >0, 6 > 3 and

(a-c)p=(b-c)(1-p). (6.14)

In the latter case, we further prove in Proposition 6.1.6 that for 8. < 8 < 3.+ and € >0
small, the maximiser of F' is unique.

In what follows, we write Z = (x1,...,29), ¥ = (y1,-.--,%8), and
_ (7). 0 _ 0 _
Q_{(xay)‘xlv"wx@aylwuay@zoa Zi:lxi_l_Zizlyi_p}‘ (615)
Elements of Q will typically be denoted w = (Z;%). We write
(L2 p.1l=p l-p 1-p
wo=(8,5,...,6;5L, 3L, L) e0Q, (6.16)

and we write Q(x,y) = %(amQ +by? +2cxy) for the quadratic form appearing in the function

f(2,9).
Proposition 6.1.3. If () is negative semidefinite, that is,
a<0, b<0, and ab>c?, (6.17)

then I assumes it mazimum value at wy for all > 0. Otherwise, there exists a number
Be > 0 such that F' assumes it maximum value at wo if and only if 0 < B < Bc, and this

mazimum is unique if 0 < 5 < fe.

Let us write 5.(6) to highlight the dependence on . The next proposition gives (.(2)

when it exists.
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Proposition 6.1.4. Let 6 =2 and assume that Q) is not negative semidefinite, so that [

exists. Then

pa+(1-p)b—+/(pa—(1-p)b)? +4p(1 - p)c? b s 2
Be = Be(2) = ) p(1=p)(ab-c?) ’ ’ (6.18)

- b=c
ap+b(1-p)’ w=c

Moreover, for 8= 0., wy s the unique mazximum point.

In the homogeneous spin S = % AB-model, i.e. 8 =2 and a = b = ¢ = 1, we recover
the critical point S, = 2 first identified by Téth [96] and by Penrose [82]. In the bipartite
case a = b = 0 we get the critical value g, = Q/W; this has, to the best of our
knowledge, not appeared previously in the literature.

The next proposition gives 5.(0), 6 > 3 in the special case that ¢ >0 and (6.14) holds.

Proposition 6.1.5. Suppose that (a —c)p = (b-c¢)(1-p) as in (6.14) and let t denote
either side of that identity. Suppose also that ¢ >0, that Q is not negative semidefinite so
that 8. exists, and that 6 > 3. Then

2(60-1)log(6-1)

Pe=Bel0) = =45 e )

(6.19)

Moreover, if 5 = . there are exactly two maximum points satisfying (6.9), namely wy of

(6.16) and wy = (Z;y) given by

x1:w7 Ty = =2 = 5 (6.20a)
yi = (9—1{0(1—/3)7 Yo == yp = 9(19—_01), (6.20b)

For all § > 2 we expect the maximum point to be unique for all 8 (subject to (6.9)),
except possibly at 8 = B.. For 8 > 8. we can prove this under the conditions in Proposition
6.1.5 and for § close to the critical point (see also Proposition 6.5.1 for another special

case).

Proposition 6.1.6. Under the assumptions of Proposition 6.1.5, there exists € > 0 such
that, if B. < B < Be + €, there is a unique maximiser of F in Q with entries ordered as in

(6.9). Moreover as 8 N B, this mazimiser tends to wy given in (6.20).

6.1.3 Two-block models: Correlations and magnetisation

We next move on to results about correlations which extend [14, Theorem 2.3]. To state

them, introduce the function

Y j—1
R(wi,...,we;21,...,29) =det |V | (6.21)
[ ]l’]_l 1<i<j<f (wi —wj)(zi = 25)
For # € {AB, WB}, we write
gyt
4 Try [Oe fSHy ]
( b= Em (6.22)
ZE(5)

for the usual equilibrium state expectation of a linear operator O on V.
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Theorem 6.1.7. Let a,b,c € R and B > 0 be such that F' has a unique mazximum point
w* = (Z%;9") satisfying (6.9). Let W be an 0 x 0 matriz with eigenvalues wi, ..., wy € C.

As n,m — oo such that m/n — pe(0,1), we have that

lim (exp {F 28 Wil)) = R(wn,. o wps 2, 2)

(6.23)
Tim (exp {3 (20 Wi = S W)} g, = R(wi,wps 2], 2)),
where the superscript T denotes transpose, and
z]* =m;~ +yj*-, zjzx; —y]*-. (6.24)
As a concrete example, for W = hdiag(0,1,2,...,0 — 1) we have
ohzi _ ohz
R(wl,...,wg;zl,...,zg):lsgsem. (6.25)

The phase-transition at . is reflected in the fact that R = 1 when w* = wqg, while R is

non-trivial if the entries of Z are non-constant. The latter occurs e.g. in the AB-model for
B> B
For a second concrete example, let ¢ > 0. We will prove in Proposition 6.5.1 that any

maximiser (Z*;7*) of F satisfying (6.9) is then of the form
wIZ[BE:...:x07 nyy%::yg, (626)

in which case z* (6.24) will be of the same form. Letting W be an arbitrary rank 1

projection, with eigenvalues 1,0,...,0, and writing u* = 27 — 25, we have
. 1 AB 29)! _h _(1_u* 0o hu*)Jd
T}an}o(exp{ﬁ Y WZ}>,8n = ﬁemu( u’) Yitas ( 1;.!) . (6.27)

(The calculation of R is performed in [14, Section 6].)

Theorem 6.1.7 also shows that the AB- and wB-models are not equivalent, despite hav-
ing the same free energy (for any anti-symmetric matrix W, the observables on the left
in (6.23) are the same, while their limiting expectations are different). The result is also

relevant for understanding extremal states, see Section 6.1.5.

Finally we have the following result about the (thermodynamic) magnetisation. Let

W be an 6 x 6 matrix with real eigenvalues wy > -+ > wy, let h € R, and write

Z%(B,h) = Try[exp (= BHL® + h ¥ 1cien Wi)], (6.28)

and let
ZZVB(/Bv h) = TI"V[eXP ( - /BHZVB + h(Zlgigm Wi = ¥ m<i<n WZT))] (6‘29)

In Theorem 6.2.4 we will obtain explicit expressions for the limits
F (a,b, c,0) = lim [ log ZF (5, h) (6.30)
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where # € {AB,WB} (this turns out to depend on W only through its spectrum w). The
magnetisation is given by the left and right derivatives of this free energy with respect to
h, at h =0.

Theorem 6.1.8. Let a,b,c € R and wy > - > wy be fized. Let ®*P(5,h) = @?fh(a,b, ¢, W)
and ®V5(B,h) = @57 (a,b, ¢, W), regarded as functions of B and h. Then

aq)AB 8@AB

oh ‘th :max(i*?g*)gzi Wi oh ‘mo (i ,**);Z o1ty 631
OPWE N oP "B 0 ( ’ )
oh ‘hw _max(f*?g*)igzi o dh Into (5;*,**);2 o=ty

where the maxima and minima are over all mazimisers (2*;4*) of F(Z;y), with entries

ordered decreasing, and z7,...,zy are the following values arranged in decreasing order:
o forc>0, in the AB-case 2] =z +y; and in the WB-case z; = x; =y, ;
o for c<0, in the AB-case 2] = x} +yy,,_; and in the WB-case z; =X} — Yp,1_;-

It is natural to take W to have trace zero. Then, from Proposition 6.1.3, for all 5 < 5.
the only maximiser is wy (6.16) and we have

%|h¢o - %’mo =0, (6.32)

for both AB- and wB-models and for both ¢ >0 and ¢ < 0. This holds also for 5 = 5. when
0 =2.

Let us discuss the case 6 > 3 in Proposition 6.1.5 at 8 = 3.. Recall that ¢ > 0 in this
case. Calculations with the point wy (6.20) give the following;:

e In the AB-case, at w; the values

31:9%917 Z2:“':Z7~:9(9171) (633)
are already decreasing. This gives

8(8};:‘ hi0 maX{O wl} ag;: Mo = mln{O wg}. (6.34)

For non-trivial W we have wy > 0 > wy, thus the magnetisation is discontinuous at the

point of phase-transition.

e In the wB-case, at w; the ordering of the values x; — y; depends on p. If p > % we get

21=20-1D)EL, ==z = O%g:})’ (6.35)

and from there
8‘I>WB
oh

HPWB
oh

hio = = max{0, (2p - 1) wl} (6.36)
=min {0, (2p - l)ﬁwg}.

h10

124



For non-trivial W, this gives a discontinuous magnetisation. In the case p < %, the
magnetisation is obtained by exchanging w; and wyg in the latter expressions. For

p= %, the magnetisation is continuous at the point of phase-transition.

6.1.4 Multi-block models

We generalize the free energy calculation of Theorem 6.1.1 to a class of models with p > 1

blocks rather than just the two blocks A and B, and with certain many-body interactions.

We first need some notation. For o € S5, a permutation of 1,2,...,n, let T, be the

linear operator on V = V®" which permutes the tensor factors according to o:
To(V1®V2® @ Vp) = Vg(1) ® Ug(2) ® *+ ® Vyr(ry)- (6.37)

(The mapping T is a representation of S, - it is the map p from (3.8); we use the
notation 7" for the rest of this section.) Let 7 be a partition with all parts > 1, that is
v =(71,...,7) is a sequence of integers 7 > y2 > -+ >y, > 2. We say that a permutation
o € Sy, has cycle-type v if its non-trivial cycles, ordered from longest to shortest, have
lengths 7v1,...,7. Then |y| := 1 +--+7 < n. Let C; be the set of permutations in S,
with cycle-type «; this is a conjugacy-class of S,,. For example, if v = (2) then C)] = CT(LQ)
is the set of transpositions in S, and if vy = (3) then C,, = C,S?’) is the set of three-cycles in
Sp. Similarly, for Ac {1,2,...,n}, let 021 denote the set of permutations of the elements
of A with cycle-type 7.

Let Ai,..., A, form a partition of {1,...,n} with |Ax| = m;. Fix a finite set I' of
partitions v with all parts > 1. We assume that n and all my, are large enough that C, # @

and Czk + @ forall yeT. For aj,...,ap,c" € R, consider the Hamiltonian
MB Loy &Y
H," =-n Z ( Z |C"$ | Z T + i Z To-), (638)
yel k=1 geC oeCy

and the partition function Z¥®(8) = Try[e ?#n"]. Note that we have the scaling factor
n in front of (6.38) rather than % as in (6.5). This is because the sizes of the conjugacy

classes C'} depend on n, for example for transpositions we have |C',(12)| = (g)

The form of the Hamiltonian (6.38) means that spins at vertices in each block Ay
interact with other with the many-body interaction T, (as opposed to the pair-interaction
T;j = T ;) before), with strength constants a',: dependent on the cycle type v of o; as
well as this, spins in all blocks together interact with each other similarly, this time with

strength constants ¢”.

The operators T, appearing in (6.38) may all be written in terms of spin-matrices.
Indeed, for transpositions o = (7,7) this was discussed above, and for general o we may
write T, as a product of T; ;’s. However, we do not pursue an explicit formula for 75 in

terms of spin-matrices.

Our result about the free energy of this model is most compactly expressed in terms

of positive semidefinite Hermitian 6 x 8 matrices X. For such a matrix, having eigenvalues
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Z1,...,T9 >0, we use the von Neuman entropy

S(X)=-Tr[XlogX] = sz log ;. (6.39)
i=1

We have the following:

Theorem 6.1.9. Let p > 1 be fized, and suppose that for all k = 1,...,p we have that
my/n — pr € (0,1) as n - oo. For the Hamiltonian (6.38), we have that the free energy is

given by
lim. Llog Z)"(B) = max ¢5(X1,...,Xp), (6.40)
where the mazimum is taken over all positive semidefinite Hermitian 0x0 matrices X1, ..., X,

with Tr[ X ] = pr, and where

o(X1,...,Xp) = i S(Xg)
S (6.41)
Z(Z Te[ X7 ]+ T Te[(Xq + - +Xp)”/j]).
vyel' " k=1 321 7>1

Let us now discuss a few specializations of Theorem 6.1.9. If we set p =2, I' = {(2)}
and aEQ) =(a-0)/2, a(2) (b-¢)/2 and ¢ = ¢/2, then

$5(X1, X2) = S(X1) + S(X2) +  Tr [aX? + b X3 + 2eX1 Xo). (6.42)
In fact, in this case we recover Theorem 6.1.1, i.e. we have max ¢g(X1, X2) = Q)gB(a, b,c).

For details, see the discussion around (6.79).

If instead we set p =1 and all @/ = 0 then (6.38) becomes

" =-ny 0 ¥ T, (6.43)
eI’

UEC:{

We thus obtain a homogeneous model of many-body interaction on the complete graph K.
(In fact, (6.43) is the image of a general central element of C[S,,] under the representation
T.) In this case we get that

1 ~log Zyy, — max( sz logz; + 3 Y. py(z1,.. 7:L“Qg)), (6.44)
vyell
where the maximum is over all x1,...,xy satisfying x; > 0 and Z?zl x; = 1, and where
py(21,...,29) denotes the power-sum symmetric polynomial
SE Vi
py(z1,...,x0) = [[(2) +-+2)7). (6.45)
j21

It seems likely that Theorems 6.1.7 and 6.1.8 can be extended to multi-block cases,

though we do not pursue such extensions here.
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6.1.5 Heuristics for phase diagrams and extremal Gibbs states

In [14], for several models including the interchange model (6.2), the authors give a heuris-
tic argument which points towards the structure of the set ¥ of extremal Gibbs states at
inverse temperature $. The extremal Gibbs states in infinite volume are not well-defined
on the complete graph, so the working is by analogy. Specifically, their heuristics lead to

two expected equalities: first that

h
lim (en ZiWi) s\ = f V0N @y (1), 6.46
Jm (R 5= [ Oy (6.46)
for 0 x § matrices W, where (-),, is an extremal Gibbs state, du is the measure on ¥g
corresponding to the symmetric Gibbs state, W is the operator W at the lattice site 0,

and the left hand side is the limit of successively larger boxes A € Z%: second that

lim (e 2"} g, = lim (en Z0Wi), 4, (6.47)

n—>o0 T Az
where the left hand term is the observable on the complete graph. The left hand side
of (6.47) is computed rigorously on the complete graph, and then, with the expected
structure of Wg inserted, the right hand side of (6.46) is rigorously computed, and the two
are shown to be the same. This working is not a proof either of the expected equalities
(6.46), (6.47) or of the expected structure of Wg, but it points towards all three statements
holding true. Using the results of the present paper, we can provide the same calculations
and heuristics for the interchange model and for the nematic model in spin S = 1, this

time on the complete bipartite graph.

The interchange model on the complete bipartite graph is exactly our AB model with
parameters @ = b = 0. For ¢ > 0, Proposition 6.1.3 shows that this model has a phase
transition. At low temperatures, the model is expected to have extremal Gibbs states
labelled by CP?~!, rank 1 projections in C?. With (Wo)y = u*, when W is a rank 1
projection and assuming that Wz is indeed given by CP’~!, the right hand side of (6.46)
is given by

€25+

(hu*)QS sy ,7'

Now (6.27) (using Proposition 6.5.1) shows that for our general AB model, in the case ¢> 0

(25)! 1oy i (hu)? (6.48)

and @ not negative semidefinite (which includes the interchange model), the left hand side
of (6.46) is the also of the form (6.48), at least when the maximiser of F' (6.6) is unique.

In contrast, for the wB model with a = b =0, ¢ =1 and p = 1/2, we can show that
the observable of Theorem 6.1.7 is equal to 1 at all temperatures. Indeed, in the proof of
Proposition 6.5.1, we will show that for a =b =0, ¢=1, and p = 1/2, the maximiser of F’
satisfies 7 =y, for all 4 = 1,...,0. This gives le =0 foralli=1,...,0 (' from (6.24)),
and after calculations with the function R, the limit in (6.23) is trivial. Note that by our
comments below (6.10), the wB-model with a = b = 0, ¢ = 1, has Hamiltonian unitarily

equivalent to .
-= Y Py (6.49)

n 1<i<m<j<n

where P; ; is (6 times) the projection onto the singlet state, given by (6.11).
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We can interpret this result to comment on the nematic (or biquadratic) model in
spin S =1 (6 = 3). Our AB- and wWB-models in spin S = 1 with a = b =0, ¢ = £1 are
special cases of a two-parameter model on the complete bipartite graph known as the

bilinear-biquadratic Heisenberg model, which has Hamiltonian

_l E (Jl(Si'Sj)+J2(Si'Sj)2)a (6'50)

N 1<i<m<j<n

where ;- S; = Zi:l Si(k)SJ(.k), and Ji, Jo € R. Indeed, using the relations S;-S; =T; ; - F; ;
and (S;-S;)? =P, j+1 (see Lemma 7.1 from [101]) one can rewrite (6.50), up to addition
of a constant, as

S (1T + (Ja = 1) Pij)- (6.51)

N 1<i<m<j<n

Setting J; = Jo = +1 gives the AB model with a =b =0, ¢ = +1, while setting J; =0, Jy = +1
gives the wB model with a =b =0, ¢ = £1, in the form (6.49). The case J; =0, Jo =1 (i.e.
our wWB-model with a =b=0, ¢ =1) is the nematic, or biquadratic, Heisenberg model.

The phase diagram of the bilinear-biquadratic Heisenberg model on Z%, d > 3 is given in
Ueltschi [101], and we expect that the model on the complete bipartite graph has the same
diagram. (The corresponding one-dimensional spin chain has a different phase-diagram,
exhibiting dimerization, see [11,67].) The nematic model lies in the nematic phase of that
diagram, and for low temperatures its extremal Gibbs states are expected to be indexed by
RP?, projections in R3. Heuristically, we expect spins at all vertices to be either aligned
or anti-aligned. In particular, one obtains that the right hand side of (6.46) is trivial
when W; =9- 8; = Y5 _, kai(k), for any o € §% (and non-trivial when W; = (- S;)?). Now
by Theorem 6.1.8, with W; = SZ.(Q) (which satisfies (Si(z))T = —SZ.(Z)), the left hand side of
(6.46) equals 1. This aligns with the heuristics described above. One can also note that

for all 8 > 0, the magnetisation from Theorem 6.1.8 is

OBV?
oh

OOVE
hi0 - oh

=0; 6.52
0 (652

again this aligns with the picture of ¥z = RP? (we expect something nontrivial when the

magnetisation term in the Hamiltonian is leiSn(Sl.(z))z).

6.2 Free energy and correlations

In this section we prove Theorems 6.1.1, 6.1.2, 6.1.7 and 6.1.8. Although Theorem 6.1.1
is actually a special case of Theorem 6.1.9, we give a detailed proof of Theorem 6.1.1 and

then describe the modifications necessary to obtain Theorem 6.1.9 in Section 6.4.

6.2.1 Interchange model: proof of Theorem 6.1.1

As noted in the introduction, our method is to identify the eigenspaces of the Hamiltonian
(6.5). This is facilitated by the classical theory Schur-Weyl duality. We start by recalling
a few basic definitions and facts. A partition A - n of n is a non-increasing sequence of
non-negative integers summing to n: A= (A1, Ag,...) with Ay > Ay > - > 0and Y ;51 A = 1.

Its length ¢(\) is the number of non-zero entries.
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Recall the mapping 7" : S, - End(V) defined in (6.37). This is a representation of S,
and hence of the group algebra C[.S,,] on V. We may also regard V as a module for the
group GL(0) of invertible 6 x § matrices by the diagonal action (3.6)

g1 ®V2® - Quy) =g(v1) ® g(v2) ® - ® g(vy). (6.53)

Classical Schur—Weyl duality [34, Corollary 4.59] states that these actions of S, and of
GL(0) are each others’ centralizers, so that V may be regarded as a representation of the
direct product GL(0) x S, and that V decomposes as a multiplicity-free direct sum of
irreducible representations of GL(6) x S,,. Specifically, from (3.0.2),

v @ " Pmud (6.54)
A-,L(\)<0

Here wSL(g) is the irreducible GL(0)-representation indexed by (its highest weight) A
(Theorem 2.1.16), and " is the irreducible S,-representation (Specht module) indexed
by A (Theorem 2.1.5). We use the same notation 7" for the representation of GL(#) x S,
on V.

Recall our Hamiltonian H2® given in (6.5). We now write this as H " = T'(hA®) where
hﬁB=—%[(a—c)aA+(b—c)aB+caAB], (6.55)
and where a4, ap,asp are the following elements of C[.S,]:

A= Z (1,5), ap= Z (i,3), aap= Z (i,7)- (6.56)

1<i<j<m m+1<i<j<n 1<i<j<n

We have by linearity that e #H" = T(e’ﬁhf). Now let W be an 6 x 6 matrix over C. Then
e e GL() and we have that T'(e") = exp (X1, WZ) Thus we may write

exp (X, Wi)e PH" = (W x e7m"), (6.57)

where eV x e " ¢ C[GL(0) x S,,].

Let us now consider how eV x e acts on the right-hand-side of (6.54), starting
with how e #"n" acts on wf". The term a4p is the sum of all elements of a conjugacy
class (the transpositions), hence it belongs to the center of C[S,]. By Schur’s Lemma, it
therefore acts as a constant multiple of the identity on wf”. The constant in question is

well known [42, p. 52] to equal the contents of the partition A, defined by

ct(A) = 21 (w —jAj). (6.58)
j>

(This equals the sum of the contents of all boxes in any standard Young tableau of shape

A, where the contents of a box in position (x,y) is y — x.) We have
OéAB|¢Sn = Ct()\)Idwsn. (6.59)
A A
Now, to deal with the remaining two terms a4 and ap, note that as a representation of
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S X Sp-m, from (2.27), the module ¢§” splits as

U= B ey, (6.60)

pEm,v-n—m

A
214

give more details about these numbers later, for now we just note that cf;,,, = 0 only if
(), £(v) <(N). On each term of the sum in (6.60), from (2.1.10), a4 acts as ct(u)Id¢sm
I

and ap acts as ct(r)Id E— consequently h)? acts on that term as

where ¢, , are non-negative integers known as the Littlewood—Richardson coefficients. We

_ %[(a —c)et(p) + (b—c)et(v) + cct(A)]IdeM®¢sn_m, (6.61)
" v
and therefore e #"n’ acts as
exp (2[(a - e)et(p) + (b - c)ct(v) + ¢ct(N)])Td s gynm (6.62)

As to the factor ", we first note that from Lemma 2.1.21 the character of the module

@ZJSL(G) evaluated at g € GL(0) with eigenvalues x1, ...,z is the Schur-polynomial:

0
de t[ Aj+6— j] 3

W=l (6.63)
[Thcicjeo(wi = x5)

XSL(G)[ ] = 5/\(1;17" .,33'6) =

If W has eigenvalues wy, ..., wg, then ' has eigenvalues e®?,. .., e%. Writing dﬁm, df"‘m

for the dimensions of ¢5m,¢§"’m, we may summarize these findings as follows:

Lemma 6.2.1. Suppose that W has eigenvalues wy,...,wg. Then

TrV[eXp(ZZ 1W) HAB] Z sx(e™ ... wg)cﬂydimd*g” m
AoV (6.64)

exp (£[(a-c)et(n) + (b= c)et(v) +c-ct(V)]),

where the sum is over A+ n with £(\) <0, p+m, and v +n—-m. In particular, setting W

to be the zero matriz (so that "V =1d),

ZAfiL:)\Z sx(1,.., D)y dimds exp ([ (a - e)et(p) + (b= c)et(v) + c-ct(N)]). (6.65)

Here we used the following specialization of sy:

Ai—t—=Aj+]
d§MO Z g 1, 1) = [ AT (6.66)
1<i<j<6 J—1
As to dﬁ’", a convenient formula is
dSm = d1m(¢§m) = [T (mi-m;) (6.67)
M- 1<i<j<6

where m; = p; + 6 — 1, see [42, (4.11)].
In Lemma 6.2.1 we have written the partition function as a sum of terms exponentially

large in n, with relatively few summands. Such a sum is dominated by its largest term.
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To prove Theorem 6.1.1 we need to understand the asymptotic behavior of each of the
factors in (6.65), and since only those terms with cf;,,j + 0 appear in the sum, we need a

s A
condition for ¢, , # 0.

Proof of Theorem 6.1.1. First, from (6.66) we see that dSL(e) = s)(1,...,1) is positive
whenever (\) < 6, and that dg\;L(Q) = exp(o(1)) where the o(1) is uniform in A. Now

consider the coefficients cl’\w. These are known (see e.g. [40, Chapter 5, Proposition 3]) to
equal the size of a certain subset of semi-standard tableaux with shape A\ p filled with v

1’s, 15 2’s, etc. In particular, c;\W >0 only if u is contained in A, and then £(u) < £(\) < 6.

Since Cﬁ,u = cl),"u (see [40] again) we also need ¢(v) < @ for C;),u

description also gives the upper bound C;/\w < (n+1)% = exp(o(1)) where the o(1) is

> 0. The combinatorial

uniform in A, u, v.

We now turn to the remaining factors in (6.65). First, as one can see in (6.67), for
fixed # we have that dﬁ’" is essentially a multinomial coefficient. Thus (see e.g. [13, pp.
14-15] for details), we have

Llogdim = - Z?‘:l Ellog &2 + O(lc’%). (6.68)
Next, from (6.58) we have that

ct(A) = 20 (2) +0(n). (6.69)

Taken altogether, these facts mean that we can write (6.65) as

ZA?] Z ]I{c;\“,>0}exp(n{ﬁ’(%,%,%)+o(1)}), (6.70)

A,V

where A +n, u+m and v +n —m, all having < 6 rows, and where

F(2,3,2) == X9_ xjlogz; — X0, y;logy;

(6.71)
+5la-o) 223+ (b-o) X y) + e Xl 2]

There is a sufficient condition for cﬁyy > 0 which is very useful for our purposes, known

as Horn’s inequalities. It is best stated in terms of eigenvalues of Hermitian matrices, as

A
24

Wiy, g and vy, ..., v, respectively, such that X + Y has eigenvalues A1,...,\g. For

follows: ¢ , > 0 if and only if there are Hermitian 6 x  matrices X and Y with eigenvalues

information about this, see e.g. [41]. We thus have

cﬁy >0 if and only if (&,% 2)eQ? (6.72)

n’n’n m/n

where Q7 is the set of triples (Z,9, Z) such that there exist positive semidefinite Hermitian
matrices X, Y with tr(X) = 1 - tr(Y) = p having eigenvalues z1,...,z9 and y1,...,yg,
respectively, such that Z = X +Y has eigenvalues z1, ..., 2.

From (6.70) and the fact that F' is continuous in its arguments, we conclude that
Llog Zjh, » max(z 5 z)eq, F (2,7, Z). (6.73)
See e.g. [13, Section 3| for a detailed argument in a similar setting. Now note that if
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X,Y, Z are as above, then

Yoot =Te[X?], T, =Te[Y?], (6.74)
and also
Y022 = Tr[Z2?%] = Tr [(X +Y)?] = Te[ X2 ] + Tr[ V2] + 2 Te[ X Y] (6.75)
Thus
(a-c) Zejlx? +(b-¢) iyj? +c 2931 Z; =Tr[aX? +bY? +2cXY ], (6.76)
p pm i

So for (Z,9,Z) € Q,, we have that
F(#,5,2) = S(X) +S(Y) + £ Tr[aX? + bY? + 2cXY], (6.77)
where S is as given in (6.39). It follows that
Llog Z2%(8) - maxx y (S(X) + S(Y) + £ Tr [aX? + bY? + 2¢XY)) (6.78)

where the maximum is over positive definite Hermitian matrices X,Y with Tr[X] =1 -
Tr[Y] = p.

The final step is to use the fact that for positive semidefinite Hermitian matrices X,Y
with fixed spectra x1,...,29 and yi, ..., yy, respectively, ordered so that x1 > x9 > -+ > g

and y1 > ys > -+ > yp, we have the inequality
0 0
> xjyg1-; < TH[XY] <) ajy;. (6.79)
j=1

We discuss this result in Appendix 6.6. In particular, both the maximum and the minimum
of Tr[XY'] are attained when X,Y are simultaneously diagonal. Since the other terms in

F(Z,y) are symmetric under permuting the x; or the y;, the result follows. [ ]

6.2.2 Walled Brauer algebra: proof of Theorem 6.1.2

As noted above, our analysis of the model in (6.10) uses the walled Brauer algebra. We
will now define this algebra, and collect some facts which allow us to approach a proof in
a similar way to that of Theorem 6.1.1. An accessible introduction to the walled Brauer
algebra is given in [80], and its Schur—Weyl duality is proved in [8], at least for the range
6 > n. The extension to all 8,7 is a straightforward extension of the work in [8] - this is of
course covered in Chapter 3.

Let us first define the (usual) Brauer algebra. Fix n € N,§ € C. Arrange two rows
each of n labelled vertices, one above the other. We call a diagram a graph on these 2n
vertices, with each vertex having degree one. Let B, be the set of such diagrams. The
Brauer algebra B, g is the formal complex span of B,. Multiplication of two diagrams
is defined as follows. Taking two diagrams g, h, identify the upper vertices of h with the
lower of g. Then form a new diagram by concatenation and removing any closed loops, as

in Figure 6.1. The product gh is the concatenation, multiplied by ##1°°P where #loops
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is the number of loops removed.

EEE SN

Figure 6.1: Two diagrams g and h (left), and their product (right). The concatenation
contains two loops, so we multiply the concatenation with middle vertices removed by 2.

The walled Brauer algebra is a subalgebra of B, s. Let m < n. Returning to the
2n labelled vertices, draw a line (a “wall”) separating the leftmost 2m vertices and the
rightmost 2(n —m). Let B, ,, be the set of diagrams in B,, with the condition that any
edge connecting two upper vertices or two lower vertices must cross the wall, and any edge
connecting an upper vertex and a lower vertex must not cross the wall. See Figure 6.2.
The walled Brauer algebra B, ,, ¢ is the span of B,, ,,, with multiplication as in the Brauer

algebra.

Figure 6.2: A diagram in the basis Bg 3 of the walled Brauer algebra Bg 3 . Notice that all
edges connecting two upper vertices (or two lower) cross the wall, and all edges connecting
an upper vertex to a lower vertex do not.

Some useful representation-theoretic facts follow. First, the group algebra C[S,, x
Sp-m] is a subalgebra of B,, ,,, » whose basis Sy, x Sy, consists of those diagrams with no
edges crossing the wall. As above, we let (i,7) denote the transposition exchanging i and
j. Note that in the walled Brauer algebra, we must have 1 <¢,7 <m or m+1<14,j <n.
For 1 <i<m<j<mn,let (,7) denote the diagram with all edges vertical, except that the
i*" and j*™ upper vertices are connected, and the i*" and j* lower vertices are connected.

See Figure 6.3. The elements (i,) and (7,j) generate the walled Brauer algebra.

: (ﬂ) € B6,3

: (2,3) € Bg 3

Figure 6.3: Examples of the elements (4,7) and the transpositions (i,7).

Next, from (2.1.13), the irreducible representations of B, ,,, o are indexed by
{\p) | Arm—t, purn-m-t, t=0,..., min{m,n—-m} }, (6.80)
where A and p are partitions (see Proposition 2.4 of [24]). Henceforth, we will assume
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without loss of generality that m < n/2 so that the standing condition on ¢ is that ¢ €
{0,1,...,m}. The element

1<i<jsm 1<ism<js<n

m<i<j<n
is central in B,, ,,, g, and, from (2.15) acts as the scalar ct(\) +ct(p) — 60t on the irreducible
representation (A, ), where A\ m—t, p+-n—-m—t and ct(-) denotes the contents defined
in (6.58) (a consequence of, for example, Lemma 4.1 of [23]).

The walled Brauer algebra, like the symmetric group algebra, has a Schur—Weyl du-
ality with the general linear group. To describe this, let us first recall some facts about
representations of the general linear group GL(6). The irreducible (finite-dimensional)
rational representations of GL(#) are indexed by their highest weights, which are 6-tuples
v=(v1 > >1y) € Z% Such a tuple can be equivalently written as a pair v = [\, u] of
partitions A,y with A] + p{ < 6, by letting v; = [X, ] = Ai — pg-i+1 for ¢ = 1,...,6. Note
that at most one of the terms A; or pg_;41 is non-zero for each i, due to the constraint

A + p{ <6, thus v uniquely determines A and p. See Figure 6.4 for an illustration.

Figure 6.4: The #-tuple v = (3,3,0,-1,-2) illustrated in the style of a Young diagram,
where negative entries are shown by boxes to the left of the main vertical line. Here 6 = 5.
From the figure it is straightforward to see that v = [\, u], where A = (3,2) and p = (2,1).

We write ¢g\Llf]9 ) for the corresponding irreducible GL(#)-module. These rational rep-
resentations are closely related to the polynomial representations @DSL(Q) appearing in
(6.54); the polynomial representations are the rational representations with non-negative
f-tuple v. One can also relate the rational and polynomial representations by the Pieri-rule
(2.35) [93]. Indeed, writing det(-) for the determinant representation of GL(#), which has
highest weight (1,1,...,1) and character xjz9---xg, we have that det®” ®1/11(,;L(9) = wGL(e)

v+k
where k = (k,k,..., k). For k = pu; we have that wGL(Q) is a polynomial representation.

[Ap]+pa
It follows from this and (6.63) that the character of Q,Z)[Cf\Llff ) is
[oids+0-51°
XG’L(G)[ ] _ 5[)\““]_,,&(331, ), _ det[xi ]7;7]':1 (6.82)
[(Au] (1‘1332..-%'9)“1 Hlsi<j£9(xi_$j) ’ )
where x1,...,x¢ are the eigenvalues of g.

Now, let GL(A) act on V = V& = V8™ @ V®(""m) a5 1 tensor powers of its defin-
ing representation, and n —m tensor powers of the dual of its defining representation

(multiplication by the inverse transpose) (3.15):
VI ® @V ® VU1 @ ®y) =g(v1) ® -+ ®g(Vn) @G (Vins1) ® - ® g (vy).
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Let B, 1m0 act on V by sending (4,5) to the transposition operator T ;, and (i,7) to Q;
(3.12). Then from Theorem 3.0.5, as a representation of C[GL(0)] ® B, .0,

m

V- D v muin, (6.83)
t=0 A-m-— tt
uEn—m-—

Al +py<6

with 11) O G 0 irreducible B,, ,,, o-representations as above (as noted above, this is a straight-

forward extension of the work in [8]).

Notice now that our Hamiltonian (6.10) can be rewritten as

HY = ((a+c) Yo Tij+(b+c) EJ—CJn’m), (6.84)

1<i<j<m m+1<i<j<n

where Jy, ,,, is the central element given in (6.81). Now in an identical way to how we

developed equation (6.65), we have

m

—BHY®q _ GL(0);n,m,0 Sm 3Sn-m .
Tro[e ™) =) % Y dge e L dands

t=0 A-m-t 'T_F'—m
pFn—m—t TEN=m 6.85
A +pq<6 ( )

- exp (,8[(0 +a)ct(m) + (c+b)et(7) — e(ct(N) +ct(p) — rt)]),

n,m,0
bxm).(m)

the multiplicity of the C[S,, x Sp_,]-module 5™ @ @ZJS" ™ in 1!1( G ‘9 when the latter is

regarded as a C[Sy, x Sp—m]-module. These branching coefﬁ(nents play the same role as

where is the branching coefficient (2.40) from C[Sy, x Sp—m] to By 0, i-e.

the Littlewood—Richardson coefficient did in the AB-model. Our next step is to determine

bnm@

when o), (o) 1 strictly positive.

Lemma 6.2.2. The branching coefficient b()\ ) (r.7) is strictly positive if and only if there
exist O x 0 Hermitian matrices X,Y, Z with respective spectra m,7, [\, u], such that X =Y =
Z.

Note that the parameter t is encoded the branching coefficient, in the sense that
b?;r;)e(ﬂ -y > 0 implies that A = m~t = |m|~t and 1+ n—m~t = |7|~t for some 0 <t < 7. The
same conclusion can be seen to follow from the Hermitian matrices side of Lemma 6.2.2.
Indeed, if X,Y, Z are Hermitian with respective spectra m, 7, [\, u], such that X -Y = Z,
then X,Y are simultaneously diagonalisable, so for each i, [\, u]; = 7; — 7, for some j, k.
Figure 6.5 then illustrates via an example how A\-m—t=|r|-tand uy-n-m—-t=|r| -

for some 0 <t < 71 follows.

The first step to prove Lemma 6.2.2 is another lemma, analogous to the well known
fact that the Littlewood—Richardson coefficients are both the branching coefficients from
C[Sm x Sp-m] to C[S,,], and the coefficients of the decomposition of the tensor product

of two irreducible polynomial representations of GL(6).
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NN

Figure 6.5: The spectra © = (3,0,1,2,4) and 7 = (2,1,3,2,1), respectively of X and
Y (simultaneously diagonalised), displayed in the style of Young diagrams, either side
of the main vertical line. The spectrum of Z = X -Y is (1,-1,-2,0,3) (and so when
ordered becomes [, u] = (3,1,0,-1,-2)). The yellow boxes are those eliminated in the
subtraction. Naturally there are the same number either side of the main vertical - this is
the parameter 0 < ¢ < min|x|,|7]; in this example, ¢ = 6.

Lemma 6.2.3. Let w,7,\, u be partitions with at most 6 parts, with A\| + pj <0, and let

GL(0 n,m GL(0
SO - @ it e (659

)\T+,ul<9

In,m,0 _nm,0
Then b3 ) () = OGo).(rir)

Proof. This is proved using Schur-Weyl duality. We restrict (6.83) to C[GL(6)]® C[S,, x
Spn-m] to see that

V=@ @ D Ui W @vim ). (6.87)

t=0 Arm—-t TEM
pn-m—t TEn=m

A +ul<o ™10 1<0

On the other hand, the Schur-Weyl duality between GL(0) x GL(6) and C[Sy, x Sp—m ] is

V= @ Ve e i e i), (6.88)
renam
WI,TlTSG
Expanding wGL(e) ® wGL(e) as in (6.86) and equating coefficients from the two equations

above, gives the result. [ ]

Proof of Lemma 6.2.2. We take equation (6.86) and modify it using the Pieri rule (2.35):

GL(6 GL(@) _ rn,m,0 GL(@)
¥ @ iari - D ) Vit (6.89)
m

A +py<6

Now the highest weights appearing on both sides have no negative parts, so by the previous
Lemma and the Littlewood—Richardson Rule,

n,m,0 2n,m,0 (A p]+m
b (mr) = Pl (mr) T Crlorlen (6.90)

[Ap]+TL
™, [@, 7]+
Hermitian X, Y, Z with respective spectra 7, [@, 7]+ 71 and [\, ]+ 71 such that X +Y = Z.

We know from Horn’s inequalities that ¢ > 0 if and only if there exist 6 x 6

Now it is straightforward to show that such matrices exist if and only if there exist 6 x 6
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Hermitian XY, Z with respective spectra m, 7 and [\, ] such that X - Y = Z. Indeed,
let X=X,Y =-Y +71d, and Z = Z — 111d for the first implication, and similarly for the

reverse implication. [

We can now return to equation (6.85). Using similar workings as in Section 6.2.1, we
let m,n — oo such that m/n — p € (0,1/2] (recall that we assumed m <n-m), v/n - Z,

7/n — g and [\, u]/n - Z. Note that Z can now have negative entries, and that

ct(N) + Ct(u) ot ZH:( (_%)2) +o(1) = 20: ([A;ﬁt]i)Q +o(1). (6.91)
i=1

n i=1

We find that

AR CENDY > exp (n{G(Z,2,Lely s o)})  (6.92)
T=m A,
TR () )2,

where (2, is the set of triples of f-tuples Z,y, Z such that z1,...,29 >0, y1,...,yp > 0,
Zle zi=p=1- Zle yi, and there exist 6 x # Hermitian matrices X,Y, Z with respective
spectra Z, 4, Z such that X - Y = Z, and where

B 0
G(Z,§,2) =), [g((a +)z? + (b+e)y? - c2?) - x;logx; — y;log vil- (6.93)
i=1

Notice that the sum over ¢ appearing in (6.85) is hidden in (6.92), as it is implicit in the

definition of Q;, due to our remark after the statement of Lemma 6.2.2. Therefore
1 ~
©5"(a,b,c) = lim —log Zy"(B) = maxz g 2)e0- G (2,7, 2). (6.94)
As in (6.77) and (6.78), we can rewrite this in terms of the matrices X and Y:
@ZVB(a, b,c) = maxx,y[S(X)+S(Y) + g(atr[X2] +btr[Y?] + 2ctr[XY])], (6.95)

where now the maximum is only over 6 xf Hermitian matrices X, Y with respective spectra

%,y as above. This is the same as (6.78), and this completes the proof of Theorem 6.1.2. =

6.2.3 Correlation functions: proof of Theorem 6.1.7

Let us prove the result for the AB-model first. We use (6.64) and the argument leading up
to (6.70) to get that, as n — oo,

(exp{%Z?ZIWi})g]; =
S Heh, > 0}% exp (n{F(L,%,2) +0o(1)}) (6.96)
Souw T{c), >0} exp (n{F(£,2,2) +0(1)})

Both sums on the right-hand-side are over A +n, p+ m and v + n—m, all having at most
GL(O) _ sx(1,...,1)

in order that the o(1) terms in the exponents are exactly equal. Then the arguments of

¢ parts, and in the numerator we have multiplied and divided by d)
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[14, Section 6] apply, meaning that

sx(e™t,...,e")

li Wi , 6.97
ngn (eXp{ Z =1 }> )\/n—>2* 8/\(1,...,1) ( )
where 2% = (z7,..., 2;) lists the eigenvalues of X +Y where X, Y are the Hermitian matrices

which maximize the right-hand-side of (6.78). But we know from (6.79) that the maximum
is attained when X, Y are simultaneously diagonal, with ordering of eigenvalues decreasing
for both X and Y if ¢ > 0, respectively decreasing for X and increasing for Y if ¢ < 0.
Then clearly the eigenvalues of Z = X +Y are the sums of the eigenvalues of X and of Y,

ordered appropriately, giving z* as in (6.24).

Turning to the wB-model, very similarly to equation (6.96) we have

<exp{%( z 1W Z m+1WT)})Bn
(9)( W /n

n,m, X (T T )
S {bwe(ﬂ)>0}Wexp(n{e(;,ﬁ,%)w(l)}) (6.98)
I

Eagume O > 0bexp (n{G(Z, 2, Py 1 o(1)}),

where once again the o(1) terms in the exponents are exactly equal and now

_ 0
G(Z,9y,2) = Z[ ((a+c)x? + (b+c)y? - c2?) - xilog i — s logyi]. (6.99)
i=1

The arguments of [14, Section 6] apply once again, meaning the limit equals

GL(0) (W /n
X (€7™)
lm M C (6.100)
uln—zt  gGEO®
(]

where this time, (Z*,7*,z!) maximises G(Z,7,%), with the conditions that z;,y; > 0,
Zle xi=p=1- Z?zl y;, and that there exist Hermitian matrices X,Y, Z with respective
spectra z,y,z with X =Y = Z. Following equation (6.95), we can rewrite G as the
function of the matrices X and Y being maximised in (6.95). If the entries of z are
ordered decreasing, then as before the trace-inequality (6.79) implies that for ¢ > 0 the
entries of 3 should also be ordered decreasing, while for ¢ < 0 they should be ordered

decreasing. This gives the form of Z' stated in (6.24).

It remains only to show that

GL(0) W /n
W N G :
[/\413]1/1111_)2 d[ciLlE]e) = R(wy,...,wg;21,...,20)- (6.101)

This is proved almost identically to Lemma 6.1 from [14]. Indeed, using (6.82) we get

GL(9)(6W/n)
_ wi[Ap]j/ntwi(6-5)/n |,
dGL(e) det[e #lj J ]
] (6.102)
j-i
191399 (ewiln —ews/mM) ([N, )i = [N ply + 5 —1)
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which, noting all the products (including in the determinant) are finite, tends to the

function R(w1, ..., we;z21,...,29) as [\, u]/n — z. |

6.2.4 Magnetisation term: proof of Theorem 6.1.8

We start by giving expressions for the free energy with a magnetisation term, and then

afterwards we will take the appropriate derivatives. We will need the following notation:

o A" will denote the set of vectors Z = (21, 22, ..., 29) that can arise as spectra of X +Y
where X and Y are positive semidefinite Hermitian matrices with tr[ X] = 1-tr[Y] = p,
ordered so that z1 > -+ > z¢. In fact, A consists of all Z satisfying z; > --- > 29 > 0 and
Y0z =1. Given Z € A*, we write H,(Z) for the set of pairs (X,Y) of such matrices
with X +Y having spectrum Z.

« A, will denote the set of vectors Z = (21, 29,...,2¢) that can arise as spectra of X -V
where X and Y are as above, again ordered so that z; > -+ > 29p. Now A consists of
all Z satisfying p > 2z >+ > 2z, > —=(1 - p) and Zle zi=2p—1. Given Z € A ) We write
H, (%) for the set of pairs (X,Y") of such matrices with X —Y having spectrum Z.

Let ®7(3,h) = q)zih(a,b,c,w) be as in (6.30) and recall from (6.77) that
P(X,Y) =S(X)+S(Y)+ 2tr[aX? +bY? + 2cXY].

Theorem 6.2.4. Let a,b,c € R and w1 > -+ > wy be fized. If n,m - oo such that m/n —
p€(0,1), then the free energy of the models (6.28) and (6.29) satisfy:

h Z?: ZiWi, if h > 0,
(B, h) = maxzea+ (maX(X,Y)eH;(2)¢(X7Y) + { ! / )

hYl ) ziwga i, if h<O,

hY0 | ziw;, if h>0, )

h Zzezl ZiWh+1—15 Zf h < 07

(6.103)
®"%(B,h) = maxzea; (maX(X,Y)eH;(2)¢(X7Y) + {

Proof. Let us start with the AB case. Using the expression (6.64) and arguing similarly to
(6.70) we have

Zph= . sx(e™r) ... e
HVs A

eh oy exp (2[(a = e)et(n) + (b= c)et(v) + c-ct(M)]) (6.104)
- > sx(eMr ...,ehwe)exp( { ez, E)-FO(].)})

(,u/n,l//n,/\/n)eﬂjn In

where F is given in (6.71) and Q, in (6.72). Recall that [40, Section 2.2]
SA(ehwl hw") Znehmlwl Ze i= 1hm1wl (6.105)
T =1

where the sum is over all semistandard Young tableaux T with shape A and entries in
{1,...,0}, and where for each i, m; is the number of times the number ¢ appears in T.

The tableau with each box in the i*" row labelled ¢ appears in the sum, and in fact, for
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h > 0, it maximises the sum in the exponent:
0 s 0 Bhws
eXim hmiwi ¢ pXig hAiwi (6.106)

for each valid T. Indeed, note that in a semistandard tableau, the entries of row ¢ must be
at least ¢. Then, taking any semistandard T, shape A, changing an entry 7 >4 in row 7 to
i changes the sum in the exponent by h(w; — w;), which is non-negative by our ordering

of W as wy > --- > w,. Hence for h > 0,
0 . 0 .
eZim PAwi ¢ g (M Moy < alf”ezlﬁ1 hdiwi (6.107)

Recalling that %log df" — 0 we get, for A >0,

Z8 - > exp (n{F(%,2,2) + hxl, 2w, + o(1)}), (6.108)
(;L/n,y/n,)\/n)eﬁ:'n/n

In the case h < 0, the sum in the exponent in (6.105) is maximised when m; = Ag;1_; for
each i; indeed, let h' = —h, and w, = —wg,1_;, and apply the same reasoning as above. So,

for h <0, we have

0 . 6 w;
eXist Mhori-iwi ¢ g (ehwr o phwey ¢ df"ezl:l hro1-iwi (6.109)
and so for A <0,

A= > exp(n{p(% z, §)+h2, 17w9+1 7,+0(1)})' (6.110)
(el N, .

The result for the AB-case then follows by arguing as in (6.73) and [13, Lemma 3.4].

For the wB-case, a very similar argument as for (6.104) gives

23" (B, h) = > X (e ey exp (n{ G, £, %) + o(1)}),
(. [n[Anl )0y,
(6.111)
where G is given in (6.93), ©2; is defined just above (6.93), and X[CiL/f]@) is given in (6.82).

In particular, from (6.82), we see that upper and lower bounds from (6.107) and (6.109)
extend to this case. The result for the wB-case then follows by arguing as in (6.95) and
[13, Lemma 3.4] again. ]

Proof of Theorem 6.1.8. The proof closely follows that of Theorem 4.1 from [13]. We start
from the expressions (6.103) where, for ease of notation, we drop the superscript. We give

details only in the AB-case with h > 0 as the other cases are very similar.

Let Finax = ®(8,0) = maxzca+ (maX(X’y)GH;(2)¢(X,Y)) and let
K = {2 e A% imax(xyyens (5)9(X, ) = Fanax | (6.112)
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denote the set of maximisers. Clearly,

) - 4 maX(x y)e +(5yP(X,Y) = Flnax
(B,0) = ®(5,0) _ o [ 2w+ (XY)ems(2) ]
h = " 113
0 (6' )
> MaXzeK Z 2iW;.
i=1

We want to prove that the left-hand side of (6.113) tends to the right-hand side as h — 0.
For a contradiction, assume that there is a sequence h,, - 0 such that the corresponding
limit exists and is strictly larger than the right-hand side. For each h,,, pick an element
Z(hy) € A" that achieves the first maximum in (6.113). Since A" is compact, we can
assume after passing to a subsequence if necessary that Z(h,) - Z* as h, - 0. We claim
that z* € K. Otherwise, max(Xy)eH;(?)gb(X,Y) < Fiax, which would mean that the
left-hand side of (6.113) tends to —oco as h = h,, — 0, contradicting the lower bound on the
right. It follows that

) hn -® 4 max s *(Z(hn ¢(X7Y)_Fmax
G )hn (5,0) :;Zz’(hn)wi+ (X Y)erti( (hh,)j

(6.114)

< izi(hn)wi - ZH: 27 w; < MaxXzek 20: 2 w;,
i=1 i=1 i=1
as required.
In the wWB-case, we follow the same reasoning but with A* replaced by A, with H;
replaced by H;, and the maxima in (6.113) replaced by minima (as well as w; <> wgi1-;).
It remains to show that the z; may be expressed as in the statement of the Theorem.
Indeed, we know from (6.79) that ¢(X,Y") is maximised when X and Y are simultaneously

diagonal, with entries z1,...,x9 and y1,...,yg, respectively, ordered as follows:
e ife>0,ifxy 222920 then gy >-- > 19 >0;
e ife<0,ifxy 222920 then 0<y; <+ < yp.

This gives the result. [

6.3 The phase-transition

In this section we prove Propositions 6.1.3, 6.1.4, 6.1.5 and 6.1.6. Let us start by recalling

the basic quantities of interest: we wish to maximize the function

F(w) = F(3:9) = £l (i, 1), (6.115)
over the domain
Q= {w =(Z;9) 1 X1y, To,Y1,---, Y9 2 0, Z?:laci =1- Zf:lyi = p}. (6.116)
Here
f(z,y) = —zlogz —ylogy + & (az® + by* + 2cxy), (6.117)
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and we write Q(x,y) = %(aaﬂ +by? + 2C$y) for the quadratic form appearing in f(z,y). In
this section we will write p’ =1 - p to lighten the notation.

We are particularly interested in whether the maximum of F' is attained at the point

/

I

S=(asY
Sa{pe)
SRS
S

wo=(5,5,....5:5,5,...,5), (6.118)

or at some other point in 2. We defined . to be the supremume of those values of 8 for

which F' is maximised at wy.

6.3.1 Existence of a phase transition: proof of Proposition 6.1.3

We start with two elementary lemmas about quadratic forms.

Lemma 6.3.1. If Q is a quadratic form of two variables, then

4
0 Qzj,y5) = Q1+ +xo,y1 +-+yg) + Y, Qx5 —Ti,y5 — i) (6.119)
j=1

1<i<y<r

Proof. When Q(z,y) = zy we need to prove that

0
0> wjyj=(z1+-+xg) 1+ +yo)+ >, (x5—x:)(y; — wi)- (6.120)
J=1 1<i<j<0

This is easy to see by comparing the coefficient of each monomial on the two sides. Spe-
cializing z; = y; proves the result for Q(z,y) = 2* and Q(xz,y) =y, and the general case

then follows by linearity. [ ]

Lemma 6.3.2. Assume that Q(x,y) = %(ax2+by2+26xy) is not negative semidefinite and
that B, A, B >0. Then, the form

BQ(x,y) - 5(Az? + By?) (6.121)

is megative semidefinite if and only if B < Bo, and negative definite if and only if 5 < Bo,

where By s the smallest positive solution to the equation
(Ba - A)(Bb- B) = % (6.122)

or, more explicitly,

B+bA - B-0A)% +4c2AB
aB + \/(a )2 +4c ab .

Bo=1 p 2(ab - c?) ’ (6.123)

aB +bA’

ab = 2.

Proof. By assumption, the first term in (6.121) can assume positive values, and the second
term is always non-positive. It follows that the range of § for which (6.121) is negative
semidefinite is of the form £ < By and that it is negative definite if and only if 3 < 8y. The

precise conditions for (6.121) to be negative semidefinite are
(Ba-A)(Bb-B) 2 p*?,  Ba<A,  Bb<B. (6.124)
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By continuity, By solves the equation (6.122). If ab = ¢?, this is a linear equation with a

unique solution. Otherwise, it has two solutions

_aB+bA++\/(aB-bA)?+4c2AB
a 2(ab-c?) ’

(6.125)

which satisfy (ab-c?)B,6- = AB > 0. If ab > ¢2, both solutions are positive and 3y equals
the smallest solution B_. If ab < ¢ the solutions have opposite sign. In this case [y is the

largest solution, which is again S_. [

We are now ready to prove our result on the existence of a critical point. Recall that
we want to prove that (. exists (is positive and finite) if and only if @ is not negative

semidefinite, where . is the supremum of the S for which wq is a maximiser of F.

Proof of Proposition 6.1.3. We can write

F(w) - F(wp) = BE(w) + H(w), (6.126)
where 0
H(#:9) = ) (~x;logw; - y;logy;) + plog § +p'log &, (6.127)
j=1
and 0
E(@:9) = 3 Qzs,y) -1Q(8.5). (6.128)
j=1

Then, F is maximized at wy if and only if S€(w) + H(w) <0 on Q.

On ), we can write

%'H(i’?,g) :_h(x1+-..+a:9)+ h(xy) + -+ h(xg)

0 0

_h(yl +-é-+ye) Ly +-é-+h(ye)7

where h(x) = —zlogz. Since h is strictly concave, H(w) < 0 with equality only at the point
wp. Moreover, by Lemma 6.3.1,
E(Z;9) = Q(zj — i, yj — Yi)- (6.129)
Thus, if @ is negative semidefinite, we have £(w) < 0 and consequently wq is the unique
maximum point of F.
Assume now that @ is not negative semidefinite. We claim that £ assumes strictly

positive values in 2. To see this, it suffices to consider the case when zo = --- = xg,
Yo =---=19p. Then
Lo 0-1
E(&:9) = —5— Q&) (6.130)
p/
7ﬂ]'
By assumption, () assumes positive values in parts of this rectangle. Then it is clear

where £ = 29— 21 and 7 = yo —y1. Here (&,7n) can take any value in [—p, anl] x [—p’

that € takes positive values, hence that H(w) + SE(w) assumes positive values for 3 large

enough, and that the set of 8 > 0 for which this is true is an interval 5 > .. To see that
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wp is the unique maximiser for 8 < f3., take w € @ \ {wp}. Then either £(w) > 0, in which
case H(w) + fE(w) < H(w) + € (w) < 0 = H(wp) + fE(wp), or E(w) < 0, in which case
H(w) + BE(w) < H(w) <0 =H(wy) + LE(wp).-

It remains to show that . # 0, that is, that I’ assumes its maximum value at wqg for 3

close to zero. We will show that this is in fact true if we maximize F' over the larger set
U={(#;7§):0<z;<p,0<y;<p,j=1,....0}. (6.131)

To do this we will show that the Hessian H(F’) is negative definite in U for 8 close to 0,
meaning that F' is concave in U for such g and that wq is a global maximum in U. The

Hessian H(F') is a direct sum of the Hessians

f;tz f:vy ,BCL— 1 BC
H(f) = - z , 6.132
(f) (fxy fyy) ( Be /Bb_%) ( )

which is negative definite if and only if
(Ba-3)(Bb-13)> B2, 1>Pa, L >pb. (6.133)
By monotonicity, when x < p and y < p’ the inequalities (6.133) are implied by
(Ba=2)(Bb-%)> 8% L>pBa, % >pb. (6.134)
But (6.134) holds for 8 =0, hence by continuity also for small 3, as required. [ ]

From the proof above we note that 5 < . if and only if H(w) +SE(w) <0 for all w € §,

and secondly that we have the expression

Be = inf M

nf ( - E) ) where Q* = {we Q: E(w) > 0}. (6.135)

6.3.2 Formulas for (.: proofs of Propositions 6.1.4 and 6.1.5

We now turn to the proofs of our formulas for ., Propositions 6.1.4 for the case # =2 and
6.1.5 for the case 0 >3, ¢c>0and (a-c)p=(b—c)p' =t (6.14).

Our strategy is to obtain general lower and upper bounds on [.(€), given in Propo-
sitions 6.3.3 and 6.3.4 respectively, which are tight in the two cases that we consider.
Both bounds are given in terms of the critical temperature 52(9) of the homogeneous case
a=0b=c=1; here Q(z,y) = %(m +y)? is not negative semidefinite and (6.14) holds with
t = 0. This gives the result [13, Theorem 4.2]

hig) = > 0=2 6.136
Be(0) =1 2(6 - 1) log(60 - 1) (6.136)
5 , 02>3,

where the superscript h is for ‘homogeneous’ and is reserved for the case a =b=c=1.
For the case 6 = 2, it is useful to note that the formula (6.18) for 5.(2) is the smallest

positive solution to (6.122) with A =2/p and B =2/p’. To get a better understanding of

Proposition 6.1.5, i.e. the case 6 > 3, recall our condition (6.14) which says that (a—c)p =
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(b-c)p’ =:t. This condition implies the explicit diagonalization

top' (x y\°> c+t

Q(x,y) = 5 (———,) +—(x+y)2. (6.137)
p P 2

That @ is not negative semidefinite means that at least one of ¢t and ¢ + t are positive,

or equivalently that either ¢ > 0 and c¢+¢ > 0 or ¢ < 0 and ¢ > 0. This shows that the

expression for 5.(6) in Proposition 6.1.5 is always positive.

Let us now obtain the lower bound for 8.(#). We deduce from (6.135) and [13, Theorem
4.2] with p =1 that —H(2;0) > B2(0)E(z;0). This inequality takes the form
0

> zjlogx; —log 5 > 5?2(90) > (zj- 2;)?,  where Z?:l xj=1. (6.138)
j=1 1<i<j<6

Replacing each x; by x;/p gives

9 h
Y. xzjloga; - plog £ > %ng) > (zj-x;)?, where Z?zl xj = p. (6.139)
j=1 1<i<j<0
As was observed in [13], equality in (6.139) holds both at the point 21 =--- = g = p/f and

at (6.20a). (These are the same point if 6 = 2.)

Proposition 6.3.3. Assume that QQ is not negative semidefinite, so that B. exists. Then,
Be(0) > 3B2(0)5e(2), (6.140)

where B(0) denotes the expression (6.136) and B.(2) the expression (6.18).

Proof. Using the estimate (6.139) in (6.127) gives

h 2y — )2 )2
“H(w) > 5(:2(09) lszZ;SH(( p i) N (y plyj) ) (6.141)

It follows that

H(w)+BEW@) <+ S Qaj - w65 - i), (6.142)
0 1<i<j<6
where
Qz,y) = BQ(z,y) - ED(L£ + L), (6.143)

Recall that (.(2) is the smallest positive solution to (6.122) with A =2/p and B = 2/p’.
Thus by Lemma 6.3.2, if § < %,8?(9)&@), then @ is negative semidefinite and H(w) +
BE(w) <0 on Q. This gives the desired bound on f. |

Let us now move to upper bounds for 8.(6). We need to find a value of § such that
F(w) > F(wp) for some points w € Q. We want to find upper bounds that in some case
equal the lower bound in Proposition 6.3.3. We can only expect this to work if we used the
inequality (6.139) in cases when it holds with equality. By the results of [13] mentioned
above, it is natural to take w either close to wp, or w; as in (6.20). This leads to the

following two upper bounds.
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Proposition 6.3.4. Assume that Q is not negative semidefinite, so that B. exists. Then,

Be(0) < 308(2). (6.144)
If, in addition, Q(p,p") >0 and 6 > 3, then

Q)
2Q(p,p')

In fact, (6.145) holds also when 6 = 2, but in that case it is weaker than (6.144) and

will not be needed.

Be(0) < (6.145)

Proof. We first consider the behaviour of F' near wg. More precisely, consider the points
Wiy =wo + (¢,-1,0,...,0;u,-u,0,...,0), (6.146)

which belong to €2 for ¢, u close to 0. We have the Taylor expansion

’

Flen) = F(wo) = f(§+ 1,5 +u) + f(§ -1, 5 ~u) - 2/(5, §)

t
0
= (w4 fyy + 200 (5, 5) + O +2)P).
By (6.132), the quadratic term is
2 ’LL2
26Q(tw) ~6(5 + 7). (6.147)

By Lemma 6.3.2, if 8 > 06.(2)/2, this form is not negative semidefinite. It follows that wy
is not a local maximum of F. This gives the first result.

Next, we consider the point w; from (6.20) and assume 6 > 3. By a straightforward

computation,
H(wr) = -52log(0 - 1) (6.148)
and, by (6.130),
_ 0-2) o (6- 0-2)2
o) = 51 QAR 8) L 0228 0, ) ar
The second upper bound now follows from (6.135). ]

We can now put our upper and lower bounds together to prove Propositions 6.1.4 and
6.1.5.

Proof of Proposition 6.1.4. When 6 = 2, (6.140) and (6.144) reduce to 5.(2) < e < 5c(2)
(where [ is the critical point and /.(2) the explicit expression (6.18)). This proves
the formula for .. For the statement about uniqueness of the maximiser, note that
if B = 5:(2) = 552(2)60(2) and w = (Z;7) is a maximiser, then the left-hand-side of
(6.142) equals zero. Then also the right-hand-side of (6.142) equals zero, since Q < 0 for
B < %ﬂ?(?)ﬁc(% by the proof of Proposition 6.3.3. Hence (6.141) holds with equality and
therefore (6.139) holds with equality, as does the corresponding statement for y. But it
follows from the proof of Theorem 4.2 in [13] that (for 6 = 2) equality in (6.139) holds only
at the point wy. [ ]
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Proof of Proposition 6.1.5. Note that the lower bound in (6.140) and the upper bound
in (6.145) are equal if 3.(2) = Q(p,p’)t. We need to check that this is implied by
(a=c)p=(b-c)p’, which is (6.14) (in fact, it also implies (6.14)). Assuming (6.14), we

can parametrize

a=c+1i, b=c+4 (6.150)
p p
It is then straight-forward to check that
(pa—p'b)? +4pp'? =?, and ab-c* = %, (6.151)
which gives
2
i >0
2t +c— \/0_2 c+1t’ =5
(2)=—— = 152
K T R P (6.152)
;, c<0
By (6.137),
c+t
Qp.p') = ==, (6.153)

which shows the expression 3.(0) = 82(0)/2Q(p, p") when 6 >3 (and ¢ > 0).

To see that the point w;y in (6.20) gives another maximiser at § = f3., take 5 = 5.(0) =
BE(6)/2Q(p, p') to see from (6.148) and (6.149) that H(w;) + BE(wy) = 0 which is also the
maximum value of H(w) + BE(w). To see that w; is the only other maximiser we argue
as at the end of the proof of Proposition 6.1.4. Namely, for 5 = 8.(0) = % 8(0)6:(2), we
have that (6.139) holds with equality, as does the corresponding statement for j. From

[13], equality in (6.139) holds only at the points wy and w;. [ |

We can now complete the final proof of this section, that of Proposition 6.1.6, that the
maximiser is unique for § > 5. close to 5. under the conditions in Proposition 6.1.5, that
is,0>3,¢20, (a—c)p-(b-c)p’ (6.14) and @ not negative semidefinite. For this we use

that there are two maximum points at 8. and that they are local maxima.

Proof of Proposition 6.1.6. We first show that F' is strictly concave in neighbourhoods of
wo and w in . More generally, consider F(# +¢;4 + @), where (Z;9) € Q is a point with

ry=---=xg and Yy = --- = yp and (f;1) a small perturbation with

0 [4
Z tj = Z Uj = 0. (6154)

By (6.132), the quadratic term in the Taylor expansion of F' is

(4
Ql(tl,ul) + Z Qz(tj,uj'), (6.155)
j=2
where
12 u?
Qu(tw) = BQU W) — 5 — - 2.
T 2yk
At the point wgy, we have
02 Ou?
Qut0) = Qa(t,u) = QW) - (5 + 5 7).
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It follows from Lemma 6.3.2 that this is negative definite if 8 < 5y = 05.(2)/2. By conti-
nuity, it follows that F' is strictly concave near wg. Since wy is a stationary point it must
then be a local maximum, that is, F'(Z;9) < F'(wp) = 0 for (Z;y) near wy and 5 < 5. Using
that

(0-1)log(0-1)
0501 ),

it is easy to check that S. < Sy, so this applies in particular to 5 near ..

IBC:

The point wy cannot be handled as easily since ()1 is then not negative definite. Instead,

we use Lemma 6.3.1 and (6.154) to write

((9 1)2@2(15],’11,3) QQ(tl,U1)+ Z Qg(tz t],uz u])

2<i<j<r
It follows that (6.155) equals
Q1(t1,u1) *3 QQ(tl,Ul) — > Qati- - uj).
2<7,<]<9

We compute

1 0 0tz Ou?
Qut,u) + 5= Q2(tu) = o— (BQ(t’u) - (5 T ))

As before, this is negative definite for 8 < 8y. Moreover,

0(0 -1t 0(0-1)u’

QQ(t,U)ZﬁQ(t,U)— 2p 2pl

is negative definite for 5 < (6 — 1)y, which is a weaker condition. We conclude that F' is

strictly concave for 8 < By and (Z; %) near wy. We also note that

Fwi) = H(wr) + el (wi) + (B - Be)€(w1),

where the sum of the first two terms vanish and the last term is computed by (6.149) and
(6.153). This gives

(0-2)%(c+t)

F(wr) = (8 - o)

which is clearly positive for 5 > j..

For each > (., let w(f) be a maximiser of F' in Q. Permute the coordinates so that
(6.9) holds. We claim that then w(f) — w1 as f N fe. Otherwise, there exists a sequence
w(Bn), Bn N PBe, that avoids a neighbourhood of wy. Since 2 is compact we may assume
that this sequence converges. It must then converge to a maximiser of F' for 5 = 5. that
satisfies (6.9). There are only two such points, wy and w;, by Proposition 6.1.5. However,
we have seen that for . < 8 < 5y we have F(Z;1) <0 for (Z;7) near wy whereas F'(wy) > 0.
Thus, a sequence of global maximisers cannot converge to wg. This is a contradiction, and
we conclude that w(f) - wy. These points must then enter a region where F' is strictly

concave and hence maximisers are unique. This completes the proof. [ ]
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6.4 Multi-block models

Here we prove Theorem 6.1.9. The proof follows a similar pattern to that of Theorem
6.1.1. We start by writing

A | Zak% +da])=-n 3| a7 T(a},)+T(a})]),  (6.156)

vyel' " k=1 vyel' " k=1

where T is the representation of C[S,,] on V given in (6.37), and

1

az‘k |C“/ | Z o€ C[Sa,], ay, = |CW| Z oeC[S (6.157)
Ap O'GCW oeCy
As in (6.54) we have a decomposition
Ve @ di Oy (6.158)

A-,0(X)<0

Here we consider V as an C[S,,]-module only (we do not need the GL(#)-part since we
consider only the free energy and not correlations). As a C[Sy,, x -+ x Sy, ]-module, we

have the decomposition

Sy

o, (6.159)

Sn ~ A Sm
e @ Cu(l),...,u(p)wy(ll) ® ey
(1),511(p)

which generalizes (6.60). Here (k) +my, for each k and the multiplicities C;);(l),---w(p) are
analogs of the Littlewood—Richardson coefficients cf‘W and have many similar properties. In
particular, a full analog of Horn’s inequalities holds: cﬁ Do) > 0 if and only if there are
Hermitian matrices M (1), ..., M (p) with spectra p(1), ..., u(p) such that M(1)+---+M(p)
has spectrum A (see Theorem 17 of [41]).

Let us next see how T'(a}, ) and T'(ay) act on these subspaces w;j?,;’“) For m < n and
C = (), the conjugacy class of ~y in S,,, consider « = ﬁ Y gec 0 € C[S,]. For u+m, since

« is central in C[S,,], it acts on the irreducible 1/15”1 as a scalar, and in fact we have

Sm S’m
«
X ( )Id L X (7)Id

where Xﬁm (7) is the character of 1/}5’" evaluated at any permutation of cycle-type . This

leads to the following expression analogous to (6.65):

AR S e ) e
A0 () ) U0 B )
(6.161)
”(k)(’y) WX)\ (7)
exp(nﬂ%[§ SE,Z) dS” ])

As before, the relevant scaling for the limit limn_m % log Z)'® is given by letting A\/n — Z
and ,u(k) /n — Z(k) for all k. Also as before, d L) 4 negligible on the relevant scale, and

the d° (k) obey the asymptotics of (6.68). Below, we prove that ¢\ <(n+ 1)p92

(1);e-512(p)
which is also too small to contribute to the limit.
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‘.J;‘oo DO | =

Figure 6.6: Left: A skew tableau with shape v formed from the three partitions p(1) =
(2,1), u(2) = (2) and p(3) = (1,1,1). Right: its rectification.

Sm,
What remains is to identify the limits of the expressions of the form X*‘ds—y. The

latter limits are well-known in the asymptotic representation theory of the gymmetric
group: Thoma’s Theorem and the Vershik—Kerov Theorem (see e.g. [18, Corollary 4.2 and
Theorem 6.16]) imply that if u/n - Z = (z1,...,x¢), then

Xam ()

S ﬁpv(xlu"')xex (6162)
g™

where py(-) is the power-sum symmetric polynomial given in (6.45). Writing Z(k) =
limy, 00 4(k)/n and Z = lim, o A/n, we conclude that the contributing Z(k) and Z are
eigenvalues of Hermitian matrices Xi,..., X, and Z = X1 +--- + X, respectively, where
Tr[ Xk ] = px. Re-writing the free energy in terms of these matrices, as in (6.78) and (6.95),
we obtain the claim (6.41).

It remains to verify the bound 62(1) 77777 u(p) S (n+ 1)7"92. We use the following combina-

torial description of C;)Zl,... which is mentioned just after Proposition 13 of [41]. Form a

skew shape v by stacking ﬁzl), ..., u(p) from bottom left to top right, such that the lower
left corner of u(k) just touches the upper right corner of u(k - 1) as in Figure 6.6. Fix
any semistandard tableau 7 of shape A, to be concrete let us say that the first row of 7
consists of Ay 1’s, the second row of Ay 2’s etc. Then C/);(l),-..,u(p) is the number of semis-
tandard tableaux o, of skew shape v whose rectification equals 7. For a full description
of the rectification, see [40, Section 1.2], but in brief terms the rectification is obtained by
‘sliding’ the numbered boxes of ¢, until a non-skew shape is obtained. To see the claimed
bound, note that in order to obtain the tableau 7, the number of boxes labelled 1 in v
must equal the number of boxes labelled 1 in A, and similarly for labels 2, 3, etc. Thus,

for each row of v we have at most
M +1D)Aa+1)(Ng+1) < (n+1)°

choices of entries (from 0 to A1 1’s, from 0 to Ay 2’s etc). Since v has at most pf rows, the

total number of choices is < [(n +1)?]??, as claimed. |

6.5 Form of the maximiser of F' for ¢ >0

In this section we prove that for ¢ > 0, the maximiser of F' (6.6) is of the form (6.163).
We assume thoughout this section that Z is ordered as in (6.9), that is x1 > xg > -+ > xg.
Recall from the discussion after (6.9) that, for ¢ >0, F' is maximised when the orders of %

and ¢ match, that is when also y; > -+ > yp. We will adapt the arguments in [13] and in
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the appendix of [14] to show the following.

Proposition 6.5.1. For ¢ > 0, the maximiser (Z*;45") of F in the set Q (6.15) is of the

form
Ty 2xh ==
L v (6.163)
Y12Y2==Yp-

Moreover for the special case a = b =0, ¢ >0, p=1/2, and § # B. we have that the

mazximiser is unique, and x; =y for alli=1,...,0.

The proof of this proposition is divided into several steps. We first prove that a
maximum point (Z; %) only has positive coordinates, and that x; = xj, if and only if y; = yx
(this holds also for ¢ < 0). Then we prove that, when ¢ > 0, the entries z; (and therefore
y;) can take at most two distinct values. This reduces the number of variables we need to

consider, leading to (6.163) and the uniquenes statement via direct calculations.
Lemma 6.5.2. For any 0 >2 and a,b,c e R, if (Z;9) is a maximum point of F' in §, then

1. all zj and y; are strictly positive,

2. x; =xy if and only if y; = y.

Proof. In this proof we write e; for the unit vector with a 1 in the z; coordinate and
remaning entries = 0. For the first part, suppose that w = (Z;7) € Q is a maximum
point such that z; = 0 for some j, and that j is the smallest index with this property.
Then, w(t) = w+t(e; —ej-1) € Q for small enough ¢t > 0. By a direct computation,
F(w(t))-F(w) =-tlogt+O0(t) as t — 0. It follows that F(w(t)) > F(w) for small ¢, which
contradicts w being a maximum point. The same argument works for the variables y;.
For the second part, suppose that x; = x; and y; # y;. If necessary, redefine j and & so
that {l: x;=ap} ={j,j+1,...,k}. Westill have y; # yx. Then w(t) := (Z;7)+t(ej—ey) €
for small enough ¢ > 0. (Here we use the first part of the lemma in the case k = 6.) We
have that %F(w(t))\tzo = ¢(yj —yx) > 0. This contradicts w being a maximum point. The

same argument proves the reverse implication. [

Lemma 6.5.2 shows that at a maximum point there is a composition 8 = ki +--- + k;,
so that

(1, xp) =(&y- - &1 my o, Em),s (6.164a)
—_— —_———
k1 km
Wl 90) = (Mo My e s Ty e+ 5 i) (6.164b)
k1 km

where &; # & and n; # n;, for j # k. This leads to the problem of maximizing
F(&n) =kif(En,m) + + ko f (€my i) (6.165)
over the set Q0™ defined by
§1>&> > >0, k&1 + -+ kmém = p, (6.166a)
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N >ng > >N, >0, ki + -+ kmnm =1 - p. (6.166b)

For m > 1, the set Q0m) ig open, so we may find local extreme points by using Lagrange

multipliers. At any such point we have
VE(&n) = AV(k1&y + - + k) + nV (ki + - + ki), (6.167)
for some A, 4 € R. Equivalently
L@m)=x F&m)=p, 1<i<m (6.168)
The system (6.168) can in turn be rewritten in the form

ni=da(&), & =vu(n),  1<i<m, (6.169)

where A+ 1+1og(x) 1+1log(y) - b
+1+log(x) - ax w+1+log(y) — by
c ) wﬂ(y): c .

oa(x) =

If we let Py, denote the intersection of the graphs y = ¢\(x) and z = 9,(y), we can

(6.170)

summarize these findings as follows: the maximum of F' in () is attained either at the
point wy (6.16), or at a point of the form (6.164), where 2 < m < 6, (§,n) € Q™) and
(&.mi) € Py, for 1 <i < m. Note that ¢§(z) = —1/ca?, Vi(y) = ~1/ey?, so for ¢ > 0 the
graphs are convex. We can now prove that for ¢ > 0, a maximiser of F' can have at most

two distinct entries x; (and therefore the same for y;). Henceforth we suppress the indices
A, from ¢, 1.

Proposition 6.5.3. If ¢ >0 then the m of (6.164) satisfies m < 2.

Proof. Suppose first that b < 0. Then, 1 is increasing and concave, so ¥~! is increasing
and convex. The graph of ! can intersect the graph of the concave function ¢ in at most
two points. If a < 0 the same argument works with ¢ and 1) interchanged.

This leaves the case when a >0 and b > 0. In the region
R={(z,y):0<z<1/a,0<y<1/b}, (6.171)

¢ is increasing and concave whereas the local inverse 1)~! is increasing and convex. Thus,
there are at most two crossing points in R. If there are zero or two crossing points in R,
then an elementary convexity argument shows that there are no crossing points outside
R.

In all the cases considered so far there are at most two crossing points, which implies
m < 2. In the remaining case, when there is exactly one crossing point in R, there can
be several crossing points outside R. They can be ordered as a sequence (z;,y;) with x;
decreasing and y; increasing. We are only interested in subsequences of crossing points
with x; and y; decreasing. The maximum length of such a subsequence is 2, where we
may pick the unique crossing point in R and an arbitrary crossing point outside R. This

proves that m < 2 also in this case. [ ]

We can now prove the main thrust of Proposition 6.5.1, that for ¢ > 0, the maximiser
of F'in § is of the form (6.163).
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Proof of (6.163). We absorb f in a, b, ¢, effectively setting § = 1. By Proposition 6.5.3 we

can write ¥ and ¢ as

xl—..-—xk—s l‘kl—---—xe—p__ks
- - - ) + - - - — b

o (6.172)
Yy1=-=yYr =t Yk+1 = =y9=%,

where p’ = 1 - p and where the range for s,t is: p/0 < s < p/k p’'/6 <t < p'[k. Recall that
Q(z,y) = %(aa:2 +by? + 2cxy). Then F evaluated at such an (Z;%) can be written as

F(s,t,k) =k( - slogs—tlogt+Q(s,t)) - (p—ks)log (%If)

—(p - kt)log(p L) 4 (0 - k) Q(EE pe ookt (6.173)

We regard k as a continuous variable satisfying 1 < £ < 8. The plan is to show that
F(s,t,k) does not have any stationary points in the interior of the relevant domain for

s,t,k, and then that on the boundary it is largest for k = 1.

First consider the local maxima. We get

5 = Ha(52) +e(58) 105 (5152) ]

0k
(6.174)
OF ot—p' fs— t(0-k)
ot k[b(Wg) + (G —log ( okt )]
We now introduce the notation:
£=%Le(0,p/k], n=%Lc[0,0/k]. (6.175)

Note that £ = 0 if and only if s = p/6, in which case all z-variables are the same, i.e.

(Z;9) = wo. Similarly if n = 0. So we need to see if there is a stationary point with £ >0

and 7 > 0. Setting %—I; = %’? 0 we get the equations

log(%) =a +cn, log( (/ kt)) bn + c€. (6176)

It is useful to solve these for s, ¢:

ea§+c77 ebn+c§
B gea&fm -1’ =g (6.177)
Next, computing the k-derivative we get
OF _0s— s(0-k) —-p' t(0—k)
o = ok —slog( o—Fs )+ 9—1? _tlog(p’—k:t) (6.178)
17 (0s— 0t—p'\2 Os—p\ ( Ot—p’ '
+3la (98—15) +0(G% )"+ 2e(5) (TR |
which simplifies to
E+en b77+05
OF _ e (a + cn) (b + )
(- ma )l ) ). (6.179)

We show below that 8F < 0 for &,m > 0, except for a certain case which does not have any

relevance.

Now recall that the domain in question constists of those (k,s,t) such that 1 <k <6,
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p/0 < s < plk, and p'/0 <t < p'[k. The boundary consists of points where at least one of
the inequalities is in fact an equality. Start with s = p/6: then all z-variables are equal (to
p/0) and then in fact (Z;4) = wo. Similarly if ¢ = p’/0. Next, if s = p/k then zj,1 = 9_’?: =0.
But we know from Lemma 6.5.2 that F' is not maximized at such a point. Similarly, we
may exclude the possibility ¢ = p'/k. Finally, k = 0 also gives (Z;3) = wp, so the only
possibility for m =2 is if k= 1.

We now show that $- <0, for all &, n > 0, unless —a/c = —¢/b = a > 0, in which case it

is equal to zero. We ﬁrst reparametrise W by setting 1 = a&, for some « > 0. This gives:

oF _ 6(1 ~ elarea)f (g 4 ca)f) 6(1 B e(eba)é (o4 ba)f)

B olatca)é _ 1 o(crba)é _ | (6.180)
+ %(a +co+ afc +ba)) €2
Letting 0 = a + ca, v = ¢+ ba, and Gg5(§) =&+ 552(% e 1) we have
- Gs(8) + G, (9). (6.181)
It now suffices to analyse G5(§), £ >0, § € R. We can rewrite this function as
Gs(&) = 26(eX - 1) 0+ 1) (6.182)

2(ed% - 1)

For § > 0, the denominator is positive, and rearranging shows the numerator is negative
if and only if tanh(36¢) < 16¢, which holds for all £ > 0. Similarly if § < 0, then the
numerator is positive if and only if tanh(%é{ ) > %(55 , which holds for all £ > 0. Lastly, if
9 =0, then G5(&) =0 for all £ > 0.

Hence using (6.181), we see that 8F < 0 unless n = a&, and both § = a + ca = 0, and
v =c+ba =0. But this case is not relevant, since substituting these three equations into

(6.177) gives s = co and t = co. ]

To ﬁnish the proof of Proposition 6.5.1, it remains to prove that in the case a = b =0,
c>0,p= 2, and B # ., the maximiser is unique and satisfies x; = y; for all i = 1,...,40.
Without loss of generality we can let ¢ = 1. Using the fact that the maximiser must be of

the form (6.163), and setting =1 = x, y; =y, we can write

1)1
F(#;5) = Fo(x,y) =B(zy + %) —zlogz —ylogy

(6.183)
1 37T (1 5y
~(3-2)log 3 - (5 -y)log 3=
We are maximising Fj in the box [2—10, %]2 Calculations yield that when z > v, 81; 0 <

0Fy
oy’
boundary. Lemma 6.5.2 shows that they cannot lie on the boundary unless (Z;4) = wo.

and vice-versa, so that the maximum points of Fy must satisfy « = y or lie on the

So, substituting x = y, and reparametrising with z = 2z, we have

FO(%,%):g(ZQ‘F (19 Zl) )—zlogz—(l—z)log 7 +log2. (6.184)

Now, apart from the constant log2, this is precisely the function maximised in [13, The-
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orem 1.1], with 5 in that paper replaced with /2 here, and Z in that paper of the form

x1 > g = - = xy. By the working in that paper and the Appendix of [14], the maximiser is
unique for all 5+ 3. = 4(971)61% from (6.19). This concludes the proof of Proposition
6.5.1. -

6.6 The trace-inequality (6.79)

The inequality (6.79) appears e.g. in [69, Prop. 9.H.1.g-h], but we give here an almost self-
contained proof based on Birkhoff’s theorem, adapted from the discussion at [105]. The
problem is to maximize (respectively, minimize) Tr[XY] subject to the condition that
X,Y are nonnegative definite Hermitian matrices with fixed spectra x; > xo > - > 29 >0
and y; > yo > - > yg 2 0. Equivalently, since there are unitary matrices U and V such
that U*XU = D, = diag(x1,...,x9) and V*YV = D, = diag(x1,...,x9), the goal is to to

extremize

T[UD,U*VD,V*] = Te[D,U*VD,V*U] (6.185)

over unitaries U, V. Writing W = U*V we may equivalently extremize over the unitary
W,

[4 0
Trl:DIWDyW*] = Z wiwi,jij;i = Z miyj|wi7j|2. (6.186)
ij=1 i.j=1

Define the matrix P = (p@j)f’j:l where p; j = |w;;|*. Since W is unitary, P is doubly

stochastic (rows and columns sum to 1). We have by the above

maxyy Tr[D,WD,W"] > maxp 29: TiY;Dij (6.187)

ij=1
where the second max is over doubly-stochastic matrices P (and similarly for the min).
The function to be maximized on the right-hand-side is linear in P and the set of doubly-
stochastic matrices is convex and compact. Thus the maximum (as well as the minimum)
is attained at an extreme point of the set of doubly-stochastic matrices. By Birkhoff’s
theorem [69, Theorem 2.A.2], the extreme points are the permutation matrices II. Since

permutation matrices are real orthogonal (hence unitary) it follows that
maxy Tr[D,WDy,W"] = maxy Tr[D,I1D,II"] (6.188)

and similarly for the minimum. Thus, we must only find the permutation 7= which maxi-

mizes or minimizes the function

0
Zijﬂ,(j). (6189)
J=1

The maximum is obtained for the identity permutation and the minimum for the reversal
of 12...6.

6.7 Equivalence of ();; and F;; in the wb-model

In this second appendix we study two representations of the walled Brauer algebra B, ,, 4.

We will prove that they are isomorphic for all § > 2. This will in particular give the
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equivalence of our WB-model with the same model, but with each @); ; replaced with F; ;.
More generally Lemma 6.7.1 gives the same statement on general graphs. To be precise,
if G = AuB is any graph (with An B = @), with E4 the set of edges between two vertices
in A, Ep similar, and E4p those between a vertex of A and a vertex of B, then for all

a,b,c e R, the following two Hamiltonians are unitarily equivalent:

H=- Y alj;- Y bL;- Y cPy,

{ivj}EEA {izj}eEB {ivj}EEAB (6 190)
H, == Z aj—li,j - Z bﬂ:] - Z Cinj'
{inj}EEA {izj}eEB {ivj}EEAB

This in particular shows that the models with interactions F; ; and @;; are equivalent
on any bipartite graph; the equivalence of partition functions was proved by Aizenman
and Nachtergaele in [1]. The same statement (and in fact slightly stronger) holds on non-
bipartite graphs, but only for r odd. Indeed, (6.190) is very similar to a statement on
the model (6.3): for any graph G with edge set E, for any L, Ly € R, the following two

Hamiltonians are unitarily equivalent for r odd:

H=- Y ILiT;;+L2P;y,
{ij}eE

H' == Y LiTij+LQi;.
{ij}eE

(6.191)

This is proved with Lemma B.1 of [89], which is the equivalent of our Lemma 6.7.1 below,

but for the full Brauer algebra.

The representations we consider are defined as follows. First, we let |a) denote the
standard basis for C?, indexed using a € {-S,-S+1,...,S} where S = (§-1)/2, and recall
that V=V®". Let T:B,, 9 - End(V) satisfy

T(i,7) = Qi T(i,j) =Ty, (6.192)

where we recall that T;; is the transposition operator, and (a;, a;j|Qi ;|bi, b;) = da;.a;0b, b,
This T is just p®»¢ (3.12). Similarly, define T': B,, ,,, 9 > End(V) by

T(i,j) = Pig,  T(i,j) =T, (6.193)

where we recall that (a;, a;|P; ;|bi, bj) = (—1)“i‘bi6ai7_aj Ob; b, -

Lemma 6.7.1. For all 0 > 2, and all n, the representations T and T of B, me are

isomorphic via a unitary transformation.

Proof. The proof follows closely that of Lemma B.1 of [89]. For # odd, the lemma actually
follows from that Lemma B.1 by restricting the two representations there to the walled
Brauer algebra. So let § be even. The elements (i,5) and (4,7) generate the algebra

B,,.m.0, SO we aim to find an invertible linear function A:V -V such that
ATT A= Ty, (6.194)
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forall1<i<j<mand m<i<j<n,and
AT'Q; ;A =Py, (6.195)

for all 1 <i<m < j<n. By the Schur—-Weyl duality for the general linear and symmetric
groups (6.54), the first condition holds if and only if A = a®™ ® ¥®"™™ for some a,~ €
GL(0). Then the second condition also holds if and only if (a ® y)™'Q; j(a®v) = P; ; for
all 1 <i<m < j<n, which holds if and only if:

(_1)ai_bi5ai,—a]- 5bi,—bj Z (a_l)ai,c,- (7_1)%-,(:]- 6Ci,6j 6di,djadi,bi7dj,bj

CisCj,di,dj

Z(a_l)ai70(7_l)aj,cad,b¢7d,bj (6.196)
c,d

= (a7177T)ai,aj (O[Tf}/)biybj :

Now recall that we assumed 6 to be even, meaning that S and all the indices a;,a;, b;, b;
are odd multiples of % Thus (-1)% = —(-1)"% and (6.196) holds if

[ (-1)7]
(_1)1—5‘
"y =-(yTa) ! = . (6.197)
(_1)5—1

|(-1)°

The matrix on the right on the right in (6.197) is an involution whose transpose is its
negative, so it suffices to check this for a'y. Further, the matrix consists of the block
matrices (=1)%/ 2[ 9. ¢ ] aligned along the antidiagonal, where i = \/~1.

Such a pair «a, v exists: for example let

R A 1 -1 1
g1 \/5 11 y g2 \/5 i )
take a to be block-antidiagonal with blocks g1, and take v to be block-diagonal with blocks

(—1)9/ 245. Since G192 = [_01 8], a7 is as required. Further, since both a and 7 are unitary,

so is A. ]
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Glossary

algebra 17

centre denoted Z(A) 17

ideal 17

homomorphism 17

representation (or module) 17

End(M) Endomorphisms on M 17
bimodule 17

submodule (or subrepresentation) 17
irreducible (representation) 17

M & My The direct sum of representations 18
indecomposable (representation) 18

AA The regular representation of the algebra A 18
My ® My The box-tensor product 18

M ®p N The tensor product over B 18
semisimple module 18

semisimple algebra 18

head (of a representation) 19

idempotent 19

orthogonal (idempotent) 19

primitive (idempotent) 19

My ® My The tensor product 20

trivial representation 20

CG The group algebra of the given group G 20

dual representation 20

158



character 20

conjugacy classes 20

(a, B) Inmner product of class functions on a group 20
Lie algebra 21

zbf The irreducible representation of the given group or algebra G corresponding to the

partition or tuple p 21
XpG The character of pr 21
df The dimension of ¢§ 21
Sy The symmetric group 21
N The set {1,...,n} 21
(i,7) The transposition in S,, 21
A, p, i,y € Partitions 21
Young diagram 22
AT The transpose of a Young diagram 22
tableau 22
T(U) The tableaux with entries in U 22
standard tableau 22
ST (U) The standard tableaux with entries in U 22
zr The Young symmetriser 23
ct(A) The sum of contents of the Young diagram A 23
B,, 9 The Brauer algebra 24
B, The basis of the Brauer algebra 24
(7,7) The "Brauer" transposition in B,, 24
A]f”’e The cell module of the Brauer algebra corresponding to the partition A 26
GL(0) The general linear group 29
(-,-) The (non-degenerate, symmetric, bilinear) inner product 29
O(6) The orthogonal group 29
SO(#) The special orthogonal group 29

rational (representation) 30
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polynomial (representation) 30

gl(0) The general linear lie algebra 30

50(0) The special orthogonal lie algebra 30

[A, 1] Tuple from two partitions 32

res Restriction of a representation 33
Littlewood-Richardson rule 34

cﬁw The Littlewood-Richardson coefficient 34

sp, The Schur polynomial 34

semistandard tableau 35

S8, (U) The semistandard tableaux with entries in U, shape A 35
Pieri rule 35

l;;f”z The cell module B,, y-S,, branching coefficient 36

bz’z The B,, o-S,, branching coefficient 36

bn,m,@

O (p:6) The walled Brauer algebra-symmetric group branching coefficient 36

[V]Y Invariants on V with respect to the action of G' 39

p&L The diagonal action of GL(6) on V& 40

p°" The representation of CS,, on V®" by permuting the tensor factors 40
p°® The diagonal action of O(#) on V& 41

Bro  The representation of B, 4 on V®" 41

p
T; ; The transposition operator 41

Q;,; The projection operator 41

gL The action of GL(A) on V®", m tensor multiples of the natural action and n —m

multiples of its dual 42

Br.m.6 The representation of B,, ,, 9 on V" 42

p
Q(k) Set of pairings 49
Q'(k) Set of pairings 49
W, Alternative symbol for V" 49

WP Subset of tensor space 49

[W,]F Subset of tensor space 49
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classical spin system 70

7 The d-dimensional lattice 70

S? The two-sphere 70

G=(V,€) A graph (and its vertices and edges) 70

o; Classical spin 70

B Inverse temperature 70

Z Partition function 71

H Hamiltonian 71

(f(0))m,g,3 Expectation of classical observable 72

®(3) Free energy 73

quantum spin systems 73

quantum Heisenberg model 74

S; Quantum spin operator 74

antiferromagnet 75

XXZ model 76

bilinear-biquadratic model 76

S Component of the quantum spin operator 79

(-]) Bra-ket notation 79

V Alternative notation for V" 80

L1, Ly Parameters of the general model of Chapter 5 80
Ay Domain for function in a free energy 80

¢ Function in several free energy functions in Chapter 5 80
Ay Domain for function in a free energy 81

K, Ky Parameters of the spin S = % model of Chapter 5 82
J1,Jo Parameters of the spin S = 1 model of Chapter 5 85
A, (0) Set of pairs of partitions 92

P, (0) Set of pairs of partitions 93

dy Hausdorff distance 93

P; ; The spin singlet projection operator 103
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A Subset of the J; — J5 plane 104

A’ Subset of the J; — J plane 106

ny\B"’e The character of A]E"’G 110

interchange model 117

a,b,c Parameters of the general model of Chapter 6 119

Hgb Hamiltonian of the AB-model 119

F' Function in several free energy functions in Chapter 6 119
f(z,y) Function in several free energy functions in Chapter 6 119
@gb Free energy of the AB-model 120

ay P Hamiltonian of the wB-model 120

@gb Free energy of the wB-model 120

Q) Set of vectors in Chapter 6 121

wo Specific vector in Chapter 6 121

Q(z,y) Function in several free energy functions in Chapter 6 121
wp Specific vector in Chapter 6 122

R Function in Chapter 6 122

Hﬁnb Hamiltonian of the MB-model 125

P, power-sum symmetric polynomial 126

Horn’s inequalities 131
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