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Abstract

In this thesis we study certain random walks on the two-dimensional lattice, known as
the Manhattan and Lorentz Mirror models, and certain quantum spin systems which are
generalisations of the quantum Heisenberg model. The topics are united by the fact that
we use the Brauer and walled Brauer algebras, and the representation theory of these
algebras, to study both.

We give an overview of Brauer and walled Brauer algebras, as well as that of the
symmetric group and the classical groups, and the representation theory of general finite-
dimensional algebras. A key feature of the representation theory of the groups and algebras
studied in this thesis is called Schur-Weyl duality. We give an account of this theory, as
well as applying it to our work on quantum spin systems.

We study the Manhattan and Lorentz Mirror models on a cylinder of finite width. We
give an estimate on the vertical distance travelled by the walk along the cylinder, as the
cylinder width grows large. We use the Brauer algebra to depict paths of these walks
through the cylinder.

Our work on quantum spin systems is split into two parts, studying two classes of
models. The first is a class on the complete graph, and the second is an inhomogeneous
class, which includes models on the complete bipartite graph. In each case we give the
free energy, and formulae for certain magnetisation and total spin observables. We then
use these results to give formulae for points of phase transitions, as well as to describe
the phases of the models. For the complete graph models, we are able to draw phase
diagrams.
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Chapter 1

Introduction

Representation theory, as well as being a rich and diverse field in is own right, has found
countless interesting applications to probability and physics. In this thesis we present an
analysis of certain quantum spin systems, and certain random walks in random environ-
ments. The topics are unified by our applying the Brauer algebra, its subalgebra called the
walled Brauer algebra, and the representation theory of these algebras, to both of these
subjects.

While similar to the well-studied symmetric group algebra, the Brauer and walled
Brauer algebras are not group algebras, and their representation theory is often more
nuanced. The representation theory of all three algebras is summarised in Chapter 2. A
key part of their representation theory, called Schur-Weyl duality, proves crucial in our
applications to quantum spin systems. The main objectives of this work are firstly to
convey the results on the random walks and spins systems in Chapters 4, 5 and 6, and
secondly to deliver the unified account of Schur-Weyl duality found in Chapter 3.

∗

Observe that a permutation σ in the symmetric group Sn can be depicted as a diagram
of the form in Figure 1.1, which represents the permutation (24)(56) ∈ S6. Multiplication
στ of two permutations σ and τ is then given by concatenation of the diagrams - placing
the diagram of σ above that of τ and joining the lines together. Recall that the symmetric
group algebra CSn is the vector space with basis given by permutations Sn.

= (24)(56) ∈ S6

Figure 1.1: The permutation (24)(56) ∈ S6.

The Brauer algebra Bn,θ is the vector space with basis given by a larger set of such
diagrams (so, Bn,θ contains CSn as a subalgebra); specifically, all diagrams which are pair-
ings of the 2n vertices. In particular, an upper vertex can be connected to another upper
vertex, and the same with lower vertices. Multiplication is still given by concatenation,
and one multiplies the result by the parameter θ to the power of the number of internal
loops removed in the concatenation. See Figure 1.2 for an example.

Let 0 ≤ m ≤ n. The walled Brauer algebra Bn,m,θ is similar, but defined as the span
of the diagrams described above which have a certain property. Draw a line (a “wall”)
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b2

b1

= b1b2θ1

Figure 1.2: Two diagrams b1 and b2 (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by θ1.

separating the leftmost 2m vertices and the rightmost 2(n −m). See Figure 1.3. Then
the certain property is that an edge connecting two upper vertices (or two lower vertices)
must cross the wall, and an edge connecting an upper with a lower vertex must not cross
the wall. Multiplication is the same as in the Brauer algebra.

Figure 1.3: A diagram in the basis of the walled Brauer algebra B8,3(θ). Notice that all
edges connecting two upper vertices (or two lower) cross the wall, and all edges connecting
an upper vertex to a lower vertex do not.

The Brauer algebra Bn,θ was introduced by Brauer [19] as having Schur-Weyl duality
with the orthogonal group O(θ). The original Schur-Weyl duality [104] intimately links
the representation theory of the symmetric group Sn with that of the general linear group
GL(θ). Specifically, it studies the action of the two groups on the vector space V ⊗n, where
GL(θ) acts diagonally and Sn acts by permuting the tensor factors. Among other things,
the theory gives the decomposition of tensor space V ⊗n as a representation of either group,
or of the direct product of the two groups. Much more recently, the walled Brauer algebra
Bn,m,θ was introduced as having a Schur-Weyl duality with the general linear group in the
work of Turaev [99], Koike [60] and Benkart et al. [8]. The action of the general linear
group in this case is different: g ∈ GL(θ) acts diagonally, as itself on the first m tensor
factors, and as its inverse-transpose on the remaining n −m factors.

One of the aims of this thesis to give an account of Schur-Weyl duality in these three
instances (GL(θ) − Sn, O(θ) − Bn,θ and GL(θ) − Bn,m,θ) which is streamlined, as self-
contained as possible, and unified (the latter in the sense that the account covers the
representation theory of both the classical groups and the Brauer and walled Brauer
algebras). This account is given in Chapter 3. Its need arises as a result of the major work
on the algebras being relatively recent (in particular the walled Brauer algebra).

The Brauer algebra and walled Brauer algebra have been studied extensively in their
own right. One key difference from the symmetric group algebra CSn is that while CSn is
semisimple, Bn,θ and Bn,m,θ are non-semisimple for some values of θ, essentially meaning
their representation theory is less straightforward. We encounter these non-semisimple
cases in the applications in Chapters 5 and 6. For a more comprehensive overview of the
two algebras, as well as an overview of their representations, see Sections 2.1.3 and 2.1.4.

∗
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Our first set of applications pertains to certain random walks on the two-dimensional
lattice, the Manhattan and Lorentz Mirror models. Chapter 4 presents the results of the
paper “The Manhattan and Lorentz Mirror Models - A result on the Cylinder with low
density of mirrors” [90].

For the Manhattan model, imagine the two-dimensional lattice with directions like
the streets and avenues of Manhattan (see the left diagram in Figure 1.4). With a fixed
number p between 0 and 1, at each intersection of the lattice, place, independently with
probability p, a mirror at 45○ to the lattice, which reflects a walker left or right. The
orientation (i.e. whether it is pointing northwest or northeast) is always so that the walker
follows the directions of the lattice. If there is no mirror, the walker continues straight on.
For the Mirror model, the lattice has no directions (every road is a two-way street). We
still place mirrors at 45○ to the lattice at each intersection, independently with probability
p, but each time we then toss a 50−50 coin to determine its orientation. The main question
of interest for these models is whether the walks are bounded or not, and beyond that,
the nature of the walks.

Figure 1.4: Examples of the Manhattan model (left) and Mirror model (right), with mirrors
in blue, and a few paths of the walker highlighted in orange. Note that the orientation of
a mirror in the Manhattan case is determined by the Manhattan directions of the lattice.

It is straightforward to see that when p = 1 the paths are bounded with probability 1
in the Manhattan model. Grimmett [46] gave a simple argument for the same result on
the Mirror model. For both models, the same result is expected to hold for all 0 < p ≤ 1.
The two models do not have fully identical behaviour though. Kozma and Sidoravicius
[62] showed that for all p > 0, the probability that two points n steps apart are connected
by a path in the Mirror model decays slower than (2n + 1)−1. In contrast, Cardy et al.
[6] showed that for p ≥ 1

2 this decay in the Manhattan model is exponential in n (and so
paths are bounded with probability 1), and the same is expected for all p > 0.

One approach that simplifies the models is by considering them on a lattice cylinder
(say, of width n). If the cylinder has height n too, one can transfer results back to the
planar lattice (see [62]). We consider in Chapter 4 the random variable V given by the
highest row of the cylinder the walker reaches above its starting point. A crude argument
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gives that P[V ≤ k] ≤ P[G ≤ k], G a geometric random variable with parameter (
p
2)
n, since

a path cannot pass through a street fully occupied by mirrors arranged appropriately. Li
[66] showed that for fixed p, V = O(n10), with probability exponentially close to 1. The
approach we take in Chapter 4 is based on observing that the models on the cylinder
can be thought of as Markov chains on the basis of diagrams of the Brauer algebra (or
the walled Brauer algebra). Our result is for a low density of mirrors, specifically when
p ≤ n−1. In this case, we find that V behaves like p−2: that is, for any α > 0,

P[V ≤ αp−2
] ≤ C1e

−C2α, (1.1)

for some constants C1,C2 depending on the model chosen. Note we also have the lower
bound, valid for all p < 1

2 :
P[V ≥ αp−2

] ≤ 2α. (1.2)

See Theorem 4.1.1 for full details. Moving forward, one would like to extend this to a
theorem for fixed, small values of p on the cylinder, and approach a result on the square
cylinder to transfer to Z2.

∗

Our second set of applications is to quantum spin systems. Chapters 5 and 6 present,
respectively, the results of the papers “The free energy of a class of O2S+1(C)-invariant
spin 1

2 and 1 quantum spin systems on the complete graph” [89], and the joint work with
Jakob Björnberg and Hjalmar Rosengren “Heisenberg models and Schur–Weyl duality”
[12].

Quantum spin systems are models which aim to derive the macroscopic properties
of matter from microscopic interactions of particles via their (quantum) spins, with the
particles arranged in a lattice. In particular, often the main goal is to find (and describe)
abrupt changes in the model when the parameters involved (for example, temperature)
are varied - these are called phase transitions. See the beginning of Chapter 5 for a more
detailed introduction to spin systems. In Chapters 5 and 6 we investigate phase transitions
for certain explicit classes of models. The results are of two types. Firstly, in each chapter,
we obtain for the models considered an explicit formula for a function known as the free
energy. The free energy is a function of the parameters of the model (i.e. temperature),
and points at which it is non-analytic indicate points of phase transition. The second type
of result uses the free energy results to give explicit formulae for points of phase transition,
and through the free energy and other working, investigates the properties of the models
in different regions of the parameter space. The models studied are generalisations of the
well-studied quantum Heisenberg model.

In the classical Heisenberg model, a particle at a site i in a lattice of dimension d is
given a spin σi = (σ

(1)
i , σ

(2)
i , σ

(3)
i ) ∈ S2, the two-sphere. This models particles of a magnetic

material being magnetised in the direction σi. Allow a parameter β to represent inverse
temperature. Then, for a given β, the probability that a configuration σ = (σi)1≤i≤n occurs
is

φH,β(σ) = φβ(σ) =
1

Z(β)
e−βH(σ). (1.3)

11



Here the function Z(β) = ∫ dσ e
−βH(σ) is called the partition function and is the normal-

isation constant which makes the measure a probability measure, and

H(σ) = −∑
i,j

σi ⋅ σj (1.4)

is the Hamiltonian describing the energy of the configuration, and the sum is over nearest
neighbours in the lattice. Spins want to be aligned: the more aligned the spins are, the
lower the energy fromH. The configurations with lowest energy are those with the spins at
all vertices pointing in the same direction. These are relatively few in number, compared
with the vast number of configurations which would give a large energy, with neighbouring
spins being much less aligned. Tuning β determines which of these types of configuration
dominates the measure - for d ≥ 3 there is a phase transition between these two behaviours.
See the beginning of Chapter 5 for more detail.

Two natural generalisations of the Heisenberg model are the XXZ model and the
bilinear-biquadratic model. The XXZ model has Hamiltonian

H(σ) = −∑
i,j

K1(σi)
(1)

(σj)
(1)

+K2(σi)
(2)

(σj)
(2)

+K1(σi)
(3)

(σj)
(3), (1.5)

that is, we give a certain weight K2 to the interaction in the 2 direction, and a second
weight K1 to the other two directions. (In the literature the K2 term is often in the
3 direction - the model is equivalent either way. For technical reasons we prefer the 2
direction, and we will maintain this convention throughout this thesis.) For example, if
K1 > 0 and K2 < 0, the system wants adjacent spins which point in the 1 − 3 plane to
be aligned, but those pointing in the 2-axis to be anti-aligned. The bilinear-biquadratic
Heisenberg model has Hamiltonian

H = −∑
i,j

(J1(σi ⋅ σj) + J2(σi ⋅ σj)
2) . (1.6)

From the first term, for J1 > 0 adjacent spins want to align and for J1 < 0 they want
to anti-align. The second term, for J2 > 0, prefers adjacent spins to be either aligned or
anti-aligned, but not orthogonal to one another, and vice-versa for J2 < 0.

A quantum spin system is analogous to a classical one, but described using an operator
of the form e−βH (instead of a probability measure), acting on the phase space of the model,
which is a vector space V ⊗n, a tensor product of a local phase space V for each of the
n particles in the lattice. Here H the Hamiltonian is a Hermitian operator. Each of the
Heisenberg, XXZ, and bilinear-biquadratic models have their quantum analogues. The
analogue of the Heisenberg model (1.4) has Hamiltonian

H = −∑
i,j

(Si ⋅ Sj), (1.7)

where Si = (S
(1)
i , S

(2)
i , S

(3)
i ), (Si ⋅Sj) = (S

(1)
i S

(1)
j +S

(2)
i S

(2)
j +S

(3)
i S

(3)
j ) and S(k)

i are explicit
Hermitian operators acting on the ith tensor factor of V ⊗n. The quantum analogue of the

12



XXZ model (1.5) has Hamiltonian

H = −∑
i,j

(K1S
(1)
i S

(1)
j +K2S

(2)
i S

(2)
j +K1S

(3)
i S

(3)
j ) . (1.8)

The model can be shown to be equivalent to that with K2 on the 1 or 3 axis instead of
the 2 axis, and, if the underlying graph is bipartite, to the model with K1 replaced with
−K1. On Zd, d ≥, a phase transition is expected for all parameters, and has been shown
for several cases, see for example Dyson, Lieb and Simon [38] and Kennedy [58]. Not all
cases have been shown to have a transition though, most notably the Heisenberg model
itself. The quantum analogue of the bilinear-biquadratic model (1.6) has Hamiltonian

H = −∑
i,j

(J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2) . (1.9)

The expected phase diagram of this model is given in Ueltschi’s paper [101]. Again tran-
sitions have been proved for some cases of the parameters, for example in [101] or Lees
[64], but not all.

A common simplification of a spin system is achieved by replacing the lattice with
the complete graph - known as the mean field approximation. Often results in the mean
field carry over to or approximate the behaviour of models on the lattice, and often the
approximation makes computations easier. Chapter 5 studies a model on the complete
graph which, for θ = 2 is the XXZ model (1.8), and for θ = 3 is the bilinear-biquadratic
model (1.9). Figure 1.5 and Figure 1.6 give the phase diagrams obtained from our free
energy results (Theorem 5.2.1) for these two models, respectively.

K2

K1

K1 =K2

Ising

XY

Disordered

(a) Ground state phase diagram

4

4

βK2

βK1

(4,4)

Ising

XY

Disordered

(b) Finite temperature phase diagram

Figure 1.5: On the left, the ground state phase diagram for the quantum Heisenberg
XXZ model with θ = 2 and with Hamiltonian (1.8). The line K1 = K2 ≥ 0 gives the
Heisenberg ferromagnet. On the right, the phases at finite temperature, where varying
temperature is given by varying the modulus ∣∣β(K1,K2)∣∣. Transitions between phases
(points of non-analyticity of the free energy) shown in red lines.

The right hand diagram in each case shows that the points of non-analyticity of the
free energy (and points of phase transition) are given by the red lines. The left hand
diagram describes the “ground state” behaviour - how the model behaves as temperature
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approaches zero (β approaches ∞). For the XXZ model, quite intuitively, in the “Ising”
phase the K2 term of (1.8) dominates, and spins want to be aligned along the 2-axis. In
the “XY” phase, the K1 terms dominate, and the spins want to be aligned, but in the 1−3
plane. For K1,K2 ≤ 0, there is no phase transition, and the model remains “disordered”
for all temperatures.

J2

J1

J1 = J2

J2 = 2J1

Nematic

Ferromagnetic
Disordered

Fourth Phase
(a) Ground state phase diagram

(log(16), log(16))

( 9
4 ,

3
2 )

(0,−3)

βJ2

βJ1

J1 = J2

J2 = 2J1 − 3

J2 = log(16)

Nematic

Ferromagnetic
Disordered

Fourth Phase
(b) Finite temperature phase diagram

Figure 1.6: On the left, the ground state phase diagram for the quantum bilinear-
biquadratic Heisenberg model with Hamiltonian (1.9), and θ = 3. On the right, the
phases at finite temperature, where varying temperature is given by varying the modu-
lus ∣∣β(J1, J2)∣∣. Transitions between phases (points of non-analyticity of the free energy)
shown in red lines (proved in the region J2 ≥ J1, expected as shown for the rest of the
plane).

For the bilinear-biquadratic model, again fairly intuitively, in the “Ferromagnetic”
region, the J1 term dominates, and the model behaves like the usual Heisenberg model
(1.7). In the “Nematic” region, the J2 term dominates. In the classical setting one would
expect spins to align or anti-align. See the introduction of Chapter 5 for more detail on
how this is expected to manifest in the quantum case. In the “Disordered” region, there
is no phase transition. In the “Fourth phase” the behaviour is unclear, although some
properties of the Ferromagnetic region are exhibited. Further work could investigate this
region further, in addition to attempting to transfer some of these results to the lattice
Zd.

As noted above, the other results of Chapter 5 give further features of the model, and
support the interpretations of the phase diagrams above. See Theorems 5.2.3 and 5.2.4.
We also give the free energy and phase diagrams for versions of the model with θ > 3; see
Theorem 5.2.2 and Figure 5.3b.

In Chapter 6 we study models very similar to those in Chapter 5, except essentially we
work on the complete bipartite graph rather than the complete graph. This is a step closer
to reality, since the lattice Zd is bipartite, and this step is indeed significant - observe that
for K1 = K2 = −1 in the XXZ model (known as the antiferromagnet), Figure 1.5 shows
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there is no phase transition, whereas [33] shows that on Zd, d ≥ 3, there is one. This makes
intuitive sense, since for the antiferromagent, adjacent spins want to be anti-aligned, and
it is only possible for every pair of adjacent spins in the graph to be anti-aligned if the
graph is bipartite. The models studied in Chapter 6 are a general family, but for example
when θ = 3 they are the two special cases of the bilinear-biquadratic model (1.9) where
J1 = J2, and J1 = 0. Again, we give free energy results, Theorems 6.1.1, 6.1.2 and 6.1.9,
and then (for certain values of the parameters involved) find formulae for the points of
phase transition. See Propositions 6.1.3, 6.1.4 and 6.1.5. We also give further features of
the models, which back up the presence of phase transitions and help describe the phases
of the models. See Theorems 6.1.7 and 6.1.8.

The key technical application of the Brauer algebra Bn,θ and walled Brauer algebra
Bn,m,θ to the results of Chapters 5 and 6 is the following. Regardless of the underlying
graph, the operator e−βH of the model in question (eg. (1.8) or (1.9)) can be written as the
action of a certain element of one of the algebras CSn, Bn,θ or Bn,m,θ. The free energy, the
key quantity in both papers, is given by the formula lim∣V ∣→∞

1
∣V ∣ log Tr[e−βH]. Here V is

the set of vertices of the underlying graph. It is not hard to see that an eigendecomposition
of the operator e−βH on tensor space V ⊗n is very useful for computing the free energy.
Schur-Weyl duality, as noted above, gives a decomposition of the action of the algebras
on V ⊗n into irreducibles, and so a block decomposition of e−βH . When the underlying
graph is the complete graph or complete bipartite graph, e−βH is the action of a central
(or nearly central) element of the algebra, so it acts on irreducibles as scalars. This means
the blocks of the decomposition of e−βH are scalars, so we have an eigendecomposition of
e−βH .

For generic parameters considered, the block decomposition is slightly more nuanced
than described above, and requires the careful restriction of irreducibles of one of the
algebras to another one: for example, in Chapter 5, from the Brauer algebra Bn,θ to the
symmetric group CSn. For some cases these restrictions are well-studied, for some we work
out complete, explicit formulae, and for some they are ill-understood (in particular Bn,θ
to CSn), and we can give formulae in some cases. In fact the main reason this problem is
difficult is the non-semisimplicity of Bn,θ for certain values of θ, as discussed above. See
Section 5.7 and Sections 6.2.1 and 6.2.2.

This approach of applying the representation theory of the algebra in question to
diagonalise the action of a central element is well-trodden, although has mostly been done
with group algebras in the past. The book of Diaconis [29] collects several examples of such
applications to problems in probability. Perhaps the most famous therein is the application
to shuffling cards via random transpositions [30], where Diaconis and Shahshahani obtain
the mixing time (the time when the cards become “well-shuffled”) by diagonalising the
action of a central element of CSn. A key insight in their work was interpreting the
shuffling as a random walk on the symmetric group.

There are strong links between random walks on the symmetric group and quantum
spin systems. Powers [83] showed that (the θ = 2 version of) the quantum Heisenberg
model has a probabilistic representation as a continuous time version of the random walk
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studied by Diaconis and Shahshahani, known as the interchange process, with an added
weight depending on cycle lengths. Tóth [97] used this probabilistic representation to
give a bound on the free energy of the model. Since then several models, including the
Heisenberg model for general θ and (for certain values of the parameters) those studied in
Chapters 5 and 6 have been shown to have similar representations as random processes,
and results about the models have given rise to results about the processes, and vice-versa.
See Ueltschi [101] and Nachtergaele [77] for details.

The work of Chapters 5 and 6 follows a line of work approaching the interchange process
and the Heisenberg model with the representation theory of CSn. Alon and Kozma [3]
estimated the number of cycles of length k in the unweighted interchange process, on any
graph. Berestycki and Kozma [9] gave an exact formula for the same on the complete
graph, and studied the phase transitions present. In [4] Alon and Kozma gave a formula
for the magnetisation of the weighted process (equivalent to the θ = 2 Heisenberg model) on
any graph, which simplifies greatly in the mean-field. Chapters 5 and 6 are most directly
inspired by the paper of Björnberg [13], who showed a phase transition in the weighted
interchange process.

Looking forward, one would like to build on this work in a few ways. Certainly trans-
ferring some of the results to the models on the lattice is desirable. For θ > 3 we only
have a partial phase diagram for the model of Chapter 5. Completing this picture requires
obtaining more information about the restriction of irreducibles from Bn,θ to CSn, when
θ > 3. One would also like to apply similar methods to obtain results similar to those of [3]
on the interchange processes which are associated with the model of Chapter 5. Remark
5.2.11 details why there are nuances in obtaining certain such results. In Chapter 6 one
of the pleasantly surprising results is that two noticeably different models (6.5) and (6.10)
have exactly the same free energy. This is intriguing, and warrants further investigation -
perhaps the associated random processes have analogous similarities?

16



Chapter 2

Representation Theory

2.1 Representation theory

2.1.1 Representation theory of finite-dimensional algebras

In this section we give an introduction to the representation theory of finite dimensional
algebras over C, giving results that we will use in later sections. We will not prove results
in this section. We follow mainly Etingof et al. [34], with some results from Fulton and
Harris [42], some from Sections 9 and 10 of Curtis and Reiner [26], and some from Lecture
notes of Fayers [35].

We follow Chapter 2 of [34] for this section on general representation theory of algebras,
unless stated differently. A (unital, associative) algebra over C is a vector space A with a
multiplication which is associative, distributive, has an identity, and satisfies (ca1)(a2) =

(a1)(ca2) = c(a1a2) for all a1, a2 ∈ A, and c ∈ C. The identity, which we denote by 1, is
unique. The centre Z(A) is the set of elements of A which commute with every element
of A.

A left (resp. right) ideal of A is a subspace I of A such that ab (resp. ba) lie in I for all
b ∈ I, a ∈ A. A two-sided ideal, which we will usually just call an ideal, is a left ideal which
is also a right ideal. For A1,A2 two algebras, an algebra homomorphism from A1 to A2 is
a linear map φ ∶ A1 → A2 which sends identity to identity and satisfies φ(ab) = φ(a)φ(b)
for all a, b ∈ A1.

A (left) representation (or module) of A is a pair (ρ,M),M a complex vector space, ρ ∶
A→ End(M) an algebra homomorphism into the algebra of endomorphisms of M (linear
maps from M to M). We will use the terms representation and module interchangeably,
and often we will denote a module by only its vector space or its homomorphism. All the
representations we will consider will be finite-dimensional, so often we will assume without
stating that modules are finite-dimensional. For a module (ρ,M), and for a ∈ A, v ∈ M ,
we will often denote ρ(a)v as a ⋅ v or av. A right module is the same as a left module,
except that ρ(ab) = ρ(b) ○ ρ(a), instead of ρ(ab) = ρ(a) ○ ρ(b) in the case of a left module.
We write its action as ρ(a)(v) = va. For two algebras A and B, an A −B bimodule is a
vector space M which is a left A-module and a right B-module, such that (av)b = a(vb)

for all a ∈ A, b ∈ B, v ∈M .
A submodule (or subrepresentation) N of a module M is a subspace N of M which is

sent to itself by any a ∈ A. A irreducible (or simple) module is a module with no non-zero
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proper submodules. Given two representations (ρ1,M1), (ρ2,M2) of A, the spaceM1⊕M2

is a representation of A, with action ρ1 ⊕ ρ2. A non-zero module is indecomposable if it
cannot be written as a direct sum of two non-zero submodules (and decomposable if it
can be written as such). The regular module AA of A is the space A itself, with action
given by left multiplication a1 ⋅ a2 ∶= a1a2.

Lemma 2.1.1 (Schur’s lemma, Proposition 1.16 of [34]). Let S and T be two simple
modules of an algebra A. If φ ∶ S → T is a module homomorphism, then φ = 0 or φ is an
isomorphism.

Given two representations (ρ1,M1), (ρ2,M2) of two different algebras A1 and A2 re-
spectively, we call M1⊠M2 the module of the algebra A1⊗A2 with vector space M1⊗M2,
and action ρ1 ⊠ ρ2(a1 ⊗ a2)(v1 ⊗ v2) = (a1v1)⊗ (a2v2). The module M1 ⊠M2 is irreducible
if M1 and M2 are irreducible, and all irreducibles of A1 ⊗A2 are of the form M1 ⊠M2, for
uniqueM1 andM2. Note we use the box tensor product to differentiate this representation
from the usual tensor products of representations of groups - see below.

We will occasionally use another tensor product. Let A, B be two algebras, and M

an A −B bimodule, N a left B module. Then we define the vector space M ⊗B N as the
vector space M ⊗N , quotiented by the relations mb ⊗ n = m ⊗ bn, for all m ∈M , n ∈ N ,
b ∈ B. Then M ⊗B N is an A module, with action a ⋅ (m⊗ n) = (am)⊗ n.

A module M is a semisimple module if it is a direct sum of simple modules; this is
equivalent to the statement that for any submodule N of M there is another submodule
N ′ of M such that M = N ⊕N ′, N ∩N ′ = 0. One finds that any submodule or quotient
module of a semisimple module is also semisimple.

If a module M is semisimple and M = ∑T ∈T T is a sum of a collection of simple
submodules, then every simple submodule of M is isomorphic to one of the T ∈ T .

Theorem 2.1.2 (Artin-Wedderburn, Proposition 2.16 of [34]). The following are equiva-
lent:

1. An algebra A is semisimple if it is isomorphic to a direct sum of matrix algebras:
A ≅⊕

n
i=1 Matri(C);

2. The regular representation AA of A is semisimple.

If these properties hold we call the algebra A a semisimple algebra.

Theorem 2.1.3 (Density Theorem, Theorem 2.5 of [34]). Let A be an algebra, and
(ρ1, V1), . . . , (ρk, Vk) be pairwise non-isomorphic finite-dimensional simple modules of A.
Then the map ρ1 ⊕⋯⊕ ρk ∶ A→⊕

k
i=1 EndCVi is surjective.

Similarly, an algebra is called a simple algebra if it has no non-zero proper ideals.

Lemma 2.1.4. Let A be an algebra. The following are equivalent:

1. The algebra A is simple;

2. The algebra A is isomorphic to a matrix algebra: A ≅Matr(C);
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3. There is some simple module S of A such that the regular representation AA is iso-
morphic to S⊕n for some n ∈ N.

We will encounter some representations (and algebras) which are not semisimple. Let
us define the radical of an A moduleM , radM as the intersection of all maximal submod-
ules of M . One can prove that radM = 0 if and only if M is semisimple. The quotient
M/ radM , called the head ofM , is semisimple - it is essentially the “semisimple part” ofM .

We follow Section 25 of [26] for the following paragraphs on idempotents. An element
e ∈ A is an idempotent if e2 = e. Two idempotents e, f are orthogonal if ef = fe = 0. An
idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero
orthogonal idempotents. A primitive decomposition of an idempotent e is a finite set of
pairwise orthogonal idempotents which sum to e. Let us note: 0 and 1 are idempotents.
If e is an idempotent, 1 − e is an idempotent orthogonal to e. If e, f are orthogonal
idempotents, then e + f is an idempotent. If e, f are idempotents which commute, then
ef is an idempotent. The only invertible idempotent is 1. A central idempotent is an
idempotent that lies in the centre Z(A) of A.

If A is finite-dimensional, every idempotent e has a primitive decomposition, and eAe
is a subalgebra of A under the same operations as A, with identity element e. Then the
following are equivalent:

1. e is a primitive idempotent in A;

2. e is a primitive idempotent in eAe;

3. e is the only non-zero idempotent in eAe.

One can use idempotents to decompose an algebra. An algebra A is indecomposable if 1
is a primitive central idempotent (that is, 1 is a primitive idempotent in Z(A)). If A is
an algebra and E is a primitive decomposition of 1 in Z(A), then

1. E is the unique primitive decomposition of 1 in Z(A);

2. E consists of all the primitive central idempotents in A;

3. A has only finitely many central idempotents.

A primitive decomposition of 1 in Z(A) gives a unique decomposition

A = Ae1 ⊕⋯⊕Aek, (2.1)

into indecomposable algebras. Similarly, it gives a decomposition of a module M into
M = e1M ⊕ ⋯ ⊕ ekM , where eiM is annihilated by each Aej , i ≠ j. Let us note that
sometimes we do not need a primitive decomposition of 1 in Z(A) to give certain use-
ful decompositions. If {e1, . . . , ek} satisfy the weaker condition that they are primitive
idempotents in A summing to 1 which are “half-orthogonal”, then

AA = Ae1 ⊕⋯⊕Aek, (2.2)
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decomposes AA into indecomposable modules. By half-orthogonal we mean the following:
for all 1 ≤ i < j ≤ k, we have eiej = 0 (and not necessarily ejei = 0). We will find such
a decomposition of the symmetric group algebra in Lemma 2.1.7, where the idempotents
are the Young symmetrisers, and we will use it in Chapter 3.

We follow Chapters 3 and 4 of [34] for the following results on representations of groups.
A representation of a group G is a pair (ρ,M),M a complex vector space, ρ ∶ G→ GL(M)

a group homomorphism into the group of invertible linear maps on M . The definitions of
subrepresentations, simple/irreducible, semisimple and indecomposable representations,
direct sums and box tensor products of representations are all analogous to the equivalent
definitions for modules of algebras. In addition, we define the usual tensor product of
representations of a group, M1 ⊗M2: For M1, M2 two representations of a group G, let
g ⋅(m1⊗m2) = gm1⊗gm2 for all g ∈ G, m1 ∈M1, m2 ∈M2, and extend linearly. The trivial
representation always exists: it is the module (ρ,C) with ρ(a) = 1 for all a ∈ A.

The group algebra CG of a group G is the vector space of formal finite sums ∑g∈G agg
(with all but finitely many of the scalars ag equal to zero); CG is the vector space with
basis G. The multiplication in CG is the multiplication in G linearly extended. Group
algebras of finite groups are semisimple algebras.

A representation (ρ,M) of G is equivalent to a module (ρ′,M) of CG by linear exten-
sion ρ′(∑g∈G agg) ∶= ∑g∈G agρ(g), or in reverse, simply restricting ρ′ to G; we will refer to
either as simply representations or modules of G. The finite dimensional irreducible rep-
resentations of G are therefore in bijection with the finite-dimensional irreducible modules
of CG.

Given any representation (ρ,M) of a group G, the dual representation is the pair
(ρ∗,M∗), where M∗ is the dual vector space of M , with ρ∗(g) = (ρ(g−1))∗, the adjoint
of the map ρ(g−1). Explicitly, for w ∈ M∗, v ∈ M , ρ∗(g)(w)(v) = (ρ(g−1))∗(w)(v) =

w(ρ(g−1)(v)).
The character of a representation (ρ,M) of an algebra A is the function χ ∶ A → C as

χ(a) = Tr(ρ(a)), the trace of the map ρ(a). We say χ is irreducible (resp. indecomposable,
semisimple) if its associated representation is. Calculations yield that if χM , χN are the
characters of two modules M and N of an algebra A, then χM⊕N = χM +χN , and for A a
group algebra, χM⊗N = χMχN and χM∗ = χM .

The conjugacy classes of a group are the equivalence classes of the conjugacy relation:
g, h ∈ G are conjugate if there is some π ∈ G with π−1gπ = h. For G finite, the centre
Z(CG) is the span of the conjugacy class sums ∑g∈C g, for conjugacy classes C. The
central elements of any algebra act as scalars on the irreducible representations. For
G finite, the irreducible characters of the group algebra form a basis for the space of
class functions (functions constant on conjugacy classes); hence the number of irreducible
representations of the group algebra of a finite group is the number of conjugacy classes.
Two representations of a semisimple algebra are isomorphic if and only if they have the
same character.

For G finite, there is a natural inner product on the space of class functions, ⟨α,β⟩ =
1
∣G∣ ∑g∈G α(g)β(g). The irreducible representations of G are orthonormal with respect to
this inner product. Let us note that when G is a classical group (defined later in this
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section), there is an analogous inner product (see Proposition 1.12 of [72]):

⟨α,β⟩ = ∫
G
α(g)β(g)dµ(g), (2.3)

where µ is the Haar measure on the group. The irreducible (finite dimensional) represen-
tations of G are orthonormal with respect to this inner product.

We follow Chapter 2 of [34] once again. A Lie algebra g is a vector space with a
multiplication [⋅, ⋅] which is bilinear, satisfying [x,x] = 0 for all x ∈ g, and the Jacobi
identity, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ g. Similarly to the algebra
case, we can define Lie sub-algebras, direct sums and tensor products of Lie algebras, and
Lie algebra homomorphisms. For a vector space V , the general linear Lie algebra on V ,
gl(V ), is the Lie algebra of linear maps from V to V , with multiplication given by the
Lie bracket [x, y] = xy − yx. A representation of a Lie algebra is a pair (φ,V ) with φ a
Lie algebra homomorphism φ ∶ g → gl(V ). Similarly to the algebra case, we can define
subrepresentations, direct sums of representations, irreducible/simple and semisimple rep-
resentations. Let us note that the tensor product of two representations of a Lie algebra g,
V1 and V2, is the vector space V1⊗V2, with the action x ⋅(v1⊗v2) = (x ⋅v1)⊗v2+v1⊗(x ⋅v2).

The irreducible representations of all of the major groups and algebras in this thesis
are indexed by some set of partitions or tuples. For a given group or algebra G, we will
denote by ψGρ the irreducible of G corresponding to the partition or tuple ρ. We will also
denote its character by χGρ and its dimension by dGρ .

2.1.2 The symmetric group

We follow James [57] for this section. For n ∈ N, the symmetric group Sn is the group
of bijections of the set N = {1, . . . , n}, under composition. The symmetric group is a
fundamental feature of representation theory. One of its many interesting features is
its relationship with the general linear group, called Schur-Weyl duality, which is the
focus of Chapter 3. Let us recall a number of results on the symmetric group and its
representations.

We often call elements of Sn permutations. We often write σ ∈ Sn in disjoint cycle
notation: for example σ = (1,3,4)(2,5) is the permutation exchanging 2 and 5, and sending
1 to 3, 3 to 4, and 4 to 1, while fixing all other numbers. The cycle type of σ is the tuple
given by the lengths of its cycles; the cycle type of σ = (1,3,4)(2,5) ∈ S6 is (3,2,1), the 1
from fixing the 6. We often drop any ones when describing cycle types, so we would write
our example as (3,2). The elements (i, j), the elements of cycle type (2), or (2,1n−2),
called the transpositions, generate the symmetric group. Cycle type determines conjugacy
classes, ie. σ, τ ∈ Sn are conjugate if and only if σ and τ have the same cycle type.

A partition λ = (λ1, . . . , λs) of a natural number n is an ordered list of non-negative
integers which are non-increasing and which sum to n. We often denote partitions by the
Greek letters λ, ρ, µ, π, ξ, etc. By the working above, the conjugacy classes, and therefore
also the irreducible representations of Sn, are in bijection with partitions of n, that is,
tuples of non-negative, non-increasing integers λ = (λ1, . . . , λr) with ∑ri=1 λi = n. We write
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λ ⊢ n to denote λ being a partition of n.
We can construct the irreducibles of Sn explicitly; they are called the Specht modules,

following [57]. We need some notation. For a partition λ ⊢ n, the Young diagram of λ
is the array of boxes with λi boxes in the ith row, arranged with the first box of each
row above the first box of the next. When it is unambiguous, we will denote the Young
diagram of λ simply by λ. We will sometimes write ∣λ∣ for the number of boxes in λ,
that is, ∣λ∣ = n is just another way of writing λ ⊢ n. See Figure 2.1 for an illustration of
the Young diagrams of the partitions (5,5,3,1), (4,1,1) respectively. For a partition λ,
the conjugate partition λT is the partition with Young diagram obtained by transposing
the diagram of λ (so λT

i is the length of the ith column of λ). A tableau of size n is

Figure 2.1: The Young diagrams of the partitions (5,5,3,1) and (4,1,1).

a Young diagram of some shape λ ⊢ n with each box filled with a unique number from
N = {1, . . . , n}. We say such a tableau has shape λ. We call the set of tableaux of size n
T (N ), and we sometimes write ∣τ ∣ = ∣λ∣, the number of boxes in τ and λ. Sometimes we
will require the numbers in the tableaux to be a subset U of N ; in this case we call the
set of such tableaux T (U). Note ∣τ ∣ = ∣U ∣ for all τ ∈ T (U). We label the set of tableaux
with shape λ by Tλ(U). We say a standard tableau is a tableau with its entries strictly
increasing along rows and down columns, and we denote by ST (U) the set of standard
tableaux with entries in U , and by STλ(U) the set of standard tableaux of shape λ ⊢ ∣U ∣,
with entries from U .

Let us now give a first definition of the Specht modules. The symmetric group acts on
tableaux by permuting the entries. Say τ, τ ′ ∈ T (N ) are related if one can permute the
entries of each row of τ to get τ ′. The symmetric group acts on the equivalence classes
of this relation, by σ ⋅ {τ} = {στ}. The vector space spanned by these classes is therefore
a module of Sn (often denoted M τ ). The subrepresentation of M τ spanned by elements
(∑h∈C(τ) sgn(h)h) ⋅{τ}, where τ has shape λ, is called the Specht module, which we denote
ψSnλ .

Theorem 2.1.5 (Theorem 4.12 of [57]). For each λ ⊢ n, the space ψSnλ is an irreducible
representation of Sn, and ψSnλ ≅ ψSnµ if and only if λ = µ. Hence the Specht modules ψSnλ ,
for λ ⊢ n are a complete set of pairwise non-isomorphic irreducible representations of Sn.

We write χSnλ for the character of the Specht module ψSnλ , and dSnλ for its dimension.
For a subset U ⊂ N = {1, . . . , n}, and τ ∈ T (U), define the element

z′τ = ∑
g∈R(τ)

∑
h∈C(τ)

sgn(h)hg ∈ Sym(U) ≤ Sn, (2.4)

where R(τ) is the set of permutations in Sym(U) which preserve the rows of τ (as sets),
and similar for C(τ) and columns.
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Lemma 2.1.6. The element z′τ satisfies (z′τ)
2 = cτz

′
τ , for some cτ ∈ C.

Hence the element zτ ∶= 1
cτ
z′τ is an idempotent, called the Young symmetriser with

tableau τ .

Lemma 2.1.7 (Theorem 4.3 of [42]). If λ ⊢ n, τ ∈ STλ(N ), one can rewrite the Specht
module ψSnλ as the span of the elements zττ , τ standard, in the space spanned by all
tableaux of shape λ. Equivalently, ψSnλ can be realised as the subspace given by CSnzτ of
the regular representation CSnCSn.

Notice that the dimension dSnλ of the Specht module is therefore the number of standard
tableaux of shape λ. The Young symmetrisers are a set of primitive idempotents, but are
not in general orthogonal. They are, however, “half-orthogonal”, in the following sense.
For U ⊂ N , introduce a total order < on the set STλ(U) with τ < τ ′ if when reading the
entries left to right along consecutive rows, the first entries m of τ and m′ of τ ′ in the
same box with m ≠m′ have m <m′.

Lemma 2.1.8 (Proposition 2.3 of [43]). If τ, τ ′ ∈ STλ(U) with τ < τ ′ with respect to the
order described above, then zτzτ ′ = 0. (And it is not true in general that zτ ′zτ = 0).

Lemma 2.1.9 (Theorem 4.3 of [42]). We have a decomposition CSn =⊕τ∈ST (N )CSnzτ of
the group algebra CSn into minimal left ideals, and therefore a decomposition of the regular
representation CSnCSn = ⊕τ∈ST (N )CSnzτ , where each CSnzτ is a copy of the irreducible
representation ψSnλ of Sn, for τ shape λ.

We finish this section with a result which describes how a particular central element
of CSn acts on irreducibles. For λ ⊢ n, we label by ct(λ) the sum of contents of the boxes
of the Young diagram of λ, where the content of the box in row i and column j is given
by j − i.

Lemma 2.1.10. The sum of all transpositions, ∑1≤i<j≤n(i, j) ∈ CSn acts on the irreducible
ψSnλ as the scalar ct(λ).

2.1.3 The Brauer algebra

We follow several references for this section, but mainly Cox et al. [24]. The Brauer
algebra was introduced by Brauer [19] in 1937 as having the same relationship (Schur-Weyl
duality) with the orthogonal group as the symmetric group does with the general linear
group. See Chapter 3 for a full description of Schur-Weyl duality. The Brauer algebra
has been studied widely in its own right, particularly since the late 1980s. Broadly, its
representation theory (over the complex numbers) has been shown to be related to, but
more nuanced than, that of the symmetric group. Although the Brauer algebra has a
distinguished basis (see definitions below), it is not a group algebra, so there are several
results about group algebras which do not hold in general for the Brauer algebra. A key
such result is that over the complex numbers the algebra is not always semisimple.

In the semisimple case the irreducible representations and characters were found by
Brown [20] and Ram [84], respectively. The non-semisimple case was studied in a series
of papers by Hanlon and Wales [50], [51], [52] and [53]. The criterion for semisimplicity
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was worked on in these papers and by Wenzl [103], Doran, Hanlon and Wales [31] and
was settled over an arbitrary field by Rui [87]. The blocks (essential information on the
irreducible representations) of the algebras in the non-semisimple cases were determined
by Cox, de Visscher and Martin [24].

Let θ ∈ C. The Brauer algebra Bn,θ is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 1N,2N, . . . , nN, and the lower (southern) 1S, . . . , nS.
We call an edge connecting two northern vertices (or two southern) a bar, and an edge
connecting a northern vertex and a southern vertex a NS-path. The number of northern
bars in a diagram is the same as the number of southern bars, and we refer to either as
simply the number of bars of the diagram.

Multiplication of two diagrams is given by concatenation. If b1, b2 are two diagrams,
we align the northern vertices of b1 with the southern of b2, and the result is obtained by
removing these middle vertices (which produces a new diagram), and then multiplying the
result by θl(b1,b2), where l(b1, b2) is the number of loops in the concatenation. See Figure
2.2. This defines Bn,θ as an algebra. One can readily check that the dimension of Bn,θ is
2n!! = (2n − 1)(2n − 3)⋯5 ⋅ 3 ⋅ 1.

b2

b1

= b1b2θ1

Figure 2.2: Two diagrams b1 and b2 (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by θ1.

We call the set of diagrams (the basis of Bn,θ) Bn. Note that diagrams with no bars are
exactly permutations, where σ ∈ Sn is represented by the diagram where iS is connected
to σ(i)N, so Sn ⊂ Bn. Moreover the multiplication defined above reduces to multiplication
in Sn, so CSn is a subalgebra of Bn,θ. We write id for the identity - its diagram has all its
edges vertical. We denote the transposition Sn swapping i and j by (i, j), and we write
(i, j) for the diagram with iN connected to jN, and iS connected to jS, and all other edges
vertical. See Figure 2.3. Note that just as the transpositions (i, j) generate the symmetric
group, the Brauer algebra is generated by the transpositions and the elements (i, j).

Occasionally we will write a diagram b ∈ Bn in what we call edge notation, that is, as
a list of the pairs of vertices which are connected in the graph. In general, this looks like

b =
n

∏
j=1

(bj , b
′
j), (2.5)

where bj , b′j ∈ {tξ ∶ ξ = N,S, 1 ≤ t ≤ n}; this denotes the diagram with the pairs of vertices
(bj , b

′
j) connected to each other, for all j = 1, . . . , n. Note that for a diagram b ∈ Bn there

are many such products which can represent it, in fact, any permutation of the n pairs
(bj , b

′
j) and swapping the positions of any of the bj with b′j gives the same diagram b. For
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example, the identity can be written as ∏n
j=1(j

N, jS), the transposition can be written as
(i, j) = (iN, jS)(jN, iS)∏k≠i,j(k

N, kS), and (i, j) = (iN, jN)(iS, jS)∏k≠i,j(k
N, kS).

= (2,4) ∈ Sn

= (3,4)

= id ∈ S6

Figure 2.3: The identity element, the element (3,4), and the transposition (2,4) ∈ S6, all
lying in B6.

Let us turn to representations. As noted at the beginning of this section, the Brauer
algebra is not always semisimple. To be precise, Wenzl [103] showed it is semisimple when
the multiplicative parameter θ is not an integer, and for θ ∈ N, Brown [20] showed it is
semisimple if and only if θ ≥ n−1. The negative integers are less straightforward, although
it always holds that Bn,θ is semisimple for θ < −2n + 4 - see Rui [87], who gave a criterion
for the Brauer algebra to be semisimple over any field. Brown [20] gave a description
of the irreducible modules in the semisimple case, and Ram [84] gave a description of
their characters. In this thesis we will need results in all cases (both semisimple and non-
semisimple). The Brauer algebra is what is known as a cellular algebra [45], and more
specifically, a tower of recollement [22]. While we will not explore this theory, we will
note that it gives an explicit description of a set of “standard” indecomposable modules,
called the cell modules, and the irreducible modules of a such an algebra. In particular,
generically (that is, when Bn,θ is semisimple), the cell modules are the irreducible modules,
although when Bn,θ is not semisimple, they are no longer all irreducible, and the irreducible
is then its head (the quotient by its radical). Let us describe the cell modules.

Notice that if b ∈ Bn is a diagram with k bars, then for any a ∈ Bn, ab and ba are
both (scalar multiples of) diagrams with at least k bars. Hence, if we define Bkn,θ to be the
subspace of Bn,θ spanned by diagrams in Bn with at least k bars, then Bkn,θ is an ideal of
Bn,θ. In fact, we have a descending chain of ideals:

Bn,θ = B0
n,θ ⊃ B1

n,θ ⊃ ⋯ ⊃ B⌊n2 ⌋
n,θ . (2.6)

Let ξk = θ−k∏k
i=1(i, n + 1 − i) (ξk is a idempotent). Notice that the ideal Bkn,θ can be

written as Bn,θξkBn,θ. Let Bn⟨k⟩ be the set of diagrams in Bn with exactly k bars. The
quotient Akn,θ ∶= Bkn,θ/B

k+1
n,θ is an algebra (we define A⌊n2 ⌋

n,θ ∶= B⌊n2 ⌋
n,θ ). One can easily picture

Akn,θ as the vector space with basis Bn⟨k⟩, with multiplication the same as Bn,θ, except
that if two diagrams multiply to give a diagram with more than k bars, then the result is
set to zero. As a vector space, we have the decomposition:

Bn,θ = A0
n,θ ⊕A1

n,θ ⊕⋯⊕A⌊n2 ⌋
n,θ . (2.7)

Note A0
n,θ is just the symmetric group algebra CSn. Each Akn,θ is also a module for Bn,θ, by
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left multiplication j it is a quotient of the submodule Bkn,θ of the regular representation).
Notice that the subspace of Akn,θ spanned by diagrams with a fixed set of k southern bars is
a submodule of Akn,θ. To decompose the representation Akn,θ into indecomposable modules,
we use this observation, along with the Specht modules of the symmetric group.

Any diagram b ∈ Bn⟨k⟩ (i.e. with k bars), is determined by its k northern bars, k
southern bars, and n − 2k NS-paths. For fixed northern and southern bars, the possible
n−2k NS-paths can be bijected with Sn−2k by deleting the bars (along with their vertices),
and shifting the remaining vertices together. Hence each diagram b ∈ Bn⟨k⟩ can we written
uniquely as b = σ ⊗ (aN, aS), for σ ∈ Sn−2k, (aN, aS) ∈ a

k,N
n × ak,Sn , where ak,Nn is the set of

choices of k northern bars and ak,Sn the set of choices of k southern bars on the 2n vertices.
As a vector space, we have Akn,θ = CSn−2k⊗C(ak,Nn ×ak,Sn ). Our observation above can now
be written as the fact that CSn−2k ⊗C(ak,Nn ⊗aS) is a submodule of Akn,θ for each aS ∈ a

k,S
n

(and it is straightforward to prove that they are all isomorphic). These submodules are
decomposed using the Specht modules.

The following lemma was proved by Brown [20] in the semisimple case, and follows
from cellular theory in the general case. See [24]. Recall from the introduction of this
section that the head of a representation M is defined as the quotient M/ radM , where
radM is the radical of M , the intersection of all maximal submodules of M .

Lemma 2.1.11.

1. Let λ ⊢ n − 2k, τ ∈ STλ({1, . . . , n − 2k}), and fix aS ∈ ak,Sn . The space ∆Bn,θ
λ ∶=

(CSn−2kzτ)⊗C(ak,Nn ⊗aS) is a left ideal of Akn,θ, and an indecomposable representation
of both Akn,θ and the Brauer algebra Bn,θ.

2. As vector spaces, we have

Bn,θ ≅ ⊕
0≤k≤⌊n2 ⌋
λ⊢n−2k

(∆Bn,θ
λ )

⊕dim(∆
Bn,θ
λ

). (2.8)

3. The space ψBn,θ
λ defined as the head of the representation ∆Bn,θ

λ is simple, and the
representations ψBn,θ

λ , λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋ are a complete set of irreducible
representations of Bn,θ.

Remark 2.1.12. A more concise way to write the above representation is in the following
way. Let ξk = θ−k∏k

i=1(i, n + 1 − i) (note ξk is an idempotent). Notice that the space Bn,θξk
is a Bn,θ − ξkBn,θξk bimodule from the multiplication in Bn,θ, and CSn−2k (and thereby its
submodules) is a left module for ξkBn,θξk ≅ Bn−2k,θ (i.e. any b ∈ Bn−2k,θ with a bar kills
CSn−2k, CSn−2k acts by the regular representation). Then ∆Bn,θ

λ can be written as the
Bn,θ-module Bn,θξk ⊗ξkBn,θξk (CSn−2kzτ), with the action of left multiplication on the left
tensor factor.

So, the irreducible representations of the Brauer algebra Bn,θ are indexed by partitions
λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋; let us denote their characters by χBn,θ

λ , and dimensions by dBn,θλ .
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The analogue in the Brauer algebra of the sum of transpositions, and its action on
irreducibles (see Lemma 4.1 of [24]) is given by

∆Bn,θ
λ

⎛

⎝
∑
x,y

((x, y) − (x, y))
⎞

⎠
= (ct(λ) + k(1 − θ))id. (2.9)

Since the irreducible ψBn,θ
λ is a quotient of ∆Bn,θ

λ , it is clear that we also have

ψ
Bn,θ
λ

⎛

⎝
∑
x,y

((x, y) − (x, y))
⎞

⎠
= (ct(λ) + k(1 − θ))id. (2.10)

2.1.4 The walled Brauer algebra

We follow [23] and [80] for this section. The walled Brauer algebra Bn,m,θ is a subalgebra
of the Brauer algebra Bn,θ, introduced by Turaev [99], Koike [60] and [8] as having a Schur-
Weyl duality with the general linear group GL(θ), when GL(θ) acts on tensor space V ⊗n

as m tensor multiples of its natural representation, and n − m tensor multiples of the
dual of its natural representation. See Chapter 3 for a dull account of the Schur-Weyl
duality. As with the Brauer algebra, the walled Brauer algebra has a distinguished basis,
but is not a group algebra, and is not always semisimple over the complex numbers. In
the semisimple case, its irreducible representations (the cell modules) and their characters
were given by Halverson [47] - these are also studied by Nikitin [80]. Cox, de Visscher,
Doty and Martin [23] gave an account of the blocks of the walled Brauer algebra in a
similar manner to the paper [24] for the Brauer algebra, and also gave a semisimplicity
criterion over an arbitrary field.

Let m ≤ n. Returning to the 2n labelled vertices we used to define the Brauer algebra,
draw a line (a “wall”) separating the leftmost 2m vertices and the rightmost 2(n−m). Let
Bn,m be the set of diagrams in Bn with the condition that any bar must cross the wall, and
any NS-path must not cross the wall. See Figure 2.4. The walled Brauer algebra Bn,m,θ
is the span of Bn,m, with multiplication as in the Brauer algebra. It is a straightforward
exercise to show that the property defining Bn,m,θ is preserved under concatenation of
diagrams, so Bn,m,θ is indeed a subalgebra of Bn,θ.

Figure 2.4: A diagram in the basis B8,3 of the walled Brauer algebra B8,3(θ). Notice
that all edges connecting two upper vertices (or two lower) cross the wall, and all edges
connecting an upper vertex to a lower vertex do not.

The group algebra C[Sm × Sn−m] is a subalgebra of Bn,m,θ whose basis Sm × Sn−m

consists of those diagrams with no edges crossing the wall. The transposition (i, j) lies in
the walled Brauer algebra if and only if 1 ≤ i, j ≤m or m + 1 ≤ i, j ≤ n. The element (i, j)

lies in the walled Brauer algebra if and only if 1 ≤ i ≤ m < j ≤ n. The elements (i, j) and
(i, j) generate the walled Brauer algebra.

The representation theory of the walled Brauer algebra is immensely similar to that
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of the Brauer algebra. The walled Brauer algebra Bn,m,θ is semisimple when θ ∉ Z, and
when θ ∈ Z, it is semisimple if and only if ∣θ∣ ≥ n − 1 (Theorem 6.3 of [23]). The walled
Brauer algebra is also cellular and a tower of recollement, and its cell modules can be
defined analogously to those of the cell modules of the Brauer algebra. Again for each
cell module, the corresponding irreducible is defined to be the semisimple head of the cell
module. Let us be precise.

Analogous to the chain of ideals (2.12), in the walled Brauer algebra we have the
descending chain of ideals

Bn,m,θ = B0
n,m,θ ⊃ B1

n,m,θ ⊃ ⋯ ⊃ Bmin{m,n−m}
n,m,θ , (2.11)

where Bkn,m,θ is the span of diagrams in Bn,m with at least k bars. The ideal Bkn,m,θ can
be written as Bn,m,θξkBn,θ, where ξk = θ−k∏k

i=1(i, n + 1 − i). Let Bn,m⟨k⟩ be the set of
diagrams in Bn,m with exactly k bars. The quotient Akn,m,θ ∶= Bkn,m,θ/B

k+1
n,m,θ is an algebra

(we define Amin{m,n−m}
n,m,θ ∶= Bmin{m,n−m}

n,m,θ ). One can picture Akn,m,θ as the vector space
with basis Bn,m⟨k⟩, with multiplication the same as Bn,m,θ, except that if two diagrams
multiply to give a diagram with more than k bars, then the result is set to zero. It is a
module for Bn,m,θ with action by this (left) multiplication. As a vector space, we have the
decomposition:

Bn,m,θ = A0
n,m,θ ⊕A1

n,m,θ ⊕⋯⊕Amin{m,n−m}
n,m,θ . (2.12)

Analogously to the Brauer algebra case, can write Akn,m,θ = C(Sm−k × Sn−m−k)⊗C(ak,Nn,m ×

ak,Sn,m), where ak,Nn,m is the set of choices of k northern bars (that all cross the wall) and ak,Sn,m

the same for southern bars. Once again, the space C(Sm−k × Sn−m−k)⊗C(ak,Nn,m ⊗ aS) is a
submodule of Akn,m,θ for each fixed aS ∈ a

k,S
n,m, and we further decompose these submodules

using the Specht modules. For λ ⊢ m − k, µ ⊢ n −m − k partitions, we write (λ,µ) ⊢

(m−k,n−m−k) for short. For two disjoint sets P,Q ⊂ N = {1, . . . , n}, we write STλ,µ(P⊍Q)

for the set of pairs of standard tableaux (τ, π) of shape λ,µ and entries from P and Q

respectively, where λ and µ are partitions with size ∣P ∣ and ∣Q∣ respectively.

Lemma 2.1.13.

1. Let 0 ≤ k ≤ min{m,n −m}, (λ,µ) ⊢ (m − k,n −m − k), (τ, π) ∈ STλ,µ({1, . . . ,m −

k} ⊍ {m − k + 1, . . . , n − 2k}), and fix aS ∈ ak,Sn . The space ∆ − lamu ∶= (CSm−kzτ ⊗
CSn−m−kzπ) ⊗ C(ak,Nn,m ⊗ aS) is a left ideal of Akn,m,θ, and an indecomposable repre-
sentation of both Akn,m,θ and the walled Brauer algebra Bn,m,θ.

2. As vector spaces, we have

Bn,m,θ ≅ ⊕
0≤k≤min{m,n−m}

(λ,µ)⊢(m−k,n−m−k)

(∆Bn,m,θ
λ,µ )

⊕dim(∆
Bn,m,θ
λ,µ

). (2.13)

3. The space ψBn,m,θ
(λ,µ) defined as the head of the representation ∆Bn,m,θ

λ,µ is simple, and

the representations ψBn,m,θ
(λ,µ) , (λ,µ) ⊢ (m − k,n −m − k), 0 ≤ k ≤ min{m,n −m} are a

complete set of irreducible representations of Bn,m,θ.
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Remark 2.1.14. Similarly to the Brauer algebra case, we can write the above repre-
sentation ∆Bn,m,θ

λ,µ in a more concise way. Let ξk = θ−k∏k
i=1(i, n + 1 − i) (note ξk is an

idempotent). Notice that the space Bn,m,θξk is a Bn,m,θ − ξkBn,m,θξk bimodule from the
multiplication in Bn,m,θ, and C(Sm−k × Sn−m−k) (and thereby its submodules) is a left
module for ξkBn,m,θξk ≅ Bn−2k,m−k,θ. Then ∆Bn,m,θ

λ,µ can be written as Bn,m,θξk ⊗ξkBn,m,θξk
(CSm−kzτ ⊗CSn−m−kzπ), with the action of left multiplication on the left tensor factor.

Hence, the irreducible representations of Bn,m,θ are indexed by

{(λ,µ) ∣ λ ⊢m − k, µ ⊢ n −m − k, k = 0, . . . ,min{m,n −m} }. (2.14)

Analogous to the sum of transpositions (2.1.10) for the symmetric group algebra and
(2.9), (2.9) for the Brauer algebra, we have (see, for example, Lemma 4.1 of [23]) in the
walled Brauer algebra

∆Bn,m,θ
λ,µ

⎛
⎜
⎜
⎝

∑
1≤i<j≤m
m<i<j≤n

(i, j) − ∑
1≤i≤m<j≤n

(i, j)

⎞
⎟
⎟
⎠

= (ct(λ) + ct(µ) − kθ)id. (2.15)

Since the irreducible ψBn,m,θ
(λ,µ) is a quotient of ∆Bn,m,θ

λ,µ , it is clear that we also have

ψ
Bn,m,θ
(λ,µ)

⎛
⎜
⎜
⎝

∑
1≤i<j≤m
m<i<j≤n

(i, j) − ∑
1≤i≤m<j≤n

(i, j)

⎞
⎟
⎟
⎠

= (ct(λ) + ct(µ) − kθ)id. (2.16)

2.1.5 Classical groups

We follow Goodman and Wallach [44] for this section. We will study the representation
theory of the general linear and orthogonal groups (and in order to study the latter, the
special orthogonal group).

Let V be a complex vector space of dimension θ. We define a classical group to be a
subgroup of GL(θ) preserving some (symmetric or skew-symmetric bilinear, or Hermitian
or skew-Hermitian sesquilinear) form, as well as those groups intersected with the special
linear group of invertible maps on V with determinant 1. As noted above, we will con-
centrate on the general linear, orthogonal and special orthogonal groups. Let GL(θ) be
the group of invertible linear maps from V to V ; each basis of V gives a realisation of
GL(θ) as matrices. Fix (⋅, ⋅), a non-degenerate, symmetric bilinear form on V . We will
use this form to define our orthogonal group, that is, O(θ) is the set of g ∈ GL(θ) leaving
the form invariant: (gv, gu) = (v, u) for all v, u ∈ V . The determinant of an element of the
orthogonal group is ±1; the special orthogonal group SO(θ) is the subgroup of O(θ) of
maps whose determinant is 1.

Let V ∗ be the dual space of V (the vector space of linear functions from V to C).
There is always a canonical isomorphism between V and (V ∗)∗ (the dual of V ∗), given
by L ∶ V → (V ∗)∗ as L(v)(φ) = φ(v). For any basis {fi}

θ
i=1 of V , we write {f∗i }

θ
i=1 for the

dual basis of V ∗, that is, f∗i (fj) = δi,j . With the form (⋅, ⋅), there is a further canonical
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isomorphism, this time between V and V ∗, given by

L ∶ V → V ∗ with u↦ L(v)(u) = (v, u). (2.17)

We can therefore regard the dual basis {f∗i }
θ
i=1 as elements of V . One can find a basis

{ei}
θ
i=1 satisfying e∗i = ei for all i; we call this the standard basis with respect to the bilinear

form, or simply the standard basis. In this basis, g ∈ O(θ) if and only if its matrix satisfies
g = g-T, the inverse transpose of g. Sometimes we will use the following basis (which given
the form (⋅, ⋅), always exists): {fi}

θ
i=1, where f∗i = fθ+1−i for all 1 ≤ i ≤ θ.

A rational (resp. polynomial) representation of a classical groupG is a finite-dimensional
representation (ρ,M) of G such that, for all g ∈ G, ρ(g) written as a matrix (in some basis
of M) is such that all its entries are rational functions (resp. polynomial functions) in
the functions gi,j , 1 ≤ i, j ≤ θ (the matrix entries of g). We note that this definition is
independent of the basis of M chosen.

Lemma 2.1.15. A finite-dimensional representation (ρ,M) of a classical group G is
rational if and only if for all g ∈ G, the matrix entries of ρ(g) are polynomials in the
functions gi,j, 1 ≤ i, j ≤ θ, and det−1, the function taking g ∈ G to the inverse of its
determinant.

Note for G = SO(θ), rational and polynomial representations are equivalent, since
all its matrices have determinant 1. The only representations of G we will consider are
(finite-dimensional) rational ones, so we will drop the word rational unless we need to be
specifically clear.

Each of the classical groups described has an associated Lie algebra. Recall that a Lie
algebra g is a vector space with a multiplication [⋅, ⋅] which is bilinear, satisfying [x,x] = 0
for all x ∈ g, and the Jacobi identity, [x, [y, z]]+ [z, [x, y]]+ [y, [z, x]] = 0 for all x, y, z ∈ g.
The general linear Lie algebra gl(θ) is the Lie algebra associated with GL(θ); it is the
space of θ × θ matrices with multiplication given by the Lie bracket [x, y] = xy − yx. The
general bilinear form (⋅, ⋅) defined above, given a basis {fi}

θ
i=1 of V , defines a θ × θ matrix

S such that (v,w) = vTSw for all v,w ∈ V , where on the right hand side the vectors v and
w are written as column vectors in the chosen basis. The Lie algebra associated with the
orthogonal and special orthogonal groups is the same, so(θ), the space of θ × θ matrices
satisfying xTS + Sx = 0, with multiplication also given by the Lie bracket. Note that in
the standard basis, the matrix S is the identity, so so(θ) is the space of skew-symmetric
matrices. In the basis {fi}

θ
i=1, where f∗i = fθ+1−i for all i, S is the matrix with entries

Si,j = δθ+1−i,j , for all 1 ≤ i, j ≤ θ.
Let us note that each representation of GL(θ) or SO(θ) is equivalently a represen-

tation of its associated Lie algebra, via the differential map. In particular, the natural
representation of each classical group G is defined to be the vector space V itself, with
g ∈ G acting as itself. In this case, the corresponding representation of the Lie algebra g

is also the vector space V , with x ∈ g acting as itself.
We will not give a full account of the representation theory of our chosen classical

groups; instead collecting important results that will be used in later parts of this work. We
follow Sections 3.1.4, 5.5.4 and 5.5.5 of [44]. Fix the basis of V , {fi}θi=1, where f∗i = fθ+1−i

for all i; this fixes each of GL(θ), O(θ), SO(θ) and gl(θ) and so(θ) as matrices. For each
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of the Lie algebras g, let hg be the Lie sub-algebra of diagonal matrices. Let r = ⌊ θ2⌋. We
have the descriptions:

hgl(θ) = {diag[x1, . . . , xθ] ∶ xi ∈ C};

hso(θ=2r+1) = {diag[x1, . . . , xr,1,−xr, . . . ,−x1] ∶ xi ∈ C};

hso(θ=2r) = {diag[x1, . . . , xr,−xr, . . . ,−x1] ∶ xi ∈ C};

(2.18)

the latter two cases differentiating between the cases θ = 2r + 1 odd, and θ = 2r even. For
each hg, let h∗g be the dual space. Fix a basis εi(x) = xi of hg (producing the ith entry on
the diagonal), for i = 1, . . . , θ in the gl(θ) case and i = 1, . . . , r in the so(θ) case. Note in
the so(θ) case, εi = −εθ+1−i for all 1 ≤ i ≤ θ.

For g = gl(θ), so(θ), M a module of g, and λ ∈ h∗g , then a vector v ∈ M is called a
weight vector for g of weight λ if for all x ∈ hg, x ⋅v = λ(x)v. For each of the groups GL(θ),
SO(θ), we define a set called its dominant integral weights; these are the weights

P+(GL(θ)) = {λ = (λ1ε1, . . . , λθεθ) ∈ h
∗
gl(θ) ∶ λi ∈ Z, λ1 ≥ ⋯ ≥ λθ};

P+(SO(θ = 2r + 1)) = {λ = (λ1ε1, . . . , λrεr) ∈ h
∗
so(θ) ∶ λi ∈ Z, λ1 ≥ ⋯ ≥ λr ≥ 0};

P+(SO(θ = 2r)) = {λ = (λ1ε1, . . . , λrεr) ∈ h
∗
so(θ) ∶ λi ∈ Z, λ1 ≥ ⋯ ≥ ∣λr ∣ ≥ 0};

(2.19)

the latter two cases differentiating between the cases θ = 2r + 1 odd, and θ = 2r even.
We will often identify a weight λ with its θ-tuple or r-tuple which gives λ in the basis of
functions εi. Let us define the simple root vectors of gl(θ) to be the matrices

{Ej,j+1 ∶ j = 1, . . . , θ − 1}, (2.20)

(where Ei,j is the matrix which has all entries zero except for 1 in the i, j entry), and those
of so(θ) to be

{Ej,j+1 ∶ j = 1, . . . , r − 1} ∪
⎧⎪⎪
⎨
⎪⎪⎩

Er,r+1 −Er+1,r+2, for θ = 2r + 1
Er,r+2 −Er−1,r+1, for θ = 2r.

(2.21)

We can now turn to irreducible rational representations of G = GL(θ) and SO(θ). The
theorem of the highest weight tells us the following.

Theorem 2.1.16 (Theorem of the highest weight).

1. For each of the groups G = GL(θ), SO(θ), every irreducible (finite-dimensional)
rational representation of G has a unique vector v0, known as the highest weight
vector, which is a weight vector for g (the Lie algebra of G) with some dominant
weight λ ∈ P+(G), and is killed by every simple root vector. We say that such a
representation has highest weight λ.

2. For each of G = GL(θ), SO(θ), and for each λ ∈ P+(G), there is a unique irreducible
representation ψGλ with highest weight λ.

Remark 2.1.17. To summarise, the irreducible rational representations of GL(θ) are
indexed by θ-tuples of non-increasing integers, and those of SO(θ) are indexed by r-tuples
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of non-increasing, non-negative integers (where r = ⌊ θ2⌋), with the exception that in the
case θ = 2r, the rth entry can be negative.

We can also characterise the irreducible polynomial representations of GL(θ) (recall
for SO(θ), polynomial and rational representations are the same).

Lemma 2.1.18. An irreducible rational representation of GL(θ) with highest weight λ is
polynomial if and only if all the entries λi, i = 1, . . . , θ, are non-negative.

Hence one can say that the irreducible polynomial representations ofGL(θ) are indexed
by partitions of any size, with at most θ parts. For each irreducible rational representation
ψGπ of each of G = GL(θ) and SO(θ), let us denote its character and dimension by χGπ and
dGπ respectively.

There is a second way to index the irreducibles of the general linear group GL(θ). One
can biject the set of θ-tuples of integers which are non-increasing with the set of pairs of
partitions (λ,µ) of any size, satisfying λT

1 +µ
T
1 ≤ θ. Indeed, given such a pair, let [λ,µ] be

a θ-tuple defined as
[λ,µ]i = λi − µθ+1−i, (2.22)

for each i = 1, . . . , θ. Conversely, given a θ-tuple ρ, let λi = ρi for all i where ρi > 0, and
λi = 0 otherwise, and let µi = −ρθ+1−i whenever ρθ+1−i < 0, and µi = 0 otherwise.

Lemma 2.1.19 (Theorem 3.2.13 of [44]). If ψGL(θ)[λ,µ] is an irreducible representation of

GL(θ) with highest weight [λ,µ], then its dual is the irreducible representation ψ
GL(θ)
[µ,λ] .

In particular, the dual of an irreducible polynomial representation ψ
GL(θ)
λ is ψGL(θ)[∅,λ] , ∅

denoting the empty partition.

It remains to characterise the irreducible representations of the orthogonal group G =

O(θ). These are based on those of SO(θ). The irreducible rational representations of
O(θ) are indexed by partitions λ of any size satisfying λT

1 + λ
T
2 ≤ θ. For any such λ, let

λ′ be the same partition, with its first column λT
1 replaced by θ − λT

1 . Notice that λ′′ = λ,
and λ = λ′ if and only if θ = 2r and λT

1 = r, that is, λ has r parts. In the case λ ≠ λ′, one
of the pair λ,λ′ has its first column strictly shorter than r, and one strictly longer; let us
label these by λ+, λ− respectively. Let us also define a specific element g0 ∈ O(θ) ∖ SO(θ)

in the case θ = 2r: g0 fixes each basis vector fi of V , i ≠ r, r + 1, and exchanges the basis
vectors fr, fr+1, where recall {fi}1≤i≤θ is the basis of V with f∗i = fθ+1−i for all 1 ≤ i ≤ θ.

Theorem 2.1.20. The irreducible rational representations ψO(θ)
λ of O(θ) are indexed by

partitions λ of any size satisfying λT
1 + λ

T
2 ≤ θ. For λ ≠ λ′ (that is, θ odd or θ = 2r even

and λT
1 ≠ r), we have the restriction

resO(θ)
SO(θ)ψ

O(θ)
λ+ = resO(θ)

SO(θ)ψ
O(θ)
λ− = ψ

SO(θ)
λ+ . (2.23)

Further, when θ is odd, the element −id ∈ O(θ) ∖ SO(θ) acts on ψ
O(θ)
λ as (−1)∣λ∣id, and

when θ = 2r even, the element g0 ∈ O(θ)∖SO(θ) acts on the (SO(θ)) highest weight vector
in ψO(θ)

λ± as ±id. In the case λ = λ′ (this implies θ = 2r even), we have the restriction

resO(θ)
SO(θ)ψ

O(θ)
λ = ψ

SO(θ)
λ + ψ

SO(θ)
λ○ , (2.24)
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where λ○ is λ with λr replaced with −λr.

For each irreducible representation ψO(θ)
λ of O(θ), let us denote its character and di-

mension by χO(θ)
λ , and dO(θ)

λ respectively.

2.1.6 Branching rules

In the rest of this section we give useful results about restrictions of representations, known
as branching rules. Let A1,A2 be algebras over C, with A2 a subalgebra of A1, and let
(ψ,M), be a representation of A1, with character χ. Then we define the restriction of
(ψ,M) to A2, (resA1

A2
[ψ],M), to be simply the function ψ restricted to A2. We similarly

define the restricted character resA1
A2

[χ] = Tr(resA1
A2

[ψ]).
The decomposition of restrictions of representations of CSn to CSn−1 and Bn,θ to Bn−1,θ

are well studied. Let ρ ⊢ n, λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋. Recall we denoted the irreducible
representations of CSn and Bn,θ with partitions ρ and λ by ψSnρ and ψ

Bn,θ
λ respectively,

and the cell module of Bn,θ with partition λ by ∆Bn,θ
λ . We have the following (see, for

example, Sections 4 and 5 (and Figures 1 and 2) of [32], and Proposition 1.3 of [78]):

resSnSn−1
[ψSnρ ] = ∑

ρ=ρ−◻
ψSn−1
ρ ;

resBn,θBn−1,θ
[∆Bn,θ

λ ] = ∑
λ=λ±◻

∆Bn−1,θ
λ ;

(2.25)

and if λ further satisfies λT
1 + λ

T
2 ≤ θ,

resBn,θBn−1,θ
[ψ

Bn,θ
λ ] = ∑

λ=λ±◻
λT

1+λT
2≤θ

χ
Bn−1,θ
λ , (2.26)

where in the first equality the sum is over all ρ ⊢ n − 1 whose Young diagram can be
obtained from that of ρ by removing a box; in the second the sum is over λ ⊢ n − 1 − 2r,
0 ≤ r ≤ ⌊n−1

2 ⌋, whose Young diagram can be obtained from that of λ by removing or adding
a box; and in the third the sum is the same as the second, except we are restricted to
those λ with λT

1 + λ
T
2 ≤ θ.

We now describe how cell modules of Bn,θ decompose when restricted to CSn; first we
need to describe the Littlewood-Richardson rule. See section I.9 of Macdonald [68] for a
detailed exposition. The Littlewood-Richardson rule has several forms; we will describe
three of them here.

Firstly, we need to define induction of a representation - this is in some sense the
inverse process to restriction. Let A1,A2 be algebras over C, with A2 a subalgebra of
A1, and let (ψ,M), be a representation of A2, with character χ. Then we define the
induction of (ψ,M) to A1, (indA1

A2
[ψ],M), to be the tensor product A1 ⊗A2 M , with

action a ⋅ (b ⊗ v) = (ab) ⊗ v for all a, b ∈ A1, v ∈ M (recall A1 ⊗A2 M is the vector space
A1 ⊗M quotiented by the relations a1a2 ⊗ v = a1 ⊗ a2v. We similarly define the induced
character indA1

A2
[χ] to be the character of the induced representation.

Given a pair of representations ψr of CSr, and ψs of CSs, there exists a product
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representation which we call ψ1 × ψ2 of CSr+s (given by the induction from CSr ⊗CSs to
CSr+s of the box-tensor product ψ1 ⊠ ψ2). When the two representations are irreducible,
their product is given by the Littlewood-Richardson rule:

ψSrπ × ψSsµ = ∑
ξ⊢r+s

cξπ,µψ
Sr+s
ξ , (2.27)

where cξπ,µ is the Littlewood-Richardson coefficient. For two Young diagrams ξ, µ of any
size, such that µ ≤ ξ (that is, µi ≤ ξi for all rows i of both diagrams), the skew-diagram
ξ ∖ µ is the Young diagram of ξ with the boxes of µ removed from it. For our purposes
we need only note that the Littlewood-Richardson coefficient cξπ,µ is non-zero only if π ≤ ξ

and µ ≤ ξ, and it is determined by π and the skew-diagram ξ ∖ µ. The formula (2.27) is
equivalent to the statement

resSr+sSr×Ss[ψ
Sr+s
ξ ] = ∑

π⊢r
µ⊢s

cξπ,µψ
Sr
π ⊠ ψSsµ , (2.28)

the equivalence being a consequence of a general theorem called Frobenuis reciprocity, see
Section 5 of [34].

The product (2.27) is equivalent to, and often thought of as, the ordinary product of
symmetric polynomials. Let ρ ⊢ n have at most θ parts. Define the Schur polynomial sρ
(on θ symbols) to be the symmetric polynomial in the variables x1, . . . , xθ as

sρ(x1, . . . , xθ) =
det[xρj+θ−ji ]

θ

i,j=1

det[xθ−ji ]
θ

i,j=1

=

det[xρj+θ−ji ]
θ

i,j=1

∏1≤i<j≤θ(xi − xj)
. (2.29)

The Schur polynomials are, in fact, the polynomial characters of the general linear group.

Lemma 2.1.21. Let g ∈ GL(θ) with eigenvalues x1, . . . , xθ. Then for any partition ρ with
at most θ parts,

χGL(θ)ρ (g) = sρ(x1, . . . , xθ). (2.30)

If sπ, sµ are the Schur polynomials associated with π and µ, then the second form of
the Littlewood-Richardson rule is

sπsµ = ∑
ξ⊢r+s

cξπ,µsξ. (2.31)

Now since the Schur polynomials are the irreducible characters of GL(θ), we have by
Lemma 2.1.21 that as a representation of GL(θ),

ψGL(θ)π ⊗ ψGL(θ)µ = ⊕
ξ⊢r+s

cξπ,µψ
GL(θ)
ξ , (2.32)

for all partitions π, µ with at most θ parts, which is our third form of the Littlewood-
Richardson rule. Let us note that the Schur polynomials, along with the characters of
the special orthogonal group, can be expressed in terms of tableaux. See, for example,
Sundaram [94]. Let U be a finite, totally ordered set, and let λ ⊢ ∣U ∣. Then τ is a
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semistandard tableau with shape λ and entries from U if τ is the Young diagram of λ with
each box filled with an element of U , such that the entries are non-decreasing along rows
and strictly increasing down columns. (Note in contrast to standard tableaux, one can
have repeated entries in a semistandard tableau). Let SSλ(U) be the set of semistandard
tableaux with entries from U with shape λ, and SSn(U) = ⋃λ⊢n SSλ(U). Then, letting
Θ = {1, . . . , θ}, (see Theorem 2.2 of [94]) we have

sρ(x1, . . . , xθ) = ∑
τ∈SSρ(Θ)

θ

∏
i=1
xmii , (2.33)

where mi is the number of times i ∈ Θ appears in τ . There are several analogous formulae
for the characters of the special orthogonal group. One of them is a formula due to King
(Theorem 2.5 of [94]), which is stated in full in Chapter 5, see (5.48).

A special case of the Littlewood-Richardson rule, known as the Pieri rule, deals with
the case when one of the factors ψSrπ has Young diagram π with only one row, or only one
column, that is, when π = (s) or (1s), for some s. In this case we have

ψSr(r) × ψ
Ss
µ = ∑

ξ⊢r+s
ψSr+sξ , ψSr(1r) × ψ

Ss
µ = ∑

ξ⊢r+s
ψSr+sξ , (2.34)

where in the first equation, the sum is over all ξ whose Young diagram can be obtained
from that of µ by adding r boxes, no two of which are in the same column, and the first
equation the sum is over the same ξ except that no two of the boxes one adds can be
in the same row. A special case of this is the case when π = (1θ) (here ψGL(θ)π is the
1-dimensional determinant representation of GL(θ)), in which case we have

ψ
GL(θ)
(1θ) ⊗ ψGL(θ)µ = ψ

GL(θ)
ξ+1 , (2.35)

where ξ + 1 is the θ-tuple with ith entry equal to ξi + 1, for all i = 1, . . . , θ. There exists
an equivalent Pieri rule for the orthogonal group (see Okada [81]); we will note only the
special case when s = 1, that is, when π = (1):

ψ
O(θ)
λ ⊗ ψ

O(θ)
(1) = ⊕

λ=λ±◻
λT

1+λT
2≤θ

ψ
O(θ)
λ ; (2.36)

where the sum is over all partitions λ satisfying λT
1 + λ

T
2 ≤ θ which can be obtained from

λ by adding or removing a box; in fact one appication of Schur-Weyl duality is that this
is equivalent to (2.26) - see Lemma 5.7.1.

We can now give the restriction of cell modules of Bn,θ to CSn. This result is from
Theorem 4.1 of Hanlon and Wales [52], and is a special case of Theorem 5.1 of [84]. We
call a partition π even if all its parts πi are even. Let λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋. Then

resBn,θSn
[∆Bn,θ

λ ] = ⊕
ρ⊢n

(ψSnρ )
⊕b̃n,θ
λ,ρ = ψSn−2k

λ × ⊕
π⊢2k
π even

ψS2k
π , (2.37)
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or,
b̃n,θλ,ρ = ∑

π⊢2k
π even

cρλ,π.

Note that as a consequence, b̃n,θλ,ρ = 0 if λ ≰ ρ, and that b̃n,θλ,ρ is fully determined by the
skew-diagram ρ ∖ λ.

Now let us define the branching coefficients bn,θλ,ρ by

resBn,θSn
[ψ

Bn,θ
λ ] = ⊕

ρ⊢n
(ψSnρ )

⊕bn,θ
λ,ρ . (2.38)

There is no concise formula for the branching coefficients bn,θλ,ρ of the form (2.37), however
in the case λT

1 + λT
2 ≤ θ and ρT

1 ≤ θ, Okada (Proposition 2.5 and the orthogonal group
version of equation (5.1) of [81]) gives an explicit algorithm for calculating the coefficients
bn,θλ,ρ in terms of the coefficients b̃n,θλ,ρ. Note that the results in [81] are given in terms of
restriction from the General Linear group to the Orthogonal group - in Lemma 5.7.1 we
show that this is equivalent. This equivalence is a consequence of the Schur-Weyl duality.

The branching coefficients bn,θλ,ρ will prove to be crucial in the results on quantum spin
systems in Chapter 5; in particular we will need a condition for bn,θλ,ρ > 0. We give results
on this problem in Section 5.7.

Similar branching rules hold for the restriction of cell modules and irreducibles of the
walled Brauer algebra Bn,m,θ to the symmetric group algebra C(Sm × Sn−m). Corollary
7.24 of Halverson [47], restated in Lemma 4.1 of [23], gives

resBn,m,θSm×Sn−m[∆Bn,m,θ
λ,µ ] = ⊕

(ρ,ξ)⊢(m,n−m)
(ψSmρ ⊠ ψSn−mξ )

⊕b̃n,m,θ
(λ,µ),(ρ,ξ) , (2.39)

where
b̃n,m,θ(λ,µ),(ρ,ξ) = ∑

π⊢k
cρλ,πc

ξ
µ,π.

Let us similarly define the branching coefficients bn,m,θ(λ,µ),(ρ,ξ) by

resBn,m,θSm×Sn−m[ψ
Bn,m,θ
(λ,µ) ] = ⊕

(ρ,ξ)⊢(m,n−m)
(ψSmρ ⊠ ψSn−mξ )

⊕bn,m,θ
(λ,µ),(ρ,ξ) . (2.40)

There is no general, concise formula for the branching coefficients bn,m,θ(λ,µ),(ρ,ξ); however, in
contrast the the Brauer algebra case, in the case λT

1 + µT
1 ≤ θ, an expression does exist.

This will be crucial to part of our work on quantum spin systems in Chapter 6. Let us
summarise the result here. For a θ-tuple (which could be a partition) λ, and an integer
s, let us define the θ-tuple λ + s as having ith entry equal to λi + s, for each 1 ≤ i ≤ θ.
Recall that for two partitions λ,µ with length at most θ, we define [λ,µ] to be the θ-tuple
[λ,µ]i = λi −µθ+1−i, and lastly recall that the irreducible representations of GL(θ) can be
indexed by pairs of partitions λ,µ satisfying λT

1 + µT
1 ≤ θ. The following lemma is from

Section 6.2.2.
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Lemma 2.1.22. Let ρ, ξ be partitions with at most θ parts, and let

ψGL(θ)ρ ⊗ ψ
GL(θ)
[∅,ξ] = ⊕

λ,µ
λT

1+µT
1≤θ

b̂n,m,θ[λ,µ],(π,ξ)ψ
GL(θ)
[λ,µ] . (2.41)

Then b̂n,m,r[λ,µ],(π,ξ) = b
n,m,r
(λ,µ),(π,ξ) = c

[λ,µ]+ξ1
π,[∅,ξ]+ξ1, where the latter term is the Littlewood-Richardson

coefficient.
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Chapter 3

Schur-Weyl duality

Schur-Weyl duality is a powerful theory which connects and explores the representation
theory of several pairs of groups, or pairs of algebras. In each instance, it is essentially
an example of a general theorem of representation theory, the double centraliser theorem.
Let us state this theorem.

Theorem 3.0.1 (The double centraliser theorem). Let W be a complex vector space. Let
A ⊂ End(W ) be a semisimple subalgebra and let A′ = EndA(W ) ∶= {b ∈ End(W ) ∶ ab =

ba ∀a ∈ A}, its centraliser. Then:

1. A′ is also a semisimple algebra, and A′′ = A;

2. As a representation of A⊗A′, W decomposes as

W =
k

⊕
i=1
Ui ⊠ Vi, (3.1)

where Ui (resp. Vi), i = 1, . . . , k is an exhaustive list of pairwise non-isomorphic
irreducible representations of A (resp. A′).

The original version of Schur Weyl duality is for the pair of groups GL(θ) and Sn. Let
V be a complex vector space of dimension θ. Briefly, the space V ⊗n is a representation for
both GL(θ) and Sn, and these actions are each others’ centralisers. The double centraliser
theorem then decomposes the space V ⊗n as a module for GL(θ)×Sn, into a direct sum of
irreducibles Ui ⊠ Vi; this is the first half of the proof that we will give in this section. The
second half consists of using the Specht modules and highest weight theory from Chapter 2
to identify Ui⊠Vi as the irreducible ψGL(θ)ρ ⊠ψSnρ , where, note, the partition ρ indexing the
irreducible of Sn is the same as the θ-tuple ρ indexing the highest weight of the irreducible
of GL(θ). The irreducibles ψGL(θ)ρ ⊠ ψSnρ that appear are all those indexed by ρ ⊢ n with
at most θ parts and each appears once each.

One reason Schur-Weyl duality is powerful is that it gives a concrete realisation of every
irreducible polynomial representation of GL(θ) in some tensor power of V , and gives a
concrete realisation of every irreducible representation of Sn in V ⊗n, so long as θ ≥ n.
In particular, one can even define the irreducibles of GL(θ) and Sn as those that appear
in Schur-Weyl duality (once one has proved the first part of the theorem, as described
above, using the double centraliser theorem) and then work towards the highest weight
theory and Specht module theory. As noted above, in our case, we will go the other way
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around, and identify the irreducibles in V ⊗n using these theories. A second reason that
Schur-Weyl duality is powerful is that it intimately links the representation theories of
the two groups GL(θ) and Sn. Statements about one group can often be transferred into
statements about the other. We will see examples of this in Sections 5 and 6, for example
Lemma 5.7.1 and Lemma 6.2.3.

There are many other versions of Schur-Weyl duality. We will study, (in addition to
the GL(θ) − Sn version), two of them. Richard Brauer [19] proved the version linking
the orthogonal group O(θ) and the Brauer algebra Bn,θ, where note, the dimension θ of
V is the same as the multiplicative parameter θ of the Brauer algebra. The statement is
essentially the same as in the GL(θ)−Sn version. The irreducibles ψO(θ)

λ ⊠ψ
Bn,θ
λ appearing

in V ⊗n are those λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋, such that λT
1 + λ

T
2 ≤ θ. Note that in this case,

for fixed n and θ, often not all irreducibles of Bn,θ appear in tensor space. Let us note
that another version of Schur-Weyl duality analogously links the symplectic group Sp(θ)
and the Brauer algebra Bn,−θ for θ > 0 even. Since we will not use this version in our
applications, we omit it from our treatment in this work; however we note that its proof
follows almost identical lines to that of the O(θ) −Bn,θ version presented in this section.

The third version that we will study links GL(θ) and the walled Brauer algebra Bn,m,θ,
proved by [60] and [8]. The statement is essentially the same as in the GL(θ)−Sn version,
although the action of GL(θ) is different. The irreducibles ψGL(θ)[λ,µ] ⊠ ψ

Bn,m,θ
(λ,µ) appearing in

V ⊗n are those λ ⊢m−k,µ ⊢ n−m−k, 0 ≤ k ≤ min{m,n−m}, such that λT
1 +µ

T
1 ≤ θ. Note

that as in the Brauer algebra case, for fixed n,m and θ, often not all irreducibles of Bn,m,θ
appear in tensor space.

Let us recall that one of the objectives of this section is to present as unified, stream-
lined and self-contained an account of these Schur-Weyl dualities as possible, in particular
the O(θ) − Bn,θ and GL(θ) − Bn,m,θ versions, which often appear in partial forms in the
literature.

This section is organised into three parts. In the first part we will prove the double
centraliser theorem 3.0.1, and state our the three versions of Schur-Weyl duality precisely,
Theorems 3.0.2, 3.0.3, and 3.0.5. As discussed above, in the second part we use the
double centraliser theorem and a classical theory called invariant theory to prove each
of the duality statements, up to the specific identification of the irreducibles concerned.
Invariant theory is the study of functions on a vector space which are invariant under
the action of a group, usually a classical group. That is, if f ∶ V → C lies in the algebra
generated by V ∗, and a group G acts on V , then f is an invariant if f(gv) = f(v) for all
g ∈ G, v ∈ V . We usually denote the set of invariants by [V ]G. In the third part we will
prove Propositions 3.0.8, 3.0.11, and 3.0.12, which use the representation theory of the
groups and algebras we explored in Chapter 2 to identify the irreducibles appearing in the
tensor space in each statement.

3.0.1 Proof of the double centraliser theorem, and statements of Schur
Weyl Duality

Let us prove the double centraliser theorem. We follow Kraft and Procesi [63].
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Proof of the double centraliser theorem. Recall A is a semisimple subalgebra of End(W ),
W some complex vector space. Since A is semisimple, we can decompose W as a repre-
sentation of A into:

W ≅
k

⊕
i=1
U⊕ri
i , (3.2)

where Ui comprise an exhaustive list pairwise non-isomorphic irreducible representations
of A. By Schur’s lemma,

A′
= EndA(W ) = EndA(⊕ki=1U

⊕ri
i ) ≅

k

⊕
i=1

Matri(C), (3.3)

the last isomorphism coming from the fact that HomA(Ui, Uj) = δi,jC, where HomA(Ui, Uj)

is the set of algebra homomorphisms from Ui to Uj . Hence by Artin-Wedderburn, A′ is
semisimple, with a complete list of pairwise non-isomorphic irreducible representations
given by Vi ≅ Cri , i = 1, . . . , k. Now

W =
k

⊕
i=1
Ui ⊠ Vi, (3.4)

as a representation of A ⊗ A′. The density theorem gives that A = ⊕
r
i=1 EndC(Ui) ≅

⊕
k
i=1 Matsi(C), where si = dim(Ui). So as a representation of A′,

W ≅
k

⊕
i=1
V ⊕si
i , (3.5)

and then by a similar argument as before, EndB(W ) = EndB(⊕ki=1V
⊕si
i ) ≅⊕

k
i=1 Matsi(C) ≅

A, which completes the proof.
∎

We can now begin to study the specific instances of the double centraliser theorem
known as Schur-Weyl duality. Let us define precisely the actions of the relevant groups
and algebras on tensor space, and state the theorems.

Let V be a complex vector space of dimension θ. Let n ≥ 1. A basis {fi}
θ
i=1 of V

gives a basis {fi}, i = (i1, . . . , in), 1 ≤ ij ≤ θ, for the space V ⊗n. Recall in Section 2.1.5 we
defined a standard basis {ei}

θ
i=1 of V as being its own dual ei = e∗i , 1 ≤ i ≤ θ, with respect

to a non-degenerate, symmetric, bilinear product (⋅, ⋅). We call the basis {ei} the standard
basis of V ⊗n. Consider the action pGL(θ) of GL(θ) on the space V ⊗n given by n tensor
copies of the natural representation, that is,

pGL(θ)(g)(v1 ⊗⋯⊗ vn) = gv1 ⊗⋯⊗ gvn. (3.6)

Let us note that the corresponding action of the lie algebra gl(θ) is given by

X ⋅ (v1 ⊗⋯⊗ vn) =
n

∑
i=1
v1 ⊗⋯⊗Xvi ⊗⋯⊗ vn, (3.7)

for any X ∈ gl(θ). Consider the action pSn of the symmetric group Sn on the same space
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as

pSn(σ)(v1 ⊗⋯⊗ vn) = vσ−1(1) ⊗⋯⊗ vσ−1(n), (3.8)

and extended linearly to CSn; or, written differently, (and in particular in the standard
basis {ei} of V ⊗n), for a diagram σ ∈ Sn written in edge notation (2.5), σ =∏

n
j=1(j

N, σ(j)S),

[pSn(σ)]iN,iS =
n

∏
j=1

δi
jN ,iσ(j)S , (3.9)

where iN = (i1N , . . . , inN), iS = (i1S , . . . , inS) and 1 ≤ itξ ≤ θ for each ξ = N,S, 1 ≤ t ≤ n.

Theorem 3.0.2 (Schur-Weyl Duality for the symmetric and general linear groups). The
actions of GL(θ) and Sn on W = V ⊗n centralise each other, that is, EndCGL(θ)W =

pSn(CSn), and EndCSnW = pGL(θ)(CGL(θ)). Moreover, as a representation of GL(θ)×Sn,

V ⊗n
≅ ⊕
ρ⊢n
ρT

1≤θ

ψGL(θ)ρ ⊠ ψSnρ , (3.10)

where ψGL(θ)ρ is the irreducible representation of GL(θ) with highest weight ρ, and ψSnρ is
the irreducible representation of Sn corresponding to ρ.

Let (⋅, ⋅) be a non-degenerate, symmetric bilinear form on V , and recall the definition
of O(θ) from Section 2.1.5. Recall also that the standard basis {ei}

θ
i=1 of V is its own dual,

ei = e
∗
i , 1 ≤ i ≤ θ. We will also sometimes need the basis {fi}

θ
i=1 of V satisfying f∗i = fθ+1−i,

1 ≤ i ≤ θ, since we used it to construct the irreducibles of the orthogonal group.
One can check that if the standard basis {ei}

θ
i=1 and another basis {fi}

θ
i=1 are related

by the change of basis matrix M (i.e. fi = ∑θj=1Mi,jej for all i), then {f∗i }
θ
i=1 and {ei}

θ
i=1 =

{e∗i }
θ
i=1 are related by M -T, the inverse transpose of M . Then one can prove the equality

θ

∑
i=1
ei ⊗ ei =

θ

∑
i=1
fi ⊗ f

∗
i ∈ V ⊗2; (3.11)

or in other words, the vector ∑θi=1 fi ⊗ f
∗
i ∈ V ⊗2 is basis-independent.

Consider the action pO(θ) of O(θ) on the space V ⊗n given by pGL(θ) (3.6) restricted to
O(θ). Note that this induces an action of so(θ) on V ⊗n too, as (3.7) restricted to so(θ).
Consider the action pBn,θ of the Brauer algebra Bn,θ on the same space as pBn,θ((i, j)) = Ti,j ,
pBn,θ((i, j)) = Qi,j , where

Ti,j(v1 ⊗⋯⊗ vi ⊗⋯⊗ vj ⊗⋯⊗ vn) = (v1 ⊗⋯⊗ vj ⊗⋯⊗ vi ⊗⋯⊗ vn)

Qi,j(v1 ⊗⋯⊗ vi ⊗⋯⊗ vj ⊗⋯⊗ vn) = (vi, vj)
θ

∑
i=1

(v1 ⊗⋯⊗ fi ⊗⋯⊗ f∗i ⊗⋯⊗ vn),
(3.12)

where we have written Qi,j in terms of a general basis fi of V ⊗n, and it is well defined by
our observation (3.11). In particular, Qi,j projects V ⊗2 onto the one-dimensional space
spanned by the vector (3.11). Notice that when restricted to CSn, the function pBn,θ

becomes pSn . Written differently (and in particular in the standard basis ei of V ⊗n), for

41



a diagram b ∈ Bn written in edge notation (2.5), b = ∏n
j=1(bj , b

′
j), where bj , b′j ∈ {tξ ∶ ξ =

N,S, 1 ≤ t ≤ n},

[pBn,θ(b)]iN,iS =
n

∏
j=1

δibj ,ib′j
, (3.13)

where iN = (i1N , . . . , inN), iS = (i1S , . . . , inS) and 1 ≤ itξ ≤ θ for each ξ = N,S, 1 ≤ t ≤ n.

Theorem 3.0.3 (Schur-Weyl Duality for the Brauer algebra and Orthogonal group).
The actions of O(θ) and Bn,θ on W = V ⊗n centralise each other, that is, EndCO(θ)W =

pBn,θ(Bn,θ), and EndBn,θW = pO(θ)(CO(θ)). Moreover, as a representation of CO(θ) ⊗

Bn,θ,

V ⊗n
≅

⌊n2 ⌋
⊕
k=0

⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ , (3.14)

where ψO(θ)
λ , ψBn,θ

λ are pairwise non-isomorphic irreducible representations of O(θ) and
Bn,θ respectively, each corresponding to the partition λ.

Remark 3.0.4. Let us note that in this work we will not quite prove that the represen-
tation ψBn,θ

λ that appears in Theorem 3.0.3 is the irreducible of Bn,θ defined in Theorem
2.1.11; we will only prove that the ψBn,θ

λ in Theorem 3.0.3 are pairwise non-isomorphic
irreducibles of Bn,θ, and that each ψBn,θ

λ is a quotient of the cell module ∆Bn,θ
λ . This will

be enough for the purposes of the applications of Schur-Weyl duality in Sections 5 and 6.

Recall that for a linear map A ∶ V → V , the adjoint of A with respect to (⋅, ⋅) is the
linear map A∗ satisfying (Av,u) = (v,A∗u) for all v, u ∈ V . If A has matrix Af in the
basis {fi}

θ
i=1, then A∗ has matrix AT

f (the transpose of Af ) in the basis {f∗i }
θ
i=1. So, with

both written in the standard basis, the matrix of A∗ is the transpose of the matrix of A.
Let n,m ∈ N with 0 ≤ m < n. Consider the action qGL(θ) of GL(θ) on the space

V ⊗m⊗(V ∗)⊗n−m given by m tensor copies of the natural representation, and n−m tensor
copies of the dual of the natural representation, that is,

qGL(θ)(g)(v1 ⊗⋯⊗ vm ⊗ vm+1 ⊗⋯⊗ vn) = (gv1 ⊗⋯⊗ gvm ⊗ g−∗vm+1 ⊗⋯⊗ g−∗vn), (3.15)

where g−∗ is the adjoint of g−1. In the standard basis this is just g-T, the inverse transpose
of g (or, if we assume that g−∗ is written in the dual basis of whichever basis we are
using for V , then g−∗ is the inverse-transpose of the matrix of g). Note that the action of
the lie algebra gl(θ) is therefore the same as (3.7), but with X ∈ gl(θ) acting as −X∗ on
the tensor factors from V ∗. For example, in a given basis {fi}

θ
i=1, under the action of a

diagonal matrix H = (hi,i)
θ
i=1 ∈ gl(θ), the basis vector fi is scaled by hi,i, and the vector f∗i

is scaled by −hi,i. Consider the action pBn,m,θ of the walled Brauer algebra Bn,m,θ on the
same space as the restriction of pBn,θ from the Brauer algebra Bn,θ to the walled Brauer
algebra.

Theorem 3.0.5 (Schur-Weyl Duality for the walled Brauer algebra). The actions of
GL(θ) and Bn,m,θ on W = V ⊗m ⊗ (V ∗)⊗n−m centralise each other, that is, we have
EndCGL(θ)W = pBn,m,θ(Bn,m,θ), and EndBn,m,θW = qGL(θ)(CGL(θ)). Moreover, as a rep-
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resentation of CGL(θ)⊗Bn,m,θ,

V ⊗m
⊗ (V ∗

)
⊗n−m

≅

min{m,n−m}
⊕
k=0

⊕
λ⊢m−k, µ⊢n−m−k

λT
1+µT

1≤θ

ψ
GL(θ)
[λ,µ] ⊠ ψ

Bn,m,θ
(λ,µ) , (3.16)

where ψGL(θ)[λ,µ] is the irreducible representation of GL(θ) with highest weight [λ,µ], and

ψ
Bn,m,θ
(λ,µ) is the irreducible representation of Bn,m,θ corresponding to the pair (λ,µ).

Remark 3.0.6. Let us note that, similarly to the Brauer algebra case, in this work we
will not quite prove that the representation ψBn,m,θ

(λ,µ) that appears in Theorem 3.0.5 is the
irreducible of Bn,m,θ defined in Theorem 2.1.13; we will only prove that the ψBn,m,θ

(λ,µ) in
Theorem 3.0.5 are pairwise non-isomorphic irreducibles of Bn,m,θ, and that each ψ

Bn,m,θ
(λ,µ)

is a quotient of the cell module ∆Bn,m,θ
(λ,µ) . This will be enough for the purposes of the

applications of Schur-Weyl duality in Sections 5 and 6.

As noted earlier in this section, we will present proofs of each of these Theorems 3.0.2,
3.0.3, and 3.0.5, each coming in two parts. In each case, the first part, in Section 3.0.2,
proves a decomposition of the form (3.1) using the double centraliser theorem and the
specific irreducible representations in the decomposition are not identified; we only prove
that they are irreducible and pairwise non-isomorphic. In order to employ the double
centraliser theorem, it needs to be proved in each case that the action of one of the algebras
(resp. groups) centralises the other. This is proved using invariant theory, in particular (the
multilinear versions of) the First Fundamental Theorems of invariant theory for GL(θ)
and O(θ), Theorems 3.0.9 and 3.0.10. Theorem 3.0.10 is the only statement which we do
not prove ourselves, since it would require a lengthy detour into invariant theory.

The second part of each of the proofs explicitly constructs and thereby identifies the
irreducibles, making use of Young symmetrisers, the Specht modules, and the highest
weight theory of Chapter 2. These second parts will be proved in Section 3.0.3. For the
invariant theory part we mainly follow Kraft and Procesi [63], and for the second part
we follow Benkart, Britten and Lemire [43], and Benkart et al. [8], with some ideas from
Goodman and Wallach [44].

3.0.2 Invariant theory proofs of Schur-Weyl duality

Proof of Theorem 3.0.2. In order to use the double centraliser theorem 3.0.1, we need to
show that EndSnW = pGL(θ)(CGL(θ)). By inspection, it is clear that the right hand side
is contained in the left; it remains to prove that this containment is equality. As noted
above, the rest of Theorem 3.0.2 (minus the identification of the irreducibles) follows from
the double centraliser theorem. The following lemma follows the lemma in Section 3.1 of
[63].

Lemma 3.0.7. Let V be a finite dimensional complex vector space. Then the linear span
of the tensors v⊗⋯⊗ v ∈ V ⊗n is the subspace Σn of all tensors invariant under the action
pSn of Sn.

Proof. Let {fi}
θ
i=1 be a basis of V ; then {fi = f(i1,...,in) ∶ 1 ≤ ij ≤ θ, 1 ≤ j ≤ n} is a basis

of V ⊗n which is stable under the action of Sn. Each orbit of this action has a unique

43



representative of the form fh1
1 ⊗⋯ ⊗ fhθθ , where h1 + ⋯ + hθ = n. Let rh1,...,hθ denote the

sum of the elements in this orbit; the set of these rh1,...,hθ is a basis Σn. We need to show
that the tensors v ⊗⋯⊗ v span this space. It suffices to show that any linear functional
η ∶ Σn → C which is zero on all tensors v ⊗⋯⊗ v is the zero functional. Let v = ∑θi=1 vifi,
then v ⊗⋯⊗ v = ∑∑hi=n v

h1
1 ⋯vhθθ rh1,...,hθ , so

η(v⊗n) = ∑
∑hi=n

ah1,...,hθv
h1
1 ⋯vhθθ , (3.17)

where ah1,...,hθ ∶= η(rh1,...,hθ). Hence η(v⊗n) can be viewed as a polynomial in the coeffi-
cients v1, . . . , vθ; by assumption it vanishes on all v⊗n, so it must be the zero polynomial,
so each ah1,...,hθ must be zero, so η must be the zero functional. ∎

Now note that the algebra End(V ⊗n) is canonically isomorphic to End(V )⊗n. This
isomorphism induces a map from GL(θ) to End(V )⊗n: g ∈ GL(θ) sent to g⊗n; and an
action of Sn on End(V )⊗n: σ ∈ Sn acts as σ(A1 ⊗ ⋯ ⊗ An) = Aσ−1(1) ⊗ ⋯ ⊗ Aσ−1(n).
Now the isomorphism of End(V ⊗n) and End(V )⊗n induces an isomorphism between the
set Σn of maps in End(V )⊗n invariant under this action of Sn, and EndSnW . Then by
the lemma, the span of the image of the action of GL(θ) is exactly Σn. The statement
EndCGL(θ)W = pSn(CSn) follows.

Now by the double centraliser theorem 3.0.1, we have

V ⊗n
=

k

⊕
i=1
ψ
GL(θ)
i ⊠ ψSni , (3.18)

where ψGL(θ)i (resp. ψSni ) are an exhaustive list of pairwise non-isomorphic representations
of pGL(θ)(CGL(θ)) (resp. pSn(CSn)). These algebras are quotients of CGL(θ) and CSn
respectively, so ψGL(θ)i (resp. ψSni ) are a (possibly not exhaustive) list of pairwise non-
isomorphic representations of GL(θ) (resp. Sn). Theorem 3.0.2 now follows from the
following proposition, which identifies the specific irreducible representations ψGL(θ)i and
ψSni . ∎

Proposition 3.0.8. The irreducible representations ψGL(θ)i (resp. ψSni ) appearing in (3.18)
are the irreducible representations ψGL(θ)ρ with highest weight ρ (resp. ψSnρ ) where ρ runs
over all partitions of n with at most θ parts.

This proposition is the second part of the proof of Theorem 3.0.2. We will prove it in
Section 3.0.3.

Our working so far allows us to prove (the multilinear version of) the First Fundamental
Theorem of invariant theory (for GL(θ)), which we will use in the proof of the walled
Brauer algebra version of Schur-Weyl duality. As noted earlier, invariant theory studies
functions on a vector space which are invariant under the action of a group. Specifically,
let G = GL(θ) or O(θ) act on W ⊕W ∗ = V ⊕n ⊕ (V ∗)⊕n as n direct summands of the
natural representation, and n direct summands of its dual. (Note the dual of the natural
representation of O(θ) is itself). Then an invariant for G on W ⊕ W ∗ is a function
f ∶W ⊕W ∗ → C which lies in the algebra generated by the linear functionals (W ⊕W ∗)∗
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(i.e. polynomials of functionals), which satisfies f(gv) = f(v) for all g ∈ G and v ∈W ⊕W ∗.
We denote the set of invariants by [W ⊕W ∗]G. An invariant is multilinear if it is linear
in each of the 2n arguments from the 2n direct summands.

Theorem 3.0.9 (Multilinear FFT for GL(θ) [104]). Let n ∈ N. Let GL(θ) act on V ⊕n ⊕

(V ∗)⊕n as n direct summands of the natural representation, and n direct summands of
its dual. Let (⋅, ⋅)iN,jS(v1N ⊕ ⋯ ⊕ vnN ⊕ w1S ⊕ ⋯ ⊕ wnS) = (viN ,wjS) ∶= wjS(viN) for each
1 ≤ i ≤ n, 1 ≤ j ≤ n, viN ∈ V , wjS ∈ V ∗. Then the space of multilinear GL(θ) invariants on
V ⊕n ⊕ (V ∗)⊕n is spanned by σ =∏

n
j=1(⋅, ⋅)jN,σ(j)S, where σ ∈ Sn.

Proof. We follow Section 4 of [63]. Let W = V ⊗n and W+ = V ⊕n. Let GL(θ) act on
W ⊗W ∗ as n tensor copies of the natural representation and n tensor copies of its dual;
let GL(θ) act on W ⊕W ∗ the same, but with tensor products replaced with direct sums.
We have two canonical isomorphisms of vector spaces:

EndCGL(θ)W ≅ [(W ⊗W ∗
)
∗
]
GL(θ)

≅ C[W+ ⊕W
∗
+ ]
GL(θ)
multi , (3.19)

where [(W ⊗W ∗)∗]GL(θ) is the set of linear functionals on W ⊗W ∗ that are invariant
under the action of GL(θ), and C[W+ ⊕W ∗

+ ]
GL(θ)
multi is the set of multilinear polynomials

on W+ ⊕W ∗
+ invariant under the action of GL(θ). The first isomorphism is given by

α0 ∶ EndCGL(θ)W → [(W ⊗W ∗)∗]GL(θ) as α0(A)(v⊗w∗) = w∗(A(v)). It is straightforward
to check that α0 is linear. With the standard basis {ei} of V , we can write its inverse
as [α−1

0 (f)]iN ,iS = f(eiN ⊗ eiS) (and so in particular, α0 is a bijection). The second
isomorphism is given by α1 ∶ C[W+ ⊕W ∗

+ ]
GL(θ)
multi → [(W ⊗W ∗)∗]GL(θ) as

α1(F )(v1 ⊗⋯⊗ vn ⊗w1 ⊗⋯⊗wn) = F (v1 ⊕⋯⊕ vn ⊕w1 ⊕⋯⊕wn); (3.20)

once again α1 is linear and its inverse is straightforward to write down. Now from our
working above in the proof of Theorem 3.0.2, the leftmost expression in (3.19) is pSn(CSn),
and, using (3.9), it is straightforward to check that under the map α−1

1 ○ α0, the elements
pSn(σ), σ ∈ Sn, are precisely the maps σ = ∏

n
j=1(⋅, ⋅)jN,σ(j)S . This completes the proof of

Theorem 3.0.9. ∎

Let us now state the equivalent statement for the Orthogonal group. This theorem is
due to Weyl [104]. We will not give a proof for this theorem, as it would require too long
a deviation into invariant theory; Kraft and Procesi [63] gives a full proof. Note that for
the Orthogonal group, the natural representation is self-dual, as each g ∈ O(θ) satisfies,
in the standard basis, g-T = g. Recall that we can identify V and V ∗ via the canonical
isomorphism L (2.17), so the product (v,w) makes sense for any v,w ∈ V or V ∗.

Theorem 3.0.10 (FFT for O(θ) [104]). Let n ∈ N. Let O(θ) act on V ⊕n ⊕ (V ∗)⊕n as 2n
direct summands of the natural representation. Let (⋅, ⋅)ξ,η(v1N ⊕⋯⊕ vnN ⊕ v1S ⊕⋯⊕ vnS) =

(vξ,wη) for each ξ, η = iN or iS, 1 ≤ i ≤ n, viN ∈ V , vjS ∈ V ∗. Then the space of multilinear
O(θ) invariants on V ⊕n ⊕ (V ∗)⊕n is spanned by b = ∏

n
j=1(⋅, ⋅)bj ,b′j , where b ∈ Bn, and

b =∏n
j=1(bj , b

′
j) written in edge notation (2.5).

We can now prove (the first parts of) Theorems 3.0.3 and 3.0.5, the Schur-Weyl dualities
for the Brauer and walled Brauer algebras. We follow Kraft and Procesi [63] and Lemma
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1.2 of Koike [60].

Proof of Theorems 3.0.3 and 3.0.5. Let W = V ⊗m ⊗ (V ∗)⊗n−m = V ⊗m ⊗ V ⊗n−m and W+ =

V ⊕m ⊕ (V ∗)⊕n−m = V ⊕m ⊕ V ⊕n−m. Recall that GL(θ) and O(θ) act on W (resp. W+) as
m tensor powers (resp. direct summands) of the natural representation and n −m tensor
powers (resp. direct summands) of its dual (where, note, the natural representation of
O(θ) is its own dual).

The proofs follow the structure of that of Theorem 3.0.2: we first prove the state-
ments EndCO(θ)W = pBn,θ(Bn,θ) and EndCGL(θ)W = pBn,m,θ(Bn,m,θ), and then the double
centraliser theorem 3.0.1 gives us the rest, minus the identification of the irreducibles in
the decompositions of W . Note that for each statement EndCO(θ)W = pBn,θ(Bn,θ) and
EndCGL(θ)W = pBn,m,θ(Bn,m,θ), one can straightforwardly check that the right hand side
is contained in the left - what remains is to show that this containment is equality. The
proofs follow our proof above of the First Fundamental Theorem 3.0.9, but in reverse.
Indeed, we have two canonical isomorphisms of vector spaces:

EndCGW ≅ [(W ⊗W ∗
)
∗
]
G
≅ C[W+ ⊕W

∗
+ ]
G
multi, (3.21)

where G = GL(θ) or O(θ), and the invariance is with respect to the actions of GL(θ) and
O(θ) described above. The isomorphisms are the same as the α0 and α1 described in the
proof of Theorem 3.0.2; in particular for f ∈ [(W ⊗W ∗)∗]G, α−1

0 (f) ∈ EndCGW as, in the
standard basis, [α−1

0 (f)]iN ,iS = f(eiN ⊗eiS). Now in the O(θ) case, the First Fundamental
Theorem 3.0.10 gives a basis for the right hand side of (3.21) as b = ∏n

j=1(⋅, ⋅)bj ,b′j , where
b ∈ Bn. Now passing these functions through the isomorphism α−1

0 ○ α1 gives precisely
pBn,θ(b), b ∈ Bn; see the edge notation version of pBn,θ(b) (3.13); this gives EndCO(θ)W =

pBn,θ(Bn,θ). An identical proof can show EndCGL(θ)W = pBn,m,θ(Bn,m,θ), one only needs
to modify the First Fundamental Theorem 3.0.9 for GL(θ) by rearranging the summands
V and V ∗ to obtain:

C[W+ ⊕W
∗
+ ]
GL(θ)
multi = span

⎧⎪⎪
⎨
⎪⎪⎩

b =
n

∏
j=1

(⋅, ⋅)bj ,b′j ∶ b ∈ Bn,m

⎫⎪⎪
⎬
⎪⎪⎭

. (3.22)

Now the double centraliser theorem 3.0.1 gives us, in the two cases (G,A) = (O(θ),Bn,θ)
and (GL(θ),Bn,m,θ),

V ⊗n
=

k

⊕
i=1
ψGi ⊠ ψAi , (3.23)

where ψGi (resp. ψAi ) are a (possibly not exhaustive) list of pairwise non-isomorphic rep-
resentations of G (resp. A). Theorems 3.0.3 and 3.0.5 now follow from the following two
propositions, which will be proved in the following Section 3.0.3. ∎

Proposition 3.0.11. The irreducible representations ψO(θ)
i (resp. ψBn,θ

i ) appearing in
(3.23) are the irreducible representations ψO(θ)

λ (resp. ψBn,θ
λ ) where λ runs over all parti-

tions of n − 2k, 0 ≤ k ≤ ⌊n2 ⌋, and λ
T
1 + λ

T
2 ≤ θ.

Proposition 3.0.12. The irreducible representations ψGL(θ)i (resp. ψBn,m,θ
i ) appearing in

(3.23) are the irreducible representations ψGL(θ)[λ,µ] with highest weight [λ,µ] (resp. ψBn,m,θ
(λ,µ) )

where λ,µ run over all partitions of m−k,n−m−k, 0 ≤ k ≤ min{m,n−m}, with λT
1 +µ

T
1 ≤ θ.
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3.0.3 Constructing irreducibles in Schur-Weyl duality

In this section, we present constructive proofs of Propositions 3.0.8, 3.0.11, and 3.0.12.
We follow and adapt the arguments of Benkart, Britten and Lemire [43], Benkart et al.
[8], and Goodman and Wallach [44]. In the first two of those works, in the Brauer and
walled Brauer cases, the theorems are proved in the cases θ ≥ n. As noted in Section 2.1.3
and 2.1.4, in this range the Brauer and walled Brauer algebras are semisimple, and we
have a full description of their irreducible representations - they are the cell modules from
Lemmas 2.1.11 and 2.1.13. In the general case, the irreducibles are quotients of the cell
modules. Goodman and Wallach prove statements for arbitrary θ, n, but only study the
image of the Brauer algebra in tensor space, not the full algebra.

While the three proofs of the Propositions are very similar, we present the proof of
Proposition 3.0.8 first, as it is simpler and serves as a prototype for the other two. For
the rest of this section we will use the specific basis of V , {fi}θi=1, where f∗i = fθ+1−i for all
i, as this is the basis used when we defined our representations of the classical groups in
Section 2.1.5.

Proof of 3.0.8. Recall the definition of the Young symmetriser zτ (2.4), for τ ∈ ST (N )

the set of standard Young tableaux with entries N = {1, . . . , n} and some shape ρ, ρ a
partition of n. Recall (2.1.9) we have

CSn = ⊕
τ∈ST (N )

zτCSn, (3.24)

where each zτCSn is a minimal right ideal of CSn. Now,

V ⊗n
= CSnV ⊗n

= ∑
τ∈ST (N )

zτV
⊗n. (3.25)

Consider the vector
zτβτ ∈ zτV

⊗n, (3.26)

where βτ = fi1 ⊗⋯⊗ fin , where ij is equal to the row in which the number j appears in τ .
Let us break down what we will prove.

Lemma 3.0.13. 1. If zτV ⊗n is non-zero, then it is the irreducible module ψGL(θ)ρ of
GL(θ) with highest weight ρ, where ρ is the shape of τ ;

2. The space zτV ⊗n is non-zero if and only if ρ has at most θ parts, where ρ is the
shape of τ ;

3. The vectors zτβτ , as τ ranges over ST (N ) of shape with at most θ parts, are linearly
independent;

4. The space Mρ spanned by the vectors zτβτ with τ shape ρ is a copy of the irreducible
ψSnρ of Sn.

Together, Parts 1 to 3 Lemma 3.0.13 shows us that the sum in (3.25) is direct (over
τ with shape having at most θ parts), and that it is the decomposition of V ⊗n into ir-
reducibles ofGL(θ). Adding part 4 gives us the decomposition of V ⊗n from Theorem 3.0.2.
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Proof. Let us prove part 1 from the lemma. Indeed, since the actions of GL(θ) and
Sn commute, zτV ⊗n is indeed a GL(θ) module. If it is reducible, then there must be
a projection u onto a non-zero submodule. This u commutes with the action of GL(θ),
so since we have already proved EndCGL(θ)W = pSn(CSn), it must be the action of some
u′ ∈ CSn. Now

0 ≠ uzτV ⊗n
⊊ zτV

⊗n, (3.27)

which implies, by applying the zτ on the left, which is the identity map on zτV ⊗n,

0 ≠ zτuzτV ⊗n
⊊ zτV

⊗n. (3.28)

Then 0 ≠ zτuzτCSn ⊊ zτCSn, which contradicts zτCSn being a minimal right ideal of CSn.
So zτV ⊗n is indeed an irreducible of GL(θ).

Recall the highest weight theorem (2.1.16). We can show that zτβτ is a highest weight
vector in the representation zτV

⊗n with weight ρ. A simple calculation shows that the
weight of βτ is ρ, and since the action of GL(θ) commutes with zτ , zτβτ also has weight
ρ. To prove zτβτ is maximal, it suffices to show that it is killed by each weight vector
Ei,j ∈ gl(θ). We have that Ei,jβτ is zero, or a sum of tensors β′τ that look like βτ , but
with one fj changed to fi; for each σ ∈ R(τ), and each β′, there is some (x, y) ∈ C(τ)

which leaves σβ′τ invariant - this gives Ei,jzτβτ = zτEi,jβτ = ∑ zτβ′τ = 0. Hence zτβτ is a
highest weight vector of weight ρ, and so by the highest weight theorem zτV

⊗n is a copy
of ψGL(θ)ρ .

Let us prove part 2 of the lemma, that zτV ⊗n = 0 if and only if τ has shape ρ, and ρ has
more than θ parts. Indeed, notice that zτV ⊗n is a set of tensors which are antisymmetric
in the indices which appear in the first column of τ , so if ρ has more than θ parts, then
zτV

⊗n = 0. Say ρ has at most θ parts. Notice that all the σ ∈ R(τ) fix βτ , and only
id ∈ C(τ) does; the rest of σ ∈ C(τ) sends βτ to other basis vectors of V ⊗n. Now expanding
zτβτ in the basis, we see that the coefficient of βτ is ∣R(τ)∣, so zτβτ ≠ 0, and so zτV ⊗n ≠ 0.

Let us prove part 3 of the lemma, that these highest weights zτβτ (the ones which are
non-zero) are linearly independent. Assume

∑
ρ⊢n
ρT

1≤θ

∑
τ∈ST (ρ)

aτzτβτ = 0, (3.29)

where the aτ are a collection of complex coefficients. If τ, τ ′ have different shapes, then βτ
and βτ ′ have different tensor factors, and since the symmetrisers just permute the factors,
we can see that the sums of terms with different shape diagrams are linearly independent.
So assume

∑
τ∈ST (ρ)

aτzτβτ = 0, (3.30)

for some ρ ⊢ n, ρT
1 ≤ θ. Let τ ′ be the smallest τ of shape ρ in the ordering < with aτ ′ ≠ 0,

and recall Lemma (2.1.8) regarding this ordering. Then 0 = zτ ′0 = ∑τ∈ST (ρ) aτzτ ′zτβτ =

aτ ′zτ ′βτ ′ , since zτzτ ′ = 0 if τ > τ ′. Now aτ ′ = 0, which is a contradiction; hence all aτ = 0.

Part 4 of the lemma follows from the definition of the irreducible representation ψSnρ
and part 3 of the lemma. ∎
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Hence ⊕τ∈ST (ρ) zτV
⊗n ≅ ψGL(θ)ρ ⊠ ψSnρ , which gives the decomposition:

V ⊗n
= ⊕
ρ⊢n
ρT

1≤θ

⊕
τ∈ST (ρ)

zτV
⊗n

≅ ⊕
ρ⊢n
ρT

1≤θ

ψGL(θ)ρ ⊠ ψSnρ , (3.31)

which completes the proof of Proposition 3.0.8, and therefore also Theorem 3.0.2.
∎

The proofs of the Brauer and walled Brauer cases, Propositions 3.0.11 and 3.0.12,
follow the basic structure of that of 3.0.8, with two exceptions: that the decomposition of
V ⊗n is more complicated, and that the equivalent highest weight vectors to zτβτ are no
longer necessarily linearly independent. The latter reflects the fact that for θ < n, the cell
modules of the Brauer algebra are sometimes no longer irreducible. The key step in the
proofs is showing that the decomposition is essentially given by decomposing a subspace of
tensor space known as the traceless or harmonic tensors. In order to define these tensors,
and to describe how the decomposition of tensor space is different from the Sn case, let
us introduce some notation.

Let Q(k) be the set of lists (t, t′), where t = (t1, . . . , tk), t′ = (t′1, . . . , t
′
k), the ti, t′i ∈ N =

{1, . . . , n} all distinct, ti increasing in i and ti < t′i. Let Q′(k) be the set of (t, t′) ∈ Q(k)

such that ti ≤ m < t′i, for all i = 1, . . . , k. For a pair (t, t′) ∈ Q(k), let (t, t′)c be the set of
elements of N which do not appear in t or t′. For (t, t′) ∈ Q(k), define Qt,t′ = Qt1,t′1⋯Qtk,t′k .
This is the action of the diagram (t, t′) ∶=∏s

i=1(ti, t
′
i) ∈ Bn on tensor space. Note if t = (i),

t′ = (j) then Qt,t′ = Qi,j , and note that Qt,t′ arises from the action of an element of the
walled Brauer algebra Bn,m,θ if and only if (t, t′) ∈ Q′(k).

For ease of notation, let Wn = V
⊗n and Wn,m = V ⊗m⊗ (V ∗)⊗n−m. Let W k

n be the span
of all Qt,t′Wn with ∣t∣ = ∣t′∣ = k. Note this is the image of Bkn,θ in Wn, where recall Bkn,θ
is the span of diagrams in the Brauer algebra Bn,θ with at least k bars. Then let [Wn]

k

be the subspace of W k
n which is killed by any Qt,t′ with ∣t∣ = ∣t′∣ = k + 1, or equivalently,

any Qi,j with i, j ∈ (t ∪ t′)c. Then W k
n = [Wn]

k ⊕W k+1
n . The sets W k

n,m and [Wn,m]k

are defined similarly (i.e. only (t, t′) ∈ Q′(k) are allowed to act on Wn,m), and we have
W k
n,m = [Wn,m]k ⊕W k+1

n,m . Note we define [Wn]
⌊n2 ⌋ as just W ⌊n2 ⌋

n (and [Wn,m]min{m,n−m} as
W

min{m,n−m}
n,m ). This provides direct sum decompositions

Wn =

⌊n2 ⌋
⊕
k=0

[Wn]
k,

Wn,m =

min{m,n−m}
⊕
k=0

[Wn,m]
k,

(3.32)

and importantly, each [Wn]
k (resp. [Wn,m]k) is invariant under the action of both Bn,θ

and O(θ) (resp. Bn,m,θ and GL(θ)), so this is a decomposition of Wn (resp. Wn,m) into
submodules of CO(θ)⊗Bn,θ (resp. CGL(θ)⊗Bn,m,θ). Combining this with (3.23), it suffices
to identify the irreducibles ψO(θ)

i ⊠ ψ
Bn,θ
i contained in each [Wn]

k (resp. ψGL(θ)i ⊠ ψ
Bn,m,θ
i

contained in each [Wn,m]k).

Proofs of Propositions 3.0.11 and 3.0.12. The key idea in the proof is that all the infor-
mation we need is in the decomposition of [Wn]

0 - this space is known as the traceless, or
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harmonic, tensors. The proof therefore comes in two parts. The first part (Lemma 3.0.14)
will decompose the traceless tensors [Wn]

0 (resp. [Wn,m]0). Then the second part will
show that we can decompose the rest of the summands [Wn]

k (resp. [Wn,m]k) using the
decomposition of the traceless tensors.

Let us begin the first part, decomposing [Wn]
0 ⊂ Wn (resp. [Wn,m]0 ⊂ Wn,m), which,

recall, is the space killed by all Qi,j (resp. Qi,j with 1 ≤ i ≤m < j ≤ n).

Proposition 3.0.14. As a representation of CO(θ) ⊗ Bn,θ (resp. CGL(θ) ⊗ Bn,m,θ), we
have

[Wn]
0
≅ ⊕

λ⊢n
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ ,

[Wn,m]
0
≅ ⊕

(λ,µ)⊢(m,n−m)
λT

1+µT
1≤θ

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
(λ,µ) .

(3.33)

Proof. As noted above, [Wn]
0 ⊂Wn (resp. [Wn,m]0 ⊂Wn,m) is invariant under the action

of CO(θ)⊗Bn,θ (resp. CGL(θ)⊗Bn,m,θ). Moreover, since [Wn]
0 (resp. [Wn,m]0) is killed

by any b ∈ Bn ∖Sn (resp. b ∈ Bn,m ∖ (Sm ×Sn−m)), we must have that Bn,θ acts as CSn on
[Wn]

0 (resp. Bn,m,θ acts as C(Sm × Sn−m) on [Wn,m]0). Moreover from the definition of
the cell and irreducible modules (Lemma 2.1.11) any irreducible of ψBn,θ

λ of Bn,θ appearing
in [Wn]

0 must have λ ⊢ n (Similarly from Lemma 2.1.13, if ψBn,m,θ
(λ,µ) appears in [Wn,m]0

we must have (λ,µ) ⊢ (m,n −m)).
Recall we already know from the invariant theory parts of the proofs (3.23) that Wn

(resp.Wn,m) decomposes intro irreducibles Ui⊠Vi. So, as a representation of CO(θ)⊗Bn,θ
(resp. CGL(θ)⊗Bn,m,θ),

[Wn]
0
≅⊕
λ∈Λ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ ,

[Wn,m]
0
≅ ⊕

(λ,µ)∈Λ′

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
(λ,µ) ,

(3.34)

where Λ is some set of partitions λ ⊢ n, with λ some partition of some size satisfying
λT

1 + λT
2 ≤ θ (and respectively, Λ′ is a set of pairs of partitions (λ,µ) ⊢ (m,n −m), and

(λ,µ) is some θ-tuple of non-increasing integers). Our first job is to identify the sets Λ and
Λ′, that is, determine which irreducibles of Bn,θ (resp. Bn,m,θ) lie in the traceless tensors.
Let us recall from the GL(θ) − Sn duality:

Wn ≅ ⊕
ρ⊢n
ρT

1≤θ

ψGL(θ)ρ ⊠ ψSnρ ;

Wn,m ≅ ⊕
(λ,µ)⊢(m,n−m)

λT
1 ,µ

T
1≤θ

(ψ
GL(θ)
λ ⊗ ψ

GL(θ)
[∅,µ] ) ⊠ (ψSm×Sn−m(λ,µ) ) ,

(3.35)

where the second identity has used the dual of the first as a representation of GL(θ) (recall
from Lemma 2.1.19 that the dual of ψGL(θ)µ is ψGL(θ)[∅,µ] ).

Notice that ψSnρ must either be a subspace of [Wn]
0, or satisfy ψSnρ ∩[Wn]

0 = 0; indeed,
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since [Wn]
0 is preserved by Sn, we see that ψSnρ ∩ [Wn]

0 is a subrepresentation of ψSnρ , so
it must be all of ψSnρ , or zero. Similarly, ψSm×Sn−m(λ,µ) ⊂ [Wn,m]0 or their intersection is zero.
The following lemma determines which ψSnρ lie in [Wn]

0 (resp. ψSm×Sn−m(λ,µ) lie in [Wn,m]0).

Lemma 3.0.15. 1. The space ψSnρ is a subset of [Wn]
0 if ρT

1 + ρ
T
2 ≤ θ, and otherwise

ψSnρ ∩ [Wn]
0 = 0;

2. The space ψSm×Sn−m(λ,µ) is a subset of [Wn,m]0 if λT
1 +µ

T
1 ≤ θ, and otherwise ψSnρ ∩[Wn]

0 =

0.

Proof. We follow the proof of Theorem 10.2.5 of [44]. For part 1, for each ρ ⊢ n, ρT
1 ≤ θ,

we take the (highest weight) vector zτβτ (3.26) in ψSnρ (for some τ shape ρ), and show
that it lies in [Wn]

0 if and only if ρT
1 + ρT

2 ≤ θ. Then by our remark above, the lemma
follows. Similarly for part 2, we show the (highest weight) vector zτβτ ⊗ zπβπ ∈ ψSm×Sn−m(λ,µ)
lies in [Wn]

0 if and only if λT
1 + µ

T
1 ≤ θ; this suffices.

Notice that if we pick τ , shape λ ⊢ n, with first column numbered 1,2, . . . , λT
1 , second

column numbered λT
1 + 1, . . . , etc, then we can write the highest weight vector zτβτ (3.26)

as
zτβτ = (f1 ∧⋯ ∧ fλT

1
)⊗⋯⊗ (f1 ∧⋯ ∧ fλT

s
), (3.36)

where λ has s columns. Similarly if τ shape λ ⊢ m, π shape µ ⊢ n − m are defined
analogously to the τ above, then

zτβτ ⊗zπβπ = (f1∧⋯∧fλT
1
)⊗⋯⊗(f1∧⋯∧fλT

s
)⊗(f1∧⋯∧fλT

1
)⊗⋯⊗(f1∧⋯∧fλT

s
). (3.37)

Notice that for 1 ≤ i < j ≤ p, using Qi,j = Qi,jTi,j and the antisymmetry of the wedge
product,

Qi,j(f1 ∧⋯ ∧ fp) = Qi,jTi,j(f1 ∧⋯ ∧ fp) = −Qi,j(f1 ∧⋯ ∧ fp), (3.38)

so both sides are zero. Then consider Qi,j(f1∧⋯∧fp)⊗(f1∧⋯∧fq), with 1 ≤ i ≤ p < j ≤ p+q.
If p+ q ≤ θ then no pair of indices appears in the wedge product which sum to θ+1, so the
result is zero by the definition of Qi,j and the basis {fi}

θ
i=1. Now say p + q ≥ θ + 1. Then

there is a pair i, j such that the indices at positions i and j sum to θ + 1. Calculations
then yield that

Qi,j(f1∧⋯∧fp)⊗(f1∧⋯∧fq) =
p

∑
l=θ+1−q

(f1∧⋯∧ f̂l∧⋯∧fp)⊗(f1∧⋯∧ f̂θ+1−l∧⋯∧fq), (3.39)

where the factors f̂l and f̂θ+1−l mean that the factors fl and fθ+1−l are omitted from the
wedge product, and instead just tensor multiplied by the remaining wedge product. This
sum is non-zero, since the summands are linearly independent, and at least one summand
is non-zero. Now applying this to (3.36) and (3.37), we see that Qi,jzτβτ = 0 for all i, j if
and only if no two of the columns of λ sum to more than θ, and Qi,jzτβτ ⊗ zπβ∗π = 0 for all
1 ≤ i ≤m < j ≤ n if and only if no two columns, one from λ and one from µ, sum to more
than θ. ∎

By Lemma 3.0.15, the irreducibles of Bn,θ (resp. Bn,m,θ) that appear in [Wn]
0 (resp.

[Wn,m]0) are exactly those with partition λ ⊢ n with λT
1 +λ

T
2 ≤ θ (resp. (λ,µ) ⊢ (m,n−m)
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with λT
1 + µ

T
1 ≤ θ). That is,

[Wn]
0
≅ ⊕

λ⊢n
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ ,

[Wn,m]
0
≅ ⊕

(λ,µ)⊢(m,n−m)
λT

1+µT
1≤θ

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
(λ,µ) ,

(3.40)

where, recall, we have not yet identified the orthogonal group or general linear group
irreducibles. To that end, analogously to part 1 of Lemma 3.0.13, we can show straight-
forwardly that zτβτ⊗zπβπ ∈ ψSm×Sn−m(λ,µ) is a highest weight vector for GL(θ) of weight [λ,µ],
so (λ,µ) = (λ,µ), that is, the component of [Wn,m]0 in (3.40) is exactly ψGL(θ)[λ,µ] ⊠ψ

Bn,m,θ
(λ,µ) .

This completes our decomposition of the traceless tensors, and the proof of Proposition
3.0.14, in the GL(θ) −Bn,m,θ case:

[Wn,m]
0
≅ ⊕

(λ,µ)⊢(m,n−m)
λT

1+µT
1≤θ

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
(λ,µ) .

(3.41)

The orthogonal group case takes a little more work. Recall it remains to prove that the
λ appearing in (3.40) is actually λ, that is, the irreducible representation of O(θ) paired
with ψBn,θ

λ in (3.40) is ψO(θ)
λ .

Let us recall some notation. Let r = ⌊ θ2⌋. For a partition λ with λT
1 + λ

T
2 ≤ θ, then λ′

is λ with its first column λT
1 replaced with θ − λT

1 . Recall λ′′ = λ. Note that λ ≠ λ′ if and
only if θ is odd, or θ is even and λT

1 ≠ r (λ does not have r parts). Pair up the partitions λ
with λT

1 +λ
T
2 ≤ θ into the pairs λ and λ′. If λ ≠ λ′, call λ+ the one of the pair λ,λ′ with at

most r parts, and λ− the one with more than r parts. Recall from Remark 2.1.17 that the
irreducibles of SO(θ) are indexed by partitions (of any size) with at most r parts, except
in the case θ even, where we can allow the rth part of the partition to be negative. Recall
from (2.23) that in the case λ ≠ λ′,

resO(θ)
SO(θ)ψ

O(θ)
λ+ = resO(θ)

SO(θ)ψ
O(θ)
λ− = ψ

SO(θ)
λ+ . (3.42)

In the case λ = λ′ (θ even and λ with r parts), we have from (2.24) that

resO(θ)
SO(θ)ψ

O(θ)
λ = ψ

SO(θ)
λ + ψ

SO(θ)
λ○ , (3.43)

where λ○ is the r-tuple λ with λr replaced with −λr. It is straightforward to show that
the vector zτβτ ∈ ψ

Bn,θ
λ is a highest weight vector under the action of SO(θ), with weight

λ+. In the case λ = λ′ (θ even and λ with r parts), this is enough to show that CO(θ)zτβτ

is a copy of the irreducible ψO(θ)
λ , which is what we wanted.

In the other case, λ ≠ λ′, equation (3.42) tells us that CO(θ)zτβτ is either ψO(θ)
λ or

ψ
O(θ)
λ′ (i.e. ψO(θ)

λ+ or ψO(θ)
λ− ). In order to tell which it is, Theorem 2.1.20 tells us we need

to ascertain how O(θ) ∖ SO(θ) acts on CO(θ)zτβτ . For θ odd, it suffices to show how
−id ∈ O(θ) acts. Recall −id acts on ψ

O(θ)
λ as (−1)∣λ∣id (since θ is odd, ∣λ∣ and ∣λ′∣ have

different parity). Now indeed −id does act on zτβτ as (−1)∣λ∣id, since −id acts on V as
itself, so it acts on Wn = V

⊗n as (−1)nid, and λ ⊢ n.
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In the remaining case, θ even and λT
1 ≠ r, it suffices to find how g0 acts on the highest

weight vector zτβτ , where g0 ∈ O(θ) ∖ SO(θ) acts on V by fixing each basis vector fi,
i ≠ r, r+1, and exchanging fr and fr+1. Recall from Theorem 2.1.20 that g0 multiplies the
highest weight vector in ψO(θ)

λ± by ±1. In the case λ = λ+ (that is, λ has less than r parts),
notice that from the definition of βτ , fr and fr+1 do not appear as tensor factors in βτ ,
so g0 fixes βτ . As g0 commutes with the action of Bn, g0 also fixes zτβτ . Now let λ = λ−

(that is, λ has more than r parts). If λ has s columns, then up to rearrangement of tensor
factors,

zτβτ = (f1 ∧⋯ ∧ fλT
1
)⊗⋯⊗ (f1 ∧⋯ ∧ fλT

s
). (3.44)

Note fr and fr+1 appear here only in the leftmost wedge product, since all columns of λ
except for the first have length strictly less than r. Now g0 acts on this vector the same as
the transposition (r, r + 1), which, by the antisymmetry of the wedge product, multiplies
the vector by (−1). This shows that when τ has shape λ±, indeed g0 multiplies zτβτ by
±1, so we can conclude in all cases that CO(θ)zτβτ ≅ ψ

O(θ)
λ . This completes the proof of

Proposition 3.0.14, our decomposition of the traceless tensors in the O(θ) −Bn,θ case. ∎

This, in turn, completes the first part of the proof of Propositions 3.0.11 and 3.0.12.

Now for part two of the proofs of Propositions 3.0.11 and 3.0.12, we move on to the
summand [Wn]

k (resp. [Wn,m]k) in (3.32), k > 0.

Proposition 3.0.16. As a representation of CO(θ) ⊗ Bn,θ (resp. CGL(θ) ⊗ Bn,m,θ), we
have

[Wn]
k
≅ ⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ ,

[Wn,m]
k
≅ ⊕

(λ,µ)⊢(m−k,n−m−k)
λT

1+µT
1≤θ

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
(λ,µ) .

(3.45)

Notice the dependence on k on both sides of the equations (3.45).

Proof. As noted earlier, we aim to show that all the information we need is contained in
our decomposition of [Wn]

0 (resp. [Wn,m]0) from (3.34). First, the image of a contraction
Q1,2 on the tensor space W2 (resp. W2,1), (which is spanned by the vector ∑θi=1 fi ⊗ f

∗
i =

∑
θ
i=1 fi ⊗ fθ+1−i), is a copy of the trivial representation of O(θ) (resp. GL(θ)) under the

action g ↦ g ⊗ g (resp. g ⊗ g−∗). So, Qi,jWn ≅ Wn−2 as a representation of O(θ), and
Qi,jWn,m ≅ Wn−2,m−1 as a representation of GL(θ), for all 1 ≤ i ≤ m < j ≤ n. Repeating
this argument we see that for any (t, t′) ∈ Q(k) (resp. Q′(k)), as representations of O(θ)

(resp. GL(θ)),

Qt,t′Wn ≅Wn−2k,

Qt,t′Wn,m ≅Wn−2k,m−k,
(3.46)
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and moreover

[Qt,t′Wn]
0
≅ [Wn−2k]

0,

[Qt,t′Wn,m]
0
≅ [Wn−2k,m−k]

0,
(3.47)

where [Qt,t′Wn]
0 is the set of vectors in Qt,t′Wn which are killed by any Qi,j with i, j ∈

(t ∪ t′)c, [Qt,t′Wn,m]0 similar.
Second, we have a (perhaps not direct sum) decomposition of the space

[Wn]
k
= ∑

(t,t′)∈Q(k)
[Qt,t′Wn]

0. (3.48)

Indeed, if [Qt,t′Wn]
1 is those vectors in Qt,t′Wn which are in the image of some Qi,j with

i, j ∈ (t ∪ t′)c, then

W k
n = ∑

(t,t′)∈Q(k)
Qt,t′Wn =

⎛

⎝
∑

(t,t′)∈Q(k)
[Qt,t′Wn]

0⎞

⎠
⊕

⎛

⎝
∑

(t,t′)∈Q(k)
[Qt,t′Wn]

1⎞

⎠

=
⎛

⎝
∑

(t,t′)∈Q(k)
[Qt,t′Wn]

0⎞

⎠
⊕W k+1

n ,

(3.49)

where we have used that W k
n = [Wn]

k⊕W k+1
n . It then suffices by dimension count to show

that ∑(t,t′)∈Q(k)[Qt,t′Wn]
0 ⊂ [Wn]

k. Any vector in [Qt,t′Wn]
0 is of the form Qt,t′v, and is

killed by any Qi,j with i, j ∈ (t ∪ t′)c; we need to prove that this vector is killed by any
Qs,s′ , (s, s′) ∈ Q(k + 1). This follows from the fact that in Bn,θ, the product of diagrams
(s, s′)(t, t′) is (some scalar multiple of) a diagram with a southern bar connecting iS and
jS, with i, j ∈ (t ∪ t′)c. In a very similar manner, we can prove a (not necessarily direct)
decomposition [Wn,m]k = ∑(t,t′)∈Q′(k)[Qt,t′Wn,m]0.

Now combining equation (3.48) with equation (3.47), we have, as a representation of
O(θ) (resp. GL(θ)):

[Wn]
k
= ∑

(t,t′)∈P(k)
[Qt,t′Wn]

0
≅ ∑

(t,t′)∈P(k)
[Wn−2k]

0,

[Wn,m]
k
= ∑

(t,t′)∈P ′(k)
[Qt,t′Wn,m]

0
≅ ∑

(t,t′)∈P ′(k)
[Wn−2k,m−k]

0.
(3.50)

But now, we know from the first part of our proof, Proposition 3.0.14, how the spaces
[Qt,t′Wn]

0 (resp. [Qt,t′Wn,m]0) decompose as representations of O(θ) (resp. GL(θ)). The
irreducibles of O(θ) (resp. GL(θ)) appearing are all of the ψO(θ)

λ with λ ⊢ n−2k, λT
1 +λ

T
2 ≤ θ

(resp. all of the ψGL(θ)[λ,µ] with (λ,µ) ⊢ (m − k,n −m − k) with λT
1 + µ

T
1 ≤ θ). Formally, we

have

[Wn]
k
≅ ⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ̂

,

[Wn,m]
k
≅ ⊕

(λ,µ)⊢(m−k,n−m−k)
λT

1+µT
1≤θ

ψ
GL(θ)
(λ,µ) ⊠ ψ

Bn,m,θ
ˆ(λ,µ)

,
(3.51)

where it now only remains to check that λ̂ = λ and ˆ(λ,µ) = (λ,µ).
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Recall ST ((t ∪ t′)c) is the set of standard Young tableaux with entries in {1, . . . , n} ∖
(t∪ t′). For fixed 0 ≤m ≤ n and (t, t′) ∈ Q′(k), define similarly the set ST ′((t∪ t′)c) as the
set of pairs of standard Young tableaux (τ, π) with τ having entries in {1, . . . ,m}∖(t∪ t′),
and π having entries in {m + 1, . . . , n} ∖ (t ∪ t′).

Using (3.34) and (3.50), the highest weight vector for each instance of ψO(θ)
λ (resp.

ψ
GL(θ)
[λ,µ] ) is the vector

yτ,t,t′ ∶ = zτQt,t′βτ,t,t′ ;

y(τ,π),t,t′ ∶ = z(τ,π)Qt,t′β(τ,π),t,t′ ,
(3.52)

for (t, t′) ∈ Q(k) (resp. Q′(k)), and τ ∈ ST ((t ∪ t′)c) (resp. (τ, π) ∈ ST ′((t ∪ t′)c)). Here
z(τ,π) = zτzπ, and βτ,t,t′ is the basis vector fi1 ⊗ ⋯ ⊗ fin such that fti = f∗t′i = f1 for all
i = 1, . . . , k, and if j ∈ (t, t′)c, then ij is the index of the row that j lies in in τ . The vector
β(τ,π),t,t′ is defined similarly: it is the basis vector fi1 ⊗⋯⊗ fin such that fti = f∗t′i = f1 for
all i = 1, . . . , k, and otherwise fij = fp if j lies in the pth row of τ , or fij = fθ+1−p if j lies in
the pth row of π.

Let Mλ be the space spanned by the vectors yτ,t,t′ , (t, t′) ∈ Q(k) and τ ∈ STλ((t∪ t′)c),
and Mλ,µ similar. Then we have

[Wn]
k
= ∑
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊗Mλ

[Wn,m]
k
= ∑

(λ,µ)⊢(m−k,n−m−k)
λT

1+µT
1≤θ

ψ
GL(θ)
[λ,µ] ⊗Mλ,µ.

(3.53)

It now remains to prove that Mλ is the irreducible representation ψBn,θ
λ of Bn,θ, and Mλ,µ

is the irreducible representation ψBn,m,θ
(λ,µ) of Bn,m,θ. By the definitions of the cell modules

∆λ of Bn,θ (resp. ∆λ,µ of Bn,m,θ), it is clear that Mλ is a quotient of ∆λ (and Mλ,µ is a
quotient of ∆λ,µ). Let us showMλ is irreducible; the proof forMλ,µ is almost identical. We
follow Theorem 4.5 of Benkart et al. [8]. Take 0 ≠ v ∈Mλ. We want to show Bn,θv =Mλ.
Since Bn,θ acts transitively on the vectors yτ,t,t′ , it suffices to show that one yτ,t,t′ lies in
Bn,θv.

There exists a Qt,t′ with (t, t′) ∈ Q(k) such that Qt,t′v ≠ 0. Indeed, if there were not,
then v would lie in [Wn]

k−1 by definition. But by definition, yτ,t,t′ ∈ W k
n , and [Wn]

k−1 ∩

W k
n = 0. So, say

0 ≠ Qt,t′v = ∑
π∈STλ((t∪t′)c)

aπyπ,t,t′ . (3.54)

The right hand side follows from calculations using the relations in Bn,θ. Now we use the
same trick we used in the Sn −GL(θ) case: let τ be minimal with respect to the ordering
< such that aτ ≠ 0. Multiplying (3.54) by zτ kills all terms apart from the τ one by our
working with Young symmetrisers; hence yτ,t,t′ ∈ Bn,θv, which completes the proof. This
completes the proof of Proposition 3.0.16.

∎
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Now putting together this result, along with equations (3.50), and (3.32), we have that

Wn ≅

⌊n2 ⌋
⊕
k=0

⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ ,

Wn,m ≅

min{m,n−m}
⊕
k=0

⊕
(λ,µ)⊢(m−k,n−m−k)

λT
1+µT

1≤θ

ψ
GL(θ)
[λ,µ] ⊠ ψ

Bn,m,θ
(λ,µ) ,

(3.55)

which completes the proofs of Propositions 3.0.11 and 3.0.12, and thereby the proofs of
Schur-Weyl duality in the O(θ)−Bn,θ and GL(θ)−Bn,m,θ cases, Theorems 3.0.3 and 3.0.5.

∎
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Chapter 4

The Manhattan and Lorentz
Mirror Models

In this section, we present the results of the paper “The Manhattan and Lorentz Mirror
Models - A result on the Cylinder with low density of mirrors” [90]. This paper studies two
random walks on the two-dimensional lattice Z2, where the central question is whether
the walk is bounded or not. The Brauer and walled Brauer algebra Bn,m,θ is made use
of, by viewing the walk on the cylinder as a Markov chain on its basis Bn,m. The main
result bounds the distance the walk can travel on the cylinder of width n, given that the
probability of mirrors (see below) decays at least as order n−1.

4.1 Introduction

The Manhattan and Lorentz mirror models [7], [62], are two very similar models, each
describing a random walk on the Z2 lattice. Let 0 ≤ p ≤ 1. The walker is a particle of light
which bounces off mirrors placed at each vertex at 45○, independently with probability
p. For the Lorentz mirror model, the orientation of the mirror (NW or NE) is chosen
independently with probability 1

2 . For the Manhattan model, the lattice is a priori given
Manhattan directions (see Figure 4.1), and the orientation of the mirror is determined by
its location (i.e. a NW mirror if the sum of the coordinates of the point is odd, and NE if
the sum is even), so that the walker always follows the directions of the lattice. The main
questions of interest in both models are whether the paths remain bounded or not, and
the nature of the motion of the walker.

We study the models on an infinite cylinder Z× (Z/nZ) of finite even width n. We are
interested in how the length of the paths vary with p. Note that on the cylinder, paths
are bounded with probability 1 - indeed, there is a positive probability that a horizontal
row is filled with mirrors such that no path can pass the row; one has to wait an expected
p−n rows for this event. It is natural to hope that this bound can be improved. The result
of this paper, Theorem 4.1.1, shows that for both models, when p ≤ Cn−1, C a constant,
the highest row reached by a path on the n-cylinder is order p−2. We wonder whether this
is true for all p.

We observe an underlying algebraic structure (valid for any value of p). The models
on the cylinder can be thought of as Markov chains on the Brauer algebra (in the mirror
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case), or its subalgebra the walled Brauer algebra (in the Manhattan case). While the
result of this paper can be obtained without these algebras, we suggest that the models’
association with different algebraic structures reflects their different behaviours. A third
model, on the L-lattice (see [6]), with different behaviour from the other two models, is
solved using percolation, and can be similarly thought of as a Markov chain on the (ex-
tended) Temperley Lieb algebra.

Figure 4.1: Examples of the Manhattan model (left) and Mirror model (right), with mirrors
in blue, and a few paths highlighted in orange. Note that the orientation of a mirror in
the Manhattan case is determined by the Manhattan directions of the lattice.

Let us recap the existing results on both models (which are on Z2, unless otherwise
specified). The Mirror model was introduced by Ruijgrok and Cohen [88] as a lattice
version of the Ehrenfest wind-tree model. Grimmett [46] proved with a straightforward
argument that on Z2, if p = 1, then the path of the walker is bounded with probability
1. It is conjectured that this is also true for 0 < p ≤ 1. This is supported by numerical
simulations, for example, in [106]. More recently, Kozma and Sidoravicius [62] showed that,
for any 0 < p ≤ 1, the probability the walker reaches the boundary of the n-box [−n,n]2 is
at least 1

2n+1 . To obtain this result, they study the model on an infinite cylinder of finite
odd width, where there is deterministically always an infinite path. The Manhattan model
cannot be neatly defined on a cylinder of odd width (it cannot remain rotation-invariant),
so this method cannot be applied (and indeed, the result is not true in the Manhattan
case - see below).

The Mirror model on the cylinder (often under the name the O(1) loop model) has
been studied using the Brauer algebra before, in several papers relating to a conjecture
(and variations thereof) by Razumov and Stroganov [85], [28], [27], which gives the entries
of the limiting distribution in terms of combinatorial objects such as alternating sign
matrices. A generalised mirror model (the O(θ) loop model), where the distribution on
configurations is weighted by θ#loops, θ ∈ C, is studied in [70], [79]; this is the model on the
Brauer algebra with parameter θ, Bn,θ. In these papers, the requirement of a Yang-Baxter
equation restricts the permissible values of the parameters - in our specific setup, only
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p = 8
9 qualifies (see the end of [79]).
The Manhattan model shares features of quantum disordered systems. The model was

introduced by Beamond, Cardy and Owczarek [6], in close relation to a quantum network
model on the Manhattan lattice. The quantum model has random Sp(2) = SU(2) matrices
on each edge of the lattice, and the classical model arises on averaging over this disorder.
In most classical models in two dimensions, localisation (bounded paths) is not observed,
whereas in the Manhattan (and Mirror) model, it is expected (see below). It is not clear
if the mirror model has a similar explicit relationship with a quantum model. For more
detail on the connection to quantum models, see Spencer’s review [92].

An argument from [6] for tackling the Manhattan model uses percolation. The place-
ment of the mirrors is exactly a Bernoulli percolation on the edges of Z2, rotated 45○ and
scaled. The path of the walker stays within 1√

2 of its closest dual cluster (see Figure 4.2).
The dual clusters are finite with probability 1 for p ≥ 1

2 , so so are the Manhattan paths.
For p > 1

2 , the probability that two points are in the same dual cluster decays expo-
nentially in the distance, which gives the same for connection by a Manhattan path. This
is markedly different from the Mirror model’s polynomial decay. For p < 1

2 , this argument
is wholly inconclusive, since dual clusters are almost surely infinite. Recently, Li [65] gave
exponential decay in connection probabilities for p > 1

2 − ε, for some ε > 0. Numerical
simulations in [7] indicate that paths are finite for 0 < p < 1

2 , with exponential decay in
connection probabilities. Clearly for p = 0, the paths escape in straight lines to infinity.

On the cylinder, for both models, there is first the crude, simple bound given above.
Notably, after this paper was originally posted, Li [66] showed the following: for both
models, on the cylinder of even width n, and for fixed p, the walker reaches at most
O(n10) rows from its startpoint, with probability exponentially close to 1. Let us note
that the results on the (even) cylinder (including this paper) are the same for the two
models, but on Z2 they are different. To analyse the Z2 case via the cylinder, one must
look at a cylinder of equal height and width (as in [62]); it is here that the models differ.

Figure 4.2: The mirrors (in blue) in the Manhattan model as edges in Bernoulli percolation.
The green edges form the dual clusters. The two paths shown are restricted to stay within

1√
2 of one dual cluster.

Let us now state our result more precisely. Consider the models on the n-cylinder
Z/nZ × Z = {(i, t) ∶ i, t ∈ Z, 1 ≤ i ≤ n}, with n even. We label st the horizontal row

59



{(i, t) ∶ 1 ≤ i ≤ n} - the "tth street". For the Mirror model, let V mir
n
2

be the random
variable given by the smallest t such that st has no path connecting it to the first street,
s1. In other words, the highest street a path from s1 reaches is exactly V mir

n
2

−1. Let V mat
n
2

be defined identically for the Manhattan model.

Theorem 4.1.1. Let ∗ represent mat or mir.

a) Let p ≤ Cn−1, C > 0 a constant. For all α > 0,

P[V ∗
n
2
≥ αp−2

] ≤ 2A∗e
− 1

8eC
α
,

where Amir = cosh(π), and Amat = sinh(π)
π .

b) For any p ≤ 1
2 (not necessarily constrained by p < Cn−1), and for all α > 0,

P [V ∗
n
2
≤ αp−2

] ≤ 2α.

Let us give an informal overview of the proof of part a). Our argument uses the streets
which have at most two mirrors. As n→∞, for all p ≤ Cn−1, and C small, the probability
of mirrors is small, and in particular, the probability that each street st has at most two
mirrors is large. We show that the model is not changed too much if we actually condition
on each st having at most two mirrors. This conditioning simplifies the model greatly, in
essence removing the cylindrical geometry, making the interactions on each street mean-
field (in the sense that if the particle arrives at street st at the point (i, t) and leaves from
(j, t), j ≠ i, then j is uniformly distributed). This allows us to do explicit computations.
For C not small, the theorem still holds, but the bounds are less sharp; one needs to set α
exponentially large in C to bring the bound to less than 1. Part b) is more straightforward;
it is proved by coupling V ∗

n
2
with a geometric random variable G with parameter p2.

In section 4.2, we give key definitions, including the Brauer and walled Brauer alge-
bras. In section 4.3 we study the model assuming at most two mirrors per street, and
obtain the results needed to prove Theorem 4.1.1.

4.2 Definitions, and the Brauer algebra

Let us recall the algebraic structures and notation from Chapter 2 that we will use in this
section. The Brauer algebra Bn,1 (the special case of Bn,θ from Section 2.1.3 with θ = 1)
(see, for example, [19], [20], [24], [103]) is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 1N,2N, . . . , nN, and the lower (southern) 1S, . . . , nS.
We call an edge connecting two northern vertices (or two southern) a bar. The number
of bars in the north and south is always the same, and we refer to either simply as the
number of bars in the diagram. We call an edge connecting a northern and southern vertex
a NS-path.

Multiplication of two diagrams is given by concatenation. If b, c are two diagrams,
we align the northern vertices of b with the southern of c, and the result is obtained by
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removing these middle vertices. See Figure 4.3. We let bc denote the product (occasionally
b ⋅ c for clarity). This defines Bn,1 as an algebra. Of course this is a special case of Bn,θ
from Section 2.1.3, but for our purposes in this section we only need θ = 1, which gives
the multiplication described above.

b2

b1

b1b2

Figure 4.3: Two diagrams b1 and b1 (left), concatenated to produce their product (right).

We call the set of all diagrams Bn. We call the set of diagrams with exactly k bars
Bn⟨k⟩, and the set of diagrams with at least k bars Bk

n. Notice that Bn⟨0⟩ is exactly
the symmetric group Sn, and the concatenation multiplication exactly reduces to the
multiplication in Sn. So CSn is a subalgebra of Bn,1.

We write id for the identity in Sn - its diagram has all its edges vertical. We denote
the transposition Sn swapping i and j by (i, j), and we write (i, j) for the diagram with
iN connected to jN, and iS connected to jS, and all other edges vertical. See Figure 4.4.

= (2,4) ∈ S6 = B6⟨0⟩

= (3,4) ∈ B6⟨1⟩

= id ∈ S6 = B6⟨0⟩

Figure 4.4: The identity element, the element (3,4) ∈ B6⟨1⟩, and the transposition (2,4) ∈
S6 = B6⟨0⟩.

Finally, we remark that if b has k bars, and c is any diagram in Bn, then bc must have
at least k bars:

b ∈ Bn⟨k⟩ ⇒ bc ∈ Bk
n. (4.1)

Let us now see how the Brauer algebra can be used to describe the models. Let n be
even from hereon in. Observe that given a configuration σt of mirrors on a street st on
the n-cylinder, the paths through the street form a diagram b(σt) ∈ Bn. See Figure 4.5
for an illustration. Moreover, on any section of the cylinder, say, from street st1 to st2 ,
given a configuration of mirrors σt1→t2 , the paths through those streets form a diagram
b(σt1→t2). Crucially, we see that b(σt1→t2) = b(σt1)⋯b(σt2), where the multiplication on
the right hand side is in the Brauer algebra. See Figure 4.6.

Let each σt, the configuration of mirrors on the tth street, be distributed according to
the Manhattan or Mirror model. Then b(σt) is a random diagram in Bn. We can think of
the distribution of this random diagram as a (deterministic) element Z(t) of the algebra:

Z(t) = ∑
g∈Bn

P[b(σt) = g] ⋅ g.
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Figure 4.5: An example of a configuration of mirrors σt on street st in the Manhattan
model (left), and the resulting diagram b(σt) (right).

=

Figure 4.6: The paths through three consecutive streets in the Manhattan model (left),
the three resulting diagrams (upper right), and their product (lower right), which gives
the paths through the union of the three streets.

The following lemma lets us describe the paths through any number of consecutive streets.
Note that it does not use the specific distributions of the random diagrams given by
different streets, it only uses that they are independent.

Lemma 4.2.1. The distribution of the random diagram b(σt1→t2) produced by the paths
through streets st1 , . . . st2 is given by the Brauer algebra element:

Z(t1)⋯Z(t2) = ∑
g∈Bn

P[b(σt1→t2) = g] ⋅ g,

where the multiplication on the left is in the Brauer algebra.

Proof. We see that

∑
g∈Bn

P[b(σt1→t2) = g] ⋅ g = ∑
g∈Bn

P[b(σt1)⋯b(σt2) = g] ⋅ g

= ∑
g∈Bn

∑
gt1⋯gt2=g

P[b(σt1) = gt1]⋯P[b(σt2) = gt2] ⋅ gt1⋯gt2

= Z(t1)⋯Z(t2),

where we use that the configurations on each street are independent. ∎

62



We are interested in the highest (or most northerly) street reached by the paths starting
at the first street s1. One more than this is the first street which has no path connecting
it to s1. Using the notation above, this is the smallest t such that the random diagram
b(σ1→t) has no NS-paths, ie:

b(σ1→t) ∈ Bn⟨
n

2
⟩.

Let ∗ represent mat or mir. Let σ∗,t (resp. σ∗,t1→t2) denote the random configuration
of mirrors on the street st (resp. the streets st1 , . . . , st2), in the corresponding model. Now,
in the Mirror model, the random configuration of mirrors σmir,t is iid for each street st.
Let Zmir be the distribution of the random diagram b(σmir,t) (as an element of the Brauer
algebra) produced by the paths through this random configuration on one street. (Since
the σmir,t are iid, Zmir is independent of t). We note that, from Lemma 4.2.1,

Ztmir = ∑
g∈Bn

P[b(σmir,1→t) = g] ⋅ g.

Let V mir
k be the random variable given by the smallest t such that b(σmir,1→t) ∈ Bn⟨k⟩

(this is the first street which has at most n− 2k paths reaching it from the first street s1).
We are primarily interested in V mir

n
2

.

The Manhattan model is almost identical in this regard, with two differences. The
first is that the random configuration of mirrors σmat,t on a street st is dependent on
whether the street is directed eastbound or westbound. We can let Z(mat,E), Z(mat,W )
the corresponding elements of the Brauer algebra (similar to the mirror case, each only
dependent on eastbound or westbound).

Secondly, the diagrams that arise in the Manhattan case actually live in a subalgebra
of Bn,1. Note that each vertical column of the cylinder Z × {i}, i = 1, . . . , n, is southbound
for i odd, northbound for i even. This means that on a chosen street, the vertices iN for
i odd, and iS for i even, can be thought of as “entrypoints” to the street. Similarly, each
jN for j even, jS for j odd can be thought of as “exitpoints” to the street. In particular,
in the diagram which results from the street, exitpoints must be connected to entrypoints.
This condition can also be thought of as: a NS-path must connect vertices of the same
parity, and a bar must connect vertices of different parity. See Figure 4.7.

Figure 4.7: An example of paths through a street in the Manhattan model, with entry-
points coloured in yellow, and exitpoints in blue.

Let Mn be the set of diagrams which satisfy the requirement that exitpoints are only
connected to entrypoints, and let Mn,1 be the (formal) complex span of Mn. This space
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Mn,1 is a subalgebra of Bn,1, indeed it is just the walled Brauer algebra Bn,n2 ,1 from Section
2.1.4, where we have re-ordered the vertices of the diagram so that the vertices “to the
left of the wall” (see Figure 2.4) are now those with odd index, and those “to the right of
the wall” have even index. It is a straightforward exercise to prove that this reordering
is an isomorphism of algebras. Similar to the full Brauer algebra, let Mn⟨k⟩ be the set of
diagrams in Mn with k bars, and let Mk

n be those with at least k bars.

Let us assume that the first street, s1, is eastbound. Now let V mat
k be the random

variable given by the smallest t such that b(σmat,1→t) ∈Mn⟨k⟩. Note that the distribution
of the random diagram b(σmat,1→t) is described by the element of Mn,1:

∑
g∈Bn

P[b(σmat,1→t) = g] ⋅ g = Z(mat,E)Z(mat,W )Z(mat,E)⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t terms

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Z(mat,E)Z(mat,W ))
t
2 t even

(Z(mat,E)Z(mat,W ))
t−1
2 Z(mat,E) t odd,

where the equality is included for clarity. We are primarily interested in V mat
n
2

.

Now recall that our method is to condition on there being at most two mirrors per
street. Let U (t)

≤2 be the event that there are at most two mirrors on a street st (this event
has probability P[U≤2] independent of the street, and the model we are considering). Let
σ≤2
∗,t (resp. σ≤2

∗,t1→t2) be the random configuration of mirrors on the street t (resp. the streets
st1 , . . . , st2) when conditioning on U≤2. Let Xmir, Xmat be the elements Zmir, Z(mat,E/W ),
produced when conditioning on U≤2, respectively. (In the Manhattan case, it actually
does not matter whether the street is eastbound or westbound). That is, Xmir and Xmat

describe the distributions of b(σ≤2
mir,t) and b(σ≤2

mat,t), respectively; for ∗ denoting mir or
mat,

Xt
∗ = ∑

g∈Bn
P[b(σ≤2

∗,1→t) = g] ⋅ g.

We can write these elements explicitly:

Xmir =
(1 − p)n−2

P[U≤2]

⎡
⎢
⎢
⎢
⎢
⎣

(np(1 − p) + (1 − p)2) ⋅ id + p
2

2
⎛

⎝
∑

1≤i<j≤n
(i, j) + (i, j)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

and very similarly:

Xmat =
(1 − p)n−2

P[U≤2]

⎡
⎢
⎢
⎢
⎢
⎣

(np(1 − p) + (1 − p)2) ⋅ id + p2 ⎛

⎝
∑

j−i even
(i, j) + ∑

j−i odd
(i, j)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

where we recall that the diagrams (i, j), (i, j), and id are given in Figure 4.4. Note that
Zmir, Z(mat,E/W ) can also be explicitly written down as elements of the Brauer algebra
(for any p), they are just far more unwieldy.

Similar to above, let ∗ denote mir or mat, and define W ∗
k to be the random variable

given by the smallest t such that b(σ≤2
1→t) ∈ Bn⟨

n
2 ⟩. In the next section, we give bounds on

how large W ∗
n
2
can be, and then we transfer these bounds to V ∗

n
2
.
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4.3 Results

Let us first prove part b) of Theorem 4.1.1. Let ∗ denotemir ormat. Let G be a geometric
random variable with parameter p2. We first show that P[V ∗

n
2
≤ x] ≤ P[G ≤ x], for all x ≥ 0.

Assume that b(σ∗,1→t) ∉ Bn⟨n2 ⟩, that is, after t streets, there are at least two remaining
NS-paths. Consider the probability P[b(σ∗,1→t+1) ∈ Bn⟨

n
2 ⟩], that after the next street, no

NS-paths remain. In order for b(σ∗,1→t+1) ∈ Bn⟨
n
2 ⟩ to hold, there certainly must be a mirror

on st+1 reflecting each of the remaining NS-paths - since there are at least two of these,
the probability of this is at most p2. Hence we can say that, given that b(σ∗,1→t) ∉ Bn⟨n2 ⟩,

P[b(σ∗,1→t+1) ∈ Bn⟨
n

2
⟩] ≤ p2.

Now we can easily couple the process with one which enters Bn⟨n2 ⟩ at each step with
probability exactly p2. The time taken for this process to enter Bn⟨n2 ⟩ can be described
by G, and our claim P[V ∗

n
2
≤ x] ≤ P[G ≤ x] follows. Now for p ≤ 1

2 ,

P[V ∗
n
2
≤ αp−2

] ≤ P[G ≤ αp−2
] = 1 − (1 − p2

)
αp−2

≤ 2α,

the last inequality following from both functions taking the value 0 at α = 0, and the dif-
ferential of the first function being −(1 − p2)αp

−2 log((1 − p2)p
−2
), whose value is less than

2 at α = 0 and decreasing as α increases. This completes the proof of part b).

The rest of this section proves part a) of Theorem 4.1.1. We return to our simplified
model, assuming at most two mirrors on each street. Observe that if the random diagram
b(σ≤2

∗,t) is multiplied with a diagram g which has k bars, the probability that the result has
k + 1 bars is independent of the chosen diagram b. This is made precise in the following
lemma.

Lemma 4.3.1. a) Let g ∈ Bn⟨k⟩, a diagram with k bars. Then g ⋅ b(σ≤2
∗,t) ∈ Bn⟨k⟩ ∪

Bn⟨k + 1⟩, and

gmirn,p,k ∶= P[g ⋅ b(σ≤2
mir,t) ∈ Bn⟨k + 1⟩] = 1

P[U≤2]

p2

2
(1 − p)n−2

(
n − 2k

2
).

b) Let g ∈Mn⟨k⟩, a diagram with k bars. Then g ⋅ b(σ≤2
mat,t) ∈Mn⟨k⟩ ∪Mn⟨k + 1⟩, and

gmatn,p,k ∶= P[g ⋅ b(σ≤2
mat,t) ∈Mn⟨k + 1⟩] = 1

P[U≤2]
p2

(1 − p)n−2
(
n

2
− k)2.

Proof. Let us do part a) first. Let g ∈ Bn⟨k⟩. It is clear that g(i, j) ∈ Bn⟨k⟩. Further,
g(i, j) ∈ Bn⟨k + 1⟩ iff the vertices iS and jS in g lie on NS-paths. There are (

n−2k
2 ) such

pairs. So,

P[b(σ≤2
mir,t) = (i, j), iS, jS on NS paths in g] =

p2

2
(1 − p)n−2

P[U≤2]
(
n − 2k

2
) = gmirn,p,k.

Part b) follows very similarly. Let g ∈Mn⟨k⟩. Then g(i, j) ∈Mn⟨k + 1⟩ iff the vertices
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iS and jS in g lie on NS-paths. There are (n2 − k)
2 such pairs. So,

P[b(σ≤2
mat,t) = (i, j), iS, jS on NS paths in g] =

p2(1 − p)n−2

P[U≤2]
(
n

2
− k)2

= gmatn,p,k.

∎

Let ∗ denote mir or mat. Let w∗
k = W ∗

k+1 −W
∗
k ; this is the number of streets we have

to wait between the kth and the k + 1th bar being added to the random diagram. Lemma
4.3.1 shows that w∗

k is a geometric random variable, with parameter g∗n,p,k. Note that
W ∗

n
2
= ∑

n
2 −1
k=0 w

∗
k . The next theorem bounds the probability that W ∗

n
2
is large.

Theorem 4.3.2. Let ∗ represent mat or mir. Let p ≤ Cn−1, C a constant. Then for all
α > 0,

P[W ∗
n
2
≥ αp−2

] ≤ A∗e
− 1

4C2
α
,

where Amir = cosh(π), and Amat = sinh(π)
π , and C2 =

1
2C

2 +C + 1.

Proof of Theorem 4.3.2. Let us look at the Manhattan case. We first note that, using
p < Cn−1,

gmatn,p,k =
(n2 − k)

2

1
2n

2 − 1
2n + np

−1 − n + p−2 − 2p−1 + 1

≥
(n2 − k)

2

(1
2C

2 +C + 1)p−2

= (
n

2
− k)2C−1

2 p2.

Now, recall that Wmat
n
2

= ∑
n
2 −1
k=0 w

mat
k , and that wmatk are independent and geometrically

distributed with parameter gmatn,p,k. Recall also that the moment generating function of a
geometric random variable G with parameter λ is given by

E[etG] =
λ

1 − (1 − λ)et
,

for t < − log(1 − λ). This inequality holds when we set t = p2

4C2
and λ = p2, since C2 =

1
2C

2 +C + 1 ≥ 1
2 . We have, using Chebyshev’s exponential inequality,

P[Wmat
n
2

≥ αp−2
] ≤ e

− 1
4C2

αE [e
p2

4C2
Wmat
n
2 ]

= e
− 1

4C2
α

n
2 −1

∏
k=0

⎛
⎜
⎜
⎝

gmatn,p,k

1 − (1 − gmatn,p,k)e
p2

4C2

⎞
⎟
⎟
⎠

= e
− 1

4C2
α

n
2 −1

∏
k=0

⎛
⎜
⎜
⎝

1 + e
p2

4C2 − 1

1 − (1 − gmatn,p,k)e
p2

4C2

⎞
⎟
⎟
⎠

.

Using et ≤ 2t + 1, (which holds for t = p2

4C2
< 1, which in turn always holds, since C2 ≥

1
2),
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we have

1 − (1 − gmatn,p,k)e
p2

4C2 ≥ 1 − (1 − (
n

2
− k)2C−1

2 p2
)(

1
2
C−1

2 p2
+ 1)

≥ C−1
2 p2

((
n

2
− k)2

−
1
2
),

which gives:

P[Wmat
n
2

≥ αp−2
] ≤ e

− 1
4C2

α

n
2 −1

∏
k=0

(1 +
1
2C

−1
2 p2

C−1
2 p2((n2 − k)

2 − 1
2)

)

= e
− 1

4C2
α

n
2

∏
k=1

(1 + 1
2k2 − 1

)

≤ e
− 1

4C2
α

n
2

∏
k=1

(1 + 1
k2)

≤
sinhπ
π

e
− 1

4C2
α
,

as desired. In the last inequality we used the product formula sin (πz) = πz∏∞
ν=1(1 − z2

ν2 ),
with z = i.

The Mirror model case is almost identical; all the above working is the same except
the expression (n2 − k)

2 is replaced with 1
2(
n−2k

2 ). This gives

P[Wmat
n
2

≥ αp−2
] ≤ e

− 1
4C2

α

n
2 −1

∏
k=0

⎛

⎝
1 +

1
2

1
2(
n−2k

2 ) − 1
2

⎞

⎠

≤ e
− 1

4C2
α

n
2

∏
k=1

(1 + 4
2k(2k − 1)

)

≤ cosh(π)e−
1

4C2
α

as desired, where for the last equality we used the product formula cos(πz) = ∏
∞
ν=1(1 −

4z2

(2ν−1)2 ), with z = i.
∎

We can now compare the full models with the models assuming at most two mirrors
per street. Let t ∈ N. Let τ(t) be the random variable given by the number of the first
t streets which have at most 2 mirrors. We see that τ(t) is binomially distributed with
parameters (t,P[U≤2]). Essentially what we would like to say is that if we omit each street
which has more than 2 mirrors, we do not, in distribution, add any bars.

This sounds like it should follow from the remark (4.1), but it is more subtle. Let
us illustrate why: certainly if the product of two diagrams ab has k bars, then we can
conclude that each of a and b have no more than k bars. However, if abc has k bars, it is
very possible that ac has more than k bars. So, when removing factors from the middle
of a product, there is more to be proved.

Lemma 4.3.3. Let ∗ denote mir or mat. Then P[V ∗
k ≤ t] ≥ P[W ∗

k ≤ τ(t)].

Recall that g ∈ Bk
n iff g has at least k bars, and g ∈ Mk

n similar. Note that V ∗
k ≤ t iff
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b(σ∗,1→t) ∈ Bk
n; similar for W ∗

k . So Lemma 4.3.3 can be rewritten as:

P[b(σ∗,1→t) ∈ Bk
n] ≥ P[b(σ≤2

∗,1→τ(t)) ∈ B
k
n]. (4.2)

We postpone the proof of Lemma 4.3.3, and first see how it is implemented, combining
with Theorem 4.3.2 in proving part a) of Theorem 4.1.1.

Proof of part a) of Theorem 4.1.1. Recall that we assume p ≤ Cn−1, C a constant. We
approximate b(σ∗,1→t) with b(σ≤2

∗,1→τ(t)), that is, we approximate by ignoring streets which
have more than two mirrors. Since the expected number of mirrors per street is at most
C, we expect (at least for C small) the proportion of streets with at most two mirrors to
be large. Indeed:

lim
n→∞

P[U≤2] = lim
n→∞

(1 − p)n−2
((1 − p)2

+ np(1 − p) + (
n

2
)p2

)

≥ lim
n→∞

(1 − p)cp−1−2
((1 − p)(1 − p +C) +

C

2
(C − p)) ,

the limit of which is (1
e)
C(1 + C + C2

2 ) =∶ C3. We can pick n ∈ N such that P[U≤2] >

3C3
4 . Recalling τ(t) is binomially distributed with parameters (t,P[U≤2]), by Hoeffding’s

inequality,

P [τ(t) ≤
C3t

2
] ≤ exp [−2t(P[U≤2] −

C3
2

)

2
] ≤ exp [−2t(C3

4
)

2
] , (4.3)

for n large enough.

Let t = αp−2. Now using Lemma 4.3.3,

P[V ∗
k ≥ αp−2

] ≤ P[W ∗
k ≥ τ(αp−2

)]

≤ P [W ∗
k ≥

C3
2
αp−2

] + P [τ(t) ≤
1
2
αp−2

]

≤ A∗ exp [−
C3
8C2

α] + exp [−2αp−2
(
C3
4

)

2
]

≤ 2A∗ exp [−
1

8eC
α] ,

where the second to last inequality is from Theorem 4.3.2 and equation (4.3), and the last
is for p small enough. ∎

It remains to prove Lemma 4.3.3.

Proof of Lemma 4.3.3. We prove the inequality (4.2). We fix n, and work by induction
on t and k. The inequality is trivially true for k = 0 (and any t), and for t = 1 (and any k).

Assume the Lemma holds for the parameters (t−1, k), (t−1, k−1), and (t, k−1). The
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left hand side of equation (4.2) is:

P[b(σ∗,1→t) ∈ Bk
n] = P [b(σ∗,1→t−1)b(σ∗,t) ∈ B

k
n ∣ U

(t)
>2 ] ⋅ (1 − P[U≤2])

+ P [b(σ∗,1→t−1)b(σ∗,t) ∈ B
k
n ∣ U

(t)
≤2 ] ⋅ P[U≤2]

≥ P [b(σ∗,1→t−1) ∈ B
k
n ∣ U

(t)
>2 ] ⋅ (1 − P[U≤2])

+ P [b(σ∗,1→t−1)b(σ
≤2
∗,t) ∈ B

k
n ∣ U

(t)
≤2 ] ⋅ P[U≤2],

where we have noted that the number of bars in the product b(σ∗,1→t−1)b(σ∗,t) cannot be
less that in b(σ∗,1→t−1), and that b(σ∗,t) is equal to b(σ≤2

∗,t) when conditioned on U (t)
≤2 . Now

the above is at least:

≥ P [b(σ≤2
∗,1→τ(t−1)) ∈ B

k
n ∣ U

(t)
>2 ] ⋅ (1 − P[U≤2]) + P[b(σ≤2

∗,1→τ(t)) ∈ B
k
n ∣ U

(t)
≤2 ] ⋅ P[U≤2]

= P[b(σ≤2
∗,1→τ(t)) ∈ B

k
n],

where in the inequality we used the inductive assumption on t and the final Lemma below,
and in the equality we used the fact that under U (t)

>2 , τ(t) = τ(t−1). The proof of the final
Lemma therefore concludes the whole proof.

Lemma 4.3.4. We have that P [b(σ∗,1→t−1)b(σ
≤2
∗,t) ∈ B

k
n ∣ U

(t)
≤2 ] ≥ P[b(σ≤2

∗,1→τ(t)) ∈ B
k
n ∣ U

(t)
≤2 ].

Proof. To prove the claim, we split the left hand term based on whether or not b(σ≤2
∗,t)

adds a bar to b(σ∗,1→t−1):

LHS = P [b(σ∗,1→t−1) ∈ B
k−1
n ∣ U

(t)
≤2 ] ⋅ g∗n,p,k + P [b(σ∗,1→t−1) ∈ B

k
n ∣ U

(t)
≤2 ]

≥ P [b(σ≤2
∗,1→τ(t−1)) ∈ B

k−1
n ∣ U

(t)
≤2 ] ⋅ g∗n,p,k + P [b(σ≤2

∗,1→τ(t−1)) ∈ B
k
n ∣ U

(t)
≤2 ]

= P [b(σ≤2
∗,1→τ(t−1))b(σ

≤2
∗,t) ∈ B

k
n ∣ U

(t)
≤2 ] ,

where in the inequality we used the inductive assumption on t and k. Now recalling that
under U≤2, τ(t) = τ(t− 1)+ 1, the result follows. This concludes the proof of Lemma 4.3.3
and part a) of Theorem 4.1.1.

∎
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Chapter 5

Quantum Spin Systems on the
complete graph

5.1 Classical and quantum spin systems

We give a short introduction here to the area of classical and quantum spins systems. We
follow Ruelle [86] and Friedli and Velenik [37]. Classical statistical mechanics attempts
to derive the macroscopic laws of nature (such as thermodynamics) from laws of the
interactions of particles on a microscopic scale. One of the remarkable and most studied
features of these systems is that there are sometimes abrupt changes in the behaviour of
the system, called phase transitions, as the parameters (such as temperature) are varied.
Practically, one uses mathematical models of such systems which are simplifications (to
varying degrees) of the reality, where the laws of interactions of the particles are given, from
which one attempts to derive macroscopic behaviours. Even with these simplifications, in
many models one can derive results, including rigorous ones, that show the models has
phase transitions. This is not observed mathematically for finite systems, but in taking
the limit of the models as the number of particles tends to infinity, phase transitions can
be observed.

A very illustrative example of a classical spin system comes in the form of the classical
Heisenberg model. This is a simplified model of ferromagentism, the phenomenon where
some materials, under some conditions, retain a magnetism after an external magnetic
field has been applied and then taken away. The model simplifies such a situation to
describe the material as a large number of particles arranged in a lattice, which do not
move, but interact via the directions in which they are magnetised. That is, particles
close together want to be magnetised in the same direction. Mathematically, the model
describes a probability measure on possible configurations of particles arranged on a lattice
(i.e. a large box in Zd), where a configuration assigns each particle an orientation (called
a spin) in 3D space (i.e. an element of S2).

More precisely, let G = (V,E) be a graph. It is illustrative to think of G as a finite box
in Zd; note that the behaviour of the model depends on the dimension d. A particle at a
site i ∈ V is given a spin σi ∈ S2, the two-sphere. Allow a parameter β to represent inverse
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temperature. Then, for a given β, the configurations σ = (σi)1≤i≤n occur with density

φH,G,β(σ) = φβ(σ) =
1

Z(G, β)
e−βH(σ). (5.1)

Here the function Z(G, β) = ∫ dσ e
−βH(σ) is called the partition function and is the nor-

malisation constant which makes the measure a probability measure, and

H(σ) = − ∑
{i,j}∈E

σi ⋅ σj (5.2)

is the Hamiltonian, describing the energy of the configuration. Note that the sum is
over pairs of vertices i and j which are nearest neighbours in the underlying graph G.
This function appropriately describes a ferromagnetic interaction, that is, an interaction
between spins where the spins want to be aligned: the more aligned the spins are, the lower
the energy. The configurations with lowest energy are those with the spins at all vertices
pointing in the same direction. These are relatively few in number, compared with the
vast number of configurations which would give a large energy, with neighbouring spins
being much less aligned. The Heisenberg model thereby models a (large) block of some
ferromagnetic material in dimension d made of many particles (arranged in a lattice),
where each particle is magnetised in some direction of 3-dimensional space. The particles
then exert magnetic forces on one another, which one assumes to have short range, so that
the assumption that only nearest neighbours interact is sensible.

For high temperatures (β small), the many configurations with high energy dominate
the measure φβ - their entropy overcomes the exponent β - and the system is said to
be disordered. One of the central questions in studying spin systems is whether for low
temperatures (β large), one finds that the low energy configurations dominate, in which
case the system is said to be ordered. This is indeed the case in dimensions d ≥ 3, but
not for d = 1,2; the former is due to Fröhlich, Simon and Spencer [38], and the latter is
due to the Mermin-Wagner theorem. We will state these results more precisely later in
this introduction. For d ≥ 3, this is a heuristic description of an example of there being
two regions of parameter space where the measure φβ behaves very differently. Further, it
turns out that these regions are separated by a critical temperature, say βc, at which the
properties of the measure φβ abruptly change - a phase transition. As noted above, such
abrupt changes are mathematically only observed when we take a limit of the measure φβ
as the graph becomes infinite (for example when the box in Zd grows to become the whole
lattice).

There are many ways one can observe whether a phase transition occurs, that is, many
mathematical quantities one can derive from the model, which are in some sense sensible,
which show abrupt changes at the critical temperature. Let us describe four important
such ways. Note one can sometimes show that the various notions of a phase transition are
equivalent, but this is not always possible. The first way of observing a phase transition is
by studying how particles at large distances can affect one another. Imagine the classical
Heisenberg model, d ≥ 3 in its ordered region (low temperature) as heuristically described
above, with it being very likely that all spins are aligned in some direction. It follows that
if we change the spin at one site, then with high probability all the others follow it - in
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particular spins arbitrarily far away from it change. In contrast, in the disordered, high
temperature region, it is perhaps natural to think that changing a spin at one vertex has
little effect on spins far away. Mathematically, we can study the correlation of the spins
at two distant particles. For the classical Heisenberg model, this is

lim
∣x1−x2∣→∞

lim
G↗Zd

⟨σx1 ⋅ σx2⟩H,G,β, (5.3)

where ⟨f(σ)⟩H,G,β is the expectation of f with respect to our probability measure. This
quantity being zero indicates the particles do not affect each other. Sometimes this quan-
tity is positive for low temperatures, and the point at which it becomes positive marks
a phase transition. This includes the case of the classical Heisenberg model, d ≥ 3, and
this is the form in which the transition is proved in [38]. When d = 2 the limit (5.3) is
zero for all β > 0 (i.e. there is no phase transition of this type), and the decay to zero
of (5.3) is at least polynomial in speed for all temperatures, proved by McBryan and
Spencer [71]. We should note though that it is not yet proved whether or not there is
a more subtle transition in dimension d = 2 in the sense that for high temperatures, the
decay of (5.3) to zero is exponential, and for lower temperatures, it is a power law. Such
a transition, known as a Berezinskii-Kosterlitz-Thouless phase transition, does occur in
other two-dimensional models, including models with continuous symmetry, most notably
the “XY” model, which is the Heisenberg model with spins on the circle rather than the
sphere.

The second method of observing a phase transition is magnetisation. The “ferromag-
netism” described earlier is exactly an example of this. We study the model with an
infinitesimal external magnetic field, (i.e. an external magnetic field whose strength is
reduced to zero). To be precise, we can modify the classical Hamiltonian H (5.2):

H(σ) = − ∑
{i,j}∈E

σi ⋅ σj − h∑
i∈V
b ⋅ σi, (5.4)

where b ∈ S2 denotes some direction in 3-space, and h ∈ R is a strength parameter. This
models the spin at each vertex being pulled by an external field in some particular direction
b with strength h. One can imagine that turning on such a field pulls all the spins to point
in the direction b, with high probability; the question of interest is whether this structure
remains once the field is turned off. Mathematically, this is studied by analysing the
quantity

∂Φ(β,h)

∂h
∣
h=0, (5.5)

the magnetisation in the direction b, where Φ(β,h) = lim∣V ∣→∞
1
∣V ∣ logZ(G, β, h) is the free

energy (see below). In several models this can be shown to be equal to

lim
∣V ∣→∞

lim
h↘0

⟨(
1
∣V ∣

∑
x∈V

σx) ⋅ b⟩H(h),G,β, (5.6)

(where we have highlighted the dependence of H on h), which is far more intuitive -
it is the expected average amount that all the spins are pointing in the direction b. If
magnetisation does not occur (which happens at high temperatures) this average is zero,

72



and then, at low temperatures, one can ask whether it is strictly positive, that is, whether
magnetisation occurs.

A slightly less intuitive way to show a phase transition is through an expression called
the free energy. It is a function of β, and a point where it is non-analytic indicates a phase
transition at that value of β. For the graphs G we are most interested in, G = Zd, we define
it as

Φ(β) = lim
G→Zd

1
∣V ∣

log(Z(G, β)), (5.7)

for G taken to be successively large boxes in Zd. The free energy in some sense gives the
energy which dominates the measure at the given temperature; let us heuristically explain
how. Imagine that there are finitely many possible energies Ei that the Hamiltonian H
can produce, and there are di many configurations with energy Ei. Then we can write
1
∣V ∣ logZ(G, β) as a sum of the form

1
∣V ∣

logZ(G, β) =
1
∣V ∣

log∑
i

die
−βEi =

1
∣V ∣

log∑
i

e−βEi+log di . (5.8)

Now taking the limit as ∣V ∣→∞ essentially pulls out the largest −βEi+log di, which indeed
in some sense marks the energy which dominates the measure at the given temperature,
and the expression, suitably, takes into account both the energy Ei and entropy di. The
free energy is the quantity which we study in detail for our specific models in this and the
next chapters.

The fourth way we will describe to observe a phase transition is via Gibbs states.
In the classical Heisenberg model, a boundary condition is a fixing of the spins on the
boundary of G ⊂ Zd. One can study the possible suitable limits of the measure φβ, if one
takes different boundary conditions or infinitesimal external magnetic fields (see Chapter
6 of [37] for formal definitions). These suitable limits are the infinite Gibbs measures,
or Gibbs states. For high temperatures (β small), there is usually a unique Gibbs state,
which corresponds to the idea that the system “forgets” the external magnetic field, or
boundary conditions. One can say there is a phase transition if at low temperatures, (β
large), there is more than one Gibbs state. This is what concerns the Mermin-Wagner
theorem noted above, which shows that for all positive temperatures, all Gibbs states are
invariant under the action of SO(3), see Theorem 9.2 of [37] (i.e. states in which the spins
tend to point in one direction are excluded). In the classical case defining Gibbs states
rigorously is done through the DLR (Dobrushin–Lanford–Ruelle) equations: a Gibbs state
is a measure φ on configurations on Zd, such that if one conditions on the spins outside
some finite set G, one obtains the measure (5.1) on G, with boundary conditions induced
by the spins outside G.

The study of a quantum spin systems cover the same phenomena as a classical one,
with the addition that quantum behaviour is accounted for. It should be noted that one
of the postulates of quantum mechanics is that the theory should in some way contain the
classical version, via some suitable limit.

Mathematically, instead of working with a probability measure, we work with Her-
mitian operators on some Hilbert space H. The Hamiltonian H is such an operator,
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and the possible energies are the spectrum of H. In place of the measure on configura-
tions, we study the operator 1

Z(β)e
−βH , where Z(β) = Tr[e−βH] is the partition function,

the normalisation constant which makes the operator have trace 1. In keeping with our
heuristics above, imagining that H has a finite spectrum {Ei}, with each eigenvalue having
eigenspace of dimension di, one has the same form for the partition function

Z(β) =∑
i

die
−βEi =∑

i

e−βEi+log di . (5.9)

One interpretation of classical models lying within the quantum setup is the following.
If the Hamiltonian is written as a sum of operators (see (5.10) for instance) which commute
with one another, then the operators share eigenspaces, and one can think of the model
as classical - as a probability measure on the eigenvalues with weights proportional to the
dimension of the associated eigenspace. We will see an instance of this in Section 5.2.2
when the ‘XXZ” model (5.15) becomes the classical Ising model when K1 = 0. In contrast,
when the Hamiltonian is a sum of operators which do not commute, we say the model is
quantum.

Let S ∈ 1
2N. In the quantum Heisenberg model, the spins σi are replaced with Hermitian

operators on a copy of C2S+1 at i ∈ V, C2S+1
i . The Hamiltonian is an operator acting on

tensor space (C2S+1)⊗V . For the quantum Heisenberg model, the Hamiltonian is:

H = − ∑
{i,j}∈E

(Si ⋅ Sj), (5.10)

where Si = (S
(1)
i , S

(2)
i , S

(3)
i ), (Si ⋅Sj) = (S

(1)
i S

(1)
j +S

(2)
i S

(2)
j +S

(3)
i S

(3)
j ) and S(1)

i , S
(2)
i , S

(3)
i

are explicit Hermitian operators acting on C2S+1
i . These operators are analogies of the

three co-ordinate components of the classical σi. The parameter S is called the spin
quantum number. When it is unambiguous, we will just refer to it as the spin. The four
methods of observing a phase transition described above for the classical case all have
their analogues in the quantum case.

The free energy in this setting is lim∣V ∣→∞
1
∣V ∣ logZ(G, β) = 1

∣V ∣ log Tr[e−βH], which one
can again think of as pulling out the largest of the values −βEi+ log di, Ei in the spectrum
of H, di the dimension of its eigenspace. For observing magnetisation, one amends the
Hamiltonian (5.10) similarly to the classical case (5.4), as

H = − ∑
{i,j}∈E

(Si ⋅ Sj) − h∑
i∈V

Si ⋅ b, (5.11)

where b ∈ S2 and Si ⋅b = ∑3
k=1 bkS

(k)
i . One then studies the quantity (5.5) using the quantum

version of the free energy, or quantities of the form of (5.6), ie:

lim
∣V ∣→∞

⟨(
1
∣V ∣

∑
x∈V

Sx) ⋅ b⟩H,G,β, (5.12)

where for an operator A on the phase space V ⊗n, ⟨A⟩H,G,β = 1
Z(G,H,β) Tr[A ⋅ e−βH]. The

spin-spin correlations (5.3) have their analogue in the quantum case too:

lim
∣x1−x2∣→∞

⟨Sx1 ⋅ Sx2⟩H,G,β. (5.13)
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As in the classical case, in dimensions 1 and 2 this limit is zero for all β > 0, see the lecture
notes of Ueltschi [100]. There is a notion of Gibbs states in the quantum case too. One
needs the theory of C∗-algebras to define them rigorously. See [86] for formal definitions.
In [14], the authors give a certain heuristic argument which points towards the structure
of the Gibbs states of several models (including the quantum Heisenberg model). In both
this Chapter 5 and 6, we observe that we can make analogous heuristic arguments for the
models that we study in those chapters. See Sections 5.2.2, 5.2.3 and 6.1.5.

While models on Zd are already simplifications of the real-life situations that they
model, often working with them can be difficult. For example, the question of whether
there is a phase transition for the quantum Heisenberg model on Zd, d ≥ 3, is an open
problem (let alone the nature of such a transition). Notice the difference from the classical
case. One way of gaining intuition for these models is via the mean field approximation,
where the effect of all particles on any one particle is approximated by a single, averaged
effect.

Mathematically, this amounts to studying the models on the complete graph on n

particles (i.e. all particles are neighbours of one another). Often, this makes computations
(for example computing the free energy) easier. Note that on the complete graph, some
of the methods for detecting phase transitions have workable analogues, and some do not.
The notion of Gibbs states is not well-defined, and correlations such as (5.13) do not have
meaning since the distance between any pair of particles is 1. However, an analogue of the
free energy is well-defined (and one can sometimes study its analyticity properties), and
expressions such as (5.12) make sense, and can often be computed.

In several models the mean-field approximation gives exactly the corresponding quanti-
ties for the model on Zd, and in some cases it is a good approximation, particularly when
the interactions between particles are long range, or the dimension is high (both cases
meaning that the valency of a vertex in the underlying graph is high). In this Chapter 5,
we make such a mean field approximation, and study the free energy of a class of quantum
spin systems (which includes the spin S = 1

2 quantum Heisenberg model) on the complete
graph. We also compute certain observables of the form (5.12). In Chapter 6 we make a
similar approximation, studying models on the complete bipartite graph.

We will study three simple generalisations of the quantum Heisenberg model, which
will appear in, and indeed be a large focus of, this chapter. Equivalent classical models
exist for each of the three models, by amending the the Hamiltonians accordingly. Firstly,
the quantum Heisenberg antiferromagnet has Hamiltonian

H = + ∑
{i,j}∈E

(Si ⋅ Sj), (5.14)

the same as the ferromagnet but multiplied by (−1). This model favours adjacent spins
which are anti-aligned. On a bipartite graph, it is not hard to see that configurations (in
the classical model) with lowest energy are those with all spins aligned on one subgraph,
and all spins on the other subgraph aligned in the opposite direction. Dyson, Lieb and
Simon [33] showed a phase transition for a large class of models on Zd, d ≥ 3, including
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the quantum Heisenberg antiferromagnet with spin S ≥ 1, using the method known as
reflection positivity; this was extended to d ≥ 3, S ≥ 1

2 by Kennedy, Lieb and Shastry [59].
Notice the contrast with the ferromagnet remaining an open problem.

Secondly, the Heisenberg XXZ model is the Heisenberg model with Hamiltonian tweaked
to become:

H = − ∑
{i,j}∈E

(K1S
(1)
i S

(1)
j +K2S

(2)
i S

(2)
j +K1S

(3)
i S

(3)
j ) , (5.15)

that is, we give a certain weight K2 to the interaction in the S(2) direction, and a second
weight K1 to the other two directions. For example, if K1 > 0 and K2 < 0, the system
wants adjacent spins which point in the 1 − 3 plane to be aligned, but those pointing in
the 2-axis to be anti-aligned. The name “XXZ” is simply from there being two weights
the same and one different. Notice that the ferromagnetic Heisenberg model is the special
case K1 = K2 = 1, and the antiferromagnet is K1 = K2 = −1. One can perform a unitary
transformation (conjugate the Hamiltonian by a unitary matrix) so that the K2 weight
appears in front of the S(1) or the S(3) term instead; another unitary transformation can
replace K1 with −K1. See the lecture notes of Ueltschi [100] for details. Fröhlich and Lieb
[39] and Kennedy [58] showed that for K2 > K1 > 0, and for dimensions d ≥ 2 there is
a phase transition in the spin S = 1

2 model in the sense that for low temperatures there
is long range order, that is, the limit lim∣x1−x2∣→∞⟨S

(2)
x1 S

(2)
x2 ⟩H,Zd,β (see (5.13)) is strictly

positive. Notice the difference from the ferromagnetic model, where there is no transition
in dimension d = 2.

Thirdly, the Heisenberg bilinear-biquadratic model has Hamiltonian

H = − ∑
{i,j}∈E

(J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2) . (5.16)

This model is studied in spin S = 1, where it is the most general SU(2)-invariant model,
where here the invariance is the action on the spin operators. The first term in (5.16)
is essentially the ferromagnet for J1 > 0 and the antiferromagnet for J1 < 0, indeed the
ferromagnet is the special case J1 = 1, J2 = 0, and the antiferromagnet is J1 = −1, J2 = 0.
The second term, for J2 > 0, prefers adjacent spins to be either aligned or anti-aligned, but
not orthogonal to one another, and vice-versa for J2 < 0. Ueltschi [101] showed that there
is a phase transition for d ≥ 3 and 0 ≤ J1 ≤ 1

2J2, in the sense that for low temperatures,
there is a “nematic order”, and on the line J1 = 0 < J2 there is a “Néel order”, both types of
long range order. Lees [64] showed that for d ≥ 3, J1 ≤ 0 ≤ J2 and −J1/J2 < α = α(d) some
constant depending on dimension, there is Néel order for low temperatures. See Section
7 of [101], as well as [102], for a full description and the expected phase diagram on Zd,
d ≥ 3. See [36], [54], [95], [98], for further work on this model.

One interesting difference between the quantum and classical model is the following.
In the nematic region in the quantum model, 0 < J1 < J2, one expects the extremal Gibbs
states to be indexed by RP2. Following the classical intuition, one would expect these
extremal states to arise as limits, for b ∈ S2:

⟨⋅⟩b = lim
h↘0

lim
∣V ∣→∞

⟨⋅⟩b,H(h,β,J1,J2),G , (5.17)
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where

H(h,β, J1, J2) = − ∑
{i,j}∈E

(J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2) − ∑
{i}∈V

h(Si ⋅ b)2. (5.18)

Here the magnetisation term encourages spins to be either aligned or anti-aligned in the
direction of b. However, in the quantum case, the correct Gibbs state is expected [102] to
arise with magnetisation term +∑{i}∈V h(Si ⋅ b)2 (with the sign changed to a plus), which
encourages spins to lie in the plane orthogonal to b.

We will study the latter two models in the rest of Chapter 5 as they are special cases
of the more general model (5.20) studied there.

5.2 Introduction to quantum spin systems on the complete
graph

The remainder of this Chapter 5 presents the results from the paper “The free energy
of a class of O2S+1(C)-invariant spin 1

2 and 1 quantum spin systems on the complete
graph” [89]. We present the paper essentially unchanged, with references to our use of
representation-theoretic tools from the previous sections given as appropriate.

In this paper, we study a certain two-parameter family of quantum spin systems on
the complete graph which generalises the spin S = 1

2 quantum Heisenberg model, and
which in particular has a certain invariance under the action of the orthogonal group
O(θ) = O(2S + 1) = O2S+1(C), where θ = 2S + 1, and S is the spin of the model. It is
equivalent in spin S = 1

2 to the XXZ model, and in spin S = 1 to the bilinear-biquadratic
Heisenberg model, defined above. The work is motivated by a paper of Björnberg, whose
model is GL(θ)-invariant. In spin S = 1

2 and S = 1 we give an explicit formula for the
free energy for all values of the two parameters, and for spin S > 1 for when one of
the parameters is non-negative. This allows us to draw phase diagrams, and determine
critical temperatures. For spins S = 1

2 and S = 1, we give a magnetisation, the left and
right derivatives of the free energy as the strength parameter of a certain magnetisation
term in the Hamiltonian similar to (5.11) tends to zero. We also give a formula for a
certain total spin observable in the style of a paper of Björnberg, Fröhlich and Ueltschi
[14]. We also give a certain heuristic argument which points towards the structure of the
Gibbs states in the models we study, analogously to an argument in [14].

The key technical tool used in this paper (and the next, in Chapter 6) is Schur-Weyl
duality. Fundamentally, the partition function of the model is the trace of the action
pBn,θ (see 3.12) of some element of the Brauer algebra Bn,θ on tensor space V ⊗n. We can
therefore use Schur-Weyl duality to write the partition function in terms of the irreducible
characters of the symmetric group and the Brauer algebra, which is instrumental in being
able to then take limits.

Let us present a more detailed introduction to this paper. Quantum spin systems and
their phase transitions have been studied widely. Mermin and Wagner showed that no
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model with continuous symmetry has a phase transition in dimensions 1 and 2. This was
done in particular for the quantum Heisenberg model [74] and the classical model [73].
Dyson, Lieb and Simon [33] showed a transition for a large class of models on Zd, d ≥ 3,
including the quantum Heisenberg antiferromagnet with spin S ≥ 1. A phase transition
on Zd, d ≥ 3 for the ferromagnet remains unproved. Tóth [97] and Aizenman-Nachtergale
[1] showed that the spin S = 1

2 Heisenberg ferro- and anti-ferromagnet (respectively) have
probabilistic representations as weighted interchange processes. Other spin systems have
been studied with probabilistic representations, and interchange processes have been stud-
ied widely in their own right; see, for example, [5], [48], [61], [91].

The free energy of the spin S = 1
2 Heisenberg ferromagnet on the complete graph was

determined by Tóth [96] and Penrose [82]. This was extended by Björnberg [13] to a class
of spin S ∈ 1

2N models, with Hamiltonian equal to the sum of transposition operators.
The model’s probabilistic representation is that of the interchange process, where Tóth’s
weighting of 2#cycles is replaced by (2S + 1)#cycles.

Motivated by [13], we give in Theorem 5.2.1 the free energy, on the complete graph
and in spins S = 1

2 and 1, of a model with Hamiltonian (5.20) given by linear combinations
of the sum of transposition operators, and the sum of certain projection operators. For
spins S > 1 we can apply a similar strategy to give in Theorem 5.2.2 the free energy in
the case that one of the parameters of the Hamiltonian is non-negative. In spin S = 1

2 the
model is equivalent to the Heisenberg XXZ model (Hamiltonian (5.25)). In spin S = 1 it
is equivalent to the bilinear-biquadratic Heisenberg model (Hamiltonian (5.29)), which is
also known as the most general SU(2)-invariant spin S = 1 model (here SU(2)-invariance
means invariance under the action of SU(2) generated by the spin-operators). We give a
full phase diagram in the two parameters of the Hamiltonian in the S = 1

2 and 1 cases, and
half of the diagram for S > 1 (the region where we have the free energy), giving the points of
phase transitions in finite temperature, and ground state behaviour. These phase diagrams
differ notably in shape from those on Zd, since the complete graph is not bipartite. Indeed,
no phase transition is observed for the spin S = 1

2 Heisenberg antiferromagnet, in contrast
to Zd, [33], and the expected phase diagram for the spin S = 1 model in Zd differs from
ours on the complete graph - see Ueltschi’s work [101] and [102]. In spins S = 1

2 and 1 we
give in Theorems 5.2.3 and 5.2.4 respectively expressions for a magnetisation and a total
spin observable. These are motivated by corresponding results of [13] and [14] respectively.

The Hamiltonian in [13] is GL(θ)-invariant, which allows it to be studied using the
representation theory of the symmetric group (here and for the rest of the paper, by G-
invariance, we mean that G acts on tensor space by G ∋ g ↦ g⊗n, and the Hamiltonian
in question commutes with this action). Björnberg’s key technical step is to express the
partition function of the model in terms of the irreducible characters of the symmetric
group. Our Hamiltonian is only O(θ)-invariant, which requires us to look for more tools,
as the symmetric group is not sufficient. (In fact, any O(θ)-invariant pair-interaction
Hamiltonian must be of the form (5.20)). The key representation-theoretic step in finding
the free energy is to express the partition function in terms of the irreducible characters
of both the symmetric group and the Brauer algebra. Indeed, the Brauer algebra was
introduced by Brauer [19], as the algebra of invariants of the action of the orthogonal
group on tensor space. A key technical step in our proofs is solving the problem of finding
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when the Brauer algebra - symmetric group branching coefficients are non-zero; we have
a general solution for this problem in spins S = 1

2 ,1 in Propositions 5.7.6 and 5.7.8. For
higher spins more work is needed to answer the problem fully, and handle the remaining
parts of the phase diagram.

This paper is a continuation of several papers which analyse quantum spin systems and
their interchange processes using representation theory (including [13]). Alon and Kozma
[3] estimate the number of cycles of length k in the unweighted interchange process, on any
graph. Berestycki and Kozma [9] give an exact formula for the same on the complete graph,
and study the phase transitions present. In [4] Alon and Kozma give a formula for the
magnetisation of the 2#cycles weighted process (equivalent to the spin S = 1

2 ferromagnet)
on any graph, which simplifies greatly in the mean-field.

The model we study was introduced by Ueltschi [101], generalising Tóth [97] and
Aizenmann-Nachtergaele [1]. Ueltschi showed, for certain values of the parameters, equiv-
alence with a weighted interchange process with “reversals”. For these parameters, the
model and interchange process have been studied on Zd [16], [25], trees [10], [17], [49],
graphs of bounded degree [76], and the complete graph [15], [14], the latter of which
computes many observables. Our methods allow us to deal with all values of the param-
eters, not just those for which the probabilistic representation holds. The implications of
our results for this interchange process seem to be limited to the following. In [15], the
authors show that the transition time is independent of the parameter giving the ratio
of “crosses” and “reversals”; our results indicate the same is most probably true for the
weighted process.

In Section 5.2.1, we describe our model and precisely state our results. In Section
5.3 we give an introduction to the Brauer algebra. In Section 5.4 we prove our main
result, Theorem 5.2.1, modulo the key ingredients Propositions 5.7.6 and 5.7.8 which are
proved in Section 5.7. In Section 5.5 we give the free energy in higher spins, and prove
our magnetisation and total spin results. In Section 5.6 we prove certain results on the
analyticity of the free energy, which follow from Theorem 5.2.1, and give calculations which
back up our interpretation of the phase diagrams.

5.2.1 Models and results

Let S(1), S(2), S(3) denote the usual spin-operators, satisfying the relations:

[S(1), S(2)
] = iS(3), [S(2), S(3)

] = iS(1), [S(3), S(1)
] = iS(2),

(S(1)
)

2
+ (S(2)

)
2
+ (S(3)

)
2
= S(S + 1)id,

with i =
√
−1. For each S ∈ 1

2N we use the standard spin S representation, with S(j),
j = 1,2,3, Hermitian matrices acting on V = Cθ, θ = 2S + 1. We will broadly adopt the
bra-ket ⟨⋅∣⋅⟩ statistical mechanical notation for vectors and operators on V and tensor
products of V . We fix a non-degenerate, symmetric, bilinear form on V , such that an
orthonormal basis of V with respect to this form is given by the eigenvectors ∣a⟩ of S(3),
with eigenvalues a ∈ {−S, . . . , S}. Note we define the orthogonal group O(θ) as the group
preserving this form, as in Chapter 2.

Let G = (V,E) be the complete graph on n vertices. We number the vertices 1, . . . , n.
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At each vertex 1 ≤ i ≤ n, we fix a copy Vi = V , and let the space V = ⊗1≤i≤nVi = V ⊗n.
Now an orthonormal basis of V is given by vectors ∣a⟩ = ⊗1≤i≤n∣ai⟩, where each ai ∈

{−S, . . . , S}. If A is an operator acting on V , we define Ai = A⊗ idV∖{i} acting on V (i.e.
Ai(v1⊗⋯⊗vi⊗⋯⊗vn) = v1⊗⋯⊗Avi⊗⋯⊗vn for all vi ∈ Vi, 1 ≤ i ≤ n, extending linearly).

We define Ti,j to be the transposition operator, and Qi,j to be a certain projection
operator, first on Vi ⊗ Vj :

Ti,j ∣ai, aj⟩ = ∣aj , ai⟩,

⟨ai, aj ∣Qi,j ∣bi, bj⟩ = δai,ajδbi,bj ,
(5.19)

for basis vectors ai, aj , bi, bj of Vi, Vj as appropriate. We then identify Ti,j with Ti,j ⊗

idV∖{i,j}, and Qi,j similarly. Note these are just (3.12). Let our Hamiltonian be defined
as:

H =H(n, θ,L1, L2) = −∑
i,j

(L1Ti,j +L2Qi,j) , (5.20)

where L1, L2 ∈ R, and the sum is over all pairs of vertices 1 ≤ i < j ≤ n. We define the
partition function as

Zn,θ(L1, L2) = Tr[e−
1
n
H(n,θ,L1,L2)].

Note that usually we would write e−
β
n
H , for inverse temperature β, but without loss of

generality this β can be incorporated into L1 and L2. One could think of β as being
expressed by the norm of the vector (L1, L2) ∈ R2. The factor 1

n compensates for the fact
that on the complete graphs there are order n2 interactions (as opposed to Zd, where the
number of interactions is proportional to the volume).

We have the following results. The first and main result, Theorem 5.2.1, gives the free
energy when the spin S = 1

2 or 1, that is, θ = 2,3. Theorem 5.2.2 gives the free energy for
all θ ≥ 2, but only for L2 ≥ 0; its proof is very similar to that of 5.2.1. Theorems 5.2.3 and
5.2.4 give formulae for a certain magnetisation and a certain total spin, respectively. In
Theorems 5.2.5, 5.2.7 and 5.2.10 we analyse the free energies of Theorems 5.2.1 and 5.2.2
and discuss the phase diagrams that they produce.

Theorem 5.2.1. For θ = 2,3, the free energy of the model with Hamiltonian given by
(5.20) is:

lim
n→∞

1
n

logZn,θ(L1, L2) = max(x,y)∈∆∗

θ
[

1
2
((L1 +L2)

θ

∑
i=1
x2
i −L2y

2
1) −

θ

∑
i=1
xi log(xi)] , (5.21)

where

∆∗
2 = {(x, y) = (x1, x2, y1) ∈ [0,1]3

∣ x1 ≥ x2, x1 + x2 = 1, 0 ≤ y1 ≤ x1 − x2},

∆∗
3 = {(x, y) = (x1, x2, x3, y1) ∈ [0,1]4

∣ x1 ≥ x2 ≥ x3, x1 + x2 + x3 = 1, 0 ≤ y1 ≤ x1 − x3}.

(5.22)

From hereon in, we label the function being maximised by:

φ = φθ,L1,L2(x, y) =
1
2
[(L1 +L2)

θ

∑
i=1
x2
i −L2y

2
1] −

θ

∑
i=1
xi log(xi). (5.23)
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Our result for higher spins covers only the range L2 ≥ 0. As noted earlier in the
introduction, this restriction is due to our only having a partial solution to determining
when the Brauer algebra - symmetric group branching coefficients are non-zero, when the
multiplicative parameter of the Brauer algebra θ = 2S +1 is greater than 3 (see Section 5.3
for the definition of the multiplicative parameter, and (5.37) for the branching coefficients).

Theorem 5.2.2. Let θ ≥ 2, and assume L2 ≥ 0. Then the free energy of the model with
Hamiltonian (5.20) is:

lim
n→∞

1
n

logZn,θ(L1, L2) = maxx∈∆θ
[
L1 +L2

2
θ

∑
i=1
x2
i −

θ

∑
i=1
xi log(xi)] ,

where ∆θ = {x ∈ [0,1]θ ∣ xi ≥ xi+1 ≥ 0, ∑θi=1 xi = 1}.

Notice that for θ = 2,3 this theorem is consistent with Theorem 5.2.1, since in (5.21),
for L2 ≥ 0, we must set yi = 0 for all i. Note that when L2 = 0, Theorems 5.2.1 and
5.2.2 recover Björnberg’s result (Theorem 1.1 from [13]), with our L2 equal to the β from
that paper. Results equivalent to our following results are obtained (for all θ) for the
case L2 = 0 in [14]. Note in particular that there the symmetry is different - the model is
GL(θ)-invariant rather than the O(θ)-invariance of our general L2 ≠ 0 model. The paper
[14] also discusses the Gibbs states of the L2 = 0 model, which are expected to be indexed
by CPθ−1, different from L2 ≠ 0 (see discussion below).

We can give two additional results, both for θ = 2,3. The first gives the free energy of
the model when we add a certain magnetisation term with a real strength parameter h,
and its left and right derivatives at h = 0. Let us modify the Hamiltonian (5.20):

Hh =Hh(n, θ,L1, L2,W ) = −∑
i,j

(L1Ti,j +L2Qi,j) − h∑
i

Wi, (5.24)

where h is real, and W is a θ×θ skew-symmetric matrix (i.e. WT = −W ), with eigenvalues
1,−1 for θ = 2, and 1,0,−1 for θ = 3. In this theorem and the next, the limitation of W
being skew-symmetric is a technical one arising from the methodology. Note that 2S(2)

i

when θ = 2, and S(2)
i when θ = 3 is skew-symmetric with the appropriate eigenvalues. In

our interpretation of phase diagrams, we will think of this magnetisation term as that in
the S(2) direction. This theorem relates to Theorem 5.2.1 as Theorem 4.1 from [13] does
to Theorem 1.1 from that paper.

Theorem 5.2.3. Let θ = 2,3, and let Zn,θ(L1, L2, h) = Tr[e− 1
n
Hh]. The free energy of the

model with Hamiltonian Hh (5.24) is given by:

Φ = Φθ(L1, L2, h) = lim
n→∞

1
n

logZn,θ(L1, L2, h) = max(x,y)∈∆∗

θ
[φθ,L1,L2(x, y) + ∣h∣y1] .

Further, the left and right derivatives of this free energy with respect to h, at h = 0, are
given by:

∂Φ
∂h

∣
h↘0

= y↑1,
∂Φ
∂h

∣
h↗0

= y↓1,

where (x↑, y↑) is the maximiser of φ which maximises y1, and (x↓, y↓) the one which
minimises y1.
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Note that y↑1, y
↓
1 depend on L1, L2, and we will show that both are zero when L1, L2

are small.
We now return to the model (5.20) with no magnetisation term. We give a total

spin observable ⟨e
h
n ∑iWi⟩, for skew-symmetric matrices W . This theorem is an equivalent

of Theorems 2.1-2.3 from [14], and its proof follows similar lines of reasoning to that of
Theorem 2.3 from that paper, aided by the Brauer algebra technology that we develop in
this paper.

Theorem 5.2.4. Let θ = 2,3, h ∈ R, and W skew-symmetric with eigenvalues 1,−1 for
θ = 2, and 1,0,−1 for θ = 3. Assume that the function φθ,L1,L2 has a unique maximiser
(x∗, y∗) ∈ ∆∗

θ . Then with H the Hamiltonian from (5.20), for L2 ≠ 0,

⟨e
h
n ∑iWi⟩ ∶= lim

n→∞

Tr[e hn ∑iWie−
1
n
H]

Zn,θ(L1, L2)
=

⎧⎪⎪
⎨
⎪⎪⎩

cosh(hy∗1), if θ = 2,
sinh(hy∗1)

hy∗1
, if θ = 3.

The quantity cosh(hy∗1) is related to Ising spin-flip symmetry, see below in Proposition
5.2.6 and the discussion thereafter; and the quantity sinh(hy∗1)

hy∗1
is related to SU(2) (or O(3))

symmetry, see in Proposition 5.2.9 and the discussion thereafter, and in [14].
We now state our results in terms of two well known models, the spin S = 1

2 Heisenberg
XXZ model, and the spin S = 1 bilinear-biquadratic Heisenberg model.

5.2.2 Phase diagram for spin S =
1
2

Let S = 1
2 , so θ = 2. We consider the Hamiltonian of the XXZ model, which will be

equivalent to (5.20). Let

H ′
= −

⎛

⎝
∑
i,j

K1S
(1)
i S

(1)
j +K2S

(2)
i S

(2)
j +K1S

(3)
i S

(3)
j

⎞

⎠
, (5.25)

with K1,K2 ∈ R. Our result Theorem 5.2.1 leads us to the following theorem, which will
give information about the phase diagram of this model. See Figures 5.1a and 5.1b.

Theorem 5.2.5. The free energy of the model with Hamiltonian (5.25) is analytic every-
where in the (K1,K2) plane, except the half-lines K1 = 4,K2 ≤ 4 and K2 = 4,K1 ≤ 4, where
it is differentiable, but not twice-differentiable, and the half-line K1 = K2 ≥ 4, where it is
not differentiable.

Note that the free energy is trivially continuous everywhere (it is concave or convex,
and in our case, the maximum of a smooth function).

Let us also formalise what we will prove about the magnetisation and finite volume
ground states, which will aid our discussion of the phase diagram below.

Proposition 5.2.6. Consider the spin S = 1
2 Heisenberg XXZ model (5.25).

1. The magnetisation y↑1 of Theorem 5.2.3 is positive if and only if K2 > 4, K2 ≥ K1,
and is zero elsewhere.

2. (a) For K2 > 0, K2 > K1, the finite volume ground states are spanned by the two
product states ⊗1≤j≤n(∣

1
2⟩ ± i∣ −

1
2⟩), (where i =

√
−1);
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(b) For K1 > 0, K1 >K2, the finite (even) volume ground state is the vector (5.28).

Note that the two vectors ∣12⟩ ± i∣ −
1
2⟩ are the eigenvectors of S(2).

Theorem 5.2.5 splits the plane into three regions of analyticity, which we identify as
three phases of the model. We label the region K1 ≤ 4,K2 ≤ 4 disordered (illustrated in
block pink in Figure 5.1b); the maximiser of the function φ in (5.21) is constant in this
region, and it maximises the entropy term (the logarithms) of φ.

We label the region K2 > 4,K2 > K1 the Ising phase (illustrated in dotted yellow in
Figure 5.1b). It includes the half-line K1 = 0,K2 ≥ 4, where the model is the supercritical
classical Ising model, and further we will show the free energy in this region is independent
ofK1 (it is perhaps slightly surprising thatK2 dominates to such a complete extent). There
are two finite volume ground states in this region, the product states ⊗1≤j≤n(∣

1
2⟩± i∣−

1
2⟩).

Further, for small values of h, adding −h∑i S
(2)
i to the Hamiltonian as in (5.24) forces a

unique ground state, ⊗1≤j≤n(∣
1
2⟩+ i∣−

1
2⟩) when h > 0 and ⊗1≤j≤n(∣

1
2⟩− i∣−

1
2⟩) when h < 0.

The magnetisation y↑1 in the S(2) direction from Theorem 5.2.3 is positive.
The authors of [14] give a heuristic argument that points towards an expected structure

of the set of extremal Gibbs states Ψβ at inverse temperature β for several models on Zd,
d ≥ 3. The extremal Gibbs states in infinite volume are not well-defined on the complete
graph, so the working is by analogy. Specifically, their heuristics indicate two expected
equalities: first, that

lim
Λn→Zd

⟨e
h
∣Λ∣
∑i S

(2)
i ⟩Λ = ∫Ψβ

eh⟨S
(2)
0 ⟩ψdµ(ψ), (5.26)

where dµ is the measure on Gibbs states corresponding to the symmetric state, S(2)
0 is the

spin operator at the lattice site 0, and the left hand side is the limit of successively larger
boxes Λ ∈ Zd; and second that

lim
n→∞

⟨e
h
n ∑i S

(2)
i ⟩G = lim

Λn→Zd
⟨e

h
∣Λn ∣
∑i S

(2)
i ⟩Λn , (5.27)

where the left hand term is the observable on the complete graph. The left hand side of
(5.27) is computed rigorously on the complete graph, and then, with the expected structure
of Ψβ inserted, the right hand side of (5.26) is rigorously computed, and the two are shown
to be the same. This working is not a proof either of the expected equalities (5.26), (5.27)
or of the expected structure of Ψβ, but it points towards all three statements holding true.
We can take the same approach for our models in several of the phases, with one small
difference. We expect that the equality (5.27) holds for the complete graph models that
we study in this paper on the left hand side, and on the right hand side models on other
non-bipartite graphs, for example the triangular lattice, or the models on Zd, d ≥ 3, with
nearest and next-to-nearest neighbour interactions. For the Ising phase here, we can argue
that the extremal Gibbs states in the Ising phase are expected to be indexed by {±e2},
where e2 is the second basis vector in R3. Indeed, with magnetisation y∗1 = ⟨S

(2)
0 ⟩e2 and

Ψβ = {±e2}, the right hand side of this equality is cosh(hy∗1); the left hand side is the same
by Theorem 5.2.4.

We label the region K1 > 4,K1 > K2 the XY phase (illustrated in hatched blue in
Figure 5.1b). We expect the S(1)

i and S
(3)
i terms to dominate, and the extremal Gibbs
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states to be labelled by a⃗ ∈ S1 in the 1 − 3 directions. The magnetisation y↑1 in the
S

(2)
i direction (from Theorem 5.2.3) is zero in this region, which is consistent with this

picture. Similarly to the Ising phase, with Ψβ = S1, the right hand side of (5.26) is 1, as
is the left hand side by Theorem 5.2.4, so again we are encouraged in our labelling of the
extremal states, and of (5.26). Equivalent calculations in the S(1) direction are done in
[14]. Interestingly, the ground state in finite (even) volume is the vector

∑
m,m′

n/2
⊗
i=1

∑
a=−1

2 ,
1
2

∣ami , am′

i
⟩, (5.28)

where the sum is over all possible pairings (m,m′) of the vertices of V (that is, (m,m′) =

((m1, . . . ,mn
2
), (m′

1, . . . ,m
′
n
2
)), with m ∪m′ = V, m ∩m′ = ∅).

Note that the line K1 = K2 ≥ 0 is the ferromagnetic Heisenberg model, and the ex-
tremal Gibbs states are expected to be labelled by a⃗ ∈ S2. Here we can prove that the
magnetisation y↑1 > 0 iff K1 =K2 > 4. The heuristics of (5.26) are given in Theorem 2.1 of
[14].

The transitions from the disordered phase to each of the Ising and XY phases are
second order, and the transition from Ising to XY is first order. The ground state phase
diagram is illustrated in Figure 5.1a, and the finite temperature phase diagram is illus-
trated in Figure 5.1b.

K2

K1

K1 =K2

Ising

XY

Disordered

(a) Ground state phase diagram

4

4

K2

K1

(4,4)

Ising

XY

Disordered

(b) Finite temperature phase diagram

Figure 5.1: On the left, the ground state phase diagram for the Spin 1
2 Heisenberg XXZ

model with Hamiltonian (5.25). The line K1 = K2 ≥ 0 gives the Heisenberg ferromagnet.
On the right, the phases at finite temperature, where varying temperature is given by
varying the modulus ∣∣(K1,K2)∣∣. Transitions between phases (points of non-analyticity of
the free energy) shown in red lines.

5.2.3 Phase diagram for spin S = 1

In spin S = 1, we consider the bilinear-biquadratic Heisenberg model:

H ′′
= −

⎛

⎝
∑
i,j

J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2⎞

⎠
, (5.29)
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with J1, J2 ∈ R. Our Theorem 5.2.1 leads us to the following theorem, which will give
information about the phase diagram of this model. See Figures 5.2a and 5.2b. We can
rigorously analyse the free energy in the J2 > J1 half of the phase diagram; on the other
half we have partial results and numerical simulations to support Remark 5.2.8.

Theorem 5.2.7. Within the region J2 > J1 of the (J1, J2) plane, the free energy of the
model with Hamiltonian (5.29) is analytic everywhere, except the half-line J2 = log 16, J1 ≤

log 16, where it is continuous, but not differentiable.

Remark 5.2.8. We strongly suspect that Theorem 5.2.7 extends to the following: that
the free energy of the model with Hamiltonian (5.29) is analytic everywhere in the (J1, J2)

plane, apart from the half-lines J2 = log 16, J1 ≤ log 16 and J1 = J2 ≥ log 16, where it is
continuous, but not differentiable, and a curve (that we label C) made up of the half-line
J2 = 2J1 − 3 ≤ 3/2 and a curve connecting the points (9

4 ,
3
2) and (log 16, log 16), which (as

a function of J1) is convex, with gradient in [2,3]. It is unclear whether it is analytic on
the half-line J1 = 0, J2 ≤ −3.

Let us make clear what we will prove towards Remark 5.2.8 and the following discussion
of the phase diagram of the model.

Proposition 5.2.9. Consider the bilinear-biquadratic Heisenberg model with Hamiltonian
(5.29).

1. The region A of the J1 − J2 plane where the point (x, y) = ((1
3 ,

1
3 ,

1
3), (0,0,0)) is

a maximiser of φ3,J1,J2 (5.63) (the equivalent of φ3,L1,L2 (5.23) when we change
variables appropriately) is closed and convex, and its boundary is the half-line J1 ≤

J2 = log 16, and a curve C as described in Remark 5.2.8.

2. The magnetisation term y↑1 of Theorem 5.2.3 is zero in the region A and the region
J2 ≥ log 16, J2 > J1, and is positive in the region J1 ≥ J2, strictly to the right of the
curve C.

3. (a) For J2 > 0, J2 > J1, the finite (even) volume ground state is the vector (5.30);

(b) For J1 > 0, J1 > J2, the finite volume ground states are those vectors invari-
ant under Sn, and killed by all Pi,j (5.61), which include the product states
⊗1≤i≤n ∣a⟩, where a2

0 − a1a−1 = 0;

(c) For 1
2J2 < J1 < 0, the finite volume ground states are those vectors are spanned

by the vectors (5.31).

Let us now discuss the phase diagram. Theorem 5.2.7, Remark 5.2.8, and Proposition
5.2.9 divide the (J1, J2) plane into four regions, which we label as phases of the model.
We label the region A (illustrated in block pink in Figure 5.2b) the disordered phase. The
boundary of this region is made up of the half-line J2 = log 16, J1 ≤ log 16 and the curve
C. The maximiser of the function φ from (5.21) is constant in this region, and maximises
the entropy term.

We label the region of phase space to the right of the red line in Figure 5.2b, within
the region J1 > J2, J1 > 0, ferromagnetic (illustrated in dotted yellow in Figure 5.2b)
(in fact, for large ∣∣(J1, J2)∣∣, this region is that which is expected to be ferromagnetic
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in Z3, see [101]). The finite volume ground states include the product states ⊗1≤i≤n ∣a⟩,
where a2

0 − a1a−1 = 0, (eg. the ferromagnetic ∣1⟩, ∣ − 1⟩, as well as ∣1⟩ + ∣0⟩ + ∣ − 1⟩). The
magnetisation y↑1 in the S(2) direction (Theorem 5.2.3) is positive in this phase. We expect
that the extremal Gibbs states are indexed by a⃗ ∈ S2, in which case (with ⟨S

(2)
0 ⟩e2 = y∗1 )

the right hand side of (5.26) equals sinh(hy∗1)
hy∗1

. Numerical simulations suggest that the
maximiser y∗1 of φ is unique in this phase, so the left hand side of (5.26) should be the
same, by Theorem 5.2.4. This encourages our expectation that the extremal states are
indeed a⃗ ∈ S2, and that (5.26) holds true. This extends the same analysis of the J2 = 0
case given in Theorem 2.1 of [14].

We label the region of phase space J2 > log 16, J2 > J1 the nematic phase (illustrated in
hatched blue in Figure 5.2b); we expect the (Si ⋅Sj)2 term to dominate, and the extremal
Gibbs states to be given by a ∈ RP2. The magnetisation in the S(2) direction (Theorem
5.2.3), y↑1, is zero in this phase, which matches the heuristics; we would expect to get
something non-zero, for example, by replacing S(2) with its square. Interestingly, the
finite (even) volume ground state in this phase is the vector

∑
m,m′

n/2
⊗
i=1

1
∑
a=−1

∣ami , (−1)a(−a)m′

i
⟩, (5.30)

where the sum is over all possible pairings (m,m′). This is the sum over all possible
products of singlet states.

The fourth phase (illustrated in checkerboard orange in Figure 5.2b) occupies the region
1
2J2 +

3
2 ≤ J1 ≤ 0. This phase is somewhat more mysterious. While the magnetisation y↑1 is

positive in this phase, the finite volume ground states are complicated. They depend on
the ratio α = J2

J1+J2
∈ [2

3 ,1], and are spanned by vectors of the form

zτ

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
⊗

i∈V∖(m∪m′)
∣a′i⟩

⎞

⎠
⊗

⎛

⎝

(1−α′)n/2
⊗
i=1

1
∑
a=−1

∣ami , (−1)a(−a)m′

i
⟩
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (5.31)

where α′ is a fraction with denominator n close to α, m,m′ is a pairing of (1−α′)n of the
vertices, a′ satisfies (a′0)

2 −a′1a
′
−1 = 0, and zτ is a Young symmetriser corresponding to the

partition (α′n, (1−α′)n). The vector being symmetrised can be thought of as a proportion
α of the volume being taken up by a ferromagnetic ground state, and 1 − α being taken
up by a product of singlet states. However, it is difficult to interpret the vector once the
Young symmetriser is applied.

The transition from the disordered phase to the nematic phase is first order; we have
not been able to prove similar statements for the other transitions. The ground state
phase diagram is illustrated in Figure 5.2a, and the finite temperature phase diagram is
illustrated in Figure 5.2b.

5.2.4 Higher spins

Recall that we only have the free energy of the model with Hamiltonian 5.20 for spins
S > 1 in the region L2. We can describe this half of the phase diagram in the (L1, L2)

86



J2

J1

J1 = J2

J2 = 2J1

Nematic

Ferromagnetic
Disordered

Fourth Phase
(a) Ground state phase diagram

(log(16), log(16))

( 9
4 ,

3
2 )

(0,−3)

J2

J1

J1 = J2

J2 = 2J1 − 3

J2 = log(16)

Nematic

Ferromagnetic
Disordered

Fourth Phase
(b) Finite temperature phase diagram

Figure 5.2: On the left, the ground state phase diagram for the Spin 1 bilinear-biquadratic
Heisenberg model with Hamiltonian (5.29). On the right, the phases at finite temperature,
where varying temperature is given by varying the modulus ∣∣(J1, J2)∣∣. Transitions between
phases (points of non-analyticity of the free energy) shown in red lines (proved in the region
J2 ≥ J1, expected as shown for the rest of the plane).

plane for all spins as follows. Let

βc = βc(θ) =

⎧⎪⎪
⎨
⎪⎪⎩

2, for θ = 2
2 ( θ−1

θ−2) log(θ − 1), for θ ≥ 3.
(5.32)

Theorem 5.2.10. Let S ≥ 1
2 (so θ ≥ 2), and let βc = βc(θ) from (5.32). Within the

region L2 > 0 of the (L1, L2) plane, the free energy of the model with Hamiltonian (5.20) is
analytic everywhere, except the half-line L1+L2 = βc, where for spin S ≥ 1 it is continuous,
but not differentiable, and for spin S = 1

2 it is differentiable, but not twice-differentiable.

We note that this theorem is a generalisation of Theorem 5.2.7 to spins S ≥ 1, and
indeed it implies Theorem 5.2.7. This can be seen by a unitary transformation of the spin
S = 1 Hamiltonian (5.29) which we describe in Section 5.6.

The L2 ≥ 0 part of the phase diagram can be split into three phases. The disordered
phase occupies the region L1 + L2 < βc. The maximiser of φθ,L1,L2 (5.23) maximises the
entropy term (the logarithms) in this region. The region L1 + L2 > βc, L2 > 0 is a second
phase. The finite (even) volume ground states include the vector

∑
m,m′

n/2
⊗
i=1

∑
a=−S,S

∣ami , am′

i
⟩, (5.33)

where the sum is over all possible pairings (m,m′) of the vertices of V. The line L2 = 0,
L1 > 0 is the quantum interchange model of [13]. The finite volume ground states are any
vector which is invariant under the action of Sn.
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L2

L1

L1 = −L2

Disordered

(a) Ground state phase diagram
(βc(θ),0)

(0, βc(θ))

L2

L1

L1 +L2 = βc(θ)

Disordered

(b) Finite temperature phase diagram

Figure 5.3: On the left, the ground state phase diagram for the spin S model with Hamilto-
nian (5.20), in the region L2 ≥ 0. On the right, the phases for L2 ≥ 0 at finite temperature,
where varying temperature is given by varying the modulus ∣∣(L1, L2)∣∣. Transitions be-
tween phases (points of non-analyticity of the free energy) shown in red lines.

Remark 5.2.11 (A remark on the Interchange process with reversals). As noted in the
introduction, for certain values of the parameters, the model with Hamiltonian (5.20)
has a probabilistic representation as an interchange process with reversals, re-weighed by
θ# loops; see [101]. To be precise, let L1 = 1 − L2 = u ∈ [0,1), and introduce a temper-
ature parameter β, that is, let Zn,θ(u,β) ∶= Tr[e−βH(n,θ,u,1−u)]. Then the corresponding
interchange process is that described in Section 2A of [101], with β translating to time in
the interchange process. It is natural to ask what our results imply, if anything, about
this process; we have one remark to make on this topic. In [15], the authors consider the
unweighted process with reversals, and prove that above a critical time β, the rescaled
loop lengths converge to a Poisson-Dirichlet distribution, as n, the number of particles,
tends to infinity. In particular, the critical time (and indeed the limiting distribution) are
independent of the parameter u. Our result Theorem 5.2.10 indicates that a similar result
might hold for the re-weighed process, since the transition in the spin model occurs at
β = βc (5.32), independent of u.

For completeness, we make the following final remark. In [14], the authors obtain ex-
pressions for total spin observables of the form of Theorem 5.2.4, and note they are equal
to certain observables of the corresponding interchange process, which are characteristic
functions of the lengths of loops. Then they check that the limits of these observables,
evaluated under the Poisson-Dirichlet distribution, are the same as the expressions ob-
tained for the total spin observables. This supports the hypothesis that the rescaled loop
lengths in the reweighed process are, in the limit, distributed is distributed according a
Poisson Dirichlet distribution. It is tempting to try to play the same game here; however,
we are unfortunately not able to with our specific total spin observables. Our total spin
observable is trivial in the region where the probabilistic representation holds; we can give
more details in the following.

In Theorem 2.3 of [14], the authors consider a total spin expression of the form of
Theorem 5.2.4 for the case u = 1, the “Quantum Interchange Model”, and for the matrix
W replaced with any θ × θ matrix, with eigenvalues h1, . . . , hθ. That model has a proba-
bilistic representation as the Interchange process (without reversals) with configurations
re-weighed by θ# loops, described in Section 3.3 of that paper. A configuration of that
process at time β is given by a configuration of certain loops; we label the lengths of
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the loops li, and the number of loops l(σ). The total spin in finite volume is shown to
be equal to the expectation of the observable ∏i≥1

1
θl(σ)

(eh1li/n, . . . , ehθli/n). Now using
Theorem 4.6 from [84], one can obtain the same expression for our total spin in Theorem
5.2.4, except the length of a loop, which before was the number of vertices at time β = 0 it
visits, is replaced by the modulus of its winding number. The winding number definition
comes from the algebraic equivalent in the Brauer algebra of the length of a cycle in the
symmetric group, in that it defines conjugacy classes in the Brauer algebra (see Section
5.3 and Theorem 3.1 of [84]). (In the case of the interchange process without reversals,
(and equivalently in the symmetric group) the length is the same as the modulus of the
winding number, so there is no issue; this is not the case when reversals are introduced).
Hence this observable does not tend to a function of the rescaled loop lengths, so cannot
be compared with the Poisson-Dirichlet distribution.

5.3 The Brauer algebra

We essentially prove Theorem 5.2.1 by identifying the eigenspaces of the Hamiltonian, their
dimensions, and their corresponding eigenvalues. We first observe that the Hamiltonian
is actually the action of an element of the Brauer algebra on V. Schur-Weyl duality gives
us information on the irreducible invariant subspaces of this action, which leads us to the
eigenspaces of the Hamiltonian.

In this subsection we will recall the definitions from Chapter 2 that will be of specific
use to this paper. We will recall the definition of the Brauer algebra, and how its irreducible
representations are enumerated, along with those of the symmetric group and the general
linear and orthogonal groups.

Let θ ∈ C. The Brauer algebra Bn,θ is the (formal) complex span of the set of pairings
of 2n vertices. We think of pairings as graphs, which we will call diagrams, with each
vertex having degree exactly 1. We arrange the vertices in two horizontal rows, labelling
the upper row (the northern vertices) 1+,2+, . . . , n+, and the lower (southern) 1−, . . . , n−.
We call an edge connecting two northern vertices (or two southern) a bar.

Multiplication of two diagrams is given by concatenation. If b1, b2 are two diagrams,
we align the northern vertices of b1 with the southern of b2, and the result is obtained by
removing these middle vertices (which produces a new diagram), and then multiplying the
result by θl(b1,b2), where l(b1, b2) is the number of loops in the concatenation. See Figure
5.4. This defines Bn,θ as an algebra.

b2

b1

= b1b2θ1

Figure 5.4: Two diagrams b1 and b2 (left), and their product (right). The concatenation
contains one loop, so we multiply the concatenation (with middle vertices removed) by θ1.

We call the set of diagrams Bn. Note that diagrams with no bars are exactly permu-
tations, where σ ∈ Sn is represented by the diagram where x− is connected to σ(x)+, so
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Sn ⊂ Bn. Moreover the multiplication defined above reduces to multiplication in Sn, so
CSn is a subalgebra of Bn,θ. We write id for the identity - its diagram has all its edges
vertical. We denote the transposition Sn swapping x and y by (i, j), and we write (i, j)

for the diagram with x+ connected to y+, and x− connected to y−, and all other edges
vertical. See Figure 5.5. Note that just as the transpositions (i, j) generate the symmetric
group, the Brauer algebra is generated by the transpositions and the elements (i, j).

Let us note that the diagrams and multiplication depicted in Figures 5.4 and 5.5 mirror
the paths in the interchange process with reversals (see [1], [101] for definitions). In a
similar way to the interchange process without reversals being thought of as a continuous
time random walk on the symmetric group, this shows that the process with reversals can
be thought of as a random walk on the basis Bn of the Brauer algebra. See, for example,
Figure 1 from [101].

= (24) ∈ Sn

= (34)

= id ∈ S6

Figure 5.5: The identity element, the element (34), and the transposition (24) ∈ S6, all
lying in B6.

Let us turn to representations. A vector ρ = (ρ1, . . . , ρt) ∈ Zt is a partition of n (we write
ρ ⊢ n) if ρi ≥ ρi+1 ≥ 0 for all i, and ∑ti=1 ρi = n. Recall that the irreducible representations
(and characters) of CSn are indexed by partitions of n. The Young diagram of ρ ⊢ n is
the diagram of boxes of ρ with ρj boxes in the jth row. When it is unambiguous, will
denote the Young diagram of ρ simply by ρ. See Figure 5.6 for an illustration of the Young
diagrams of the partitions (5,5,3,1), (4,1,1) respectively. We label by ct(ρ) the sum of
contents of the boxes of the Young diagram of ρ, where the content of a box in row i

and column j is given by j − i. For a partition ρ, ρT is the partition with Young diagram
obtained by transposing the diagram of ρ (so ρT

i is the length of the ith column of ρ). For
ρ ⊢ n a partition, let ψSnρ be the irreducible representation corresponding to ρ, χSnρ its
character, and dSnρ its dimension. The irreducible representations of the Brauer algebra

Figure 5.6: The Young diagrams of the partitions (5,5,3,1) and (4,1,1).

Bn,θ are indexed by partitions λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋ (see Chapter 2 or, for example, [84]
or [24]); let us denote them by ψBn,θ

λ , and their characters by χBn,θ
λ , and dimensions by

d
Bn,θ
λ .
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We also recall that irreducible representations of the orthogonal group O(θ) are given
by partitions λ of any size such that λT

1 + λ
T
2 ≤ θ (see Theorem 1.2 from [84]). The irre-

ducible polynomial representations of GL(θ) are given by partitions ρ of any size with at
most θ parts. Lastly, we note that the irreducible representations of the special orthogonal
group SO(θ) are indexed by partitions of any size with at most r = ⌊θ/2⌋ parts, with the
exception that when θ = 2r even, the rth part can be negative. For each of these three
groups G, for a given partition π we denote the irreducible corresponding to π, and its
character and dimension, by ψGπ , χGπ and dGπ respectively.

In the following section we prove Theorem 5.2.1, and in the section after, Theorems
5.2.2, 5.2.3, 5.2.4, whose proofs are all based on that of 5.2.1. In Section 5.6 we prove
Theorems 5.2.5 and 5.2.7, which follow from Theorem 5.2.1. In Section 5.7 we prove
the two Propositions 5.7.6 and 5.7.8 which are key technical ingredients for the proof of
Theorem 5.2.1.

5.4 Proof of Theorem 5.2.1

In this section we prove our main Theorem 5.2.1, modulo Propositions 5.7.6 and 5.7.8,
whose proofs are postponed to Section 5.7. As noted above, our method is to identify the
eigenspaces of our Hamiltonian, their dimensions and associated eigenvalues. We start by
viewing the Hamiltonian (5.20) as the action of an element of the Brauer algebra Bn,θ on
V.

Let θ ≥ 2. The Brauer algebra acts on V = (Cθ)⊗V = V ⊗n by pBn,θ(i, j) = Qi,j ,
and pBn,θ(i, j) = Ti,j , where recall Ti,j , Qi,j are given by (5.19). We therefore have H =

pBn,θ(H), where

H = −∑
i,j

(L1(i, j) +L2(i, j))

= −(L1 +L2)∑
i,j

(i, j) +L2∑
i,j

((i, j) − (i, j)) .

Now H is a linear combination of two elements in Bn,θ: the sum of all transpositions, which
is central in CSn, and the sum of all transpositions minus all elements (i, j), which is a
central element in Bn,θ. A central element of an algebra acts as a scalar on the irreducible
representations of that algebra. Indeed, (from Lemma 2.1.10) for all ρ ⊢ n,

ψSnρ
⎛

⎝
∑
i,j

(i, j)
⎞

⎠
= ct(ρ)id, (5.34)

and (see (2.10)) for all λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n/2⌋,

ψ
Bn,θ
λ

⎛

⎝
∑
i,j

((i, j) − (i, j))
⎞

⎠
= (ct(λ) + k(1 − θ))id. (5.35)

Finding the eigenspaces of the Hamiltonian requires two steps. First we find the irreducible
invariant subspaces ψBn,θ

λ of the action pBn,θ , on each of which the element in (5.35) acts as
a scalar. The element in (5.34) does not act as a scalar on these spaces ψBn,θ

λ . Hence, the
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second step will be to further decompose these subspaces into smaller spaces (irreducibles
ψSnρ ), on each of which the element in (5.34) does act as a scalar. These smaller spaces
are therefore the eigenspaces of the Hamiltonian.

The first step, the decomposition of pBn,θ , is given by a classical theorem called Schur-
Weyl duality, which we now describe. The orthogonal group also has a natural action on
V; for g ∈ O(θ), vi ∈ Cθi for each 1 ≤ i ≤ n, we have g(v1 ⊗⋯⊗ vn) = gv1 ⊗⋯⊗ gvn. Recall
from Theorem 3.0.3 that Schur-Weyl duality states that the actions of the two algebras
Bn,θ and CO(θ) on V centralise each other, and V can be viewed as a module of the tensor
product Bn,θ ⊗CO(θ), which decomposes as:

V = ⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
O(θ)
λ ⊠ ψ

Bn,θ
λ . (5.36)

(Note the square tensor symbol denotes a representation of the tensor product of two
algebras, as opposed to the circle tensor which denotes a representation of a single group or
algebra). Hence the action pBn,θ decomposes into irreducibles ψBn,θ

λ (such that λT
1 +λ

T
2 ≤ θ),

each with multiplicity dO(θ)
λ . Note that a similar theorem (the original version of Schur-

Weyl duality) holds for the general linear and symmetric groups (see equation (5.71) in
Section 5.7). Here we only note that those representations of Sn which appear in V are
all those with at most θ parts.

For the second step, we need to restrict ψBn,θ
λ to the symmetric group and decompose

into irreducibles. For ρ ⊢ n and λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n/2⌋, recall from (2.40)

resBn,θSn
[ψ

Bn,θ
λ ] = ⊕

ρ⊢n
(ψSnρ )

⊕bn,θ
λ,ρ , (5.37)

where res denotes the restriction of a representation. The coefficients bn,θλ,ρ are the Brauer
algebra - symmetric group branching coefficients. The eigenspaces of the Hamiltonian
are therefore indexed by pairs (λ, ρ), each appearing with multiplicity d

O(θ)
λ bn,θλ,ρ; their

dimensions are dSnρ , and their corresponding eigenvalues are −(L1 +L2)ct(ρ) +L2[ct(λ) +
k(1 − θ)]. Taking exponentials and traces, we see that

Zn,θ(L1, L2) = Tr [pBn,θ(e−
1
n
H
)]

= ∑
λ⊢n−2k
λT

1+λT
2≤θ

∑
ρ⊢n

d
O(θ)
λ bn,θλ,ρd

Sn
ρ exp [

1
n

[(L1 +L2)ct(ρ) −L2(ct(λ) + k(1 − θ))]] .

(5.38)

Now we need to take the limit of 1
n logZn,θ(L1, L2), which will essentially behave like

1
n log of the largest term in the sum above. As n → ∞, the behaviour of ct(λ), ct(ρ),
and 1

n log dSnρ are given by Björnberg [13]. We will show that 1
n log dO(θ)

λ → 0. It remains
to analyse the branching coefficients bn,θλ,ρ. In particular, since we are interested in the
largest term in the sum above, and the sum is really only over those pairs (λ, ρ) for which
bn,θλ,ρ > 0, it is crucial that we have good knowledge of when these coefficients are non-zero.
Obtaining this knowledge is the main technical difficulty of this paper.

Let us introduce some notation. Define Λn(θ) to be the set of pairs (λ, ρ) of partitions
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with at most θ parts, λ ⊢ n − 2k for some 0 ≤ k ≤ ⌊n2 ⌋, with λ
T
1 + λ

T
2 ≤ θ, ρ ⊢ n. Let Pn(θ)

be the set of (λ, ρ) ∈ Λn(θ) with the extra condition that bn,θλ,ρ > 0. Let 1
nPn(θ) be the set

of pairs (λn ,
ρ
n), for (λ, ρ) ∈ Pn(θ).

For θ = 2,3, we give a detailed description of Pn(θ) in Propositions 5.7.6 and 5.7.8,
proved in Section 5.7. Essentially, (i.e. apart from a few edge cases which behave well),
(λ, ρ) ∈ Λn(2) lies in Pn(2) iff 0 ≤ λ1 ≤ ρ1 − ρ2, and (λ, ρ) ∈ Λn(3) lies in Pn(3) iff
0 ≤ λ1 ≤ ρ1−ρ3. As noted earlier, we do not know as much detail when θ > 3 - we use what
we do know to prove Theorem 5.2.3 in Section 5.5.

We will need to take the limit of the sequence 1
nPn(θ); let us make clear what we mean

by this. Let ∆θ ⊂ R2θ be the set of pairs (x, y) ∈ ([0,1]θ)2 such that ∑θi=1 xi = 1, xi ≥ xi+1

for all i, ∑θi=1 yi ∈ [0,1], yi ≥ yi+1 for all i, and yi = 0 for all i > ⌊ θ2⌋. Equip R2θ and subsets
thereof with ∣∣ ⋅ ∣∣ the ∞-norm, ∣∣z∣∣ = max2θ

i=1∣zi∣, and consider the Hausdorff distance dH(⋅, ⋅)

on sets in R2θ:
dH(U,W ) = inf{ε > 0 ∣ U ⊆W ε and W ⊆ U ε},

where U ε = {x ∈ R2θ ∣ ∣∣x− u∣∣ < ε for some u ∈ U}. Then Propositions 5.7.6 and 5.7.8 show
that 1

nPn(θ)→∆∗
θ for θ = 2,3 in this distance, where, recall,

∆∗
2 = {(x, y) ∈ ([0,1]2

)
2
∣ x1 ≥ x2, x1 + x2 = 1, y2 = 0, 0 ≤ y1 ≤ x1 − x2},

∆∗
3 = {(x, y) ∈ ([0,1]3

)
2
∣ x1 ≥ x2 ≥ x3, x1 + x2 + x3 = 1, y2, y3 = 0, 0 ≤ y1 ≤ x1 − x3}.

(5.39)

The rest of the proof follows very similarly to Section 3 of Björnberg [13]. As in that
paper, we prove a slightly more general convergence result, and then apply it to our setting.

Let ∆ be any compact subset of Rt, t ∈ N>0, and let Pn ⊂ ∆ be a sequence of finite
sets with Pn → ∆ in the Hausdorff distance, and 1

n log ∣Pn∣ → 0, as n →∞. Let φ ∶ ∆ → R
continuous, and let φn ∶ Pn → R such that φn → φ in the sense that there exists δn → 0
such that

∣φn(pn) − φ(pn)∣ ≤ δn, (5.40)

uniformly in pn ∈ Pn.

Lemma 5.4.1. Given the assumptions above, we have that

lim
n→∞

1
n

log
⎛

⎝
∑

pn∈Pn
exp [nφn(pn)]

⎞

⎠
= maxx∈∆φ(x).

Proof. Let us first prove an upper bound. We have that

1
n

log
⎛

⎝
∑

pn∈Pn
exp[nφn(pn)]

⎞

⎠
≤

1
n

log (∣Pn∣maxpn∈Pn{exp[nφn(pn)}])

= maxpn∈Pn[φn(pn)] + o(1)

≤ maxpn∈Pn[φ(pn)] + δn + o(1)

≤ maxx∈∆[φ(x)] + δn + o(1),

where in the second to last inequality we use that φn tends to φ (5.40), and in the last
we use simply that Pn ⊂ ∆. Hence we have lim supn→∞ 1

n log (∑pn∈Pn exp [nφn(pn)]) ≤
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maxx∈∆φ(x). For the lower bound, we have:

1
n

log
⎛

⎝
∑

(pn)∈Pn
exp[nφn(pn)]

⎞

⎠
≥

1
n

log (maxpn∈Pn{exp[nφn(pn)]})

= maxpn∈Pn[φn(pn)]

≥ maxpn∈Pn[φ(pn)] + δn.

Now it suffices to prove that limn→∞ maxpn∈Pn[φ(pn)] = maxx∈∆[φ(x)], which follows
from convergence in the Hausdorff distance. Indeed, since ∆ is compact, the maximum
maxx∈∆φ(x) is attained, say, at x∗. Then there exists a sequence of points pn ∈ Pn with
pn → x∗. Now φ (pn) ≤ maxpn∈Pn[φ (pn)] ≤ maxx∈∆[φ(x)] = φ(x∗), again in the last
inequality using the fact that Pn ⊂ ∆, which gives the desired limit by continuity of φ.
To conclude, lim infn→∞ 1

n log (∑pn∈Pn exp [nφn(pn)]) ≥ maxx∈∆φ(x), which completes the
proof. ∎

Now we set ∆ = ∆∗
θ , Pn =

1
nPn(θ), φ = φθ,L1,L2 defined below (5.22), and φn = φn,θ,L1,L2 ,

where

φn,θ,L1,L2(λ, ρ) =
1
n

log(dO(θ)
λ ) +

1
n

log(bn,θλ,ρ) +
1
n

log(dSnρ )

+
1
n2 ((L1 +L2)ct(ρ) −L2(ct(λ) + k(1 − θ))) .

Now using Lemma 5.4.1, in order to prove Theorem 5.2.1, we note that 1
nPn(θ) → ∆∗

θ in
the Hausdorff distance by Propositions 5.7.6 and 5.7.8, and it remains to prove φn,θ,L1,L2 →

φθ,L1,L2 in the sense of (5.40). Noting that 1
n2 (k(1−θ))→ 0, the final two of the four terms

in φn,θ,L1,L2 give the desired limit; this is proved in Theorem 3.5 of [13], the salient points
of which are that as ρ

n → x, 1
n log(dSnρ ) → −∑

θ
i=1 xi log(xi), and ct(ρ) → 1

2 ∑
θ
i=1 x

2
i . So it

remains to prove only that 1
n log(dO(θ)

λ )+ 1
n log(bn,θλ,ρ) tends to zero as n→∞, uniformly in

(λ, ρ). The second of these terms tends to zero by Corollaries 5.7.7 and 5.7.9 in Section
5.7. To show the first tends to zero, we note that Weyl’s formula gives the dimension
d
SO(θ)
λ of the irreducible representation of SO(θ) corresponding to λ = (λ1, . . . , λr), where
r = ⌊θ/2⌋ (see, for example, Section 7 of [44]). For θ odd, and πi = n − i + 1

2 ,

d
SO(θ)
λ = ∏

1≤i<j≤r

(λi + πi)
2 − (λj + πj)

2

π2
i − π

2
j

∏
1≤i≤r

λi + πi
πi

,

and for πi = n − i, θ even, we have

d
SO(θ)
λ = ∏

1≤i<j≤r

(λi + πi)
2 − (λj + πj)

2

π2
i − π

2
j

.

It’s straightforward to see that these dimensions are bounded above by (2n)6r. Finally,
for λT

1 ≤ r recall from (2.23) that

resO(θ)
SO(θ)χ

O(θ)
λ = resO(θ)

SO(θ)χ
O(θ)
λ′ = χ

SO(θ)
λ , (5.41)

where λ′ is identical to λ, except its first column is replaced by θ − λT
1 , except in the case
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when θ = 2r even, and λr > 0, in which case recall from (2.24) that

resO(θ)
SO(θ)χ

O(θ)
λ = χ

SO(θ)
λ + χ

SO(θ)
λ○ , (5.42)

where λ○ is the same as λ except with λr replaced with −λr. As a consequence, the di-
mensions dO(θ)

λ are bounded above by 2(2n)6r. This completes the proof of Theorem 5.2.1.

5.5 Proofs of Theorems 5.2.2, 5.2.3 and 5.2.4

Proof of Theorem 5.2.2. As noted above, the main technical difficulty in this paper is
finding a detailed description for Pn(θ). For general θ, all of the working from the proof of
Theorem 5.2.1 in Section 5.4 holds, apart from the fact that we do not know what the set
Pn(θ) looks like for θ > 3. For L2 ≥ 0, it turns out that enough information in contained in
a theorem of Okada [81], which computes the coefficients bn,θλ,ρ in certain special cases. Note
that in [81], the coefficients are described in terms of the general linear and orthogonal
groups - in Lemma 5.7.1 we show that this formulation is equivalent to ours.

Remark 5.5.1. Okada’s result says: if λ = (1j), j = 0, . . . , θ, then bn,θλ,ρ = 1 if ρ has exactly
j odd parts, and is zero otherwise (part (2) of Theorem 5.4 of [81]).

Now assume L2 ≥ 0. Recall the decomposition of Zn,θ(L1, L2) from (5.38):

Zn,θ(L1, L2) = ∑
(λ,ρ)∈Pn(θ)

d
O(θ)
λ bn,θλ,ρd

Sn
ρ exp [

1
n

[(L1 +L2)ct(ρ) −L2(ct(λ) + k(1 − θ))]] .

(5.43)

Since the sum behaves like its maximal term, and L2 ≥ 0, it is clear that we would like to
minimise ct(λ). Remark 5.5.1 allows us to do this, since the partitions (1j) have ct((1j))
essentially zero.

Let us make this precise. Given ρ ⊢ n with ρT
1 ≤ θ, let j(ρ) be the number of parts

of ρ of odd length. Then by Remark 5.5.1, the pair ((1j(ρ)), ρ) lies in Pn(θ). Now take
any pair (λ, ρ) ∈ Pn(θ). It is straightforward to show that ct(λ) ≥ ct((1j(ρ)))− θ3. Indeed,
ct((1j(ρ))) ≤ 0, and since λ has at most θ parts, it has at most θ2 boxes with negative
content, and those contents must be at least −θ. Substituting into (5.43) gives

Zn,θ(L1, L2) ≤

∑
(λ,ρ)∈Pn(θ)

d
O(θ)
λ bn,θλ,ρd

Sn
ρ exp [

1
n

[(L1 +L2)ct(ρ) −L2(ct((1j(ρ))) − θ3
+ k(1 − θ))]] .

(5.44)

The lower bound is trivial, simply take the term ((1j(ρ)), ρ) from the sum to achieve

Zn,θ(L1, L2) ≥

∑
ρ⊢n,
ρT

1≤θ

d
O(θ)
(1j(ρ))b

n,θ

(1j(ρ)),ρd
Sn
ρ exp [

1
n

[(L1 +L2)ct(ρ) −L2(ct((1j(ρ))) + k(1 − θ))]] . (5.45)
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Now we can apply Lemma 5.4.1 to see the result, recalling that 1
n log ∣Pn(θ)∣, 1

n log dO(θ)
λ ,

1
n log bn,θλ,ρ and 1

n2 (ct((1j(ρ))) − θ3 + k(1 − θ)) all tend to zero as n→∞. ∎

Proof of Theorem 5.2.3. Let θ = 2,3, and let W be a skew-symmetric θ × θ matrix with
eigenvalues 1, −1 for θ = 2, and 1,0,−1 for θ = 3. Consider the model with Hamiltonian
Hh given in (5.24), and let Zn,θ(L1, L2, h) = Tr[e− 1

n
H]. The same working as in Section

5.4, taking traces in (5.36), gives us:

Zn,θ(L1, L2, h) =

∑
(λ,ρ)∈Pn(θ)

χ
O(θ)
λ (ehW )bn,θλ,ρd

Sn
ρ exp [

1
n

[(L1 +L2)ct(ρ) −L2(ct(λ) + k(1 − θ))]] . (5.46)

Now by Lemma 5.4.1, to prove the free energy part of the theorem, it suffices to prove
that as λ/n→ y (as n→∞), we have

1
n

logχO(θ)
λ (ehW )→ ∣h∣y1. (5.47)

We prove a more general lemma, one which holds for all θ.

Lemma 5.5.2. Let θ ≥ 2, let λ ⊢ n−2k, 0 ≤ k ≤ ⌊n/2⌋ with λT
1 +λ

T
2 ≤ θ, and let χO(θ)

λ denote
the irreducible representation of O(θ) indexed by λ. Let W be any θ × θ skew-symmetric
matrix with real eigenvalues w1 ≥ ⋯ ≥ wθ (note wi = −wr+1−i for each i = 1, . . . , θ). Let
r = ⌊θ/2⌋ (note w1 ≥ ⋯ ≥ wr ≥ 0). Then as n→∞ and λ/n→ y, we have

1
n

logχO(θ)
λ (ehW )→ ∣h∣

r

∑
i=1
wiyi.

Proof. Notice that ehW ∈ SO(θ). Assume λT
1 ≤ θ/2, and recall from (5.41) that in all cases

except θ even and λT
1 = θ/2, we have that resO(θ)

SO(θ)χ
O(θ)
λ = resO(θ)

SO(θ)χ
O(θ)
λ′ = χ

SO(θ)
λ , where

the latter is the irreducible representation of SO(θ) with highest weight λ, and where λ′

is identical to λ, except its first column is replaced by θ − λT
1 . In this case, a formula due

to King (see Theorem 2.5 of [94]) gives

χ
SO(θ)
λ (eβhw1 , . . . , eβhwr) =∑

T
2m(T)eβh∑

r
i=1wi(mi−mi), (5.48)

where the sum is over semistandard Young tableaux of shape λ filled with indices 1 < 1 <

2 < 2 < ⋯ < r < r <∞, such that:

1. The entries of row i are all at least i,

2. If i and i appear consecutively in a row, then there is an i in the box directly above
the i.

Here m(T) is the number of occurrences of i directly above i in the first column of the
tableau T, with i in row i, and mi is the number of times i appears in the tableau, mi

similar. We recall also that a semistandard Young tableau of shape λ is a Young diagram
of shape λ with each box filled with one of a set of indices, such that along rows the indices
are non-decreasing, and down columns they strictly increase. Let h > 0. The exponent in
(5.48) is maximised by the tableau with every box in row i containing i. Indeed, taking
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any tableau T, changing a single box in row i to contain i changes the exponent by either
h(wi −wj) (if the box contains j ≥ i), h(wi +wj) (if the box contains j ≥ i) or hwi (if the
box contains ∞). These are all non-negative, since we ordered w1 ≥ ⋯ ≥ wr ≥ 0. In a very
similar way, if h < 0, the exponent is maximised by the tableau with i as each entry of row
i. In either case, the maximum exponent is ∣h∣∑si=1wiλi. Now we have

e∣h∣∑
s
i=1wiλi ≤ χ

SO(θ)
λ (ehw1 , . . . , ehws) ≤ e∣h∣∑

s
i=1wiλi∑

T
2m(T), (5.49)

and noticing that 2m(T) is bounded, and the number of T, which is the dimension of the
irreducible representation, satisfies 1

n log dSO(θ)
λ → 0, we have the key claim. ∎

This proves (5.47), and therefore proves the free energy part of the theorem. It remains
to prove the second part. Again we prove a more general lemma. Let r = ⌊ θ2⌋, and let
∆●
θ be the set of pairs (x, y)2 ∈ ([0,1]θ)2, with xi ≥ xi+1 ≥ 0, ∑θi=1 xi = 1, yi ≥ yi+1 ≥ 0,

yi = 0, fori > r, ∑θi=1 yi ∈ [0,1].

Lemma 5.5.3. Let h,L1, L2 be real, and let w1 ≥ ⋯ ≥ wr ≥ 0, where r = ⌊θ/2⌋. Define a
function Φ as

Φ = Φ(L1, L2, h) = max(x,y)∈∆†
θ
(x, y) [φθ,L1,L2 + ∣h∣

r

∑
i=1
wiyi] ,

where ∆†
θ is some compact subset of ∆●

θ. Then

∂Φ
∂h

∣
h↓0

=
s

∑
i=1
wiy

↑
i ,

∂Φ
∂h

∣
h↑0

=
s

∑
i=1
wiy

↓
i , (5.50)

where (x↑, y↑) is the maximiser of φ in ∆†
θ which maximises the inner product ∑si=1wiyi,

and (x↓, y↓) the one which minimises the inner product.

Proof. The proof follows the proof of Theorem 4.1 from [13] very closely. We prove the
case of the right derivative - the left derivative is almost identical. Note that (x↑, y↑) (resp.
(x↓, y↓)) may not be unique, but this does not matter for the proof; from hereon in by
(x↑, y↑) we mean one such maximiser. We have

Φ(L1, L2, h) −Φ(L1, L2,0)
h

= max(x,y)∈∆†
θ
[
s

∑
i=1
yiwi +

φ(x, y) − φ(x↑, y↑)

h
] . (5.51)

We denote the function being maximised on the right hand side by f(x, y;h). Clearly
its maximum is bounded below by ∑si=1 y

↑
iwi. For fixed h > 0, let (x(h), y(h)) maximise

f(x, y;h) (such a maximiser exists as x, y lie in compact sets, and f is continuous). It
suffices to show that as h ↘ 0, (x(h), y(h)) → (x↑, y↑). Certainly (x(h), y(h)) must
tend to a maximiser of φ(x, y); if it did not, then by continuity, φ(x, y) − φ(x↑, y↑) would
stay bounded away from zero (below some negative number), and the right hand side
of (5.51) would tend to −∞. This contradicts the lower bound we noted above. To
conclude, (x(h), y(h)) must tend to (x↑, y↑) (and not a different maximiser), since the
sum ∑

r
i=1 = yiwi defining y↑ appears in f(x, y;h). ∎

This concludes the proof of Theorem 5.2.3. ∎
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Proof of Theorem 5.2.4. We have, taking traces in (5.36),

⟨e(h/n)W ⟩n,θ =
∑λ χ

O(θ)
λ (e(h/n)W )χ

Bn,θ
λ (e(h/n)W )

∑λ d
O(θ)
λ χ

Bn,θ
λ (e(h/n)W )

=

∑λ d
O(θ)
λ χ

Bn,θ
λ (e(h/n)W )

χ
O(θ)
λ

(e(h/n)W )
d
O(θ)
λ

∑λ d
O(θ)
λ χ

Bn,θ
λ (e(h/n)W )

.

(5.52)

Using Lemma B.1 from [14], it suffices to show that for θ = 3, χO(θ)
λ (e(h/n)W )/d

O(θ)
λ →

sinh(hy1)/hy1 as λ/n → y, while for θ = 2, the limit is cosh(hy1). Let θ = 3. Using
the determinental formula for the character of the orthogonal group [84], and the Weyl
dimension formula [44], we have

χ
O(3)
λ (e(h/n)W )

d
O(3)
λ

=
e(h/n)(λ1+1/2) − e−(h/n)(λ1+1/2)

eh/2n − e−h/2n
⋅

1/2
λ1 + 1/2

,

which, on expanding the exponentials in the denominator, clearly tends to the desired
limit. The θ = 2 case is simpler. The dimension dO(2)

λ = 2 for all λ except λ = ∅ or (12)

(the trivial and determinant representations), which are both one-dimensional. In the
latter two cases, χO(2)

λ (e(h/n)W )/d
O(2)
λ = 1, since e(h/n)W ∈ SO(2), and in the former case,

χ
O(2)
λ (e(h/n)W )/d

O(2)
λ = (ehλ1/n + e−hλ1/n)/2, which has the desired limit. ∎

5.6 Phase diagrams

In this section we prove Theorems 5.2.5, 5.2.7 and 5.2.10 and justify their descriptions of
the phase diagrams for their respective systems. We begin with proving Theorem 5.2.10,
and then show that Theorems 5.2.5 and 5.2.7 can be reduced to 5.2.10.

5.6.1 Higher spins; Proof of Theorem 5.2.10

Proof of Theorem 5.2.10. Recall the result Theorem 5.2.2, which gives the free energy of
the model with Hamiltonian 5.20 in the region L2 ≥ 0:

lim
n→∞

1
n

logZn,θ(L1, L2) = maxx∈∆θ
[
L1 +L2

2
θ

∑
i=1
x2
i −

θ

∑
i=1
xi log(xi)] ,

where ∆θ = {x ∈ [0,1]θ ∣ xi ≥ xi+1 ≥ 0, ∑θi=1 xi = 1}. Let us label the function being
maximised φint. This function φint is that from Theorem 1.1 of [13]. In that paper
and Lemma C.1 of [14], it is proved that the maximisers of φint are always of the form
(x, 1−x

θ−1 , . . . ,
1−x
θ−1 ), that for L1 +L2 ≠ βc the maximiser is unique, and that at L1 +L2 = βc,

there are exactly two maximisers, at x = 1
θ and x = 1 − 1

θ (which become a single unique
maximiser when θ = 2). Here βc is given by (5.32). Moreover, it suffices to work with the
modified function φint(x1, . . . , xθ)−φ

int(1
θ , . . . ,

1
θ ) = φ

int(x1, . . . , xθ)−
L1+L2

2θ − log θ, since we
are subtracting a smooth function of L1 +L2 independent of the variables xi. Combining
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the above facts, we can consider a function of one variable; let φ ∶ [0,1]→ R as

φ(x) = φθ,β(x) =
β

2
(x2

+ (θ − 1) (1 − x
θ − 1

) −
1
θ
) − x logx − (1 − x) log(1 − x

θ − 1
) − log θ,

and let Φ(β) = Φθ(β) = maxx∈[ 1
θ
,1]φ(x). To prove Theorem 5.2.10, it suffices to prove that

Φθ(β) is smooth for β ≠ βc, and is differentiable but not twice-differentiable at βc for θ ≥ 3,
and is continuous but not differentiable at βc for θ = 2.

By [13], for all θ, Φ(β) = 0 for all β ≤ βc. Let us denote by x∗ = x∗(β) the unique
maximiser of φ for all β > βc. For β > βc, we can obtain a formula for β in terms of the
maximiser x∗, indeed, setting ∂φ

∂x = 0 gives

β =
θ − 1
θx∗ − 1

log(x
∗(θ − 1)
1 − x∗

); (5.53)

this function is smooth and increasing for x∗ ∈ (1 − 1
θ ,1), tends to βc as x

∗ tends to 1 − 1
θ

and to +∞ as x∗ tends to 1. By the inverse function theorem, x∗ is a smooth function
of β in the region (βc,∞). Hence Φθ(β) = φ(x

∗(β)) is a smooth function on the interval
(βc,∞). We now turn to the behaviour at βc.

Let θ = 2. Recall that βc = 2. To show Φ is differentiable at β = βc, we need to
show that its right derivative exists, and equals 0. By expanding the Taylor series of the
logarithms, calculations yield that for x ∈ (0,1),

φ(x) =
β

4
(2x − 1)2

+
∞
∑
i=1

(
1
2i
−

1
2i − 1

) (2x − 1)2i.

Noting that ( 1
2i −

1
2i−1) < 0, we have

lim
β→2+

Φ(β) −Φ(2)
β − 2

= lim
β→2+

φ(x∗(β))

β − 2

≤ lim
β→2+

1
4
(2x∗(β) − 1)2,

which is zero, as x∗(β)→ 1
2 as β ↘ 2. The limit is also at least zero, since Φ(β)−Φ(2) ≥ 0

for all β > 2 straightforwardly. Hence the right derivative of Φ is 0 and Φ is differentiable
at β = βc.

To show Φ is not twice-differentiable at βc = 2, we show that for β ∈ (2,2 + ε1),
Φ(β) > f(β) for some smooth function f , with f(2) = 0 and a strictly positive right
derivative at 2. We have that

Φ′
(β) ≥

∂φ

∂β
∣
x∗(β)

= g(x∗(β)) ≥ g(x0(β)),

where g(x) = 1
4(2x − 1)2 and x0(β) is some function satisfying 1

2 ≤ x0(β) ≤ x
∗(β), the last

inequality coming from the monotonicity of g on the interval (1
2 ,1). We claim that x0(β) =

( 1
10(β − 2)) 1

2 + 1
2 is such a function. We then define f(β) ∶= g(x0(β)) =

1
10(β − 2); clearly

f satisfies the required conditions. It remains to prove the claim that 1
2 ≤ x0(β) ≤ x

∗(β).
Consider the inverse function of x0, β0(x) = 10(x − 1

2)
2 + 2. By calculating that the first

derivatives of β0 and β(x∗) (5.53) are both zero at 1
2 , and their second derivatives satisfy
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β′′0 (
1
2) > β

′′(1
2) > 0, we see there exists an interval (1

2 ,
1
2 + ε0) on which β0(x) ≥ β(x). Now

since both functions are also strictly increasing on this interval, there exists an interval
(2,2+ ε1) on which their inverses have the reverse inequality, which is what we wanted to
prove.

Now let θ ≥ 3. The function Φ is clearly continuous at β = βc. Similarly to the θ = 2
case, to show Φ is not differentiable at β = βc, we show that on an interval (βc, βc + ε2),
Φ(β) ≥ f(β), where f is some smooth function with f(βc) = 0, whose right derivative at
βc is strictly positive. We have that

Φ(β) = φ(x∗(β)) ≥ φ(1 − 1
r
) =∶ f(β),

the inequality arising since x∗ is defined to be the maximiser of φ. Lengthy calculations
yield ∂f

∂β =
(r−2)2

2r(r−1) , which is clearly positive for r ≥ 3. This concludes the proof of Theorem
5.2.10. ∎

Before finishing this subsection, let us prove that for L1+L1 > 0, L2 > 0, the finite (even)
volume ground state is the vector given in (5.33). In order to give explicit finite volume
ground states, we will need a concrete realisation of the eigenspaces of the Hamiltonian.
This comes from our working in the proof of Theorem 3.0.3 and Proposition 3.0.11. Recall
for m,m′ a pairing of 2k vertices in V, let Qm,m′ =∏

k
i=1Qmi,m′

i
, and recall [Qm,m′ ⋅V]0 is

the set of vectors in Qm,m′ ⋅V which are killed by any Qi,j with i, j ∈ V ∖ (m∪m′). Recall
that by our working in Section 5.4, the eigenspaces of the Hamiltonian (5.20) (for any
θ ≥ 2) are indexed by pairs (λ, ρ), partitions of n−2k (0 ≤ k ≤ ⌊n2 ⌋) and n respectively, with
λT

1 +λ
T
2 ≤ θ, ρT

1 ≤ θ, and (λ, ρ) ∈ Pn(θ). Let τ and π be standard tableaux (see Chapter 2)
with shapes λ, ρ, and entries from V ∖ (m ∪m′) and V respectively. Following the proof
of Proposition 3.0.11, the eigenspace itself can be realised as the span of the sets

zτzπ ⋅ [Qm,m′ ⋅V]
0
, (5.54)

where zτ ∈ CS∣V∖(m∪m′)∣ is a Young symmetriser (see (2.4)) for the partition λ acting on
⊗i∈V∖(m∪m′) Vi, and zρ ∈ CSn is a Young symmetriser for the partition ρ acting on all of
V. While the formula (5.54) is complicated for general pairs (λ, ρ), we will see that for
some explicit pairs it simplifies greatly. By our working in Section 5.4, the dimension of
the eigenspace is dO(θ)

λ bn,θλ,ρd
Sn
ρ .

Let θ ≥ 2, L1 + L1 > 0, L2 > 0. By our working in Section 5.4, the eigenvalues of the
Hamiltonian are

− [(L1 +L2)ct(ρ) −L2(ct(λ) + k(1 − θ))], (5.55)

indexed by pairs (λ, ρ) ∈ Pn(θ), where λ ⊢ n − 2k. While (as noted in Section 5.5) we do
not know the structure of Pn(θ) for θ > 3, calculations yield that for n even, the eigenvalue
is minimised in Λn(θ) at the pair (∅, (n)), and by Remark 5.5.1, (∅, (n)) ∈ Pn(θ). Now
the dimension of the associated eigenspace is dO(θ)

∅ bn,2∅,(n)d
Sn
(θ) = 1, and using (5.54) it is

straightforward to check it is spanned by (5.33).
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5.6.2 Spin 1
2 , θ = 2

Let us now prove Theorem 5.2.5, and justify the description of the phase diagram of the
spin S = 1

2 Heisenberg XXZ model illustrated in Figures 5.1a and 5.1b. Let S = 1
2 , so θ = 2.

Recall the Hamiltonian of the Heisenberg XXZ model is given by

H ′
= −

⎛

⎝
∑
i,j

K1S
(1)
i S

(1)
j +K2S

(2)
i S

(2)
j +K1S

(3)
i S

(3)
j

⎞

⎠
. (5.56)

We use the two identities 4(S(1)
i S

(1)
j + S

(2)
i S

(2)
j + S

(3)
i S

(3)
j ) + id = 2Ti,j and 4(S(1)

i S
(1)
j −

S
(2)
i S

(2)
j +S

(3)
i S

(3)
j )+ id = 2Qi,j (see, for example, Section 7 of [101]), which show that the

Hamiltonian H ′ is, up to addition of a constant,

H =H(n,K1,K2) = −
1
4
⎛

⎝
∑
i,j

(K1 +K2)Ti,j + (K1 −K2)Qi,j
⎞

⎠
. (5.57)

Note that the line K1 = K2 > 0 gives the spin S = 1
2 Heisenberg ferromagnet, and the line

K1 = K2 < 0 gives the antiferromagnet. Let Zn(K1,K2) = Tr[e− 1
n
H], where H is from

(5.57). Setting L1 =
1
4(K1 +K2), L2 =

1
4(K1 −K2) from Theorem 5.2.1 we have that the

free energy of the system with Hamiltonian H given by (5.57) is

lim
n→∞

1
n

logZn(K1,K2) = max(x,y)∈∆∗

2
φ2,K1,K2(x, y),

where we have

φ2,K1,K2((x1, x2), (y1,0)) =
1
8
(2K1(x

2
1 + x

2
2) + (K2 −K1)y

2
1) −

2
∑
i=1
xi log(xi),

and ∆∗
2 = {(x, y) ∈ ([0,1]2)2 ∣ x1 ≥ x2, x1 + x2 = 1, y2 = 0, 0 ≤ y1 ≤ x1 − x2}.

Proof of Theorem 5.2.5. We analyse this free energy by considering different regions of
the (K1,K2) plane. If K1 ≥K2 we can set y1 = 0. This is the region covered by Theorem
5.2.2, and the free energy is exactly that of Theorem 1.1 from [13], with β from that
paper replaced with K1

2 . The result of Theorem 5.2.10 shows that in this region, the
free energy is smooth apart from at the line K1 = 4, where it is differentiable, but not
twice-differentiable.

Note that if we insert the condition x2 = 1 − x1 into φ2,K1,K2(x1) in this region K1 ≥

K2 (with y1 = 0), we can rewrite it as φ2,K1,K2(x1) = K1(2x1 − 1)2 − x1 log(x1) − (1 −
x1) log(1 − x1). Now consider the region K2 ≥K1. We have to set y1 = x1 − x2 in order to
maximise φ. Rearranging, and inserting x2 = 1−x1 now gives almost the same function as
above, but with K1 replaced with K2:

φ2,K1,K2(x1) =K2(2x1 − 1)2
+K1 − x1 log(x1) − (1 − x1) log(1 − x1). (5.58)

The extra termK1 does not affect the location of the maximiser. So, in the regionK2 ≥K1,
the free energy is (up to the addition of K1) that of Theorem 5.2.2 and Theorem 1.1 from
[13]. So by our proof of Theorem 5.2.10, it is smooth everywhere in the region K2 ≥ K1

apart from the line K2 = 4, where it is differentiable but not twice-differentiable.
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It remains to join the two regions K1 ≥ K2 and K2 ≥ K1 together. Clearly the free
energy is continuous on the whole plane. The above working shows that in the region
K1 ≤ 4, K2 ≤ 4, the maximiser of φ2,K1,K2 is at ((1

2 ,
1
2), (0,0)), so the free energy is smooth

in this region. To conclude, let us consider the free energy on a line K1 = C ≥ 4 as it
crosses the half-line K1 = K2 ≥ 4. For K2 ≤ 4 on this line it is constant by our working
above. If we denote the free energy by Φ(K1,K2), then using (5.58), for K2 > 4,

∂Φ
∂K2

=
∂(φ2,K1,K2(x

∗))

∂K2
≥
∂φ2,K1,K2

∂K2
∣
x∗(K2)

= (2x∗1(K2) − 1)2
> 0,

the last inequality coming from our working in the proof of Theorem 5.2.10. Hence the
free energy is not differentiable on the half-line K1 =K2 ≥ 4, which completes the proof of
Theorem 5.2.5. ∎

Proof of Proposition 5.2.6. Let us now comment on the phase diagram that Theorem 5.2.5
indicates, and in the process prove Proposition 5.2.6. We label the region K1 ≤ 4, K2 ≤ 4
(the region where (x∗, y∗) = ((1

2 ,
1
2), (0,0)) maximises φ2,K1,K2) the disordered phase, since

it maximises the entropy term (the logarithms) in φ2,K1,K2 . It is illustrated as the solid
pink region in Figure 5.1b. The maximiser y∗1 = (0,0) gives the magnetisation of Theorem
5.2.3 y↑1 = 0.

We label the region K2 > K1, K2 > 4 the Ising phase, illustrated as the dotted yellow
region in Figure 5.1b. Proposition 5.7.8 and our working to prove Theorem 5.2.5 show
that the maximiser of φ2,K1,K2 is unique in the Ising phase, and of the form (x∗, y∗) =

((x∗1 , x
∗
2), (x

∗
1 − x

∗
2 ,0)), with x∗1 > x∗2 . Then the magnetisation y↑1 of Theorem 5.2.3 is

strictly positive.
As ∣∣(K1,K2)∣∣ → ∞, the maximiser of φ2,K1,K2 tends to ((1,0), (1,0)). Recall that

from our working in Section 5.4 and Proposition 5.7.8, the eigenvalues of the Hamiltonian
(5.57) are given by

− [2K1ct(ρ) − (K1 −K2)(ct(λ) + k(1 − θ))] , (5.59)

where (λ, ρ) are partitions of n − 2k (0 ≤ k ≤ ⌊n2 ⌋) and n respectively, with λT
1 + λT

2 ≤ 2,
ρT

1 ≤ 2, and λ1 ≤ ρ1 − ρ2. It is not hard to see that for K2 > K1, K2 > 0, the finite
volume ground states are the eigenspace corresponding to the pair (λ, ρ) = ((n), (n)).
Using (5.54), this is the space of vectors invariant under the action of Sn, and killed by
any Qi,j , and has dimension d

O(2)
(n) bn,2(n),(n)d

Sn
(n) = 2. A dimension count shows that it is

therefore spanned by the two product states ⊗1≤j≤n(∣
1
2⟩ ± i∣ −

1
2⟩) (where i here is

√
−1).

Further, if we consider the Hamiltonian with a magnetisation term −h∑1≤i≤n S
(2)
i added,

since these product states are eigenvectors of the magnetisation term, for h small and
positive ⊗1≤j≤n(∣

1
2⟩ + i∣ −

1
2⟩) must be the unique ground state, and vice-versa for h small

and negative.
We label the region K1 > K2, K1 > 4 the XY region, illustrated as the hatched blue

region in Figure 5.1b. By our working in the proof of Theorem 5.2.5, the maximiser of
φ2,K1,K2 is unique and of the form ((x∗1 , x

∗
2), (0,0)), so the magnetisation y↑1 from Theorem

5.2.3 is zero. As ∣∣(K1,K2)∣∣ →∞, the maximiser of φ2,K1,K2 tends to ((1,0), (0,0)), and
as we have already shown in arbitrary spins, the finite volume ground states are given by
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the eigenspace corresponding to the pair (λ, ρ) = (∅, (n)). This space is one-dimensional,
since dO(2)

∅ = bn,2∅,(n) = d
Sn
(n) = 1, and using (5.54), is spanned by the vector (5.28).

On the half-line K1 =K2 > 4 (the supercritical isotropic Heisenberg model), the y term
in φ2,K1,K2 disappears, so if (x∗, y∗) is a maximiser of φ2,K1,K2 , then (x∗, y) is too, so long
as (x∗, y) ∈ ∆∗

2 . Hence y↑1 = x∗1 − x
∗
2 > 0 by the proof of Theorem 5.2.10, or [13]. This

concludes the proof of Proposition 5.2.6. ∎

From Theorem 5.2.5, the transition from the disordered to either of the other two
phases is second order, and from XY to Ising is first order. By our working above, the
transitions from the Ising to the other phases can also be observed in the quantities from
Theorems 5.2.3 and 5.2.4, since y↑1 = y∗1 > 0 in the Ising phase, and is zero in the other
phases. This transition in y↑1 = y∗1 is continuous in the Ising-disordered transition, and
discontinuous in the Ising-XY transition.

5.6.3 Spin 1; θ = 3

Proof of Theorem 5.2.7. Let S = 1, and recall the Hamiltonian of the bilinear-biquadratic
Heisenberg model:

H ′′
= −

⎛

⎝
∑
i,j

J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2⎞

⎠
. (5.60)

where J1, J2 ∈ R and Si ⋅ Sj = ∑3
k=1 S

(k)
i S

(k)
j . Let Pi,j be (a scalar multiple of) the spin-

singlet operator, given by

⟨ai, aj ∣Pi,j ∣bi, bj⟩ = (−1)ai−biδai,−ajδbi,−bj . (5.61)

Note that the line J2 = 0 gives the Heisenberg ferromagnet (J1 > 0), and antiferromagnet
(J1 < 0). We use the relations Si ⋅ Sj = Ti,j − Pi,j and (Si ⋅ Sj)2 = Pi,j + id (see Lemma 7.1
from [101]) to show that Hamiltonian (5.29) is, up to addition of a constant,

H(n,J1, J2) = −
⎛

⎝
∑
i,j

J1Ti,j + (J2 − J1)Pi,j id
⎞

⎠
. (5.62)

Let Zn(J1, J2) = Tr[e− 1
n
H], where H is given by 5.62. Ueltschi (Theorem 3.2 of [101])

shows that for θ odd, this partition function is the same as when Pi,j is replaced with
Qi,j . For completeness, we show that this equality can be derived from an isomorphism of
representations (Lemma 5.9.1). Now, setting L1 = J1, L2 = J2 − J1, Theorem 5.2.1 shows
that the free energy of the model with Hamiltonian (5.62) is

lim
n→∞

1
n

logZn(J1, J2) = max(x,y)∈∆∗

3
φ3,J1,J2(x, y),

where we have

φ3,J1,J2((x1, x2, x3), (y1,0,0)) =
1
2
(J2

3
∑
i=1
x2
i + (J1 − J2)y

2
1) −

3
∑
i=1
xi log(xi). (5.63)

The proof of Theorem 5.2.7 now follows from Theorem 5.2.10 using the change of
variables above.
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∎

Proof of Proposition 5.2.9. In the rest of this section we provide the proof of Proposition
5.2.9, which backs up Remark 5.2.8 and our description of the phases of the bilinear-
biquadratic Heisenberg model, illustrated in Figure 5.2b.

Let φ = φ3,J1,J2 . We define the disordered phase to be the set A of values of (J1, J2)

such that ((1
3 ,

1
3 ,

1
3), (0,0,0)) is a maximiser of φ; this maximises the entropy term (the

logarithms) of φ.
Let us prove Proposition 5.2.9 first in the region J2 > J1. Here, we set y1 = 0, so φ

reduces to φint, and the disordered phase is the region J2 ≤ log 16, by [13]. We label the
region J2 > J1, J2 > log 16 the nematic phase. It is illustrated as the hatched blue region
in Figure 5.2b. As noted above, we must set y1 = 0, so the magnetisation y↑1 in Theorem
5.2.3 is zero in this phase. We can say that the transition from disordered to nematic is
first order, by Theorem 5.2.7. Lastly, let us show that for J2 > J1, J2 > 0, the finite (even)
volume ground state is the vector (5.30). By our working in Section 5.4 and Proposition
5.7.8, the eigenvalues of the Hamiltonian (5.62) are given by

− [J2ct(ρ) + (J1 − J2)(ct(λ) + k(1 − θ))] , (5.64)

where (λ, ρ) are partitions of n − 2k (0 ≤ k ≤ ⌊n2 ⌋) and n, respectively, with λT
1 + λ

T
2 ≤ 3,

ρT
1 ≤ 3, and λ1 ≤ ρ1 − ρ3. For J2 > J1, J2 > 0, as we have already shown in arbitrary

spins, this is minimised by the pair (λ, ρ) = (∅, (n)), the corresponding eigenspace has di-
mension dO(3)

∅ bn,2∅,(n)d
Sn
(n) = 1, and using (5.54), the unique ground state of the transformed

Hamiltonian (i.e. (5.62) with Pi,j replaced with Qi,j) is the vector given by the sum over
all n2 -fold tensor products of the vector ∑1

a=−1 ∣a, a⟩. Transforming this back to the original
Hamiltonian, we have the sum over all possible tensor products of singlet states, which is
precisely (5.30).

We can now turn to proving Proposition 5.2.9 in the region J2 ≤ J1; this region is more
complicated. The function φ does not reduce to φint. We must let y1 = x1 − x3. Setting
x3 = 1 − x1 − x2, we rewrite φ as a function of x1 and x2:

φ = φ3,J1,J2(x1, x2) =
1
2
(J2(−2x2

1 + x
2
2 − 2x1x2 + 2x1) + J1(2x1 + x2 − 1)2)

− x1 log(x1) − x2 log(x2) − (1 − x1 − x2) log(1 − x1 − x2).
(5.65)

Note we are analysing this function in the region R defined by x1 ≥ x2, 1−x2 ≥ x1 ≥ 1−2x2

(see Figure 5.7).
In this region J1 ≥ J2, the boundary of the disordered phase A is difficult to identify

- recall we will show it is a curve C made up of the half-line J2 = 2J1 − 3 ≤ 3
2 and a curve

connecting the points (9
4 ,

3
2) and (log 16, log 16). Outside of the disordered phase A (within

the region J1 ≥ J2), we can show that y↑1 from Theorem 5.2.3 is strictly positive. Indeed,
if (x∗, y∗) is a maximiser of φ3,J1,J2 , then y∗1 = x∗1 −x

∗
3 , meaning the only point with y∗1 = 0

is ((1
3 ,

1
3 ,

1
3), (0,0,0)), and the claim follows from the definition of the disordered phase A.

Numerical simulations suggest that y↑1 is a unique maximiser everywhere in J1 ≥ J2 except
for the curve between (9

4 ,
3
2) and (log 16, log 16) which is part of the curve C, so the y∗1
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Figure 5.7: The region R.

form Theorem 5.2.4 would exist and be positive; we have not been able to prove this.
Let us consider the ground state behaviour outside the disordered phase. As ∣∣(J1, J2)∣∣→

∞, the logarithm terms in φ will become negligible. Let φ0 be φ with the logarithm terms
removed. We maximise φ0 in the region R. Setting x3 = 1 − x1 − x2, we have

∂φ0
∂x1

= (2J1 − J2)(2x1 + x2 − 1);

∂φ0
∂x2

= J1(2x1 + x2 − 1) + J2(x2 − x1).
(5.66)

Now since 2J1 −J2 > 0, (and as we take our limit we are beyond the conjectured boundary
C), so the maximum of φ0 must lie on the boundary line x1+x2 = 1 of R. Note this implies
x3 = 0, and so y1 = x1. Substituting x2 = 1 − x1, and rearranging, we have the quadratic

φ0(x1) =
J1 + J2

2
((x1 −

J2
J1 + J2

)

2
+

J1J2
(J1 + J2)2) , (5.67)

where recall we are concerned with the region x1 ∈ [1
2 ,1].

Calculations yield that in the region J2 < J1, J1 ≥ 0, this quadratic has maximum
at x1 = 1. So the maximiser of φ3,J1,J2 in this region as ∣∣(J1, J2)∣∣ → ∞ tends to
((1,0,0), (1,0,0)). Indeed the finite volume ground states (of the transformed Hamil-
tonian (5.62)) are given by the eigenspace corresponding to the pair (λ, ρ) = ((n), (n)).
This space has dimension dO(3)

(n) bn,2(n),(n)d
Sn
(n) = 2n + 1, and using (5.54), is the set of vectors

invariant under Sn (equivalently, invariant under any Ti,j), which are killed by any Qi,j .
The corresponding eigenspace of the original Hamiltonian is the set invariant under Sn
and killed by any Pi,j . Straightforward analysis of Pi,j shows that the product states
⊗1≤i≤n ∣a⟩ with a2

0 − a1a−1 = 0 lie in this set (although they do not span it), which include
the ferromagnetic ∣a⟩ = ∣1⟩ and ∣−1⟩ as well as ∣1⟩+ ∣0⟩+ ∣−1⟩. We label this region, J2 < J1,
J1 ≥ 0 and to the right of the curve C, ferromagnetic. It is illustrated as the dotted yellow
region in Figure 5.2b.

Now consider the region 2J1−J2 > 0, and J1 < 0, illustrated by the checkerboard orange
region in Figure 5.2b. In this case, the quadratic (5.67) has maximum at x1 = α ∶=

J2
J1+J2

,
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which lies in the range [2
3 ,1]. Then the maximiser of φ3,J1,J2 is ((α,1 − α,0), (α,0,0)).

While we do not label this fourth phase, occupying the region 0 > J1 > 1
2(3 − J2), this

phase has some similarity with the ferromagnetic phase.
In finite volume, calculations from analysing (5.64) show that the set of ground states

in the fourth phase is the eigenspace corresponding to a pair (λ, ρ) = ((α′), (α′,1 − α′)),
where α′ = λ1/n is close to α = J2

J1+J2
(and tends to α as n → ∞). Using (5.54), the

eigenspace is spanned by vectors (5.31).

The rest of this section completes the proof of Proposition 5.2.9 by determining the
boundary of the disordered phase A within the region J1 ≥ J2. Recall we will show it is a
curve C made up of the half-line J2 = 2J1 − 3 ≤ 3

2 and a curve connecting the points (9
4 ,

3
2)

and (log 16, log 16). From here till the end of the section we work with φ given in (5.65).
The partial derivatives of φ of first and second order are:

∂φ

∂x1
= (2J1 − J2)(2x1 + x2 − 1) − log(x1) + log(1 − x1 − x2);

∂φ

∂x2
= J1(2x1 + x2 − 1) + J2(x2 − x1) − log(x2) + log(1 − x1 − x2);

∂2φ

∂x2
1
= 2(2J1 − J2) −

1
x1

−
1

1 − x1 − x2
;

∂2φ

∂x1∂x2
= (2J1 − J2) −

1
1 − x1 − x2

;

∂2φ

∂x2
2
= J1 + J2 −

1
x1

−
1

1 − x1 − x2
.

(5.68)

Lemma 5.6.1. The point (x1, x2) = (1
3 ,

1
3) is always an inflection point of φ, and it is a

local maximum point if 2J1 − J2 < 3, and if 2J1 − J2 > 3 it is not a local maximum point
and does not maximise φ in R.

Proof. Setting (x1, x2) = (1
3 ,

1
3) in the above shows it is always an inflection point. If H is

the Hessian matrix of φ, then for any vector (p, q) ∈ R2, we have

(p, q)H(p, q)T
= (p + q)2

(2J1 − J2 − 3) + p2
((2J1 − J2 − 3) + b2(2J2 − J1 − 3)),

which is negative for all 2J1 − J2 < 3 in our region J2 ≤ J1, meaning (1
3 ,

1
3) is a local

maximum. Clearly for 2J1 − J2 > 3, ∂2φ
∂x2

1
> 0, so (1

3 ,
1
3) is not a local maximum, and it

cannot maximise φ in the region R. ∎

Let A′ be the region within the region J2 ≤ J1 where (1
3 ,

1
3) is a global maximum of

φ in R (this is the region A intersected with J2 ≤ J1). By the above, all of A′ must lie
within the region 2J1 − J2 ≤ 3, (or, not to the right of the line J2 = 2J1 − 3).

Lemma 5.6.2. The set A′ is convex.

Proof. Let J(1), J(2) be two points in A′. Let J = sJ(1) + (1 − s)J(2), s ∈ [0,1]. Since φ is
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linear in J1, J2, we have that for any (x1, x2) ∈ R,

φ2,J(x1, x2) = sφ2,J(1)(x1, x2) + (1 − s)φ2,J(2)(x1, x2)

≤ sφ2,J(1) (
1
3
,
1
3
) + (1 − s)φ2,J(2) (

1
3
,
1
3
) = φ2,J (

1
3
,
1
3
) .

∎

Lemma 5.6.3. If a point (J
(0)
1 , J

(0)
2 ) within the region J1 ≥ J2 lies outside of A′, then

the point (J
(0)
1 , J

(0)
2 )+ v, when it lies within the region J1 ≥ J2, also lies outside of A′, for

any v = µ(1,2) + ν(−1,−3), µ, ν > 0.

Proof. We have that

∂

∂J1
(φ(x1, x2) − φ(

1
3
,
1
3
)) =

1
2
(2x1 + x2 − 1)2

∂

∂J2
(φ(x1, x2) − φ(

1
3
,
1
3
)) =

1
2
(1 − 2x2

1 + x
2
2 − 2x1x2 + 2x1 −

4
3
) .

Firstly, we consider:

(
∂

∂J1
+ 2 ∂

∂J2
)(φ(x1, x2) − φ(

1
3
,
1
3
)) =

3
2
x2

2 − x2 +
1
6
=

1
6
(3x2 − 1)2,

which has single root and minimum at x2 =
1
3 . Let (J

(0)
1 , J

(0)
2 ) lie outside of A′, so there

exists some global maximiser (x∗1 , x
∗
2) ≠ (1

3 ,
1
3) in R, φ(x∗1 , x∗2) > φ(1

3 ,
1
3). Now the above

shows that moving (J
(0)
1 , J

(0)
2 ) in the direction (1,2) does not increase φ at (1

3 ,
1
3) any

faster than at any other point of R, so for all µ > 0, (J(0)
1 , J

(0)
2 ) + µ(1,2) cannot lie in A′.

Secondly,

(−
∂

∂J1
− 3 ∂

∂J2
) = −

1
2
(1 − 2x2

1 + x
2
2 − 2x1x2 + 2x1 −

4
3
)

= ((x1 −
1
3
) +

1
2
(x2 −

1
3
))

2
−

9
4
(x2 −

1
3
)

2
,

which takes the value zero exactly on the lines x1 = x2 and x1 = 1 − 2x2, two of the
boundary lines of R, and is positive in the rest of R. By the same argument as above, if
(J

(0)
1 , J

(0)
2 ) ∉ A, then (J

(0)
1 , J

(0)
2 ) + ν(−1,−3) ∉ A, for all ν > 0. The lemma follows. ∎

Lemma 5.6.4. The region bounded by and including the line J1 = J2, J1 ≤ log(16), the
line 2J1 −J2 = 3, J2 ≤

3
2 , and the straight line from the point (log(16), log(16)) to the point

(9
4 ,

3
2), lies within A′.

Proof. To begin with, note that on the line J1 = J2, we can use our results from the case
J2 ≥ J1. This means all J1 = J2, J1 ≤ log(16) lie in A′. Now the previous lemma implies
that all 2J1 − J2 ≤ log(16) lies in A′, since if it were not true, we would be able to move
from a point not in A′ in the direction (1,2) and arrive at a point in A′. Now by the same
logic, and the fact that A′ is convex, it suffices to show that the point (J1, J2) = (9

4 ,
3
2) lies

in A′. We show that at this point, there are no inflection points of φ besides (1
3 ,

1
3), and

(1
3 ,

1
3) maximises φ on the boundary of R.
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Set (J1, J2) = (9
4 ,

3
2). Substituting z = 1−x1 −x2,w = x1 into (5.68) gives ∂φ

∂x1
= 0 if and

only if z = 1 or
w =

− log(z)
3(1 − z)

. (5.69)

Note that the region R is transformed into R′, given by 1
2(

1
w − 1) ≥ z ≥ 1

w − 2, zw ≥ 0.
The line z = 1 intersects R′ at the single point (w, z) = (1

3 ,1), which corresponds to
(x1, x2) = (1

3 ,
1
3). Substituting (5.69) into (5.68) gives that, on the line where ∂φ

∂x1
= 0, the

value of ∂φ
∂x2

is:

∂φ

∂x1
(z) =

3
2
+

log(z)(1 + 5z)
4(1 − z)

+ log(
−z log(z)

3(1 − z) + (1 + z) log(z)
) .

Remark 5.6.5. Let r be the unique zero of 3(1− z)+ (1+ z) log(z). This function ∂φ
∂x1

(z)

is positive in the range (r,1), except at z = 1, where it is zero. (It is not defined in (0, r]).

Hence either there are no points of inflection in R, or (1
3 ,

1
3) is the only one. Proving

Remark 5.6.5 by hand is difficult. However, a rigorous computer-assisted argument is
available, which is due to Dave Platt. See Appendix 5.8.

It remains to analyse φ on the boundary of R. Substituting x1 = 1 − 2x2 into φ, we
have

φ(x2) =
15
8
−

21
4
x2 +

63
8
x2

2 − (1 − 2x2) log(1 − 2x2) − 2x2 log(x2),

which it is not hard to prove is maximised at x2 =
1
3 in the region x2 ∈ [0, 1

2]. Indeed, its
first derivative 1

4(−21 + 63x2 + 8 log(1 − 2x2) − 8 log(x2)) is zero at x2 = 0, and its second
derivative 126x2

2−62x2+8
8x2−4x is negative in the range. Substituting x1 = x2 into φ gives exactly

the same function as above. As x1 + x2 → 1, the first order derivatives of φ tend to −∞.
Hence φ on the boundary of R must be maximised at (1

3 ,
1
3), so the same holds over all R,

and so we can conclude that (9
4 ,

3
2) ∈ A

′, which is what we wanted to prove; this completes
the proof of Lemma 5.6.4.

∎

Combining the above lemmas give us the information we need about the boundary of
A′. Lemma 5.6.2 implies that its boundary exists, and adding Lemmas 5.6.3, 5.6.1 and
5.6.4 shows that its boundary is made up of the line J1 = J2 ≤ log(16), and a curve C
which (as a function of J1) is a continuous, convex line, which is the line 2J1 − J2 = 3
for J2 ≤ 3

2 , and that its gradient lies in [2,3]. This curve must meet the line J1 = J2

at the point (log(16), log(16)). Indeed, recall A is the region of the whole plane where
((1

3 ,
1
3 ,

1
3), (0,0,0)) maximises our original φ3,J1,J2(x, y); we have A′ = A∩{J2 ≤ J1}. Then

the same proof as above can be employed to show that A is convex, which is what we
need. This completes the description of the boundary of A, which in turn completes the
proof of Proposition 5.2.9. ∎
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5.7 Branching Coefficients

As noted in Section 5.4, the aim of this section is to prove Propositions 5.7.6 and 5.7.8,
which determine the sets Pn(θ) and the limits 1

nPn(θ), θ = 2,3. Recall Λn(θ) is the set
of pairs of partitions (λ, ρ), λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋, ρ ⊢ n, such that λT

1 + λT
2 ≤ θ and

ρT
1 ≤ θ. Recall that bn,θλ,ρ is the coefficient of the irreducible ρ in the restriction of the

irreducible λ from Bn,θ to CSn. Then Pn(θ) is the set of (λ, ρ) ∈ Λn(θ) such that bn,θλ,ρ > 0.
Most of the work in proving Propositions 5.7.6 and 5.7.8 is contained in three lemmas
which we begin this section with. The first shows that the coefficients bn,θλ,ρ are also the
branching coefficients of the orthogonal and general linear groups. The second is a useful
recurrence relation, and the third determines bn,θλ,ρ for certain values of ρ, in terms of the
Littlewood-Richardson coefficients.

5.7.1 Useful lemmas for all θ

Fix θ ≥ 2. First we rephrase the coefficients bn,θλ,ρ in terms of the general linear and orthog-
onal groups, using Schur-Weyl duality. Recall that the irreducible polynomial represen-
tations of GL(θ) are indexed by ρ, partitions of any non-negative integer with at most θ
parts. Similarly, those of O(θ) are indexed by λ, partitions of any non-negative integer
whose first two columns sum to at most θ. Let ρ ⊢ n, and let gn,θλ,ρ denote the coefficient of
ψ
O(θ)
λ in the restriction of ψGL(θ)ρ from GL(θ) to O(θ).

Lemma 5.7.1. The symmetric group-Brauer algebra and orthogonal group-general linear
group branching coefficients are the same. That is, for all (λ, ρ) ∈ Λn(θ), we have that
gn,θλ,ρ = b

n,θ
λ,ρ.

Proof. Recall that Schur-Weyl duality (5.36) states that as a module of Bn,θ ⊗COn(C),

V = ⊕
λ⊢n−2k
λT

1+λT
2≤θ

ψ
Bn,θ
λ ⊠ ψ

O(θ)
λ . (5.70)

The equivalent statement for the symmetric and general linear groups says that as a
module of CSn ⊗CGLn(C),

V = ⊕
ρ⊢n
ρT

1≤θ

ψSnρ ⊠ ψGL(θ)ρ . (5.71)

Restricting each ψ
Bn,θ
λ in the first equation to CSn, and each ψ

GL(θ)
ρ in the second to

On(C), we have, as a module of CSn ⊗COn(C),

⊕
(λ,ρ)∈Λn(θ)

bn,θλ,ρψ
Sn
ρ ⊠ ψ

O(θ)
λ = ⊕

(λ,ρ)∈Λn(θ)
gn,θλ,ρψ

Sn
ρ ⊠ ψ

O(θ)
λ , (5.72)

and hence the result. ∎

From hereon in we simply use bn,θλ,ρ to denote either itself or gn,θλ,ρ . For λ a partition with
λT

1 +λ
T
2 ≤ θ, recall λ′ is the partition such that (λ′)T

1 = θ −λT
1 , and (λ′)T

j = λT
j for all j > 1.

Note that λ′′ = λ. We next prove a useful recurrence relation. Let
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Lemma 5.7.2. The symmetric group-Brauer algebra branching coefficients satisfy the
following recurrence relation. Let (λ, ρ) ∈ Λn(θ), such that ρθ > 0. Then bn,θλ,ρ = bn−θ,θλ′,ρ−1,
where 1 is the partition with all parts equal to 1.

Remark 5.7.3. Note that as a consequence, if (λ, ρ) ∈ Λn(θ), ρθ > 0, then

bn,θλ,ρ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

bn,θλ,ρ−ρθ ρθ even

bn,θλ′,ρ−ρθ ρθ odd,

where ρθ is the partition with all parts equal to ρθ.

Proof. We use the fact that bn,θλ,ρ is a coefficient in the restriction of the irreducible ψGL(θ)ρ

of GL(θ) to O(θ). Recall the character orthogonality of the orthogonal group from (2.3).
We have

bn,θλ,ρ = ∫
O(θ)

χGL(θ)ρ (g)χ
O(θ)
λ (g) dg, (5.73)

where dg denotes the Haar measure on the orthogonal group. By the Pieri rule (2.35)
(or, for example, the remarks after equation (1) of [93]), χGL(θ)ρ = χ

GL(θ)
ρ−1 χ

GL(θ)
1 . Then

we note that χGL(θ)1 is the determinant character of GL(θ) (or O(θ), when restricted),
and that χO(θ)

1 χ
O(θ)
λ = χ

O(θ)
λ′ (see, for example, the remark after Proposition 2.6 in [81]).

Substituting into (5.73) completes the proof. ∎

The last lemma in this subsection gives us control of the coefficients bn,θλ,ρ for certain
values of ρ. In order to prove it, we need to introduce some more representation theory of
the Brauer algebra.

The Brauer algebra’s semisimplicity is dependent on the parameter θ. When θ is a
positive integer, Bn,θ is semisimple if and only if θ ≥ n − 1 and when θ ∉ Z, it is always
semisimple. See [103], [87]. The Brauer algebra has indecomposable representations,
known as the cell modules (see [24]), indexed by partitions λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋. When
Bn,θ is semisimple, these are exactly the irreducibles. Their characters are described by
Ram [84]. Note that Ram’s results on the cell characters are stated for when the algebra
is semisimple, but they extend to the case when it is not.

When Bn,θ is not semisimple, the cell modules are not necessarily irreducible (in fact
they are not even necessarily semisimple). The irreducible representation corresponding
to λ is then a quotient of the cell module corresponding to λ. Let us denote the character
of the cell module corresponding to λ by γBn,θλ .

The restrictions of representations of CSn to CSn−1 and Bn,θ to Bn−1,θ are well studied.
Let ρ ⊢ n, λ ⊢ n − 2k, 0 ≤ k ≤ ⌊n2 ⌋. We have the following, in terms of characters, from
(2.25) and (2.26) (or, for example, Sections 4 and 5 (and Figures 1 and 2) from [32], and
Proposition 1.3 from [78]):

resSnSn−1
[χSnρ ] = ∑

ρ=ρ−◻
χSn−1
ρ ;

resBn,θBn−1,θ
[γ

Bn,θ
λ ] = ∑

λ=λ±◻
γ
Bn−1,θ

λ
;

(5.74)
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and if θ ≥ 2 is an integer and λ further satisfies λT
1 + λ

T
2 ≤ θ,

resBn,θBn−1,θ
[χ

Bn,θ
λ ] = ∑

λ=λ±◻
λ

T
1+λ

T
2≤θ

χ
Bn−1,θ

λ
, (5.75)

where in the first equality the sum is over all ρ ⊢ n − 1 whose Young diagram can be
obtained from that of ρ by removing a box; in the second the sum is over λ ⊢ n − 1 − 2r,
0 ≤ r ≤ ⌊n−1

2 ⌋, whose Young diagram can be obtained from that of λ by removing or adding
a box; and in the third the sum is the same as the second, except we are restricted to
those λ with λT

1 + λ
T
2 ≤ θ.

We now describe how cell modules of Bn,θ decompose when restricted to CSn. We call
a partition π even if all its parts πi are even. Let λ ⊢ n−2k, 0 ≤ k ≤ ⌊n2 ⌋. Then from (2.37):

resBn,θSn
[γ

Bn,θ
λ ] = ∑

ρ⊢n
b̃n,θλ,ρχ

Sn
ρ = χSn−2k

λ × ∑
π⊢2k
π even

χS2k
π , (5.76)

or,
b̃n,θλ,ρ = ∑

π⊢2k
π even

cρλ,π.

Let us make a few useful remarks.

Remark 5.7.4. 1. Since the irreducible representation of Bn,θ corresponding to λ is a
quotient of the cell module corresponding to λ, we have bn,θλ,ρ ≤ b̃

n,θ
λ,ρ for all λ, ρ.

2. Since cρλ,π is determined by π and the skew-diagram ρ ∖ λ, we have that b̃n,θλ,ρ is fully
determined by the skew-diagram ρ ∖ λ.

3. If λ ≰ ρ then cρλ,π = 0, so as a consequence, b̃n,θλ,ρ = 0 (and therefore bn,θλ,ρ = 0) if λ ≰ ρ.

4. Combining the above with Remark 5.7.3, we have that bn,θλ,ρ = 0 in the following cases:
if λj > ρj − ρθ for j ≤ ⌊θ/2⌋, or if ρj = ρθ, j > ⌊θ/2⌋ with either ρθ odd, λj = 0, or ρθ
even, λj = 1.

Lemma 5.7.5. Let (λ, ρ) ∈ Λn(θ), such that ρT
1 + ρ

T
2 ≤ θ + 1. Then bn,θλ,ρ = b̃

n,θ
λ,ρ.

Proof. We work by induction on n. The base case, n = 1, is straightforward, since B1,θ =

CS1. Assume the theorem is proved for n − 1, n − 2, . . . . Since ρT
1 + ρ

T
2 ≤ θ + 1, in almost

all cases ρ = π +◻, (meaning the Young diagram of ρ can be obtained from a valid Young
diagram π ⊢ n− 1 by adding a box), with πT

1 +π
T
2 ≤ θ; the exception is the case where θ is

odd, ρT
1 = ρT

2 = (θ + 1)/2, and ρ(θ+1)/2 ≥ 3. We will deal with this exceptional case second,
and the former case now. Let

resBn,θSn−1
[χ

Bn,θ
λ ] = ∑

π⊢n−1
αn,θλ,πχ

Sn−1
π , resBn,θSn−1

[γ
Bn,θ
λ ] = ∑

π⊢n
α̃n,θλ,πχ

Sn−1
π .

Note that in a similar way to part 1 of Remark 5.7.4, αn,θλ,π ≤ α̃n,θλ,π for all λ,π. Now fix a
π ⊢ n−1 with ρ = π+◻, with πT

1 +π
T
2 ≤ θ. We will exploit the fact that there are two ways

to restrict from the Brauer algebra Bn,θ to CSn−1; either by restricting first to Bn−1,θ, or
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first to CSn. Formulaically, using (5.74) and (5.75), this reads:

αn,θλ,π = ∑

λ=λ±◻
λ

T
1+λ

T
2≤θ

bn−1,θ
λ,π

= ∑
π=π+◻

bn,θλ,π, (5.77)

and
α̃n,θλ,π = ∑

λ=λ±◻
b̃n−1,θ
λ,π

= ∑
π=π+◻

b̃n,θλ,π. (5.78)

Since πT
1 + πT

2 ≤ θ, by part 3 of Remark 5.7.4, each λ with b̃n−1,θ
λ,π

> 0 must also have

λ
T
1 + λ

T
2 ≤ θ. Now the central sums in equations (5.77) and (5.78) are sums over the

same set of partitions λ. Now by the inductive assumption, each bn−1,θ
λ,π

= b̃n−1,θ
λ,π

, which
gives αn,θλ,π = α̃

n,θ
λ,π. Equating the right hand terms in the equations (5.77) and (5.78), and

recalling that bn,θλ,π ≤ b̃
n,θ
λ,π, we must have the equality bn,θλ,π = b̃

n,θ
λ,π, for each π = π + ◻. Since

ρ = π + ◻, we are done.

It remains to prove the lemma for the special case where θ is odd, ρT
1 = ρT

2 = (θ + 1)/2,
and ρ(θ+1)/2 ≥ 3. Here, we let ρ = π + ◻, where the differing square lies on row (θ + 1)/2.
Now πT

1 = πT
2 = (θ + 1)/2. The equations (5.77) and (5.78) still hold, but now there exists

one possible summand of the central sum in (5.78) where λT
1 + λ

T
2 > θ. This summand

appears in the case when λT
1 = (θ + 1)/2, λT

2 = (θ − 1)/2, and the summand itself is λ,
obtained by adding a box in row (θ + 1)/2 (column 2). In other instances of λ, we use the
same method as the first part of the proof.

Now, again employing the inductive assumption on the terms in the central sums of
(5.77) and (5.78), we have that αn,θλ,π+b̃

n−1,θ
λ,π

= α̃n,θλ,π, where λ and λ are the specific partitions
described above. Plugging this into the right hand sides of (5.77) and (5.78), we have

b̃n−1,θ
λ,π

+ ∑
π=π+◻

bn,θλ,π = ∑
π=π+◻

b̃n,θλ,π. (5.79)

Let π∗ be π with one box added in row (θ + 1)/2+ 1 (column 1). Note that π∗ is the only
π = π + ◻ satisfying πT

1 + π
T
2 > θ + 1. We will prove that bn,θλ,π∗ + b̃

n−1,θ
λ,π

= b̃n,θλ,π∗ . Then (5.79)
becomes

∑
π=π+◻
π≠π∗

bn,θλ,π = ∑
π=π+◻
π≠π∗

b̃n,θλ,π,

and similar to the first part of the proof, recalling bn,θλ,π ≤ b̃n,θλ,π gives bn,θλ,π = b̃n,θλ,π for all
π = π +◻, with πT

1 +π
T
2 ≤ θ + 1. This covers ρ. So, it remains to prove bn,θλ,π∗ + b̃

n−1,θ
λ,π

= b̃n,θλ,π∗ .

Now, Okada [81] gives an explicit algorithm for calculating bn,θλ,π∗ . Working through
that algorithm, we find that bn,θλ,π∗ = b̃n,θλ,π∗ − b̃

n,θ

λ̂,π∗
, where λ̂ is obtained from λ by adding

two boxes, one in each of the first two columns. Now it is straightforward to see that
b̃n,θ
λ̂,π∗

= b̃n−1,θ
λ,π

, since π∗ ∖ λ̂ and π ∖ λ are identical skew-diagrams (remark 5.7.4). This
completes the proof. ∎

We can now determine the sets Pn(θ) for θ = 2,3.
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5.7.2 Spin 1
2 ; θ = 2

Recall Λn(θ) is the set of pairs of partitions (λ, ρ), λ ⊢ n−2k, 0 ≤ k ≤ ⌊n2 ⌋, ρ ⊢ n, such that
λT

1 + λ
T
2 ≤ θ and ρT

1 ≤ θ. Recall the set Pn(θ) is given by (λ, ρ) ∈ Λn(θ) such that bn,θλ,ρ > 0,
where bn,θλ,ρ is the coefficient of the irreducible χSnρ in the restriction of χBn,θ

λ from Bn,θ to
CSn.

Proposition 5.7.6. For θ = 2, the CSn-Bn,2 branching coefficient bn,2λ,ρ is strictly positive if
and only if λ1 ≤ ρ1 − ρ2, with the exceptions of λ = ∅ or λ = (1,1), in which case both rows
of ρ must be even or odd, respectively. Hence 1

nPn(2) → ∆∗
2 in the Hausdorff distance,

where

∆∗
2 = {(x, y) ∈ ([0,1]2

)
2
∣ x1 ≥ x2, x1 + x2 = 1, y2 = 0, 0 ≤ y1 ≤ x1 − x2}.

Proof. We prove first that the irreducible representation ψ
Bn,2
(n−2k) of Bn,2 restricts to the

symmetric group as:

resBn,2Sn
[χ

Bn,2
(n−2k)] =

k

∑
i=0
χSn(n−i,i). (5.80)

Indeed, by Remark 5.7.3 (using (n−2k)′ = (n−2k)) and Lemma 5.7.5, we have bn,2(n−2k),(n−i,i) =

bn−2i,2
(n−2k),(n−2i) = b̃

n−2i,2
(n−2k),(n−2i) = 1{0 ≤ i ≤ k}, the last equality coming from (5.76) and the

definition of the Littlewood-Richardson coefficients. Combining (5.80) and Okada’s re-
sult in Remark 5.5.1 gives the first part of the proof. The second is a straightforward
application of the definition of the Hausdorff distance. ∎

The proof of Proposition 5.7.6 also implies the following corollary.

Corollary 5.7.7. We have that for θ = 2, limn→∞
1
n log(max(λ,ρ)∈Λn(2)b

n,2
λ,ρ) = 0.

5.7.3 Spin 1; θ = 3

Proposition 5.7.8. For θ = 3, the CSn-Bn,3 branching coefficient bn,3λ,ρ is strictly positive
if and only if λ1 ≤ ρ1 − ρ3, with the following exceptions:

1. If λ = (n − 2k), and ρ2 = ρ3 odd, or ρ1 = ρ2 odd, then bn,3λ,ρ = 0;

2. If λ = (n − 2k − 1,1), and ρ2 = ρ3 even, or ρ1 = ρ2 even, then bn,3λ,ρ = 0;

3. If λ = (1j), j = 0, . . . ,3, then bn,3λ,ρ > 0 if and only if ρ has j odd parts.

As a consequence, 1
nPn(3)→∆∗

3 in the Hausdorff distance, where

∆∗
3 = {(x, y) ∈ ([0,1]3

)
2
∣ x1 ≥ x2 ≥ x3, x1 + x2 + x3 = 1, y2 = y3 = 0, 0 ≤ y1 ≤ x1 − x3}.

Proof. From Remark 5.7.3, we see that if λ1 > ρ1−ρ3 then bn,3λ,ρ = 0. For the rest of the first
part of the Proposition, let λ = (n−2k) or (n−2k −1,1), and let λ1 ≤ ρ1 −ρ3. Then, using
Remark 5.7.3 and Lemma 5.7.5, bn,3

λ,(ρ1,ρ2,ρ3) = bn−3ρ3,3
λ∗,(ρ1−ρ3,ρ2−ρ3) = b̃n−3ρ3,3

λ∗,(ρ1−ρ3,ρ2−ρ3), where
λ∗ = λ if ρ3 even, λ∗ = λ′ if ρ3 odd. The cases where λ∗ ≰ (ρ1 − ρ3, ρ2 − ρ3) (which give
bn,3
λ,(ρ1,ρ2,ρ3) = 0) are the cases: λ = (n − 2k), ρ2 = ρ3 odd, and λ = (n − 2k − 1,1), ρ2 = ρ3

even.
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It remains to determine when b̃n,3
λ,(ρ1,ρ2) is non-zero. We need to show that if λ ≤ ρ, it

is non-zero unless λ = (n − 2k), and ρ1 = ρ2 odd, or λ = (n − 2k − 1,1), and ρ1 = ρ2 even.
Recall the coeffiecient (from (5.76)) is given by

b̃n,3
λ,(ρ1,ρ2) = ∑

τ⊢2k
τ even

c
(ρ1,ρ2)
λ,τ . (5.81)

Let us prove the λ = (n − 2k) case. By the Littlewood-Richardson rule (or its special case
the Pieri rule - see Section I.9 of Macdonald [68]), b̃n,3(n−2k),(ρ1,ρ2) is equal to ∣A∣, where A is
the set of even partitions τ ⊢ 2k, τ ≤ ρ, such that ρ∖τ is a skew diagram with no two boxes
the same column. Wlog τ = (2k − 2m,2m). For τ ∈ A, we must have 0 ≤ 2m ≤ ρ2, and
ρ2 ≤ 2k − 2m ≤ ρ1. (Note that we certainly have 2k ≥ ρ2, which follows from n − 2k ≤ ρ1).
Now the only case where no such τ exists is when ρ1 = ρ2 odd, since in this case, any even
τ must give ρ∖τ with two boxes in the last column. The case λ = (n−2k−1,1) is obtained
in a similar way.

The third special case λ = (1j) is given by Okada [81] - see Remark 5.5.1.
The final part of the theorem now follows by applying the first part, and the definition

of the Hausdorff distance. ∎

We also have the following corollary.

Corollary 5.7.9. We have that for θ = 3, limn→∞
1
n log(max(λ,ρ)∈Λn(3)b

n,3
λ,ρ) = 0.

Proof. By Lemma 5.7.2 and 5.7.5, each non-zero bn,3λ,ρ is equal to some b̃m,3λ′,ρ′ , where m ≤ n,
(λ′, ρ′) ∈ Λm(3), ρ′ ≤ ρ. Now b̃m,3λ′,ρ′ is (from (5.76)):

b̃m,3λ′,ρ′ = ∑
τ⊢2j
τ even

cρ
′

λ′,τ .

Since ρ′T1 ≤ 3, the number of τ ⊢ 2j with τ ≤ ρ′ is bounded by n3. Then the Littlewood-
Richardson coefficient cρ

′

λ′,τ is bounded by n2, since λ′2, λ′3 ≤ 1, and λj = 0 for j ≥ 4. Hence
b̃m,3λ′,ρ′ is bounded by n5+2, which gives the result. ∎

5.8 Numerical proof of Remark 5.6.5

Recall the function

w(z) ∶=
∂φ

∂x1
(z) =

3
2
+

log(z)(1 + 5z)
4(1 − z)

+ log(
−z log(z)

3(1 − z) + (1 + z) log(z)
) .

We need to prove that this function w(z) is positive in the range (r,1), where r is the
unique root of 3(1 − z) + (1 + z) log(z) in (0,1). This proof is due to Dave Platt.

Away from r and 1, this can be done straightforwardly using ARB, a C library for
rigorous real and complex arithmetic (see https://arblib.org/index.html). We split
the interval into small pieces, and use the program to show positivity on each piece. This
works on the interval [81714053/230,1013243800/230]. Near r, the function is large, and we
can show by hand that it is positive. Indeed, log(z)(1+5z)/(4(1−z)) and log(−z log(z)) are
both increasing on the interval [r,81714053/230], and their sum, plus 3/2, is easily bounded
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on the interval by 1 in magnitude. Then − log(3(1 − z) + (1 − z) log(z)) is decreasing on
the interval, and its value at 81714053/230 is far larger than 1.

It remains to show that w(z) is positive on [1013243800/230,1]. The function’s first
three derivatives are zero at 1, and the fourth is positive at 1. We use the argument
principle, and compute the integral w′(z)/(2πiw(z)) along a circle centre 1 and radius
1/16. There are no poles within this circle, and there are four zeros at 1, so computing
the integral to be 4 implies there are no more zeros within the circle. We use a double
exponential quadrature technique due to Pascal Molin. This approximates the integral to
a sum with an explicit error term. We use Theorem 3.10 from [75], with D = 1, h = 0.15
and n = 91, which, using ARB, gives the sum to be [4.00000± 5.24e− 6]+ [±5.10e− 6] ∗ I.
The integral must be an integer by the argument principle, and D = 1 means the explicit
error term is at most e−1, hence the integral must equal 4.

5.9 Equivalence of Qi,j and Pi,j

In this second appendix we study a second representation of Bn,θ, which we’ll prove is
isomorphic to the representation pBn,θ (3.12), for θ odd, and not isomorphic for θ even.
Recall

pBn,θ(i, j) = Qi,j , pBn,θ(i, j) = Ti,j . (5.82)

This will give the equivalence, in spin S = 1, between our model with Hamiltonian (5.20),
and the bilinear-biquadratic Heisenberg model with Hamiltonian (5.29); equality of their
partition functions was proved by Ueltschi ([101], Theorem 3.2).

Recall ⟨ai, aj ∣Pi,j ∣bi, bj⟩ = (−1)ai−biδai,−ajδbi,−bj . Define p̃Bn,θ ∶ Bn,θ → End(V), given by

p̃Bn,θ(i, j) = Pi,j , p̃Bn,θ(i, j) = Ti,j . (5.83)

Lemma 5.9.1. For θ odd, and all n, the representations p̃Bn,θ and pBn,θ of Bn,θ are
isomorphic via a unitary transformation, and for θ even, the two are not isomorphic.

Proof. Since the elements (i, j) and (i, j) generate the algebra Bn,θ, it suffices to find an
invertible linear function ψn ∶ V→ V such that

ψ−1
n Ti,jψn = Ti,j , ψ−1

n Qi,jψn = Pi,j , (5.84)

for all i, j. By the Schur-Weyl duality for the general linear and symmetric groups (5.71),
the first condition holds if and only if ψn = ψ⊗n for some ψ ∈ GL(θ). Then the second
condition also holds if and only if (ψ⊗2)−1Qi,jψ

⊗2 = Pi,j for all i, j, which holds if and only
if:

(−1)ai−biδai,−ajδbi,−bj = ∑
ri,rj ,si,sj

ψai,riψaj ,rjδri,rjδsi,sj(ψ
−1

)si,bi(ψ
−1

)sj ,bj

=∑
r,s

ψai,rψaj ,r(ψ
−1

)s,bi(ψ
−1

)s,bj

= (ψψT
)ai,aj((ψ

−1
)

T
(ψ−1

))bi,bj .
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Hence the two representations are isomorphic if and only if the two are isomorphic if and
only if there exists an invertible θ × θ matrix ψ such that

ψψT
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)S

(−1)S−1

⋱

(−1)1−S

(−1)−S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

(ψ−1
)

Tψ−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)S

(−1)S−1

⋱

(−1)1−S

(−1)−S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

where recall θ = 2S + 1. For θ odd the two matrices on the right hand sides above are the
same, so it suffices to note that we can set the central entry in ψ to be 1, and the rest to
be made up of nested invertible 2x2 matrices g1, g2, given by, for example,

g1 =
1

√
2

⎡
⎢
⎢
⎢
⎢
⎣

−1 i

−1 −i

⎤
⎥
⎥
⎥
⎥
⎦

, g2 =
1

√
2

⎡
⎢
⎢
⎢
⎢
⎣

−1 i

1 i

⎤
⎥
⎥
⎥
⎥
⎦

,

since

g1g
T
1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1
1 0

⎤
⎥
⎥
⎥
⎥
⎦

, g2g
T
2 =

⎡
⎢
⎢
⎢
⎢
⎣

0 −1
−1 0

⎤
⎥
⎥
⎥
⎥
⎦

.

This shows that for θ odd, the representations p̃Bn,θ and pBn,θ are indeed isomorphic,
and since g1, g1 are unitary, so is ψn. For θ even, there are fractional powers of (−1)
appearing, so we have to make a choice, say, of (−1) 1

2 = ±1, and then the rest of the entries
are determined by (−1)a = (−1)a− 1

2 (−1) 1
2 . Whichever we choose though, ψψT will always

be a symmetric matrix, and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)S

(−1)S−1

⋱

(−1)1−S

(−1)−S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

will always be anti-symmetric (and non-zero), so the two cannot be equal. This concludes
the proof.

∎
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Chapter 6

Quantum Spin Systems on the
complete bipartite graph

In this section we present the results of the paper “Heisenberg models and Schur–Weyl
duality” [12], which is joint work with Jakob Björnberg and Hjalmar Rosengren. As in
the previous section, we present the paper essentially unchanged, with references to our
use of representation-theoretic tools from the previous sections as appropriate.

6.1 Introduction and results

When Werner Heisenberg in 1928 introduced his famous model for ferromagnetism, he
described it in terms of an exchange interaction between neighbouring valence electrons
(“Austausch von Elektronen” [56]). In modern notation, for the spin S = 1

2 system he
was considering, this interaction can be written as Ti,j = 2(Si ⋅ Sj) + 1

2 , where Ti,j acts on
a pure tensor vi ⊗ vj in C2 ⊗ C2 by transposing the factors, Ti,j(vi ⊗ vj) = vj ⊗ vi, and
S = (S(1), S(2), S(3)) are spin S = 1

2 -matrices. Two natural generalisations to higher spin
immediately suggest themselves: we can take the interaction to be the transposition Ti,j
acting on Cθ ⊗ Cθ, or to be a (positive multiple of) Si ⋅ Sj , where the S are now spin-S-
matrices and θ = 2S + 1. For S > 1

2 , these choices are no longer equivalent; while both
are natural generalisations, some authors usually reserve the name Heisenberg model for
the model with interaction Si ⋅ Sj . The model with interaction Ti,j has been called the
interchange model and is one of the main topics of this paper.

The name interchange model can be traced back to works by Harris [55], Powers [83],
and Tóth [97], and is motivated by a probabilistic representation of the model. Powers [83]
was first to notice that the ferromagnetic (spin-1

2) Heisenberg model can be represented
in terms of a random walk on permutations generated by transpositions. The latter
random walk was constructed on infinite lattices by Harris [55]. Tóth [97] was first to use
this representation to obtain an important result for the Heisenberg model: a bound on
the free energy of the model on Z3 that was the best known for many years [21]. The
underlying random walk on permutations has come to be known as the interchange process
in the literature on mixing times of Markov chains [2]. The present paper does not use
the probabilistic representation, however; indeed our methods apply also in cases where
such a representation is not available.
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For the antiferromagnetic spin S = 1
2 Heisenberg model, Aizenman and Nachtergaele

[1] discovered a similar probabilistic representation based on the identity Pi,j = 1
2 − 2Si ⋅

Sj where Pi,j is (twice) the projection onto the singlet subspace of C2 ⊗ C2 (eigenspace
for the total spin operator with eigenvalue 0). On a bipartite graph, such as the line
Z considered by Aizenman and Nachtergaele, the Hamiltonian with interactions Pi,j is
unitarily equivalent to that with interactions Qi,j defined by

⟨eα1 ⊗ eα2 ∣Qi,j ∣eα3 ⊗ eα4⟩ = δα1,α2δα3,α4 , (6.1)

where the eα are a basis for C2. The interaction Qi,j has a natural interpretation in
terms of random loops, and plays a central role in the present work. The definition (6.1)
generalises straightforwardly to higher spin.

If we take the underlying lattice to be the complete graph Kn, consisting of n vertices
with an edge between each pair of distinct vertices, then the interchange model is a mean-
field system with Hamiltonian

−
1
n

∑
1≤i<j≤n

Ti,j , acting on V ⊗n
= (Cθ)⊗n, θ ≥ 2. (6.2)

This model was studied in the papers [13, 14], where the key step of the analysis was to
note that the Hamiltonian (6.2) is a central element of the group algebra C[Sn] of the
symmetric group, represented on the tensor space V ⊗n. This means that the eigenspace
decomposition for the Hamiltonian (6.2) coincides with the decomposition of V ⊗n into
irreducible Sn-modules, which is well-studied. Ryan [89] implemented a similar approach
for the model with Hamiltonian

−
1
n

∑
1≤i<j≤n

(aTi,j + bQi,j) acting on V ⊗n, (6.3)

with a, b ∈ R and θ ≥ 2, which can similarly be diagonalised using the irreducible represen-
tations of the Brauer algebra (defined below).

The unifying principle behind this approach is a classical algebraic theory called Schur–
Weyl duality. This term is used for specific instances of a general result in representation
theory called the double centraliser theorem, which states the following (see Theorem
3.0.1) [34, Theorem 4.54]. Let V be a finite-dimensional vector space, and A ⊆ End(V) a
semi-simple algebra of linear mappings (endomorphisms) V→ V. Then the centraliser B of
A, i.e. the algebra of endomorphisms commuting with all elements of A, is also semi-simple,
and as a representation of A⊗B we have

V =⊕
i

Ui ⊗ Vi, (6.4)

where the Ui (respectively Vi) are an exhaustive list of non-isomorphic irreducible rep-
resentations of A (respectively B). The most famous instances of this (and relevant in
the present work) are obtained by letting V = V ⊗n. If we let A consist of all invertible
endomorphisms of Cθ, acting diagonally on V, then B is generated by the permutations of
the tensor factors of V: this gives the Schur–Weyl duality between the general linear group
GL(θ) and the symmetric group Sn (see (6.54) for details) which facilitates the analysis of
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the interchange model (6.2). If instead we take A to consist of orthogonal matrices, then
B is the Brauer-algebra used in the analysis of (6.3).

Let us note that this work follows a line of papers analysing the interchange process and
Heisenberg model with algebraic methods (including the aforementioned [13], [14], [89]).
Alon and Kozma [3] analysed the interchange process on a general graph, and estimated
the number of k-cycles at a given time; Berestycki and Kozma [9] gave an exact formula
for the same on the complete graph; Alon and Kozma [4] gave an exact formula for the
magnetisation of the mean-field spin S = 1

2 Heisenberg model.
In this work we carry the methods described above further, to inhomogeneous models

on the complete graph where the coupling constants between different vertices take finitely
many different values. The models for which our analysis goes the deepest are what we
call two-block models, where coupling constants can take at most three values (one each
for the interactions within each of the two blocks, and one for interactions between the two
blocks). Our results on these models come in three parts: we first compute in Theorems
6.1.1 and 6.1.2 the free energy; in Propositions 6.1.3 to 6.1.6, we give results on phase
transitions, and, for certain values of the parameters, we compute a critical temperature;
finally in Theorems 6.1.7 and 6.1.8 we give a magnetisation and limits of certain correlation
functions. We then give the free energy for what we call multi-block models in Theorem
6.1.9, where coupling constants can take finitely many values, and we allow certain many-
body interactions. Finally, in Section 6.1.5, we give heuristics for descriptions of the
extremal Gibbs states for some of the models we study, and comment on their phase
diagrams.

6.1.1 Two-block models: Free energy

For a, b, c ∈ R, and 1 ≤m ≤ n, we define the ab-interchange-model, or ab-model for short,
through its Hamiltonian

Hab
n = −

1
n
(a ∑

1≤i<j≤m
Ti,j + b ∑

m+1≤i<j≤n
Ti,j + c ∑

1≤i≤m<j≤n
Ti,j). (6.5)

For β > 0, introduce the partition function Zab
n (β) = Tr [e−βHab

n ]. We call this a two-block
model since we may think of it as a spin system on a graph with vertex set {1,2, . . . , n}
partitioned into the two blocks A = {1, . . . ,m} and B = {m + 1, . . . , n}. The form of
the Hamiltonian (6.5) means that spins at two vertices within A interact with coupling
constant a, spins at two vertices within B interact with coupling constant b, and the spin
at a vertex in A interacts with the spin at a vertex in B with coupling constant c. In
the homogeneous case a = b = c we obtain the interchange model on the complete graph
(6.2), while if a = b = 0 and c ≠ 0 then we obtain a model on the complete bipartite graph
Km,n−m.

We write
F (x1, . . . , xθ; y1, . . . , yθ) = ∑

θ
i=1 f(xi, yi), (6.6)

where xi, yi ≥ 0 and

f(x, y) = −x logx − y log y + β
2 (ax

2
+ by2

+ 2cxy). (6.7)
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We have the following result about the free energy:

Theorem 6.1.1. Let a, b, c ∈ R be fixed. If n,m→∞ such that m/n→ ρ ∈ (0,1), then the
free energy of the model (6.5) satisfies

Φab
β (a, b, c) ∶= lim

n→∞
1
n logZab

n (β) = max F (x1, . . . , xθ; y1, . . . , yθ) (6.8)

where the maximum is taken over x1, . . . , xθ, y1, . . . , yθ ≥ 0 subject to ∑θi=1 xi = 1−∑θi=1 yi = ρ.

Note that if (x1, . . . , xθ; y1, . . . , yθ) is a maximum point of F , and we order the x-entries
so that

x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xθ, (6.9)

then for c > 0 we necessarily have y1 ≥ ⋯ ≥ yθ, while for c < 0 we necessarily have
y1 ≤ ⋯ ≤ yθ. Indeed, the only term in F which is dependent on the relative order of the
entries is the term ∑

θ
i=1 xiyi, which is indeed maximised when the orders are the same and

minimised if they are reversed.

We next consider another two-block model but where the interaction “between” the
blocks uses the operator Q defined in (6.1). We let

Hwb
n = −

1
n
(a ∑

1≤i<j≤m
Ti,j + b ∑

m+1≤i<j≤n
Ti,j + c ∑

1≤i≤m<j≤n
Qi,j). (6.10)

Also let Zwb
n (β) = Tr[e−βHwb

n ]. Let us note here that for all θ ≥ 2, this model is unitarily
equivalent to the same model with each Qi,j replaced with Pi,j , the latter being (θ times)
the projection onto the singlet state:

⟨eα1 ⊗ eα2 ∣Pi,j ∣eα3 ⊗ eα4⟩ = (−1)α1−α3δα1,−α2δα3,−α4 . (6.11)

(Here we index the basis eα for Cθ with α ∈ {−S,−S + 1, . . . , S} where S = (θ − 1)/2.)
Indeed, for the model with a = b = 0 and c > 0 the equivalence of partition functions
was proved by Aizenman and Nachtergaele in [1]; we give an algebraic proof for general
a, b, c ∈ R in Lemma 6.7.1. We use the notation wb for this model as its analysis is based
on the representation theory of the walled Brauer algebra, see Section 6.2.2. Interestingly,
this model has the exact same free energy as the two-block interchange model:

Theorem 6.1.2. Let a, b, c ∈ R be fixed. If n,m→∞ such that m/n→ ρ ∈ (0,1), then the
free energy of the model (6.5) satisfies

Φwb
β (a, b, c) ∶= lim

n→∞
1
n logZwb

n (β) = Φab
β (a, b, c), (6.12)

where Φab
β (a, b, c) is given in Theorem 6.1.1.

In the case θ = 2, Theorem 6.1.2 can be deduced from Theorem 6.1.1 in the following
elementary manner. For θ = 2 we have [101, Section 7.1]

Ti,j = 2(Si ⋅ Sj) + 1
2 , Qi,j = 2(S(1)

i S
(1)
j − S

(2)
i S

(2)
j + S

(3)
i S

(3)
j ) + 1

2 . (6.13)
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Letting W = ( 0 1
−1 0 ) we have that W −1

j Ti,jWj = −Qi,j +1, so conjugating Hab
n (a, b,−c) with

∏
n
j=m+1Wj gives Hwb

n (a, b, c) − cm(n −m)/n. Thus Φwb
β (a, b, c) = Φab

β (a, b,−c) + cρ(1 −
ρ). This is consistent with Theorem 6.1.2 since (indicating the dependence on c with a
subscript) Fc(x1, x2; y1, y2) − F−c(x1, x2; y2, y1) = c(x1 + x2)(y1 + y2) = cρ(1 − ρ), meaning
that by Theorem 6.1.1 we have Φab

β (a, b,−c)+cρ(1−ρ) = Φab
β (a, b, c). However, for general

θ the rank of Ti,j is θ(θ + 1)/2 while the rank of Qi,j is 1, so when θ > 2, conjugating Ti,j
cannot give a linear combination of Qi,j and the identity.

6.1.2 Two-block models: Phase transition and critical temperature

Next we discuss phase transitions as β is varied, via the maximiser of the function F .
Essentially, when a transition is present, we expect the maximiser of F to be fixed (at ω0

(6.16)) for small β, and then at some critical βc to begin to move. This βc then corresponds
to a point of phase transition in the model. For β = βc it can happen either that ω0 is
unique or that there are other maximum points. We will see that the phase-transition
is also reflected in the behavior of observables (Theorem 6.1.7) and the magnetisation
(Theorem 6.1.8).

In Proposition 6.1.3, we characterise completely the values of a, b, c for which there
exists such a phase transition. When it exists, finding explicit formulae for βc seems
difficult in general; we can do it in two cases, firstly in Proposition 6.1.4 when θ = 2 (that
is, spin S = 1

2), and secondly in Proposition 6.1.5 when c ≥ 0, θ ≥ 3 and

(a − c)ρ = (b − c)(1 − ρ). (6.14)

In the latter case, we further prove in Proposition 6.1.6 that for βc < β < βc + ε and ε > 0
small, the maximiser of F is unique.

In what follows, we write x⃗ = (x1, . . . , xθ), y⃗ = (y1, . . . , yθ), and

Ω = {(x⃗; y⃗) ∶ x1, . . . , xθ, y1, . . . , yθ ≥ 0, ∑θi=1 xi = 1 −∑θi=1 yi = ρ}. (6.15)

Elements of Ω will typically be denoted ω = (x⃗; y⃗). We write

ω0 = (
ρ
θ ,

ρ
θ , . . . ,

ρ
θ ; 1−ρ

θ ,
1−ρ
θ , . . . ,

1−ρ
θ

) ∈ ∂Ω, (6.16)

and we write Q(x, y) = 1
2(ax

2+by2+2cxy) for the quadratic form appearing in the function
f(x, y).

Proposition 6.1.3. If Q is negative semidefinite, that is,

a ≤ 0, b ≤ 0, and ab ≥ c2, (6.17)

then F assumes it maximum value at ω0 for all β > 0. Otherwise, there exists a number
βc > 0 such that F assumes it maximum value at ω0 if and only if 0 < β ≤ βc, and this
maximum is unique if 0 < β < βc.

Let us write βc(θ) to highlight the dependence on θ. The next proposition gives βc(2)
when it exists.
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Proposition 6.1.4. Let θ = 2 and assume that Q is not negative semidefinite, so that βc

exists. Then

βc = βc(2) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ρa + (1 − ρ)b −
√

(ρa − (1 − ρ)b)2 + 4ρ(1 − ρ)c2

ρ(1 − ρ)(ab − c2)
, ab ≠ c2,

2
aρ + b(1 − ρ)

, ab = c2.
(6.18)

Moreover, for β = βc, ω0 is the unique maximum point.

In the homogeneous spin S = 1
2 ab-model, i.e. θ = 2 and a = b = c = 1, we recover

the critical point βc = 2 first identified by Tóth [96] and by Penrose [82]. In the bipartite
case a = b = 0 we get the critical value βc = 2/

√
c2ρ(1 − ρ); this has, to the best of our

knowledge, not appeared previously in the literature.
The next proposition gives βc(θ), θ ≥ 3 in the special case that c ≥ 0 and (6.14) holds.

Proposition 6.1.5. Suppose that (a − c)ρ = (b − c)(1 − ρ) as in (6.14) and let t denote
either side of that identity. Suppose also that c ≥ 0, that Q is not negative semidefinite so
that βc exists, and that θ ≥ 3. Then

βc = βc(θ) ∶=
2(θ − 1) log(θ − 1)

(θ − 2)(c + t)
. (6.19)

Moreover, if β = βc there are exactly two maximum points satisfying (6.9), namely ω0 of
(6.16) and ω1 = (x⃗; y⃗) given by

x1 =
(θ−1)ρ
θ , x2 = ⋅ ⋅ ⋅ = xθ =

ρ
θ(θ−1) , (6.20a)

y1 =
(θ−1)(1−ρ)

θ , y2 = ⋅ ⋅ ⋅ = yθ =
1−ρ

θ(θ−1) . (6.20b)

For all θ ≥ 2 we expect the maximum point to be unique for all β (subject to (6.9)),
except possibly at β = βc. For β > βc we can prove this under the conditions in Proposition
6.1.5 and for β close to the critical point (see also Proposition 6.5.1 for another special
case).

Proposition 6.1.6. Under the assumptions of Proposition 6.1.5, there exists ε > 0 such
that, if βc < β < βc + ε, there is a unique maximiser of F in Ω with entries ordered as in
(6.9). Moreover as β ↘ βc, this maximiser tends to ω1 given in (6.20).

6.1.3 Two-block models: Correlations and magnetisation

We next move on to results about correlations which extend [14, Theorem 2.3]. To state
them, introduce the function

R(w1, . . . ,wθ; z1, . . . , zθ) = det [ewizj ]θ
i,j=1 ∏

1≤i<j≤θ

j − i

(wi −wj)(zi − zj)
. (6.21)

For # ∈ {ab,wb}, we write

⟨O⟩
#
β,n =

TrV [Oe−βH
#
n ]

Z#
n (β)

(6.22)

for the usual equilibrium state expectation of a linear operator O on V.
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Theorem 6.1.7. Let a, b, c ∈ R and β > 0 be such that F has a unique maximum point
ω⋆ = (x⃗⋆; y⃗⋆) satisfying (6.9). Let W be an θ × θ matrix with eigenvalues w1, . . . ,wθ ∈ C.
As n,m→∞ such that m/n→ ρ ∈ (0,1), we have that

lim
n→∞

⟨ exp{ 1
n ∑

n
i=1Wi}⟩

ab
β,n

= R(w1, . . . ,wθ; z⋆1 , . . . , z⋆θ )

lim
n→∞

⟨ exp{ 1
n
(∑

m
i=1Wi −∑

n
i=m+1W

⊺
i )}⟩

wb
β,n

= R(w1, . . . ,wθ; z†
1, . . . , z

†
θ),

(6.23)

where the superscript ⊺ denotes transpose, and

z⋆j = x
⋆
j + y

⋆
j , z†

j = x
⋆
j − y

⋆
j . (6.24)

As a concrete example, for W = hdiag(0,1,2, . . . , θ − 1) we have

R(w1, . . . ,wθ; z1, . . . , zθ) = ∏
1≤i<j≤θ

ehzi − ehzj

h(zi − zj)
. (6.25)

The phase-transition at βc is reflected in the fact that R ≡ 1 when ω⋆ = ω0, while R is
non-trivial if the entries of z⃗ are non-constant. The latter occurs e.g. in the ab-model for
β > βc.

For a second concrete example, let c > 0. We will prove in Proposition 6.5.1 that any
maximiser (x⃗⋆; y⃗⋆) of F satisfying (6.9) is then of the form

x⋆1 ≥ x
⋆
2 = ⋯ = x⋆θ , y⋆1 ≥ y⋆2 = ⋯ = y⋆θ , (6.26)

in which case z⋆ (6.24) will be of the same form. Letting W be an arbitrary rank 1
projection, with eigenvalues 1,0, . . . ,0, and writing u⋆ = z⋆1 − z⋆2 , we have

lim
n→∞

⟨ exp{ 1
n ∑

n
i=1Wi}⟩

ab
β,n

=
(2S)!

(hu⋆)2S e
h

2S+1 (1−u
⋆)
∑
∞
j=2S

(hu⋆)j
j! . (6.27)

(The calculation of R is performed in [14, Section 6].)

Theorem 6.1.7 also shows that the ab- and wb-models are not equivalent, despite hav-
ing the same free energy (for any anti-symmetric matrix W , the observables on the left
in (6.23) are the same, while their limiting expectations are different). The result is also
relevant for understanding extremal states, see Section 6.1.5.

Finally we have the following result about the (thermodynamic) magnetisation. Let
W be an θ × θ matrix with real eigenvalues w1 ≥ ⋯ ≥ wθ, let h ∈ R, and write

Zab
n (β,h) = TrV[exp ( − βHab

n + h∑1≤i≤nWi)], (6.28)

and let
Zwb
n (β,h) = TrV[exp ( − βHwb

n + h(∑1≤i≤mWi −∑m<i≤nW
⊺
i ))]. (6.29)

In Theorem 6.2.4 we will obtain explicit expressions for the limits

Φ#
β,h(a, b, c, w⃗) ∶= lim

n→∞
1
n logZ#

n (β,h) (6.30)
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where # ∈ {ab,wb} (this turns out to depend on W only through its spectrum w⃗). The
magnetisation is given by the left and right derivatives of this free energy with respect to
h, at h = 0.

Theorem 6.1.8. Let a, b, c ∈ R and w1 ≥ ⋯ ≥ wθ be fixed. Let Φab(β,h) = Φab
β,h(a, b, c, w⃗)

and Φwb(β,h) = Φwb
β,h(a, b, c, w⃗), regarded as functions of β and h. Then

∂Φab

∂h
∣
h↓0

= max(x⃗⋆;y⃗⋆)
θ

∑
i=1
z⋆i wi,

∂Φab

∂h
∣
h↑0

= min
(x⃗⋆;y⃗⋆)

θ

∑
i=1
z⋆i wθ+1−i,

∂Φwb

∂h
∣
h↓0

= max(x⃗⋆;y⃗⋆)
θ

∑
i=1
z⋆i wi,

∂Φwb

∂h
∣
h↑0

= min
(x⃗⋆;y⃗⋆)

θ

∑
i=1
z⋆i wθ+1−i,

(6.31)

where the maxima and minima are over all maximisers (x⃗⋆; y⃗⋆) of F (x⃗; y⃗), with entries
ordered decreasing, and z⋆1 , . . . , z⋆θ are the following values arranged in decreasing order:

• for c > 0, in the ab-case z⋆i = x⋆i + y⋆i and in the wb-case z⋆i = x⋆i − y⋆i ;

• for c < 0, in the ab-case z⋆i = x⋆i + y⋆θ+1−i and in the wb-case z⋆i = x⋆i − y⋆θ+1−i.

It is natural to take W to have trace zero. Then, from Proposition 6.1.3, for all β < βc

the only maximiser is ω0 (6.16) and we have

∂Φ
∂h

∣
h↓0 =

∂Φ
∂h

∣
h↑0 = 0, (6.32)

for both ab- and wb-models and for both c > 0 and c < 0. This holds also for β = βc when
θ = 2.

Let us discuss the case θ ≥ 3 in Proposition 6.1.5 at β = βc. Recall that c ≥ 0 in this
case. Calculations with the point ω1 (6.20) give the following:

• In the ab-case, at ω1 the values

z1 =
θ−1
θ , z2 = ⋯ = zr =

1
θ(θ−1) (6.33)

are already decreasing. This gives

∂Φab

∂h
∣
h↓0 = max{0, θ−2

θ−1w1}
∂Φab

∂h
∣
h↑0 = min {0, θ−2

θ−1wθ}. (6.34)

For non-trivial W we have w1 > 0 > wθ, thus the magnetisation is discontinuous at the
point of phase-transition.

• In the wb-case, at ω1 the ordering of the values xi − yi depends on ρ. If ρ > 1
2 we get

z1 = (2ρ − 1) θ−1
θ , z2 = ⋯ = zθ =

2ρ−1
θ(θ−1) , (6.35)

and from there

∂Φwb

∂h
∣
h↓0 = max{0, (2ρ − 1) θ−2

θ−1w1}

∂Φwb

∂h
∣
h↑0 = min {0, (2ρ − 1) θ−2

θ−1wθ}.
(6.36)
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For non-trivial W , this gives a discontinuous magnetisation. In the case ρ < 1
2 , the

magnetisation is obtained by exchanging w1 and wθ in the latter expressions. For
ρ = 1

2 , the magnetisation is continuous at the point of phase-transition.

6.1.4 Multi-block models

We generalize the free energy calculation of Theorem 6.1.1 to a class of models with p ≥ 1
blocks rather than just the two blocks A and B, and with certain many-body interactions.

We first need some notation. For σ ∈ Sn a permutation of 1,2, . . . , n, let Tσ be the
linear operator on V = V ⊗n which permutes the tensor factors according to σ:

Tσ(v1 ⊗ v2 ⊗⋯⊗ vn) = vσ(1) ⊗ vσ(2) ⊗⋯⊗ vσ(n). (6.37)

(The mapping T is a representation of Sn - it is the map pSn from (3.8); we use the
notation T for the rest of this section.) Let γ be a partition with all parts > 1, that is
γ = (γ1, . . . , γ`) is a sequence of integers γ1 ≥ γ2 ≥ ⋯ ≥ γ` ≥ 2. We say that a permutation
σ ∈ Sn has cycle-type γ if its non-trivial cycles, ordered from longest to shortest, have
lengths γ1, . . . , γ`. Then ∣γ∣ ∶= γ1 + ⋯ + γ` ≤ n. Let Cγn be the set of permutations in Sn

with cycle-type γ; this is a conjugacy-class of Sn. For example, if γ = (2) then Cγn = C
(2)
n

is the set of transpositions in Sn, and if γ = (3) then Cγn = C(3)
n is the set of three-cycles in

Sn. Similarly, for A ⊆ {1,2, . . . , n}, let CγA denote the set of permutations of the elements
of A with cycle-type γ.

Let A1, . . . ,Ap form a partition of {1, . . . , n} with ∣Ak∣ = mk. Fix a finite set Γ of
partitions γ with all parts > 1. We assume that n and all mk are large enough that Cγn ≠ ∅
and CγAk ≠ ∅ for all γ ∈ Γ. For aγ1 , . . . , a

γ
p , c

γ ∈ R, consider the Hamiltonian

Hmb
n = −n∑

γ∈Γ
(

p

∑
k=1

aγ
k

∣CγAk ∣
∑

σ∈CγAk

Tσ +
cγ

∣Cγn ∣ ∑
σ∈Cγn

Tσ), (6.38)

and the partition function Zmb
n (β) = TrV[e−βH

mb
n ]. Note that we have the scaling factor

n in front of (6.38) rather than 1
n as in (6.5). This is because the sizes of the conjugacy

classes CγA depend on n, for example for transpositions we have ∣C
(2)
n ∣ = (

n
2).

The form of the Hamiltonian (6.38) means that spins at vertices in each block Ak

interact with other with the many-body interaction Tσ (as opposed to the pair-interaction
Ti,j = T(i,j) before), with strength constants aγk dependent on the cycle type γ of σ; as
well as this, spins in all blocks together interact with each other similarly, this time with
strength constants cγ .

The operators Tσ appearing in (6.38) may all be written in terms of spin-matrices.
Indeed, for transpositions σ = (i, j) this was discussed above, and for general σ we may
write Tσ as a product of Ti,j ’s. However, we do not pursue an explicit formula for Tσ in
terms of spin-matrices.

Our result about the free energy of this model is most compactly expressed in terms
of positive semidefinite Hermitian θ×θ matrices X. For such a matrix, having eigenvalues
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x1, . . . , xθ ≥ 0, we use the von Neuman entropy

S(X) = −Tr[X logX] = −
θ

∑
i=1
xi logxi. (6.39)

We have the following:

Theorem 6.1.9. Let p ≥ 1 be fixed, and suppose that for all k = 1, . . . , p we have that
mk/n→ ρk ∈ (0,1) as n→∞. For the Hamiltonian (6.38), we have that the free energy is
given by

lim
n→∞

1
n logZmb

n (β) = max φβ(X1, . . . ,Xp), (6.40)

where the maximum is taken over all positive semidefinite Hermitian θ×θ matrices X1, . . . ,Xp

with Tr[Xk] = ρk, and where

φβ(X1, . . . ,Xp) =

p

∑
k=1

S(Xk)

+ β∑
γ∈Γ

(

p

∑
k=1

aγk∏
j≥1

Tr[Xγj
k ] + cγ∏

j≥1
Tr[(X1 +⋯ +Xp)

γj ]).

(6.41)

Let us now discuss a few specializations of Theorem 6.1.9. If we set p = 2, Γ = {(2)}
and a(2)1 = (a − c)/2, a(2)2 = (b − c)/2 and c(2) = c/2, then

φβ(X1,X2) = S(X1) + S(X2) +
β
2 Tr [aX2

1 + bX
2
2 + 2cX1X2]. (6.42)

In fact, in this case we recover Theorem 6.1.1, i.e. we have max φβ(X1,X2) = Φab
β (a, b, c).

For details, see the discussion around (6.79).

If instead we set p = 1 and all aγk = 0 then (6.38) becomes

Hmb
n = −n∑

γ∈Γ

cγ

∣Cγn ∣ ∑
σ∈Cγn

Tσ. (6.43)

We thus obtain a homogeneous model of many-body interaction on the complete graphKn.
(In fact, (6.43) is the image of a general central element of C[Sn] under the representation
T .) In this case we get that

1
n logZmb

β,n →max( −
θ

∑
i=1
xi logxi + β∑

γ∈Γ
cγpγ(x1, . . . , xθ)), (6.44)

where the maximum is over all x1, . . . , xθ satisfying xi ≥ 0 and ∑θi=1 xi = 1, and where
pγ(x1, . . . , xθ) denotes the power-sum symmetric polynomial

pγ(x1, . . . , xθ) =
`

∏
j≥1

(x
γj
1 +⋯ + x

γj
θ ). (6.45)

It seems likely that Theorems 6.1.7 and 6.1.8 can be extended to multi-block cases,
though we do not pursue such extensions here.
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6.1.5 Heuristics for phase diagrams and extremal Gibbs states

In [14], for several models including the interchange model (6.2), the authors give a heuris-
tic argument which points towards the structure of the set Ψβ of extremal Gibbs states at
inverse temperature β. The extremal Gibbs states in infinite volume are not well-defined
on the complete graph, so the working is by analogy. Specifically, their heuristics lead to
two expected equalities: first that

lim
Λ→Zd

⟨e
h
n ∑iWi⟩β,Λ = ∫Ψβ

eh⟨W0⟩ψdµ(ψ), (6.46)

for θ × θ matrices W , where ⟨⋅⟩ψ is an extremal Gibbs state, dµ is the measure on Ψβ

corresponding to the symmetric Gibbs state, W0 is the operator W at the lattice site 0,
and the left hand side is the limit of successively larger boxes Λ ∈ Zd; second that

lim
n→∞

⟨e
h
n ∑iWi⟩β,n = lim

Λ→Zd
⟨e

h
n ∑iWi⟩β,Λ, (6.47)

where the left hand term is the observable on the complete graph. The left hand side
of (6.47) is computed rigorously on the complete graph, and then, with the expected
structure of Ψβ inserted, the right hand side of (6.46) is rigorously computed, and the two
are shown to be the same. This working is not a proof either of the expected equalities
(6.46), (6.47) or of the expected structure of Ψβ, but it points towards all three statements
holding true. Using the results of the present paper, we can provide the same calculations
and heuristics for the interchange model and for the nematic model in spin S = 1, this
time on the complete bipartite graph.

The interchange model on the complete bipartite graph is exactly our ab model with
parameters a = b = 0. For c > 0, Proposition 6.1.3 shows that this model has a phase
transition. At low temperatures, the model is expected to have extremal Gibbs states
labelled by CPθ−1, rank 1 projections in Cθ. With ⟨W0⟩ψ = u⋆, when W is a rank 1
projection and assuming that Ψβ is indeed given by CPθ−1, the right hand side of (6.46)
is given by

(2S)!
(hu⋆)2S e

h
2S+1 (1−u

⋆)
∞
∑
j=2S

(hu⋆)j

j!
. (6.48)

Now (6.27) (using Proposition 6.5.1) shows that for our general ab model, in the case c > 0
and Q not negative semidefinite (which includes the interchange model), the left hand side
of (6.46) is the also of the form (6.48), at least when the maximiser of F (6.6) is unique.

In contrast, for the wb model with a = b = 0, c = 1 and ρ = 1/2, we can show that
the observable of Theorem 6.1.7 is equal to 1 at all temperatures. Indeed, in the proof of
Proposition 6.5.1, we will show that for a = b = 0, c = 1, and ρ = 1/2, the maximiser of F
satisfies x⋆i = y⋆i , for all i = 1, . . . , θ. This gives z†

i = 0 for all i = 1, . . . , θ (z† from (6.24)),
and after calculations with the function R, the limit in (6.23) is trivial. Note that by our
comments below (6.10), the wb-model with a = b = 0, c = 1, has Hamiltonian unitarily
equivalent to

−
1
n

∑
1≤i≤m<j≤n

Pi,j , (6.49)

where Pi,j is (θ times) the projection onto the singlet state, given by (6.11).
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We can interpret this result to comment on the nematic (or biquadratic) model in
spin S = 1 (θ = 3). Our ab- and wb-models in spin S = 1 with a = b = 0, c = ±1 are
special cases of a two-parameter model on the complete bipartite graph known as the
bilinear-biquadratic Heisenberg model, which has Hamiltonian

−
1
n

∑
1≤i≤m<j≤n

(J1(Si ⋅ Sj) + J2(Si ⋅ Sj)2
), (6.50)

where Si ⋅Sj = ∑3
k=1 S

(k)
i S

(k)
j , and J1, J2 ∈ R. Indeed, using the relations Si ⋅Sj = Ti,j −Pi,j

and (Si ⋅Sj)2 = Pi,j + 1 (see Lemma 7.1 from [101]) one can rewrite (6.50), up to addition
of a constant, as

−
1
n

∑
1≤i≤m<j≤n

(J1Ti,j + (J2 − J1)Pi,j). (6.51)

Setting J1 = J2 = ±1 gives the ab model with a = b = 0, c = ±1, while setting J1 = 0, J2 = ±1
gives the wb model with a = b = 0, c = ±1, in the form (6.49). The case J1 = 0, J2 = 1 (i.e.
our wb-model with a = b = 0, c = 1) is the nematic, or biquadratic, Heisenberg model.

The phase diagram of the bilinear-biquadratic Heisenberg model on Zd, d ≥ 3 is given in
Ueltschi [101], and we expect that the model on the complete bipartite graph has the same
diagram. (The corresponding one-dimensional spin chain has a different phase-diagram,
exhibiting dimerization, see [11,67].) The nematic model lies in the nematic phase of that
diagram, and for low temperatures its extremal Gibbs states are expected to be indexed by
RP2, projections in R3. Heuristically, we expect spins at all vertices to be either aligned
or anti-aligned. In particular, one obtains that the right hand side of (6.46) is trivial
when Wi = v⃗ ⋅ Si = ∑3

k=1 vkS
(k)
i , for any v⃗ ∈ S2 (and non-trivial when Wi = (v⃗ ⋅ Si)2). Now

by Theorem 6.1.8, with Wi = S
(2)
i (which satisfies (S

(2)
i )⊺ = −S(2)

i ), the left hand side of
(6.46) equals 1. This aligns with the heuristics described above. One can also note that
for all β > 0, the magnetisation from Theorem 6.1.8 is

∂Φwb

∂h
∣
h↓0

=
∂Φwb

∂h
∣
h↑0

= 0; (6.52)

again this aligns with the picture of Ψβ = RP2 (we expect something nontrivial when the
magnetisation term in the Hamiltonian is ∑1≤i≤n(S

(2)
i )2).

6.2 Free energy and correlations

In this section we prove Theorems 6.1.1, 6.1.2, 6.1.7 and 6.1.8. Although Theorem 6.1.1
is actually a special case of Theorem 6.1.9, we give a detailed proof of Theorem 6.1.1 and
then describe the modifications necessary to obtain Theorem 6.1.9 in Section 6.4.

6.2.1 Interchange model: proof of Theorem 6.1.1

As noted in the introduction, our method is to identify the eigenspaces of the Hamiltonian
(6.5). This is facilitated by the classical theory Schur–Weyl duality. We start by recalling
a few basic definitions and facts. A partition λ ⊢ n of n is a non-increasing sequence of
non-negative integers summing to n: λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ ⋯ ≥ 0 and ∑k≥1 λk = n.
Its length `(λ) is the number of non-zero entries.
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Recall the mapping T ∶ Sn → End(V) defined in (6.37). This is a representation of Sn
and hence of the group algebra C[Sn] on V. We may also regard V as a module for the
group GL(θ) of invertible θ × θ matrices by the diagonal action (3.6)

g(v1 ⊗ v2 ⊗⋯⊗ vn) = g(v1)⊗ g(v2)⊗⋯⊗ g(vn). (6.53)

Classical Schur–Weyl duality [34, Corollary 4.59] states that these actions of Sn and of
GL(θ) are each others’ centralizers, so that V may be regarded as a representation of the
direct product GL(θ) × Sn, and that V decomposes as a multiplicity-free direct sum of
irreducible representations of GL(θ) × Sn. Specifically, from (3.0.2),

V = ⊕
λ⊢n,`(λ)≤θ

ψ
GL(θ)
λ ⊠ ψSnλ . (6.54)

Here ψGL(θ)λ is the irreducible GL(θ)-representation indexed by (its highest weight) λ
(Theorem 2.1.16), and ψSnλ is the irreducible Sn-representation (Specht module) indexed
by λ (Theorem 2.1.5). We use the same notation T for the representation of GL(θ) × Sn
on V.

Recall our Hamiltonian Hab
n given in (6.5). We now write this as Hab

n = T (hab
n ) where

hab
n = − 1

n[(a − c)αA + (b − c)αB + cαAB], (6.55)

and where αA, αB, αAB are the following elements of C[Sn]:

αA = ∑
1≤i<j≤m

(i, j), αB = ∑
m+1≤i<j≤n

(i, j), αAB = ∑
1≤i<j≤n

(i, j). (6.56)

We have by linearity that e−βHab
n = T (e−βh

ab
n ). Now let W be an θ×θ matrix over C. Then

eW ∈ GL(θ) and we have that T (eW ) = exp (∑
n
i=1Wi). Thus we may write

exp (∑
n
i=1Wi)e

−βHab
n = T(eW × e−βh

ab
n ), (6.57)

where eW × e−βh
ab
n ∈ C[GL(θ) × Sn].

Let us now consider how eW × e−βh
ab
n acts on the right-hand-side of (6.54), starting

with how e−βh
ab
n acts on ψSnλ . The term αAB is the sum of all elements of a conjugacy

class (the transpositions), hence it belongs to the center of C[Sn]. By Schur’s Lemma, it
therefore acts as a constant multiple of the identity on ψSnλ . The constant in question is
well known [42, p. 52] to equal the contents of the partition λ, defined by

ct(λ) =∑
j≥1

(
λj(λj + 1)

2
− jλj). (6.58)

(This equals the sum of the contents of all boxes in any standard Young tableau of shape
λ, where the contents of a box in position (x, y) is y − x.) We have

αAB ∣
ψSn
λ

= ct(λ)Id
ψSn
λ
. (6.59)

Now, to deal with the remaining two terms αA and αB, note that as a representation of
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Sm × Sn−m, from (2.27), the module ψSnλ splits as

ψSnλ = ⊕
µ⊢m,ν⊢n−m

cλµ,νψ
Sm
µ ⊗ ψSn−mν , (6.60)

where cλµ,ν are non-negative integers known as the Littlewood–Richardson coefficients. We
give more details about these numbers later, for now we just note that cλµ,ν = 0 only if
`(µ), `(ν) ≤ `(λ). On each term of the sum in (6.60), from (2.1.10), αA acts as ct(µ)Id

ψSmµ

and αB acts as ct(ν)Id
ψSn−mν

, consequently hab
n acts on that term as

− 1
n[(a − c)ct(µ) + (b − c)ct(ν) + c ct(λ)]Id

ψSmµ ⊗ψSn−mν
, (6.61)

and therefore e−βhab
n acts as

exp (
β
n[(a − c)ct(µ) + (b − c)ct(ν) + c ct(λ)])Id

ψSmµ ⊗ψSn−mν
(6.62)

As to the factor eW , we first note that from Lemma 2.1.21 the character of the module
ψ
GL(θ)
λ evaluated at g ∈ GL(θ) with eigenvalues x1, . . . , xθ is the Schur-polynomial:

χ
GL(θ)
λ [g] = sλ(x1, . . . , xθ) =

det[xλj+θ−ji ]
θ

i,j=1

∏1≤i<j≤θ(xi − xj)
. (6.63)

If W has eigenvalues w1, . . . ,wθ, then eW has eigenvalues ew1 , . . . , ewθ . Writing dSmµ , dSn−mν

for the dimensions of ψSmµ , ψSn−mν , we may summarize these findings as follows:

Lemma 6.2.1. Suppose that W has eigenvalues w1, . . . ,wθ. Then

TrV[exp (∑
n
i=1Wi)e

−βHab
n ] = ∑

λ,µ,ν

sλ(e
w1 , . . . , ewθ)cλµ,νd

Sm
µ dSn−mν

exp (
β
n[(a − c)ct(µ) + (b − c)ct(ν) + c ⋅ ct(λ)]),

(6.64)

where the sum is over λ ⊢ n with `(λ) ≤ θ, µ ⊢m, and ν ⊢ n−m. In particular, setting W
to be the zero matrix (so that eW = Id),

Zab
β,n = ∑

λ,µ,ν

sλ(1, . . . ,1)cλµ,νdSmµ dSn−mν exp (
β
n[(a − c)ct(µ) + (b − c)ct(ν) + c ⋅ ct(λ)]). (6.65)

Here we used the following specialization of sλ:

d
GL(θ)
λ = sλ(1, . . . ,1) = ∏

1≤i<j≤θ

λi − i − λj + j

j − i
. (6.66)

As to dSmµ , a convenient formula is

dSmµ = dim(ψSmµ ) =
n!

m1!⋯mθ!
∏

1≤i<j≤θ
(mi −mj) (6.67)

where mi = µi + θ − i, see [42, (4.11)].
In Lemma 6.2.1 we have written the partition function as a sum of terms exponentially

large in n, with relatively few summands. Such a sum is dominated by its largest term.
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To prove Theorem 6.1.1 we need to understand the asymptotic behavior of each of the
factors in (6.65), and since only those terms with cλµ,ν ≠ 0 appear in the sum, we need a
condition for cλµ,ν ≠ 0.

Proof of Theorem 6.1.1. First, from (6.66) we see that dGL(θ)λ = sλ(1, . . . ,1) is positive
whenever `(λ) ≤ θ, and that dGL(θ)λ = exp(o(1)) where the o(1) is uniform in λ. Now
consider the coefficients cλµ,ν . These are known (see e.g. [40, Chapter 5, Proposition 3]) to
equal the size of a certain subset of semi-standard tableaux with shape λ∖µ filled with ν1

1’s, ν2 2’s, etc. In particular, cλµ,ν > 0 only if µ is contained in λ, and then `(µ) ≤ `(λ) ≤ θ.
Since cλµ,ν = cλν,µ (see [40] again) we also need `(ν) ≤ θ for cλµ,ν > 0. The combinatorial
description also gives the upper bound cλµ,ν ≤ (n + 1)θ2

= exp(o(1)) where the o(1) is
uniform in λ,µ, ν.

We now turn to the remaining factors in (6.65). First, as one can see in (6.67), for
fixed θ we have that dSmµ is essentially a multinomial coefficient. Thus (see e.g. [13, pp.
14–15] for details), we have

1
n log dSmµ = −∑

θ
j=1

µj
n log µj

n +O(
logn
n ). (6.68)

Next, from (6.58) we have that

ct(λ) = n2

2 ∑
θ
j=1 (

λj
n
)

2
+O(n). (6.69)

Taken altogether, these facts mean that we can write (6.65) as

Zab
β,n = ∑

λ,µ,ν

1I{cλµ,ν > 0} exp (n{F̃ (
µ
n ,

ν
n ,

λ
n) + o(1)}), (6.70)

where λ ⊢ n, µ ⊢m and ν ⊢ n −m, all having ≤ θ rows, and where

F̃ (x⃗, y⃗, z⃗) = −∑θj=1 xj logxj −∑θj=1 yj log yj
+
β
2 [(a − c)∑

θ
j=1 x

2
j + (b − c)∑θj=1 y

2
j + c∑

θ
j=1 z

2
j ].

(6.71)

There is a sufficient condition for cλµ,ν > 0 which is very useful for our purposes, known
as Horn’s inequalities. It is best stated in terms of eigenvalues of Hermitian matrices, as
follows: cλµ,ν > 0 if and only if there are Hermitian θ×θ matrices X and Y with eigenvalues
µ1, . . . , µθ and ν1, . . . , νθ, respectively, such that X + Y has eigenvalues λ1, . . . , λθ. For
information about this, see e.g. [41]. We thus have

cλµ,ν > 0 if and only if (µn ,
ν
n ,

λ
n) ∈ Ω+

m/n (6.72)

where Ω+
ρ is the set of triples (x⃗, y⃗, z⃗) such that there exist positive semidefinite Hermitian

matrices X, Y with tr(X) = 1 − tr(Y ) = ρ having eigenvalues x1, . . . , xθ and y1, . . . , yθ,
respectively, such that Z =X + Y has eigenvalues z1, . . . , zθ.

From (6.70) and the fact that F̃ is continuous in its arguments, we conclude that

1
n logZab

β,n →max(x⃗,y⃗,z⃗)∈ΩρF̃ (x⃗, y⃗, z⃗). (6.73)

See e.g. [13, Section 3] for a detailed argument in a similar setting. Now note that if
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X,Y,Z are as above, then

∑
θ
j=1 x

2
j = Tr[X2], ∑

θ
j=1 y

2
j = Tr[Y 2], (6.74)

and also

∑
θ
j=1 z

2
j = Tr[Z2] = Tr [(X + Y )2] = Tr[X2] +Tr[Y 2] + 2 Tr[XY ]. (6.75)

Thus
(a − c)

θ

∑
j=1

x2
j + (b − c)

θ

∑
j=1

y2
j + c

θ

∑
j=1

z2
j = Tr [aX2

+ bY 2
+ 2cXY ]. (6.76)

So for (x⃗, y⃗, z⃗) ∈ Ωρ, we have that

F̃ (x⃗, y⃗, z⃗) = S(X) + S(Y ) +
β
2 Tr [aX2

+ bY 2
+ 2cXY ], (6.77)

where S is as given in (6.39). It follows that

1
n logZab

n (β)→maxX,Y (S(X) + S(Y ) +
β
2 Tr [aX2

+ bY 2
+ 2cXY ]) (6.78)

where the maximum is over positive definite Hermitian matrices X,Y with Tr[X] = 1 −
Tr[Y ] = ρ.

The final step is to use the fact that for positive semidefinite Hermitian matrices X,Y
with fixed spectra x1, . . . , xθ and y1, . . . , yθ, respectively, ordered so that x1 ≥ x2 ≥ ⋯ ≥ xθ

and y1 ≥ y2 ≥ ⋯ ≥ yθ, we have the inequality

θ

∑
j=1

xjyθ+1−j ≤ Tr[XY ] ≤
θ

∑
j=1

xjyj . (6.79)

We discuss this result in Appendix 6.6. In particular, both the maximum and the minimum
of Tr[XY ] are attained when X,Y are simultaneously diagonal. Since the other terms in
F (x⃗, y⃗) are symmetric under permuting the xi or the yi, the result follows. ∎

6.2.2 Walled Brauer algebra: proof of Theorem 6.1.2

As noted above, our analysis of the model in (6.10) uses the walled Brauer algebra. We
will now define this algebra, and collect some facts which allow us to approach a proof in
a similar way to that of Theorem 6.1.1. An accessible introduction to the walled Brauer
algebra is given in [80], and its Schur–Weyl duality is proved in [8], at least for the range
θ ≥ n. The extension to all θ, n is a straightforward extension of the work in [8] - this is of
course covered in Chapter 3.

Let us first define the (usual) Brauer algebra. Fix n ∈ N, θ ∈ C. Arrange two rows
each of n labelled vertices, one above the other. We call a diagram a graph on these 2n
vertices, with each vertex having degree one. Let Bn be the set of such diagrams. The
Brauer algebra Bn,θ is the formal complex span of Bn. Multiplication of two diagrams
is defined as follows. Taking two diagrams g, h, identify the upper vertices of h with the
lower of g. Then form a new diagram by concatenation and removing any closed loops, as
in Figure 6.1. The product gh is the concatenation, multiplied by θ#loops, where #loops
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is the number of loops removed.

h

g

= ghθ2

Figure 6.1: Two diagrams g and h (left), and their product (right). The concatenation
contains two loops, so we multiply the concatenation with middle vertices removed by θ2.

The walled Brauer algebra is a subalgebra of Bn,θ. Let m ≤ n. Returning to the
2n labelled vertices, draw a line (a “wall”) separating the leftmost 2m vertices and the
rightmost 2(n −m). Let Bn,m be the set of diagrams in Bn with the condition that any
edge connecting two upper vertices or two lower vertices must cross the wall, and any edge
connecting an upper vertex and a lower vertex must not cross the wall. See Figure 6.2.
The walled Brauer algebra Bn,m,θ is the span of Bn,m, with multiplication as in the Brauer
algebra.

Figure 6.2: A diagram in the basis B8,3 of the walled Brauer algebra B8,3,θ. Notice that all
edges connecting two upper vertices (or two lower) cross the wall, and all edges connecting
an upper vertex to a lower vertex do not.

Some useful representation-theoretic facts follow. First, the group algebra C[Sm ×

Sn−m] is a subalgebra of Bn,m,θ whose basis Sm ×Sn−m consists of those diagrams with no
edges crossing the wall. As above, we let (i, j) denote the transposition exchanging i and
j. Note that in the walled Brauer algebra, we must have 1 ≤ i, j ≤ m or m + 1 ≤ i, j ≤ n.
For 1 ≤ i ≤m < j ≤ n, let (i, j) denote the diagram with all edges vertical, except that the
ith and jth upper vertices are connected, and the ith and jth lower vertices are connected.
See Figure 6.3. The elements (i, j) and (i, j) generate the walled Brauer algebra.

(2,3) ∈ B6,3

(3,4) ∈ B6,3

Figure 6.3: Examples of the elements (i, j) and the transpositions (i, j).

Next, from (2.1.13), the irreducible representations of Bn,m,θ are indexed by

{(λ,µ) ∣ λ ⊢m − t, µ ⊢ n −m − t, t = 0, . . . ,min{m,n −m} }, (6.80)

where λ and µ are partitions (see Proposition 2.4 of [24]). Henceforth, we will assume
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without loss of generality that m ≤ n/2 so that the standing condition on t is that t ∈
{0,1, . . . ,m}. The element

Jn,m = ∑
1≤i<j≤m
m<i<j<n

(i, j) − ∑
1≤i≤m<j≤n

(i, j). (6.81)

is central in Bn,m,θ, and, from (2.15) acts as the scalar ct(λ)+ ct(µ)−θt on the irreducible
representation (λ,µ), where λ ⊢m− t, µ ⊢ n−m− t and ct(⋅) denotes the contents defined
in (6.58) (a consequence of, for example, Lemma 4.1 of [23]).

The walled Brauer algebra, like the symmetric group algebra, has a Schur–Weyl du-
ality with the general linear group. To describe this, let us first recall some facts about
representations of the general linear group GL(θ). The irreducible (finite-dimensional)
rational representations of GL(θ) are indexed by their highest weights, which are θ-tuples
ν = (ν1 ≥ ⋯ ≥ νθ) ∈ Zθ. Such a tuple can be equivalently written as a pair ν = [λ,µ] of
partitions λ,µ with λ⊺1 + µ⊺1 ≤ θ, by letting νi = [λ,µ]i = λi − µθ−i+1 for i = 1, . . . , θ. Note
that at most one of the terms λi or µθ−i+1 is non-zero for each i, due to the constraint
λ⊺1 + µ

⊺
1 ≤ θ, thus ν uniquely determines λ and µ. See Figure 6.4 for an illustration.

Figure 6.4: The θ-tuple ν = (3,3,0,−1,−2) illustrated in the style of a Young diagram,
where negative entries are shown by boxes to the left of the main vertical line. Here θ = 5.
From the figure it is straightforward to see that ν = [λ,µ], where λ = (3,2) and µ = (2,1).

We write ψGL(θ)[λ,µ] for the corresponding irreducible GL(θ)-module. These rational rep-
resentations are closely related to the polynomial representations ψGL(θ)λ appearing in
(6.54); the polynomial representations are the rational representations with non-negative
θ-tuple ν. One can also relate the rational and polynomial representations by the Pieri-rule
(2.35) [93]. Indeed, writing det(⋅) for the determinant representation of GL(θ), which has
highest weight (1,1, . . . ,1) and character x1x2⋯xθ, we have that det⊗k ⊗ψGL(θ)ν = ψ

GL(θ)
ν+k

where k = (k, k, . . . , k). For k = µ1 we have that ψGL(θ)[λ,µ]+µ1
is a polynomial representation.

It follows from this and (6.63) that the character of ψGL(θ)[λ,µ] is

χ
GL(θ)
[λ,µ] [g] =

s[λ,µ]+µ1(x1, . . . , xθ)

(x1x2⋯xθ)µ1
=

det[x[λ,µ]j+θ−ji ]
θ

i,j=1

∏1≤i<j≤θ(xi − xj)
, (6.82)

where x1, . . . , xθ are the eigenvalues of g.
Now, let GL(θ) act on V = V ⊗n = V ⊗m ⊗ V ⊗(n−m) as m tensor powers of its defin-

ing representation, and n − m tensor powers of the dual of its defining representation
(multiplication by the inverse transpose) (3.15):

g(v1 ⊗⋯⊗ vm ⊗ vm+1 ⊗⋯⊗ vn) = g(v1)⊗⋯⊗ g(vm)⊗ g−⊺(vm+1)⊗⋯⊗ g−⊺(vn).
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Let Bn,m,θ act on V by sending (i, j) to the transposition operator Ti,j , and (i, j) to Qi,j
(3.12). Then from Theorem 3.0.5, as a representation of C[GL(θ)]⊗Bn,m,θ,

V =
m

⊕
t=0

⊕
λ⊢m−t
µ⊢n−m−t
λ⊺1+µ

⊺

1≤θ

ψ
GL(θ)
[λ,µ] ⊠ ψ

Bn,m,θ
(λ,µ) , (6.83)

with ψBn,m,θ
(λ,µ) irreducible Bn,m,θ-representations as above (as noted above, this is a straight-

forward extension of the work in [8]).

Notice now that our Hamiltonian (6.10) can be rewritten as

Hwb
n = −

1
n
((a + c) ∑

1≤i<j≤m
Ti,j + (b + c) ∑

m+1≤i<j≤n
Ti,j − cJn,m), (6.84)

where Jn,m is the central element given in (6.81). Now in an identical way to how we
developed equation (6.65), we have

TrV[e−βH
wb
n ] =

m

∑
t=0

∑
λ⊢m−t
µ⊢n−m−t
λ⊺1+µ

⊺

1≤θ

∑
π⊢m
τ⊢n−m

d
GL(θ)
[λ,µ] b

n,m,θ
(λ,µ),(π,τ)d

Sm
π dSn−mτ ⋅

⋅ exp (β[(c + a)ct(π) + (c + b)ct(τ) − c(ct(λ) + ct(µ) − rt)]),

(6.85)

where bn,m,θ(λ,µ),(π,τ) is the branching coefficient (2.40) from C[Sm × Sn−m] to Bn,m,θ, i.e.
the multiplicity of the C[Sm × Sn−m]-module ψSmπ ⊗ ψSn−mτ in ψ

Bn,m,θ
(λ,µ) when the latter is

regarded as a C[Sm × Sn−m]-module. These branching coefficients play the same role as
the Littlewood–Richardson coefficient did in the ab-model. Our next step is to determine
when bn,m,θ(λ,µ),(π,τ) is strictly positive.

Lemma 6.2.2. The branching coefficient bn,m,θ(λ,µ),(π,τ) is strictly positive if and only if there
exist θ×θ Hermitian matrices X,Y,Z with respective spectra π, τ, [λ,µ], such that X −Y =

Z.

Note that the parameter t is encoded the branching coefficient, in the sense that
bn,m,θ(λ,µ),(π,τ) > 0 implies that λ ⊢m−t = ∣π∣−t and µ ⊢ n−m−t = ∣τ ∣−t for some 0 ≤ t ≤ m̂. The
same conclusion can be seen to follow from the Hermitian matrices side of Lemma 6.2.2.
Indeed, if X,Y,Z are Hermitian with respective spectra π, τ, [λ,µ], such that X − Y = Z,
then X,Y are simultaneously diagonalisable, so for each i, [λ,µ]i = πj − τk, for some j, k.
Figure 6.5 then illustrates via an example how λ ⊢m− t = ∣π∣− t and µ ⊢ n−m− t = ∣τ ∣− t

for some 0 ≤ t ≤ m̂ follows.

The first step to prove Lemma 6.2.2 is another lemma, analogous to the well known
fact that the Littlewood–Richardson coefficients are both the branching coefficients from
C[Sm × Sn−m] to C[Sn], and the coefficients of the decomposition of the tensor product
of two irreducible polynomial representations of GL(θ).
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Figure 6.5: The spectra π = (3,0,1,2,4) and τ = (2,1,3,2,1), respectively of X and
Y (simultaneously diagonalised), displayed in the style of Young diagrams, either side
of the main vertical line. The spectrum of Z = X − Y is (1,−1,−2,0,3) (and so when
ordered becomes [λ,µ] = (3,1,0,−1,−2)). The yellow boxes are those eliminated in the
subtraction. Naturally there are the same number either side of the main vertical - this is
the parameter 0 ≤ t ≤ min ∣π∣, ∣τ ∣; in this example, t = 6.

Lemma 6.2.3. Let π, τ, λ, µ be partitions with at most θ parts, with λ⊺1 + µ
⊺
1 ≤ θ, and let

ψGL(θ)π ⊗ ψ
GL(θ)
[∅,τ] = ⊕

λ,µ
λ⊺1+µ

⊺

1≤θ

b̂n,m,θ[λ,µ],(π,τ)ψ
GL(θ)
[λ,µ] . (6.86)

Then b̂n,m,θ[λ,µ],(π,τ) = b
n,m,θ
(λ,µ),(π,τ).

Proof. This is proved using Schur–Weyl duality. We restrict (6.83) to C[GL(θ)]⊗C[Sm ×

Sn−m] to see that

V =
m

⊕
t=0

⊕
λ⊢m−t
µ⊢n−m−t
λ⊺1+µ

⊺

1≤θ

⊕
π⊢m
τ⊢n−m
π⊺1 ,τ

⊺

1 ≤θ

bn,m,θ(λ,µ),(π,τ)ψ
GL(θ)
[λ,µ] ⊗ (ψSmπ ⊗ ψSm−n

τ ). (6.87)

On the other hand, the Schur–Weyl duality between GL(θ)×GL(θ) and C[Sm ×Sn−m] is

V = ⊕
π⊢m
τ⊢n−m
π⊺1 ,τ

⊺

1 ≤θ

(ψGL(θ)π ⊗ ψ
GL(θ)
[∅,τ] )⊗ (ψSmπ ⊗ ψSm−n

τ ). (6.88)

Expanding ψGL(θ)π ⊗ ψ
GL(θ)
[∅,τ] as in (6.86) and equating coefficients from the two equations

above, gives the result. ∎

Proof of Lemma 6.2.2. We take equation (6.86) and modify it using the Pieri rule (2.35):

ψGL(θ)π ⊗ ψ
GL(θ)
[∅,τ]+τ1 = ⊕

λ,µ
λ⊺1+µ

⊺

1≤θ

b̂n,m,θ[λ,µ],(π,τ)ψ
GL(θ)
[λ,µ]+τ1 . (6.89)

Now the highest weights appearing on both sides have no negative parts, so by the previous
Lemma and the Littlewood–Richardson Rule,

bn,m,θ(λ,µ),(π,τ) = b̂
n,m,θ
[λ,µ],(π,τ) = c

[λ,µ]+τ1
π,[∅,τ]+τ1 . (6.90)

We know from Horn’s inequalities that c[λ,µ]+τ1
π,[∅,τ]+τ1 > 0 if and only if there exist θ × θ

Hermitian X̄, Ȳ , Z̄ with respective spectra π, [∅, τ]+τ1 and [λ,µ]+τ1 such that X̄+ Ȳ = Z̄.
Now it is straightforward to show that such matrices exist if and only if there exist θ × θ
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Hermitian X,Y,Z with respective spectra π, τ and [λ,µ] such that X − Y = Z. Indeed,
let X = X̄, Y = −Ȳ + τ1Id, and Z = Z̄ − τ1Id for the first implication, and similarly for the
reverse implication. ∎

We can now return to equation (6.85). Using similar workings as in Section 6.2.1, we
let m,n →∞ such that m/n → ρ ∈ (0,1/2] (recall that we assumed m ≤ n −m), π/n → x⃗,
τ/n→ y⃗ and [λ,µ]/n→ z⃗. Note that z⃗ can now have negative entries, and that

ct(λ) + ct(µ) − θt
n2 =

θ

∑
i=1

((
λi
n )

2
+ (−

µi
n )

2) + o(1) =
θ

∑
i=1

(
[λ,µ]i
n

)
2
+ o(1). (6.91)

We find that

Zwb
n (β) = ∑

π⊢m
τ⊢n−m

∑
λ,µ

(π/n,τ/n,[λ,µ]/n)∈Ω−

m/n

exp (n{G̃(πn ,
τ
n ,

[λ,µ]
n ) + o(1)}) (6.92)

where Ω−
ρ is the set of triples of θ-tuples x⃗, y⃗, z⃗ such that x1, . . . , xθ ≥ 0, y1, . . . , yθ ≥ 0,

∑
θ
i=1 xi = ρ = 1 −∑θi=1 yi, and there exist θ × θ Hermitian matrices X,Y,Z with respective

spectra x⃗, y⃗, z⃗ such that X − Y = Z, and where

G̃(x⃗, y⃗, z⃗) =
θ

∑
i=1

[
β
2 ((a + c)x

2
i + (b + c)y2

i − cz
2
i ) − xi logxi − yi log yi]. (6.93)

Notice that the sum over t appearing in (6.85) is hidden in (6.92), as it is implicit in the
definition of Ω−

ρ , due to our remark after the statement of Lemma 6.2.2. Therefore

Φwb
β (a, b, c) ∶= lim

n→∞
1
n

logZwb
n (β) = max(x⃗,y⃗,z⃗)∈Ω−

ρ
G̃(x⃗, y⃗, z⃗). (6.94)

As in (6.77) and (6.78), we can rewrite this in terms of the matrices X and Y :

ΦWB
β (a, b, c) = maxX,Y [S(X) + S(Y ) +

β
2 (a tr[X2

] + b tr[Y 2
] + 2c tr[XY ])], (6.95)

where now the maximum is only over θ×θ Hermitian matrices X,Y with respective spectra
x⃗, y⃗ as above. This is the same as (6.78), and this completes the proof of Theorem 6.1.2. ∎

6.2.3 Correlation functions: proof of Theorem 6.1.7

Let us prove the result for the ab-model first. We use (6.64) and the argument leading up
to (6.70) to get that, as n→∞,

⟨ exp{ 1
n∑

n
i=1Wi}⟩

ab
β,n

=

∑λ,µ,ν 1I{cλµ,ν > 0} sλ(e
w1 ,...,ewθ )

sλ(1,...,1) exp (n{F̃ (
µ
n ,

ν
n ,

λ
n) + o(1)})

∑λ,µ,ν 1I{cλµ,ν > 0} exp (n{F̃ (
µ
n ,

ν
n ,

λ
n) + o(1)})

.
(6.96)

Both sums on the right-hand-side are over λ ⊢ n, µ ⊢m and ν ⊢ n−m, all having at most
θ parts, and in the numerator we have multiplied and divided by d

GL(θ)
λ = sλ(1, . . . ,1)

in order that the o(1) terms in the exponents are exactly equal. Then the arguments of
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[14, Section 6] apply, meaning that

lim
n→∞

⟨ exp{ 1
n∑

n
i=1Wi}⟩

ab
β,n

= lim
λ/n→z⃗⋆

sλ(e
w1 , . . . , ewθ)

sλ(1, . . . ,1)
, (6.97)

where z⃗⋆ = (z⋆1 , . . . , z
⋆
θ ) lists the eigenvalues ofX+Y whereX,Y are the Hermitian matrices

which maximize the right-hand-side of (6.78). But we know from (6.79) that the maximum
is attained when X,Y are simultaneously diagonal, with ordering of eigenvalues decreasing
for both X and Y if c > 0, respectively decreasing for X and increasing for Y if c < 0.
Then clearly the eigenvalues of Z =X + Y are the sums of the eigenvalues of X and of Y ,
ordered appropriately, giving z⋆ as in (6.24).

Turning to the wb-model, very similarly to equation (6.96) we have

⟨ exp{ 1
n
(∑

m
i=1Wi −∑

n
i=m+1W

⊺
i )}⟩

wb
β,n

=

∑λ,µ,π,τ 1I{bn,m,θ[λ,µ],(π,τ) > 0}
χ
GL(θ)

[λ,µ]
(eW /n)

d
GL(θ)

[λ,µ]

exp (n{G̃(πn ,
τ
n ,

[λ,µ]
n ) + o(1)})

∑λ,µ,π,τ 1I{bn,m,θ[λ,µ],(π,τ) > 0} exp (n{G̃(πn ,
τ
n ,

[λ,µ]
n ) + o(1)}),

(6.98)

where once again the o(1) terms in the exponents are exactly equal and now

G̃(x⃗, y⃗, z⃗) =
θ

∑
i=1

[
β
2 ((a + c)x

2
i + (b + c)y2

i − cz
2
i ) − xi logxi − yi log yi]. (6.99)

The arguments of [14, Section 6] apply once again, meaning the limit equals

lim
[λ,µ]/n→z†

χ
GL(θ)
[λ,µ] (eW /n)

d
GL(θ)
[λ,µ]

, (6.100)

where this time, (x⃗⋆, y⃗⋆, z⃗†) maximises G̃(x⃗, y⃗, z⃗), with the conditions that xi, yi ≥ 0,
∑
θ
i=1 xi = ρ = 1 −∑θi=1 yi, and that there exist Hermitian matrices X,Y,Z with respective

spectra x, y, z with X − Y = Z. Following equation (6.95), we can rewrite G̃ as the
function of the matrices X and Y being maximised in (6.95). If the entries of x⃗ are
ordered decreasing, then as before the trace-inequality (6.79) implies that for c > 0 the
entries of y⃗ should also be ordered decreasing, while for c < 0 they should be ordered
decreasing. This gives the form of z⃗† stated in (6.24).

It remains only to show that

lim
[λ,µ]/n→z

χ
GL(θ)
[λ,µ] (eW /n)

d
GL(θ)
[λ,µ]

= R(w1, . . . ,wθ; z1, . . . , zθ). (6.101)

This is proved almost identically to Lemma 6.1 from [14]. Indeed, using (6.82) we get

χ
GL(θ)
[λ,µ] (eW /n)

d
GL(θ)
[λ,µ]

= det[ewi[λ,µ]j/n+wi(θ−j)/n]⋅

⋅ ∏
1≤i<j≤θ

j − i

(ewi/n − ewj/n)([λ,µ]i − [λ,µ]j + j − i)
,

(6.102)
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which, noting all the products (including in the determinant) are finite, tends to the
function R(w1, . . . ,wθ; z1, . . . , zθ) as [λ,µ]/n→ z. ∎

6.2.4 Magnetisation term: proof of Theorem 6.1.8

We start by giving expressions for the free energy with a magnetisation term, and then
afterwards we will take the appropriate derivatives. We will need the following notation:

• ∆+ will denote the set of vectors z⃗ = (z1, z2, . . . , zθ) that can arise as spectra of X + Y

where X and Y are positive semidefinite Hermitian matrices with tr[X] = 1−tr[Y ] = ρ,
ordered so that z1 ≥ ⋯ ≥ zθ. In fact, ∆+ consists of all z⃗ satisfying z1 ≥ ⋯ ≥ zθ ≥ 0 and
∑
θ
i=1 zi = 1. Given z⃗ ∈ ∆+, we write H+

ρ(z⃗) for the set of pairs (X,Y ) of such matrices
with X + Y having spectrum z⃗.

• ∆−
ρ will denote the set of vectors z⃗ = (z1, z2, . . . , zθ) that can arise as spectra of X − Y

where X and Y are as above, again ordered so that z1 ≥ ⋯ ≥ zθ. Now ∆−
ρ consists of

all z⃗ satisfying ρ ≥ z1 ≥ ⋯ ≥ zr ≥ −(1 − ρ) and ∑θi=1 zi = 2ρ − 1. Given z⃗ ∈ ∆−
ρ , we write

H−
ρ(z⃗) for the set of pairs (X,Y ) of such matrices with X − Y having spectrum z⃗.

Let Φ#(β,h) = Φ#
β,h(a, b, c, w⃗) be as in (6.30) and recall from (6.77) that

φ(X,Y ) = S(X) + S(Y ) +
β
2 tr[aX2

+ bY 2
+ 2cXY ].

Theorem 6.2.4. Let a, b, c ∈ R and w1 ≥ ⋯ ≥ wθ be fixed. If n,m → ∞ such that m/n →

ρ ∈ (0,1), then the free energy of the models (6.28) and (6.29) satisfy:

Φab
(β,h) = maxz⃗∈∆+

⎛

⎝
max(X,Y )∈H+

ρ(z⃗)φ(X,Y ) +

⎧⎪⎪
⎨
⎪⎪⎩

h∑θi=1 ziwi, if h > 0,
h∑θi=1 ziwθ+1−i, if h < 0,

⎞

⎠

Φwb
(β,h) = maxz⃗∈∆−

ρ

⎛

⎝
max(X,Y )∈H−

ρ(z⃗)φ(X,Y ) +

⎧⎪⎪
⎨
⎪⎪⎩

h∑θi=1 ziwi, if h > 0,
h∑θi=1 ziwθ+1−i, if h < 0,

⎞

⎠
.

(6.103)

Proof. Let us start with the ab case. Using the expression (6.64) and arguing similarly to
(6.70) we have

Zab
n,h = ∑

µ,ν,λ

sλ(e
hw1 , . . . , ehwθ)

⋅ cλµ,νdµdν exp (
β
n[(a − c)ct(µ) + (b − c)ct(ν) + c ⋅ ct(λ)])

= ∑
(µ/n,ν/n,λ/n)∈Ω+

m/n

sλ(e
hw1 , . . . , ehwθ) exp (n{F̃ (

µ
n ,

ν
n ,

λ
n) + o(1)}),

(6.104)

where F̃ is given in (6.71) and Ω+
ρ in (6.72). Recall that [40, Section 2.2]

sλ(e
hw1 , . . . , ehwθ) =∑

T

θ

∏
i=1
ehmiwi =∑

T
e∑

θ
i=1 hmiwi , (6.105)

where the sum is over all semistandard Young tableaux T with shape λ and entries in
{1, . . . , θ}, and where for each i, mi is the number of times the number i appears in T.
The tableau with each box in the ith row labelled i appears in the sum, and in fact, for
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h > 0, it maximises the sum in the exponent:

e∑
θ
i=1 hmiwi ≤ e∑

θ
i=1 hλiwi , (6.106)

for each valid T. Indeed, note that in a semistandard tableau, the entries of row i must be
at least i. Then, taking any semistandard T, shape λ, changing an entry j ≥ i in row i to
i changes the sum in the exponent by h(wi −wj), which is non-negative by our ordering
of w⃗ as w1 ≥ ⋯ ≥ wr. Hence for h > 0,

e∑
θ
i=1 hλiwi ≤ sλ(e

hw1 , . . . , ehwθ) ≤ dSnλ e∑
θ
i=1 hλiwi . (6.107)

Recalling that 1
n log dSnλ → 0 we get, for h > 0,

Zab
n,h = ∑

(µ/n,ν/n,λ/n)∈Ω+

m/n

exp (n{F̃ (
µ
n ,

ν
n ,

λ
n) + h∑

θ
i=1

λi
n wi + o(1)}), (6.108)

In the case h < 0, the sum in the exponent in (6.105) is maximised when mi = λθ+1−i for
each i; indeed, let h′ = −h, and w′

i = −wθ+1−i, and apply the same reasoning as above. So,
for h < 0, we have

e∑
θ
i=1 hλθ+1−iwi ≤ sλ(e

hw1 , . . . , ehwθ) ≤ dSnλ e∑
θ
i=1 hλθ+1−iwi , (6.109)

and so for h < 0,

Zab
n,h = ∑

(µ/n,ν/n,λ/n)∈Ω+

m/n

exp (n{F̃ (
µ
n ,

ν
n ,

λ
n) + h∑

θ
i=1

λi
n wθ+1−i + o(1)}). (6.110)

The result for the ab-case then follows by arguing as in (6.73) and [13, Lemma 3.4].

For the wb-case, a very similar argument as for (6.104) gives

Zwb
n (β,h) = ∑

(π/n,τ/n,[λ,µ]/n)∈Ω−

m/n

χ
GL(θ)
[λ,µ] (ehw1 , . . . , ehwθ) exp (n{G̃(

µ
n ,

ν
n ,

λ
n) + o(1)}),

(6.111)
where G̃ is given in (6.93), Ω−

ρ is defined just above (6.93), and χGL(θ)[λ,µ] is given in (6.82).
In particular, from (6.82), we see that upper and lower bounds from (6.107) and (6.109)
extend to this case. The result for the wb-case then follows by arguing as in (6.95) and
[13, Lemma 3.4] again. ∎

Proof of Theorem 6.1.8. The proof closely follows that of Theorem 4.1 from [13]. We start
from the expressions (6.103) where, for ease of notation, we drop the superscript. We give
details only in the ab-case with h > 0 as the other cases are very similar.

Let Fmax = Φ(β,0) = maxz⃗∈∆+(max(X,Y )∈H+
ρ(z⃗)φ(X,Y )) and let

K = {z⃗ ∈ ∆+
∶ max(X,Y )∈H+

ρ(z⃗)φ(X,Y ) = Fmax} (6.112)
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denote the set of maximisers. Clearly,

Φ(β,h) −Φ(β,0)
h

= maxz⃗∈∆+[
θ

∑
i=1
ziwi +

max(X,Y )∈H+
ρ(z⃗)φ(X,Y ) − Fmax

h
]

≥ maxz⃗∈K
θ

∑
i=1
ziwi.

(6.113)

We want to prove that the left-hand side of (6.113) tends to the right-hand side as h→ 0.
For a contradiction, assume that there is a sequence hn → 0 such that the corresponding
limit exists and is strictly larger than the right-hand side. For each hn, pick an element
z⃗(hn) ∈ ∆+ that achieves the first maximum in (6.113). Since ∆+ is compact, we can
assume after passing to a subsequence if necessary that z⃗(hn) → z⃗⋆ as hn → 0. We claim
that z⃗⋆ ∈ K. Otherwise, max(X,Y )∈H+

ρ(z⃗⋆)φ(X,Y ) < Fmax, which would mean that the
left-hand side of (6.113) tends to −∞ as h = hn → 0, contradicting the lower bound on the
right. It follows that

Φ(β,hn) −Φ(β,0)
hn

=
θ

∑
i=1
zi(hn)wi +

max(X,Y )∈H+
ρ(z⃗(hn))φ(X,Y ) − Fmax

hn

≤
θ

∑
i=1
zi(hn)wi →

θ

∑
i=1
z⋆i wi ≤ maxz⃗∈K

θ

∑
i=1
z⋆i wi,

(6.114)

as required.
In the wb-case, we follow the same reasoning but with ∆+ replaced by ∆−

ρ , with H+
ρ

replaced by H−
ρ , and the maxima in (6.113) replaced by minima (as well as wi ↔ wθ+1−i).

It remains to show that the zi may be expressed as in the statement of the Theorem.
Indeed, we know from (6.79) that φ(X,Y ) is maximised when X and Y are simultaneously
diagonal, with entries x1, . . . , xθ and y1, . . . , yθ, respectively, ordered as follows:

• if c > 0, if x1 ≥ ⋯ ≥ xθ ≥ 0 then y1 ≥ ⋯ ≥ yθ ≥ 0;

• if c < 0, if x1 ≥ ⋯ ≥ xθ ≥ 0 then 0 ≤ y1 ≤ ⋯ ≤ yθ.

This gives the result. ∎

6.3 The phase-transition

In this section we prove Propositions 6.1.3, 6.1.4, 6.1.5 and 6.1.6. Let us start by recalling
the basic quantities of interest: we wish to maximize the function

F (ω) = F (x⃗; y⃗) = ∑θi=1 f(xi, yi), (6.115)

over the domain

Ω = {ω = (x⃗; y⃗) ∶ x1, . . . , xθ, y1, . . . , yθ ≥ 0, ∑θi=1 xi = 1 −∑θi=1 yi = ρ}. (6.116)

Here
f(x, y) = −x logx − y log y + β

2 (ax
2
+ by2

+ 2cxy), (6.117)
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and we write Q(x, y) = 1
2(ax

2 + by2 +2cxy) for the quadratic form appearing in f(x, y). In
this section we will write ρ′ = 1 − ρ to lighten the notation.

We are particularly interested in whether the maximum of F is attained at the point

ω0 = (
ρ
θ ,

ρ
θ , . . . ,

ρ
θ ; ρ

′

θ ,
ρ′

θ , . . . ,
ρ′

θ
), (6.118)

or at some other point in Ω. We defined βc to be the supremume of those values of β for
which F is maximised at ω0.

6.3.1 Existence of a phase transition: proof of Proposition 6.1.3

We start with two elementary lemmas about quadratic forms.

Lemma 6.3.1. If Q is a quadratic form of two variables, then

θ
θ

∑
j=1

Q(xj , yj) = Q(x1 + ⋅ ⋅ ⋅ + xθ, y1 + ⋅ ⋅ ⋅ + yθ) + ∑
1≤i<j≤r

Q(xj − xi, yj − yi). (6.119)

Proof. When Q(x, y) = xy we need to prove that

θ
θ

∑
j=1

xjyj = (x1 + ⋅ ⋅ ⋅ + xθ)(y1 + ⋅ ⋅ ⋅ + yθ) + ∑
1≤i<j≤θ

(xj − xi)(yj − yi). (6.120)

This is easy to see by comparing the coefficient of each monomial on the two sides. Spe-
cializing xj = yj proves the result for Q(x, y) = x2 and Q(x, y) = y2, and the general case
then follows by linearity. ∎

Lemma 6.3.2. Assume that Q(x, y) = 1
2(ax

2+by2+2cxy) is not negative semidefinite and
that β, A, B > 0. Then, the form

βQ(x, y) − 1
2(Ax

2
+By2) (6.121)

is negative semidefinite if and only if β ≤ β0, and negative definite if and only if β < β0,
where β0 is the smallest positive solution to the equation

(βa −A)(βb −B) = β2c2 (6.122)

or, more explicitly,

β0 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

aB + bA −
√

(aB − bA)2 + 4c2AB

2(ab − c2)
, ab ≠ c2,

AB

aB + bA
, ab = c2.

(6.123)

Proof. By assumption, the first term in (6.121) can assume positive values, and the second
term is always non-positive. It follows that the range of β for which (6.121) is negative
semidefinite is of the form β ≤ β0 and that it is negative definite if and only if β < β0. The
precise conditions for (6.121) to be negative semidefinite are

(βa −A)(βb −B) ≥ β2c2, βa ≤ A, βb ≤ B. (6.124)
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By continuity, β0 solves the equation (6.122). If ab = c2, this is a linear equation with a
unique solution. Otherwise, it has two solutions

β± =
aB + bA ±

√
(aB − bA)2 + 4c2AB

2(ab − c2)
, (6.125)

which satisfy (ab − c2)β+β− = AB > 0. If ab > c2, both solutions are positive and β0 equals
the smallest solution β−. If ab < c2 the solutions have opposite sign. In this case β0 is the
largest solution, which is again β−. ∎

We are now ready to prove our result on the existence of a critical point. Recall that
we want to prove that βc exists (is positive and finite) if and only if Q is not negative
semidefinite, where βc is the supremum of the β for which ω0 is a maximiser of F .

Proof of Proposition 6.1.3. We can write

F (ω) − F (ω0) = βE(ω) +H(ω), (6.126)

where
H(x⃗; y⃗) =

θ

∑
j=1

(−xj logxj − yj log yj) + ρ log ρ
θ + ρ

′ log ρ′

θ , (6.127)

and
E(x⃗; y⃗) =

θ

∑
j=1

Q(xj , yj) − rQ(
ρ
θ ,

ρ′

θ
). (6.128)

Then, F is maximized at ω0 if and only if βE(ω) +H(ω) ≤ 0 on Ω.
On Ω, we can write

1
θH(x⃗; y⃗) = −h(

x1 + ⋅ ⋅ ⋅ + xθ
θ

) +
h(x1) + ⋅ ⋅ ⋅ + h(xθ)

θ

− h(
y1 + ⋅ ⋅ ⋅ + yθ

θ
) +

h(y1) + ⋅ ⋅ ⋅ + h(yθ)

θ
,

where h(x) = −x logx. Since h is strictly concave, H(ω) ≤ 0 with equality only at the point
ω0. Moreover, by Lemma 6.3.1,

E(x⃗; y⃗) = 1
θ

∑
1≤i<j≤θ

Q(xj − xi, yj − yi). (6.129)

Thus, if Q is negative semidefinite, we have E(ω) ≤ 0 and consequently ω0 is the unique
maximum point of F .

Assume now that Q is not negative semidefinite. We claim that E assumes strictly
positive values in Ω. To see this, it suffices to consider the case when x2 = ⋅ ⋅ ⋅ = xθ,
y2 = ⋅ ⋅ ⋅ = yθ. Then

E(x⃗; y⃗) = θ − 1
θ

Q(ξ, η), (6.130)

where ξ = x2 −x1 and η = y2 − y1. Here (ξ, η) can take any value in [− ρ, ρ
θ−1]× [− ρ′, ρ′

θ−1].
By assumption, Q assumes positive values in parts of this rectangle. Then it is clear
that E takes positive values, hence that H(ω)+ βE(ω) assumes positive values for β large
enough, and that the set of β > 0 for which this is true is an interval β > βc. To see that
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ω0 is the unique maximiser for β < βc, take ω ∈ Ω ∖ {ω0}. Then either E(ω) > 0, in which
case H(ω) + βE(ω) < H(ω) + βcE(ω) ≤ 0 = H(ω0) + βE(ω0), or E(ω) ≤ 0, in which case
H(ω) + βE(ω) ≤H(ω) < 0 =H(ω0) + βE(ω0).

It remains to show that βc ≠ 0, that is, that F assumes its maximum value at ω0 for β
close to zero. We will show that this is in fact true if we maximize F over the larger set

U = {(x⃗; y⃗) ∶ 0 ≤ xj ≤ ρ, 0 ≤ yj ≤ ρ′, j = 1, . . . , θ}. (6.131)

To do this we will show that the Hessian H(F ) is negative definite in U for β close to 0,
meaning that F is concave in U for such β and that ω0 is a global maximum in U . The
Hessian H(F ) is a direct sum of the Hessians

H(f) =
⎛

⎝

fxx fxy

fxy fyy

⎞

⎠
=
⎛

⎝

βa − 1
x βc

βc βb − 1
y

⎞

⎠
, (6.132)

which is negative definite if and only if

(βa − 1
x
)(βb − 1

y
) > β2c2, 1

x > βa,
1
y > βb. (6.133)

By monotonicity, when x ≤ ρ and y ≤ ρ′ the inequalities (6.133) are implied by

(βa − 1
ρ
)(βb − 1

ρ′
) > β2c2, 1

ρ > βa,
1
ρ′ > βb. (6.134)

But (6.134) holds for β = 0, hence by continuity also for small β, as required. ∎

From the proof above we note that β ≤ βc if and only if H(ω)+βE(ω) ≤ 0 for all ω ∈ Ω,
and secondly that we have the expression

βc = inf
ω∈Ω+

( −
H(ω)

E(ω)
), where Ω+

= {ω ∈ Ω ∶ E(ω) > 0}. (6.135)

6.3.2 Formulas for βc: proofs of Propositions 6.1.4 and 6.1.5

We now turn to the proofs of our formulas for βc, Propositions 6.1.4 for the case θ = 2 and
6.1.5 for the case θ ≥ 3, c ≥ 0 and (a − c)ρ = (b − c)ρ′ =∶ t (6.14).

Our strategy is to obtain general lower and upper bounds on βc(θ), given in Propo-
sitions 6.3.3 and 6.3.4 respectively, which are tight in the two cases that we consider.
Both bounds are given in terms of the critical temperature βh

c (θ) of the homogeneous case
a = b = c = 1; here Q(x, y) = 1

2(x + y)
2 is not negative semidefinite and (6.14) holds with

t = 0. This gives the result [13, Theorem 4.2]

βh
c (θ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2, θ = 2,
2(θ − 1) log(θ − 1)

θ − 2
, θ ≥ 3,

(6.136)

where the superscript h is for ‘homogeneous’ and is reserved for the case a = b = c = 1.
For the case θ = 2, it is useful to note that the formula (6.18) for βc(2) is the smallest

positive solution to (6.122) with A = 2/ρ and B = 2/ρ′. To get a better understanding of
Proposition 6.1.5, i.e. the case θ ≥ 3, recall our condition (6.14) which says that (a− c)ρ =
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(b − c)ρ′ =∶ t. This condition implies the explicit diagonalization

Q(x, y) =
tρρ′

2
(
x

ρ
−
y

ρ′
)

2
+
c + t

2
(x + y)2. (6.137)

That Q is not negative semidefinite means that at least one of t and c + t are positive,
or equivalently that either c ≥ 0 and c + t > 0 or c < 0 and t > 0. This shows that the
expression for βc(θ) in Proposition 6.1.5 is always positive.

Let us now obtain the lower bound for βc(θ). We deduce from (6.135) and [13, Theorem
4.2] with ρ = 1 that −H(x⃗; 0⃗) ≥ βh

c (θ)E(x⃗; 0⃗). This inequality takes the form

θ

∑
j=1

xj logxj − log 1
θ ≥

βh
c (θ)
2θ ∑

1≤i<j≤θ
(xj − xi)

2, where ∑θj=1 xj = 1. (6.138)

Replacing each xj by xj/ρ gives

θ

∑
j=1

xj logxj − ρ log ρ
θ ≥

βh
c (θ)
2ρθ ∑

1≤i<j≤θ
(xj − xi)

2, where ∑θj=1 xj = ρ. (6.139)

As was observed in [13], equality in (6.139) holds both at the point x1 = ⋅ ⋅ ⋅ = xθ = ρ/θ and
at (6.20a). (These are the same point if θ = 2.)

Proposition 6.3.3. Assume that Q is not negative semidefinite, so that βc exists. Then,

βc(θ) ≥
1
2β

h
c (θ)βc(2), (6.140)

where βh
c (θ) denotes the expression (6.136) and βc(2) the expression (6.18).

Proof. Using the estimate (6.139) in (6.127) gives

−H(ω) ≥
βh

c (θ)

2θ ∑
1≤i<j≤θ

(
(xi − xj)

2

ρ
+

(yi − yj)
2

ρ′
) . (6.141)

It follows that
H(ω) + βE(ω) ≤

1
θ

∑
1≤i<j≤θ

Q̃(xj − xi, yj − yi), (6.142)

where
Q̃(x, y) = βQ(x, y) −

βh
c (θ)
2 (x

2

ρ +
y2

ρ′
). (6.143)

Recall that βc(2) is the smallest positive solution to (6.122) with A = 2/ρ and B = 2/ρ′.
Thus by Lemma 6.3.2, if β ≤ 1

2β
h
c (θ)βc(2), then Q̃ is negative semidefinite and H(ω) +

βE(ω) ≤ 0 on Ω. This gives the desired bound on βc. ∎

Let us now move to upper bounds for βc(θ). We need to find a value of β such that
F (ω) > F (ω0) for some points ω ∈ Ω. We want to find upper bounds that in some case
equal the lower bound in Proposition 6.3.3. We can only expect this to work if we used the
inequality (6.139) in cases when it holds with equality. By the results of [13] mentioned
above, it is natural to take ω either close to ω0, or ω1 as in (6.20). This leads to the
following two upper bounds.
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Proposition 6.3.4. Assume that Q is not negative semidefinite, so that βc exists. Then,

βc(θ) ≤
1
2θβc(2). (6.144)

If, in addition, Q(ρ, ρ′) > 0 and θ ≥ 3, then

βc(θ) ≤
βh

c (θ)

2Q(ρ, ρ′)
. (6.145)

In fact, (6.145) holds also when θ = 2, but in that case it is weaker than (6.144) and
will not be needed.

Proof. We first consider the behaviour of F near ω0. More precisely, consider the points

ωt,u = ω0 + (t,−t,0, . . . ,0;u,−u,0, . . . ,0), (6.146)

which belong to Ω for t, u close to 0. We have the Taylor expansion

F (ωt,u) − F (ω0) = f(
ρ
θ + t,

ρ′

θ + u) + f(
ρ
θ − t,

ρ′

θ − u) − 2f(ρθ ,
ρ′

θ
)

= (t2fxx + u
2fyy + 2tufxy)(ρθ ,

ρ′

θ
) +O((t2 + u2

)
3/2

).

By (6.132), the quadratic term is

2βQ(t, u) − θ( t
2

ρ +
u2

ρ′
). (6.147)

By Lemma 6.3.2, if β > θβc(2)/2, this form is not negative semidefinite. It follows that ω0

is not a local maximum of F . This gives the first result.
Next, we consider the point ω1 from (6.20) and assume θ ≥ 3. By a straightforward

computation,
H(ω1) = −

θ−2
θ log(θ − 1) (6.148)

and, by (6.130),
E(ω1) =

θ−1
θ Q(

ρ(θ−2)
θ−1 ,

ρ′(θ−2)
θ−1 ) =

(θ−2)2

θ(θ−1) Q(ρ, ρ′). (6.149)

The second upper bound now follows from (6.135). ∎

We can now put our upper and lower bounds together to prove Propositions 6.1.4 and
6.1.5.

Proof of Proposition 6.1.4. When θ = 2, (6.140) and (6.144) reduce to βc(2) ≤ βc ≤ βc(2)
(where βc is the critical point and βc(2) the explicit expression (6.18)). This proves
the formula for βc. For the statement about uniqueness of the maximiser, note that
if β = βc(2) = 1

2β
h
c (2)βc(2) and ω = (x⃗; y⃗) is a maximiser, then the left-hand-side of

(6.142) equals zero. Then also the right-hand-side of (6.142) equals zero, since Q̃ ≤ 0 for
β ≤ 1

2β
h
c (2)βc(2) by the proof of Proposition 6.3.3. Hence (6.141) holds with equality and

therefore (6.139) holds with equality, as does the corresponding statement for y⃗. But it
follows from the proof of Theorem 4.2 in [13] that (for θ = 2) equality in (6.139) holds only
at the point ω0. ∎
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Proof of Proposition 6.1.5. Note that the lower bound in (6.140) and the upper bound
in (6.145) are equal if βc(2) = Q(ρ, ρ′)−1. We need to check that this is implied by
(a − c)ρ = (b − c)ρ′, which is (6.14) (in fact, it also implies (6.14)). Assuming (6.14), we
can parametrize

a = c + t
ρ , b = c + t

ρ′ . (6.150)

It is then straight-forward to check that

(ρa − ρ′b)2
+ 4ρρ′c2

= c2, and ab − c2
=
t(c+t)
ρρ′ , (6.151)

which gives

βc(2) =
2t + c −

√
c2

t(c + t)
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2
c + t

, c ≥ 0,

2
t
, c < 0.

(6.152)

By (6.137),
Q(ρ, ρ′) =

c + t

2
, (6.153)

which shows the expression βc(θ) = β
h
c (θ)/2Q(ρ, ρ′) when θ ≥ 3 (and c ≥ 0).

To see that the point ω1 in (6.20) gives another maximiser at β = βc, take β = βc(θ) =

βh
c (θ)/2Q(ρ, ρ′) to see from (6.148) and (6.149) that H(ω1)+βE(ω1) = 0 which is also the

maximum value of H(ω) + βE(ω). To see that ω1 is the only other maximiser we argue
as at the end of the proof of Proposition 6.1.4. Namely, for β = βc(θ) =

1
2β

h
c (θ)βc(2), we

have that (6.139) holds with equality, as does the corresponding statement for y⃗. From
[13], equality in (6.139) holds only at the points ω0 and ω1. ∎

We can now complete the final proof of this section, that of Proposition 6.1.6, that the
maximiser is unique for β > βc close to βc under the conditions in Proposition 6.1.5, that
is, θ ≥ 3, c ≥ 0, (a − c)ρ − (b − c)ρ′ (6.14) and Q not negative semidefinite. For this we use
that there are two maximum points at βc and that they are local maxima.

Proof of Proposition 6.1.6. We first show that F is strictly concave in neighbourhoods of
ω0 and ω1 in Ω. More generally, consider F (x⃗ + t⃗; y⃗ + u⃗), where (x⃗; y⃗) ∈ Ω is a point with
x2 = ⋅ ⋅ ⋅ = xθ and y2 = ⋅ ⋅ ⋅ = yθ and (t⃗; u⃗) a small perturbation with

θ

∑
j=1

tj =
θ

∑
j=1

uj = 0. (6.154)

By (6.132), the quadratic term in the Taylor expansion of F is

Q1(t1, u1) +
θ

∑
j=2

Q2(tj , uj), (6.155)

where
Qk(t, u) = βQ(t, u) −

t2

2xk
−
u2

2yk
.

At the point ω0, we have

Q1(t, u) = Q2(t, u) = βQ(t, u) − (
θt2

2ρ
+
θu2

2ρ′
).
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It follows from Lemma 6.3.2 that this is negative definite if β < β0 = θβc(2)/2. By conti-
nuity, it follows that F is strictly concave near ω0. Since ω0 is a stationary point it must
then be a local maximum, that is, F (x⃗; y⃗) ≤ F (ω0) = 0 for (x⃗; y⃗) near ω0 and β < β0. Using
that

βc =
(θ − 1) log(θ − 1)

θ − 2
βc(2),

it is easy to check that βc < β0, so this applies in particular to β near βc.

The point ω1 cannot be handled as easily sinceQ1 is then not negative definite. Instead,
we use Lemma 6.3.1 and (6.154) to write

(θ − 1)
θ

∑
j=2

Q2(tj , uj) = Q2(t1, u1) + ∑
2≤i<j≤r

Q2(ti − tj , ui − uj).

It follows that (6.155) equals

Q1(t1, u1) +
1

θ − 1
Q2(t1, u1) +

1
θ − 1 ∑

2≤i<j≤θ
Q2(ti − tj , ui − uj).

We compute

Q1(t, u) +
1

θ − 1
Q2(t, u) =

θ

θ − 1
(βQ(t, u) − (

θt2

2ρ
+
θu2

2ρ′
)) .

As before, this is negative definite for β < β0. Moreover,

Q2(t, u) = βQ(t, u) −
θ(θ − 1)t2

2ρ
−
θ(θ − 1)u2

2ρ′

is negative definite for β < (θ − 1)β0, which is a weaker condition. We conclude that F is
strictly concave for β < β0 and (x⃗; y⃗) near ω1. We also note that

F (ω1) =H(ω1) + βcE(ω1) + (β − βc)E(ω1),

where the sum of the first two terms vanish and the last term is computed by (6.149) and
(6.153). This gives

F (ω1) = (β − βc)
(θ − 2)2(c + t)

2θ(θ − 1)
,

which is clearly positive for β > βc.

For each β > βc, let ω(β) be a maximiser of F in Ω. Permute the coordinates so that
(6.9) holds. We claim that then ω(β)→ ω1 as β ↘ βc. Otherwise, there exists a sequence
ω(βn), βn ↘ βc, that avoids a neighbourhood of ω1. Since Ω is compact we may assume
that this sequence converges. It must then converge to a maximiser of F for β = βc that
satisfies (6.9). There are only two such points, ω0 and ω1, by Proposition 6.1.5. However,
we have seen that for βc < β < β0 we have F (x⃗; y⃗) ≤ 0 for (x⃗; y⃗) near ω0 whereas F (ω1) > 0.
Thus, a sequence of global maximisers cannot converge to ω0. This is a contradiction, and
we conclude that ω(β) → ω1. These points must then enter a region where F is strictly
concave and hence maximisers are unique. This completes the proof. ∎
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6.4 Multi-block models

Here we prove Theorem 6.1.9. The proof follows a similar pattern to that of Theorem
6.1.1. We start by writing

Hmb
n = −nT(∑

γ∈Γ
[

p

∑
k=1

aγkα
γ
Ak

+ cγαγn]) = −n∑
γ∈Γ

[

p

∑
k=1

aγkT (αγAk) + c
γT (αγn)]), (6.156)

where T is the representation of C[Sn] on V given in (6.37), and

αγAk =
1

∣CγAk ∣
∑

σ∈CγAk

σ ∈ C[SAk], αγn =
1

∣Cγn ∣
∑
σ∈Cγn

σ ∈ C[Sn]. (6.157)

As in (6.54) we have a decomposition

V ≅ ⊕
λ⊢n,`(λ)≤θ

d
GL(θ)
λ ψSnλ . (6.158)

Here we consider V as an C[Sn]-module only (we do not need the GL(θ)-part since we
consider only the free energy and not correlations). As a C[Sm1 × ⋯ × Smp]-module, we
have the decomposition

ψSnλ ≅ ⊕
µ(1),...,µ(p)

cλµ(1),...,µ(p)ψ
Sm1
µ(1) ⊗⋯⊗ ψ

Smp
µ(p), (6.159)

which generalizes (6.60). Here µ(k) ⊢mk for each k and the multiplicities cλµ(1),...,µ(p) are
analogs of the Littlewood–Richardson coefficients cλµ,ν and have many similar properties. In
particular, a full analog of Horn’s inequalities holds: cλµ(1),...,µ(p) > 0 if and only if there are
Hermitian matricesM(1), . . . ,M(p) with spectra µ(1), . . . , µ(p) such thatM(1)+⋯+M(p)

has spectrum λ (see Theorem 17 of [41]).
Let us next see how T (αγAk) and T (αγn) act on these subspaces ψSmk

µ(k). For m ≤ n and
C = Cγm the conjugacy class of γ in Sm, consider α = 1

∣C∣ ∑σ∈C σ ∈ C[Sm]. For µ ⊢m, since
α is central in C[Sm], it acts on the irreducible ψSmµ as a scalar, and in fact we have

α∣
ψSmµ

=
χSmµ (α)

dSmµ
Id

ψSmµ
=
χSmµ (γ)

dSmµ
Id

ψSmµ
, (6.160)

where χSmµ (γ) is the character of ψSmµ evaluated at any permutation of cycle-type γ. This
leads to the following expression analogous to (6.65):

Zmb
n = ∑

λ⊢n,`(λ)≤θ
d
GL(θ)
λ ∑

µ(1),...,µ(p)
cλµ(1),...,µ(p)d

Sm1
µ(1)⋯d

Sm1
µ(p)

⋅ exp (nβ∑
γ∈Γ

[

p

∑
k=1

aγk

χ
Smk
µ(k)(γ)

d
Smk
µ(k)

+ cγ
χSnλ (γ)

dSnλ
]).

(6.161)

As before, the relevant scaling for the limit limn→∞
1
n logZmb

n is given by letting λ/n→ z⃗

and µ(k)/n→ x⃗(k) for all k. Also as before, dGL(θ)λ is negligible on the relevant scale, and
the dSmk

µ(k) obey the asymptotics of (6.68). Below, we prove that cλµ(1),...,µ(p) ≤ (n + 1)pθ2

which is also too small to contribute to the limit.
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Figure 6.6: Left: A skew tableau with shape ν formed from the three partitions µ(1) =
(2,1), µ(2) = (2) and µ(3) = (1,1,1). Right: its rectification.

What remains is to identify the limits of the expressions of the form χSmµ (γ)
dSmµ

. The
latter limits are well-known in the asymptotic representation theory of the symmetric
group: Thoma’s Theorem and the Vershik–Kerov Theorem (see e.g. [18, Corollary 4.2 and
Theorem 6.16]) imply that if µ/n→ x⃗ = (x1, . . . , xθ), then

χSmµ (γ)

dSmµ
→ pγ(x1, . . . , xθ), (6.162)

where pγ(⋅) is the power-sum symmetric polynomial given in (6.45). Writing x⃗(k) =

limn→∞ µ(k)/n and z⃗ = limn→∞ λ/n, we conclude that the contributing x⃗(k) and z⃗ are
eigenvalues of Hermitian matrices X1, . . . ,Xp and Z = X1 + ⋯ +Xp, respectively, where
Tr[Xk] = ρk. Re-writing the free energy in terms of these matrices, as in (6.78) and (6.95),
we obtain the claim (6.41).

It remains to verify the bound cλµ(1),...,µ(p) ≤ (n+ 1)pθ2 . We use the following combina-
torial description of cλµ1,...,µp which is mentioned just after Proposition 13 of [41]. Form a
skew shape ν by stacking µ(1), . . . , µ(p) from bottom left to top right, such that the lower
left corner of µ(k) just touches the upper right corner of µ(k − 1) as in Figure 6.6. Fix
any semistandard tableau τλ of shape λ, to be concrete let us say that the first row of τλ
consists of λ1 1’s, the second row of λ2 2’s etc. Then cλµ(1),...,µ(p) is the number of semis-
tandard tableaux σν of skew shape ν whose rectification equals τλ. For a full description
of the rectification, see [40, Section 1.2], but in brief terms the rectification is obtained by
‘sliding’ the numbered boxes of σν until a non-skew shape is obtained. To see the claimed
bound, note that in order to obtain the tableau τλ, the number of boxes labelled 1 in ν
must equal the number of boxes labelled 1 in λ, and similarly for labels 2, 3, etc. Thus,
for each row of ν we have at most

(λ1 + 1)(λ2 + 1)⋯(λθ + 1) ≤ (n + 1)θ

choices of entries (from 0 to λ1 1’s, from 0 to λ2 2’s etc). Since ν has at most pθ rows, the
total number of choices is ≤ [(n + 1)θ]pθ, as claimed. ∎

6.5 Form of the maximiser of F for c > 0

In this section we prove that for c > 0, the maximiser of F (6.6) is of the form (6.163).
We assume thoughout this section that x⃗ is ordered as in (6.9), that is x1 ≥ x2 ≥ ⋯ ≥ xθ.
Recall from the discussion after (6.9) that, for c > 0, F is maximised when the orders of x⃗
and y⃗ match, that is when also y1 ≥ ⋯ ≥ yθ. We will adapt the arguments in [13] and in
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the appendix of [14] to show the following.

Proposition 6.5.1. For c > 0, the maximiser (x⃗⋆; y⃗⋆) of F in the set Ω (6.15) is of the
form

x⋆1 ≥ x
⋆
2 = ⋯ = x⋆θ ,

y⋆1 ≥ y⋆2 = ⋯ = y⋆θ .
(6.163)

Moreover for the special case a = b = 0, c > 0, ρ = 1/2, and β ≠ βc we have that the
maximiser is unique, and x⋆i = y⋆i for all i = 1, . . . , θ.

The proof of this proposition is divided into several steps. We first prove that a
maximum point (x⃗; y⃗) only has positive coordinates, and that xj = xk if and only if yj = yk
(this holds also for c < 0). Then we prove that, when c > 0, the entries xi (and therefore
yi) can take at most two distinct values. This reduces the number of variables we need to
consider, leading to (6.163) and the uniquenes statement via direct calculations.

Lemma 6.5.2. For any θ ≥ 2 and a, b, c ∈ R, if (x⃗; y⃗) is a maximum point of F in Ω, then

1. all xj and yj are strictly positive,

2. xj = xk if and only if yj = yk.

Proof. In this proof we write ej for the unit vector with a 1 in the xj coordinate and
remaning entries = 0. For the first part, suppose that ω = (x⃗; y⃗) ∈ Ω is a maximum
point such that xj = 0 for some j, and that j is the smallest index with this property.
Then, ω(t) = ω + t(ej − ej−1) ∈ Ω for small enough t > 0. By a direct computation,
F (ω(t))−F (ω) = −t log t+O(t) as t→ 0. It follows that F (ω(t)) > F (ω) for small t, which
contradicts ω being a maximum point. The same argument works for the variables yj .

For the second part, suppose that xj = xk and yj ≠ yk. If necessary, redefine j and k so
that {l ∶ xl = xk} = {j, j+1, . . . , k}. We still have yj ≠ yk. Then ω(t) ∶= (x⃗; y⃗)+t(ej−ek) ∈ Ω
for small enough t > 0. (Here we use the first part of the lemma in the case k = θ.) We
have that ∂

∂tF (ω(t))∣t=0 = c(yj − yk) > 0. This contradicts ω being a maximum point. The
same argument proves the reverse implication. ∎

Lemma 6.5.2 shows that at a maximum point there is a composition θ = k1 + ⋅ ⋅ ⋅ + km

so that

(x⋆1 , . . . , x
⋆
θ) = (ξ1, . . . , ξ1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, . . . , ξm, . . . , ξm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

km

), (6.164a)

(y⋆1 , . . . , y
⋆
θ ) = (η1, . . . , η1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, . . . , ηm, . . . , ηm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

km

), (6.164b)

where ξj ≠ ξk and ηj ≠ ηk for j ≠ k. This leads to the problem of maximizing

F̄ (ξ;η) = k1f(ξ1, η1) + ⋅ ⋅ ⋅ + kmf(ξm, ηm) (6.165)

over the set Ω(m) defined by

ξ1 > ξ2 > ⋅ ⋅ ⋅ > ξm > 0, k1ξ1 + ⋅ ⋅ ⋅ + kmξm = ρ, (6.166a)
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η1 > η2 > ⋅ ⋅ ⋅ > ηm > 0, k1η1 + ⋅ ⋅ ⋅ + kmηm = 1 − ρ. (6.166b)

For m ≥ 1, the set Ω(m) is open, so we may find local extreme points by using Lagrange
multipliers. At any such point we have

∇F̄ (ξ;η) = λ∇(k1ξ1 + ⋅ ⋅ ⋅ + kmξm) + µ∇(k1η1 + ⋅ ⋅ ⋅ + kmηm), (6.167)

for some λ,µ ∈ R. Equivalently

∂f
∂x(ξi, ηi) = λ,

∂f
∂y (ξi, ηi) = µ, 1 ≤ i ≤m. (6.168)

The system (6.168) can in turn be rewritten in the form

ηi = φλ(ξi), ξi = ψµ(ηi), 1 ≤ i ≤m, (6.169)

where
φλ(x) =

λ + 1 + log(x) − ax
c

, ψµ(y) =
µ + 1 + log(y) − by

c
. (6.170)

If we let Pλ,µ denote the intersection of the graphs y = φλ(x) and x = ψµ(y), we can
summarize these findings as follows: the maximum of F in Ω is attained either at the
point ω0 (6.16), or at a point of the form (6.164), where 2 ≤ m ≤ θ, (ξ, η) ∈ Ω(m) and
(ξi, ηi) ∈ Pλ,µ for 1 ≤ i ≤ m. Note that φ′′λ(x) = −1/cx2, ψ′′µ(y) = −1/cy2, so for c > 0 the
graphs are convex. We can now prove that for c > 0, a maximiser of F can have at most
two distinct entries xi (and therefore the same for yi). Henceforth we suppress the indices
λ,µ from φ,ψ.

Proposition 6.5.3. If c > 0 then the m of (6.164) satisfies m ≤ 2.

Proof. Suppose first that b < 0. Then, ψ is increasing and concave, so ψ−1 is increasing
and convex. The graph of ψ−1 can intersect the graph of the concave function φ in at most
two points. If a < 0 the same argument works with φ and ψ interchanged.

This leaves the case when a > 0 and b > 0. In the region

R = {(x, y) ∶ 0 < x < 1/a, 0 < y < 1/b}, (6.171)

φ is increasing and concave whereas the local inverse ψ−1 is increasing and convex. Thus,
there are at most two crossing points in R. If there are zero or two crossing points in R,
then an elementary convexity argument shows that there are no crossing points outside
R.

In all the cases considered so far there are at most two crossing points, which implies
m ≤ 2. In the remaining case, when there is exactly one crossing point in R, there can
be several crossing points outside R. They can be ordered as a sequence (xj , yj) with xj
decreasing and yj increasing. We are only interested in subsequences of crossing points
with xj and yj decreasing. The maximum length of such a subsequence is 2, where we
may pick the unique crossing point in R and an arbitrary crossing point outside R. This
proves that m ≤ 2 also in this case. ∎

We can now prove the main thrust of Proposition 6.5.1, that for c > 0, the maximiser
of F in Ω is of the form (6.163).
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Proof of (6.163). We absorb β in a, b, c, effectively setting β = 1. By Proposition 6.5.3 we
can write x⃗ and y⃗ as

x1 = ⋯ = xk = s, xk+1 = ⋯ = xθ =
ρ−ks
θ−k ,

y1 = ⋯ = yk = t, yk+1 = ⋯ = yθ =
ρ′−kt
θ−k ,

(6.172)

where ρ′ = 1 − ρ and where the range for s, t is: ρ/θ ≤ s ≤ ρ/k ρ′/θ ≤ t ≤ ρ′/k. Recall that
Q(x, y) = 1

2(ax
2 + by2 + 2cxy). Then F evaluated at such an (x⃗; y⃗) can be written as

F (s, t, k) =k( − s log s − t log t +Q(s, t)) − (ρ − ks) log (
ρ−ks
θ−k )

− (ρ′ − kt) log (
ρ′−kt
θ−k ) + (θ − k)Q(

ρ−ks
θ−k ,

ρ′−kt
θ−k ).

(6.173)

We regard k as a continuous variable satisfying 1 ≤ k ≤ θ. The plan is to show that
F (s, t, k) does not have any stationary points in the interior of the relevant domain for
s, t, k, and then that on the boundary it is largest for k = 1.

First consider the local maxima. We get

∂F
∂s = k[a( θs−ρθ−k ) + c( θt−ρ

′

θ−k ) − log (
s(θ−k)
ρ−ks )],

∂F
∂t = k[b(

θt−ρ′
θ−k ) + c( θs−ρθ−k ) − log (

t(θ−k)
ρ′−kt )].

(6.174)

We now introduce the notation:

ξ = θs−ρ
θ−k ∈ [0, ρ/k], η = θt−ρ′

θ−k ∈ [0, ρ′/k]. (6.175)

Note that ξ = 0 if and only if s = ρ/θ, in which case all x-variables are the same, i.e.
(x⃗; y⃗) = ω0. Similarly if η = 0. So we need to see if there is a stationary point with ξ > 0
and η > 0. Setting ∂F

∂s = ∂F
∂t = 0 we get the equations

log (
s(θ−k)
ρ−ks ) = aξ + cη, log (

t(θ−k)
ρ′−kt ) = bη + cξ. (6.176)

It is useful to solve these for s, t:

s = ξ
eaξ+cη

eaξ+cη − 1
, t = η

ebη+cξ

ebη+cξ − 1
. (6.177)

Next, computing the k-derivative we get

∂F
∂k =

θs−ρ
θ−k − s log (

s(θ−k)
ρ−ks ) +

θt−ρ′
θ−k − t log (

t(θ−k)
ρ′−kt )

+ 1
2[a(

θs−ρ
θ−k )

2
+ b( θt−ρ

′

θ−k )
2
+ 2c( θs−ρθ−k )(

θt−ρ′
θ−k )],

(6.178)

which simplifies to

∂F
∂k = ξ(1 − e

aξ+cη(aξ + cη)

eaξ+cη − 1
) + η(1 − e

bη+cξ(bη + cξ)

ebη+cξ − 1
) +Q(ξ, η). (6.179)

We show below that ∂F
∂k < 0 for ξ, η > 0, except for a certain case which does not have any

relevance.

Now recall that the domain in question constists of those (k, s, t) such that 1 ≤ k ≤ θ,
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ρ/θ ≤ s ≤ ρ/k, and ρ′/θ ≤ t ≤ ρ′/k. The boundary consists of points where at least one of
the inequalities is in fact an equality. Start with s = ρ/θ: then all x-variables are equal (to
ρ/θ) and then in fact (x⃗; y⃗) = ω0. Similarly if t = ρ′/θ. Next, if s = ρ/k then xk+1 =

ρ−ks
θ−k = 0.

But we know from Lemma 6.5.2 that F is not maximized at such a point. Similarly, we
may exclude the possibility t = ρ′/k. Finally, k = θ also gives (x⃗; y⃗) = ω0, so the only
possibility for m = 2 is if k = 1.

We now show that ∂F
∂k < 0, for all ξ, η > 0, unless −a/c = −c/b = α > 0, in which case it

is equal to zero. We first reparametrise ∂F
∂k by setting η = αξ, for some α > 0. This gives:

∂F
∂k = ξ(1 − e

(a+cα)ξ(a + cα)ξ

e(a+cα)ξ − 1
)+αξ(1 − e

(c+bα)ξ(c + bα)ξ

e(c+bα)ξ − 1
)

+
1
2
(a + cα + α(c + bα))ξ2.

(6.180)

Letting δ = a + cα, γ = c + bα, and Gδ(ξ) = ξ + δξ2(1
2 −

eδξ

eδξ−1), we have

∂F
∂k = Gδ(ξ) + αGγ(ξ). (6.181)

It now suffices to analyse Gδ(ξ), ξ > 0, δ ∈ R. We can rewrite this function as

Gδ(ξ) =
2ξ(eδξ − 1) − δξ2(eδξ + 1)

2(eδξ − 1)
. (6.182)

For δ > 0, the denominator is positive, and rearranging shows the numerator is negative
if and only if tanh(1

2δξ) < 1
2δξ, which holds for all ξ > 0. Similarly if δ < 0, then the

numerator is positive if and only if tanh(1
2δξ) >

1
2δξ, which holds for all ξ > 0. Lastly, if

δ = 0, then Gδ(ξ) = 0 for all ξ > 0.
Hence using (6.181), we see that ∂F

∂k < 0 unless η = αξ, and both δ = a + cα = 0, and
γ = c + bα = 0. But this case is not relevant, since substituting these three equations into
(6.177) gives s =∞ and t =∞. ∎

To finish the proof of Proposition 6.5.1, it remains to prove that in the case a = b = 0,
c > 0, ρ = 1

2 , and β ≠ βc, the maximiser is unique and satisfies xi = yi for all i = 1, . . . , θ.
Without loss of generality we can let c = 1. Using the fact that the maximiser must be of
the form (6.163), and setting x1 = x, y1 = y, we can write

F (x⃗; y⃗) = F0(x, y) ∶=β(xy +
( 1

2−x)(
1
2−y)

θ−1 ) − x logx − y log y

− (1
2 − x) log

1
2−x
θ−1 − (1

2 − y) log
1
2−y
θ−1 .

(6.183)

We are maximising F0 in the box [ 1
2θ ,

1
2]

2. Calculations yield that when x > y, ∂F0
∂x <

∂F0
∂y , and vice-versa, so that the maximum points of F0 must satisfy x = y or lie on the
boundary. Lemma 6.5.2 shows that they cannot lie on the boundary unless (x⃗; y⃗) = ω0.
So, substituting x = y, and reparametrising with z = 2x, we have

F0(
z
2 ,

z
2) =

β
4 (z

2
+

(1−z)2

θ−1 ) − z log z − (1 − z) log 1−z
θ−1 + log 2. (6.184)

Now, apart from the constant log 2, this is precisely the function maximised in [13, The-
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orem 1.1], with β in that paper replaced with β/2 here, and x⃗ in that paper of the form
x1 ≥ x2 = ⋯ = xθ. By the working in that paper and the Appendix of [14], the maximiser is
unique for all β ≠ βc =

4(θ−1) log(θ−1)
θ−2 from (6.19). This concludes the proof of Proposition

6.5.1. ∎

6.6 The trace-inequality (6.79)

The inequality (6.79) appears e.g. in [69, Prop. 9.H.1.g-h], but we give here an almost self-
contained proof based on Birkhoff’s theorem, adapted from the discussion at [105]. The
problem is to maximize (respectively, minimize) Tr[XY ] subject to the condition that
X,Y are nonnegative definite Hermitian matrices with fixed spectra x1 ≥ x2 ≥ ⋯ ≥ xθ ≥ 0
and y1 ≥ y2 ≥ ⋯ ≥ yθ ≥ 0. Equivalently, since there are unitary matrices U and V such
that U∗XU = Dx = diag(x1, . . . , xθ) and V ∗Y V = Dx = diag(x1, . . . , xθ), the goal is to to
extremize

Tr[UDxU
∗V DyV

∗
] = Tr[DxU

∗V DyV
∗U] (6.185)

over unitaries U,V . Writing W = U∗V we may equivalently extremize over the unitary
W ,

Tr[DxWDyW
∗
] =

θ

∑
i,j=1

xiwi,jyjw
∗
j,i =

θ

∑
i,j=1

xiyj ∣wi,j ∣
2. (6.186)

Define the matrix P = (pi,j)
θ
i,j=1 where pi,j = ∣wi,j ∣

2. Since W is unitary, P is doubly
stochastic (rows and columns sum to 1). We have by the above

maxW Tr[DxWDyW
∗
] ≥ maxP

θ

∑
i,j=1

xiyjpi,j , (6.187)

where the second max is over doubly-stochastic matrices P (and similarly for the min).
The function to be maximized on the right-hand-side is linear in P and the set of doubly-
stochastic matrices is convex and compact. Thus the maximum (as well as the minimum)
is attained at an extreme point of the set of doubly-stochastic matrices. By Birkhoff’s
theorem [69, Theorem 2.A.2], the extreme points are the permutation matrices Π. Since
permutation matrices are real orthogonal (hence unitary) it follows that

maxW Tr[DxWDyW
∗
] = maxΠ Tr[DxΠDyΠ∗

] (6.188)

and similarly for the minimum. Thus, we must only find the permutation π which maxi-
mizes or minimizes the function

θ

∑
j=1

xjyπ(j). (6.189)

The maximum is obtained for the identity permutation and the minimum for the reversal
of 12 . . . θ.

6.7 Equivalence of Qi,j and Pi,j in the wb-model

In this second appendix we study two representations of the walled Brauer algebra Bn,m,θ.
We will prove that they are isomorphic for all θ ≥ 2. This will in particular give the
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equivalence of our wb-model with the same model, but with each Qi,j replaced with Pi,j .
More generally Lemma 6.7.1 gives the same statement on general graphs. To be precise,
if G = A∪B is any graph (with A∩B = ∅), with EA the set of edges between two vertices
in A, EB similar, and EAB those between a vertex of A and a vertex of B, then for all
a, b, c ∈ R, the following two Hamiltonians are unitarily equivalent:

H = − ∑
{i,j}∈EA

aTi,j − ∑
{i,j}∈EB

bTi,j − ∑
{i,j}∈EAB

cPi,j ,

H ′
= − ∑

{i,j}∈EA
aTi,j − ∑

{i,j}∈EB
bTi,j − ∑

{i,j}∈EAB
cQi,j .

(6.190)

This in particular shows that the models with interactions Pi,j and Qi,j are equivalent
on any bipartite graph; the equivalence of partition functions was proved by Aizenman
and Nachtergaele in [1]. The same statement (and in fact slightly stronger) holds on non-
bipartite graphs, but only for r odd. Indeed, (6.190) is very similar to a statement on
the model (6.3): for any graph G with edge set E, for any L1, L2 ∈ R, the following two
Hamiltonians are unitarily equivalent for r odd:

H = − ∑
{i,j}∈E

L1Ti,j +L2Pi,j ,

H ′
= − ∑

{i,j}∈E
L1Ti,j +L2Qi,j .

(6.191)

This is proved with Lemma B.1 of [89], which is the equivalent of our Lemma 6.7.1 below,
but for the full Brauer algebra.

The representations we consider are defined as follows. First, we let ∣a⟩ denote the
standard basis for Cθ, indexed using a ∈ {−S,−S +1, . . . , S} where S = (θ−1)/2, and recall
that V = V ⊗n. Let T ∶ Bn,m,θ → End(V) satisfy

T (i, j) = Qi,j , T (i, j) = Ti,j , (6.192)

where we recall that Ti,j is the transposition operator, and ⟨ai, aj ∣Qi,j ∣bi, bj⟩ = δai,ajδbi,bj
This T is just pBn,θ (3.12). Similarly, define T̃ ∶ Bn,m,θ → End(V) by

T̃ (i, j) = Pi,j , T̃ (i, j) = Ti,j , (6.193)

where we recall that ⟨ai, aj ∣Pi,j ∣bi, bj⟩ = (−1)ai−biδai,−ajδbi,−bj .

Lemma 6.7.1. For all θ ≥ 2, and all n, the representations T and T̃ of Bn,m,θ are
isomorphic via a unitary transformation.

Proof. The proof follows closely that of Lemma B.1 of [89]. For θ odd, the lemma actually
follows from that Lemma B.1 by restricting the two representations there to the walled
Brauer algebra. So let θ be even. The elements (i, j) and (i, j) generate the algebra
Bn,m,θ, so we aim to find an invertible linear function A ∶ V→ V such that

A−1Ti,jA = Ti,j , (6.194)
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for all 1 ≤ i < j ≤m and m < i < j ≤ n, and

A−1Qi,jA = Pi,j , (6.195)

for all 1 ≤ i ≤m < j ≤ n. By the Schur–Weyl duality for the general linear and symmetric
groups (6.54), the first condition holds if and only if A = α⊗m ⊗ γ⊗n−m for some α, γ ∈

GL(θ). Then the second condition also holds if and only if (α⊗ γ)−1Qi,j(α⊗ γ) = Pi,j for
all 1 ≤ i ≤m < j ≤ n, which holds if and only if:

(−1)ai−biδai,−ajδbi,−bj = ∑
ci,cj ,di,dj

(α−1
)ai,ci(γ

−1
)aj ,cjδci,cjδdi,djαdi,biγdj ,bj

=∑
c,d

(α−1
)ai,c(γ

−1
)aj ,cαd,biγd,bj

= (α−1γ−⊺)ai,aj(α
⊺γ)bi,bj .

(6.196)

Now recall that we assumed θ to be even, meaning that S and all the indices ai, aj , bi, bj
are odd multiples of 1

2 . Thus (−1)ai = −(−1)−ai and (6.196) holds if

α⊺γ = −(γ⊺α)−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)−S

(−1)1−S

⋱

(−1)S−1

(−1)S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.197)

The matrix on the right on the right in (6.197) is an involution whose transpose is its
negative, so it suffices to check this for α⊺γ. Further, the matrix consists of the block
matrices (−1)θ/2[ 0 i

−i 0 ] aligned along the antidiagonal, where i =
√
−1.

Such a pair α, γ exists: for example let

g1 =
1

√
2

⎡
⎢
⎢
⎢
⎢
⎣

i i

−1 1

⎤
⎥
⎥
⎥
⎥
⎦

, g2 =
1

√
2

⎡
⎢
⎢
⎢
⎢
⎣

−1 1
−i −i

⎤
⎥
⎥
⎥
⎥
⎦

,

take α to be block-antidiagonal with blocks g1, and take γ to be block-diagonal with blocks
(−1)θ/2g2. Since g⊺1g2 = [ 0 i

−i 0 ], α⊺γ is as required. Further, since both α and γ are unitary,
so is A. ∎
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Glossary

algebra 17

centre denoted Z(A) 17

ideal 17

homomorphism 17

representation (or module) 17

End(M) Endomorphisms on M 17

bimodule 17

submodule (or subrepresentation) 17

irreducible (representation) 17

M1 ⊕M2 The direct sum of representations 18

indecomposable (representation) 18

AA The regular representation of the algebra A 18

M1 ⊠M2 The box-tensor product 18

M ⊗B N The tensor product over B 18

semisimple module 18

semisimple algebra 18

head (of a representation) 19

idempotent 19

orthogonal (idempotent) 19

primitive (idempotent) 19

M1 ⊗M2 The tensor product 20

trivial representation 20

CG The group algebra of the given group G 20

dual representation 20
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character 20

conjugacy classes 20

⟨α,β⟩ Inner product of class functions on a group 20

Lie algebra 21

ψGρ The irreducible representation of the given group or algebra G corresponding to the
partition or tuple ρ 21

χGρ The character of ψGρ 21

dGρ The dimension of ψGρ 21

Sn The symmetric group 21

N The set {1, . . . , n} 21

(i, j) The transposition in Sn 21

λ, ρ, µ, π, ξ Partitions 21

Young diagram 22

λT The transpose of a Young diagram 22

tableau 22

T (U) The tableaux with entries in U 22

standard tableau 22

ST (U) The standard tableaux with entries in U 22

zτ The Young symmetriser 23

ct(λ) The sum of contents of the Young diagram λ 23

Bn,θ The Brauer algebra 24

Bn The basis of the Brauer algebra 24

(i, j) The "Brauer" transposition in Bn 24

∆Bn,θ
λ The cell module of the Brauer algebra corresponding to the partition λ 26

GL(θ) The general linear group 29

(⋅, ⋅) The (non-degenerate, symmetric, bilinear) inner product 29

O(θ) The orthogonal group 29

SO(θ) The special orthogonal group 29

rational (representation) 30
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polynomial (representation) 30

gl(θ) The general linear lie algebra 30

so(θ) The special orthogonal lie algebra 30

[λ,µ] Tuple from two partitions 32

res Restriction of a representation 33

Littlewood-Richardson rule 34

cξπ,µ The Littlewood-Richardson coefficient 34

sρ The Schur polynomial 34

semistandard tableau 35

SSλ(U) The semistandard tableaux with entries in U , shape λ 35

Pieri rule 35

b̃n,θλ,ρ The cell module Bn,θ-Sn branching coefficient 36

bn,θλ,ρ The Bn,θ-Sn branching coefficient 36

bn,m,θ(λ,µ),(ρ,ξ) The walled Brauer algebra-symmetric group branching coefficient 36

[V ]G Invariants on V with respect to the action of G 39

pGL(θ) The diagonal action of GL(θ) on V ⊗n 40

pSn The representation of CSn on V ⊗n by permuting the tensor factors 40

pO(θ) The diagonal action of O(θ) on V ⊗n 41

pBn,θ The representation of Bn,θ on V ⊗n 41

Ti,j The transposition operator 41

Qi,j The projection operator 41

qGL(θ) The action of GL(θ) on V ⊗n, m tensor multiples of the natural action and n −m
multiples of its dual 42

pBn,m,θ The representation of Bn,m,θ on V ⊗n 42

Q(k) Set of pairings 49

Q′(k) Set of pairings 49

Wn Alternative symbol for V ⊗n 49

W k
n Subset of tensor space 49

[Wn]
k Subset of tensor space 49
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classical spin system 70

Zd The d-dimensional lattice 70

S2 The two-sphere 70

G = (V,E) A graph (and its vertices and edges) 70

σi Classical spin 70

β Inverse temperature 70

Z Partition function 71

H Hamiltonian 71

⟨f(σ)⟩H,G,β Expectation of classical observable 72

Φ(β) Free energy 73

quantum spin systems 73

quantum Heisenberg model 74

Si Quantum spin operator 74

antiferromagnet 75

XXZ model 76

bilinear-biquadratic model 76

S(j) Component of the quantum spin operator 79

⟨⋅∣⋅⟩ Bra-ket notation 79

V Alternative notation for V ⊗n 80

L1, L2 Parameters of the general model of Chapter 5 80

∆∗
θ Domain for function in a free energy 80

φ Function in several free energy functions in Chapter 5 80

∆θ Domain for function in a free energy 81

K1,K2 Parameters of the spin S = 1
2 model of Chapter 5 82

J1, J2 Parameters of the spin S = 1 model of Chapter 5 85

Λn(θ) Set of pairs of partitions 92

Pn(θ) Set of pairs of partitions 93

dH Hausdorff distance 93

Pi,j The spin singlet projection operator 103
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A Subset of the J1 − J2 plane 104

A′ Subset of the J1 − J2 plane 106

γ
Bn,θ
λ The character of ∆Bn,θ

λ 110

interchange model 117

a, b, c Parameters of the general model of Chapter 6 119

Hab
n Hamiltonian of the ab-model 119

F Function in several free energy functions in Chapter 6 119

f(x, y) Function in several free energy functions in Chapter 6 119

Φab
β Free energy of the ab-model 120

Hwb
n Hamiltonian of the wb-model 120
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