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Abstract

Through many surprising developments, the study of scattering amplitudes in quantum
field theory has unearthed deeper questions into the nature of our understanding of the sub-
ject. One of these developments which has been quite successful is the culmination of two
active areas of research: the colour-kinematics duality and the notion of worldsheet models.
This development was first understood as the CHY formalism, which in its inception com-
pactly described the entire tree-level S-matrix of Yang-Mills theory and gravity. The task
of computing scattering amplitudes in this formalism equates to solving a set of algebraic
equations denoted the scattering equations. Since then, this has been more generally under-
stood to arise naturally from the ambitwistor string, a chiral worldsheet model that allows
a straightforward extension of CHY to compute quantum corrections in terms of worldsheet
formulae. In this thesis we discuss these worldsheet formulae at loop-level, emphasising the
connection between the scattering equations and the resulting field theory expressions. We
develop a novel form of one-loop BCFW integrand recursion in momentum space, which
motivates a construction of new one-loop scattering equations which results in quadratic
propagators, a feature that typical loop-level worldsheet formulae do not exhibit. We then
present n-point two-loop formulae for the integrands of pure Yang-Mills and gravity, mo-
tivated by the genus-two ambitwistor string. Finally, we use the ambitwistor string as a
steppingstone back to superstring theory, where we present a strategy that allows propos-
als for massless superstring integrands at loop-level to be computed from their field theory
counterparts. Using this strategy, we show that two-loop superstring results are reproduced
purely from field theory and give a proposal for the three-loop four-point superstring result.
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Introduction

On small scales, nature appears to be described very adequately by quantum field theory
(QFT). This theory turns out to be arguably one of the most successful scientific theories
ever created. The predictions of QFT, more specifically the standard model, have been
successful many times through comparison to experiments e.g. at the LHC. Of particular
importance in this respect is the study of quantum chromodynamics (QCD). For example,
comparing theory to high-precision experiments requires (in part) knowledge of jet processes
involving gluons, the mediators of the strong force. These comparisons are possible through
one of the fundamental observables of QFT, namely the cross-section. The calculation of
the cross-section of a process in theory requires the scattering amplitude. The scattering
amplitude is used for calculating the probability that a scattering process will occur a certain
way and is therefore itself fundamental to QFT. The complete set of scattering amplitudes
for a theory can be described by its S-matrix, which dictates how initial states end up in
final states.

Traditionally, the scattering amplitude for a process is calculated using Feynman dia-
grams. These provide an intuitive and systematic way of calculating the amplitude, with
each theory having its set of Feynman rules. However, for theories well-suited to describing
nature, the use of Feynman diagrams can quickly become computationally overwhelming.
An example of this can be seen in the table below, which specifies the number of Feynman
diagrams required for a process involving n gluons, calculated in [6].

Number of gluons n Number of required Feynman diagrams

4 4

6 220

8 34,300

10 10,525,900

Moreover, the size of the mathematical expression for each diagram grows as n increases.
The complexity of the problem is therefore even greater than the table above indicates.

Where does this complexity stem from? Feynman diagrams are, as mentioned above,
intuitive, since the Feynman rules are (typically) designed to give local expressions, since
they derive from (typically) a local action. This however requires the use of many diagrams
to capture all the right information. Moreover, especially in the case described in the above
table, each diagram itself is not gauge-invariant ; only the amplitude (the sum of all Feynman
diagrams) is gauge-invariant. By being intuitive, they lose efficiency. The case of gravity,
where processes involve the scattering of gravitons, is even worse.

Many techniques that have been discovered since the inception of Feynman diagrams
have shown that scattering amplitudes can in fact be expressed in a more efficient and com-
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INTRODUCTION

pact manner. An example of this is the Parke-Taylor amplitude [7], which describe the
scattering of gluons with a maximally helicity-violating (MHV) configuration, and are com-
posed of only a single term for any number n of gluons. These techniques all revolve around
the same question: what is the S-matrix? Indeed, the study of scattering amplitudes has
unearthed deeper questions about quantum field theory itself, and precisely how the theories
therein are related to one another.

This thesis will be focused on one of the more recent developments that is the result of
(a little over) two decades of work, with origins older still. This development regards the
notion of worldsheet models. These are based on the techniques of string theory, where the
scattering of particles is obtainable by the scattering of strings (which forms a worldsheet) in
an abstract space. It is the culmination of two lines of development in scattering amplitude
techniques.

The first has origins in string theory itself, where Kawai, Lewellin, and Tye (KLT) found
that closed string amplitudes can be written as a product of open string amplitudes [8].
These were come to be known as the KLT relations and provided the first notion of what is
known today as the double copy between amplitudes, where gravity calculations (from closed
strings) can be obtained using the results of Yang-Mills calculations (from open strings).
These appeared in the context of field theory in [9], where the analogous relations were
discovered by Bern, Carrasco, and Johansson (BCJ). Using these relations, it was found in
the same reference one could write the tree-level scattering amplitudes of Yang-Mills theory
as1

AYM = (−1)n+1
∑
a∈Γn

na ca
Da

.

In the above, the label ‘a’ runs over the set of n-point trivalent diagrams Γn, each one
having a colour factor ca encoding the information on the colour degrees of freedom, a
kinematic numerator factor na, and a set of propagators Da determined by the diagram. A
crucial feature of this representation of the scattering amplitude introduced the notion of
the colour-kinematics duality. Specifically, if the colour factors between a set of diagrams
are related by the Jacobi identity, then the corresponding kinematic numerators are related
in the same way,

ca + cb + cc = 0 ⇔ na + nb + nc = 0 .

This is a very non-trivial property of kinematic numerators in scattering amplitudes. Since
the propagators and colour factors are straightforwardly obtained from the structure of the
diagram, the task of obtaining the Yang-Mills amplitude equates to finding the set of BCJ
numerators na. An even more remarkable property of this representation is that, once the
BCJ numerators have been found, one can straightforwardly obtain a gravity amplitude but
substituting the colour factors with another kinematic factor2,

Agrav = (−1)n+1
∑
a∈Γn

na ña
Da

.

1Throughout this thesis we will omit the coupling constants, which can easily be put back in through
scaling considerations. We will also use conventions in which all external momenta are incoming. The
(−1)n+1 factor in the BCJ formulae here are placed to match normalisations with the results we obtain in
the next chapter.

2We note here that the second set of kinematic numerators do not have to belong to the same theory, and
in fact one can obtain amplitudes in a particular theory by ‘mixing’ the BCJ numerators in others. Moreover,
only one of the sets of numerators need to obey the Jacobi identity. For more details on this see e.g. [10].

2



INTRODUCTION

This is remarkable for a couple of reasons. First of all, expanding the Einstein-Hilbert action
produces an infinite number of vertices in the Feynman rules, whereas the above formula
requires only diagrams with trivalent vertices. Secondly, it means that gravity amplitude
follows directly from those calculated for Yang-Mills in this representation. This is one of the
signature features of gauge/gravity duality, and possibly hints at something more fundamen-
tal about QFT that is currently unknown. The BCJ representation of scattering amplitudes
above has been proved [11] and is well-understood at tree-level, and the conjecture to loop-
level [12], though not currently proven, has been quite fruitful, particularly through the
method of unitarity for scattering amplitudes [10, 12–16] and the study of gravitational
waves [17–20]. More detail on this and many other applications of the colour-kinematics
duality can be found in the extensive review of [10].

The second line of development began when Witten discovered the twistor string [21],
where he found that certain amplitudes in N = 4 super Yang-Mills theory were supported
on certain holomorphic curves in twistor space. This was the original worldsheet model and
was further studied in [22] where it was found that the challenge of computing scattering
amplitudes in this formalism equated to solving a set of algebraic equations, a feature that
would carry through to the worldsheet model that is the topic of this thesis. Witten’s
discovery furnished developments that led to twistor-string descriptions of (super-)gravity
[23–28], as well as their connections to other on-shell formalisms such as BCFW recursion and
MHV diagrams [29–35]. Being twistor string descriptions, the resulting formulae were mainly
for theories in four-dimensions. Ultimately, Cachazo, He and Yuan (CHY), following work
by Cachazo and Skinner [36], began studying the set of algebraic equations that appeared in
the twistor-string formulae, and found connections to the KLT relations [37]. This led to the
inception of the CHY formalism [38], which represented scattering amplitudes of Yang-Mills
and gravity as integrals over the moduli space of punctured Riemann surfaces. Whilst very
reminiscent to traditional string theory, these integrations are localised over the solutions
to this set of algebraic equations, called the scattering equations,∑

j ̸=i

ki · kj
σi − σj

= 0 , i = 1, 2, · · · , n .

Unlike their predecessors, these worldsheet formulae give results in D-dimensions and clearly
manifest a double-copy structure. The success of this formalism has led to worldsheet for-
mulae for many other theories, such as the biadjoint scalar theory [39], ϕn theory [40], and a
large variety of others related by the double copy [41,42]. Due to its clear resemblance with
string scattering amplitudes, it was not long after the discovery of CHY that a string-like
description was found. This was done by Mason and Skinner in [43], where they found that
defining a string theory in ambitwistor space, the space of null geodesics in complexified
spacetime, not only naturally produces the scattering equations, but furthermore results
precisely in the CHY formulae for gravity. Moreover, an ambitwistor string description for
these theories allows an alternative study in non-trivial backgrounds [44–49], and impor-
tantly for us, a natural extension to loop-level, first performed rigorously at one-loop in [50]
and two-loops in [51].

In this thesis, we will discuss these worldsheet models and the scattering equations
at loop-level, primarily focusing on the role that the scattering equations play and their
relationship with the resulting loop-integrands.

Chapter 1 is dedicated to a review of the CHY formalism, where we introduce its basic
ingredients and discuss the structure of the integrands that will be of primary concern to
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us. We will review two algorithms present in [52] and [39] that will allow one to evaluate a
vast number of formulae we present in later chapters, and understand how this formalism
leads directly to the BCJ representation of scattering amplitudes.

We also dedicate chapter 2 to a review of the ambitwistor string at genus zero and one,
showing the origins of the scattering equations, how the ambitwistor string leads directly to
gravity in CHY, and the role of the scattering equations at one-loop. A particular feature
of the one-loop formulae will be that it exhibits an unorthodox representation of the loop
integrand, which can be described as a type of forward-limit.

We study this description in chapter 3 in two different contexts The first, applicable
to field theory, will be a new interpretation of BCFW recursion for the one-loop integrand
in momentum space. The second, applicable to worldsheet formulae, will be a new set of
scattering equations that give rise to quadratic propagators more akin to conventional field
theory. We demonstrate their applications in both cases with a number of examples and
discuss their extension to non-planar theories.

In chapter 4 we extend this forward-limit interpretation to two-loops and obtain formu-
lae for the two-loop n-point integrand of pure Yang-Mills and gravity in this unorthodox
representation. These follow from the modification of a naive guess based on worldsheet for-
mulae; we derive this modification and postulate its origin from the genus-two ambitwistor
string after discussing the case with supersymmetry, following the work of [51].

In chapter 5 we attempt to come full circle with the superstring, and propose a strategy
to obtain superstring loop integrands for massless states from the field theory limit, using
the ambitwistor string as a steppingstone. We demonstrate that this strategy works at
two-loops and use it to give a proposal for the genus-three superstring amplitude for four
massless states.

Finally, we end with some concluding remarks and an outlook regarding future work.
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Chapter 1

The CHY formalism and the
scattering equations

As mentioned in the introduction, the CHY formalism is the natural successor to previous
twistor string models, and its form provides the basis of all worldsheet formulae we will
present in this thesis. This section is dedicated to a review of the CHY formalism, and how
precisely it can reproduce the BCJ representation of scattering amplitudes in field theory. A
simple and systematic way of doing the latter requires knowledge of two algorithms, which
we will discuss in detail. They are also added for completeness, since they can be used
to explicitly evaluate the formulae we will present throughout the thesis, particularly for
non-supersymmetric theories at loop-level.

1.1 CHY amplitudes and their primary ingredients

In the CHY formalism, n-point tree-level amplitudes for massless particles are represented
as integrals over the moduli space of an n-punctured Riemann sphere [38],

A(0)
n =

∫
M0,n

dµn In . (1.1.1)

As one can see, it is formed of two essential ingredients. The first is the CHY measure,

dµn =
dnσ

vol SL(2,C)

′∏
i

δ̄ (Ei) , (1.1.2)

which provides the measure for the locations of the punctures σi ∈ CP
1, which are to be

integrated over. The vol SL(2,C) factor is a symmetry factor; sets of locations for the
punctures are related to others by SL(2,C) transformations, a residual symmetry from the
group of diffeomorphisms on the sphere. Dividing by this factor ensures that there is no
over-counting when one integrates over these locations. In practice, this is achieved by fixing
the location of any three punctures σr, σs, σt and multiplying the integrand by σrsσstσtr,
where1 σij := σi − σj . That three punctures are fixed means there are essentially (n − 3)
integrals to perform in (1.1.2).

1This notation will be used throughout this thesis.
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1.1. CHY AMPLITUDES AND THEIR PRIMARY INGREDIENTS

The complex delta functions2 enforce the scattering equations

Ei =
∑
j ̸=i

ki · kj
σij

, (1.1.3)

which play an essential role in this formalism. These equations were first discovered in
[53–55] in the context of dual resonance models, and in [56] in the context of high-energy
scattering of strings. They were first noticed in the context of field theory explicitly in
[37], based on formulae for the tree-level S-matrix of maximally supersymmetric Yang-Mills
and gravity [22, 36] inspired by the twistor string [21]. Whilst the amplitude (1.1.1) looks
more familiar from string theory, where the n-punctured Riemann sphere is essentially the
worldsheet, it is the scattering equations (1.1.3) which make the amplitudes inherently
correspond to field theory; we will discuss this in more detail in the next section.

The scattering equations also exhibit an SL(2,C) symmetry on the support of momentum
conservation, which can be summarised through the following identities∑

i

Ei = 0 ,
∑
i

σi Ei = 0 ,
∑
i

σ2i Ei = 0 . (1.1.4)

As a result, not all n scattering equations are linearly independent, and so only (n − 3) of
them need to be enforced. In (1.1.2) this is precisely what the prime on the product entails:
for any three particle labels r′, s′ and t′, the primed product omits their scattering equations
and compensates with a factor σr′s′σs′t′σt′r′ ,

′∏
i

δ̄(Ei) := σr′s′σs′t′σt′r′
∏

i ̸= r′, s′, t′

δ̄(Ei) . (1.1.5)

In practice, whilst the scattering equations (1.1.3) look simple, solving them is notoriously
difficult at high multiplicities, which can more easily be seen by placing them in a polynomial
form [57]. For any n, they admit (n− 3)! solutions, first proven for four-dimensions in [58]
and for any dimension in [37]. There has been work which has provided ways to solve these
equations at higher points [37, 59, 60], but analytic solutions quickly become increasingly
involved. This however will not be an issue for us, as we will discuss.

The measure given in (1.1.2) is universal, in the sense that it is the same regardless of
the theory under consideration. Unlike the original developments from the twistor string,
which were based in four-dimensions, it is used to describe tree-level amplitudes for massless
particles in any spacetime dimension.

What characterises the theory in the expression (1.1.1) is the particular CHY integrand
In. In its original inception, the CHY formalism described n-point formulae for Yang-Mills
and gravity, based off previous developments found for their maximally supersymmetric
counterparts in four-dimensions, and formulae presented by Hodges [61,62]. Fundamentally,
the CHY integrands for these theories naturally exhibit a double-copy structure, which
follows from the KLT relations and so-called KLT orthogonality [37]. In this way they are
expressed with the colour-kinematics duality manifest,

IYM = Ikin ISU(N) , Igrav = Ikin Ĩkin . (1.1.6)

2Precisely, these are defined as 2πi δ̄(f(z)) := ∂̄(1/f(z)), with ∂̄(· · · ) = dz̄ ∂z̄(· · · ).
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1.1. CHY AMPLITUDES AND THEIR PRIMARY INGREDIENTS

The objects Ikin and ISU(N) are thus referred to as half-integrands. The ‘colour’ half-
integrand, which captures the colour dependence of Yang-Mills amplitudes, is defined as

ISU(N) =
∑

γ∈Sn/Zn

tr(T aγ(1)T aγ(2) · · ·T aγ(n))

σγ(1)γ(2)σγ(2)γ(3) · · ·σγ(n)γ(1)
, (1.1.7)

which depends on the puncture locations {σi} and the generators of the gauge group SU(N),
given by T a. The trace structures follow from the colour-decomposition of Yang-Mills am-
plitudes, which is therefore embedded into the formalism from the outset. Throughout this
thesis, we will refer to the cyclic products of the σij (that is, the coefficients of the traces
in (1.1.7)) as Parke-Taylor factors3. They will form the basis of most integrands we will
consider as their structure makes them most conveniently related to the diagrams obtained
in field theory, as we will see.

The ‘kinematic’ half-integrand is expressed in terms of a reduced Pfaffian of a 2n × 2n
matrix M ,

Ikin = Pf ′(M) :=
(−1)i+j

σij
Pf (M ij

ij ) (1.1.8)

where the notation M ij
ij signifies that we remove the rows and columns i and j from the

matrix M . Specifically, this matrix has the form

M =

(
A −CT

C B

)
, (1.1.9)

where the n× n block matrices A, B and C are defined as

Aij =
ki · kj
σij

, Bij =
ϵi · ϵj
σij

, Cij =
ϵi · kj
σij

for i ̸= j, and

Aii = 0 , Bii = 0 , Cii = −
∑
j ̸=i

ϵi · kj
σij

.

The kinematic integrand (1.1.8) therefore depends on the polarisation vectors ϵi, the mo-
menta ki and the puncture locations σi associated with the external particles. The matrixM
has co-rank two4, so the reduced Pfaffian in (1.1.8) is well-defined. Indeed, it is easy to check
that its kernel is spanned by the vectors (1, · · · , 1, 0, · · · , 0) and (σ1, · · · , σn, 0, · · · , 0) on
the support of the scattering equations (1.1.3), where it is also manifestly gauge-invariant.

The tilde’d kinematic integrand in (1.1.6), relevant to describe gravity amplitudes, is
obtained simply to replacing the polarisation vectors ϵi with tilde’d polarisation vectors,
i.e., Ĩkin = Ikin(ϵ → ϵ̃). This is in line with the double copy structure between Yang-Mills
and gravity amplitudes. Specifically, the amplitudes resulting from Igrav correspond to
NS-NS gravity, which contains the graviton, the dilaton and the B-field. By appropriately
choosing traceless symmetric combinations of ϵµi and ϵ̃νi one will obtain amplitudes for the
scattering of gravitons with polarisation tensors εµνi = ϵµi ϵ̃

ν
i .

3This terminology is reminiscent of the Parke-Taylor factors in the four-dimensional spinor-helicity scheme,
since writing λi = (1, σi), we have that ⟨ji⟩ = ϵαβλ

α
j λ

β
i = σi − σj .

4For this reason, the Pfaffian of M is zero, and so one must use the reduced Pfaffian
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1.2. SL(2,C) WEIGHTS AND FIELD THEORY AMPLITUDES

Throughout this work we will be mainly concerned with the theories presented here;
that is, Yang-Mills and gravity. However there exist a variety of theories for which CHY
integrands have been found, such as those in [41, 42]. These are based off double-copy
relations between the amplitudes of theories, which is now known to be part of a more
general ‘web of theories’ [63–65]. These include (but of course are not limited to) Einstein
Yang-Mills (EYM), Yang-Mills scalar (YMS), (Dirac-)Born-Infeld ((D)BI), and the non-
linear sigma model (NLSM). An example of a theory whose amplitudes we can find with
the ingredients above is the biadjoint scalar theory. If one takes the Yang-Mills integrand
(1.1.6) and replaces the kinematic half-integrand with another colour-integrand (potentially
corresponding to a different gauge group G̃), one obtains scattering amplitudes for a theory
of scalars which transform in the adjoint representation of both gauge groups, possessing a
cubic self-interaction. The action for this theory is, in D-dimensions,

Sbi-adj =

∫
dDx

1

2
∂µϕ

aa′ ∂µϕaa
′
+
λ

3!
fabcfa

′b′c′ϕaa
′
ϕbb

′
ϕcc

′
, (1.1.10)

where λ is the coupling constant, and fabc (fa
′b′c′) are the structure constants for the gauge

group G (G̃). In the case of G and G̃ being SU(N) and SU(Ñ) respectively, the amplitudes
of this theory are the result of the CHY integral (1.1.1) with CHY integrand

Ibi-adj = ISU(N) ISU(Ñ) . (1.1.11)

This theory plays a fundamental role in understanding how the double-copy works at the
level of classical solutions also [4, 5, 66–70].

1.2 SL(2,C) weights and field theory amplitudes

In the last section we introduced the integrands for Yang-Mills and gravity, how they exhibit
a double copy structure, and how this allows one to construct similar integrands for a variety
of other theories. The integrands will depend on the data relevant to describe the tree-level
S-matrix of a particular theory, as well as the locations σi of the marked points on the
Riemann sphere. Indeed, any massless theory can be represented in the form (1.1.1) for
some CHY integrand. However, it is worth mentioning that not any integrand will give
expressions that make sense in the integral (1.1.1). In fact, the integrands that can produce
a valid expression are constrained by the SL(2,C) symmetry. To be concrete, the SL(2,C)
transformations act on the coordinates σ as

σ → Aσ +B

Cσ +D
, AD −BC = 1. (1.2.1)

with A,B,C,D ∈ C. It is straightforward to show that

1

σij
:=

1

σi − σj
→ (Cσi +D)(Cσj +D)

σij
, (1.2.2)

and that

dσi → dσi
(Cσi +D)2

. (1.2.3)

As a result, the objects in the CHY measure transform as

dnσ →

[
n∏

i=1

(Cσi +D)−2

]
dnσ ,

′∏
i

δ̄(Ei) →

[
n∏

i=1

(Cσi +D)−2

] ′∏
i

δ̄(Ei) , (1.2.4)
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1.2. SL(2,C) WEIGHTS AND FIELD THEORY AMPLITUDES

The latter holding from momentum conservation and the nullity of the external momenta.
Therefore the CHY measure transforms uniformly under SL(2,C),

dµn →

[
n∏

i=1

(Cσi +D)−4

]
dµn , (1.2.5)

and is said to have SL(2,C) weight −4 in all of the particles. The reason this is important is
that for the CHY integral to be well-defined, it must have vanishing SL(2,C) weight. This
implies that the CHY integrand must have SL(2,C) weight +4 to compensate the measure,

In →

[
n∏

i=1

(Cσi +D)+4

]
In . (1.2.6)

Valid CHY integrands are therefore constrained. This provides a non-trivial consistency
check when considering different integrands, or proposals for quantum corrections. It is
not difficult to see that the colour and kinematic half-integrands going into (1.1.6) each
have SL(2,C) weight +2, and so in pairs form valid CHY integrands. This is a prerequisite
for any physical amplitude represented in terms of an integration over the moduli space of
punctured Riemann spheres.

As mentioned in section 1.1, it may seem peculiar from the perspective from field theory
that scattering amplitudes can be expressed in this way; that is, (1.1.1). Indeed, were
the scattering equations not present, it would resemble an amplitude for the scattering of
massless strings. Of course, this resemblance turns out not to be a coincidence, as we will
discuss in later chapters. For now we simply note that moduli space integrals are typically
a very stringy feature in the context of scattering amplitudes.

The integrations to be performed in (1.1.1) however are localised by the delta functions
enforcing the scattering equations in the measure (1.1.2). Indeed, by using the definition of
δ̄( · · · ) and using Stokes’ theorem one can recast (1.1.1) as a set of contour integrals around
the poles determined by {Ei = 0}. The amplitude (1.1.1) is then written more succinctly as

A(0)
n =

∫
dµn In =

∑
solns {σi}

In
Jn

(1.2.7)

where the sum is over the (n− 3)! solutions to the scattering equations. The factor Jn is a
Jacobian factor coming from the set of delta functions, and can be written as

Jn =
det[ ∂σiEj ]r

′s′t′
r′s′t′

σrsσstσtrσr′s′σs′t′σt′r′
. (1.2.8)

The notation on the determinant signifies the same thing as for the reduced Pfaffian; namely
that one removes the rows and columns r′, s′ and t′ before evaluating the determinant. This
occurs because we do not impose the scattering equations associated to the labels r′, s′

and t′ from (1.1.5) so they should be absent in the resulting Jacobian. The denominator
factors are precisely those arising from fixing the SL(2,C) symmetry and the definition of
the primed product (1.1.5) above.

Therefore, to obtain the n-point amplitude one need only solve the scattering equations.
This is precisely their purpose in this set-up, and in this way it is clear that they remove
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1.3. THE PFAFFIAN EXPANSION

the apparent ‘stringyness’ in the form of the CHY amplitudes (1.2.7). From their struc-
ture (1.1.3), clearly solutions to the scattering equations will be rational functions of the
kinematic invariants ki ·kj , and therefore the resulting tree-level amplitudes will be rational
functions of the kinematic data. In this formalism it is also clear that the tree-level ampli-
tudes for Yang-Mills (gravity) exhibit other ideal properties, such as gauge-invariance and
linearisation of the polarisation vectors (tensors) respectively, which can be seen directly
from the Pfaffian structure.

As mentioned though, solving the scattering equations is in general not an easy task.
They will however be central to the entirety of this thesis: we will use them to obtain n-point
formulae in a variety of theories, particularly at loop-level. Whilst we do this, we would like
to emphasise one thing: we will never need to solve the scattering equations.

That this is possible is quite a remarkable feat, and is the result of developments that
have gone into understanding how to use the scattering equations. Of these many great
developments, there will be two that will be fundamental in our endeavour, which we will
review in the next two sections.

1.3 The Pfaffian expansion

One of the main ingredients going into the CHY integrand for Yang-Mills and gravity is the
reduced Pfaffian. This is also a feature that is reminiscent of string theory, arising in the
correlation functions for worldsheet fermions. We will see this explicitly in a later chapter,
but for now we wish to connect this more strongly with field theory, particularly in a way
that is more recognisable with the colour-kinematics duality. In this respect it turns out
that on the support of the scattering equations the reduced Pfaffian can be written in a
form more akin to the colour integrand,

Ikin = Pf ′(M)
Ei=0
=

∑
ρ∈Sn−2

N(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
. (1.3.1)

The numerators N above depend only on the kinematics through the ordering in the per-
mutation, and so all of the dependence on the marked points σi is now in the Parke-Taylor
factors of the denominators. In (1.3.1) the first and last elements, which are fixed, is a
choice; here we have chosen them to be 1 and n. They correspond to the rows and columns
one decides to remove in the reduced Pfaffian (1.1.8), and so the amplitude is invariant
under this choice. The significance of this representation of the kinematic half-integrand is
two-fold. Firstly the data going into the reduced Pfaffian {ϵi, ki, σi} becomes de-emulsified
into the kinematic numerators with data {ϵi, ki} and the Parke-Taylor factors with data
{σi}. Secondly, it will allow us to more closely connect the CHY amplitudes with field
theory. In particular, it will be seen in the upcoming sections that the numerators N are in
fact BCJ numerators. This section is dedicated to giving an overview of the algorithm to
straightforwardly calculate the numerators N to arbitrary multiplicity.

This section follows quite closely the work of [52,71], where the expansion was presented5

and an algorithm for calculating the numerators given explicitly for the cases of tree level

5Such an expansion was previously sought after in [39]. Indeed, such an expression was given, but it
correctly stated that there the result was ‘tautological’ since it required pre-determined knowledge of the
colour-ordered amplitudes. Nevertheless, it did show that such an expansion does exist.
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1.3. THE PFAFFIAN EXPANSION

and one-loop respectively. Equation (1.3.1) relies on expanding the Pfaffian recursively and
fixing its coefficients using gauge invariance; the interested reader is referred to the original
works of [52,72] where this was first done explicitly.

Since the numerators in (1.3.1) depend on the ordering of the specific permutation, there
are three notions we have to introduce in order to present the algorithm. These are

� A reference ordering (RO), which is an aribitrary ordering of the particle labels,

� A colour ordering (CO), which will be the ordering inside the corresponding numerator,

� A split ordering (SO), which heuristically encodes the difference between the two
orderings above.

For clarity it will be useful to introduce notation which symbolises whether a given label i
is to the left of another label j in any particular ordering, since this is quite important in
the algorithm. To this end, we introduce this notation in the table below.

Relation ‘Particle i is the left of particle j in the’:

i ⊣ j Reference ordering RO
i ◁ j Colour ordering CO
i ≺ j Split ordering SO

Since the reference ordering is arbitrary, we could choose it to be the canonical ordering
RO = (12 · · ·n) for example. Whichever choice one makes, it must be the same for all
numerators calculated; the amplitude will be invariant under this choice, but different ROs
will lead to different numerators. When calculating any one numerator in the permutation
sum (1.3.1), that permutation dictates the colour ordering. Given a reference ordering, each
colour ordering will define a set of split orderings. For any colour-ordering, to obtain these
split orderings, one needs to do the following.

Consider the set of all particle labels apart from 1 and n (our choice of rows/columns
removed in the reduced Pfaffian). Then decompose this set into colour-ordered subsets I
and their complement Ī. For Ī, construct all (disjoint) decompositions into R subsets α(r)

which satisfy the following criteria,

(i) The union of all subsets reproduce Ī, ∪R
r=1α

(r) = Ī.

(ii) Each subset α(r) respects the colour ordering,

α
(r)
i ◁ α

(r)
j , ∀ i < j.

(iii) The last element of the subset α(r) is the left-most in the reference ordering with
respect to the others in α(r),

α(r)
nr

⊣ α
(r)
i , ∀ i.

(iv) The last elements of all R subsets respect the reference ordering,

α(r)
n1

⊣ · · · ⊣ αnR .

For each decomposition Ī = ∪R
r=1α

(r) that satisfy these criteria, the split ordering is defined
as

SO = (1 I α(1) · · ·α(R) n) . (1.3.2)
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1.3. THE PFAFFIAN EXPANSION

Once one has obtained all the split orderings for a given colour-ordering, the numerator for
that colour ordering is given by

NRO(CO) =
∑
I

(−1)nIWI

(∑
SO

∏
r

Y
(
α(r)

))
, (1.3.3)

where WI is defined as

WI =

{
ϵ1 · ϵn I = ∅
ϵ1 · Fi1 . . . FnI · ϵn I ̸= ∅

(1.3.4)

and the objects Y are defined as

Y
(
α(r)

)
=


1 α(r) = ∅
ϵa · Za α(r) = {a}
ϵanr

· Fanr−1 . . . Fa2 · ϵa1 α(r) = {a1, a2, · · · , anr} .
(1.3.5)

In the above equations, Fµν
i := ϵµi k

ν
i − ϵνi k

µ
i , and Za is defined to be the sum of all momenta

to the left of particle a in the colour ordering and the split ordering,

Za =
∑

i ◁ a and i≺ a

ki . (1.3.6)

Simple example: N(1324). To see how this works in practice we will go over one of the
simplest examples, which is to calculate the numerator N(1324) at four points. We choose
the reference ordering to be RO = (1234), and for this numerator we have CO = (1324).
As part of the algorithm we have to decompose {3, 2} into subsets I and their complement.
We will denote by Split(Ī) the set of subsets {α(r)} of Ī that are consistent with the criteria
described above. Let us first consider I being the empty set,

I = ∅ ⇒ Ī = {3, 2}

Split(Ī) = {{2}, {3}} ∪ {{3, 2}}

⇒ SO = (1234), (1324) .

In this case both subsets of {3, 2} satisfy the criteria above. Single-element subsets such as
{{2}, {3}} will always satisfy the criteria by virtue of only being composed of single elements;
they will always be in the RO from criterion (iv). The second subset {{3, 2}} appears by
virtue of criterion (ii) and (iii) and arises precisely because the RO and the CO are different;
this is one way in which the SO encodes the difference between the two. The contribution
from I = ∅ to the numerator is therefore, from (1.3.3),

I = ∅ : (ϵ1 · ϵ4) [(ϵ2 · k1)(ϵ3 · k1) + (ϵ2 · F3 · k1)] . (1.3.7)

The two terms come from the sum over SO, and WI=∅ = ϵ1 · ϵn is the overall factor.
Suppose now we consider the decomposition I = {3}. Then Ī = {2} so trivially α(r) =
Split({2}) = {2} and one can read off the SO straightforwardly from (1.3.2), SO = (1324).
Its contribution to the numerator is read off from (1.3.3) and the factors above as

I = {3} : −(ϵ1 · F3 · ϵ4)(ϵ2 · (k1 + k3)) . (1.3.8)
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1.4. THE TRIVALENT GRAPH EXPANSION

There is only one term in the sum over SO; the first factor comes fromWI={3} and the minus
sign is due to the factor (−1)nI . Notice that the last factor is ϵ2 ·Z2 with Z2 = k1+k3 since
labels 1 and 3 are to the left of 2 in both the SO and the CO (here SO = CO = (1324)).
The decomposition I = {2} works similarly; one reads off straightforwardly SO = (1234)
and its contribution to the numerator is then given by

I = {2} : −(ϵ · F2 · ϵ4)(ϵ3 · k1). (1.3.9)

In this case the second factor is ϵ3 · Z3, but only the label for particle 1 is to the left of 3
in both CO = (1324) and SO = (1234). Finally, one has I = {3, 2} and therefore Ī = ∅. In
this case the contribution to the numerator solely comes from the WI factor,

I = {3, 2} : +(ϵ1 · F3 · F2 · ϵ4) . (1.3.10)

Therefore the numerator is given in total by

N(1324) = +(ϵ1 · ϵ4)[(ϵ2 · k1)(ϵ3 · k1) + (ϵ2 · F3 · k1)]− (ϵ1 · F2 · ϵ4)(ϵ3 · k1)

−(ϵ1 · F3 · ϵ4)(ϵ2 · (k1 + k3)) + (ϵ1 · F3 · F2 · ϵ4) .
(1.3.11)

This directly matches the calculation of [72] for the same numerator, up to a convention-
dependent minus sign. Notice that each term is linear in the polarisation vectors for the
external particles, as follows from the reduced Pfaffian. We stress that this numerator cor-
responds to the reference ordering RO = (1234). This reference ordering should also be used
in calculating the other numerator N(1234), which would be simpler because one can see by
repeating the process above that there will be a unique decomposition for any Ī satisfying
the criteria above, consisting of only single-element subsets. This is a general statement for
whenever RO = CO.

This algorithm can be used to calculate the numerators in the decomposition of the
kinematic integrand (1.3.1) at arbitrary multiplicity. We will see in later chapters that the
same algorithm can be used to calculate numerators at loop-level. The fundamental ideas
to be taken away from this section are that (i) the kinematic integrand can be put into
an expansion of the form (1.3.1), and that (ii) there exists an algorithm to calculate the
numerators explicitly in said expansion. This will allow one to explicitly calculate the nu-
merators appearing in n-point expressions for amplitudes at tree- and loop-level throughout
this thesis.

1.4 The trivalent graph expansion

In the last section we discussed how the kinematic half-integrand can take the form as a
sum over permutations of Parke-Taylor factors with kinematic numerators,

Ikin
Ei=0
=

∑
ρ∈Sn−2

N(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
, (1.4.1)

and reviewed an algorithm to calculate the numerators N to arbitrary multiplicity. It turns
out that the colour half-integrand can also be written in a similar form by utilising a Del
Duca-Dixon-Maltoni (DDM) colour-basis [73],

ISU(N) =
∑

γ∈Sn−2

c(1, γ(2), · · · , γ(n− 1), n)

σ1γ(2)σγ(2)γ(3) · · ·σγ(n−1)nσn1
, (1.4.2)
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1.4. THE TRIVALENT GRAPH EXPANSION

where the colour factors c(1, γ(2), · · · , γ(n− 1), n) are given in terms of the structure con-
stants of the the theory,

c(1, γ(2), · · · , γ(n− 1), n) = fa1aγ(2)b1f b1aγ(3)b2 · · · f bn−3aγ(n−1)an . (1.4.3)

This basis will be fundamental and used throughout this thesis, since we will be utilising
the colour-kinematics duality for which this colour basis is well-suited. Like the kinematic
half-integrand, the expansion of the colour half-integrand (1.4.2) will straightforwardly be
applicable at loop-level, in line with the DDM loop-level colour decomposition [73].

With the decompositions (1.4.1) and (1.4.2), the dependence of the CHY integrand on the
marked points is now exhibited in terms of Parke-Taylor factors. For example, substituting
(1.4.1) and (1.4.2) into the Yang-Mills amplitude gives

A(0)
YM =

∑
ρ,γ ∈Sn−2

∫
M0,n

dµn
N(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
× c(1, γ(2), · · · , γ(n− 1), n)

σ1γ(2)σγ(2)γ(3) · · ·σγ(n−1)nσn1

(1.4.4)
and similarly for gravity we have

A(0)
grav =

∑
ρ,ρ̃∈Sn−2

∫
M0,n

dµn
N(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
× Ñ(1, ρ̃(2), · · · , ρ̃(n− 1), n)

σ1ρ̃(2)σρ̃(2)ρ̃(3) · · ·σρ̃(n−1)nσn1

(1.4.5)
where Ñ = N(ϵ → ϵ̃), following from the definition of Ĩkin. Since the dependence on the
marked points entirely lies in the Parke-Taylor factors, the moduli space integrals require
knowledge of how to perform e.g.∫

M0,n

dµn
1

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
× 1

σ1γ(2)σγ(2)γ(3) · · ·σγ(n−1)nσn1
. (1.4.6)

These happen to be the double-partial amplitudes m(1, ρ, n|1, γ, n) of the biadjoint scalar
theory, discussed in section 1.1. Amazingly, there exists a diagrammatic method of obtaining
the result of these double-partial amplitudes, and hence the moduli space integrals (1.4.6)
for any multiplicity, first shown and detailed in [39]. The result is expressed in terms of a set
of propagators corresponding to trivalent diagrams, with coefficients ±1. In this section, we
will summarise this simple and beautiful method. Although we will do it in a very informal
way, we believe it is sufficient, and point the interested reader to more specific details in the
original reference.

Following the notation of [39], let us denote by m(0)(α|β) the double-partial amplitude
for Parke-Taylor factors in the ordering α, β,

m(0)(α|β) =
∫
M0,n

dµn
1

σα(1)α(2) · · ·σα(n)α(1)
× 1

σβ(1)β(2) · · ·σβ(n)β(1)
. (1.4.7)

It will be convenient to introduce terminology for when particle labels are consecutive in the
α or β ordering, and we shall say that they are α-consecutive and β-consecutive respectively.
Here we intend this to operate forwards and backwards, so for example given α = (12345)
and β = (14325), the particle sets (15) and (234) are considered to be both α, β-consecutive.
On the other hand, for α = (12345) and β = (13524), there are no particle set which are
both α, β-consecutive.

With this the integral (1.4.7) can be calculated diagrammatically by doing the following.
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1.4. THE TRIVALENT GRAPH EXPANSION

(i) First check how many (disjoint) sets are α, β-consecutive. If there are less than two
sets, then m(0)(α|β) = 0.

(ii) Provided one has two or more such sets, draw a disk and place nodes on the edge for
the particle labels according to the α ordering.

(iii) Now draw lines connecting the nodes according to the β ordering.

(iv) For any set of consecutive nodes corresponding to particle labels that are both α, β-
consecutive, the lines connecting them will be closest to the edge and not intersect
any others. For each such set, bring the nodes therein close together.

(v) The lines inside the disk now define a set of polygons which meet each other at intersec-
tion points, or internal nodes. Each polygon defines a sub-amplitude; if the polygon
has m vertices, its sub-amplitude is equal to sum of propagator sets of all m-point
ordered trivalent diagrams with external points given by the vertices.

(vi) Multiply all the sub-amplitudes together, along with propagators connecting them via
internal nodes. This is the result of m(0)(α|β) up to a determinable sign.

Note that if the ‘external polygons’ formed in step (iii) already have one only one internal
node, there is no need to bring the external points close together, and one can proceed
straight to step (v). The overall sign is very important, since it will carry through to
determine the Jacobi relations between numerators and colour factors for example in Yang-
Mills and gravity. There is another set of rules to determine the overall sign, which apply
to the same graphs drawn in the above steps. Firstly, draw arrows on the lines made in
step (iii) above according to the β ordering; each polygon now has a relative ordering with
respect to the α ordering on the edge of the disk. Then the rules are as follows:

� Each polygon with an even number of vertices contributes a minus sign.

� Each polygon with an odd number of vertices contributes a plus sign if its orientation
is the same as the disk (α ordering), and a minus sign if its orientation is opposite to
the disk.

� Each internal node contributes a minus sign.

The product of these signs determines the overall sign of m(0)(α|β). We will give two
examples of how this works, one for five-points and on for eight-points. Let us first look
at the example m(0)(12345|14325), displayed in figure 1.1. Note that since sets (234) and
(15) are consecutive in both orderings, we will have a non-zero answer by step (i). Step (ii)
and (iii) then gives us decomposition into two polygons; since they both have only a single
internal node, there is no need to bring the external points together according to step (iv).
The polygon with external nodes (234) has four vertices, and so contributes a subamplitude
whose set of ordered trivalent diagrams have propagators 1

s23
+ 1

s34
. The set (15) gives a

three-point subamplitude, and so contributes 1, since there are no propagators present in
a three-point amplitude. The internal point connecting these polygons however correspond
to a propagator 1

s234
= 1

s15
connecting the subamplitudes, so the amplitude up to a sign is

m(0)(12345|14325) =
(

1

s23
+

1

s34

)
1

s15
. (1.4.8)
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1.4. THE TRIVALENT GRAPH EXPANSION

Figure 1.1: An example of the diagrammatic calculation of m(0)(12345|14325). The first
diagram corresponds to steps (i) - (iii). Each of the two polygons formed should be considered
as contributing a subamplitude; in this case there is only one internal point so we can draw
inside the polygons the resulting trivalent diagrams.

Figure 1.2: Another example at eight-points form(0)(12345678|12567348). In this case, there
is more than one internal point so we bring together connected adjacent labels according
to step (iv), which occurs in the second diagram. The green blobs in the third diagram
represent the sum of all trivalent diagrams involving the lines connected to it, in a similar
manner to the two diagrams on the right of figure 1.1.

To determine the overall sign we use the rules above. The (234) polygon contributes a minus
sign because it has an even number of vertices, and the (15) polygon contributes a plus sign
because it has the same orientation as the disk. Finally, the single internal point contributes
a minus sign, leading to an overall sign (−1)2 = +1, making (1.4.8) already the correct
answer.

Another example is given in figure 1.2 and corresponds to m(0)(12345678|12567348).
Amazingly the higher addition of points does not contribute much to the complexity of
solving the problem, which makes this method very efficient. In this case, the polygons
formed though step (iii) have more than one internal point, so by step (iv) we bring the
nodes in sets of consecutive external points closer together to obtain a polygon decomposition
with only single internal nodes; this is shown graphically in going form the first to the second
diagrams in figure 1.2. The same reasoning above is then applied to each of the polygons,
of which there are now four. Note that there is now an ‘internal polygon’ which serves the
connect the external ones, and so contributes a set of propagators 1/(s128s567s34) (one for
each internal node). Following the rules above, we get that this double partial amplitude,
up to a sign, is given by

m(0)(12345678|12567348) =
(

1

s12
+

1

s18

)(
1

s56
+

1

s67

)
1

s128s567s34
. (1.4.9)

The sign counting works as before; the (812) polygon gives a (−1) by virtue of having an
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1.5. FROM CHY TO BCJ

even number of points, whilst the (34), (567), and internal polygon give +1, −1 and −1
respectively due to their orientation with respect to the disk (see figure 1.2). Finally, the
three internal points contribute −1 each, giving a total of (−1)6 = +1; therefore (1.4.9) is
indeed the correct result.

Notice that if α and β are the same, α = β, then a single n-point polygon is formed,
where n = Length(α). In this case the result is simply the sum over all propagator sets
for all n-point tree-level trivalent diagrams respecting the α ordering (possibly with a sign
depending on whether n is even or odd according to the sign rules above). Any result for
α ̸= β simply contributes a subset of these terms according to which sets of particles respect
the α and β ordering. For example, at five-points one has that

m(0)(12345|12345) = 1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23
, (1.4.10)

and our five-point example above (1.4.8) corresponds to the last and third terms in (1.4.10)
respectively.

Therefore, the double-partial amplitudes act as a generator of the set of scalar propaga-
tors for amplitudes expressible in terms of trivalent diagrams. In particular it will generate
the set of propagators required for the Yang-Mills and gravity amplitudes in (1.4.4) and
(1.4.5), with the relative signs that will be important to express the colour-kinematics du-
ality. We will see this explicitly in the next section, but for now let us note that this is
not a surprise. Indeed, the double-partial amplitudes can be related to the (inverse) KLT
matrix, which is used in describing the KLT relations between Yang-Mills and gravity am-
plitudes [8, 74–78]. The precise connection can be found in [39], exploiting again certain
properties of the scattering equations called KLT orthogonality [37].

We should mention that similar integration rules exist for more general CHY integrands;
that is, those which are not explicitly in a double Parke-Taylor basis as we have considered
in this section. They are an interesting study in themselves and incorporate methods from
graph-theory, also making a great connection with Feynman diagrams. Examples of these
can be found at tree-level in [40,72,79–82] and at one-loop in [83–85].

1.5 From CHY to BCJ

Let us recap on what we have seen so far. In section 1.1 the CHY integrands for Yang-Mills
and gravity were presented in (1.1.6), being expressed in terms of colour and kinematic
half-integrands. In section 1.3 we discussed how the kinematic half-integrand could be
expressed, on the support of the scattering equations, as a permutation sum of numerators
with Parke-Taylor factors and presented the algorithm to compute these numerators to
arbitrary multiplicity [52]. Then in section 1.4 we saw that the colour half-integrand could
also be expressed in a similar permutation sum, so that the dependence of the integrands
(1.1.6) on the marked points is only in terms of Parke-Taylor factors. In the previous section
we presented the diagrammatic method of [39] to calculate the moduli space integrals in this
case.

With these methods in hand, from CHY one can now straightforwardly obtain tree-level
field theory amplitudes for Yang-Mills and gravity for any number of particles in any number
of dimensions without solving the scattering equations, only using their special properties.
In this section we will see precisely what this results in.
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1 n

ρ(2) ρ(3) ρ(4) ρ(n− 1)

Figure 1.3: An example a of tree-level diagram. Any such diagram can be drawn this way
with 1 and n being the endpoints of the diagram.

Let us go back to (1.4.4) and (1.4.5), which we now recognise as

A(0)
n,YM =

∑
ρ,γ ∈Sn−2

N(1, ρ, n) m(0)(1, ρ, n|1, γ, n) c(1, γ, n) (1.5.1)

A(0)
n,grav =

∑
ρ,ρ̃∈Sn−2

N(1, ρ, n) m(0)(1, ρ, n|1, γ, n) Ñ(1, ρ̃, n) . (1.5.2)

The previous sections were dedicated to obtaining this representation and presenting ways
in which they may be calculated. In particular, we know that each of the double-partial
amplitudes m(0)( · · · | · · · ) correspond to a set of propagators. If one performs this sum and
plugs in the values for these double partial amplitudes, then the amplitudes above can be
expressed as

A(0)
n,YM = (−1)n+1

∑
a∈Γn

Na ca
Da

, A(0)
n,grav = (−1)n+1

∑
a∈Γn

Na Ña

Da
, (1.5.3)

where Γn represents the set of n-point trivalent diagrams, and Da represents the set of
propagators for each a ∈ Γn. The numerators Na and colour factors ca are the corresponding
numerators and colour factors associated with each diagram. Any such diagram can be
drawn as in 1.3, with particles 1 and n on the ‘end-points’. To see the significance of this,
note that certain numerators and colour factors satisfy Jacobi relations by virtue of the
relative signs coming from the moduli space integrations. We will see this in an explicit
example momentarily, but for now let us point out one important detail. The numerators
and colour factors that one calculates in e.g. (1.4.1) and (1.4.2) correspond to diagrams that
can be drawn as ‘half-ladders’, such as the one in figure 1.4. Numerators and colour factors
for diagrams that cannot be drawn directly as a half-ladder, such as the one in figure 1.3
which contains an external tree are precisely obtained through those corresponding to the
half-ladders via Jacobi relations. These appear pairwise for relevant diagrams, so that the

1 n

ρ(2) ρ(3) ρ(n− 1)

Figure 1.4: A half-ladder diagram at tree-level, with end-points 1 and n. They are the
‘master diagrams’ whose numerators are defined to be ‘master numerators’. Numerators for
any tree-level diagram which is not directly a half-ladder, such as the one in figure 1.3 are
determined from these by Jacobi relations.
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1.5. FROM CHY TO BCJ

colour-kinematics duality is manifest, i.e.

ca + cb + cc = 0 ⇔ Na +Nb +Nc = 0 . (1.5.4)

The representation of the amplitudes (1.5.3) coming from CHY in this way precisely give
the amplitudes in a BCJ representation. The numerators Na are therefore BCJ numerators,
and those for the half-ladder diagrams are master BCJ numerators since they determine
the numerators for all other diagrams. We stress again however that the numerators are
not constructed to be BCJ numerators; that they are is simply a consequence of the moduli
space integrations being localised on solutions to the scattering equations.

Let us consider an example at four-points to see how this works out explicitly. We will
consider Yang-Mills theory, but since there is a clear structural similarity with gravity this
example extends straightforwardly thereof. Starting with (1.5.1), there will be four terms
coming from the sum over permutations, |S2|2 = 4. Explicitly these terms are, from (1.5.1),

A(0)
YM =+N(1, 2, 3, 4) m(0)(1, 2, 3, 4|1, 2, 3, 4) c(1, 2, 3, 4)

+N(1, 3, 2, 4) m(0)(1, 3, 2, 4|1, 2, 3, 4) c(1, 2, 3, 4)
+N(1, 2, 3, 4) m(0)(1, 2, 3, 4|1, 3, 2, 4) c(1, 3, 2, 4)
+N(1, 3, 2, 4) m(0)(1, 3, 2, 4|1, 3, 2, 4) c(1, 3, 2, 4) .

(1.5.5)

Noting that, using the method described in the last chapter, one can easily find

m(0)(1, 2, 3, 4|1, 2, 3, 4) = − 1

s12
− 1

s14
, m(0)(1, 2, 3, 4|1, 3, 2, 4) = 1

s14
,

m(0)(1, 3, 2, 4|1, 3, 2, 4) = − 1

s13
− 1

s14
, m(0)(1, 3, 2, 4|1, 2, 3, 4) = 1

s14
,

(1.5.6)

and therefore (1.5.5) is expressed as

A(0)
YM =− c(1, 2, 3, 4)

[
N(1, 2, 3, 4)

s12
+
N(1, 2, 3, 4)−N(1, 3, 2, 4)

s14

]
− c(1, 3, 2, 4)

[
N(1, 3, 2, 4)

s13
+
N(1, 3, 2, 4)−N(1, 2, 3, 4)

s14

]
.

(1.5.7)

Let us rename N(1, 2, 3, 4) ≡ ns, N(1, 3, 2, 4) ≡ nu, c(1, 2, 3, 4) ≡ cs, c(1, 3, 2, 4) ≡ cu,
s12 ≡ s, s14 ≡ t and s13 ≡ u. Then (1.5.7) is written as

A(0)
YM = −csns

s
− cs(ns − nu)

t
− cunu

u
− cu(nu − ns)

t

= −csns
s

− (cs − cu)(ns − nu)

t
− cunu

u
. (1.5.8)

Indeed, now defining ct := cs − cu and nt := ns − nu, we see that this is the recognisable
BCJ form of the four-point amplitude for Yang-Mills,

A(0)
YM = −csns

s
− ctnt

t
− cunu

u
. (1.5.9)

The definition of the colour and numerator factors ct and nt can be seen diagrammatically
in figure 1.5 below.
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1

2 3

4

=

1

2 3

4

−
1

3 2

4

Figure 1.5: An example of a Jacobi relation between numerators and colour factors for
certain diagrams. This rule can be applied continuously on any diagram to obtain the
relationship between its numerator/colour factor and those of the master diagrams.

Clearly, if we were working with gravity instead, then we would have had c( · · · ) → Ñ( · · · )
from the beginning, and would have obtained through the same manipulations

A(0)
grav = −nsñs

s
− ntñt

t
− nuñu

u
. (1.5.10)

This example exhibits a point we mentioned earlier; that the numerators and colour factors
for certain diagrams (here the t-channel diagram) are related to others by Jacobi relations
not because they were designed that way, but simply as a consequence of the relative signs in
the moduli space integrations. Therefore, if the CHY half-integrands for any theory can be
written in a Parke-Taylor decomposition, then their numerators will obey kinematic Jacobi
relations. This provides another way of obtaining numerators for theories which exhibit the
colour-kinematics duality, provided one has a corresponding CHY representation.

This section provides a clear connection between the CHY expressions and the BCJ ex-
pressions of tree-level amplitudes. There is still the question however of whether there exists
a more intuitive formalism from which the CHY expressions, and therefore the scattering
equations, naturally arise. Unsurprisingly, there does exist such a formalism, which not only
achieves these tasks, but also suggest natural extensions to loop-level, which we will discuss
in the next chapter.
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Chapter 2

The ambitwistor string

Not long after the discovery of the CHY formalism, Mason and Skinner discovered a world-
sheet theory whose correlation functions gave the amplitudes depicted by CHY for Yang-
Mills and gravity [43]. They proposed a string theory whose target space was not Minkowski
spacetime, but rather ambitwistor space, subsequently called the ambitwistor string. Am-
bitwistor space is the space of complexified null geodesics in spacetime. It of course has
deep connections with twistor space [86–88], and in fact in four-dimensions it is related to
twistor space and its dual [89] (hence the name).

Whilst it shares many features with string theory in its formulation, it has many crucial
distinguishing features. Firstly, there is no notion of α′, and indeed one should think of
the ambitwistor string having α′ = 0. This has the consequence that the spectrum of
the string consists of massless states (as opposed to the tower of massive states in string
theory), and that the amplitudes directly correspond to field theory amplitudes. The latter
should be compared with ordinary string theory, in which such amplitudes arise in the field
theory limit α′ → 0. Secondly, whilst there is some notion of worldsheet supersymmetry
in the models we will be considering, the theory is not formulated on a super-Riemann
surface, in contrast to superstring theory. On top of that, requiring the theory properly be
placed in ambitwistor space introduces another gauge symmetry, which turns out to be the
crucial feature in describing field theory amplitudes. These previous two points are indeed
connected. Given the differences mentioned, the ambitwistor string should be thought of as
a worldsheet model ; that is, a model for field theory amplitudes formulated on a worldsheet.

In this section we introduce the ambitwistor string and how, after quantisation, it gives
rise to the CHY formulae from the last section. Particular focus will be on how the scattering
equations arise, since this will be important for following chapters. We will then review how
the ambitwistor string gives rise to one-loop amplitudes in field theory, as a consequence
of considering the theory on a genus-one Riemann surface. This is natural from the point
of string theory, but there will be new features appearing in the ambitwistor string. These
key features will be present in further chapters, when we consider higher-genus expressions,
corresponding to field theory amplitudes at higher loops.

2.1 The type II ambitwistor string action

The model we will be utilising, and that which is the best understood, will be the type II
ambitwistor string, first discussed in [43]. This is reminiscent of the type II theory in the
superstring, though there will be crucial differences as we will see. Prior to gauge-fixing,
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2.1. THE TYPE II AMBITWISTOR STRING ACTION

the action for this theory is written as

S =
1

2π

∫
Σ
Pµ∂̄X

µ +
1

2
Ψµ∂̄Ψ

µ +
1

2
Ψ̃µ∂̄Ψ̃

µ − e

(
Pµ∂X

µ +
1

2
Ψµ∂Ψ

µ +
1

2
Ψ̃µ∂Ψ̃

µ

)

− ẽ
P 2

2
− χPµΨ

µ − χ̃PµΨ̃
µ .

(2.1.1)

In contrast to ordinary (closed) string theory, all fields in the action are chiral ; that is to say
they should all be considered left-movers, as opposed to having left- and right-movers. The
fields (P,X) describe a map into bosonic ambitwistor space. Specifically, for a spacetime
M the field X is a map from the string worldsheet to spacetime, X : Σ →M , whilst P is a
holomorphic (1,0)-form which takes values in the cotangent bundle T ∗M , P ∈ Ω1,0(Σ, T ∗M).
As fields in a two-dimensional conformal field theory (CFT), this means they have conformal
weight (0,0) and (1,0) respectively. The anticommuting fields Ψµ, Ψ̃µ correspond to fermions

on the worldsheet, which take values in1 ΠΩ0(Σ,K
1/2
Σ ⊗ TM), where KΣ is the canonical

bundle on Σ, and therefore these fields have conformal weight (12 , 0). The field e acts as
a Lagrange multiplier setting the worldsheet energy-momentum tensor to zero, which is
common in string theory. Similarly, the field ẽ acts as a Lagrange multiplier enforcing that
P 2 = 0 on the worldsheet. This constraint, along with its corresponding symmetry, properly
places the theory in ambitwistor space, as we will discuss momentarily. Finally, the fields χ
and χ̃ are Lagrange multipliers setting P ·Ψ = P ·Ψ̃ = 0, which are related to supersymmetric
extensions of the previous constraint.

Before we discuss the symmetries of the action, let us briefly comment on why the action
(2.1.1) makes sense. The operator ∂̄ is defined as ∂̄ = dz̄ ∂z̄, and given that P is a (1,0)-
form on Σ, the kinetic term P · ∂̄X provides an appropriate measure for integrating over
the worldsheet; that is, it is a top-top form. Similarly, ∂ is defined as dz ∂z such that the
energy-momentum tensor in (2.1.1) is a quadratic differential on Σ. As P 2 is also a quadratic
differential, the fields e and ẽ must be (0,1)-forms with values in the tangent bundle on the
worldsheet, e, ẽ ∈ Ω0,1(Σ, TΣ); in other words, they are Beltrami differentials2. Finally,
to have the correct Grassmann properties and integration measure on Σ, it must be that

χ, χ̃ ∈ ΠΩ0,1(Σ, T
1/2
Σ ).

The action (2.1.1) has three main symmetries. The first, which is common from string
theory, is the set of holomorphic worldsheet reparametrisations, generated by the energy-
momentum tensor. Under a diffeomorphism parametrised by a smooth worldsheet vector
field v, the bosonic fields transform as

δvX
µ = v∂Xµ , δvPµ = ∂(vPµ) ,

δve = ∂̄e+ v∂e− e∂v , δv ẽ = ∂̄ẽ+ v∂ẽ− ẽ∂v ,
(2.1.2a)

and the fermionic fields transform as

δvΨ
µ = v∂Ψµ +

1

2
Ψµ∂v , δvΨ̃

µ = v∂Ψ̃µ +
1

2
Ψ̃µ∂v ,

δvχ = v∂χ− 1

2
χ∂v , δvχ̃ = v∂χ̃− 1

2
χ̃∂v .

(2.1.2b)

1Π is often called the ‘parity-reversing functor’, and for our purposes simply states that the fields are
anti-commuting.

2Beltrami differentials µ = µ z
z̄ dz̄ ⊗ ∂z parametrise the complex structure of Riemann surfaces. Nice

reviews of these objects in the context of string theory can be found for example in [90,91]. Notice that the
kinetic terms and the energy-momentum tensor arise from a single term with the differential operator ∂̄+e∂.
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The action (2.1.1) also contains another symmetry associated with the field ẽ that affect the
bosonic fields, which can be called the ambitwistor gauge symmetry,

δαX
µ = αηµνPν , δαPµ = 0 , δαe = 0 , δαẽ = ∂̄α+ e∂α− α∂e . (2.1.3)

Combined with the constraint that P 2 = 0, the first of these transformations instructs us
that we should not consider as different two points Xµ and X ′µ that differ by a translation
along a null direction Pµ. Therefore, this symmetry is associated with the theory being
placed in the space of complex null geodesics, i.e. ambitwistor space, hence why it is called
the ambitwistor gauge symmetry.

Finally, the presence of the fermions gives the action (2.1.1) an N = 2 supersymmet-
ric extension of the ambitwistor gauge symmetry. For one set of these transformations
parametrised by a Grassmann odd ϵ (associated to Ψµ), the bosonic fields transform accord-
ing to

δϵX
µ = ϵΨµ , δϵPµ = 0 , δϵe = 0 , δϵẽ = 2ϵχ (2.1.4a)

and the fermionic fields transform according to

δϵΨ
µ = ϵ ηµνPν , δϵΨ̃

µ = 0 , δϵχ = ∂̄ϵ+ e∂ϵ− 1

2
ϵ∂e , δϵχ̃ = 0 . (2.1.4b)

The other set have similar transformations parametrised by ϵ̃ (associated with Ψ̃µ). These
transformations point out another crucial difference with respect to string theory. Namely,
they are associated with the ambitwistor gauge transformations, generated by P 2, as op-
posed to the worldsheet diffeomorphisms generated by the energy-momentum tensor. In-
deed, this can be seen by noticing that the supersymmetry transformations square not to
the diffeomorphisms generated by the energy-momentum tensor, but to the ambitwistor
gauge transformations generated by P 2. Consequently, one does not have worldsheet super-
diffeomorphisms in the ambitwistor string, and therefore the theory is not formulated on a
super-Riemann surface.

It should be mentioned that the bosonic part of the action (2.1.1) can be derived straight-
forwardly either from a chiral complexification of the worldline action for a massless particle,
or from a chiral α′ → 0 limit of Polyakov action in the bosonic string. This was noticed
in [43], and indeed there it can also be seen that the full type II action similarly results from
the chirally complexified worldline action by including fermions3. The ambitwistor string un-
derpins the scattering amplitudes of CHY, and the action (2.1.1) results in the corresponding
formulae for NS-NS gravity. Naturally one may then consider different ambitwistor string
actions which give rise to amplitudes in different theories, and a large number have been
found for the known CHY formulae [92]. The bosonic part of the action (2.1.1) forms the
backbone for all of these theories4.

2.2 Quantisation

In order to be able to calculate scattering amplitudes, one needs to be able to quantise the
theory and find the physical vertex operators. In this section we will focus on the former,

3However, a chiral α′ → 0 limit which results in the full action (2.1.1) has not yet been found. One of
the difficulties behind this is that fermions in the type II superstring have opposite chirality, whereas here
they have the same chirality.

4Though on its own, it forms an unrecognisable theory of gravity. It was believed that it would violate
diffeomorphism invariance at one-loop, which motivated the use of including fermions [93]. Reference [94]
suggests that the bosonic action could be seen as a double-copy of the (DF )2 theory of [95].
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which will in turn aid us in completing the latter for the theory we will be considering. Using
BRST quantisation, much of the gauge-fixing procedure is similar to ordinary string theory.
Therefore, we will be focusing on the crucial differences in comparison with the ambitwistor
string, as well as any other results that will be of significant use to us in the next section
where we calculate the vertex operators and subsequently the tree-level scattering amplitudes
in the type II ambitwistor string. Both of these manifest in the form of picture-changing
operators (PCOs). Since we will ultimately be considering n-point correlation functions, we
will approach the gauge-fixing procedure with the knowledge that we will be working on a
worldsheet with punctures.

As usual we introduce ghost systems associated with the gauge symmetries, discussed
in the last section, we need to fix in the path integral. Like in ordinary string theory
this gives us a bc system for the worldsheet diffeomorphisms and a βγ, β̃γ̃ system for the
supersymmetries associated with Ψ, Ψ̃ respectively. For the ambitwistor gauge symmetry,
being a bosonic symmetry, we also introduce a b̃c̃ system. We note since all fields in the
ambitwistor string are chiral, so too are the ghosts, and that

b, b̃ ∈ ΠΩ0(Σ,K2
Σ) , c, c̃ ∈ ΠΩ0(Σ, TΣ) , (2.2.1a)

β, β̃ ∈ Ω0(Σ,K
3/2
Σ ) , γ, γ̃ ∈ Ω0(Σ, T

1/2
Σ ) . (2.2.1b)

Therefore the fields b, b̃ have conformal weight (2, 0), c, c̃ have conformal weight (−1, 0), β, β̃
have conformal weight (32 , 0) and γ, γ̃ have conformal weight (−1

2 , 0).

Worldsheet diffeomorphisms are gauge-fixed as in string theory; namely by setting e = 0
and integrating over the moduli space of the punctured Riemann sphere. Notice that when
we set e = 0, from (2.1.3), (2.1.4b) the fields ẽ, χ and χ̃ transform with respect to their
corresponding symmetries according to

δαẽ = ∂̄ẽ , δϵχ = ∂̄χ , δϵ̃χ̃ = ∂̄χ̃ . (2.2.2)

Since the gauge transformations are required to vanish at the locations of the punctures,
the fields can then only vary according to a fixed Dolbeault cohomology class5. As ẽ ∈
Ω0,1(Σ, TΣ), its relevant cohomology class is given by H0,1(Σ, TΣ(−z1 · · · − zn)) which has

dimension 3g + n − 3. Likewise, since χ, χ̃ ∈ ΠΩ0,1(Σ, T
1/2
Σ ) its relevant cohomology class

is given by H0,1(Σ, T
1/2
Σ (−z1 · · · − zn)) which has dimension 2g + n− 2. These cohomology

classes are finite-dimensional and so can be expanded in a basis, which is chosen to be {µr}
with r = 1, · · · 3g + n− 3 and {χα} with α = 1, · · · , 2g + n− 2.

As is usual in a quantisation procedure, we add a gauge-fixing term to the action, here
in the form of [51,97]

SGF =

∫
Σ
{Q, b̃ F (ẽ) + β G(χ) + β̃ G̃(χ̃)} (2.2.3)

where F , G, G̃ are gauge-fixing functions. Because we are working on a punctured Riemann
surface (in the presence of vertex operators) we cannot straightforwardly use these func-
tions to set the Lagrange multipliers to zero due to the transformations (2.2.2). From the
considerations above we can at most set them to be elements of their respective cohomology

5As ∂̄2 = 0, there is naturally a cohomology determined by the Dolbeault operator ∂̄, consisting of forms
ϕ which are ∂̄-closed, ∂̄ϕ = 0, but not ∂̄-exact, ϕ ̸= ∂̄ϕ̃; see e.g. [96]
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classes

F (ẽ) = ẽ−
3g+n−3∑

r=1

srµr , G(χ) = χ−
2g+n−2∑
α=1

ζαχα , G̃(χ̃) = χ̃−
2g+n−2∑
α=1

ζ̃αχα , (2.2.4)

where sr, ζα and ζ̃α are simply coefficients of the bases {µr} and {χα}. Doing this introduces
(finite-dimensional) integrals over these coefficients along with qr = Q ◦ sr, ρα = Q ◦ ζα,
ρ̃α = Q ◦ ζ̃α as well as (functional) integrals over the Nakanishi-Lautrup fields H = Q ◦ b̃,
B = Q ◦ β and B̃ = Q ◦ β̃. The functional integral over ẽ can then be performed explicitly
which sets H = P 2/2. Following this, the integrals over the coefficients sr and qr then lead
to PCOs in the path integral of the form [50]

3g+n−3∏
r=1

δ̄

(∫
Σ
µrP

2

)(∫
Σ
µr b̃

)
. (2.2.5)

At genus-zero we can choose the basis µr such that, when integrated against a quadratic
differential over the worldsheet, it picks up the residue at a puncture location yr. The role
of the second factor in (2.2.5) is then similar to ordinary string theory. If we treat all vertex
operators as fixed, then each one comes with a factor cc̃, however the residues of bb̃ at the
marked points soak up these factors on account of b−1b̃−1cc̃ = 1, which leaves the form of
the vertex operators that are subsequently integrated over the worldsheet [90]. The first
factor (2.2.5) is a characteristic feature of ambitwistor strings, which will inevitably fix the
moduli space integrations onto the solutions of the scattering equations.

Likewise, the basis {χα} can be chosen to pick up the value of a function at locations
{xα}. Much of the remaining part of the procedure then proceeds as in traditional string
theory; namely for those parameters related to χ, χ̃, similar integrations to those described
above lead to the insertion of PCOs in the path integral of the form

2g+n−2∏
α=1

(
δ(β)δ(β̃)P ·ΨP · Ψ̃

)
(xα) . (2.2.6)

These also play their respective role as in string theory, as we shall see below.
After this procedure, the gauge-fixed action becomes free with the inclusion of the ghost

fields,

S =
1

2π

∫
Σ
Pµ∂̄X

µ +
1

2
Ψµ∂̄Ψ

µ +
1

2
Ψ̃µ∂̄Ψ̃

µ + b∂̄c+ b̃∂̄c̃+ β∂̄γ + β̃∂̄γ̃ . (2.2.7)

To complete the procedure, we would like to discuss the critical dimension, which is directly
related to the condition that the BRST charge is nilpotent6, Q2 = {Q,Q} = 0. In string
theory this is commonly assured by having the total central charge of the system vanish.
The gauge-fixed (P,X) system consists of such fields, whose central charge cX,P is calculated
in the usual way to be the O(σ−4) term in the energy-momentum tensor self-OPE. From
(2.1.1) one reads off the energy-momentum tensor for this system to be TX,P = Pµ∂X

µ,
whose self-OPE is easily calculated to be

[Pµ∂X
µ](σ)[Pµ∂X

µ](σ′) ∼ 2D

(σ − σ′)4
+

[2Pµ∂X
µ](σ′)

(σ − σ′)2
+

[∂(Pµ∂X
µ)](σ′)

(σ − σ′)

6This is a necessary but not sufficient condition that that the theory is consistent in the quantum regime.
For example, it is also required that the loop integration is well-defined; we will come back to this in a later
section.
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wherein one sees that cX,P = 2D, with D the spacetime dimension. The central terms for all
the other fields are known since they are simply free CFTs in two-dimensions upon gauge-
fixing. For example, the two free fermion systems are known [90] to give a contribution
cΨ,Ψ̃ = 2(D/2) = D, and two copies of the b, c, β, γ system (or equivalently the B,C
system [98]) with λ = 2 gives [99] a contribution 2cB,C = 2(−15) = −30. The condition
that the total central charge vanish for the theory reads

cX,P + cΨ,Ψ̃ + cB,C = 0 = 2D +D − 30 = 3(D − 10),

i.e. that the critical dimension is D = 10. This is again analogous to the RNS superstring,
though as previously pointed out, all fields in this theory are chiral and we have α′ = 0,
restricting us to massless modes of the string. This makes the ambitwistor string model fun-
damentally different to the CHY formalism, since there one can construct these amplitudes
in any dimension, whereas here these are only physical in D = 10. On the Riemann sphere
however is no obstruction in dimensionally reducing the formulae to produce amplitudes in
lower-dimensions, whereas on higher-genus surfaces the requirement that D = 10 will be
necessary for modular invariance, as we will discuss in later chapters. In the next section
we will introduce the vertex operators required to obtain the NS-NS gravity amplitudes of
CHY, as well as the conditions under which they are physical.

2.3 Vertex operators and the scattering equations

The method of obtaining amplitudes in string theory derive from the Polyakov path inte-
gral [100, 101]. At any genus g, this formalism instructs us to integrate over all worldsheet
configurations in the presence of string insertions. Through the state-operator correspon-
dence, the string states are accounted for by the insertion of vertex operators; the conditions
under which these are physical is determined by their behaviour under the BRST transfor-
mations. Specifically, vertex operators correspond to physical states if they belong to the
BRST cohomology. In this section we will present the vertex operators relevant to us and
see how the scattering equations arise explicitly.

Let us now see the effect of the PCOs (2.2.5), (2.2.6) we obtained in the last section.
Since we are primarily concerned with obtaining the scattering amplitudes for NS-NS gravity,
we will use the vertex operators corresponding the NS-NS states7. Given the similarities
with the RNS string, we can assume the unintegrated vertex operators take a similar form
therein,

Ui(σ) = δ(γ)δ(γ̃) ϵi ·Ψ ϵ̃i · Ψ̃ eiki·X(σ) , (2.3.1)

where ki is the momentum of the i’th state. Note that this vertex operator has vanishing
conformal weight as required. Each polarisation vector is associated with an NS state, and
their outer product constitutes the polarisation tensor characterising the graviton, dilaton,
and B-field in NS-NS gravity.

For an n-particle amplitude on the sphere (g = 0) let us assume the presence of n fixed
vertex operators of the form (2.3.1). Being fixed, each of these will be accompanied by a
cc̃ factor. Bosonisation of the superconformal ghosts γ, γ̃ give the vertex operators (2.3.1)
being in the −1 picture. From (2.2.6) we have n+2g−2 PCOs which act on (2.3.1) through

7A more complete discussion involving Ramond states can be found in [50], where examples are also
calculated explicitly.
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the OPE [
δ(β)δ(β̃)P ·ΨP · Ψ̃

]
(x)

[
δ(γ)δ(γ̃) ϵi ·Ψ ϵ̃i · Ψ̃ eiki·X

]
(σ)

∼
[
(ϵi · P + ϵi ·Ψ ki ·Ψ)(ϵ̃i · P + ϵ̃i · Ψ̃ ki · Ψ̃) eiki·X

]
(σ) ,

(2.3.2)

giving the vertex operators in the 0 picture, denoted Vi(σ),

Vi(σ) = (ϵi · P + ϵi ·Ψ ki ·Ψ)(ϵ̃i · P + ϵ̃ · Ψ̃ ki · Ψ̃) eiki·X(σ) . (2.3.3)

On the sphere there will be n−2 of these; this is in line with the fact that there must be two
factors of δ(γ)δ(γ̃) for the two zero-modes of γ, γ̃ on the sphere [99]. One may check that
the vertex operators (2.3.1) and (2.3.3) are BRST-closed under the conditions that k2i = 0
and ϵi · ki = ϵ̃i · ki = 0, for which they are physical. They are also BRST-exact for ϵi ∼ ki,
ϵ̃ ∼ ki, in which the state is pure gauge.

We then have the PCOs given by (2.2.5). As mentioned in the last section, for each
vertex operator Vi it acts on, the factors8

∫
Σ µ̂ b

∫
Σ µ b̃ remove the corresponding factors of

cc̃ and replace them with dσ2i , following from the (holomorphic) form degrees. On the sphere
there will be n−3 of these; this is in line with the fact that there must be three factors of cc̃
for the three zero-modes associated with the residual SL(2,C) symmetry [90]. Each of these
however will also be accompanied by a factor δ̄

(∫
Σ µP

2
)
. As mentioned in the last section,

on the sphere we choose µ such that this extracts the residue of P 2 at the marked point σi,
and therefore the integrated vertex operators take the form9

Vi =

∫
Σ
δ̄(Resσi P

2)Vi(σi) . (2.3.4)

But what is this residue? Let us look more closely at what occurs in the path integral.
Each vertex operator from (2.3.1) and (2.3.3) contains the factor eiki·X(σi), which in the
path integral can be brought into the action (2.2.7) on the support of delta functions. The
relevant part of the action then becomes

1

2π

∫
Σ
P · ∂̄X + 2πi dσ

n∑
i=1

ki ·X(σ) δ̄(σ − σi) . (2.3.5)

By integrating by parts we can evaluate the X path integral straightforwardly. As in string
theory the integration over the zero-modes of X produces a momentum-conserving delta-
function, whilst the integration over the non-zero modes fix P to its classical value,

∂̄Pµ(σ) = 2πi dσ
n∑

i=1

kiµ δ̄(σ − σi) . (2.3.6)

Using the fact that 2πi δ̄(σ−σi) = ∂̄(1/(σ−σi)), this has the following solution at genus-zero:

Pµ(σ) = dσ

n∑
i=1

kiµ
σ − σi

. (2.3.7)

8The first of these arises as in the usual string, and µ̂ is the Beltrami differential associated directly with
fixing the worldsheet diffeomorphisms.

9To make sense of this, we take the residue of a quadratic differential to be a one-form on Σ, so that when
its form degree is taken out of the delta function it essentially cancels one of the dσi coming from Vi(σi),
which is itself a quadratic differential from (2.3.3). Recall that the delta function itself is defined to be a
distribution-valued (0, 1)-form on Σ, so overall the correct measure is obtained in order to integrate over Σ.
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On the sphere the field P is frozen to this value by the (X,P ) path integral, so one may
calculate the residue of P 2 directly from (2.3.7). Using momentum conservation and the
fact that the kj are null, this results precisely in the scattering equation for the i’th particle:

Resσi P
2 = ki · P (σi) = dσi

∑
j ̸=i

ki · kj
σi − σj

≡ dσi Ei . (2.3.8)

This is how the scattering equations arise in the ambitwistor string. In total, gauge-fixing
the symmetry which enforces the target space to be ambitwistor space produces PCO inser-
tions into the correlation functions which enforce the scattering equations. Therefore, they
naturally arise from the fact that the string is in ambitwistor space, the space of complex
null geodesics. The integrated vertex operators (2.3.4) are henceforth given by

Vi =

∫
Σ
δ̄(ki · P (σi))Vi(σi) , (2.3.9)

with Vi(σi) given as in (2.3.3). On the sphere there will be n−3 of these; this is in line with
the fact that only n−3 of the scattering equations need to be enforced, due to its properties
under SL(2,C) as discussed in section 1.2.

Note that from (2.3.9), each moduli space integral dσi is coupled to a scattering equation
δ̄(Ei) to be enforced. All moduli space integrals are therefore fixed by the solutions to the
scattering equations. The results of the correlation functions are thus more akin to field
theory, where there is no notion of a worldsheet. The ambitwistor string is therefore a
worldsheet model of quantum field theory.

2.4 From the ambitwistor string to CHY

In the last section we calculated the vertex operators for the NS-NS states in the ambitwistor
string, taking into account the PCOs from the gauge-fixing procedure of section 2.2. We
will now compute the n-point correlation function using these vertex operators, and in turn
obtain the n-point NS-NS gravity amplitude.

From the considerations in the last section, this correlation function will take the form

A(0)
NS-NS =

〈
cr c̃rUr csc̃sUs ctc̃tVt

∏
i ̸=r,s,t

∫
Σ
δ̄(ki · P (σi))Vi(σi)

〉
, (2.4.1)

where we have chosen the PCOs (2.2.5) to act on all but three vertex operators labelled by
r, s, t and the PCOs (2.2.6) to act on all but two vertex operators r, s. This is in line with
the zero-mode counting of the c, c̃ and γ, γ̃ ghosts, as mentioned in the last section. The
vertex operators Ui and Vi take the forms (2.3.1) and (2.3.3) respectively. In the last section
we discussed how the X,P path integral is performed, so we have yet to perform the path
integral for Ψ, Ψ̃ and the ghost fields. The latter is well-studied [90, 98, 99], so for now we
will focus on the former. Note that in the action (2.2.7) the fermion fields are decoupled
and symmetric under interchanges, so their path integrals will yield identical contributions
in form. Let us then study in detail the Ψ path integral, which is analogous to∫

DΨ e−
1
2π

∫
Σ Ψµ∂̄Ψµ

n∏
i=1

(ϵi · P (σi) + ϵi ·Ψ(σi) ki ·Ψ(σi)) (2.4.2)
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containing n picture-0 vertex operators (2.3.3). Of course, our path integral actually has
n − 2 of these, (n − 3 which are integrated, and 1 from ctc̃tVt) but we will deal with this
later. To give an idea of how this is evaluated, one of the terms appearing in the product
expansion of (2.4.2) will be∫

DΨ e−
1
2π

∫
Σ Ψµ∂̄Ψµ

n∏
i=1

ϵi ·Ψ(σi) ki ·Ψ(σi) , (2.4.3)

which is the term in (2.4.2) with maximal degree in Ψ. By considering all possible Wick
contractions or otherwise, (2.4.3) can be seen to be equivalent to the Pfaffian of the 2n× 2n
matrix M ′,

M ′ =

(
A −C ′T

C ′ B

)
(2.4.4)

with block entries

Aij =
ki · kj
σij

√
dσidσj , Bij =

ϵi · ϵj
σij

√
dσidσj , C ′

ij =
ϵi · kj
σij

√
dσidσj

for i ̸= j and Aii = Bii = C ′
ii = 0. Here we have accounted for the form degrees by including

them inside the matrix entries. On the other hand, the term in (2.4.2) with minimal degree
in Ψ is ∫

DΨ e−
1
2π

∫
Σ Ψµ∂̄Ψµ

n∏
i=1

ϵi · P (σi) . (2.4.5)

The field P has been fixed by the X path integral to be (2.3.7), so these terms appear as

ϵi · P (σi) =
∑
j ̸=i

ϵi · kj
σij

dσi .

If one considers a square matrix M ′′ defined by

M ′′ =

(
0 −C ′′T

C ′′ 0

)
with 0 being the n× n empty matrix, and the block matrices C ′′ defined as

C ′′
ii = −ϵi · P (σi) = −

∑
j ̸=i

ϵi · kj
σij

dσi , C ′′
ij = 0 for i ̸= j

then the expression (2.4.5) can also be expressed as a Pfaffian, here of the matrix M ′′.
Returning to (2.4.2), note that being an ordered product of these terms, we can write it as
an expansion into all possible ordered subsets of the elements in the product∫

DΨ e−
1
2π

∫
Σ Ψµ∂̄Ψµ

∑
b∈ordered
subset

∏
i∈b

ϵi · P (σi)
∏
j∈bc

ϵj ·Ψ(σj) kj ·Ψ(σj) (2.4.6)

where bc denotes the complement of b. Given the examples above, the correlation function
(2.4.6) can henceforth be written in terms of sums over products of Pfaffians∑

b∈ordered
subset

sgn(b, bc)Pf (M
′′{i}
{i} )Pf (M

′{j}
{j} ) ; i ∈ b, j ∈ bc.
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Here the matrix M
′′{i}
{i} is simply the matrix M ′′ with the rows and columns of the subset

b removed; M
′{j}
{j} is defined similarly, only with the rows and columns of bc removed. The

sgn(b, bc) factor has been added to cancel the minus signs that arise from the Pfaffians10.
The Ψ path integral is performed in producing the Pfaffian of M ′. To simplify this, we note
the identity [50]

Pf (X + Y ) =
∑

b∈ordered
subset

sgn(b, bc)Pf (X
{i}
{i} )Pf (Y

{j}
{j} ) ; i ∈ b, j ∈ bc

which gives the fermion path integral (2.4.2) as∫
DΨ1 e

− 1
2π

∫
Σ Ψµ∂̄Ψµ

n∏
i=1

(ϵi · P (σi) + ϵi ·Ψ(σi) ki ·Ψ(σi)) = Pf (M ′ +M ′′) =: Pf (M).

The matrix M is defined to be the sum of M ′ and M ′′ and is precisely the matrix (1.1.9)
present in the CHY expressions for Yang-Mills and gravity. As mentioned above the path
integral over the other fermionic field Ψ̃ will yield an identical contribution, only with tilde’d
polarisation vectors.

This is not however what we have in our correlation function; we do not have n picture-0
vertex operator insertions, but only n − 2 of them. The others come from treating the U
insertions as if they were V insertions, though they differ by a factor involving ki · Ψ(σi)
and an additional ϵi · P (σi) factor. To give the correct contributions accounting for the U
insertions, we only need to get rid of the rows and columns which contain these differing
factors. Since, from (2.4.1), the U insertions are associated with the particles labelled by
r and s, the correct Pfaffian structure is obtained by removing these rows and columns,
Pf (M) → Pf (M rs

rs ).

Evaluating the βγ path integral gives a factor
√
dσrdσs/σrs from the δ(γ)δ(γ) contraction

at locations σr, σs, which we combine with the Pfaffian above to form the reduced Pfaffian:

√
dσrdσs
σrs

Pf (M rs
rs )

∼= Pf ′(M) . (2.4.7)

The form degree is here included in the reduced Pfaffian so that it has the appropriate form
degree for all particles. From the CHY perspective the (unreduced) Pfaffian of M vanishes
due to being co-rank 2; in the ambitwistor string this Pfaffian actually vanishes to second
order as a consequence of the worldsheet supersymmetry (2.1.4a), (2.1.4b) at e = 0 [43].
Likewise, the permutation symmetry of the reduced Pfaffian, is simply a consequence of our
freedom in applying the PCOs.

Finally, what remains is the path integrals for the bc and b̃c̃ ghost systems. The in-
tegration over the cc̃ factors in (2.4.2) is well-known11 at genus-zero, and both result in a
factor σrsσstσtr/dσrdσsdσt. Respecting the notation of [43] we write one of these factors as
1/vol SL(2,C) and combine the other with the delta-functions in (2.3.9) to give

σrsσstσtr
dσrdσsdσt

∏
i ̸=r,s,t

δ̄(ki · P (σi)) =
σrsσstσtr
dnσ

∏
i ̸=r,s,t

δ̄(Ei) =:
′∏
i

δ̄(Ei) (2.4.8)

10Expanding the product in (2.4.2) produces only positive signs so explicit minus signs are undesirable
11See e.g. [90].
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pulling out the form degree in the delta functions.
Altogether, we have that the n-point NS-NS gravity amplitude is given by

A(0)
NS-NS =

∫
Σ

1

vol SL(2,C)

′∏
i

δ̄(Ei) Pf ′(M) Pf ′(M̃) , (2.4.9)

with ten-dimensional momentum conservation implicit from the X zero-mode path integral,
and M̃ =M(ϵ→ ϵ̃) following from the Ψ̃ path integral. This is precisely equal to the CHY
form of NS-NS gravity amplitudes from section 1.1. Indeed, pulling out the form degrees
from the Pfaffians and the primed product, we obtain an overall dnσ which combines with
the 1/vol SL(2,C) and

∏′
i δ̄(Ei) factors to form the CHY measure dµn,

A(0)
NS-NS =

∫
M0,n

dµn Pf
′(M) Pf ′(M̃) , (2.4.10)

where now the reduced Pfaffians and CHY measure are defined exactly as in section 1.1.
With the dnσ and vol SL(2,C) factors explicit we understand the integration to be over the
moduli space M0,n. The type II model of the ambitwistor string therefore leads directly to
the CHY formulae of NS-NS gravity.

What is also transparent in the derivation is that the ‘CHY integrand’ follows from the
Ψ, Ψ̃ path integral, and the ‘CHY measure’ follows from the X,P and ghost path integrals
and PCOs from the gauge-fixing procedure. In other words, it is specifically the type II
model with matter fields Ψ, Ψ̃ which produces the formulae for gravity. Naturally one may
consider ambitwistor string models with different matter fields, whose correlation functions
give rise to CHY formulae for different theories.

In its inception [43] it was proposed that one could obtain Yang-Mills amplitudes by
considering another model which contained the fermionic system Ψ along with a current
algebra ja(σ) ∈ KΣ × g, with g an arbitrary affine Lie algebra and a = 1, · · · ,dim g. These
current algebras would have the OPE

ja(σ) jb(σ′) ∼ kδab

(σ − σ′)2
+
ifabcT c

(σ − σ′)
+ · · · (2.4.11)

where the T a are the generators (bases) of the gauge group (Lie algebra), and fabc are the
corresponding structure constants with [T a, T b] = fabcT c. The factor k denotes the level
of the affine Lie algebra and δab is the respective Killing form. The inclusion of such a
current algebra produces correlation functions whose single-trace contribution correspond
to the tree-level amplitudes of Yang-Mills theory. This means however that one must discard
multi-trace contributions by hand if one were to consider it a model thereof.

Reference [92] attempted to remedy this by considering instead a ‘comb system’, whose
correlation functions would yield Parke-Taylor factors with strings of structure constants
as numerators, which is precisely used in the representation of the colour half-integrands
(1.4.2). This system uses worldsheet spinors which take values in g,

SCS =

∫
Σ
ρ̃ · ∂̄ρ+ q · ∂̄y + χρ ·

(
1

2
[ρ, ρ̃] + [q, y]

)
(2.4.12)

where ρ, ρ̃ ∈ ΠΩ0(Σ,K
1/2
Σ × g) are fermionic, q, y ∈ Ω0(Σ,K

1/2
Σ × g) are bosonic, and ·

represents the Killing form. This system can be incorporated to obtain amplitudes e.g. in
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EYM, but turns out to be anomalous [92]. This motivated a ‘reduced’ Yang-Mills system
which provides the correct Yang-Mills amplitudes, but is also anomalous12. This refer-
ence therefore also provides ambitwistor string models for the (Dirac-)Born-Infeld ((D)BI)
theory, Einstein-Maxwell (EM), the Galileon, the non-linear sigma model (NLSM), Einstein-
Maxwell scalar (EMS), Einstein Yang-Mills scalar (EYMS), generalised Yang-Mills scalar
and the biadjoint scalar. This followed and expanded on previous work in [102] which had
already obtained the ambitwistor string model for the Galileon and BI theories.

2.5 The ambitwistor string at genus-one: the scattering equa-
tions and worldsheet degeneration

It was not long after the discovery of the ambitwistor string, which completely described
the tree-level CHY amplitudes, that a one-loop extension was found. Since the tree-level
description followed from the ambitwistor string at genus-zero, it was then natural to suggest
that one-loop formulae could be obtained by studying the ambitwistor string at genus-one,
on the torus. This was performed explicitly by Adamo, Casali and Skinner (ACS) in [50],
where the genus-one analogue of the scattering equations was found and explicit formulae
for the scattering amplitudes on the torus were presented. This was further studied by the
authors of [103,104], who provided a new interpretation of the results of ACS which we will
use throughout the thesis. Here we will briefly summarise the main points of these references
that will be relevant for the following chapters.

To be somewhat pedagogical let us look again at what occurs in the correlation function
at genus one, following the gauge-fixing procedure. From the discussion of section 2.2, there
are n PCOs from gauge-fixing each of the symmetries discussed therein, of which we will
focus on those arising from the ambitwistor gauge-transformation (2.2.5). These will act in a
similar way to the genus-zero case, except here one only needs to use n−1 of them to set the
residues of P 2 equal to zero. This is because the torus has translation invariance, which is
analogous to the SL(2,C) invariance on the sphere, so that one of the marked points should
be fixed. As a result, setting n− 1 of the residues at the marked points to zero ensures that
all n residues of the quadratic differential P 2 vanish. Unlike the genus-zero case however,
doing this does not ensure that P 2 = 0 globally on the worldsheet. To see this, let us recall
that P is fixed by the X,P path integral via (2.3.6),

∂̄Pµ(z) = 2πi dz

n∑
i=1

kiµ δ̄(z − zi) . (2.5.1)

Equation (2.3.7) gave the solution to this at genus-zero, but at genus-one the solution can
be written as [97]

Pµ(z) = 2πiℓµ ω(z) +
n∑

i=1

kiµ ωi,∗(z) . (2.5.2)

Let us briefly talk about the new elements appearing here. Firstly, on a genus-g Riemann
surface there exist g holomorphic Abelian differentials13 ωI , I = 1, · · · , g, which can con-
stitute the zero-modes of a (1, 0)-form on the genus-g surface. Consequently, at genus-one

12The comb-system, whilst appropriate to describe EYM amplitudes, has two types of gluons and thus
is not appropriate on its own to describe Yang-Mills amplitudes. The interested reader is referred to the
original reference [92] for more details.

13This is a standard result of the Riemann-Roch theorem.
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the solution for P should contain a single zero-mode, thought of as a constant of integra-
tion. The first term of (2.5.2) is this zero-mode, where ω(z) is an Abelian differential of the
first kind defined in appendix A, forming a basis for this zero-mode and ℓµ is simply the
coefficient of this basis. The object ωi,∗(z) is an Abelian differential of the third kind, also
defined in appendix A, and produces a simple pole with residue ±1 as z ≈ zi and as z ≈ z∗
respectively, here with z∗ being an arbitrary point. Whilst (2.5.2) appears differently to the
form of Pµ(z) appearing in e.g. [50] and [103], it can be shown that it is equivalent to both,
up to redefinitions of ℓµ and momentum conservation. In fact, if one extended (2.5.2) to
have g such zero-mode terms, it would be the solution for genus-g [51].

Returning to the previous discussion, since there were no zero-modes at genus-zero P 2

only contained simple poles, and so setting the residues to zero ensured that P 2 vanished
on the worldsheet. On the torus, the presence of zero modes in P means that setting the
residues at the poles to zero (via n−1 PCOs) only makes P 2 holomorphic on the worldsheet.
As was first noticed in [50], the role of the final PCO is to set this holomorphic piece to zero
by setting P 2(z0) = 0 at an arbitrary point z0,

δ̄

(∫
Σ
µP 2

)(∫
Σ
µ b̃

)
= δ̄(P 2(z0)) b̃(z0) . (2.5.3)

With this insertion into the path integral, P 2 vanishes on the worldsheet. As at genus-zero
the scattering equations arise from this constraint and therefore, the genus-one scattering
equations are equivalent to

ResziP
2 = ki · P (zi) = 0 i = 2, · · · , n

P 2(z0) = 0
(2.5.4)

where we have fixed one of the coordinates (here z1) using the translation invariance on
the torus. It is important to mention that on the genus-one surface, the field P (and
therefore the genus-one scattering equations (2.5.4)) depends on the modular parameter14

τ . Consequently, it is (they are) expressed in terms of functions naturally adapted to
higher-genus Riemann surfaces, involving e.g. Jacobi theta functions. These objects are
highly non-trivial, which makes solving the scattering equations (2.5.4) non-viable. Luckily,
the constraint P 2(z0) = 0 in (2.5.4) plays a signature role in the ambitwistor string which
alleviates this issue.

To see how this is, let us consider a general genus-one amplitude that arises from the
ambitwistor string correlator. To be heuristic, we will write the n-point expression as

A(1)
n = −

∫
dDℓ dτ I(z; τ) δ̄(P 2(z0; τ))

n∏
i=2

δ̄(ki · P (zi)) . (2.5.5)

In the above expression, the integration is over the fundamental domain of the genus-one
surface (see figure 2.1), as well as the n−1 marked points not fixed by translation invariance.

14In the path integral one has sum over all possible worldsheet geometries. Any compact genus-zero
Riemann surface is equivalent to the Riemann sphere CP1 by diffeomorphism and Weyl transformations.
Heuristically, on higher genus surfaces these transformations are not sufficient to completely fix the ‘shape’
of the Riemann surface in the same way, and the intrinsic moduli parametrise the shapes of the surface
modulo these transformations. In this sense the integration over the modular parameters completes the sum
over worldsheet geometries. At genus-one there is one modular parameter τ , and for genus g ≥ 2 there are
in general 3g − 3 modular parameters.
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The object I(z; τ) denotes the rest of the string integrand, involving e.g. the correlation
function of the fields. From this we have also pulled out the integration over the zero-modes
of P into a D-dimensional15 finite integral, dDℓ. Importantly, the delta function setting
P 2(z0) to zero should be treated as a global form, so that for our purposes it should be
thought of as δ̄(· · · ) = dτ̄ ∂τ̄ (1/ · · · ). In this respect, (2.5.5) is equivalent to

A(1)
n = −

∫
dDℓ dτ ∧ dτ̄ I(z; τ)

∂

∂τ̄

(
1

P 2(z0; τ)

) n∏
i=2

δ̄(ki · P (zi)) . (2.5.6)

Let us change variables here to q = e2πiτ , wherein (2.5.6) becomes

A(1)
n = −

∫
dDℓ

dq ∧ dq̄
2πi q

I(z; q)
∂

∂q̄

(
1

P 2(z0; q)

) n∏
i=2

δ̄(ki · P (zi)) . (2.5.7)

What we can do now exhibits a signature feature of the ambitwistor string at higher genus.
If the object I(z, q) is holomorphic16 in q, then when we perform an integration by parts the
derivative now moves to the factor 1/2πiq, which by Stokes’ theorem results in a contour
integral around q = 0, localising the amplitude to this value. This can be seen graphically
in figure 2.1, equivalently as a global residue theorem [103] which brings the integration over
the fundamental domain to a contour integral over the boundary. By modular invariance
all pieces except that at q = 0 (τ = i∞) cancel each other, leaving the amplitude localised
on the boundary q = 0.

It is well-known that this boundary corresponds to the infinite ‘pinching’ of one of the
cycles of the torus, leading to a configuration which is equivalent to a sphere with two
nodes corresponding to points which have been identified. This is called the nodal sphere.
To be more precise, the global residue theorem localises the amplitude onto the maximal
non-separating boundary divisor of the genus-one surface Dmax

n,1
∼= M0,n+2. The role of the

final scattering equation is therefore two-fold; firstly, it localises the modular parameter onto
τ = i∞, equivalently q = 0, such that the torus degenerates into a nodal sphere. Under this
the amplitude (2.5.7) then becomes

A(1)
n =

∫
M0,n+2

dDℓ
1

P 2(σ0; 0)
Î(σ)

n∏
i=2

δ̄(ki · P (σi)) , (2.5.8)

where we change variables from z to σ in going to the nodal sphere with moduli space
M0,n+2, and the integrands now become functions of coordinates on the Riemann sphere
Î(σ). Secondly it provides an overarching factor necessary for the one-loop integrands: It
can be shown [50, 103], that in the degeneration limit, one has P 2(σ0; 0) = ℓ2 ω2

+−(σ0), so
that the final formula for the one-loop amplitude becomes

A(1)
n →

∫
M0,n+2

dDℓ

ℓ2
Î(σ)

n∏
i=2

δ̄(ki · P (σi)) . (2.5.9)

15In order to connect properly with field theory, it should be understood that we integrate over a middle-
dimensional cycle of CD such that ℓµ is real. In principle, given a well-defined integrand I(z; τ), the dimension
D is determined by modular invariance. For the type II model first described in [50] which we will discuss in
the next section, modular invariance requires D = 10. We elaborate on modular invariance more generally
in section 5.1.2.

16This is true for the type II theory discussed in [50] which we will elaborate on in the next section. In
general, it is crucial that the integrand has this property in order to perform the global residue theorem
cleanly.
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Figure 2.1: The effect of enforcing the ‘modular’ scattering equation at genus-one. The
integration over the fundamental domain of τ (the grey region in the left diagram above)
becomes a contour integral over the boundary from Stokes’ theorem. By modular invariance,
only the contour at τ → i∞ survives, where the torus degenerates onto a Riemann sphere
with two nodal points.

These features of the ‘modular scattering equations’ on the higher-genus surface persevere
at higher-genus, as shown for example at two-loops in [51,105].

The two nodes that result from the degeneration should be thought of as two extra
states with back-to-back momenta, preserving momentum conservation. In performing the
degeneration, the two nodes, which we will call σ+ and σ− become fixed. For example, the
coordinate transformation in [104], given by σ = e2πi(z−τ/2), maps in the limit τ → i∞ the
fundamental domain for z to the Riemann sphere with the points σ+ = 0 and σ− = ∞
identified. This leads to an expression on the sphere with 3 fixed punctures and n − 1 =
(n + 2) − 3 punctures that are integrated over. One should think of these fixed points as
being fixed by the SL(2,C) invariance of the nodal sphere. With this SL(2,C) symmetry
restored (so that σ1, σ+, σ− are no longer fixed), the field P (σ) from (2.5.2) on the sphere
takes the form

Pµ(σ) = ℓµ ω+−(σ) +
n∑

i=1

kiµ ωi,∗(σ) , (2.5.10)

where in the degeneration limit the Abelian differentials become

2πi ω ⇝ ω+−(σ) =
(σ+ − σ−)

(σ − σ+)(σ − σ−)
dσ , ωi,j ⇝ ωi,j(σ) =

(σi − σj)

(σ − σi)(σ − σj)
dσ . (2.5.11)

Substituting (2.5.11) into (2.5.10) makes concrete that the field P is now defined as at
tree-level with two extra states having back-to-back momenta ℓµ,

Pµ(σ) = ℓµ

(
1

σ − σ+
− 1

σ − σ−

)
dσ +

n∑
i=1

kiµ
σ − σi

dσ , (2.5.12)
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wherein the dependence on the arbitrary point σ∗ drops out by momentum conservation.
Unlike the tree-level case however, P 2 now has double poles in the nodal points, since the
momentum ℓµ is generically off-shell17. The tree-level scattering equations were defined as
the residues of a meromorphic quadratic differential (there simply P 2), and one can do the
same here by defining a similar object

P1(σ) = P 2(σ)− ℓ2ω2
+−(σ) (2.5.13)

which has only simple poles. The residues at the marked points (including the nodes) of
this object define the one-loop scattering equations:

E(1)
A = ResσAP1(σ) (2.5.14)

where the label A runs over the external labels and the nodal labels, A ∈ {1, · · · , n,+,−}.
These are dubbed the off-shell scattering equations [104], and are aligned with the (n+ 2)-
point tree-level scattering equations with 2 massive states in the forward-limit [84]. Specif-
ically, the one-loop scattering equations take the form

E(1)
i =

ki · ℓ
σi − σ+

− ki · ℓ
σi − σ−

+
∑
j ̸=i

ki · kj
σi − σj

,

E(1)
± = ±

n∑
i=1

ℓ · ki
σ± − σi

.

(2.5.15)

Note that the one-loop scattering equations follow from but are not the same as the genus-
one scattering equations (2.5.4). The latter are defined on the genus-one surface and are
seemingly impracticable to solve, whilst the former are defined on the nodal sphere and can
in principle be solved18.

Although these are called off-shell scattering equations, they bare a remarkable resem-
blance to the tree-level scattering equations with an on-shell back-to-back momentum. We
will exploit this in chapter 4 when we speak about non-supersymmetric amplitudes at two-
loops. Of course, this resemblance disintegrates when one considers the solutions to these
equations, first studied in [84]. There they found that there are two types of solutions that
contribute to the amplitude:

(n− 1)!− 2(n− 2)! regular solutions,

(n− 2)! singular solutions.

The regular solutions correspond to solutions where the nodal points are distinct, σ+ ̸= σ−,
whilst the singular solutions correspond to solutions in which the nodal points coincide,
σ+ = σ−. These do not add up to (n − 1)!, the number of solutions to the (n + 2)-point
tree-level scattering equations19. For the supersymmetric theories to be discussed in the
next section, the resulting worldsheet formulae vanish on the singular solutions [104], so
only the regular solutions are required. For more generic theories (without supersymmetry)
however, the singular solutions will generically contribute and should be included.

17Recall that at tree-level, there were no double poles due to all ki being null.
18In fact, four-point solutions to these equations can be found in [104].
19From the perspective of [84], where these were derived using a massive forward-limit, the remaining

(n− 2)! do not survive the forward limit, and so do not contribute to the amplitude.
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One reason for this follows from the analysis of [106], where it was shown that with
the one-loop scattering equations, integrands can admit discriminant-type poles which are
unphysical, even when considering the regular solutions. This happens because, even though
the regular solutions are characterised by having σ+− ̸= 0, there may be special kinematic
configurations in which the solutions for σ± become degenerate. Notice from (2.5.15) that
when σ+ = σ−, the Ei simply become the tree-level scattering equations, and E± take
the same functional form. The former implies that the solutions for the {σi} are those
of the tree-level scattering equations, and the latter implies that solutions for σ± then
become degenerate. It is possible to see what this unphysical pole looks like. Writing
N± as the numerator of E±, which is a polynomial in the {σi, σ±}, the solutions for σ±
become degenerate when the discriminant of the polynomial N± becomes 0. The unphysical
kinematic poles therefore take the form

∆ =
∏

{σi} tree sols

DiscN± . (2.5.16)

These unphysical kinematic poles can typically arise when considering the regular solutions.
For maximally supersymmetric theories however, they can be localised on the singular so-
lutions which do not contribute to the amplitude, and therefore do not occur. For non-
supersymmetric theories however, this is not generally the case, and so omitting singular
solutions will lead to these unphysical poles.

To summarise, the n-point genus-one amplitudes in the ambitwistor string can be formu-
lated on a nodal sphere with n+2 marked points, making the one-loop calculation analogous
to that at tree-level, now with one-loop scattering equations. Like there, these scattering
equations again fix the moduli space integrals, leaving only the dDℓ integration to be per-
formed. Thus, the momentum ℓ can be recognised as the loop momentum, and the result of
the moduli space integrations, localised on the one-loop scattering equations, recognised as
the loop integrand.

2.6 The genus-one ambitwistor string: integrands

In the last section we discussed certain aspects of the ambitwistor string at genus-one re-
sulting from the quantisation procedure. In particular, we saw that whilst string ampli-
tudes involves an integration over the intrinsic modular parameter τ at genus-one, enforcing
P 2 = 0 on the worldsheet necessitated the inclusion of a PCO enforcing a ‘modular scat-
tering equation’. This scattering equation localises the modular integration to the maximal
non-separating boundary divisor Dmax

1,n where the torus degenerates to the nodal sphere,
Dmax

1,n ≡ M0,n+2. The result is an n-amplitude expressed on the sphere with two extra punc-
tures σ+, σ− associated with the nodes, essentially corresponding to states with back-to-back
momenta identified as the loop-momentum.

We stress that this degeneration relies crucially on the integrand I(z; q) having no poles
in q = e2πiτ . Otherwise, the residue theorem would pick up different poles and the amplitude
would not be fully localised on the nodal sphere. In an attempt to give an overview of the
global residue theorem we did not specify the integrand I(z; q); in this section we elaborate
on this object a little more.

At genus-zero there was one natural worldsheet theory to consider in obtaining gravity
amplitudes, which was the type II theory. To date, only this model is well-known in the
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context of the genus-one ambitwistor string. This model was studied in detail at genus-one
by ACS in [50], wherein the correlators were calculated in detail for all (even and odd) spin
structures. We will mainly be focused here on the even spin structures, since this will be
most relevant for us. From [50,104] this contribution is given by

I(z; τ) =
1

4

∑
α,β=2,3,4

(−1)α+βZα;β(τ)Pf (Mα) Pf (Mβ)

=

1

2

∑
α=2,3,4

(−1)αZα(τ) Pf (Mα)

1

2

∑
β=2,3,4

(−1)βZβ(τ) Pf (M̃β)

 .

(2.6.1)

This sum arises as part of the GSO projection invoking a sum over spin structures, which is
natural step in the RNS formalism and is required for modular invariance of the amplitude.
There are 2g−1(2g +1) = 3 even spin structures at genus one (labelled here for even charac-
teristics α, β = 2, 3, 4) and 2g−1(2g −1) = 1 odd spin structure; the factor of 1/4 arises from
the sum over the total 22g = 4 spin structures. The Zα(τ) are chiral partition functions
which arise from worldsheet CFT correlators on the torus. Again, via Wick contractions
the fermionic path integral produces Pfaffians Mα (M̃β) of matrices which are genus-one
extensions of the CHY matrices and depend on the spin structure through Szegö kernels, as
well as the polarisations ϵi (ϵ̃i) and momenta ki of the external states. At genus-zero, the
Szegö kernels reduce to σ−1

ij , resulting in the tree-level CHY matrix. The precise form of the
matrices Mα and the Szegö kernels at genus-one can be found in [50,104]. Of more interest
to us is that the integrand I(z; τ) from (2.6.1) again splits into two chiral half-integrands,
I(z; τ) = I1/2(z; τ) Ĩ1/2(z; τ), which by performing the sum explicitly in (2.6.1) are given by

I1/2(z; τ) =
1

2
(Z2(τ)Pf (M2)−Z3(τ)Pf (M3) + Z4(τ)Pf (M4)) (2.6.2)

with Ĩ1/2(z; τ) related to I1/2(z; τ) by ϵi → ϵ̃i as usual. From the discussion in the previous
section we are interested in the limit τ → i∞ of these expressions, corresponding to the
degeneration limit. Reference [104] studied these limits in detail using coordinates σ =
e2πi(z−τ/2) better suited to the sphere in the degeneration limit. There it was calculated
that the half integrands (2.6.2) simplify in the limit τ → i∞, or q = 0, to

Î(1)
susy-kin = Pf (M3)|q1/2 + 8(Pf (M3)|q0 − Pf (M2)|q0) , (2.6.3)

where e.g. ( · · · )|q0 corresponds to the O(q0) term in the Taylor expansion of ( · · · ) around
q = 0. These integrands are well-defined on the nodal sphere and the superscript ‘(1)’ and
subscript ‘susy-kin’ denote that it corresponds to the one-loop integrand for the kinematic
piece of a supersymmetric theory. For example, from the above discussion the one-loop
integrand of type II supergravity is then given by

Î(1)
sugra = Î(1)

susy-kin
ˆ̃I(1)
susy-kin (2.6.4)

and depends on the polarisation vectors ϵi, ϵ̃i, the momenta ki and the nodal sphere coordi-
nates σi of the external particles20.

20Recall that, as mentioned above, the nodal points σ+, σ− are fixed to the points 0,∞ with the coordinate
transformation used.
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What about super-Yang-Mills amplitudes? There is no well-defined ambitwistor string
model that produces these amplitudes at one-loop naturally, but lessons from genus-zero (or
tree-level CHY) suggest that they may be obtained by utilising the double-copy. Indeed, this
double-copy structure between integrands can already be seen in (2.6.4). This motivated a
proposal given in [103] for the integrand of super Yang-Mills on the nodal sphere by replacing
one of the kinematic integrands with a one-loop analogue of the Parke-Taylor factor,

Î(1)
PT =

n∑
i=1

σ+−
σ+iσi i+1 · · ·σi+n−

(2.6.5)

under the identification i ∼ i+ n. The single-trace contribution to the one-loop amplitude
for super Yang-Mills theory can then be expressed through the integrand

Î(1)
SYM = Î(1)

susy-kin Î
(1)
PT (2.6.6)

in line with the double-copy interpretation between the (worldsheet) integrands of these
theories. In a manifestly SL(2,C) covariant form, the one-loop (colour-ordered) amplitudes
for (super Yang-Mills) supergravity may be written as

A(1)
SYM(1 · · ·n) =

∫
dDℓ

ℓ2
dn+2σ

vol SL(2,C)

′∏
A

δ̄(E(1)
A ) I(1)

SYM , (2.6.7)

A(1)
sugra =

∫
dDℓ

ℓ2
dn+2σ

vol SL(2,C)

′∏
A

δ̄(E(1)
A ) I(1)

sugra , (2.6.8)

where E(1)
A are the one-loop scattering equations of (2.5.15). In this form the notion of the

genus-one ambitwistor string being a one-loop extensions of CHY becomes explicit. Note
that these integrands are related to those21 of (2.6.4) and (2.6.6) by

I(1)
sugra =

1

σ4+−
Î(1)
sugra I(1)

SYM =
1

σ4+−
Î(1)
SYM (2.6.9)

so that they have the have the same SL(2,C) weight in all σA ∈ {σi, σ+, σ−}.
The kinematic half-integrand (2.6.3) forms the backbone for the supersymmetric theories

of gravity and Yang-Mills. It follows from the GSO projection in the type II theory and is
defined in ten-dimensions, the critical dimension of the type II string. On the torus, these
are both required for modular invariance of the amplitude. On the nodal sphere, there is
no notion of modular invariance and therefore (i) the different terms in the GSO projection
can be isolated, corresponding to NS or R states flowing through the loop, and (ii) there is
no restriction in dimensionally reducing to D < 10. The first point can be seen explicitly
from (2.6.3); noting that [51] Z1, Z2 correspond to the R sector and Z3, Z4 correspond to
the NS sector, one can write the kinematic integrand as

Isusy-kin = INS + IR , (2.6.10)

with

INS = Pf (M3)|q1/2 + 8Pf (M3)|q0 , IR = −8Pf (M2)|q0 . (2.6.11)

21We should point out another difference, where in this form the Szegö kernels have a slightly different
expansion in q due to σ+, σ− no longer being explicitly fixed; see [104].
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Being able to extract these at the integrand level on the Riemann sphere is another feature
of ambitwistor strings22. In its current standing, (2.6.11) correspond to the chiral integrands
for a vector and a Majorana-Weyl fermion in D = 10. The second point above can then be
addressed by considering the dimensional reduction of these integrands to obtain amplitudes
in lower dimensions. In this respect the analysis of [107] can be used to identify which parts
correspond to additional states (scalars and fermions) from dimensional reduction. This was
performed in [104], where it was found that upon dimensional reduction toD-dimensions, the
individual parts of the chiral half-integrand corresponding to vectors, scalars and fermions
amount to

Ivector = Pf (M3)|q1/2 + (D − 2)Pf (M3)|q0 (2.6.12a)

Ifermion = −cD Pf (M2)|q0 (2.6.12b)

Iscalar = Pf (M3)|q0 . (2.6.12c)

The constant cD is related to the number of fermions that result from the dimensional
reduction. From the 10-dimensional Majorana-Weyl spinor one can obtain an 8-dimensional
Weyl spinor, four 6-dimensional Weyl-simplectic spinors, or four 4-dimensional Majorana
spinors. Therefore given c10 = 8 comparing (2.6.11) and (2.6.12a), one can read off that
c8 = c10/1 = 8, and c6 = c4 = c10/4 = 2.

This decomposition under dimensional reduction allows one to obtain a variety of inte-
grands corresponding to different states running in the loop in various dimensions. For

example, the D-dimensional integrand for NS-NS gravity is given simply by I(1),D
NS-NS =

IvectorĨvector, and in D = 4 one can then obtain the pure-gravity integrand by subtract-
ing the contribution from the two scalar states23 of the dilaton and the B-field from the
tensor product

I(1),D=4
pure-grav = (Pf (M3)|q1/2 + 2Pf (M3)|q0)2 − 2(Pf (M3)|q0)2 . (2.6.13)

Likewise, one obtains integrands for single-trace contributions to pure Yang-Mills in four-
dimensions by simply multiplying the vector integrand with the one-loop analogue of the
Parke-Taylor factor,

I(1),D=4
pure-YM = (Pf (M3)|q1/2 + 2Pf (M3)|q0) I

(1)
PT . (2.6.14)

Clearly the NS contribution I(1)
NS , or its D < 10 equivalent Ivector, forms the backbone of

chiral integrands for these theories without supersymmetry, and therefore plays a similar
role to the kinematic half-integrand of CHY at tree-level (1.1.8). Structurally they seem
quite different though; whilst Ivector is a sum of full Pfaffians of different matrices, its tree-
level counterpart (1.1.8) is a reduced Pfaffian of a single matrix. In fact, it can be shown
that on the support of the one-loop scattering equations (2.5.15), the former can also be
written as a reduced Pfaffian,

Ivector = Pf (M3)|q1/2 + (D − 2)Pf (M3)|q0
E(1)
A =0
=

∑
r

Pf ′(MNS) . (2.6.15)

22Although one ought to be careful about this at higher-genus, since there could be contributions cancelling
out in the GSO projection on the higher-genus surface. This will be very important when we discuss the
genus-two case in 4.

23In four-dimensions the B-field has (D − 3)(D − 2)/2 = 1 component corresponding to a scalar state,
called the ‘axion’.
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This was shown and proved in [104], where the matrix MNS can be found explicitly. Here
we will simply describe its structure. Imagine the CHY matrix M in (1.1.9) with dimension
2(n + 2) × 2(n + 2), the two extra states associated with {ℓ, ϵr+, σ+} and {−ℓ, ϵr−, σ−},
r = 1, · · · , D − 2 characterising the relevant polarisation state. The matrix MNS is simply
this matrix with A+− = 0; the sum over polarisation states results in a completeness relation
giving a physical state projector∑

r

ϵr+ϵ
r
− = ∆µν := ηµν −

qµℓν + qνℓµ
ℓ · q

. (2.6.16)

The factor (D − 2) then arises for example from the element B+− ∼ ϵr+ ϵ
r
−. We will study

this in more detail in chapter 4 when we go on to study the two-loop extension. For now
we simply point out that the one-loop kinematic half-integrand is in fact analogous to its
tree-level counterpart. The reduced Pfaffian in (2.6.15) is defined via

Pf ′(MNS) =
1

σ+−
Pf
(
(MNS)

+−
+−
)
, (2.6.17)

where the matrix (MNS)
+−
+− is defined as at tree-level, here with the rows and columns with

respect to the nodal states {ℓ, ϵr+, σ+}, {−ℓ, ϵr−, σ−} removed.

The reduced Pfaffian (2.6.17) can be used in worldsheet formulae for non-supersymmetric
Yang-Mills and gravity, and we will be expanding on this in chapter 4. We remind the reader
here that if performing the moduli space integrals explicitly, all solutions to the scattering
equations (including the singular type) should in principle be included for generic theories.
As the singular solutions have σ+ = σ−, note that by fixing both σ+ and σ− using the
SL(2,C) symmetry the singular solutions will be lost. However, the argument presented
in [106] indicates that any potential unphysical discriminant-type poles that result from this
actually integrate to zero.

2.7 Worldsheet factorisation and loop-propagators

The scattering equations are not only important in being able to obtain an amplitude (or
loop integrand), but also in determining what it will look like. This becomes increasingly
important at higher loops, as we shall discuss. From the discussion of section 1.4, the moduli
space integrals, which are localised on the solutions to the scattering equations, essentially
provide the relevant propagator structure for the relevant amplitude. This is exactly true in
the case the worldsheet half-integrands are expressed in a Parke-Taylor decomposition, as
seen there. The tree-level scattering equations (1.1.3) are designed for tree-level scattering
amplitudes of massless states. There also exist ‘massive scattering equations’ [108,109] which
are designed to provide the correct propagator structure for massive amplitudes [110–113].

It is clear in this sense that the one-loop scattering equations (2.5.15) will provide the
loop propagators for the corresponding loop-integrand. However, the form of the resulting
one-loop integrand is quite different to that coming from a traditional calculation using
Feynman diagrams. This section is dedicated to discussing how precisely the scattering
equations are related to the kinematic propagators resulting from the moduli space integral,
and consequently what the one-loop integrands arising from (2.5.15) look like.

Both of these can be understood through factorisation. In field theory, when a partial
sum of momenta goes on-shell, the amplitude factorises into the product of two amplitudes
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Figure 2.2: As a subset of marked points coalesce, the worldsheet factorises on the support
of the scattering equations into two. The coalescence point becomes a ‘common point’ on
both worldsheets, which are identified, and can be thought of as an on-shell state crossing
a cut.

multiplied by an intermediate propagator corresponding to the partial sum. In the world-
sheet model, the scattering equations relate these kinematic configurations with boundaries
of the moduli space, where the corresponding marked points begin to coalesce. In other
words, for a proper non-empty subset S of the particle labels, let

σi = σ0 + ϵxi +O(ϵ2) ∀ i ∈ S . (2.7.1)

for a point σ0 not coincident with any of the other marked points, and ϵ parametrising the
coalescence. It follows from (2.7.1) that

for i ∈ S, j ∈ S
1

σi − σj
=

1

ϵ

1

xi − xj
+O(ϵ)

for i /∈ S, j ∈ S
1

σi − σj
=

1

σi − σ0
+O(ϵ) .

(2.7.2)

By studying the tree-level scattering equations using this parametrisation, one will find that
they imply the relation

ϵ→ 0 =⇒ k2S =

(∑
i∈S

ki

)2

→ 0 . (2.7.3)

One can also derive that consequently the worldsheet measure behaves as

dµ→ ϵ2(|S|−1) 1

ϵ
δ̄(k2S + ϵF) dϵ dµS dµS̄ , (2.7.4)

and therefore factorises. At tree-level, to have the right pole structure for a realisable
factorisation channel, the theory-specific integrand must scale as ϵ2(|S|−1), i.e.

I → ϵ−2(|S|−1) I . (2.7.5)

An integrand which does not exhibit this scaling for the subset S cannot produce a kinematic
pole k2S . If the integrand is expressed in terms of a (double) Parke-Taylor basis, i.e. those
constructed using (1.4.1), (1.4.2) it is very easy to see how this is the case using (2.7.2).
Detailed derivations of this procedure can be found explicitly in the literature, both at
tree [38,114,115] and loop [1,50,104] level. Intuitively one can understand the factorisation
at the level of the worldsheet. As the subset S of points coalesce, the Riemann surface
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degenerates into two, ΣS and ΣS̄ , which are connected by a common point. The surface ΣS

has |S|+ 1 marked points, corresponding to those in S and the common point; ΣS̄ likewise
has |S̄| + 1 marked points. This is shown graphically in figure 2.2. Each worldsheet itself
corresponds to an amplitude from the worldsheet perspective, and so the connection to field
theory is clear24.

This is to say that the scattering equations encode all of the kinematic poles that can
arise from the moduli space integrals; that is, it solely determines the propagators arising
in a local field theory.

This however implies something peculiar at one-loop. On the Riemann sphere we have
n+2 marked points, including σ+ and σ− corresponding to the nodal points and being asso-
ciated with the loop momentum. Suppose we have a subset S of marked points coalescing,
in which σ+ ∈ S but σ− /∈ S. From the discussion above, the relevant kinematic pole will
correspond to an internal propagator involving the loop momentum and a sum of the exter-
nal momenta in S. Traditionally these (inverse) propagators have the form (ℓ+K)2, where
K =

∑
i∈S ki, but the one-loop scattering equations (2.5.15) imply the actual kinematic pole

corresponds to
1

2ℓ ·K +K2
̸= 1

(ℓ+K)2
, (2.7.6)

that is, the loop propagators are linear in the loop momentum, instead of quadratic. This
is another novel feature of ambitwistor string models at loop-level. However, this makes
sense from the form of the one-loop scattering equations (2.5.15); their solutions can only
be rational functions of the kinematic invariants they possess, and since they do not possess
ℓ2 explicitly, it can never appear in the solutions. In fact, the only place ℓ2 appears in the
integrand is in the overarching 1/ℓ2 e.g. in (2.6.8) that comes from the scattering equation
used in the global residue theorem; all other loop propagators will be linear in the loop
momentum. For example, a typical four-point box diagram that results at one-loop from
the scattering equation formalism will have the form

N(ℓ)

ℓ2 (2ℓ · k1) (2ℓ · (k1 + k2) + (k1 + k2)2) (−2ℓ · k4)
(2.7.7)

where N(ℓ) is a generic numerator which may depend on ℓ as well as other (kinematic,
colour, etc.) data specific to the theory under consideration. The representation of the loop
integrand coming from this worldsheet model, a natural extension of CHY, is therefore quite
different from the traditional (Feynman) representation. The latter however can be related
to the former by applying partial fraction identities

n∏
i=1

1

Di
=

n∑
i=1

1

Di
∏

j ̸=i(Dj −Di)
(2.7.8)

and shifting the loop-momentum for each term in the sum on the RHS above, so that each
term has the same over-arching 1/ℓ2 prefactor as occurs in the worldsheet models. This
relation was first shown in [103], which alternatively can be seen from the point of view
of a residue theorem in [116], which formulated the Q-cut representation of field theory

24Factorisation provides a way of proving the validity of worldsheet formulae. The worldsheet formulae
for Yang-Mills and gravity (with and without supersymmetry) in the previous section was proved using this
method in [104].
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loop integrands, a representation designed to have these ‘linear-type’ propagators25. The
simplest example of this procedure can be seen for a massive bubble:

1

ℓ2(ℓ+K)2
=

1

ℓ2(2ℓ ·K +K2)
+

1

(ℓ+K)2(−2ℓ ·K −K2)
(2.7.9)

∼=
1

ℓ2(2ℓ ·K +K2)
+

1

ℓ2(−2ℓ ·K +K2)
. (2.7.10)

In the first line we have applied the identity (2.7.8), and in the second line we have shifted
ℓ→ ℓ−K in the last term to obtain the factor 1/ℓ2; the symbol ∼= is then meant as equality
under integration.

Unfortunately, it is not generically possible to do the converse operation, that is to take
the loop integrand coming from the nodal sphere formulae, containing linear propagators,
and perform (2.7.8) backwards, relating it directly to a standard Feynman representation.
This is because the numerators (2.7.7) are typically not in a form which allow this; the
loop-momenta have to be shifted for each term but the numerators for these terms are not
typically related this way. However there are ways to obtain quadratic propagators from
one-loop worldsheet formulae, as we demonstrate in the next chapter.

25Reference [116] also describes a method of performing the loop integration with these types of propagators
and gives examples for low numbers of points at one-loop. This however can become quite involved at higher
points. Luckily, a representation of the loop integrand with linear-type propagators will match its counterpart
with quadratic propagators on a set of (maximal) unitarity cuts, since their cut-conditions will be the same.
This will be seen at two-loops in section 4.3.4. We note that generically the integrands of the one-loop
worldsheet formulae and the Q-cut representation match up only to terms that integrate to zero.
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Chapter 3

One-loop BCFW and scattering
equations for quadratic propagators

In the previous chapter we discussed worldsheet formulae for one-loop corrections, how they
arise from the genus-one ambitwistor string, and their unorthodox representation. Though
being a natural extension of the successful CHY formalism to the one-loop regime, in practice
the differences from a more traditional representation make it more difficult in obtaining
the amplitude; that is performing the loop integration. Like their tree-level counterparts
however, the one-loop formulae are incredibly compact. Therefore, a natural question to ask
is whether there is a way to obtain worldsheet formulae which results in a one-loop integrand
more akin to the Feynman representation, i.e. with quadratic propagators. There have been
attempts to do this by using “double-forward-limit” scattering equations [117–119], but the
corresponding worldsheet formulae do not provide the correct multiplicities of diagrams to
properly connect with more conventional results [1].

In this chapter we will provide a method to aid in attaining this goal. This will be inspired
by a novel form of Britto-Cachazo-Feng-Witten (BCFW) recursion for one-loop integrands,
which we will develop and demonstrate in examples with and without supersymmetry. First
developed at tree-level in [120–123], the BCFW recursion provided a way of (as the name
suggests) recursively calculating tree-level scattering amplitudes to any multiplicity, thus
making the entire tree-level S-matrix obtainable from simple low-point results. At tree-
level the BCFW recursion and the scattering equation formalism are well-connected, both
exploiting the use of ‘on-shell methods’ to calculate scattering amplitudes more efficiently.
In fact, worldsheet formulae have been proved via the BCFW recursion [108, 114, 124].
Moreover, the connection between these two formalisms has inspired new geometric ways of
interpreting scattering amplitudes, such as the amplituhedron [125] and the associahedron
[126]. Whilst the extension of BCFW to one-loop have been formulated using momentum-
twistors and other approaches [127–132], there have been formulations in momentum-space
[133–137]. Our formulation will implicitly be equivalent to the latter approaches, though
it will have different features which make e.g. the cancellation of spurious poles more
transparent.

After this development we will go on to provide ‘modified’ one-loop scattering equa-
tions which, following the discussion in the previous section, will result in kinematic poles
corresponding to quadratic loop propagators. Though inspired by our version of BCFW
recursion, it will not exhibit spurious poles in the same way. The use of these new scatter-
ing equations will necessitate new descriptions of the integrands in the worldsheet formulae,
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which we will discuss how to attain, and give examples in several cases. By construction,
both of these formulations are best adapted to planar theories, but in either case we will
discuss their application to non-planar theories.

3.1 BCFW at one-loop: planar recursion

Let us consider a generic representation for the one-loop amplitude seen from the perspective
of Feynman diagrams. Prior to integration, an n-point amplitude will have the generic form

A(1)
n =

∫
dDℓ I(1)n (3.1.1)

where I
(1)
n will be the n-point one-loop integrand of the theory under consideration. Let us

decompose the loop momentum into

ℓ = ℓ0 + αq (3.1.2)

where ℓ0 and q are null. Reminiscent of what happens at tree-level, the vector q will be
associated to the BCFW shift. Under this decomposition, the measure in (3.1.1) becomes

dDℓ = dDℓ0 δ(ℓ
2
0) dα 2ℓ0 · q . (3.1.3)

We will choose the loop momentum to reside between particles 1 and n in the planar case.
This is of course a free choice, which will in turn dictate the form of the BCFW-type shifts
to be performed. In this case, we will now consider the following BCFW-type shifts:

k̂1 = k1 + zq, k̂n = kn − zq,

α̂ = α− z ⇒ ℓ̂ = ℓ0 + (α− z)q = ℓ− zq.
(3.1.4)

We choose q satisfying q · k1 = q · kn = 0 so that k1 and kn are still null under the shift.
Upon applying the shifts (3.1.4) the integrand becomes a rational function in the complex
parameter z; the original amplitude (3.1.1) is of course equal to the residue at z = 0,

A(1)
n =

∫
dDℓ

∮
z=0

dz

2πi

I
(1)
n (z)

z
. (3.1.5)

The integrand I
(1)
n (z) will also exhibit poles in z, which will either be at finite locations zI

or potentially at z = ∞. Due to the structure of local integrands, the former can only come
from the propagators in the various diagrams, of which there are three types:

(i) Propagators of the form 1/ℓ2:

Under the shift (3.1.4), ℓ2 → ℓ̂2 and thus one encounters a potential pole from ℓ̂2 = 0.
Since ℓ̂ = ℓ0 + (α − z)q with ℓ0 null, this pole occurs for z = α, and can be made
explicit by writing

1

ℓ̂2
=

1

(ℓ0 + (α− z)q)2
=

α

α− z

1

2α ℓ0 · q
=

α

α− z

1

ℓ2
. (3.1.6)

Expressing I
(1)
n (z) = 1

ℓ2
I

(1)
n (z), the integrand of (3.1.5) will have the following residue

at this pole:∮
z=α

dz

2πi

1

ℓ̂2
I

(1)
n (z)

z
=

∮
z=α

dz

2πi

α

α− z

1

ℓ2
I

(1)
n (z)

z
= − 1

ℓ2
I (1)

n (α). (3.1.7)
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Notice that ℓ = ℓ0 inside of I
(1)
n (α) and is therefore on-shell, corresponding to a single

cut interpreted as the forward limit of an n+ 2-particle tree-amplitude,

I (1)
n (α) =

∑
states0

A(0)
n+2(ℓ0, k1 + αq, k2, · · · , kn−1, kn − αq,−ℓ0) =:

∑
states0

A(0)
n+2(α)

(3.1.8)
wherein one sums over the states flowing through the cut.

(ii) Propagators of the form 1/(ℓ+ k1 + · · ·+ ki)
2:

These are the generic internal propagators of the diagrams which involve the loop
momentum aside from the type considered above. They can all be chosen to have this
form since we insisted on the loop momentum residing between particles 1 and n. The
benefit of this is that the shift in ℓ cancels the shift in k1, so propagators of this type
do not have any dependence on z, and thus exhibit no poles.

(iii) Propagators of the form 1/(ki + · · ·+ kj)
2:

These are the propagators coming from massive corners of diagrams and external trees
thereof and will contain a subset I of the external particles. Since only particles 1 and
n are shifted, it is clear these propagators can exhibit a pole only when 1 ∈ I and
n /∈ I or 1 /∈ I and n ∈ I. When this happens, we have a pole at zI with

K̂2
I = K2

I + 2zI KI · q = 0 ⇒ zI = −
K2

I

2KI · q
, (3.1.9)

where KI =
∑

i∈I ki. These correspond to tree-level factorisations in the integrand
and mirror closely the BCFW story at tree-level. In light of this it is easy to see
that the integrand will factorise accordingly and have the following residue at these
locations: ∮

z=zI

dz

2πi

I
(1)
n (z)

z
= −

∑
statesI

A(0)
nI+1(zI)

1

K2
I

I
(1)
n−nI+1(zI). (3.1.10)

Note that the loop momentum in each contribution of this type has the form ℓ̌ =
ℓ0 + (α− zI)q.

Now that we understand the pole structure of the integrand as a rational function of z,
we can deform the contour of integration to (3.1.5) and relate it to all the other residues
discussed above, as in the BCFW procedure at tree-level. Doing so gives a recursion formula
for the planar one-loop integrand:

I(1)n =
∑

states0

∫
dDℓ

ℓ2
A(0)

n+2(α) +
∑

statesI

A
(0)
nI+1(zI)

1

K2
I

I
(1)
n−nI+1(zI) + Bn. (3.1.11)

The first term above corresponds to a forward-limit due to the pole at z = α coming from
the propagators of type (i) above. The second term corresponds to potential tree-level
factorisations from poles at z = zI , arising from propagators of type (iii) above. The final
term, denoted Bn, corresponds to potential residues of the n-point integrand at z = ∞,

Bn = −
∮
z=∞

dz

2πi

I
(1)
n (z)

z
, (3.1.12)
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Figure 3.1: Examples of diagrams that do and do not exhibit poles in z. The diagram
on the left has two sources of potential poles, highlighted by the propagators in red; these
correspond to a forward-limit term (from the pole at ℓ̂2 = 0) and a tree-type factorisation
term (from (k4 + k̂5)

2 = 0). In the diagram on the right however, there are no sources
of sources of potential poles, because the states with shifted external momenta are on the
same vertex, which also implies that there is no explicit ℓ2 factor from our convention. This
diagram is therefore invisible to the recursion. In the case of the MHV sector of N = 4 super
Yang-Mills, diagrams such as those on the right vanish completely, which is compatible with
the fact that X5,1 = 0 due to the MHV nature of the kinematics, as we will see in section
3.2.3.

i.e., boundary terms. We will discuss the fate of these boundary terms for the theories to
be considered later.

For now let us note that in the forward-limit term, since one has k̂1 = k1 + αq, k̂n =
kn − αq, diagrams with one of the shifted particles (but not both) in an external tree may
pick up spurious poles in α, coming from e.g. (k̂1 + k2)

2 = (k1 + k2)
2 + 2αq · k2. Whilst

these do typically arise, we will demonstrate in examples below that the role of the tree-type
factorisation terms will be precisely to (a) cancel this spurious pole, and (b) provide missing
pieces in the integrand from the forward-limit term alone. This occurs very straightforwardly
in low-point examples precisely because of the shifts applied also to the loop momentum,
which is a distinguishing feature from previous formulations such as [137].

3.1.1 Loop placement, choices of shift, and diagrams

As is well-known, a generic Feynman-diagram-type representation of a field theory loop inte-
grand is not uniquely defined. This is highlighted in the freedom one has in their assignment
of the internal loop propagators, such as the location of 1/ℓ2. As mentioned above however,
any assignment for the planar loop integrand determines a set of shifts to perform for the
recursion. In the above, and for the preceding discussions, we choose the loop momentum
to lie between particles 1 and n for an n-point planar integrand. If one were instead to
choose the loop-momentum to lie between particles i and i+1, then the set of shifts (3.1.4)
would take the same form, except with i and i + 1 taking the role of 1 and n respectively.
The types of poles encountered would be determined by similar reasoning to the discussion
above, and one would obtain the same form of the recursion (3.1.11).
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Even for planar theories, however, there seems at first glance to be a possible issue with
this convention. For a generic planar integrand, one cannot assign the loop-momentum to
be in the same position for all diagrams. An example of this is in figure 3.1, where in
the second diagram the two shifted particles (in our case, 1 and n) appear on a massive
corner. Adhering to our convention that ℓ should lie between these particles means that
there cannot be any 1/ℓ2 propagator, so this diagram cannot exhibit a pole that produces
a forward-limit term. Moreover, since the shifts in momenta k1 and kn cancel each other,
they also cannot contain a pole which contributes to tree-level factorisations. Unless they
contribute to a pole at infinity, that is, to the boundary term (3.1.12), they seem to be blind
to the recursion.

In the examples to be presented below, we will consider theories admitting a represen-
tation in which these types of diagrams either do not appear, and/or have sufficient fall-off
behaviour for large z. In the latter case, they cannot then exhibit a pole in z of any kind,
and thus will not appear in the recursion. Despite this however, it will be seen that the
correct expressions are indeed obtained.

3.2 BCFW recursion for N = 4 super Yang-Mills: MHV

Planar N = 4 super Yang-Mills is an ideal place to study new methodologies, in this
context due to the vast simplicity of their scattering amplitudes. This simplicity owes
to the many symmetries it possesses: on top of conformal and maximal supersymmetry
in four-dimensions, it also encodes ‘hidden’ symmetries such as dual-conformal symmetry
[138–143] and more generally an infinite-dimensional ‘Yangian’ symmetry [144–147]. A
BCFW recursion for the loop integrand of this theory has been studied extensively, even
to all orders in the loop expansion for the planar sector [129], and using on-shell diagrams
[130]. The latter can in fact be compared directly with our form of the BCFW integrand
recursion [1].

In this section we will consider the recursion (3.1.11) for the MHV integrands of N = 4
super Yang-Mills, giving explicit examples of the recursion up to six-points.

3.2.1 MHV recursion

Here we will refine the formula (3.1.11) for the case of MHV integrands in maximally su-
persymmetric Yang-Mills theory. The resulting formula will be simpler and coincide with a
known form of the integrand recursion [129].

The precise form of the integrands will not be important in this endeavour. As mentioned
above we choose the loop momentum to lie between particles 1 and n and can satisfy the
conditions q2 = q · k1 = q · k2 = 0 in four-dimensions by setting q = λ1λ̃n with λ1, λ̃n
being Weyl spinors in the spinor-helicity scheme. We would like to note here that whilst
the external kinematics are in four-dimensions, we will generically consider a D-dimensional
loop-momentum which, in the forward-limit term, is only massless in D-dimensions. Recall
that the recursion formula (3.1.11) consists of three types of terms. For N = 4 super
Yang-Mills the forward-limit term can be expressed as

1

ℓ2

∑
states0

A(0)
n+2(α) =

1

ℓ2

∫
d4η0 A(0)

NMHV(ℓ0, k̂1, k2, · · · , kn−1, k̂n,−ℓ0) , (3.2.1)

where the sum over states is conveniently performed via an integration over the Grassmann
parameters η0 =: ηℓ0 = η−ℓ0 parametrising the on-shell states crossing the single-cut. The
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tree-level superamplitude must consequently be NMHV to ensure the integral has the correct
Grassmann degree. Since the above arises as the residue at z = α, one has the following
super-shifts in accordance with the recursion:

k̂1 = k1 + αq = λ1(λ̃1 + αλ̃n) ≡ λ1
ˆ̃
λ1 , η̂1 = η1 + αηn ,

k̂n = kn − αq = (λn − αλ1)λ̃n ≡ λ̂nλ̃n , η̂n = ηn .
(3.2.2)

The shift in η1 is to ensure that supermomentum is still conserved, mirroring the usual
super-BCFW procedure [148]. Then there is the term in the recursion corresponding to
factorisations. Similarly to what occurs for MHV at tree-level, it can be shown that su-
persymmetric Ward identities and special three-point kinematics invoke that the sum over
multi-particle channels reduce to a single term,

∑
statesI

A(0)
nI+1(zI)

1

K2
I

I
(1)
n−nI+1(zI) =

∫
d4ηK A(0)

MHV
(−K,n− 1, ň)

1

K2
I
(1)
MHV(1̌, · · · , n− 2,K) ,

(3.2.3)
where again the Grassmann integral performs the sum over states crossing the propagator.
Since this corresponds to the residue at z = zn with

zn = − (−K)2

2q · (−K)
=

⟨n− 1n⟩
⟨n− 1 1⟩

(3.2.4)

we will for the factorisation terms label shifted quantities by κ̌ as opposed to κ̂ which
we reserve for the shifts in the forward-limit term (3.2.2). The on-shell momenta flowing
through the propagator is

K = kn−1 + ǩn = λn−1λ̃n−1 + λ̌nλ̃n

= λn−1λ̃n−1 + λnλ̃n − ⟨n− 1n⟩
⟨n− 1 1⟩

λ1λ̃n (3.2.5)

= λn−1

(
λ̃n−1 +

⟨n 1⟩
⟨n− 1 1⟩

λ̃n

)
≡ λK λ̃K

using the Schouten identity in the third equality. The form of the three-point MHV super-
amplitude in (3.2.3) is well-known and takes the form

A(0)

MHV
(−K,n− 1, ň) =

δ(4)([n− 1n] ηK + [nK] ηn−1 + [K n− 1] ηn)

[n− 1n][nK][K n− 1]
. (3.2.6)

To perform the d4ηK integral in (3.2.3), we note that if ηK appears in I
(0)
MHV then we

can substitute it on the support of the delta function above, so that ηK only appears in

A(0)

MHV
. The practical significance of this is two-fold: firstly, it allows us to perform the

fermionic integration in (3.2.3) simply, and secondly it has the effect of restoring full n-

point supermomentum conservation inside of I
(1)
MHV; this will be highlighted in the examples
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below. For now, we emphasise the former point by writing (3.2.3) as∫
d4ηK A(0)

MHV
(−K,n− 1, ň)

1

K2
I
(1)
MHV(1̌, · · · , n− 2,K)

=

∫
d4ηK

δ(4)([n− 1n] ηK + [nK] ηn−1 + [K n− 1] ηn)

[n− 1n][nK][K n− 1]

1

⟨nn− 1⟩[n− 1n]
Ĩ
(1)
MHV(1̌, · · · , n− 2,K)

=
⟨n− 1 1⟩

⟨n− 1n⟩⟨n 1⟩
Ĩ
(1)
MHV(1̌, · · · , n− 2,K) , (3.2.7)

where Ĩ
(1)
MHV is simply I

(1)
MHV with its ηK dependence substituted through the support of the

delta function in (3.2.6). Its precise form can be envisaged by viewing the momentum K in
(3.2.7) as a shifted version of the momenta corresponding to particle n− 1. In other words,
the factorisation term for the MHV recursion can be written as∑

statesI

A(0)
nI+1(zI)

1

K2
I

I
(1)
n−nI+1(zI) =

⟨n− 1 1⟩
⟨n− 1n⟩⟨n 1⟩

I
(1)
MHV(1̌, · · · , n− 2, ˇn− 1) (3.2.8)

where I
(1)
MHV(1̌, · · · , n−2, ˇn− 1) is the colour-ordered one-loop (n−1)-point integrand subject

to the super-shifts

λ̌1 = λ1
ˇ̃
λ1 = λ̃1 +

⟨n− 1n⟩
⟨n− 1 1⟩

λ̃n η̌1 = η1 +
⟨n− 1n⟩
⟨n− 1 1⟩

ηn

λ̌n−1 = λn−1
ˇ̃
λn−1 = λ̃n−1 +

⟨n 1⟩
⟨n− 1 1⟩

λ̃n η̌n−1 = ηn−1 +
⟨n 1⟩

⟨n− 1 1⟩
ηn.

(3.2.9)
We will shortly see, once we discuss a convenient representation of the n-point integrands
which we will use to demonstrate the recursion, that there are no boundary terms for the
MHV sector of N = 4 super Yang-Mills. This can be proved more generally for Yang-Mills
theory at one-loop as in [1]. Therefore the n-point MHV integrand recursion for N = 4
super Yang-Mills can be expressed simply as

I
(1)
MHV(1, 2, · · · , n) =

⟨n− 1 1⟩
⟨n− 1n⟩⟨n 1⟩

I
(1)
MHV(1̌, 2, · · · , ˇn− 1)+

1

ℓ2

∫
d4η0A(0)

NMHV(ℓ0, 1̂, 2, · · · , n̂,−ℓ0)

(3.2.10)
The prefactor of the (n − 1)-point integrand is often referred to as an ‘inverse soft factor’
in the literature. Since for MHV only one term contributes to the factorisation part of
the recursion, we will throughout refer to the shifts (3.2.9) as ∨-shifts, and the forward
limit shifts (3.2.2) as ∧-shifts where necessary. We recount that the loop-momentum is in
practice D-dimensional, with ℓ0 massless in D-dimensions but possessing a non-zero mass in
four-dimensions. This will essentially be necessary to obtain the correct result for theories
without supersymmetry, as we shall explore later.

3.2.2 Integrand representations

Here we discuss a representation of the integrand which is most convenient in demonstrating
the recursion for the MHV sector of maximally supersymmetric Yang-Mills. This representa-
tion for the n-point loop integrand was described in [149] and is derived from the field-theory
limit of string theory. It directly makes use of the colour-kinematics duality and expresses
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n-point MHV loop integrands in terms of trivalent diagrams with D-dimensional loop mo-
menta. The numerators for these diagrams are therefore a valid set of one-loop MHV BCJ
numerators, allowing for a natural extension to constructing MHV gravity integrands.

Reference [149] presents an algorithm for constructing the MHV loop integrand with
these numerators. We will not discuss the algorithm here but simply state the results
needed to demonstrate the recursion. Defining

I
(1)
MHV(1, 2, · · · , n; ℓ) =

δ(8)(Q)∏n
i=2⟨1i⟩2

I1,2,··· ,n(ℓ) (3.2.11)

where Q =
∑

i λiηi is the supermomentum, we have at four- and five-points

I1,2,3,4(ℓ) =
X2,4X2,3

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
, (3.2.12a)

I1,2,3,4,5(ℓ) =
X2,4X2,3Xℓ,5 +X2,5X2,3X2+3,4 +X3,5Xℓ,2X2+3,4

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2
+

X2,3 X2+3,4X2+3,5

s23ℓ2(ℓ+ k1)2(ℓ+ k123)2(ℓ+ k1234)2

+
X3,4 X2,3+4X2,5

s34ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k1234)2
+

X4,5 X2,3X2,4+5

s45ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
.

(3.2.12b)

Here we use the notation k1···i = k1 + · · · ki, and

XA,B := ⟨1|KAKB|1⟩ = −XB,A, XA+B,C = XA,C +XB,C (3.2.13)

with the momenta KA, KB possibly off-shell. For on-shell momenta ki, kj this is simply

Xi,j = ⟨1i⟩[ij]⟨j1⟩. (3.2.14)

One can in fact can think of these objects as rescaled spinor brackets. Consequently they
satisfy the Schouten identity,

XA,BXC,D +XA,DXB,C +XA,CXD,B = 0 ,

which underpins the colour-kinematics duality in this representation of the loop-integrand.
Practically, the numerator in the first term of (3.2.12b) is a BCJ numerator for the pentagon
diagram, and the numerators for all other diagrams are obtained from this one through
Jacobi relations. Note that in the definitions above, particle 1 is chosen as a reference spinor
λ1. This choice is closely tied to the position of the loop-momenta in the corresponding
diagrams, as one might notice in the expressions above. This representation will henceforth
be very convenient from the point of view of the recursion, as we will now see.

3.2.3 Absence of boundary terms for MHV

As mentioned earlier, there are no boundary terms for the one-loop MHV recursion of N = 4
super Yang-Mills. We are now ready to show this, given the loop-integrand representation
of the previous section. After applying the BCFW shifts (3.1.4) the integrand becomes a
rational function in z. The boundary terms arise as possible residues at z = ∞, so we are
required to study the behaviour of the integrand at large values of z.

From the point of view of keeping the recursion as simple as possible, choosing the loop
momentum to lie between particles 1 and n leads to q = λ1λ̃n being the most natural choice
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of shift for the representation of the loop-integrand above. Notice in particular that λ1
is unaffected by the shift, so that both the δ(8)(Q) and

∏n
i=2⟨1i⟩2 of (3.2.11) are actually

invariant. The more crucial ingredients I1,2,··· ,n(ℓ) essentially consist of a sum of terms
corresponding to trivalent diagrams, each with a corresponding numerator and propagator
structure. Notice that X1,A = 0 by virtue of (3.2.13); this has two important consequences
with respect to the recursion. On the one hand, the numerators used to construct the
MHV integrands must then be invariant under the BCFW shifts, since XA,q = 0 with
q = λ1λ̃n. On the other hand, the numerators for diagrams with particle 1 on a massive
corner must vanish, which means (i) there are no massive 1-n corners that can contribute
to the boundary term, and (ii) the number of possible spurious poles encountered in the
procedure is essentially halved.

It is clear then that only the propagators are affected by the BCFW shifts (3.1.4). By
construction, particle 1 is always attached directly to the loop, so all terms are suppressed for
large z by the overarching 1/ℓ̂2 = α/(α−z)×1/ℓ2 factor. Beyond that, all other propagators
involving the loop momenta are invariant under the shift since ℓ̂ + k̂1 + · · · = ℓ + k1 + · · · .
Finally, propagators composed solely of Mandelstam invariants (from external trees) are
only affected by the shift if they contain particle n, so any terms containing propagators of
the form 1/si···n are further suppressed for large z. Overall, one can see that each term in the
MHV integrand behaves (at most) as O(z−1) for large z, so that there cannot be a residue
at z = ∞ from (3.1.12). These statements apply quite generally to arbitrary multiplicity,
thus proving the absence of boundary terms in the MHV integrands.

3.3 Examples for N = 4 super Yang-Mills: MHV

We will go on now to demonstrate explicitly how the recursion works in obtaining higher-
point integrands for the MHV sector of N = 4 super Yang-Mills. An important point that
will be highlighted in these examples is the cancellation of spurious poles amongst different
terms in the recursion. To see how this occurs it suffices to consider some low-point examples.

3.3.1 n = 4

At four-points, the expression (3.2.12a) matches the well-known result (up to a sign due to
our conventions) since

δ(8)(Q)∏4
i=2⟨1i⟩2

X2,4X2,3 = −δ(8)(Q)
[12][34]

⟨12⟩⟨34⟩
. (3.3.1)

Because the three-point amplitude vanishes, only the forward-limit term of (3.1.11) con-
tributes:

1

ℓ2

∫
d4η0A(0)

NMHV(ℓ0, 1̂, 2, 3, 4̂,−ℓ0) = −δ(8)(Q̂)
[1̂2][34]

⟨12⟩⟨34̂⟩
1

ℓ2(ℓ0 + k̂1)2(ℓ0 + k̂1 + k2)2(ℓ0 − k̂4)2

= −δ(8)(Q)
[12][34]

⟨12⟩⟨34⟩
1

ℓ2(ℓ+ k1)2(ℓ+ k1 + k2)2(ℓ− k4)2
,

recalling that ℓ = ℓ0 + αq. The supermomentum is invariant by construction of the super-
shift, and the invariance of the spinor-helicity prefactor follows from its permutation sym-
metry via momentum conservation. The well-known four-point MHV superintegrand is
therefore straightforwardly recovered from the recursion.
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3.3.2 n = 5

The case of five-particles is the simplest example highlighting certain aspects of the integrand
recursion. In particular, the tree-type factorisation term is here non-zero and plays a crucial
role, as we will now see.

The forward-limit term almost completely produces the five-point integrand (3.2.12b);
structurally every term is present, wherein particles 1 and 5 are shifted according to k̂1 =
k1 + αq, k̂5 = k5 − αq with q = λ1λ̃5. As mentioned in section 3.2.3, the numerators and
prefactors in (3.2.11) are invariant under the BCFW shifts, and thus only the propagators
are affected. Those involving the loop momentum are invariant on account of ℓ0+ k̂1+ · · · =
ℓ + k1 + · · · , and propagators involving Mandelstam variables are unaffected unless they
contain particle 5. Of these, only the last term in (3.2.12b) has such a propagator, which is

1

s45̂
=

1

⟨45̂⟩[54]
=

1

s45 − α⟨41⟩[54]
=

1

s45

1

1− α ⟨41⟩
⟨45⟩

. (3.3.2)

Here we can see the spurious pole explicitly. The factorisation term from (3.2.10) is expressed
as, including the loop measure,

⟨41⟩
⟨45⟩⟨51⟩

∫
dD ℓ̌ I

(1)
MHV(1̌, 2, 3, 4̌) =

⟨41⟩
⟨45⟩⟨51⟩

∫
dD ℓ̌

ℓ̌2
δ(8)(Q)∏4
i=1⟨1i⟩2

X2,3X2,4̌

(ℓ̌+ k1̌)
2(ℓ̌+ k1̌2)

2(ℓ̌+ k1̌23)
2
.

(3.3.3)
Here we are using the ∨-shifts of (3.2.9), which in this case take the form

λ̌1 = λ1
ˇ̃
λ1 = λ̃1 +

⟨45⟩
⟨41⟩

λ̃4 η̌1 = η1 +
⟨45⟩
⟨41⟩

η5

λ̌4 = λ4
ˇ̃
λ4 = λ̃4 +

⟨51⟩
⟨41⟩

λ̃5 η̌4 = η4 +
⟨51⟩
⟨41⟩

η5.

(3.3.4)

Notice that the numerators in (3.3.3) are affected by the ∨-shift, whilst the prefactors are
invariant since the λi’s are actually unaffected by the ∨-shift. The shift in the numerator
has the effect that

X2,4̌ = ⟨12⟩[24̌]⟨41⟩ = ⟨12⟩[24]⟨41⟩+ ⟨12⟩[25]⟨51⟩ = X2,4+5 (3.3.5)

and we also have

⟨41⟩
⟨45⟩⟨51⟩

1∏4
i=2⟨1i⟩2

=
⟨41⟩⟨51⟩
⟨45⟩

1∏5
i=2⟨1i⟩2

=
⟨41⟩[45]⟨51⟩

s45

1∏5
i=2⟨1i⟩2

=
X4,5

s45

1∏5
i=2⟨1i⟩2

.

Then the factorisation term (3.3.3) can be written as

⟨41⟩
⟨45⟩⟨51⟩

∫
dD ℓ̌ I

(1)
MHV(1̌, 2, 3, 4̌) =

∫
dD ℓ̌

ℓ̌2
δ(8)(Q)∏5
i=2⟨1i⟩2

X2,3X2,4+5X4,5

s45(ℓ̌+ k1̌)
2(ℓ̌+ k1̌2)

2(ℓ̌+ k1̌23)
2
.

(3.3.6)
In order to combine this with the forward-limit term, we are required to shift the integration
measure to coincide with dDℓ. This is a crucial part in our version of the integrand recursion.
Since zn = ⟨45⟩/⟨41⟩ we have that

ℓ̌ = ℓ0 +

(
α− ⟨45⟩

⟨41⟩

)
q = ℓ− ⟨45⟩

⟨41⟩
q ⇒ dD ℓ̌

ℓ̌2
=
dDℓ

ℓ2
α

α− ⟨45⟩
⟨41⟩
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and subsequently ℓ̌ + k1̌ + · · · = ℓ + k1 + · · · . Notice that the spurious pole above is of
the same type as (3.3.2). With these manipulations the factorisation term can be combined
with the problematic term from the forward-limit, the last term of (3.2.12b),

X2,3X2,4+5X4,5

s45ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2

 1

1− α ⟨41⟩
⟨45⟩

+
α

α− ⟨45⟩
⟨41⟩

 =
X2,3X2,4+5X4,5

s45ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
.

The spurious poles cancel, and the correct expression is obtained. Thus, the recursion
correctly produces the five-point MHV integrand.

3.3.3 n = 6

It was quite clear for five particles how the spurious poles cancel and give the correct overall
expression. The higher-point cases work analogously to this, and here we demonstrate the
rise in complexity in the cancellation of spurious poles by considering the n = 6 case. The
six-point MHV integrand can be found in [149] and is there written as

I1,2,3,4,5,6(ℓ) =
1

ℓ2(ℓ+ k1)2

{ n1|2|3|4|5|6

(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2(ℓ+ k12345)2

+
n1|[2,3]|4|5|6

s23(ℓ+ k123)2(ℓ+ k1234)2(ℓ+ k12345)2
+

n1|2|[3,4]|5|6

s34(ℓ+ k12)2(ℓ+ k1234)2(ℓ+ k12345)2

+
n1|2|3|[4,5]|6

s45(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k12345)2
+

n1|2|3|4|[5,6]

s56(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2

+
(X2,3X2+3,4

s23
+
X4,3X4+3,2

s34

) X2+3+4,5X2+3+4,6

s234(ℓ+ k1234)2(ℓ+ k12345)2
+

X2,3X4,5X2+3,4+5X2+3,6

s23s45(ℓ+ k123)2(ℓ+ k12345)2

+
(X3,4X3+4,5

s34
+
X5,4X5+4,3

s45

) X2,3+4+5X2,6

s345(ℓ+ k12)2(ℓ+ k12345)2
+

X2,3X5,6X2+3,4X2+3,5+6

s23s56(ℓ+ k123)2(ℓ+ k1234)2

+
(X4,5X4+5,6

s45
+
X6,5X6+5,4

s56

) X2,3X2,4+5+6

s456(ℓ+ k12)2(ℓ+ k123)2
+

X3,4X5,6X2,3+4X2,5+6

s34s56(ℓ+ k12)2(ℓ+ k1234)2

}
,

(3.3.7)

with

n1|2|3|4|5|6 = X2,4X2,3Xℓ−6,5Xℓ,6 +X2,5X2,3X2+3,4Xℓ,6 +X2,6X2,3X2+3,4X2+3+4,5

n1|[2,3]|4|5|6 = X2,3(X2+3,5X2+3,4Xℓ,6 +X2+3,6X2+3,4X2+3+4,5 +X4,6Xℓ,2+3X2+3+4,5)

n1|2|[3,4]|5|6 = X3,4(X2,5X2,3+4Xℓ,6 +X2,6X2,3+4X2+3+4,5 +X3+4,6Xℓ,2X2+3+4,5)

n1|2|3|[4,5]|6 = X4,5(X2,4+5X2,3Xℓ,6 +X2,6X2,3X2+3,4+5 +X3,6Xℓ,2X2+3,4+5)

n1|2|3|4|[5,6] = X5,6(X2,4X2,3Xℓ,5+6 +X2,5+6X2,3X2+3,4 +X3,5+6Xℓ,2X2+3,4). (3.3.8)

As mentioned above, here we understand n1|2|3|4|5|6 to be the BCJ master numerator for
the hexagon and all other numerators are obtainable from this via Jacobi identities. For
example, one can see from the second term in (3.3.7) that n1|[2,3]|4|5|6 is the numerator for the
pentagon with a massive 2-3 corner, which is defined to be n1|[2,3]|4|5|6 = n1|2|3|4|5|6−n1|3|2|4|5|6.
For brevity, numerators in (3.3.7) involving further higher-order Jacobi relations (such as
n1|2|[3,4]|[5,6] or n1|2|3|[4,[5,6]]) have been written explicitly since they combine with other terms
to give a more compact expression.
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Like the previous example, the forward limit contribution of the recursion almost com-
pletely reproduces the result (3.3.7), except all Mandelstam variables 1/si···6 involving par-
ticle 6 produce spurious poles. From (3.3.7) and (3.3.8) these terms are

dDℓ

ℓ2
δ(8)(Q)∏6
i=2⟨1i⟩2

[
X5,6(X2,4X2,3Xℓ,5+6 +X2,5+6X2,3X2+3,4 +X3,5+6Xℓ,2X2+3,4)

s56̂(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2(ℓ+ k12345)2

+
X2,3X5,6X2+3,4X2+3,5+6

s23s56̂(ℓ+ k1)2(ℓ+ k123)2(ℓ+ k1234)2
+

X3,4X5,6X2,3+4X2,5+6

s34s56̂(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k1234)2
(3.3.9)

+
X4,5X4+5,6X2,3X2,4+5+6

s45s456̂(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
+

X6,5X6+5,4X2,3X2,4+5+6

s56̂s456̂(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2

]
.

In the above we have already made use of the fact that Q̂ = Q, Xℓ0,A = Xℓ,A and ℓ0 + k̂1 +
· · · = ℓ+ k1 + · · · . Notice that at this multiplicity, there are two sources of spurious poles,
namely the propagators 1/s56̂ and 1/s456̂. In this representation, other sources of poles such
as propagators of the form 1/s3456̂ do not appear as a result of the ‘no-triangle hypothesis’
of N = 4 super Yang-Mills1 [140,150].

As in the previous example the factorisation contribution to the recursion will provide
the correction that cancels these spurious poles. Using the five-point integrand (3.2.12b)
and adapting the ∨-shifts gives this contribution to be

dD ℓ̌

ℓ̌2
δ(8)(Q)∏6
i=2⟨1i⟩2

X5,6

s56

[
X2,4X2,3Xℓ,5̌ +X2,5̌X2,3X2+3,4 +X3,5Xℓ,2X2+3,4

(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2

+
X2,3X2+3,4X2+3,5̌

s23(ℓ+ k1)2(ℓ+ k123)2(ℓ+ k1234)2
+

X3,4X2,3+4X2,5̌

s34(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k1234)2
(3.3.10)

+
X4,5̌X2,3X2,4+5̌

s45̌(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2

]
,

wherein we have already made use of the fact that Q̌ = Q, Xℓ̌,A = Xℓ,A, ℓ̌ + ǩ1 + · · · =
ℓ+ k1 + · · · , as well as the relation

⟨51⟩
⟨56⟩⟨61⟩

1∏5
i=2⟨1i⟩2

=
1∏6

i=2⟨1i⟩2
X5,6

s56
.

Note that, as demonstrated in the previous example, for any momentum KA we have

XA,5̌ = ⟨1|KA|5̌]⟨51⟩ = ⟨1|KA|5]⟨51⟩+ ⟨1|KA|6]⟨61⟩ = XA,5+6

allowing (3.3.10) to be better expressed as

dD ℓ̌

ℓ̌2
δ(8)(Q)∏6
i=2⟨1i⟩2

[
X5,6(X2,4X2,3Xℓ,5+6 +X2,5+6X2,3X2+3,4 +X3,5Xℓ,2X2+3,4)

s56(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ+ k1234)2

+
X2,3X5,6X2+3,4X2+3,5+6

s23s56(ℓ+ k1)2(ℓ+ k123)2(ℓ+ k1234)2
+

X3,4X5,6X2,3+4X2,5+6

s34s56(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k1234)2

(3.3.11)

+
X4,5+6X2,3X2,4+5+6X5,6

s45̌s56(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2

]
.

1This property implies that, using this representation of the MHV integrand, there will be n− 4 sources
of spurious poles encountered at n-points using the recursion.
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As usual in this procedure we are required to shift the loop-momentum in order to sensibly
combine this with the forward-limit contribution. For the six-point case we have that zn =
⟨56⟩/⟨51⟩, so that

dD ℓ̌

ℓ̌2
=
dDℓ

ℓ2
α

α− ⟨56⟩
⟨51⟩

. (3.3.12)

By comparing the two contributions then, one can readily see that the first three terms
in (3.3.11) take the precise form that corrects the first three terms in (3.3.9) in a way that
mirrors the five-point case. In fact, all spurious poles arising solely from 1/sn−1 n̂ propagators
are cancelled very straightforwardly this way. What is less obvious is how the last term of
(3.3.11) cancels the remaining problematic terms of (3.3.9). However, it may be checked
that

X4,5X4+5,6

s45s456̂
+
X5,6X4,5+6

s56̂s456̂
+

α

α− ⟨56⟩
⟨51⟩

X5,6X4,5+6

s45̌s56
=
X4,5X4+5,6

s45s456
+
X5,6X4,5+6

s56s456

where the spurious poles are cancelled, and the correct expression is obtained for the six-
point integrand.

3.4 BCFW recursion in pure Yang-Mills: all-plus

Another class of amplitudes which are relatively simple are the all-plus amplitudes of pure
Yang-Mills theory. These amplitudes are described by the self-dual sector of pure Yang-
Mills, and is one of the few cases in which the ‘kinematic algebra’ (that is, the algebra
underlying the colour-kinematics duality for this theory) is known [151–153]. The all-plus
one-loop integrands are related to those of the MHV sector of N = 4 super Yang-Mills
by dimension-shifting formulae [154], and the one-loop amplitudes are known to be purely
rational functions in the kinematic invariants. Moreover, through supersymmetric Ward
identities, these one-loop amplitudes can also be calculated by instead having scalars running
in the loop, as opposed to gluons. These properties exhibit their simplicity, and therefore
make them another ideal testing ground for new methodologies.

In this section we will see how the recursion for the integrand (3.1.11) works for the first
non-trivial amplitude at four-points, here in different representations to demonstrate the
versatility of the recursion. In [1] a demonstration for the five-point amplitude is also given,
and it is also shown how our recursion for the integrand results in the known recursion for
the amplitude [155].

3.4.1 All-plus recursion

Like MHV integrands in N = 4 super Yang-Mills, the recursion formula can be refined for
all-plus pure Yang-Mills integrands, and in fact the refined formula is almost identical to
the former,

I(1)(1+, 2+, · · · , n+) = ⟨n− 1 1⟩
⟨n− 1n⟩⟨n 1⟩

I(1)(1̌+, 2+, · · · , ˇn− 1
+
)+

2

ℓ2
A(0)(ℓ0, 1̂

+, 2+, · · · , n̂+,−ℓ0).

(3.4.1)
The proof of this is very similar to that in section 3.2.1, so here we will just highlight some
key differences. Firstly, as mentioned above all-plus integrands arising from the forward-
limit can be calculated by having a complex scalar running in the loop. This means the
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sum over states propagating through the loop in (3.1.11) reduces to a sum over the 2 states
of the complex scalar, hence the factor of 2 in (3.4.1). In this term one applies the shifts
(3.1.4) with z = α:

k̂1 = k1 + αq = λ1(λ̃1 + αλ̃n) ≡ λ1
ˆ̃
λ1

k̂n = kn − αq = (λn − αλ1)λ̃n ≡ λ̂nλ̃n.
(3.4.2)

In the factorisation terms of the recursion formula (3.1.11), only two-particle factorisation
channels give a non-zero contribution, as a result of the fact that all-plus and one-minus
gluon amplitudes vanish at tree-level. Since particles 1 and n must be on different channels,
the resulting three-point tree amplitudes can only contain states {1, 2,K} or {K,n− 1, n},
where K is associated with the state crossing the cut. Through our choice of shift, special
three-particle kinematics will enforce only the latter of these amplitudes to be non-zero.
Thus, only one term contributes to the factorisation term in the recursion for the case of
all-plus helicities.

This contribution is precisely the same as in the analogous case for N = 4 super Yang-
Mills, only here one specifically has gluons for external states. In that example, the super-
symmetric sum over states gave a factor of [n−1n]4 and established n-point supermomentum
conservation in the corresponding superintegrand. Here, the three-point amplitude supplies
this same [n − 1n]4 factor, and so clearly the three-point amplitude combined with the
propagator gives the inverse soft factor seen in (3.4.1). Since it is the same channel that
contributes in each case, the ∨-shifts are the same, which we recount here for completeness:

λ̌1 = λ1
ˇ̃
λ1 = λ̃1 +

⟨n− 1n⟩
⟨n− 1 1⟩

λ̃n

λ̌n−1 = λn−1
ˇ̃
λn−1 = λ̃n−1 +

⟨n 1⟩
⟨n− 1 1⟩

λ̃n.

(3.4.3)

Also similarly to the MHV sector of N = 4 super Yang-Mills, there are no boundary terms
present for the all-plus integrand recursion. This will be proved in a way similar to section
3.2.3 when we discuss certain representations of the integrand. The representation we will
use also makes use of the colour-kinematics duality, but will not possess as many convenient
features, making the proof of vanishing boundary terms slightly more intricate. Having
concluded how (3.4.1) arises, we will now go on to discuss these representations.

3.4.2 Integrand representations

As mentioned at the beginning of this section, it is instructive to show how the recursion
works with different representations of the loop-integrand. That the supersymmetric Ward
identities allow one to use a complex scalar running in the loop will distinguish the two
representations we will consider.

Scalars in the loop. For reference, the tree amplitudes alluded to earlier, which can be
used in the forward-limit, can be expressed as

A(0)(ℓ0, 1
+, 2+, ..., n+,−ℓ0) =

µ2

⟨12⟩ ... ⟨n− 1n⟩
[1|Πn−1

i=2

(
L2
i − ki Li−1

)
|n]

Πn−1
j=1L

2
j

, (3.4.4)
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for n gluons and two scalars. In the above we denote

Li = ℓ0 +
i∑

j=1

kj (3.4.5)

and recall that while the external kinematics lie in four-dimensions, the loop-momentum in
principle lies in D-dimensions. This means that ℓ0 is D-dimensional, and we may refer to

ℓ
(4D)
0 as the four-dimensional part of ℓ0. Since ℓ0 is massless in D-dimensions, we have

ℓ20 = 0 = ℓ
(4D)
0

2
− µ2 ⇒ ℓ

(4D)
0

2
= µ2

so that ℓ0 is massive in four-dimensions, whence µ2 is the norm of its (D − 4)-dimensional
(spacial) part. It is also to be understood that ℓ0 is projected down to its four-dimensional
part whenever it is present inside spinor-helicity expressions; for example,

ℓ0|i] ≡ ℓ
(4D)
0 |i].

Gluons in the loop. Another way of expressing the integrand, accustomed to having
gluons propagate in the loop, can be derived from the self-dual sector of pure Yang-Mills.
In this theory, using the lightcone gauge offers a representation of one-loop integrands that
is manifestly expressed in terms of trivalent diagrams with numerators satisfying the BCJ
duality [151]. For master n-gon diagrams they can be written as2

N(1+, · · · , n+) = (−1)n
n∏

i=1

1

⟨ηi⟩2
Xℓ+k1+···+ki−1,ki . (3.4.6)

These numerators can also be shown to be equal to those in the ambitwistor string by ex-
panding the NS-NS Pfaffian (2.6.17) into a Kleiss-Kuijf (KK) basis on the support of the
scattering equations [71], using the method presented in section 1.3. The spinor |η⟩ comes
from a null reference vector that is associated with the lightcone direction in the self-dual
theory. Specifically, it parametrises the lightcone gauge under the gauge condition η ·A = 0.
In fact, these numerators are associated with the symmetry of area-preserving diffeomor-
phisms in the self-dual theory [151], giving an explicit example of where the kinematic
algebra in the colour-kinematics duality is explicitly known.

The numerators for (n − 1)-gon diagrams and lower are obtained from the master nu-
merators (3.4.6) via Jacobi relations; e.g. an (n − 1)-gon with a massive [i, j] corner has
numerator

N(· · · , [i, j], · · · ) := N(· · · , i, j, · · · )−N(· · · , j, i, · · · ) (3.4.7)

in accordance with the colour-kinematics duality. The X variables of (3.4.6) are defined
similarly as in (3.2.14), with η now taking the role of the reference spinor:

XA,B := ⟨η|KAKB|η⟩ = −XB,A XA+B,C = XA,C +XB,C (3.4.8)

for any momenta KA and KB. Since this provides a very straightforward construction of
the one-loop integrand for the all-plus sector of pure Yang-Mills, it will be quite useful for
us in the next section.

2In [156] these come with a factor of 2 which is the same factor of 2 we have already included in equation
(3.4.1) arising from the sum over states.
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3.4.3 Absence of boundary terms in the all-plus recursion

As stated at the end of section 3.4.1, the boundary term in the recursion, corresponding to
a possible residue at z = ∞, is absent for the all-plus sector of pure Yang-Mills. With the
knowledge of how to construct one-loop integrands from the last section, we are now in a
position to show this explicitly. We will do this using the trivalent graph expansion utilising
the colour-kinematics duality, the latter representation presented in the last section with
gluons running in the loop.

Though this representation is similar to that used for N = 4 super Yang-Mills in section
3.2.2, there is a key difference which makes this slightly more involved. There one had that
as a result of the reference spinor being particle 1, the numerators were invariant under the
BCFW shifts and diagrams with particles 1 and n in a massive corner were absent. Here,
even though the reference spinor η is arbitrary, we choose it not to coincide with any of
the external particles, since from the definition of the all-plus numerators (3.4.6) this would
require an unnecessarily messy limiting procedure. We will henceforth keep it arbitrary, and
as a result the numerators will in general not be invariant under BCFW shifts; this means
a priori diagrams with a massive 1-n corner could potentially contribute to the boundary
term. We will see that, despite these differences, there is still no possibility of a residue at
z = ∞ in the contour argument.

Let us first consider the n-gon diagrams. The numerators for these are the master
numerators defined in (3.4.6). Because the combination ℓ̂ + k̂1 = ℓ + k1 is invariant under
the shifts, it can be seen from (3.4.6) that only the first and last X variable in any numerator
is not invariant under the shift, since for large z

Xℓ̂,k̂1
∼ z (−Xq,k1 +Xℓ,q) = z Xℓ+k1,q = O(z)

Xℓ̂+k̂1+···+ki,ki+1
= Xℓ+k1+···+ki−1,ki = O(1)

Xℓ̂+k̂1+k2+···+kn−1,k̂n
= Xℓ−kn,k̂n

∼ −z Xℓ−kn,q = O(z)

whence 2 ≤ i ≤ n− 2 in the second line above. Thus, the combination of X variables goes
at most as O(z2) for large z. On the other hand, since λn is shifted, the factor ⟨η n⟩2 in the
denominator of (3.4.6) also goes as O(z2), and hence overall the numerators (3.4.6) go as
O(1) for large z.
Regarding the propagators, since we place ℓ between particles n and 1, only the 1/ℓ2 propa-
gators in the n-gons are affected by the shift. As discussed in section 3.2.3, these propagators
go as O(z−1), and thus in total the n-gon diagrams go overall as O(z−1) for large z.

Let us now consider the p-gons with p < n. In contrast to the n-gons, here one will
encounter different scalings in the numerators and propagators for large z whenever the
shifted particles appear in a massive corner. To understand the general scaling of such
diagrams it suffices to recall that the numerators and propagators follow from the Feynman
rules in the self-dual theory; each vertex essentially corresponds to an X factor. If a shifted
particle lies on a massive corner, each vertex between the shifted external line and the loop
will give an X factor containing shifted momenta, and thus contribute an extra factor of z
(since it doesn’t lie directly on the loop, it cannot be cancelled by the shift in ℓ). However,
each vertex that gives this extra factor will be accompanied by a tree-type propagator,
which will also be shifted. Thus, the extra factors of z coming from the numerators will
be cancelled by the factors of z coming from the propagators in the large z-limit. This
is also true if both external particles are part of the same external tree, except that any
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vertices or propagators involving both shifted particles will not contribute an extra factor
of z, since the shifts between these particles cancel out. Hence, the parts of the integrand
corresponding to p-gons will also scale as O(z−1), and consequently the all-plus integrand
as a whole cannot give a boundary term (3.1.12).

3.5 Examples for pure Yang-Mills: all-plus

Here we will give examples of the one-loop recursion for all-plus pure Yang-Mills integrands.
We will study the four-point case using both representations of the integrand discussed in
3.4.2; that is, with scalars and gluons propagating through the loop. Whilst the former
will be much simpler than the latter, this serves as a demonstration of the versatility of
the recursion amongst different representations of the integrand. In [1] the recursion is
demonstrated with n = 5 external states using scalars in the loop.

3.5.1 n = 4, scalars in the loop

With scalars running in the loop, the recursion formula for four-points will involve the for-
ward limit of a tree amplitude involving four gluons and two back-to-back scalars, as well as
a three-point one-loop integrand multiplied by the inverse soft factor (3.4.1). It is opportune
to note that the three-point one-loop all-plus integrand vanishes for on-shell momenta. This
can be seen for example through dimensional analysis, or by direct computation using either
of the representations above. The n = 4 case is therefore the first non-trivial amplitude, and
only the forward-limit term contributes to the recursion. Adapting (3.4.4) to four gluons
then gives

A(0)(ℓ0, 1̂
+, 2+, 3+, 4̂+,−ℓ0) =

µ2

⟨12⟩⟨23⟩⟨34̂⟩
[1̂|(L̂2

2 − k2L̂1)(L̂
2
3 − k3L̂2)|4]

L̂2
1L̂

2
2L̂

2
3

. (3.5.1)

Recall that the forward limit term corresponds to the residue at z = α, so that whilst ℓ0 is
massless, the propagators lift to the full ℓ,

L̂2
i =

ℓ0 + i∑
j=1

k̂j

2

=

ℓ+ i∑
j=1

kj

2

= L2
i . (3.5.2)

Through momentum conservation, one can find after some algebra that

[1̂|(L̂2
2 − k2L̂1)(L̂

2
3 − k3L̂2)|4] = −µ2[1̂2]⟨23⟩[34] (3.5.3)

(recall that ℓ0 is massive in four-dimensions) so that (3.5.1) becomes

A(0)(ℓ0, 1̂, 2, 3, 4̂,−ℓ0) = − [1̂2][34]

⟨12⟩⟨34̂⟩
µ4

L2
1L

2
2L

2
3

≡ − [1̂2][34]

⟨12⟩⟨34̂⟩
µ4

(ℓ+ k1)2(ℓ+ k1 + k2)2(ℓ− k4)2
.

(3.5.4)
Finally, by noting that the spinor-helicity prefactor is permutation symmetric through mo-
mentum conservation,

[1̂2][34]

⟨12⟩⟨34̂⟩
=

[1̂4][23]

⟨14̂⟩⟨23⟩
=

[14][23]

⟨14⟩⟨23⟩
=

[12][34]

⟨12⟩⟨34⟩
, (3.5.5)
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the four-point integrand takes the form, according to the recursion (3.4.1)

I(1)(1+, 2+, 3+, 4+) = −2
[12][34]

⟨12⟩⟨34⟩

∫
dDℓ

µ4

ℓ2(ℓ+ k1)2(ℓ+ k1 + k2)2(ℓ− k4)2
(3.5.6)

which matches the well-known result for this integrand. For clarification, note that one
could write the measure as dDℓ = d4ℓ(4D) d−2ϵµ and the propagators as e.g. (ℓ + K)2 =
(ℓ(4D) +K)2 − µ2.

3.5.2 n = 4, gluons in the loop

Here we discuss the method of obtaining the four-point all-plus integrand in pure Yang-Mills
by having gluons run in the loop. As discussed in the last section, for four external states
only the forward-limit term in the recursion contributes,

A(1)(1+, 2+, 3+, 4+) =

∫
dα

α
dDℓ0 δ(ℓ

2
0) A(0)(ℓ0, 1̂

+, 2+, 3+, 4̂+,−ℓ0),

where we have placed in the loop measure for clarity. In the above one performs the BCFW
shifts according to z = α,

k̂1 = k1 + αq, k̂4 = k4 − αq.

From the perspective of the scattering equation formalism, this corresponds to keeping σ+,
σ− positioned between σ1 and σ4 in the Parke-Taylor factor dressing the colour, as we shall
discuss later. Let us write the resulting tree-level amplitude of pure Yang-Mills in terms of
the shifts above as3

A(0)(ℓ0, 1̂
+, 2+, 3+, 4̂+,−ℓ0) = I(ℓ0, α) + I(−ℓ0, α)

symmetrised in ℓ0, with

I(ℓ0, α) =
−1∏
i⟨ηî⟩2

[
Ibox
1234 + Itri

[12]34 + Itri
[23]41 + Itri

[34]12 + Ibub
[12][34]

]
,

where
∏

i⟨ηî⟩ = ⟨η1⟩⟨η2⟩⟨η3⟩⟨η4̂⟩. If we denote by Di the i’th propagator such that

D2 = (ℓ0 + k̂1)
2, D3 = (ℓ0 + k̂1 + k2)

2, D4 = (ℓ0 − k̂4)
2,

then the sub-integrands above are expressed as

Ibox
1234 =

Xℓ0,1̂
Xℓ0+1̂,2Xℓ0−4̂,3Xℓ0,4̂

D2D3D4
(3.5.7)

Itri
[12]34 =

1

(2k̂1 · k2)
X1̂,2Xℓ0,1̂+2Xℓ0−4̂,3Xℓ0,4̂

D3D4
(3.5.8)

Itri
[23]41 =

1

(2k2 · k3)
X2,3Xℓ0,1̂

Xℓ0+1̂,2+3Xℓ0,4̂

D2D4
(3.5.9)

3Note that a factor of 1/2 is implicit inside of the symmetrisation, but we have cancelled it against the
factor of 2 coming from the definition of the numerators; see equation (3.4.6).
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Itri
[34]12 =

1

(2k3 · k̂4)
X3,4̂Xℓ01̂

Xℓ0+1̂,2Xℓ0,3+4̂

D2D3
(3.5.10)

Ibub
[12][34] =

1

(2k̂1 · k2)(2k3 · k̂4)
X1̂,2X3,4̂Xℓ0,1̂+2Xℓ0,3+4̂

D3
. (3.5.11)

This expression can be derived from the gluonic forward limit using the Feynman rules for
the self-dual sector of Yang-Mills in light-cone gauge as discussed in section 3.4.2, keeping
the loop momentum positioned between particles 4 and 1, and performing the BCFW shifts
with z = α. The symmetrisation in ±ℓ0 used above will provide convenient cancellations.
We recall that the X variables are defined as

XA,B := ⟨η|KAKB|η⟩

for KA and KB possibly off-shell, and η = |η⟩[η| is an auxiliary null reference vector.
Recall from section 3.4.2 that when ℓ0 is inside a spinor bracket it is understood to be the

four-dimensional part of ℓ0, i.e. ℓ
(4D)
0 , for which ℓ

(4D)
0

2
= µ2. Alternatively, the forward-

limit-type expression above can be obtained from the D-dimensional worldsheet formulas
presented in [71], specialised to four dimensions and all plus helicities.4

Whilst presently in a form unrecognisable to the known result, e.g. equation (3.5.6),
the latter may be obtained through a series of manipulations involving the spinor anti-
commutation relations.5 As an example, for four-dimensional null momenta KA and KB we
have

Xℓ0,AXℓ0,B =
⟨ηA⟩⟨ηB⟩
⟨AB⟩

[
(2ℓ0 · kA)XB,ℓ0 − (2ℓ0 · kB)XA,ℓ0 + µ2XA,B

]
.

With these manipulations one can derive e.g.

Xℓ0,1̂
Xℓ0+1̂,2 =

⟨η1⟩⟨η2⟩
⟨12⟩

[
D2X1̂+2,ℓ0

−D3X1̂,ℓ0
+ µ2X1̂,2

]
(3.5.12)

Xℓ0−4̂,3Xℓ0,4̂
=

⟨η3⟩⟨η4̂⟩
⟨34̂⟩

[
D4X3+4̂,ℓ0

−D3X4̂,ℓ0
+ µ2X3,4̂

]
, (3.5.13)

such that the sub-integrand corresponding to the box is equivalent to

Ibox
1234 =

∏
i⟨ηî⟩

⟨1̂2⟩⟨34̂⟩

[
X1̂+2,ℓ0

X3+4̂,ℓ0

D3
−
X1̂+2,ℓ0

X4̂,ℓ0

D4
+ µ2

X1̂+2,ℓ0
X3,4̂

D3D4

−
X3+4̂,ℓ0

X1̂,ℓ0

D2
+D3

X1̂,ℓ0
X4̂,ℓ0

D2D4
− µ2

X1̂,ℓ0
X3,4̂

D2D4
(3.5.14)

+ µ2
X1̂,2X3+4̂,ℓ0

D2D3
− µ2

X1̂,2X4̂,ℓ0

D2D4
+ µ4

X1̂,2X3,4̂

D2D3D4

]
.

4Here, however, we will get quadratic propagators, instead of the linear propagators there in [71]. Firstly,
we consider here only a single Parke-Taylor term in the colour factor, not the cyclic sum as there; we take
the term with the loop punctures lying between the punctures for 4 and 1. Secondly, we have here ℓ0 instead
of ℓ there, but α appears in the BCFW shift of particles 1 and 4. Together, ℓ0 and α in the BCFW shift will
give quadratic propagators in the full ℓ.

5Similar manipulations are performed in e.g. [157].
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The last term will give the correct result, since

1∏
i⟨ηî⟩2

∏
i⟨ηî⟩

⟨1̂2⟩⟨34̂⟩
µ4
X1̂,2X3,4̂

D2D3D4
=

[1̂2][34]

⟨12⟩⟨34̂⟩
µ4

D2D3D4
=

[12][34]

⟨12⟩⟨34⟩
µ4

D2D3D4
.

Similar manipulations will result in two of the triangle sub-integrands being expressible as

Itri
[12]34 = −

∏
i⟨ηî⟩

⟨12⟩⟨34̂⟩

[
X1̂+2,ℓ0

X3+4̂,ℓ0

D3
−
X1̂+2,ℓ0

X4̂,ℓ0

D4
+ µ2

X1̂+2,ℓ0
X3,4̂

D3D4

]
(3.5.15)

Itri
[34]12 = −

∏
i⟨ηî⟩

⟨12⟩⟨34̂⟩

[
X1̂+2,ℓ0

X3+4̂,ℓ0

D3
−
X1̂,ℓ0

X3+4̂,ℓ0

D2
+ µ2

X1̂,2X3+4̂,ℓ0

D2D3

]
. (3.5.16)

Notice that by combining the sub-integrands at this point, several cancellations occur. For
example, the bubble terms fully cancel, and all the terms in (3.5.15) and (3.5.16) are can-
celled by terms in (3.5.14). What remains is

I(ℓ0, α) = − [12][34]

⟨12⟩⟨34⟩
µ4

D2D3D4
− 1∏

⟨ηî⟩2
Itri
[23]41

− 1∏
i⟨ηî⟩

1

⟨12⟩⟨34̂⟩

[
D3

X1̂,ℓ0
X4̂,ℓ0

D2D4
− µ2

X1̂,2X4̂,ℓ0

D2D4
− µ2

X1̂,ℓ0
X3,4̂

D2D4

]
.

(3.5.17)

Now let us symmetrise6 in ℓ0 and pay close inspection to the second line of (3.5.17). Keeping
in mind that D2 = (2ℓ0 · k̂1) and D4 = −(2ℓ0 · k̂4), the terms proportional to µ2 are anti-
symmetric in ℓ0, and so are cancelled in the symmetrisation. What remains in the second
line of (3.5.17) is simply the first term and its symmetrisation, which can be written as

1∏
i⟨ηî⟩2

D3

(2k̂1 · k2)2
X1̂,2X3,4̂X1̂,ℓ0

X4̂,ℓ0

D2D4
+ (ℓ0 → −ℓ0) =

2∏
i⟨ηî⟩2

X1̂,2X3,4̂

(2k̂1 · k2)
X1̂,ℓ0

X4̂,ℓ0

D2D4
.

(3.5.18)

Now, let us look at the symmetrisation of the term in (3.5.17) involving Itri
[23]41. From (3.5.9),

this results in

1∏
⟨ηî⟩2

X2,3Xℓ0+1̂,2+3

(2k2 · k3)
X1̂,ℓ0

X4̂,ℓ0

D2D4
+ (ℓ0 → −ℓ0) =

−2∏
⟨ηî⟩2

X2,3X1̂,4̂

(2k2 · k3)
X1̂,ℓ0

X4̂,ℓ0

D2D4
. (3.5.19)

Finally, by comparing (3.5.18) and (3.5.19) and noting that

X1̂,2X3,4̂

(2k̂1 · k2)
−
X2,3X1̂,4̂

(2k2 · k3)
= 0,

all terms in (3.5.17) aside from the first vanish in the symmetrisation of ℓ0, and thus one is
left with

I(ℓ0, α) + I(−ℓ0, α) = − [12][34]

⟨12⟩⟨34⟩
µ4

D2D3D4
+ (ℓ0 → −ℓ0),

6If one does not perform this symmetrisation, then the correct result will be obtained up to terms that
vanish non-trivially upon loop integration.
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which, by taking ℓ = ℓ0 + αq in the first term and ℓ = ℓ0 − αq in the second term, and
changing variables back to the full ℓ, gives the one-loop amplitude to be

A(1)(1+, 2+, 3+, 4+) = − [12][34]

⟨12⟩⟨34⟩

∫
dDℓ

ℓ2

[
µ4

(ℓ+ k1)2(ℓ+ k1 + k2)2(ℓ− k4)2

+
µ4

(ℓ− k1)2(ℓ− k1 − k2)2(ℓ+ k4)2

]
(3.5.20)

which matches directly known results for this amplitude. This result coincides with the one
computed in the last subsection, whence one symmetrises (3.5.6) in ℓ↔ −ℓ. Note that even
though the forward-limit precluded diagrams with massive 1-n corners, the symmetrisation
in the loop-momenta provided the correct integrand in the final result.

3.6 BCFW recursion for non-planar Yang-Mills and Gravity

In this section we discuss extending the planar recursion to the non-planar case. This is
essential in obtaining the full amplitude at one-loop for theories such as Yang-Mills, and
particularly gravity which is inherently a non-planar theory. The residue theorem argument
presented in section 3.1 can be applied directly to the non-planar case, but there will be more
subtleties since our types of shifts are, by construction, most convenient for the planar case.
This will hint at another natural procedure of obtaining a non-planar recursion. Whilst
presenting its own difficulties, as we shall see, it will be more natural from the point of view
of the colour-kinematics duality.

3.6.1 Single shift

It is possible to straightforwardly apply the same residue argument as in section 3.1 in the
case of non-planar theories. There are two fundamental differences which affect both the
forward-limit and tree-type factorisation terms that arise in the recursion. Firstly, there is
no longer a notion of colour-ordering, which means that the number of terms contributing
to the tree-type factorisations is now greater. Secondly, the loop momentum cannot be
globally chosen to lie between particles 1 and n, so one no longer receives forward-limit
contributions from just the 1/ℓ2 propagator; this also increases the number of terms arising
from the forward-limit contribution. Let us see how the latter point occurs.

Recall that we decompose the loop momentum into ℓ = ℓ0 + αq, and in our procedure
shift α to α̂ → α − z. Continuing to follow the procedure, suppose we also decided to
shift k1 and kn in the same manner as (3.1.4). In a generic non-planar theory, one will
encounter diagrams which contain propagators such as 1/(ℓ + k2)

2, as well as 1/ℓ2. Under
the BCFW shifts, the latter will produce a pole at z = α, which gives the usual forward-
limit contribution we’ve seen in the planar case. The former however will also give a pole
for when (ℓ̂+ k2)

2 goes on-shell:

(ℓ̂+ k2)
2 = 0 ⇒ z =

(ℓ+ k2)
2

2(ℓ+ k2) · q
. (3.6.1)

These are the kind of poles one encounters in [137]. It is easy to see that given the shifts
above, the only loop propagators which do not produce these poles are those involving ℓ
and k1, but not kn. The shift in α (or the shift in ℓ) is designed to cancel the shift in k1,
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but introducing kn reintroduces the dependence on z, consequently producing another pole.
This can be illustrated by considering a scalar box with ordering (2143):

1

ℓ2(ℓ+ k2)2(ℓ+ k21)2(ℓ+ k214)2
(3.6.2)

Upon performing the BCFW shifts, the first propagator gives the usual pole at z = α. The
second propagator will also give a pole corresponding to (3.6.1). The third propagator will
not produce a pole, since the shift in ℓ cancels the shift in k1. However, the last propagator
can be written as 1/(ℓ − k3)

2, and thus will exhibit a pole similar to (3.6.1), except with
k2 → −k3. All in all, the scalar box above would give three forward-limit contributions. The
situation is worsened in examples where the scalar box has an ordering such that particle
4 appears before particle 1 (e.g., diagrams with ordering (4213)), since all loop propagators
will give forward-limit contributions.

We can ameliorate this issue by globally choosing the loop momentum to lie next to par-
ticle 1, which is a valid choice one can make in a non-planar theory. Then the last situation
described above cannot occur, and the number of terms contributing to the forward-limit
is vastly decreased. It is also more natural from the point of view of the shifts. Regardless,
the residue argument results in an expression of the form

I(1)n =
∑

I, statesI

A(0)
nI+1(zI)

1

K2
I

I
(1)
n−nI+1(zI) +

∑
J, statesJ

1

(ℓ+KJ)2
A(0,reg)

n+2 (zJℓ) + Bn (3.6.3)

where A(0,reg)
n+2 (zJℓ) corresponds to the regularised forward-limit of an (n+2)-point tree am-

plitude, evaluated at zJℓ for which (ℓ̂ + K̂J)
2 = 0. Naturally one might want to further

reduce the number of forward-limit contributions by appropriately re-defining the loop mo-
mentum in each term in the integrand. For example, if we were considering the scalar box
with ordering (1432), performing the shift not on ℓ but on ℓ̃ = −(ℓ+k1) would result in only
a single forward-limit term, as opposed to three from shifting ℓ. However, then we would not
be applying a single BCFW shift, and this reasoning leads us to another procedure which
we will now discuss.

3.6.2 Multiple shifts and gravity integrands

The other option is to decompose the integrand into planar sub-sectors and perform different
shifts accordingly. This is quite natural from the point of Yang-Mills theory, or any theory
with only adjoint states, where the notion of ordering is explicit. In the case of Yang-Mills,
one can express the full colour-dressed integrand in terms of a DDM basis,

I(1),YM
n =

∑
ρ∈(Sn/Zn)/R

c(1)(ρ(1), · · · , ρ(n)) I(1),YM
n (ρ(1), · · · , ρ(n)) (3.6.4)

wherein (Sn/Zn) are the set of non-cyclic permutations, and R denotes reflections. For
any ordering the one-loop colour factors in this basis are expressed purely in terms of the
structure constants of the theory.

c(1)(ρ(1), · · · , ρ(n)) = f b0aρ(1)b1f b1aρ(2)b2 · · · f bn−1aρ(n)b0 . (3.6.5)

Each partial integrand I
(1),YM
n (ρ(1), · · · , ρ(n)) obeys the ordering ρ, so it is natural in each

term to associate the loop momentum as lying between ρ(n) and ρ(1), just as we did for
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the planar case. Then one can perform the planar BCFW shifts (3.1.4) adapted to the new
ordering,

k̂ρ(1) = kρ(1) + zq, k̂ρ(n) = kρ(n) − zq,

α̂ = α− z ⇒ ℓ̂ = ℓ0 + (α− z)q = ℓ− zq.
(3.6.6)

One can minimise the number of shifts required by choosing the loop momentum to lie
globally before particle 1, as mentioned in the last section. Then one would perform the
above shifts on k1 and kρ(i−1) where ρ(i) = 1, i.e. ρ(i− 1) is the particle before particle 1 in
the ordering. One then requires only to perform n− 1 distinct BCFW shifts to capture the
full integrand.

For generic theories one can attempt to decompose the integrand into parts with fixed
ordering along the lines of the above. This is quite natural for theories obtainable through
the double copy provided one has the relevant set of BCJ numerators. For example, in the
DDM basis of (3.6.4) gravity amplitudes integrands can be obtained via

I(1),gravn =
∑

ρ∈(Sn/Zn)/R

Ñ (1)(ρ(1), · · · , ρ(n)) I(1),YM
n (ρ(1), · · · , ρ(n)) (3.6.7)

where Ñ (1)(ρ(1), · · · , ρ(n)) are the n-gon BCJ numerators for Yang-Mills at one-loop with
the prescribed colour-ordering. In the case of N = 4 super Yang-Mills, this procedure would
give a recursion for N = 8 supergravity, where the partial amplitudes and BCJ numerators
of section 3.2.2 may be used. Importantly, consistent factorisations of gravity are guaranteed
by the double copy, since in a unitarity cut for example the independent sum over states in

Ñ (1) and I
(1),YM
n is equivalent to the gravity sum over states.

To clarify, the formula (3.6.7) for gravity amplitudes relies on the existence of BCJ
numerators at one-loop. These are numerators in the loop-level conjecture of BCJ [12],
for loop-integrands involving quadratic propagators. It is known that there are obstacles
in constructing these numerators beyond the MHV sector mentioned above, even at one-
loop [158,159]. In representations of the loop integrand using linear propagators, e.g. coming
from the ambitwistor string, BCJ numerators are readily available since they are derived
from a type of forward-limit of the tree-level case. However, this is not the representation
we are currently discussing.

This methodology seems to suggest that the non-planar recursion follows straightfor-
wardly from the planar case. There is however a subtlety that arises from performing dif-
ferent shifts for planar-like sub-sectors of the integrand. Namely, the BCFW factorisation
in the non-planar case is not straightforwardly aligned with the planar BCFW factorisa-
tion. Recall that tree-type factorisation terms cancel the spurious poles coming from the
corresponding forward-limit term. In the non-planar case, it is required that these spurious
poles are cancelled before one obtains the correct factorisation. Let us demonstrate this by
returning to the five-point example in N = 4 super Yang-Mills. Consider the following two
terms in the colour-dressed integrand of (3.6.4):

c(1, 2, 3, 4, 5) I(1),YM(1, 2, 3, 4, 5) + c(1, 2, 3, 5, 4) I(1),YM(1, 2, 3, 5, 4) ⊂ I
(1),YM
5 (3.6.8)

with the colour factors corresponding to pentagons with the relevant ordering. From our
discussion above, we would perform shifts on k1 and k5 in the first term and shifts on k1
and k4 in the second term. The first term is essentially the example we considered in section
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3.3.2, so it is known that a spurious pole arises in the box with a massive 45 corner. Calling
the numerator for this term Nbox

123[4,5], these terms appear from the above as

c(1, 2, 3, 4, 5)

∫
dDℓ

ℓ2

Nbox
123[4,5]

(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2s45

+ c(1, 2, 3, 5, 4)

∫
dDℓ

ℓ2

Nbox
123[5,4]

(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2s45
.

(3.6.9)

Since Nbox
123[5,4] = −Nbox

123[4,5] by construction, these terms traditionally combine into a single
term

c(1, 2, 3, [4, 5])

∫
dDℓ

ℓ2

Nbox
123[4,5]

(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2s45
(3.6.10)

where c(1, 2, 3, [4, 5]) := c(1, 2, 3, 4, 5) − c(1, 2, 3, 5, 4) is formally recognised as the colour
factor for the box with a massive 45 corner. Now suppose we had performed the separate
shifts mentioned above in accordance with the recursion. Both terms in (3.6.9) would give
a spurious pole from the 1/s45 propagator,

c(1, 2, 3, 4, 5)

∫
dDℓ

ℓ2
α

α− ⟨45⟩
⟨41⟩

Nbox
123[4,5]

(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2s45

+ c(1, 2, 3, 5, 4)

∫
dDℓ′

ℓ′2
α′

α′ − ⟨54⟩
⟨51⟩

Nbox
123[5,4]

(ℓ′ + k1)2(ℓ′ + k12)2(ℓ′ + k123)2s45
.

(3.6.11)

which comes from having q = λ1λ̃5 and q′ = λ1λ̃4 respectively. We put primes on α and ℓ
on the second term as a reminder that they come from applying different shifts. Unlike in
(3.6.10), it is generically impossible to combine these two terms at this stage. This would
require

ℓ = ℓ′,
α

α− ⟨45⟩
⟨41⟩

=
α′

α′ − ⟨54⟩
⟨51⟩

⇔ α′ = −⟨41⟩
⟨51⟩

α. (3.6.12)

From the first condition we would have that

ℓ0 + αq = ℓ′0 + α′q′ ⇒ ℓ′0 = ℓ0 + αq − α′q′

and thus the null condition on ℓ′0 implies

α ℓ0 · q = α′ℓ0 · q′ ⇒ α′ =
ℓ0 · q
ℓ0 · q′

α. (3.6.13)

Comparing (3.6.12) with (3.6.13), it is clear that the two terms can only be combined when

ℓ0 · q
ℓ0 · q′

= −⟨41⟩
⟨51⟩

,

however this is not true for generic ℓ0. Essentially, the fact that performing multiple shifts
will produce generically incompatible spurious poles disallows the BCFW factorisation from
being straightforwardly realised in the non-planar case. Clearly, the spurious poles would
have to be cancelled term by term before they can be meaningfully combined into the correct
expression.

Nevertheless, this extension of the recursion to the non-planar case seems more natural
in terms of the colour-kinematics duality, and will be more appropriate to extend also the
worldsheet formulae giving quadratic propagators, which we will now discuss.
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3.7 Worldsheet formulas for quadratic propagators

As discussed at the end of the previous chapter, worldsheet formulae for one-loop inte-
grands result in an unorthodox representation of the integrand, which contain ‘linear-type’
propagators as opposed to the quadratic propagators one obtains in a typical field theory
calculation. This is a result of the form of the one-loop scattering equations (2.5.15), which
do not explicitly contain ℓ2. However the scattering equations are very malleable; different
forms can be considered so long as certain crucial properties, such as Möbius invariance
of the amplitude, are retained. Examples of this can be seen at tree-level, with the ‘mas-
sive’ scattering equations giving rise to the correct propagators for theories with massive
states [108–113].

The linear propagators are not the only difference with typical field theory however. To
get an idea of these differences, let us have a look at the result for the scalar n-gon integrand
with ordering (12 · · ·n) that arises from worldsheet formulae:

1

ℓ2
· 1

(2ℓ · k1)(2ℓ · (k1 + k2) + (k1 + k2)2) · · · (−2ℓ · kn)
+ cyc(12 · · ·n). (3.7.1)

The factor 1/ℓ2 plays a passive role in the worldsheet formalism, a remnant of the fact
that they give forward-limit-type integrand representations. Indeed, this can be seen by
noticing that the linear propagators appear seemingly related to Feynman-type propagators
by treating ℓ as a null object7. The cyclic factors arise from the structure of worldsheet
integrands for one-loop and are a novel feature of this formalism. Clearly, there are two
things distinguishing (3.7.1) from the result obtainable from Feynman diagrams:

(1) The propagators are ‘linear’ in the loop momentum, contrasting traditional Feynman
propagators, which appear quadratically, e.g. as (ℓ+K)2.

(2) The cyc(12 · · ·n) factor gives rise to n distinct terms in the integrand, contrasting the
one term obtained for a single n-gon diagram in the Feynman representation.

The origins of these issues motivate a strategy to straightforwardly obtain quadratic propa-
gators in worldsheet formulae without overcounting, thereby allowing them to coincide with
traditional integrand representations. Let us recall that the propagator structure from per-
forming worldsheet integrals is fully determined from the form of the scattering equations.
This follows straightforwardly from the fact that the scattering equations relate kinematic
poles to the boundaries of the moduli space, as discussed in section 2.7. Indeed, this is
what allows the worldsheet formulae to inherently give field theory results. This means the
propagators in (3.7.1) are determined a priori from the structure of the one-loop scattering
equations,

Ei := ℓ · ki
σ+−
σi+σi−

+
∑
j ̸=i

ki · kj
σij

, E± := ±
∑
j

ℓ · kj
σ±j

. (3.7.2)

The other issue, regarding the cyclic factors, arises from the fact that the worldsheet inte-
grands typically involve a sum over Parke-Taylor denominators with different cyclic ordering.

7Although these can be derived from the standard Feynman representation by use of the partial frac-
tion identity discussed in section 2.7 and utilised in [116], where the notion of ‘Q-cuts’ were introduced.
Unfortunately, the converse in not generically true, which is the main motivation for this work.
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For example, in the n-gon example, one of the worldsheet half-integrands have the form

I(1)
1/2 =

∑
ρ∈cyc(12···n)

1

(+ρ1 ρ2 · · · ρn−)

where (+ρ1 ρ2 · · · ρn−) = σ+ρ1σρ1ρ2 · · ·σρn−σ−+ as usual. The cyclic sum over Parke-Taylor
factors in the half-integrand essentially gives rise to the cyclic sum in (3.7.1). Considering
these points, it is clear what could be done to obtain, in our example, the more traditional
form of the n-gon integrand:

(1) Modify the scattering equations, such that the propagators appearing are quadratic
in the loop-momenta, as opposed to linear,

(2) Include only a single Parke-Taylor factor in the worldsheet integrand, such that only
a single ordering appears with respect to the loop propagators.

The two modifications above are not mutually exclusive, and a choice of how one is modified
will indicate how the other should be. We will now discuss these modifications in more detail.

3.7.1 Scattering equations for quadratic propagators

Let us continue considering our example in (3.7.1). Diagrammatically, the cyclic sum exem-
plifies how the loop-momentum is treated democratically in the scattering equation formal-
ism. This can also be seen in the homogeneity of ℓ · ki in the scattering equations (3.7.2). A
Feynman-type representation would consist of only a single term for this integrand, where
the 1/ℓ2 propagator corresponds to a fixed position in the loop. Suppose then we had a
single term where the loop is positioned between particles n and 1 (in a sense, having already
completed step (2) above), which essentially corresponds to the first term of (3.7.1). Since
each propagator contains the term 2ℓ · k1 (or, using momentum conservation8, −2ℓ · kn), it
is clear we can obtain quadratic propagators via the substitutions

2ℓ · k1 7→ (ℓ+ k1)
2, 2ℓ · kn 7→ −(ℓ− kn)

2.

Since as mentioned above the poles of the loop integrand are determined by the form of the
scattering equations, this motivates us to propose new ℓ2-deformed scattering equations:

Eℓ2-def
i = Ei

∣∣∣∣ 2ℓ·k1 7→ +(ℓ+k1)2

2ℓ·kn 7→ −(ℓ−kn)2

. (3.7.3)

To spell this out in more detail, the scattering equations for all external labels not including
particles 1 and n, are completely unchanged, Eℓ2-def

i ̸=1,n = Ei ̸=1,n, whilst the scattering equations
for particles 1 and n become

Eℓ2-def
1 = +(ℓ+ k1)

2 σ+−
σ1+σ1−

+
∑
j ̸=1

k1 · kj
σ1j

Eℓ2-def
n = −(ℓ− kn)

2 σ+−
σn+σn−

+
∑
j ̸=n

kn · kj
σnj

8This single term would now be, in our n-gon example, the first term of (3.7.1). Note that the last
propagator in this term is obtained using momentum conservation, 2ℓ · (k1 + · · · kn−1) + (k1 + · · · kn−1)

2 =
−2ℓ ·kn. Therefore, the deformations we are about to present ensure that each propagator becomes quadratic
in the loop momentum.
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and the scattering equations for the nodal points become

Eℓ2-def
+ = +

(ℓ+ k1)
2

σ+1
− (ℓ− kn)

2

σ+n
+
∑
j ̸=1,n

2ℓ · kj
σ+j

Eℓ2-def
− = −(ℓ+ k1)

2

σ−1
+

(ℓ− kn)
2

σ−n
−
∑
j ̸=1,n

2ℓ · kj
σ−j

.

Note that these deformations will preserve Möbius invariance since it is still true that∑
i

σmi Eℓ2-def
i = 0, m = 0, 1, 2

as a result of momentum conservation. This means that the ℓ2-deformed scattering equations
are appropriate for a CHY-type measure, so one may define

dµℓ
2-def
n :=

dn+2σ

vol SL(2,C)

n+2∏
i=1

′ δ̄
(
Eℓ2-def
i

)
(3.7.4)

in complete analogy with the usual CHY measure involving linear propagators. This will
be the necessary measure to use in the worldsheet formulae to be presented that give rise
to traditional Feynman-type representations of loop-integrands.

Like the tree- and one-loop construction of worldsheet models, the scattering equations
can be described more succinctly as the vanishing of a quadratic differential on the nodal
sphere. For the usual one-loop scattering equations this was described in section 2.5, where
the quadratic differential appears as P1 = P 2(σ) − ℓ2ω2

+−. For the ℓ2-deformed scattering

equations it can be recognised that this quadratic differential has the form Pℓ2-def
1 = P 2(σ)−

ℓ2ω2
+− + ℓ2ω+−ω1n where

Pµ(σ) =

(
ℓµ

σ − σ+
− ℓµ

σ − σ−
+

n∑
i=1

kµi
σ − σi

)
dσ, ωab(σ) =

σa − σb
(σ − σa)(σ − σb)

dσ.

As usual, imposing that this quadratic differential vanishes on the sphere is achieved by
setting the residues at its poles equal to zero, which here gives rise to the ℓ2-deformed
scattering equations:

Eℓ2-def
i = Resσi P

ℓ2-def
1 = Resσi(P

2(σ)− ℓ2ω2
+− + ℓ2ω+−ω1n). (3.7.5)

Let us make some comments on the possibility of deriving these from a first-principles
argument. Writing (3.7.5) this way seems to indicate the possibility of deriving this form
of the scattering equations directly from the torus via a residue theorem. Indeed, the
difference between P1 and Pℓ2-def

1 , namely the term ℓ2ω+−ω1n, is precisely proportional to
the ‘modular’ scattering equation at genus one, which acts to localise the modular parameter
onto τ → i∞ where the torus degenerates to the nodal sphere. In the type II ambitwistor
string, as seen in section 2.5, this scattering equation is recognised as Eτ := P 2(z0) = 0 for z0
an arbitrary point. On the torus, different scattering equations related via Ei ≃ Ei+αiEτ are
equivalent on the support of the modular scattering equation. In this case the ℓ2-deformed
scattering equations could then arise by taking α1 = −αn = 1 and all other αi = 0 such
that

Eℓ2-def
1 = E1 + ℓ2

σ+−
σ1+σ1−

, Eℓ2-def
n = En − ℓ2

σ+−
σn+σn−

71



3.7. WORLDSHEET FORMULAS FOR QUADRATIC PROPAGATORS

with all others unchanged. However, on the nodal sphere the above equivalence is no longer
manifest, since Eτ ∼ ℓ2 ̸= 0, and different choices of scattering equations can lead to very
different representations of the loop integrand. These contribute to making a first-principles
derivation of our formulae from the torus non-trivial. In this endeavour one ought to verify
the details of the argument above and check that on the support of the scattering equations
Ei + αiEτ , the genus-one integrand still only has a pole at τ = i∞. Once this is done it
would be interesting to investigate the space of these deformations in more detail, but this
has not hitherto been done.

It should also be noticed that this particular modification of the scattering equations is
only well-adapted to planar theories. Indeed, this discussion was motivated by investigat-
ing the scalar n-gon expression of (3.7.1) in a particular (planar) ordering. On the other
hand, the only theory to date which has had a rigorous derivation at genus-one from the
ambitwistor string has been type II supergravity [50], which is naturally non-planar. One
might expect then that a derivation from the torus would require not just one set of deformed
scattering equations, but sets of distinct deformations, taking into account other planar-like
orderings that can occur. This follows the same reasoning as section 3.6.2, and it should be
that the resulting expressions on the nodal sphere would reproduce the expressions therein.
We will go on to discuss the non-planar case in section 3.7.5.

3.7.2 Worldsheet integrands for quadratic propagators

As mentioned above section 3.7.1, we will also be required to modify the integrands appear-
ing in the worldsheet formulae to ensure that the relevant Feynman representation of the
loop integrand is obtained. In preceding discussions, we have noted that the structure of
worldsheet formulas is such that in the resulting expressions, the loop-momentum is treated
democratically. In our n-gon example (3.7.1) this was seen explicitly in the cyclic sum
over the ordering we were considering. This cyclic sum arises from the cyclic sum in the
worldsheet half integrand, so it is easy to single out a specific term to reproduce the desired
expression. While for generic theories this can be fairly non-trivial, it is quite natural for
theories which admit worldsheet integrands expressible in a Parke-Taylor basis, since the
ordering of the external particles in the resulting diagram is explicit. Using the colour-
kinematics duality allows this to be possible for many theories, and in fact any massless
theory admitting a BCJ representation should have this property.

In this section we will give a few examples of worldsheet integrands tailored towards
the ℓ2-deformed scattering equations. The moduli-space integrations of these will result in
formal expressions for the one-loop integrands containing quadratic propagators. We will
do this in two cases: the n-gons, which were our initial example, and the MHV integrand for
super Yang-Mills theory. The former will aid us in seeing how the latter is well described,
and so will act as a toy model we go on to discuss now.

The n-gon integrands, with and without massive corners. The n-gon served as the
original motivation in deducing how to alter worldsheet formulae in order to coincide with
the traditional Feynman representation. We considered a specific ordering and found a set
of scattering equations which gave quadratic propagators. However, in order for this to be
effective, we still require only one term in the loop-integrand, as opposed to the cyclic sum,
otherwise the deformed scattering would only suit their purpose for one of the terms. This is
achieved for any particular ordering by keeping one term in the worldsheet integrand before
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integration, so that we can propose that for the n-gon:

I(1)
n-gon(12 . . . n) =

1

ℓ2

∫
M0,n+2

dµℓ
2-def
n

 1

σ2+−

n∏
j=1

σ−+

σ+j σj−

 1

(+12 . . . n−)
(3.7.6)

with n ≥ 4. In the above we denote (+12 · · ·n−) as the (inverse) Parke-Taylor factor,
(+12 · · ·n−) = σ+1σ12 · · ·σn−σ−+ . The measure, now containing the ℓ2-deformed scattering
equations, is defined from (3.7.4). Between the inclusion of this measure and the one Parke-
Taylor above, this worldsheet formula acts to give only a single term in the loop-integrand,
which has quadratic propagators. At four- and five-points for example, it can be shown
either numerically or by factorisation arguments that

I
(1)
box(1234) =

1

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ− k4)2
(3.7.7a)

I
(1)
pent(12345) =

1

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ− k5)2
. (3.7.7b)

We note that for n = 2, 3, tadpole-like structures appear and so the above proposal (3.7.6)
is not valid in these cases.

Another interesting example, which is less trivial, is the (n − 1)-gon with a massive
corner. A lot of work has gone into deriving worldsheet formulae which produce diagrams
such as these, based on pole-power-counting [83–85]. For an (n−1)-gon (n ≥ 5) with massive
corner [i i+ 1] (i ̸= n), the formula should follow straightforwardly as

I
(1)
(n−1)-gon|[i i+1](12 · · ·n) =

1

ℓ2

∫
M0,n+2

dµℓ
2-def
n

 1

σ2+−

σ−+

σ−iσi i+1σi+1+

n∏
j ̸=i,i+1

σ−+

σ+j σj−

 1

(+12 . . . n−)
.

(3.7.8)
This formula can also be understood in terms of factorisation. In comparison to (3.7.6),
the factor in the parenthesis is designed to only produce diagrams with a pole in si i+1,
corresponding to when the punctures σi and σi+1 coalesce. Indeed at five points for example
one can check either numerically or via factorisation that (3.7.8) results in

Ibox|[4,5] =
1

s45 ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
(3.7.9)

These examples will aid us in the more non-trivial examples to be considered now.

3.7.3 The MHV integrand

We can perform similar manipulations to the above to obtain the one-loop integrands of
N = 4 super Yang-Mills. Here the ordering of the particles is directly associated with
the colour-ordering in the trace decomposition, where the worldsheet integrand naturally
includes a factor

C(1)
cyc(12 · · ·n) =

∑
γ∈cyc(12···n)

tr(T aγ(1)T aγ(2) · · ·T aγ(n))

(+ γ(1)γ(2) · · · γ(n)−)
, (3.7.10)

for the planar case. The subscript ‘cyc’ on the LHS refers to the cyclic sum on the RHS. That
the MHV integrand admits such a Parke-Taylor decomposition allows us to straightforwardly
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restrict only one term to the sum, according to the placement of ℓ. For ℓ between particles
n and 1 this term is naturally chosen to be

C(1)(12 · · ·n) = tr(T a1T a2 · · ·T an)

(+ 12 · · ·n−)
⊂ C(1)

cyc(12 · · ·n) . (3.7.11)

This allows us to propose the n-point worldsheet integrand for the MHV sector of N = 4
super Yang-Mills:

I
(1)
SYM-MHV(12 . . . n) =

1

ℓ2

∫
M0,n+2

dµℓ
2-def
n I(1)

MHV C(1)(12 . . . n) . (3.7.12)

In the above formula, the kinematic MHV worldsheet integrand takes the form

I(1)
MHV =

∑
ρ∈Sn

N
(1)
ρ

(+ ρ(1) ρ(2) · · · ρ(n)−)
(3.7.13)

with

N (1)
ρ = δ(8)(Q)

(
n∏

i=2

1

⟨1i⟩2

)
n(1)ρ . (3.7.14)

These numerators take the same form as in the previous sections, and so share the same
properties as before. Firstly, they are directly calculable to any multiplicity via the algo-
rithm presented in [149]. Furthermore, supermomentum is manifest in this construction,
and diagrams with 1-n corners vanish for the same reason as before. This is quite crucial
here, since the ℓ2-deformed scattering equations do not typically give rise to these types of
diagrams and may produce unphysical poles in this factorisation channel. Another property
is that they also vanish for triangles and bubbles, in line with the ‘no-triangle’ hypothesis
for this theory. As a result, they also prevent these diagrams arising from the worldsheet
formulae.

Let us now present some examples for four and five particles to demonstrate that the
worldsheet formula (3.7.12) provides the correct expressions in these cases.

Four particles. This works in close analogy with the BCFW example in section 3.3.1.
Firstly, notice that

N (1)
ρ = −δ(8)(Q)

[12][34]

⟨12⟩⟨34⟩
(3.7.15)

for all ρ ∈ S4. This can be seen from the fact the above is permutation symmetric. Its
corresponding sum of Parke-Taylor factors from (3.7.13) can be related to our previous
results by noting the identity

∑
ρ∈Sn

1

(+ ρ(1) ρ(2) · · · ρ(n)−)
= − 1

σ2+−

n∏
i=1

σ+−
σ−iσi+

= (−1)n

(
1

σ2+−

n∏
i=1

σ−+

σ−iσi+

)
. (3.7.16)

Upon using this formula, as well as (3.7.15), the MHV worldsheet formula (3.7.13) at four
points becomes

I
(1)
SYM-MHV(1234) = δ(8)(Q)

[12][34]

⟨12⟩⟨34⟩
1

ℓ2

∫
M0,n+2

dµℓ
2-def
n

(
1

σ2+−

4∏
i=1

σ−+

σ−iσi+

)
1

(+ 1234−)
.

(3.7.17)
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We recognise the moduli-space integral as (3.7.7a), so the above results in

I
(1)
SYM-MHV(1234) = δ(8)(Q)

[12][34]

⟨12⟩⟨34⟩
1

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ− k4)2
, (3.7.18)

which indeed matches the result from the known result, and that derived from the BCFW
recursion in 3.3.1 up to a normalisation.

Five particles. For five particles we now expect there to be pentagons and massive boxes.
Since there are no massive triangles and bubbles, and that all numerators are defined cycli-
cally

n
(1)
ρ(i+1)···ρ(n) 1···ρ(i) := n

(1)
1 ρ(2)···ρ(n) , n

(1)
1A2

= n
(1)
1A2 A3

= 0 , (3.7.19)

all of the numerators can actually be related to the pentagon numerator n
(1)
12345 and massive

box numerators for the ordering (12345). For example, n
(1)
43512 = n

(1)
12435 = n

(1)
12345 − n

(1)
12[34]5.

Furthermore, boxes with massive corners [12] and [51] vanish by definition of the numerators.
Collecting the terms according to the linearly independent numerators, we get

I (1)

MHV =N (1)
12345

∑
ρ∈S5

1

(+ρ−)
−N (1)

1[23]45

∑
α∈S3(145)
ρ∈α�{3,2}

1

(+ρ−)
−N (1)

12[34]5

∑
α∈S3(125)
ρ∈α�{4,3}

1

(+ρ−)
−N (1)

123[45]

∑
α∈S3(123)
ρ∈α�{5,4}

1

(+ρ−)
,

where � denotes the shuffle product. To write this in a more recognisable way we can use
the KK relations for Parke-Taylor factors,

1

(+αnβ)
= (−1)|β|

∑
ρ∈α�βT

1

(+ ρn)
(3.7.20)

such that for example∑
α∈S3(123)
ρ∈α�{5,4}

1

(+ ρ−)
=

∑
α∈S3(123)

1

(+α− 45)
=

σ−+

σ−4σ45σ5+

∑
α∈S3(123)

1

(+α−)

= − 1

σ2+−

σ−+

σ−4σ45σ5+

∏
i ̸=4,5

σ−+

σ+iσi−
.

(3.7.21)

Applying this to each term in the MHV integrand results in

I(1)
MHV = N

(1)
12345

∑
ρ∈S5

1

(+ρ−)
+N1[23]45

 1

σ2+−

σ−+

σ−2σ23σ3+

∏
i ̸=2,3

σ−+

σ+iσi−


+N

(1)
12[34]5

 1

σ2+−

σ−+

σ−3σ34σ4+

∏
i ̸=3,4

σ−+

σ+iσi−

+N
(1)
123[45]

 1

σ2+−

σ−+

σ−4σ45σ5+

∏
i ̸=4,5

σ−+

σ+iσi−

 .

(3.7.22)
In this form we can explicitly see that each numerator is coupled with the worldsheet struc-
ture that will result in the relevant diagram after integration. Explicitly, using the results
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of (3.7.6) and (3.7.8) it is easy to see that it gives the correct five-point expression,

I
(1)
SYM-MHV(12345) =

N12345

ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2(ℓ− k5)2
+

N1[23]45

s23 ℓ2(ℓ+ k1)2(ℓ+ k123)2(ℓ− k5)2

+
N12[34]5

s34 ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ− k5)2
+

N123[45]

s45 ℓ2(ℓ+ k1)2(ℓ+ k12)2(ℓ+ k123)2
,

matching (3.2.12b) after using the definitions of the numerators N
(1)
ρ .

3.7.4 On constructions, proofs and extensions

Here we would like to make remarks regarding proofs of the modified worldsheet formu-
lae, and the possibility of extending this procedure to other theories, either in different
dimensions or with less supersymmetry.

Firstly, let us remind the reader that the ℓ2-deformed scattering equations may have a
natural interpretation as arising from a choice of scattering equations on the torus. This pro-
posal however relies on the worldsheet integrand retaining a pole only on the non-separating
degeneration (as well as the other scattering equations). This is essential for the global
residue theorem to work as intended, and supposing this occurs the integrand will in prin-
ciple take a different form after the degeneration. Moreover, the Yang-Mills formulae on
the nodal sphere are actually inferred from those of type-II supergravity, by notion of the
colour-kinematics duality, but this is inherently a non-planar theory, so it is expected in
general that different deformations would be required to achieve the correct integrand; more
on this in the next section.

This being said, one could seek a construction for the modified worldsheet formulae on the
nodal sphere directly. Using the new scattering equations, one could attempt to construct
the worldsheet integrands on the principle that the resulting loop expression satisfy the
BCFW recursion presented in previous sections. However, this seems to be an arduous
process, and it may not be easy to recognise structures on the worldsheet [1].

However, we note that the MHV integrand of (3.7.12) can been proven to arbitrary
multiplicity, using our BCFW recursion formulae. We point the interested reader to [1]
where this proof is rigorously presented. In the scattering equation formalism, applying
the recursion at first seems peculiar, since only the pole from ℓ2 appears manifestly in the
worldsheet formulae. The only other poles in the worldsheet formulae arise when points on
the Riemann surface begin to coalesce (i.e., the boundary of the moduli space), but luckily
the scattering equations relate these to the kinematic poles resulting from the moduli space
integration. The proof thus relies heavily on the scattering equations.

Finally, let us discuss the possibility of extending this procedure to more generic theories.
In this respect there are two glaring issues, neither of which appeared for the MHV proposal.

(1) Diagrams with massive 1-n corners.

Generic theories will contain Feynman diagrams that do not typically result from the
worldsheet formulae. This is because of our choice in the planar theory to assign the
loop-momentum to lie between particles n and 1. As mentioned in section 3.7, this
choice dictates the modifications required to obtain formulae with quadratic propa-
gators, both with the choice of deforming the scattering equations, and with which
Parke-Taylor factor to keep in the cyclic sum. As a result, the moduli space integrals
only give trivalent diagrams which reflect this choice; with the 1/ℓ2 factor playing a
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passive role, this means diagrams with n-1 corners do not naturally arise from the
worldsheet integrations. In the MHV case, the loop-integrand admitted a representa-
tion which prohibited these diagrams from appearing in the first place, due to their
kinematic numerators being 0. Of course, then this will not be an issue for any theory
admitting a similar representation, but this is generically not the case. We expect that
a further modification will resolve this issue.

(2) Singular solutions.

Another cause for concern are the singular solutions to the scattering equations, occur-
ring when σ+− → 0. On the worldsheet these correspond to tadpole-like geometries.
For the supersymmetric theories derived from the type-II formula on the torus, it is
known that these do not contribute [106]. This consequently extends to the MHV
case, which can be obtained from the aforementioned theory via dimensional reduc-
tion; this has also been proved using the ℓ2-deformed scattering equations in [1]. For
more generic theories however, such as pure Yang-Mills or the biadjoint scalar, they
do tend to contribute. In the usual one-loop formalism with linear propagators, they
could be shown to be associated with scaleless integrals, which subsequently integrate
to zero [106]; in this sense the singular solutions to the usual one-loop scattering equa-
tions were well-understood. However, in this formalism with quadratic propagators
it is less clear what occurs, and more study is required to understand the role of the
singular solutions.

3.7.5 Non-planar theories

In this section we will discuss a natural extension of the worldsheet formulae discussed in the
previous sections to the non-planar case. Since only the MHV integrand has been proved [1],
we will only focus on theories utilising this structure. This of course includes the relevant
sector of N = 8 supergravity, as a result of its close connection with the former through the
double copy.

The idea is based on the non-planar BCFW proposal, given in section 3.6. There we
gave an instinctive way of applying separate BCFW shifts to different planar-like subsectors
of the non-planar integrand. This reasoning can be applied of course also to the worldsheet
formulae, where the planar-like subsectors are easily extracted by isolating Parke-Taylor
factors with the relevant ordering. Again, this is a legitimate thing to do if (at least) one of
the half-integrands is written in a Parke-Taylor decomposition.

Let us recall the colour-ordered MHV integrand for convenience. In the notation we will
present it is given by

I
(1)
SYM-MHV(12 . . . n) =

1

ℓ2

∫
M0,n+2

dµℓ
2-def-{1,n}
n I(1)

MHV

1

(+12 · · ·n−)
. (3.7.23)

The notation {1, n} in the measure signifies that the deformation of the scattering equations
is associated with particles 1 and n, as in (3.7.3). Precisely, the modifications given by
the deformed scattering equations and choice of colour factor to isolate were based on the
planar case in which the loop momentum resided between particles 1 and n. This resulted
in integrands with the ordering prescribed by the colour factor, and quadratic propagators
accordingly. Whilst the modification depends on the planar colour-ordered integrand under
consideration, the full integrand (including non-planar contributions) can be written in terms
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of its planar subsectors as in (3.6.4),

I
(1)
SYM-MHV =

∑
ρ∈Sn−1/R

c(1)(1, ρ(1), · · · , ρ(n)) I(1)SYM-MHV(1, ρ(1), · · · , ρ(n)) (3.7.24)

where c(1) was defined in (3.6.5). In comparison to (3.6.4) we have decided to fix particle 1
so the sum runs over Sn−1, on which the reflection R acts. This is related to the definition
of the numerators having particle 1 directly attached to the loop; as mentioned in section
3.6.2, even in the non-planar case we can always choose the loop momentum to reside before
particle 1. In each term of (3.7.24), it is understood that the loop momentum is positioned
between particles ρ(n) and 1. This representation of the non-planar integrand allows a
straightforward extension to supergravity, as in (3.6.7),

I
(1)
sugra-MHV =

∑
ρ∈Sn−1/R

Ñ (1)(1, ρ(1), · · · , ρ(n)) I(1)SYM-MHV(1, ρ(1), · · · , ρ(n)) . (3.7.25)

The tilde’d BCJ numerators Ñ (1) follow directly from (3.7.14). Note that the δ(8)(Q̃) com-
bines with the δ(8)(Q) to give the factorisation of the supermomentum conserving delta
function δ(16)(Q) in supergravity. Now we have expressed the non-planar integrands in
terms of their planar subsectors, we can modify each term as we did in the planar case
accordingly,

I
(1)
n, SYM-MHV =

1

ℓ2

∑
ρ∈Sn−1/R

∫
M0,n+2

dµℓ
2-def-{1,ρ(n)}
n I (1)

MHV

c(1)
(
1, ρ(2), · · · , ρ(n)

)(
+ 1 ρ(2) . . . ρ(n)−

) . (3.7.26)

for N = 4 super Yang-Mills, and

I
(1)
n, sugra-MHV =

1

ℓ2

∑
ρ∈Sn−1/R

∫
M0,n+2

dµℓ
2-def-{1,ρ(n)}
n I (1)

MHV

Ñ
(1)
MHV

(
1, ρ(2), · · · , ρ(n)

)(
+ 1 ρ(2) . . . ρ(n)−

)
(3.7.27)

for N = 8 supergravity. The measure in each term now enforces different scattering equa-
tions,

dµℓ
2-def-{i,j}
n :=

dn+2σ

vol SL(2,C)

n+2∏
a=1

′δ̄
(
Ea
∣∣ 2ℓ·ki 7→ +(ℓ+ki)

2

2ℓ·kj 7→ −(ℓ−kj)2

)
, (3.7.28)

according to the ordering determined by ρ. In complete analogy with the non-planar BCFW
story, the sum over Sn−1/R dictates that only n−1 sets of scattering equations are required
to obtain the full integrand, associated to the combinations of {1, ρ(n)}. This is because the
BCFW shifts and deformed scattering equations work to achieve the same goal, and are both
determined by the choice of ordering. In this sense, they are in one-to-one correspondence
with each other. We could have also expressed (3.7.26) and (3.7.27) as

I
(1)
n,SYM-MHV =

1

2ℓ2

n∑
i=2

∫
M0,n+2

dµℓ
2-def-{1,i}
n I(1)

MHV

∑
ρ∈Sn−2

c(1)(1, ρ(1), · · · , ρ(n− 1), i))

(+1ρ(2) · · · ρ(n− 1)i−)
,

(3.7.29)

I
(1)
n,sugra-MHV =

1

2ℓ2

n∑
i=2

∫
M0,n+2

dµℓ
2-def-{1,i}
n I(1)

MHV

∑
ρ∈Sn−2

Ñ (1)(1, ρ(1), · · · , ρ(n− 1), i))

(+1ρ(2) · · · ρ(n− 1)i−)
,

(3.7.30)
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to separate out these n − 1 sets scattering equations. In the above, the factor of 1/2 now
accounts for the reflections.

We remark that for generic theories, the issues presented in the last section still apply.
As mentioned there though, these subtleties are not present for the proposals given above
for N = 4 super Yang-Mills and N = 8 supergravity. Their viability should follow directly
from the proof given in [1].

To pick up on another point we also mentioned in the last section, we expect that
something similar to this procedure will have to occur on the torus in order to derive
expressions for supergravity from first principles, in a manner described near the end of
(3.7.1). It would be interesting to see how this would work in practice.

3.8 Discussion

In this chapter we have demonstrated a new formulation of a recursion for one-loop in-
tegrands in momentum space, which differ from previous developments [137] by including
shifts in the loop-momentum, which make the cancellation of spurious poles clear. Though
outstanding work has given results from recursion to all loop orders using momentum-
twistors [129], the integrand recursion we have presented here is valid in any number of
dimensions and extend beyond the planar limit. We demonstrated the practical use of the
recursion via a number of non-trivial examples. A central feature of the recursion was the
forward-limit, which is also how one may interpret results coming from worldsheet formulae
at loop-level. This interpretation is due to the form of the scattering equations at one-loop.
We therefore went on to propose new scattering equations which give quadratic propagators,
which we call the ℓ2-deformed scattering equations. These are to be used with new world-
sheet formulae that are specially adapted to these scattering equations, providing the correct
number of Feynman diagrams in any one calculation. Together, these provide worldsheet
formulae for one-loop integrand expressions more akin to conventional field theory, which
may therefore be integrated using standard techniques. The integrand recursion as well
as the new scattering equations are best suited to planar theories, but in either case we
discussed how they may be applied to the non-planar case.

We would like to refer the interested reader to [1] where more details are presented.
On the topic of BCFW recursion these include the connections with previous work on
BCFW at one-loop: the connection to on-shell diagrams [129,130] and momentum-twistors,
and previous work on integrand recursions in momentum space [137]. Regarding the new
worldsheet formulae, a rigorous proof of the MHV integrand (3.7.12) is given, as well as
details comparing with the “double forward-limit” scattering equations of [117–119].

Given the vast study into these two topics, there are many avenues for further investiga-
tion. The two most common (and natural) questions arise for both formalisms for example,
which are: what the extension to other theories will look like, and how to extend this to
higher loops. The latter would be particularly interesting for the BCFW recursion, as it may
point to an all-loop recursion in momentum space in general dimension, including for non-
planar sectors. The former is of more concern for the worldsheet formulae, specifically what
the integrands will look like beyond the MHV sector, for D > 4, and for non-supersymmetric
theories. The challenges in this include handling tadpole-like worldsheet geometries, asso-
ciated with singular solutions, which are typically involved for generic theories. Another
important topic we have already discussed in section 3.7.4 would be the origin of these scat-
tering equations from the point of view of the genus-one worldsheet. It would be interesting
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3.8. DISCUSSION

to see what happens starting from the torus, and if the formulae for N = 8 supergravity
we presented here can therefore be derived from first principles. Worldsheet formulae for
other theories would have to be inferred through the double copy, since there is no known
expression on the torus for e.g. super Yang-Mills. More importantly however, a derivation
from the torus is likely to instruct us how to get worldsheet formulae with the above exten-
sions (beyond the MHV sector, for D > 4, and for non-supersymmetric theories). Finally, it
would be hopeful that these formalisms could give insights into the connection between field
theory and typical string theory, as well as the more geometric interpretations involving the
amplituhedron [125], the associahedron [126], and other polytope constructions [160,161] of
the S-matrix.
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Chapter 4

Two-loop formulae from
colour-kinematics duality and the
forward-limit

One of the most fruitful developments in scattering amplitudes of recent times has been
the loop-level conjecture of BCJ [12]. This powerful mechanism has allowed computations
in N = 8 supergravity to be computed up to five loops [12, 162–166], and studies of the
ultraviolet behaviour of this theory [167–170] also. Solving the problem amounts to finding
the BCJ numerators of the theory. At loop-level this can be quite challenging for more
generic theories. As we have seen in chapter 1, at tree-level worldsheet formulae can lead
directly to the BCJ representation of scattering amplitudes. At loop-level however, the
difference in their representations (concerning the linear propagators) generally preclude a
similar relation. Whilst the kinematic numerators of BCJ are designed for quadratic propa-
gators, at loop-level kinematic numerators from the worldsheet theory work in conjunction
with linear-type propagators. As mentioned in section 2.7, the one-loop worldsheet formulae
appears similar to a forward-limit of its tree-level counterpart, reminiscent of the Feynman
tree theorem [171–173]. This similarity can in fact be made concrete, allowing loop-level
kinematic numerators to be directly computable from tree-level.

In this chapter we will review this idea at tree-level and one-loop and see how in each case
a representation of the amplitude manifesting the colour-kinematics duality arises naturally.
This will be done in the context of non-supersymmetric theories, particularly NS-NS gravity
and Yang-Mills, from which one can straightforwardly obtain results for the scattering in
the pure theories, i.e. with just gravitons and gluons respectively. We will then use the same
idea at two-loops to obtain non-supersymmetric formulae for the two-loop integrand of these
theories. The naive attempt will require a slight modification, which we will discuss and use
to give a final proposal for these two-loop formulae, again exhibiting the colour-kinematics
duality. Furthermore, we will study the case of supersymmetric amplitudes at two-loops
following from studies of the genus-two ambitwistor string [51] and relate it to the previous
results. This will in turn give an insight into the origins of the modification required for the
non-supersymmetric theories from the point of view of the genus-two ambitwistor string.
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4.1. STRATAGEM AT TREE-LEVEL AND ONE-LOOP

4.1 Stratagem at tree-level and one-loop

Let us recall how one obtains expressions for amplitudes at tree-level and one-loop using the
scattering equations. An n-point tree-level amplitude for massless particles can be written
elegantly as the integral over the moduli space of an n-punctured sphere,

A(0)
n =

∫
M0,n

dµ(0)n I(0) dµ(0)n :=
dnσ

vol SL(2,C)

n∏
i=1

′ δ̄(E(0)
i ) (4.1.1)

The CHY framework naturally exemplifies the colour-kinematics duality between double
copy theories through their CHY integrand I(0). The relevant ones we will be considering
here are Yang-Mills and gravity, whose tree-level CHY integrands can be factored accord-
ingly,

I(0)
YM = I(0)

kin I
(0)
SU(N) I(0)

grav = I(0)
kin Ĩ

(0)
kin. (4.1.2)

As explained in section 1.4, the ingredients to these are traditionally expressed as

I(0)
kin = Pf′(M) =

(−1)ij

σij
Pf(M ij

ij ) , I(0)
SU(N) =

∑
ρ∈Sn/Zn

Tr(T aρ(1)T aρ(2) · · ·T aρ(n))

σρ(1)ρ(2)σρ(2)ρ(3) · · ·σρ(n)ρ(1)
(4.1.3)

where M ij
ij is the tree-level matrix defined in (1.1.8) with the rows and columns 1 ≤ i <

j ≤ n removed, and the T ai is the SU(N) generator associated with the colour degrees of
freedom for the i’th particle. The tree-level scattering equations, which we repeat here for
convenience,

Ei =
∑
j ̸=i

ki · kj
σij

= 0, (4.1.4)

allow us to translate the CHY integrand (4.1.1) directly into the BCJ representation of
these theories. In fact, many techniques developed in this formalism, has shown this to be
possible without actually solving the scattering equations [39,52,71,72,79,80]. For example,

it is known that the ‘kinematic half-integrand’ I(0)
kin can be expressed on the support of the

scattering equations as [52,71]

I(0)
kin = Pf′(M)

E(0)
i =0
=

∑
ρ∈Sn−2

N (0)(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
(4.1.5)

where the numerators N (0) can be calculated explicitly through an algorithm derived in [52]
and presented in section 1.3. They do not depend on the marked points σi and are simply
polynomials in the kinematic data {ϵi, ki}; the half-integrand is thus expressed in terms of a
KK basis. In the above, the particles 1 and n have been chosen to be fixed, but this choice is

arbitrary1. The colour factor I(0)
SU(N) can also be written in a similar manner, by expressing

it in a Del Duca-Dixon-Maltoni (DDM) basis [73],

I(0)
SU(N) =

∑
ρ∈Sn−2

c(0)(1, ρ(2), · · · , ρ(n− 1), n)

σ1ρ(2)σρ(2)ρ(3) · · ·σρ(n−1)nσn1
. (4.1.6)

1Recall that this choice is related to the rows and columns i and j one decides to remove in the reduced
Pfaffian.
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4.1. STRATAGEM AT TREE-LEVEL AND ONE-LOOP

where we here also have the freedom to fix two particles, which we choose again to be 1 and
n. Writing the colour factor this way is most natural from the point of view of the BCJ
double copy, where they are written in terms of the structure constants of the theory,

c(0)(1, ρ(2), · · · , ρ(n− 1), n) = fa1aρ(2)b1f b1aρ(3)b2 · · · f bn−2aρ(n−1)an . (4.1.7)

Both the numerators (4.1.5) and colour factors (4.1.6) can be associated with half-ladder
diagrams which are determined by the specific ordering ρ, see figure 1.4. The endpoints of
the half-ladders correspond in our case to the choice of fixing particle 1 and n in (4.1.5) and
(4.1.6), though we recount that this choice is arbitrary.

After substituting (4.1.5) and (4.1.6) into the CHY expression for the tree-level amplitude
(4.1.1), all dependence on the marked points resides in the Parke-Taylor factors, and one can
use the integration rules of [39] to evaluate the moduli space integrals without having to solve
the scattering equations directly. The result of the integration will give a set of propagators
with coefficient ±1, which will be such that each term corresponds to a trivalent graph
whose colour factor and kinematic numerator is, by construction, obtainable from those of
the master diagrams. For Yang-Mills the result can then be stated as2

A(0)
YM =

∑
a∈Γn

N
(0)
a c

(0)
a

Da
(4.1.8)

With Γn being the set of all trivalent diagrams and Da are the set of (inverse) propagators
specific for each diagram. Thus, the tree-level BCJ representation of Yang-Mills scatter-
ing amplitudes follows directly from the scattering equation formalism. Importantly, the
methodology above works at any multiplicity and does not require solving the scattering
equations explicitly, which is known to be quite a difficult task.

In the case of gravity, one simply uses (instead of the SU(N) integrand of (4.1.6))

another another copy of the kinematic integrand Ĩ(0)
kin from (4.1.5). Using the same techniques

described above simply yields

A(0)
grav =

∑
a∈Γn

N
(0)
a Ñ

(0)
a

Da
, (4.1.9)

where Ñ
(0)
a = N

(0)
a (ϵ→ ϵ̃). The product of polarisations ϵ and ϵ̃ are meant to be seen as the

factorisation of polarisation tensors ϵµν = ϵµϵ̃ν corresponding to the massless states of NS-
NS gravity; that is, the graviton, the dilaton and the B-field. From previous discussions the
scattering of gravitons is obtained by considering appropriate combinations of polarisation
vectors for each state such that their product forms a symmetric traceless tensor.

4.1.1 One-loop: integrands

The known extension of the CHY formalism applies to computing the loop-integrand for a
theory. As mentioned in section 2.5 it is based on the ambitwistor string first considered at
genus-one in [50] and refined in [103, 104]. Naturally, it follows directly from utilising the
genus-one scattering equations, formally defined on the torus. The fundamental difference
with respect to tree-level (or genus-0) is the presence of one ‘modular’ scattering equation

2We change conventions here slightly by not including the factor (−1)n+1 in the expressions. In practice
of course this isn’t significant since the amplitude is only defined up to a phase.
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4.1. STRATAGEM AT TREE-LEVEL AND ONE-LOOP

which, through a residue argument, serves to localise the integration over the modular
parameter τ to τ = i∞. In this region the torus degenerates to a nodal sphere, where the
two extra ‘nodes’ are punctures associated to states with back-to-back momenta ±ℓµ. This
momentum ℓµ arises as the zero-mode of the meromorphic one-form Pµ(σ) at genus-one and
is consequently integrated over in the amplitude, allowing us to recognise it formally as the
loop-momentum. This residue argument reduces the moduli space from M1,n to its maximal
non-separating boundary divisor Dmax

1,n
∼= M0,n+2 and the resulting formulae are obtained

on the (n+ 2)-punctured Riemann sphere, similar to the tree-level case.
In this manner, one-loop amplitudes for Yang-Mills can be written in a CHY form as

A(1)
YM =

∫
dDℓ

ℓ2

∫
M0,n+2

dµ
(1)
n+2 I

(1)
kin I

(1)
SU(N), (4.1.10)

and gravity amplitudes as

A(1)
grav =

∫
dDℓ

ℓ2

∫
M0,n+2

dµ
(1)
n+2 I

(1)
kin Ĩ

(1)
kin. (4.1.11)

The CHY integrals in the loop integrands are related to n + 2 punctures, each associated
with an on-shell momentum state. Of these, n correspond to the external insertions {σi, ki},
and two are associated with the loop insertions {σ±,±ℓ}. The notion of computing n-point
one loop-integrands by considering (n+2)-tree amplitudes with the two extra states having
back-to-back momenta is reminiscent of the forward-limit of field theory. It is not surprising
then that one can construct the various ingredients of the integrands above by considering
a null version of the loop momentum L such that

L2 = 0, L · ki = ℓ · ki, L · ϵi = ℓ · ϵi. (4.1.12)

One can interpret L is effectively being a higher-dimensional extension of ℓ, in which it is
null only in higher-dimensions. By using L in the integrand, the analogue with the (n+2)-
point tree amplitude becomes exact. Indeed, such constructions of one-loop integrands
in the CHY framework was already considered in [84] after the successes of the one-loop
ambitwistor string [104].

The universal measure appearing in (4.1.10) and (4.1.11) can then be defined as

dµ
(1)
n+2 ≡

dn+2σ

vol SL(2,C)

∏
a

′ δ̄(E(1)
a ) (4.1.13)

where a = {i,±} and E(1)
i are the one-loop scattering equations

E(1)
i =

ℓ · ki
σ+i

− ℓ · ki
σ−i

+
∑
j ̸=i

ki · kj
σij

, E(1)
± = ±

∑
i

ℓ · ki
σ±i

. (4.1.14)

That these do not depend on ℓ2 reinforces the idea of utilising the use of a null L and
interpreting these equations as arising from a forward-limit. In fact, the authors of [84]
arrived at the above expressions by considering the forward-limit of the massive scattering
equations. Their study also derives the nature of the singular solutions associated with the
one-loop scattering equations, which we discussed in section 2.5.

The CHY half-integrands of (4.1.10) and (4.1.11) can also can be described from the
interpretation of a forward-limit. The colour factors at one-loop take the same form as at
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4.1. STRATAGEM AT TREE-LEVEL AND ONE-LOOP

tree-level except we identify the gauge indices a+ and a− associated with the two extra
insertions,

I(1)
SU(N)({ai, σi}, {σ±}) = δa+a− I(0)

SU(N)({ai, σi}, {a±, σ±}). (4.1.15)

Similarly for the kinematic half-integrand we can consider the (n+2)-point tree expression,
using the null momentum L, and sum over the polarisation states of the extra insertions,

I(1)
kin({ϵi, ki, σi}, {±ℓ, σ±}) =

∑
r

I(0)
kin({ϵi, ki, σi}, {ϵ

r
±,±L, σ±}). (4.1.16)

Since we are directly using the tree-level expressions, this kinematic integrand will be rele-
vant for the scattering of non-supersymmetric states; we will go on to discuss supersymmetry
in section 4.3. The sum over polarisation states in (4.1.16) can be performed by substituting
an appropriate physical state projector,∑

r

ϵr+µϵ
r
− ν = ηµν −

Lµqν + Lνqµ
L · q

=: ∆µν , (4.1.17)

for a null reference vector qµ. Note that although L as mentioned above can be interpreted
as a higher-dimensional analogue of the D-dimensional ℓ, the completeness relation above
still projects down to a (D − 2)-dimensional subspace, as can be seen from the fact that
∆µ

µ = D − 2. The kinematic integrand (4.1.3) can then be written at one-loop by virtue of
(4.1.16) as

I(1)
kin =

∑
r

Pf ′(M) = ∆µνPf
′(Mµν) (4.1.18)

whereMµν is now a 2(n+2)×2(n+2) CHY Pfaffian matrix with the polarisation states ϵr+µ

and ϵr− ν removed. At one-loop, the loop-integrand is gauge invariant and independent of
the choice of q if one considers only the regular solutions to the scattering equations, whilst
for generic theories only the amplitude is gauge-invariant if one also considers the singular
solutions [104]. In hindsight then we can anticipate the independence of the amplitude on q,
allowing us to use an effective substitution rule when applying the state-projector (4.1.17),

V µ∆µνW
ν ⇝ V ·W , V,W ∈ {ki, ϵi}

and we have from (4.1.17) that ∆µνL
ν = 0. The latter condition essentially follows by

construction of the state-projector, as is expected for an on-shell L.
As discussed, the one-loop integrand for gravity (4.1.11) will involve two of the kinematic

factors (4.1.18), one with tilde’d polarisation states and one untilde’d polarisation. In this
case one applies the state projector (4.1.17) for each copy separately in each∑

r,r′

ϵ r+µϵ
r
− ν ϵ̃

r′
+ µ̄ϵ̃

r′
+ ν̄ ≡ ∆µν∆µ̄ν̄ . (4.1.19)

This is quite natural to do from the point of view of the BCJ double copy. Recall that, as
we mentioned in the tree-level case, in general the gravity states scattered when utilising the
BCJ double copy correspond to the states of NS-NS gravity, where the graviton is coupled
with the dilaton and the B-field. By using appropriate combinations of the state-projector
(4.1.19) one can choose which states propagate through the loop. For example, in the pure
Einstein case (just gravitons) one would use

∆pure-grav
µνµ̄ν̄ =

1

2
(∆µν∆µ̄ν̄ +∆µν̄∆µ̄ν)−

1

D − 2
∆µµ̄∆νν̄ , (4.1.20)
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where the index symmetrisation in the first term eliminates the (antisymmetric) B-field, and
the second term will eliminate the dilaton. These can be derived from (4.1.19) by taking
the appropriate combinations of the polarisation vectors for the desired states.

4.1.2 One-loop: trivalent diagrams and colour-kinematics duality

Let us now see how the colour-kinematics duality becomes manifest in this set up after
performing the CHY integrals. Since the matrix M in (4.1.18) and the scattering equa-
tions mirror the tree-level cases when utilising using the null L, we can as before write the
kinematic factors as

I(1)
kin

E(1)
i =0
=

∑
ρ∈Sn

N (1)(+, ρ(1), · · · , ρ(n),−)

σ+ρ(1)σρ(1)ρ(2) · · ·σρ(n)−σ−+
(4.1.21)

where the one-loop numerators follow from (4.1.18) and (4.1.16) to be

N (1)( · · · ) =
∑
r

N (0)( · · · ) . (4.1.22)

Similarly from (4.1.15) we have that

I(1)
SU(N) =

∑
ρ∈Sn

c(1)(+, ρ(1), · · · , ρ(n),−)

σ+ρ(1)σρ(1)ρ(2) · · ·σρ(n)−σ−+
(4.1.23)

where the one-loop colour factors are now

c(1)( · · · ) = δa+a− c(0)( · · · ) . (4.1.24)

In this way all dependence on the marked points resides in the Parke-Taylor factors, and
the moduli space integrations of can be performed using the integration rules of [39] to give
a set of propagators for trivalent diagrams, such that the one-loop amplitude for Yang-Mills
(4.1.10) and gravity (4.1.11) are expressed as

A(1)
YM =

∫
dDℓ

ℓ2

∑
a∈Γ(1)

n+2

N
(1)
a c

(1)
a

Da
, A(1)

grav =

∫
dDℓ

ℓ2

∑
a∈Γ(1)

n+2

N
(1)
a Ñ

(1)
a

Da
. (4.1.25)

The moduli space integrations will provide the propagators with an appropriate sign such
that the numerators and colour factors share the same Jacobi identities between certain
graphs,

c(1)a + c
(1)
b + c(1)c = 0 ⇒ N (1)

a +N
(1)
b +N (1)

c = 0. (4.1.26)

The resulting trivalent diagrams can then be expressed in terms of tree diagrams with the
legs + and −, associated to the loop, on the endpoints. Diagrams which form ‘half-ladders’,
such as those in figure 4.1 are considered the master diagrams, and their corresponding nu-
merators are considered the master numerators. As at tree-level, the numerators and colour
factors for trivalent diagrams which do not directly form half-ladders with endpoints +, −
are obtained from those of the master diagrams by successive Jacobi identities (4.1.26). An
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+ −

ρ(1) ρ(2) ρ(n)

Figure 4.1: The set of one-loop master diagrams are half-ladders, with end-points + and −
in our setting associated with the loops.

example of this is given in figure 1.5.

Let us make a few comments and clarifications regarding the interpretation of the one-
loop amplitudes in (4.1.25). At first sight they appear to mirror the original conjectured
expressions of the BCJ representation of loop amplitudes [12]. Whilst aesthetically true, it
is important to note that (4.1.25) is very much different than the original proposal of BCJ.

Firstly, the set Γ
(1)
n+2 represents the set of trivalent tree-level diagrams, which is inter-

preted as a loop diagram only after the legs + and − at the endpoints are glued together,

making the forward-limit implicit. The superscript on Γ
(1)
n+2 is to indicate that we do not

include diagrams which, when glued together, form external bubbles and tadpoles. This
exclusion actually follows from the result of the moduli space integrals at one-loop, where
it can be seen that these diagrams either cancel amongst themselves or integrate to zero
in dimensional regularisation [106]. Furthermore, the (inverse) loop propagators appearing
inside the Da are linear in the loop-momentum, as opposed to those which are quadratic in
the BCJ conjecture. This can be seen to result from using the null loop-momentum L as
part of the forward-limit. An example of this is displayed in figure 4.1, where the relevant
set of propagators 1/Da has the form

1

Da
=

1∏n−1
j=1 (L+Kj)2

=
1∏n−1

j=1 2ℓ ·Kj +K2
j

, where Kj =

j∑
i=1

kρ(i) .

This unorthodox representation of the loop integrand is, as we have seen, a novel feature of
utilising the scattering equation formalism in its usual setting.

Secondly, we recount that the kinematic numerators in (4.1.25) follow directly from
those at tree-level via the forward-limit procedure. This allows them to be calculated using
the same procedure as in [71], which solely relies on the properties of the Pfaffian, gauge
invariance, and the scattering equations. Therefore, the master numerators in this formalism
can be calculated explicitly to any multiplicity and are valid in any dimension. In contrast,
the numerators appearing in the BCJ loop-level conjecture are not in general related to
those at tree-level, and much work has gone on to find such a set of numerators. To date,
however, it has only been in some cases that a set of BCJ one-loop numerators have been
constructed [149,156,174–176], though the recent works of [177,178] has shown to be quite
promising.

4.2 Two-loop application

Two-loop extensions of the worldsheet formulae in the scattering equation formalism are
naturally provided by studying the ambitwistor string at genus-two. This was rigorously
done in [51], where n-point formulae for supergravity were derived from first principles. Also
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Figure 4.2: The degeneration of the genus-two surface to the bi-nodal sphere.

there, explicit four-point formulae for Yang-Mills and supergravity were extracted, consistent
with previous work on the two-loop superstring [179] and the pure-spinor formulation of the
ambitwistor string [180].

Here we will straightforwardly apply the strategy presented in the previous section to
two-loops, using formulae on a bi-nodal sphere. This will be analogous to the one-loop case,
but there are additional subtleties that begin at two-loops which make the formalism have
different features. Here we will highlight some of these features on the bi-nodal sphere, with
some intuition from the genus-two surface, which we will expand upon in the next section.

4.2.1 The two-loop scattering equations

Much like at genus-one, a number of the scattering equations at genus-two localise the
integration over the modular parameters, such that the genus-two surface degenerates onto
its maximal non-separating boundary divisor, the bi-nodal Riemann sphere3. This is done
by successively applying residue theorems that effectively pinch the A-cycles on the surface,
thereby degenerating it to the nodal sphere; see figure 4.2.

At any genus the (X,P ) path integral in the ambitwistor string requires us to solve

∂̄Pµ(z) = 2πi

n∑
i=1

kiµ δ̄(z − zi) dz (4.2.1)

in the presence of n vertex operators. The zero-mode integration for X as usual provides
an overall momentum-conserving delta function. On the support of this, (4.2.1) can be
re-written as

∂̄Pµ(z) = 2πi

n∑
i=1

kiµ [δ̄(z − zi)− δ̄(z − z∗)] dz (4.2.2)

where z∗ is an arbitrary reference point. Noting that 2πiδ̄(z) = ∂(1/z), the general solution
to this equation can be written as

Pµ(z) = 2πi ℓIµ ωI +
n∑

i=1

kiµ ωi,∗(z). (4.2.3)

3 There is a caveat here. A generic basis of the scattering equations will not fully localise the type II
amplitude onto the bi-nodal sphere, and contributions from nodal-tori can in general appear. However, it is
possible to choose a basis such that the amplitude is fully localised on the bi-nodal sphere, as demonstrated
in [51].
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Here the ωI are normalised Abelian differentials of the first kind, whose integrals around
B-cycles determine the period matrix. The ωi,j are Abelian differentials of the third kind4,
which has residues ±1 as z ≈ zi, zj respectively. At genus-g there exist g constant holo-
morphic Abelian differentials5, given by the ωI , and so the first term on the RHS of (4.2.3)
are to be thought of as the constants of integration. In other words, they parametrise the
zero-modes of P .

In the gauge-fixing procedure at genus-two, much like genus-zero and genus-one, enforc-
ing P 2 = 0 requires setting its residues at the punctures zi to zero, Reszi = 0. This ensures
that P 2 is free of simple poles, and essentially provides the scattering equations related
to the marked points. On the support of these P 2 can only be a holomorphic quadratic
differential, and so setting P 2 = 0 requires

P 2 = uIJωI ωJ = 0 (4.2.4)

where the uIJ are simply coefficients for the basis of holomorphic quadratic differentials
given by ωI ωJ . The genus-two scattering equations are thus encoded by

ResziP
2 = 0 , i = 1, 2, · · · , n

uIJ = 0 , I, J = 1, 2 .
(4.2.5)

Given that the uIJ are symmetric, these n + g(g + 1)/2 = n + 3 scattering equations are
sufficient to fully localise6 the genus-two moduli space of dimension 3g + n− 3 = n+ 3. Of
these, two will be used in the residue theorem to degenerate the amplitude to the bi-nodal
sphere, corresponding to the pinching of two A-cycles or combinations thereof. Heuristically,
the pinching of an A-cycle degenerates a genus g surface to a surface of genus g − 1 with
two extra nodes, so a genus-two surface with n punctures can be degenerated to a bi-
nodal Riemann sphere with n+ 4 punctures via the residue theorem. Thus, the remaining
n+ 1 = (n+ 4)− 3 scattering equations are associated to the n+ 4 punctures modulo the
SL(2,C) transformations of the Riemann sphere.

More specifically, the scattering equations can always be be associated to the residues
of a meromorphic quadratic differential. From (4.2.3) and (4.2.4) one notices that u11 = ℓ21
and u22 = ℓ22, where in an abuse of notation we have set ℓI = ℓ1, ℓ2 for I = 1, 2 respectively.
Such an object at genus-two could therefore be

P̃2 = P 2 − ℓ21 ω
2
1 − ℓ22 ω

2
2 . (4.2.6)

Whilst the above quadratic differential indeed only has simple poles, for two-loops (and
higher) one is also free to consider

P2 = P 2 − ℓ21 ω
2
1 − ℓ22 ω

2
2 + u ω1 ω2 (4.2.7)

wherein u is a linear combination of the uIJ of (4.2.5). Having u be a linear combination
of the uIJ essentially amounts to choosing a different basis for the scattering equations;
indeed, this procedure is necessary at two-loops to ensure the amplitude fully localises on

4These objects are standard in the study of higher-genus Riemann surfaces, and their precise definitions
can be found in e.g. [51]; for completeness we also give them in appendix A

5This follows from the Riemann-Roch theorem, see e.g. [181].
6We should point out here that only for genus g = 2, 3 do the number of scattering equations match the

dimension of the moduli space this way; we also make a comment about this in section 5.1
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the bi-nodal sphere [51]. It turns out that a convenient choice at two-loops is to take
u = α(u11 + u22) = α(ℓ21 + ℓ22), where α = ±1 [105]. The choice α = ±1 is required in
order for correct factorisations of the amplitude, and is associated with the loop-momenta
ℓ1 and ℓ2 being parallel (α = +1) or anti-parallel (α = −1) in the corresponding two-loop
diagrams, as we shall see.

On the nodal sphere the Abelian differentials of the first and third kind become

2πi ωI ⇝ ωI+I−(σ) =
(σI+ − σI−)

(σ − σI+)(σ − σI−)
dσ , ωi,j ⇝ ωi,j(σ) =

(σi − σj)

(σ − σi)(σ − σj)
dσ ,

(4.2.8)

denoting σ as the coordinates on the Riemann sphere. The scattering equations then follow
from the residues of the quadratic differential

P2(σ) = P 2(σ)− ℓ21 ω
2
1+1−(σ)− ℓ22 ω

2
2+2−(σ) + α(ℓ21 + ℓ22)ω1+1−(σ)ω2+2−(σ) (4.2.9)

at the n+4 marked points σA. The meromorphic differential P (σ) in the above formula on
the sphere is now

Pµ(σ) = ℓµ1 ω1+1−(σ) + ℓµ2 ω2+2−(σ) +
n∑

i=1

kµi
σ − σi

dσ (4.2.10)

where the dependence on the arbitrary point drops out by momentum conservation. Ex-
plicitly the scattering equations are given by

E(2,α)
i = ki · ℓ1 ω1+1−(σi) + ki · ℓ2 ω2+2−(σi) +

∑
j ̸=i

ki · kj
σi − σj

,

±E(2,α)
1± =

α

2
(ℓ1 + αℓ2)

2 ω2+2−(σ1±) +
∑
i

ℓ1 · ki
σ1± − σi

, (4.2.11)

±E(2,α)
2± =

α

2
(ℓ1 + αℓ2)

2 ω1+1−(σ2±) +
∑
i

ℓ2 · ki
σ2± − σi

.

Analogously to the one-loop case, discussed in the last section, these equations can be written
more clearly by considering null versions of the loop-momenta LI with I = 1, 2, such that

L2
I = 0 , LI · ki 7→ ℓI · ki , LI · ϵi 7→ ℓI · ϵi ,

L1 · L2 7→
α

2
(ℓ1 + αℓ2)

2 . (4.2.12)

In this way the two-loop scattering equations can be written as (n + 4)-point tree-level
ones, where the n + 4 null momenta are {ki,+L1,−L1,+L2,−L2}. The resulting loop-
integrands will thus have the interpretation as arising from a double-forward-limit of an
n+ 4 particle tree amplitude. Whilst this feature will be crucial in understanding how the
colour-kinematics duality emerges at two-loops, it will turn out not to be as straightforward
for theories without supersymmetry.

Let us make two comments regarding the use of the two-loop scattering equations
(4.2.11). Firstly, this formalism will of course share many features with the one-loop case.
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∼
1

`21`
2
2

+ +

Figure 4.3: One of the ways of decomposing a planar double-box diagram in terms of tree-
level diagrams with n + 4 external legs. The dots on the left part denote three ways of
placing one loop momentum (say ℓ1), which leads to the three diagrams on the right-hand
side, whereas the dot in the middle denotes the other loop momentum.

Namely, in comparison to the standard Feynman representation, the loop-integrand will be
comprised of many more terms and will contain ‘linear-type’ loop propagators. However,
each term can still be associated with a two-loop diagram, since in the double-forward-limit
interpretation these are obtained by gluing the relevant legs of the (n + 4)-particle tree
amplitudes. An example of this is given in figure 4.3, which displays one way how a planar
double-box diagram can be decomposed this way. The second diagram has the propagator
structure

1

(2ℓ1 · k2)(ℓ1 + ℓ2 + k2)2(ℓ1 + ℓ2 + k2 + k3)2(ℓ1 + ℓ2 − k1)2(2ℓ1 · k1)
(4.2.13)

if we assign the loop momenta as below:

`1 `2

2

1

3

4

Such a representation can be obtained by performing partial-fraction identities and shifts in
the loop momenta, as at one-loop. Notice that from (4.2.12), propagators that involve both
ℓ1 and ℓ2 appear quadratically,

1

(L1 + αL2 +K)2
7→ 1

(ℓ1 + αℓ2 +K)2
, (4.2.14)

which is a new feature appearing at two-loops with these scattering equations. It is also clear
from the above that the choice α = ±1 correspond to parallel/anti-parallel loop-momenta
respectively. The consequences of this will be discussed in the next section.

We conclude this section with comments regarding the solutions of the scattering equa-
tions (4.2.11). There are three types of solutions, two of which are considered singular. This
is true for either set of scattering equations (α = +1 or α = −1). The nature of the solutions
was studied in [105], where it was shown that there are:

� (n+1)!−4n!+4(n−1)!+6(n−3)! regular solutions, with all σ1+ , σ1− , σ2+ , σ2− distinct,

� 2n((n− 1)!− 2(n− 2)!) singular solutions in which σ1+ = σ1− or σ2+ = σ2− , and

� (n− 2)2(n− 3)! singular solutions in which σ1+ = σ1− and σ2+ = σ2− .
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The total number does not add up to (n+ 1)! because some of the solutions do not survive
the double forward-limit. This is similar to what occurs at one-loop; see e.g. [84]. Also like
the one-loop case, only the regular solutions contribute to amplitudes for supersymmetric
theories, whilst for generic theories all solutions should in principle be included into the
computation to avoid the presence of unphysical discriminant-like poles.

4.2.2 Two-loop attempt: integrands

In this section we will follow the methodology of section 4.1.1 and attempt to construct
two-loop amplitudes utilising the double-forward-limit interpretation. If we are successful,
we will have obtained all-multiplicity formulae for the two-loop integrands of Yang-Mills
and gravity, in which the colour-kinematics duality is manifest. Moreover, we will give two
prescriptions to do this which highlight novel features appearing at two-loops, whose origins
follow from the ambitwistor string at genus-two.

Let us recount our position. For two-loops we have n+ 4 punctures corresponding to n
external particle insertions and four nodal insertions (two per loop). We also have two sets
of scattering equations E(2,α) corresponding to the choice α = +1 or α = −1. To treat them
on the same footing, we will symmetrise over these two choices in the amplitude. A natural
question to ask then is whether the two-loop amplitudes we are considering follow from the
following worldsheet formula:

A(2) ?
=

1

2

∫
dDℓ1 d

Dℓ2
ℓ21ℓ

2
2

∫
M0,n+4

[
dµ

(2,+)
n+4 I(2,+) + dµ

(2,−)
n+4 I(2,−)

]
(4.2.15)

with the measures defined as natural extensions of (4.1.13) for each choice of α,

dµ
(2,α)
n+4 ≡ dn+4σ

vol SL(2,C)

∏
a

′ δ̄(E(2,α)
a ) . (4.2.16)

Following the reasoning used for one-loop in section 4.1.1, we can construct the objects above
in the spirit of the double-forward-limit. The colour part follows analogously as before; we
can utilise the (n+ 4)-point tree-level expression and glue the gauge indices for the loops,

I(2)
SU(N)({ai, σi}, {σI±}) = δa1+a1− δa2+a2− I(0)

SU(N)({ai, σi}, {aI± , σI±}) . (4.2.17)

The kinematic factors can be defined likewise; here we take

I(2,α)
kin ({ϵi, ki, σi}, {±ℓI , σI±}) =

∑
r1,r2

I(0)
kin({ϵi, ki, σi}, {ϵ

rI
I ±,±LI , σ±})

=
∑
r1,r2

Pf ′(M) = ∆1µ1ν1∆2µ2ν2Pf
′(M)µ1ν1µ2ν2 (4.2.18)

where now we sum over states for both loops, each giving their respective physical state
projector according to∑

rI

ϵrI
I+ µ

ϵrI
I− ν

= ηµν −
LIµqν + LIνqµ

LI · q
=: ∆I µν . (4.2.19)

To clarify what we mean by (4.2.18), first note that M is defined as at tree-level as the
2(n+ 4)× 2(n+ 4) matrix,

M =

(
A −CT

C B

)
. (4.2.20)
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The reduced Pfaffian is also defined as before. The object Pf ′(M)µ1ν1µ2ν2 is interpreted
similarly to its one-loop counterpart; explicitly one could write

Pf ′(M)µ1ν1µ2ν2 = ∂ϵµ1
1+
∂ϵν1

1−
∂ϵµ2

2+
∂ϵν2

2−
Pf ′(M) . (4.2.21)

To be more explicit, the elements for the matrix Mµ1ν1µ2ν2 are described below. For the A
submatrix,

AI+I− = 0 A1±2+ = ±α (ℓ1 + α ℓ2)
2

2σ1±2+
A1±2− = ∓α (ℓ1 + α ℓ2)

2

2σ1±2−

AI± j = ±ℓI · kj
σI±j

Aij =
ki · kj
σij

;

for the B submatrix,

BµIνI
I+I− =

ηµIνI

σI+I−
BµIµJ

I+J+ =
ηµIµJ

σI+J+

BµIνJ
I+J− =

ηµIνJ

σI+J−

BµI

I+j
=

ϵµI
j

σI+j
BνI

I−j
=

ϵνIj
σI−j

Bij =
ϵi · ϵj
σij

;

and for the C submatrix,

CI+I− = 0 CµI

I+J± = ±
LµI
J

σI+J±
CµI

I+j
=

kµI
j

σI+j

CνI
I−J± = ±

LνI
J

σI−J±
CνI
I−j

=
kνIj
σI−j

CiI± = ±ϵi · ℓI
σiI±

Cij =
ϵi · kj
σij

Caa = −
∑
b̸=a

Cab .

Notice the quadratic factor appearing in the A submatrix as a result of the L1 ·L2 contrac-
tions. It is to be understood in this way that the kinematic integrand implicitly depends
on the choice of α. Importantly, it also retains many essential features as at tree-level and
one-loop7, as a result of utilising the null LI . Furthermore, the arbitrariness of qµ allows us
to avoid its use altogether by using effective substitution rules,

∆Iµν V
µW ν , ∆Iµ

α∆Jαν V
µW ν ⇝ V ·W ,

∆Iµν L
µ
JV

ν , ∆Iµ
α∆Jαν L

µ
JV

ν ⇝ V · (LJ − LI) 7→ V · (ℓJ − ℓI) , (4.2.25)

∆1µν L
µ
2L

ν
2 , ∆2µν L

µ
1L

ν
1 , −∆1µ

α∆2αν L
µ
2L

ν
1 ⇝ −2L1 · L2 7→ −α(ℓ1 + α ℓ2)

2 ,

with ∆Iµ
µ = ∆1µν ∆

µν
2 = D − 2 . The viability of these substitution rules has been explic-

itly checked by evaluating the kinematic object (4.2.18) numerically on the solutions to the
scattering equations.

7These include manifest gauge-invariance, if evaluated on the regular solutions to the two-loop scattering
equations.
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With the colour and kinematic objects in hand, let us give a proposition for two-loop
worldsheet integrand formulae of Yang-Mills and gravity in (4.2.15). We will in fact present
two representations of these integrands, each associated with a certain prescription. They
are based on the colour-kinematics duality but contain novel features that arise at two-loops,
following the genus-two ambitwistor string. We will discuss this point momentarily, but first
let us present the following two proposals.

In the first representation, the worldsheet integrands are given by

I(2,α)
YM = ξ(α) I(2,α)

kin I(2)
SU(N) I(2,α)

grav = ξ(α) I(2,α)
kin Ĩ(2,α)

kin (4.2.26)

where the ξ(α) are cross ratios in the nodal points,

ξ(+) =
σ1+2−σ2+1−

σ1+1−σ2+2−
, ξ(−) =

σ1+2+σ2−1−

σ1+1−σ2+2−
(4.2.27)

with the property that
ξ(+) + ξ(−) = 1 . (4.2.28)

We will call this the cross-ratio prescription.
In the second representation, which we denote by a ‘slash’, they are given by

I(2,α)
YM = I(2,α)

kin I(2,/α)

SU(N) I(2,α)
grav = I(2,α)

kin Ĩ(2,/α)
kin , (4.2.29)

which we call the slash prescription. We use /α as opposed to α to denote the following.
Consider the two-loop colour object defined in (4.2.17), which follows directly from its
(n+ 4)-point tree-level counterpart,

I(2)
SU(N) = δa1+a1− δa2+a2−

∑
γ∈Sn+2

c(0)(1+, γ(1), γ(2), · · · , γ(n+ 2), 1−)

σ1+ γ(1)σγ(1)γ(2) · · ·σγ(n+2) 1−σ1−1+

= δa1+a1− δa2+a2−
∑

γ∈Sn+2

fa1+aγ(1)b1f b1aγ(2)b2 · · · f bn−1aγ(n+2)a1−

σ1+ γ(1)σγ(1)γ(2) · · ·σγ(n+2) 1−σ1−1+
. (4.2.30)

in terms of the structure constants of the Lie algebra. In comparison to (4.2.30), its ‘slashed’
version is expressed as

I(2,/α)

SU(N) = δa1+a1− δa2+a2−
∑

γ∈S(α)
n+2

fa1+aγ(1)b1f b1aγ(2)b2 · · · f bn−1aγ(n+2)a1−

σ1+ γ(1)σγ(1)γ(2) · · ·σγ(n+2) 1−σ1−1+
. (4.2.31)

The distinction is that in (4.2.31) we consider a restricted set of permutations, denoted by

S
(α)
n+2, as opposed to the full set of permutations Sn+2 in (4.2.30). The set S

(α)
n+2 is defined

according to the relative positions of the labels 2+ and 2− in the ordering, such that S
(+)
n+2

contains all permutations in which 2+ appears before 2−, and S
(−)
n+2 contains all permutations

in which 2− appears before 2+, i.e.

{ · · · , 2±, · · · , 2∓, · · · } ∈ S
(±)
n+2 .

Clearly, S
(+)
n+2 ∪ S

(−)
n+2 = Sn+2 , and so

I(2)
SU(N) = I(2,+)

SU(N) + I(2,−)
SU(N) . (4.2.32)
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This notion also extends to the kinematic object of (4.2.18). The reduced Pfaffian can be
expanded into a KK basis on the support of the scattering equations, just as its one-loop
and tree counterpart,

I(2,α)
kin

E(2)=0
=

∑
ρ∈Sn+2

N (2)(1+, ρ(1), · · · , ρ(n+ 2), 1−)

σ1+ ρ(1)σρ(1)ρ(2) · · ·σρ(n+2) 1−σ1−1+
(4.2.33)

where the two-loop numerators follow from those at tree-level,

N (2)( · · · ) =
∑
r1,r2

N (0)( · · · ) . (4.2.34)

and have no dependence on the marked points. Therefore its slashed version is naturally
defined as

I(2,/α)
kin

E(2)=0
=

∑
ρ∈S(α)

n+2

N (2)(1+, ρ(1), · · · , ρ(n+ 2), 1−)

σ1+ ρ(1)σρ(1)ρ(2) · · ·σρ(n+2) 1−σ1−1+
, (4.2.35)

which determines the gravity integrand (4.2.29) in the slash prescription.

Both prescriptions have origins from the ambitwistor string at genus-two, where am-
plitudes for supergravity and super Yang-Mills were studied [51]. Heuristically, in going
from the genus-two surface to the nodal sphere, the process of integrating the last modular
parameter (after the other two were used in the residue theorem) introduced a cross-ratio
into the amplitudes8. This cross-ratio is precisely ξ(+) in (4.2.27) and motivates the use of
the cross-ratio in the worldsheet formula proposal of (4.2.26). The necessity of including
cross-ratios in the worldsheet expressions is a novel feature that first appears at two-loops,
and persists at higher-loops.

The slash prescription also arises in [51] in the context of super Yang-Mills amplitudes.
There n-point worldsheet formulae were proposed for this theory on the bi-nodal sphere.
Their proposal was based on the colour-kinematics duality, since a first-principles derivation
was obstructed by there being no straightforward worldsheet expression on the genus-two
surface. Specifically, the colour-kinematics duality was utilised in defining a two-loop colour

integrand on the bi-nodal sphere, which coincides with the definition of I(2,+)
SU(N) in (4.2.31).

That is, the object defined there was a sum over restricted permutations. This motivates
the second proposal (4.2.29) for the worldsheet integrands.

You may notice that for the theories considered there, which involved maximal super-

symmetry, only one cross-ratio ξ(+), or one set of restricted permutations S
(+)
n+2 was required

to adequately describe the amplitude. Moreover, for supergravity the cross-ratio and the
slash prescription has the same effect. We will discuss precisely why this is when we consider
supersymmetric theories in section 4.3.

For now, let us point out that for generic theories, the prescriptions only agree once we
have summed over both sets of scattering equations in (4.2.15). In both cases we are splitting

8To be somewhat more concrete, in an attempt to trivialise the isomorphism Dmax
2,n

∼= M0,n+4, where D
max
2,n

is the maximal non-separating boundary divisor, the domain of integration of the last complex parameter
was, using modular invariance, extended to the whole complex plane on the support of a function f(q12),
where q12 is related to the last modular parameter. The requirement that this does not introduce a pole in the
integrand on the support of the scattering equations uniquely fixes this function to be f(q12) = (1− q12)

−1.
This function, after using Fay’s degeneration formula to determine q12 in terms of the nodal points, is precisely
the cross-ratio given by ξ(+).
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the expression into two parts, either by the use of different cross-ratios as in (4.2.26), or
by considering half the permutations as in (4.2.29). Each part is to be integrated with its
respective set of scattering equations, as in (4.2.15). The reason for this splitting is that the
choice α in the scattering equations determines a relative orientation of the loop momenta in
the resulting diagrams. This follows from the fact that the scattering equations, in general,
determine the kinematic poles arising after integration over the moduli. In this case the
two-loop scattering equations (4.2.11) admit loop-level propagators of the form

1

(L1 ± L2 +K)2
7→ 1

±α(ℓ1 + αℓ2)2 + 2(ℓ1 ± ℓ2) ·K +K2
, (4.2.36)

for K some partial sum of the external momenta. Considering the LHS propagator with a
minus sign and using the α = +1 scattering equations produces in a unphysical propagator,
whose inverse has the form −(ℓ1+ℓ2)

2+2(ℓ1−ℓ2) ·K+K2. A similar situation occurs when
considering the plus sign on the LHS and using the α = −1 scattering equations. These
types of unphysical propagators, arising from the orientation of the different loop momenta,
naturally start arising at two-loops.

This provides the necessity of the splitting across the two prescriptions. The cross
ratios effectively eliminate poles in the worldsheet integrand that, when evaluated on the
relevant scattering equations, will produce these unphysical propagators. Likewise, the slash
prescription also eliminates these poles, such that no unphysical propagators occur in any
of the two parts.

It is not difficult to see how they do this when our worldsheet integrands are expressed in
a KK basis. Consider the loop propagators on the LHS of (4.2.36) with a minus sign. From
the point of view of factorisation on the worldsheet, these arise when a subset of the marked
points including σ1+ and σ2− (but not the other nodal points) coalesce. However, with the
cross-ratio ξ(+) in (4.2.27), the σ1+2− in the numerator effectively kills this pole, so no such
propagator can occur when utilising the α = +1 scattering equations. The slash prescription
achieves the same goal. The terms with α = +1 are paired with Parke-Taylor factors which
have the relative ordering (1+, · · · , 2+, · · · , 2−, · · · , 1−), as the slash prescription drops the
others. But such Parke-Taylor factors cannot have a pole as σ1+2− → 0 by construction, so
the unphysical poles cannot arise. The same reasoning applies when considering the minus
sign in the LHS of (4.2.36).

In total, the use of each prescription serves to kill any unphysical poles that may arise
from using the two-loop scattering equations (4.2.11).

Let us conclude this section by making a comment on the versatility of this set-up. At
tree-level, there exist CHY-type formulae for a variety of theories, such as those in [41,42,92].
These all have grounds in the notion of the double copy, and are in fact part of a ‘web of
theories’ connected by this notion [63–65]. Their worldsheet formulae should also possess a
natural extension to two-loops in the way presented above; that is, in the form (4.2.15). This
would follow from the double-forward-limit of their respective (n+4)-particle expressions at
tree-level. This is all that is required in the cross-ratio prescription. In the slash prescription
it is required that at least one of the half-integrands are expressible in a Parke-Taylor basis,
so that one can appropriately drop half the terms in this basis. An example which uses
the ingredients we have already established is the biadjoint scalar theory, whose worldsheet
integrand consists of two sets of the colour half-integrand (4.2.30). From the discussion in
this section one can naturally formulate two-loop integrands for the biadjoint scalar using
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either

I(2,α)
bi-adj = ξ(α) I(2)

SU(N) I
(2)

SU(Ñ)
(4.2.37)

in the cross-ratio prescription, or

I(2,α)
bi-adj = I(2)

SU(N) I
(2,/α)

SU(Ñ)
(4.2.38)

in the slash prescription. Of course, it doesn’t matter which of the half-integrands are
slashed. These expressions are directly applicable to (4.2.15) to potentially produce a two-
loop integrand for the biadjoint scalar theory. The two prescriptions in this case have been
explicitly checked to be equivalent by numerically evaluating (4.2.15) on the regular solutions
of the scattering equations at four-points.

4.2.3 Two-loop attempt: trivalent diagrams and colour-kinematics dual-
ity

Now we have established the appropriate worldsheet integrands for Yang-Mills and gravity
via (4.2.15), we can proceed as at tree-level and one-loop to obtain expressions for their
respective two-loop integrands.

Though we have exhibited the novel two-loop features, regarding the two prescriptions
introduced in the last section, we do not expect them to complicate the moduli space
integral. This seems quite clear from the slash prescription, where only Parke-Taylor factors
are directly involved in the integration. With the cross-ratio prescription it seems less clear,
but since the two prescriptions are meant to be equivalent after summing over each set of
scattering equations, it seems this should also bring no complications. Thus, in principle we
expect that (4.2.15) results in the following expressions for the two-loop amplitudes:

A(2)
YM

?
=

∫
dDℓ1 d

Dℓ2
ℓ21 ℓ

2
2

∑
a∈Γ(2)

n+4

N
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. (4.2.39)

In the above formulae we denote Γ
(2)
n+4 by the set of all (n + 4)-point tree-level trivalent

diagrams, excluding those which form two-loop-type tadpole and external-leg bubbles upon
gluing the relevant legs associated with the loops (1+ with 1−, and 2+ with 2−)9. The colour
and numerator factors for this set of trivalent diagrams are obtained from those of the set
of (n + 2)! master diagrams displayed in figure 4.4 through successive applications of the
Jacobi identity. The kinematic numerators and colour factors associated with the master
diagrams are determined by equations (4.2.33), (4.2.34) and (4.2.30).

We recall that the loop propagators that result from using the scattering equations are
generically linear in the loop momentum, though from our two-loop scattering equations
those that involve both loop momenta are quadratic. The loop-integrand is therefore not
fully expressed in a standard Feynman representation; for example, diagrams with the form
as in figure 4.4 have the following propagator structure:

9Note that this does not exclude diagrams where only one external leg bubble is formed when gluing
the legs associated with the loops. The exclusion of two-loop-type tadpoles and external bubbles follows
the reasoning of one-loop, where it was shown that these are associated to singular solutions, whose finite
contributions integrate to zero. Unfortunately, with the quadratic propagators that appear at two-loops, it
is more difficult to see the total set of contributions that integrate to zero.

97



4.2. TWO-LOOP APPLICATION

1+ 1−

ρ(1) ρ(I) 2+ ρ(I + 1) ρ(J) 2− ρ(J + 1) ρ(n)

Figure 4.4: The set of two-loop master diagrams are also the set of half ladders, here with
1+ and 1− as the end-points.
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where Ki =

∑i
j=1 kρ(j) . As a result of utilising either the cross-ratio or slash prescription,

there are no unphysical propagators resulting from e.g. (4.2.36), as mentioned in the last
section.

The expressions (4.2.39) manifestly exhibit the colour-kinematics duality by construc-
tion. Moreover, the numerators follow directly from tree-level, via the double forward-limit.
The reader should be reminded that this contrasts the loop-level BCJ proposal, which is for-
mulated with quadratic propagators and therefore, have the standard Feynman form of loop-
integrands. Unfortunately, the details of the BCJ proposal, which has been proven [182–184]
and is very well-established at tree-level, is not yet fully understood at loop-level. In the
setup we are considering, the colour-kinematics duality at loop-level becomes very clear and
follows directly from the tree-level structure. That being said, there are obvious glaring set-
backs to this formalism, such as how to appropriately perform the loop-integration; the work
initiated in [116] regarding the Q-cuts construction may help alleviate this. Nevertheless,
this unorthodox representation still presents a valid representation of the loop integrand.

Unfortunately, however, it turns out that for generic theories, the proposal 4.2.39 is
incorrect and requires a modification. In the following sections, we will discuss why this is,
how we can obtain the correct two-loop formulae, and why we suspect that this failed.

4.2.4 Failure of the first attempt

Whilst (4.2.15) exhibits the colour-kinematics duality in the same way as at tree-level and
one-loop, it turns out that it is in fact not correct for generic theories. The reason for this is
because we haven’t properly taken into account the relationship between the (n+ 4)-point
tree-level diagrams and the two-loop diagrams with Feynman propagators they are meant
to reproduce upon gluing the relevant legs.

To understand the issue, let us consider again figure 4.3. This displays one way how a
double-box may be decomposed into tree-like diagrams, or equivalently how certain tree-level
diagrams can be reconstituted into a double-box. There is however more than one way in
which a double-box can be decomposed, as demonstrated in figure 4.5, where two other ways
are shown. This means that if we simply sum over all tree-level diagrams, the same double-
box will be reconstituted three times. On the other hand, diagrams with independent loops
such as the ‘bow-tie’ in figure 4.6 can only be reconstituted in one way. Naively summing over
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=
1

3
+ +

Figure 4.5: A double-box can be reconstituted three ways from the set of (n + 4)-point
tree-level diagrams. The dots signify the possible placements of loop-momenta; see figure
4.3. The first way arises from 9 tree-level diagrams, whereas the second and third each arise
from 3 tree-level diagrams.

=

Figure 4.6: A diagram with independent loops can only be reconstituted in one way. The
above arises from 9 tree-level diagrams.

Figure 4.7: The vacuum topologies at two-loops.

all tree-level diagrams then effectively results in three double-boxes for every bow-tie. The
terms representing these two diagrams therefore do not have the correct multiplicities with
respect to each other in order to match the corresponding number of Feynman diagrams.

Understanding these multiplicities requires understanding the symmetry factors between
two-loop diagrams. A natural way to do this is to look at the two vacuum topologies at
two-loops displayed in figure 4.7, where any diagram is obtained by attaching external legs
or trees thereof. Of all two-loop diagrams built this way, there are only three cases that
present distinct multiplicity factors:

� Case T1a: first topology, with any placement of labelled external legs or trees thereof
distinguishing the three internal lines. A double box for example (planar or non-
planar) fits into this category, such as the one in 4.3. The multiplicity is ρT1a = 6,
with a factor of 3 coming from the considerations in figure 4.5, and a factor of 2 from
being able to exchange ℓ1 and ℓ2.

� Case T1b: first topology, with all external legs and trees thereof attached to only
one of the internal lines. This makes the other two internal lines indistinguishable, so
the number of terms appearing in the loop-integrand is half that of case T1a. The
multiplicity is therefore ρT1b = ρT1a/2 = 3

� Case T2: second topology, where figure 4.6 provides an example. Here one may only
exchange ℓ1 ↔ ℓ2, so the multiplicity is ρT2 = 2. Notice that at least two external
lines must be attached to both disconnected loops, otherwise the resulting diagram

will be a tadpole or an external-leg bubble, which we exclude in Γ
(2)
n+4.
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Since the proposal (4.2.39) fails to take this multiplicity into consideration, we conclude
that it must be incorrect for generic theories. It follows by extension that the worldsheet
formulae (4.2.15) must also be incorrect for generic theories. For supersymmetric theories
however this is not the case, and we will discuss why this is in section 4.3.2.

4.2.5 Two-loops proposal

The formulae (4.2.39) have many attractive qualities for a two-loop integrand. It is expressed
in terms of trivalent diagrams with the colour-kinematics duality being manifest. Moreover,
the ingredients going into the integrand follow straightforwardly from tree-level, via the
double-forward-limit. Following the discussion in the last section however, it cannot be
correct, since it does not produce the correct number of diagrams to be associated with
amplitudes coming from a standard Feynman representation. Specifically, the types of
diagrams arising do not have the correct multiplicity with respect to each other.

This however provides a simple fix. Since we know the relative multiplicities, which were
calculated in the last section, we can simply modify the formula (4.2.39) to take them into
account. As (4.2.39) is expressed as a sum over diagrams, we simply divide each term by
the relevant multiplicity corresponding to that diagram. With this modification we propose
the two-loop amplitudes to be
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(4.2.40)
with the multiplicity factor ρa, calculated in the last section, corresponding to the relevant
diagram. This simple modification retains all positive qualities described above. In partic-
ular, having the colour-kinematics manifest allows a natural extension to other theories via
the double copy, provided their CHY half-integrands can be expressed in a Parke-Taylor
basis, as discussed at the end of section 4.2.2. The explicit n-point formulae proposed above
in (4.2.40) corresponds to pure Yang-Mills and NS-NS gravity, or pure gravity in the case
of using (4.1.20) for both loops.

Let us remark that whilst there was a relatively simple way of modifying (4.2.39), an
analogous modification of the worldsheet expressions (4.2.15) does not seem as straightfor-
ward. Whilst (4.2.15) originally served as a motivation for obtaining the two-loop integrands,
the fact that multiplicity factors had to be manually included in the resulting expression
indicates potential difficulties in understanding the origin of (4.2.40) on the bi-nodal sphere.
Since we have supposed the moduli space integration directly yields all tree-level trivalent
diagrams, the need for relative multiplicity factors seems to imply that there there are miss-
ing contributions that account for these. We will discuss in section 4.3.3 where we believe
these contributions come from.

4.3 Supersymmetric theories and the genus-two ambitwistor
string

The two-loop field theory expressions presented in the previous sections were inspired by
the study of the ambitwsitor string at genus-two, first initiated in [105] and [180] in the
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pure-spinor formalism. After the successes at one-loop, where explicit formulae for field
theory amplitudes with and without supersymmetry have been produced [50,71,103,104], it
is natural to expect that one can obtain similar formulae for two-loop corrections. Indeed,
for the ambitwistor string there were originally discovered for supergravity at four-points
in [180] using the pure-spinor formalism. Following this, Geyer and Monteiro rigorously
derived n-point expressions for these formulae by considering the full n-point correlator in the
limit that the genus-two surface degenerates to the bi-nodal sphere [51]. This degeneration
naturally arises (as at genus-one) by performing residue theorems utilising the genus-two
scattering equations10.

In this section we will give a brief review of the formulae derived for supersymmetric
theories from the genus-two ambitwistor string and see how they are related to the formalism
presented in previous sections. Moreover, we will follow the examples at one-loop and extract
the part of the correlator on the bi-nodal sphere corresponding to NS-NS states propagating
in the loops, relevant for describing amplitudes without supersymmetry. This will allow
us to make a comparison with the objects found for two-loops in the previous section,
helping us better understand their origins from the genus-two worldsheet. Ultimately, these
considerations will lead us to present an argument concerning why the initial proposal
(4.2.15) was unsuccessful.

4.3.1 The supersymmetric amplitude on the bi-nodal sphere

Here we will review the formulae found in [51] for supersymmetric theories, from the point
of view of the genus-two ambitwistor string. Being a worldsheet model, amplitudes follow
from considering n-point correlators integrated over the moduli space of n-punctured Rie-
mann surfaces. What makes these inherently field theory amplitudes is the localisation of
the moduli space that results from enforcing the scattering equations, themselves arising
from gauge-fixing the ambitwistor string action. On the genus-two surface, these scattering
equations are given by imposing the constraints of (4.2.5). The central method of utilising
these is to apply global residue theorems such that the amplitude localises onto the maximal
non-separating divisor. For an adequate choice of the scattering equations, and representa-
tion of the integrand11, the amplitude will then be given by a worldsheet expression on the
bi-nodal sphere. We will not give the specific details of the global residue theorem, since at
genus-two it is a very intricate procedure; we refer the reader to [51] for these details. We
will instead look at the result of the type II amplitude after degenerating to the bi-nodal
sphere, which takes the form [51]

A(2)
n, sugra =

∫
dDℓ1 d

Dℓ2
ℓ21 ℓ

2
2

∫
M0,n+4

dµ
(2,+)
n+4 ξ(+) I(2)

susy-kin Ĩ
(2)
susy-kin , (4.3.1)

Notice in (4.3.1) the appearance of the cross-ratio from (4.2.27). As noted in section 4.2.2,
this arises essentially from extending the integration of the last modular parameter from

10We remind the reader that as mentioned in footnote 3, applying residue theorems using on a generic set
of scattering equations does not in general fully localise the amplitude onto the bi-nodal sphere, and one may
obtain expressions e.g. on nodal tori. The requirement of obtaining an expression on former thus requires a
specific choice of scattering equations. All details on this can be found in reference [51].

11The global residue theorem will only work as intended if the integrand only has simple poles corresponding
to the maximal non-separating boundary divisor and the scattering equations. As mentioned in section 5.1
of [51], this is not true for all representations of the integrand. Recall from section 2.5 that this requirement
is also present at genus-one.
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the fundamental domain to the full complex plane, with the inclusion of a support function.
On the bi-nodal sphere, this support function becomes the cross ratio, and the measure for
the modular parameter provides the measure for the locations of the nodal points (along
with a Jacobian factor). The specific cross-ratio corresponds to the choice of the scattering
equations, in which α = +1 was used12.

Of particular interest to us are the kinematic worldsheet integrands,

I(2)
susy-kin = J

∑
δ

Zchi[δ] Pf
(
M

(2)
δ

)∣∣∣
q1,q2→0

(4.3.2)

where the parameters q1, q2 are two-loop analogues of the degeneration parameter q at one-
loop, such that the degeneration to the nodal sphere is governed by the limit q1 → 0 and
q2 → 0. The sum runs over all 10 even spin structures at genus-two, commonly denoted by
δ; more details on this can be found in appendix A. The factor J represents a Jacobian,

J =
1

σ1+2+σ1+2−σ1−2+σ1−2−
. (4.3.3)

Notice there are actually two of these in the full integrand: one arises from the moduli
measure becoming the measure for the nodal points, and one comes from the scattering
equations in the degeneration limit. These Jacobians are important in supplying the correct
SL(2,C) weights for the nodal points.

The expression (4.3.2) should be compared with the analogous expression at one-loop,

given by (2.6.1). Noting that Zchi[δ] and M
(2)
δ is the chiral partition function and a matrix

involving Szegö kernels at genus-two, they obviously contain a similar structure, as a result
of both being computed from the path integral over the fields in the ambitwistor string
action. There the sum was over the 3 even spin structures at genus-one, here the sum is
over the 10 even spin structures at genus-two13.

While the sum over spin structures in (4.3.2) acts in part to retain modular invariance
on the genus-two worldsheet, it provides a physical interpretation on the bi-nodal sphere.
Namely, the combination of certain terms in the sum correspond to particular states prop-
agating through the loops. For the even spin structures which we are considering, table 4.1
shows this designation.

NS1 R1

NS2 δ1, δ2, δ3, δ4 δ7, δ8
R2 δ5, δ6 δ9, δ0

Table 4.1: The combinations of even spin structures corresponding to having either an
Neveu-Schwarz (NS) or a Ramond (R) state propagating through the loops. NS1 corresponds
to an NS state in loop 1 (with loop momenta ℓ1) and R2 corresponds to a a Ramond state
in loop 2 (with loop momenta ℓ2) for example.

That is, the four terms in the sum (4.3.2) corresponding to δ1, δ2, δ3 and δ4 gives the
contribution to the amplitude in which NS states propagate through both loops. We can

12Though of course α = −1 could also have been used; both choices result in the localisation to the bi-nodal
sphere.

13As a reminder, the sum over spin structures is part of the GSO projection, a feature coming from the
RNS formulation of the superstring.
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therefore extract each contribution from the amplitude in (4.3.2) on the bi-nodal sphere. As
at one-loop doing this explicitly requires the expansions in q1 and q2 of the chiral partition
functions,

Zchi[δ] =
∑

n1,n2∈{0,1}

(−1)2(n1δ′′1+n2δ′′2 ) q−n1
1 q−n2

2 Z(−n1,−n2)
NS δ ∈ {δ1, δ2, δ3, δ4} (4.3.4a)

Zchi[δ] =
∑

n1∈{0,1}

(−1)2n1δ′′1 q−n1
1 Z(−n1,0)

R2 δ ∈ {δ5, δ6} (4.3.4b)

Zchi[δ] =
∑

n2∈{0,1}

(−1)2n2δ′′2 q−n2
2 Z(0,−n2)

R1 δ ∈ {δ7, δ8} (4.3.4c)

Zchi[δ] = Z(0,0)
RRi

δ ∈ {δ0, δ9}, i = 0, 9 , (4.3.4d)

as well as the expansions in the Szegö kernels that constitute the Pfaffians,
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∑
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1 qn2
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Sδ(z, w) = S
(0,0)
RRi

(z, w) δ ∈ {δ0, δ9}, i = 0, 9 .

(4.3.5d)

These expansions were calculated in [51] to order O(q1 q2), the precise form of the chiral
partition functions in (4.3.4) and Szegö kernels in (4.3.5) can also be found there; they
will not be all be totally necessary for our purposes. In the above expansions, δ′′1 and δ′′2
correspond to the first and second components of δ′′ in the spin structure δ = (δ′|δ′′). The
labels NS, R1, R2 and RR classify which states are propagating in the loops, shown in table
4.2.

state propagating in
loop 1 loop 2

NS NS NS
R1 R NS
R2 NS R
RR R R

Table 4.2: Notation for the labels corresponding to which states propagate through the loops.
In comparison to table 4.1, loops 1 and 2 correspond to subscripts 1 and 2; for example,
NS1 and R2 (corresponding to spin structures δ5, δ6) here is denoted as R2. Again, by loop
1 we mean e.g. the loop where at least one propagator only involves ℓ1.

With these in hand we can take a closer look at (4.3.2). Considering the two expansions
(4.3.4) and (4.3.5), there are terms that arise at orders O(q−1

1 q−1
2 ), O(q−1

1 ) and O(q−1
2 ). It
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is easy to show however that the coefficients of these terms vanish due to the relative phases
in the sum over spin structures, and so the relevant terms are O(1). Collecting these terms
according to tables 4.1 and 4.2, the integrand can be written as

I(2)
susy-kin = INS

n + IR1
n + IR2

n + IRR
n , (4.3.6)

where the subintegrands take the form

INS
n = 4J

∑
n1,n2∈{0,1}

Z(−n1,−n2)
NS Pf (MNS)

(n1,n2) , (4.3.7a)

IR2
n = 2J

(
Z(0,0)
R2 Pf(MR2)

(0,0) + Z(−1,0)
R2 Pf (MR2)

(1,0)
)
, (4.3.7b)

IR1
n = 2J

(
Z(0,0)
R1 Pf (MR1)

(0,0) + Z(0,−1)
R1 Pf (MR1)

(0,1)
)
, (4.3.7c)

IRR
n = J ZRR9 Pf (MRR0) + J ZRR0 Pf (MRR9) , (4.3.7d)

following directly from taking the O(1) terms from (4.3.2), after using the expansions (4.3.4)
and (4.3.5). The labels on the Pfaffians correspond to the those in the Szegö kernels in
(4.3.5).

It is in this way that the sum over spin structures allows one to extract contributions
corresponding to different states propagating in the loops. This property allows one to po-
tentially consider theories with and without supersymmetry, as was the case at one-loop
in section 2.6. In particular, there the NS part of the integrand was used to construct the
amplitudes for pure Yang-Mills and NS-NS gravity. An important point to mention however
is that these contributions cannot be isolated on the Riemann surface before degeneration,
since this would violate modular invariance. This causes a subtlety in the two-loop case:
whilst each term may be extracted on the nodal sphere, there may have been terms which
cancelled in the supersymmetric sum (4.3.6) on the genus-two surface, which would have
led to contributions possibly with different degenerations. We will address the significance
of this subtlety later, when we argue why the naive guess of (4.2.15) did not work.

For completeness let us present the structure of the ingredients going into the integrands
(4.3.7). Following the scenario described in section 2.6 at one-loop, this will be necessary to
construct the NS part of the integrand (4.3.6), which we will match to formulae presented
in the previous sections. For this the precise form of the chiral partition functions and Szegö
kernels of the NS sector are detailed in appendix B.

The chiral partition functions depend only on the nodal points σ1± , σ2± and two auxiliary
points x1 and x2, subject to the condition

ω1+1−(x1)ω2+2−(x2) = ω1+1−(x2)ω2+2−(x1) . (4.3.8)

The auxiliary points are associated with the insertion of PCOs in the gauge-fixing procedure,
and a choice of x1 and x2 corresponds to a choice of gauge [51].
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All Pfaffians in (4.3.7) are defined from the following (2n+ 2)× (2n+ 2) matrices MS;

MS =

(
A −CT

C B

)
, (4.3.9a)

Ax1x2 = ℘(x1, x2)SS(x1, x2) , Axβ ,j = P (xβ) · kj SS(xβ, σj) , Aij = ki · kj SS(σi, σj) ,
(4.3.9b)

Cxβ ,j = P (xβ) · ϵj SS(xβ, σj) , Cij = ϵi · kj SS(σi, σj) ,
(4.3.9c)

Cii = −P (σi) · ϵi , Bij = ϵi · ϵj SS(σi, σj) .
(4.3.9d)

for any spin structure S ∈ {NS,R1,R2,RR}. Whilst these matrices do explicitly depend on
the auxiliary points x1 and x2, the full integrands IS

n are actually independent of the these.
The definitions for the Szegö kernels SS(σi, σj) for each spin structure S can be found in
appendix D.1 of [51]. As the points in their argument coalesce, they produce a simple pole,
i.e. they behave as SS(σi, σj) ∼ 1/σij for σi ∼ σj . This is true for any spin structure S.

The one-form P (σ) on the bi-nodal sphere takes the same form as in (4.2.10),

Pµ(σ) = ℓ1µ ω1+1−(σ) + ℓ2µ ω2+2−(σ) +
∑
i

ki µ
σ − σi

dσ , (4.3.10)

and the quantity ℘(x1, x2), entering the matrices MS through the component Ax1x2 , is
defined as

℘(x1, x2) = −1

2

∑
i,j

ki · kj
c1c2

(
c1ωi,∗(x1)− c2ωi,∗(x2)

)(
c1ωj,∗(x1)− c2ωj,∗(x2)

)
, (4.3.11)

for an auxiliary marked point σ∗. It can be verified that ℘(x1, x2) is actually independent
of σ∗ by using the definition of the coefficients cβ for β = 1, 2,

cβ =

√
(xβ − σ1+)(xβ − σ1−)(xβ − σ2+)(xβ − σ2−)

σ1+1−σ2+2−

1

dxβ
. (4.3.12)

We are now ready to define the Pfaffian factors in the kinematic integrands IS. Let us
introduce indices a,b = 1 . . . 2n+2, which we use to label σa = (x1, x2, σ1, . . . , σn, σ1, . . . , σn)
and va = (P (x1), P (x2), k1, . . . kn, ϵ1, . . . , ϵn). For any choice of S, the Pfaffians are then be
defined as14

Pf (MS)
(0,0) = Pf

(
MS

)
, n1 = n2 = 0 (4.3.13a)

Pf (MS)
(n1,n2) =

∑
a<b

S
(n1,n2)
S (σa, σb) va · vb Pf (MS

ab
ab) , n1 + n2 > 0 . (4.3.13b)

As usual the notation Pf (MS
ab
ab) indicates that both the rows and columns a, b have been

removed from the matrix MS.

14We note that in [51], a slightly different definition was presented, that was tailored towards the degen-
eration of the genus-two worldsheet. It can be checked that the two definitions are in fact equivalent.
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4.3.2 Relation to new formulae

In this section we connect the previous discussion to that of section 4.2 and understand
its features in the language therein. Firstly, we will give the explicit worldsheet formulae
for the supersymmetric theories considered above, in the spirit of (4.2.15). After giving
the four-particle amplitude for these supersymmetric theories, we will see how its two-loop
integrand is naturally expressed in the form (4.2.39). Consequently, we will discuss why it
can be represented this way, without requiring a modification with multiplicity factors, as
was the case with the non-supersymmetric theories.

The worldsheet formula (4.3.1) gives the two-loop amplitudes for supergravity, based
on the type II ambitwistor string at genus-two. A natural question to ask is what the
corresponding worldsheet formula for super Yang-Mills theory is. Unlike the former, there
is currently no known expression on the genus-two surface that allows a first-principles
derivation of super Yang-Mills amplitudes. This however does not preclude a proposal for
the relevant worldsheet integrand on the bi-nodal sphere, which was first proposed in [105] for
four particles. Following this the corresponding expressions at n-points was then proposed
in [51]. The integrands for these theories are given by

I(2)
SYM = I(2)

susy-kin I
(2, /+)
SU(N) I(2)

sugra = ξ(+) I(2)
susy-kin Ĩ

(2)
susy-kin , (4.3.14)

We discussed the presence of the cross-ratio in the supergravity integrand in the previous
section. Notice however that the colour factor in the super Yang-Mills integrand follows
the slash prescription, where one drops half of the terms in the sum over permutations.
Specifically, the supersymmetric kinematic integrand is given by (4.3.2) and the colour
integrand above is defined according to (4.2.31). We remark that only kinematic integrands
contain information about the degree of supersymmetry, not the colour factors.

Do the worldsheet integrands result in an expression for two-loop integrands similar to
those in (4.2.39)? Due to the complicated structure of the supersymmetric kinematic half-
integrand (4.3.2), this is quite difficult to see for arbitrary multiplicity. However, for four
particles the sum over spin structures can be performed explicitly [51,179], resulting in

I(2,+)
SYM,n=4 = K Ŷ I(2, /+)

SU(Nc)
, I(2,+)

sugra,n=4 = ξ(+)
(
KK̃
)
Ŷ2 ; (4.3.15)

that is, the kinematic integrand can be simplified at four-points to I(2)
susy-kin,n=4 = K Ŷ. Here,

K is a purely kinematic prefactor that can be extracted from the expression

K = tr
(
F1F2

)
tr
(
F3F4

)
+ tr

(
F1F3

)
tr
(
F2F4

)
+ tr

(
F1F4

)
tr
(
F2F3

)
(4.3.16)

− 4 tr
(
F1F2F3F4

)
− 4 tr

(
F1F3F2F4

)
− 4 tr

(
F1F2F4F3

)
,

where Fµν
i = k

[µ
i ϵ

ν]
i , and K̃ = K(ϵ→ ϵ̃). The factor Ŷ can be expressed as

Ŷ = J Y , Y = s∆̄14∆̄23 − t∆̄12∆̄34 , (4.3.17)

where J = (σ1+2+σ1−2+σ1+2−σ1−2−)
−1 is the Jacobian factor defined in (4.3.3), and the ∆̄ij

are defined to be

∆̄ij = ω1+1−(σi)ω2+2−(σj)− ω1+1−(σj)ω2+2−(σi) . (4.3.18)

This object actually descends, via (4.2.8), from a biholomorphic one-form on the genus-two
surface, defined by ∆ij = ϵIJωI(zi)ωJ(zj) = ω[I(zi)ωJ ](zj) (up to factors of 2πi). In fact,
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the four-point amplitude, in the context of the ambitwistor string, was first discovered on
the genus-two surface in [180], which strongly resembles the analogous result coming from
the superstring found in [179].

At four-points the supersymmetric integrand admits a Parke-Taylor decomposition with
kinematic numerators,

I(2)
susy-kin,n=4 = K Ŷ =

∑
ρ∈S4+2

N (2)(1+, ρ(1), · · · , ρ(6), 1+)
σ1+ρ(1)σρ(1)ρ(2) · · ·σρ(6) 1−σ1−1+

(4.3.19)

with ρ resembling a permutation over the labels {1, 2, 3, 4, 2+, 2−}. To describe these nu-
merators, consider such a permutation written in the form ρ = (A, 2±, B, 2∓, C), where A,
B and C are (possibly empty) non-overlapping subsets of the external labels, such that
A ∪B ∪ C = {1, 2, 3, 4}. The numerators then take the form15

N (2)(1+, A, 2±, B, 2∓, C, 1−) = −K
6

{
sij B = {i, j}
0 otherwise

; i, j ∈ {1, 2, 3, 4} . (4.3.20)

Since the two-loop four-particle integrands (4.3.14) admit the representation (4.3.19), the
worldsheet formulae give rise to expressions for the two-loop amplitudes similar to (4.2.39):

A(2)
SYM,n=4 =

∫
dDℓ1 d

Dℓ2
ℓ21 ℓ

2
2

∑
a∈Γ(2)

4+4

N
(2)
a c

(2)
a

Da
, A(2)

sugra,n=4 =

∫
dDℓ1 d

Dℓ2
ℓ21 ℓ

2
2

∑
a∈Γ(2)

4+4

N
(2)
a Ñ

(2)
a

Da
,

(4.3.21)

with the numerators defined as in (4.3.20), and the colour factors deriving from (4.2.31).
We remark that unlike the non-supersymmetric integrand of (4.2.33), the Parke-Taylor
decomposition (4.3.19) does not rely on the scattering equations; the equality is true for all
puncture locations.

Also unlike the non-supersymmetric case in section 4.2, the formulae (4.3.21) are pre-
cisely correct: they require no modification involving multiplicity factors, such as those
required in section 4.2.5. Why is this the case?

If you look at (4.3.21) with the numerators defined in (4.3.20), you will find that the
only trivalent diagrams appearing correspond to double boxes (the others are set to zero by
the numerators), such as those in figure 4.5. That only double-boxes appear is a well-known
property of the two-loop supersymmetric integrands. These diagrams however correspond
exactly to the type T1a diagrams from section 4.2.4. There is then no issue with relative
multiplicity factors between diagrams, since only one type appear. The multiplicity factor
becomes an overall normalisation for the integrand; in fact, the factor of 1/6 in (4.3.20) is
precisely related to the multiplicity factor ρT1a = 6 for these diagrams16. One could have
pulled this factor out of the numerators, so that ρa is explicitly included in the formulae
(4.3.21), matching the ‘modified’ form of (4.2.40), and it would still be correct.

15In practice, the specific numerators can be found by appropriately taking residues of KŶ as certain
combinations of σij variables go to zero. From the RHS of (4.3.19), it can be seen that doing so will isolate
each numerator if all such variables in a particular permutation is considered.

16This factor is also required to match with the typical normalisation of the two-loop four-particle ampli-
tudes.
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Figure 4.8: One class of Jacobi relations between trivalent diagrams at two loops. The ‘blobs’
(A, B, C, D) are trivalent trees where we suppress the n external legs. On the left-hand side,
the diagrams contain a single quadratic propagator each, of the type 1/(ℓ1+ ℓ2+K)2 in the
first case and 1/(ℓ1 − ℓ2 +K)2 in the second case. On the right-hand side, the diagram has
independent loops, and therefore possesses no propagator involving both loop momenta.

There is a further consequence of this fact which highlights another (seemingly) different
aspect of the supersymmetric worldsheet integrands, in comparison to those of (4.2.15).
Consider figure 4.8, where an application of the Jacobi identity is presented. In light of
(4.3.19), the diagrams on the left correspond to terms in the sum with 2+ before 2−, whereas
the diagram in the middle correspond to terms with 2− before 2+. The diagram on the right,
once one glues the legs, becomes a diagram with disconnected loops (type T2 from section
4.2.4), which do not appear in the supersymmetric theories. This means that the terms in
the supersymmetric integrand corresponding to 2+ before 2− are actually the same as those
corresponding to 2− before 2+. Recall from section 4.2.2 that the cross-ratio ξ(+) prevents
poles where σ1+ and σ2− (but no other nodal points) coalesce. This explains why only one
cross-ratio (or one application of the ‘slash’ prescription) is required for the supersymmetric
worldsheet integrands (4.3.14). Including both cross-ratios with a factor of 1/2 would still
give the integrands in (4.3.14), since the two terms would be equal.

This also seems to imply that the cross-ratio in the supergravity integrand (4.3.14), being
composed of a single term, must have the same effect as the slash prescription, i.e. that

ξ(+) I(2)
susy-kin = I(2, /+)

susy-kin . (4.3.22)

At four-points, where the Parke-Taylor decomposition is known, this can be proven explicitly.
Let us return to (4.3.19), and write it in the form

I(2)
susy-kin,n=4 =

∑
γ∈S4

N (2)(1+, · · · , 2±, · · · , 2∓, · · · , 1+)
(1+ · · · 2± · · · 2∓ · · · 1−)

(4.3.23)

where · · · corresponds to possible external particle labels, and (1+ · · · 2± · · · 2∓ · · · 1−) rep-
resents the (inverse) Parke-Taylor factor for the relevant ordering. In the above, the 2± and
2∓ indicate that all terms are included in the sum (with both 2+ before 2− and 2− before
2+). One may check that for arbitrary values of the marked points,

∑
γ∈S4

N (2)(1+, · · · , 2+, · · · , 2−, · · · , 1+)
(1+ · · · 2+ · · · 2− · · · 1−)

=
σ1+2−σ1−2+

σ1+2+σ1−2−

∑
γ∈S4

N (2)(1+, · · · , 2−, · · · , 2+, · · · , 1+)
(1+ · · · 2− · · · 2+ · · · 1−)

.

If we denote the sum on the left as S+ and the sum on the right as S−, then this is simply

S+ =
σ1+2−σ1−2+

σ1+2+σ1−2−
S− . (4.3.24)
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Writing the explicit form of the cross ratio ξ(+) from (4.2.27), the claim (4.3.22) becomes
quite clear, since

σ1+2−σ1−2+

σ1+1−σ2+2−
I(2)
susy-kin,n=4 =

σ1+2−σ1−2+

σ1+1−σ2+2−
(S+ + S−)

=
σ1+2−σ1−2+

σ1+1−σ2+2−

(
1 +

σ1+2+σ1−2−

σ1+2−σ1−2+

)
S+ (4.3.25)

=
(
ξ(+) + ξ(−)

)
S+ = S+ ≡ I(2, /+)

susy-kin,n=4

where we have used (4.3.24) and the fact that ξ(+)+ξ(−) = 1 from (4.2.28). Thus, the cross-
ratio has the same effect as the slash prescription in the same of supergravity. In constructing
higher-point expressions, this would place a strong requirement on the kinematic numerators.

4.3.3 The NS sector, degenerations and multiplicities

In the last section we alluded to the idea that the sum over spin structures allows us to extract
the NS contribution on the nodal sphere, and that this can potentially give results for theories
with less supersymmetry. As mentioned there, this is a successful treatment at one-loop,
as shown in [71], where formulae for pure Yang-Mills and NS-NS gravity were constructed.
In this section we discuss this treatment at two-loops and relate the NS contribution to the
formulae presented in section 4.2.2. This will lead us to an argument as to why the proposal
(4.2.39) required corrections, and how this could be understood from the point of view of
the worldsheet degeneration.

The NS contribution to the supersymmetric integrand on the sphere was calculated in
(4.3.7). If the methodology at one-loop follows straightforwardly to two-loops, then we would
expect the kinematic integrand of section 4.2.2 to be precisely equal to this contribution,

I(2,+)
kin

?
= I(2)

A,kin := INS
n = 4J

∑
n1,n2∈{0,1}

Z(−n1,−n2)
NS Pf (MNS)

(n1,n2) , (4.3.26)

where we put the subscript A to denote that this kinematic integrand is coming from the
ambitwistor string. For completeness, the details of the partition functions and Szegö kernels
going into the Pffafians on the RHS on (4.3.26) have been included in appendix B.

Aesthetically these integrands have a very different form. I(2)
A,kin contains the Pfaffian of a

(2n+2)× (2n+2) matrix with partition functions as coefficients. The integrand is invariant
under the choice of two auxiliary points x1 and x2, required to describe both the Pfaffians
and the partition functions, and the matrix MNS depends linearly on the loop momenta, i.e.

only contains entries of the form ℓI · V . On the other hand, from (4.2.18), I(2,+)
kin contains

the reduced Pfaffian of a (2n + 4) × (2n + 4) matrix, summed over the polarisation states
associated to the loop-momenta. On the support of the scattering equations it is invariant
under the choice of a reference vector qµ, required for the sum over states, and the matrix
M depends quadratically on the loop-momenta i.e. it contains entries (specifically A1±2±)
proportional to 1

2(ℓ1 + ℓ2)
2. The former follows straightforwardly from the degeneration of

the genus-two expressions, and the latter is constructed from the double-forward-limit of
the tree-level expressions.

However the one-loop scenario, albeit much less intricate, has shown that certain dif-
ferences in the integrands do not preclude a relationship between them. In light of this we
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Figure 4.9: Types of worldsheet degeneration at genus-two.

have checked in the case of four-particles that the two proposals do agree on the scattering

equations E(+)
A ,

I(2)
A,kin

(+)
= I(2,+)

kin . (4.3.27)

We remark that this check is very non-trivial, considering the structural differences dis-
cussed above. As a result, we expect this result to hold to any number of external particles.
Equation (4.3.27) demonstrates that the NS contribution can be thought of as arising from a
double-forward-limit. We expect that this interpretation extends also to the other contribu-

tions (R1, R2 and RR), which would imply that I(2)
susy-kin can also arise from a double-forward

limit. Indeed, the four-point formulae in (4.3.21) also support this observation.

This however brings cause to confusion. If the supersymmetric integrand arises from a
double-forward-limit, and if its NS sector which matches the non-supersymmetric integrand
also does too, why was the initial proposal (4.2.39) incorrect? Why did we have to manually
include multiplicities to obtain the correct two-loop amplitude for the non-supersymmetric
theories?

We argue that this is due to the failure of the direct residue argument of figure 4.2 from
the genus-two surface to the bi-nodal sphere in the absence of supersymmetry. Specifically,
since one cannot isolate the terms (4.3.6) on the genus-two surface, the residue argument is
not expected to hold for each term individually. In particular, there may have been other
terms which cancelled in the supersymmetric sum (4.3.6). In the applying the global residue
theorem, these extra terms may not descend directly to the bi-nodal sphere, but may result
in contributions from different degenerations altogether. To give an idea of why these are
relevant to the discussion of multiplicities, consider figure 4.9 which displays the other types
of degeneration. Our formulation is based on the bi-nodal sphere, which corresponds to the
left diagram. The terms cancelling in the supersymmetric sum however upon applying the
global residue theorem can give contributions on worldsheets displayed by the center and
right diagrams. The crucial feature to notice is that these lead to two-loop diagrams of type
T2 and T1b respectively, precisely those which required distinct multiplicity factors with
respect to the full expression coming from the bi-nodal sphere. We therefore postulate that
these extra contributions account for the multiplicities required in the non-supersymmetric
case. We note that in principle they could be calculated directly via the ‘gluing operator’
of [97].

To conclude this section, let us make a comment on theories with less-than-maximal
supersymmetry. That worldsheet integrands present a double-copy structure allows one to
construct them for theories with varying degrees of supersymmetry, in line with the BCJ
double copy [10]. Therefore, we can also present a two-loop worldsheet formula for half-
maximal supergravity by utilising the kinematic factors we’ve discussed with and without
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supersymmetry. In the spirit of (4.3.7), this corresponds to

I(2,+)
half-sugra = ξ(+) I(2)

susy-kin Ĩ
(2)
kin . (4.3.28)

4.3.4 Checks on maximal unitarity cuts

We will here check the formulae discussed in section 4.2, describing two-loop n-point inte-
grands for pure Yang-Mills and gravity in any dimension. A natural way of comparing the
integrands of field theory is to analyse them on a set of unitarity cuts, where we place the
internal loop propagators on-shell. If we take a set of maximal cuts (with all loop propaga-
tors on-shell), then one only need compare the numerators for the corresponding diagrams
in each integrand on the cut solutions. We will do this for pure Yang-Mills at four-points,
in the case of all-plus external helicities. This was found originally in [185] and is given by

A(2)
4 (1+, 2+, 3+, 4+) =

g6

4

∑
S4

[
CP
1234A

P
1234 + CNP

12;34A
NP
12;34

]
, (4.3.29)

where AP
1234 and ANP

12;34 are the planar and non-planar colour-ordered Yang-Mills integrands
respectively,

AP
1234 = iT

{
sIP4

[
(Ds − 2)(λ21λ

2
2 + λ21λ

2
12 + λ212λ

2
2) + 16((λ1 · λ2)2 − λ21λ

2
2)
]
(s, t)

+ 4(Ds − 2)Ibow-tie
4

[
(λ21 + λ22)(λ1 · λ2)

]
(s) (4.3.30)

+
(Ds − 2)2

s
Ibow-tie
4

[
λ21λ

2
2((ℓ1 + ℓ2)

2 + s)
]
(s, t)

}
,

ANP
12;34 = iT sINP

4

[
(Ds − 2)(λ21λ

2
2 + λ21λ

2
12 + λ212λ

2
2) + 16((λ1 · λ2)2 − λ21λ

2
2)
]
(s, t) . (4.3.31)

In the above formulae, IP4 [R] and INP
4 [R] represent a planar and non-planar double-box

respectively with numerator R, and Ibow-tie
4 signifies a ‘box-tie’ diagram (without the con-

necting propagator) such as that displayed in figure 4.6. The prefactor T depends only
on the external kinematics, which are four-dimensional, and is written in spinor-helicity
notation as

T =
[12][34]

⟨12⟩⟨34⟩
. (4.3.32)

Note however that the loop-momenta ℓI are treated in general as being D-dimensional, and
that its (D − 4)-dimensional part is λI . In the above λ12 = λ1 + λ2, and Ds refers to the
number of intermediate gluon states. These factors of (Ds − 2) arise in our formalism from
certain contractions of the state projectors; see below equation (4.2.25).

The result above is in the standard Feynman representation, so we remark that it appears
very different to what results from our formulae, which contains many more terms and linear-
type propagators. However, for any choice of maximal cuts, only one of our terms will
contribute, and the cut conditions will be the same since they will both require ℓ21 = ℓ22 = 0.
On these two cut conditions, the linear and quadratic propagators are the same, so all other
cut conditions will also match. Therefore, it is not necessary to bring the two expressions
for the integrand into the same representation to make a comparison, which is possible by
applying partial fraction identities and shifts in the loop momentum to (4.3.29).

We will consider two cases each for the planar and non-planar double-box. Since we are
only considering these types of diagrams, we can ignore the multiplicity factors from our
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approach. These examples will also highlight how the numerators for these diagrams are
explicitly calculated from their tree-level counterparts through the double forward-limit.

For the double planar-boxes we will consider the examples displayed in figures 4.10 and
4.11. The first example is displayed in figure 4.10 below. The ‘cuts’ on the diagram on the

Figure 4.10: One contribution to a double-planar box, resulting from the choice of loop
momenta displayed. The two-loop diagram on the left is obtained from the corresponding
tree-level diagram on the right, which happens to be a master diagram.

left correspond to the placement of the loop momenta, with the + on the internal labels
designating the direction of flow. In this example the tree-level diagram it is obtained from
is a master diagram, displayed on the right, whose numerator is thus a (single) master
numerator. In our formalism this corresponds to the following term in the integrand:

N (2)(1+, 2, 2+, 3, 4, 2−, 1, 1−)

ℓ21 ℓ
2
2 (2ℓ1 · k2) (ℓ1 + ℓ2 + k2)2 (ℓ1 + ℓ2 + k23)2 (ℓ1 + ℓ2 − k1)2 (−2ℓ1 · k1)

, (4.3.33)

where we have used the shorthand notation kij = ki+kj . We recount that these numerators
are constructed algorithmically from (4+4)-point tree-level numerators and depend respec-
tively only on the ordering therein. We then match the numerator to the corresponding
numerator of (4.3.29) which takes the form[

(Ds − 2)(λ21λ
2
2 + λ21λ

2
12 + λ212λ

2
2) + 16((λ1 · λ2)2 − λ21λ

2
2)
]

(4.3.34)

on the solutions to the cut constraints

ℓ21 = ℓ22 = (ℓ1 + k1)
2 = (ℓ1 + ℓ2 + k2)

2 = (ℓ1 + ℓ2 + k23)
2 = (ℓ1 + ℓ2 − k1)

2 = (ℓ1 − k1)
2 = 0 .

(4.3.35)
We can confirm that they indeed match on the cut solutions above, up to an overall nor-
malisation factor.

Another example for the planar double box is displayed in figure 4.11 below.
The term in the integrand of our proposal that contributes to this is

N (2)(1+, 2, [3, 2+], [2−, 4], 1, 1−)

ℓ21 ℓ
2
2 (2ℓ1 · k2) (2ℓ2 · k3) (ℓ1 + ℓ2 + k23)2 (−2ℓ1 · k1) (−2ℓ2 · k2)

(4.3.36)

where we have written a shorthand for the application of the Jacobi identity

N (2)(· · · , [i, j], · · · ) := N (2)(· · · , i, j, · · · )−N (2)(· · · , j, i, · · · ) (4.3.37)

to the numerators, shown diagrammatically in figure 4.11. Specifically, the kinematic nu-
merator is given by

N (2)(1+, 2, [3, 2+], [2−, 4], 1, 1−) = +N (2)(1+, 2, 3, 2+, 2−, 4, 1, 1−)−N (2)(1+, 2, 2+, 3, 2−, 4, 1, 1−)

−N (2)(1+, 2, 3, 2+, 4, 2−, 1, 1−) +N (2)(1+, 2, 2+, 3, 4, 2−, 1, 1−) .
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Figure 4.11: Another contribution to the double-planar box, corresponding to a different
placement of the loop momenta. The two-loop diagram arises from the double forward-limit
of the tree-diagram in the centre. To obtain the kinematic numerator for this diagram in
terms of the (half-ladder) master numerators, the Jacobi identity must be employed twice.

The numerator is evaluated on the cut conditions here given by

ℓ21 = ℓ22 = (ℓ1 + k2)
2 = (ℓ2 + k3)

2 = (ℓ1 + ℓ2 + k23)
2 = (ℓ1 − k1)

2 = (ℓ2 − k2)
2 = 0 . (4.3.38)

We also confirm in this case that the numerators match.

For the non-planar double-boxes we consider the examples given in figures 4.12 and 4.13.
The diagrams with their respective numerators are constructed similarly to the planar cases

Figure 4.12: Contribution to a non-planar double-box, and the corresponding relation of its
numerator to those of the master diagrams.

considered above. The non-planar double box in figure 4.12 corresponds to the following
term in our two-loop integrand:

N (2)(1+, 1, [2, 2+], 4, 3, 2−, 1−)

ℓ21 ℓ
2
2 (2ℓ1 · k1) (2ℓ2 · k2) (ℓ1 + ℓ2 + k12)2 (ℓ1 + ℓ2 − k3)2 (ℓ1 + ℓ2)2

(4.3.39)

whose numerator we evaluate on the maximal cut solutions to

ℓ21 = ℓ22 = (ℓ1+k1)
2 = (ℓ2+k2)

2 = (ℓ1+ℓ2+k12)
2 = (ℓ1+ℓ2−k3)2 = (ℓ1+ℓ2)

2 = 0. (4.3.40)

Likewise, the example of figure 4.13 corresponds to the following term in our integrand,

N (2)(1+, [3, 2+], 2, [2−, 4], 1, 1−)

ℓ21 ℓ
2
2 (2ℓ2 · k3) (−2ℓ1 · k1) (ℓ1 + ℓ2 + k3)2 (ℓ1 + ℓ2 + k23)2 (−2ℓ2 · k4)

(4.3.41)
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Figure 4.13: Another contribution to a non-planar double-box.

whose numerator we evaluate on the cut solutions given by

ℓ21 = ℓ22 = (ℓ2+k3)
2 = (ℓ1−k1)2 = (ℓ1+ℓ2+k3)

2 = (ℓ1+ℓ2+k23)
2 = (ℓ2−k4)2 = 0. (4.3.42)

For these cases also we confirm that the numerators of (4.3.39) and (4.3.41) on their re-
spective cut conditions (4.3.40) and (4.3.42) match the relevant numerator of (4.3.29), given
by

(Ds − 2)(λ21λ
2
2 + λ21λ

2
12 + λ212λ

2
2) + 16((λ1 · λ2)2 − λ21λ

2
2) . (4.3.43)

4.4 Discussion

This chapter studied a natural way of extending worldsheet formulae, already quite success-
ful at tree-level and one-loop, to two-loops. We reviewed how the one-loop formulae can be
seen in terms of a forward-limit, manifesting the colour-kinematics duality. In this formal-
ism, though the loop-integrand admits an unorthodox representation (involving linear-type
propagators) the kinematic numerators are computable to any order from tree-level results,
detailed in section 1.3. We then applied this straightforwardly to two-loops and explained
the novel features that start appearing at this order, inspiring two different representations of
the proposed worldsheet formulae. This however was insufficient for the non-supersymmetric
theories and we detailed the required modifications, allowing us to propose n-point formu-
lae for the two-loop integrand of pure Yang-Mills and pure (derivable from NS-NS) gravity
which also manifested the colour-kinematics duality in the same way. We then rephrased
the supersymmetric results of [51] in this language, which provided insights allowing us to
speculate on the origin of the modification required for generic theories, based on the genus-
two ambitwistor string. Finally, we checked our formulae for pure Yang-Mills against known
results at two-loops [185] using (maximal) unitarity cuts.

We remind the reader of some of the points mentioned throughout that are relevant to
further research. Firstly, due to the versatility of the double copy, we believe our formulae
can in principle be extended to any theory connected with a worldsheet description. We
gave an example of this in (4.2.38) for the biadjoint scalar theory; its two-loop integrand
can be inferred from the discussion in this chapter. Secondly, it would be fruitful to see if
our conjecture regarding the origins of the modification were true. As mentioned in section
4.3.3, the use of a gluing operator [97] would be of great use in this endeavour. Thirdly, and
more generally, a more detailed study of the two-loop scattering equations and their singular
solutions would further the understanding of their role for theories with less supersymmetry.
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It would be interesting to investigate an extension to three (and higher) loops, in the
context of a triple-forward-limit. Unfortunately, at present this investigation would not
be backed by the ambitwistor string, which has only currently been developed up to two-
loops [51, 105]. Though the forward-limit interpretation seems natural, the absence of a
study with the ambitwistor string would make any potential subtleties difficult to identify.
Of course, we expect these to be minimised for supersymmetric theories, which we will
explore in the next chapter. Furthermore, it is clear that our representation of the two-loop
integrands is currently such that direct integration would be too difficult; this is due to the
propagator structures and the number of terms appearing, both of which are vastly different
from traditional representations. However, since these representations will agree on a set
of unitarity cuts, this formalism provides a way of obtaining two-loop integrands using this
method. Otherwise, one would have to find a way of making our representation more like
the Feynman representation, and this would require a two-loop extension of the ℓ2-deformed
scattering equations presented in the previous chapter17. The discussion of section 3.8 is
therefore relevant in this respect too.

17Although this would clearly be more intricate, since the scattering equations we use here already employ
propagators involving both loop momenta to be quadratic.
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Chapter 5

Superstring amplitudes from the
scattering equations

A lot of worldsheet formulae at one and two loops are based on the genus one [50] and
genus two [51] ambitwistor string. At this genus, the results from the ambitwistor string we
have considered in this thesis have been based on the RNS formalism1. Therefore, many
of the field theory results we have encountered in this thesis partially owe themselves to
the superstring. In this sense the ambitwistor string acts as a strong connection between
superstring theory and quantum field theory. On its own, field theory amplitudes can be
obtained from the superstring via the field theory limit, but of course the converse is not
true since there is no notion of α′ in field theory. However, implicitly the field theory
results contain some information from the massless spectrum of the superstring, since the
field theory limit corresponds to the scattering of these states. It is therefore conceivable
that one can use massless scattering in field theory to say something about the massless
spectrum of the superstring. Of course, at first glance this seems incredibly difficult, since
the mathematical objects used in the superstring can be much more complicated than those
of field theory.

In this chapter we will argue that the ambitwistor string allows one to be capable of doing
this. In light of this we will explain the relation between expressions for scattering of massless
states in the superstring and their ambitwistor string counterpart, before describing more
precisely how the ambitwistor string formulae are themselves related to worldsheet formulae
for field theory. Amongst these relationships, modular invariance plays a fundamental role,
so we dedicate section 5.1.2 to expand on the notion of modular weights and modular
invariance and how they will be relevant for us. In section 5.2 we then discuss the strategy
we will use to go from field theory expressions to worldsheet formulae, to ambitwistor string
formulae, and finally to superstring formulae, thus reproducing the superstring amplitude
purely from the results of field theory. This relies heavily on the field theory result admitting
a BCJ representation for reasons that will become clear. We will demonstrate how the
strategy works at two-loops, and then apply this strategy at three-loops, using known results
from field theory, resulting in a proposal for the four-point scattering of massless states in
the superstring at genus three.

1Though other formulations have been made, including the pure-spinor version [186] and the Green-
Schwarz formulation [187].
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5.1 Aspects of string amplitudes and their relation to field
theory

The use of the scattering equations in worldsheet models precisely points out what makes
string amplitudes intrinsically stringy. Namely, in superstring theory the integration over the
moduli space is fairly non-trivial, and in order to actually get to this stage one has to formally
understand the structure of the moduli space. This was achieved at genus-two in a series
of papers [179, 188–192] by D’Hoker and Phong, where a rigorous study of the superstring
amplitudes was performed. The procedure involves starting on a super-Riemann surface and
integrating out the supermoduli to project onto the ‘bosonic moduli space’. This space is the
one more related to the discussion of this thesis, where we focus on ambitwistor strings which
are naturally formulated on a bosonic Riemann surface. For the type II theories, at least
up to genus-two [189], one can write the superstring integrand on the bosonic moduli space
in a ‘chiral way’, exploiting the fact that the states of the theory come from left-movers and
right-movers. This chiral splitting [193] allows the definition of the ‘chiral integrand’, and
since the ambitwistor string is naturally a chiral theory the ambitwistor string integrand
naturally coincides with the chiral integrand on a genus-g surface2. Indeed, this is what
follows from the study of the genus-two ambitwistor string [51].

There are some issues with dealing with superstring amplitudes at higher-genus however.
As mentioned above, defining the superstring amplitudes requires an understanding of the
intrinsic moduli space, in order to adequately define the string measure. At any genus g > 1,
the space of intrinsic moduli is (3g − 3)-dimensional, and for genus g = 2, 3 this dimension
coincides with the number of independent components of the period matrix g(g+1)/2. This
allows the genus g = 2, 3 superstring measure to be directly related to the elements of the
period matrix. For genus g ≥ 4 however there must be restrictions if the measure is to be
related to the period matrix, and so the measure is not currently fully understood; this is
related to the well-known Schottky problem3. Furthermore, for genus g ≥ 5 there is also
known to be an issue with projecting the supermoduli space down to the reduced (bosonic)
moduli space [195]. Of course, at genus g = 3 neither these fundamental issues themselves
act as obstructions in achieving results therein, and this chapter is based on work that
attempts to aid this endeavour.

How can we do this? The field-theory limit of superstring amplitudes is associated with
α′ → 0, or the string length going to zero. The amplitudes then pick up results from
the massless spectrum of the superstring and are associated with supergravity field theory
loop integrands in the case of the type II superstring. On the other hand, the scattering
equation formalism arises from the ambitwistor string, which has no notion of α′, and thus
directly gives the field theory loop integrands of supergravity in the case of the type II
ambitwistor string. Assuming then that the superstring integrands can be expressed using
chiral integrands, one expects that the results from the ambitwistor string can be directly
related to part of the superstring. More specifically, the amplitudes resulting from the
ambitwistor string should be directly related to the scattering of massless states in the
superstring. The beginning of this assumption is phrased as follows: up to three-loops, the

2More on this and chiral splitting in the ambitwistor string can be found in [194].
3We note that there exist parametrisations which avoid this issue, such as the Schottky parametrisation.
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superstring amplitude for four massless states can be expressed as

A(g)
S

R4
=

∫
Mg,4

∣∣∣ ∏
I≤J

dΩIJ

∣∣∣2 ∫ dℓ
∣∣Y(g)

S

∣∣2 ∏
i<j

|E(zi, zj)|
α′sij

2

×
∣∣∣ exp α′

2

(
iπΩIJ ℓ

I · ℓJ + 2πi
∑
j

ℓI · kj
∫ zj

z0

ωI

)∣∣∣ 2 . (5.1.1)

In the above, the moduli space integral is over the genus-g fundamental domain parametrised
by the period matrix ΩIJ , and four marked points corresponding to insertions zi of states
with momenta ki. The object E(zi, zj) is the prime form, defined in appendix A, and we
abbreviate the ‘loop-measure’ as dℓ =

∏
I d

10ℓI . In fact, the part of (5.1.1) involving the
prime form and the exponential together constitute the chiral × anti-chiral Koba-Nielson
factors at loop-level. The prefactor R4 is purely kinematic and is related to the tree-level
supergravity amplitude [196], which is proportional to R4/(s12s13s14). Aside from this
prefactor, we make no distinction between type IIA and type IIB superstrings, which differ
by the choice of GSO projection, since the odd spin structures do not contribute at four

points up to three-loops4. The object Y(g)
S

will therefore be the primary object of interest to
us. To understand why let us compare with what is expected from the genus-g ambitwistor
string,

A(g)
A

R4
=

∫
dℓ

∫
Mg,4

∏
I≤J

dΩIJ

(
Y(g)
A

)2 4∏
i=1

δ̄(Ei)
∏
I≤J

δ̄(uIJ) , (5.1.2)

which provides the field theory integrands for type II supergravity. The delta functions
above enforce the genus-g scattering equations, which serve to localise the intrinsic moduli
integration onto the maximal non-separating boundary divisor. Of course, the loop inte-
gration is divergent in ten-dimensions, so (5.1.2) is to be understood as a formal definition
of the loop integrand, which can undergo dimensional reduction on the nodal sphere5. As

noted in section 4.3.2, the object Y(g)
A

actually coincides with that of the superstring up to
g = 2,

Y(g)
S

= Y(g)
A
. (5.1.3)

This means on our working assumption we can obtain the superstring chiral integrand
through the knowledge of what is expected from the ambitwistor string. Since the am-
bitwistor string integrand corresponds to supergravity field theory integrands, we can then
deduce the former through the knowledge of the field theory result. This leads to a very
unexpected series of deductions,

Field theory 7→ Ambitwistor string 7→ Superstring (5.1.4)

4As mentioned in section 2.6, the fermions Ψµ, Ψ̃ν in the odd spin structures have zero-modes, and
the integration over these zero-modes each produce a ten-dimensional Levi-Civita symbol. Prior to loop
integration these must be contracted into the kinematic data {ki, ϵi (ϵ̃i), ℓi}, with ϵ (ϵ̃) associated with the
Levi-Civita tensor resulting from the zero-modes of Ψµ

0 (Ψ̃ν
0) respectively. However, the kinematic prefactor

can be written as R4 = F4(ϵ)F4(ϵ̃), where e.g. F4(ϵ) comes from the open superstring and involves products
ϵi · ϵj , which cannot arise through contraction with the Levi-Civita tensor. Moreover, after loop integration
the contraction between Levi-Civita tensors will at most produce ϵi · ϵ̃j contractions, but this is inconsistent
with the factorisation of R4 above. These observations are consistent with those found in [197,198].

5One cannot dimensionally reduce on the genus-g surface as D = 10 is required for modular invariance.
On the nodal sphere however, there is no such restriction and one can freely dimensionally reduce to D < 10.
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and indeed we will show how this is possible at two-loops. This is rather confounding, given
that typically this is done (in a sense) in the opposite fashion. With this however, we will
be able to propose an expression for the chiral integrand at three-loops.

In order to do this, we first need to understand some details about how the ambitwistor
string amplitudes are related to those of field theory, which we will now discuss.

5.1.1 Aspects of ambitwistor string degenerations

The scattering equations in (5.1.2) localise the amplitude onto the maximal non-separating
boundary divisor, and so the resulting worldsheet formulae are naturally expressed on a
g-nodal sphere,

A(g)
A

R4
=

∫
dℓ∏
I(ℓ

I)2

∫
M0,4+2g

c(g)
(
J (g)Y(g)

)2 4+2g∏
A=1

δ̄(EA) . (5.1.5)

where Y(g) to defined as Y(g)
A

in the limit of the non-separating degeneration, and c(g) is a
cross-ratio appearing therein. Here we point out a few details in this process, which may be
recognised from previous chapters. The purpose for this is for us to better understand how
the ambitwistor string formulae result in worldsheet formulae for the corresponding field
theory, so that these details can be properly considered when we go the other way.

Firstly, recall that the modular scattering equations uIJ = 0 ensure that the holomorphic
part of the quadratic differential P 2 vanishes on the Riemann surface,

P 2 = uIJ ωI ωJ = 0 (5.1.6)

on the support of the other scattering equations Ei = 0 (which alone ensure P 2 has no
simple poles). The product of Abelian differentials of the first kind ωI ωJ act as a basis
of holomorphic quadratic differentials. Since the uIJ are symmetric, this gives g(g + 1)/2
scattering equations, coincident with the number of intrinsic moduli integrations in the
measure

∏
I≤J dΩIJ for g = 2, 3. To study the degeneration limit, it is more convenient to

use the parameters

qIJ = e2πiΩIJ ⇒ dΩIJ =
1

2πi

dqIJ
qIJ

(5.1.7)

for I ̸= J and analogously for qII = eiπΩII . Formally speaking, the maximal non-separating
degeneration occurs in the limit where the variables involving the diagonal components of
the period matrix go to zero, qII → 0. In this limit the Abelian differentials of the first kind
acquire simple poles at their respective nodal points via Fay’s degeneration formula [199],

ωI(σ) 7→ ωI+I−(σ) =
(σI+ − σI−)

(σ − σI+)(σ − σI−)

dσ

2πi
. (5.1.8)

The off-diagonal components of the period matrix then become

ΩIJ :=

∮
BJ

ωI =

∫ σJ+

σJ−

(σI+ − σI−)

(σ − σI+)(σ − σI−)

dσ

2πi
=

1

2πi
ln
σI+J+σI−J−

σI+J−σI−J+

.

The parameters qIJ for I ̸= J consequently become cross-ratios in the nodal points as a
result of (5.1.7),

qIJ =
σI+J+σI−J−

σI+J−σI−J+

. (5.1.9)
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This leads to a change of variables in the measure for the remaining modular parameters,
with an associated Jacobian∏

I<J

dqIJ
qIJ

=
J (g)

vol SL(2,C)
, J (g) = J (g)

∏
I±

dσI± . (5.1.10)

Let us now look at what happens with the scattering equations. In practice, one might
enforce not the uIJ alone to vanish but linear combinations thereof,∏

I<J

δ̄(uIJ) →
∏
I<J

δ̄(ũIJ) , (5.1.11)

where now the ũIJ are linear combinations of the uIJ . There is a number of reasons why
one might choose to do this. Firstly, not all scattering equations will lead to the nodal
sphere, and in the global residue theorem one may get contributions from e.g. nodal tori.
To get an expression solely on the nodal sphere, a linear combination of scattering equations
must usually be considered. An example of this can be seen at two-loops [51] where on the
genus-two surface one enforces

δ̄(ũ11) δ̄(ũ22) δ̄(ũ12) := δ̄(u11) δ̄(u22) δ̄(u11 + u22 + u12) . (5.1.12)

The first two scattering equations are used in the global residue theorem, and the last
one ensures that contributions on nodal tori vanish. Secondly, different choices will lead
to different loop propagators from the resulting worldsheet formulae. This is clear since
ultimately the kinematic pole structure is determined by the scattering equations on the
nodal sphere. Thus, to obtain the desired loop propagators one may appropriately choose
which scattering equations to enforce.

After the degeneration, the role of the remaining delta functions is to produce the scat-
tering equations for the nodal points. To see this explicitly one writes them as

EI± =
∑
J

ũIJ ωJ+J−(σI±) , (5.1.13)

from which one can derive ∏
I<J

δ̄
(
ũIJ
)
= J (g)

∏
I±

δ̄ (EI±) (5.1.14)

with an appropriate Jacobian factor J (g). For genus g = 2, 3 this Jacobian is the same as
that coming from the measure, leading to the factor (J (g))2 appearing in (5.1.5). These
Jacobians are important since they provide the correct SL(2,C) weight to the nodal points.

Finally let us mention how the cross ratios typically arise, and what their purpose is in
the worldsheet formulae. Notice that in (5.1.9), for some I, J were one to use the SL(2,C)
symmetry to fix σJ+ = 0, σI− = 1, σJ− = ∞ then the modular parameter qIJ becomes
equal to one of the nodes, qIJ = σI+ . The integration of σI+ is unconstrained and over the
full CP1, however the integration region for qIJ is over the fundamental domain and thus
is constrained. Using modular invariance there is a way to extend the integration region
of qIJ to the whole complex plane on the support of a weight function f(qIJ); at two-loops
this is seen in [51]. The weight functions are functions of the qIJ and have to satisfy some
constraints which can be used to determine them, such as f(qIJ)+f(q

−1
IJ ) = 1, and that they

cannot introduce new poles into the integrand. After substituting the expressions (5.1.9)
into the support functions, they become precisely the cross-ratios appearing in (5.1.5).
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They play an important role on the nodal sphere in disallowing unphysical poles to arise
from the moduli space integrations. We already saw this in section 4.2.2 for two-loops, when
we spoke about the ‘cross-ratio prescription’. Their effect can also be seen when considering
worldsheet factorisations, and what propagators these allow from the scattering equations.
In fact, the set of cross-ratios required can also be postulated for a given set of scattering
equations based on the principle that only physical propagators should arise.

5.1.2 Modular invariance and modular weights

In order for any string-like amplitude on a Riemann surface of non-zero genus to be valid, it
is a necessity that it is modular invariant. Modular invariance plays a key role in determining
correct expressions for string integrands, much like how Möbius invariance plays a key role
in what is an allowed CHY integrand. To be slightly more precise, whilst the latter dictates
that any valid integrand on the Riemann sphere must have the correct SL(2,C) weight,
the former dictates that any valid expression on higher-genus Riemann surfaces must have
the correct modular weight. In this section we will discuss modular weights for the various
objects appearing on the higher-genus surface, which will strongly constrain what can and
cannot be uplifted to the higher-genus surface from the Riemann sphere.

At genus g > 0, a Riemann surface has a discrete set of symmetries, determined by
the group Sp(2g,Z), the modular group. On the torus (g = 1) this is the group Sp(2,Z),
generated by translations and inversions. More generally, the group Sp(2g,Z) consists of
the set of matrices which preserve the symplectic form,(

a b
c d

)(
0 1

−1 0

)(
a b
c d

)T

=

(
0 1

−1 0

)
, M =

(
a b
c d

)
∈ Sp(2g,Z) (5.1.15)

where a, b, c, d are themselves g × g matrices, and 1 is the g × g unit matrix. They act on
the homology basis of cycles AI , BI as(

B′
I

A′
I

)
=

(
a b
c d

)(
BI

AI

)
, (5.1.16)

from which one can derive that the Abelian differentials of the first kind transform as

ω′ = (cΩ+ d)−1 ω (5.1.17)

where Ω is the period matrix. This follows by assuming they transform linearly under
Sp(2g,Z) and that

∮
AI
ωJ = δIJ is preserved. Since they are used to define the period

matrix, one can subsequently show that the period matrix must transform as

Ω′ = (aΩ+ b)(cΩ+ d)−1 (5.1.18)

from
∮
BI
ωJ = ΩIJ . Now in the ambitwistor string the field Pµ descends straightforwardly

to the nodal sphere, so it must be invariant under modular transformations. Since on the
genus-g surface it contains zero-modes of the form ℓIµ ωI , then these must also be modular

invariant. Consequently, the loop-momentum ℓIµ must transform to compensate for the
transformation in (5.1.17),

ℓ′µ = (cΩ+ d) ℓµ . (5.1.19)
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With the transformation properties (5.1.18) and (5.1.19) we can see how the ambitwistor
string measure transforms under modular transformations,∏

I≤J

dΩIJ → det(cΩ+ d)−(g+1)
∏
I≤J

dΩIJ , (5.1.20)

dℓ =
∏
I

d10ℓI → det(cΩ+ d)10
∏
I

d10ℓI . (5.1.21)

From this we say that they have modular weight −(g + 1) and 10 respectively. As for
the scattering equations, those related to the external punctures come from the residue of
P 2, which is modular invariant from the considerations above (5.1.19); therefore, they have
modular weight 0. The scattering equations enforced by the factors δ̄(uIJ) however must
carry non-zero modular weight because if P 2 is modular invariant then ũIJ must have the
correct weight to compensate the weight of ωI ωJ . Therefore u

IJ must have modular weight
2, which means that δ̄(uIJ) has weight −2, and therefore∏

I≤J

δ̄(uIJ) → det(cΩ+ d)−(g+1)
∏
I≤J

δ̄(uIJ) . (5.1.22)

To sum up what we have so far, the amplitude (5.1.2) looks like

∫ ∏
I

d10ℓI︸ ︷︷ ︸
+10

∫
Mg,4

∏
I≤J

dΩIJ︸ ︷︷ ︸
−(g+1)

(
Y(g)
A

)2
︸ ︷︷ ︸

+2κ

4∏
i=1

δ̄(Ei)︸ ︷︷ ︸
+0

∏
I≤J

δ̄(uIJ)︸ ︷︷ ︸
−(g+1)

, (5.1.23)

where the numbers in blue above display the corresponding modular weights, and we have

denoted the modular weight of the unknown object Y(g)
A

as κ. For the integrand to be
modular invariant (weight 0), we therefore require

κ = g − 4 , (5.1.24)

in other words Y(g)
A

must transform as

Y(g)
A

→ det(cΩ+ d)g−4 Y(g)
A

(5.1.25)

under Sp(2g,Z). Though we have considered (Y(g)
A

)2 to form the integrand at four points,
we have made no mention of this in the current argument, and therefore it is valid for any
any expression which can be written this way.

Since the integrands on the nodal sphere must in principle be upgradable to the higher-
genus surface, having the correct modular weight plays a key role in determining what these
integrands can be composed of. This is coupled with the restrictions on the nodal sphere,
in the sense that the integrand (a) must have the correct SL(2,C) weights in all the marked
points, and it must also (b) have the correct modular weight in order to be upgraded to the

higher-genus surface. These place strong restrictions on what the objects Y(g)
A

= Y(g)
S

must
be, and in the next section we will discuss a strategy to determine them.
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5.2 The stratagem

Given that the ambitwistor string integrand gives the field theory amplitudes of supergravity,
we can use the latter to try and deduce the former. Provided this is true, and that we can
find a natural way to write this on the genus-g surface, there is a crucial feature that will
allow us to relate it to the superstring. We will discuss this detail momentarily, but first let
us present the general strategy. The procedure goes as follows:

(1) Take a supergravity loop-integrand, written in a BCJ double copy representation,

(2) Translate it into a formula for the ambitwistor string on the nodal sphere in the form
of a moduli space integral; i.e. obtain Y(g),

(3) Uplift the formula to the genus-g surface to be one conjecturally valid for the super-

string; i.e. obtain Y(g)
A

→ Y(g)
S

.

Step (1) of course relies on the existence of such a representation of the loop-integrand, which
is currently known up to five-loops [165]. Whilst initially inspired by the string theory story
at tree-level, continuous work is going on to understand more deeply the connection at loop
level [149,200–205]. Step (2) utilises the connection with the scattering equation formalism,
where the supergravity field theory integrands are obtainable from the ambitwistor string.
In this respect, results from the latter have been obtained up to two-loops [51, 105, 180].
This relies on the ability to express the integrands in a basis which is reminiscent of the
BCJ representation after loop integration, i.e.

(2πi)4J (g)Y(g) =
∑

ρ∈S2+2g

N (g)(1+, ρ, 1−)

(1+ ρ 1−)
(5.2.1)

where as usual (1+ ρ 1−) is defined to be the Parke-Taylor factor with the relevant ordering6,
as in 3.7.6. This decomposition has been central to this thesis, and here there is no exception.
Once this is done, step (2) is achieved. Step (3) plays on the similarities of the chiral
integrands of type II supergravity between the ambitwistor string and the RNS superstring.
It relies crucially on two features.

The first, as described in the last section, is that the LHS of (5.2.1) is written in terms
of objects that make sense and have the correct modular weight on the higher-genus surface.
This is necessary for Y(g) to be well-defined therein, and thus allows a sensible transition

between Y(g) and Y(g)
A

.

The second is that the expansion (5.2.1) does not rely on the scattering equations. In the
superstring, there is no notion of the scattering equations, so relating the RHS of (5.2.1)

to Y(g)
S

may seem somewhat illegitimate if in principle it requires the scattering equations
to do so. We have seen that in some cases expansions similar to (5.2.1) are only valid on
the support of the scattering equations, however recall from section 4.3.2 that this isn’t
always the case. Namely, for four-points up to two-loops it is known that such an expansion
turns out to follow algebraically for worldsheet models of maximally supersymmetric field

theories. This property allows the Y(g)
A

obtained from Y(g) to be sensibly related to Y(g)
S

.

6We remind the reader that whilst 1+ and 1− has been chosen to lie at the endpoints, the sum is
independent of this choice.
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Figure 5.1: An example of a two-loop diagram whose numerator corresponds to a master
numerator.

5.2.1 Two-loop example

Let us demonstrate the strategy at two-loops. For context, following the discussion of 5.1.1,
the measure for the intrinsic moduli consists of the three independent components of the
period matrix. These are related to the parameters q11, q22 and q12 through the relation
(5.1.7), and the nodal sphere limit is associated with q11, q22 → 0. In this limit the remaining
parameter becomes a cross-ratio in the nodal points through (5.1.9),

q12 =
σ1+2+σ1−2−

σ1+2−σ1−2+
. (5.2.2)

From this one can deduce the Jacobian factors coming from the change of variables and
from the scattering equations. The cross-ratio follows from the argument given in section
5.1.1 and well-detailed in [51]. These quantities are

J (2) =
dσ1+ dσ1− dσ2+ dσ2−

σ1+2+σ1+2−σ1−2+σ1−2−
, c(2) =

1

1− q12
=
σ1+2−σ1−2+

σ1+1−σ2+2−
. (5.2.3)

Again, for genus-two the Jacobian coming from the measure and the scattering equations
turn out to be the same. We have already encountered the BCJ numerators for supergravity
at two-loops in section 4.3.2; here we write them as

N (2)(1+, ρ1, 2
±, ρ2, 2

∓, ρ3, 1
−) =

{
sij ρ2 = {i, j}
0 otherwise .

(5.2.4)

The difference between the above and (4.3.20) is related to the factor R4 being pulled out
of the expression in (5.1.5). These numerators as usual are related to half-ladder diagrams
as in figure 5.1, and as such are considered BCJ master numerators associated with BCJ
master diagrams. All other numerators are obtained from these by appropriate applications
of the Jacobi identity. The identification of these numerators completes step (1).

Using the numerators (5.2.4) and the Jacobian (5.2.3), the expansion (5.2.1) follows from
taking Y(2) to be

Y(2) =
1

3

(
(s14 − s13)∆

(2)
12 ∆

(2)
34 + cyc(234)

)
(5.2.5)

where the objects ∆
(2)
ij are defined to be

∆
(2)
ij = ω1+1−(σi)ω2+2−(σj)− ω1+1−(σj)ω2+2−(σi) . (5.2.6)
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This completes step (2). As mentioned in section 4.3.2, these have a natural extension to a
higher-genus expression, given in general by

∆
(g)
i1 ··· ig = ϵI1 ··· Ig ωI1(σi1) · · ·ωIg(σig) . (5.2.7)

Recall that the Abelian differentials of the first kind ωI(σ) in the degeneration limit becomes
ωI+I−(σ) through Fay’s degeneration formula [199]; this is how one gets to (5.2.6) from
(5.2.7).

Since (5.2.5) is expressed in terms of objects that uplift naturally to genus-two (that

is, ∆
(2)
ij ), we need only check that it has the right modular properties to be valid in an

expression for the integrand therein. From (5.1.17), under modular transformations the
objects (5.2.7) become

∆
(g)
i1 ··· ig → ϵI1 ··· Ig (cΩ+ d)−1

I1J1
· · · (cΩ+ d)−1

IgJg
ωJ1(σi1) · · ·ωJg(σig)

= det(cΩ+ d)−1 ϵJ1 ··· Jg ωJ1(σi1) · · ·ωJg(σig)

= det(cΩ+ d)−1 ∆
(g)
i1 ··· ig , (5.2.8)

i.e. they have modular weight −1. Then (5.2.5) must have modular weight −2, which
is consistent with (5.1.25). Therefore, (5.2.5) has the correct modular properties to be
upgraded to the genus-two surface, and this completes step (3).

Put into perspective, Y(2)
A

is obtained as (5.2.5) using the definition (5.2.7) for g = 2. We
remark that the expansion of (5.2.5) into (5.2.1) does not rely on the scattering equations,
and is true for any set of locations for the marked points, i.e. it is an algebraic equality. One

thus concludes that Y(2)
A

is a valid candidate for the superstring integrand Y(2)
S

at genus-
two. This turns out to be precisely correct, and matches the results of [179] for four massless
states in the RNS formalism. Therefore, the strategy presented in the last section proves to
be successful at genus-two.

Let us make one comment regarding this demonstration. The expression for Y(2) on the
nodal sphere was derived explicitly in [51] by simplifying the sum over spin structures in the

amplitude for four massless states in the genus-two ambitwistor string. Y(2)
A

consequently
matches the previously obtained result on the genus-two surface [180]. However, given
the numerators (5.2.4) within the expansion (5.2.1), the expression (5.2.5) could have been
deduced a priori by considering various ansatzes based on having the correct SL(2,C) and
modular weights, as well as permutation symmetry. In this respect, objects such as ∆12∆34

seem quite natural, since they have the correct weight in the external punctures7, as well
as the correct modular weight on the genus-two surface. Therefore, such an ansatz could
have been proposed naturally, where one could then readily solve for the correct coefficients,
thereby obtaining (5.2.5). Therefore, the genus-two superstring expression for four massless
states could have been proposed from field theory alone using this strategy.

There are then two logical questions one might ask: how precisely one obtains the
numerators in (5.2.1), and can this be applied to three-loops. We will answer both of these
questions in the upcoming sections.

7Recall that the SL(2,C) weights for the nodal points are supplied by the Jacobian factors.
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5.3 Three-loop application

To date, four-point superstring results have only been obtained up to two-loops; in the RNS
formalism this was achieved in a series of works [179,188–192] by D’Hoker and Phong, with
more complete results found by Berkovits [206] using the pure-spinor formalism. At genus
three, some results have been obtained using the pure-spinor string in [197], and also studied
by the authors of [207]. However there has not been a proposal for the three-loop amplitude
for four massless states directly from the superstring. In fact, many results from field theory
have been obtained directly from the superstring, such as the first one-loop amplitude in
super Yang-Mills theory [208]. This work is an attempt to return the favour by giving such
a proposal for the result potentially obtainable from the superstring at genus-three, based
on the knowledge of field theory at three-loops.

Here we will show how to write the BCJ representation of the loop-integrand in the form
(5.2.1), and use the strategy presented in section 5.2 to give a proposal for the three-loop
superstring integrand based on modular invariance. The proposal will be consistent with a
few results previously conjectured for the genus-three superstring.

5.3.1 Determining the KK expansion

In the last section we alluded to the idea that the genus-two superstring expression could have
been proposed solely based on the results of field theory at two-loops. There is one question
that might seem unanswered in this respect, and that is how precisely one obtains the
expansion (5.2.1) from the field theory expression for the loop-integrand. For completeness,
we will present in this section how this is exactly done, by constructing the expansion at
three-loops. This procedure is required in going from step (1) to step (2) in our strategy.

At three-loops, step (1) requires a BCJ representation of the supergravity integrand.
Such a representation is given in [12] for four-points8. There it gives the set of trivalent
diagrams required for the three-loop integrand (figure 2 of that reference) with their corre-
sponding BCJ numerators (table 1 of that reference). In figure 5.2 we have recreated the
required set of trivalent diagrams for convenience.

The numerators in the expansion (5.2.1) correspond to the numerators of half-ladder
diagrams, as seen in figure 5.1 for two-loops. For any assigned locations of the loop momenta,
each of the diagrams in figure 5.2 can be ‘cut’ at these locations to produce a tree-like
trivalent diagram with 4 + 6 legs (two for each loop). Our numerators are then constructed
as follows:

(i) Take the set of relevant trivalent loop diagrams in the BCJ representation;

(ii) Consider all possible placements of the loop momenta and ‘cut’ the diagrams at these
places;

(iii) Collect the diagrams, with the associated placements of the loop momenta, which
when ‘cut’ at these places produce a half ladder diagram;

(iv) Read off the BCJ numerator for those diagrams with their relevant loop assignments;
this will be the numerator for the ordering prescribed by the ordering of the corre-
sponding half-ladder.

8These results are for N = 8 supergravity, but we will assume it oxidates naturally to ten-dimensions,
and that the former results from dimensional reduction.
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Figure 5.2: The three-loop BCJ master diagrams presented in [12].

Whilst this may seem like a laborious process, there are many shortcuts one can take in
deriving all the relevant numerators. For example, not all trivalent loop diagrams can be
cut into half-ladders, for any assignment of the loop momenta, which can be seen relatively
quickly. In figure 5.2 it turns out that of the 12 diagrams only 5 can actually be cut into
half-ladders, which are graphs (a), (c), (f), (g) and (h). Moreover, for any such graph one
can assign an ‘outside loop’ on which the loop momentum ℓ1 must lie (if the end-points
of the half-ladders are chosen to be 1+ and 1−). Finally, for any half-ladder which is not
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Figure 5.3: An example of obtaining the numerator at three-loops for a diagram with a
specific assignment of the loop momenta. In this case, cutting the diagram at the loop-
placements brings it directly to a half-ladder diagram with end-points 1+ and 1−; therefore
the numerator for this diagram corresponds to one of our master numerators.

Figure 5.4: Another example of the same diagram, here with a different loop assignment.
In this case, cutting the diagram at the endpoints does not result in a half-ladder diagram,
so we do not include it when calculating the master numerators (instead, it is determined
by the master numerators, via Jacobi identities).

obtained by this process, the corresponding numerator is set to 0.
To give an example of how this is done explicitly, figures 5.3 and 5.4 show part of

this procedure in the case of considering diagram (f). This is formally part of stage (ii)
in constructing the numerators above. Notice that with the choice of loop placements,
the diagram in figure 5.3 is ‘cut’ into a half-ladder diagram, whereas in figure 5.4 the
resulting diagram is not directly a half-ladder. Consequently, in stage (iii) of obtaining
the numerators, the diagram in figure 5.3 is ‘collected’; its half-ladder corresponds to the
permutation (1, 2, 2+, 3, 3+, 2−, 4, 3−, 1−) and therefore its numerator is read off from [12]
to be

N (3)(1, 2, 2+, 3, 3+, 2−, 4, 3−, 1−)

=
1

3

[
−s212 + s13 (2ℓ1 · (k2 + k3))− s14 (2ℓ1 · (k2 + k4)) + s12 (2ℓ1 · (−k3 + k4) + s14)

]
.

(5.3.1)
It is in this way that the numerators of the expansion (5.2.1) are calculated. Of course,
this can also be applied to loop integrands at any order, particularly two-loops. Following
the discussion at the end of section 5.2.1, the two-loop numerators N (2) could have been

calculated precisely this way, concluding that the two-loop superstring result Y(2)
S

could have
been solely obtained from field theory using the strategy presented in section 5.2.

In the three-loop case, this is how we obtain the numerators for all permutations in the
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Figure 5.5: The expected degeneration of the genus-three surface to the tri-nodal sphere.

expansion (5.2.1). From the discussion above, most of the numerators (out of a possible
(4 + 4)! = 40, 320) are equal to zero, in line with the ‘no triangle’ conjecture of maximally
supersymmetric Yang-Mills and gravity. To be more precise, there are 6,528 non-zero numer-
ators, but these all follow from only 34 non-zero numerators up to appropriate relabellings of
the external and loop momenta9. With this procedure, the expansion (5.2.1) at three-loops
has been attained, and we can proceed to step (2) of our strategy.

5.3.2 Aspects of the genus-three ambitwistor string and the hyperelliptic
locus

With the three-loop numerators obtained via the method presented in the last section, we
can continue with our strategy at three-loops. As at two-loops, let us point out some details
on what to expect from the genus-three ambitwistor string. The purpose of this is to obtain
the Jacobian in J (3), which has a crucial new feature in comparison to two-loops. Firstly,
note that for g = 3 there are six independent components of the period matrix to integrate
over as part of the moduli space integration. Three of these are expected to be used, via the
scattering equations, in the global residue theorem to degenerate the genus-three surface
onto a ‘tri-nodal sphere’; see figure 5.5. The remaining three, in the degeneration limit,
provide the measure for the nodal points via (5.1.10). Specifically in the degeneration limit
these variables become

q12 =
σ1+2+σ1−2−

σ1+2−σ1−2+
, q23 =

σ2+3+σ2−3−

σ2+3−σ2−3+
, q13 =

σ1+3+σ1−3−

σ1+3−σ1−3+
, (5.3.2)

so that one obtains the Jacobian through the change of variables in the measure,

dq12 dq23 dq13
q12 q23 q13

=
J (3)

vol SL(2,C)

∏
I±

dσI± , (5.3.3)

with I = 1, 2, 3. This change of variables also results of course in a Jacobian coming from
the scattering equations,

δ̄(ũ12)δ̄(ũ23)δ̄(ũ13) = J (3)
∏
I±

δ̄(EI±) . (5.3.4)

9Specifically, there is a factor 4! from the permutations of the external particles, and a factor of 2× 2× 2
from relabellings 2+ ↔ 2−, 3+ ↔ 3− and 2± ↔ 3±, giving 34×4!×8 = 6, 528. At the level of the numerators,
other relabellings (such as 2+ ↔ 3−) are not possible, since they would correspond to numerators of diagrams
which do not appear in the loop integrand.
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As mentioned in section 5.1.1 these two Jacobians turn out to be the same, and have the
form

J (3) = Jhyp

∏
I σI+I−∏

I<J σI+J+σI+J−σI−J+σI−J−
(5.3.5)

where
Jhyp = σ1+2−σ2+3−σ3+1− − σ1+3−σ3+2−σ2+1− , (5.3.6)

the subscript referring to hyperelliptic, which we shall soon elaborate on. For now let us
comment on one thing that we skipped in the above analysis. The process of obtaining the
measure (5.3.3) will in principle require the inclusion of cross-ratios into the integrand, much
like at two-loops. There is also the question of what the scattering equations resulting from
(5.3.4) will precisely be. Since we are not working directly from the genus-three ambitwistor
string, we cannot derive these cross-ratios nor the scattering equations from first principles.
However, there is a way to infer what they can be by choosing which kinematic poles to
manifest from the three-loop vacuum diagrams. We will not go into details here, where we
expect these to be presented in future work, but we will mention that the set of cross-ratios
given by

c(3) =
1

1− q12

1

1− q23

1

1− q13

q23
q23 − 1

=
σ1+2−σ1−2+

σ1+1−σ2+2−

σ2+3−σ2−3+

σ2+2−σ3+3−

σ1+3−σ1−3+

σ1+1−σ3+3−

σ2+3+σ2−3−

σ2+2−σ3+3−
,

(5.3.7)

is a consistent choice for the scattering equations derivable from the residues of the mero-
morphic quadratic differential

P3 = P 2(σ)−ℓI2ω2
I (σ)+(ℓ21+ℓ

2
2)ω1(σ)ω2(σ)+(ℓ21+ℓ

2
3)ω1(σ)ω3(σ)−ℓ21 ω2(σ)ω3(σ) (5.3.8)

at the marked points. These are not totally important in our goal of obtaining (5.2.1)
since (a) the cross-ratios do not appear, and (b) it should be independent of the scattering
equations.

In this respect we have obtained everything we need to try and construct Y(3) in (5.2.1),
that is the numerators N (3) and the Jacobian J (3). However there seems to be a peculiarity
with the latter, namely what happens when Jhyp = 0. From (5.3.6) this occurs when the
nodal points are in special configurations. We will refer to being in this configuration as
being in the hyperelliptic sector. The origin of this terminology stems from the following.
All Riemann surfaces of genus g ≤ 2 are hyperelliptic10, but for g = 3 only a codimension-1C
subset of surfaces are hyperelliptic. On the genus-three surface there exists a modular form
Ψ9 of weight 9, defined in terms of even Jacobi theta constants11 as

Ψ9 =

√
−
∏
δ

θ[δ](0) (5.3.9)

where the product is over the 2g−1(2g + 1) = 36 even spin structures for g = 3. In the
degeneration limit (qII → 0) it has the leading behaviour

Ψ9 →
(∏

I

q2II

)
ψ9 + · · · , ψ9 = 214Jhyp

(
∏

I σI+I−)
3∏

I<J σI+J+σI+J−σI−J+σI−J−
. (5.3.10)

10Though a genus-one surface is called elliptic, as algebraic curves they satisfy the definition of being
hyperelliptic.

11The modular weight follows from
∏

δ θ[δ](0) having modular weight 18.

130



5.3. THREE-LOOP APPLICATION

The hyperelliptic surfaces at genus-three are characterised by the vanishing of the modular
form Ψ9 [209], and therefore the condition Jhyp = 0 identifies the hyperelliptic sector. The set
of such surfaces in the context of points in the moduli space is referred to as the hyperelliptic
locus.

For our purposes this is important for one reason. A priori there is no reason for the
four-point integrand to vanish in the hyperelliptic sector, though it may naively seem so
from (5.2.1). Therefore, any ansatz for Y(3) must take this into account, leading to further
restrictions in its construction. With the details presented in this section, we can begin this
construction.

5.3.3 A proposal for the three-loop four-point superstring amplitude

The subtleties described in the last section have important implications in trying to construct
the four-point string integrand at three-loops. We will discuss these when they arise, but
for now let us proceed with the aforementioned construction.

As mentioned in section 5.3.1, the four-point numerators appearing at three-loops are
linear in the loop momentum, so we can decompose the corresponding superstring integrand
into

2πiY(3)
S

= Y0 + 2πi ℓIµ Y
µ
I (5.3.11)

to capture both parts separately; the factors of 2πi are placed for convenience in future
expressions. The part linear in the loop momentum, corresponding to Yµ

I , turns out to be

the simplest. Natural objects to consider in this case are for example ℓIωI(σ) and ∆
(3)
ijk, since

the former is a modular invariant and the latter has modular weight −1, and so together

they provide the correct modular weight for Y(3)
S

in accordance with (5.1.25). These objects
form the basis for the construction of Yµ

I . An ansatz with these ingredients would take the
form

αµ
1 ωI(z1)∆234 + cyc(1234) (5.3.12)

where as usual we denote coordinates on the higher-genus surface by z, and the coefficients
αµ
i are determined by permutation invariance to be e.g.

αµ
1 = kµ2 (k3 − k4) · k1 + cyc(234) . (5.3.13)

This ansatz can be compared to the RHS of (5.2.1) which is linear in the loop momentum,
and it turns out to match up to an overall coefficient,

Yµ
I =

2

3

(
αµ
1 ωI(z1)∆

(3)
234 + cyc(1234)

)
. (5.3.14)

This contribution when multiplied by J (3) vanishes on the hyperelliptic sector, which will
be important momentarily. The part independent of the loop momenta, Y0, turns out to be
more intricate. For simplicity we will extract the kinematic dependence via

Y0 = s13s14Y12,34 + cyc(234) (5.3.15)

such that J (3)Y12,34 depends only on the marked points in such a way that it is symmetric
under exchanging σ1 ↔ σ2, σ3 ↔ σ4 and {σ1, σ2} ↔ {σ3, σ4} in the degeneration limit,
consistent with its kinematic coefficient. Now, one can check from the expansion (5.2.1)
that J (3)Y12,34 does not vanish on the hyperelliptic sector, however it is possible to extract
the part of it which does; we will denote this part of Y12,34 as D12,34. This part has the
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correct structure to be expressed in terms of the ∆
(3)
ijk, which provides the correct modular

weight. Its coefficients must then be modular invariant and have the correct SL(2,C) weights
on the nodal sphere. These turn out to be Abelian differentials of the third kind,

D12,34 =
1

3

(
ω3,4(z1)∆

(3)
234 + ω3,4(z2)∆

(3)
134 + ω1,2(z3)∆

(3)
412 + ω1,2(z4)∆

(3)
312

)
, (5.3.16)

which are defined in appendix A. The expressions (5.3.14) and (5.3.16) both vanish in the
hyperelliptic sector, and in fact the combination is homology invariant12, which provides
a consistency check on the expressions and their relative numerical coefficients. In fact,
(5.3.16) could have been deduced directly from (5.3.14) based on homology invariance.

The remaining part of J (3)Y12,34 remains strictly finite on the hyperelliptic sector. That
means in the degeneration limit it must be proportional an object which cancels Jhyp. It is
natural to suppose that this object is 1/Ψ9 from (5.3.10), which provides this cancellation
directly. Since 1/Ψ9 has modular weight −9, we require that it is supplemented by an object
which has modular weight 8 in order for the integrand to have the correct modular weight
−1. Modular forms at genus-three have been well-studied [211–213] and there are in general
a multitude of ways of obtaining an expression with modular weight 8.

Such a modular form has been proposed for the ‘chiral measure’ for the genus-three
superstring in [214]. Their proposal is given by

dµ(3)[δ] = c′3
Ξ8[δ]

Ψ9

∏
I≤J

dΩIJ (5.3.17)

for c′3 a numerical constant and δ a spin structure (note that the modular form Ψ9 implicitly
also depends on δ). This follows a similar proposal in [213], and its uniqueness is shown
in [215]. Our proposal above for the part of the four-point integrand non-vanishing on the
hyperelliptic locus being proportional to 1/Ψ9 is supported by the conjecture (5.3.17). The
object Ξ8[δ] is the one of interest to us. The definition of this object is not straightforward,
and we point the reader to [214] where it was defined, and expect details on this object to be
explained in future work. Utilising this modular form, the remaining parts of Y12,34, aside
from the overarching 1/Ψ9, can be written in terms of the following combinations13 of Ξ8[δ]
and Szegö kernels as

S(a)
12,34 =

∑
δ

Ξ8[δ]
(
Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1)

+Sδ(z1, z3)Sδ(z3, z4)Sδ(z4, z2)Sδ(z2, z1)
)
,

(5.3.18)

S(b)
12,34 =

∑
δ

Ξ8[δ]Sδ(z1, z2)
2Sδ(s3, s4)

2 , (5.3.19)

where the sums run over the 36 even spin structures at genus-three. The full result of Y12,34
can therefore be expressed as

Y12,34 =
1

3
D12,34 −

1

15Ψ9

(
S(a)
12,34 −

1

8
S(b)
12,34

)
. (5.3.20)

12For discussions on homology invariance, see e.g. [207,210].
13Four-point expressions of the form Sδ(z1, z3)

2Sδ(z2, z4)
2 + Sδ(z1, z4)

2Sδ(z2, z3)
2 are also consistent with

the symmetries of Y12,34, however this sum produces twice the sum in S(b) in the degeneration limit; we
expect that this holds more generally.
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In total, it is conjectured that the four-point type II superstring integrand at genus-three
takes the form (5.3.11), with the objects therein determined by equations (5.3.14), (5.3.15)

and (5.3.20). Unfortunately we could not find simplified expressions for S(a)
12,34 and S(b)

12,34 in
(5.3.18) and (5.3.19), so it has been left explicitly in terms of a sum over even spin structures.

As a consistency check that we have obtained the correct expression for Ξ8[δ] and the
Szegö kernels, we have verified the following identities∑

δ

Ξ8[δ] = 0 (5.3.21)

∑
δ

Ξ8[δ]Sδ(z1, z2)
2 = 0 (5.3.22)

∑
δ

Ξ8[δ]Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z1) = 15(2πi)3Ψ9∆
(3)
123 (5.3.23)

to order q2II . Equation (5.3.21) gives the result of the zero-point function, which provides the
vanishing of the cosmological constant. This is a vital requisite since it is well-understood
that the superstring should provide a vanishing cosmological constant, due to the number
of bosonic and fermionic contributions cancelling each other [214]. Equations (5.3.22) and
(5.3.23) give the two- and three-point functions respectively, which at lower genus have been
shown to vanish pointwise on moduli space [179]. At genus-three it has already been dis-
cussed how the two-point function (5.3.22) vanishes [216], however the three-point function
has been shown only to vanish on the hyperelliptic locus for genus g ≥ 3 [217], indicating
that there are other pieces required in the calculation. Indeed, the former point is also
demonstrated here in (5.3.23) with the presence of Ψ9, and here we have managed to obtain
the previously unknown coefficient 15(2πi)3 for equation (8) of [217].

The proposal we have given is consistent with some of the previous results of the genus-
three superstring; in particular it works in conjunction with the proposal for the chiral
measure of [214]. Whilst the nature of chiral splitting of the amplitude at genus-three still
requires a detailed analysis, the conjecture presented in this section provides an indication
at four-points.

5.4 Discussion

The discovery of worldsheet formulae at loop-level owes much to the study of the superstring
at higher genus. In this chapter we have attempted to pay back the favour by offering a strat-
egy which allow proposals for the loop-level amplitudes of massless states in the superstring
to be constructed from the corresponding results in field theory. This is possible because of
the connection that the ambitwistor string, with the scattering equations, provides between
these two.

We first discussed the relation between expressions for four-point scattering in the su-
perstring and the ambitwistor string at genus g = 2, 3, as well as the relation between the
resulting worldsheet formulae and the corresponding field theory formulae. Here we gave
our initial assumption for the genus-three expression of the superstring. We then discussed
the degeneration of the worldsheet in the ambitwistor string via the scattering equations at
genus g = 2, 3, where the dimension of the moduli space and the number of independent
components of the period matrix coincide. The main proposal of this chapter follows from
a strategy we laid out in section 5.2. In particular, it details that by translating a field
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theory result possessing a BCJ representation into a worldsheet formula, this formula can in
principle be uplifted to the higher-genus surface in the ambitwistor string, allowing one to
infer the chiral integrand that appears in the superstring. This strategy was demonstrated
at two-loops, exactly reproducing the known genus-two results [51, 179, 180]. This requires
knowledge of how to determine the KK expansion in the worldsheet formula, so we detail
how this can be done in section 5.3.1. Finally, we used the strategy to give a proposal for
the four-point massless amplitude of the superstring at genus three.

We note that, in principle, the result obtained at genus-three could be imported into
the heterotic string, as at genus-two [179, 207]. A natural extension would see the use
of the strategy presented here for higher-point results. We believe the ongoing work of
[207,218,219] studying the five-point genus-two superstring amplitude, as well as [162] which
provide the corresponding BCJ numerators in N = 8 supergravity, would be quite useful in
providing a test of the stratagem. Despite the issues presented by the Schottky problem,
much work has been done on the superstring at higher-genus, particularly regarding the
chiral measure [220–225], which played a fundamental role for us at genus-three14. The
connection established between superstring and field theory results, via the ambitwistor
string, could mean that a study of the scattering equations at higher-loops could provide
insights for obtaining results on the higher-genus surface, and vice versa. In either case, we
expect the strategy presented here to be useful in this endeavour, given that BCJ numerators
are known up to five loops15 [165].

14Interestingly, the ansatz for the chiral measures for genus-four were shown to have non-vanishing two-
point functions [226], and thus require corrections above this genus. The work of [227] has proposed a
modified ansatz at genus-five which gives the correct vanishing two-point function at genus-four, but also
claims that there cannot be an ansatz at genus-six which has the desired properties of a superstring measure.

15The five-loop case would be particularly challenging: on the field theory side a generalisation of the BCJ
representation is required [165], and on the string theory side as mentioned before there is known to be a
problem with the reduction of the supermoduli space [195].
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Concluding remarks

In this thesis we have explored loop-level extensions of worldsheet models based on the
scattering equation formalism. These extensions were made possible by the ambitwistor
string whose origins trace back from CHY to the twistor string, as well as from the BCJ
colour-kinematics duality to the KLT relations in string theory.

We have presented new and different formalisms at one, two and three loops, whose
motivation and execution hinged on the scattering equations. We will briefly give a summary
of the main results therein. At one-loop we have formulated a new form of BCFW integrand
recursion in momentum space, as well as new one-loop scattering equations which can be
used in worldsheet formulae to give one-loop integrands with quadratic propagators. Neither
of these are solely restricted to planar theories, or necessarily to four-dimensions. At two-
loops we have constructed n-point two-loop integrands for non-supersymmetric Yang-Mills
and gravity, motivated by the forward-limit interpretation of loop-integrands arising from
these worldsheet models. These results are calculated algorithmically and are valid in any
number of dimensions. At three-loops we have given a proposal for the genus-three massless
four-point superstring amplitude, a result which has not been calculated before, based on a
strategy to obtain superstring loop amplitudes from results in quantum field theory.

Each of the relevant chapters have been concluded with a discussion summarising the
results and an outlook regarding several topics of research that can possibly further these
formalisms. Many of the potential areas of research in these chapters can be coupled with
the work of other chapters. An extension of the ℓ2-deformed scattering equations would
greatly enhance the results we have presented at two-loops. Of course, such a procedure
would be much more delicate at two-loops, and a better understanding is first required at
one-loop. The strategy presented in chapter 5 could be used to obtain higher-point results
in the two-loop superstring. This would not only be beneficial for the superstring, but also
in clarifying some of the results we obtained in chapter 4 for the supersymmetric theories,
such as how to simplify the Pfaffian structures and how the forward-limit can be more
easily realised. Though a string description seems far away, it would also be interesting to
perform the treatment of chapter 4 at three-loops, in the sense of a triple forward limit, and
compare with field theory results. This might help identify any further potential subtleties
for three-loop worldsheet formulae, on top of those we have already discussed in chapter 5.

We would like to take a moment to describe some of the other areas of research in
ambitwistor string theory that have occurred. Whilst we have often utilised a representation
valid in any number of dimensions, there exist ambitwistor string formulations specifically
in four [89, 228], five [229], six [114, 230], ten and eleven [115] dimensions. Both these and
the pure spinor formulations of the ambitwistor string [45, 180, 186] allow calculations with
supersymmetry manifest. Recent work has also attempted to understand celestial amplitudes
using corresponding worldsheet formulae [231, 232]. Moreover, much work has been done
in understanding the ambitwistor in curved and non-trivial backgrounds [44–49], where for
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example it is known that the equations of motion for supergravity arise from demanding
that the corresponding worldsheet theory is free of anomalies [44].

Finally, we would like to conclude with some comments and open questions regarding
the larger picture. Firstly, let us mention that the precise connection between the scattering
equations and string theory is still yet to be understood. Indeed, the scattering equations
can be seen as arising from string theory in both the limit α′ → 0 [43] and α′ → ∞ [56],
indicating that there is something more, perhaps about the latter, that is not currently
understood. As for open questions regarding the grander scheme of things, we offer here
simply a few. How can the scattering equations help us better understand how BCJ works
at loop-level, and can worldsheet models help us understand the colour-kinematics more
geometrically? How can these worldsheet models help us understand string theory, QFT,
as well as the connection between them better? Finally, why do these worldsheet models
work, and (to reiterate a question we introduced at the beginning of this thesis) what is the
S-matrix?

We firmly believe that the future of theoretical physics holds many surprises that will
unlock the answers to these questions, as well as many others regarding the understanding
of nature.
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Appendix A

Objects defined on higher-genus
Riemann surfaces

Here we define certain objects used throughout that are commonplace in calculations on
higher-genus Riemann surfaces. Further details of these definitions, as well as other objects,
can be found in e.g. [51, 207]. In the discussion here, we will be referring to surfaces with
non-zero genus, g > 0.

A genus-g Riemann surface Σ contains 2g non-contractible cycles up to homology. One
can define a homology basis of cycles by AI , BI (I = 1, · · · , g) such that its intersection
form is canonical, #(AI , BI) = −#(BI , AI) = δIJ . Modular transformations act on this
basis as in (5.1.16). The genus-g surface admits g holomorphic 1-forms by the Riemann-
Roch theorem, denoted as ωI , which are called Abelian differentials of the first kind. Chosen
to have normalised AI periods, their integration around BI cycles define the period matrix
ΩIJ , ∮

AI

ωJ = δIJ ,

∮
BI

ωJ = ΩIJ . (A.1)

The period matrix ΩIJ can be shown to be symmetric and have positive-definite imaginary
part by the Riemann relations.

The Abelian differentials of the first kind also define the Abel map, which is used in var-
ious functions on the higher-genus surface. The Abel map defines a map from the Riemann
surface to its Jacobian variety J(Σ), where J(Σ) ∼= Cg/(Zg + ΩZg) is the complex g-plane
modulo the Jacobian lattice defined by the period matrix. Specifically, given a point or a
divisor d1z1 + d2z2 + · · · dn on Σ, the Abel map acts as

d1z1 + d2z2 + · · · dnzn 7→
n∑

i=1

di

∫ zi

z0

ωI , (A.2)

where z0 is an arbitrary reference point on Σ. To be single-valued, this map acts modulo
AI or BI cycles, and therefore is understood as a map into the Jacobian variety described
above.

Using this we can define for example theta functions,

ϑ[κ](ζ) =
∑
n∈Zg

exp
(
iπ(n+ κ′)TΩ (n+ κ′) + 2πi(n+ κ′)T (ζ + κ′′)

)
, (A.3)

where ζ ∈ Cg is defined through the Abel map above, and κ = (κ′|κ′′) is called the theta
characteristic. Of particular interest are characteristics corresponding to spin structures,
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which label whether worldsheet spinors are periodic or anti-periodic around the AI and BI

cycles1. For spin structures κ′, κ′′ ∈ (Z/2Z)g, the parity of the theta functions

ϑ[κ](−ζ) = (−1)4κ
′·κ′′

ϑ[κ](ζ) (A.4)

distinguishes between even and odd spin structures, according to whether 4κ′ · κ′′ is even
or odd respectively. Even spin structures are often denoted as δ, and odd spin structures
are often denoted as ν. On a genus-g surface, there are a total of 22g spin structures,
consistent with the boundary conditions described above, of which 2g−1(2g +1) will be even
and 2g−1(2g − 1) will be odd2. In a superstring (and also ambitwistor string) correlation
function, the GSO projection enforces a sum over spin-structures, which is required for
modular invariance of the amplitude.

The theta functions are used to define objects that appear in superstring scattering
amplitudes. For any odd spin structure ν, the square-root of the 1-form

∑g
I=1 ∂Iϑ[ν](0)ωI

defines a (1/2)-form hν up to a sign. The prime form is then defined as

E(z, w) =
ϑ[ν](z − w)

hν(z)hν(w)
(A.5)

which is independent of the odd spin structure ν chosen. Note that the argument z − w is
understood in terms of the Abel map, so that it is really z − w 7→

∫ w
z ωI from (A.2).

From the prime form one can define the Szegö kernels. For any even spin structure δ,
the Szegö kernel is defined as

Sδ(z, w) =
ϑ[δ](z − w)

ϑ[δ](0)E(z, w)
(A.6)

which appears in the fermionic path integrals of the ambitwistor string, e.g.

⟨Ψµ(z)Ψν(w)⟩δ = ηµν Sδ(z, w) . (A.7)

The prime form can also be used to define other objects of interest. For example, the Abelian
differential of the second kind is defined as

ω(z, w) = dz dw ∂z∂wE(z, w) (A.8)

which produces a double-pole as z → w but is elsewhere holomorphic. It is symmetric under
the exchange of z and w, ω(z, w) = ω(w, z).

Finally, the Abelian differential of the third kind is defined as

ωw1,w2(z) = dz ∂z ln
E(z, w1)

E(z, w2)
, (A.9)

which produces a simple pole with residues +1 and −1 as z → w1 and z → w2 respectively.
The Abelian differentials of the first and third kind are very important in our study of the
ambitwistor string on Riemann surfaces of genus g > 0, as evidenced by their appearance
in the solution of P (4.2.3) at any genus.

1The connection between theta functions and the spin bundle on Σ is based on Riemann’s vanishing
theorem; see e.g. [233].

2There can be relations between these spin structures, e.g. in [191].
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Appendix B

Two-loop partition functions and
Szegö kernels on the Riemann
sphere

Here we detail, for completeness, the partition functions and Szegö kernels for the NS sector
present in section 4.3.1 in the degeneration limit. These follow from calculations in [51],
which rigorously studied the ambitwistor string at genus-two. The NS partition functions

entering in the kinematic integrand I(2)
susy-kin of (4.3.6) are

Z(−1,−1)
NS =

√
dx1dx2
x1 − x2

q−2
3

ω1+1−(x1)ω1+1−(x2)ω2+2−(x1)ω2+2−(x2)
, (B.1a)

Z(−1,0)
NS =

√
dx1dx2
x1 − x2

q−1
3

ω1+1−(x1)ω1+1−(x2)
Z

(−1,0)
8 , (B.1b)

Z(0,−1)
NS =

√
dx1dx2
x1 − x2

q−1
3

ω2+2−(x1)ω2+2−(x2)
Z

(0,−1)
8 , (B.1c)

Z(0,0)
NS = 10 q3

(
1 + 3q3 + q23

)
Z(−1,−1)
NS +

√
dx1dx2
x1 − x2

(
2Z

(−1,0)
3 Z

(0,−1)
3 − Z(0,0)

)
, (B.1d)

where q3 = q12 is the cross-ratio

q3 =
σ1+2+σ1−2−

σ1+2−σ1−2+
, (B.2)

and the factors of Z
(−1,0)
a , Z

(0,−1)
a and Z(0,0) are given by

Z(−1,0)
a =

a

ω2+2−(x1)ω2+2−(x2)
−
(
(x1 − σ2+)(x2 − σ2+)σ2−1+σ2−1− −

(
σ2+ ↔ σ2−

))2
σ2
2+2−σ1+2+σ1+2−σ1−2+σ1−2− dx1dx2

,

Z(0,−1)
a =

a

ω1+1−(x1)ω1+1−(x2)
−
(
(x1 − σ1+)(x2 − σ1+)σ1−2+σ1−2− −

(
σ1+ ↔ σ1−

))2
σ2
1+1−σ1+2+σ1+2−σ1−2+σ1−2− dx1dx2

,

Z(0,0) =

(∏
a=1+,2+

(
(x1 − σa)(x2 − σa)σ

2
1−2−

)2
+ perm(nodes)

)
σ2
1+1−σ

2
1+1− σ1+2+σ1+2−σ1−2+σ1−2− dx21dx

2
2

.
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Here, perm(nodes) indicates the set of permutations of the nodal points given by
(
σ1+ ↔

σ1−
)
,
(
σ2+ ↔ σ2−

)
and

(
σ1+ ↔ σ1− , σ2+ ↔ σ2−

)
. Though these depend explicitly on the

auxiliary points x1 and x2, the final formulae are independent of these, as shown in [51].
The two-loop Szegö kernels are defined as

S
(0,0)
NS (z, w) =

√
dz dw

z − w
, , (B.3a)

S
(1,0)
NS (z, w) = q3

σ21+1− (z − w)
√
dz dw

(z − σ1+)(z − σ1−)(w − σ1+)(w − σ1−)
, (B.3b)

S
(0,1)
NS (z, w) = q3

σ22+2− (z − w)
√
dz dw

(z − σ2+)(z − σ2−)(w − σ2+)(w − σ2−)
, (B.3c)

S
(1,1)
NS (z, w) = q23 S

(1,0)
NS (z, w)S

(0,1)
NS (z, w) (B.3d)

×
(
(z − σ1+)(w − σ2+)σ1−2− + (z − σ2−)(w − σ1−)σ1+2+

)2
σ1+2+σ1−2−σ1+2−σ1−2+(z − w)

√
dz dw

.
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