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Abstract

This thesis explores the world of quantum field theories through an analytic ap-

proach. It focuses on three special types of quantum field theories: supersymmetric,

conformal and topological ones. The necessary background knowledge is introduced in

chapter one, then two types of problems are studied in the next three chapters: index

relations and fusion rules.1

For index relations we study certain exactly marginal gaugings involving arbitrary

numbers of Argyres-Douglas (AD) theories and show that the resulting Schur indices

are related to those of certain Lagrangian theories of class S via simple transforma-

tions. By writing these quantities in the language of 2D topological quantum field

theory (TQFT), we easily read off the S-duality action on the flavor symmetries of

the AD quivers and also find expressions for the Schur indices of various classes of

exotic AD theories appearing in different decoupling limits. The TQFT expressions

for these latter theories are related by simple transformations to the corresponding

quantities for certain well-known isolated theories with regular punctures (e.g., the

Minahan-Nemeschansky E6 theory and various generalizations). We then reinterpret

the TQFT expressions for the indices of our AD theories in terms of the topology

of the corresponding 3D mirror quivers, and we show that our isolated AD theories

generically admit renormalization group (RG) flows to interacting superconformal field

theories (SCFTs) with thirty-two (Poincaré plus special) supercharges. Motivated by

these examples, we argue that, in a sense we make precise, the existence of RG flows

to interacting SCFTs with thirty-two supercharges is generic in a far larger class of 4D

N = 2 SCFTs arising from compactifications of the 6D (2, 0) theory on surfaces with

irregular singularities.

Then we study fusion rules in modular tensor categories. We first relate fusion

rules to the mathematical conjecture of Arad and Herzog (AH) in group theory: in

finite simple groups, the product of two conjugacy classes of length greater than one

is never a single conjugacy class. We discuss implications of this conjecture for non-

abelian anyons in 2 + 1-dimensional discrete gauge theories. Thinking in this way

suggests closely related statements about finite simple groups and their associated

discrete gauge theories. We prove these statements and give physical intuition for their

validity. Finally, we explain that the lack of certain dualities in theories with non-

abelian finite simple gauge groups provides a non-trivial check of the AH conjecture.

We also study the implications of the anyon fusion equation a × b = c on global

properties of 2 + 1D topological quantum field theories (TQFTs). Here a and b are

anyons that fuse together to give a unique anyon, c. As is well known, when at least one

of a and b is abelian, such equations describe aspects of the one-form symmetry of the

theory. When a and b are non-abelian, the most obvious way such fusions arise is when

a TQFT can be resolved into a product of TQFTs with trivial mutual braiding, and

a and b lie in separate factors. More generally, we argue that the appearance of such

fusions for non-abelian a and b can also be an indication of zero-form symmetries in a

TQFT, of what we term “quasi-zero-form symmetries” (as in the case of discrete gauge

1Chapter two, three , four are based on the papers [34],[35],[36] respectively.
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theories based on the largest Mathieu group, M24), or of the existence of non-modular

fusion subcategories. We study these ideas in a variety of TQFT settings from (twisted

and untwisted) discrete gauge theories to Chern-Simons theories based on continuous

gauge groups and related cosets. Along the way, we prove various useful theorems.
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1 Introduction

Exact solutions in physics are rare, and generic ones are always difficult. Even in the clas-

sical world, for example,the three-body problem in Newtonian mechanics can not be solved

exactly, one has to rely on approximations, perturbative expansions, numerical simulations,

and global analysis to extract information and make predictions, not to mention extremely

difficult problems such as Navier-Stokes equations in fluid mechanics.

In order to make progress, one usually studies solvable toy models first to obtain some

general feature, and then one uses such models as a starting point for more realistic treat-

ments or approximations.These solvable toy models differ from generic ones mainly because

they have certain kinds of symmetry, which give rise to integrals of motion, i.e. conserved

quantities such as energy and parity. Because of these constrains , the problems are simpli-

fied, sometimes even completely solved.

Classical celestial mechanics is the first and one of the most prominent examples of this

strategy, here one first studies the completely solvable Kepler problem, then adds corrections

and perturbations to account for more realistic situations, and finally one performs numerical

calculations to make actual predictions. As a result, in practice the motion of planets in the

solar system can be predicted in a very precise way.

In quantum field theory, the solutions are even more difficult to find; and sometimes the

problems of finding solutions themselves are not well defined. So in early applications of

quantum field theory, one was mainly concerned with perturbative calculations, or practi-

cally, diagrammatics of scattering amplitudes and Green functions. The toy models here are

effective field theories with nice symmetry properties, especially gauge theories with appro-

priate gauge groups. Sometimes the toy models are obvious, as are free-field representations

of underlying symmetry groups such as quantum electrodynamics, and sometimes clever

physical intuition is needed, for example in the BCS theory of superconductivity.

Based on such calculations, QFT is very successful. In particle physics it gives rise to the

standard model, and in condensed matter physics it describes phase transitions of various

systems.

One may tend to consider larger symmetry groups to construct more complicated models

to deal with more complicated problems, especially as a way to unify the fundamental

interactions in the standard model, or even to include gravity using higher dimensional

spacetime models. It turns out, however, that the global symmetry group of a QFT cannot

be chosen arbitrarily. Under reasonable assumptions, the Coleman-Mandula theorem states

that in a QFT with a well-defined S-matrix and massive particles the symmetry group has

to be a direct product of the Poincaré group and the internal global symmetry group, hence

no mixing. One can also have local symmetry groups, or gauge groups, the corresponding

QFTs are usually called gauge theories.These theories are of central importance in modern

physics and mathematics, and it turns out that different types of gauge groups can lead to

drastically different theories, so in order to be consistent with experiments the gauge group

is not arbitrary either.
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Especially, on the global symmetry side, the Coleman-Mandula theorem is a serving re-

striction, but like many no-go theorems, there are ways out. First there is a Zen-like way to

bypass the Coleman-Mandula theorem; that is, we simply drop our assumptions, such that

we can consider theories without an S-matrix or massive particles. After all, Green func-

tions,scattering amplitudes or mass spectrum are not the most fundamental objects in QFT,

they are defined by correlators under some assumptions, although usually they represent

the most common and important observables in a theory, it is not necessary the case. We

can have non-trivial QFTs without an S-matrix or massive particles, among other theories,

there are two important types: topological quantum field theory(TQFT) and conformal field

theory(CFT)

In TQFT, the actions and observables are of a topological type, hence the correlators are

topological invariants of the underlying manifold. Unlike generic QFT, TQFT is rigorously

defined and the exact calculation of physical quantities is possible.

In CFT, the spacetime symmetry group is enlarged to conformal groups, which leads

to new kinds of constraints and the so-called bootstrap method, which is essentially non-

perturbative in nature. In dimension two, conformal symmetry algebra becomes infinite

dimensional, hence a very powerful tool to study and even define the theory, and in many of

the important cases complete solutions are obtained.

Secondly, there is also a loophole in the original formulation of Coleman–Mandula the-

orem, where conserved charges are assumed to be scalars, by allowing spinor charges, su-

persymmetry(SUSY) is possible. With SUSY field theory, many new phenomena have been

discovered and accurate results are now possible. The results obtained by SUSY are espe-

cially relevant to understanding RG flow, so it is beneficial to study the SUSY model and

try to obtain some general lessons.

All three types of QFT have important applications both in physics and mathematics,

and they relate to each other. In this thesis, we are going to discuss some of those relations

and applications. For reference, in this chapter we will introduce some basic facts of those

theories, along with some concrete examples which are needed later, while the relevant

background knowledge in mathematics and physics is also reviewed briefly in the appendix.

1.1 Topological quantum field theory

Topological quantum field theory, or TQFT, is a special kind of quantum field theory in

which the correlators are topological invariants. It originated in the interplay between lower

dimensional topology and gauge theory in the 1980s, and has since become an increasingly

important subject both in physics and mathematics.

� TQFTs arise naturally in effective field theoretical descriptions of topologically non-

trivial physical systems, usually associated with highly degenerate ground states, e.g.

Chern-Simons theory and quantum Hall effects, in particular, some of these systems

have important practical applications, such as quantum computation and information,

as well.
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� TQFT is mathematically well defined and rich in content and also suitable for rigorous

analytic study. This offers important insights and clues for axiomatic quantum field

theory in general. When compared to a generic QFT, TQFT is easy to solve but is

non-trivial, hence it can be used as a toy model to test new ideas and techniques in

QFT.

� Topology is one of the pillars of modern mathematics, where the finding and calculation

of topological invariants is the core problem. Since TQFT provides a novel but useful

way to deal with this, it has numerous applications in mathematics.

In this section, we first give an elementary introduction to anyons through toy models of

Chern-Simons theory[132, 133, 60] , then we introduce general TQFTs with the path integral

formalism[116, 4, 45], finally we discuss Chern-Simons theory in a more general setting and

show our previous models are all special examples of it[63]. The relevant data, definitions,

notations and classification can be found in [112, 156, 139]

1.1.1 Anyons

Before formal constructions, let us discuss a simple and concrete example of topological

quantum field theory. The action for the usual electrodynamics in d = 4 is

I4 d
EM[A] =

1

2

∫
d4x

(
E2 −B2 + A · J + A0ρ

)
(1.1)

where the equation of motion is the usual Maxwell equation

∇ · E = ρ,∇×B− ∂E
∂t

= J

∇ ·B = 0,∇× E + ∂B
∂t

= 0
(1.2)

Now suppose we are interested in electrodynamics in d = 3 spacetime, where the most

general Lorentz and gauge invariant, homogeneous and isotropic action is

I3 d
EM[A] =

1

2

∫
d3x

(
E2 −B2 + A · J + A0ρ+mεµνρAµ∂vAρ

)
(1.3)

the additional new term, the so called Chern-Simons term, is

ICS =
m

2

∫
d3xεµvρAµ∂vAρ (1.4)

now the equation of motion is

∇× E +
∂B

∂t
= 0,

∇ · E +mB = ρ

∇×B − ∂E

∂t
+m

(
E2

−E1

)
= J.

(1.5)
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This set of equations has some surprising topological features differing from the usual

Maxwell-equations, which can be illustrated by the Aharonov-Bohm effect.

To show this, suppose we have a constant magnetic field B along z direction, confined

inside an impenetrable solenoid passing through the x − y plane. Let us also assume that

Ez = 0, then effectively we are dealing with d = 3 electrodynamics. If we have a charge Q

on the x− y plane traveling around the solenoid through a counter C, the wave function of

the charged particle will acquire the Aharonov-Bohm phase

ϕ =
Q

c~

∮
C

A · dr (1.6)

If we ignore the z direction completely, imagine a three dimensional cylinder spacetime

where particles traveling out their world lines, then the section of the magnetic solenoid on

the x−y plane will behave as a point particle if the solenoid is infinitely thin , and unlike usual

electrodynamics, now the elementary particle is a charge-flux composited object because if

m 6= 0 in (1.5) ,as a consequence we would have
∫
d2x∇ · E + m

∫
d2xB =

∫
d2xρ , then

associated with each charge Q, we have a magnetic flux

Φ =
Q

m
(1.7)

Then our particle is a charge-flux composite, suppose we have two such particles, topologi-

cally exchanging them twice is equivalent to a circulation plus a translation, but the latter

is irrelevant here, due to the Aharonov-Bohm effect, such a particle will effectively have a

statistical angle ϕs where

2ϕs = QΦ =
Q2

m
(1.8)

In particular, if a particle’s charge circles around its flux, we effectively have a spin

s =
Q2

4πm
(1.9)

So in general, ϕs 6= 0, π and s is not a half integer,so that such a particle is neither a boson

nor a fermion, it is instead an example of (abelian) anyon.

Suppose as illustrated in figure 1 we have r of those anyons with world lines Ci, and the

product of their Wilson loops is a physical observable.

W (L) =
r∏
i=1

exp

(
iQi

∮
Ci

A

)
(1.10)

Its vacuum expectation is a correlator

〈W (L)〉 =
〈ψ0|W (L)|ψ0〉
〈ψ0 | ψ0〉

=

∫
DAW (L)eilCS[A]∫
DAeilCS[A]

(1.11)

We can indeed calculate the path integral, and it turns out, quite surprisingly

〈W (L)〉 = exp

(
i

2m

∑
i,j

QiQjΦ (Ci, Cj)

)
(1.12)
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Figure 1: Worldlines of anyons in three dimensional spacetime[132]

with

1

4π

∮
Ci

dxµ
∮
Cj

dyvεµνρ
(x− y)ρ

|x− y|3
= Φ (Ci, Cj) ∈ Z (1.13)

is the Gauss (but not Gaussian) integral , named after Gauss, who introduced this long ago

as one of the earliest topological invariants in the history of mathematics. It calculates the

linking number Φ (Ci, Cj), which counts how many times two curves wind with each other

counting orientation. Notice that it is not obvious at all that the integral will produce an

integer, but it certainly does so, and it is satisfying to see that this simple TQFT at least

reproduced this classical result and actually explained it in a physical way.

The above toy model provides a simple example of anyons, which are more general

realizations of the principle of indistinguishable particles than bosons and fermions. As

we have mentioned, two exchanges of free identical particles are essentially the same as one

particle winding around another through a loop C. While in spatial dimension three or

above C is always null homotopic, hence exp(2ϕs) = 1, this gives two solutions ϕs = 0, π

only, corresponding to boson and fermion. In spatial dimension one, C is not defined, and

particles must pass through each other to change their positions, hence any phase factor

associated with such a process can be explained either by identical free particle symmetry or

as a result of interactions with the same particles, thus the notion of free identical particles

is in a sense ambiguous. Only in spatial dimension two, C can be a non-trivial homotopy

class, and anyon appears.

Given a set of anyons A = {a, b, · · · }, there are two basic kinds of operations we can

apply to them, namely, fusion and braiding, those are abstraction of the processes such as

the ones illustrated in figure 2

� Fusion

If we bring two anyons a, b together and identify the properties of this composite object

as a blackbox, then it behaves as a collection of anyons. To be concrete, suppose we

10



Figure 2: Two dimensional operations on anyons with corresponding worldlines in three

dimensional spacetime(assuming time flows downwards): (a) exchange of a, b (b)creation of

a particle-antiparticle pair a, ā from vacuum (c) fuse a, b into c [132]

have some quantum fields Φa,Φb represent two anyons, if we take their OPE we will

find a bunch of anyons with appropriate properties such as scaling dimensions and

conserved internal quantum numbers. This process is called fusion, and symbolically

we have

a× b =
∑
c∈A

N c
abc, N c

ab ∈ N (1.14)

where at least one N c
ab is nonzero. In principle there might be more than one c in

the RHS, if given a this happens for at least one b, we call a as non-abelian anyon,

otherwise it is an abelian anyon, i.e. it gives a unique out come c when fused with any

b. If A contains abelian anyons only,we say A is abelian as well. This nomenclature

is due to the fact that the abelian anyons form a finite abelian group with respect to

fusion.

� Braiding

In three-dimensional spacetime, exchanging identical particles is equivalent to braiding

their world lines. In particular, if we braid a, b we will have phase factors Rc
ab depending

on c, it is convenient to view them as the diagonal entries of a diagonal matrix Rab, and

there should be a representation Bab of the braiding group related to those braiding

processes, see fig 4.

To be consistent, the set A = {a, b, · · · } should not be selected arbitrarily, and we should

expect fusion and braiding to have some reasonable properties

� Fusion is commutative

Since we just view the composite a × b as a blackbox, there is no preferred way to

define left or right fusion, we demand that

a× b = b× a (1.15)

11



Figure 3: Illustration of F-move, here we have two ways to fuse a, b, c into d [132]

hence

N c
ab = N c

ba (1.16)

In the special case of abelian A, we have finite abelian groups, and here fusion is just

group multiplication, so in a sense we can view the theory of anyon as some sort of

quantum generalization of finite abelian groups.

� Fusion is associative

Again if we fuse a, b, c together, we just identify the whole system as a blackbox so we

expect that the order of fusion does not matter, and

(a× b)× c = a× (b× c) (1.17)

hence ∑
x∈A

Nx
abN

d
xc =

∑
x∈A

Nx
bcN

d
ax (1.18)

Suppose we are fusing a, b, c to get d, then there are several ways to do this, and just

like crossing symmetry in usual quantum field theory, we can introduce the so called

F-matrix F d
abc to account for this, see fig 3.

Also, if fusion is associative , it should be compatible with braiding as well, essentially

this means that F-move and R-move are compatible with each other, see fig 5,6.

As a consequence, there are two types of constrains, namely the pentagon equation(
F 5

12c

)d
a

(
F 5
a34

)c
b

=
∑
e

(
F d

234

)c
e

(
F 5

1e4

)d
b

(
F b

123

)e
a

(1.19)

and the hexagon equation

∑
b

(
F 4

231

)c
b
R4

1b

(
F 4

123

)b
a

= Rc
13

(
F 4

213

)c
a
Ra

12 (1.20)
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Figure 4: Illustration of R-move [132]

Figure 5: Pentagon equation [132]

Figure 6: Hexagon equation [132]
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We also obtain the following explicit expression for the braiding matrix B as

Bab = F d
acb
−1RabF

d
acb (1.21)

� Vaccum and antiparticle exist

As in ordinary quantum field theory, we demand that a vacuum exists and is unique,

we usually adopt a multiplicative notation to label it as 1, so

a× 1 = 1× a = a (1.22)

hence

N c
a1 = N c

1a = δac (1.23)

Then we interpret the antiparticle ā of anyon a as the unique anyon fused with it to

give vacuum

a× ā = 1 + · · · (1.24)

hence

N1
aā = 1 (1.25)

An anyon can be its own antiparticle, in particular 1 = 1̄, and of course ¯̄a = a as

particle-antiparticle pairing is unique.

We can also assign an orientation to the world lines of anyons such that antiparticles

travel backward in time as in usual quantum field theory, and then using crossing

symmetry we can argue that2

θ(a) = R1
aā (1.26)

effectively defines a spin like quantity θ : A → U(1) , we will call it as topological

spin, and usually it is understood as θ(a) = exp 2πiha with ha : A → Q/Z the scaling

dimensions (defined mod1 only)

� Quantum dimension and Hilbert space

We want to construct some Hilbert spaces to describe fusion processes such as the ones

in figure 7, just like in particle physics, nuclear physics or chemistry. Suppose we have

a, b as the reagents of fusion, then the various c’s appear in a×b as the products of this

reaction, and it is quite reasonable to define a Hilbert space to describe this process

such that

2this form is gauge dependent as indeed θaR
1
aa = νa = ±1 and R1

aa = (R1
aā)−1, more generally, one should

define θ(a) = d−1
a T̃rRaa as in eq(211) of [112]
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Figure 7: Fusion processes(assume time flows rightwards): (a) a, b fuse into the middle state

i and split into c, d (b)A generic fusion process [132]

dim
(
M(3)

)
= N c

ab (1.27)

For consistency, obviously, we need to define dim
(
M(1)

)
= 0 and dim

(
M(2)

)
= 1,

then we can define the Hilbert space of n-anyon fusion M(n) as the set of all possible

outcomes

dim
(
M(n)

)
=

∑
e1...en−3

N e1
a1a2

. . . Nan
en−3an−1

(1.28)

In particular, if we have a specific anyon a, we want to define an intrinsic dimension

to measure the complexity of fusion outcomes associated with this anyon, we can take

n copy of a and constructM(n), We expect the following asymptotic for n→∞ exists

dim
(
M(n)

)
∝ dna (1.29)

This da ≥ 1 is called the quantum dimension of a, in general it is just a real number

without being integral or even rational, but by definition an anyon is abelian iff da = 1.

Quantum dimensions have a very nice property: they form a representation of the

fusion algebra

dadb =
∑
c

N c
abdc (1.30)

� Modular data

Finally we will introduce some concepts which will be very important later, they will

be constructed from the previous concepts we have introduced.
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First we can assign an global quantum dimension for A as

D =

√∑
a∈A

d2
a (1.31)

And some sort of averaged topological spin as

Θ = D−1
∑
a

d2
aθa = exp

iπc

4
(1.32)

Where the number c is called chiral central charge, just like ha it is not defined abso-

lutely, but mod8 only3

then we can define the (topological) T-matrix as

Tab = δabθa (1.33)

and the (topological) S-matrix as

Sab =
1

D
∑
c

N c
ab̄

θc
θaθb

dc (1.34)

and the charge conjugation matrix as

Cab = δāb (1.35)

Then we get the following modular representation

(ST )3 = ΘC, S2 = C, C2 = I (1.36)

Those matrices have many nice properties, for example S is both symmetric and uni-

tary, its elements are algebraic numbers, it also gives some useful identities

da =
Sa1

S11

, D =
1

S11

(1.37)

and we can define the monodromy scalar as the 1-1 entry of B2 = F−1R2F

Mab =
SabS11

S1aS1b

(1.38)

When |Mab| = 1 we can interpret it as the overall phase factor we get by braiding a

and b, see figure8

3In case of MTC from d = 2 RCFT, we usually absorb Θ into the definition of T matrix as Tab =

δab exp 2πi(ha − c
24 ), then c is defined mod24
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Figure 8: Illustration of the monodromy phase factor [25]

In particular for a theory A of abelian anyons only, we have

Mab =
Sab
S1b

=
θ(a× b)
θ(a)θ(b)

=
√
|A|Sab (1.39)

So the twists θ alone provide full information of this theory A

Finally,we have the following Verlinde formula that relates the S matrix to the fusion

rules

N c
ab =

∑
x

SaxSbxSc̄x
S1x

(1.40)

This formula is highly non-trivial as it equates a complicated combination of algebraic

numbers to a natural number.

With these new weapons in our hands we can reexamine our 3d electrodynamics toy

model more carefully, for our purpose it is convenient to define the level as k = 4πm and

rewrite (1.4) as

ICS =

∫
M

k

4π
A ∧ dA (1.41)

with A as an U(1) gauge field on compact three manifold M , for this theory to be well

defined we must have gauge invariance under Aµ → AUµ = U †AµU − iU †∂µU , which leads to

ICS

[
AU
]

= ICS[A] + 2πkn (1.42)

where the integer n appears as the winding number expressed as the integral

n = ω[U ] =
1

24π2

∫
M

d3xεµνρ tr
(
U †∂µUU

†∂νUU
†∂ρU

)
(1.43)

so we must have

k ∈ Z (1.44)
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The primaries are given by Wilson lines with different representations of U(1)

Wα(γ) := exp

[
iα

∫
γ

A

]
, α ∈ Z (1.45)

with dimensions

θ(α) = e2πihα , hα =
α2

2k
(1.46)

For simplicity we will restrict to positive k as we have identified it as the mass m in our toy

model, and call this theory as U(1)k Chern-Simons theory, depending on k(mod2) there are

two possibilities:

� k is odd4

A ∼= Zk = {0, 1, . . . , k − 1} (1.47)

since this theory is abelian we just label the vacuum as 0 instead of 1, and also use an

additive notation for fusion rules

α× β = α + β mod k (1.48)

� k is even 5

A ∼= Z2k = {0, 1, . . . , 2k − 1} (1.49)

with

α× β = α + β mod 2k (1.50)

We see that the U(1)k theory is fixed by the level k, it has a very simple set of fusion

rules, which is essentially addition in a finite abelian group, so this theory must be abelian.

In order to get nonabelian anyons, we can start with a nonabelian group and build up some

fusion rules, but since fusion is commutative we can not use the group multiplication directly,

instead we can rely on the physical picture of flux charge composites in our toy model and

try to make some appropriate modifications.

For simplicity we restrict ourselves to finite nonabelian groups to avoid difficulties in-

volved with analysis. For example, we pick the simplest of all nonabelian groups G = S3,

and now without explicit Lagrangian and action we just imagine that we have some gauge

field A taking values in G, and just as before we can set up an Aharonov–Bohm experiment

to obtain some flux charge composites. Let us adopt the usual terminology of electrody-

namics, it is reasonable to imagine that there are three kinds of objects in this theory, all

realized as worldlines of anyons

4these theories are spin TQFTs, so in order for them to be well defined, the corresponding spin structures

must exist
5these theories by themselves are non-spin, but we can always tensor them with a trivial spin

TQFT {1, ψ} to form corresponding spin TQFTs such that A ∼= Zk × Z2 and (α, β) × (α′, β′) =

(α+ α′ mod k, β + β′ mod 2)
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� electric charge

These are just the Wilson lines as before, and by electric charge we mean an irre-

ducible representation π of G because we work with representations rather than ab-

stract groups, and this is how we measure charge in reality. These operators should

also have trivial magnetic flux in order to behave as pure charges; alternatively they

should all have fluxes with the identity element I of G. A reasonable choice for the

fusion rules is the decomposition of tensor representations of G.

� magnetic flux

Such operators should correspond to the abstract group element g of G, as we have

defined charges as representations π and we measure charges by observing their be-

havior π(g) under the influence of magnetic fluxes. But it should be noted that in

order to carry out measurements, one has to set up some reference or standard, this

again should be realized as a particular abstract group element h of G, and different

observables can have different standards h, h′, so they agree only on the conjugacy

class [g]. Hence we define magnetic flux lines as conjugacy classes [g]. Again such

operators should all have trivial charges as the trivial representation 1 : G→ {I}of G.

And as multiplication between conjugacy classes is commutative, we can just use it to

implement the fusion rules.

� dyon

Of course more generally, we have flux charge composites, but we should be very careful

when defining them in a consistent manner. Since such an operator carries both charge

and flux, we can just treat it as a blackbox, put it somewhere and then set up some

Aharonov–Bohm experiments with pure charge or pure flux to detect the flux and

charge of this blackbox through interference patterns. But there is a crucial difference

with the abelian U(1)k theory, suppose we use some flux [b] to detect the charge of

this dyon, since the dyon itself has flux [a], exchange them will change the system as

R : |a, b〉 → |aba−1, a〉 . So if we perform an Aharonov–Bohm experiment by sending [b]

through the dyon to measure its charge , the two paths followed by [b] are inequivalent

as they differ by one loop around [a] as P1−P2 = C, we can tell which path [b] travels

by measuring the flux of the resulting system, hence there is no interface. In order to

avoid this we need aba−1 = b, so a dyonic line is given by a conjugacy class of abstract

group element [g], as well as an irreducible representation π of Ng the centralizer of g,

due to phase ambiguity, this representation is projective only in general. For dyonic

lines, fusion rules are more complicated, both decomposition of tensor representation

and group multiplication are involved.

For G = S3, we have the following table of anyons, where we have three conjugacy classes

with representatives e, (12), (123),and the corresponding centralizers Ng are S3, Z2, Z3, for

S3 we have the one dimensional trivial and sign representations +,− as well as the unique
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two dimensional representation 2, while representations of Z2, Z3 are all one dimensional and

labeled by their eigenvalues in C( where ω3 = exp(2πi
3

))[133].

Type Flux Charge d([g],πωg )

A e [+] 1

B e [−] 1

C e [2] 2

D (12) [+] 3

E (12) [−] 3

F (123) [1] 2

G (123) [ω3] 2

H (123) [ω̄3] 2
We can perform the above constructions for any finite nonabelian group G, the resulting

theory is called the discrete gauge theory of G. Just like the k ∈ Z requirement in U(1)k
Chern-Simons theory, there are additional consistency constraints in discrete gauge theory

as well: here we need to specify the Dijkgraaf-Witten twist as a cohomology class of third

order group cohomology

ω ∈ H3(G,U(1)) (1.51)

as well as the related cohomology class of second order group cohomology

ηg(h, k) :=
ω(g, h, k)ω(h, k, g)

ω(h, g, k)
∈ H2 (Ng, U(1)) , h, k ∈ Ng (1.52)

which appears in πωg (h)πωg (k) = ηg(h, k)πωg (hk) as phase factors.

If ω = 0 then ηg = 0 automatically for every g, hence all the representations associated

with dyonic lines are true representations instead of projective ones. Such a theory is referred

to as untwisted, otherwise it is twisted. When ω 6= 0 but ηg = 0, we still have linear instead

of projective πωg , and for magnetic flux lines to be well defined, we must have ηg = 0 as

well because even if we only need the flux lines to have trivial representation, we need to

have a true representation instead of a projective one. Finally, for charges since [g] = 1, the

representations are always linear, even in twisted theories.

More generally, even if g 6= 1 and ω is non-trivial, we may still have linear representa-

tions.6 As an example, we can consider G = PSL(2, 4) and the Z3 centralizer of the length

twenty conjugacy class. In this case, we have H2(Z3, U(1)) = Z1, so the resulting ηg (with

g in the length twenty conjugacy class) is cohomologically trivial no matter the choice of

ω ∈ H3(PSL(2, 4), U(1)) = Z6 × Z10.

The most important things for us to focus on in what follows are the fusion coefficients

6More precisely, if ηg is a non-trivial 2-coboundary, we will obtain projective representations that are

in one-to-one correspondence with linear representations. We can remove these projective factors via a

symmetry gauge transformation of the type described in [14]. Note that while linear representations can

be one-dimensional (e.g., if the centralizer is an abelian group), projective representations resulting from ηg
cohomologically non-trivial are necessarily higher dimensional.
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appearing in

([g], πωg )× ([h], πωh ) =
∑
k,πωk

N
([k],πωk )

([g],πωg ),([h],πωh )([k], πωk ) (1.53)

To arrive a description of such a process we must combine conjugacy classes and repre-

sentations. In particular, we need to multiply elements in [g] and [h] and determine the

corresponding conjugacy classes. At the same time, we must decompose the product of irre-

ducible representations of the corresponding centralizers into irreducible representations of

centralizers of G. A simple prescription for doing this is given in [14]

N
([k],πωk )

([g],πωg ),([h],πωh ) =
∑

(t,s)∈Ng\G/Nh

m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk ⊗

sπωh |Ntg∩Nsh∩Nk

⊗ πω(tg,sh,k)) (1.54)

where the sum is over the double coset, we define tg := t−1gt, and tπωg |Ntg∩Nsh∩Nk⊗
sπωh |Ntg∩Nsh∩Nk⊗

πω(tg,sh,k) and πωk |Ntg∩Nsh∩Nk are restrictions of irreducible representations of Ntg, Nsh, and Nk

to the triple intersections of these normalizers. These restrictions are generally (though

crucially for us below not always) reducible representations of Ntg ∩Nsh ∩Nk. The m(a, b)

function computes inner products of the representations a and b (we will fill in further details

of this function as needed later in this section). Crucially, a and b must be the same type

of representation (i.e., they should both be linear or else transform with the same set of

projective weights) in order to be meaningfully compared.

We can determine the projectivity of the tπωg , sπωh , and πωk representations by a computa-

tion in the relevant cohomology as in (1.52). The representation πω(tg,sh,k) is one dimensional

(it is a representation of the action of symmetries on the one-dimensional V k
tgsh fusion space

in the G-SPT) and ensures that the arguments entering m(a, b) involve the same type of

representations. Therefore, πω(tg,sh,k) satisfies

πω(tg,sh,k)(`)π
ω
(tg,sh,k)(m) =

ηk(`,m)

ηtg(`,m)ηsh(`,m)
· πω(tg,sh,k)(`m) (1.55)

A more basic quantity of interest to us in what follows is the modular data of the discrete

gauge theory. It is given by [101]

S([g],πωg ),([h],πωh ) =
1

|G|
∑

k∈[g], `∈[h],
k`=`k

χkπωg (`)∗χ`πωh (k)∗

θ([g],πωg ) =
χπωg (g)

χπωg (e)
(1.56)

where we define χhπωg (`) as follows

χxgx
−1

πωg
(xhx−1) :=

ηg(x
−1, xhx−1)

ηg(h, x−1)
χπωg (h) (1.57)
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Here, θ is the topological spin, and S is the modular S matrix. It follows from these

definitions that quantum dimensions are given by

d([g],πωg ) =
S([g],πωg )([1],1)

S([1],1)([1],1)

= |[g]| · |πωg | (1.58)

where |[g]| is the size of the conjugacy class, and |πωg | is the dimension of the representation.

Non-abelian anyons have d([g],πω) > 1. As a consequence, they must satisfy

([g], πωg )× ([g−1], (πωg )∗) = ([1], 1) + · · · (1.59)

where the ellipses necessarily contain additional terms (otherwise we would have d([g],πω) = 1),

1 is the trivial representation of G, and (([g−1], (πωg )∗) is the anyon conjugate to ([g], πωg ).

We may write a dictionary between the non-abelian Wilson lines, flux lines, and dyons

discussed in the previous sections and the objects discussed in this section as follows

Wπ1 ↔ ([1], π1) , |π1| > 1 ,

µ[g] ↔ ([g], 1εg) , |[g]| > 1 ,

L([h],πωh ) ↔ ([h], πωh ) , |[h]| · |πωh | > 1 . (1.60)

We have dropped the ω superscript from π1 in order to emphasize, as discussed above, that

Wilson lines always transform under linear representations of G. We include an ε superscript

on the trivial representation of the flux line because these objects only exist when the relevant

ηg in (1.52) is trivial in cohomology. This triviality means that ηg(h, k) can be expressed in

terms of a one co-chain as follows: ηg(h, k) = εg(h)εg(k)

εg(h·k)
.7

Finally, let us mention two canonical examples of nonabelian anyons as well, more exam-

ples can be found in[139]

� Fibonacci anyons

this theory is named by the golden ratio ϕ = 1+
√

5
2

which appears naturally in it, it

is the simplest system capable for universal quantum computation through braiding

alone.

Anyon types: {1, τ}

Fusion rules: τ 2 = 1 + τ

Quantum dimensions: {1, ϕ}

Twists: θ1 = 1, θτ = e
4πi
5

Total quantum order: D = 2 cos
(
π
10

)
=

√
5

2 sin(π5 )

Topological central charge: c = 14
5

Braidings: Rττ
1 = e−

4πi
5 , Rττ

τ = e
3πi
5

7Note that 1εg is the irreducible projective representation of Ng whose character is proportional to the

trivial representation of Ng.
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S-matrix: S = 1√
2+ϕ

(
1 ϕ

ϕ −1

)
,

F-matrices: F τ,τ,τ
τ =

(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)
� Ising anyons

this is the anyon theory behind two dimensional Ising model

Anyon types: {1, σ, ψ}

Fusion rules: σ2 = 1 + ψ, σψ = ψσ = σ, ψ2 = 1

Quantum dimensions: {1,
√

2, 1} Twists: θ1 = 1, θσ = e
πi
8 , θψ = −1

Total quantum order: D = 2

Topological central charge: c = 1
2

Braidings: Rσσ
1 = e−

πi
8 , Rψψ

1 = −1, Rψσ
σ = Rσψ

σ = −i, Rσσ
ψ = e

3πi
8

S-matrix: S = 1
2

 1
√

2 1√
2 0 −

√
2

1 −
√

2 1

,

F-matrices: F σ,σ,σ
σ = 1√

2

(
1 1

1 −1

)
, Fψ,σ,ψ

σ = (−1), F σ,ψ,σ
ψ = (−1)

1.1.2 TQFT as a path integral

The d = 3 electrodynamics model and the discrete gauge theory in the last section are all

examples of Chern-Simons theory, which is one of the most important classes of TQFT. Just

like these examples, for TQFT in general the correlators are topological invariants, concretely,

suppose we have a theory defined by some action S (φi) of fields φi on a Riemannian manifold

with metric gµν , then for the correlators between operators Oα (φi)〈
Oα1Oα2 · · · Oαp

〉
=

∫
[Dφi]Oα1 (φi)Oα2 (φi) · · · Oαp (φi) exp (−S (φi)) (1.61)

We should have8

δ

δgµν
〈
Oα1Oα2 · · · Oαp

〉
= 0 (1.62)

8If one begins with a metric independent classical action, due to possible anomaly the resulting quantum

theory may or may not be topological, so this naive approach may sometimes fail. For example given the ac-

tion in (1.69), if G is compact, the quantum theory is topological, but with the non-compact G = SL(n,R),it

is not known whether this theory is topological or not, see for example the online lecture Quantization, Gauge

Theory, and the Analytic Approach to Geometric Langlands 1 by Edward Witten at QUANTUM FIELDS,

GEOMETRY AND REPRESENTATION THEORY 2021 (ONLINE).
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There are two ways to satisfy this, and the resulting TQFTs are called Schwarz type or

Witten type respectively.[115]

For Scgwarz type theories, one simply begin with a metric independent action, i.e. the

energy momentum tensor vanishes

δS

δgµν
≡ Tµν = 0 (1.63)

Then there is no local interaction in this theory, and for observables Oα (φi) we can just pick

topological ones such as Wilson lines and surface defects, then

δ

δgµν
Oα (φi) = 0 (1.64)

So trivially (1.62) is satisfied.

For Witten type theories, suppose we have a symmetry generated by δ such that

δS = 0,
δ

δgµν
Oα (φi) = δOµν

α (φi) , Tµν (φi) = δGµν (φi) (1.65)

then we have

δ

δgµν
〈
Oα1Oα2 · · · Oαp

〉
= −

∫
[Dφi] δ

(
Oα1 (φi)Oα2 (φi) · · · Oαp (φi)Gµν exp (−S (φi))

)
= 0

(1.66)

This is formally true when we regard every term with δ as infinitesimal, one can also impose

δ2 = 0 (1.67)

such that the action is δ exact

S (φi) = δΛ (φi) (1.68)

Then one construct suitable BRST cohomology classes to define Oα (φi), for this reason,

Witten type theories are also called cohomological type theories. Witten type TQFTs appear

naturally in extended supersymmetric field theories where by ’twisting’ a modified version

of SUSY transformation is constructed and it plays the role of δ

In this thesis we will focus on Chern-Simons theory , which is of Schwarz type. Here

we will show that both the discrete gauge theory and three dimensional electrodynamics we

have discussed the in last section can be viewed as special cases of Chern-Simons theory.

We will assume our spacetime is a three-dimensional oriented manifold M ,the gauge

symmetry is given by a compact group G, which is either a finite group or a Lie group, the

gauge field A is realized as (the pull back on M of) a connection on a G principal bundle E.

When G is a Lie group, locally A is a g vector valued one form, if in addition ,just like

in our three dimensional electrodynamics toy model, E is trivial, then A is well defined on

M as a g vector valued one form. We can define the Chern-Simons functional as

S(A) =
k

8π2

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(1.69)
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Then just as before we have

Z(M) =

∫
DAe2πiS(A) (1.70)

which enforces k ∈ Z
In particular when G is simply connected, E must be trivial, this includes the most

common examples of simply connected G with a semisimple g given by an ADE label.

But for our purposes we want to include nontrivial E as well, so we can generalize (1.69)

as follow: if we first pick a four dimensional manifold B such that M = ∂B and assume that

A can be extended to B, then the following functional is well defined, and reduced to (1.69)

for trivial E

S(A) =
k

8π2

∫
B

Tr(F ∧ F ) (1.71)

But in general such B may not exist , so we prefer to find an intrinsic way to define a

functional on M , using a cobordism argument, given M we can always construct B = M × I
with ∂B = M ∪ (−M), then suppose we have A′′ on B that interpolates between A on

M × {0} and A′ on M × {1}, then

S(A)− S (A′) =
k

8π2

∫
B

Tr(F ′′ ∧ F ′′) (1.72)

But (1.70) tells us that the RHS depends only on S(A)−S (A′) mod but not on the particular

choice of A′′, so if we can fix it as an integration constant depends intrinsically on M,E, we

would be able to define a functional as the topological action.

Indeed there is a natural way to characterize E, given by the map λ : π1(M)→ G, then

we can define the topological action S as a functional assign each pair (M,λ) a number

S(λ) ∈ R/Z, which satisfies the following two consistency conditions

� We define S ∼ S ′ up to a functional depends only on λ|∂M , physically this means

transition amplitudes e2πiS and e2πiS′ are the same up to redefinition of external states

� If ∂M = 0 and ∃B : ∂B = M , with λB : π1(B) → G and λB|∂M = λ then S(λ) =

0, physically this is the factorization property e2πiS(M1#M2) = e2πiS(M1) · e2πiS(M2) for

connected sum of manifolds

It turns out S(λ)’s are in one to one correspondence with cohomology classes of classifying

space BG

H3(BG,R/Z) (1.73)

While for finite groups we have

H3(BG,R/Z) ∼= H4(BG,Z) (1.74)

So by a topological Lagrangian we merely mean an element of the abelian group H4(BG,Z)
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When G is a simply connected Lie group, we have

H4(BG,Z) ∼= Z (1.75)

And 1
8π2 Tr(F ∧F ) is the generator [1], so the action is classified by [k] directly as an element

of H4(BG,Z) ∼= Z as well

More general type of compact G with finite π1(G) can be built up by these two extreme

cases by the following two exact sequences

1→ G0 → G→ Γ→ 1 (1.76)

Where Γ must be finite for compact G, and

1→ π1(G)→ G̃→ G→ 1 (1.77)

And indeed for those G, S(λ) is determined by an element of

H4(BG,Z) (1.78)

To be more precise, recall that we have the map γ : M → BG, whose homotopic classes [γ]

are in one to one correspondence with the equivalent classes of G-principal bundle [E], hence

given λ there is an associated γ, and it is known that each ω ∈ H4(BG,Z) will determine

an real three cochain β ∈ H3(BG,R) with

δβ = Ω (Fu)− ω (1.79)

Where Ω(F ) = k
8π2 TrF ∧ F and Fu is the curvature of the universal connection Au on

the universal bundle

Then we have a three cochain α = β(mod1) in C3(BG,R/Z) such that its pullback

αA = γ∗α on M is a well defined cohomology class in H3(M,R/Z), the topological action S

is realized as the natural pairing between cohomolgy and homology classes

S = 〈αA, [M ]〉 (1.80)

For a Lie group this is an integral, while for a finite group it is just a finite sum.

Now we have defined Chern-Simons theory in a general but abstract way, the main point

is that we can treat compact Lie groups and finite groups in an equal footing. This is very

important for us as we are going to deal with these two cases in later applications.

1.2 Conformal field theory

A conformal field theory is a quantum field theory with conformal symmetry. It originates in

several research areas such as the critical phenomena in statistical physics , the high energy

behavior of quantum chromodynamics, and the world-sheet description in string theory,

where the underlying physical systems are scale invariant. Since the 1980s it has become
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a highly developed branch in theoretical and mathematical physics, many new techniques

are employed and new applications are explored, it appears in a vast range of topics both

in physics and mathematics. For example, the AdS/CFT correspondence is used to analyze

blackhole as well as hydrodynamics, CFT inspired ideas are used in number theory as well

as probability theory. Here we will only review some of the basic ingredients, and more

systematic developments can be found in standard textbooks such as [71, 24].

The importance of CFT arises from several different but related aspects:

� CFT indeed describes some special but important physical systems, either directly

,for example in phase transition and in string world-sheet,or via indirect means such

as AdS/CFT correspondence. In particular, some nontrivial models can be solved

exactly or numerically by CFT, which provides non-perturbative ways to deal with

these problems, e.g. in bootstrap analysis of the three-dimensional Ising model.CFT

is very rich in a range of applications, and it provides a bridge between different areas

of physics.

� Viewed as a special kind of QFT, CFT is finite, that is, the beta function vanishes

exactly. Therefor, CFTs provide natural candidates for renormalization group fixed

points of various kinds, hence knowledge about CFT provides constraints and infor-

mation on generic QFTs and RG processes, for example Zamolodchikov’s c-theorem.

� It involves several important branches of mathematics combined in a specific way, and

this makes CFT useful and inspiring in many important mathematical problems. For

example, the 2d CFT on the torus provides a physical interpretation for some known

mathematical identities of theta functions, and thus also inspires modern generaliza-

tions of the classical results.

In this section, we first discuss CFT with generic (d > 2) spacetime dimension[145, 141,

148], the important special case d = 2 is then analyzed separately[145, 61, 24, 23], finally we

analyze the field content of CFT from a representation theory viewpoint and introduce the

concept of modularity[145, 61, 24, 23].

1.2.1 Conformal symmetry and conformal field theory: d > 2

But what is conformal symmetry? It is the symmetry associated with conformal transfor-

mations.By definition, a conformal transformation is an invertible mapping of spacetime(9)

such that it leaves the metric invariant up to a scale:

x→ x′, g′µν(x
′) = Λ(x)gµν(x) (1.81)

9viewed as an pseudo-Riemann manifold with signature (p, q), and for simplicity assumed to be flat, in

most cases we just need Lorentzian/Euclidean Rp,q or torus

27



So locally it is just a combination of (pseudo) rotation and dilation, i.e.

J =
∂x′µ

∂xν
= b(x)Mµ

ν (x), b(x) =
√

Λ(x) (1.82)

Obviously, all Poincaré transformations are conformal, and dilation is conformal. In addition

we also have the so called special conformal transformation(SCT), taking together they form

the conformal group, in Rp,q, p+ q > 2 spacetime it is

Conf (Rp,q) ∼= SO(p+ 1, q + 1) (1.83)

In particular for Euclidean spacetime Rd, p = d, q = 0, d > 2 , the conformal group is

Conf
(
Rd,0

)
and we have the following isomorphism

Conf
(
Rd,0

) ∼= SO(d+ 1, 1) (1.84)

As a consequence we find the dimension of Conf
(
Rd,0

)
is

(d+ 2)(d+ 1)

2
(1.85)

It is generated by:

x′µ = xµ + aµ

x′µ = Mµ
νx

ν

x′µ = αxµ

x′µ = xµ−bµx2

1−2b·x+b2x2

(1.86)

with the following Lie algebras

Pµ = −i∂µ
D = −ixµ∂µ
Lµν = i (xµ∂ν − xν∂µ)

Kµ = −i (2xµx
ν∂v − x2∂µ)

(1.87)

and commutators

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i (ηµνD − Lµν)
[Kρ, Lµv] = i (ηρµKv − ηρνKµ)

[Pρ′Lµν ] = i (ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)

(1.88)

In the spirit of the last section, if we extend the covariance condition of an ordinary QFT

to a conformal group, we will get a CFT(conformal field theory).
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Since the conformal group contains the Poincaré group, in any local CFT the energy

momentum tensor Tµν always exists and is symmetric, conformal symmetry further enforces

it to be traceless10

T µµ = 0 (1.89)

And indeed when d > 2, under some mild assumptions, given a QFT, Poincaré and

scale invariance plus the energy momentum tensor being traceless will enforce full conformal

invariance, but counter examples do exist, there are scale invariant but not conformal the-

ories.11 Since RG fixed points are scale invariant theories, it is quite natural for RG fixed

points to be CFTs.

Due to scale invariance, the operator D plays a primary role in CFT through radial

quantization, where the spacetime foliation is given by the family of concentric spheres Sd−1,

and the radial direction plays the role of time, hence D is the Hamiltonian, to be more

precise we have propagator

U = eiD∆τ (1.90)

where τ = log r , and associated with each sphere a Hilbert space, particularly for the

Hilbert space at the origin such states are classified by representations of D, i.e. the scaling

dimension, or simply dimension ∆

D|∆〉 = i∆|∆〉 (1.91)

and of Lµν , i.e. the spin l

Lµν |∆, l〉{s} = (Σµν)
{t}
{s} |∆, l〉{t} (1.92)

From the conformal algebra we know that Pµ, Kµ, D together forms an oscillator like

system where Pµ, Kµ are ladder operators, hence we have

|∆〉 Pµ−→ |∆ + 1〉 Pν−→ |∆ + 2〉 · · · (1.93)

and

0
Kµ←− |∆〉 Kν←− |∆ + 1〉 · · · (1.94)

We will call states with the property Kµ|∆〉 = 0 as primary states, and states obtained

from primary states by Pµ as descendant states.

On the other hand, we can imagine that a state at spacetime point x are created by a

field operator O(x), then again they are classified by representations

[Pµ,O(x)] = −i∂µO(x)

[D,O(x)] = −i (∆ + xµ∂µ)O(x)

[Lµν ,O(x)] = −i (Σµν + xµ∂ν − xν∂µ)O(x)

[Kµ,O(x)] = −i
(
2xµ∆ + 2xλΣλµ + 2xµ (xρ∂ρ)− x2∂µ

)
O(x)

(1.95)

10see appendix A.2 for the definition of local field, and there are indeed well defined CFTs with non-local

fields, in these theories T may not exist, for example in long range Ising model
11See [65] for more details
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In particular at the origin we have

[Kµ,O(0)] = 0 (1.96)

and
[Pµ,O(x)] = −i∂µO(x)

[D,O(0)] = −i∆O(0)

[Mµν ,O(0)] = −iΣµνO(0)

(1.97)

we will call such O(0) operators as primary operators with dimension ∆ and spin l. Equiva-

lently, this says that the corresponding field φ(x) transfers properly under conformal trans-

formations

φ(x)→ φ̃ (x′) =
1

b(x)∆
R [Mµ

ν (x)]φ(x) (1.98)

In summary we have the so called state-operator correspondence as

|∆〉 = O∆(0)|0〉 (1.99)

and general states are superposition of primaries and their descendants

|Ψ〉 = O∆(x)|0〉 = eiPxO∆(0)e−iPx|0〉 = eiPx|∆〉 =
∑
n

1

n!
(iPx)n|∆〉 (1.100)

It turns out conformal symmetry also gives extra constraints on ∆, l for unitary or reflec-

tion positive theory, i.e. there is a lower bound for scaling dimension ∆, in the most common

case of a gauge invariant primary in a spin-` traceless symmetric tensor representation, it

is12

∆ = 0 (unit operator), or

∆ ≥
{

d−2
2

` = 0

`+ d− 2 ` > 0

(1.101)

this is called unitary bound. In particular for scalar the bound is saturated by free fields

�O(x) = 0 (1.102)

for fields with spin the bound is saturated by conserved currents J µ, and it also works

backwards so

∆ = `+ d− 2 iff ∂µJ µ = 0 (1.103)

12For an operator O in representation RO, the lower bound is the minimum of
1
2 (−Cas (V ⊗RO) + Cas(V ) + Cas (RO)), where Cas denotes the Casimir invariant of the corresponding rep-

resentation and V = V1 is the vector representation, if RO = V` then due to the fact V ⊗V` = V`−1⊕. . . (` >

0) and Cas (V`−1) = `(`+d−2),we have ∆ ≥ 1
2 (−Cas (V`−1) + Cas(V ) + Cas (V`)) = `+d−2, see [148, 141].

While for a generic d = 4 primary in representation (j1, j2) the bound is j1 + j2 + 2 − δj1j2,0[92]. Here we

should emphasize that this holds for gauge invariant operators only, for example the gauge field Aµ in d = 4

Maxwell theory is in vector representation,but it has ∆ = 1 instead of 3. Further details, possible subtleties

and improvements for specific values of d and types of representations are discussed in [120]
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Now since we have defined states and operators in CFT, the natural objects to study are

the correlators, again the conformal symmetry gives strong constraints. For simplicity we

will consider an Euclidean spacetime without boundary, and for simplicity we just consider

scalars, then the one point function vanishes

〈φ (x)〉 = 0 (1.104)

And the two point function is fixed up to an operator dependent constant

〈φ1 (x1)φ2 (x2)〉 =

{
C12

|x1−x2|2∆1
if ,∆1 = ∆2

0 if ∆1 6= ∆2

(1.105)

The three point function is also fixed up to an operator dependent constant

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13

(1.106)

The four point function is not fixed, but it is of a particular type:

〈φ1 (x1) . . . φ4 (x4)〉 = f

(
x12x34

x13x24

,
x12x34

x23x14

) 4∏
i<j

x
∆/3−∆i−∆i

ij (1.107)

where ∆ =
∑4

i=1 ∆i

To better understand this, we can use the technique of operator product expansion,or

OPE for short, suppose we are given a family of operators Oi(x) , if we apply Oi(x)Oj(0) to

vacuum, we will get a superposition of primaries and descendants

Oi(x)Oj(0)|0〉 =
∑

Cijk(x, P )Ok(0)|0〉 (1.108)

This can be viewed as an equation for operators valid only when O1 and O2 are close enough

and no other operators are inserted nearby

Oi (x1)Oj (x2) =
∑
k

Cijk (x12, ∂2)Ok (x2) (1.109)

Then using OPE, we can calculate two point functions from three point functions, and the

four point functions can be reduced to the sum of three point functions as well. But we can

either expand as 1 ←→ 2, 3 ←→ 4 or 1 ←→ 4, 2 ←→ 3, just like the crossing symmetry in

scattering amplitude, these two expansions must agree with each other. This put constraints

on these coefficients Cijk, which is the bootstrap equation,see figure 9. The problem of finding

solutions to and extract information from such equations is called conformal bootstrap, it is

of great importance and has a lot of applications, but we will not discuss it here as we do

not use it in further development.13

13See [148] for more details on bootstrap
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Figure 9: Crossing symmetry and bootstrap equation [71]

1.2.2 Conformal symmetry and conformal field theory: d = 2

Two dimensional systems are very special and important in mathematics, and many of them

are related to each other in surprising ways; for example, beginning with classical complex

analysis, we have two dimensional manifolds, algebraic curves and modular forms, all of

which are related to the concept of Riemann surfaces.

And in physics, they provide a lot of nontrivial but solvable models such as the two-

dimensional Ising model, which are cornerstones for physics in general. For our purposes,

there are three important features associated with two dimensional conformal field theory:

� At dimension two the conformal Lie algebra gets enhanced to an infinite dimensional

algebra, and after complexation and central extension it becomes the Virasoro algebra,

which is the cornerstone of 2d CFT

� We can rewrite 2d CFT using a holomorphic formalism, so that many rich and power-

ful techniques in complex analysis become available. In a sense we just get a quantum

version of classical complex analysis,this idea eventually will lead to a formal axioma-

tization of 2d CFT as vertex operator algebra (or VOA for short).

� Due to the special nature of 2d topology, we can define CFT for some general spacetime

manifolds. Especially where the torus plays an essential role, and CFT on torus leads to

modularity with associated modular data, this will have many surprising consequences

such as the Verlinde formula.

Due to their importance, in this section we will focus on Virasoro algebra and introduce

the basic concepts first, leaving the more formal discussions of modularity to the next section,

VOA is also reviewed in the appendix A.2.

According to our general results in the last section, the two dimensional conformal group

for Euclidean spacetime is
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Conf
(
R2,0

) ∼= SO(3, 1) (1.110)

which is just the Lorentz group.

Since we are in dimension two, it is quite natural to use complex coordinates z = x0 +

ix1, z̄ = x0 − ix1, and complex analysis tells us that

Conf
(
R2,0

) ∼= SO(3, 1) ∼= PSL(2,C) (1.111)

So for two dimensional Euclidean theory, the conformal transformations are just Möbius

transformations ϕ(z) = az+b
cz+d

, those transformations are injective and holomorphic, defined

on the whole C with at most one exceptional point(hence holomorphic on the Riemann

sphere), they are called global conformal transformations.

Also from complex analysis, we know that locally every holomorphic function is conformal

in the sense of an angle and orientation keeping tranformation. It is obvious now, at least

locally, that we have ds2 = dzdz̄ 7→ ∂f
∂z

∂f̄
∂z̄
dzdz̄ for infinite small transformations, but unlike

Möbius transformations we can not define a general f(z) globally as it may have more

than one singular points. While in quantum theory symmetry is defined by the Lie algebra

rather than the Lie group, so here it is quite natural to extend our definition of conformal

transformation to include them. In this sense, we say that the conformal algebra at dimension

two is enhanced to an infinite dimensional one. Precisely, we can first use power series

expansions to write

z′ = z + ε(z) = z +
∑

n∈Z εn (−zn+1)

z̄′ = z̄ + ε̄(z̄) = z̄ +
∑

n∈Z ε̄n (−z̄n+1)
(1.112)

and define the generators

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ (1.113)

then they form the so called Witt algebra

[lm, ln] = (m− n)lm+n[
l̄m, l̄n

]
= (m− n)l̄m+n[

lm, l̄n
]

= 0

(1.114)

We see here that a key feature of Witt algebra is that it contains two decoupled iden-

tical copies {ln} and {l̄n}, it is a custom in complex analysis and geometry to view z, z̄

as independent with z = z̄ interpreted as reality condition, and call them as holomorphic

and antiholomorphic parts(or chiral and anti-chiral). For simplicity we usually only write

formulas for the holomorphic part only with the understanding that the corresponding an-

tiholomorphic version is obvious.14

14this is not true in boundary conformal field theory, but in this thesis we consider bulk theory only
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Also we find that the global conformal transformations are generated by

{l−1, l0, l1} (1.115)

with l−1, l̄−1 for translation, l1, l̄1 for SCT, l0 + l̄0 for dilation, and i
(
l0 − l̄0

)
for rotation. it

should be noted that in two dimensional Minkowski spacetime, we have

Conf
(
R1,1

) ∼= Diff+(S)×Diff+(S) (1.116)

This group is indeed infinite dimensional, and its Lie algebra, after complexification, contains

the Witt algebra as a dense subset.15 And the finite subgroup

SO(2, 2)/{±1} ∼= PSL(2,R)× PSL(2,R) ⊂ Conf
(
S1,1
)

(1.117)

is the Minkowski spacetime analogue of PSL(2,C). So in summary, for dimension two, we

should consider the infinite dimensional Witt algebra instead of the finite one {l−1, l0, l+1}.
The above considerations are pure classical, and after quantization it is modified, and

the Witt algebra W becomes Virasoro algebra V ir. Mathematically, this is characterized by

central extensions of the Witt algebra W

0 −→ C −→ V ir −→ W −→ 0 (1.118)

with

H2( W,C) ∼= C (1.119)

and

Vir = W ⊕ CZ (1.120)

then we have
[Ln, Lm] = (n−m)Ln+m + δn+m,0

n

12

(
n2 − 1

)
Z

[Ln, Z] = 0 for n,m ∈ Z
(1.121)

It is important to note that after central extension, the generators of global transformations

{L−1, L0, L1} still form a subalgebra.

We can view the central charge Z as an ordinary c-number c ,i.e. identify it with its

eigenvalue, so we just write

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m,0 (1.122)

This number c is a definition datum for a CFT, it is also known as conformal anomaly, this

is because if we put the underlying CFT in a curved spacetime with genus g and curvature

R then we would have 〈
T µµ (x)

〉
g

=
c

24π
R(x) (1.123)

15But as Lie group Diff+(S) has no complexification, hence the ’infinite dimensional conformal group’ does

not exist, for more information see [145]
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physically, it measures the effective number of degrees of freedom of the underlying theory, as

if we put the CFT on an infinite cylinder with circumference ` = 1/T in the (imaginary)time

direction, then the specific heat of this system is given by

lim
`→∞

C(T )

`
=
π

3
cT (1.124)

Central charge is important also because of the following famous theorem for generic

d = 2 QFT with coupling constants gi at the energy scale µ

Theorem 1.1 (C-theorem[164, 70]). There exists a function C (gi, µ) of the coupling con-

stants which is decreasing along the RG flow and it is stationary only at the fixed points.

Moreover, at the fixed points the C (g∗i , µ) = C∗ function is equal to the central charge of the

CFT of the fixed point

More generally for d > 2 CFT on a generic manifold M with possible boundary ∂M ,

we can have different types of anomalies, along with some theorems on RG behaviors which

generalize the C-theorem here[97, 72, 113]. For example with d = 4 we have the bulk a term

as a ∼
∫
S4

〈
T µµ
〉

and the A-theorem roughly says that aIR < aUV [114].

Since we now have an enlarged set of conformal transformations, the concept of a primary

should modified correspondingly.For a general field φ(z, z̄) under scaling transformation z 7→
λz, if we have

φ(z, z̄) 7→ φ′(z, z̄) = λhλ̄h̄φ(λz, λ̄z̄) (1.125)

then (h, h̄) are defined as the conformal (or scaling) dimensions of φ(z, z̄), they are related

to ∆, l as h = 1
2
(∆ + l) h̄ = 1

2
(∆− l)

Given any conformal transformation z 7→ f(z) if we always have

φ(z, z̄) 7→ φ′(z, z̄) =

(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
φ(f(z), f̄(z̄)) (1.126)

or in infinitesimal form

δε,ε̄φ(z, z̄) =
(
h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄

)
φ(z, z̄) (1.127)

then we will define φ(z, z̄) as a primary(or Virasoro primary) field, if this holds only for global

conformal transformations, we will define φ(z, z̄) as a quasi-primary field. It is obvious that

quasi-primary is primary with respect to our earlier definition for conformal fields with d > 2,

but Virasoro primary is unique for d = 2 CFT, it is indeed an infinite sum of quasi primaries.

As we have mentioned, the Witt algebra, hence the Virasoro algebra, has holomorphic and

anti-holomorphic parts, so we will call a field φ(z) depending on z only as holomorphic(chiral)

field and similarly φ(z̄) as anti-holomorphic(anti-chiral), then φ(z), have conformal dimen-

sions h, h̄ respectively, so we can just treat them separately.

We can employ radical quantization as in general conformal field theory, and now because

spacetime is two dimensional, the foliation is given by concentric circles on complex plane,

35



Figure 10: The conformal map from cylinder to complex plane [24]

see figure10. In analogue with the Fourier expansion on the cylinder we can obtain the

Laurent expansion on the complex plane

φ(z, z̄) =
∑
n,m̄∈Z

z−n−hz̄−m̄−h̄φn,m̄ (1.128)

where the Laurent modes φn,m̄ become operators after quantization, then using operator-

state correspondence we can define an in state as

|φ〉 = lim
z,z̄→0

φ(z, z̄)|0〉 = φ−h,−h̄|0〉 (1.129)

with Hermitian conjugation

(φn,m̄)† = φ−n,−m̄ (1.130)

we also have an out state

〈φ| = lim
w̄,w→∞

w2hw̄2h̄〈0|φ(w, w̄) = 〈0|φ+h,+h̄ (1.131)

For a holomorphic field, this is simply φ(z) =
∑

n∈Z z
−n−hφn and |φ〉 = |h〉 = φ−h|0〉

In order to calculate correlators we also need to define commutators and OPEs. To do

this, first notice that now the time ordering is represented as radial ordering.16

R(A(z)B(w)) :=

{
A(z)B(w) for |z| > |w|
B(w)A(z) for |w| > |z| (1.132)

and using the contour sum in figure 11, the equal time commutator is∮
dz[A(z), B(w)] =

∮
|z|>|w|

dzA(z)B(w)−
∮
|z|<|w|

dzB(w)A(z)

=

∮
C(w)

dzR(A(z)B(w))

(1.133)
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Figure 11: The contour sum at LHS is equivalent to the one on RHS [24]

And normal ordering is defined by N(χφ)(w) =
∮
C(w)

dz
2πi

φ(z)χ(w)
z−w ,or in terms of modes

N(χφ)n =
∑
k>−hφ

χn−kφk +
∑
k≤−hφ

φkχn−k (1.134)

such that φn’s with n > −h are annihilation operators and φn’s with n ≤ −h are creation

operators. In this way we can define OPEs and calculate the correlators between primaries

just as before, again correlators〈X〉 = 〈φ1(w1, w̄1) . . . φN(wN , w̄N)〉 are constrained by con-

formal symmetry, hence n < 4 points functions are fixed in the same form, while n ≥ 4

points functions are determined by bootstrap equation.

The energy momentum tensor is of central importance in d = 2 CFT, and has many nice

properties. First we should notice that in the Euclidean plane the traceless condition for the

energy momentum tensor becomes T00 + T11 = 0, as a consequence, in complex coordinates

T also separates into holomorphic and anti-holomorphic part

Tzz(z, z̄) =: T (z), Tzz(z, z̄) =: T̄ (z̄) (1.135)

with

Tzz =
1

2
(T00 − iT10) , Tzz =

1

2
(T00 + iT10) (1.136)

In this notation, for a general correlator 〈X〉 = 〈φ1(w1, w̄1) . . . φN(wN , w̄N)〉 we have the

following conformal Ward identity

δε,ε̄〈X〉 = − 1

2πi

∮
C

dzε(z)〈T (z)X〉+
1

2πi

∮
C

dz̄ε̃(z̄)〈T̄ (z̄)X〉 (1.137)

where
∮
C

enriches all the field positions (wi, w̄i) appear in 〈X〉. In particular,for a single

primary 〈X〉 = 〈φ(w, w̄)〉 we should recover (1.127),using the residue theorem, we find the

following OPEs

16we usually omit the explicit radial ordering symbol R if it is clear from the context.
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T (z)φ(w, w̄) = h
(z−w)2φ(w, w̄) + 1

z−w∂wφ(w, w̄) + . . .

T̄ (z̄)φ(w, w̄) = h̄
(z̄−w̄)2φ(w, w̄) + 1

z̄−w̄∂w̄φ(w, w̄) + . . .
(1.138)

which can be used as an alternative definition for primary, and using those OPEs, we can

write the conformal Ward identity in differential notation

〈T (z)φ1 (w1, w̄1) . . . φN (wN , w̄N)〉

=
N∑
i=1

(
hi

(z − wi)2 +
1

z − wi
∂wi

)
〈φ1 (w1, w̄1) . . . φN (wN , w̄N)〉

(1.139)

It is important to point out that T (z) itself is not primary, instead it is only a quasi

primary and we have

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ . . . (1.140)

To see this, using the Laurent expansion

T (z) =
∑
n∈Z

z−n−2Ln where Ln =
1

2πi

∮
dzzn+1T (z) (1.141)

because

Qε =
1

2πi

∮
dzε(z)T (z), δεΦ(w) = − [Qε,Φ(w)] (1.142)

hence for ε(z) =
∑

n∈Z z
n+1εn we have

Qε =
∑
n∈Z

εnLn (1.143)

so we should identify Ln as the Virasoro generator in (1.122), then the OPE (1.140) is

equivalent to (1.122). Indeed, under a finite transformation w = f(z), by explicit calculation

we have

T ′(z) =

(
∂f

∂z

)2

T (f(z)) +
c

12
S(f(z), z) (1.144)

where the part deviates from being a primary is called Schwarzian derivative

S(w, z) =
1

(∂zw)2

(
(∂zw)

(
∂3
zw
)
− 3

2

(
∂2
zw
)2
)

(1.145)

Using Ln we can construct the Hilbert space associated with a primary. Begin with

|φ〉 = |h〉 = φ−h|0〉, and notice that

[Lm, φn] = ((h− 1)m− n)φm+n (1.146)
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so L0|h〉 = [L0, φ−h] |0〉 = h|h〉 and Ln|φ〉 = [Ln, φ−h] |0〉 = (h(n + 1) − n)φ−h+n|0〉 = 0 for

n > 0, while applying L−n repeatedly generates descendants of the form

L−k1L−k2 · · ·L−kn|h〉 (1 ≤ k1 ≤ · · · ≤ kn) (1.147)

For |ψ〉 = L−k1L−k2 · · ·L−kn|h〉 we have L0 |ψ〉 = (k + h) |ψ〉 where k =
∑

i ki is defined as

the level of |ψ〉, for example the first few descendants are

Field State Level

φ(z) φ−h|0〉 = |h〉 0

∂φ L−1φ−h|0〉 1

∂2φ L−1L−1φ−h|0〉 2

N(Tφ) L−2φ−h|0〉 2

∂3φ L−1L−1L−1φ−h|0〉 3

N(T∂φ) L−2L−1φ−h|0〉 3

N(∂Tφ) L−3φ−h|0〉 3

. . .
The collection of |h〉 along with its descendants is a collection of representations of Vi-

rasoro algebra, i.e. a Verma module with the primary as the irreducible highest weight

representation, we will denote it as V (c, h). Using operator-state correspondence, we can

also represent L−n’s as differential operators act on correlators〈
L̂−nφ(w)φ1 (w1) . . . φN (wN)

〉
= L−n 〈φ(w)φ1 (w1) . . . φN (wN)〉 (1.148)

with

L−n =
N∑
i=1

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1∂wi

)
(1.149)

Finally, here we give two basic examples of 2d CFT, first we have the free boson defined

by the action

S =
1

4π

∫
dzdz̄∂X · ∂̄X (1.150)

There are two types of primary, one type is j(z) = i∂X(z, z̄), j̄(z̄) = i∂̄X(z) with (h, h̄) =

(1, 1) and the following OPE

〈j(z)j(w)〉 =
1

(z − w)2
(1.151)

another type is so the called vertex operator, it is an operator of the form V (z, z̄) =: eiαX(z,z̄) :

with dimension (h, h̄) =
(
α2

2
, α

2

2

)
with OPE

〈V−α(z, z̄)Vα(w, w̄)〉 =
1

(z − w)α2(z̄ − w̄)α2 (1.152)

In this theory c = 1 and the energy momentum tensor is T (z) = 1
2
N(jj)(z), with a similar

antiholomorphic part. Correspondingly, the free fermion is defined by the action

S =
1

4π

∫
dzdz̄(ψ∂̄ψ + ψ̄∂ψ̄) (1.153)
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where we must specify the (anti)periodic condition

ψ
(
e2πiz

)
= +ψ(z) Neveu-Schwarz sector (NS),

ψ
(
e2πiz

)
= −ψ(z) Ramond sector (R).

(1.154)

with r ∈ Z + 1
2

Neveu-Schwarz sector (NS), r ∈ Z Ramond sector (R) for the mode in-

dex. ψ and ψ̄ are primaries with conformal dimensions (h, h̄) =
(

1
2
, 0
)
, and (h, h̄) =

(
0, 1

2

)
respectively, with the following OPE

ψ(z)ψ(w) =
1

z − w
(1.155)

In this theory c = 1
2

and the energy momentum tensor is T (z) = 1
2
N(ψ∂ψ), with a similar

antiholomorphic part.

1.2.3 Representations, symmetries and modularity

We have defined the basic vocabulary of d = 2 CFT in the last section, and we see that the

key data are the central charge c and the primaries (h, h̄). In ordinary QFT,we have some

particles interacting with each other that we want to study, so we first construct fields with

appropriate transformation properties of the symmetry group of the interaction, and then

identify particles as quanta of corresponding fields, hence also labeled by representations of

the symmetry algebras, so in essence a QFT is a collection of representations. Although due

to scale invariance, there is no cluster decomposition so we can not identify primaries (h, h̄)

as massless particles in the usual sense, but it is still reasonable to say that a CFT is just

a collection of primaries as irreducible representations of conformal algebras. Especially for

2d CFT, it is a collection of Verma modules of Virasoro algebra, and due to chirality it has

a tensor structure.

This allows us to identify a 2d CFT as an inner product space H, which is a direct sum

of tensor products of Verma modules as representations of V irc × V irc̄ [18, 122]

H =
⊕
h,h̄

V (h, c)⊗ V̄ (h̄, c̄) (1.156)

such that

� Vacuum

|0〉 with (h, h̄) = (0, 0) exists and is unique, it is invariant under global conformal

transformations

� Operator-state correspondence

To each vector α ∈ H, there is an associated operator Φα(z), in particular |0〉 corre-

sponds to unit operator. These field operators have OPEs, and for a given Φα(z) there

is a conjugate Φα′ such that ΦαΦα′ contains a descendant of the unit operator.
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� Primary

Chrial/anti-chrial primaries |h〉 and |h̄〉 are highest weight vectors of V (h, c) and V̄ (h̄, c̄)

respectively, with Virasoro algebra generators Ln and L̄n act on them.

� Analyticity

The correlators of chiral fields are analytic functions of z

� Modularity

The correlators and the one loop partition functions are modular invariant, i.e. V (h, c)

and V̄ (h̄, c̄) should be paired in a restricted but not arbitrary way.

The first four properties are obvious, while the last one will be discussed later, now it

is enough to say that if V̄ = V , i.e. c = c̄, h = h̄, then modularity is always satisfied, such

theories are called diagonal, and for simplicity we will treat the holomorphic part V (c, h)

only.

The core concept underlying the above formalism is the chiral operator T (z), which is

physically the energy momentum tensor. We know that in QFTs it is common to have con-

served currents other than the energy momentum tensor, in d = 2 CFTs they are represented

by chiral operators W (z)’s, for example the current operator j(z) in the free boson theory

(1.150) . Given W (z), there is usually an associated larger symmetry algebra W containing

the Virasoro algebra as a subalgebra, where we can take the Laurent modes Wn of W (z)

as the generators of W with a consistent set of commutators [Wn, Lm], [Wn,Wm], for exam-

ple [L0,Wn] = −nWn, this is called W-algebra. Using W-algebra, W-primaries are defined

and realized as special combinations of Virasoro primaries, with a similar construction for

the antiholomorphic part W̄ , we can have the diagonal theory W ×W and direct sums of

corresponding modules

HW =
⊕
i,̄i

Mi ⊗ M̄ī (1.157)

In principle the possible number of primaries in a CFT can be infinite, and this is indeed

the case in generic settings, but for some special theories there are finite many primaries

only, or sometimes we can reorganizing infinite many Virasoro algebra modules into finite

W-algebra ones, then we have rational conformal field theories, the term rational originates

in the fact that c, h are rational numbers in those theories, we will denote it as

H =
⊕

h∈I,h∈Ī

M(c, h)⊗M(c, h̄), |I|, |Ī| <∞ (1.158)

and using M(c, h) to denote its (reduced) Verma module or more general W-algebra module.

In this section we will introduce two different kinds of RCFT, the (Virasoro) minimal model

and the WZW model, where the former involves Virasoro algebra only and the later is a

special type of W-algebra induced by current operators J(z).
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Before we get to concrete constructions, it is useful to first introduce the notation of the

fusion rule for d = 2 CFT. We will only cover the basic notations here, a more abstract

formalism using category is also summarized briefly in the appendix A.3.1, for a more sys-

tematic development see [73]. Indeed d = 2 CFTs have some properties very similar with

d = 3 TQFTs, i.e. we can define brading and fusion processes through OPEs. In CFT, OPEs

or correlators calculation is a basic problem, and once we have calculated all four point func-

tions, the theory is solved, practically the OPEs contain almost all the information we want.

However, OPEs are basis dependent, and we have to specify the field points xi as well as

some normalization constants to obtain Ck
ij. This problem is similar to the Clebsch–Gordan

coefficients calculation, but in that case we know there is a basis independent way to encode

the information, that is, using irreducible decomposition of tensor products of representa-

tions. In this sense fusion rules are just the basis independent reformulation of OPEs based

on the following two facts:

� As we have seen above, fields are organized into direct sums of modules of corresponding

algebras, in particular primaries φi are just highest weight modules and the descendants

are determined by them to form families [φi], so we only need to consider OPEs between

primaries

� Like Ward identities, the OPEs

φi(z, z̄)φj(w, w̄) =
∑
k

Ck
ij(z, w, z̄, w̄)φk(w, w̄) (1.159)

are operator equations valid inside correlators and they are closed, hence constitute a

closed associative operator algebra

[φi]× [φj] =
∑
k

N k
ij[φk] (1.160)

Technically, we define fusion as follow:

� If we have

φi(z, z̄)φj(w, w̄) =
∑
k∈I

Ck
ij(z−w)−∆i−∆j+∆k(z̄− w̄)−∆̄i−∆̄j+∆̄k [φk(w, w̄) + . . .] (1.161)

or equivalently Ck
ij = limz,z̄→∞ z

−2∆k z̄−2∆̄k 〈φi(0, 0)φj(1, 1)φk(z, z̄)〉 is nonvanishing, we

say N k
ij > 0, hence it counts the number of distinct coupling constants between pri-

maries appear on the RHS of the OPE.

To obtain the exact values of N k
ij we need to specific overall normalization constants.

While in simple theories such as Virasoro minimal models , this is unnecessary as

N k
ij = 0, 1 only, however, in more complicated examples, it is possible to have N k

ij > 1

and we need extra labels such as C
k;(1)
ij η

k;(1)
ij + C

k;(2)
ij η

k;(2)
ij + . . . to do proper counting.
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In practice, such calculations are rather cumbersome, and one usually begins with a

set of well defined fusion rules based on representation theoretical considerations and

using it to calculate the OPEs, but in principle one can obtain N k
ij from Ck

ij and vice

versa.

� Then it is obvious that 1φi(z, z̄) = φi(z, z̄) so the vacuum serves as the identity 1 ×
[φi] = [φi] of this algebra, and the antiparticle or involution φ+

i of φi is defined by〈
φi(z, z̄)φ+

i (w, w̄)
〉

= (z − w)−2∆i(z̄ − w̄)−2∆̄i (1.162)

such that [φi]× [φ+
i ] = 1 + · · ·

Fusion rules are indeed closely related to conformal blocks:

� Follow the bootstrap rule, the four-point function

F(z, z̄) ≡ Fijkl(z, z̄) = 〈φi(z, z̄)φj(0, 0)φk(1, 1)φl(∞,∞)〉 (1.163)

is given by a sum over products of chiral and anti-chiral blocks

F(z, z̄) =
M∑
m=1

M̄∑
m̄=1

amm̄Fm(z)F m̄(z̄) (1.164)

where the number M ≡Mijkl of blocks is

M =
∑
n∈I

N n
ijNnkl (1.165)

with an appropriate normalization we also have amm̄ = amδm̄,σ(m) with some permuta-

tion σ and am = Cm
ij Cmkl.

� We can also define F-move and braiding matrices F,B by

Filkj,p(z) =
∑
m

Fpm

[
jk
il

]
Fijkl,m

(
z−1
)

Fikjl,n(z) =
∑
m

Bnm

[
jk
il

]
Fijkl,m(1− z),

(1.166)

Then we will have hexagon and pentagon equations, this eventually leading to the

categories we discussed in appendix A.3.1. And we can verify that just like the fusion

rules of anyons, the CFT fusion rules are well defined and consistent. However it should

be pointed out that the fusion rules we have constructed are not identical to irreducible

decomposition of tensor products of representations of Virasoro algebra or W-algebra

as in that case quantities such as central charges ci, ck should sum up rather than

stay the same. The point is, when view fusion rules as tensor products, the collection

of modules in a CFT are the objects of a rigid braided monoidal category, while for

RCFT it is indeed a modular tensor category, hence we have a pure algebraic way to

characterize them.

43



As the simplest example of RCFT, given H , using the commutation relations of Vira-

soro algebra, the norm 〈χ|χ〉 of a generic state |χ〉 , either primary or descendant, can be

calculated, and it is possible that 〈χ|χ〉 ≤ 0

� If 〈χ|χ〉 = 0, then |χ〉 is a null state, we may want to quotient out all of such |χ〉 by

identifying |ψ〉 ∼ |ψ〉 + α |χ〉 as physical states to obtain a new theory H′, this new

theory may again contain null states |χ′〉 so we repeat quotient out them, for some

special H if we do this in a very careful and consistent eventually we can arrive at a

RCFT

� If 〈χ|χ〉 < 0 the theory is non-unitary, 17 if we want unitary theories we have to adjust

the value of c, h, it terms out that either

c ≥ 1, h ≥ 0 (1.167)

or they take some special discrete rational values only, labeled by a natural number m

c = 1− 6
m(m+1)

hrs(m) = [(m+1)r−ms]2−1
4m(m+1)

(1 ≤ r < m, 1 ≤ s < r)
(1.168)

Combine those two facts we can construct a series of RCFT, namely the minimal models:

Hmin =
⊕
1≤<p′
1≤s<p

M (c, hr,s)⊗ M̄ (c, hr,s) (1.169)

where p > p′ ≥ 2 are two coprime integers and

c = 1− 6
(p− p′)2

pp′

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′

(1.170)

the theory is unitary iff p = p′ + 1 = m+ 1.

In minimal models we can label a generic primary as φ(r,s) where the following identifi-

cation rule is understood

φ(r,s) = φ(p′−r,p−s) (1.171)

Minimal models are completely solvable and the fusion rules are known explicitly as

φ(r,s) × φ(m,n) =

min(r+m−1,2p′−1−r−m)∑
k = 1 + |r −m|
k + r +m = 1( mod 2)

min(s+n−1,2p−1−s−n)∑
l = 1 + |s− n|
l + s+ n = 1( mod 2)

φ(k,l) (1.172)

17it should be noted that this does not mean nonphysical as many physical systems such as Lee-Yang

model are described by non-unitary theories
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the mod2 restrictions are equivalent to increment by 2 instead of 1, for simplicity, sometimes

we will simply use
∑′ to denote a sum with this restriction, and use (r, s) for φ(r,s), kmax, lmax

and kmin, lmin for the upper and lower bounds of k, l, and the model it self is denoted as

M(p, p′). Minimal models also have a lot of applications, in particular the first few ones

are well known models for two dimensional phase transitions, M(5, 2) the simplest but non-

unitary one is the Lee-Yang model, while M(4, 3) the simplest unitary one is the Ising

model, then we have M(5, 4) as the tricritical Ising model and M(6, 5) as the three-state

Potts model.

Up to now we have assumed that our spacetime is the complex plane C, or its conformal

compactification, the Riemann sphere S2. We may also want to define CFTs on general two

dimensional manifolds, especially on oriented compacted ones, as we can always perform con-

formal compactification. We know from topology that two dimensional oriented compacted

manifolds are just compact Riemann surfaces and they are labeled by their genus g, with

g = 0 for Riemann sphere S2, g = 1 for torus Tτ = C/(Z + τZ), and g = n for the generic

case as a sphere with n handles, or identically, as a connected sum of n tori. Physically,

CFTs on g > 0 surfaces correspond to perturbative expansions of string amplitudes, where

the g = 1 case of one loop processes is especially important, these CFTs on Tτ can also

be interpreted as periodic systems on both space and time directions, which are common

in the context of statistical mechanics. The set of consistency constrains for a CFT to be

well defined on Tτ is called modularity, and more generally we will have sewing conditions as

consistency constraints for CFT on higher genus surfaces. Basically, we want the partition

function on Tτ
Z(τ) = Tr

(
qL0−c/24q̄L̄0−c/24

)
(1.173)

with q = exp 2πiτ, q̄ = exp−2πiτ̄ to be modular invariant.

To analyze the action of modular group PSL(2,Z) on Z(τ),we first introduce the formal

graded-dimension of V (c, h) as

χh(τ) = TrV (c,h)

(
qL0−c/24

)
(1.174)

usually, this is divergent and represents a formal sum only, but for RCFT it reduces to a well

defined function with appropriate modular properties, and since the number of primaries is

finite in RCFT we can rewrite the partition function as a finite sum

Z(τ) =
∑
h,h̄

Mh,h̄χh(τ)χ̄h̄(τ̄) (1.175)

with Mh,h̄ counts the possible multiplicity of M(c, h)⊗M(c, h̄) in H, for simplicity we can

always order the index set I of primaries and assume χ0 corresponds to vacuum, i.e. we

denote the RCFT and its partition function as

H =
⊕

i∈I ,̄i∈I

Mi,̄iMi ⊗Mī, Z =
∑

i∈I ,̄i∈I

Mi,̄iχi(τ)χī(τ) (1.176)
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then under modular transformation γ =

(
a b

c d

)
∈ PSL(2,Z) we demand that

χi(γτ) =
∑
j

ρ(γ)ijχj(τ) (1.177)

with some modular representationρ : PSL(2,Z) → GL(V ) on the space of characters, in

particular for the generator S : τ → −1/τ, T : τ → τ + 1 we just omit ρ and write

χi

(
−1

τ

)
=

N−1∑
j=0

Sijχj(τ), χi(τ + 1) =
N−1∑
j=0

Tijχj(τ) (1.178)

then modularity just means

Z(τ) = Z(Sτ) = Z(T τ) (1.179)

And this reduces to construct the natural number valued matrix Mi,̄i compatible with

the actions of S, T .
M0,0 = 1

MT = TM
MS = SM

(1.180)

Obviously, the identity matrix is a trivial solution and it corresponds to diagonal theories,

but other solutions do exist. For example for minimal models, the complete solutions are

known, and quite surprisingly it has an ADE pattern classification.

We can choose a basis such that T is diagonal

Tij = δije
2πi(hi− c

24) (1.181)

usually the representation of S in this basis is refereed as the S-matrix. For example, for

minimal models we have

Srs;ρσ = 2

√
2

pp′
(−1)1+sρ+rσ sin

(
π
p

p′
rρ

)
sin

(
π
p′

p
sσ

)
(1.182)

S-matrix has the very important property such that it is related to the fusion rules as

Nijk =
∑
m

SimSjmSmk
S0m

(1.183)

This is the CFT version of the Verlinde formula, we see for example from (1.182), that the

elements of S matrix are usually complicated, in general they are not rational numbers,

but the special combinations on the right hand side of Verlinde formula indeed reproduce

the natural numbers on the left hand side. This formula has many generalizations and the

appearance of those natural numbers can be interpreted as dimension counting of certain

spaces of representations.[145]
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The (Virasoro) minimal models we have introduced above are ’minimal’ in the sense

that they are the only RCFT realization of a CFT with conformal symmetry, i.e. Virasoro

algebra, only. But a CFT may have extra symmetries hence a larger algebra with Virasoro

algebra as a subalgebra, it is possible to combine infinite many Virasoro algebra irreducible

representations to form a single irreducible representation of this larger algebra, and an

RCFT can be constructed with respect to such representations.The WZW model we have

mentioned in the discussion of Chern-Simons theory is a typical example of this kind, where

the larger algebra is an affine Lie algebra ĝk at level k, another common example is super

conformal field theory where we have super conformal algebra, there are other options beyond

those two as well, such as W-algebra, but we are mainly interested in the WZW model and

we here will introduce more details about it.

In the free boson example, we have dimension h = 1, h̄ = 1 primary j(z), j̄(z̄), which

is very special as it is related to a conserved current. We will call such a chiral field with

h = 1 as (chiral) current, and similar for anti-chiral case. The most general OPE between

two currents are

Ja(z)J b(w) ∼ kδab
(z − w)2

+
∑
c

ifabc
J c(w)

(z − w)
(1.184)

or in terms of Laurent modes[
Jan, J

b
m

]
=
∑
c

ifabcJ
c
n+m + knδabδn+m,0 (1.185)

but those are just the commutators of an affine Lie algebra ĝk with level k, and we indeed

have the following concrete realization of such currents through WZW model

SWZW =
k

16π

∫
d2xTr′

(
∂µg−1∂µg

)
+ kΓ (1.186)

where the first part is a nonlinear sigma model with g(x) a bonsonic field takes values in the

(semisimple) Lie group G of g as the finite part of ĝk with some representation, and the trace

is normalized by the Dynkin index as Tr′ = 1
xrep

Tr and xλ = dim |λ|(λ,λ+2ρ)
2 dim g

for convenience.

And the WZW term is given by

Γ =
−i
24π

∫
B

d3yεαβγ Tr′
(
g̃−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃

)
(1.187)

with B some tree manifold such that ∂B is the compactification of our two dimensional

spacetime, and g̃(x) extends g(x) to B. Then the equation of motion in complex coordinate

is

∂z
(
g−1∂z̄g

)
= 0 (1.188)

So we can define the conserved currents as

J(z) ≡ −kJz(z) = −k∂zgg−1

J̄(z̄) ≡ kJz̄(z̄) = kg−1∂zg
(1.189)
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Then in terms of the Lie algebra generator ta we have J =
∑

a J
ata and similar expansion

for anti-chiral part. And we have the energy momentum tensor as the sum of the normal

ordered products of current

T (z) =
1

2 (k + Cg)

dim g∑
a=1

: (JaJa) (z) : (1.190)

where Cg is the dual Coxeter number of g, this is known as Sugawara construction, and it

gives the central charge

c =
k dim g

k + Cg

(1.191)

Using Sugawara construction, we can also represent the Virasoro algebra as

Ln =
1

2(k + Cg)

∑
a

∑
m

: JamJ
a
n−m : (1.192)

and the full algebra is

[Ln, Lm] = (n−m)Ln+m + c
12

(n3 − n) δn+m,0

[Ln, J
a
m] = −mJan+m[

Jan, J
b
m

]
=
∑

c ifabcJ
c
n+m + knδabδn+m,0

(1.193)

We identify the highest weight representation λ̂ of ĝk with finite part λ as the highest

weight representation of ĝ. For simplicity we just call it as λ, then a WZW primary is a field

such that
Ja0 |φλ〉 = −taλ |φλ〉
Jan |φλ〉 = 0 for n > 0

(1.194)

It has dimension

hλ =

∑
a t

a
λt
a
λ

2(k + Cg)
=

(λ, λ+ 2ρ)

2(k + Cg)
(1.195)

where ρ = 1
2

∑
α∈∆+

α is the Weyl vector as the half sum of positive roots of g.

In WZW models the general correlators between primaries are solutions of the Knizh-

nik–Zamolodchikov Equation[
∂zi +

1

k + Cg

∑
i 6=i

∑
a t

a
i ⊗ tai

zi − zi

]
〈φ1 (z1) · · ·φn (zn)〉 = 0 (1.196)

An appropriate character χλ̂ can be defined for λ̂ in terms of affine Lie algebra data as

χλ̂ = e−mλ̇δ chλ̂ =

∑
w∈W ε(w)Θw(λ̂+ρ̂)∑
w∈W ε(w)Θwρ̂

(1.197)

along with the corresponding S-matrix18

18see standard textbook such as[71] for more details
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Sλ̂µ̂ = i|∆+| |P/Q∨|−
1
2 (k + Cg)

−r/2
∑
w∈W

ε(w)e−2πi(w(λ+ρ),µ+ρ)(k+Cg) (1.198)

while in our later calculations we only need the following special case of ĝ = ŝu(2)k theory

S matrix

Sλ̂µ̂ =

[
2

k + 2

] 1
2

sin

[
π (λ1 + 1) (µ1 + 1)

(k + 2)

]
0 ≤ λ1, µ1 ≤ k (1.199)

The fusion rules of generic WZW models are quite complicated, so in the following we

will just mention some general features of them, and as typical examples we will focus

on ĝ = ŝu(N)k A-series. The fusion rules are closely related to the corresponding tensor

representation decomposition rules in Lie algebras, in some sense they are truncated version

of tensor representation decomposition rules, hence the latter can be viewed as the k → ∞
classical limits.

N ν
λµ = lim

k→∞
N (k)v̂

λ̂µ̂
(1.200)

and

N (k)v̂

λ̂µ̂
≤ N (k+1)v̂

λ̂µ̂
(1.201)

indeed we have a finer result as

N (k)v̂

λ̂µ̂
=

{
max(i) such that k ≥ k

(i)
0 and Nλµν 6= 0

0 if k < k
(1)
0 or Nλµν = 0

(1.202)

and this defines the so called threshold level k
(i)
0 , after which the fusion of λ̂×µ̂ will produce ν̂

exactly as tensor representation decomposition. More explicitly, the fusion coefficient N (k)v̂

λ̂µ̂

is given by the following Kac-Walton formula as a special kind of alternative sums of N ν
λµ

N (k)v̂

λ̂µ̂
=
∑
w∈Ŵ
w·v∈P+

Nλµw·vε(w) (1.203)

the fusion coefficient also has a symmetry property associated with the action A ∈ O(ĝ) of

the outer automorphism group

NAA′(v̂)

A(λ̂)A′(µ̂)
= N v̂

λ̂µ̂
(1.204)

except for Ê8 with k = 2, in all WZW models A ∈ O(ĝ) can be realized as fusion with a

simple current i.e. an abelian anyon a which acts in fusion rules as permutations:

λ̂× µ̂ =
∑

imiν̂i
amλ̂× anµ̂ = am+n (

∑
imiν̂i) =

∑
imia

m+nν̂i
(1.205)

and indeed we can identify a with A(I), for example in ĝ = ŝu(N)k, by table 14.1 of [71] we

know O(ĝ) = ZN where a is of the form [0, · · · , k, · · · , 0] , and we can pick a = [0, k, 0, · · · , 0]

as the single generator of O(ĝ) = ZN .
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For ĝ = ŝu(2)k the fusion rules are very simple, and the result is usually expressed in

spin basis j = λ
2

where λ̂ = [k − λ, λ], we have the textbook result on tensor representation

decomposition

j1 ⊗ j2 =

j1+j2∑
j=|j1−j2|

j (1.206)

and the truncated version

j1 ⊗ j2 =

min(j1+j2,k−j1−j2)∑
j=|j1−j2|

j (1.207)

with a = [0, k] and a× λ̂ as group action a[k − λ, λ] = [λ, k − λ]

WZW models can be used to construct other RCFTs through the so called coset con-

struction, historically this method is tailor-made to perform explicit realizations of unitary

minimal models, but it is used wildly beyond this purpose and provides very fruitful appli-

cations. To start, we begin with an affine Lie algebra ĝ and one of its subalgebra p̂ with

embedding index xe, and we observe that the difference of their energy momentum tensors

Tĝ − Tp̂ also behaves as a energy momentum tensor and defines an representation of the

Virasoro algebra with generators L
(g/p)
m ≡ Lgm − Lpm[

L(g/p)
m , L(g/p)

n

]
= (m− n)L

g/p
m+n +

(
c (ĝk)− c

(
p̂xek

)) (m3 −m)

12
δm+n.0 (1.208)

and central charge

c
(
ĝk/p̂xek

)
=
k dim g

k + Cg

− xek dim p

xek + Cp

(1.209)

This is known as Goddard-Kent-Olive (GKO) construction, and we obtain a quotient RCFT

with energy momentum tensor Tĝ − Tp̂, it is referred as the coset ĝk/p̂xek
As the weights in ĝ split into direct sums of weight in p̂ through the following branch

rule

λ̂ 7→
⊕
µ̂

bλ̂µ̂µ̂ (1.210)

after taking trace bλ̂µ̂’s behave as characters,to be more precise we have

χ{λ̂,µ̂}(τ) = e2πiτ(m
λ̂
−mµ̂)bλ̂µ̂(τ) (1.211)

where mλ̂ = |λ+ρ|2
2(k+Cg)

− |ρ|2
2Cg

is the modular anomaly. So the fields in a coset theory are given

by pairs of the form {λ̂, µ̂}, where λ̂, µ̂ are representations in ĝk, p̂xek respectively, but we

can not combine them arbitrarily, instead there are two kinds of constraints:

� Field selection rule

The finite parts of λ̂, µ̂’s have to satisfy the following projection condition in root lattice

Pλ− µ ∈ PQ (1.212)
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� Field identification rule

Fields related to each other by outer automorphisms A 7→ Ã for A ∈ O(ĝ), Ã ∈
O(p̂) are identified

{λ̂; µ̂} ∼ {Aλ̂; Ãµ̂} (1.213)

In a coset theory the S, T matrices are just products up to a complex conjugation

S{λ̂;µ̂},(λ̂′;µ̂′} = S(k)

λ̂λ̂′
S(kx`)

µ̂µ̂′

T{λ̂;µ̂}·(λ̂′;µ̂′} = T
(k)

λ̂λ̂′
T̄

(kxe)
µ̂µ̂′

(1.214)

as a consequence the modular matrix are

M =M(k)M(kxe) (1.215)

and by the Verlinde formula the fusion matrix are

N{λ̂
′′,µ̂′′}

{λ̂,µ̂},{λ̂′,µ̂′} = N (k)λ̂′′

λ̂λ̂′
N (kxe)µ̂′′

µ̂µ̂′ (1.216)

so the fusion matrices are also products.

For our purpose, we will consider only the special case of diagonal embedding g→ g⊕ g,

with coset
ĝk1
⊕ĝk2

ĝk1+k2
and central charge

c = dim g

(
k1

k1 + Cg

+
k2

k2 + Cg

− k1 + k2

k1 + k2 + Cg

)
(1.217)

where the selection rule is

λ+ µ− v ∈ Q (1.218)

and the identification rule is

{λ̂, µ̂; ν̂} ∼ {Aλ̂,Aµ̂;Aν̂} ∀A ∈ O(ĝ) (1.219)

For example, with k + 2 = p ≥ 3 the unitary minimal model M(p+ 1, p) is realized as

ŝu(2)k ⊕ ŝu(2)1

ŝu(2)k+1

(1.220)

More generally we can construct

ŝu(N)k ⊕ ŝu(N)l
ŝu(N)k+l

(1.221)

This works as long as N is relative prime to k, l, otherwise our field identification rule will

have fixed points or points with shorter orbitals under the action of O(ĝ), then we have to

treat such fields separately, the simplest nontrivial example of this kind is given by

ŝu(2)2 ⊕ ŝu(2)4

ŝu(2)6

(1.222)
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Figure 12: Illustration of the 3d to 2d correspondence between GCS
k and GWZW

k .[157]

where the field {λ, µ, ν} = {1, 2, 3} is invariant under the action of O(ĝ) , we have to resolve

it as

f → f1 + f2 : {1, 2, 3} → {1, 2, 3}1 + {1, 2, 3}2 (1.223)

and the corresponding S matrix should be modified appropriately to obtain a well defined

theory, indeed we have a new S̃, if we denote generic fields other than the fixed point f as

a, b, · · · then

S̃ab = 2Sab, S̃f1a = S̃f2a = Sfa (1.224)

and

S̃fifj =
1

2

(
Sff + 1 Sff − 1

Sff − 1 Sff + 1

)
=

(
1
2
−1

2

−1
2

1
2

)
(1.225)

This example will be studied further in chapter four.

Finally, let us briefly mention the correspondence between WZW model and Chern-

Simons theory. The basic idea is very simple, given a three dimensional manifold M and

a Chern-Simons theory with a simple ADE gauge group G of level k, at least locally we

can cut M through a (compact) Riemann surface Σ so at least locally it behaves as R× Σ,

where the R can be viewed as the direction of time so Σ represents a spatial slice. Now

suppose we have a Wilson line W in representation R, it may pierce this spatial slice Σ and

leave marked points Pi on M ,and depending on the orientation we can view these points as

particles carrying representations R or R̄, then we simply label them as Ri or R̄i. They are

indeed well defined anyons, and can be identified as primaries of a Gk WZW model on Σ

insert at Pi’s, see fig 12. For convenience we will call these two theories as GCS
k and GWZW

k

respectively.

Indeed, on the GWZW
k side, the Lagrangian of (1.187) is labeled by an element of

H3(G,Z) (1.226)

Similarly it induces a differential character19 α ∈ Ĥ2(G,R/Z) such that we have the

19those are differential forms such that 〈α, ∂B〉 =
∫
B

Ω(mod1) for some k + 1 form Ω instead of vanish
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natural pairing

S(g) = 〈g∗α, [Σ]〉 (1.227)

But using the bundle map

G→ EG→ BG (1.228)

We have

τ : Hk(BG,F )→ Hk−1(G,F ) (1.229)

And in particular

τ : H4(BG,Z)→ H3(G,Z) (1.230)

While we know from (1.75) H4(BG,Z) classify GCS
k ’s classical actions, so at least at

classical level, this correspondence is valid , and physically this means we take the endpoints

of the world lines of anyons as objects living in a two dimensional boundary of spacetime

and form an interacting theory through the projections of braiding and fusion in three

dimensions.20

Indeed this correspondence holds even after quantization as GCS
k and GWZW

k will get the

same Hilbert space HΣ:

� On the GCS
k side, we first construct the moduli space M of classical solutions with

gauge fixing constrains, it turns out it is finite dimensional and compact. By intro-

ducing a complex structure J , MJ becomes Kähler, essentially it is the moduli space

of some special line bundles, then HΣ is the corresponding space of sections and it

does not depend on J .The above construction is for the partition function only, more

generally, we need to consider Riemann surface with marked points (Σ, Pi, Ri) to deal

with correlators.[157]

� On the GWZW
k side, the same object MJ and HΣ appear again, but as the space of

conformal blocks on Σ. Now the correlators are linear combinations of products of

holomorphic and antiholomorphic blocks, and when genus is nonzero suitable gluing

conditions have to be implemented, which eventually lead to the abstract form (1.157)

of HΣ as a direct sum of representations of affine Lie algebra ĝk[146].

For example when G = SU(N) ,M is the moduli space of all stable rank N holomorphic

vector bundles L’s of vanishing first Chern class c1(L) = 0, and HΣ is the space of global

holomorphic sections of L⊗k. And as a consequence the Verlinde formula can be viewed as

a dimension counting formula of these spaces, see[145] chapter 11.

While the above discussion holds at general level, it is very abstract, concretely there

are several ways to realize this correspondence, an elementary one is as follow(for simplicity,

assume Σn = M2 as the d = 2 Minkowski space and G = SU(2))[43]:

20this map τ is not onto, so only a subset of WZW models are obtained, see [93, 63]
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� Imagine a stack of Σn with a discrete transverse dimension of a N sites periodic chain,

where we put on each layer a GWZW
k theory with field gn. Then introduce a set of

gauge fields Aµ,n coupling between two layers such that gn is left-coupled to Aµ,n and

right-coupled to Aµ,n+1, so we have

Sn = kW [gn] + I [gn, A±,n, A±,n+1] (1.231)

where kW denotes the original WZW action, and I is a suitable interaction term.

Although the individual term Sn is not gauge invariant, the overall action S =
∑

n Sn
is.

� Then by identifying

gn = exp

(
−
∫ x3+a

x3

A3

(
x+, x−, x3

)
dx3

)
' −aA3 (1.232)

and taking the limit of infinite many sites N → ∞ and infinite small lattice spacing

a→ 0 with constant Na, we have

lim
a→0,N→∞

S =
k

2π

∫
M2×S1

d3xεijk Tr

[
Ai∂jAk −

2

3
AiAjAk

]
≡ SCS (1.233)

� By a careful analysis, a discrete version of Wilson loop can be defined as

Rj

(
x+, x−

)
= Trj

N∏
n=1

e−aA3(x+,x−,na+a/2) (1.234)

where j label the spin, then we have the following continuum limit

Rj

(
x+, x−

)
−→a→0 Trj P

(
e−

∫
C dx

µAµ
)

(1.235)

The key point is that these Rj operators are living in WZW theories, so by calculating

their correlators and taking limits we can calculate Chern-Simons correlators.

Because of this CS-WZW correspondence, we will mainly use the language of Chern-

Simons theory in later chapters, especially in section 4.3 where we analyze GCS
k theories and

the corresponding cosets.

1.3 Supersymetry

Supersymmetry, or SUSY in short, is an extension of spacetime symmetry, it bypasses the

Coleman–Mandula theorem by using spinor charges instead of the usual scalar ones, and

as a result bosons and fermions are related to each other. Since its discovery in the 1970s,

suspersymmetry has been used widely in physics and mathematics.
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� Supersymmetric extensions of physical theories are studied intensively, especially in

gauge theory and string theory, this generates a lot of surprising results and deep

insights, even for non-supersymmetric systems. In many important situations, super-

symmetry will bring in highly nontrivial constraints into the theoretical models such

that full or partial analytic solutions are possible, and those solutions in turn will re-

veal some generic features of those theories, in particular one can study the process of

supersymmetry breaking and see what remains. And unlike TQFT and CFT, some su-

persymmetric QFTs have cluster decomposition property hence scattering amplitudes

exist, which makes them useful as more realistic toy models of generic quantum field

theories with scattering interactions.

� Supersymmetry has found a wide range of applications. For example, in particle

physics, supersymmetry will lead to amplitude cancellations, hence modify the RG

behavior, and through this it provides a natural way to resolve the Higgs hierarchy

problem of the standard model, it also makes the coupling constants converge in the

grand unification scale, and more generally it is used to construct extensions of the

standard model. As another example, supersymmetry is mandatory for consistent

tachyon free string theory, the resulting superstrings have central importance in the

development of string theory along with its applications. Finally supersymmetry is also

used widely in other areas of physics such as quantum mechanics, condensed matter

physics and statistical mechanics.

� Supersymmetry is also important in mathematics, it extends some mathematical ob-

jects found in quantum field theories to supersymmetric ones such as super versions of

groups, Lie algebras, manifolds and bundles, which are rich in structures with surpris-

ing new features. For example, using supersymmetric quantum mechanics, a simple

proof of the Atiyah–Singer index theorem is found, this also gives it a nice physical

interpretation. And the very fact of the existence of supersymmetry in a QFT is indeed

closely related to the algebraic and geometric properties of the underlying spacetime

manifold, as a very basic example, the amount of supersymmetries allowed in a QFT

depends on the spacetime dimensions and spin structures, as another example, com-

plex manifolds, algebraic curves or surfaces appear naturally as vacuum moduli spaces

of supersymmetric QFTs and superstrings.

In this section we first introduce the basic notations regarding supersymmetry[147, 5],

then analyze the structure of moduli space of supersymetric gauge theories[152, 103, 8],

finally we introduce the superconformal index[153, 74].
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1.3.1 Quantum field theory with supersymmetry

To illustrate the general idea, we will begin with a toy model, i.e. the supersymmetric version

of the harmonic oscillator in quantum mechanics.

L =
1

2
ẋ2 − 1

2
x2 + iψ̄ψ̇ − ψ̄ψ (1.236)

where we simply add the Lagrangians of the usual bosonic harmonic oscillator and its Grass-

mann number version together, then after quantization we have

H =
1

2
p2 +

1

2
x2 + ψ̄ψ =

(
a†BaB + a†FaF

)
(1.237)

where
[
aB, a

†
B

]
= 1 and

{
aF , a

†
F

}
= 1 with

a†B =
1√
2

(−ip+ x), aB =
1√
2

(ip+ x), a†F = ψ̄, aF = ψ (1.238)

We can solve this model exactly to obtain the partition function by simply multiplying

the partition functions of bosonic and fermionic oscillators

Z = ZBZF =
1 + e−β

1− e−β
(1.239)

If we define Q = a†BaF and Q̄ = a†FaB, which are in some sense just like the square roots of

the Hamiltonian H, then the following super algebra is obtained

[Q,H] = [Q̄,H] = 0, {Q, Q̄} = H (1.240)

In this system, excited sates are |χB, n〉 ≡
(
a†B

)n
|0〉, |χF ,m〉 ≡

(
a†B

)m
a†F |0〉, we also find

that the fermionic number F =
∑
a†FaF is conserved mod2, hence we have a discrete Z2

symmetry given by (−1)F , this induces a natural 2− grading for excited sates such that there

is a bijection between the bosonic and the fermionic parts, notice that here the vacuum is

bosonic and unique.

Now if we turn on some generic interaction by the introducing the following super-

potential W (x)

L =
1

2
ẋ2 − 1

2
W ′(x)2 + iψ̄ψ̇ −W ′′(x)ψ̄ψ (1.241)

instead of the harmonic superpotential W (x) = x2/2 , we can not solve this system exactly,

but since W (x) preserves supersymmetry, it should keep the boson fermion correspondence,

except for possible zero modes, which is captured by the following Witten index

I = Tr(−1)F e−βH (1.242)

Usually, there are different vacua , and some of them break SUSY, if SUSY is not broken,

Witten index must vanish. More generally this index depends only on the structure of vacua,
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and in a sense it classifies the vacua since its value is invariant under deformations as long as

the associated Hilbert space remains the same. So to calculate it we can either take β → 0

or β → ∞, and by knowing this index and identifying different expressions under different

limits, a lot of information can be gained.

In the same spirit, we would like to study supersymmetric quantum field theories, just like

our treatment of CFT, in this section we will analyze superalgebra and its representations in

general first, and introduce physical realizations of such representations as supersymmetric

quantum fields. Then in the next section we will study the moduli space of these theories

and the related dualities. Finally we will combine supersymmetry with conformal symmetry

to obtain some SCFTs and introduce the related superconformal indexes.21

As the first step we can generalize (1.240) to the super Poincaré algebra

[Qα, J
µν ] = (σµv)α

βQβ,
[
Q̄α̇, J

µν
]

= εα̇β̇ (σ̄µv)β̇ γ̇γ̇

[Qα, P
µ] = 0,

[
Q̄α̇, P

µ
]

= 0{
Qα, Q̄α̇

}
= 2σµαα̇Pµ, {Qα, Qβ} =

{
Q̄α̇, Q̄β̇

}
= 0

(1.243)

In addition, we can assign an U(1) charge to the superalgebra generators Q, Q̄ by the fol-

lowing automorphism

Qα 7→ Q′α = eiαQα, Q̄α̇ 7→ Q̄′α̇ = e−iαQ̄α̇ (1.244)

This is called the U(1) R symmetry

[Qα, R] = Qα,
[
Q̄α̇, R

]
= −Q̄α̇ (1.245)

The above super Poincaré algebra can be viewed as a trivial central extension of the usual

Poincaré algebra, more generally one can haveN pairs of super generators with non-vanishing

central charges as{
Qa
α, Q̄bβ̇

}
= 2σµ

αβ̇
Pµδ

a
b ,

{
Qa
α, Q

b
β

}
= εαβZ

ab,
{
Q̄aα̇, Q̄bβ̇

}
= εα̇β̇Z̄ab (1.246)

with more general R symmetry groups as subgroups of U(N )

Qa
α 7→ Qa′

α = Ra
bQ

b
α, Q̄aα̇ 7→ Q̄′aα̇ = Q̄bα̇

(
R†
)b
a

(1.247)

We can construct particle states as finite dimensional representations of super Poincaré

algebra, they are called multiplets, but since the super Poincaré algebra is larger, such mul-

tipets are given by combinations of usual particle states, and it is obvious that by symmetry

there should be a Boson-Fermion pairing, just as in ordinary quantum field theory we dis-

tinguish the massless and massive cases

21For more information about spinor and superalgebra, see standard textbooks such as [5, 147].
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� Massless representation

We go to a lightlike frame pµ = (E, 0, 0, E) and define helicity as in Poincaré algebra,

now the super algebra generators satisfy
{
Q1, Q̄i

}
= 4E with Q2 = Q̄2 = 0, then we

take the state |Ω〉 of minimal helicity λ, we find that it is annihilated by Q1, so Q̄i is

the creation operator, along with the CPT conjugations we have

|pµ,±λ〉 ,
∣∣∣∣pµ,±(λ+

1

2

)〉
(1.248)

The λ = 0 case is called chiral multiplet

The λ = 1
2

case is called vector multiplet

More generally ifN > 1 ,there is still a unique |Ω〉 and we just act Q̄ai with a = 1, . . . ,N
on it to obtain 2N different states

� Massive representation

Similarly, we go to the rest frame pµ = (m, 0, 0, 0) of the particle and define mass and

spin, if the central charges are trivial, we have Z = 0 and
{
Qa
α, Q̄bβ̇

}
= 2mδab (σ0)αβ̇ =

2mδab

(
1 0

0 1

)
αβ̇

so now we have twice the number of creation operators

abα =
Qb
α√

2m
,
(
a†
)a
α̇

=
Q̄a
α̇√

2m
(1.249)

Again we can find the state |Ω〉 with lowest spin so in total we have 22N states. If

Z 6= 0 we may pick a special basis and write it in the Jordan canonical form such that

Zab =



0 q1 0 0 0 · · ·
−q1 0 0 0 0 · · ·

0 0 0 q2 0 · · ·
0 0 −q2 0 0 · · ·
0 0 0 0

. . .
...

...
...

...
. . .

0 qN
2

−qN
2

0


(1.250)

Then redefine Q̃j
α± ≡

(
Q2j−1
α ± (Q2j

α )
†
)

to have

{
Q̃i
α+,
(
Q̃j
β+

)†}
= δijδ

β
α (2m+ qj){

Q̃i
α−,
(
Q̃j
β−

)†}
= δijδ

β
α (2m− qj)

(1.251)
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By construction we have |qj| ≤ 2m for j = 1, . . . ,N /2, this is known as Bogomolnyi-

Prasad-Sommerfield bound or BPS bound for short, if it happens that for k of j we

have |qj| = 2m we will have 22(N−k) states only, we call such multiplets as 1/2k BPS

multiplets, in summary we have:

k = 0 22N states long multiplet

0 < k < N
2

22(N−k) states short multiplet

k = N
2

2
2N states ultrashort multiplet

To have supersymmetric quantum fields, we can construct infinite dimensional field rep-

resentations of super Poincaré algebra, using operator valued distributions to realize them

and make sure they obey the basic axioms, in parallel of the formal constructions in ordinary

quantum field theory introduced in appendix B.2.1.

In practice, one usually begins with simple Lagrangian theories, which are supersymmet-

ric generalizations of well known quantum field theories, especially the d = 4 ones in the

standard model. In the following we will assume d = 4, if it is not the case we will give d

explicitly. As a simple example, consider a massless free complex scalar and a massless free

left-handed Weyl spinor, add their Lagrangians together

L = −∂µφ∗∂µφ− iψ̄σ̄µ∂µψ (1.252)

we find this Lagrangian is invariant under

δεφ =
√

2εψ, δεψα =
√

2i (σµε̄)α ∂µφ (1.253)

which generates some spinor charges as iδεφ = [εQ + ε̄Q, φ], iδεψ = [εQ + ε̄Q, ψ], but

those transformations are not closed off-shell, we have [δε, δη]φ = 2i (ησµε̄− εσµη̄) ∂µφ and

[δε, δη]ψ = 2i (ησµε̄− εσµη̄) ∂µψ − 2i (ε̄σ̄µ∂µψ) η + 2i (η̄σ̄µ∂µψ) ε so the equation of motion

must be used to obtain [δε, δη] = 2i (ησµε̄− εσµη̄) ∂µ as well. To fix this we can introduce an

auxiliary complex scalar F

Lkin = −∂µφ∗∂µφ− iψ̄σ̄µ∂µψ + F ∗F (1.254)

and define

δεφ =
√

2εψ, δεψα = +
√

2εαF +
√

2i (σµε̄α) ∂µφ, δεF =
√

2iε̄σ̄µ∂µψ. (1.255)

The above Lagrangian is the kinematic part of the Wess-Zumino model, where supersym-

metry appears in the first time, in the full model, a mass term

Lmass = m

(
−1

2
ψψ + ψ̄ψ̄ + Fφ+ F ∗φ∗

)
(1.256)

and a interaction term

Lint = g
(
φ2F + φ∗2F ∗ − ψψφ− ψ̄ψ̄φ

)
(1.257)
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are added.

Similarly one can construct supersymmetric versions of QED and Yang-Mills theories

by such ad hoc trials, since we have only a handful set of renormalizable Lagrangians,

and supersymmetry gives us more stringent constraints, this method works well in many

situations.

But for the convenience of a theoretical treatment, the so called superspace formalism

is used widely, to be concrete assuming we have a N = 1 supersymmetric QFT in (3 + 1)

-dimensional flat spacetime, then we add Weyl spinor coordinates as some sort of quan-

tum spacetime dimensions to the usual coordinates of Minkowski spacetime, this defines a

superspace labeled by

zA =
(
xµ, θα, θ̄α̇

)
(1.258)

More generally this can be viewed as a trivialization on a coordinate chart, similar con-

structions can be done for generic spaces compatible with SUSY and define supermanifolds,

superbundles and so on. Then as a central extension we obtain the super Poincaré group

G(x, θ, θ̄) = e−ixµP
µ+iθQ+iθ̄Q̄ (1.259)

where

G(0, ξ, ξ̄)G(x, θ, θ̄) = G
(
xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄

)
(1.260)

and

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ

Qα̇ =
∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ

(1.261)

It is also convenient to introduce

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ

Dα̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ

(1.262)

Then a generic super field is defined as a formal Taylor expansion in terms of spinor coordi-

nates
F(x, θ, θ̄) =f (1)(x) + θf (2)(x) + θ̄f̄ (3)(x) + θ2f (4)(x) + θ̄2f (5)(x)

+ θσµθ̄f (6)
µ + θ2θ̄f̄ (7) + θ̄2θf (8) + θ2θ̄2f (9)(x)

(1.263)

where f (i) are usual fields with appropriate symmetries:

� f (1)(x), f (4)(x), f (5)(x), f (9)(x) are all scalars

� f (2)(x), f (8)(x) and f (3)(x), f (7)(x) are left- and right-handed Weyl spinors

� f (6)(x) is a vector field
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� f (9) is auxiliary and usually refereed as the D− term, so does f (4), f (5) , they are

refereed as the F− terms.

and under a supersymmetry transformation we have

δεF(x, θ, θ̄) = (εQ+ ε̄Q)F(x, θ, θ̄) (1.264)

There are two important special cases of super field

� Chiral superfield

It is the SUSY version of quark field, defined by the chirality constraint

Dα̇Φ(x, θ, θ̄) = 0 (1.265)

And similarly anti-chiral superfield is defined by

DαΦ† = 0 (1.266)

Then we have the following generic Lagrangian

L = K
(
Φk,Φk†)

|θ2θ̄2 +
(
W
(
Φk
)
|θ2 +W † (Φk†)

|θ̄2

)
(1.267)

where the Kähler potential K is a real function, and the superpotential W (W †) a

(anti)holomorphic function, those terms are named by the corresponding complex ge-

ometric structures associated with this theory. Usually by renormalizability in d = 4

spacetime one has

K = Φ†Φ, W =
m

2
Φ2 +

g

3
Φ3 (1.268)

� Vector superfield

It is the SUSY version of gauge field, defined by the covariant reality constraint

V (x, θ, θ̄) = V †(x, θ, θ̄) (1.269)

with gauge transformation

V 7→ V + Φ + Φ† (1.270)

Then we obtain the following SUSY version of (chiral/anti-chiral) field strengths

Wα = −1

4
DD

(
e−VDαeV

)
, W̄α̇ =

1

4
DD

(
eVDα̇e−V

)
(1.271)

with gauge transformations

Wα 7→ e−iΛWαe
iΛ, W̄α̇ 7→ e−iΛ̄W̄α̇e

iΛ (1.272)

61



and the following super Yang-Mills Lagrangian

S =
1

8π2

∫
d4x Im Tr

(
τ

∫
d2θTr (WαWα)

)
(1.273)

where the super coupling constant is a combination of Yang-Mills coupling and theta

term

τ =
ϑ

2π
+ i

4π

g2
YM

(1.274)

More generally, one can define τ = (τIJ) as a matrix of couplings between different

gauge fields if more than one species are present.

The above superspace formalism is defined for N = 1 theories only, for N > 1 theories we

need to introduce 2N Weyl spinor coordinates θa, θ̄a and define corresponding superspace and

superfields, this is rather cumbersome as there are a lot of auxiliary fields. In practice, one

usually takes a middle way approach by using compatible N = 1 superfields and combining

them together to form N > 1 multiplets. For later applications we are mainly interested in

the N = 2 case, and here we give two basic examples of N = 2 multiplets, they are all made

up by two N = 1 multiplets, and the overall R-symmetry is SU(2)R × U(1)R , but the two

multiplets are charged only under different parts of it.

� N = 2 Vector multiplet

λα Aµ N = 1 vector multiplet,

Φ λ̃α N = 1 chiral multiplet.

where the arrows are super transformations, and the horizontal ones are explicit in

N = 1 formalism, while the vertical ones are implicit. Here all the N = 1 multiplets

are in adjoint representations of the gauge group G, and we have a SU(2)R symmetry

acting on λα and λ̃α, a U(1)R symmetry for the scalar Φ. The Lagrangian is

Im τ

4π

∫
d4θ tr Φ†e[V,·]Φ +

∫
d2θ
−i

8π
τ trWαW

α + cc. (1.275)

� N = 2 Hyper multiplet

Q ψ N = 1 chiral multiplet,

ψ̃† Q̃† N = 1 anti-chiral multiplet.

Here the N = 1 multiplets are in same representation R of the overall symmetry group

G×Gf , and we we have a SU(2)R symmetry acting on Q and Q̃†, as a consequence of

this, a complex mass matrix µ in the adjoint representation of Gf with [µ, µ†] = 0 , we

have the following Lagrangian
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∫
d4θ
(
Q†ieVQi + Q̃ie−V Q̃†i

)
+

(∫
d2θQ̃iΦQi + cc.

)
+ (
∑
i

∫
d2θµji Q̃

iQj + cc.)

(1.276)

As more symmetries are added , more constraints are put in, the N = 2 Lagrangian is

indeed fixed, with τ and µ as the only two (matrices of) parameters.

More generally, without using explicit Lagrangians, one can work with representations

and BPS conditions directly, just like in ordinary QFTs. In particular, with N > 1 SUSY,

there are a lot of short and semi-short multiplets defined by algebraic constraints, these

multiplets transform into each other under the action of Q, Q̄, for more details, see for

example [64].

Finally let us mention the method of compactification or dimensional reduction22 , one

can begin with a higher dimensional N = 1 theory, and use dimension reduction and SUSY

breaking to obtain N > 1 theories at lower dimensions, for example we can begin with the

following N = 1, d = 10 super Yang-Mills theory

S10D =

∫
d10xTr

(
−1

2
FmnF

mn +
i

2
Ψ̄ΓmDmΨ

)
(1.277)

with a T 6 compactification where m,n are ten dimensional coordinates and µ, ν are four

dimensional ones.

Am = (Aµ (xν) , φi (x
ν)) (1.278)

From a four dimensional viewpoint, we will produce six extra scalars , and a similar reduction

applies to Ψ as well. By reorganizing the those fields and their super partners appropriately,

we will arrive at the N = 4, d = 4 super Yang-Mills theory

SN=4 =

∫
d4xTr

[∫
d4θΦi†eV Φie−V +

1

8π
Im

(
τ

∫
d2θWαW

α

)
+

(
igYM

√
2

3!

∫
d2θεijkΦ

i
[
Φj,Φk

]
+ cc.

)] (1.279)

By adding extra terms break part of the N = 4 supersymmetry, N = 2, 1 theories can

be generated. Similarly,we can begin with a N = 1, d = 6 super Yang-Mills theory, and

compact it on a torus T to obtain a N = 2, d = 4 theory, if we compact it further on S1, we

will get a N = 4, d = 3 theory

22By compactification, mathematicians usually mean the process of making a topological space compact,

while physicists, especially in string theorists, use it to mean the reduction of extra dimensions(as a compact

manifold) as well, we use this term mainly in the first sense in previous sections on TQFT and CFT, but in

this section we mainly use it in the second sense
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1.3.2 Moduli space and duality

With the basic notations we have introduced we can now analyze supersymmetric quantum

fields more carefully, first recall that at one-loop the beta function is

β(g) = E
d

dE
g = − g3

(4π)2
b = − g3

(4π)2

[
11

3
C( adj )− 2

3
C (Rf )−

1

3
C (Rs)

]
(1.280)

A key consequence of SUSY is that the above expression is one loop exact, so using the

complex coupling τ , we can introduce the complexified dynamical scale Λ by the following

equality valid at all orders

Λb = Ebe2πiτ(E) (1.281)

As SUSY reorganizes the scalars, spinors and vectors into multiplets, the β function is

constrained. On the reverse, if for some physical reason such as asymptotic freedom or

conformal invariance we require β to be negative or zero, the range of possible SUSYs is also

restricted. For example with (N) = 2, given the representation R of the chiral multiplet in

the hypermultiplet we would have

b = 2C( adj )− C(R) (1.282)

By adjusting R we can make b vanish, for example taking the N = 4, d = 4 super Yang-Mills

theory, or assuming N = 2, d = 4 with gauge group SU(N) and matter Nf = 2N .In those

cases the coupling is exact marginal and we have conformal fixed points where supersymme-

try is compatible with conformal symmetry, the resulting theories are super conformal field

theories(SCFTs). To be precise, we have to extend the notion of superalgebra to supercon-

formal algebra, to do this we just introduce the special conformal supercharges Saα and Saα̇
as the super partners of Kµ, then we have, for example23{

Qa
α, Q

b
β

}
= {Sαa, Sβb} =

{
Qa
α, S̄

b
β̇

}
= 0{

Qa
α, Q̄β̇b

}
= 2 (σµ)αβ̇ Pµδ

a
b{

Saα, S̄β̇b
}

= 2 (σµ)αβ̇Kµδ
a
b

{Qa
α, Sβb} = εαβ (δabD +Ra

b ) +
1

2
δabJµv (σµv)αβ

(1.283)

Then we can define a superconformal primary as24

[Saα,O} = 0,
[
S̄aα̇,O

}
= 0 (1.284)

In particular it has a special kind of descendant called super descendant

O′ = [Q,O}, ∆O′ = ∆O +
1

2
(1.285)

23for the full algebra, see for example appendix B3 of [5]
24here by [, } we mean a commutator or an anticommutator depends on the situation, when both operators

are fermionic it is anticommute, otherwise it is commute
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it is a conformal primary(in the usual sense) as now

[Kµ,O′] = [Kµ, [Q,O}] = 0 (1.286)

One important type of superconformal primaries is chiral primary, where in addition satisfies

∃a, α : [Qa
α,O} = 0 (1.287)

These are all BPS operators, and their scaling dimensions are related to their spins and R

charges, hence stable under RG, as

0 = [{S,Q},O(0)] = [L+D +R,O(0)] ∼ (∆ +R + J )O(I) (1.288)

Now let us analyze the RG behaviors of super gauge theory more carefully. For concrete-

ness, assume that at UV we have a non-abelian gauge theory T with Lie group G and Lie

algebra g of rank r, a set of parameters including couplings and masses {gk}, then at IR it

flows to one of the following:

� A gapped theory where all local interactions are frozen and all fields are massive, but

it can still be a nontrivial TQFT.

� A gapless theory, usually it is a CFT, and it can be free or interacting. Some of these

theories allow for exact marginal deformations, hence forming a family, or a conformal

manifold if it is parameterized by some suitable coupling constants as coordinates,

otherwise they are isolated and have no exact marginal deformations.

For our present purposes, we are primarily interested in the latter case. And by the

Coleman-Gross theorem[52], for any U(1) gauge theory when the couplings are small enough

the IR theory is free. Since we can break G down completely to U(1)r, a free CFT at IR

should be common for generic G as well. While interacting CFT at IR is limited to specific

combinations of masses, couplings and field representations, it is highly non-trivial. Also the

existence of conformal manifolds and isolated points are highly non-trivial, they encode key

information of underlying theories.

If in addition we have supersymmetry and it is unbroken at IR, we may either have

free abelian super gauge fields or isolated interacting SCFTs. In the former case we have

a collection of real scalars φi , Weyl spinors ψaα and U(1) vectors AIµ , where we have put

spacetime labels on bottom and internal labels on top. In the latter case we have some

(super)conformal primary operators O along with their (super) descendants, and for this

to occur, the parameters {gk} must take special values, and the field content, i.e. the

representations Rx for multiplets x must be chosen in special ways.

In particular, we are interested in the vacua of such IR theories as to a large extent they

characterize the underlying theories, the space of all possible vacuums is called the moduli

space of vacuum, or simply moduli space, it captures the IR behavior of the UV theory in a
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geometric way. Usually, vacuum is determined by the minimal value of the scalar potential

V (φ) in L = −V (φ) + 1
2
gij(φ)∂µφ

i∂µφj, it is given by φi = C(gk) as a set of real constant

numbers formed by gk, usually the minimal value is set to be zero, hence we get a structure of

Riemann manifold with metric gij for the moduli spaceM0 = {φi : V (φ) = 0}, if we consider

gauge symmetry as well, we should have M = M0/G
′ where G′ is the gauge group at IR,

say G′ = U(1)r with maximally broken symmetry.

Assuming d = 4, if supersymmetry is present, M is enhanced to a Kähler manifold,

this is due to the fact that now the kinematic part 1
2
gij(φ)∂µφ

i∂µφj is replaced by the

Kähler potential K(Φk,Φk†) And for N = 2 theory,M is enhanced further to a hyperKähler

manifold as now K splits into two pieces depending on the hyper and the vector multiplets

vevs separately

K = KH
(
φin, φ̄

i
n

)
+KV

(
ΦI , Φ̄I

)
(1.289)

As a consequence we now have in classical sense, at least locally in the moduli space a

product structure

M =MH ×MV (1.290)

We can classify it further as

� Coulomb branch

Where MH shrinks to a point hence is trivial

M =MV (1.291)

This branch is parameterized by the VEVs of Coulomb branch operators. Where by

definition a Coulomb branch operator is always a SU(2)R singlet, but charged under

U(1)R ,it is a special type of chiral operator annihilated by all anti-chiral super charges[
Q̄a
α̇,OI

]
= 0 (1.292)

It has scaling dimension ∆(OI) = −r(OI) as the negative of its U(1)R R-charge As a

hyperKähler manifold, it is of the form MV = M/U(1)rC , as the usual case, under

quantum corrections, its metric is modified, Coulomb branch may not exist in some

free theories but it usually exists in interacting theories, however this is still an open

problem. Physically, say for G = SU(N), then tr Φn are Coulomb operators, so only

scalars which are superpartners of gauge fields are condensed, and we get the usual

Coulomb phase of gauge theory.

Φ = diag(a1, a2, · · · , aN−1,−
N−1∑
I=1

aI) (1.293)

We have r = N − 1 abelian U(1) gauge field AIµ
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� Higgs branch

Where MV shrinks to a point hence is trivial

M =MH (1.294)

This branch is parameterized by VEVs of Higgs branch operators. Where by definition

a Higgs branch operator is always a U(1)R singlet, but charged under SU(2)R as the

lowest or highest components, it is a special type of BPS operator where25

Qα
(A0
OA1A2···An) = 0 Q̄α̇

(A0
OA1A2···An) = 0 (1.295)

It has scaling dimension ∆(OA1A2···An) = R(O11···1) = n as its SU(2)R R-charge of

highest weight component As a hyperKähler manifold, it is of the formMV =M/G′C,

a key feature of SUSY is that, using holomorphy arguments, quantum corrections will

not changes the Higgs branch. This is a rather strong constraint, and unlike Coulomb

branch, in many examples Higgs branch do not exist. Physically, now Φ = 0 and the

mass matrix µ is turned on and diagonalized26

µ = diag(µ1, µ2, · · · ) (1.296)

Here only scalars that are not connected to gauge fields by supersymmetries get con-

densed, and this corresponds to the usual Higgs phase of gauge theory.

� Mixed branch

The generic case, where only the Coulomb factor gets modified under quantum correc-

tion

We have seen that the existence of supersymmetry will enhance the moduli space and give

them rich geometric structures, but we have not considered the isolated SCFT fixed points

yet or possible BPS saturated points. From the viewpoint of moduli space, the vacua of the

theories are singular points, and their very existence will change the geometry drastically. In

particular singular points will induce monodromies around them, but physically we expect

that the underlying physics should be invariant, to resolve this problem we need to use

duality, i.e. different descriptions for the same physical content. A particularly nice feature

of supersymmetry is that the dual of a theory is still supersymmetric with the same N but

different G and fields, usually it can be regarded as another point in moduli space. Singular

points can cause ramifications as well, and so there might be associated cover spaces of

moduli space.

25In the notation of [64], it is a B̂R type operator such that Q1
α|R, r〉hw

α̇1...α̇2̄
= 0 and Q̄2α̇|R, r〉hw

α1...α2j
= 0

with r = j = ̄ = 0
26Notice that even in Coulomb branch we can diagonalize the mass matrix as well for our convenience
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To illustrate this point, let us begin with the electromagnetic duality in classical electro-

dynamics, where for a free field without a source we have

dF = d ? F = 0 (1.297)

Then introduce the dual field as

FD =
4π

e2
? F,

4π

e2

4π

e2
D

= 1 (1.298)

Under this transformation, electric charge γe and magnetic charge γm are exchanged as

(γe, γm)
S−→ (−γm, γe) (1.299)

For two dyons, there is an invariant symplectic pairing(Dirac pairing)

< γ, γ′ >= γeγ
′
m − γ′eγm (1.300)

More generally, we can introduce a θ term and suppose that e, θ all depends on a neutral

scalar φ , then for the following Lagrangian

1

2e(φ)2
FµvFµν +

θ(φ)

16π2
FµνF̃µv (1.301)

W have
∂[µFνρ] = 0,

∂µ

[
4π

e(φ)2
Fµν +

θ(φ)

2π
F̃µν

]
= 0.

(1.302)

Now we define the dual field as

FD =
4π

e(φ)2
? F − θ

2π
F (1.303)

And the dual coupling by

τ(φ) =
4πi

e(φ)2
+
θ(φ)

2π
, τD(φ) =

4πi

eD(φ)2
+
θD(φ)

2π
(1.304)

with

τD(φ) = − 1

τ(φ)
(1.305)

Then the action is invariant if we replace all the original quantities by their dual correspon-

dences, explicitly the equation of motion is

∂[µFD,vρ] = 0

∂µ

[
4π

eD(φ)2
FD,µv +

θD(φ)

2π
F̃D,µv

]
= 0

(1.306)
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Since θ is an angle, we can shift it to θ(φ) + 2π, or in terms of complex coupling

τ(φ)new = τ(φ)old + 1 (1.307)

Then

(γe, γm)
T−→ (γm + γe, γm) (1.308)

Again < γ, γ′ > is invariant under this transformation. These two kinds of transformations

are just the S, T transformations of the modular group on the complex coupling τ , more

generally we have (
a b

c d

)
∈ SL(2,Z) : τ → dτ + b

cτ + a
(1.309)

This is the simplest example of S-duality, where we have a dual transformation between a

strongly coupled theory and a weakly coupled theory.

Now consider the Coulomb branch of our N = 2super gauge theory T , with U(1)r at IR

we have a symplectic pairing between vectors

< γ, γ′ >= γe · γ′m − γ′e · γm (1.310)

And the above duality transformations generalize to

τIJ →
(
ALI τLM +BIM

) (
CJNτNM +DJ

M

)−1

M ≡
(

AI
K BIL

CJK DJ

)
∈ Sp(2n,Z).

(1.311)

where the coupling matrix is given by a holomorphic prepotential F

τIJ =
∂2F

∂aI∂aJ
(1.312)

If we define the dual variable aDI for

aDI =
∂F
∂aI

(1.313)

Then including the flavor charge, we have the following central charge function

Zγ = a · γe + aD · γm + µ · γf (1.314)

with BPS bound on mass

M ≥ Zγ (1.315)

When the bound is saturated, we have free hypermuliplets with M = Zγ hence extra massless

states if Zγ = 0, as a result there are nontrivial monodromies around such points. Near

certain points, both a, aD are small so the electric and magnetic particles are all very light,

and so we have conformal fixed points and the monodromies are even more complicated.
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As a concrete example, let us apply these ideas to the simplest non-abelian gauge theory,

namely the pure SU(2) gauge theory. In this case r = 1, Nf = 0 , this theory has no Higgs

branch. For Coulomb branch SU(2) is broken down to U(1), and we have[
Φ†,Φ

]
= 0, Φ = diag(a,−a) (1.316)

as well as

F SU(2)
µv = diag

(
FU(1)
µv ,−FU(1)

µv

)
, τU(1) = 2τSU(2) (1.317)

We will simply denote this τU(1) as τ(a) ,and τSU(2) at UV as τUV , then the invariant com-

bination of scales is

Λ4 = Λ4
UV e

2πiτUV (1.318)

with one loop expansion valid at |a| � |Λ|

τ(a) = 2τUV −
8

2πi
log

a

ΛUV

+ · · ·

= − 8

2πi
log

a

Λ
+ · · ·

(1.319)

and

aD = − 8a

2πi
log

a

Λ
+ · · · (1.320)

If we introduce

u =
1

2

〈
tr Φ2

〉
= a2 + · · · (1.321)

and the following phase

u = eiθ|u|, θ = 0 ∼ 2π (1.322)

then the mass

M = |γea+ γmaD| =
∣∣∣∣(a, aD)

(
γe
γm

)∣∣∣∣ (1.323)

transform as (
γe
γm

)
→
(
−1 4

0 −1

)(
γe
γm

)
(1.324)

this can be viewed as a monodromy at u =∞ with

M∞ =

(
−1 4

0 −1

)
(1.325)

It must be compensated by some singularities at finite points, indeed there are two symmetric

singular points at finite u = ±u0, to see this we assign the R-charges

R = 0 A

1 λ λ

2 Φ

(1.326)

70



then the T transformation gives us

θ → θ + 2π, Φ→ eπi/2Φ (1.327)

At IR it is the following symmetry

θIR → θIR + 4π, u→ −u (1.328)

so we must have

M∞ = M+M− (1.329)

Indeed we can solve this to find

M+ = STS−1 =

(
1 0

−1 1

)
, M− = T 2STS−1T−2 =

(
−1 4

−1 3

)
(1.330)

These two singular points ±u0 correspond to a (0, 1) monopole point and a (2, 1)dyon point

respectively.

All of the above information is encoded in the following equation

Σ : Λ2z +
Λ2

z
= x2 − u (1.331)

where we have two auxiliary complex variables x, z, by adding z =∞ , where z parameterizes

the UV moduli space C, in this case, just the Riemann sphere , and the curve Σ defined by

this equation is a parametrization of the IR moduli space, called the Seiberg-Witten curve,

which gives us the covering in figure 13:

Σ
2:1−→ C (1.332)

We can introduce the differential

λ = x
dz

z
(1.333)

Then a, aD are periods along different homology classes

a =
1

2πi

∮
A

λ, aD =
1

2πi

∮
B

λ (1.334)

We also have u0 = ±2Λ2 for z = ∓1 , by studying those integrals near singular points we

can calculate all the monodromies. This method extends to general theory with semisimple

g and flavor Nf . For example , take SU(2) theory with Nf = 1 , this theory does not have

Higgs branch as well , while for Coulomb branch the S-W curve is

Σ :
2Λ(x− µ)

z
+ Λ2z = x2 − u (1.335)

with S-W differential

λ = x
dz

z
(1.336)
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Figure 13: The UV curve and Seiberg-Witten curve for pure SU(2) theory [152]

Then there are three finite singular points

M∞ = M3M2M1 (1.337)

A special new feature of this theory is that under certain conditions, say when µ = −3
2
Λ, u =

3Λ2 these singular points will collide to z = −1, and also in u plane two singular points will

collide as shown in figure 14

In this case the A−B cycles can be made arbitrarily small hence

a = aD = 0 (1.338)

Figure 14: The Argyres–Douglas point of Nf = 1 theory, on u plane and z UV curve [152]
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Now we have a conformal field theory, this is a simple example of the Argyres-Douglas CFT,

using the S-W curve we can find the scaling dimensions by rewriting it as27

λ2 =
1 + µz2 + uz3

z7
dz2 (1.339)

and assign scaling dimension 1 to λ since it integrates to a, aD as the masses of BPS particles,

then

[µ] =
4

5
, [u] =

6

5
(1.340)

More generally, one can have the so called class S theories, where by string theoretical

constructions a class of six dimensional (2, 0) SCFTs is given, this class has an ADE clas-

sification. Begin with one of those theories with simply laced Lie algebra g, and reduce it

to five dimensions on a circle, a N = 2 super Yang Mills theory is obtained, by choosing

different boundary conditions, or equivalently a twisted compactification of the original the-

ory on a punctured Riemann surface Cg,s with genus g and s punctures 28, one can obtain a

N = 2 theory with g symmetry, where Cg,s is its UV curve. Different theories correspond to

different types of punctured Riemann surfaces, and we can assign a system of ODEs to Cg,s,

a system known as the Hitchin system, where different punctures are singular points of it,

hence are classified as regular singular, irregular singular and so on. Hitchin system encodes

the integrability conditions on the hypercomplex structures of moduli space, as a result the

S-W curve can be obtained from it as well. In particular if g = AN−1, a rank N cover Σ

of a punctured sphere C0,s is obtained as the S-W curve, with some minor modifications

this works for all ADE types. But the types and numbers of punctures are restricted by

consistency, and only some of them correspond to well defined theories at dimension four, in

particular the corresponding (generalized)Argyres-Douglas CFTs are limited in number and

can be classified.[158]

We can reduce N = 2, d = 4 theories on S1 further to N = 4, d = 3 ones with a large R

symmetry group

SU(2)L × SU(2)R (1.341)

From the six dimensional viewpoint, SU(2)R is the original R symmetry group, while SU(2)L
is the rotation group of the three compact dimensions. For these theories we have a special

kind of duality, known as three dimensional mirror symmetry. This is a mirror symmetry in

the sense that we can begin with a pair of mirror three (complex) dimensional Calabi-Yau

manifolds M and M′ with an appropriate d = 10 superstring theory, then the reductions

on M× S1 and M′ × S1 are dual three dimensional theories. Under this duality:

� SU(2)L exchanges with SU(2)R

� Coulomb branch exchanges with Higgs branch

27here we use dz2 = dz ⊗ dz and so on
28without twisting the N = 4 super Yang Mills is generated
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� Mass terms
∑

i

∫
d2θµji Q̃

iQj+cc exchanges with Fayet-Iliopoulos D terms SFI = ξ
∫
d4θV

In the simplest case of a simply laced g, the symmetry group of the mirror theory is

KG ≡

(
r∏
i=0

U (ni)

)
/U(1) (1.342)

where i runs over the nodes of extended Dynkin diagrams, with ni as the Dynkin index

and by definition n0 = 1. As the group KG is already very complicated, in practice it is

convenient to give the product of gauge groups like this kind a graphic representation, such

a graph is called a (linear) quiver, constructed as follows:29

� Nodes

Assign a gauge symmetry group U(n) a circle node © with number n

Assign a global symmetry group U(p) a square node � with number p

� Edges

Assign a bifundamental hypermultiplet (n,m) ⊕ (n,m) of U(n) × U(m) fermion an

edge — from circle node n to m

Assign p fundamental hypermultiplets of U(n) an edge — from n to p

Follow similar rules, we have, for example, more complicated quivers in the figures 25,26.

Using some group theoretical arguments, given a quiver, some algorithms can be constructed

to calculate the R charges hence the scaling dimensions for some special operators. In

appendix B.1.3, we will use these algorithms to calculate the lower bound on the scaling

dimension of a monopole operator.By definition, a monopole operator is an local operator

that creates a classical magnetic monopole solution at a particular point 30, it is a local

operator only in dimension three, in generic dimensions it is a defect. In N = 4, d = 3

theories, monopole operators with suitable BPS conditions are KG Coulomb branch duals

of hypermultiplets in G Higgs branch, in particular for a free hypermultiplet we must have

scaling dimension 1
2
, and the corresponding monopole operator has scaling dimension 3

2
.[26]

1.3.3 Superconformal index

Most super Yang Mills theories or SCFTs are hard to solve, even the basic field contents are

usually hard to identify. So just like in quantum mechanics, it is useful to focus on stable

quantities under deformations, and extract information from them. The superconformal

index is a direct generalization of the Witten index, which dependents on the structure

of vacua, its value is invariant under deformations as long as the associated Hilbert space

remains the same. For a d dimensional SCFT, it is defined as

29there are several similar but different quivers used in the study of super gauge theory, and while the

conventions vary, here we refer to the quiver and convention used in [81]
30in this case actually a vortex configuration
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I (µi) = Tr(−1)F
∏
i

µCii e
−βδ, δ :=

{
Q,Q†

}
(1.343)

where F is the fermionic number operator, the trace is taken over over the Hilbert space of

the radially quantized theory on Sd−1. Here {Ci} is a maximal set of commuting charges,

e.g. quantum numbers of overall flavor symmetries, for consistency they must commute with

Q,Q† as well, then we can introduce a set of formal fugacities {µi} to keep track of them.

And Q a particular supercharge along with its conjugate Q†, i.e. the super conformal charge

S = Q† , where for unitary theories we must have δ :=
{
Q,Q†

}
> 0.

There are two interpretations for this index

� As cohomology

It is obvious that δ2 = 0 then we can construct cohomology classes as kerδ/imδ, and

here the superconformal index receives contributions only from the representatives of

these classes of short multiplets, it indeed counts them with signs. It is possible for

several short multiplets to cancel each other out as they can be combined into a long

multiplet, just like a bosonic zero mode and a fermionic zero mode cancel each other

out in the Witten index, so only the special short multiplets which are protected hence

cannot be combined into long multiplets contribute.31

Just like the Witten index, we expect this index to be stable, formally it should be

invariant under all exact marginal superconformal deformations, however this fails in

general, but if we restrict to theories with a discrete spectrum and finite dimensional

space of fixed {Ci}, it still holds.

� As partition function

Alternatively, we can also view this index as the partition function on Sd−1 × S1 with

suitable twisted boundary conditions on S1.

In this sense there should exist an extension of this index to the non-conformal but

supersymmetric case, and still stable under RG flows with some reasonable restrictions.

For our interest, we will specific to N = 2, d = 4 theories. In this case we can write the

superconformal index explicitly as

I (p, q, t; x) := Tr(−1)F
(
t

pq

)r
pj12qj34tR

∏
i

xfii e
−βδ2·− (1.344)

and

2δ2·−
:=
{
Q̃2·−

, Q̃†2·−
}

= E − 2j2 − 2R + r ≥ 0 (1.345)

with the following conventions:

31See appendix B of [15] for more details.
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� x = (x1, · · · , xi, · · · ) are fugacities associated flavor symmetries, when we want to

specify different subgroups we will also use y, z and so on.

� p, q, t are fugacities associated with linear combinations of rotation and R symmetries

� j1, j2 are generators of the S3 rotation symmetry SU(2)1 × SU(2)2, and j12 := j2 −
j1, j34 := j2 + j1

� E (’energy’ in radical quantization) denote the scaling dimension and R for R charge.

� the following formal convergence condition is assumed

|p| < 1, |q| < 1, |t| < 1, |xi| = 1,
∣∣∣pq
t

∣∣∣ < 1 (1.346)

Just as Witten index, one can calculate the superconformal indexes from free theories

and using the invariance property to obtain the indexes of interested non-trivial theories.

More generally, begin with a theory T with known index, one can gauging a subgroup G of

its flavor symmetry to obtain a new SCFT TG, their indexes are related as

I [TG] =

∫
[dz]GIV (z)I[T ](z) (1.347)

where IV is the index of a free vector multiplet in adj of G, and [dz]G the invariant Haar mea-

sure. Using this method, one can calculate the superconformal indexes for class S theories.

In particular, given a theory with symmetry g and UV curve Cg,s, when all the punctures

are regular singular, we can assign a map Λ : su(2) → g for each puncture, and the overall

flavor symmetry group is a direct sum of centralizers h ⊂ g as ⊕si=1hi, this system is denoted

as T [g; Cg,s; {Λi}], then the index has a third interpretation as a TQFT correlator on Cg,s

Ig [p, q, t; xi] = 〈O (x1) . . .O (xs)〉Cg,s (1.348)

with O (xi) a local operator living at puncture i, we can glue Cg1,s1+1 and Cg2,s2+1 to Cg,s, g =

g1 + g + 2, s = s1 + s2, hence we have

Ig [x1, . . .xs] =

∫
[dy]GIg1 [xj,y] IV (y)Ig2 [y,xk] , j ∈ s1, k ∈ s2 (1.349)

If we introduce a basis of functions {ψα}∫
[dx]GIV (x)ψα(x)ψβ(x) = δαβ (1.350)

and the following integral transformation

Oα :=

∫
[dx]GIV (x)ψα(x)O(x) (1.351)
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Then using standard gluing arguments, we can define the three punctures sphere indexes

Ig=0
α1α2α3

=: Cα1α2α3 (1.352)

As basic building blocks, they satisfy

Cα1α2βCβα3α4 = Cα1α3γCγα2α4 (1.353)

hence can be viewed as three point function coefficients, or structure constants, now the

gluing property is simply

Igα1,...αs
=
∑
β

Ig1

{αj}βI
g2

β{αk} (1.354)

And there exists a particular basis, the so-called Frobenius basis {ψλ(x)}, such that

Cλ1λ2λ3 = Cλδλλ1δλλ2δλλ3 (1.355)

and

Igλ...λ = C2g−2+s
λ (1.356)

and more generally

Ig [x1, . . .xs] =
∑

C2g−2+s
λ ψλ (x1) . . . ψλ (xs) (1.357)

For more general type of punctures, we have

I =
∑
λ

C2g−2
λ

s∏
j=1

φΛi
λ (yΛi) (1.358)

where
{
φΛi
λ (yΛi ; p, q, t)

}
is a system of ’wave functions’ on those punctures. With the above

TQFT interpretation, now the topologically equivalent gluing processes on UV curves can

be explained as S-dualities for the corresponding four dimensional field theories.

In practice, it would be hard to calculate those wavefunctions and the corresponding

indices, one usually taking some limits to extract partial information. If we rewrite the

superconformal index as

I(q, p, t) = Tr(−1)Fp
1
2
δ1
−q

1
2
δ1
+tR+re

−β′δ2·−
∏
i

xfii (1.359)

where
2δ1

+ :=
{
Q1

+,
(
Q1

+

)†}
= E + 2j1 − 2R− r > 0

2δ1
− :=

{
Q1
−,
(
Q1
−
)†}

= E − 2j1 − 2R− r > 0
(1.360)

and let q = t, this is refereed as the Schur limit, and the corresponding index ,the so called

Schur index is

IT (q; x) ≡ TrH(−1)F qE−R
rankGF∏
i=1

(xi)
fi , (1.361)
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now the cohomology condition is

δ1
− = δ−̇2 = 0 (1.362)

or equivalently

L̂0 :=
E − (j1 + j2)

2
−R = 0, Z := j1 − j2 + r = 0 (1.363)

in particular, for unitary theories L̂0 >
|Z|
2

so we need L̂0 = 0 only, a operator satisfies

this condition is refereed as Schur operator. We will calculate the Schur indexes for spe-

cial types of Argyres-Douglas CFTs in chapter two, and analyze the corresponding TQFT

interpretations and RG flows.

2 Index relations and SUSY enhancement

2.1 Peculiar Index Relations, 2D TQFT,and Universality of SUSY

Enhancement

In this chapter, we begin by focusing on a particularly simple—yet surprisingly rich—class

of strongly interacting 4D N = 2 SCFTs called the D2(SU(N)) theories, with N = 2n+1 an

odd integer [46, 47]. These theories are often imagined as arising in type IIB string theory32

at local Calabi-Yau singularities and are part of a larger class of theories called the Dp(G)

theories, where G is the ADE flavor symmetry of the SCFT. However, using the methods of

[158], we will primarily think of these theories as coming from twisted compactifications of

the 6D (2, 0) theory on Riemann surfaces with an irregular puncture.33

While the strongly coupled D2(SU(2n+ 1)) SCFTs are of Argyres-Douglas (AD) type34

and therefore lack N = 2 Lagrangians, they behave in various surprising ways like collections

of free hypermultiplets:

� The role of the D2(SU(3)) theory in the S-duality studied in [29, 32, 33] is reminiscent

of the role played by some of the hypermultiplets in the S-duality of N = 2 SU(3)

Supersymmetric Quantum Chromodynamics (SQCD) with Nf = 6 flavors [10].

� The so-called “Schur” limits of the 4DN = 2 superconformal indices of theD2(SU(2n+

1)) theories are related to the Schur indices of free hypermultiplets by a simple rescaling

of the superconformal fugacity and a specialization of the flavor fugacities [160, 150].

� The (partially refined) Schur indices of the D2(SU(2n+ 1)) theories can be computed

via theories of free non-unitary hypermultiplets with wrong statistics in 4D [30, 31].

32Although note that the simplest example, D2(SU(3)), was originally constructed in [9].
33Depending on the realization, the twisted compactification may or may not be accompanied by an extra

regular singularity.
34In other words, they have N = 2 chiral operators (i.e., operators annihilated by the anti-chiral half of

N = 2 superspace sometimes called “Coulomb branch” operators) of non-integer scaling dimension.
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AD theory Class S fixture analog Flow to 32 supercharges

D2(SU(2n+ 1)) Ysimple, Yfull, Yfull ; (free) no

R2,AD
0,p Y

(1)
2 , Yfull, Yfull; (interacting) yes

T 2,AD
(m1,m2,m3) Y

(1)
m1 , Y

(1)
m2 , Y

(1)
m3 ; (interacting) yes

Table 1: Three important classes of isolated SCFTs we study in this paper are in the

leftmost column (note that we assume, without loss of generality, that m3 ≥ m2 ≥ m1;

these quantities obey further constraints discussed in the main text). The middle column

indicates the corresponding regular puncture class S fixture (specified by a triple of Young

diagrams) in the sense described in Sec. 2.3.1, where Y
(`)
k is the Young diagram shown in

Fig. 20. The parenthetical comment in this column indicates whether the class S fixture is

interacting or not. The final column indicates if the theory admits an RG flow, of the type

described in the main text, to an interacting SCFT with thirty-two (Poincaré plus special)

supercharges. The above AD relatives of interacting class S fixtures always admit such flows

while relatives of free fixtures do not. All the above theories can be realized as type III in

the nomenclature of [158]. In Sec. 2.4.2, we vastly generalize these results.

Given these parallels, it is interesting to ask if at least some of these close relations with

Lagrangian theories persist upon conformally gauging subgroups of the flavor symmetry of

theD2(SU(2n+1)) theories. As we will see below, the answer to this question is a resounding,

“yes.” In particular, we will show that the Schur indices of an infinite set of theories gotten

by gauging various diagonal flavor symmetries of collections of arbitrarily large numbers

of D2(SU(2n + 1)) theories and hypermultiplets are related to the Schur indices of certain

Lagrangian theories of class S [79] by simple transformations. Rephrasing these relations

in the language of 2D TQFT allows us to efficiently study the action of S-duality on the

flavor symmetries of the D2(SU(2n+ 1)) quiver gauge theories (see [162, 163, 159] for recent

discussions of other S-duality properties of these theories).

Beyond the action on flavor symmetries, one of the most interesting aspects of N =

2 S-duality is the emergence of exotic isolated theories at cusps in the space of exactly

marginal gauge couplings. For example, Argyres and Seiberg found the exotic E6 Minahan-

Nemeschansky theory in SU(3) SQCD with Nf = 6 emerging at a dual cusp with a weakly

coupled SU(2) ⊂ E6 gauge group [10]. This construction was then vastly generalized to find

new classes of isolated non-Lagrangian N = 2 SCFTs (e.g, see [79, 49]).

As we will see, the TQFT relations we find between the AD quivers and their Lagrangian

cousins lead to an interesting new expression for the Schur index of the exotic AD analog

of the E6 theory, the so-called “TX” SCFT, arising via the S-duality studied in [29, 32, 33].

Moreover, we are able to find the Schur indices for infinitely many generalizations of the TX
theory arising via various AD generalizations of S-dualities involving only regular punctures.

For example, we find indices for AD analogs of the R0,p theories (with p ∈ Z≥0,odd) arising
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via the S-dualities studied in [49]. We call these theories R2,AD
0,p SCFTs. In all cases, the

AD index expressions we find are related to those of their regular puncture relatives (e.g.,

see [77]) by simple transformations on the fugacities. We term these types of AD theories

“AD fixtures” in reference to the terminology for the corresponding isolated theories arising

from three-punctured spheres in class S (e.g., see the terminology in [49]). In this context,

one may also think of the D2(SU(2n+ 1)) theories as AD relatives of free regular puncture

fixtures. On the other hand, the R2,AD
0,n SCFTs (and other theories we construct below) are

AD relatives of interacting regular puncture fixtures (see Table. 2.1).

However, the TQFT index expressions we find for these isolated exotic theories are rather

illuminating in their own right. For example, unlike the usual expressions for regular punc-

ture theories, the AD indices feature products over TQFT wave functions that are not

independent. We then interpret this lack of independence in terms of the topology of the

corresponding quivers of the 3D mirrors associated with the AD theories [158]. As we will

see, the quiver topology of our AD relatives of interacting fixtures is characterized by a

loop of non-abelian gauge nodes in the 3D mirror. This loop has interesting physical con-

sequences: it guarantees that one can take these isolated AD theories, compactify them

on S1, and flow (up to free decoupled matter fields) to interacting theories with thirty-two

(Poincaré plus special) superchages (thereby generalizing the examples in [33]).35 We believe

that these latter fixed points uplift to 4D N = 4 theories, but we leave a detailed study of

this correspondence to future work.36

Based on the generic existence of RG flows with enhancement to thirty-two supercharges

in the exotic isolated AD theories we study,37 we ask more generally when such flows can

occur. As we will see, the existence of these types of flows is in fact generic in the space of

4D N = 2 SCFTs (with known 3D Lagrangian mirrors) obtained by compactifying the 6D

(2, 0) theory on a Riemann surface with an irregular singularity (we may or may not add an

additional regular singularity).38 Combined with the results of [118, 117, 2, 21, 3, 87, 1, 20,

88], our work here and in [33] suggests that AD theories naturally live along RG flows with

accidental SUSY.39 We discuss further implications of these ideas in the conclusions.

35Like their free AD fixture counterparts, the D2(SU(2n + 1)) fixtures do not admit RG flows via vevs

and relevant deformations to interacting theories with thirty-two supercharges (note that we do not consider

turning on additional gauge couplings in these flows).
36See also [11] for examples of N = 2 → N = 4 enhancement (in the case of theories with integer

dimensional Coulomb branch operators).
37In fact, this enhancement can also occur in AD quivers. Indeed, these theories also have indices with

non-independent wave functions, and some of the general results we prove below apply to these theories as

well. The fact that we gauge some symmetries to build these theories means that the 3D mirror interpretation

of their indices is more subtle.
38In this sense, the word “exotic” for our isolated AD theories is inappropriate. Indeed, although flows to

thirty-two supercharges of the type we describe are not common among the AD theories often studied in the

literature, we will see that this is because such theories are actually rather special.
39Although note that here and in [33] we imagine that the accidental SUSY enhancement arises along RG

flows emanating from the AD theories in the UV. On the other hand, in [118, 117, 2, 21, 3, 87, 1, 20, 88] the

accidental SUSY enhancement mainly arises for flows ending on AD theories in the IR.
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The outline of the rest of this chapter is as follows. In the next section we give more

details regarding the D2(SU(N)) theories, the resulting quiver gauge theories, and the index

relations between these quivers and certain Lagrangian theories of class S. We then move

on to construct the 2D TQFT expressions for our indices and study S-duality using these

expressions. We conclude this section by computing indices for various exotic type III

AD fixtures that arise via S-duality and relating them to indices of better-known theories

consisting purely of regular punctures. In the following section, we analyze the implications

of these expressions for the quivers of the corresponding 3D mirrors. We then move on to a

discussion of the resulting RG flows with accidental supersymmetry enhancement to thirty-

two supercharges and conclude by proving a theorem on the universality of such flows in the

class of theories arising from compactification of the (2, 0) theory on surfaces with irregular

punctures and known 3D mirrors.

Note that throughout our discussion below, we will use the following shorthand to refer

to the D2(SU(N)) theories in order to ease notational burden:

ADN ≡ D2(SU(N)) , N ∈ Z≥0,odd . (2.1)

2.2 Conformal gauging of ADN ≡ D2(SU(N)) theories

In this section we introduce relevant technical aspects of the ADN ≡ D2(SU(N)) SCFTs

(with N odd) and the quiver theories built by conformally gauging them. In particular, we

first construct an intermediate building block, T (`)
n1,n2 , and then construct the main quiver

theories of interest, T (`)
n1,n,n2 . We then move on to construct Schur indices for these quivers

and relate them to Schur indices of certain Lagrangian theories.

2.2.1 More details of the AD quiver building blocks

The ADN theories are a class of isolated strongly coupled 4D N = 2 SCFTs. Their Coulomb

branch chiral rings are generated by operators of dimensions N
2
− i for 0 ≤ i ≤ dN

2
e − 2 [46].

SinceN is odd, these theories haveN = 2 chiral primaries (i.e., “Coulomb branch” operators)

of non-integer dimension and are therefore of AD type.40 The conformal anomalies of ADN

are given by aADN = 7
96

(N2 − 1) and cADN = 1
12

(N2 − 1). Most importantly for us in what

follows, the flavor symmetry of ADN is SU(N), and the corresponding flavor central charge

is given by

kSU(N) = N , (2.2)

where a fundamental hypermultiplet of SU(N) contributes as kSU(N) = 2.

For reference, here we also briefly review the 6d-4d construction of this theory [158,

150]. Using the notation of [150], we begin with a d = 6,N = (2, 0) SCFT of ADE type

40In particular, AD3 is identical to the H2 Argyres-Douglas theory [9] and is sometimes also called the

(A1, D4) theory [48].
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n+ `AD2n+` AD2n+3`

Figure 15: The quiver diagram of two conformally gauged ADN SCFTs. The left box stands

for an AD2n+` theory, the right box stands for an AD2n+3` theory, and the middle circle

stands for an SU(n + `) vector multiplet diagonally gauging the two AD theories. Here n

is an integer, and ` is an odd integer. This is the simplest example of a conformally gauged

AD building block for the more complicated class of quivers we will focus on (see Fig. 17).

J , and compactify it on a Riemann surface Σ with irregular punctures of (2.3), then by

consistency we must have g = 0 so Σ is a Riemann sphere with punctures, there are two

further possibilities for conformal d = 4 theories:

� Σ is a sphere with an irregular singularity,

� Σ is a sphere with an irregular singularity plus one regular singularity.

Where the singularities are defined by a Hitchin system on Σ41:

� We have a holomorphic one form Φ on Σ such that the irregular singularity appears as

Φ =
Tk

z2+ k
b

+ . . . (2.3)

where Tk is an semi-simple element of J , then we can label this irregular singularity

by these two numbers b, k as J b[k],

� We can also add a regular singular term to the above and in this case there is a flavor

symmetry group associated with the regular singular point, we will use the label Y to

denote it.42 In particular, when this regular singular point is absent, we say it is null,

and denote it as Y = {∅}, otherwise we say it is full, and denote it as Y = F .

In summary, our d = 4 theory is labeled by the pair (J b[k], Y ), then we have

ADN ≡
(
ANN−1[2−N ], F

)
, N ∈ Z≥0,odd . (2.4)

More generally, a Dp(G) with g = J theory is realized by setting b = h∨, Y = F with

some suitable k relating to p, J , where h∨ is the dual Coxeter number of J .

From the isolated ADN theories, we can construct an intermediate building block for the

theories we are interested in as follows. Consider AD2n+` and AD2n+3` for a positive integer

41Recall that a regular singular point is an order one pole, otherwise it is irregular.
42For J = AN−1, Y corresponds to a Young diagram Y =

[
nh1

1 , . . . , nhs
s

]
with

∑
i hini = N , and the flavor

symmetry is GY = (
∏s
i=1 U (hi)) /U(1).
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AD2n1+` n1 + ` AD2n1+3` n1 + 2` · · · n2 − ` AD2n2−`

Figure 16: The quiver diagram of the T (`)
n1, n2 building block for the larger quiver we will

consider in Fig. 17 and focus on in the next section. Here ` is a positive odd integer, and

n1 and n2 are two integers such that (n2 − n1)/` is a positive integer. The gauge group

of the quiver is SU(n1 + `) × SU(n1 + 2`) × · · · × SU(n2 − `). The flavor symmetry is

U(n1)× U(1)
n2−n1

`
−2 × U(n2).

n and an odd positive integer ` (so that 2n + ` and 2n + 3` are odd). These theories have

SU(2n + `) and SU(2n + 3`) flavor symmetries respectively. We can couple an SU(n + `)

vector multiplet to these SCFTs by gauging a diagonal SU(n+`) flavor symmetry. The flavor

central charge (2.2) implies that this gauging is exactly marginal. The resulting theory is an

N = 2 SCFT described by the quiver diagram in Fig. 15 and has U(n) × U(n + 2`) flavor

symmetry.

Given this flavor symmetry, we can further gauge an SU(n+ 2`) ⊂ U(n+ 2`) subgroup.

This gauging is exactly marginal when the SU(n + 2`) vector multiplet is coupled to an

additional AD2n+5` theory in such a way that the residual flavor symmetry of the AD2n+5`

sector is U(n+ 3`). The resulting theory now has U(n)×U(1)×U(n+ 3`) flavor symmetry.

By continuing this procedure, we obtain a series of conformal linear quiver theories whose

matter sector is comprised of various ADN theories. The quiver diagram for these theories

is shown in Fig. 16, where the gauge group is SU(n1 + `)× SU(n1 + 2`)× · · · × SU(n2 − `)
for a positive odd integer, `, and two integers, n1 and n2, such that (n2 − n1)/` is a positive

integer. We denote this theory by T (`)
n1, n2 , and it has U(n1) × U(1)

n2−n1
`
−2 × U(n2) flavor

symmetry.43 From the quiver diagram, we see that the flavor central charge of the SU(n1)

and SU(n2) subgroups are 2n1 + ` and 2n2 − `, respectively.

2.2.2 The main quiver theories of interest: the T (`)
n1, n, n2 SCFTs

Now we come to the main quiver theories of interest that are built from the above SCFTs

and also from fundamental hypermultiplets. To be more explicit, let us take T (`)
n1,n, T (`)

n2,n, and

` fundamental hypermultiplets of SU(n).44 By the discussion in the previous subsection, if

we gauge a diagonal SU(n) flavor subgroup of these theories, the beta function vanishes:

β = (2n− `) + (2n− `) + 2`− 4n = 0 , (2.5)

43Note that, when we write T (`)
n1, n2 , we always have n1 < n2 so that (n2 − n1)/` is a positive integer.

44Note that n, n1, n2, and ` are positive integers such that ` is odd, and (n − n1)/` and (n − n2)/` are

positive integers.
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nT (`)
n1,n T (`)

n2,n

`

Figure 17: The diagram for the main quiver theory of interest: the T (`)
n1, n, n2 theory. The

middle SU(n) diagonally gauges the SU(n) flavor subgroups of T (`)
n1,n, T

(`)
n2,n, and ` ≥ 1 fun-

damental hypermultiplets (recall that ` ∈ Zodd). This theory has U(n1) × U(n2) × U(`) ×
U(1)

2n−n1−n2
`

−2 flavor symmetry.

where T (`)
n1,n and T (`)

n2,n both contribute 2n− `, the ` fundamental hypermultiplets contribute

2`, and the SU(n) vector multiplet contributes −4n. The resulting theory is an N = 2 SCFT

described by the quiver diagram in Fig. 17 and has U(n1)× U(n2)× U(`)× U(1)
2n−n1−n2

`
−2

flavor symmetry. We denote this theory by T (`)
n1, n, n2 , where the middle n in the subscript

stands for the largest rank of the simple components of the gauge group.

2.2.3 Schur index

In this subsection, we construct the Schur indices of the T (`)
n1,n,n2 SCFTs from the various

building blocks described previously. As we will see, these quantities turn out to be closely

related to the indices of certain Lagrangian theories of class S.

To understand these statements, first recall that the Schur index of a general N = 2

SCFT, T , is defined as [77, 78]45

IT (q; x) ≡ TrH(−1)F qE−R
rankGF∏
i=1

(xi)
fi , (2.6)

where H is the Hilbert space of local operators of T , E is the scaling dimension, R is

the Cartan generator of SU(2)R normalized so that the fundamental representation has

eigenvalues ±1
2
, GF is the flavor symmetry of the theory, and fi is the ith Cartan generator

of GF (i.e., the ith flavor charge).

In the case of ADN , the Schur index was conjectured to be [160] (see also the mathemat-

ical results in [107, 54])46

IADN (q; x) = P.E.

[
q

1− q2
χ
SU(N)
adj (x)

]
, (2.7)

where x = (x1, · · · , xN) subject to
∏N

i=1 xi = 1 is the fugacity for the SU(N) flavor sym-

metry, χ
SU(N)
adj (x) is the character of the adjoint representation, and P.E. is the “plethystic

45The Schur index is a particular limit of a more general superconformal index [109, 137].
46The N = 3 case is also discussed in [39, 38, 53, 37], and the formula in (2.7) agrees with the formula

found in these references.
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exponential.” This latter quantity is defined as

P.E.[f(x1, · · · , xM)] ≡ exp

(
∞∑
p=1

f(xp1, · · · , x
p
M)

)
. (2.8)

Let us focus on the case N = 2n1 + ` for a positive integer n1 and an odd positive integer

`, since these theories enter the quivers we are interested in. In order to make contact with

the index of the T (`)
n1,n2 SCFT, it is useful to consider the splitting of the SU(2n1 +`) fugacity,

x, into those for the SU(n1)× SU(n1 + `)×U(1) ⊂ SU(2n1 + `) subgroup. In particular, x

splits into y = (y1, · · · , yn1), z = (z1, · · · , zn1+`), and a such that
∏n1

i=1 yi =
∏n1+`

i=1 zi = 1.47

In terms of these variables, the Schur index (2.7) for N = 2n1 + ` is48

IAD2n1+`
(q; y, z, a) = P.E.

[
q

1− q2

(
1 + χ

SU(n1)
adj (y) + χ

SU(n1+`)
adj (z)

)]
× In1×(n1+`)

bfund (q2; y, z, a) .

(2.11)

where χ
SU(N)
R is the character of an SU(N) representation R, “adj” stands for the adjoint

representation, and IN×Mbfund (q,y, z, a) is the Schur index of a bifundamental hypermultiplet of

SU(N)× SU(M)

IN×Mbfund (q; y, z, a) ≡ P.E.

[
q

1
2

1− q

(
aχ

SU(N)
fund (y)χ

SU(M)
afund (z) + a−1χ

SU(N)
afund (y)χ

SU(M)
fund (z)

)]
,

(2.12)

with “fund” and “afund” being fundamental and anti-fundamental representations, respec-

tively. Note that the last factor of (2.11) is identical to the Schur index of a bifundamental

hypermultiplet of SU(n1) × SU(n1 + `) with q replaced by q2. This expression will be

important in our discussions below.

The index of the T (`)
n1,n2 building block Let us now evaluate the Schur indices of the

T (`)
n1,n2 quiver building blocks we will eventually use to construct the Schur indices of the

quivers of ultimate interest. Since the T (`)
n1,n2 SCFTs are obtained by conformally gauging

ADN theories, their indices are evaluated as integrals of products of the indices associated

with each sector of the quivers.

47The precise relation between x and (y, z, a) is given by

a =

(
n1∏
i=1

xi

) 1
n1

, yi = xi/a for i = 1, · · · , n1 , zi = xia for i = n1 + 1, · · · , 2n1 + ` . (2.9)

48For n1 = 1, we instead have

IAD`+2
(q; z, a) = P.E.

[
q

1− q2

(
1 + χ

SU(`+1)
adj (z) + aχ

SU(`+1)
afund (z) + a−1χ

SU(`+1)
fund (z)

)]
. (2.10)
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To describe this gauging, let z0, zn2−n1
`

, and ~a ≡ (a1, · · · , an2−n1
`

) be fugacities for SU(n1),

SU(n2), and U(1)
n2−n1

` subgroups of the T (`)
n1,n2 flavor symmetry, respectively. Then the quiver

diagram in Fig. 16 implies that

IT (`)
n1,n2

(q; z0,~a, zn2−n1
`

)

=

∫ n2−n1
`
−1∏

i=1

dµi(zi) ISU(n1+i`)
vec (q; zi)

n2−n1
`
−1∏

i=0

IAD2n1+(2i+1)`
(q; zi, zi+1, ai+1)

 , (2.13)

where the integral is taken over SU(n1 + `) × SU(n1 + 2`) × · · · × SU(n2 − `), dµi is the

Haar measure on SU(n1 + i`), zi for 1 ≤ i ≤ n2−n1

`
− 1 is the SU(n1 + i`) fugacity associated

with dµi, and

ISU(N)
vec (q; z) ≡ P.E.

[
−2q

1− q
χ
SU(N)
adj (z)

]
, (2.14)

is the index contribution from an SU(N) vector multiplet.

Note that, up to adjoint-valued pre-factors (whose role we will clarify below) and a q → q2

fugacity rescaling, the Schur indices of the AD2n1+` SCFTs in (2.11) are just the indices of

bifundamental hypermultiplets. As a result, the indices of the T (`)
n1,n2 SCFTs will also have

a close connection with those of Lagrangian theories. Indeed, using the identities (B.2) and

(2.11), one can rewrite (2.13) as

IT (`)
n1,n2

(q; z0,~a, zn2−n1
`

) =
1

(q; q2)
n2−n1

`

P.E.

[
q

1− q2

(
χ
SU(n1)
adj (z0) + χ

SU(n2)
adj (zn2−n1

`
)
)]

× IL(`)
n1,n2

(q2; z0,~a, zn2−n1
`

) , (2.15)

where

IL(`)
n1,n2

(q, z0,~a, zn2−n1
`

)

≡
∫ n2−n1

`
−1∏

i=1

dµi(zi)ISU(n1+i`)
vec (q; zi)

 n2−n1
`
−1∏

i=0

I(n1+i`)×(n1+(i+1)`)
bfund (q; zi, zi+1, ai+1) , (2.16)

is the Schur index of the Lagrangian theory described by the quiver in Fig. 18. Note that

this quiver has the same gauge group as in Fig. 16, but its matter sector is composed purely

of fundamental and bifundamental hypermultiplets.49 The expression (2.15) shows that the

Schur index of T (`)
n1,n2 has a close connection with that of L(`)

n1,n2 (we need only multiply by

adjoint-valued prefactors and rescale q → q2).

Let us briefly comment on the plethystic exponential pre-factor in front of IL(`)
n1,n2

on the

RHS of (2.15). This term is inherited from the AD theories at the ends of the quiver and

49The L(`)
n1,n2 theory has the same flavor symmetry as T (`)

n1,n2 unless there is an accidental enhancement.

Therefore, its Schur index is a function of the same set of fugacities as IT (`)
n1,n2

.
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n1 n1 + ` n1 + 2` · · · n2 − ` n2

Figure 18: The quiver diagram of the Lagrangian theory we call L(`)
n1,n2 . Each edge connecting

two nodes stands for a bifundamental hypermultiplet, and each box labeled by “n” stands

for n fundamental hypermultiplets. The flavor symmetry of L(`)
n1,n2 is generically the same as

that of T (`)
n1,n2 .

is independent of the abelian flavor fugacities, ~a. On the other hand, this pre-factor does

depend on the fugacities, x and y, for the non-abelian flavor subgroup. The role of this

dependence can be understood by noting that IT (`)
n1,n2

and IL(`)
n1,n2

satisfy recursive relations.

Indeed, IT (`)
n1,n2

satisfies

IT (`)
n1,n2

(q; x,~a,y) =

∫
SU(n2−i`)

dµ(z) IT (`)
n1,n2−i`

(q; x,~b, z) ISU(n2−i`)
vec (q; z) IT (`)

n2−i`,n2

(q; z,y,~c) ,

(2.17)

where 1 ≤ i ≤ n2−n1

`
, and ~a = (b1, · · · , bn2−n1

`
−i, c1, · · · , ci). There is a similar recursive

relation for IL(`)
n1,n2

, where all IT (`)
n,m

are replaced with IL(`)
n,m

. These two recursive relations

are consistent with (2.15) if the P.E. factor is present in the relation (2.15).50

The indices of the T (`)
n1,n,n2 quivers Let us now assemble our previous results and compute

the Schur indices of the quivers we will ultimately be interested in for our discussion below—

the T (`)
n1,n,n2 SCFTs. To begin, we let (x1, a1), (x2, b1), and (y, c) denote the fugacities for

the flavor U(n1), U(n2), and U(`) subgroups, respectively. We also let (a2, · · · , an−n1
`

) and

(b2, · · · , bn−n2
`

) represent the fugacities for the residual U(1)
2n−n1−n2

`
−2 flavor subgroup. From

its quiver description in Fig. 17, we see that the Schur index of T (`)
n1,n,n2 can be evaluated as

IT (`)
n1,n,n2

(q; x1,~a, (y, c),~b,x2) =

∫
SU(n)

dµ(z) ISU(n)
vec (q; z)I `×nbifund(q; y, z, c)

× IT (`)
n1,n

(q; x1,~a, z)IT (`)
n2,n

(q; x2,~b, z) , (2.18)

where ~a ≡ (a1, · · · , an−n1
`

) and ~b ≡ (b1, · · · , bn−n2
`

).

As in the case of T (`)
n1,n2 , this Schur index is also related to the index of a quiver gauge

theory with a Lagrangian description. Indeed, using (B.2), (B.4) and (2.15), one can rewrite

50The flavor-independent part of the pre-factor multiplying IL(`)
n1,n2

in (2.15), (q; q2)−(n2−n1
` ), is present in

order to make up the difference in a− c between the Lagrangian and non-Lagrangian theories in the Cardy

limit of the index.
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L(`)
n1,n

n L(`)
n2,n

2`

Y
(`)
n1

· · ·
Y

(`)
n2

Figure 19: The left quiver is a weak coupling description of the Lagrangian theory L(`)
n1,n,n2 .

The gauge group is the same as that in Fig. 17, but the matter sector is composed purely of

fundamental and bifundamental hypermultiplets. The rank of the flavor symmetry group of

L(`)
n1,n,n2 is larger than that of T (`)

n1,n,n2 by `. The L(`)
n1,n,n2 theory is obtained by compactifying

the 6D (2, 0) An−1 theory on the punctured sphere shown in the right picture. The sphere has
2n−n1−n2

`
simple punctures (represented by black points) and two additional regular punctures

associated with Y
(`)
n1 and Y

(`)
n2 . The complex structure moduli space of this punctured sphere

is identified as the conformal manifold of L(`)
n1,n,n2 .

(2.18) as51

IT (`)
n1,n,n2

(q; x1,~a, (y, c),~b,x2) =
1

(q; q2)
2n−n1−n2

`

P.E.

[
q

1− q2

(
χ
SU(n1)
adj (x1) + χ

SU(n2)
adj (x2)

)]
× IL(`)

n1,n,n2

(q2; x1,~a, (y, cq
1
2 ), (y, cq−

1
2 ),~b,x2) , (2.19)

where

IL(`)
n1,n,n2

(q; x1,~a, (y1, c1), (y2, c2),~b,x2)

≡
∫
dµ(z) ISU(n)

vec (q; z) IL(`)
n1,n

(q; x1,~a, z) IL(`)
n2,n

(q; x2,~b, z)
2∏
i=1

I`×nbifund(q; yi, z, ci) , (2.20)

is the Schur index of a Lagrangian theory described by the quiver diagram in Fig. 19. We

call this quiver gauge theory L(`)
n1,n,n2 .

Note that the flavor symmetry of L(`)
n1,n,n2 is U(n1)×U(n2)×U(2`)×U(1)

2n−n1−n2
`

−2. In

(2.20), (x1, a1) and (x2, b1) are fugacities for the U(n1) and U(n2) flavor subgroups respec-

tively, while (y1,y2, c1, c2) are fugacities for the U(2`) flavor subgroup. Note that the flavor

symmetry of L(`)
n1,n,n2 is not the same as the flavor symmetry of T (`)

n1,n,n2 . Indeed, the rank of

the flavor symmetry of L(`)
n1,n,n2 is larger than that of T (`)

n1,n,n2 by `. Therefore, in the relation

(2.19), 2` fugacities for the U(2`) flavor subgroup of L(`)
n1,n,n2 are restricted to ` fugacities

(y, c). Finally, note that the P.E. factor depending on x1 and x2 plays the same role as in

the case of T (`)
n1,n2 .

51In the case of ni = 1, the factor χ
SU(ni)
adj is replaced with 0. In the case of ni = 0, it is replaced by −1.
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· · ·

· · ·

...
...

... n−k
`

`

k

f−2x1 f−2x2 q−
1
2fy1 q

− 1
2fy2 q

− 1
2fy3

q
1
2fy1 q

1
2fy2 q

1
2fy3

Figure 20: The left picture shows the Young diagram Y
(`)
k with n boxes. Here k and ` are

non-negative integers such that n−k
`

is a positive integer. There are k columns of height

one and ` columns of height n−k
`

. We also use the shorthand notation Ysimple ≡ Y
(1)

1 and

Yfull ≡ Y
(n)

0 = Y
(1)
n−1 in the main text. The right picture shows how the SU(n) fugacity w in

(2.26) is related to the SU(k) × SU(`) × U(1) fugacities (x,y, f) (in the particular case of

n = 8, k = 2, and ` = 3), where w1, · · · , wn are assigned to the boxes.

2.3 TQFT expressions and S-duality

2.3.1 TQFT expressions for the Schur indices and S-duality

In this section we begin by focusing on the T (`)
n1,n,n2 SCFTs and studying the resulting S-

dualities via the connection with L(`)
n1,n,n2 discussed in the previous section. In particular,

this connection leads us to simple TQFT expressions for the Schur indices of the T (`)
n1,n,n2

SCFTs and makes it straightfoward to read off the action of S-duality on the corresponding

abelian flavor symmetries.52 Moreover, as we will see, the TQFT approach gives rise to

interesting new expressions for indices of certain exotic AD building blocks that appear at

certain cusps in the conformal manifolds of the T (`)
n1,n,n2 theories.

One useful aspect of the Lagrangian quiver theory, L(`)
n1,n,n2 , is that it can be obtained by

compactifying the 6D (2,0) An−1 theory on a sphere with 2n−n1−n2

`
simple punctures and two

additional regular punctures associated with Y
(`)
n1 and Y

(`)
n2 (see Fig. 19) [79]. This fact implies

that the superconformal index of L(`)
n1,n,n2 can be computed via a TQFT on the sphere [75].

In this context, its Schur index, IL(`)
n1,n,n2

, is written as a correlation function of q-deformed

Yang-Mills (q-YM) theory [77]. Moreover, since the compactificaiton of the 6D (2, 0) theory

involves only regular punctures, the TQFT expression for IL(`)
n1,n,n2

is particularly simple.

On the other hand, AD theories arise from the compactifications of the (2, 0) theory with

one irregular puncture and, depending on the case, at most one additional regular puncture.

The resulting TQFT index expressions tend to be considerably more elaborate [39, 40].

However, the simple TQFT expression for IL(`)
n1,n,n2

and the relation (2.19) imply that the

Schur index of the non-Lagrangian quiver theory T (`)
n1,n,n2 also has a simple TQFT expression.

52The generalization of this discussion to T (`)
n1,n2 is straightforward but involves extra decoupled hypermul-

tiplets.
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Indeed, applying the transformation in (2.19) to the q-YM expression for IL(`)
n1,n,n2

, we obtain

IT (`)
n1,n,n2

(q; x1,~a, (y, c),~b,x2)

=
1

(q; q2)
2n−n1−n2

`

P.E.

[
q

1− q2

(
χ
SU(n1)
adj (x1) + χ

SU(n2)
adj (x2)

)]

×
∑

R: irreps of su(n)

f
Y

(`)
n1

R (q2; x1,y, e0)
(∏n−n1

`
i=1 f

Ysimple

R (q2; ei)
)(∏n−n2

`
j=1 f

Ysimple

R (q2; fj)
)
f
Y

(`)
n2

R (q2; x2,y
∗, f0)(

CR(q2)
) 2n−n1−n2

`

,

(2.21)

where y∗ ≡ (y−1
1 , · · · , y−1

` ) and

CR(q) ≡
∏n−1

`=1 (1− q`)n−`

(q; q)n−1
∞

χ
SU(n)
R (q

n−1
2 , q

n−3
2 , · · · , q−

n−1
2 ) . (2.22)

The parameters ei and fi are functions of ~a, ~b, c, and q satisfying

(e0)n ≡ q
n1
2 cn1

n−n1∏̀
i=1

(ai)
−n1 , (f0)n = q

n2
2 c−n2

n−n2∏̀
j=1

(bj)
n2 , (2.23)

(ei)
n = q

`
2 c`(ai)

n1+(i−1)`

n−n1∏̀
k=i+1

(ak)
−` , (fj)

n = q
`
2 c−`(bj)

−n2−(j−1)`

n−n2∏̀
k=j+1

(bk)
` , (2.24)

for 1 ≤ i ≤ n−n1

`
and 1 ≤ j ≤ n−n2

`
.53 The “wave function” fYR depends on the Young diagram

Y , and Y
(`)
k is the n-box Young diagram with k columns of height one and ` columns of height

n−k
`

(see Fig. 20). We use the short-hand notation Ysimple ≡ Y
(1)

1 and Yfull ≡ Y
(1)
n−1 = Y

(n)
0 .

The wave function fYR for Y = Y
(`)
k is given by [77, 16]

f
Y

(`)
k

R (q; x,y, f) ≡ KY
(`)
k (q; x,y, f)χ

SU(n)
R (w) , (2.26)

KY
(`)
k (q; x,y, f) ≡ P.E.

[
q

1− q
χ
SU(k)
adj (x) +

q
1
2(n−k` +1)

1− q
f−

n
kχ

SU(k)
fund (x)χ

SU(`)
afund (y)

+
q

1
2(n−k` +1)

1− q
f
n
kχ

SU(k)
afund (x)χ

SU(`)
fund (y) +

q(1− q n−k` )

(1− q)2
χ
U(`)
adj (y)

]
, (2.27)

53Note that not all ei and fj are independent. Indeed, we see that there is one constraint on them:n−n1∏̀
i=0

ei

n−n2∏̀
j=0

fj

 = q . (2.25)
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where w is an SU(n) fugacity such that wi ≡ f−
n−k
k xi for 1 ≤ i ≤ k and wk+n−k

`
(i−1)+j ≡

q
1
2(n−k` +1)−jfyi for 1 ≤ i ≤ ` and 1 ≤ j ≤ n−k

`
(see Fig. 20), and χ

U(`)
adj (y) = χ

SU(`)
adj (y) + 1.54

Note here that the wave function factors in (2.21) are not directly given by (2.26) but involve

the rescaling q → q2.

Note also that the expression (2.21) for the Schur index of T (`)
n1,n,n2 is invariant under

the permutations of (e1, · · · , en−n1
`
, f1, · · · , fn−n2

`
). It turns out that such permutations are

realized by reparameterizing ai, bj and c. Indeed, ei ←→ ei+1 is realized by

ai → (ai)
`

n2+i` (ai+1)
n2+(i+1)`
n2+i` , ai+1 → (ai)

n2+(i−1)`
n2+i` (ai+1)

− `
n2+i` , (2.30)

with the other fugacities kept fixed. Similarly, fi ←→ fi+1 is realized by a transformation of

bi and bi+1. Finally, en−n1
`
←→ fn−n2

`
is realized by

an−n1
`
→ (an−n1

`
)
`
n (bn−n2

`
)
`
n
−1c−

2`
n , bn−n2

`
→ (an−n1

`
)
`
n
−1(bn−n2

`
)
`
n c−

2`
n ,

c→ (an−n1
`

)
`
n
−1(bn−n2

`
)
`
n
−1c1− 2`

n , (2.31)

with the other fugacities kept fixed. Note that all these transformations keep e0 and f0 invari-

ant, and therefore preserve the wave functions f
Y

(`)
n1

R (q2; x1,y, e0) and f
Y

(`)
n2

R (q2; x2,y
∗, f0). This

discussion shows that the Schur index of T (`)
n1,n,n2 is invariant under the action of S 2n−n1−n2

`
.

As discussed below, this invariance can be regarded as a natural generalization of an S2n

symmetry of the index of T (1)
1,n,1 = (A2n−1, A2n−1), which was identified in [40] as the action

of the S-duality group (see also [55]). It is therefore natural to interpret the above S 2n−n1−n2
`

invariance as a consequence of the S-duality invariance of T (`)
n1,n,n2 .

In the next section, we carefully study two special cases, T (n)
0,n,0 and T (1)

1,n,1, and show that,

from various S-dual descriptions of these theories, one can read off the Schur indices of

various infinite series of exotic type III AD theories that decouple at cusps in the space of

gauge couplings.

2.3.2 S-duality of the T (n)
0,n,0 SCFTs and AD analogs for R0,n theories

In this and next section we perform a more thorough analysis of two sets of examples of the

S-dualities discussed in the previous section. In particular, we construct indices for exotic

AD fixtures that arise in certain decoupling limits of the T (n)
0,n,0 and T (1)

1,n,1 SCFTs. The first

set of examples gives rise to theories that generalize the TX theory discussed in [33] and are

54For Ysimple and Yfull, this expression reduces to

f
Ysimple

R (q; f) = P.E.

[
q

n
2

1− q
(fn + f−n)

] ∏n−2
`=1 (1− q`)n−`−1

(q; q)n−1
∞

χ
SU(n)
R (fq

n−2
2 , · · · , fq−

n−2
2 , f1−n) , (2.28)

fYfull

R (q;x) = P.E.

[
q

1− q
χ
SU(n)
adj (x)

]
χ
SU(n)
R (x) . (2.29)
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2 R0,n1 2 R2,AD
0,nAD3

Figure 21: S-dual descriptions for L(n)
0,n,0 (left) and T (n)

0,n,0 (right). In the left quiver, an

SU(2) gauge group is coupled to a fundamental hypermultiplet and an isolated SCFT called

R0,n. In the right quiver, an SU(2) gauge group is coupled to AD3 (playing the role of the

hypermultiplet) and an exotic fixture we call R2,AD
0,n (this latter theory is a type III theory

in the nomenclature of [158]).

AD analogs of the R0,n theories studied in [49]. Some of the theories in the second set of

examples are AD analogs of other regular puncture fixtures (although, we will see there are

some interesting subtleties in this analysis).

Let us first focus on the T (n)
0,n,0 theory, where n ≥ 3 is an odd positive integer. The quiver

diagrams of T (n)
0,n,0 and L(n)

0,n,0 are shown in Fig. 17 and Fig. 19, respectively. For ` = n and

n1 = n2 = 0, the TQFT expression (2.21) reduces to

IT (n)
0,n,0

(q; y, c) =
∑

R: irreps of su(n)

fYfull
R (q2; y)f

Ysimple

R (q2; q
1
2 c)f

Ysimple

R (q2; q
1
2 c−1)fYfull

R (q2; y∗)(
CR(q2)

)2 ,

(2.32)

where y and c are fugacities for SU(n) ⊂ U(n) and U(1) ⊂ U(n) subgroups of the flavor

U(n) symmetry, respectively.55 Note that, unlike in the case of regular puncture theories,

the two full puncture wave functions are not independent of each other since they have

conjugate fugacities (the same statement applies for the simple puncture wave functions).

We will discuss some implications of this fact in the context of the isolated theories that

emerge from cusps in the T (n)
0,n,0 gauge coupling space.56

Let us now discuss the different S-duality frames of the T (n)
0,n,0 SCFTs and the exotic

fixtures that appear at certain cusps in the gauge coupling constant space. In order to

proceed, it is useful to first review the corresponding story for the L(n)
0,n,0 theories. To that

end, recall that the L(n)
0,n,0 theory has another S-dual description in terms of the quiver

diagram on the left of Fig. 21, where the SU(2) gauge group is coupled to a fundamental

hypermultiplet and an isolated SCFT / fixture called R0,n [49]. The flavor symmetry of R0,n

is generically SU(2) × SU(2n), which is enhanced to E6 in the case n = 3.57 The gauge

coupling, τ ′, of the dual description is related to the coupling, τ , of the original description

by τ ′ = 1
1−τ . In terms of the punctured sphere on the right of Fig. 19, this description

55Note that, for n1 = n2 = 0, the first line of the RHS in (2.21) reduces to 1. Moreover, the Young

diagrams Y
(`)
n1 and Y

(`)
n2 reduce to Yfull ≡ Y (n)

0 = Y
(1)
n−1. We also note that e0 = f0 = 1 in this case.

56In fact, some of these implications apply to the gauged theories as well. However, the 3D mirror analysis

is more complicated in this case.
57Since its Coulomb branch operators are all of integral dimension, the R0,n theory is not an AD theory.
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Yfull

Yfull

Figure 22: The pants decomposition for the punctured sphere corresponding to the S-dual

description of L(n)
0,n,0 shown on the left of Fig. 21. The left and right spheres correspond to a

fundamental hypermultiplet and R0,n respectively, while the middle cylinder corresponds to

the SU(2) vector multiplet.

corresponds to the pants decomposition shown in Fig. 22. This dual description implies that

the Schur index of L(n)
0,n,0 can also be expressed as

IL(n)
0,n,0

(q; (w1, c1), (w2, c2)) =

∫
SU(2)

dµ(z) ISU(2)
fund (q; z, s)ISU(2)

vec (q; z)IR0,n(q; z, r,w1,w
∗
2) ,

(2.33)

where (wi, ci) are U(n) fugacities as in (2.20), z = (z, z−1) is an SU(2) fugacity, and s ≡
(c1c2)

n
2 and r ≡ c1/c2 are U(1) fugacities. The last factor in (2.33) is the Schur index of R0,n

given by [77]

IR0,n(q; z, r,w1,w
∗
2) =

∑
R: irrep of su(n)

f
Y

(1)
2

R (q; z, r) fYfull
R (q; w1) fYfull

R (q; w∗2)

CR(q)
, (2.34)

where only an SU(2)× U(1)× SU(n)2 subgroup of the flavor symmetry is manifest.

As we discuss in appendix B.1.2, the T (n)
0,n,0 theory has a similar S-dual description, which

is described by the quiver shown on the right of Fig. 21. The gauge group is again SU(2),

which is now coupled to an AD3 theory (acting as an AD generalization of hypermultiplets)

and a type III AD theory in the language of [158]. This type III AD theory is labeled by

three Young diagrams Y1 = Y2 = [n− 1, n− 1, 2] and Y3 = [2, · · · , 2, 1, 1] with 2n boxes and

generically has SU(2)×SU(n) flavor symmetry (the n = 3 case has SU(3)×SU(2)×SU(2)

flavor symmetry). We denote this type III theory by R2,AD
0,n since it can be regarded as an

AD counterpart of the R0,n fixture. This quiver description implies that the Schur index of

T (n)
0,n,0 can also be expressed as

IT (n)
0,n,0

(q; y, c) =

∫
SU(2)

dµ(z) IAD3(q; z, cn)ISU(2)
vec (q; z)IR2,AD

0,n
(q; z,y) , (2.35)

where IR2,AD
0,n

is the Schur index of the R2,AD
0,n theory. Note that previously this index was

obtained only for the special case n = 3 [32], while here we describe it for all odd n ≥ 3.58

58The identification of the flavor U(1) fugacity in IAD3
(q; z, cn) can be understood as follows. From the
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By substituting (2.33) and (2.35) into (2.19) and using the identities (2.11) and (B.2),

we obtain

0 =

∫
SU(2)

dµ(z) Ifund(q2; z, cn) ISU(2)
vec (q2; z)

×
{
IR0,n(q2; z, q,y,y∗)− P.E.

[
q

1− q2

(
1− χSU(2)

adj (z)
)]
IR2,AD

0,n
(q; z,y)

}
. (2.36)

This equation is solved by

IR2,AD
0,n

(q; z,y) = P.E.

[
q

1− q2

(
−1 + χ

SU(2)
adj (z)

)]
IR0,n(q2; z, q,y,y∗) . (2.37)

Indeed, there exists an inversion formula [76] that extracts the integrand of (2.36), which

implies that (2.37) is the unique solution to (2.36). Combining (2.37) and (2.34), we obtain

the following TQFT expression for the Schur index of R2,AD
0,n

IR2,AD
0,n

(q; z,y) =
1

(zq; q2)(z−1q; q2)

∑
R: irrep of su(n)

f
Y

(1)
2

R (q2; z, q)fYfull
R (q2; y)fYfull

R (q2; y∗)

CR(q2)
.

(2.38)

Note that, even though the flavor U(1) ⊂ U(2) fugacity r of f
Y

(1)
2

R (q2; z, r) is set to q, one can

show that (2.38) only has integer and half-integer powers of q as it should. Moreover, one

can check that for n > 3 the index does not have an O(q
1
2 ) term and so the theory does not

have free hypermultiplets. In appendix B.1.3 we find another proof of this fact by bounding

monopole operator dimensions in the 3D mirror.59

For n = 3, one can perform a stronger consistency check of the above result. Indeed, the

R2,AD
0,3 theory was carefully studied in [32], where it was shown that R2,AD

0,3 splits into an exotic

AD theory called TX and a decoupled half-hypermultiplet in the fundamental representation

of the flavor SU(2).60 The Schur index of the TX SCFT is then

ITX (q; z,y) = (zq
1
2 ; q)(z−1q

1
2 ; q)IR2,AD

0,3
(q; z,y) , (2.39)

quiver description in Fig. 19, we see that T (n)
0,n,0 has two baryonic Higgs branch operators of dimension n.

These operators are charge conjugate to each other and contribute q
n
2 c±n to the Schur index. In the dual

description shown in Fig. 21, these operators are realized as the product of a flavor SU(3) moment map in

AD3 and a Higgs branch operator in R2,AD
0,n . Indeed, from the 3D mirror of R2,AD

0,n discussed in appendix

B.1.3, we see that R
(2,AD)
0,n has a Higgs branch operator of dimension (n− 2) in the 2⊗ 1 representation of

the flavor SU(2) × SU(n) symmetry (this operator corresponds to a mirror monopole of scaling dimension

(n − 2)/2). Let us denote it by Oa with a = 1, 2 being the SU(2) index. Let us also denote by Oa± two

flavor SU(3) moment maps in the doublet of SU(2) ⊂ SU(3), where the subscript stands for the charge

under U(1) ⊂ SU(3). Then we see that εabOa±Ob can be identified as the baryonic Higgs branch operators

mentioned above. This discussion implies that the flavor U(1) fugacity in IAD3
is cn.

59Due to the non-trivial quiver topology of the 3D mirror that will be discussed further in the next section,

this computation is non-trivial and does not follow directly from the results in [81].
60In [32], the R2,AD

0,3 theory is denoted as T3, 32
.
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where the first two factors comprise the Schur index of the free matter fields. One can

check, order by order in q, that (2.39) with (2.38) substituted in is identical to the following

expression for the index of TX obtained in [32]:

ITX (q; z,y) =
∞∑
λ=0

q
3
2
λ P.E.

[
2q2

1− q
+ 2q − 2qλ+1

]
ch

SU(2)
Rλ

(q; z)ch
SU(3)
Rλ,λ

(q; y) , (2.40)

where ch
SU(N)
R (q; x) is the character of a representation R of ŝu(N)−N , and Rλ and Rλ,λ

are the highest weight representations of ŝu(2)−2 and ŝu(3)−3 corresponding to the Dynkin

labels (−2− λ, λ) and (−3− 2λ, λ, λ), respectively.

Let us further analyze the two equivalent expressions in (2.39), with (2.38) substituted

in, and (2.40). Note that these two expressions have very different origins. Indeed, the

expression in (2.40) is written in terms of affine Kac-Moody representations61 while (2.38)

is closely related to the correlator of a TQFT on a sphere with three regular punctures.

Moreover, (2.40) takes the form of a sum over a full set of SU(2) representations (with the

SU(3) representations restricted in terms of the SU(2) data), while (2.38) takes the form

of a sum over a full set of SU(3) representations (here the SU(2) data is fixed in terms

of the larger SU(3) data). In spite of these differences, the two formulas both take the

form of a product of group theoretical factors of SU(2)× SU(3). Indeed, the second SU(3)

wave function in (2.38) is dependent on the first SU(3) wave function since their fugacities

are complex conjugates of each other (therefore, in some sense, both expressions involve

restrictions on SU(3) data). In Sec. 2.4.1, we will reinterpret this dependence of the wave

functions in terms of the topology of the corresponding 3D mirrors of the R2,AD
0,n SCFTs.

2.3.3 S-duality of T (1)
1,n,1 = (A2n−1, A2n−1) theory

Next let us consider the T (1)
1,n,1 theories for positive integer n ≥ 2. Taking ` = n1 = n2 = 1,

the TQFT expression (2.21) reduces to

IT (1)
1,n,1

(q;~a, c,~b) =
1

(q; q2)2n−2

∑
R: irreps of su(n)

(∏n−1
i=0 f

Ysimple

R (q2; ei)
)(∏n−1

j=0 f
Ysimple

R (q2; fj)
)

(
CR(q2)

)2n−2 ,

(2.41)

where ei and fi are determined by (2.23) and (2.24). Note that this index is invariant under

the S2n that permutes e0, · · · , en−1 and f0, · · · , fn−1. These permutations are realized by

transforming the flavor fugacities as in (2.30) and (2.31), but now for i = 0, · · · , n − 1. In

particular, the permutation symmetry is “accidentally” enhanced in this case from S2(n−1)

to S2n.

61This expansion is natural considering that the Schur index is related to the vacuum character of the

corresponding 2D chiral algebra under the 4D/2D map of [15].
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T 2,AD
(m1,m2,m3)

m2

m3m1T (1)
1,m1

T (1)
1,m3

T (1)
1,m2

T(m1,m2,m3)

m2

m3m1L(1)
1,m1

L(1)
1,m3

L(1)
1,m2

Figure 23: The S-dual descriptions of L(1)
1,n,1 and T (1)

1,n,1 corresponding to (m1,m2,m3) such

that m1 +m2 +m3 = 2n and 1 < mi < n. Here a circle with mi inside stands for an SU(mi)

gauge group.

This S2n invariance can be interpreted as reflecting the S-duality invariance of the the-

ories. Indeed, it has been argued in [29, 161] that the T (1)
1,n,1 theories are identical to the

so-called (A2n−1, A2n−1) SCFTs [48], whose S-duality group acts on the flavor fugacities

through S2n [40]. Our formula (2.41) clarifies how this S2n acts on the (2n − 1) flavor

fugacities, (~a, c,~b), of T (1)
1,n,1.

As in the case of T (n)
0,n,0, other S-dual descriptions of our theories lead us to expressions

for the Schur indices of a series of exotic type III AD fixtures. Indeed, by applying the

technique developed in [161], we see that the T (1)
1,n,1 SCFTs have an S-dual description for

each set (m1,m2,m3) of integers such that 2 ≤ mi ≤ 2n − 4 and m1 + m2 + m3 = 2n.

We focus on the case in which 2 ≤ mi < n for all i = 1, 2, 3 (we will discuss relaxing

the condition that mi < n below). Then this dual description is characterized by the quiver

diagram shown on the right of Fig. 23. The quiver has three tails corresponding to three T (1)
1,mi

SCFTs, which are connected to the central node by an SU(mi) gauge group. The central

node corresponds to an isolated type III AD theory labeled by three Young diagrams with n

boxes Y1 = Y2 = [m1,m2,m3] and Y3 = [1, · · · , 1], which we denote by T 2,AD
(m1,m2,m3). The flavor

symmetry of T 2,AD
(m1,m2,m3) is generically U(1)2 ×

∏3
i=1 SU(mi). From this S-dual description

of T (1)
1,n,1, we see that its Schur index can also be written as

IT (1)
1,n,1

(q;~a, c,~b) =

∫ ( 3∏
i=1

dµ(zi) ISU(mi)
vec (q; zi) IT (1)

1,mi

(q;~si, zi)

)
IT 2,AD

(m1,m2,m3)
(q; z1, z2, z3, t1, t2) ,

(2.42)

where ~si ≡ (si,1, · · · , si,mi−1), tj are some functions of ~a, c and ~b, and the last factor is the

Schur index of T 2,AD
(m1,m2,m3). This latter index has not been worked out in the literature before.

The Lagrangian counterpart, L(1)
1,n,1, has a similar S-dual frame described by the quiver

diagram on the left of Fig. 23 [79], where the gauge group is the same but each tail now

corresponds to L(1)
1,mi

. The central node now stands for the theory obtained by compactifying

the 6d (2,0) An−1 theory on a sphere with three regular punctures associated with Young di-

agrams Y
(1)
m1 [79, 49], which we call the T(m1,m2,m3) theory. The flavor symmetry of T(m1,m2,m3)
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· · ·
m1

· · ·
m3

...
m2

Figure 24: The decomposition of the punctured sphere corresponding to the S-dual descrip-

tion of L(1)
1,n,1 shown on the left of Fig. 23. The i-th tail contains mi (simple) punctures

and corresponds to L(1)
1,mi

. The three cylinders correspond to SU(mi) vector multiplets. The

middle sphere corresponds to T(m1,m2,m3).

contains
∏3

i=1 U(mi), and the diagonal U(1) enhances to SU(2).62 This description of L(1)
1,n,1

corresponds to a decomposition of the punctured sphere as in Fig. 24 (note that the punc-

tures are all simple punctures when ` = n1 = n2 = 1). This S-dual description implies that

the Schur indices of L(1)
1,n,1 have integral expressions similar to (2.42) but with the indices of

L(1)
1,mi

and T(m1,m2,m3) replacing those of T (1)
1,mi

and T 2,AD
(m1,m2,m3). Note that the Schur indices

of T(m1,m2,m3) have already been written down in [77] as
∑

R(CR(q))−1
∏3

i=1 f
Y

(1)
mi

R (q; zi, vi),

where the sum runs over irreducible representations of su(n), and zi and vi are fugacities for

SU(mi) ⊂ U(mi) and U(1) ⊂ U(mi), respectively. Using (2.19), (2.15), and (B.2), one can

translate this integral expression for IL(1)
1,n,1

into the following formula for IT (1)
1,n,1

:

IT (1)
1,n,1

(q;~a, c,~b) =
1

(q; q2)

∫ ( 3∏
i=1

dµ(zi) ISU(mi)
vec (q; zi) IT (1)

1,mi

(q; ~ui, zi)

)

× P.E.

[
q

1− q2

3∑
i=1

χ
SU(mi)
adj (zi)

] ∑
R: irrep of su(n)

∏3
i=1 f

Y
(1)
mi

R (q2; zi, q
mi
2n vi)

CR(q2)
,

(2.43)

where zi is an SU(mi) fugacity, and ~ui ≡ (ui,1, · · · , ui,mi−1) and vi are U(1) fugacities related

to ek and fk by

(ui,k)
k(k+1) =

(gi,k+1)kn

(gi,1 · · · gi,k)n
, vi = q−

mi
2n

mi∏
k=1

gi,k , (2.44)

62There can be additional enhancements when n = mi + 1 for at least one i. If this statement holds for

all i, then we get the usual E6 SCFT (i.e., T(2,2,2) = T3).
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with (g1,1, · · · , g1,m1 , g2,1, · · · , g2,m2 , g3,1, · · · , g3,m3) = (e0, · · · , en−1, f0, · · · , fn−1). From (2.23)

and (2.24), we see that ui,k and vi are functions only of flavor fugacities ~a,~b and c and are

therefore independent of q. Note also that, since v1v2v3 = 1, only two of the vi are indepen-

dent.

We now see that the two expressions (2.42) and (2.43) are consistent if ~si = ~ui, ti = vi
and the Schur index of T 2,AD

(m1,m2,m3) is given by

IT 2,AD
(m1,m2,m3)

(q; z1, z2, z3, t1, t2)

= P.E.

[
q

1− q2

(
1 +

3∑
i=1

χ
SU(mi)
adj (zi)

)] ∑
R: irrep of su(n)

∏3
i=1 f

Y
(1)
mi

R (q2; zi, q
mi
2n ti)

CR(q2)
, (2.45)

with t3 ≡ 1
t1t2

(as in the case of the R2,AD
0,n SCFTs, this fugacity dependence will have

consequences for the corresponding 3D mirrors to be discussed in the next section). While

we don’t have a full proof that this is the only expression consistent with (2.42) and (2.43),

we see that it gives a physically meaningful result, since there are only integer and half-

integer powers of q (which is necessary for the quantity to be a Schur index of an N = 2

SCFT), and it has the expected S3 symmetry acting on the zi and ti.

Finally, let us note that the expression in (2.43) assumes that mi < n (at least for the

corresponding 4D regular puncture theory to make sense). Indeed, for mi ≥ n, we would

end up with a Young diagram with mi columns of height one and one column of non-positive

height, n−mi ≤ 0.63

On the other hand, the expression in (2.42) may in principle make sense for mi ≥ n. It

would be interesting to understand if we can analytically continue the expression in (2.43) to

the regime of mi ≥ n and understand the corresponding regular puncture theory, T(m1,m2,m3),

as a non-unitary 4D theory (perhaps generalizing the discussion in [6, 95, 96, 155, 62]).

2.4 RG flows to thirty-two supercharges

2.4.1 Wave function relations and topology of 3D mirrors

In this section, we interpret the TQFT formulas (2.38) and (2.45) for the Schur indices of

the R2,AD
0,n and T 2,AD

(m1,m2,m3) SCFTs in terms of the corresponding 3D mirrors given in Fig. 26

and Fig. 28 respectively. In the following subsection, we argue that this discussion implies

the existence of RG flows with accidental SUSY enhancement to thirty-two (Poincaré plus

special) supercharges.

We begin by discussing the TQFT formula for the R2,AD
0,n index, which we reproduce below

63If mi > n for some i ∈ {1, 2, 3}, the decomposition of the punctured sphere shown in Fig. 24 leads to a

different S-dual description of L(1)
1,n,1 from the one described by the left quiver of Fig. 23. In particular, the

central three-punctured sphere corresponds to a different fixture from T(m1,m2,m3). It would be interesting

to find an AD analog of this class S fixture.
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Figure 25: The 3D mirror of the S1 reduction of the R0,n SCFT. Nodes labeled by “N”

represent U(N) gauge nodes and lines between nodes denote bifundamental hypermultiplets

(an overall decoupled U(1) is removed). The R0,n index has a TQFT expression with three

independent wave functions corresponding to the three quiver tails in the above diagram of

the 3D mirror. The two quiver tails circled in red generate monopoles which are responsible

for the SU(n)2 ⊂ SU(2n) × SU(2) flavor symmetry of the theory (the SU(2) ⊂ SU(2n) ×
SU(2) factor comes from the third tail, and the balanced central node is responsible for

the U(1) × SU(n)2 → SU(2n) ⊂ SU(2n) × SU(2) enhancement). When we perform the

transformation that takes us from the Schur index of R0,n to that of R2,AD
0,n , the two SU(n)

tails fuse to form a single SU(n) line of nodes as in Fig. 26.

for ease of reference

IR2,AD
0,n

(q; z,y) = P.E.

[
q

1− q2

(
−1 + χ

SU(2)
adj (z)

)]
IR0,n(q2; z, q,y,y∗) . (2.46)

Using the expression for IR0,n (2.34) we then have

IR2,AD
0,n

(q; z,y) =
1

(zq; q2)(z−1q; q2)

∑
R: irrep of su(n)

f
Y

(1)
2

R (q2; z, q)fYfull
R (q2; y)fYfull

R (q2; y∗)

CR(q2)
.

(2.47)

Let us pay special attention to the transformation on the flavor fugacities when we go from

the TQFT expression for R0,n to that for R2,AD
0,n . At the level of flavor symmetries, recall that

R0,n has a GR0,n = SU(2) × SU(2n) flavor symmetry (which is enhanced to E6 for n = 3)

[49]. On the other hand, R2,AD
0,n has flavor symmetry GR2,AD

0,n
= SU(2) × SU(n) (which is

enhanced to SU(2)2 × SU(3) for n = 3).

The TQFT expression in (2.34) makes manifest a U(2) × SU(n)2 ⊂ GR0,n flavor sub-

group via the wave function with U(2) symmetry, f
Y

(1)
2

R (q, z, r), and the two wave functions

with SU(n) symmetry, fYfull
R (q,w1) and fYfull

R (q,w∗2). These wave functions, and the flavor

symmetries they describe, are related to punctures in the An−1 (2, 0) theory. The punctures

appear in the 3D mirrors of the S1 compactifications of our 4D theories via the presence of

certain quiver tails radiating off a central SU(n) node as in Fig. 25 [49, 19]. In particular,
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Figure 26: The 3D mirror of the S1 reduction of the R2,AD
0,n theory. Nodes and lines are

defined as in Fig. 25. The two quiver tails corresponding to the TQFT wave functions with

conjugate fugacities are fused together to give one linear set of nodes generating an SU(n)

symmetry. The corresponding nodes are inside the red oval. The remaining quiver tail gives

an SU(2) symmetry and is symmetrically fused with the SU(n) nodes via an unbalanced

SU(2) node. As a result, the quiver contains a closed non-abelian loop, and the theory can

flow to an interacting N = 8 SCFT via the procedure described in the text.

the two tails with gauge groups U(n − 1) × · · · × U(1) correspond to punctures described

by the fYfull
R wave functions, while the tail with gauge group U(2)×U(1) corresponds to the

puncture described by f
Y

(1)
2

R . Indeed, by the linear quiver rules given in [81], the dimension

one monopole operators with fluxes supported on, say, one of the U(n − 1) × · · · × U(1)

tails give rise to multiplets containing the additional symmetry currents that enhance the

corresponding U(1)n−1 topological symmetry to SU(n).64 This statement follows from the

fact that the corresponding line of nodes is “balanced,” i.e., each U(nc) node has nf = 2nc
flavors. A similar phenomenon occurs in the other U(n − 1) × · · · × U(1) tail and the

U(2) × U(1) tail, thereby giving rise to the U(2) × SU(n)2 ⊂ GR0,n non-abelian symmetry

(the U(1)×SU(n)2 → SU(2n) enhancement occurs because of monopole operators with flux

through the central U(n) node).

Given this discussion and the relations between (2.34) and (2.47), let us give an expla-

nation for the form of the quiver tails for the 3D mirror of R2,AD
0,n shown in Fig. 26. First,

note that the two independent SU(n) TQFT R0,n wave functions in (2.34) are no longer

independent in (2.47). Indeed, we must set w1 = w2 = y (in addition to taking q → q2)

and so there is just one independent set of SU(n) fugacities. Since the two SU(n) wave

64Recall that any 3D U(nc) gauge group has a corresponding topological symmetry current, jµ = εµνρF
νρ,

where F νρ is the field strength corresponding to the trace part of U(nc). Note that this is a global flavor

symmetry acting on the Coulomb branch. In the direct reduction (i.e., the mirror of the mirror quivers

we are discussing), the topological symmetry (along with any additional enhanced symmetry via monopole

operators) acts on the Higgs branch and descends from the usual 4D flavor symmetry.
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1
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Figure 27: The 3D mirror of the S1 reduction of the T(m1,m2,m3) theory. Nodes and lines are

defined as in Fig. 25. The three quiver tails correspond to TQFT wave functions carrying

U(mi) global symmetry.

functions are no longer independent, it is natural that in going from Fig. 25 to Fig. 26

we should fuse the two previously independent quiver tails into a single tail giving rise to a

single SU(n) symmetry.65 Indeed, note that the line of nodes in the red oval in Fig. 26 have

a bifundamental connecting the two previously independent tails and consist of n− 1 total

balanced nodes. By the rules of [81], this line of nodes gives rise to the SU(n) ⊂ GR2,AD
0,n

symmetry.

Since the two previously independent SU(n) wave functions are now related by complex

conjugation of fugacities, non-chirality demands that that their corresponding line of nodes

connects to the quiver tail corresponding to the SU(2) wave function in a symmetric fashion.

Indeed, the loop of nodes appearing in Fig. 26 is precisely such a symmetric connection. The

shortening of the remaining tail reduces the U(2) global symmetry factor to SU(2) and also

ensures that the line of nodes generating the SU(n) symmetry are indeed balanced. Note

that this loop topology of the R2,AD
0,n quiver will be important in arguing for flows to theories

with thirty-two (Poincaré plus special) supercharges in the next section.

Next let us discuss the case of T 2,AD
(m1,m2,m3). For ease of reference, we again write the TQFT

65In fact, since the wave functions have conjugate fugacities, it is tempting to write fYfull

R (q2, y∗) =

fYfull

R̄
(q2, y), where R̄ is the SU(n) representation conjugate to R. We may then write the product of

SU(n) wave functions in (2.47) as

fYfull

R (q2,y)fYfull

R (q2,y∗) = fYfull

R (q2,y)fYfull

R̄
(q2,y) = I−

1
2

V (q2,y)
∑

R′∈R⊗R̄

fYfull

R′ (q2,y) , (2.48)

where IV is the Schur index of the SU(n) vector multiplet. The appearance of a single wave function suggests

that the SU(n) symmetry should be associated with a single line of nodes in the 3D mirror. Moreover, the

additional inverse factor of I−
1
2

V reminds us that this symmetry was associated with two punctures in the

original regular puncture theory. At the level of the mirror quiver, this factor reflects the fact that the ranks

of the gauge groups in the red oval increase by two between successive nodes in the tails.
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expression for the Schur indices of these theories originally appearing in (2.45)

IT 2,AD
(m1,m2,m3)

(q; z1, z2, z3, t1, t2)

= P.E.

[
q

1− q2

(
1 +

3∑
i=1

χ
SU(mi)
adj (zi)

)] ∑
R: irrep of su(n)

∏3
i=1 f

Y
(1)
mi

R (q2; zi, q
mi
2n ti)

CR(q2)
, (2.49)

where the U(1) fugacities are constrained to satisfy t3 = 1
t1t2

(i.e., there is only a U(1)2

abelian symmetry), and zi are SU(mi) fugacities. In the case of the T(m1,m2,m3) theory,

we have a generic global symmetry group GT(m1,m2,m3)
⊃ U(m1) × U(m2) × U(m3) (the

diagonal U(1) enhances to SU(2)), while for the T 2,AD
(m1,m2,m3) theory, we have GT 2,AD

(m1,m2,m3)
=

SU(m1)× SU(m2)× SU(m3)× U(1)2.

The correspondence between TQFT wave functions and quiver tails is clear in the case of

the 3D mirror of the reduction of T(m1,m2,m3) in Fig. 27: each f
Y

(1)
mi

R wave function corresponds

to an independent U(mi) × · · · × U(1) quiver tail of balanced nodes which, by the rules of

[81] gives rise to monopole operators leading to the U(1)mi → U(mi) flavor enhancement

(again, this statement holds assuming generic mi such that m1 +m2 +m3 = 2n and mi < n).

m3 − 1 1m3

m1

m2

m2 − 1

m1 − 1

1

1

Figure 28: The 3D mirror of the S1 reduction of the T 2,AD
(m1,m2,m3) SCFT. Nodes and lines

are defined as in Fig. 25. The three U(mi) × · · · × U(1) quiver tails generate independent

SU(mi) fugacities and correspond to the independent SU(mi) parts of the three TQFT

wave functions. On the other hand, the U(1) parts of the three TQFT wave functions are

symmetrically dependent. This dependence is reflected in the quiver by the loop of three

U(mi) nodes.

On the other hand, the T 2,AD
(m1,m2,m3) theory no longer has independent wave functions

carrying U(mi) flavor symmetry since the ti fugacities in (2.49) are constrained so that
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2

2

Figure 29: The mirror quiver obtained after performing the Coulomb branch flow from Fig.

26 described in the main text. Nodes and lines are defined as in Fig. 25.

2 1

Figure 30: The mirror quiver obtained after performing the Higgs branch flow from Fig.

29 described in the main text (we drop decoupled hypermultiplets). The circular line is an

adjoint hypermultiplet, and the remaining lines and nodes are defined as in Fig. 25. This

theory flows to 3D N = 8 in the IR.

t3 = 1
t1t2

. Indeed, only the SU(mi) parts of the wave functions are still independent. We

can then give an argument in favor of the 3D mirror of the S1 reduction of T 2,AD
n shown in

Fig. 28. The point is that the three balanced U(mi − 1) × · · ·U(1) tails correspond to the

independent SU(mi) parts of the TQFT wave functions, while the loop of three U(mi) nodes

appears because of the constraint on the U(1) parts of the TQFTs wave functions. Again,

this difference in the topology of the AD mirror relative to the T(m1,m2,m3) mirror gives rise

to the RG flows to theories with thirty-two supercharges that will be discussed further in

the next section.

2.4.2 Flows to thirty-two supercharges

As alluded to in the previous section and also in the introduction, one important characteris-

tic of the isolated AD fixtures we are discussing is that, unlike the regular puncture theories

they are related to, the AD theories have RG flows (triggered by vevs and genuinely relevant

deformations) with accidental SUSY enhancement to interacting theories with thirty-two

(Poincaré plus special) supercharges (thereby generalizing the examples in [33]). In the next

section, we will argue that such flows are in fact generic in the landscape of AD theories

with known 3D mirrors. Note that these flows will proceed via reduction to 3D and via

flowing onto the moduli spaces of the resulting theories. We briefly discuss the possibility of

uplifting this discussion to 4D at the end of this subsection while postponing a more detailed

analysis for future work.
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To first understand why the RG flows to interacting theories with thirty-two supercharges

occur in the R2,AD
0,n and T 2,AD

(m1,m2,m3) theories discussed above, it is sufficient to compactify

these theories on S1 and consider the corresponding 3D mirrors. Let us start with the

mirror in Fig. 26. Flowing to generic points on the Coulomb branch of the two lines of

nodes with gauge groups U(2)×U(4)× · · · ×U(n− 3) and also onto points of the Coulomb

branch of U(n − 1) × U(n − 1) with symmetry breaking pattern U(n − 1) × U(n − 1) →
U(2)×U(2)×U(1)2(n−3), we obtain the quiver in Fig. 29, where we have dropped decoupled

U(1) factors. This is the mirror of the lowest rank theory studied in [33], which we know

from that reference flows to N = 8 via mass terms in the direct reduction. However, it will

be useful for our more general discussion below to analyze a purely moduli space flow to

N = 8 in the mirror theory itself.66 To that end, consider turning on Higgs branch vevs

〈Q1Q̃1〉 = 〈Q2Q̃2〉 = 〈Q3Q̃3〉 6= 0 , (2.50)

where the Qi, Q̃i pairs correspond to the three edges in the loop of Fig. 29 so that we break

U(2)3 → U(2)diag leaving the quiver in Fig. 30 after dropping decoupled fields.67 To see

this, notice that the bifundamentals Qi, Q̃i’s all carry non-trivial representations for two

out of the three U(2) factors, we may label them as (1,2, 2̄), (2,1, 2̄), (2, 2̄,1) and similarly

for their conjugates with 1,2, 2̄ as the trivial/fundamental/anti-fundamental representations

respectively. Under the action of a generic group element (g1, g2, g3) of U(2)3, the common

VEV u of 〈Q1Q̃1〉, 〈Q2Q̃2〉, 〈Q3Q̃3〉 will transform in three ways as g2g
−1
3 u, g1g

−1
3 u, g1g

−1
2 u ,

for consistency we must have g1 = g2 = g3. Then we are left with the representation 2 ⊗ 2̄

in U(2)diag, but that is precisely the adjoint representation, including the conjugate we have

the adjoint hypermultiplet, which is Fig. 30.68 Similarly this argument generalizes to Fig.

31 and Fig. 32, where we have U(m1) instead of U(2), but adj = n⊗ n̄ is true in all U(n).

In terms of the squark fields, we may imagine turning on vevs

〈Qi〉 = 〈Q̃i〉 = v12×2 6= 0 , (2.51)

for i = 1, 2, 3. This latter theory flows directly to N = 8 in the IR. Therefore, we see that

through a combination of Coulomb and Higgs branch flows in the mirror theory, we flow to

an interacting 3D N = 8 SCFT.

Now consider the T 2,AD
(m1,m2,m3) SCFTs. Since the T 2,AD

(m1,m2,m3) mirror clearly flows to the

R2,AD
0,n mirror via excursions on the Coulomb branch, we can appeal to the above discussion

and conclude that there are flows from T 2,AD
(m1,m2,m3) to theories with thirty-two supercharges.

On the other hand, the T 2,AD
(m1,m2,m3) theories also admit other flows to a richer set of N = 8

theories, which we now describe.

66The mirror analog of the flow in [33] proceeds by turning on Fayet-Iliopoulos terms.
67In the direct reduction, this maneuver corresponds to turning on vevs for the overall U(1) ⊂ U(2) vector

multiplet primary.
68Notice that we have an adjoint hypermultiplet of U(2), but at the level of Lie algebra we have u(2) =

u(1)⊕su(2) so we can drop further the decoupled u(1) factor and keep the su(2) adjoint hypermultiplet only.
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m1
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Figure 31: The mirror quiver obtained after performing the Coulomb branch flow from Fig.

28 described in the main text. Nodes and lines are defined as in Fig. 25.

m1 1

Figure 32: The mirror quiver obtained after performing the Higgs branch flow from Fig.

31 described in the main text (we drop decoupled hypermultiplets). The circular line is an

adjoint hypermultiplet, and the remaining lines and nodes are defined as in Fig. 25. This

theory flows to 3D N = 8 in the IR.

Without loss of generailty, we will assume that m3 ≥ m2 ≥ m1. Now, let us flow to points

on the Coulomb branches of the two quiver tails of length mi with i = 3, 2 such that the

corresponding gauge groups break as U(mi)×U(mi−1)×· · ·×U(1)→ U(m1)×U(1)mi−m1×
U(1)mi−1 × · · · × U(1) (where the ellipses on the RHS of the breaking contain only abelian

gauge groups). Simultaneously, we flow to a generic point on a Coulomb sub-branch in the

third tail specified by SU(m1 − 1) × U(m1 − 2) × · · · × U(1) and obtain the theory in Fig.

31. We can then turn on vevs as in (2.50) where the Qi, Q̃i pairs are now bifundamentals of

U(m1)× U(m1).69 This procedure produces the interacting N = 8 theory described in Fig.

32.

Note that in all RG flows described in this subsection, we flow on both the Coulomb

and Higgs branches of the 3D mirror. Therefore, by mirror symmetry, in order to reach

the N = 8 fixed points, we flow on both the Higgs and Coulomb branches of the direct S1

reductions of our 4D SCFTs. It would be interesting to understand if these flows uplift to

4D flows along the Higgs and Coulomb branches of our 4D theories (i.e., if the corresponding

4D RG flows commute with the S1 reduction as in [33]).

If the flows do uplift, then it would also be interesting to understand if the 3DN = 8 fixed

points map to N = 4 theories in 4D. In principle, if the flows are well behaved enough, then

the detailed properties of these possible N = 4 fixed points—e.g., if they are of Super-Yang

Mills (SYM) type or not—can be studied.

69In analogy with the previous case, we turn on vevs 〈Qi〉 = 〈Q̃i〉 = v1m1×m1
6= 0 for all i = 1, 2, 3.
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Universality of flows to interacting SCFTs with thirty-two supercharges In this

section, we briefly state and prove a theorem governing how universally we may expect

the existence of RG flows to interacting theories with thirty-two (Poincaré plus special)

supercharges. This discussion is motivated by our TQFT formulae for the Schur indices of

the R2,AD
0,n and T 2,AD

(m1,m2,m3) theories and our reinterpretation of these formulae as leading to

closed loops of non-abelian nodes in the corresponding 3D mirrors. Indeed, we saw that the

existence of such closed loops generically led to RG flows ending on interacting SCFTs with

thirty-two supercharges.

Combined with the infinite class of examples in [33], it is then tempting to wonder

whether such flows are generic in the class of (untwisted) type III theories (and therefore,

perhaps, in the space of N = 2 theories coming from compactifications of the (2, 0) theory

on surfaces with untwisted punctures). In fact, it is straightforward to show this is the case,

if we assume the classification of such theories given in [162, 163]. In this classification,

the space of type III theories is specified by N ≥ 2 Young diagrams (the theories discussed

above have N = 3). The N = 2 theories cannot flow to theories with thirty-two supercharges

(we do not consider turning on additional gauge couplings in the UV), and so we focus on

the more generic theories with N ≥ 3.70 The Young diagrams in question take the form

[162, 163]

Y1 = Y2 = · · · = YN−1 = [h1, h2, · · · , hp] , YN = [a1,1, · · · , a1,n1 , a2,1 · · · , a2,n2 · · · ap,np ] ,
(2.52)

where the column heights hi and ai,b are non-decreasing (from left to right) positive integers

satisfying
nb∑
b=1

ai,b = hi . (2.53)

The above Young diagrams correspond to the degeneracy of the eigenvalues of the singular

terms in the Higgs field one obtains in the Hitchin system describing the type III compact-

ification [158] (although note that in our conventions Y1 corresponds to the most singular

piece). At the level of the 3D mirror, the quiver consists of a core with gauge group

G = U(h1)× U(h2)× · · · × U(hp) , (2.54)

and N − 2 bifundamentals between each node.71 The final Young diagram, YN , describes

the quiver tails. For example, if the column of height hb is broken up into [ab,1, · · · , ab,nb ],
we attach a tail to U(hb) with gauge group

Gtail
b = U(hb − ab,1)× U(hb − ab,1 − ab,2)× · · · × U(hb − ab,1 − · · · − ab,nb−1

) , (2.55)

70Interestingly if one adds a regular singularity one finds, among the N = 2 theories, 3D mirrors equivalent

to the star-shaped quivers found in the case of some theories with regular punctures (and no irregular

punctures).
71In the case of the R2,AD

0,n and T 2,AD
(m1,m2,m3) theories, the cores are the triangular loops in Fig. 26 and Fig.

28 respectively.
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and bifundamentals between each corresponding node (and also a single bifundamental be-

tween the U(hb − ab,1) and U(hb) node). One repeats this procedure for all b ∈ {1, · · · , p}.
Given this setup and assumptions, we can prove the following theorem on the universality

of non-perturbative flows from sixteen to thirty-two supercharges:

Theorem 2.1. If the quantities h3 and n1 in (2.52) satisfy h3, n1 > 1, the corresponding

type III SCFT flows, up to free decoupled factors, to an interacting theory with thirty-two

(Poincaré plus special) supercharges upon compactification to 3D, flowing to certain points

on the moduli space of the theory, and, for N > 3, turning on mass terms in the 3D mirror.72

Proof: We would like to reduce the 3D mirror to the diagram in Fig. 31 with m1 = h3 > 1.

To accomplish this task, we can first move along the Coulomb branch to reduce our theory to

a diagram similar to the one in Fig. 31, but containing N − 2 bifundamentals between each

node. To get to this diagram, first go to generic points on the Coulomb branches of the subset

of the core nodes (see (2.54)) characterized by U(h4)×· · ·×U(hp) ⊂ G and to generic points

on the Coulomb branches of all their tails (if any exist). Next, we go to generic points on the

Coulomb branches of the tails of the U(h2)×U(h3) nodes to remove them as well. Then, we

go to generic points on the Coulomb branch of the U(h1−a1,1−1)×· · ·×U(h1−a1,1−· · ·−a1,n1)

part of the U(h1) quiver tail. This procedure leaves us (up to decoupled U(1) factors, which

we drop) with a U(h1)×U(h2)×U(h3) group of core nodes connected by N−2 bifundamentals

between each node and a U(1) node connected to U(h1) via a fundamental. To proceed, we

now go to a point on the U(h1) × U(h2) Coulomb branch that breaks the gauge symmetry

as U(h1) × U(h2) → U(h3)2 × U(1)h1−h3 × U(1)h2−h3 . Up to decoupled U(1)’s, we have a

diagram equivalent to that in Fig. 31 with m1 = h3 except for the fact that there are N − 2

bifundamentals between each non-abelian node. We may add mass terms to remove N−3 of

the bifundamentals between each node to end up with a diagram identical to the one in Fig.

31. Combined with the Higgs branch flow described below Fig. 31, we flow to an interacting

N = 8 theory. Therefore, if we are willing to go on the Coulomb and Higgs branches of the

3D mirror and, at the same time, add mass terms for some of the bifundamentals between

the remaining non-abelian nodes, we flow to a theory with thirty-two supercharges.73 q.e.d.

72The same caveats described at the end of the previous section apply in lifting these flows to 4D.
73Note that adding a regular singularity to the above set of theories does not change the above proof:

we can decouple the additional nodes associated with this singularity via flowing to generic points on the

corresponding Coulomb branches.
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3 Fusion of non-abelian anyons I: Arad-Herzog conjec-

ture

3.1 Arad-Herzog conjecture and its discrete gauge theory cousins

Non-abelian anyons are interesting for a variety of reasons. For example, they naturally

appear in quantum field theory descriptions of knot theory [157], they are believed to play an

important role in the fractional quantum Hall effect [121], and they underly a topological form

of quantum computation [156]. More recently, they have attracted attention as providing

possible lessons for quantum gravity [140].

We will be exclusively concerned with non-abelian anyons in a particular type of 2 + 1-

dimensional topological quantum field theory (TQFT): discrete gauge theories [63, 136]. As

we have introduced in 1.1.1, these are gauge theories based on some discrete gauge group,

G, along with a Dijkgraaf-Witten 3-cocycle, ω ∈ H3(G,U(1)) (when ω is cohomologically

non-trivial, the theory is said to be “twisted”). The basic degrees of freedom are anyonic

line operators (i.e., operators supported on one-dimensional loci of spacetime that have non-

trivial braiding with each other) of three general types:

1. Wilson lines, which carry electric charge labeled by a linear irreducible representation

of G, π. These operators have trivial magnetic charge.

2. Magnetic flux lines carrying magnetic charge labeled by a conjugacy class, [g], of an

element g ∈ G with g 6= 1. These operators have trivial electric charge. Depending on

the choice of ω, such operators may or may not exist.

3. Dyonic lines (or simply dyons) carrying a magnetic charge labeled by a conjugacy class,

[g], of an element g ∈ G with g 6= 1 and an electric charge labeled by an, in general,

projective representation of the centralizer of g, Ng. In the case of an untwisted gauge

theory (i.e., ω = 0 ∈ H3(G,U(1))), the representation is linear. Dyons are the most

generic type of anyons in discrete gauge theories.

As a physical toy model, one can think of dyons as Aharonov-Bohm systems with charges

bound to magnetic flux lines [133].

Our first observation is that the above line operators naturally relate close cousins in

group theory: representations to centralizers. Therefore, discrete gauge theory is a natural

way to organize and unify ideas in the theory of finite groups.

We will focus exclusively on the case of finite simple groups. Via group extensions, these

are the basic building blocks of all finite groups. The celebrated classification of finite simple

groups guarantees that any such group fits into the following categories:

1. Abelian groups of prime order

2. Alternating groups
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3. Lie groups over finite fields

4. Twenty-six sporadic groups

In spite of this classification, various open problems remain. Of particular interest to us

is the following:

Conjecture (Arad-Herzog): Consider a non-abelian finite simple group, G, and non-

trivial elements g, h ∈ G. Then,

[g] · [h] 6= [gh] (3.1)

where [g], [h], and [gh] are conjugacy classes of g, h, and gh respectively [7].

More pithily, Arad and Herzog (AH) conjectured that in non-abelian finite simple groups,

the product of non-trivial conjugacy classes cannot be a single conjugacy class.

As we will argue in section 3.2.1, this conjecture implies:

Theorem 3.1. In a (twisted or untwisted) 2 + 1-dimensional discrete gauge theory with

a non-abelian finite simple gauge group, the fusion of any two lines carrying non-trivial

magnetic flux cannot have a unique fusion outcome.

In other words, theorem 3.1 asserts we cannot have

L([g],πωg ) × L([h],πωh ) = L([k],πωk ) , g, h 6= 1 (3.2)

where, generically, all lines (denoted by L) are non-abelian dyons 74. We will think of this

theorem as a first cousin of the AH conjecture.

So far, we have avoided discussing the fusion of Wilson lines. However, in light of (3.2),

it is interesting to ask if we can fuse non-abelian Wilson lines to obtain a unique outcome

Wπ ×Wπ′ =Wπ′′ (3.3)

As follows from our general discussion in section 1.1.1, (3.3) is equivalent to

χπ · χπ′ = χπ′′ (3.4)

where χπ, χπ′ , and χπ′′ are the characters of irreducible linear representations, π, π′, and π′′,

of G with dimension greater than 1. Although it might seem strange that (3.4) is possible

(especially if one thinks of SU(N)), it turns out that products of irreducible representations

of finite simple groups can be irreducible [165].

The corresponding (twisted or untwisted) discrete gauge theory then has a product of

Wilson lines as in (3.3). One simple example of this phenomenon involves the fusion of a Wil-

son line carrying charge in the 8-dimensional representation of A9 with a Wilson line carrying

charge in either of the 21-dimensional representations. Intriguingly, discrete gauge theories

based on finite simple groups are prime [127], so they do not consist of separate TQFTs with

74We may allow for pure fluxes as well.
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trivial mutual braiding. Therefore, (3.3) corresponds to other structural properties of the

A9 discrete gauge theory. We discuss such properties further in chapter four.

Therefore, we learn that a version of the AH conjecture for characters alone cannot hold.

However, our physical discussion above suggests studying one more type of fusion

Wπ × L([g],πωg ) = L([h],πωh ) , g 6= 1 (3.5)

whereWπ is a non-abelian Wilson line, and the remaining anyons are non-abelian dyons. As

a simpler fusion, we may study

Wπ × µ[g] = L([h],πωh ) , g 6= 1 (3.6)

where we have replaced the dyon on the left-hand side of (3.5) with a non-abelian flux line.

Here we have implicitly assumed that the flux line also exists in the theory (depending on

the twist, this assumption may or may not hold).

This observation brings us to our second cousin of the AH conjecture:

Theorem 3.2. In any (twisted or untwisted) discrete gauge theory based on a non-abelian

finite simple group, G, fusion of the types in (3.5) and (3.6) is forbidden.

Intuition: One heuristic intuition behind this theorem is the following. As a consequence of

theorem 3.1, theorem 3.2 implies that in discrete gauge theories based on non-abelian simple

groups, the only allowed fusions with unique outcomes involving non-abelian anyons are those

in (3.3). Wilson lines have trivial braiding amongst themselves 75. Therefore, even though

the fusion in (3.3) does not arise from a factorization of the TQFT into separate theories

with trivial mutual braiding, the Wilson lines themselves have trivial mutual braiding.

Just as theorem 1 follows from the AH conjecture, so too theorem 2 follows from a

more basic theorem on finite simple groups which we refer to as the third cousin of the AH

conjecture:

Theorem 3.3. Consider any non-abelian finite simple group, G, any irreducible linear rep-

resentation, π, of G having dimension greater than one, and the centralizer, Ng, of any

g 6= 1. The restricted representation, π|Ng , is reducible.

We refer to theorems 3.1, 3.2, 3.3 as “cousins” of the AH conjecture since they are all related

by TQFT.

Note that the above discussion is not relevant for abelian simple groups since they do

not have conjugacy classes of length larger than one or representations of dimension larger

than one. In other words, the corresponding TQFT fusion rules are those of a discrete finite

group. As a result, we focus on non-abelian groups.

Duality: It is also interesting to understand how our above picture is compatible with a

type of electric/magnetic duality that often features in discrete gauge theories. For example,

75Physically, this last statement is clear from the fact that Wilson lines do not carry magnetic flux.
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the S3 discrete gauge theory has a duality that exchanges the Wilson line charged under

the 2-dimensional representation with the line having flux in the 3-cycle conjugacy class

[17, 130]. More general examples appear in [130, 126, 99]. Clearly, theorems 3.1, 3.2, and

3.3 can only be compatible with such dualities if the Wilson lines participating in (3.3) are

not exchanged with lines carying non-abelian flux. In fact, no such dualities exist in theories

based on non-abelian finite simple gauge groups (Proof: apply theorem 5.8 of [126] noting

that non-abelian simple groups have no non-trivial abelian normal subgroups). This fact is

a non-trivial check of the above picture and of the AH conjecture (this latter claim holds

since, if theorem 3.1 were not true, then the AH conjecture would be false).

In the next section, we first set up an useful lemma, then derive theorem 3.1 from the

AH conjecture and explain the equivalence of theorems 3.2 and 3.3. Finally, we prove our

theorems and provide some additional technical details 3.2.2.

3.2 Proofs

To begin, notice that non-abelian anyons have d([g],πω) > 1 and necessarily satisfy

([g], πωg )× ([g−1], (πωg )∗) = ([1], 1) + · · · (3.7)

where the ellipses must contain additional terms, 1 is the trivial representation of G, and

(([g−1], (πωg )∗) is conjugate to ([g], πωg ).

As we will see in more detail when we prove theorems 3.1 and 3.2, anyons ([g], πωg ) and

([h], πωh ) that fuse to give a unique outcome satisfy

|S([g]πωg ),([h],πωh )| =
1

|G|
d([g],πωg )d([h],πωh ) (3.8)

Here we will use (3.8) to prove the following lemma that will star in our proofs of theorems

3.1 and 3.2:

Lemma 3.4. The condition (3.8) is satisfied iff the conjugacy classes [g] and [h] commute

element-wise and the projective characters satisfy

|χπωg (l)| = deg πωg and |χπωh (k)| = deg πωh (3.9)

∀ l ∈ [h], k ∈ [g].

Proof: To proceed it is useful to first recall the formula for the modular S matrix

S([g],πωg ),([h],πωh ) =
1

|G|
∑

k∈[g], `∈[h],
k`=`k

χkπωg (`)∗χ`πωh (k)∗ , (3.10)

where χhπωg (`) is defined through the relation

χxgx
−1

πωg
(xhx−1) :=

ηg(x
−1, xhx−1)

ηg(h, x−1)
χπωg (h) . (3.11)
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More importantly, from these definitions, one can check that the quantum dimensions of the

anyons are

d([g],πωg ) =
S([g],πωg )([1],1)

S([1],1)([1],1)

= |[g]| · deg πωg , (3.12)

where |[g]| is the size of [g], and |πωg | is the dimension of πωg .

From (3.12), we have d([g],πωg )d([h],πωh ) = |[g]||[h]| · deg πωg · deg πωh . Substituting in (3.8)

and using (3.10), we have

1
|G| |[g]||[h]| · deg πωg · deg πωh

=

∣∣∣∣ 1

|G|
∑

k∈[g], `∈[h],
k`=`k

χkπωg (`)∗χ`πωh (k)∗
∣∣∣∣

≤ 1

|G|
∑

k∈[g], `∈[h],
k`=`k

|χkπωg (`)||χ`πωh (k)|

≤ |[g]||[h]|
|G|

· deg πωg · deg πωh (3.13)

In the last inequality above, we have used (3.11) as well as the fact that projective characters

satisfy |χπωg | ≤ deg πωg
76. It is clear that (3.8) is satisfied if and only if the conjugacy classes

[g] and [h] commute element-wise and the projective characters satisfy (3.9). �

3.2.1 From fusion to theorem 3.1 and a relation between theorems 3.2 and 3.3

Here we first explain why the AH conjecture implies that, in (twisted and untwisted) discrete

gauge theories based on simple groups, the fusion of any two lines carrying magnetic flux

must have more than one fusion outcome (i.e., theorem 3.1). We then explain the relation

between theorems 3.2 and 3.3.

To that end, we would like to rule out fusion rules of the type

([g], πωg )× ([h], πωh ) = ([k], πωk ) , g, h 6= 1 , (3.14)

where all magnetic fluxes on the LHS are non-trivial. In fact, equation (1.54) implies the

existence of such a fusion is equivalent to:

1. [g] · [h] = [k] = [h] · [g]

2. ∃! πωk such that m(πωk |Ng∩Nh∩Nk , πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k)) = 1

76This statement is guaranteed as long as the projection factors defining the representations are roots of

unity, which is satisfied in our case. Indeed, the 3-cocycle ω ∈ H3(G,U(1)) can be chosen to be valued in

roots of unity without loss of generality.
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To see this, recall the fusion formula (1.54). Since the arguments of the m(·, ·) func-

tion are representations of Ntg ∩ Nsh ∩ Nk, we can decompose them in terms of irreducible

representations, πω(i), of this group

tπωg |Ntg∩Nsh∩Nk ⊗
sπωh |Ntg∩Nsh∩Nk ⊗ π

ω
(tg,sh,k)

=
∑
i

αiπ
ω(i) ,

πωk |Ntg∩Nsh∩Nk =
∑
i

α
′

iπ
ω(i) , (3.15)

for some non-negative integers αi, α
′
i. Then the definition of m(·, ·) in [14] implies

m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk ⊗

sπωh |Ntg∩Nsh∩Nk
⊗ πω(tg,sh,k)) =

∑
i

αiα
′

i . (3.16)

We know that πωk is an irreducible representation of Nk. Also, Ntg∩Nsh∩Nk is a subgroup of

Nk. According to the Frobenius reciprocity theorem for projective representations of finite

groups [108] 77, we know that, given any irreducible representation, πω(i), of Ntg ∩Nsh ∩Nk,

there is always an irreducible representation, πωk , of Nk such that the decomposition of

πωk |Ntg∩Nsh∩Nk into irreducible representations of Ntg∩Nsh∩Nk contains πω(i). This reasoning

shows that, given tπωg |Ntg∩Nsh∩Nk⊗
sπωh |Ntg∩Nsh∩Nk⊗π

ω
(tg,sh,k), there is always some irreducible

representation, πωk , such that m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk ⊗

sπωh |Ntg∩Nsh∩Nk ⊗π
ω
(tg,sh,k)) is

non-zero. It follows that once we choose some conjugacy class, [k], such that [k] ∈ [g] · [h],

there is always some πωk such that N
([k],πωk )

([g],πωg )([h],πωh ) 6= 0. Here, [g] · [h] are the conjugacy classes

obtained from taking a product of anyons with magnetic charges in [g] and [h].

Hence, in order to have a fusion rule of the type

([g], πωg )× ([h], πωh ) = ([k], πωk ) , g, h 6= 1 , (3.17)

where all magnetic fluxes on the LHS are non-trivial, we need the fusion of the orbits [g] ·
[h] to contain only a single orbit [k] (note that |[k]| need not be equal to |[g]||[h]| 78).

Moreover, commutativity of the fusion rules requires [k] = [h] · [g]. Hence, the double

coset Ng\G/Nh should have only a single element. (Since the double coset is trivial, we will

remove the t, s dependence in the expressions below). We also require that the decomposition

of representations πωk |Ng∩Nh∩Nk and πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k) into irreps of Ng ∩
Nh ∩Nk to have only a single irrep (of multiplicity one) in common. That is, if

πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k) =
∑
i

αiπ
ω(i)

πωk |Ng∩Nh∩Nk =
∑
i

α
′

iπ
ω(i) , (3.18)

77We use this theorem in the twisted case; in the untwisted case we use the usual theorem for linear

representations.
78In the case of the fusion of pure fluxes, we do require |[k]| = |[g]||[h]|.
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then there should be only one i = i0 for which αi0 = α
′
i0
6= 0. Furthermore, we require that

αi0 = 1.

So, in order to have a fusion of the type (3.2), we arrive at the two desired constraints:

1. [g] · [h] = [k] = [h] · [g]

2. ∃! πωk such that m(πωk |Ng∩Nh∩Nk , πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k)) = 1

The first constraint is on the conjugacy classes involved, and the second one is on the

representations. The AH conjecture implies that (1) is impossible. Therefore, we see that

AH conjecture⇒ no fusions as in (3.2) for simple G .

In particular, we see that

L([g],πωg ) × L([h],πωh ) 6= L([k],πωk ) , (3.19)

where L([g],πωg ) = ([g], πωg ), L([h],πωh ) = ([h], πωh ), and L([k],πωk ) = ([k], πωk ). Therefore:

AH conjecture⇒ Theorem 3.1 .

This result does not prove theorem 1 since the AH conjecture is still unproven. However, it

is a non-trivial consistency check of this conjecture. We will return to theorem 3.1 in section

3.2.2.

Next, let us show how theorem 3.3 implies theorem 3.2. To that end, let us specialize the

general fusion in (1.54) to the product of a non-abelian Wilson line, Wπ1 = ([1], π1), with

a non-abelian flux line, µ[h] = ([h], 1εh). In order to have such a flux line in our theory we

should either consider an untwisted discrete gauge theory or a theory in which ω is such that

ηh ∈ H2(Nh, U(1)) is cohomologically trivial.

Now, it is not hard to argue that

N
([h],πωh )

([1],π1),([h],1εh) = m(πωh , π1|Nh ⊗ 1εh) . (3.20)

To understand this point, let us specialize the general fusion in (1.54) to the product of a

non-abelian Wilson line, Wπ1 = ([1], π1), with a non-abelian flux line, µ[h] = ([h], 1εh).Then

we find

N
([h],πωh )

([1],π1),([h],1εh) =
∑

(t,s)∈G\G/Nh

m(πωh ,
tπ1|Nh ⊗ s1εh

⊗ πω(1,h,h)|Nh) . (3.21)

In this case, the double coset G\G/Nh is trivial. Hence, we have

N
([h],πωh )

([1],π1),([h],1εh) = m(πh, π1|Nh ⊗ 1εh ⊗ πω(1,h,h)|Nh) . (3.22)

In fact, the representation πω(1,h,h) is trivial (this follows from the fixed nature of the V h
1h

fusion space in the G-SPT [14]). So the product of representations π1|Nh ⊗ 1εh⊗ πω(1,h,h)|Nh is

isomorphic to π1|Nh ⊗ 1εh. Therefore, the expression above simplifies to

N
([h],πωh )

([1],π1),([h],1εh) = m(πωh , π1|Nh ⊗ 1εh) , (3.23)
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as desired.

Note that π1 is an irreducible representation of G. Its restriction to Nh is in general

reducible. So m(πh, π1|Nh⊗1εh) gives the multiplicity of the irreducible representation, πh, in

the decomposition of the representation, π1|Nh ⊗ 1εh, into irreducible representations of Nh.

If π1|Nh is irreducible, m(πh, π1|Nh ⊗ 1εh) = δπh,π1|Nh⊗1εh
. Hence, we have

([1], π1)⊗ ([h], 1h) = ([h], π1|Nh ⊗ 1εh) , (3.24)

if and only if π1|Nh is an irreducible representation of Nh.

As a result, theorem 3 implies that we have more than one fusion channel

Wπ1 × µ[h] = L([h],πωh ) + · · · . (3.25)

In fact, we may take the flux, ([h], 1εh), and replace it with a dyon, ([h], πωh ). Note that, in

some theories, such a dyon may exist while the flux line does not. We then find that the

right-hand side of (3.23) becomes m(π̃ωh , π1|Nh ⊗ πωh ). Clearly, if the fusion in (3.25) requires

more terms on the right-hand side, so too will the fusion with the dyon replacing the flux.

This is the content of theorem 3.2.

Similarly, by the logic of this section, if we satisfy theorem 3.2 for the untwisted discrete

G gauge theory, we then have that, for any irreducible linear representation, π1, of G having

dimension greater than one, π1|Nh is reducible. This is the content of theorem 3.3, and so:

Theorem 3.3⇔ Theorem 3.2 .

What remains is to prove at least one of these theorems, this will be done in next section.

Where we choose to prove theorem 3.2 first since it has a more physical flavor, then a direct

proof of theorem 3.3 is also given.

3.2.2 Proofs of the cousin theorems

proof of theorem 3.2 Let us first prove theorem 3.2. To that end, suppose we have a

fusion as in (3.6). In section 3.2.1, we argued that, if such a fusion exists, the electric charge

of the dyon on the right-hand side is given by a reduction of an irreducible representation of

the gauge group G (i.e., πωh = π|Ng ⊗ 1εh) and h = g. Next, note that the S-matrix satisfies

[112]

SWπµ̄[g−1]
=

1

|G|
θL([g],πωg )

θWπθµ[g]

dL([g],πg)
=

1

|G|
θL([g],πωg )

θWπθµ[g]

dWπdµ[g]
, (3.26)

where µ̄[g−1] is the conjugate of µ[g]. Therefore,

|SWπµ[g]
| = 1

|G|
dWπdµ[g]

. (3.27)

Lemma 4 then implies |χπ(g)| = deg χπ, where χπ is the character corresponding to the

Wilson line’s charge, and deg χπ = |π| > 1 is the dimension of π.
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A standard argument in representation theory then says that79

π(g) = c · 1|π|, where 1|π| is the |π| × |π| unit matrix, and c is an nth root of unity (the

twist of the dyon). Next, choose some k ∈ [G, g] := 〈`g`−1g−1|` ∈ G〉. Clearly,

π(k) = π(`g`−1g−1) = π(`) · c · 1|π| · π(`)−1 · c−1 · 1|π|
= 1|π| . (3.28)

Since G is a simple group, we can choose k 6= 1. As a result, π is an unfaithful representation

of G. Therefore, the kernel, ker(π), is a non trivial normal subgroup. Since G is simple, we

must have ker(π) = G. But then, π cannot be irreducible. Note that we may repeat this

proof verbatim by taking L([g],πωg ) instead of the flux line. Therefore fusion of the form in

(3.5) is also forbidden. �
By the discussion in section 3.2.1, we have also proved theorem 3.3. Although this proof

is mathematical, it has a distinctly TQFT-flavor: notice the prominent role of the modular

S matrix (and, to a lesser extent, the twists). We give a direct group theoretical proof of

theorem 3.3 in the end of this section.

proof of theorem 3.1 The proof of theorem 3.1 proceeds similarly to that of theorem 3.2.

We would like to show the following fusion is impossible

L([g],πωg ) × L([h],πωh ) = L([k],πωk ) , g, h 6= 1 , (3.29)

where, according to the discussion in section 3.2.2, [k] = [gh]. Similarly to the case of

theorem 2, we have that

SL([g],πωg )L([h−1],(πω
h

)∗)
=

1

|G|

θL([gh],πω
gh

)

θL([g],πωg )
θL([h],πω

h
)

dL([gh],πω
gh

)

=
1

|G|

θL([gh],πω
gh

)

θL([g],πωg )
θL([h],πω

h
)

·

·dL([g],πωg )
dL([h],πω

h
)
, (3.30)

where L([h−1],(πωh )∗) is the conjugate of L([h],πωh ). Therefore,

|SL([g],πωg )L([h],πω
h

)
| = 1

|G|
dL([g],πωg )

dL([h],πω
h

)
. (3.31)

This last result allows us, as in the case of theorem 3.2, to use lemma 3.4. We then conclude

that for any ` ∈ [g] and m ∈ [h], `m = m` (i.e., that the two conjugacy classes [h] and [g]

commute element-by-element).

79Since G is finite, let g be an element of G of order k, then π(gk) = π(g)k = 1|π|, so the eigenvalues

of π(g) are all k-th roots of unity and there are deg χπ of them, while they sum up to χπ(g) = Trπ(g), if

|χπ(g)| = deg χπ, all the eigenvalues must be the same, then π(g) = c · 1|π| in eigenbasis, but this result is

basis independent
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Now, consider the product of conjugacy classes

[g] · [g] =
∑
[a]

N
[a]
[g][g][a] , N

[a]
[g][g] ∈ Z≥0 . (3.32)

Clearly, we have that all elements on the left hand side commute with all elements of [h].

Therefore, the same is true of all elements in the conjugacy classes [a]. Now, consider taking

pairwise products of all the [a]’s with themselves and with [g] and so on. Eventually, we

will come to a set of conjugacy classes closed under multiplication. This defines a normal

subgroup K E G in which each element commutes with [h]. Since G is simple, we must have

that K = G. However, this means that [h] commutes with all elements of the group and so

we have a non-trivial center. This is a contradiction. �

proof of theorem 3.3 As theorem 3.2 implies theorem 3.3 and vice versa. In this sense,

we have already proven theorem 3.3. However, here we would like to give a direct (albeit

mathematical) proof:

Since G is a non-abelian simple group, its irreducible representations of dimension larger

than one must be faithful (otherwise their kernels would be non-trivial normal subgroups).

Now, consider some faithful non-abelian representation, π. Furthermore, take some g ∈ G
such that g 6= 1 and consider the centralizer, Ng.

Suppose the restriction π|Ng is irreducible. Clearly g is central in Ng. As a result, by

Schur’s lemma

π|Ng(g) = c · 1|π| , (3.33)

where c is an nth root of unity. Since this is a restriction of a representation of G, we must

also have in the parent group that

π(g) = c · 1|π| , (3.34)

and so it follows that

π(hgh−1g−1) = 1|π| . (3.35)

Since the group is simple, g 6= 1 cannot be in the (trivial) center of G. As a result, there

exists h such that hgh−1g−1 6= 1. The result in (3.35) contradicts the fact that π is faithful.

�

3.2.3 Special cases

Although we have given full proofs of theorems 3.3 and 3.2, it is amusing to give direct proofs

that apply to certain classes of finite simple groups.

CA groups For example, there is a large class of groups called “AC” groups or, depending

on the literature, “CA” groups. These groups are defined to have abelian centralizers for
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all conjugacy classes of elements g 6= 1. In this case, theorem 3.3 is trivially true: π1|Ng is

automatically reducible since |π1| > 1.

In particular, the PSL(2, 2n) groups with n ≥ 2 are simple AC groups. In fact, these are

the only such groups [151]. For n = 2, we have PSL(2, 4) ' A5. More generally, however,

the PSL(2, 2n) groups are a distinct class of groups.

As a result, we conclude that in all (twisted or untwisted) discrete gauge theories based

on AC groups our theorems hold. �

An groups As a more involved example here we will prove our theorems for An groups. In

order for An to be simple, we require n = 3 or n ≥ 5 (proofs of the AH conjecture exist in the

cases discussed here as well [69]). The basic idea is to use Saxl’s classification of irreducible

characters of An, χλ, that remain irreducible upon reduction to a subgroup G < An [142].

We will argue that such subgroups cannot act as centralizers.

To that end, theorems 3.1 and 3.2 of [142] constrain λ and G to be one of the following

(note that Ω = {1, 2, · · · , n} is the set of elements An acts on):

1. λ = (n) is the trivial representation.

2. λ = (n− 1, 1) is the n− 1 dimensional representation, and G acts 2-transitively on Ω.

3. λ = (n−2, 2), n = 9, 11, 12, 23, 24 and G is PΓL(2, 8), M11, M12, M23, M24 respectively.

4. λ = (n − 2, 1, 1) = (n − 2, 12) and either n = 2c for some integer, c, with G =

AGL(c, 2) or n = 11, 12, 12, 16, 22, 23, 24 with G = M11,M11,M12, V16A7,M22,M23,M24

respectively.

5. λ = (21, 2, 1) or λ = (21, 13), n = 24, and G = M24.

6. λ = (λa1) with a 6= λ1, n = aλ1, and G = An−1 stabilizing a point in Ω.

7. λ = (aa), n = a2, G ≥ An−2, the stabilizer of two points in Ω.

8. λ = (ab, ba−b), n = (2a− b)b, and G = An−1, the stabilizer of a point in Ω.

9. λ = (33), n = 9, and G = PΓL(2, 8) or G = AGL(3, 2).

10. λ = (32, 2), n = 8, and G = AGL(3, 2).

Here we have used partitions of n to label representations of An.

In case (1) there is nothing to prove as the Wilson line would be the trivial abelian line.

For case (2), the fact that G is 2-transitive on Ω rules it out as a centralizer. To understand

this statement, consider non-trivial σ ∈ An and g ∈ G. Without loss of generality, we may

take σ(1) = 2. Since G is 2-transitive on Ω, it is also transitive, and we can choose g so

that g(1) = 3. Now, σ(3) = a 6= 2. By 2-transitivity, we may further choose g such that
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g(2) = 2 6= a. As a result g−1σg(1) = g−1σ(3) = g−1(a) 6= 2 = σ(1) and so G does not

centralize σ.

In case (3) we may check that there is no conjugacy class of length |A9|/|PΓL(2, 8)|,
|A11|/|M11|, |A12|/|M12|, |A23|/|M23|, or |A24|/|M24| respectively.

We may rule out the possibility of G = AGL(c, 2) in (4) by noting, as in [129], that

AGL(c, 2) acts 2-transitively on the c-dimensional vector space over GF (2) ' Z2
80. Since

this vector space is 2c dimensional, we may associate vectors with points in Ω, and we are

done by the logic that solved case (2). Since G = V16A7 acts 2-transitively on Ω [142], we see

this will not work either. We may rule out the remaining possibilities in case (4) by similar

logic to that employed in case (3). This logic also rules out case (5).

Let us now consider case (6). Here we may use the fact that non-trivial conjugacy classes

in Sn have length at least n(n− 1)/2. As is well known, conjugacy classes in An either have

the same length as those in Sn or else they have half the length. As a result, we conclude

that non-trivial conjugacy classes in An have length at least n(n − 1)/4. This reasoning

implies that An−1 is too large to act as a centralizer in An (this statement holds since we

can use GAP [85] to explicitly check all cases n ≤ 11; therefore, we need only worry about

the cases n > 11). This logic also rules out case (8). Cases (9) and (10) may be ruled out

by explicit computation in GAP.

This leaves case (7). Here we may use the fact that An−2 fixes two points in Ω and acts

(n−4)-transitively on the remaining n−2 points in Ω′ ⊂ Ω. In fact, since we can check with

GAP that this scenario doesn’t arise for n ≤ 11, we only need to discuss the case n > 11

and use the weaker condition that (n− 4)-transitivity implies 2-transitivity. Without loss of

generality, we can again take non-trivial σ ∈ An satisfying σ(1) = 2. Without further loss of

generality, there are three sub-cases to consider:

� case (a):

σ(2) = 1 and σ(3) = 4.

� case (b):

σ(2) = 3 and σ(3) = 1.

� case (c):

σ(2) = 3 and σ(3) = 4.

Let us consider (a) first. Suppose that 1, 2 ∈ Ω′. By transitivity, we can choose g ∈ An−2

such that g(1) = x 6= 1, 2 and x ∈ Ω′. We then have σ(x) = a 6= 2. By 2-transitivity, we

may choose g(2) = 2 6= a, and we have g−1σg(1) = g−1σ(x) = g−1(a) 6= 2 = σ(1). Next,

suppose that 1 ∈ Ω′ but 2 6∈ Ω′. Here we are forced to choose g(2) = 2, but this doesn’t

matter. Indeed, the same logic we used when both 1, 2 ∈ Ω′ now works in this case as

well. Continuing on, suppose instead that 1 6∈ Ω′ but 2 ∈ Ω′. Here we are forced to take

80In fact, AGL(c, 2) acts generously 3-transitively on the c-dimensional vector space over Z2 [129].
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g(1) = 1. Since 2 ∈ Ω′, we are free to choose g(2) = y 6= 2. As a result, we have that

g−1σg(1) = g−1σ(1) = g−1(2) 6= 2 = σ(1). To finish our discussion of (a), let us suppose

that 1, 2 6∈ Ω′. Then, g(1) = 1 and g(2) = 2. So g−1σg(1) = 2 = σ(1). However, we have

that 3, 4 ∈ Ω′. As a result, we can repeat our logic for the case 1, 2 ∈ Ω′ with 1, 2→ 3, 4.

Next consider (b). This case can be treated identically to (a) except for the scenario in

which 1, 2 6∈ Ω′. However, the treatment here is similar. We must have 3 ∈ Ω′ and so we

can take g(3) = x 6= 1, 2, 3. We also have σ(x) = a 6= 1. Therefore, g−1σg(3) = g−1σ(x) =

g−1(a) 6= 1 (if a ∈ Ω′, then this is clear since 1 6∈ Ω′; if a = 2, then g−1(a) = 2).

Finally, consider (c). This case may be treated analogously to (a). �

4 Fusion of non-abelian anyons II: axb=c

4.1 a× b = c fusion rule

Topological quantum field theories (TQFTs) in 2+1 dimensions and their anyonic excitations

lie at the heart of important physical [121], mathematical [157], and computational [156]

systems and constructions. In principle, these TQFTs can be fully characterized by solving

a set of polynomial consistency conditions [123, 13, 112], although proceeding in this way is

often quite difficult as a practical matter (however, see [139, 28] for examples of some results;

see also [51] for a potentially very different approach). More generally, it is interesting to

understand aspects of the global structure of a TQFT and its symmetries without the need

to fully solve the theory (e.g., see [125]).

Proceeding in this way, we will study anyonic fusions a × b that have a unique product

anyon, c

a× b = c , a, b, c ∈ T , (4.1)

in a general 2 + 1 dimensional TQFT, T .81 Our main questions is: what does (4.1) tell us

about the global structure of T and its symmetries?

For invertible a and b (i.e., a and b are abelian anyons), fusion rules of the form (4.1)

describe the abelian 1-form symmetry group of the theory [80] (the closely related modular

S matrix characterizes its ’t Hooft anomalies [98]). In the case in which, say, a is abelian

and b is non-abelian,82 the equation (4.1) gives the fixed points of the fusion of anyons in

the theory with the one-form generator, a. Such equations have important consequences for

anyon condensation / one-form symmetry gauging in TQFT [12, 98] as well as for orbifolding

and coset constructions in closely related 2D rational conformal field theories (RCFTs) (e.g.,

see [104, 144]).

81Throughout what follows, we only consider non-spin TQFTs. These are theories that do not require a

spin structure in order to be well-defined.
82In this case, b is non-invertible, and the fusion b × b̄ = 1 + · · · , where b̄ is the anyon conjugate to b,

necessarily contains at least one more anyon in the ellipses.
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Although these cases will play a role below, we will be more interested in the situation

in which both a and b are non-abelian

a× b = c , da , db > 1 . (4.2)

Here da,b denote the quantum dimensions of a and b (given they are larger than one, neither

a nor b are invertible). Since both a and b are non-abelian, one typically finds that the

right-hand side of (4.2) has multiple fusion products. For example, fusions as in (4.2) do

not occur in SU(2)k Chern-Simons (CS) theory for any value of k ∈ N.83 As we will see,

when fusions of non-abelian a and b do have a unique outcome, there are consequences for

the global structure of T .

The most trivial case in which a fusion of the type (4.2) occurs is when T factorizes (not

necessarily uniquely) as

T = T1 � T2 , (4.3)

with T1 and T2 two separate TQFTs that have trivial mutual braiding, a ∈ T1, and b ∈
T2.84 Here “�” denotes a categorical generalization of the direct product called a “Deligne

product” that respects some of the additional structure present in TQFT.

As we will discuss in section 4.3, precisely such a situation arises in the modular tensor

categories (MTCs) related to unitary A-type Virasoro minimal models with c > 1/2.85 MTCs

are mathematical descriptions of TQFTs, and, for the theories in question, they encapsulate

the topological properties of the Virasoro primary fields. One may think of the, say, left-

movers in these RCFTs as arising at a 1+1 dimensional interface between 2+1 dimensional

CS theories with gauge groups SU(2)1 × SU(2)k and SU(2)k+1. In the minimal models, we

have

ϕ(r,1) × ϕ(1,s) = ϕ(r,s) , (4.4)

where 2 ≤ r < p − 2 and 2 ≤ s < p − 1 are Kac labels that give Virasoro primaries with

non-abelian fusion rules (here we have (r, s) ∼ (p − 1 − r, p − s), and p > 4 is an integer

labeling the unitary minimal model).86 Thinking in terms of cosets, we will see that (4.4)

arises because the Virasoro MTC factorizes as in (4.3).87

To gain further insight into more general situations in which (4.2) occurs, it is useful to

imagine connecting a fusion vertex involving the a, b, c ayons with a fusion vertex involving

the ā, b̄, and c̄ anyons via a c internal line as in the left diagram of figure 33. Using

associativity of fusion (via a so-called F āab
b̄

symbol) we arrive at the right diagram of figure

33. The relation between these two diagrams can be thought of as a change of basis on the

83In section 4.3, we will discuss the situation for more general Gk CS theories.
84Note that T1,2 may factorize further. Moreover, a may contain an abelian component in T2, and b may

contain an abelian component in T1.
85Note that in the case of the Ising model (c = 1/2), at least one of the anyons in the fusion a× b = c is

abelian (and the corresponding MTC does not factorize). We thank I. Runkel for drawing our attention to

the a× b = c fusion rules for non-abelian fields in Virasoro minimal models.
86The abelian field ϕ(p−2,1) ∼ ϕ(1,p−1) satisfies the fusion rule ϕ(1,p−1) × ϕ(1,p−1) = ϕ(1,1) = 1.
87Note that this factorization does not extend to one of the RCFT.
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b

b
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a b
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Figure 33: The fusions a× b and ā× b̄ have unique outcomes c and c̄ respectively. In the left

diagram, we connect the corresponding fusion vertices. To get to the diagram on the right,

we perform an F āab
b̄

transformation. Just as the left diagram has a unique internal line, so

too does the diagram on the right (in this latter case, the internal line must be the identity).

space of internal states. Since, by construction, the left diagram in figure 33 can only involve

a c internal line, the right diagram in figure 33 can also only involve a single internal line. On

general grounds, this line must be the identity.88 This result can also be derived by looking

at decomposition of fusion spaces. Consider the fusion space V b
baa. It can be decomposed in

the following different ways

V b
baa '

∑
c

V c
ba ⊗ V b

ca =
∑
x

V x
aa ⊗ V b

bx =
∑
x

V x
aa ⊗ V x

bb
, (4.5)

where, in the last equality above, we have used the fusion space isomorphism, V b
bx ' V x

bb
. If

we have the fusion rule a× b = c, then (4.5) simplifies to

V b
baa ' V c

ba ⊗ V b
ca =

∑
x

V x
aa ⊗ V x

bb
(4.6)

Moreover, we know that V c
ba and V b

ca are 1-dimensional. Hence, the dimension of direct sum

of fusion spaces
∑

x V
x
aa ⊗ V x

bb
should be 1-dimensional. It follows that the sum should be

over a single element and that the fusion spaces V x
aa and V x

bb
should be 1-dimensional. Since

the trivial anyon 1 is always an element in the fusions a× a and b× b, we have

V b
baa ' V c

ba ⊗ V b
ca = V 1

aa ⊗ V 1
bb

(4.7)

Therefore, we learn that a fusion rule of the form (4.2) is equivalent to the following

a× ā = 1 +
∑
ai 6=1

Nai
aā ai , b× b̄ = 1 +

∑
bj 6=1

N
bj
bb̄
bj , bj ∈ b× b̄ ⇒ bj 6∈ a× ā ,

ai ∈ a× ā ⇒ ai 6∈ b× b̄ ∀ i, j . (4.8)

In other words, the fusion of a×b has a unique outcome if and only if the only fusion product

that a× ā and b× b̄ have in common is the identity.

88By rotating the ā, b̄, and c̄ vertex, we see that a× b = c is equivalent to requiring a× b̄ = d and ā× b = d̄

(see figure 34). This logic also explains why, for non-abelian a, it is impossible to have a × a = c even if

a 6= ā.
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Figure 34: By rotating the bottom vertex in the left diagram of figure 33, we arrive at the

above diagram on the left. Again, we have a single internal line labeled by c. We get to the

diagram on the right by performing an F b̄ab
ā transformation. Just as the left diagram has a

unique internal line, so too does the diagram on the right.

Reformulating the problem as in (4.8) immediately suggests scenarios in which fusions of

the form (4.2) occur beyond cases in which T factorizes into prime TQFTs. For example, if

a ∈ C1 ⊂ T and b ∈ C2 ⊂ T lie in non-modular fusion subcategories of T , C1,2, with trivial

intersection (i.e., C1∩C2 = 1 only contains the trivial anyon), then we have (4.2) and T need

not factorize.89 More generally, when a ∈ C ⊂ T is a member of a non-modular subcategory

that does not include b (i.e., b 6∈ C), we expect it to be more likely to find fusions of the form

(4.8) and (4.2) since a× ā ∈ C, but b× b̄ will generally include elements outside C. In fact,

we will see that we can often say more when the fusion of a non-abelian Wilson line carrying

charge in an unfaithful representation of a discrete gauge group is involved.

Another scenario in which we can imagine (4.8)—and therefore (4.2)—arising is one

in which zero-form symmetries act non-trivially on a (i.e., g(a) 6= a for some zero-form

generator g ∈ G, where G is the zero-form group) and the ai 6= 1 but not on b.90 In this

case, combinations of ai that do not form full orbits under G are forbidden from appearing

in b× b̄. Given a particular G, this argument may suffice to show that, for all i, ai 6∈ b× b̄.
More generally, symmetries constrain what can appear as fusion products of a× ā and b× b̄.
The more powerful these symmetries, the more likely to find fusion rules of the type (4.8).

Interestingly, there is a close connection between the existence of symmetries and the

existence of subcategories in TQFT. For example, as we will discuss further in section 4.2.3,

for TQFTs corresponding to discrete gauge theories [63, 136], certain “quantum symmetries”

or electric-magnetic self-dualities arise when we have particular non-modular subcategories

Ci ⊂ T (see [130] for a general theory of such symmetries and [17] for the case of S3 discrete

gauge theory).

89In other words, fusion of anyons in Ci is closed. Moreover, the Ci inherit associativity and braiding from

T , but the Hopf link evaluated on anyons in these subcategories is degenerate (as a matrix). By modularity,

the Ci will have non-trivial braiding with some anyons xA 6∈ C1,2 (where A is an index running over such

anyons). On the other hand, if the Hopf links for the Ci are non-degenerate, Müger’s theorem [125] guarantees

that they will in fact be separate TQFTs and so we are back in the situation of (4.3).
90By definition, the symmetry also acts non-trivially on ā so that g(a) = g(ā) 6= ā. On the other hand,

note that one-form symmetry will act trivially on the product a× ā.

123



We will also find various other, more subtle, connections between symmetries and fusion

rules of the form (4.8) and (4.2). Moreover, we will see that symmetry is ubiquitous: in

all the theories with fusion rules of the form (4.8) and (4.2) we analyze, either there is a

zero-form symmetry present or else there is, at the very least, a symmetry of the modular

data that exchanges anyons (in cases where this action does not lift to the full TQFT, we

call these symmetries “quasi zero-form symmetries”).

We will study fusions of the above type in two typically very different classes of 2 + 1D

TQFTs:91 discrete gauge theories and cosets built out of CS theories with continuous gauge

groups (we will refer to these latter theories simply as “cosets”). Discrete gauge theories are

always non-chiral, whereas Chern-Simons theories and their associated cosets are typically

chiral.92

In the context of discrete gauge theories, whenever we have a (full) zero-form symmetry

present, we will see that fusion rules of the type (4.8) and (4.2) have simple interpretations

in certain parent theories gotten by gauging the zero-form symmetry, G0. We go from the

parent theories back to the original theories by gauging a “dual” one-form symmetry, G1,

that is isomorphic (as a group) to G0 (see [14] for a more general review of this procedure).

In this reverse process, we produce the a × b = c fusion rules of the corresponding discrete

gauge theories via certain fusion fixed points of the one-form symmetry generators in the

parent theories.

Similarly, in the context of our coset theories, we will see that fusion rules of the form

a×b = c arise due to certain fixed points in the coset construction (though these fixed points

do not generally involve a, b, and c). Cosets corresponding to the Virasoro minimal models

lack such fixed points and so, as discussed above, they factorize. On the other hand, more

complicated cosets do sometimes have such fixed points, and we will construct an explicit

example of such a prime TQFT that has fusion rules of the form (4.8) and (4.2).

To summarize, this discussion leads us to the following questions we will answer in sub-

sequent sections:

1. Does (4.2) imply a factorization of TQFTs

T = T1 � T2 , (4.9)

with a ∈ T1 and b ∈ T2? As has been hinted at above, we will see in sections 4.2 and

4.3 that the answer is generally no.

2. Does (4.2) imply that a belongs to one fusion subcategory and b to another and that

the intersection of these subcategories is trivial? In other words, do we have

a ∈ C1 ⊂ T , b ∈ C2 ⊂ T , C1 ∩ C2 = 1 ? (4.10)

91Note that there are sometimes dualities between theories in these two classes.
92By a chiral TQFT, we mean one in which the topological central charge satisfies ctop 6= 0 (mod 8).
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As we will see in section 4.2, the answer is generally no, even if we relax the requirement

of trivial intersection. However, we will explicitly construct such examples (with non-

modular C1,2 ⊂ T , where T is prime) in the case of discrete gauge theories.

3. Does (4.2) imply that a is in some subcategory C ⊂ T that b is not a member of? In

other words, do we have

a ∈ C ⊂ T , b /∈ C ? (4.11)

As we will see in section 4.2, the answer is generally no. However, we will argue that

such constructions are quite easy to engineer in the context of discrete gauge theories,

and we will explain when they arise. We will see that these constructions often have

interesting interactions with symmetries.

4. Given a and b as in (4.2), do they have trivial mutual braiding? In other words, do we

have
Sab
S0b

= da , (4.12)

where S is the modular S-matrix? This is true in the context of discrete gauge theories

with a simple gauge group [35]. However, non-trivial braiding does arise naturally in

the context of the fusion of non-abelian electrically charged lines with non-abelian

magnetically charged lines.

5. Given a and b as in (4.2), does T have a non-trivial zero-form symmetry acting on

either a or b? Does the TQFT have a zero-form symmetry that acts more generally?

We will see in section 4.2 the answer to both these questions is no. However, in cases

in which this is true, it seems to always be related to the existence of a certain fusion

fixed point of one-form symmetry generators in a parent TQFT. Of the infinitely many

examples of untwisted discrete gauge theories we study, only gauge theories based on

the Mathieu groups M23 and M24 fail to have zero-form symmetries.

6. Given a and b as in (4.2), does T have a non-trivial symmetry of the modular data?

As we will see in sections 4.2 and 4.3, the answer seems to be yes. Clearly, it would

be interesting to see if it is possible to define parents of such theories that generalize

the relationship in (5). Note that the Mathieu gauge theories discussed in the previous

point do have symmetries of their modular data (however, these symmetries do not lift

to symmetries of the full TQFTs).

As we will see, many of these questions have simpler answers when studying discrete gauge

theories. The reason is that powerful statements in these TQFTs can often be deduced from

simple reasoning in the underlying theory of discrete groups. On the other hand, intuition

one gains from taking products of representations in various continuous groups, like SU(N),

turns out to be somewhat misleading for our questions above.

The plan of this chapter is as follows. In section 4.2, we start with discrete gauge theories

and explain how intuition in the theory of finite groups leads us to various answers to the
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above questions. Along the way, we prove various theorems about discrete gauge theories

and fusion rules of the form (4.2) and (4.8) generalizing our work in [35]. Moreover, we

discuss the role that subcategories and symmetries of discrete gauge theories play in such

fusion rules. In section 4.3, we go to continuous groups and discuss coset theories. We

tie the existence of fusion rules of type (4.2) and (4.8) to certain fixed points in the coset

construction. We then finish with some conclusions and future directions.

4.2 a× b = c and discrete gauge theories

In this section we test the ideas presented in the introduction on discrete gauge theories

[63, 136]. These TQFTs are characterized by a choice of discrete gauge group, G, and a

Dijkgraaf-Witten twist, ω ∈ H3(G,U(1)).93 The basic degrees of freedom are anyonic line

operators of the following three types

1. Wilson lines, Wπ, carrying electric charge labeled by a linear representation, π, of G

and trivial magnetic charge. This set of operators exists no matter the value of ω.

2. Magnetic flux lines, µ[g], carrying magnetic charge labeled by a conjugacy class, [g], of

a representative element, g ∈ G, but having trivial electric charge. In general, their

existence depends on the choice of ω.

3. Dyonic lines, L([g],πωg ), carrying both magnetic flux and electric charge. In general, they

carry a projective representation of G.

These theories have the advantage that we can prove many theorems about them. At the

same time, they are very broad and so we can gain some insight into the physical and

mathematical questions we are asking.94

As we will see in the subsequent subsections, the physics of the various operators listed

above is qualitatively different. In order to take the shortest route to answering some of the

questions posed in the introduction and in order to establish the existence of fusion rules

of the form (4.2) in prime TQFTs, we will start with an analysis of Wilson lines. These

objects form a closed fusion subcategory that is particular easy to analyze.95 As we explain,

these are the most “group theoretical” and least anyonic objects in a discrete gauge theory

(in addition, as we see from the discussion of the above list of operators, they are the most

robust). As a result, we can borrow various useful results from the study of finite groups.

In order to study the physics of other sectors of discrete gauge theories, we will find it

convenient to introduce some additional machinery for discussing subcategories (in section

4.2.2) and symmetries (in section 4.2.3). We also discuss quasi zero-form symmetries and

93There are redundancies / dualities in this description: see [126].
94Discrete gauge theories are, however, necessarily non-chiral. We will consider chiral coset theories in

section 4.3.
95For other degrees of freedom, the story is more complicated. For example, in section 4.2.2, we will see

that in non-abelian discrete gauge theories, full sets of magnetic fluxes do not form fusion subcategories.
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their appearance in various discrete gauge theories of interest based on large Mathieu groups.

Finally, we move beyond Wilson lines in section 4.2.5 and discuss fusions of the form (4.2)

involving non-abelian fluxes, magnetic fluxes, and dyons.

4.2.1 Non-abelian Wilson lines and a× b = c

We would like to recast the problem of constructing discrete gauge theories with fusion rules

(4.2) and (4.8) in terms of the closely related problem of finding irreducible products of

irreducible finite group representations. To make this connection as direct as possible, it is

useful to focus on Wilson lines of the discrete gauge theories we are studying. Indeed, by

specializing (1.54) to Wilson lines, we find

N
(1,π′′)
(1,π),(1,π′) = m(π′′, π ⊗ π′) =

1

|G|
∑
g∈G

χπ′′(g)χ∗π(g)χ∗π′(g) = 〈χπ′′ , χπχπ′〉 , (4.13)

where 〈·, ·〉 is the standard inner product on characters. Therefore, the Wilson lines form

a closed fusion subcategory of the discrete gauge theory, CW . Moreover, the fusion rules of

the Wilson lines are those of the representation semiring of the gauge group.96 Note that

CW is, in some sense, the “least anyonic” part of the theory: it is easy to check from (1.56)

that the Wilson lines are bosonic, so θWi
= 1, and that the braiding of Wilson lines amongst

themselves is trivial,97 so SW1W2 = dW1dW2/D (here D =
√∑N

i=1 d
2
i , and the sum is over all

the anyons).98 To summarize, we see that if we can find representations of some group, G,

satisfying

χπ · χπ′ = χπ′′ , |π|, |π′|, |π′′| > 1 , (4.14)

where π, π′, and π′′ are irreducible, then, in the corresponding G discrete gauge theory, we

will have non-abelian Wilson lines satisfying

Wπ ×Wπ′ =Wπ′′ . (4.15)

Since, by Cayley’s theorem, every finite group is isomorphic to a subgroup of the sym-

metric group, SN , (for some N) it is natural to start our discussion with SN . In particular,

to check whether π′′ is irreducible, we want to perform the group theory analog of the F

transformation discussed in the introduction (see figure 33)

〈χπ · χπ′ , χπ · χπ′〉 = 〈χ2
π, χ

2
π′〉 , (4.16)

where we have used the fact that SN is ambivalent (g and g−1 are in the same conjugacy

class for all g ∈ SN) so that the characters are real. A theorem of Zisser [165] shows that

96In fact, we have CW ' Rep(G), where Rep(G) is the category of finite dimensional representations of G

over C.
97The Wilson lines braid non-trivially with other anyons in the theory (more formally: the Wilson line

subcategory is Lagrangian and so the Müger center of CW is CW itself).
98In fact, [59] guarantees that any such subcategory is equivalent to Rep(H) for some group H.
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χ[N−2,2] ∈ χ2
α, where [N−2, 2] is a partition of N labeling the corresponding representation of

SN , and α is any irreducible representation of dimension larger than one, |α| > 1. Moreover,

since SN is ambivalent, this means that χ[N ] ∈ χ2
α, where χ[N ] is the trivial representation of

SN . As a result, we see that the analog of (4.8) yields

χπ ·χπ = χ[N ]+χ[N−2,2]+· · · , χπ′ ·χπ′ = χ[N ]+χ[N−2,2]+· · · ⇒ 〈χπ ·χπ′ , χπ ·χπ′〉 > 1 , (4.17)

and so products of non-abelian representations of SN are never irreducible. Therefore, we

cannot have (3.3) in SN discrete gauge theory.

Discrete gauge theories of finite simple groups Since we have AN / SN (i.e., the

alternating group, AN , is a normal subgroup of SN), it is natural to consider AN discrete

gauge theories as the next possibility for realizing (4.14) [165] and hence (3.3). Moreover,

since AN is simple, only pure Wilson lines can be involved in fusions of the form (4.2) [35],

and the AN discrete gauge theories are guaranteed to be prime [127] (we will return to the

question of primality in greater generality in section 4.2.2). Therefore, finding an example of

(3.3) in AN discrete gauge theories is sufficient to answer question (1) from the introduction

in the negative.

To understand if going to AN is a fruitful direction, we note that there are two types of

characters that arise in going from SN to AN :

1. Characters that are restrictions of SN characters satisfying χλ 6= χ[1N ] ·χλ, where χ[1N ]

corresponds to the sign representation of SN . Let us call these “type A” characters:

χ̃λ := χλ|AN .

2. Characters that descend from SN characters satisfying χρ = χ[1N ] · χρ. As representa-

tions of AN , they split into two representations of the same dimension, ρ±. Let us call

these “type B” characters: χ
(B)
ρ = χρ+ + χρ− = χρ|AN .

In going from SN to AN , we perform a group-theoretical version of gauging the “one-form

symmetry” generated by χ[1N ]: we identify characters related by multiplication with χ[1N ],

and we split characters that are invariant under multiplication with χ[1N ]. Clearly, products

of type A characters cannot be irreducible since they will always contain χ
(A)
[N ] and χ

(A)
[N−2,2]

after performing the F-transformation and computing (4.17).99

A little more work in [165] shows that we can obtain (4.14) for AN if and only if N =

k2 ≥ 9 by taking the product of the following type A and type B representations

χ̃[N−1,1] · χ[kk]± = χ̃[kk−1,k−1,1] . (4.18)

Moreover, the Z2 outer automorphism of AN acts on the type B characters as

g
(
χ[kk]±

)
= χ[kk]∓ , 1 6= g ∈ Out(AN) ' Z2 . (4.19)

99In this discussion, we have implicitly assumed that N 6= 4 (although, for N = 3, we should take

[N − 2, 2]→ [2, 1] to conform to usual conventions). For N = 4, we have χ
(A)
[N−2,2] → χ

(B)
[N−2,2] = χ[N−2,2],+ +

χ[N−2,2],−.
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Therefore, at the level of the non-abelian Wilson lines in the corresponding AN discrete

gauge theory, we learn that

W[N−1,1] ×W[kk]± =W[kk−1,k−1,1] . (4.20)

Finally, Out(AN) lifts to a full zero-form symmetry of the discrete gauge theory [130], since,

according to corollary 7.8 of [130]

Autbr(Z(VecAN )) ' H2(AN , U(1)) o Out(AN) ' Z2 × Z2 , (4.21)

where the group on the left hand side is the group of braided tensor auto-equivalences of

the MTC underlying the discrete gauge theory, Z(VecAN ). As a result, we learn that the

symmetries of the discrete gauge theory exchange the W[kk]± lines

g
(
W[kk]±

)
=W[kk]∓ , 1 6= g ∈ Out(AN) / Autbr(Z(VecAN ) . (4.22)

In other words, we have found that, in an infinite number of prime theories, fusion rules

of the type (4.2) are generated in pairs related by symmetries of the discrete gauge theory.

This discussion shows that TQFTs with fusions of the form (4.2) need not factorize and so

the answer to question (1) in the introduction is “no.”

Let us now drive home the importance of symmetries in arriving at (4.20) and, at the

same time, gain insight that will be useful later. To that end, let us consider gauging the

Z2 outer automorphism symmetry of the AN discrete gauge theory. Note that this gauging

is allowed since the “defectification” obstruction described physically in [14] is trivial here:

H4(Z2, U(1)) = Z1. Moreover, since AN is simple, the discrete gauge theory has no non-

trivial abelian anyons (i.e., A =W[N ]) and so H3(Z2,A) = Z1. Therefore, (4.21) is a genuine

zero-form symmetry group (as opposed to being a 2-group).

More abstractly, let us consider a generalization of the fusion rules in (1.54) to the case of

gauging a zero form group, H, of a more general G-crossed braided theory, TG× (as worked

out in [14])

N
([c],πc)
([a],πa),([b],πb)

=
∑

(t,s)∈Na\H/Nb

m(πc|Nta∩Nsb∩Nc ,
tπa|Nta∩Nsb∩Nc ⊗

sπb|Nta∩Nsb∩Nc ⊗ π
ω
(ta,sb,c)) , (4.23)

where a, b, c ∈ TG× , [a] := {h(a), ∀h ∈ H}, Na := {h ∈ H|h(a) = a}, and πa is a representa-

tion of Na.

In our case at hand, TG× = Z(VecAN )H× is the AN discrete gauge theory extended

by surface defects implementing the H = Z2 global symmetry. Moreover, a = W[N−1,1],

b = W[kk]± , Na = Z2, and Nb = Z1. As a result, t = s = 1, the summation in (4.23) is

trivial, the various representations are all restricted to the trivial subgroup, and πωa,b,c = 1

(this latter statement follows from the fact that the action of H on the V c
ab fusion space via

U1(a, b, c) is trivial). In particular, we have

N
([W

[kk−1,k−1,1]
],±)

([W[N−1,1]],±),([W
[kk]±

],+) = m(±|Z1 ,±|Z1 ⊗+|Z1) = m(1, 1) = 1 , (4.24)
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where ± denote the two representations of Z2. Therefore, we learn that when we gauge the

outer automorphism group of AN , we have

([W[N−1,1]],±)× ([W[kk]± ],+) = ([W[kk−1,k−1,1]],+) + ([W[kk−1,k−1,1]],−) , (4.25)

which is the TQFT version of the lift of (4.18) to SN . This is what we expect, since we can

always fix our choice of parameters so that gauging Z2 yields [57]

Z(VecAN )Z×2
gauge−→ Z(VecANoZ2) = Z(VecSN ) , (4.26)

where we have used the fact that SN ' AN o Z2.

Finally, from the general rules above, it is not hard to check that the trivial Wilson line

in the AN theory lifts to a Z2 one-form symmetry in the SN gauge theory. The resulting

non-trivial one-form symmetry generator acts as

([W[N ]],−)× ([W[N−1,1]],±) = ([W[N−1,1]],∓) ,

([W[N ]],−)× ([W[kk]± ],+) = ([W[kk]± ],+) ,

([W[N ]],−)× ([W[kk−1,k−1,1]],±) = ([W[kk−1,k−1,1]],∓) , (4.27)

where ([W[N ]],−) =W[1N ].

To summarize, we learn that, in order to generate the fusion rule (4.20), we can gauge

a Z2 one-form symmetry in the SN (with N = k2 ≥ 9) discrete gauge theory with fusion

rules (4.25) and (4.27). Crucially, we need a fixed point of the one-form symmetry (as in

the second line in (4.27)) in order to generate the fusion rule of the form (4.20) in the

AN discrete gauge theory. We will return to the existence of fixed points of various kinds

repeatedly throughout this paper.

One may wonder if zero-form gaugings always resolve fusion rules of the form a× b = c

into fusion rules with multiple outcomes. Taking G = O(5, 3), one can see the answer is

no.100 Indeed, in this theory, one can check that we have the following analogs of (4.20)

W5i ×W6 =W30i , i = 1, 2 , (4.28)

where 5i are the two five-dimensional representations ofO(5, 3), 6 is the unique six-dimensional

representation, and 30i are the two complex thirty-dimensional representations (there is also

a third, real, thirty-dimensional representation that does not appear in (4.28)). As in the

previous case, Out(O(5, 3)) = Z2 and it acts non-trivially on the Wilson lines involved in

the fusion above. In particular, we have

W51 ↔W52 and W301 ↔W302 (4.29)

under the action of the non-trivial element in Out(O(5, 3)). This symmetry lifts to

a symmetry of the discrete gauge theory that we can gauge. Doing so, we can choose

parameters such that

Z(VecO(5,3))Z×2
gauge−→ Z(VecO(5,3)oZ2) . (4.30)

100This is the group O(5) over the field F3. It has order 25920 and is the smallest simple group whose

discrete gauge theory has a fusion of non-abelian Wilson lines with a unique outcome.
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We may again apply (4.23) to find

N
([W30i

],+)

([W5i
],+),(W6,±) = m(+|Z1 ,+|Z1 ⊗±|Z1) = m(1, 1) = 1 , (4.31)

and conclude

([W5i ],+)× (W6,±) = ([W30i ],+) . (4.32)

Such a situation arises whenever Nc = Z1 = Na ∩ Nb. This equality is special since, more

generally, we have Na ∩Nb ⊆ Nc.

Non-simple groups and unfaithful higher-dimensional representations Before mov-

ing on to discuss other phenomena, let us note that the above discrete gauge theories based

on simple groups also provide answers to questions (2) and (3) from the introduction. In-

deed, as we will see in greater detail in section 4.2.2, a discrete gauge theory with a simple

gauge group has no non-trivial proper fusion subcategories except the subcategory of Wilson

lines. Therefore, our above examples are enough to answer questions (2) and (3) generally

in the negative (although we will see interesting examples of some of these ideas below).

Let us now consider discrete gauge theories with unfaithful higher-dimensional (i.e., non-

abelian) representations. The corresponding gauge groups are necessarily non-simple because

the kernel of a non-trivial unfaithful representation is a non-trivial proper normal subgroup.

As we will explain at a more pedestrian level below (and in a somewhat more sophisticated

way in section 4.2.2), these examples illustrate the appearance of non-trivial fusion subcate-

gories in the Wilson line sector. As a result, they demonstrate some of the ideas—described

in the introduction—behind constraints from subcategory structure leading to fusion rules

of the type (4.2). In particular, these theories provide examples where ideas in questions (2)

and (3) of the introduction are realized.

To that end, let us consider some unfaithful higher-dimensional irreducible representation

of the gauge group, π ∈ Irrep(G). Since π is unfaithful, it has a non-trivial kernel, Ker(π)/G.

Let us also define the set of characters whose kernel includes Ker(π) as follows

Kπ =
{
χρ : χρ|Ker(π) = degχρ

}
, (4.33)

where degχρ = |ρ| is the degree of the character. Now, consider χλ, χλ′ ∈ Kπ. We claim

χλ · χλ′ ∈ Kπ. To see this, let us study

χλ|Ker(π) · χλ′|Ker(π) = degχλ · degχλ′ =
∑
λ′′

χλ′′|Ker(π) ≤
∑
λ′′

∣∣χλ′′|Ker(π)

∣∣ . (4.34)

Evaluating this expression on the identity element shows that degχλ ·degχλ′ =
∑

λ′′ degχλ′′ .

Therefore, we have χλ′′ |Ker(π) = degχλ′′ , and λ′′ ∈ Kπ. In particular, we see that

χλ · χλ′ =
∑
λ′′∈Kπ

χλ′′ . (4.35)
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As a result, the Wilson lines with charges in Kπ form a closed fusion subcategory101

Wλ ×Wλ′ =
∑
λ′′∈Kπ

Wλ′′ ∈ CKπ ' Rep(G/Ker(π)) . (4.36)

If we now consider the fusion of Wπ ∈ CKπ with a non-abelian Wilson line Wγ 6∈ CKπ , we

see that the subcategory structure makes it more likely to find a unique outcome. Indeed,

Wπ ×Wπ̄ ∈ CKπ whereas Wγ ×Wγ̄ will typically include lines not in CKπ .

In fact, we can go further if we take γ|Ker(π) to be an irreducible representation of Ker(π).

Since we are assuming that γ is a higher-dimensional representation, irreducibility of γ|Ker(π)

implies that Ker(π) is a non-abelian group. Invoking Gallagher’s theorem (e.g., see corollary

6.17 of [105]), we see that, for γ, π ∈ Irrep(G), γ ⊗ π is an irreducible representation if the

restriction γ|Ker(π) is irreducible. Then, we are guaranteed to have the following fusion rule

of non-abelian Wilson lines

Wπ ×Wγ =Wπγ . (4.37)

To understand this statement, let us first prove that γ 6∈ Kπ. Suppose this were not the

case: then we arrive at a contradiction since |γ| > 1 would imply that γ|Ker(π) is reducible.

As a result, Wγ 6∈ CKπ . Let us now consider the product

χγ · χγ = χ1 +
∑
i

χαi , (4.38)

where αi are irreps of G. Then we have

(χγ · χγ)|Ker(π) = χ1|Ker(π) +
∑
i

χαi|Ker(π) . (4.39)

Here, χ1|ker(π) corresponds to the trivial irreducible representation of Ker(π), χαi |Ker(π) corre-

sponds to an, in general, reducible representation of Ker(π). Suppose that αi|Ker(π) contains

the trivial irreducible representation of Ker(π) for some i, then we will have at least two

copies of the trivial character of Ker(π) on the right hand side of (4.39). However, we know

that (γ⊗γ)|Ker(π) = γ|Ker(π)⊗γ|Ker(π). Therefore, we cannot have more than one copy of the

trivial character in the decomposition (4.39). Hence, αi|Ker(π) cannot contain the trivial rep-

resentation for any i. It follows that αi|Ker(π)(h) is non-trivial for at least some h ∈ Ker(π).

Therefore, it is clear that Ker(π) cannot be in the kernel of the representations αi for any i.

This shows that

Wαi ∈ Wγ ×Wγ̄ ⇒ Wαi 6∈ CKπ . (4.40)

As a result, the subcategory structure guarantees (4.37).

To better understand the above general discussion (as well as the continuing role of sym-

metries), let us consider some examples. Note that these results give explicit realizations of

101Such Wilson lines recently played an interesting role in [140]. Indeed, when one adds non-topological

matter charged under these representations, the corresponding Wilson lines can end on a point. Magnetic

flux lines or dyons with flux supported in Ker(π) remain topological while lines carrying other fluxes do not.
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the idea in question (3) in the introduction. The simplest discrete gauge theories realizing the

above discussion are based on gauge groups of order forty-eight. Interestingly, the existence

of subcategory structure in the Wilson line sector, CW ' Rep(G), explains the large ratio

of orders, ∆gap, between these groups and the smallest simple group, O(5, 3), with unique

non-abelian fusion outcomes

∆gap =
25920

48
= 540� 1 . (4.41)

In this section, we will discuss the examples of the binary octahedral group (BOG) and

the very closely related general linear group of 2×2 matrices with elements in the finite field

F3, GL(2, 3). In appendix B.2.1 we will consider the remaining cases at order forty-eight.

Let us begin with BOG. In this case, we have that 21 is an unfaithful (real) two-

dimensional representation and that the restrictions of the other (real and faithful) two-

dimensional irreducible representations to Ker(21) = Q8 / BOG, 22,3|Ker(21), are irreducible.

As expected from the general discussion above we have the following Wilson line fusions

W21 ×W22 =W21 ×W23 =W4 . (4.42)

Similarly to the simple discrete gauge theories discussed in the previous subsection, BOG’s

Z2 outer automorphism again lifts to a non-trivial symmetry of the TQFT, and the non-

trivial element g 6= 1 acts as follows: g(W22) =W23 .

Let us note that in this case, the role of symmetries is even more pronounced. Indeed,

one can check that

W21 ×W21 = W1 +W12 +W2 ∈ CK21
' Rep(BOG/Q8) ' Rep(S3) ,

W22 ×W22 = W23 ×W23 =W1 +W32 , (4.43)

where 12 is a non-trivial one-dimensional irreducible representation, and 32 is a real three-

dimensional irreducible representation.102 This latter representation satisfies χ12 · χ32 = χ31

(and similarly χ12 · χ31 = χ32). Therefore, we see that W12 generates a non-trivial one-form

symmetry in the BOG discrete gauge theory and that W31,2 and W22,3 form doublets under

fusion with this generator while W21 is fixed

W12 ×W32 =W31 , W12 ×W22 =W23 , W12 ×W21 =W21 . (4.44)

This non-trivial orbit structure then implies that W32 6∈ W21 ×W21 on symmetry grounds

alone. Hence, in this example, both the subcategory structure and the symmetries guarantee

the fusion rules (4.42).

Before finishing this example, we should check that Z(VecBOG) is indeed prime. After

we discuss more formal aspects of subcategory structure in section 4.2.2, we will have more

tools to use when answering this type of question. For now, let us prove that the Wilson

102Note that since 22,3 are faithful representations, a result of Burnside [42] generalized to Wilson lines

shows that there exist n1,2 ∈ N such that W×n1
22,3
⊃ W12

and W×n2
22,3
⊃ W21

. Our discussion implies n1,2 > 2.
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lines must all lie in the same TQFT factor.103 To that end, write down the Wilson lines of

the BOG discrete gauge theory

W1 , W12 , W21 , W22 , W23 =W22 ×W12 , W31 , W32 =W31 ×W12 ,

W4 =W21 ×W22 =W21 ×W23 . (4.45)

We can consider two cases: (1) W31 is in the same TQFT factor as W12 (call this factor T0)

or (2) W31 is not in the same TQFT factor as W12 .

Let us consider case (1) first. From the fusion equation involving W32 , we immediately

see that W32 is also in T0. Note that W21 cannot be written as the fusion product of two

other Wilson lines. Since there is no Wilson line of quantum dimension six, we also have

W21 ∈ T0. Now, we must clearly have that either W22,3 ∈ T0 or W22,3 6∈ T0. However, in the

latter case we will again have a Wilson line of quantum dimension six. Therefore, we have

that W22,3 ∈ T0. Therefore, by the W4 fusion rule in (4.45), all Wilson lines are in the same

TQFT factor.

Let us now consider case (2). Let W31 ∈ T0 and W12 ∈ T1 with Z(VecBOG) = T0 � T1.

As in case (1), W21 cannot be written as the fusion product of two other Wilson lines, and,

since there is no Wilson line of quantum dimension six, we have W2 ∈ T0. However, this

leads to a contradiction because then W2 × W ′1 6= W2. As a result, we conclude that all

Wilson lines must lie in the same factor of Z(VecBOG).

Let us conclude with a brief discussion of the GL(2, 3) discrete gauge theory. This gauge

group is quite similar to BOG. For the purposes of the above discussion, the only difference is

that 22,3 become complex conjugate two-dimensional irreducible representations (otherwise,

the remaining representations and remaining parts of the character tables are the same).

Therefore, (4.42) and (4.44) apply to Z(VecGL(2,3)) as well (by identifying these Wilson lines

with their relatives in Z(VecGL(2,3))). The only change is that in the second line of (4.43),

we should takeW22,3 ×W22,3 →W22 ×W23 . In particular, the roles of subcategory structure

(again Rep(S3) ⊂ Rep(GL(2, 3))) as well as outer automorphisms and one-form symmetries

is the same in both the BOG and the GL(2, 3) discrete gauge theories.

Note that Gallagher’s theorem does not exhaust all cases where representations with

non-trivial kernel have irreducible products. Another interesting case is given by Gajen-

dragadkar’s theorem [82, 128]. If we have a group G which is both π-separable as well as

Σ-separable, for two disjoint set of primes π and Σ, then this theorem guarantees that the

product of a π-special character with a Σ-special character is irreducible. A character χ is

known as π-special if χ(1) is a product of powers of primes in π (a π number) and if, for

every subnormal subgroup N of G, any irreducible constituent θ of χ|N is such that o(θ)104

is a π-number. Hence, the fusion of Wilson lines corresponding to such characters have a

unique outcome. Note that, in this case, one of the characters involved in the fusion is not

required to be irreducible in the kernel of the other (unlike in Gallagher’s theorem).

103The same pedestrian arguments used below can be extended to the full set of lines in the theory to prove

that Z(VecBOG) is prime.
104o(θ) is the order of the determinental character det(χ) in the group of linear characters.
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Some general lessons and theorems Let us conclude this section with a recapitulation

of some of the main points above as well as some general theorems that amplify our discussion:

� In all of the infinitely many examples we studied so far, symmetries played an important

role. For example, zero-form symmetries had a non-trivial action on Wilson lines

involved in the fusion rules of interest in the AN (with N = k2 ≥ 9) and O(5, 3)

discrete gauge theories (see (4.22) and (4.29)), and similarly in theories based on BOG,

GL(2, 3), and the other order forty-eight groups (e.g., see below (4.42) and in appendix

B.2.1). We will revisit some of these discussions after introducing further technical tools

for symmetries in section 4.2.3.

� We also saw that we can use Z2 one-form symmetry gauging in the SN (with N =

k2 ≥ 9) gauge theory to generate fusion rules involving non-abelian Wilson lines with

unique outcomes in the AN discrete gauge theories. We can constrain when such a

situation arises with the following theorem:

Theorem 4.1 (one-form fixed points). Consider a TQFT, T , with no fusion rules of

the form (4.2). Suppose we can gauge a non-trivial one-form symmetry of this TQFT,

H. After performing this gauging, we have fusion rules of the form (4.2) only if there

are a ∈ T such that fusion with at least one of the one-form generators, α ∈ Rep(H),

yields α× a = a.

Proof: Suppose this were not the case. Then, all anyons are organized into full length

orbits under fusion with the one-form symmetry generators. When we gauge the one-

form symmetry, we identify these orbits as single elements (if the braiding with one-

form symmetry generators is trivial, these orbits become genuine lines of the gauged

theory; if the braiding is non-trivial, these orbits become lines bounding symmetry-

generating surface operators in the gauged theory). Note that all anyons appearing on

the right hand side of fusion rules have the same braiding with the one-form symmetry

generators. Therefore, the claim follows. �

As we will see, this theorem will have echoes in the coset theories we describe in the

second half of this paper.

� In the case of O(5, 3) discrete gauge theories, we saw that we can gauge the outer

automorphisms and have fusion rules of form (4.2) in this gauged theory as well. This

discussion inspires the following theorem:

Theorem 4.2 (zero-form fixed points). Consider a TQFT, T , and suppose we can

gauge a non-trivial zero-form symmetry of this TQFT, H. After performing this gaug-

ing, we have fusion rules of the form (4.2) only if there are non-trivial ai ∈ T such

that at least one of the non-trivial elements of the zero-form group fixes ai.
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Proof: Suppose that all non-trivial elements of the discrete gauge theory leave all

the non-trivial anyons unfixed. Now consider anyons a, b, c ∈ T such that c ∈ a × b.
From the general discussion around (4.23), we see that Nta ∩ Nsb ∩ Nc = Z1 and

Na\H/Nb = H. Moreover, since the stabilizers are trivial, πa = πb = πc = 1 are the

trivial representations. We then have

N
([c],1)
([a],1),([b],1) = |H| ·m(1, 1) = |H| > 1 . (4.46)

Therefore, we cannot produce fusion rules of the desired type. �

Our discussion of the O(5, 3) theory also suggests the following theorem

Corollary 4.2.1. Consider a TQFT, T , with a fusion rule of the form a× b = c and

a zero-form symmetry, H. If at least one of {a, b, c} is unfixed by H, then the only

way for a× b = c to map to a fusion rule with unique outcome in the gauged theory is

for c to be unfixed by H.

Proof: If c is unfixed by H, then Nc = Na ∩ Nb = Z1. If either a or b are unfixed

then Na ∩Nb = Z1 as well (although we need not have Nc = Z1). In any case, (4.23)

becomes

N
([c],πc)
([a],πa),([b],πb)

=
∑

(t,s)∈Na\H/Nb

m(πc|Z1 ,
tπa|Z1 ⊗ sπb|Z1 ⊗ πω(ta,sb,c)) . (4.47)

We have two cases: (1) Na\H/Nb 6= Z1 or (2) Na\H/Nb = Z1. Consider case (1)

first. In this case, all resulting fusion rules will have multiplicity |Na\H/Nb| > 1.

Next, consider case (2). If c is fixed by some element of H, then we have at least

two possible πc (one is the trivial representation). This results in a fusion rules with

non-unique outcomes. �

� In the case of the BOG and GL(2, 3) discrete gauge theories we saw that both one-

form symmetries and subcategory structure offered an explanation of the existence of

the fusion rules (4.42). The following theorem further explains and generalizes this

connection between symmetries and subcategories of the Wilson line sector:

Theorem 4.3 (subcategories and symmetries). Consider a finite group, G, with an

unfaithful higher-dimensional irreducible representation, π. Moreover, suppose there

are one-dimensional representations, πi, with Ker(πi) D Ker(π). Then, in the cor-

responding (twisted or untwisted) discrete gauge theory, Wilson lines charged under

representations, γ, that have γ|Ker(π) irreducible transform non-trivially under fusion

with the abelian Wilson lines, Wπi.

Proof: We have that Wπi ∈ CKπ , where CKπ was defined around (4.36) as the subcat-

egory of Wilson lines charged under representations whose kernels contain Ker(π) (see

(4.33)). Therefore, we see that the abelian Wilson lines Wπi ∈ CKπ .
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By the discussion around (4.40), we also see that all non-identity linesWαi ∈ Wγ×Wγ̄

are not elements of CKπ . As a result, Wπi 6∈ Wγ ×Wγ̄. On the other hand, the trivial

line is clearly in Wγ ×Wγ̄. This logic implies

Wπi ×Wγ ×Wγ̄ 6=Wγ ×Wγ̄ , (4.48)

from which the claim in the theorem trivially follows. �

This result tells us that the Wγ must transform under fusion with the one-form sym-

metry generators while Wπ need not. In the case of the BOG and GL(2, 3) dis-

crete gauge theories, precisely this mechanism gave a symmetry explanation for the

Wπ ×Wγ =Wπγ fusion rule in (4.42). Here we see it is somewhat more general.

� Note that the results of this section answer questions (1)-(3) of the introduction nega-

tively in general. Still, we saw that in the BOG and GL(2, 3) discrete gauge theories,

the ideas in (3) and (4.11) do apply in some cases. We will return to a proposal for

construct a theory satisfying (4.10) in question (2) in section 4.2.2.

4.2.2 Subgroups, subcategories, and primality

In sections 4.2.1, we saw the important role subcategories play in generating fusion rules

involving non-abelian Wilson lines with unique outcomes (e.g., they explained the hierarchy

in (4.41)). Moreover, understanding the subcategory structure is crucial to resolving the

question of whether a particular discrete gauge theory is prime or not. In the case of

theories with simple gauge groups (see section 4.2.1), we used results from [127]. In the

case of the examples of discrete gauge theories with non-simple groups we studied, we used

an argument that does not easily generalize. Therefore, in this section, we review some of

the more general results of [127] on subcategories of discrete gauge theories. We then apply

these results to generate some useful theorems that will serve us in subsequent sections.

The main power of the results in [127] is that they rephrase questions about subcategories

in discrete gauge theories in terms of data of the underlying gauge group. In particular, we

have:

Theorem 4.4 ([127]). Fusion subcategories of discrete gauge theories with finite group G

are in bijective correspondence with triples, (K,H,B). Here K,H E G are normal subgroups

that centralize each other (i.e., they commute element-by-element), and B : K ×H → C× is

a G-invariant bicharacter. If we have a non-trivial twist, ω, then the same conditions hold

except that we demand that B is a G-invariant ω-bicharacter.

Proof: See proofs of Theorems 1.1 and 1.2 (though they are phrased using different, but

equivalent, terminology) of [127]. �

Since B is a bicharacter, it satisfies

B(k1k2, h) = B(k1, h) ·B(k2, h) , B(k, h1h2) = B(k, h1) ·B(k, h2) . (4.49)
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Here G invariance means that B(g−1kg, g−1hg) = B(k, h) for all k ∈ K, h ∈ H, and g ∈ G.

In fact, [127] also give a way to construct the subcategory, S(K,H,B), in question given the

above data:

S(K,H,B) := gen ((a, χ)| {a ∈ K ∩R , χ ∈ Irr(Na) s.t. χ(h) = B(a, h) degχ , ∀h ∈ H}) ,

(4.50)

where R is a set of representatives of conjugacy classes, Irr(Na) is the set of characters of

irreducible representations of the centralizer Na, and “gen(· · · )” means that the category

is generated by the simple objects inside the parenthesis. A normal subgroup is a union

of conjugacy classes. Hence, K specifies all the conjugacy classes labelling the anyons in

the subcategory S(K,H,B). Also, all the Wilson lines in S(K,H,B) are such that the

corresponding representations have kernels which contain H.

If we have non-trivial twist, then (4.49) and G-invariance become [127]

B(k1k2, h) = ηh(k1, k2) ·B(k1, h) ·B(k2, h) , B(k, h1h2) = η−1
k (h1, h2) ·B(k, h1) ·B(k, h2) ,

B(g−1kg, h) =
ηk(g, h)ηk(gh, g

−1)

ηk(g, g−1)
B(k, ghg−1) , (4.51)

where

ηg(h, k) :=
ω(g, h, k) · ω(h, k, k−1h−1ghk)

ω(h, h−1gh, k)
, (4.52)

is a generalization of (1.52). For non-trivial twist, we also have that (4.50) becomes

S(K,H,B) := gen ((a, χ)| {a ∈ K ∩R ,χ ∈ Irrω(Na) s.t. χ(h) = B(a, h) degχ , ∀h ∈ H}) ,

(4.53)

where the ω in Irrω(Na) is a reminder that we should consider characters with projectivity

phase given by (1.52) or (4.52).

We can now immediately see how the subcategories we studied in previous sections arose:

S(G,Z1, 1) ' Z(VecωG) is the full discrete gauge theory, S(Z1, G, 1) is the trivial subcate-

gory, and S(Z1,Z1, 1) ' Rep(G) ' CW is the full subcategory of Wilson lines. In the case

of simple discrete gauge theories, we see that, as claimed in section 4.2.1, these are the only

subcategories. However, in the case of the Z(VecωBOG), Z(VecωGL(2,3)), and other gauge theo-

ries based on gauge groups with unfaithful irreducible representations, π, we find additional

subcategories: S(Z1,Ker(π), 1) ' Rep(G/Ker(π)) and S(Ker(π),Z1, 1). Using Lemma 3.11

of [127], we have that S(Ker(π),Z1, 1) is the Müger center of S(Z1,Ker(π), 1).

Since we will study flux lines and dyons below, it is interesting to ask what the above

theorems imply for such operators. One immediate consequence is that magnetic flux lines

behave very differently from Wilson lines. For example:

Theorem 4.5. The set of magnetic flux lines, M, of a discrete gauge theory (both un-

twisted and twisted) with non-abelian gauge group, G, do not form a fusion subcategory. In

particular, M 6' Rep(G).
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Proof: Suppose the full set of flux lines form a subcategory. Then, we need K to include at

least one element of each conjugacy class in order to include all of M in S. However, since

K is a normal subgroup, it must consist of full conjugacy classes. Therefore, K = G. Using

theorem 4.4, we can label this putative subcategory as S(G,H,B). Since H has to commute

with all elements in G, it has to be a subgroup of the center of the group Z(G). Suppose the

group has trivial center. This forces B = 1, and S(G,Z1, 1) is the full discrete gauge theory,

which means we also include objects with charge. This is a contradiction.

Suppose H is a non-trivial subgroup of Z(G). We know that the function B, being a

bicharacter, satisfies B(e, h) = 1 ∀h ∈ H. So the Wilson line ([e], π) ∈ S(G,H,B) if π

has H in its kernel. Recall that the irreducible representations of G/H are in one-to-one

correspondence with irreducible representations of G with H in its kernel. Since G is non-

abelian, Z(G) 6= G. Hence, G/H is a non-trivial group. It follows that there is at least one

non-trivial irreducible representation π′ of G such that H is in its kernel. Hence, the Wilson

line ([e], π′) belongs to the subcategory S(G,H,B) for any B. A contradiction. �

The fact thatM 6' Rep(G) has consequences in section 4.2.3. In particular, it explains why

electric-magnetic self-dualities are non-trivial to engineer in theories with non-abelian gauge

groups and trivial centers.105 If such a duality exists and involves magnetic flux lines, then

they will necessarily be in a Rep(G)-like subcategory with objects carrying electric charge

(e.g., see the S3 discrete gauge theory self-duality [17], where the dimension-two flux line is

in a Rep(S3) subcategory with both dimension one Wilson lines).

Now, we turn to the question of primality. Here the following theorem of [127] is useful

Theorem 4.6 ([127]). A discrete gauge theory with gauge group, G, is a prime TQFT if

and only if there is no triple (K,H,B) with K,H / G normal subgroups centralizing each

other, HK = G, (G,Z1) 6= (K,H) 6= (Z1, G), and B is a G-invariant bicharacter on K ×H
such that BBop|(K∩H)×(K∩H) is non-degenerate. In the case of non-trivial twisting, ω, the

previous conditions still hold, but B is also a G-invariant ω-bicharacter.

Proof: See proof of theorem 1.3 (though it is phrased using different, but equivalent, ter-

minology) in [127]. �

Note that in the statement of theorem 6, Bop(h, k) := B(k, h) for all k ∈ K and h ∈ H.

Given this theorem, we may prove the following result that will be useful to us in section

4.2.5:

Theorem 4.7. If G is a non-direct product group with trivial center, then the corresponding

(twisted or untwisted) gauge theory is a prime TQFT.

Proof: We have a non-direct product group G with trivial center. Let us assume that

Rep(D(G)) has a modular subcategory. Then, there exists two normal subgroups, K and H,

105In any untwisted abelian gauge theory, this is not an issue as M ' Rep(G) and there is a canonical

electric/magnetic duality.
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commuting with each other and satisfying KH = G. So, every element of G is a product of

an element of K with an element of H. Hence, any element in K ∩H has to commute with

all elements of G. Since the center of G is trivial by choice, K ∩ H = Z1. It follows that

G has to be a direct product of K and H. A contradiction. Hence, for non-direct product

groups G with trivial center, Rep(D(G)) is prime. �
A simple set of examples subject to this theorem include the SN discrete gauge theories

analyzed above and the Z15 o Z4 discrete gauge theory we will analyze further in section

4.2.5.

Finally, we conclude with a proposal for engineering an example of a theory of the type

envisioned in question (2) in the introduction. In particular, consider a G × G discrete

gauge theory, Z(VecωG×G). Clearly, for trivial twisting this is a non-prime theory since

Z(VecG×G) = Z(VecG) � Z(VecG). Indeed, by theorem 4.6, we can take K = G × Z1,

H = Z1 × G, and B = 1. However, if we turn on a twist, ω ∈ H3(G × G,U(1)), we might

be able to generate a prime theory. In particular, if we can find G such that ω is non-trivial

and does not factorize, then we would have an example of a prime theory with Wilson lines

in Rep(G × G) = Rep(G) � Rep(G). Choosing one Wilson line in each Rep(G) factor and

fusing would give a unique fusion outcome.106 It would be interesting to see if this proposal

can be realized. For example, we would like to see if there is an obstruction at the level of

the existence of a G-invariant ω-bicharacter (all other requirements of theorem 4.6 can be

satisfied). A concrete example of a theory of the type discussed in question (2) is studied in

section 4.2.5.

4.2.3 Zero-form symmetries

In sections 4.2.1 and 4.2.1 we saw that zero-form symmetries played an important role in

generating fusions rules of the form (4.2). In this section we review some relevant results of

[130] and prove a theorem that will be useful to us in section 4.2.5.

In three spacetime dimensions, zero-form symmetries are implemented by dimension two

topological defects (recall that one-form symmetries are generated by abelian lines). These

defects act on lines that pierce them as in figure 35. We will say the corresponding symmetry

group, H, is non-trivial iff it has a generator, h ∈ H, such that there is an anyon a ∈ T
satisfying h(a) 6= a.

Note that the automorphisms of the gauge group G, Aut(G), are a natural source of

symmetries. Indeed, in the context of the G-SPT that we gauge to generate the discrete

gauge theory, these automorphisms permute the symmetry defects. Therefore, we expect

they will play a role in the discrete gauge theory. To be more precise, recall that we can

distinguish between the inner automorphisms Inn(G) E Aut(G), generated by conjugations

of the form gxg−1 for x, g ∈ G, and outer automorphisms, Out(G) := Aut(G)/Inn(G). Since

the discrete gauge theory involves magnetic charges labeled by conjugacy classes and electric

charges labeled by representations of centralizers, it is clear that inner automorphisms will

106We thank D. Aasen for suggesting the basis for this idea.
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Σg

a g(a)

Figure 35: The symmetry defect Σg, labelled by a zero-form symmetry group element g, acts

on an anyon a.

act trivially on the discrete gauge theory (conjugacy classes are invariant under Inn(G) and

the normalizers of different elements in a conjugacy class are isomorphic). Therefore, we can

at best expect Out(G) to lift to a symmetry of the TQFT. Indeed, this is precisely what

happens.

More formally, we have that, in a discrete gauge theory Out(G) lifts to a part of the

group of braided autoequivalences of the discrete gauge theory, Autbr(Z(VecG)):

Theorem 4.8 ([130]). The subgroup of braided autoequivalences that fix the Wilson lines

Stab(Rep(G)) ≤ Autbr(Z(VecG)) takes the form

Stab(Rep(G)) ' H2(G,U(1)) o Out(G) . (4.54)

Proof: See the proof of Corollary 6.9 (though it is phrased using different, but equivalent,

terminology) in [130]. �

Note that Out(G) generally acts non-trivially on the conjugacy classes. Therefore, it will

also generally act non-trivially on the Wilson lines. However, in certain more exotic cases,

all of Out(G) preserves conjugacy classes.107 In such cases, the Wilson lines are fixed. Note

that elements ζ ∈ H2(G,U(1)) always leave the Wilson lines invariant since they act as

follows [130]

ζ(([a], πa)) = ([a], πgρg) , ρg(x) :=
ζ(x, g)

ζ(g, x)
, (4.55)

where g ∈ [a] (in particular, g = 1 for Wilson lines). Note that ρg(x) depends only on the

cohomology class of ζ (it is invariant under shifts by a 2-coboundary).

107The smallest group that has this feature has order 27 [27]. See [56] for an application of groups that

have at least some class-preserving outer automorphisms to quantum doubles.
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A second set of symmetries involves the exchange of electric and magnetic degrees of

freedom. These are electric/manetic self-dualities and are inherently quantum mechanical in

nature. These symmetries are closely related to the existence of Lagrangian subcategories.

As we briefly mentioned at the beginning of section 4.2.1, a Lagrangian subcategory, L, is

a collection of bosons with trivial mutual braiding that is equal to its Müger center (e.g.,

like the subcategory of Wilson lines, CW ' Rep(G)) . This latter condition simply means

that the only objects that braid non-trivially with every element of L are elements of that

subcategory.

To find the set of these symmetries, it turns out to be useful to construct the categorical

Lagrangian Grassmannian, L(G). This is the collection of all Lagrangian subcategories.

Each such subcategory, L(N,µ) ' Rep(G(N,µ)) with |G(N,µ)| = |G|, is labeled by a normal

abelian subgroup, N / G, and a G-invariant µ ∈ H2(N,U(1)) (the Wilson line subcategory

is L1,1). For the purposes of understanding these symmetries, the important subcategory is

[130]

L ⊇ L0 := {L ∈ L(G)|L ' Rep(G)} . (4.56)

In particular, we have

Theorem 4.9 ([130]). The action of Autbr(Z(VecG)) on L0(G) is transitive. Moreover,

|Autbr(Z(VecG))| = |H2(G,U(1))| · |Out(G)| · |L0(G)| . (4.57)

Proof: See proposition 7.6 and corollary 7.7 of [130]. �

Examples of such dualities appear in the S3 discrete gauge theory [17] and beyond [100].

Let us now apply this theorem to prove a result that will be useful for us below

Theorem 4.10. If G ' N o K, where N is an abelian group, then the corresponding

untwisted discrete gauge theory has an electric-magnetic self-duality.

Proof: By theorem 4.9, in order to find a self-duality, we need to find a normal abelian

subgroup N / G and a G-invariant 2-cocycle, µ ∈ H2(N,U(1)). Moreover, we need to find

a corresponding G(N,µ) ' G. In particular, from remark 7.3 of [130], when µ is trivial, we

have that G(N,1) ' N̂ o G/N , where N̂ is the character group of N . For an abelian group,

N̂ ' N . Therefore, we have that G(Ñ,1) ' N oK = G as desired. �

This theorem will be useful in our symmetry searches in section 4.2.5. Note that one

immediate consequence of the above discussion is that none of the examples discussed

above have self-dualities. Indeed, theories with simple gauge groups have no non-trivial

normal abelian subgroups. On the other hand, theories like BOG and GL(2, 3) have

H2(BOG,U(1)) ' H2(GL(2, 3), U(1)) ' Z1 (and similarly for all normal abelian subgroups).

Since these groups are not semi-direct products, we conclude they lack self-dualities.
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4.2.4 Quasi-zero-form symmetries

In the previous subsections, we have seen that zero-form symmetries play an important role

in generating fusion rules for non-abelian anyons with unique outcomes. However, since our

interest is simply in the existence of such fusion rules, it is natural that we should generalize

our notion of symmetry to include symmetries of the modular data (and hence, by Verlinde’s

formula, automorphisms of the fusion rules) that don’t necessarily lift to symmetries of the

TQFT.108 The basic reason such “quasi zero-form symmetries” as we will call them exist is

that the modular data does not define a TQFT (see [119] for a consequence of this fact). In

particular, the underlying F and R symbols may not be invariant (up to an allowed gauge

transformation) under a quasi zero-form symmetry even if S and T are.

In fact, such “quasi-zero-form symmetries” are common, with charge conjugation being

a particular example [58]. Indeed, even in the AN (with N = k2 ≥ 9) theories we discussed

in section 4.2.1, such quasi-charge conjugation symmetries exist. These symmetries are in

addition to the genuine zero-form symmetries we described when analyzing these examples.

In appendix B.2.2, we study the particular case of A9 discrete gauge theory in more detail

and explicitly disentangle the quasi-symmetries from the genuine symmetries.

More generally, there are theories that have no genuine symmetries. One set of examples

include discrete gauge theories based on the Mathieu groups. These are simple groups with

trivial Out(G) and H2(G,U(1)). Moreover, since these groups have no non-trivial normal

abelian subgroups, L(G) = L0(G) ' Rep(G), and so there are no non-trivial self-dualities.

The largest Mathieu groups, M23 and M24 are of particular interest to us since their

discrete gauge theories have non-abelian Wilson lines that fuse together to produce a unique

outcome.109 Moreover, of the theories with fusions of type (4.2), these are the only untwisted

discrete gauge theories that have no modular symmetries that lift to symmetries of the full

TQFTs.

For M23 it is not hard to check that

W22 ×W451 =W9901 , W22 ×W452 =W9902 , (4.58)

where 22 is the real twenty-two dimensional representation, 451,2 are two forty five dimen-

sional complex representations, and 9901,2 are two nine hundred and ninety dimensional

representations. Under charge conjugation

W451 ↔W452 , W9901 ↔W9902 . (4.59)

For M24, we have a particularly rich set of fusions110

W23 ×W451 = W10352 , W23 ×W452 =W10353 , W23 ×W2311 =W5313

108In fact, most generally, we might expect automorphisms of the fusion rules that are not even symmetries

of the modular data (e.g., as studied recently in [41]).
109By the results of [35], these theories cannot have such fusions involving lines that carry magnetic flux.
110It would be interesting to know if our results here have any connection with moonshine phenomena

observed involving M24 as in [66, 50, 84].
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W23 ×W2312 = W5313 , W451 ×W2311 =W10395 , W452 ×W2311 =W10395 ,

W451 ×W2312 = W10395 , W452 ×W2312 =W10395 . (4.60)

where 23 is a real twenty-three dimensional representation, 451,2 are complex forty-five di-

mensional representations, 2311,2 are two-hundred and thirty-one dimensional complex rep-

resentations, and 10352,3 are complex one-thousand and thirty-five dimensional representa-

tions, 5313 is a real five-thousand three-hundred and thirteen dimensional representation,

and 10395 is a real ten-thousand three-hundred and ninety-five dimensional representation.

Under charge conjugation, we have

W451 ↔W452 , W2311 ↔W2312 , W10352 ↔W10353 . (4.61)

While we have seen similar actions in previous sections, but here the novelty is that charge

conjugation is a quasi-symmetry.

More generally, as we will discuss in greater detail below, all other examples of TQFTs

that we have found with fusion rules involving non-abelian anyons with unique outcome have

at least quasi zero-form symmetries.

Finally, let us conclude this section by discussing how twisting affects the quasi-zero-form

symmetries. When the quasi-symmetry is charge conjugation and the group has complex

representations, the quasi-symmetry lifts to an action on Wilson lines (see appendix B.2.2

for a discussion in a concrete example). In this case, the quasi-symmetry persists regardless

of the twisting.

As a more complicated example, let us consider the case of BOG first discussed in

section 4.2.1. This theory only has real conjugacy classes and representations. However,

there is still a non-trivial charge conjugation acting on certain dyons since elements in BOG

have centralizer groups Z4, Z6, and Z8. These latter groups admit complex representations.

However, unlike the spectrum of Wilson lines, the spectrum of dyons generally changes as we

change the twist. Therefore, we might imagine that the charge conjugation quasi symmetry

can be twisted away.

In fact, this is not the case. The main point is that any twisting ω ∈ H3(BOG,U(1)) '
Z48 of the BOG discrete gauge theory is “cohomologically trivial” in the following sense:

the ηg(h, k) ∈ H2(Ng, U(1)) phases defined in (1.52) are all trivial. Indeed, this statement

follows from the fact that H2(Ng, U(1)) = Z1 for all g ∈ BOG. Therefore, none of the

anyons are lifted by the twisting, and the characters of BOG change as follows

χπωg (h)→ εg(h) · χπωg (h) (4.62)

where εg is a 1-cochain that gives the 2-coboundary, ηg. It is not too hard to check that all

choices of the twisting leave us with complex characters. Therefore, the charge conjugation

quasi-symmetry persists (here it would be more accurate to term it a “modular symmetry”

since it is apriori possible—though we have not checked—that charge conjugation becomes

a symmetry of the theory for certain choices of ω).111

111One may also wonder about the fate of the genuine Out(BOG) ' Z2 zero-form symmetry under twisting.
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4.2.5 Beyond Wilson lines

So far, we have only constructed fusion rules of the form (4.2) using Wilson lines. In the

case of gauge theories with simple groups, this is all we can do [35]. However, when we have

non-simple gauge groups, the existence of self-dualities discussed in section 4.2.3 as well as

the possibility of electric-magnetic dualities between theories with different gauge groups and

Dijkgraaf-Witten twists [126, 100] suggests that we should also be able to involve non-abelian

anyons carrying flux. Indeed, we will see this is the case.

To that end, let us study a fusion of the form

L([g],πωg ) × L([h],πωh ) = L([k],πωk ) , g, h 6= 1 , (4.63)

Carefully applying the machinery in section 1.1.1 reveals the following contraints112

1. [g] · [h] = [k] = [h] · [g]

2. ∃! πωk such that m(πωk |Ng∩Nh∩Nk , πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k)) = 1

We will apply these constraints in what follows.

For an untwisted discrete gauge theory based on a group G with a non-trivial center

Z(G), the constraints above implies that if we have a fusion of Wilson lines giving a unique

outcome

Wπ ×Wγ =Wπγ , (4.64)

then we have a fusion of dyons of the form

L([g],π) × L([h],γ) = L([gh],πγ) , (4.65)

where for any g, h ∈ Z(G). Hence, we can dress the Wilson lines with fluxes from the center

of the group to obtain fusion rules involving dyons with unique outcomes. For example, we

have already seen that the discrete gauge theories corresponding to BOG and GL(2, 3) have

Wilson lines fusing to give a unique outcome. Since these two groups have a non-trivial

center (isomorphic to Z2), the above discussion immediately implies the existence of dyonic

fusions where the dyons are labelled by the non-trivial element of the centre. In fact, these

two types of fusions exhaust all a× b = c type fusions in both Z(VecBOG) and Z(VecGL(2,3)).

In the case of the fusion of non-abelian Wilson lines with a unique outcome, we saw that

we were not guaranteed to find fusion subcategories beyond the three universal subcategories

First, consider ω corresponding to the order 2 element in Z48. Since Out(BOG) acts on H3(BOG,U(1))

through Aut(H3(BOG,U(1))), ω should be fixed under it. Hence, it seems plausible that the twisted discrete

gauge theory corresponding to this choice of ω has Out(BOG) as a subgroup of its symmetries (while theorem

8 has nothing to say on this point since it assumes untwisted theories, we view the existence of a symmetry in

this case as a plausible assumption). In fact, more generally, if the action of Out(G) leaves ω ∈ H3(G,U(1))

invariant up to a 3-coboundary, then it can be shown that this is a symmetry of the modular data of the

twisted theory. It would be interesting to understand what happens for other twists as well.
112We refer the interested reader to the derivation in section III of [35] for further details.
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present in any discrete gauge theory (the theory itself, the trivial TQFT, and the Wilson

line sector, CW ' Rep(G)). On the other hand, when we have fusions of non-abelian anyons

carrying flux with a unique outcome, we are guaranteed to have fusion subcategories. When

the gauge group has a non-trivial center, Z(G), this statement is trivial.113 The following

theorems guarantee this fact more generally:

Theorem 4.11. Let G be a non-simple finite non-abelian group. If we have a fusion rule

involving two dyons or fluxes giving a unique outcome in the (twisted or untwisted) G gauge

theory, then S(Mg,Z1, 1) and S(Mh,Z1, 1) (along with S(Z1,Mg, 1) and S(Z1,Mh, 1)) are

proper fusion subcategories of the theory. Here, g and h are elements labelling the non-trivial

conjugacy classes (of length > 1) involved in the fusion. Mg is the normal subgroup generated

by the elements in [g].

Proof: We have an a × b = c type fusion rule involving the non-trivial conjugacy classes

[g] and [h]. Let Mg be the normal subgroup generated by [g]. In fact, it has to be a proper

normal subgroup. To see this, suppose Mg = G. From Lemma 3.4 of [127], we know that [g]

and [h] commute element-wise. Hence, [h] commutes with all elements in Mg = G. It follows

that [h] should be a subset of the elements in Z(G). However, elements of Z(G) form single

element conjugacy classes. A contradiction. Hence, Mg has to be a proper normal subgroup

of G. Since g 6= e, it is clear that Mg is not the trivial subgroup either. We can use the same

argument to show that Mh is also a proper non-trivial normal subgroup of G. Therefore,

by theorem 4.4, we have fusion subcategories corresponding to the choices S(Mg,Z1, 1) and

S(Mh,Z1, 1) (and similarly S(Z1,Mg, 1) and S(Z1,Mh, 1)). �

Note that we have, L([g],πωg ) ∈ S(Mg,Z1, 1) and L([h],πωh ) ∈ S(Mh,Z1, 1). Generically, we also

expect L([g],πωg ) 6∈ S(Mh,Z1, 1) and L([h],πωh ) 6∈ S(Mg,Z1, 1). In such situations we have, in

the spirit of section 4.2.1, an “explanation” for the fusion rule.

In fact, the reasoning in the proof to theorem 4.11 immediately implies that if [h] has

at least one element h′ ∈ [h] such that [h′, h] 6= 1, then L([g],πωg ) and L([h],πωh ) lie in different

subcategories

Corollary 4.11.1. Given the conditions in theorem 4.11, if there exists h′ ∈ [h] such that

[h′, h] 6= 1, µ[g] ∈ S(Mg,Z1, 1), L([h],πωh ) 6∈ S(Mg,Z1, 1), and similarly for h↔ g.

For a ∈ Mg the fusion subcategory S(Mg,Z1, 1) contains anyons ([a], πa) where πa is

any irrep of the centralizer Na. In an untwisted discrete gauge theory, for a fusion of fluxes

labelled by conjugacy classes [g] and [h], we can define fusion subcategories S(Mg,Mh, 1) and

S(MhMg, 1) which have a more restricted set of elements. For a ∈ Mg, the anyon ([a], πa)

is an element of S(Mg,Mh, 1) if and only if Mh ⊆ Ker(πa). Clearly, ([g], 1g) ∈ S(Mg,Mh, 1)

113The discussion in section 4.2.2 guarantees that S(Z(G),Z1, 1) and S(Z1, Z(G), 1) are non-trivial sub-

categories.
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and ([h], 1h) ∈ S(Mh,Mg, 1). However, in general, we don’t expect ([g], 1g) 6∈ S(Mh,Mg, 1)

and ([h], 1h) 6∈ S(Mg,Mh, 1). We will discuss an example of this below.

If one of the operators involved in the fusion of non-abelian anyons with a unique outcome

is a Wilson line, then we also have the following theorem:

Theorem 4.12. Let G be a non-simple group. If we have a fusion of a Wilson line and

a dyon giving a unique outcome, then S(Ker(χπ),Z1, 1) and S(Z1,Ker(χπ), 1) are proper

fusion subcategories of the (twisted or untwisted) discrete gauge theory. Here, π is an irrep

of G labelling the Wilson line.

Proof: Suppose [b] is the non-trivial conjugacy labelling the flux line. Let χπ be the character

of an irreducible representation, π, of G labelling the Wilson line. From note 3.5 of [127]

we know that χ should be trivial on a subset of elements given by [G, b]. Since b is not in

the center, [G, b] is guaranteed to have a non-trivial element. Hence, χπ is not a faithful

representation. Ker(χπ) is a non-trivial normal subgroup of G. Since χπ is not the trivial

representation, Ker(χπ) 6= G is a non-trivial proper normal subgroup. Hence, by theorem

4.4, we have a fusion subcategory given by S(Ker(χπ),Z1, 1) and S(Z1,Ker(χπ), 1). �

Note that in this case the Wilson line is an element of S(Z1,Ker(χπ), 1) while the magnetic

flux is not. In this sense, such fusions are “natural.” To illustrate the ideas above, let us

consider the following examples.

Z(VecZ3oQ16) Let us consider the Z3 oQ16 discrete gauge theory. Even though this group

has many non-trivial proper normal subgroups, we have Z3 o Q16 6= HK for any proper

normal subgroups H,K. Hence, using theorem 4.6, we have that Z(VecZ3oQ16) is a prime

theory.

This group has a length 2 conjugacy class [f3] (here we are using the notation of GAP

[85], where this group is entry (48, 18) in GAP’s small group library) and a 2-dimensional

representation 23 (the third 2-dimensional representation in the character table of Z3 oQ16

on GAP). We have the following fusion of a Wilson line and a flux line giving a unique

outcome.

W23 × µ[f3] = L([f3],23|Nf3 ) , (4.66)

where the restricted representation 23|Nf3 is irreducible.

Since we have a prime theory, the existence of this fusion rule is not due to a Deligne

product. However, it can be explained using the subcategory structure of Z(VecZ3oQ16).

To that end, consider the fusion subcategory S(Z1,Ker(23)), 1). This fusion subcategory

contains only Wilson lines. A Wilson line Wπ belongs to this subcategory only if Ker(23) is

in Ker(π). From the character table of Z3oQ16, we find three representations satisfying this

constraint: 1, 13 and 23. Here 1 is the trivial representation and 13 is the third 1-dimensional

representation in the character table. Hence, the anyons contained in the fusion subcategory
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S(Z1,Ker(23), 1) are the Wilson lines W1, W13 as well as W23 . Moreover, we can check the

following

13 × 13 = 1; 13 × 23 = 23; 23 × 23 = 1 + 13 + 23. (4.67)

Now let us consider a fusion subcategory corresponding to the triple S(Mf3 ,Ker(12), 1)

where Mf3 is the normal subgroup generated by the elements of the conjugacy class [f3]

and 12 is the second 1 dimensional representation in the character table of Z3 o Q16. We

have Mf3 = {e, f3, f4, f3 · f4}. A Wilson line Wπ belongs to the set of generators of this

subcategory only if Ker(12) is in Ker(π). Using the character table we can check that there

are only two representations which satisfy this constraint: 1 and 12. Moreover, we have

12 × 12 = 1. Hence, the Wilson lines in S(Mf3 ,Ker(12), 1) are W1 and W12 . Note that the

flux line µ[f3] belongs to this subcategory.

Hence, we have two fusion subcategories S(Z1,Ker(23)), 1) and (Mf3 ,Ker(12), 1) with the

following structure

W23 ∈ S(Z1,Ker(23)), 1); µ[f3] ∈ (Mf3 ,Ker(12), 1);

S(Z1,Ker(23)), 1) ∩ S(Mf3 ,Ker(12), 1) = {W1} (4.68)

Therefore, the fusions W23 × W23 and µ[f3] × µ[f3] have only W1 in common. This trivial

intersection explains the fusion (4.66) and gives an example of the idea behind question (2)

in the introduction.

Z(VecZ15oZ4) Let us consider the Z15 o Z4 discrete gauge theory. Since the center of the

gauge group is trivial and the group involves a semi-direct product, we know from theorem

4.7 that this gauge theory is prime.

This group has a length 5 conjugacy class labelled by the element f2 and a length 2

conjugacy class labelled by the element f3 (here we are using the notation of GAP, where

this group is entry (60, 7) in GAP’s small group library). We also have a length 10 conjugacy

class labeled by f2f3. It is therefore clear that we have a fusion of flux lines giving a unique

outcome corresponding to these conjugacy classes

µ[f2] × µ[f3] = µ[f2f3] . (4.69)

Based on our discussion above, let us consider the groups Mf2 and Mf3 generated by the

elements in the corresponding conjugacy class. It is not too hard to show that

Mf2 = [e] ∪ [f2] (4.70)

Mf3 = [e] ∪ [f3] ∪ [f4] (4.71)

Hence, the fusion subcategories S(Mf2 ,Mf3 , 1) and S(Mf3 ,Mf2 , 1) can only have Wilson lines

as common elements. The trivial Wilson line W1 is of course a common element. As we saw
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in section 4.2.2, a Wilson line, Wπ, is a member of the fusion subcategory, S(Mf2 ,Mf3 , 1),

only if the condition

χπ(h) := B(e, h) deg χπ = deg χπ , ∀ h ∈Mf3 , (4.72)

is satisfied. Hence, Mf3 should be in the kernel of χπ. Similarly, a Wilson line Wπ′ , is a

member of (Mf3 ,Mf2 , 1) only if Mf2 is in the kernel of χπ′ . Therefore, the common elements

of the two fusion subcategories are given by the Wilson lines Wπ̃ for which Mf2 and Mf3 are

in the kernel of χπ̃. Using the character table of Z15 o Z2, we find that there is only one

representation π12 , which satisfies this constraint.

Consider the fusions

µ[f2] × µ[f−1
2 ] = W1 + · · · , (4.73)

µ[f3] × µ[f3
−1] = W1 + · · · . (4.74)

We know µ[f2] and µ[f3] belong to the fusion subcategories (Mf2 ,Mf3 , 1) and (Mf3 ,Mf2 , 1).

Therefore, the only anyons common to both fusions above are W1 and W12 . We would like

to know whether the Wilson line, W12 , appears on the right hand side of these fusions. To

that end, consider the fusion

W12 × µ[f3] = L([f3],12|Nf3 ) . (4.75)

It turns out that 12|Nf3 is the trivial representation of Nf3 . Hence, µ[f3] is fixed under fusion

with the one-form symmetry generator, W12 . So it is clear that W12 should appear in the

fusion µ[f3] × µ[f3
−1]. Similarly, consider the fusion

W12 × µ[f2] = L([f2],12|Nf2 ) . (4.76)

It is easy to check that 12|Nf2 is a non-trivial representation of Nf2 . Hence, µ[f2] is not fixed

under the fusion with W12 . Since W12 is an order two anyon, it cannot appear in the fusion

µ[f2] × µ[f2
−1] (because if W12 ⊂ µ[f2] × µ[f2

−1], then multiplying both sides on the left with

W12 implies that L([f2],12) is the inverse of µ[f2] which is clearly false).

We have that the fusions µ[f2] × µ[f−1
2 ] and µ[f3] × µ[f−1

3 ] only have the trivial anyon in

common. Hence, the combination of subcategory structure and one-form symmetry explains

the fusion rule

µ[f2] × µ[f3] = µ[f2f3] . (4.77)

It is interesting to note that this discussion parallels the one for Wilson lines in section 4.2.1.

This example is additionally illuminating because this theory also has a fusion involving a

Wilson and a flux line with unique outcome. Indeed, we have two 2-dimensional representa-

tions 21 and 22 of Z15 oZ4 whose restriction to the centralizer Nf2 = Z3 oZ4 are irreducible.

Hence, we have the fusion rules

W21 × µ[f2] = L([f2],21|Nf2 ) , W22 × µ[f2] = L([f2],22|Nf2 ) . (4.78)
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Do we have trivial braiding between the anyons involved in this fusion? This question is

equivalent to whether the dyons are bosons are not. For L([f2],2i|Nf2 ) to be a boson, we want

f2 to be in the kernel of 2i|f2 , which is equivalent to the condition that f2 be in the kernel

of 2i. Using this condition, we can easily check to see that the anyons W21 and µ[f2] braid

non-trivially with each other, while W22 and µ[f2] braid trivially with each other.

Moreover, this theory has several fusions involving dyons which give a unique output. For

example, consider the dyons L([f2],1̃f2 ) and L([f3],1̃f3 ), where 1̃f2 and 1̃f3 are the unique non-

trivial real 1-dimensional representations of Nf2 = Z3 oZ4 and Nf3 = Z3×D10, respectively.

We have the fusion

L([f2],1̃f2 ) × L([f3],1̃f3 ) = L([f2f3],1̃f2f3 ) (4.79)

where 1̃f2f3 is the unique non-trivial 1-dimensional representation of Nf2f3 = Z6.

Let us also explore the zero-form symmetry of this theory. We have Out(Z15 oZ4) = Z2

and H2(Z15 o Z4) = Z1. From theorem 4.10, we know that this theory features non-trivial

self-duality. In fact, the group Z15 o Z4 has three non-trivial normal abelian subgroups

Z3,Z5,Z15 all of which have trivial 2nd cohomology group. So we have the Lagrangian

subcategories

{L(Z1,1),L(Z3,1),L(Z5,1),L(Z15,1)} (4.80)

Using remark 7.3 in [130], we have

L(N,1) ' Rep((Z15 o Z4)(N,1)) ' N̂ o (Z15 o Z4)/N̂ (4.81)

where N̂ is the group of representations of N and N = Z3,Z5,Z15. Also, we have the

isomorphisms

Z15 o Z4 ' Z3 o (Z5 o Z4) ' Z5 o (Z3 o Z4) (4.82)

Hence, all Lagrangian subcategories above are isomorphic to Rep(Z15oZ4). Hence, |L0(Z15o
Z4)| = 4. From theorem 4.9, we know that Autbr(Z(VecZ15oZ4)) should act transitively

on L(Z15 o Z4). In fact, we can use proposition 7.11 of [130] to show that H2(Z15 o
Z4, U(1)) o Out(Z15 o Z4) ' Z2 acts trivially on L0(Z15 o Z4). Using theorem 4.9, we

have |Autbr(Z(VecZ15oZ4))| = 8.

Finally, since Z15oZ4 has complex characters, Z(VecωZ15oZ4
) has a non-trivial quasi-zero-

form symmetry given by charge conjugation.

Symmetry and quasi-symmetry searches We have used the software GAP to search

for groups for which the corresponding untwisted discrete gauge theories have fusions rules

with unique outcomes. We present our results below. The relevant GAP code is given in

Appendix B.2.3.

Fusion of Wilson lines

Irreducible representations of a direct product of groups is the product of representations of

the individual groups. Hence, it is natural that the first example with two Wilson lines fusing
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to give a unique Wilson line is the quantum double of S3 × S3 (however, this fusion arises

because the discrete gauge theory factorizes; this follows from theorem 4.6). More interesting

(non-direct-product) groups with this property only appear at order 48 (see Appendix B.2.1).

For groups of order less than or equal to 639 (except orders 384, 512, 576)114 we have

verified that whenever the corresponding untwisted discrete gauge theory has a fusion Wilson

lines giving a unique outcome, AutbrZ(VecG) is non-trivial. In this set of groups, there

are two which have a trivial automorphism group. They are S3 × (Z5 o Z4) and (((Z3 ×
Z3) o Q8) o Z3) o Z2. However, H2(S3 × (Z5 o Z4), U(1)) = Z2 leading to non-trivial

Autbr(Z(VecS3×(Z5oZ4))). The group (((Z3 × Z3) o Q8) o Z3) o Z2 has trivial H2(G,U(1)).

So the theory Z(Vec(((Z3×Z3)oQ8)oZ3)oZ2) doesn’t have classical symmetries. (((Z3 × Z3) o
Q8) o Z3) o Z2 has only one abelian normal subgroup N = Z3 × Z3. Moreover, we have

(((Z3×Z3)oQ8)oZ3)oZ2 ' NoK where K = GL(2, 3). Therefore, using theorem 10, we

know that this theory has non-trivial electric-magnetic duality. The groups S3 × (Z5 o Z4)

and (((Z3×Z3)oQ8)oZ3)oZ2 have complex characters, hence the corresponding discrete

gauge theories have quasi-zero-form symmetries.

Fusion of flux lines

The simplest example of an untwisted discrete gauge theory with a fusion of two flux lines

giving a single outcome is Z(VecS3×S3). The conjugacy classes of a direct product is a product

of conjugacy classes of the individual groups. Hence, it follows that quantum doubles of direct

products naturally have such fusions. As mentioned above, it follows from theorem 4.6 that

discrete gauge theories based on direct product groups are non-prime. Therefore, the fusion

rules with unique outcome in this case are a consequence of the Deligne product. Since

Out(S3 × S3) = Z2, Z(VecS3×S3) has non-trivial zero-form symmetry.

After S3 × S3, we have several groups of order 48 with flux fusions giving unique outcome.

The examples discussed in Appendix B.2.1 (except BOG and GL(2, 3)) exhaust all such

groups of order 48. All of these groups have non-trivial automorphism group, and hence

the corresponding discrete gauge theory has non-trivial symmetries. In fact, for groups of

order less than or equal to 639 (except orders 384, 512, 576) we have verified that whenever

the corresponding untwisted discrete gauge theory has a fusion of flux lines with a unique

outcome, Autbr(Z(VecG)) is non-trivial. In fact, the only group with a trivial automorphism

group in this set is S3×(Z5oZ4). We already discussed above that this theory has non-trivial

zero-form symmetries as well as non-trivial quasi-zero-form symmetries.

Fusion of a Wilson line with a flux line

The simplest example with a fusion of a Wilson line and a flux line giving a single outcome is

Z(VecS3×S3). Then we have more examples in order 48. The examples discussed in Appendix

B.2.1 (except BOG and GL(2, 3)) exhausts all such groups of order 48. For groups of order

114We have not checked order 384, 512, 576 due to the huge number of groups (up to isomorphism) with

these orders.
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less than or equal to 639 (except orders 384, 512, 576) we have verified that whenever the

corresponding untwisted discrete gauge theory has a fusion of a Wilson line with a flux line

giving a unique outcome, AutbrZ(VecG) is non-trivial. In this set of groups, there are three

which have a trivial automorphism group. They are S3 × (Z5 o Z4), (Z3 × Z3) o QD16

(where QD16 is the semi-dihedral group of order 16) and (((Z3 × Z3) o Q8) o Z3) o Z2.

We discussed the groups S3 × (Z5 o Z4) and (((Z3 × Z3) o Q8) o Z3) o Z2 above. The

group (Z3 × Z3) oQD16 has trivial H2(G,U(1)). So the theory Z(Vec(Z3×Z3)oQD16) doesn’t

have classical symmetries. However, (Z3 × Z3) o QD16 has one abelian normal subgroup

N = Z3 × Z3. Moreover, we have (Z3 × Z3) oQD16 ' N oK where K = QD16. Therefore,

using theorem 4.10, we know that the corresponding untwisted discrete gauge theory has

non-trivial electric-magnetic self-duality.

The group (Z3 × Z3) o QD16 has complex characters, hence the corresponding discrete

gauge theory has quasi-zero-form symmetries.

Fusion of general dyons

Being a Deligne product, Z(VecS3×S3) also has fusions involving dyons, and this is the

smallest rank theory with such fusions. The next example is in order 48. The examples

discussed in Appendix B.2.1 exhausts all such groups of order 48. For groups of order less

than or equal to 100 we have verified that whenever the corresponding untwisted discrete

gauge theory has a fusion of two dyons giving a unique outcome, AutbrZ(VecG) is non-trivial.

In fact, every group in this set has non-trivial automorphism group. Hence, they all have

non-trivial classical 0-form symmetries.

4.3 a× b = c and WZW models

In this section, we turn our attention to a (generally) very different set of theories: TQFTs

based on Gk Chern-Simons (CS) theories and cosets thereof (here G is a compact simple Lie

group). Unlike the theories discussed in section 4.2, the theories we discuss here are typically

chiral (i.e., ctop 6= 0 (mod 8)).

In order to gain a sense of what such theories allow us to do in constructing TQFTs with

fusion rules of the form (4.2) and (4.8), it is useful to recall the basic representation theory of

SU(2). Somewhat surprisingly, this intuition will be quite useful for more general SU(N)k
CS theories. To that end, consider the textbook matter of the fusion of SU(2) spin j1 and

j2 representations

j1 ⊗ j2 =

j1+j2∑
j=|j1−j2|

j . (4.83)

As in the case of the finite groups in the previous section, we would like to understand if we

can have j1 ⊗ j2 = j3 for j1, j2 > 0 and fixed j3 spin. Clearly this is impossible, since we

would have j1 + j2 > |j1 − j2| and the sum (4.83) will have at least two contributions.
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While this result is rather trivial, it is useful to recast it using the group theory analog

of the F -transformation described in the introduction (as well as in section 4.2 for the case

of discrete groups). To that end, we wish to consider

j1 ⊗ j1 =

2j1∑
j=0

j , j2 ⊗ j2 =

2j2∑
k=0

k , |j1,2| > 1 , (4.84)

where |j1,2| are the dimensions of the representations. In particular, we see that (since

j1,2 > 0) both products in (4.84) must always contain the trivial representation and the

adjoint representation. This observation also implies that j1 ⊗ j2 6= j3 for fixed j3 spin.

The discussion around (4.84) easily generalizes to arbitrary compact simple Lie group,

G. In particular, let us consider

α⊗ ᾱ = 1 +
∑
γ 6=1

Nγ
αᾱ γ , β ⊗ β̄ = 1 +

∑
δ

N δ
ββ̄ δ , |α|, |β| > 1 , (4.85)

where α, β and ᾱ, β̄ are conjugate higher-dimensional irreducible representations of G, Irr(G).

The number of times the adjoint appears in the product α⊗ ᾱ is [22]:

Nadj
αᾱ =

∣∣∣{λ(α)
j 6= 0

}∣∣∣ ≥ 1 , (4.86)

where λ
(α)
j are the Dynkin labels of α. Therefore, we learn that for all higher-dimensional

representations of G

α⊗ β 6= γ , ∀ |α|, |β| > 1 , α, β, γ ∈ Irr(G) , (4.87)

Of course, our interest is in the fusion algebra of Gk. From this perspective, the above

discussion is in the limit k →∞. As we will prove in the next section, taking Gk = SU(N)k
and imposing finite level does not lead to fusions of the form (4.2) or (4.8).

4.3.1 Gk CS theory

Let us now consider the finite-level deformation of the fusion rules discussed in the previous

section. These are the fusion rules of Wilson lines in Gk CS theory. We first consider SU(2)k
as it is rather illustrative. We will then generalize to SU(N)k and comment on more general

Gk.

In the case of SU(2)k, (4.83) becomes [86, 61]

j1 ⊗ j2 =

min(j1+j2,k−j1−j2)∑
j=|j1−j2|

j . (4.88)

In addition to truncating the spectrum to the spins {0, 1/2, 1, · · · , k/2}, the above deforma-

tion abelianizes the spin k/2 representation (since k/2⊗ k/2 = 0). However, these changes
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do not alter the conclusion from the previous section: we cannot write j1 ⊗ j2 = j3 for j3

non-abelian irreducible j1,2,3. Indeed, consider

j1 ⊗ j1 =

min(2j1,k−2j1)∑
j=0

j , j2 ⊗ j2 =

min(2j2,k−2j2)∑
j=0

j , j1,2 6= 0,
k

2
. (4.89)

The conditions j1,2 6= 0, k
2

are to ensure that the representation is non-abelian. In particular,

we again see that the adjoint representation appears in (4.89).

While the fusion rules discussed in [86, 61] apply to more general groups, they are rather

difficult to implement. Instead, using proposals suggested in [111, 110] and finally proven

in [68], the authors of [154] show that for α an irreducible representation of Gk (with G a

compact simple Lie group), we have

(k)Nadj
αᾱ =

∣∣∣{λ̂(α)
j 6= 0

}∣∣∣− 1 , (4.90)

where λ̂αj are the associated affine Dynkin labels.

In particular, for SU(N)k, if |α| > 1, then (k)Nadj
αᾱ ≥ 1.115 Indeed, the abelian rep-

resentations, γi, satisfy a ZN fusion algebra and are characterized by λ̂
(γi)
j = kδij, where

i ∈ {0, 1, ..., N − 1}. On the other hand, all non-abelian representations have at least two

non-zero Dynkin labels. As a result, we learn that

α⊗ β 6= γ , ∀α, β, γ ∈ Irr(SU(N)k) , |α|, |β| > 1 . (4.91)

Therefore, we see that we have the following fusions for non-abelian Wilson lines in SU(N)k
CS TQFT

Wα ×Wβ =Wγ + · · · , |α|, |β| > 1 , (4.92)

where the ellipses necessarily include additional Wilson lines. This statement is more gener-

ally true in any Gk CS theory (with G a compact and simple Lie group) for which the lines

in question correspond to affine representations with at least two non-zero Dynkin labels.

Note that for certain Gk, non-abelian representations can have a single non-vanishing

Dynkin label. For example, consider the (E7)2 CS theory.116 It has Wilson linesWτ andWσ

with quantum dimensions 1+
√

5
2

and
√

2, repectively, and they fuse to give a unique outcome.

The existence of this fusion rule follows from the fact that (E7)2 is not a prime TQFT. In

fact, it resolves into the product of prime theories Fib � Ising′, where Fib is the Fibonacci

anyon theory and Ising′ is a TQFT with the same fusion rules as the the Ising model.

We can apply the above arguments to learn about global properties of Gk CS theory. For

example, we can ask if Gk CS theory is prime or not. The answer is no in general. Indeed,

consider the case G = SU(2). For k ∈ Neven, SU(2)k is prime. However, for k ∈ Nodd,

the abelian anyon generating the Z2 one-form symmetry forms a modular subcategory. By

115Here we define |α| to be the quantum dimension.
116We thank a referee for pointing out this example.
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Müger’s theorem [125] (see also [104] for a discussion at the level of RCFT), it then decouples

and the theory resolves into a product of two prime theories

SU(2)k '

{
SU(2)1 � SU(2)int

k , if k = 1 (mod4)

SU(2)1 � SU(2)int
k , if k = 3 (mod4) .

(4.93)

where SU(2)int
k is a TQFT built out of the integer spin SU(2)k representations. Here SU(2)1

is the TQFT conjugate to SU(2)1 (these TQFTs are sometimes called the anti-semion and

semion theories in the condensed matter literature).

While Gk CS theory is not prime in general, our arguments above readily prove the

following:

Claim : Non-abelian Wilson lines in SU(N)k CS theory must all lie in the same prime

TQFT factor. For more general Gk CS theory (with G compact and simple), all Wilson

lines corresponding to affine representations with at least two non-zero Dynkin labels must

be part of the same prime TQFT factor.

Proof: Suppose this were not the case. Then, we would find fusion rules of the form (4.92)

with no Wilson lines in the ellipses. �

Clearly, to produce fusion rules of the form (4.2) for non-abelian Wilson lines in the same

prime TQFT, we will need to go beyond SU(N)k CS theory. One way to proceed is to

consider coset theories and use some intuition from section 4.2. Indeed, since cosets can

have fixed points (which we will describe below), it is natural to think they can lead to

fusion rules of the form (4.2).

4.3.2 Virasoro minimal models and some cosets without fixed points

We begin with a discussion of the Virasoro minimal models, as these are simple examples of

theories that are related to cosets. While these cosets do not have fixed points, they turn

out to produce factorized TQFTs that are nonetheless illustrative. In the next section, we

will focus on cosets that have fixed points, and we will see how to engineer fusion rules of

the form (4.2).

One way to construct the Virasoro minimal models is to take a three-dimensional space-

time R× Σ and place SU(2)k−1 × SU(2)1 CS theory on I × Σ, where I is an interval in R.

We can place SU(2)k CS theory outside this region. At the two 1 + 1 dimensional interfaces

between the CS theories (which form two copies of Σ, call them Σ1,2), we obtain the left

and right movers of the RCFT. Here the chiral (anti-chiral) primaries lie where endpoints of

Wilson lines from the SU(2)k and SU(2)k−1 × SU(2)1 theories meet on Σ1 (Σ2).

Another way to think about the Wilson lines related to the Virasoro minimal models is to

start with SU(2)k−1×SU(2)1 CS theory and change variables to make an SU(2)k subsector

manifest [106]. Integrating this sector out leaves an effective coset TQFT.
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The end result is that the TQFT we are interested in is117

Tp =
SU(2)p−2 � SU(2)1

SU(2)p−1

, p ≥ 3 . (4.95)

Here, the natural number p ≥ 3 labels the corresponding Virasoro minimal model (so, for

example, p = 3 for the Ising model).118 We may construct the MTC data underlying the

RCFT and the coset TQFT by taking products (e.g., see [134])

FTp = FSU(2)p−2 · FSU(2)1 · F̄SU(2)p−1 , RTp = RSU(2)p−2 ·RSU(2)1 · R̄SU(2)p−1 . (4.96)

In order to make (4.96) precise, we need to explain how the states in Tp are related to those in

the individual SU(2)k theories that make up the coset. Let us denote the SU(2)p−2, SU(2)1,

and SU(2)p−1 weights as λ, µ, and ν. Then, to build the coset we should identify Wilson

lines as follows

W{λ,µ,ν} :=Wλ ×Wµ ×Wν ' (Wp−2 ×Wλ)× (W1 ×Wµ)× (Wp−1 ×Wν) , (4.97)

where Wp−2, W1, and Wp−1 are abelian Wilson lines transforming in the weight p− 2 (spin

(p − 2)/2), weight 1 (spin 1/2), and weight p − 1 (spin (p − 1)/2) representations of the

different TQFT factors.119 Moreover, in order to be a valid Wilson line in Tp, we should

demand that our Wilson lines satisfy

W{λ,µ,ν} ∈ Tp ⇔ λ+ µ− ν ∈ Q ⇔ λ+ µ+ ν = 0 (mod 2) , (4.99)

where Q is the SU(2) root lattice. This relation guarantees that all lines that remain have

trivial braiding withW{p−2,1,p−1} (which is a boson that is in turn identified with the vacuum).

It is in terms of these degrees of freedom that (4.96) should be understood.

Before proceeding, let us stop and note that the fusion in (4.97) has no fixed points.

Indeed, this statement readily follows from the fact that SU(2)1 is an abelian TQFT, and

abelian theories cannot have fixed points since their fusion rules are those of a finite abelian

group (in this case Z2).

117This is the TQFT analog of the classic result [90] for the corresponding affine algebras:

Virp '
ŝu(2)p−2 × ŝu(2)1

ŝu(2)p−1
. (4.94)

118In writing (4.95), we have used the Deligne product to emphasize the fact that the SU(2)p−2 × SU(2)1

CS theory is a product TQFT.
119At the level of the corresponding affine algebras, this is the statement that [61]{

λ̂, µ̂, ν̂
}
'
{
aλ̂, aµ̂, aν̂

}
, (4.98)

where the hat denotes affine weights, and a is the generator of the (diagonal) O(ŝu(2)) outer automorphism.
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Given this groundwork, we claim that Tp factorizes as follows

Tp '

{
(SU(2)p−2 � SU(2)1)int � SU(2)int

p−1 , if p = 0 (mod 2)

SU(2)int
p−2 � SU(2)conj

p−1 , if p = 1 (mod 2) .
(4.100)

The various TQFTs appearing in (4.100) are

(SU(2)p−2 � SU(2)1)int := gen
({
W{λ,µ} ∈ SU(2)p−2 � SU(2)1| λ+ µ = 0 (mod 2)

})
,

SU(2)int
p−1 := gen ({Wν ∈ SU(2)p−1| ν = 0 (mod 2)}) ,

SU(2)conj
p−1 := gen

({
W{λ,µ,ν}| λ+ µ+ ν = 0 (mod 2) , Wλ,Wµ abelian

})
,

SU(2)int
p−2 := gen ({Wλ ∈ SU(2)p−2| λ = 0 (mod 2)}) , (4.101)

where “gen(· · · )” means that the TQFT is generated by the Wilson lines enclosed. Notice

that in the case that p is even, p− 1 is odd and SU(2)int
p−1 is precisely the decoupled TQFT

factor required by Müger’s theorem in (4.93) containing integer spins (even Dynkin labels).

Similar logic applies to SU(2)int
p−2 in the case that p is odd. The TQFT SU(2)conj

p−1 has the

same fusion rules as SU(2)p−1, but it is a different TQFT. Finally, for the case that p = 3

(i.e., the Ising model), we see that T3 does not factorize.120

Our strategy to prove the factorization in (4.100) is to construct the various factors and

then argue that they are well-defined TQFTs by Müger’s theorem [125]. Although we will

not pursue it in this paper, this same approach leads to interesting generalizations for cosets

built out of groups other than SU(2).

To that end, let us first take the case of p ≥ 3 odd. Using the result in (4.96), we have

that the modular S matrix also takes a product form

S{λ,µ,ν}{λ′,µ′,ν′} = S
(p−2)
λλ′ · S

(1)
µµ′ · S

(p−1)
νν′ , θ{λ,µ,ν}{λ′,µ′,ν′} = θ

(p−2)
λλ′ · θ

(1)
µµ′ · θ̄

(p−1)
νν′ , (4.102)

where the superscripts on the righthand sides of the above equations refer to the correspond-

ing factors in the coset (4.95). From the S matrix, Verlinde’s formula yields (see also the

discussion in [61])

N
{λ′′,µ′′,ν′′}
{λ,µ,ν}{λ′,µ′,ν′} = N

(p−2)λ′′

λλ′ ·N (1)µ′′

µµ′ ·N
(p−1)ν′′

νν′ , (4.103)

where, again, the superscripts on the righthand side denote the different coset factors in

(4.95). The factor SU(2)int
p−2 in the second line of (4.100) is clearly closed under fusion. So

too is SU(2)conj
p−1. To have factorization of the TQFT, we need only show that all Wilson lines

can be written in this way and, by Müger’s theorem, that one of these factors is modular.

The second part is trivial: we have already seen that SU(2)int
p−2 is modular in the discussion

surrounding (4.93). We can confirm this statement by looking at the modular S-matrix for

SU(2)p−2

S
(p−2)
λλ′ =

√
2

p
sin

(
(λ+ 1)(λ′ + 1)π

p

)
. (4.104)

120Note also that Ising shares the same fusion rules as SU(2)2, though they are not the same TQFTs. For

example, the σ fields have different twists.
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and taking the submatrix involving the integer spins (even weights).

Therefore, we need only check that all states in the coset (4.95) can be expressed in this

way. To that end, we can see that

|SU(2)int
p−2| =

p− 1

2
, |SU(2)conj

p−1| = p , (4.105)

where the norm denotes the number of simple elements within. Therefore, we see that we

have |Tp| = p(p − 1)/2, which is precisely the number of states in the coset (4.95) (note

that in these computations we have used (4.97) and (4.99)) and the corresponding A-type

Virasoro minimal model.

To make contact with the fusion rules in (4.4), we need to explain precisely how coset lines

map onto the Virasoro primaries. The results above allow us to realize the, say, Virasoro left-

movers as states on the boundary of the bulk TQFT, Tp ' SU(2)int
p−2�SU(2)conj

p−1 with p odd.

Now, we need to see how we can map boundary endpoints of lines in this theory to Virasoro

primaries, ϕ(r,s). To that end, by comparing the S-matrix for Tp ' SU(2)int
p−2 � SU(2)conj

p−1

with the corresponding expressions for those of the Virasoro minimal models, we have that

the labels of the Virasoro primary, ϕ(r,s) map as follows (see also [61])

r = λ+ 1 , s = ν + 1 . (4.106)

In particular, we see that the ϕ(r,1) primaries are endpoints of lines in SU(2)int
p−2 while the

ϕ(1,s) are endpoints of lines in SU(2)conj
p−1. This reasoning explains the fact that non-abelian

Virasoro primaries of these types have unique fusion outcomes121

ϕ(r,1) × ϕ(1,s) = ϕ(r,s) , (4.107)

discussed in the introduction (at least for p odd). As an example, we have T3 ' Ising (i.e.,

the TQFT is the Ising MTC), which does not factorize. On the other hand, for p = 5, we

have

T5 = (G2)1 � SU(2)conj
4 , (4.108)

where (G2)1 is the so-called “Fibnonacci” TQFT, and SU(2)conj
4 is a TQFT with the same

fusion rules and S-matrix as SU(2)4.

Let us now consider p ≥ 4 even. The modular data and fusion rules still take a product

form as in (4.102) and (4.103). Now, however, we should examine the first line in (4.100).

Using (4.103), it is again easy to see that both SU(2)int
p−1 and (SU(2)p−2 � SU(2)1)int are

separately closed under fusion. Moreover, just as before, we can use the discussion around

(4.93) and Müger’s theorem to conclude that SU(2)int
p−1 is indeed a decoupled TQFT as

claimed in (4.100).

We should again check that all states in (4.95) can be reproduced. To that end, we have

|SU(2)int
p−1| =

p

2
, |(SU(2)p−2 � SU(2)1)int| = p− 1 . (4.109)

121Though, again, we stress that this factorization is not a factorization of RCFT correlators.
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As a result, we have |Tp| = p(p − 1)/2, which is the correct number of states in the coset

(4.95) and the corresponding A-type Virasoro minimal model.

Our mapping is again as in (4.106), but now ϕ(r,1) primaries are endpoints of lines in

(SU(2)p−2�SU(2)1)int, and ϕ1,s are endpoints of lines in SU(2)int
p−1. This again explains the

fusion outcomes in (4.107) for the case of p even as well. As an example, note that

T4 = Ising′ � (F4)1 , (4.110)

where the first factor is a rank three TQFT with the same fusion rules as Ising (and SU(2)2),

and the second factor is the time reversal of the Fibonacci theory in (4.108).

As a result, we conclude that, although the TQFTs discussed in this section do have non-

abelian anyons fusing to give a unique outcome, this is due to the fact that the corresponding

TQFTs factorize.

4.3.3 Beyond Virasoro: cosets with fixed points

In section 4.2 we saw that fixed points of various kinds gave rise to fusion rules of the form

(4.8) (in particular, see theorem 1 of section 4.2.1). In the context of cosets, we can also

naturally engineer fixed points under the action of fusion with abelian anyons generating

identifications of fields. In the case of Virasoro, this didn’t happen (see (4.97)). Indeed, this

statement followed from the fact that we had an abelian factor in the coset (4.95).

The simplest way to get around this obstacle and generate fixed points is to consider

instead

T̂p =
SU(2)p−2 � SU(2)2

SU(2)p
, (4.111)

where p ≥ 3 (we should take p ≥ 4 to avoid the problem of abelian factors). By further

identifying some of these coset fields, we get theories related to the N = 1 super-Virasoro

minimal models [91, 90]. Note that the case of p = 3 corresponds to the T4 case discussed

previously (i.e., to the TQFT related to the tri-critical Ising model).

For the theories in (4.111), we find the following generalization of the identification

condition in (4.97)122

W{λ,µ,ν} := Wλ ×Wµ ×Wν ' (Wp−2 ×Wλ)× (W2 ×Wµ)× (Wp ×Wν)

= Wp−2−λ ×W2−µ ×Wp−ν , (4.112)

In particular, if λ = (p− 2)/2, µ = 1, and ν = p/2, we can have a fixed point123. Of course,

if p is odd, we don’t have a fixed point. In this case, we can again run logic similar to that

used in the Virasoro case to argue that the TQFT factorizes.

122We also require that λ + µ + ν = 0 (mod 2) so that the lines in the coset theory have trivial braiding

with the bosonic line W{p−2,2,p}. This line is in turn identified with the vacuum.
123Note that the fixed points discussed in section 4.2 are fixed points under 1-form and 0-form symmetry

action. In the coset examples studied here, fixed points refer to field identification fixed points.
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However, if p is even, then we need to properly define the coset. In particular, we should

resolve the fixed point Wilson line as follows (see [143, 144] for the dual RCFT discussion)

W{(p−2)/2,1,p/2} →W(1)
{(p−2)/2,1,p/2} +W(2)

{(p−2)/2,1,p/2} . (4.113)

Let us consider what turns out to be the simplest interesting case, p = 6

T̂6 =
SU(2)4 � SU(2)2

SU(2)6

. (4.114)

The fixed point resolution in (4.113) becomes W{2,1,3} →W(1)
{2,1,3} +W(2)

{2,1,3}. As in the cases

of one-form gauging with fixed points discussed in section 4.2, it is natural that there should

be a zero-form symmetry exchanging W(1)
{2,1,3} ↔W

(2)
{2,1,3}.

As a first step to better understand the theory after resolving the fixed point, note that

T̂6 has the following number of lines

|T̂6| = 28 . (4.115)

Of these fields, twenty-six come from identifying full length-two orbits in (4.112) while two

come from resolving the fixed point. In what follows, {λ, µ, ν} will denote fields in full orbits,

while labels of the form {2, 1, 3}(i) (with i = 1, 2) will denote the fixed point lines.

To understand the fusion rules and the question of primality after fixed point resolution,

we can compute the S matrix using the algorithm discussed in [143] (let us denote the result

by S̃). It takes the form

S̃{λ,µ,ν}{λ′,µ′,ν′} = 2S{λ,µ,ν}{λ′,µ′,ν′} , S̃{2,1,3}(i){λ′,µ′,ν′} = S{2,1,3}{λ′,µ′,ν′} ,

S̃{2,1,3}(i){2,1,3}(j) =
1

2

(
1 −1

−1 1

)
, (4.116)

where

S{λ,µ,ν}{λ′,µ′,ν′} = S
(p−2)
λλ′ · S

(2)
µµ′ · S

(p)
νν′ , (4.117)

is the naive generalization of (4.102) to the cosets at hand. Note that the fusion rules we

obtain from S̃ for fields not involving {2, 1, 3}(i) are the naive ones we get from S via the

restrictions and identifications described above.

The above discussion is sufficient to prove that T̂6 is prime. Indeed, we see from (4.116)

that the fields that come from identifying length-two orbits have the quantum dimensions

they inherit from S. The fixed point resolution fields, on the other hand, have half the

quantum dimension of the fixed point field. We therefore have the following four abelian

anyons generating a Z2 × Z2 fusion algebra

W{0,0,0} ' W{4,2,6} , W{4,0,0} ' W{0,2,6} , W{0,2,0} ' W{4,0,6} , W{0,0,6} ' W{4,2,0} . (4.118)

By (4.116), we see that the braiding amongst abelian anyons is not affected by taking S → S̃.

As a result, we see that the four abelian anyons all braid trivially. Therefore, they cannot

form a decoupled TQFT.
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Wilson lines Quantum dimensions

W{0,0,0},W{4,0,0},W{0,2,0},W{0,0,6} 1

W{0,0,2},W{0,0,4},W{4,0,2},W{4,0,4} cot
(
π
8

)
W{1,0,1},W{1,0,5},W{3,0,1},W{3,0,5}

√
3
2

csc
(
π
8

)
W{0,1,3},W{2,1,3}(1) ,W{2,1,3}(2)

√
2 csc

(
π
8

)
W{1,0,3},W{3,0,3}

√
3 csc

(
π
8

)
W{2,0,0},W{2,0,6} 2

W{0,1,1},W{0,1,5} csc
(
π
8

)
W{1,1,0},W{1,1,6}

√
6

W{2,0,2},W{2,0,4} 2 cot
(
π
8

)
W{1,1,2},W{1,1,4}

√
6 cot

(
π
8

)
W{2,1,1} 2 csc

(
π
8

)
Table 2: The twenty-eight Wilson lines and associated quantum dimensions in the T̂6 TQFT.

Given this discussion, what can a putative factorized theory look like? Since T̂6 has

order 28 = 7 · 22, we see that the only way to have a non-trivial factorization is to have a

factorization of the form T̃14 � T̃2 into prime TQFTs with rank fourteen and rank two, or

T̃7 � T̃4 with prime TQFTs of rank seven and four, or T̃7 � T̃2 � T̃ ′2 with prime TQFTs of

rank seven, two, and two.

Let us consider the first factorization first. Since the abelian anyons (and any subset

thereof) cannot form a separate TQFT factor (this factor would be non-modular), the clas-

sification in [139] implies that we have either T̃2 ' (G2)1 or T̃2 ' (F4)1. In any case, the

non-trivial anyon in T̃2 has quantum dimension dτ = (1 +
√

5)/2. It is easy to check that

no such quantum dimension can be produced from products of quantum dimensions in the

different coset factors (and so restrictions cannot produce them either). Moreover, one can

check that the resolved fixed point fields cannot have this quantum dimension either. This

same logic applies to the T̃7 � T̃2 � T̃ ′2 factorization as well.

Therefore, it only remains to consider T̃7� T̃4. The other factor, T̃4, has four anyons. By

[139], this theory is either (G2)2 or its time reversal. In either case, we cannot produce the

requisite dα = 2 cos(π/9) quantum dimension from our coset. Therefore, we conclude that

T̂6 is indeed a prime TQFT.

Moreover, we find the following fusion rules of non-abelian Wilson lines with unique

outcome

W{2,0,0} ×W{0,0,2} = W{2,0,2} , W{2,0,0} ×W{0,0,4} =W{2,0,4} ,
W{1,1,0} ×W{0,0,2} = W{1,1,2} , W{1,1,0} ×W{0,0,4} =W{1,1,4} ,
W{0,1,1} ×W{2,0,0} = W{2,1,1} . (4.119)

We can obtain additional such fusion rules by taking a product with some of the abelian
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lines in (4.118).

Just as in the case of discrete gauge theories with fusion rules of the above type, our

theory also has a non-trivial symmetry of the modular data. Indeed, from (4.116), it is clear

that the S̃-matrix has a Z2 symmetry under the interchange

g
(
W{2,1,3}(1)

)
=W{2,1,3}(2) , 1 6= g ∈ Z2 . (4.120)

Note that this symmetry is not charge conjugation since S̃ is manifestly real. Moreover, since

we don’t change the twists, this action lifts to a symmetry of the modular data (additionally,

it should lift to a symmetry of the full TQFT).

If we wish to make contact with the N = 1 minimal model, then we should note that the

fermionic W{0,2,0} line corresponds to the supercurrent of the SCFT. We can then organize

the Neveu-Schwarz (NS) sector into supermultiplets under fusion with this operator. Doing

so (and paying careful attention to the fields in the resolution of the fixed point), we find

nine NS sector fields and nine Ramond sector fields as required.

There are many ways to generalize the example we have given here. Indeed, when there

are fixed points in the coset construction we expect to often be able to generate fusion rules

of the form (4.2). A deeper understanding of these theories and some more general methods

to characterize whether the cosets are prime (along the lines of the general criteria we have

in the case of discrete gauge theories) would be useful. In any case, we see that, as in the

case of discrete gauge theories, symmetry fixed points and zero-form (quasi) symmetries are

deeply connected with fusion rules of the form (4.2).

5 Conclusion

In this paper we have introduced three kinds of QFTs, that is TQFT, CFT and SQFT, then

discussed three problems associated with those theories

Index relations and SUSY enhancement In chapter two we found various new re-

lations between theories with non-integer scaling dimension N = 2 chiral operators (i.e.,

AD theories) and those with purely integer dimensional N = 2 chiral operators (the regu-

lar puncture class S theories). The latter theories have TQFT index expressions that are

typically simpler (and more uniformly presented) than those of the former. The additional

complication in the TQFT expressions for the case of AD theories (e.g., see [40, 149]) is

related to the fact that the corresponding singularities in the compactification from 6D to

4D generally contain more data. However, we saw that we can, in some sense, encode this

additional data by taking TQFT data for regular puncture theories (which only have integer

dimension N = 2 chiral operators) and demanding interdependence of the different TQFT

wave functions through intricate fugacity relations. This fugacity interdependence has im-

portant physical consequences: a large class of AD theories flow to interacting IR SCFTs

with thirty-two (Poincaré plus special) supercharges via flows of the type discussed in Sec.
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2.4.2. Using these index relations, we also found expressions for the Schur indices of various

classes of exotic type III AD theories.

Clearly, there is a lot more to be said. We conclude with some open problems (and

potential solutions):

� It would be interesting to understand if the RG flows we discussed above can be lifted

to 4D (for some flows, we know this is the case; e.g., see [33]). If so, then it would

be particularly intriguing to try to compute the indices of some of the resulting IR

theories and see if they are N = 4 theories or not. If they are N = 4 theories, then it

would be interesting to understand if they are Lagrangian (SYM theories) or not.

� One way to address the above point would be to try to construct better-behaved RG

flows in the class described in Sec. 2.4.2. This might involve better understanding the

role that monopole operators can play in the corresponding mirror RG flows. Alterna-

tively, this might involve a better understanding of non-abelian mirror symmetry.

� Another approach to the problem in the first bullet point might be as follows. The

authors of [135] find N = 1 Lagrangians for certain class S regular puncture theories

by considering excursions along N = 1 conformal manifolds that include these N = 2

SCFTs as special points. In their discussion, the authors find N = 1 Lagrangians on

certain conformal manifolds containing N = 2 SCFTs that have both dimension three

Higgs branch and dimension three Coulomb branch operators. Some of the theories

discussed in the present article satisfy this condition. Moreover, given the similarity of

the Schur indices of our theories to those in the regular puncture class S case, it would

be interesting to see if one can find N = 1 Lagrangians for some of the R2,AD
0,n and

T 2,AD
(m1,m2,m3) theories in this manner. Having an N = 1 Lagrangian or, at the very least,

an N = 1 conformal manifold might in turn make it easier to study flows to N = 4.

� The ubiquity of RG flows to interacting theories with thirty-two supercharges emanat-

ing from compactifications of the 6D (2, 0) theory on Riemann surfaces with irregular

punctures strongly suggests the existence of another way of understanding these theo-

ries via D3 branes probing type IIB / F-theory backgrounds far beyond what has been

explored in the literature.

� It would be interesting to understand the most general class of N = 2 SCFTs with

non-integer dimensional N = 2 chiral operators (i.e., Coulomb branch operators) that

are involved in RG flows with SUSY enhancement either as UV or IR end points.

� We had to rescale fugacities as q → q2 in order to find a match between the indices

of the AD theories and those of the regular puncture theories. In the process, we had

to consider going from the An−1 to the A2n−1 6D (2, 0) parent theories. It would be

interesting to understand why this is the case and also to see if more general q → qm

rescalings are meaningful.
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� Finally, we saw that there is a close relation between regular puncture class S fixtures

and our AD fixtures. It would be interesting to understand if to each class S fixture

there exists an AD counterpart and, if so, how many such counterparts exist. In

addition, we saw that in our class of theories, the AD fixtures with interacting regular

puncture relatives admitted RG flows to interacting thirty-two supercharge theories.

On the other hand, AD fixtures with free class S relatives did not admit such flows

(even though the corresponding AD theories are strongly interacting). It would be

interesting to understand if this story is completely general in the space of theories of

class S.

Arad-Herzog conjecture In chapter three we have argued that discrete gauge theory is

useful for putting conjectures involving finite simple groups into a broader context. Using

this approach, we proved three theorems that TQFT relates to the AH conjecture.

In fact, we may also generalize the discussion in section 3.2.1 and show that the AH

conjecture implies that in our theories of interest

L([g],πωg ) × L([h],πωh ) =
∑
πωgh

L([gh],πωgh) , g, h 6= 1 , (5.1)

is not allowed.

Finally, we argued that the lack of electric-magnetic dualities involving discrete gauge

theories with non-abelian finite simple groups is a consistency check of our picture above

and of the AH conjecture.

One natural question is to better understand to what extent ideas involving non-abelian

anyons can be used to prove the AH conjecture (see [124, 94, 44] for recent progress on this

conjecture). Since discrete gauge theories feature in various physical systems, perhaps there

is a physical proof that awaits.

Another interesting question is to understand to what degree fusion rules of the types we

have been discussing constrain global properties of more general TQFTs, which is the topic

of chapter four.

a × b = c fusion rule In chapter four, we have seen that the existence of fusions of non-

abelian anyons having a unique outcome is intimately connected with the global structure

of the corresponding TQFT.

Let us summarize our results for continuous gauge groups (and continuous groups more

generally):

� Building on the well-known fact that SU(2) spin addition / fusion of two non-abelian

representations (i.e., higher-dimensional / spin non-singlet representations) is reducible

(i.e., has multiple outcomes with different total spin), we argued that a similar result

holds in all compact simple Lie groups.
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� We argued that the result in the previous bullet point on classical groups can be

extended to a theorem constraining SU(N)k CS theory: fusions of non-abelian Wilson

lines in these theories do not have unique outcomes. More generally, Wilson lines

corresponding to affine representations with at least two non-vanishing Dynkin labels

in any Gk CS theory (for G a compact simple Lie group) do not have unique outcomes.

These results have implications for the global structure of these theories (the claim in

section 4.3.1): the Wilson lines discussed here must all lie in the same prime factor

(although Gk CS theories are not prime in general).

� We showed that one way to produce a × b = c fusions involving non-abelian a and b

is to consider cosets. In the case of TQFTs underlying Virasoro minimal models we

argued that (as in the (E7)2 case) such rules arise from factorizations of the TQFTs

into multiple prime factors. On the other hand, if we include cosets with fixed points,

we can obtain prime theories with such fusion rules.

Next, let us summarize our results for discrete gauge groups (and discrete groups more

generally):

� We argued that Zisser’s construction of irreducible products of higher-dimensional

irreducible AN representations [165] can be lifted to fusions of non-abelian Wilson lines

with unique outcomes in AN discrete gauge theory. From the perspective of the closely

related SN group and corresponding discrete gauge theory, the AN result requires

certain 1-form symmetry fixed points (where we define “one-form symmetry” in the

SN group to correspond to the Z2 ⊂ Rep(SN) generated by the sign representation).

We then derived theorem 4.1 that generalizes this relation between the AN and SN
discrete gauge theories to other TQFTs.

� Going to the SN discrete gauge theory by gauging the Z2 0-form outer automorphism

symmetry of the AN discrete gauge theory resolves the a×b = c non-abelian fusion rule

into fusion rules not of this type. However, we saw that in the case of O(5, 3) discrete

gauge theory such resolutions do not always occur via automorphism gauging. On the

other hand, a symmetry fixed point again plays a role: in the resulting O(5, 3) o Z2

discrete gauge theory, there is a 0-form symmetry fixed point. We then proved theorem

4.2, which explains why this phenomenon occurs in more general theories. In fact, the

O(5, 3) o Z2 discrete gauge theory relative of the a × b = c fusion equations in the

O(5, 3) TQFT described in (4.32) also has a 1-form symmetry fixed point for the

anyon appearing on the right hand side. In the original O(5, 3) TQFT this latter

anyon becomes a set of two anyons related by the 0-form symmetry. Our corollary

4.2.1 generalizes this observation to other TQFTs.

� We showed that one can lift Gallagher’s theorem to a statement on the fusion of non-

abelian Wilson lines involving unfaithful representations with a unique outcome in

TQFT. Moreover, we elucidated the roles that subcategory structure and symmetries

165



play in this result for various specific TQFTs. We then proved theorem 4.3 that

generalizes these observations to a broader set of theories. We also argued that this

subcategory structure helps explain the large ratio of group orders in (4.41).

� To gain a sense of how magnetic fluxes behave in general discrete gauge theories, we

proved theorem 4.5. In particular, we showed that in discrete gauge theories with

a non-abelian gauge group, G, the magnetic fluxes do not form a fusion subcategory.

This result immediately places constraints on electric-magnetic self-dualities / quantum

symmetries that constrain our symmetry searches later in section 2.

� At a more constructive level, we also proved theorem 4.10. This result gives infinitely

many generalizations of the well-known electric-magnetic self-duality of the S3 discrete

gauge theory.

� In order to better understand which discrete gauge theories are prime, we proved

theorem 4.7. This result allowed us to more easily analyze which prime discrete gauge

theories have fusions of non-abelian anyons with unique outcomes.

� In order to get a handle on the structure of discrete gauge theories with fusion rules

of our desired type involving anyons carying non-trivial flux, we proved theorem 4.11

and corollary 4.11.1. These results give the subcategory structure that arises when

such fusions occur. In turn, this structure gives an explanation of these fusion rules.

Theorem 4.12 then partially extends these results to the case in which one of the

non-abelian anyons involved is a Wilson line.

� The software GAP was used to analyze the fusion rules of hundreds of untwisted

discrete gauge theories. In all the cases we checked, we find that discrete gauge theories

with a × b = c type fusion rules have quasi-zero-form symmetries. This suggests that

symmetries of the modular data are a characteristic feature of such fusion rules.

The above discussion leads to various natural questions:

� In the discussion around (4.41) we explained the large hierarchy between the size of

simple and non-simple groups whose corresponding discrete gauge theories have non-

abelian Wilson lines satisfying (4.2) by using symmetries and subcategory structure.

It would be interesting to explore whether other related hierarchies can be explained

in a similar way.

� We saw that in almost all the prime untwisted discrete gauge theories we studied, if

there was a fusion rule of the form (4.2), then the theory had non-trivial zero-form

symmetries. The only exceptions where discrete gauge theories based on the M23 and

M24 Mathieu groups discussed in section 4.2.4. Here we argued that there were zero-

form symmetries of the modular data that did not lift to symmetries of the full theory.

It would be interesting to understand if gauge theories based on certain finite simple
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sporadic groups are the only prime theories with fusion rules of the form (4.2) that

exhibit this phenomenon.

� In section 4.3.1, we proved that the non-abelian lines of SU(N)k CS theory don’t have

fusion rules of the form (4.2). While (E7)2 CS theory does have such fusion rules,

we do not know of an example of such a fusion in a prime Gk CS theory with G a

compact and simple Lie group. It would be interesting to either find an example of

such a fusion or prove a more general theorem forbidding one. Given such fusions are

common for discrete gauge theories, it would be interesting to understand how these

two statements interact with each other.

� As we saw in section 4.3.3, it would be useful to develop new tools to understand

primality in theories built on cosets. One promising direction is to study the role of

Galois actions in such theories.

A Axiomatic approaches and categorical constructions

Quantum field theory is a rich and deep subject, but up to the present time it is mathemat-

ically ill defined and a completely rigorous understanding is lacking.

In practice we usually do not bother with rigorousness , and begin with some classical

Lagrangians or Hamiltonians, then do quantization, although the procedure ’quantization’

by itself is again mathematically highly nontrivial and sometimes even ill defined, it indeed

leads to many testable correct results and deep insights, this is just like how Newton did

calculus in his time, where he always has some specific series or functions at hand and only

then differentiation or integration are carried out, of course some care must be taken, but

such Weierstrass style delta-epsilon issues are usually ’safely’ ignored and assumed to be

treated systematically somewhere in a textbook.

However, we do not have any such textbooks, although since the very beginning of this

subject, a huge amount of effort has been put into rigorous axiomatic constructions. What

we can say is that, to some extent, at least in some special cases, this goal has been partially

achieved. In this appendix, we will review some of these axiomatic approaches to quantum

field theory and discuss some of the theories we have discussed in the text.

We first introduce the notation of operator valued distributions,then use it to develop a

reasonable set of basic axioms for generic quantum field theory, this serves as a blue print for

further development[145]. Then similarly, we introduce the notation of formal distribution

which is tailor made for CFT, then use it to develop the theory of vertex operator algebra

as an axiomatic characterization of CFT[145].

Then we turn to categorical constructions, where we introduce the theory of modular

tensor categories, which characterize fusion and braiding in an abstract way and hence

summaries the common essential algebraic features of d = 3 TQFT and d = 2 RCFT[156, 13].

167



We also introduce functorial formalism as an alternative approach, where TQFT is analyzed

as the main example[156, 13, 45].

Finally, we summarize some mathematical facts about groups and algebras that are used

throughout the context[145, 83, 138].

A.1 Basic axioms of quantum field theory

A.1.1 Operator valued distributions

Here we will first introduce the notation of a distribution, it is a formal generalization of

the real smooth function of several variables such that we can take derivatives and Fourier

transforms freely without worrying about their very existence first. As an example we use

these tools to solve the Klein-Gordon equation, which justifies the validity of the usual ’plane

wave expansion’ for the free field used in physics textbooks. After this we can get a straight

forward generalization to the case of operator valued distribution.

In this section all functions are defined on Rn124, and assumed to be complex valued and

smooth, that is , of the form f : Rn → C with continuous derivatives to any order

Recall that the Scgwarz space is defined as the vector space of rapidly decreasing functions

with respect to the following seminorm

|f |p,k := sup
|α|≤p

sup
x∈Rn
|∂αf(x)|

(
1 + |x|2

)k
<∞ (A.1)

We will call the elements of S = S (Rn) as test functions. Then a tempered distribution

T is a linear functional T : S → C such that it is continuous with respect to all | |p,k,
the space of tempered distributions is denoted as S ′ = S ′ (Rn) and equipped with the

compact-open topology. We will only consider tempered distributions here so we just call

them as distributions.

As examples, first let us note that every measurable and bounded g induces a distribution

Tg(f) :=

∫
Rn
g(x)f(x)dx, f ∈ S (A.2)

Then we also have the delta ’function’

δy(f) = f(y) =

∫
Rn
δ(x− y)f(x)dx. (A.3)

which is indeed a distribution but can not be induced by any g

The main advantage of using distributions is that they are automatically smooth, because

we can define the derivatives as

∂αT (f) := (−1)|α|T (∂αf) , f ∈ S (A.4)

124or R1,n−1, all the following discussions hold without any essential difference

168



so we are actually taking derivatives of f , which are smooth by construction. In particular

∂αTg = T∂αg when it is defined, and indeed every T ∈ S ′ is a linear combination for some

derivatives of continuousgα : Rn → C of polynomial growth

T =
∑

0≤|α|≤k

∂αTgα (A.5)

Similar with derivative, the Fourier transform F : S → S is defined by its action on

the argument of the functional, i.e by its adjoint F †

F (T )(v) := T (F (v)) = F †(T )(v), v ∈ S (A.6)

In particular, for Tg it is

F (Tg) (v) = Tg(v̂) =

∫
Rn

∫
(Rn)′

g(x)v(p)eix·pdpdx = TF (g)(v) (A.7)

And for delta function it is

F (δ0) =

∫
RD
δ0(x)eix·pdx = 1 (A.8)

with inverse

F−1
(
eip·y

)
= (2π)−D

∫
RD
eip·(y−x)dp = δ(x− y) (A.9)

Combine derivative and Fourier transform together, we find

F (∂ku) = −ipkF (u) (A.10)

Using this formula we can solve linear differential equations formally, suppose we have an

inhomogeneous linear PDE induced by a polynomial P (X) = cαX
α ∈ C [X1, . . . , Xn] as

P (−i∂)u = v (A.11)

Then we define a fundamental solution for this equation as a distribution G such that

P (−i∂)G = δ (A.12)

and it satisfies

P (−i∂)(G ∗ v) = v (A.13)

So the convolution product G ∗ v is a particular solution, but since we can do Fourier

transforms, such G is easily found by solving the algebraic equation PT = 1 and transforming

it back as G = F−1(T ). To be specific, consider the inhomogeneous Klein-Gordon equation(
�+m2

)
u = v (A.14)
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Then we have T = (m2 − p2)
−1

which gives us the familiar propagator

G(x) = (2π)−D
∫
RD

(
m2 − p2

)−1
e−ix·pdp (A.15)

And for the homogenous Klein Gordon equation(
�+m2

)
φ = 0 (A.16)

The fundamental solution is generated by

Dm(x) := 2πiF−1
((

sgn (p0) δ
(
p2 −m2

))
(x) (A.17)

Which gives the general solution, or the familiar plane wave expansion

φ(t, x) := (2π)D
∫
RD−1

(
a(p)ei(p·x−ω(p)t) + a∗(p)e−i(p·x−ω(p)t)

)
dλm(p) (A.18)

where a, a∗ are functions in the Scgwarz space of the forward light cone, and λm the invariant

measure on it.

Now we can generalize all the above concepts to the case of operator valued distribution

on some Hilbert space H
Φ : S (Rn)→ O (A.19)

This is because we define derivative and Fourier transform only through their actions on the

argument f ∈ S (Rn). But for the field operator in quantum field theory, we should put on

some extra constrains, we demand there is a dense subspace D ⊂ H such that

1. ∀f ∈ S we have D ⊂ DΦ(f) so all Φ(f) are well defined on the common subspace D,

this is necessary as usually field operator can not be defined everywhere on whole H

2. The induced map S → End(D), f 7→ Φ(f)|D, is linear. This is an abstraction of the

idea of linear response in measurement such that the field couples to the classical source

linearly.

3. ∀v ∈ D, ∀w ∈ H the assignment f 7→ 〈w,Φ(f)(v)〉 is a tempered distribution, this

means that the physical observation processes are characterized by tempered distribu-

tions.

It can be shown without too much difficulty that free fields such as the one in A.18 and

its generalizations with appropriate symmetry properties are all well defined field operators.

And nontrivial examples of interacting fields also exist, but the explicit constructions are

much more difficult and technical.[89]
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A.1.2 Wightman axioms

Minkowiski formalism and Wightman axioms By a quantum field theory we mean

a collection of some quantum fields with certain axioms, naively we tend to consider a

quantum field as an operator valued mappings defined on each spacetime point, in physical

textbooks it is usually denoted as Φ̂(t, x) , with the implicit understanding that Φ(t, x) is

the corresponding classical field, also exists, and Φ̂(t, x) is its quantization. But careful

examination shows that it is better to view quantum fields as operator valued (tempered)

distributions, and there are two reasons for this:

� The concept of operator valued field is simply mathematically inconsistent with the

axioms we want hence ill defined.

� More importantly, from a physical viewpoint, an object such as Φ̂(t, x) is of meta-

physical ’Ding an sich’ type, in actual experiments one can not measure the quantity

Φ̂ defined precisely at the spacetime point (t, x), rather one only measures things in

some finite region ∆ of spacetime around (t, x), and what we get is the exception value

< Φ̂ >∆, in this way we may view our experiment as a test function f compactly

supported on ∆ , and the quantum field Φ as a distribution applied to it to generate

the number Φ(f) =< Φ̂ >∆.

For convenience we will still use the notation Φ̂(t, x), and usually we omit the hat and denote

t, x simply by x as well, so we just write Φ(x), but with the above understanding in mind.

By axioms, we mean some obvious properties we would like to have for our quantum

fields, in the most typical examples of fields in the standard model, we have the following

Wightman axioms for fields in Minkowski spacetime:

� Covariance

We have the Poincaré group P , with an unitary representation U on a Hilbert space

H with a vacuum |Ω〉, such that the vacuum is invariant and the fields are covariant125

U(g) |Ω〉 = |Ω〉 U(g)Φ(x)U(g)† = Φ(gx) (A.20)

� Locality

Fields always (anti)commute at spacelike separation126

∀(x− y)2 < 0, [Φ1(x),Φ2(y)] = 0 (A.21)

� Spectrum condition

The joint spectrum of the momentum Pµ is contained in the forward light cone, i.e.

mass is non-negative and causality points toward the future.

125Usually, the vacuum is assumed to be unique, so if ∀g, U(g) |v〉 = |v〉 then |v〉 = c |Ω〉 for some constant

c
126for fermionic fields anti commutators are used instead
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Once a quantum field theory is defined, the main objects of study interest are the n-body

correlators, or vacuum expectation values(VEVs for short),or in math jargon Wightman

distributions

Wn(f1, f2, · · · , fn) = 〈Ω|Φ1(f1)Φ2(f2) · · ·Φn(fn) |Ω〉 (A.22)

Again, we usually stick with physicists’ shorthand notation for convenience:

Wn(x1, x2, · · · , xn) =< Φ1(x1)Φ2(x2) · · ·Φn(xn) > (A.23)

or simply just Wn(x) with x = {x1, x2, · · · , xn}.
Every correlator Wn satisfies:

� Covariance

Wn is invariant under g ∈ P
Wn(x) = Wn(gx) (A.24)

� Locality

Wn does not depend on the order of xi, xj if they are spacelike separated

∀(xi − xj)2 < 0, Wn(x1, · · · , xi, · · · , xj, · · · , xn) = Wn(x1, · · · , xj, · · · , xi, · · · , xn)

(A.25)

� Spectrum condition

By translational invariance, Wn indeed just depends on the n−1 variables xj+1−xj so

we can introduce the Fourier transform Mn(p) of Wn(x) where p = (p1, · · · , pn−1), dp =

dp1 · · · dpn−1 and

Wn(x) =

∫
Mn(p) exp i

∑
pj · · · (xj+1 − xj)dp (A.26)

Then Mn(p) is supported in the products of forward lightcone

� Positive Definiteness

For sequence of test functions f = {f1, · · · , fn}, g = {g1, · · · , gm} , define

f ⊗ g(x1, · · · , xm+n) = f(x1, · · · , xm)g(xm+1, · · · , xm+n) (A.27)

then for any fixed k ∈ N
k∑

m,n=0

Wm+n(f̄m ⊗ gn) ≥ 0 (A.28)

This property is indeed a characterization of unitarity, i.e. in our theory

〈ψ|ψ〉 ≥ 0 (A.29)
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operationally speaking, the main purpose of using quantum field theory is to calculate the

correlators, and indeed we have the following:

Theorem A.1 (Wightman Reconstruction theorem). Given a collection of tempered distri-

butions Wn satisfies the above four proprieties, then there exists a Wightman QFT where

Wn’s are the Wightman distributions of this theory

Euclidean formalism and reflection positivity The above discussions all focus on

Minkowski spacetime, while in many cases, Euclidean spacetime is used instead. To obtain a

Euclidean version of a given Wightman QFT, we can do analytic continuation on Wightman

distributions by using imaginary time t→ it, i.e. by the following identification

E := {(it, x1, · · · , xd−1) ∈ Cd ∼ (τ, x1, · · · , xd−1) ∈ Rd} (A.30)

This is always possible unless two points coincide, i.e. x ∈ ∆ = {{x1, · · · , xn} : ∃i 6=
j, xi = xj}, so we have the extended version of Wn

Sn := Wn|En\∆ (A.31)

And these Euclidean correlators are also called the Schwinger functions.

Locality and Covariance generalize to Schwinger functions in an obvious way, but the

Spectrum condition and Positive Definiteness are replaced by the following property:

� Reflection Positivity

Let θ : (τ, x1, · · · , xd−1) → (−τ, x1, · · · , xd−1) be the Euclidean reflection in time di-

rection, and the operator Θ acts on time ordered test functions f(x) = f(x1, · · · , xn)

with τ1 < τ2 < · · · < τn as Θf(x) := f̄(θx) , then we have 127

k∑
m,n=0

Sm+n(Θf̄m ⊗ gn) ≥ 0 (A.32)

From this perspective, given

|ψ〉 = O(−τ1)O(−τ2) · · ·O(−τn) |Ω〉 (A.33)

we should define

〈ψ| = 〈Ω|O(τn)O(τn−1) · · ·O(τ1) (A.34)

and we again need

〈ψ|ψ〉 ≥ 0 (A.35)

On the reverse, we can define a Euclidean QFT at the beginning and derive Schwinger

functions as analytic tempered distributions on En \∆, then we have the following theorem:

127to avoid confusion, here we use xi to mean different spacetime points, rather than components of a given

point, and τi is understood as the zeroth components of xi
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Theorem A.2 (Osterwalder-Schrader theorem). Schwinger functions of a Euclidean QFT

satisfy covariance, locality and reflection positivity are precisely the analytic continuations of

Wightman distributions of a Wightman QFT.

The main lesson here is that unitarity in Euclidean theory needs non-trivial check.

The benefits of the above axiomatic approach are:

� It is weak enough such that it contains only essential features of QFT, all packed

together in an economic and universal way, hence these axioms are especially useful as

basic criteria.

� It is strong enough such that with those axioms we can prove important generic the-

orems about QFT directly or by a adding few extra assumptions, for example, CPT

theorem, spin-statistics theorem, Coleman–Mandula theorem and so on.

However, the main problem with the above axiomatic approach is that these axioms do

not tell us how to construct actual quantum field theories other than trivial ones, i.e free

fields such as the one in (A.18) where we can indeed prove that all axioms are satisfied and

all fields are well defined. And this construction in general is indeed extremely difficult,

especially when the spacetime is four dimensional and gauge symmetries are involved, and

this is the famous Yang–Mills existence and mass gap problem. Up to now, only lower

dimensional(d < 4) examples are known.

For special types of QFTs, such as TQFT, CFT and super QFT, similar sets of axioms

exist by simply reducing or enlarging the symmetry involved , and adding corresponding

consistency conditions. We will not discuss these extensions in detail, instead we will intro-

duce some alternative formalism for these special types in the following sections, where all

the alternatives are and indeed must be consistent with their Wightman style axioms.

A.2 Vertex operator algebra

A.2.1 Formal distributions

In a similar spirit to our treatment for operator valued tempered distribution, in this section

we will introduce the notation of formal distribution, it mimics complex analysis of one

variable in a formal way such that we can talk about series expansions and residues without

out worrying about contours, convergence conditions and explicit integration processes. This

feature makes it an ideal tool for the mathematical formulation of d = 2 CFT, as a result

we will define fields in a CFT as a sepcial type of formal distribution.

Let Z = {z1, . . . , zn} be a set of formal variables, and R be a C vector space, then a

formal distribution is a formal series expansion with Aj ∈ R

A (z1, . . . , zn) =
∑
j∈Zn

Ajz
j =

∑
j∈Zn

Aj1,...,jnz
j1
1 . . . zjnn (A.36)
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The space of formal distributions is denoted asR
[[
z±1 , . . . , z

±
n

]]
= R

[[
z1, . . . , zn, z

−1
1 . . . , z−1

n

]]
or R [[Z±]], it contains the subspace of Laurent polynomials

R
[
z±1 , . . . , z

±
n

]
=
{
A ∈ R

[[
z±1 , . . . , z

±
n

]]
| ∃k, l : Aj = 0 except for k ≤ j ≤ l} . (A.37)

and the subspace of formal power series

R [[z1, . . . , zn]] :=

{
A : A =

∑
j∈Nn

Aj1,...,jnz
j1
1 . . . zjnn

}
(A.38)

In particular, for the case of one formal variable only, we also define the subspace of formal

Laurent series

R((z)) =
{
A ∈ R

[[
z±
]]
| ∃k ∈ Z∀j ∈ Z : j < k ⇒ Aj = 0

}
(A.39)

Formal distributions can be added easily, but multiplication is not always well defined. For

A,B ∈ R [[Z±]], the usual Cauchy product is well defined whenever A and B are formal

Laurent series or when B is a Laurent polynomial. And for A(z)B(w) ∈ R [[Z±,W±]] it is

always well defined.

In the following we will mainly focus on the Z = {z} case where z can be viewed as

the complex coordinate for d = 2 CFT, here we can formally define the residue of A ∈
R [[z±]] , A(z) =

∑
j∈ZAjz

j as

Resz A(z) = A−1 ∈ R (A.40)

and formal derivative

∂

(∑
j∈Z

Ajz
j

)
=
∑
j∈Z

(j + 1)Aj+1z
j (A.41)

Every A will induce the following map

Â : C
[
z±
]
→ R, Â(f(z)) := Resz A(z)f(z), φ ∈ C

[
z±
]

(A.42)

And it turns out that this provides an isomorphism R [[z±]]→ Hom (C [z±] , R) in this sense

we can view A as a functional hence a R valued distribution over the ring of formal complex

series, which justifies the nomenclature of formal distribution.

Similarly to tempered distributions, true polynomials and series in C[z±] are formal

distributions.

Since we also need to define commutators between fields, C [[z±, w±]] appears also natu-

rally, and here the (formal) delta function is defined to be δ ∈ C [[z±, w±]] such that

δ(z − w) =
∑
n∈Z

zn−1w−n =
∑
n∈Z

znw−n−1 =
∑
n∈Z

z−n−1wn. (A.43)

In particular, we are interested in the special type of formal distribution such that f ∈
R [[z±, w±]] with (z − w)Nf = 0 for some fixed N ∈ N : N > 0 , as we will see later
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this resemblances locality. These special f ’s have a very nice property such that they can

be written uniquely as linear combinations of derivatives, in a way similar to tempered

distributions on Rn → C in (A.5)

f(z, w) =
N−1∑
j=0

cj(w)Dj
wδ(z − w), cj ∈ R

[[
w±
]]

(A.44)

where Dj
w := 1

j!
∂jw and in addition, we have

∀n : 0 ≤ n < N, cn(w) = Resz(z − w)nf(z, w) (A.45)

This formally generalizes the concept of pole and meromorphic function.

Unlike tempered distributions, we do not need to define integration and Fourier trans-

form, because in the world of meromorphic functions all these can be replaced by formal

manipulations on poles, especially on Res. The point is that we have made some formal

constructions such that actual contour integrals never appear, but the results of integration

processes are obtained formally.

We say two formal distributions A,B ∈ R [[z±]] are local with respect to each other if for

some N ∈ N
(z − w)N [A(z), B(w)] = 0 (A.46)

By differentiate both sides, it is obvious that if A and B are mutually local, so does ∂A and

B and so on, physically this just says if primaries are mutually local so does the descendants.

Now we define normal ordering as(assuming |z| > |w| so the expansion makes sense

formally)

: A(z)B(w) :=
∑
n∈Z

(∑
m<0

A(m)B(n)z
−m−1 +

∑
m≥0

B(n)A(m)z
−m−1

)
w−n−1 (A.47)

where A(n) = A−n−1 = Resz A(z)zn, then A,B are mutually local iff we have

A(z)B(w) =
N−1∑
j=0

Cj(w)

(z − w)j+1
+ : A(z)B(w) :∼

N−1∑
j=0

Cj(w)

(z − w)j+1
(A.48)

We also have the following nontrivial result

Lemma A.3 (Dong). suppose A(z), B(z), C(z) are pair wise mutually local, so does : A(z)B(z) :

and C(z)

The point of above discussions is that physically OPEs are well defined for mutually local

fields.

Finally, let us define field operators, including both primary and descendant. First we

fix R = EndV with b ∈ R, b : V → V and denote b(v) as b · v or bv, then a field is a formal

distribution

a ∈ EndV
[[
z±
]]
, a =

∑
a(n)z

−n−1 (A.49)
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such that ∀v ∈ V, ∃n0 ∈ N : ∀n ≥ n0

a(n)(v) = a(n) · v = a(n)v = 0 (A.50)

If a, b are fields, so does ∂a and : a(z)b(z) : and so on.

Especially,for example in Virasoro algebra, when V has a natural grading ,

V =
⊕
n∈Z

Vn (A.51)

with Vn = {0} for n < 0 and dimVn < ∞, we say T ∈ End V is homogenous of degree g

if T (Vn) ⊂ Vn+g, and a formal distribution is homogenous of conformal weight h ∈ Z if all

a(k) are homogenous of degree h−k− 1, then all homogenous formal distributions are fields.

This weight so defined behaves in a reasonable way, for example if a has weight ha, ∂a has

weight ha + 1, and : a(z)b(z) : has weight ha + hb

A.2.2 d = 2 chiral CFT as vertex operator algebra

In parallel with our approach to generic QFT, we now define a CFT as a collection of

fields with some axioms, the corresponding mathematical object is called a vertex operator

algebra, or simply VOA. This name comes from the vertex operators in free boson theory,

which serves as the prototype of VOA.

A vertex operator algebra is a vector space V equipped with an element Ω ∈ V as the

vacuum, an endomorphism T ∈ End(V ) as the infinite small translation operator(the energy

momentum tensor), a linear map Y : V → F (V ) to the space of fields128 as a realization of

operator-state correspondence

a 7→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1, a(n) ∈ End V (A.52)

It satisfies the following axioms:

� Translation covariance

∀a ∈ V : [T, Y (a, z)] = ∂Y (a, z) (A.53)

� Locality

∀a, b ∈ V, ∃N ∈ N : (z − w)N [Y (a, z), Y (b, w)] = 0 (A.54)

� Vacuum

∀a ∈ V : TΩ = 0, Y (Ω, z) = idV , Y (a, z)Ω|z=0 = a (A.55)

128Here the field is defined in the sense of last section as a special kind of formal distribution
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Usually, one assume further that

� Nonnegative Grading

V = ⊕∞n=0Vn (A.56)

By direct calculation we have Ta = a(−2)Ω, i.e the standard physical argument ’the

energy momentum tensor is a quasi primary as a h = 2 descendant of the vacuum’,

and when the above grading exists, we will assume further that V0 = CΩ, and T is

homogeneous of degree 1, Y (a, z) is homogeneous of weight m for a ∈ Vm, in accordance

with the Virasoro example.

With those axioms, we can view the chiral part of a conformal field as an operator valued

formal distribution in the sense of

Ŷ (a, ) : C
[[
z±
]]
→ End V (A.57)

The primary example is, of course the Virasoro algebra, where in section 1.2.2 we have

(1.140) and (1.141)

More generally we will call any T satisfies (1.140) and (1.141) as a Virasoro field with

central charge c. If we have a vector v ∈ V such that Y (v, z) =
∑
v(n)z

−n−1 =
∑
Lvnz

−n−2

is a Virasoro field with central charge c and in addition

� T = Lv−1

� Lv0 is diagonalizable.

then we will call this vector as a conformal vector with central charge c, and a VOA with

a conformal vector with central charge c as a conformal VOA with central charge c. This

merely means that T is indeed an energy momentum tensor as it generates translation , the

corresponding scaling dimension and central charge are all well defined.

With those notations we can actually verify that the chiral parts of all those d = 2 CFTs

we have introduced in section1.2.2 and section1.2.3 are conformal VOAs with corresponding

central charges, and all the relevant properties for OPEs, primaries, states and so on are

proved as well. Indeed all of these models are special types of representations of VOAs, and

correspondingly RCFTs are finite direct sums of irreducible representations. So essentially

VOA characterizes the genus zero part of chiral d = 2 CFT. With an appropriate construction

for the superpartner G(z) of T (z), super VOA can be defined and it again characterize the

genus zero part of chiral d = 2 SCFT.

We should note that unlike the Wightman axioms, the VOA axioms are very simple, and

actual models are easy to construct as all constructions are formal hence problems such as

definable domain for operator or convergence issues all disappear. This is possible because

we have restricted to d = 2 spacetime and given this theory an ’meromorphic’ or ’analytic

on Riemann sphere’ flavor at the very beginning, just like the theory of one complex variable

compares with the several real variables case.
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A.3 Categories and functors

A.3.1 Modular tensor category

In this section we will introduce some basic facts about categories and functors, with these

concepts we can define tensor product, braiding, fusion formally and analyze their relations,

which essentially characterize the properties and concepts we have seen in d = 3 TQFT

and d = 2 RCFT in an algebraic way, in particular we can define modulartiy and this

characterizes the genus one or higher parts of these theories.

Throughout this section we will work in a characteristic zero field k, and use stylized

letters A,B, · · · for categories, capital letters U, V, · · · for objects, Greek letters ψ, ϕ, · · · for

morphisms.

An additive category C over k is a category such that

� All HomC(U, V ) are k vector space, and all compositions HomC(V,W )×HomC(U, V )→
HomC(U,W ), (ϕ, ψ) 7→ ϕ ◦ ψ are k bilinear

� Zero object 0 exists, and HomC(0, V ) = HomC(V, 0) = 0 for all V

� Finite sum ⊕ exists

An abelian category A is an additive category such that

� every ϕ is a composition of an epimorphism followed by a monomorphism, and kerϕ, cokerϕ

always exist. If kerϕ = 0, then ϕ = ker(cokerϕ); if cokerϕ = 0, then ϕ = coker(kerϕ)

As the name suggests, the category of abelian groups Ab is an abelian category, and indeed it

is the primary one rules over all because we have a metatheorem which says that a proposition

that depends only on the above data in a categorical way is true for A iff the same thing is

true for Ab. In a sense, this just says that in Ab we can formally pretend that we are dealing

with abelian groups and perform all the typical constructions without using the actual group

structures. Other common examples of abelian categories are the category V ec(k) of k vector

spaces, the category V ecf (k) of finite dimensional k vector spaces, the category Rep(A) of

representations of a k algebra A, the category Rep(G) of representations of a group G over

k.

Given an abelian category A, an object U of it is simple if every injection V ↪→ U is

either 0 or isomorphic, and we call A as semisimple if every object V is a direct sum of

simple objects, that is

V '
⊕
i∈I

NiVi (A.58)

with Ni ∈ N : Ni > 0 and I runs over all (isomorphism classes of)non-zero simple objects.

We will consider semisimple abelian categories only, and assume further that

∀i ∈ I, EndVi = k (A.59)
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And we should notice that by definition Hom (Vi, Vj) = 0 when i 6= j.

In abelian categories we have a well defined natural addition as ⊕, now we will introduce

another kind of category where a natural multiplication, that is , the tensor product ⊗ is

well defined.

A monoidal category M is a category equipped with

� a bifunctor

⊗ :M×M→M (A.60)

� a functorial isomorphism

αUVW : (U ⊗ V )⊗W ∼−→ U ⊗ (V ⊗W ) (A.61)

� a unit object 1 with isomorphisms

λV : 1⊗ V ∼−→ V

ρV : V ⊗ 1
∼−→ V

(A.62)

� and satisfies the associativity axiom

All compositions of α ’s, λ ’s, ρ ’s and their inverses are associative

Just like abelian category is an abstract generalization of abelian group, monoidal cate-

gory is an abstract generalization of monoid. It also includes V ec(k) , V ecf (k) and Rep(A),

in addition, it contains the category of Rep(g) of representations of a Lie algebra g over

k(and the finite dimensional Repf (g) ) . As those examples suggest, a category C can be

both abelian and monoidal, in this case for consistency we will assume further that

� 1 is simple and EndC(1) = k

A notable fact of monoidal category is that at this level we already have the following theorem

Theorem A.4 (MacLane Coherence theorem). Given (C,⊗, α, λ, ρ) as above, C is monoidal

iff it satisfies

� Pentagon axiom, see figure36 129

� Triangle axiom see figure37

A monoidal category M is strict if instead of isomorphisms we have equalities

V ⊗ 1 = V, 1⊗ V = V, (V1 ⊗ V2)⊗ V3 = V1 ⊗ (V2 ⊗ V3) (A.63)

In this case we can omit the brackets altogether, we will always assume this as well, and

indeed this is fine because another theorem from MacLane
129in particular figure 5 is a special case of this

180



Figure 36: Pentagon axiom [13]

Figure 37: Triangle axiom [13]
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Figure 38: the action of braid bAB on strands [13]

Theorem A.5 (MacLane). Every monoidal category is equivalent to a strict one

Now that we have equipped with both ⊗ and ⊕, it is time to talk about braiding. A

braided tensor category B is a monoidal category equipped with

� a functorial isomorphism called braiding

σVW : V ⊗W ∼−→ W ⊗ V (A.64)

realized as a representation of the generators of the braid groups Bn, through

σAB : · · · ⊗ (Via ⊗ · · · ⊗ Vib)⊗
(
Vib+1

⊗ · · · ⊗ Vic
)
⊗ · · ·

∼−→ · · · ⊗
(
Vib+1

⊗ · · · ⊗ Vic
)
⊗ (Via ⊗ · · · ⊗ Vib)⊗ · · ·

(A.65)

such that all compositions of α ’s, λ ’s, ρ ’s, σ ’s and their inverses depend only on its

image of the braid groups Bn, see figure 38

Typical examples of braided tensor category are again V ec(k), V ecf (k) and Rep(A). At

this level, we have a similar coherence theorem as follow

Theorem A.6. (C,⊗,1, α, λ, ρ, σ) is a braided tensor category iff it satisfies the following

� Pentagon axiom

� Triangle axiom

� Hexagon axiom, see figure39 130
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Figure 39: Hexagon axiom [13]

A particularly important case of the braided tensor category is the symmetric braided

tensor category, where for all σ we have σWV σVW = idV⊗W . As examples, V ec(k) and

V ecf (k) are all symmetric.

In V ec(k) we have dual, and dual of dual, all of which are very powerful tools in con-

structions and calculations, so we generalize those notations as well. Let M be a monoidal

category and V an object, the right dual V ∗ of V is an object with two isomorphims

eV : V ∗ ⊗ V → 1

iV : 1→ V ⊗ V ∗,
(A.66)

such that V
iV ⊗idV−→ V ⊗ V ∗ ⊗ V idV ⊗eV−→ V is equal to idV and

V ∗
idV ∗⊗iV−→ V ∗ ⊗ V ⊗ V ∗

eV ⊗idV ∗−→ V ∗ is equal to idV ∗ These properties are called right

rigidity axioms, similarly one can define the left dual ∗V with

e′V : V ⊗∗ V → 1

i′V : 1→ ∗V ⊗ V
(A.67)

and similar left rigidity axioms. Then M is called rigid if every object has both its left and

right duals. The main reason for elaborating on this is that we now have:

Hom(U ⊗ V,W ) = Hom (U,W ⊗ V ∗)
Hom(U, V ⊗W ) = Hom (V ∗ ⊗ U,W )

(A.68)

and

Hom(U, V ) = Hom (V ∗, U∗) = Hom (1, V ⊗ U∗) (A.69)

130in particular figure 6 is a special case of this
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along with
1∗ = 1 =∗ 1

(V ⊗W )∗ = W ∗ ⊗ V ∗

(αV1V2V3)∗ = αV ∗3 V ∗2 V ∗1

(A.70)

and especially for braided tensor category

(σVW )∗ = σV ∗W ∗

eV⊗W = (eV ⊗ eW ) (σW ∗,V ∗⊗V ⊗ id)

iV⊗W = (id⊗ σV ∗,W⊗W ∗) (iV ⊗ iW )

(A.71)

All of these suggest that rigidity mimics the notion of antiparticle. But this is not enough,

as we expect the antiparticle of an antiparticle is the original particle, that is , we need the

notion of dual of dual. A ribbon category R is a rigid braided tensor category equipped with

� a functorial isomorphism δ

δV : V
∼−→ V ∗∗ (A.72)

such that
δV⊗W = δV ⊗ δW

δ1 = id,

δV ∗ = (δ∗V )−1

(A.73)

Notice that in any rigid braided tensor category B we can construct the following

ψV : V ∗∗
∼−→ V (A.74)

as

V ∗∗
i⊗id−→ V ⊗ V ∗ ⊗ V ∗∗ id⊗σ−1

−→ V ⊗ V ∗∗ ⊗ V ∗ id⊗e−→ V (A.75)

In symmetric B, we have δV = ψ−1
V and B becomes ribbon automatically, but in general this

does not happen, and we can define the so called balancing isomorphism to measure how far

a ribbon category R is deviated from this

θV = ψV δV : V
∼−→ V (A.76)

this θ satisfies
θV⊗W = σWV σVW (θV ⊗ θW )

θ1 = id

θV ∗ = (θV )∗
(A.77)

Although looks strange, this θV is very important, and indeed we will see later that it is

closely related to what we called topological twist.

The main point of using ribbon category is that, just like a ribbon we can twist it as

we want, so here the usual graphic calculus for braiding is well defined, see figure40. For
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(a) the map f (b) the trace tr f

(c) the map θV (d) the map σVW

Figure 40: Examples of graphic calculus[13]

example we can represent a map f : V → W as a line with a box, and by convention idV
will be omitted. Especially for f ∈ EndV we have

1
iV−→ V ⊗ V ∗ f⊗id−→ V ⊗ V ∗ δV ⊗id−→ V ∗∗ ⊗ V ∗ eV ∗−→ 1 (A.78)

but since Endk(1) ' k this defines the trace of f as an element tr f ∈ Endk(1) ' k, and for

idV it is defined to be dimV . In this graphic language, σ is braiding and θ is twisting in the

literal sense.

Now we turn to fusion, a fusion category F is defined to be a rigid semisimple k linear

monoidal category such that

� the index set is finite |I| < ∞, i.e. there are finite many (up to isomorphism classes)

of simple objects.

� 1 is simple

In F , V ∗i is simple when Vi is and V ∗i ' Vi∗ for some i∗ ∈ I , so we have a notation of

antiparticle here. We can also define fusion rule as

Vi ⊗ Vj '
⊕
k

Nk
ijVk (A.79)
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Figure 41: Graphic representation of s̃ [13]

where the standard properties

Nk
ij = dim Hom (Vk, Vi ⊗ Vj) = dim Hom (1, Vi ⊗ Vj ⊗ V ∗k ) ,

Nk
ij = Nk

ji = N j∗

ik∗ = Nk∗

i∗j∗ , N0
ij = δij∗

(A.80)

are satisfied. we also have the twist and quantum dimension

θVi = θiidVi , dimVi = di (A.81)

where
θ0 = 1, θi∗ = θi

d0 = 1, di∗ = di, didj =
∑
k

Nk
ijdk.

(A.82)

Now it is time to bring all of the above together to define a category compatible with

braiding and fusion.

To do this, let us begin with a semisimple ribbon category C with |I| < ∞, so it is a

ribbon category as well as a fusion category. Then we can define the matrix

s̃ij = θ−1
i θ−1

j tr θV ∗i ⊗Vj = θ−1
i θ−1

j

∑
k∈I

Nk
i∗jθkdk (A.83)

As a consequence we have

s̃ij = s̃ji = s̃i∗j∗ = s̃j∗i∗ , s̃i0 = di = dimVi (A.84)

we say this C is a modular tensor category, or MTC for short, if

� The matrix s̃ = (s̃ij)i,j∈I is invertible

In MTC we can define the quantity

p± :=
∑
i∈I

θ±1
i d2

i (A.85)
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as well as the standard T matrix and charge conjugation matrix C

Tij = δijθi

Cij = δij∗
(A.86)

where
(s̃T )3 = p+s̃2(

s̃T−1
)3

= p−s̃2C

CT = TC,Cs̃ = s̃C, C2 = 1

(A.87)

and

s̃2 = p+p−C (A.88)

The usual S matrix is obtained from s̃ as S := s̃/D by the following normalization factor,

or the total quantum order

D =
√
p+p− =

√∑
dim2 Vi =

1

S00

(A.89)

Then from here we can recover all the modular data and their properties that we have

introduced in chapter one. For example if we introduce

ζ :=
(
p+/p−

)1/6
(A.90)

then in RCFT we have

θi = e2πihi, ζ = e2πic/24 (A.91)

as conformal dimensions and central charge.

The main source of MTC is d = 2 RCFT, under some reasonable assumptions, given a

VOA V for a RCFT, Rep(V ) is a MTC, see [102] .Equivalently, it can be obtained from

d = 3 TQFT, which we will discuss in next section.

A.3.2 Functorial QFT

In this section we will introduce an alternative formalism of quantum field theory: the

functorial formalism. Unlike the previous approaches, here we will not attempt to define

quantum field operator of any kind, instead we just view quantum field theory as a way to

assign collections of quantum states to spacetime submanifolds. Physically, this means we

are using the path integral approach instead of the canonical one. But mathematically, we do

not know how to define path integrals for fields, and to bypass this difficulty, we again rely on

formal constructions. The strategy goes like this, first we merely list some good properties of

path integral that we would like to have, then we abstract those properties into compatible

axioms in terms of categorical language. To be more specific, we will characterize spacetime

submanifolds and collections of quantum states as categories,and define a quantum field
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theory as a special functor between those categories such that all of our axioms are satisfied.

In summary, we have the following map:

’geometry/spacetime’ −→ ’algebra/quanta’ (A.92)

Typically, we will have a Riemannian manifold M on the geometric side,a Hilbert space

H on the algebraic side, and a symmetry group G acting on both sides, a categorical charac-

terization might be quite complicated. However, for certain special cases, the construction

is not that hard because some part of the data (M,H,G) becomes trivial or simple enough

to deal with, especially, there are two important examples of this kind:

� TQFT, where only the metric independent part of M is needed, H happens to be

finite dimensional, and G is trivial. At least for d = 1, 2, 3 the constructions are well

understood. We will focus on this formalism of TQFT and these lower dimensional

cases in the rest of this section.

� d = 2 CFT, where M can be taken as a compact Riemann surface hence the metric,

conformal and topological structures are all compatible and highly constrained, H can

be reorganized into representations of the Virasoro algebra, and G is essentially the

modular group. Here everything is under control and formal construction is possible,

the resulting theory is equivalent to the one we obtained using VOA approach.131

As we have seen, V ec(k) is a symmetric braided tensor category, it can be used on

the algebraic or quantum side of our construction, for the geometric or spacetime side we

will introduce the category Cob(n) of n dimensional cobordisms, which is also a symmetric

braided tensor category. A n dimensional TQFT is defined as a functor Z compatible with

those symmetric braided tensor category structures

Z : Cob(n) −→ V ec(k) (A.93)

Physically, cobordism is an abstract of spacetime slices with common boundary, mathe-

matically it is defined as follow: given two closed manifolds Σ0,Σ1 of dimension n − 1, a

corbordism between them is a n dimensional manifold M such that

∂M = Σ0

∐
Σ1 (A.94)

In order to mimic the concept of in and out states, we will further assume M is oriented

and compact, then decorate it with a frame on Σ = ∂M . To be more precise, suppose

[v1, . . . , vn−1] is a positive basis for TxΣ at x ∈ Σ, then a vector w ∈ TxM is defined to be

positive normal if [v1, . . . , vn−1, w] is positive. A connected component Σi of Σ is called in-

boundary/out-boundary if a positive normal points inward/outward. We will always assume

that we have maps Σ0 → M and Σ1 → M such that Σ0 is diffeomorphically equivalent to

131for more details see [146],[101]
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Figure 42: Equivalence of cobordism [4]

(a) the composition process (b) the product M1 ◦M0

Figure 43: Composition of cobordisms[4]

the in-boundary and Σ1 is diffeomorphically equivalent to the out-boundary. In summary,

an (oriented) cobordism is given by the triple

Σ0 →M ← Σ1 (A.95)

This is also denoted as

M : Σ0 → Σ1 (A.96)

Two cobordisms Σ0 → M ← Σ1 and Σ0 → M ′ ← Σ1 between Σ0,Σ1 is equivalent iff there

exists an orientation-preserving diffeomorphism ϕ : M → M ′ makes the diagram in figure

42 commutes

As an example, given an closed Σ of dimension n − 1, we can construct the cylinder

M = Σ × [0, 1] such that Σ0 = Σ × {0},Σ1 = Σ × {1} with obvious diffeomorphisms, and

usually we will denote this as Σ→ Σ× [0, 1]← Σ̄ This example also provides a way to define

composition in Cob(n), suppose we have ϕ0 : M0 ' Σ0× [0, 1], ϕ1 : M1 ' Σ1× [1, 2] , then

naturally we have M1 ◦M0 = M0

∐
Σ M1 as

ϕ1

∐
Σ

ϕ2 : M0

∐
Σ

M1 → Σ× [0, 2] (A.97)

More generally one can prove that M1 ◦M0 is well defined as long as M0,M1 have a common

boundary component Σ, and it does not depend on particular representatives ϕ0, ϕ1 chosen

for the equivalence classes of cobordisms as in figure 43. Cob(n) consists of Σ’s as objects

where Σ̄ plays the role of ∗ dual, and cobordisms M ’s between them as morphisms, the
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composition of morphisms is given by cylinder gluing M1 ◦M0 = M0

∐
Σ M1, it is monoidal

by the operation X
∐
Y , the braiding is defined by reverse the in/out boundaries

σX,Y : X
∐

Y → Y
∐

X (A.98)

and it is symmetric, physically this means micro reversibility.

A symmetric monoidal functor between two symmetric braided tensor categories (C,�, 1C)
and (D,�, 1D) is a functor F : C → D equipped with natural transformations ϕX,Y :

FX�FY → F (X�Y ) and a morphism ϕ : 1D → F1C such that

� it is compatible with the associativity morphism α’s

� it is compatible with the identity morphism 1’s

� it is compatible with the braiding morphism σ’s

where the explicit diagrams are shown in figure 44

In this sense the functor in (A.93) is defined as a symmetric monoidal functor between

Cob(n) and V ec(k), concretely, we have

� A n − 1 dimensional closed manifold Σ is mapped into a k vector space Z(Σ), and it

can be proved that by consistency Z(Σ) is finite dimensional so Z actually takes values

in V ecf (k) hence physically we have assigned a finite Hilbert space of the topological

ground quantum states at every spacetime slice under some suitable foliation.

� Given a corbordism M : Σ0 → Σ1, we can understand this as an evolution process

from in-state to out-state

Z(M) : Z(Σ0) −→ Z(Σ1) (A.99)

� Consistency with associativity and braiding means

Z(∅) ∼= k, Z(Σ0

∐
Σ1) ∼= Z(Σ0)⊗k Z(Σ1) (A.100)

In particular, if Σ = ∂M we can also view it as the cobordism M : ∅ → Σ, then such

Z(M) : k → Z(Σ) is just a particular vector in Z(Σ), and physically it is a quantum

state.

� Consistency with identity means

Z(Σ× [0, 1]) = idZ(Σ) (A.101)

physically, this means there is no evolution and the system is left untouched.
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Figure 44: The commutative diagrams for symmetric monoidal functor [4]
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� Finally, we have the gluing property

Z

(
M2

∐
Σ

M1

)
= Z (M2) ◦ Z (M1) (A.102)

which says that a spacetime gluing process corresponds to a combination of state

transitions. This property is an essential feature of path integral formalism, i.e.

(ZM2 ◦ ZM1) (f) (ψ+) =

∫
ψ∈F(Σ2)

∫
ψ−∈F(Σ1)

f (ψ−)K (ψ−, ψ)K (ψ, ψ+)Dψ−Dψ

(A.103)

The point is, although the RHS of the above equation is ill defined, we have found a

way to characterize the LHS such that it has all the essential properties we want from

the RHS.

In lower dimensional cases d = 1, 2, 3, the actual constructions of Z are done, and it is

known that

� d = 1, Cob(1) is trivially equivalent to V ecf (k) equipped with ∗, i.e. the category of

dual pairs of V ecf (k)

� d = 2 Cob(2) are in one to one correspondence with finite dimensional Frobenius

algebras A over k. To be more specific, A is commutative and associative, it also

equips with an unit and a non-degenerate bilinear trace tr : A→ k

� d = 3 in MTC with p+/p− = 1, a corresponding d = 3 TQFT exists and calculate

some well define topological invariants.

Finally, as a guide to the more mathematically inclined reader, we summarize certain

aspects of discrete gauge theory in a more formal way using the concepts we have developed

in this section.

The mathematical framework underlying the physical discussion of [14] used in sec-

tion1.1.1 is the notion of a G-crossed braided category [67]. The gauging procedure cor-

responds to the mathematical notion of equivariantization.

In fact, to construct the (twisted or untwisted) discrete gauge theory we can use a simpler

notion. Our starting point is the category of G-graded vector spaces, VecGω , with associator

given by the C×-valued 3-cocycle, ω. The theory we obtain upon equivariantization is the

modular tensor category (MTC) constructed by the process of taking the Drinfeld center

[13, 131]. In particular, our gauge theory is just

Twisted G discrete gauge theory↔ Z(VecGω ) .

The various operators discussed in the dictionary at the end of section I of the main text

correspond to the simple objects of Z(VecGω ) with categorical dimension larger than one. The
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simple objects corresponding to the trivial conjugacy class in G (what we have called Wilson

lines) have trivial topological spin, θ, and are closed under fusion. This means they form a

symmetric subcategory. In fact, as is well-known, these simple objects form a Lagrangian

subcategory isomorphic to Rep(G), the category of finite dimensional representations of G

over C. In particular, Wilson line fusion rules are those of the corresponding representation

semiring. This observation explains the equivalence, mentioned in the introduction of the

main text, of the fusion Wπ ×Wπ′ =Wπ′′ and the character identitiy χπ · χπ′ = χπ′′ .

A.4 Groups and algebras

In this section we will review some concepts and facts about groups, Lie algebras, their

representations and cohomologies, which are very important in pure and applied mathematics

but usually omitted in textbooks for physicists. For convenience, here we recall some basic

notations as follow:

� rings and fields

R, a ring with unit 1 such that 1 6= 0 and f(1) = 1 for every ring homomorphism f .

K, a field, in physics usually it is assumed that it is algebraically closed and charK = 0,

i.e. K = C,but here we will keep K to be generic.

� groups

G,H · · · for groups, and g, h · · · for group elements, with [g], [h] · · · the corresponding

conjugacy classes. We also define xg = gxg−1 and extend it to subset X of G as

Xg = {xg|x ∈ X}, if ∀g ∈ G,Xg = X we say X is G-invariant.

� Lie algebras

g, h · · · for Lie algebras of simply connected Lie groups G,H, α, β · · · for simple roots,

λ, µ · · · for weights. The corresponding affine version is labeled by an hat, e.g ĝ, and

the level is denoted by k.

For simple g(A) with a n × n Cartan matrix A we will use the Cartan-Weyl basis

ei, fi, hi, for i = 1, . . . , n such that [ei, fj] = δijhi, [hi, ej] = aijej, [hi, fj] = −aijfj, and

[hi, hj] = 0, for all i, j; and (ad ei)
1−aij ej = (ad fi)

1−aij fj = 0 whenever i 6= j.

A.4.1 Modules, representations and conjugacy classes

We first introduce some formal generalizations of familiar concepts in linear algebra.

A left R-module RM is an abelian group M on which R acts linearly on the left, i.e. we

have a multiplication law R×M →M , denoted by (r,m) 7→ rm, such that
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r (m+m′) = rm+ rm′

(r + r′)m = rm+ r′m

(rr′)m = r (r′m)

1m = m.

(A.104)

The corresponding R-homomorphism f : M → N is as a map such that for all m,m′ ∈M
and r ∈ R:

f (m+m′) = f(m) + f (m′)

f(rm) = rf(m)
(A.105)

If instead R acts on the right, we can similarly define right R-module MR, for commu-

tative ring RM and MR are essentially the same thing so we simply call it as R-module M .

Sometimes M have left and right actions of different rings R, S, in this case we say it is a

R, S-bimodule RMS.

Then we have the category RMod of R-modules in an obvious way, and it is easy to

verify that KMod is V ec(K), and ZMod is Ab so R-module generalizes both vector space

and abelian group, hence RMod also has well defined direct sum , direct product, tensor

product and so on.

The main purpose of using RMod is to define Hom and tensor functors from RMod to

Ab 132:

� covariant Hom functor TA = HomR(A,�)

on objects TA(B) = HomR(A,B) and on morphisms f : B → B′ we have TA(f) :

Hom(A,B)→ Hom (A,B′) such that TA(f) : h 7→ fh

� contravariant Hom functor TB = HomR(�, B) similar with TA = HomR(A,�) but

reverse the arrows appropriately.

� covariant tensor functors FA = A⊗R � and GB = �⊗R B

FA(B) = A⊗R B and FA(g) = 1A ⊗ g for g : B → B′

similarly, one also have GB(A) = A⊗R B and GB(f) = f ⊗ 1B for f : A→ A′

in R-module there is a canonical isomorphism for A⊗B ' B⊗A, so G,F are essentially

the same.

The notation of R-module allows us to do all linear operations formally, but sometimes we

also want to be able to perform multiplicative operations, in that case we need the notation

of R-algebra. Suppose we have a commutative ring A with a homomorphism R → A, then

132for R,S-bimodules, tensor functors actually take values in ModS , and for commutative R hom functors

actually take values in RMod, so in the simplest but quite common case of R,R-bimodules with commutative

R, we indeed have functors: RMod → RMod. These functors can be defined in general abelian categories

as well.
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A automatically inherits a natural R-module structure, in addition we can use the ring

multiplication law of A, which by construction is consistent with the R-module structure,

we say A is a R-algebra or an algebra over R. In particular for a field K, we have K-algebra,

it is a formal generalization of matrix algebra. In summary, with R-modules and R-algebras

we can formally do linear algebra over generic fields, rings and abelian groups.In the following

we will give some applications of these concepts, first for representations of group and Lie

algebra, then for conjugacy class multiplication.

As we have said above, we want to do linear algebra formally, in this way we also generalize

the concept of linear representation G/g modules to representation. Given a group G, we

can formally assign to each g an formal generator eg, they multiply with each other just

as group elements i.e. egeh = egh. Then the group ring R[G] is defined as the R-module

⊕g∈GR · eg of formal sums of generators over R, where we also assume that R · eg = R for

all g ∈ G, due to the group structure, we indeed have an R-algebra, explicitly:133(∑
h1∈G

rh1eh1

)
·

(∑
h2∈G

sh2eh2

)
:=
∑
g∈G

(∑
h∈G

rhsh−1g

)
eg (A.106)

Because g 7→ 1 ·eg sometimes one just use g to denote both the group element and its formal

generator. R[G] is not commutative if G is not, but we can still form R[G]-module M . If

R = K is a field and M = V is a vector space, then the above structure map naturally induce

a map ϕ̂ : K[G] −→ EndK(V ), which is indeed a dimK(V ) dimensional representation of G

on V , and reversely all linear representations of G arise in this way.

For a discrete group, just like the definition of an R-module, we can simply let elements

of G act linearly on M to define G-modules, and use G equivariant group homomorphisms

f : M →M ′ with gf(m) = f(gm) as morphisms, we have the category of G-module, which

is indeed equivalent to the category of Z[G]-module. When M = V these modules again

reduce to usual representations. In particular, the special C[G]-module Cn where n = |G| is

associated with the regular representation of G, usually it is referred as group algebra C[G].

Similarly, for a Lie algebra g, we can first define the universal enveloping algebra generated

by the Cartan-Weyl basis ei, fi, hi over R, explicitly its basis is(∏
α

fmαα

)(∏
α

enαα

)(
r∏
i=1

hpii

)
(A.107)

where all the Lie product xy − yx = [x, y] are implemented as relations.

Usually one just takes R = C and denotes the universal enveloping algebra as U(g), which

is the Lie algebra analogue of C[G] . These U(g)-modules are formal generalizations of Lie

algebra representations, where the Verma module in RCFT is a special case . In summary,

U(g) is the algebra where all [x, y] in g is realized as xy − yx in U(g) , and U(g)-modules

generalize g representations.

133For finite groups this notation is obvious, while for infinite groups, x =
∑
g∈G rgeg is defined to finite

many non-zero terms only, i.e. |{g ∈ G | rg 6= 0}| <∞.
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In chapter 3 and 4 we have discussed the Arad-Herzog conjecture and a × b = c fusion

rules where multiplication of conjugacy classes is involved frequently. First recall that by

definition, for a conjugacy class C and an arbitrary group element g, as a set C satisfies

gCg−1 = C, that is gC = Cg, hence given two conjugacy classes C1, C2, we can multiply

them as sets to obtain a commutative multiplication law C1 ·C2 = C2 ·C1. This multiplication

is indeed well defined as gC1 ·C2g
−1 = gC1g

−1 · gC2g
−1 = C1 ·C2 is again G-invariant, hence

is a union of conjugacy classes, so we can simply write it as [g] · [h] by the corresponding

representatives g ∈ C1, h ∈ C2 as in chapter 3 and 4.

In discrete gauge theory we have charges as well as fluxes, where Wilson lines are in

a sense classical since their existence do not depend on the quantum twist ω and they

always form fusion subcategory, hence the decomposition of tensor representations can be

viewed as classical limits of quantum fusion rules. On the contrary ,in a nonabelian discrete

gauge theory the existence of fluxes depends on ω and their fusion never close(theorem 4.5),

although they can be viewed as conjugacy classes of G, their fusion rules are quite different

from the multiplication law we have introduced above. For example, looking at table 1.1.1,

we have pure fluxes D,F , but they fuse to D × F = D + E, while as conjugacy classes we

have [(12)] × [(123)] = [(12)], because unlike decomposition of tensor representations, this

multiplication law does not count multiplicity.

However using the concept of group algebra we can introduce another kind of multipli-

cation law for conjugacy classes in finite group, which indeed counts the multiplicity, but

as an operation in G, it knows nothing about the ω, hence if we view this multiplication as

classical limit, we will loss some information. To do this, we first label the conjugacy classes

as Cµ , then we define a formal element Kµ as the following sum in C[G]

Kµ =
∑
g∈Cµ

eg (A.108)

Then we multiply Kµ, Kν in C[G] , but rewrite the result as sums of Kλ , this is always

possible because the result is G-invariant

Kµ ×Kν =
∑
λ

Cλ
µνKλ (A.109)

For example now we have K[(12)]×K[(123)] = 2K[(12)], in this way the coefficient Cλ
µν is a sum

of fusion coefficients with all charges being identified as trivial, compare with D×F = D+E

where D is a flux and E is a dyon, now we forget about their charges completely and end

up with two copies of K[(12)].
134

A.4.2 Cohomologies, central extensions and projective representations

In this section we will introduce the notation of cohomology for abelian category, then study

the two special but important cases of group cohomology and Lie algebra cohomology. Using

134For an interesting discussion of this multiplication law and its relation with Verlinde formula, see[71]

exercise 10.18
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these tools we can analyze central extensions and projective representations of groups and

Lie algebras.

Recall that a complex in an abelian category A is a sequence of morphisms (differentials)

(Cθ, d•) =→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 → (A.110)

such that dndn+1 = 0 for all n ∈ Z, usually we will omit d and use C to denote the

complex.

Since A is abelian, we have well defined ker, im for every dn, we say C is exact if imdn+1 =

ker dn for all n, in particular the following exact complex is called short exact(with redundant

0’s omitted)

0→ A
i−→ B

p−→ C → 0 (A.111)

Then we define
n-chains = Cn,

n-cycles = Zn(C) = ker dn

n-boundaries = Bn(C) = im dn+1

(A.112)

and the n-th homology is

Hn(C) = Zn(C)/Bn(C) (A.113)

All of these are just formal generalizations of the usual singular homology, they work

because A mimics Ab, the key point is that homology measures obstructions for C as being

exact. This is important, because functors such as HomR(A,�) and A⊗R � in general are

not exact, i.e. when applying these functors T : A → A′ to an exact complex C, the image

complex TC is not exact, hence there are nontrivial obstructions.

The above formalism is useful for general discussions on formal properties, but in actual

calculations, we also need some concrete ways to realize it. Here we will introduce two

important examples, group cohomology and Lie algebra cohomology.

Groups in general are not abelian, but we can study G-modules, so we begin with a group

G and an abelian group A, where we have a natural action σ : G→ AutA = OutA.

We define the collection of maps αn : G× . . .×G→ A as n-cochain group Cn(G,A) or

simply Cn, that is

αn : (g1, . . . , gn) 7→ αn (g1, . . . , gn) ∈ A (A.114)

we also define C0(G,A) = A, and now for the coboundary operator δ : Cn → Cn+1, depend

on σ acts on left or right, we have two versions

� Coboundary operator for left action

(δαn) (g1, . . . , gn, gn+1) := σ (g1)αn (g2, . . . , gn, gn+1) +

+
n∑
i=1

(−1)iαn (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1αn (g1, . . . , gn)

(A.115)
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for example the first few ones are

(δα0) (g) = σ(g)α0 − α0

(δα1) (g1, g2) = σ (g1)α1 (g2)− α1 (g1g2) + α1 (g1)

(δα2) (g1, g2, g3) = σ (g1)α2 (g2, g3) + α2 (g1, g2g3)− α2 (g1g2, g3)

− α2 (g1, g2)

(δα3) (g1, g2, g3, g4) = σ (g1)α3 (g2, g3, g4)− α3 (g1g2, g3, g4) + α3 (g1, g2g3, g4)

− α3 (g1, g2, g3g4) + α3 (g1, g2, g3)

(A.116)

� Coboundary operator for right action

(δαn) (g1, . . . , gn, gn+1) := (−1)n+1αn (g2, . . . , gn, gn+1)

+
n∑
i=1

(−1)i+n+1αn (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ αn (g1, . . . , gn)σ (gn+1)

(A.117)

for example the first few ones are

(δα0) (g) = α0σ(g)− α0

(δα1) (g1, g2) = α1 (g2)− α1 (g1g2) + α1 (g1)σ (g2)

(δα2) (g1, g2, g3) = −α2 (g2, g3) + α2 (g1g2, g3)− α (g1, g2g3)

+ α2 (g1, g2)σ (g3)

(δα3) (g1, g2, g3, g4) = α3 (g2, g3, g4)− α3 (g1g2, g3, g4) + α3 (g1, g2g3, g4)

− α3 (g1, g2, g3g4) + α3 (g1, g2, g3)σ (g4)

(A.118)

then it is obvious that δ (α + α′) = δα+ δα′ and by explicit calculation one find δ ◦ δ = 0 so

δ is indeed well defined, and we have

Zn
σ := ker δn ≡ { cocycles }

Bn
σ := im δn−1 ≡ { coboundaries }

(A.119)

and

Hn
σ (G,A) := Zn

σ (G,A)/Bn
σ (G,A) (A.120)

Note that for a Lie group G, we have the usual de-Rham cohomology Hn
dR(G,A) of G as

a manifold, which is different from Hn
σ (G,A), however they are related in the sense that

Hn
dR(BG,A) is similar(sometimes isomorphic, e.g. for finite group) to Hn

σ (G,A).

For Lie algebra, we similarly begin with U(g)-module, so we have a Lie algebra g and a

finite dimensional representation ρ on V , then we define the collection of maps ωn : g×· · ·×
g → V as n-cochain group Cn(g, V ) or simply Cn, in particular we define C0(g, V ) = V .

The coboundary operator sn : Cn → Cn+1 again has left and right versions depending on ρ :
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� Coboundary operator for left action

(sωn) (X1, . . . , Xn+1) :=
n+1∑
i=1

(−)i+1ρ (Xi)
(
ω
(
X1, . . . , X̂i, . . . , Xn+1

))
+

n+1∑
j,k=1
j<k

(−)j+kω
(

[Xj, Xk] , X1, . . . , X̂j, . . . , X̂k, . . . , Xn+1

)
(A.121)

where X̂ means omit X, and the first few examples are

(sω0) (X1) = ρ (X1)ω0;

(sω1) (X1, X2) = ρ (X1)ω1 (X2)− ρ (X2)ω1 (X1)− ω1 ([X1, X2])

(sω2) (X1, X2, X3) =ρ (X1)ω2 (X2, X3)− ρ (X2)ω2 (X1, X3)

+ρ (X3)ω2 (X1, X2)− ω2 ([X1, X2] , X3)

+ω2 ([X1, X3] , X2)− ω2 ([X2, X3] , X1) ;

(sω3) (X1, X2, X3, X4) = ρ (X1)ω3 (X2, X3, X4)− ρ (X2)ω3 (X1, X3, X4)

+ ρ (X3)ω3 (X1, X2, X4)− ρ (X4)ω3 (X1, X2, X3)

−ω3 ([X1, X2] , X3, X4) + ω3 ([X1, X3] , X2, X4)− ω3 ([X1, X4] , X2, X3)

−ω3 ([X2, X3] , X1, X4) + ω3 ([X2, X4] , X1, X3)− ω3 ([X3, X4] , X1, X2)

(A.122)

� Coboundary operator for right action

(sω) (X1, . . . , Xn+1) :=
n+1∑
i=1

(−)i+1ρ (Xi)
(
ω
(
X1, . . . , X̂i, . . . , Xn+1

))
+

n+1∑
j,k=1
j<k

(−)j+k+1ω
(

[Xj, Xk] , X1, . . . , X̂j, . . . , X̂k, . . . , Xn+1

)
(A.123)

where X̂ means omit X, and the first few examples are

(sω0) (X1) = ρ (X1)ω0;

(sω1) (X1, X2) = ρ (X1)ω1 (X2)− ρ (X2)ω1 (X1) + ω1 ([X1, X2]) ;

(sω2) (X1, X2, X3) =ρ (X1)ω2 (X2, X3)− ρ (X2)ω2 (X1, X3)

+ρ (X3)ω2 (X1, X2) + ω2 ([X1, X2] , X3)

−ω2 ([X1, X3] , X2) + ω2 ([X2, X3] , X1)

(sω3) (X1, X2, X3, X4) = ρ (X1)ω3 (X2, X3, X4)− ρ (X2)ω3 (X1, X3, X4)

+ ρ (X3)ω3 (X1, X2, X4)− ρ (X4)ω3 (X1, X2, X3)

+ω3 ([X1, X2] , X3, X4)− ω3 ([X1, X3] , X2, X4) + ω3 ([X1, X4] , X2, X3)

+ω3 ([X2, X3] , X1, X4)− ω3 ([X2, X4] , X1, X3) + ω3 ([X3, X4] , X1, X2)

(A.124)

199



and just like the case for group we can define Zn
ρ (g, V ) = kersn and Bn

ρ (g, V ) = imsn,

then the n-th cohomology group is

Hn
ρ (g, V ) := Zn

ρ (g, V )/Bn
ρ (g, V ) (A.125)

Now we have defined these cohomology groups and we can apply them to study various

kinds of problems.

By direct calculation we find the first two group cohomologies have interpretations as

follow:

� H0
σ(G,A) This is the subgroup of A contains all elements which are invariant under

the action σ, that is , the collection of fixed points.

� H1
σ(G,A) This group characterizes crossed homomorphisms α1 : G→ A modulo prin-

cipal homomorphsims. Where a crossed homomorphism is defined by the condition

α1 (g1g2) = σ (g1)α1 (g2) + α1 (g1) and a principal homomorphism is defined by the

condition α1(g) = (δa)(g) = σ(g)a− a.

The corresponding Lie algebra versions are:

� H0
ρ(g, V ) This is the subspace V g of invariants in V under the action of ρ.

� H1
ρ(g, V ) This group classifies 1-cochains satisfy (sω) (X1, X2) = ρ (X1)ω (X2)−ρ (X2)ω (X1)−

ω ([X1, X2]) = 0 modulo coboundaries ωcob(X) = ρ(X)v. In particular when ρ is trivial,

we have H1
0 (g, V ) = (g/[g, g])∗ as the group of linear maps vanishing on [g, g].

But what about second order cohomologies? It turns out that H2
σ(G,A) characterizes

central extensions, its elements are in one-to-one correspondence with central extensions of

G by A. Recall that a central extension of G by abelian group A is a exact sequence

1 −→ A
ı−→ E

π−→ G −→ 1 (A.126)

such that ı(A) is in the centre of E. For example, trivially the direct product is a central

extension:

1 −→ A
i−→ A×G pr2−→ G −→ 1 (A.127)

and a less trivial example is the semidirect product

1 −→ H
ı−→ GnH

π−→ G −→ 1 (A.128)

Concretely, We have the familiar example of

1 −→ {+1,−1} −→ SL(2,C)
π−→ SO(1, 3) −→ 1 (A.129)

as well as

1 −→ K×
i−→ GL(V )

π−→ PGL(V ) −→ 1 (A.130)
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For Lie algebra, Hn
ρ (g, a) also characterize central extensions. Similar with central ex-

tension of group, we define a central extension of g by an abelian Lie algebra a as a exact

sequence

0 −→ a −→ h
π−→ g −→ 0 (A.131)

such that [a, h] = 0 where– for notational simplicity– we have identified a with its image in

h.

Again the direct sum corresponds to a trivial extension

0 −→ a −→ a⊕ g −→ g −→ 0 (A.132)

and a central extension of simply connected Lie group will induce a central extension of its

Lie algebra.

For concrete examples, we have affine Lie algebras

0→ C→ ĝ→ g→ 0 (A.133)

as well as the Virasoro algebra

0 −→ C −→ V ir −→ W −→ 0 (A.134)

Finally, let us mention the relation between central extension and projective represen-

tation. Recall that a projective representation of G on V is a map P : G → GL(V ) such

that:

� P (e) = I

� ∀g, h, ∃α(g, h) ∈ C : P (g)P (h) = α(g, h)P (gh)

equivalently it is a group homomorphism π : G→ PGL(V ).

By simple calculation we find135

α(h, k)α(g, hk) = α(gh, k)α(g, h) (A.135)

so this α is indeed a 2-cocycle.

What is more, two projective representations are equivalent if they differ by a 2-coboundary,

that is, when there exist a function β : G → C×and an isomorphism ϕ : V1 → V2 such that

∀g ∈ G, ϕ−1 (P1(ϕ(g))) = β(g)P2(g) such that

α2(g, h) = α1(g, h)β(gh)β−1(g)β−1(h) (A.136)

hence we have a well defined class of

[α] ∈ H2
(
G,C×

)
(A.137)

135notice that now we have switched to multiplicative notation, which is more convenient here, and we also

assume here σ is trivial and omit it in the cohomology group
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In summary,H2(G,C×), also called Schur multiplier, characterize projective representations,

it is a finite group when G is, when [α] = 0 we can lift it to a linear representation on GL(V ).

However, for Lie algebra although we can also define projective representation P : g →
End(V ) by

[P (x), P (y)] = P ([x, y]) + c(x, y)I (A.138)

with

c(x, y) = −c(y, x)

c([xy], z) = c([yz], x) + c([zx], y) = 0,
(A.139)

H2(g,C) does not characterize these projective representations fully.However, there are sev-

eral partial results that can be drawn. First, for finite dimensional semisimple g all have

vanishing H2(g,C). Secondly, in the important case of an infinite dimensional projective

unitary representation of a simply connected Lie group G , if H2(g,R) = 0 we can always

lift it to a linear unitary representation(Bargmann’s theorem), and this is the typical case

one sees in quantum mechanics for representations of physical observables.

B Supplementary material

B.1 For quivers

B.1.1 Useful identities

In this appendix, we derive useful identities for index contributions from a vector multiplet

and a bifundamental hypermultiplet. The index contribution from an SU(n) vector multiplet

is given by

ISU(N)
vec (q; z) = P.E.

[
− 2q

1− q
χ
SU(N)
adj (z)

]
. (B.1)

Using q/(1− q) = q/(1− q2) + q2/(1− q2), we find the following identity

ISU(N)
vec (q; z) = ISU(N)

vec (q2; z)× P.E.
[
− 2q

1− q2
χ
SU(N)
adj (z)

]
. (B.2)

Similarly, for the Schur index of a bifundamental hypermultiplet of SU(N)× SU(M)

IN×Mbifund(q; y, z, a) = P.E.

[
q

1
2

1− q

(
aχ

SU(N)
fund (y)χ

SU(M)
afund (z) + a−1χ

SU(N)
afund (y)χ

SU(M)
fund (z)

)]
,

(B.3)

we can show the identity

IN×Mbifund(q; y, z, a) = IN×Mbifund(q2; y, z, aq
1
2 )IN×Mbifund(q2; y, z, aq−

1
2 ) , (B.4)

using q
1
2a±1/(1− q) = q(q−

1
2 + q

1
2 )a±1/(1− q2).
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B.1.2 III2×[n−1,n−1,2],[2,··· ,2,1,1] theory

In this appendix, we argue that theory described by the right quiver in Fig. 21 is equivalent to

T (n)
0,n,0. To that end, first note that the former theory is equivalent to the type III AD theory

associated with three Young diagrams, Y1 = Y2 = [n−1, n−1, 1, 1] and Y3 = [2, · · · , 2, 1, 1], in

the language of [158]. Indeed, the prescription of [161] suggests that this type III theory has

a weak coupling description corresponding to the splitting of 2n boxes in Y1 = [n−1, n−1, 1, 1]

into the two groups, [1, 1] and [n− 1, n− 1].136 From the 3d mirror analysis, we see that the

sector corresponding to [1, 1] is D2(SU(3)) = AD3, the one corresponding to [n− 1, n− 1] is

R2,AD
0,n , and an SU(2) vector multiplet is coupled to them.137 Therefore, all we have to show

here is that this type III AD theory is equivalent to T (n)
0,n,0.

To see the equivalence of the above-mentioned type III theory and T (n)
0,n,0, let us consider

a weak coupling description of the type III theory corresponding to the splitting of 2n

boxes in Y1 into [n− 1, 1] and [n− 1, 1]. From the prescription of [161] and the spectrum of

N = 2 chiral operators, we see that the sector corresponding to each [n − 1, 1] is the type

IV AD theory (in the language of [158]) associated with an irregular puncture labeled by

three Young diagrams Y1 = Y2 = [n − 1, 1] and Y3 = [2, · · · , 2, 1], and a full (and therefore

regular) puncture.138 We also see that an SU(n) vector multiplet is coupled to these type IV

AD theories as well as an extra fundamental hypermultiplet. Therefore, this weak coupling

description corresponds to the quiver diagram in Fig. 45.

Hence, all we need to show is the equivalence of T (n)
0,n,0 and the theory described by the

quiver in Fig. 45. Note that, for this purpose, it is sufficient to show that the type IV theory

involved in the quiver is equivalent to the T (`)
0,n = ADn with n−1

2
extra fundamental hyper-

multiplets of SU(n).139 In the rest of this appendix, we show that the Seiberg-Witten (SW)

curves of these two theories are indeed identical, which strongly suggests the equivalence of

these two theories.

Curve of type IV theory Let us first write down the SW curve of the above-mentioned

type IV theory. Since the theory is obtained by compactifying the 6d (2,0) An−1 theory on

136Here, the idea of [161] is that there exists an S-dual frame for each splitting of boxes in Y1 into two

groups.
137Recall that R2,AD

0,n is the type III AD theory associated with Y1 = Y2 = [n − 1, n − 1, 2] and Y3 =

[2, · · · , 2, 1, 1].
138A type IV theory is obtained by compactifying the 6d (2,0) An−1 theory on sphere with an irregular

puncture and a regular puncture. These punctures are characterized by the singularity of an sl(n)-valued

meromorphic (1, 0)-form, ϕ, around them. Suppose that a regular puncture is at z = 0. Then ϕ behaves

near z = 0 as ϕ ∼ (Mz + · · · )dz with M ∈ sl(n), up to conjugation. When the regular puncture is a full

puncture, the eigenvalues of M are all different. When an irregular puncture associated with Y1, Y2 and Y3

are at z = 0, ϕ behaves as ϕ ∼
(
M1

z3 + M2

z2 + M3

z + · · ·
)
dz up to conjugation, where M1,M2,M3 ∈ sl(n) and

the eigenvalues of Mi are such that the ordered list of the numbers of equal eigenvalues is identical to Yi.
139Recall here that n is odd, and therefore n−1

2 is an integer.
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n IVfull
2×[n−1,1],[2,··· ,2,1]IVfull

2×[n−1,1],[2,··· ,2,1]

1

Figure 45: Another weak coupling description of the type III AD theory associated with

the Young diagrams Y1 = Y2 = [n − 1, n − 1, 2] and Y3 = [2, · · · , 2, 1, 1]. The left and right

boxes each stand for one copy of the type IV AD theory described in the main text, while

the top box stands for a fundamental hypermultiplet. We argue that this quiver theory is

identical to T (n)
0,n,0.

a sphere with one irregular puncture and a regular puncture, its SW curve is

det(xdz − ϕ) = 0 , (B.5)

where xdz is the SW 1-form and ϕ = ϕzdz is a meromorphic (1, 0)-form valued in sl(n). We

take a holomorphic coordinate, z, on the sphere so that the irregular puncture is at z =∞
and the full puncture is at z = 0. The Young diagrams characterizing the irregular puncture,

Y1 = Y2 = [n− 1, 1] and Y3 = [2, · · · , 2, 1], imply that ϕ behaves near z =∞ as

ϕ ∼ dz

(
T1z + T2 +

T3

z
+ · · · ,

)
(B.6)

where, up to conjugations, T1 = diag(a, · · · , a,−(n−1)a), T2 = diag(b, · · · , b,−(n−1)b) and

T3 = diag(m1,m1,m2,m2, · · · ,mn−1
2
,mn−1

2
,−2

∑n−1
2

i=1 mi). On the other hand, near z = 0, ϕ

behaves as

ϕ ∼ dz

(
M

z
+ · · ·

)
, (B.7)

where M = diag(M1, · · · ,Mn) such that
∑n

i=1 Mi = 0. By a change of coordinates that

preserves the SW 1-form, the first two matrices can be mapped to T1 = diag(0, · · · , 0,−1)

and T2 = diag(0, · · · , 0,−b̃). Here, mi and Mi are identified as mass parameters, and b̃ is

identified as a relevant coupling of the type IV theory.

While the masses and couplings of the 4D theory are encoded in the singular terms

described above, the vacuum expectation values (vevs) of Coulomb branch operators are

encoded in less singular terms. To write down the most general expression for the curve

including these vevs, let us consider the first correction, U/z2, to the terms in the bracket

of (B.6), where we parameterize U as U = diag(u1 + v1, u1 − v1, · · · , un−1 + vn−1, un−1 −
vn−1,−2

∑n−1
2

i=1 ui). The parameters ui and vi are not fixed by the boundary conditions, but

they are partially restricted so that det(x − ϕz) has only integer powers of x and z. This
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condition implies that the most general expression for the curve 0 = det(x− ϕz) is

0 = xn + xn−1(z + b̃) +
n∑
i=2

xn−i
(

(z + b̃)
ti−1

zi−1
+
wi−1

zi−1
+
si
zi

)
. (B.8)

where si, ti and wi are combinations of the parameters such that
∏n

i=1

(
x− Mi

z

)
= xn +∑n

i=2 si
xn−i

zi
,
∏n−1

2
i=1

(
x− mi

z

)2
= xn−1 +

∑n
i=2 ti−1

xn−i

zi−1 and

1

z

n−1
2∑
i=1

ui
∏
j 6=i

(
x− mi

z

) n−1
2∏

k=1

(
x− mk

z

)
=

n∑
i=2

wi−1
xn−i

zi−1
. (B.9)

Note that the curve (B.8) can be rewritten as

0 =
n∏
i=1

(
x− Mi

z

)
+ z

n−1
2∏
i=1

(
x− mi

z

)2

+

b̃xn−1
2 +

n−1
2∑
i=1

ũi
x
n−1

2
−i

zi

 n−1
2∏
i=1

(
x− mi

z

)
, (B.10)

where ũi are defined by

b̃

n−1
2∏
i=1

(
x− mi

z

)
+

1

z

n−1
2∑
i=1

ui
∏
j 6=i

(
x− mi

z

)
= b̃x

n−1
2 +

n−1
2∑
i=1

ũi
x
n−1

2
−i

zi
. (B.11)

Curve of T (n)
0,n with n−1

2
fundamental hypers Let us now turn to the SW curve of the

ADn theory with n−1
2

extra fundamental hypermultiplets of SU(n). Our strategy is the same

as in Appendix B of [29], i.e., we start with the curve of ADn, weakly gauge its SU(n) flavor

symmetry, introduce n−1
2

extra fundamental hypermultiplets of SU(n), and then turn off the

SU(n) gauge coupling. The SW curve of ADn = D2(SU(n)) is [46]

0 = t2 + t

n−1
2∑
i=0

Uiw
i +

n∏
i=1

(w −Mi) , (B.12)

where Mi are the mass parameters associated with the SU(n) flavor symmetry and therefore

subject to
∑N

i=1Mi = 0, U0 is the relevant coupling of dimension 1
2
, and Ui for i ≥ 1 are the

vevs of Coulomb branch operators. The SW 1-form is given by λ = w dt
t

. When we weakly

gauge the SU(n) flavor symmetry, the curve becomes

0 = t2 + t

n−1
2∑
i=0

Uiw
i +

n∏
i=1

(w −Mi) +
Λ

3n
2

t
, (B.13)

where Λ is the corresponding dynamical scale, and Mi is identified with the vevs of the

Coulomb branch operators arising from the SU(n) vector multiplet. When we introduce n−1
2

extra fundamental hypermultiplets of SU(n), the curve becomes

0 = t2 + t

n−1
2∑
i=0

Uiw
n−1

2
−i +

n∏
i=1

(w −Mi) +
Λn+ 1

2

t

n−1
2∏
i=1

(w −mi) . (B.14)
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In terms of z ≡ t/
∏n−1

2
i=1 (w −mi) and x ≡ w/z, the curve is

0 = z

n−1
2∏
i=1

(
x− mi

z

)2

+

 n−1
2∑
i=0

Ui
x
n−1

2
−i

zi

 n−1
2∏
i=1

(
x− mi

z

)
+

n∏
i=1

(
x− Mi

z

)
+

Λn+ 1
2

zn+1
, (B.15)

and the 1-form is λ = xdz up to exact terms. We finally turn off the SU(n) gauge coupling

by setting Λ = 0. We then see that the resulting curve is precisely identical to the curve in

(B.10), where U0 is identified as b̃ and Ui for i ≥ 1 are identified as ũi. This strongly suggests

that the type IV theory discussed in the previous sub-section is identical to the ADn theory

with n−1
2

extra decoupled hyper multiplets of SU(n). The last identification then implies

the equivalence of T (n)
0,n,0 and the theory described by the quiver in Fig. 45.

B.1.3 Monopole dimension bounds

In this appendix, we argue that the dimensions of monopole operators in the 3D mirror

SCFTs associated with the R2,AD
0,n theories, ∆(Oi), satisfy the following bounds

∆ ≥

{
1
2
, n = 3

1 , n > 3 (n odd) .
(B.16)

This result is in agreement with our 4D index analysis in the main text. Indeed, we argued

that the R2,AD
0,n SCFT only has a decoupled free field sector for n = 3. Note that the linear

quiver discussion in [81] does not directly apply here since, as discussed around Fig. 26,

the mirror quiver contains a closed loop of nodes. Indeed, the fact that the n = 3 case has

free hypermultiplets even though it is “good” by the naive application of the criteria of [81]

motivates us to examine the case for general n more carefully.

While the bound for n = 3 follows from the mirror symmetry discussion in [32, 33] (and

also the analysis in [29]), we will prove the result in this case and also for all n > 3 directly

via an analytic monopole analysis in the mirror. To that end, the quantity we wish to bound

is

∆ = −

 n−1
2∑

A=1

∑
iA<jA

|a(A)
iA
− a(A)

jA
|+

n−1
2∑

B=1

∑
iB<jB

|b(B)
iB
− b(B)

jB
|+ |c1 − c2|


+

1

2

 n−3
2∑

A=1

∑
iA,jA+1

|a(A)
iA
− a(A+1)

jA+1
|+

n−3
2∑

B=1

∑
iB ,jB+1

|b(B)
iB
− b(B+1)

jB+1
|

+
1

2
(|c1|+ |c2|)

+
1

2

(∑
i,j

|a(n−1
2 )

i − b(
n−1

2 )
j |+

∑
i,j

|ci − a
(n−1

2 )
j |+

∑
i,j

|ci − b
(n−1

2 )
j |

)
, (B.17)

where iA, jA ∈ {1, · · · , 2A}, iB, jB ∈ {1, · · · , 2B}, and a(A) ∈ Z2A, b(b) ∈ Z2B, c ∈ Z2 label the

magnetic flux through each gauge node in the quiver (note that we have dropped subscripts
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1

2 c

n− 12A

a(A)

2 n− 1 2B

b(B)

2

Figure 46: We reproduce the quiver from Fig. 26 but rotated and with labels a(A) ∈
Z2A, b(B) ∈ Z2B, c ∈ Z2 denoting magnetic charges through the corresponding gauge nodes

(the nodes to the left of the central U(2) node have fluxes labeled by “a,” while those to the

right have fluxes labeled by “b”).

denoting the particular entry in the flux vector)—see Fig. 46. Note that the negative

contributions in (B.17) arise from the gauge nodes while the positive contributions arise

from the (bi)fundamentals.

The main strategy in proving (B.16) is repeated use of the triangle inequality to cancel

four positive matter contributions to ∆ against single gauge contributions (we perform the

cancelation between lines and the nodes that they end on). We will start from the leftmost

U(2) node in Fig. 46 and then inductively argue that we can cancel all the negative contri-

butions from all the nodes in the left tail up to and including negative contributions from

the U(n− 3) node that neighbors the left U(n− 1) node. By Z2 symmetry, the correspond-

ing negative contributions from the U(2) to U(n − 3) nodes from the right tail will also be

cancelled by corresponding matter contributions. We then move on to consider the core of

the quiver and prove (B.16).

Before continuing, let us note that we may always use Weyl transformations at each

gauge node to arrange that

a
(α)
1 ≥ a

(α)
2 ≥ · · · ≥ a

(α)
2α , b

(β)
1 ≥ b

(β)
2 ≥ · · · ≥ b

(β)
2β , c1 ≥ c2 , (B.18)

for all α, β ∈
{

1, 2, · · · , n−1
2

}
. This maneuver has the effect of removing absolute values from

gauge node contributions in (B.17). We may then write the contributions from the U(2A)

node as

∆ ⊃ −
A∑
i=1

(2(A− i) + 1)(a
(A)
i − a

(A)
2A+1−i) (B.19)

Note that there are A2 =
∑A

i=1(2(A− i) + 1) such contributions in total.

Inductive proof of the canceling of negative contributions from the quiver tails

Let us begin by focusing on the left quiver tail in Fig. 46. We start with the somewhat special
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U(2) contributions to ∆ and the contributions of the corresponding eight hypermultiplets in

the bifundamental of U(2)× U(4)

∆ ⊃ ∆2 = −(a
(1)
1 − a

(1)
2 ) +

1

2

∑
i,j

|a(1)
i − a

(2)
j | . (B.20)

We can cancel the negative contributions from U(2) against four hypermultiplet contributions

by using the triangle inequality twice

− (a
(1)
1 − a

(1)
2 ) +

1

2

(
|a(1)

1 − a
(2)
2 |+ |a

(1)
1 − a

(2)
3 |+ |a

(1)
2 − a

(2)
2 |+ |a

(1)
2 − a

(2)
3 |
)
≥ 0 (B.21)

This procedure leaves a surplus of four matter contributions we can use to cancel contribu-

tions from the adjoining U(4) node. Moreover, since we have not used matter contributions

involving a
(2)
1,4, we can use this surplus to cancel one of the most negative terms from U(4)

(i.e., one proportional to a
(2)
1 − a

(2)
4 ).

Let us now discuss the U(4) node and adjoining matter contributions more carefully.

Since this computation contains contributions from matter fields to the left and right of

the gauge node, we can use this discussion to build a base case for an inductive proof of

the positivity of contributions to ∆ from the left quiver tail. To that end, consider the

contributions

∆ ⊃ ∆4 = −
2∑
i=1

(2(2− i) + 1)(a
(2)
i − a

(2)
5−i) +

1

2

(
|a(1)

1 − a
(2)
1 |+ |a

(1)
1 − a

(2)
4 |+

+ |a(1)
2 − a

(2)
1 |+ |a

(1)
2 − a

(2)
4 |
)

+
1

2

∑
k,`

|a(2)
k − a

(3)
` | . (B.22)

We may use the surplus contributions in the second term above to cancel one of the contri-

butions from the U(4) gauge node so that

∆4 ≥ −(2(a
(2)
1 − a

(2)
4 ) + (a

(2)
2 − a

(2)
3 )) +

1

2

∑
k,`

|a(2)
k − a

(3)
` | . (B.23)

Let us now use twelve of the twenty-four U(4)×U(6) hypermultiplets to cancel the remaining

three negative U(4) contributions. To see how this cancelation is done, it is useful to visualize

the hypermultiplet contributions via a 4× 6 matrix with a “1” indicating an unused matter

contribution and a “0” indicating a used matter contribution. We start with

L4,6 =


1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

 . (B.24)

Our strategy is to leave as surplus the first and last columns while using the remainder of

the first and last rows (eight terms in all) to cancel the two U(4) contributions proportional
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to a
(2)
1 − a

(2)
4 (this is done via four applications of the triangle inequality). In other words,

we have

L4,6 →


1 0 0 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 0 0 0 0 1

 , (B.25)

which leads to the bound

−2(a
(2)
1 − a

(2)
4 ) +

1

2

(
[|a(2)

1 − a
(3)
2 |+ |a

(2)
1 − a

(3)
5 |+ |a

(2)
4 − a

(3)
2 |+ |a

(2)
4 − a

(3)
5 |]

+ [|a(2)
1 − a

(3)
3 |+ |a

(2)
1 − a

(3)
4 |+ |a

(2)
4 − a

(3)
3 |+ |a

(2)
4 − a

(3)
4 |]
)
≥ 0 (B.26)

We cancel the remaining negative contribution from U(4) by using the middle four entries

of L4,6 so that

L4,6 →


1 0 0 0 0 1

1 1 0 0 1 1

1 1 0 0 1 1

1 0 0 0 0 1

 . (B.27)

Indeed, we see that

− (a
(2)
2 − a

(2)
3 ) +

1

2
[|a(2)

2 − a
(3)
3 |+ |a

(2)
2 − a

(3)
4 |+ |a

(2)
3 − a

(3)
3 |+ |a

(2)
3 − a

(3)
4 |] ≥ 0 . (B.28)

This procedure leaves a surplus of 12 hypermultiplets we can use to cancel negative contri-

butions from U(6).

Now that we have shown how the negative U(2) × U(4) contributions in the left quiver

tail are cancelled, we can move on to the induction hypothesis in our proof. We assume that

all the negative contributions in U(1)× · · · × U(2A) have been canceled. In particular, the

A2 negative U(2A) contributions (see the discussion below (B.19)) have been canceled as

follows: A(A−1)
2

of them from U(2(A− 1))×U(2A) bifundamentals and A(A+1)
2

of them from

U(2A)× U(2(A+ 1)) bifundamentals.

Let us understand these statements in more detail. In particular, we should first focus

on the L2(A−1),2A generalization of (B.27) we get after finishing the cancelation of terms in

U(2(A − 1)). This matrix has its first column filled with 1’s. The next column has all 1’s

except in the first and last row which are 0. For 2 ≤ p ≤ A, the pth column consists of

zeros in positions i such that 1 ≤ i ≤ p− 1 and 2A− p ≤ i ≤ 2(A− 1) with 1’s everywhere

else. This discussion specifies half the matrix. The remaining half is set by demanding that

L2(A−1),2A is symmetric under reflections through a line running between columns A and

A+ 1, i.e.

L2(A−1),2A →


1 0 0 · · · · · · 0 0 1

1 1 0 · · · · · · 0 1 1
...

...
...

. . . . . .
...

...
...

1 1 0 · · · · · · 0 1 1

1 0 0 · · · · · · 0 0 1

 . (B.29)
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By using the 2A(A− 1) hypermultiplet contributions corresponding to the 1’s in (B.29), we

assume we cancel A(A−1)
2

of the negative U(2A) contributions via repeated applications of

the triangle innequality.

Next we move to L2A,2(A+1). This is a 2A × 2(A + 1) matrix full of 1’s. Now, as in the

U(4) case, we leave the first column alone. In the pth column, with 2 ≤ p ≤ A + 1, we set

to zero all rows i such that 1 ≤ i ≤ p− 1 and 2(A+ 1)− p ≤ i ≤ 2A. This procedure again

specifies the left half of the matrix. The right half is fixed by requiring the matrix to be

symmetric under reflection through a line running between columns A+ 1 and A+ 2, i.e.

L2A,2(A+1) →


1 0 0 · · · · · · 0 0 1

1 1 0 · · · · · · 0 1 1
...

...
...

. . . . . .
...

...
...

1 1 0 · · · · · · 0 1 1

1 0 0 · · · · · · 0 0 1

 . (B.30)

We have therefore set to zero 2A(A+1) entries, and we assume we can use the corresponding

hypermultiplet contributions to cancel the remaining A(A+1)
2

negative contributions in U(2A)

via repeated use of the triangle inequality.

Given these assumptions, we now show that we can cancel the negative contributions in

U(2(A+ 1)) and complete our inductive proof. The negative contributions in this case take

the form

∆ ⊃ −
A+1∑
i=1

(2(A+ 1− i) + 1)(a
(A+1)
i − a(A+1)

2(A+1)+1−i) (B.31)

Let us now focus on the matter contributions from the first and last columns in (B.30). We

have

1

2

(
[|a(A)

1 − a(A+1)
1 |+ |a(A)

1 − a(A+1)
2(A+1)|+ |a

(A)
2A − a

(A+1)
1 |+ |a(A)

2A − a
(A+1)
2(A+1)|]

+ [|a(A)
2 − a(A+1)

1 |+ |a(A)
2 − a(A+1)

2(A+1)|+ |a
(A)
2A−1 − a

(A+1)
1 |+ |a(A)

2A−1 − a
(A+1)
2(A+1)|]

+ · · ·+ [|a(A)
A − a

(A+1)
1 |+ |a(A)

A − a
(A+1)
2(A+1)|+ |a

(A)
A+1 − a

(A+1)
1 |+ |a(A)

A+1 − a
(A+1)
2(A+1)|]

)
≥ A(a

(A+1)
1 − a(A+1)

2(A+1)) , (B.32)

where, in the last line, we have repeatedly used the triangle inequality. Working inward, a

similar computation shows that the contributions from columns p and 2(A+ 1)− p+ 1 are

bounded from below by (A+1−p)(a(A+1)
p −a(A+1)

2(A+1)−p+1). Therefore, after using the 2A(A+1)

1’s in (B.30), we have the following remaining negative contributions from U(2(A+ 1))

∆ ⊃ −
A+1∑
i=1

(A+ 2− i)(a(A+1)
i − a(A+1)

2(A+1)+1−i) (B.33)

To cancel the remaining negative terms, we must use the U(2(A + 1)) × U(2(A + 2))

bifundamental contributions captured by L2(A+1),2(A+2). In particular, this latter matrix
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1

2

n− 1+ n− 1 +

2

2(n-1)
2(n-1)

(n− 1)2(n−3)(n−1)
2

(n−3)(n−1)
2

Figure 47: After cancelling the negative contributions from the left and right quiver tails, we

put a “+” in each corresponding node. We are left over with (n−3)(n−1)
2

surplus contributions

to ∆ from bifundamentals of U(n − 3) × U(n − 1) in each quiver tail, and this has been

encoded in the corresponding numbers on the tail links emanating from the U(n− 1) nodes.

The remaining numbers associated with the core links indicate the total number of unused

(bi)fundamental contributions to ∆.

has 1’s in all 2(A+ 1)× 2(A+ 2) entries. Let us use entries 2 through 2A+ 3 of the first and

last rows to cancel the −(A+ 1)(a
(A+1)
1 − a(A+1)

2(A+1)) contribution in (B.33). Indeed, we see

1

2

(
[|a(A+1)

1 − a(A+2)
2 |+ |a(A+1)

1 − a(A+2)
2A+3 |+ |a

(A+1)
2(A+1) − a

(A+2)
2 |+ |a(A+1)

2(A+1) − a
(A+2)
2A+3 |]

+ [|a(A+1)
1 − a(A+2)

3 |+ |a(A+1)
1 − a(A+2)

2(A+1)|+ |a
(A+1)
2(A+1) − a

(A+2)
3 |+ |a(A+1)

2(A+1) − a
(A+2)
2(A+1)|]

+ · · ·+ [|a(A+1)
1 − a(A+2)

A+2 |+ |a
(A+1)
1 − a(A+2)

A+3 |+ |a
(A+1)
2(A+1) − a

(A+2)
A+2 |+ |a

(A+1)
2(A+1) − a

(A+2)
A+3 |]

)
≥ (A+ 1)(a

(A+1)
1 − a(A+1)

2(A+1)) , (B.34)

where we have repeatedly used the triangle inequality. Proceeding in a similar fashion with

rows p and 2(A+ 1)− p+ 1 (but now using entries p+ 1 through 2(A+ 2)− p of each row),

we find that each contribution is bounded from below by (A+ 2− p)(a(A+1)
p − a(A+1)

2(A+1)+1−p).

Therefore, we have succeeded in cancelling all the negative contributions of U(2(A +

1)). Note that, after canceling the U(2(A + 1)) contributions, we have 2(A + 1)(A + 2)

contributions from bifundamentals of U(2(A+ 1))×U(2(A+ 2)) left over as surplus. By Z2

symmetry, we have now proven that all the non-core nodes of the quiver have their negative

contributions to ∆ canceled, and we are left over with (n−3)(n−1)
2

bifundamental contributions

of U(n− 3)× U(n− 1) in both gauge tails of Fig. 46. In particular, we have shown

∆ ≥ −

(∑
i<j

|a(n−1
2 )

i − a(n−1
2 )

j |+
∑
i<j

|b(
n−1

2 )
i − b(

n−1
2 )

j |+ |c1 − c2|

)

+
1

2

(∑
i,j∈Sa

|a(n−3
2 )

i − a(n−1
2 )

j |+
∑
i,j∈Sb

|b(
n−3

2 )
i − b(

n−1
2 )

j |

)
+

1

2
(|c1|+ |c2|)
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+
1

2

(∑
i,j

|a(n−1
2 )

i − b(
n−1

2 )
j |+

∑
i,j

|ci − a
(n−1

2 )
j |+

∑
i,j

|ci − b
(n−1

2 )
j |

)
, (B.35)

where the first line contains the only remaining negative contributions (i.e., those from the

core U(n− 1)× U(n− 1)× U(2) nodes of the quiver), the first two sums in the second line

are restricted to lie in the sets Sa,b that run over the surplus U(n − 3) × U(n − 1) nodes

in the left and right tails respectively (the “a” and “b” subscripts distinguish these tails),

and the final line contains bifundamentals from the core of the quiver. This discussion is

summarized in Fig. 47.

Analyzing the quiver core and proving (B.16) To complete our proof, we now proceed

to the quiver core in Fig. 47. In particular, let us begin by canceling some of the negative

contributions to ∆ from the left U(n− 1) node

∆ ⊃ −
n−1

2∑
i=1

(n− 2i)

(
a
(n−1

2 )
i − a(n−1

2 )
n−i

)
. (B.36)

First we use the remaining (n−3)(n−1)
2

bifundamental contributions of U(n− 3)×U(n− 1) as

in the discussion above (B.33) to cancel some of the U(n− 1) contributions and obtain

∆ ⊃ −
n−1

2∑
i=1

(
n+ 1

2
− i
)(

a
(n−1

2 )
i − a(n−1

2 )
n−i

)
. (B.37)

Without loss of generality, we may also choose to use the 2(n− 1) bifundamentals of U(2)×
U(n − 1) to cancel more of these negative contributions.140 Indeed, repeated use of the

triangle inequality shows that

1

2

∑
i

(
|c1 − a

(n−1
2 )

i |+ |c2 − a
(n−1

2 )
i |

)
≥

n−1
2∑
i=1

(
a
(n−1

2 )
i − a(n−1

2 )
n−i

)
. (B.38)

As a result, we have that the remaining negative contributions from U(n− 1) are

∆ ⊃ −
n−3

2∑
i=1

(
n− 1

2
− i
)(

a
(n−1

2 )
i − a(n−1

2 )
n−i

)
. (B.39)

Let us now use some of the U(n − 1) × U(n − 1) bifundamentals to cancel the remaining

negative contributions in (B.39). To that end, consider using entries 2 through n− 2 in the

first and last rows of Ln−1,n−1. We have

1

2

(
[|a(n−1

2 )
1 − b(

n−1
2 )

2 |+ |a(n−1
2 )

1 − b(
n−1

2 )
n−2 |+ |a

(n−1
2 )

n−1 − b(
n−1

2 )
2 |+ |a(n−1

2 )
n−1 − b(

n−1
2 )

n−2 |]

140This choice of cancellation will make some of the later inequalities we derive look less manifestly Z2

symmetric, but this choice does not affect the final result.
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+ [|a(n−1
2 )

1 − b(
n−1

2 )
3 |+ |a(n−1

2 )
1 − b(

n−1
2 )

n−3 |+ |a
(n−1

2 )
n−1 − b(

n−1
2 )

3 |+ |a(n−1
2 )

n−1 − b(
n−1

2 )
n−3 |]

+ · · ·+ [|a(n−1
2 )

1 − b(
n−1

2 )
n−1

2

|+ |a(n−1
2 )

1 − b(
n−1

2 )
n+1

2

|+ |a(n−1
2 )

n−1 − b(
n−1

2 )
n−1

2

|+ |a(n−1
2 )

n−1 − b(
n−1

2 )
n+1

2

|]
)

≥
(
n− 1

2
− 1

)(
a
(n−1

2 )
1 − a(n−1

2 )
n−1

)
(B.40)

Similarly, we see that the contributions from rows p ≥ 2 and n− p are bounded from above

by
(
n−1

2
− p
)(

a
(n−1

2 )
p − a(n−1

2 )
n−p

)
. As a result, we have countered all negative contributions

from the left U(n− 1) node.

We must still counter the negative contributions from the remaining U(n−1)×U(2) nodes

with contributions from 2(n− 1) bifundamentals of U(n− 1)×U(2), n(n−1)
2

bifundamentals

of U(n−1)×U(n−1), and (n−3)(n−1)
2

bifundamentals of U(n−1)×U(n−3) (from the right

quiver tail in Fig. 47). Proceeding in analogy with the discussion for the other U(n − 1)

node in (B.37), we use the remaining U(n− 1)×U(n− 3) bifundamentals to get rid of some

of the U(n− 1) contributions. We are left with

∆ ⊃ −
n−1

2∑
i=1

(
n+ 1

2
− i
)(

b
(n−1

2 )
i − b(

n−1
2 )

n−i

)
. (B.41)

Now we may use the remaining contributions from the U(n− 1)×U(n− 1) bifundamentals

to cancel the negative contribution in (B.41).141

We start with the first and last columns of 1’s remaining in Ln−1,n−1 and find the following

bound via repeated uses of the triangle inequality

1

2

(
[|a(n−1

2 )
1 − b(

n−1
2 )

1 |+ |a(n−1
2 )

1 − b(
n−1

2 )
n−1 |+ |a

(n−1
2 )

n−1 − b(
n−1

2 )
1 |+ |a(n−1

2 )
n−1 − b(

n−1
2 )

n−1 |]

+ [|a(n−1
2 )

2 − b(
n−1

2 )
1 |+ |a(n−1

2 )
2 − b(

n−1
2 )

n−1 |+ |a
(n−1

2 )
n−2 − b(

n−1
2 )

1 |+ |a(n−1
2 )

n−2 − b(
n−1

2 )
n−1 |]

+ · · ·+ [|a(n−1
2 )

n−1
2

− b(
n−1

2 )
1 |+ |a(n−1

2 )
n−1

2

− b(
n−1

2 )
n−1 |+ |a

(n−1
2 )

n+1
2

− b(
n−1

2 )
1 |+ |a(n−1

2 )
n+1

2

− b(
n−1

2 )
n−1 |]

)
≥

(
n− 1

2

)(
b
(n−1

2 )
1 − b(

n−1
2 )

n−1

)
(B.42)

Similarly, we find that the remaining contributions from columns p ≥ 2 and n − p can be

bounded from above as
(
n+1

2
− p
)(

b
(n−1

2 )
p − b(

n−1
2 )

n−p

)
. Therefore, we cancel all the remaining

negative contributions in (B.41).

We are left with one final source of negative contributions, those from the top U(2) node

∆ ⊃ −(c1 − c2) . (B.43)

141Note that we have more such bifundamentals left over than we used in the cancelation of the contributions

from the left U(n− 1) node since we chose to use the left U(2)×U(n− 1) bifundamentals in the cancelation

of the contributions from the left U(n− 1) node.
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However, we still have all 2(n− 1) bifundamentals of the right U(2)×U(n− 1) left to cancel

them. This is more than enough since

1

2

(
|b(

n−1
2 )

n−1
2

− c1|+ |b
(n−1

2 )
n−1

2

− c2|+ |b
(n−1

2 )
n+1

2

− c1|+ |b
(n−1

2 )
n+1

2

− c2|
)
≥ c1 − c2 . (B.44)

As a result, we have proven that

∆ ≥ 1

2
(|c1|+ |c2|) +

1

2

∑
j 6=n±1

2
,i

|ci − b
(n−1

2 )
j | . (B.45)

While our choice of cancelation below (B.37) has the effect of making this inequality less

manifestly Z2 symmetric (the contributions of the “a” side of the quiver have already been

taken into account in the above bound), this choice does not affect our conclusions.

To prove (B.16), we need only consider a few simple cases. For c1 = c2 = 0, we know that

all monopole operators have ∆ ≥ 1 by [81] since the quiver effectively reduces to a linear

quiver and all nodes are “good.” Moreover, if |ci| ≥ 2 for either i = 1 or i = 2, then clearly

∆ ≥ 1. Similar statements hold if |c1| = |c2| = 1. Therefore, we need only consider the case

where, without loss of generality, |c1| = 1 and c2 = 0. We then have

∆ ≥ 1

2
+

1

2

∑
j 6=n±1

2

|b(
n−1

2 )
j |+ 1

2

∑
j 6=n±1

2

|c1 − b
(n−1

2 )
j | (B.46)

For n = 3, this bound reduces to (B.16) since the second and third terms are trivial. For

n > 3, if we choose any of the b
(n−1

2 )
j 6= 0, then ∆ ≥ 1 due to contributions from the second

term in (B.46). However, if we set all b
(n−1

2 )
j = 0, then the third term leads to ∆ ≥ 1.

Therefore, we have proven (B.16).

B.2 For discrete gauge theories

B.2.1 Wilson line a × b = c in gauge theories with order forty-eight discrete

gauge group

Let us study groups of order 48 for which the corresponding discrete gauge theories have

Wilson line a× b = c type fusions142.

(48, 15) ((Z3 ×D8) o Z2);

W22 ×W24 = W4 , W22 ×W25 =W4 , W23 ×W24 =W4 , W23 ×W25 =W4

142We won’t discuss the direct product groups S3 × S3, D8 × S3 and Q8 × S3 which also have such fusions

(the corresponding discrete gauge theories factorize). Since we have already discussed the case of BOG and

GL(2, 3), we won’t be discussing them here
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W24 ×W26 = W4 , W24 ×W27 =W4 , W25 ×W26 =W4 , W25 ×W27 =W4 .(B.47)

We have Out((Z3 × D8) o Z2) = Z2 × Z2. Let r1 and r2 be the generators of this group.

They act on the Wilson lines involved in the fusion above as follows

r1 :W22 ↔W22 ; W23 ↔W23 ; W24 ↔W24 ; W25 ↔W25 ; W26 ↔W27 ; (B.48)

r1 :W22 ↔W22 ; W23 ↔W23 ; W24 ↔W25 ; W26 ↔W26 ; W27 ↔W27 ; (B.49)

Since this group has complex characters we also have a non-trivial quasi-zero-form symmetry

given by complex conjugation. Z(Vec(Z3×D8)oZ2) also has all other a × b = c type fusions

(involving fluxes and dyons) discussed in this paper.

(48, 16) ((Z3 : Q8) o Z2); This has fusions identical to (B.47). The only difference is that

now W24 and W25 are conjugates. The outer automorphism group and symmetry action

is identical to Z(Vec(Z3×D8)oZ2). Since this group has complex characters we also have a

non-trivial quasi-zero-form symmetry given by complex conjugation. We additionally have

all other a× b = c type fusions (involving fluxes and dyons) discussed in this paper.

(48, 17) ((Z3×Q8)oZ2); This has identical character table to (48, 16), so same fusion rules.

The properties are identical to the two cases above.

(48, 18) (Z3 o Q16); Identical characters to (48, 15), so shares (B.47). The discussion is

identical to the case above.

(48, 39) ((Z4 × S3) o Z2);

W21 ×W25 = W4 , W21 ×W26 =W4 , W22 ×W25 =W4 , W22 ×W26 =W4

W23 ×W25 = W4 , W23 ×W26 =W4 , W24 ×W25 =W4 , W24 ×W26 =W4 .(B.50)

We have Out((Z4×S3)oZ2) = Z2×Z2. Let r1 and r2 be the generators of this group. They

act on the Wilson lines involved in the fusion above as follows

r1 :W21 ↔W21 ; W22 ↔W22 ; W23 ↔W23 ; W24 ↔W24 ; W25 ↔W26 ; (B.51)

r1 :W21 ↔W22 ; W23 ↔W23 ; W24 ↔W24 ; W25 ↔W25 ; W26 ↔W26 ; (B.52)

Since this group has complex characters we also have a non-trivial quasi-zero-form symmetry

given by complex conjugation. Z(Vec(Z4×S3)oZ2) also have all other a × b = c type fusions

(involving fluxes and dyons) discussed in this paper.

(48, 41); ((Z4 × S3) o Z2)

Fusion of Wilson lines giving unique output is same as (B.50). We have Out((Z4×S3)o
Z2) = D12.

Since this group has complex characters we also have a non-trivial quasi-zero-form sym-

metry given by complex conjugation. Z(Vec(Z4×S3)oZ2) also have all other a × b = c type

fusions (involving fluxes and dyons) discussed in this paper.
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B.2.2 Genuine zero-form symmetries and quasi-zero-form symmetries in A9 dis-

crete gauge theory

Recall from section 4.2.1 that A9 is the simplest example of an AN (with N = k2 ≥ 9)

discrete gauge theory with fusion rules involving non-abelian Wilson lines having unique

outcome. Here our goal is to disentangle the genuine zero form symmetries

Autbr(Z(VecA9)) ' H2(A9, U(1)) o Out(A9) ' Z2 × Z2 , (B.53)

from a charge conjugation quasi zero-form symmetry [58].

Let us first discuss the outer automorphisms. To that end, recall that A9 has an outer

automorphism corresponding to conjugation by odd elements of S9 . A9. Acting with the

outer automorphism generated by (89) ∈ S9, we see that the following lines are exchanged

L([(123456789)],πp) ↔ L([(123456798)],πp) , L([(12345)(678)],πn) ↔ L([(12345)(679)],πn) , (B.54)

where the relevant conjugacy classes are listed in table 3, and 0 ≤ p ≤ 8, 0 ≤ n ≤ 14 label

representations of the corresponding Z9 and Z14 centralizers (they are also listed in table 3).

In fact, as described in the main text, the symmetry in (B.54) generates an action on

some of the Wilson lines involved in (4.20)

W[33]+ ↔W[33]− . (B.55)

This action can be read off from the character table of A9 or, equivalently, from the braiding

SW[33]+
L([(12345)(678)],πn)

SW1L([(12345)(678)],πn)

= χ[33]+([(12345)(678)])∗ = −1

2
(1− i

√
15) ,

SW[33]−
L([(12345)(678)],πn)

SW1L([(12345)(678)],πn)

= χ[33]−([(12345)(678)])∗ = −1

2
(1 + i

√
15) ,

SW[33]+
L([(12345)(679)],πn)

SW1L([(12345)(679)],πn)

= χ[33]+([(12345)(679)])∗ = −1

2
(1 + i

√
15) ,

SW[33]−
L([(12345)(679)],πn)

SW1L([(12345)(679)],πn)

= χ[33]−([(12345)(679)])∗ = −1

2
(1− i

√
15) . (B.56)

Note that, since the [(12345)(678)] and [12345)(679)] conjugacy classes are complex, we

also have a non-trivial Z2 charge conjugation that acts on the modular data and swaps

W[33]+ ↔W[33]− and L([(123456789)],πp) ↔ L([(123456798)],πp). Recall from the discussion in (4.55)

that elements of H2(A9, U(1)) ' Z2 act trivially on the Wilson lines. Hence, we learn

that charge conjugation cannot be a genuine symmetry of the TQFT (this statement is also

confirmed by the analysis in [58]).

However, this is not a contradiction with what we have written, because Out(A9) also

interchanges the real conjugacy classes [(123456789)] and [(123456798)] along with the corre-

sponding lines in (B.54). Since charge conjugation leaves these degrees of freedom untouched,

it is a distinct operation.
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Conjugacy class Length Centralizer

1 1 A9

[(12)(34)] 378 SmallGroup(480, 951)

[(12)(34)(56)(78)] 945 SmallGroup(192, 1493)

[(123)] 168 SmallGroup(1080, 487)

[(123)(45)(67)] 7560 SmallGroup(24, 10) , (D8 × Z3)

[(123)(456)] 3360 SmallGroup(54, 13)

[(123)(456)(789)] 2240 SmallGroup(81, 7) , ((Z3 × Z3 × Z3) o Z3)

[(1234)(56)] 7560 SmallGroup(24, 5) , (S3 × Z4)

[(1234)(567)(89)] 15120 SmallGroup(12, 2) , (Z12)

[(1234)(5678)] 11340 SmallGroup(16, 13) , (central product D8, Z4)

[(12345)] 3024 SmallGroup(60, 9)

[(12345)(67)(89)] 9072 SmallGroup(20, 5) , (Z10 × Z2)

[(12345)(678)] 12096 SmallGroup(15, 1) , (Z15)

[(12345)(679)] 12096 SmallGroup(15, 1) , (Z15)

[(123456)(78)] 30240 SmallGroup(6, 2) , (Z6)

[(1234567)] 25920 SmallGroup(7, 1) , (Z7)

[(123456789)] 20160 SmallGroup(9, 1) , (Z9)

[(123456798)] 20160 SmallGroup(9, 1) , (Z9)

Table 3: The eighteen conjugacy classes of A9, their order, and their centralizers (recall that

the centralizers of elements in the same conjugacy class are isomorphic). The centralizer

is labeled by its GAP ID (for sufficiently small groups) as “SmallGroup(a, b)” along with a

more common name in certain cases.
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Note that in the A9 discrete gauge theory we can also turn on a large variety of twists

ω ∈ H3(A9, U(1)) ' Z2 × Z2
3 × Z4 ' Z6 × Z12 . (B.57)

Since the charge conjugation quasi-symmetry is a property of the Wilson line fusion rules,

it remains regardless of the twist.

B.2.3 GAP code

The following GAP code defines the function checkdyon() which takes in a group as an

argument. It checks for a × b = c type fusions for non-abelian anyons a, b, c ∈ Z(VecG)

and ouputs all such fusions. Moreover, if such fusions exist, it outputs Out(G) as well as

H2(G,U(1)). Note that it requires the package HAP to function.

In order to define checkdyon() we need to first define the functions comconj() and con-

jprof().

> conjcom:=function(a,b)

> local com,i,j;

> com:=[];

> for i in [1..Size(AsList(a))] do

> for j in [i..Size(AsList(b))] do

> Append(com, [AsList(a)[i]*AsList(b)[j]*Inverse(AsList(b)[j]*AsList(a)[i])]);

> od; od;

> return DuplicateFreeList(com)=[AsList(a)[1]*Inverse(AsList(a)[1])]; end;

This function takes two conjugacy classes of a group G as inputs and outputs true if they

commute element-wise and false otherwise. Now, let us define the function conjprod()

> conjprod:=function(a,b,c)

> local prod,i,j,k;

> prod:=[];

> for i in [1..Size(AsList(a))] do

> for j in [i..Size(AsList(b))] do

> for k in [1..Size(c)] do

> if AsList(a)[i]*AsList(b)[j] in AsList(c[k]) then

> Append(prod, [k]); break; fi; od; od; od;

> if Size(DuplicateFreeList(prod))=1 then

> return DuplicateFreeList(prod)[1]; else return 0; fi; end;

This function takes three arguments. The first two arguments a, b are two conjugacy classes

of a group G and the third argument c is the set of all conjugacy classes of G. The function
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outputs an integer k > 1 if the product of two input conjugacy is a single conjugacy class

(which is at position k in the list of conjugacy classes c). The function outputs 0 otherwise.

Using these two functions, we finally define the checkdyon() function.

checkdyon:=function(G)

> local cn,i,j,k,a,l,cen1,cen2,cen3,cenint,irrcenint,irrcen1,irrcen2,irrcen3,

cen1res,cen2res,cen3res,x,y,z,w,a1,a2,A,I,F,R;

> cn:=ConjugacyClasses(G);

> a:=0;

> for i in [1..Size(cn)] do

> for j in [i..Size(cn)] do

> if conjcom(cn[i],cn[j]) then

> k:=conjprod(cn[i],cn[j],cn);

> if k<>0 then

> cen1:=Centralizer(G,AsList(cn[i])[1]);

> cen2:=Centralizer(G,AsList(cn[j])[1]);

> cen3:=Centralizer(G,AsList(cn[k])[1]);

> cenint:=Intersection(cen1,cen2,cen3);

> irrcen1:=Irr(cen1);

> irrcen2:=Irr(cen2);

> irrcen3:=Irr(cen3);

> cen1res:=RestrictedClassFunctions(irrcen1,cenint);

> cen2res:=RestrictedClassFunctions(irrcen2,cenint);

> cen3res:=RestrictedClassFunctions(irrcen3,cenint);

> irrcenint:=Irr(cenint);

> for x in [1..Size(cen1res)] do

> for y in [1..Size(cen2res)] do

> if Size(AsList(cn[i]))*DegreeOfCharacter(cen1res[x])>1 and

Size(AsList(cn[j]))*DegreeOfCharacter(cen2res[y])>1 then
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> for z in [1..Size(cen3res)] do

> a1:=[ ]; a2:=[ ];

> for w in [1..Size(irrcenint)] do

> Append(a1,[ScalarProduct(irrcenint[w],cen1res[x]*cen2res[y])]);

> Append(a2,[ScalarProduct(irrcenint[w],cen3res[z])]);

> od;

> if a1*a2=1 and

Size(AsList(cn[i]))*DegreeOfCharacter(cen1res[x])*

Size(AsList(cn[j]))*DegreeOfCharacter(cen2res[y])=

Size(AsList(cn[k]))*DegreeOfCharacter(cen3res[z]) then

> a:=1;

> Print(IdSmallGroup(G), “ ”, StructureDescription(G), “\n”);

> Print(“Anyon a: ”, cn[i], “ , ”, irrcen1[x], “\n”);

> Print(“Anyon b: ”, cn[j], “ , ”, irrcen2[y], “\n”);

> Print(“Anyon c: ”, cn[k], “ , ”, irrcen3[z], “\n”,”\n”);

> fi; od; fi; od;od; fi; fi; od; od;

> if a=1 then

> A:=AutomorphismGroup(G);

> I:=InnerAutomorphismsAutomorphismGroup(A);

> F:=FactorGroup(A,I);

> Print(“Out(G): ”,StructureDescription(F), “\n”);

> R:=ResolutionFiniteGroup(G,3);

> Print(“H2(G,U(1)): ”,Homology(TensorWithIntegers(R),2),“\n”);

> Print(“\n”,“\n”); fi;

> end;
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