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The brushwood we gather – stack it together, it makes a hut; pull it

apart, a field once more. We find beauty not in the thing itself but

in the patterns of shadows, the light and the darkness, that one thing

against another creates. Were it not for shadows, there would be no

beauty.

– Junichirō Tanizaki, In praise of shadows

One day I will find the right words, and they will be simple.

– Jack Kerouac, The Dharma Bums
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Abstract

In contrast to the more standard approach of furthering the program of black hole

microstates using holography, this thesis instead uses developments in black hole mi-

crostates to learn about questions of holography.

We derive the connected tree-level part of 4-point holographic correlators in AdS3 ×
S3×M4 (whereM4 is T 4 or K3) involving two multi-trace and two single-trace oper-

ators. These connected correlators are obtained by studying a heavy-heavy-light-light

(HHLL) correlation function in the formal limit where the heavy operators become

light (LLLL). These results provide a window into higher-point holographic correlators

of single-particle operators. We find that the correlators involving multi-trace opera-

tors are compactly written in terms of Bloch-Wigner-Ramakrishnan functions. We also

extract anomalous dimensions and 3-point couplings for the non-BPS minimal twist

double-trace operators at order 1/c and find some positive anomalous dimensions at

spin zero and two in the K3 case.

This is followed by a study of the Regge limit of various HHLL and LLLL AdS3

holographic 4-point correlators, in the tree-level supergravity approximation, providing

explicit checks of the relation between bulk eikonal phases and anomalous dimensions

of certain double-trace operators. The pure heavy operators considered, dual to asymp-

totically AdS3×S3 regular geometries, have conformal dimensions proportional to the

central charge. Deviation from AdS3 × S3 is parametrised by a scale µ, related to

the heavy operator’s conformal dimension. We work perturbatively in µ and derive

all-order relations between the bulk phase shift and the Regge limit OPE data of a

class of heavy-light multi-trace operators exchanged in the cross-channel. Specifically,

we show that the minimal solution to the crossing equations relevant for the conical

defect geometries is different to that for the microstate geometries dual to pure states.
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Chapter 1

Introduction

1.1 What is a black hole?

Solving the gravitational field equations exactly was likely to be impossible, Albert

Einstein concluded on completing the theory of general relativity (GR). Having only

found approximate solutions himself, just over a month after publishing the paper

detailing their final form, Karl Schwarzschild released an exact solution to the vacuum

Einstein field equations in four dimensions1

ds2 = −
(

1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2
(
dθ2 + sin2θ dφ2

)
, (1.1)

for a mass M at the origin r = 0 (using spherical coordinates θ, φ). Decades later, it was

understood that the Schwarzschild solution describes not only the spacetime around a

point mass, but also a black hole. Coined in the late 60s by John Wheeler, this term

refers to a body with enough mass to gravitationally trap light within a region, which

for the Schwarzschild black hole is

r < rH = 2GNM . (1.2)

The global (causal) structure of the Schwarzschild solution, and other black hole solu-

tions subsequently discovered, rigorously defines the concept of such event horizons [4,5]

– at which (1.1) suggests something special should happen. For a local observer, how-

ever, the horizon of a large enough black hole in general relativity is an unremarkable

place despite the sealed fate of such an intrepid (or daft) explorer. The condition

on the size of the black hole is to remove the separate issue of tidal forces at hori-

zon scales of small black holes – this is because such tidal stretching and compression

scales [4] as ∼ r−2
H . Despite the diverging nature of one of the metric components in

1Throughout this thesis, the mostly plus convention for the metric is used, along with units in which
c = ~ = kB = 1.
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CHAPTER 1. INTRODUCTION

(1.1), it is suggested from the Kretschmann quadratic invariant – one particular gauge-

invariant measure of curvature – that there is no region of diverging curvature around

the Schwarzschild horizon

K ≡ RµνσρRµνσρ ∼
G2
NM

2

r6
, (1.3)

and the diverging of metric components of (1.1) at r = rH is only symptomatic of

poorly chosen coordinates with which to describe the geometry. Despite this reassuring

discovery, the origin at r = 0 in (1.1) is a place of divergent curvature – a true curvature

singularity. In spite of the ominous nature of singularities in spacetime, from an effective

field theory perspective it is not surprising that such singularities exist in GR – and

due to various singularity theorems [5], are inevitable. Since the regime of validity

of GR breaks down near the predicted singularity, where curvatures become of the

order2 1/`2pl, it is expected that they are resolved in any consistent theory of quantum

gravitational phenomena.

One approach to this problem is string theory, which at the most basic level, aims

at generalising quantum field theory (QFT) to a theory of extended strings rather than

point particles (see [6–8] for an introduction, here we give simply some qualitative facts

relevant to black holes in string theory). The length scale at which string effects become

important is the string length `s = α′ 1/2 ∼ T−1/2
F1 where TF1 is the fundamental string

(F1) tension and α′ is know as the Regge slope or inverse tension parameter. String

theory does not a priori set a (fixed) hierarchy between the string and Planck scales

though they are expected to be of similar orders. By considering graviton scattering

one finds that the strength of gravity in 10-dimensions scales as G
(10)
N ∼ g2

sα
′ 4 where

gs is the string coupling3 and so the tension scales as TF1 ∼ g
1/2
s (G

(10)
N )−1/4. The

perturbative string description of string theory (valid4 for small α′ and small gs) was

later supplemented by the discovery of non-perturbative (p+1)-dimensional extended

objects called Dp-branes. Unlike the energy of fundamental strings, D-branes have an

energy (or tension) scaling with5 g−1
s and so within perturbative string theory they

are very massive. D-branes are thus solitonic in nature, not visible as intermediate

states in perturbative string scattering (hence why they were missed for many years),

2The natural scale with dimensions of length at which quantum gravitational phenomena become

important is the Planck length, defined in terms of other fundamental constants as `pl =
√

GN~
c3
∼

10−35m or in the natural units adopted here `pl = G
1/2
N . Equivalently, one can use the energy scale of

the Planck mass Mpl = G
−1/2
N .

3Note that gs is not a free parameter of the theory since it is set by the background value of the
dilaton scalar field φ0 via gs = eφ0 .

4The expansion in gs is a “loop” expansion and that in α′ controls the massive higher string mode
excitations.

5The full scaling of the physical Dp-brane tension depends on the value of p, i.e. the number of
spatial dimensions in which the brane is extended, and is given by Tp ∼ g−1

s α′ −(p+1)/2.
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CHAPTER 1. INTRODUCTION

but change the background around which one does perturbation theory if placed in a

system. Supergravity becomes a good low energy effective description of the massless

degrees of freedom of perturbative string theory when the massive string modes and

string loops are neglectable – this is the case for gs � 1 and energies much lower than

the scale of α′. In this regime, the induced theory on the world volume of a D-brane (or

a bound state of many coincident branes) is a gauge theory (the gauge group depends

on the number and type of branes forming the bound state). Being very massive in this

regime, a stack of many D-branes will backreact on the background spacetime in which

they are placed producing a black hole metric. The black hole will generically have

a number of charges associated to the various background gauge fields that couple to

the D-branes used. Thus it is that black holes can be studied in string theory, though

not just at the level of the classical metric. We will be interested in a particular black

hole, arising from the bound state of two types of D-branes, after a brief detour to the

semi-classical entropy of black holes.

1.1.1 Black hole entropy and the information problem

In the early 1970s, a picture of black holes was emerging that they could be thought

of as thermodynamic objects. Some gravitational quantities appeared to behave like

particular thermodynamic counterparts, as emphasised in the laws of black hole me-

chanics [9]. Most notably, the surface gravity of the black hole (a measure of the

non-affine parametrisation of the null geodesics generating the horizon) behaved as a

temperature (i.e. it is constant over the horizon) and the horizon area (which is non-

decreasing in any process, shown for the Kerr black hole in [10]) as a thermodynamical

entropy. These analogies were further solidified in 1975 with Hawking’s semi-classical

computation in [11] of a scalar quantum field propagating in a collapsing black hole

background. This demonstrated that, due to the formation of a smooth classical hori-

zon, an asymptotic observer sees an approximately thermal flux of particles from the

region around the black hole horizon. Thus, the black hole has a physical temperature

and so from [9], an intrinsic entropy

S =
A

4GN
, (1.4)

for a horizon surface area A. Two interesting comments on this result are: firstly, this

entropy does not scale with the size (volume) of the system as is expected from a ther-

modynamically extrinsic quantity, and secondly, when solving the equations of a theory

exactly, it is not expected that there will be an entropy associated to it. From the sta-

tistical mechanics point of view the immediate question is: where are the corresponding

eS microstates of this system, a coarse-graining of which yields the entropy (1.4)? The

no-hair theorems in GR appear to contradict this observation, since they demand that

10



CHAPTER 1. INTRODUCTION

a black hole can only be described by its mass, angular momentum and charges; cer-

tainly this doesn’t allow for eS states. Another consequence of Hawking’s calculation is

that a black hole is not black; it radiates and through this so-called Hawking process,

the black hole will lose mass, albeit slowly.

Thus it seems that classical black hole solutions of general relativity predict their

own (ill) fortune; not only due to the presence of a singularity indicating a breakdown

of the theory, but also by the existence of a horizon which necessarily yields Hawking

radiation. This latter point, however, gives rise to potentially a far greater problem

than loss of control over our effective theory. Assuming semi-classical local physics in

the region around a smooth horizon, it then appears that the process of black hole

formation from a prepared pure state of matter, followed by evaporation of the black

hole via the Hawking process into a thermal state of radiation (a mixed state), is not

unitary [12]. A natural conjecture is then that, since quantum gravity effects become

important in the late stages of collapse, a consistent quantum gravitational analysis

would generate corrections to the semi-classical result of Hawking. In fact, by the

small corrections theorem of [13], it transpires that exactly these types of corrections

cannot be sufficient to resolve the issue at hand. With these points in mind, it is natural

to expect that in the UV-complete theory something steps in to make large corrections

to the story outlined above.

Paradigms of resolution to this issue are generally via the use of non-local phenom-

ena (see for instance [14–16] and references therein), or by appealing to remnants6 of

various kinds (see for instance [17] for a review of some of these ideas). All proposed

resolutions to date have issues and critiques, some of which can be found in [18,19].

1.2 The fuzzball paradigm

Another such method of resolution is that of the fuzzball paradigm [20]. It argues

that the classical black hole is instead replaced by a string theory motivated “compact

object” at a scale slightly above horizon scales, which is stable by dint of non-trivial

topology. In this framework, the classical black hole is treated as a thermal ensemble

of fuzzballs – these act as microstates to the black hole. The introduction of horizon-

scale microstructure in general relativity would always be in tension with the Buchdahl

inequality [21, 22] which states that, under ‘reasonable’ assumptions, a spherically-

symmetric and static distribution of matter will collapse to a black hole for radii

r < rB =
9

4
GNM . (1.5)

6A remnant refers to a wide class of ideas that somehow stabilise the evaporating black hole once it
nears the end point of this process, or otherwise argues for the final state having a subsystem containing
the information of the initial collapse that formed the black hole.
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CHAPTER 1. INTRODUCTION

By comparison with (1.2), this Buchdahl radius rB is larger than the Schwarzschild

radius with rB − rH = 1
4GNM – certainly as compared with the fuzzball length scale

rfuzzball − rH ∼ GN`pl , (1.6)

where `pl ∼ 10−35m is the Planck length. Of course, as with all theorems, the applica-

bility of the Buchdahl bound hangs on the validity of its assumptions. Being a proposal

within the framework of string theory, not GR, the fuzzball paradigm is able to escape

the clutches of the Buchdahl theorem.

Emerging from string theory, fuzzballs are inherently quantum in nature and so

do not admit a nice semi-classical description. However, certain coherent state-like

objects will be well approximated by a solution to the relevant low energy effective

theory: these states are generally referred to as microstate geometries and should have

the asymptotic charges of the classical black hole and be horizon-less and non-singular.

1.2.1 The microstate geometry program

The best studied example in which to apply this framework is that of the D1-D5-

P system in Figure 1.1. The general overarching setting is type IIB string theory on

R1,4×S1
y×M4 where the radius of the S1

y is left unfixed and the four compact directions

of M4 are taken to be string scale (one can consider either M4 = T 4 or K3). We use

the coordinates (t, xa) for the R1,4, y for the S1
y and zi for theM4. In this background

are placed n1 D1-branes and np units of momentum on the S1
y , along with n5 D5-

branes on S1
y ×M4. This system is 1/8-BPS7 relative to the 32 real supercharges of

the parent string theory – the two types of D-branes are each 1/2-BPS and the left-

moving momentum excitations breaks half of what remains. The metric part of the

supergravity solution describing this system is given in 6D by8

ds2 =
1√
Z1Z5

(
− Z −p dt2 + Z +

p dy
2 +

2Qp
r2

dtdy

)
+
√
Z1Z5 ds

2
R4 ,

Z1 = 1 +
Q1

r2
, Z5 = 1 +

Q5

r2
, Z ±p = 1± Qp

r2
,

(1.7)

where ds 2
R4 is the flat metric on R4 and the supergravity charges Q1, Q5 and Qp are

related to the number of D1-branes, D5-branes and units of momentum via

Q1 = n1
gs α

′ 3

V4
, Q5 = n5 gs α

′ , Qp = np g
2
s α
′ 4 , (1.8)

7This is shorthand for the state saturating the Bogomol’nyi–Prasad–Sommerfield bound for 1/8 of
the supersymmetries of the theory. This fraction of the supersymmetries are not spontaneously broken
by the state.

8We neglect the four compact directions of M4 since all quantities we consider will not depend on
them.
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CHAPTER 1. INTRODUCTION

n5,D5

n1,D1

M4

R4

(t, y)

Pleft

Figure 1.1: The D1-D5-P system in type IIB string theory compactified on R1,4 ×
S1
y ×M4 consists of many stacked D1- and D5-branes, both of which are wrapped along

the macroscopic S1
y and the latter of which are also wrapped on the microscopic M4

directions. Left-moving momentum excitations are also added along the S1
y direction.

where V4 is the volume of the compact 4-manifoldM4. The asymptotically flat metric

(1.7) will be referred to as the 3-charge black hole and yields the 5-dimensional 3-charge

Strominger-Vafa extremal9 black hole after a Kaluza-Klein (KK) reduction on the S1
y

giving

ds2 = −
(
Z1Z5Z

+
p

)− 2
3
dt2 +

(
Z1Z5Z

+
p

) 1
3
(
dr2 + r2dΩ2

3

)
. (1.9)

The 3-charge black hole (1.7) has a finite-sized horizon for Qp 6= 0, which in these

coordinates is located at r = 0.

In [23] Strominger and Vafa counted the BPS microstates of the D1-D5 brane system

from the world volume gauge theory and matched this exactly to the entropy computed

using (1.4) from the area of black hole in (1.9). This is a fundamental result in string

theory and significantly motivated the study of these microstates that were counted (the

method of counting used is via a protected index which simply counts states without

requiring or yielding knowledge of what is being counted).

A long-standing effort to construct microstate geometries for the D1-D5-P system

(equally, of the Strominger-Vafa black hole) has led to the discovery of large classes

of horizon-less solutions to supergravity having the same asymptotic structure as the

black hole, but with different infrared (IR) behaviours encoding microscopic details

of the states (see for instance [24–27] and [28] for a recent review). Compared with

the infinite AdS2 (anti-de Sitter) throat of the black hole, the constructed microstate

geometries have a finite throat, ending in a smooth “cap” above horizon scales. Despite

9Extremal here is in the sense that it has mass equal to angular momentum (in suitable units).
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CHAPTER 1. INTRODUCTION

these families of solutions not covering the whole ensemble of the Strominger-Vafa black

hole, they do provide an explicit semi-classical mechanism with which to replace the

naive horizon with microscopic structure consistent with unitarity [13,29].

From the point of view of an infalling massless probe, it has been shown [30, 31]

in certain explicit example microstate geometries that the time taken to reach the

cap and return to the asymptotic AdS region is t ∼ n1n5. Thus despite the lack of

a horizon, for microstate geometries towards the black hole limit (those with a long

throat) a probe appears to get trapped until very long time scales [32]. In fact, the

story is richer yet still. The tidal forces exerted on the infalling probe become very

large (Planck scale) after a proper time of the order t ∼ √n1n5 , well before reaching

the horizon scale microstructure [33]. At this point, the simple geodesic approximation

to propagation breaks down and the stringy nature of the probe should be considered.

The conclusions of [32,34] are that an infalling massless probe is excited by the strong

tidal forces, developing massive stringy modes and becoming trapped in (or absorbed

by) the microstructure. Emission from the relaxation of the probe-fuzzball system,

whilst being able to escape, will be highly redshifted.

As dictated by statistical mechanics, a typical microstate will return an expectation

value for a given observable exponentially close (in the entropy of the system) to the

expectation value for the black hole (the ensemble average). The explicit microstate

geometries that we currently have access to are, however, not so close to typicality. In

fact they are particularly atypical states of the ensemble, generally having properties

that differ significantly from the black hole. In the framework of the fuzzball proposal

[20, 35], such geometries are considered to be at least a subset of the aforementioned

black hole’s microstates and one can hope that, by asking carefully chosen questions,

universal behaviours of fuzzballs may still be deduced from these explicit solutions. For

some work on more typical microstate geometries see [36] and on more general fuzzballs

see [37–39].

1.3 AdS/CFT as a tool to study microstates

Following [40], the D1-D5 system described above in the near-brane (or decoupling)

limit has an equivalent description in terms of a two-dimensional N = (4, 4) supersym-

metric conformal field theory10 (CFT) with SU(2)L×SU(2)R R-symmetry and central

charge c = 6n1n5. This can be seen from the IR regime of the world volume theory of

the D5-branes [41] and is a particular instance of the famed AdS/CFT conjecture. We

are interested in the supergravity limit of this duality where, as the name suggests, the

10Some basic facts about conformally invariant field theories will be considered in Section 2.1.
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bulk is described in terms of classical supergravity in the decoupling limit√
Q1 ,

√
Q5 � r , (1.10)

where the metric (1.7) becomes11 asymptotically AdS3 × S3 ×M4 with radii RAdS =

RS3 = (Q1Q5)1/4, and the dual CFT is strongly coupled with a large central charge12.

It is (strongly) believed that this D1-D5 CFT has a region in its moduli space, an

infinite distance from the region described by supergravity, at which it is described

by a symmetric group (SN ) orbifold of a sigma model with M4 target space. This

description of the CFT is variously referred to as the free point or the free orbifold

point.

As a particular example of dual quantities, a gravitational solution with AdS asymp-

totics has a microscopic description via holography in terms of a state of the dual CFT.

However, the logic that this thesis more aspires to is of the inverse type: starting

from known states of the CFT, what can be understood about the bulk description.

In particular, this duality allows us to describe scattering processes in AdS3 by using

correlation functions in the CFT [42–45].

1.3.1 Large N CFTs and heavy operators

Holographic dualities provide a powerful tool with which to study correlators in strongly

coupled CFTs in the limit where the number of degrees of freedom becomes large. This

regime is usually called the large N limit in reference to the theory of SU(N) N = 4

supersymmetric Yang-Mills (SYM) which contains fields in the adjoint representation

and so the number of degrees of freedom of the theory scale with the rank of the gauge

group, that is c ∼ N2. In this limit, it is possible to separate primary operators into

a class of “light” states, whose conformal dimensions do not grow as N becomes large,

and various types of “heavy” states, whose conformal weights scale with some power of

N . Another characterisation of the operator spectrum, relevant for holographic theories

at large N , is the distinction between single- and multi-particle states. As indicated

by their names, this distinction is more readily understood in the dual gravitational

description where operators of the first type are dual to single-particle bulk states, while

the second class of operators is dual to composite objects of elementary bulk fields. In

the best studied example of holographic dualities – that of N = 4 SYM and AdS5×S5

[40,46]– the CFT description of single-particle states at leading order in N corresponds

to single-trace composite operators and multi-particle states correspond to multi-trace

operators (with the trace being over the SU(N) indices). Due to this example, it is

11This has the effect of dropping the 1’s from the Z1, Z5 and Z±p of (1.7) yielding a metric describing
the product extremal BTZ×S3.

12From the relation c = 6N we see that the large c limit is equivalent to taking the large N limit
and we use the two limits interchangeably throughout the text.
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common to use the same nomenclature also in the case of other holographic dualities

such as that of AdS3/CFT2 (where in the free orbifold description, the trace is over

the SN indices), which will be the focus of this thesis. It is important to note here

that beyond the leading order in N , there is mixing between single- and multi-trace

operators in the single-particle spectrum (see for instance [47, 48] in AdS5 and [49–51]

in the AdS3 case.

In this thesis, the term “heavy” when referring to an operator or state will mean

that its scaling dimension scales linearly with the central charge, that is

∆H ∼ c as c→∞ . (1.11)

In the literature there are many types of states that are termed “heavy” in which the

dimension scales with some other power of the central charge, however, we will not

consider those here.

The heavy states OH we consider are multi-particle operators composed of a large

number Nb of mutually BPS light operators OL that are specific 1/2-BPS chiral pri-

mary operators (CPO) and 1/4-BPS operators. For reasons of simplicity, we take all

constituents of the OH to be identical – that is OH ∼ ONbL (hence their very atypical

nature). In order to have a heavy state, in the sense introduced above, it is necessary

to keep the ratio Nb/N finite when taking the large N limit. Even in this heavy setup,

Nb/N is a free parameter and so following [52, 53], we can often take this ratio to be

small and use a perturbative approach in whatever physics is being addressed. These

heavy states are atypical in the statistical ensemble of states of fixed conserved quan-

tum numbers; however, the advantage is that a precise dual description in terms of

asymptotically AdS3 × S3 ×M4 microstate geometries is known [26,27,54,55].

1.3.2 Computing holographic correlators

Ever since the early days of their study, the approach of Witten diagrams [56] provided

an explicit avenue for the calculation of holographic correlators among light single-trace

operators and several results were obtained for 4-point correlators in the important

example of N = 4 SYM theory [57–62]. More recently, knowledge of this class of

correlators has been substantially expanded by using a variety of new ideas including:

the Mellin space representation [45,63], the position-space approach introduced in [64–

66], the use of the large spin expansion [67] and the Lorentzian inversion formula of [68,

69]. Yet one more method for computing holographic correlators is the approach based

on “microstate geometries” [70–72], which was used in [73–76] to derive holographic

4-point correlators between singe-particle states in the case of AdS3/CFT2.

The basic idea of this approach is to start from a correlator where a pair of con-

jugate single-trace operators is made heavy by considering their multi-trace versions,
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obtained by taking a large number of identical elementary constituents. It is then

possible to exploit several known asymptotically AdS3 × S3 smooth solutions of type

IIB supergravity [26, 54, 55, 77] dual to this class of heavy states. The metric part of

these smooth supergravity solutions are examples of the microstate geometries discussed

above. Specifically, from quadratic fluctuations around these supergravity solutions it

is possible – by using the standard AdS/CFT dictionary – to derive so-called heavy-

heavy-light-light (HHLL) 4-point correlators with two heavy states corresponding to

the geometry and two light states corresponding to the fluctuations. The geometries

describing these microstates depend on a set of parameters which quantify the devia-

tion from pure AdS3 × S3. In the language of the dual CFT, these specify the number

and type of constituents forming the heavy states. While such an approach to calculat-

ing HHLL correlators avoids the use of Witten diagrams – which cannot currently be

evaluated in this case – analytic results are often limited to only linear perturbations in

the ratio Nb/N discussed above13 (several explicit examples are known [70–72,80,81]).

However, an observation of [73–75] is that it is possible to take a “light” limit by

formally setting the number of constituents of the heavy states to one and – despite

bringing the smooth solutions outside the regime of validity of supergravity – the limit

is smooth at the level of correlators and produces results that have all the expected

features of 4-point AdS3/CFT2 correlators among single-particle states. Some of these

correlators were calculated in [66] by different techniques, providing an independent

cross-check of the approach discussed above.

1.4 Flat space eikonal regime

The scattering of two objects is arguably one of the simplest physical experiments

that can be thought up. Despite apparent conceptual simplicity, the details of such a

process contain a wealth of information about the nature of interactions between the

scattering bodies and their internal structure. In order to isolate particular behaviours,

it is common to resort to certain approximations or kinematical regimes to simplify the

analysis (from the generic case in which all Feynman diagrams contribute, as illustrated

in Figure 1.2 for 2→ 2 scattering). In the parameter space of 2→ 2 scattering of a

gravitational theory, clear distinct regions can be identified based on limits of the

impact parameter L (or equivalently t) and the centre-of-mass energy s. Here s and t

are the Mandelstam variables defined in terms of external particle momenta Pi as

s ≡ (P1 + P2)2 , t ≡ −(P1 −P3)2 = −|q|2 , (1.12)

13For finite values of Nb/N the calculation of the correlators in the 1/4-BPS states requires some
approximation: a WKB approach was used in [78,79].
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and q is the momentum exchanged in the interaction. The universal regions of such a

theorised gravitational S-matrix was described in [82]. One such region is that of large

= + + + + . . .

Figure 1.2: Generically, in any particular theory all valid Feynman diagrams contribute
to a given scattering process. These can be organised as a perturbative series in the
(small) coupling constant g, the leading terms are termed “tree-level” and scale as g2.
The various channels tree-level diagrams of different channels are written explicitly, with
diagrams containing loops coming at higher orders.

impact parameter, or small momentum exchange; this is the so-called Born region

in which scattering is dominated by a single graviton exchange. Such a tree level

scattering amplitude would be proportional to GNs
2/t for the massless graviton, along

with soft graviton contributions. With increasing centre-of-mass energy the multi-

graviton exchange processes become non-negligible, requiring supplementation by all

the ladder diagrams (shown in Figure 1.3). In this “eikonal regime” of gravitational

scattering, defined by

s� |t| , (1.13)

it was shown that the leading UV divergences at each order in perturbation theory in

flat space can be resummed to a phase [83]. Non-perturbative eikonal considerations

have also been shown to soften the UV divergences of perturbative amplitudes [84].

This so-called eikonal phase shift δ(s, L), allows the eikonal approximation to the full

≈ + . . . . . . . . .

Figure 1.3: In the eikonal regime of 2→ 2 scattering the dominant Feynman diagrams
at each loop order are the “ladder” diagrams given here. These terms have a regular form
and were shown to exponentiate to a phase. Thus, what are independently diverging
diagrams (diverging for large energy) become a phase.

scattering amplitude to be written as a Fourier transform of the phase eiδ(s,L) over the

space transverse to the interaction

A(s, t) ≈
∫
Rd−1

dx e−iq·xeiδ(s, L) , (1.14)

valid at large s and small t. Assuming an exponentiated form, the leading eikonal

approximation to a scattering amplitude can then be reproduced from the Fourier
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transform of the tree-level result. The eikonal regime thus provides an interesting lab-

oratory in which to analyse different gravitational theories in a quantitative way. For

elastic scattering processes, the phase shift is real and the eikonal region can be thought

of as describing the semiclassical regime. The transition between the Born and eikonal

regions, in the (2 + 1)-dimensional case that is of interest here, occurs when L ∼ s and

q ∼ L−1. On the other hand if the very high energy limit is taken, at some point the

perturbative expansion in GN will break down, giving rise to the strong gravity region

in which inelastic processes such as black hole production dominate. This transition is

signalled by the eikonal phase becoming complex.

In a more generic theory, the phase shift can be shown to have an s dependence of

δ(s, L) ≈ sJ−1f(L) , (1.15)

where J is the spin of the exchanged particle. Thus, in the eikonal limit δ is dominated

by the graviton contribution and as such the universal piece is proportional to s for

all theories containing gravity. In the context of perturbative string theory, the study

was initiated in [85, 86] where a stringy eikonal operator was derived from four-point

amplitudes (at tree and loop level) with external massless states. A complementary

geometric description of the same process is in terms of a particle propagating in a

shock wave background (the Aichelburg-Sexl metric [87]), representing the other (highly

boosted) particle [88].

1.5 CFT Regge limit

More recently, it was shown that the majority of the above properties of scattering

amplitudes in the eikonal limit carry over to AdS spaces. The notable difference is that

the phase shift is given instead by the convolution of a 4-point correlation function

with wavefunctions for each operator. This eikonal problem was studied in the setting

of AdS/CFT, starting from [89–91]: in this case the observables playing the role of

the four-point amplitudes are CFT four-point correlators of primary operators in a

particular kinematic limit – the Regge limit. This regime of holographic four-point

correlators was further studied from different points of view in [92–97].

A slightly different setup is to consider a fixed-target experiment in which a highly

energetic particle scatters off a classical object whose mass is much larger than the

energy of the incident test particle. A black hole is a prototypical example of such

a heavy object. An interesting possibility, one that arises when considering a UV

complete theory of gravity, is to consider a specific heavy pure state in place of the

black hole. For instance, in the context of flat space type II string theories, the target
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can be represented by a stack of N Dp-branes [98] and the Regge limit defined in a

similar fashion to that of light 2 → 2 scattering. A detailed comparison can then be

made between the eikonal obtained from an amplitude approach and the dynamics

of an energetic string probe propagating in the geometry produced by the Dp-branes.

In the AdS/CFT setup, the fixed-target version of the Regge limit was first studied

in [52, 53], with the bulk heavy object represented by an asymptotically AdSd+1 black

hole – or for d = 2, a conical defect. On the CFT side, the heavy object is described

by a heavy state of the type discussed above, and the key observable in this case

is a HHLL four-point CFT correlator. The analysis of [52, 53] shows explicitly that

in order to reproduce the result of the bulk calculation in the presence of a black

hole, it is sufficient to characterise the heavy state by its couplings with the stress

tensor and its multi-particle (“multi-trace”) versions. In the setting of the AdS/CFT

correspondence, the phase shift becomes a quantity linking CFT methods to black hole

physics; potentially at microscopic scales.

In [52], this setup was used to extract the eikonal phase for AdS black holes and

conical defects, which in the case of two-dimensional CFTs was then matched to the

behaviour of the HHLL Virasoro vacuum block [99,100] in the Regge limit, emphasising

the dominance of the stress tensor sector in this kinematic regime. The bootstrap

relations in the Regge limit and their implications for bulk physics were considered

variously in [53,93,94,96,97,101,102], while stringy corrections were considered in [103–

106].

1.6 Chaos in thermal quantum systems

A somewhat surprisingly related set of questions which utilise similar techniques to

access wildly different physics is that of probes of chaos – something which has seen a

fair amount of interest in recent years. Exponential sensitivity to initial conditions is

a common signal for the presence of chaos, as was originally discovered in the context

of classical non-linear systems [107]. The following thought experiment motivates the

commonly used measure of chaos in thermal quantum systems. Consider an equilibrium

thermal state |β〉 of a quantum theory perturbed by an operator V at time t = 0. This

is described by the state V |β〉. If the system in this state is evolved to some later time t

and the initial perturbation by V was small enough, the system will re-thermalise. That

is, if t is large enough, e−iHt V |β〉 ∼ |β〉, where H is a time independent Hamiltonian

and e−iHt V |β〉 should be thought of here as a new state in the Fock space of the

theory rather than a time dependent state. Clearly the action of eiHt on this state

reproduces the perturbed thermal state at t = 0. If however, at time t the system is

again perturbed, this time by the operator W , the state at time t will be We−iHt V |β〉.
If the system were not chaotic, evolving back to t = 0 would recover the thermal state
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perturbed by V , with the W perturbation thermalising. For a system exhibiting strong

chaos this does not occur and in fact eiHtWe−iHt V |β〉 ≡ W (t)V |β〉 � V |β〉. This

thought experiment thus suggests as a measure of strong chaos the quantity

〈
−
[
V,W (t)

]2 〉
β
, (1.16)

where V and W are Hermitian operators and 〈 · · · 〉β is a thermal expectation value

in the state |β〉. Properties of this correlator have been discussed in many spin-chain

systems and their bulk duals, see for instance [108–111], and in gauge theories and

CFTs, for instance in [112–117]. The correlator in (1.16) is theorised to have the very

late-time behaviour

〈
−
[
V,W (t)

]2 〉
β
→ 2

〈
V V

〉
β

〈
W (t)W (t)

〉
β
, (1.17)

in any system of a chaotic enough nature, independently of exactly the form of the

operators V and W [115]. The universal exponential growth of (1.16) (of the form eλLt)

for intermediate times, around which chaotic phenomena start to become significant,

is driven by the out-of-time-ordered correlator (OTOC)

〈
V W (t)V W (t)

〉
β
, (1.18)

which should have a corresponding period of exponential decay. In [118] it was argued

that for thermal quantum systems, there is a hard bound on the rate of exponential

decay of (1.18), translating to the Lyapunov exponent satisfying

λL ≤
2π

β
. (1.19)

Holographic theories, it was conjectured, saturate this bound. This is related to the

idea of black holes being the fastest scramblers of information [119] (classical black holes

being dual to thermal states). It turns out that in the special case of d = 2, vacuum

correlators of a CFT2 on the cylinder Rt×S1
y of radius Ry can be used to ask questions

about thermal correlators with temperature β−1 on the cylinder S1
τ× Rx, where τ is

a Euclidean time with radius β
2π . It turns out that the relevant analytic continuation

to obtain the OTOC (1.18) from the associated Euclidean correlator is precisely the

Regge limit prescription for the vacuum correlator. We use this fact in Section 4.4.4 to

briefly consider this Lyapunov growth at intermediate times in an example AdS3 × S3

holographic correlator.
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1.7 Chapter outline

The structure of this thesis is now outlined below.

In Chapter 2 we generally review various background topics that are required

throughout the main body of the thesis. This begins in Section 2.1 with a basic (and

brief) discussion of two-dimensional CFTs, with a particular focus on the operator con-

tent of such theories and the bootstrap philosophy of describing a theory through its

dynamical data and determining them from symmetry constraints. This is followed in

Section 2.1.1 by a somewhat detailed review of 4-point CFT correlation functions and

their decomposition into contributions from individual conformal families of operators,

with Appendix A containing some relevant derivations. This section also introduces the

crossing constraints for 4-point functions and give an example of their power, relevant

for holographic CFTs at infinite central charge. Section 2.2 briefly reviews the D1-D5

system in the gravity picture, with a focus on the D1-D5-P 3-charge black hole and

a class of its microstates given by the (1, 0, n) superstrata. The D1-D5 CFT and the

description of the heavy pure states dual to the (1, 0, n) family of solutions is then given

in Section 2.2.2. A discussion of the relation between the various expansion parameters

used throughout the thesis is then contained in Section 2.2.3. Section 2.3 reviews the

computation of holographic 4-point correlators with two heavy and two light operator

insertions, using the (1, 0, 0) case as an example. This chapter closes out with a look

at the Regge limit in asymptotically AdS spacetimes – in Section 2.4 – with a form of

the bulk phase shift derived.

In Chapter 3 we examine the formal limit of certain HHLL holographic correlators

as the dimension of the heavy operators becomes light. Section 3.2 introduces the multi-

trace 4-point functions that we will be concerned with in this chapter and presents the

general idea of their extraction from supergravity HHLL correlators computed using

asymptotically AdS3×S3 supergravity solutions. Appendix B.1 provides details of the

resummation process from which our correlators are derived. In Section 3.3 we detail

explicit correlators involving two n-trace operators for low values of n and explain

the connection to correlators involving multi-trace operators with an interpretation

as a particular limit of higher-point functions. We also collect the main definitions

and properties of the Bloch-Wigner-Ramakrishnan functions in terms of which these

correlation functions are naturally written. This is then followed in Section 3.4 by

an analysis of various kinematic limits of the n = 2 correlator to demonstrate that

they yield the behaviour expected from its identification with the connected correlator

between two single-trace and two double-trace operators. We analyse both protected

and non-protected quantities. Focusing instead on the standard 4-point functions with

single-traces (n = 1), we show that the full mixing problem in flavour space can be

solved and we find the anomalous dimensions for the lowest twist non-BPS double-trace
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operators in any flavour representation, with Appendix B.4 detailing a simple method

of extraction. We note that flavour-singlet operators of spin 0 and 2 have positive

anomalous dimensions for the theory compactified on K3. Appendix B.2 gives the

explicit form of n = 1 correlators used in the unmixing of Section 3.4.2 and Appendix C

summarises the derivation of the double-trace OPE data from the inversion formula.

In Chapter 4 we analyse holographic correlators, primarily of the HHLL type, in

the Regge limit. Section 3.2 sees a summary of the background material useful for

making contact between the eikonal derived in the geometric approach of Section 2.4

and in the holographic CFT language, where one employs the four-point correlators.

A derivation is given of formulae connecting explicitly the bulk phase shift and CFT

data of particular double-trace operators, eventually to all orders in the perturbative

expansion used. In Section 4.3 we review and further analyse the result of [52] where

the heavy states represent the conical defect AdS3 geometries. In Section 4.4 we con-

sider a simple, yet non-trivial, class of 1/2-BPS states. We also discuss in this explicit

example how the Regge limit involving the HHLL correlator and the purely light case of

Section 4.4.3 differ; showing why the conformal data obtained in the two cases are not

the same (Appendix D justifies this difference). In both of these examples, the analysis

is first performed at first order in perturbation theory, followed by a partial extension to

higher orders (a further example is given briefly in Appendix F). Section 4.4.4 makes a

detour to demonstrate the connection between these LLLL holographic correlators and

chaotic behaviour in quantum thermal systems. In Section 4.5 we apply the same ap-

proach to a class of 1/4-BPS states relevant for the 3-charge D1-D5-P system. Initially

in Section 4.5.2 we follow the first order discussions of [1], but then in Section 4.5.3

make a first pass at considering the bulk phase shift for 3-charge microstate geome-

tries in the black hole limit – not attainable from the previous perturbative approach.

The Appendix E gives details on the computations of integrals necessary in the CFT

analysis of the HHLL and LLLL correlators in Sections 4.4 and 4.5.

A summary of our results and their possible extensions are outlined in the conclud-

ing Section 5.
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Background Material

2.1 Conformal field theory

The goal of this section is to spell out some basic facts and results of two-dimensional

conformal field theories. Of particular importance in this thesis are the description of

local operators and their correlation functions. The general philosophy used through-

out for this topic may be described as bootstrap-esque. As evidenced by the physical

size of the standard reference [120], the background material and literature for CFTs

is vast and this section by no means tries to be an introduction to the subject. Instead

it should be viewed as a collection of CFT facts to be assumed later on.

In general dimensions the conformal group serves as an extension to the usual Poincaré

spacetime symmetries. A conformal transformation is a transformation of coordinates

xµ → x̃µ(xν) , (2.1)

such that the metric (Minkowski here) transforms as

ηµν → g̃µν =
1

Ω2
ηµν , (2.2)

with Ω being a coordinate dependent conformal factor. In other words, a conformal

transformation is a diffeomorphism whose action on the metric can be undone by a Weyl

transformation. The set of transformations (2.1) for which this occurs depends on the

number of dimensions. In d > 2 they form the group SO(2, d) in Lorentzian signatures

and are generated by Poincaré, scaling and special conformal transformations. In d = 2,

this is massively enhanced as seen below.

Considering a CFT2 with a circular spatial direction and coordinates

x0 = t , x1 = y , y ∼ y + 2πRy , (2.3)
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one may define the left-/right-moving lightcone coordinates

σ+ ≡ t+ y , σ− ≡ t− y . (2.4)

If t is analytically continued to complex values, purely real values give Lorentzian time

and purely imaginary values yields precisely the Wick rotation to Euclidean signature

t→ −iτE with τE ∈ R . (2.5)

In terms of the coordinates (2.4), the transformations satisfying (2.2) are simply

σ+ → σ̃+(σ+) , σ− → σ̃−(σ−) , (2.6)

since the metric becomes

ds2 = −dt2 + dy2 = −dσ+dσ− = − dσ
+

dσ̃+

dσ−

dσ̃−︸ ︷︷ ︸
Ω−2

dσ̃+dσ̃− . (2.7)

It is convenient when studying a CFT2 to make a conformal transformation from the

(Wick rotated) cylinder to the complex plane (more precisely the Riemann sphere

C ∪ {∞}) using the map

z = e
1
Ry

(τE−iy)
, z̄ = e

1
Ry

(τE+iy)
. (2.8)

For τE ∈ R, the coordinates z, z̄ are complex conjugates, however, often it is useful

to treat z and z̄ as independent complex coordinates. This, for instance, will be the

case for the Regge limit considered in Chapter 4. Conformal transformations on the

complex plane are then the holomorphic maps

z → f(z) , z̄ → f̄(z̄) . (2.9)

Under the conformal map (2.8), constant time slices of the cylinder are mapped to

constant radius slices, with the infinite past mapping to the origin and time evolution

being an increase in radius. The usual equal-time quantisation on the cylinder becomes

radial quantisation on the plane.

In any conformal field theory there exists a stress tensor, which on the plane natu-

rally splits into a holomorphic and an anti-holomorphic field T (z), T̄ (z̄) admitting the

mode expansion

T (z) =
∑
n∈Z

Ln z
−2−n ←→ Ln =

∮
dz

2πi
T (z) z1+n , (2.10)
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and likewise for the anti-holomorphic modes L̄n. The Virasoro modes Ln and L̄n

generate the holomorphic and anti-holomorphic conformal transformations respectively.

The mode algebra that the Ln satisfy is the Virasoro algebra

[
Ln, Lm

]
= (n−m)Ln+m +

c

12
n(n2 − 1)δn+m,0 , (2.11)

and similarly for the L̄n modes. The central charge c provides a central extension of

the classical Witt algebra and can be thought of as a measure of the number of degrees

of freedom in the theory. This is the basic symmetry algebra for a conformal field

theory, on top of which other conserved currents may be added – this will be the case

in Section 2.2.2 where the theory has additional U(1) and supersymmetry generators.

The mode algebra (2.11) has a finite subalgebra of modes that are globally defined on

the Riemann sphere, the non-zero commutators of which are given by

[
L0, L1

]
= −L1 ,

[
L0, L−1

]
= L−1 ,

[
L1, L−1

]
= 2L0 . (2.12)

The global subalgebra (2.12) forms an sl(2) and along with that formed from the modes

{L̄0, L̄1, L̄−1} this gives the algebra so(2, 2) which is simply the “näıve” guess from the

higher-dimensional point of view.

The spectrum of local operators14 in the theory can be classified by their conformal

dimensions h, h̄ given by the eigenvalue under L0 and L̄0 respectively. From these, the

sum and difference are the total scaling dimension ∆ and the spin ` given by

∆ = h+ h̄ , ` =
∣∣h− h̄∣∣ . (2.13)

Since the dilatation operator D = L0 + L̄0 acts as the Hamiltonian for the radially-

quantised theory on the plane, the total dimension is the analogue of the energy of a

state or operator. Key landmarks in the spectrum of a CFT2 are the primary states.

These are states that are annihilated by all of the positive Virasoro modes

Ln
∣∣Oh,h̄〉 = L̄n

∣∣Oh,h̄〉 = 0 for n > 0 , (2.14)

the existence of which is due to the constraint h, h̄ ≥ 0 in d = 2 imposed by unitarity.

The unique global conformally-invariant vacuum state |0〉 (for which the associated

operator is simply the identity) saturates this unitarity bound in both the left and

right sectors, having h = h̄ = 0. Primary states are the lowest-weight states of a

conformal multiplet, which can be filled out by the action of the modes L−n with

n > 0, acting as raising operators. As a point of nomenclature, all operators in the

14Due to the state-operator correspondence, we use the operators and states interchangeably. The
correspondence says that a local operator O(z, z̄) on the complex plane, where the insertion point is
taken to the origin |z| → 0, can be mapped to an initial state |O〉 = limz→0O(z) |0〉.
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tower of a given primary are referred to as (Virasoro) descendants. A primary operator

of dimension (h, h̄) transforms under a conformal map (2.9) as a rank (h, h̄) tensor

O(z, z̄)→ O′
(
f(z), f̄(z̄)

)
=
(
∂f
)−h(

∂̄f̄
)−h̄O(z, z̄) , (2.15)

where we use the common shorthand ∂ ≡ ∂
∂z and ∂̄ ≡ ∂

∂z̄ . In particular, under the

conformal map from the cylinder to the plane (2.8) a primary operator transforms as

(where we set Ry = 1 here)

Ocyl(τ, y)→ Opl(z, z̄) = z−hz̄−h̄O(τ, y) . (2.16)

We will from now on, drop the cylinder and plane labels and distinguish them purely by

their coordinate dependence to avoid the cluttering of notation, i.e. Ocyl(τ, y) ≡ O(τ, y)

and Opl(z, z̄) ≡ O(z, z̄). The spectrum may alternatively be grouped into towers of

states generated by the action of the global conformal modes L−1, L̄−1 on a quasi-

primary state – this is a state satisfying the definition (2.14) restricted to the global

modes, i.e.

L1

∣∣Oh,h̄〉 = L̄1

∣∣Oh,h̄〉 = 0 . (2.17)

These descendant states of a quasi-primary are often called global descendants. Clearly

all primaries are also quasi-primaries, but the converse is not true. For instance, the

holomorphic stress tensor operator T (z) is a quasi-primary of dimension h = 2, h̄ = 0

but is not a primary for a theory with a non-zero central charge. The stress tensor

is actually a descendent of the identity operator, being given by L−2 |0〉. Equivalent

statements hold for the anti-holomorphic stress tensor T̄ (z̄).

2.1.1 Correlation functions

In conformal field theories, the conserved currents associated with being conformally

invariant impose significant constraints, via the associated Ward identities, on the form

of correlation functions. For instance, the functional form of the 2- and 3-point functions

of properly normalised primary operators are completely fixed to

〈O1(z1, z̄1)O2(z2, z̄2)〉 = δ12 z
−h1−h2
12 z̄−h̄1−h̄2

12 , (2.18a)

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)〉 = C123 z
h3−h1−h2
12 zh1−h2−h3

23 zh2−h1−h3
13

× z̄h̄3−h̄1−h̄2
12 z̄h̄1−h̄2−h̄3

23 z̄h̄2−h̄1−h̄3
13 , (2.18b)

where Oi has dimensions hi, h̄i and zij ≡ zi − zj . In the form of the 3-point function

(2.18b), there is an overall conformal dimension dependant factor C123 that is not fixed
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by symmetry. These OPE coefficients15 represent dynamical data specific to a given

theory.

Four point functions have their functional form fixed by symmetry only up to a

function of conformally invariant cross-ratios of the operator insertion points zi given

by

z =
z14z23

z13z24
, z̄ =

z̄14z̄23

z̄13z̄24
. (2.19)

A 4-point function then takes the form

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O(z4, z̄4)〉 = KsK̄sG(z, z̄) , (2.20)

with the prefactor KsK̄s is defined in order to transform like the 4-point function under

conformal transformations. Here we use the choice

Ks = K(z1, z2, z3, z4) ≡ z−h2−h3+h4+h1
23 zh3−h4

24

zh1+h2
21 zh3+h4

34 zh1−h2
31

, (2.21)

and likewise for K̄s. To check that this choice of K transforms correctly under global

conformal transformations, using the transformations of primaries (2.15), it is enough

to simply check scalings and inversions:

• Under the scaling zi → azi , z̄i → āz̄i the correlator transforms as

〈O1O2O3O4〉 → a−(h1+h2+h3+h4) ā−(h̄1+h̄2+h̄3+h̄4)〈O1O2O3O4〉 (2.22)

and from (2.21) Ks transforms as

Ks → a−(h1+h2+h3+h4)Ks(zi) , (2.23)

correctly matching the correlator once K̄s is included.

• Under the inversion zi → − 1
z̄i

, z̄i → − 1
zi

the correlator transforms as

〈O1O2O3O4〉 → z2h̄1
1 z̄2h1

1 z2h̄2
2 z̄2h2

2 z2h̄3
3 z̄2h3

3 z2h̄4
4 z̄2h4

4 〈O1O2O3O4〉 (2.24)

and after some algebra, Ks transforms as

Ks → z̄2h1
1 z̄2h2

2 z̄2h3
3 z̄2h4

4 K̄s(z̄i) , (2.25)

15On the plane, inserting an operator O∆ at a radius r defines a state on a circle of radius R > r. If
two operators O1, O2 are inserted then a state can still be defined on a circle encompassing both. The
operator product expansion (OPE) is the statement that this state can be expanded in the complete
basis of eigenstates of the dilatation operator, yielding the relation between operators O1 × O2 =∑

∆ C12∆O∆ with a radius of convergence equal to the distance to the nearest other operator insertion.
The coefficients in the expansion can be shown to be equal the those appearing in the related 3-point
functions.
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which again matches the correlator when multiplied by the equivalent transfor-

mation of K̄s.

Thus our choice of prefactor K is justified. A useful tool is to use global conformal

symmetry to “gauge fix” three operator insertion points, for example to

z1 = 0 , z2 →∞ , z3 = 1 ⇒ z4 = z , (2.26)

and likewise for the z̄i. In gauge-fixed form, the 3-point function (2.18b) becomes

simply

〈O1(∞)O2(1)O3(0)〉 = C123 . (2.27)

For all explicit 4-point correlators considered in thesis, we will have two pairs of con-

jugate operators with h1 = h2 and h3 = h4, and likewise for the anti-holomorphic

dimensions. The gauge-fixed correlator of this type then takes the form

C(z, z̄) ≡ 〈Ō1(0)O1(∞)O2(1)Ō2(z, z̄)〉 = (1− z)−2h2(1− z̄)−2h̄2 G(z, z̄) , (2.28)

where O(∞) is defined such that the Belavin–Polyakov–Zamolodchikov (BPZ) conju-

gate state is

〈O| = 〈0|O(∞) ≡ lim
z1,z̄1→∞

z2h1
1 z̄2h̄1

1 〈0|O(z1, z̄1) . (2.29)

Below, we consider the decomposition of the conformally-invariant function G in a basis

of functions called global conformal blocks. This amounts to organising the spectrum

of local operators into towers of global descendants on top of each quasi-primary as

discussed around Equation (2.17). Each global conformal block contains the contri-

butions to a 4-point function from a quasi-primary and all of its global descendants,

which are fixed by symmetry in terms of the quasi-primary contribution. One can do

this in various equivalent ways for a four-point function, corresponding to channels

where different pairs of operators are brought together and their OPE expansions used.

Our conventions for these different channels in which the 4-point correlator can be ex-

panded are given by:

S-channel/direct-channel is z3 → z4 or z → 1 (2.30)

T-channel/cross-channel is z1 → z4 or z → 0 (2.31)

These two different expansions of C(z, z̄) can be written as a sum over quasi-primary
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O2 Ō2

O1 Ō1

(a) the direct channel (z → 1)

Ō1O1

Ō2O2

(b) the cross channel (z → 0)

operators exchanged as

C(z, z̄) =
∑
O′

C11O′CŌ′22

(1− z)2h2(1− z̄)2h̄2
g0,0

h,h̄
(1− z, 1− z̄) =

∑
O

C12OCŌ21

zh1+h2 z̄h̄1+h̄2
gh12,h̄12

h,h̄
(z, z̄) ,

(2.32)

where hij ≡ hi − hj and CijO is the three-point function between the operators Oi,
Oj and O given in (2.27). In these two different channels, the operators exchanged –

over which the sum runs – are generically different, hence the different symbols O,O′

used. The global conformal block for a quasi-primary with conformal dimensions (h, h̄)

is given by

ga,ā
h,h̄

(z, z̄) = zhz̄h̄2F1

(
h− a, h− a; 2h; z

)
2F1

(
h̄− ā, h̄− ā; 2h̄; z̄

)
. (2.33)

Sometimes it will be useful to use the holomorphic and anti-holomorphic parts of con-

formal block separately, for which we use the notation ga,ā
h,h̄

(z, z̄) = V(0)
h (z)V̄(0)

h̄
(z̄). In

Appendix A we derive this form of the global conformal blocks using two different

methods; firstly using a particular projection operator to project the sum in (2.32)

onto the contribution of one quasi-primary and explicitly resumming the contributions

of its descendants; and secondly utilising the quadratic Casimir of SL(2) instead.

It should be noted that, since we are working in d = 2, we are free to organise

the spectrum of operators into towers of Virasoro descendants above primary opera-

tors. Again, the contribution of this tower of states to a four-point function can be

encapsulated in a conformal block – now the much larger Virasoro blocks. Whilst very

specific examples have been found [121–124], no known closed form expression exists

for general external operator dimensions [125], several results exist in the 1/c expan-

sion of a holographic CFT. In the strict c→∞ limit, the Virasoro block of a primary

reduces simply to its global block since the norm of descendants L−n |O〉 with n > 1

are suppressed in 1/c relative to the global descendant L−1 |O〉. At order 1/c Virasoro

blocks in various regimes, including with zero, two or three heavy operators, were stud-
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ied in [99, 100, 126–133] amongst others. Another general approach to Virasoro blocks

includes those with large exchanged operator dimensions [134].

Crossing relations, such as (2.32), coming from the equivalent expansions of corre-

lation functions into conformal blocks in different channels, schematically

〈Ō1O2O3Ō4〉 = 〈Ō1O2O3 Ō4〉 . (2.34)

impose significant constraints on the spectrum and dynamical data of a theory and

leads to the “bootstrap program” [135–138]. The philosophy of this program is to use

symmetry and other physical consistency conditions (such as unitarity) to constrain

as much as possible a theory – in some cases this is sufficient to solve the theory

entirely [139,140].

In this thesis we will be focusing on a particular two-dimensional holographic CFT

in the gravity regime, i.e. at large values of the central charge c = 6N at strong

coupling – see the discussion to come in Section 2.2.2. While the set of sufficient

conditions for a CFT to have a classical bulk dual are not known, some necessary

conditions appear to be the existence of a large N expansion and a gap ∆gap ∼ c in its

single-particle spectrum. As discussed in Section 1.3.1, holographic CFTs at large N

naturally admit a distinguished subset in their spectrum of operators dual to single-

particle supergravity modes. At leading order in large N , the single-particle operators

are single-trace operators. This nomenclature for operators in the supergravity regime

of a holographic CFT originates from the well-studied example of N = 4 super Yang-

Mills [141]. In this theory, the operators that are dual to the single-particle modes

of the dual type IIB supergravity on AdS5 × S5 are of the form TrZ2, where Z2 is

some complex combination of the basic scalars of N = 4. Operators dual to multi-

particle excitations in the bulk will then contain the product of multiple such single-

trace constituents. Despite this exact trace structure not holding in general theories,

the terminology is used universally. For instance, in the D1-D5 CFT of Section 2.2.2

a trace will be a sum over SN indices. From single-trace quasi-primary operators, for

instance Oi and Oj , one can then construct a family of quasi-primary double-trace

operators that we write schematically as

Oij ≡ : Oi ∂m∂̄m̄Oj : , (2.35)

where : · · · : denotes that at each level we should take a combination of derivatives that

give a quasi-primary. These operators are labelled by the non-negative integers m, m̄

and have conformal dimensions of the form

h = hi + hj +m+
1

2
γm,m̄ , h̄ = h̄i + h̄j + m̄+

1

2
γm,m̄ , (2.36)
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where γm,m̄ are the anomalous dimensions that are generically present when Oij is not

globally BPS – even if the two single-particle constituents are individually protected.

In the supergravity limit, the anomalous dimensions are suppressed in 1/N and so

are small when compared to the leading contribution in (2.36): this is the starting

point for the usual perturbative approach discussed below. In analogy with the higher

dimensional case, we will often denote the “spin” of the double-trace operators Oij by

` ≡
∣∣h− h̄∣∣ = |m− m̄| , (2.37)

while the number of boxes (2 = ∂∂̄) is given by min(m, m̄). An important detail here is

that there is generically a degeneracy in the leading order spectrum which is (partially)

lifted by the first order anomalous dimensions. In Chapter 3 we study how this lifting

works for a particular example set of double-trace operators. In this present chapter,

along with Chapter 4, we will use also γ to indicate the average anomalous dimension

of a set of degenerate operators that appear in the OPE decomposition as discussed

below.

Early on it was understood that the strict limit of large central charge of holographic

CFTs is a generalised free theory (GFT) point [142]. In a GFT, all correlation functions

are given simply by a finite sum of all possible Wick contractions – 2-point functions

– as in a free theory, however, operators need not have dimensions equal to their free

dimensions. As well as the infinite N point of holographic CFTs, GFTs also appear

in the context of CFTs at large spin [67, 143, 144]. One can then consider the crossing

relations (2.32) in a perturbative expansion in large N ; here we discuss the case of the

correlator with two pairs of conjugate operators 〈Ō1O1O2Ō2〉. At this generalised free

point, the correlator decomposed in the direct channel (where Ō1 fuses with O1 and

O2 with Ō2) will contain only the contribution of the identity operator, whereas in the

cross channel there will be an infinite family of double-trace operators O12 of the form

(2.35) with i = 1, j = 2. The crossing relation for this correlator at order N0 in the

large N expansion, using the explicit global blocks (2.33), then reads [145]

(1− z)−2h2(1− z̄)−2h̄2 = z−h1−h2 z̄−h̄1−h̄2

∞∑
m,m̄=0

c2
(0)(m, m̄) gh12,h̄12

h,h̄
(z, z̄)

=

∞∑
m,m̄=0

c2
(0)(m, m̄)zm2F1

(
2h2 +m, 2h2 +m; 2(h1 + h2 +m); z

)
× z̄m̄2F1

(
2h̄2 + m̄, 2h̄2 + m̄; 2(h̄1 + h̄2 + m̄); z̄

)
,

(2.38)

where here c2
(0)(m, m̄) is the product of the order N0 cross-channel OPE coefficients

between the external operators and exchanged double-trace operator. In the second
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line of (2.38), the explicit conformal dimensions (2.36) of the double-trace operators

were used along with the cross-channel global blocks from (A.16). Thus we see that

the order N0 crossing relations constrain the OPE coefficients at this order. To solve

for these OPE coefficients, one may use the orthogonality relation between solutions of

the differential equation (A.25)

δm,m′ =

∮
0

dz

2πi
zm−m

′−1
2F1

(
A+m,A+m; 2(B +m); z

)
× 2F1

(
1−A−m′, 1−A−m′; 2(1−B −m′); z

)
, (2.39)

by multiplying both sides of (2.38) by the factor

Fµ,µ̄ ≡
z−µ−1z̄−µ̄−1

(2πi)2 2F1

(
1− 2h2 − µ, 1− 2h2 − µ; 2(1− h1 − h2 − µ); z

)
× 2F1

(
1− 2h̄2 − µ̄, 1− 2h̄2 − µ̄; 2(1− h̄1 − h̄2 − µ̄); z̄

)
, (2.40)

and integrating around a contour centred at z, z̄ = 0∮
0

∮
0

dzdz̄

(1− z)2h2(1− z̄)2h̄2
Fµ,µ̄(z, z̄) =

∞∑
m,m̄=0

c2
(0)(m, m̄) δm,µ δm̄,µ̄ = c2

(0)(µ, µ̄) . (2.41)

Performing the integrals on the left-hand side of (2.41) and relabelling (µ, µ̄)→ (m, m̄)

gives

c2
(0)(m, m̄) =

Γ(2h1 +m) Γ(2h2 +m) Γ(2h1 + 2h2 +m− 1)

m! Γ(2h1) Γ(2h2) Γ(2h1 + 2h2 + 2m− 1)
(2.42)

× Γ(2h̄1 + m̄) Γ(2h̄2 + m̄) Γ(2h̄1 + 2h̄2 + m̄− 1)

m̄! Γ(2h̄1) Γ(2h̄2) Γ(2h̄1 + 2h̄2 + 2m̄− 1)
.

The crossing relations can be analysed at higher orders in the 1/N expansion [145],

where the direct channel will gain contributions from single-trace operators such as the

stress tensor and any currents (along with multi-trace composites made from them),

and the cross channel will include contributions from 1/N corrections to both the OPE

coefficients and dimensions of the double-trace operators O12. An analysis at first order

in 1/N will be performed in Section 4.4.3 and in the majority of Chapter 4 to higher

orders in the related parameter µ in the case of one pair of operators being heavy. In

both cases the Regge limit is used as a tool to disentangle the various new CFT data

contributions at each order.
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2.2 A class of superstrata

Superstrata are a type of microstate geometries that are dual to coherent superpositions

of microstates of the Strominger-Vafa black hole discussed in the introduction. Just

as with their parent class, the microstate geometries, these solitonic-like solutions to

the bosonic part of supergravity are smooth and without horizons, whilst having the

asymptotic structure of a given black hole. These are of course special states in the

black hole’s ensemble, however, their advantage is that there is a reasonably well-

understood method of construction as an explicit solution of supergravity. For reviews

of the construction of superstrata see [28,146].

2.2.1 Supergravity description

In the context of the D1-D5 system discussed in Section 1.2.1, the idea is to look for

solutions to the N = (2, 0) six-dimensional supergravity theory coupled to 5 (21) ten-

sor multiplets16 that can be obtained from the reduction of type IIB supergravity on

R1,4 × S1
y ×M4 with a string scale M4 = T 4 (K3)17. Since we are interested in solu-

tions preserving a fraction of the supersymmetries of the theory, instead of attempting

to solve directly the Einstein equations of motion for the various supergravity fields

(second order, non-linear equations), it is significantly simpler to solve the relevant

BPS equations [141, 148]. It was shown in [149–152] that the BPS equations can be

organised into a system of layered first order and most importantly linear equations,

once certain data is chosen18. If one simply demands a solution with the correct D1

and D5 charges (1.8) then what is obtained is just the 2-charge black hole, described

by the metric (1.7) with Qp = 0. This solution represents the low energy description

of a bound state of n1 D1-branes and n5 D5-branes extended in the macroscopic S1
y

but point-like in the transverse R4. Clearly this unique, singular supergravity solution

is disappointing from the microstate geometry program point of view. However, it was

observed in [24, 153, 154] that Kaluza-Klein monopole and angular momentum dipole

charges can be added in such a way so as not to break any more supersymmetries19.

16A simple reduction of type IIB supergravity on T 4 yields the maximal N = (2, 2) 6D theory which
still has 32 real supersymmetries. With the goal in mind of describing the D1-D5 system, which is
1/4-BPS, we choose to consider the chiral half-maximal N = (2, 0) theory mentioned in the text, and
then break a further half to get N = (1, 0) supergravity with 8 real supersymmetries. This N = (1, 0)
theory can have between 1 and 5 tensor multiplets depending on the exact process of reduction [141].
By looking for 1/2-BPS solutions to the N = (2, 0) theory we are effectively considering the N = (1, 0)
theory.

17Note that here we only discuss superstrata with no dependence on the internal M4 coordinates.
This allows for any solutions in 6D to be trivially uplifted to 10D. For examples of superstrata with
dependence on this compact 4-manifold, see [26,147].

18In most cases some input from one component of the Einstein equations is needed to supplement
the BPS equations [28,152].

19Requiring that the 8 supersymmetries are still preserved constrains the Kaluza-Klein monopole
and angular momentum dipole charges in terms of the D1- and D5-brane charges.
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This has the effect of expanding the D1-D5 brane system to lie along a curve in the

transverse R4 which can have an arbitrary shape, whilst still preserving 8 real super-

symmetries. These smooth 2-charge backgrounds (referred to as the Lunin-Mathur

geometries) are in 1-to-1 correspondence with Ramond-Ramond (RR) ground states of

the dual CFT and can be shown to give rise to the correct eS number of microstates

for the 2-charge black hole [155].

This 2-charge story is a fascinating explicit construction of the microstates of an

extremal black hole, however, we would like to go beyond this to the 3-charge system.

While the 3-charge black hole (1.7) has a large classical horizon, the horizon of the 2-

charge black hole has degenerated to a point at the origin. Thus in order to disentangle

black hole physics of the horizon and singularity scales, it is preferable to discuss the D1-

D5-P system. The third charge is from the momentum excitations placed along the S1
y

direction in the D1-D5 system (see Figure 1.1). Superstrata of this 3-charge system are

then the gravity description of large coherent momentum excitations travelling in one

direction (left-moving by convention) along the S1
y , after backreacting on the 2-charge

backgrounds. These solutions are only a fraction of the total eS number of microstates

of the 3-charge black hole [156,157], yielding an entropy scaling as Sstrata ∼ Q5/4 rather

than SBH ∼ Q3/2 (where Q1 = Q5 = Qp = Q).

In order to discuss the various superstrata geometries we first introduce the general

6D metric ansatz used when solving the BPS equations:

ds2
6 = − 2√

P
(
dv + β

)[
du+ ω +

F
2

(
dv + β

)]
+
√
P ds2

4 , (2.43)

where y is periodic with period 2πRy, ds
2
4 is the metric on the base space B and u and

v are the null coordinates

u =
1√
2

(t− y) , v =
1√
2

(t+ y) . (2.44)

In the ansatz (2.43), the one assumption used is that ∂u is a null Killing vector20, which

is the case here due to the presence of Killing spinors from the preserved supersym-

metries [158]. Therefore, all ansatz quantities are independent of u, but generically

depend on the remaining 5 coordinates (v, xµ) with xµ being the coordinates on the

base B. In (2.43), P is the warp factor, β describes the fibration over the base B and ω

and F control the angular momentum and momentum of the solution. For the tensor

gauge fields of the 6D supergravity theory one also writes an ansatz, which depends on

the “electric potentials” ZI and “magnetic potential” 2-forms ΘI with I = 1, 2, 4.

20In fact, the coordinate u is chosen to be the coordinate defined by the obtained Killing vector.
This Killing vector can generally be timelike or null depending on the dimension – in six dimensions it
is null [158].
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We can now give a general qualitative description of the BPS equations. In [149,150]

it was shown that the BPS equations for the general ansatz described above can be

organised into three layers; the so-called “zeroth order equations” essentially constrain

the fibration and the metric on the base space. Making the simplifying assumption that

these are independent21 of v, the zeroth layer dictates that the base is hyper-Kähler

and that the exterior derivative of β is self-dual. This layer is non-linear, however, if

one views the choice of base space and fibration (subject to the above conditions) as an

input to the problem then all of the remaining layers are linear. All known superstrata

are over a base B = R4 since these are the simplest to construct. The first layer is a

set of homogeneous and linear equations for the ZI and ΘI , which in turn fix the warp

factor in (2.43) to be

P = Z1Z2 − Z2
4 . (2.45)

The second layer is again linear, however, with the solutions to the first layer quadrat-

ically sourcing these equations. This final layer fixes F and ω. Despite the huge sim-

plification of linearity, these equations are still formidable to solve and there are many

subtleties that are not discussed here. For a full account see the reviews [28,146] or the

papers in which the known superstrata were originally constructed [27,54,55,159–164].

Before describing the class of superstrata used in this thesis, we first note that

the 3-charge black hole (1.7) is a very simple solution of this form, with the ansatz

quantities

F = −2Qp
r2

, Z1 = 1 +
Q1

r2
, Z2 = 1 +

Q5

r2
, Z4 = 0 , β = ω = 0 , ΘI = 0 , (2.46)

where spherical coordinates with radius r have been used on B = R4. The interesting

thing from the microscopic perspective is that in the same class of supergravity solutions

as the singular black hole, there is a huge number of smooth solutions with the same

charges and preserving the same supersymmetries. The 2-charge microstate geometries

discussed above have F = Z4 = 0, ΘI = 0 and the flat metric on B = R4 and the

remaining ansatz quantities are fixed by the Lunin-Mathur profile of a curve in R4.

The charges of the solution are smeared around this curve, the simplest profile for

which is a circle and this yields global AdS3 × S3. More complicated profiles yield

deformations of global AdS3 × S3.

To get 3-charge superstrata, the 2-charge solutions are used as seed solutions on

which one acts with the symmetry generators to generate more complicated solutions.

The first and second layer BPS equations are re-solved using the seed as input, gener-

ating (with many details omitted) solutions which depend on two arbitrary functions

21Note that we assume the metric on the base space and β are v-independent; all other ansatz
quantities in the 3-charge case can, and should depend on v since the momentum excitations on S1

y are
along this direction.
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of three variables. The general single-mode22 3-charge superstrata are labelled by the

integers23 (k,m, n) satisfying n ≥ 0, 0 ≤ m ≤ k from the requirement of smoothness.

This nomenclature and the smoothness conditions appear arbitrary from the gravity

perspective, however, in the CFT language of the dual states discussed below they

emerge very naturally [51, 55]. The “workhorse” family of superstrata are the (1, 0, n)

solutions, depending on the three parameters24 (a, b, n), and which have the following

ansatz quantities (using the notation of [27]):

Z1 = 1 +
Q1

Σ
+
R2
y b

2

2Q5Σ
∆2,0,2n cosχ2,0,2n , Z2 = 1 +

Q5

Σ
, Z4 =

Ry b

Σ
∆1,0,n cosχ1,0,n

F = −2Fn(r) ≡ − b
2

a2

(
1− r2n

(r2 + a2)n

)
, ω = ω0 + ω1,0,n , Σ ≡ r2 + a2 cos2θ

β =
Ry a

2

√
2 Σ

(
sin2θ dφ1 − cos2θ dφ2

)
, ω0 =

Ry a
2

√
2 Σ

(
sin2θ dφ1 + cos2θ dφ2

)
,

ω1,0,n =

√
2 a2Ry

Σ
Fn(r) sin2θ dφ1 , χ1,0,n =

χ2,0,2n

2
=

√
2

Ry
nv + φ1

∆1,0,n =
√

∆2,0,2n =
a rn

(r2 + a2)(n+1)/2
sin θ (2.47)

where on the R4 we have used the oblate spherical coordinates (r, θ, φ1, φ2) adapted to

disk sources, which can be obtained from the Cartesian coordinates xµ (µ = 1, . . . , 4)

via

x1 + ix2 =
√
r2 + a2 sin θ eiφ1 , x3 + ix4 = r cos θ eiφ2 . (2.48)

This gives the flat metric on R4 as

ds2
4 = Σ

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2θ dφ2

1 + r2 cos2θ dφ2
2 , (2.49)

with the coordinates (r, θ, φ1, φ2) having the ranges

r ≥ 0 , 0 ≤ θ ≤ π

2
, 0 ≤ φ1, φ2 < 2π . (2.50)

22Since the BPS equations are linear, a general solution can be written as a sum over arbitrary modes
of this form. We discuss only single-mode superstrata [163].

23In full generality there will be an additional integer q which relate to the fermionic generators
used in the construction of the superstrata [161]. We focus on superstrata that used only the bosonic
generators in their construction, defining (k,m, n, q = 0) ≡ (k,m, n).

24Note that setting n = 0 reduces this family of 3-charge superstrata to a family for the 2-charge
black hole. We will also use this (1, 0, 0) family in this thesis.
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Demanding smoothness of the solution25 then imposes the relation

Q1Q5

R2
y

= a2 +
b2

2
≡ a2

0 , (2.51)

and the conserved charges are the angular momenta and momentum

JL = JR =
Rya

2

2
, Qp =

1

2
nb2 . (2.52)

Despite not being at all close to a typical state of the ensemble of the 3-charge black

hole, this family of solutions does contain a surprising amount of structure. The general

structure of this (1, 0, n) family of solution is the following. At very large distances

from the centre r � a, b,Q
1/2
1 , Q

1/2
5 the geometry is flat, however, upon taking the

decoupling limit (1.10) (effectively dropping the 1’s in Z1 and Z2) the solution becomes

“asymptotically” AdS3 × S3 with equal radii

RAdS = RS3 =
(
Q1Q5

)1/4
. (2.53)

In this region the radius of the S1
y decreases for decreasing r (in keeping with being

part of an AdS3) until it stabilises to a fixed radius, signifying the start of a BTZ-like

AdS2×S1
y×S3 throat at r ∼

√
Qp. The length of this throat is controlled by the ratio b

a

and it transitions to a region where the momentum excitations are localised at r ∼ a
√
n

before smoothly capping off in another AdS3 region (though the S3 smoothly pinches

off here). This general structure lends the name of “smoothly capped geometries” to

this class of solutions. It should be noted that (in the decoupling limit) whilst setting

a = 0 in the (1, 0, n) geometry gives the extremal BTZ metric, this value is not part of

the ensemble and there is a minimal value of a. One of the interesting features of this

geometry manifests itself when written in the form of an S3 fibration

ds2
6 ≡ g̃MNdxMdxN = V −2gµνdx

µdxν +Gαβ
(
dxα +Aαµdx

µ
)(
dxβ +Aβνdx

ν
)
, (2.54)

where M,N run over (u, v, r, θ, φ1, φ2), α, β run over the S3 coordinates (θ, φ1, φ2), and

µ, ν are over (u, v, r). The prefactor V in (2.54) is given by

V 2 ≡
detGαβ
det Ωαβ

, (2.55)

where Ωαβ is
√
Q1Q5 times the round metric on the 3-sphere at infinity. The extracted

metric gµν turns out to be independent of the S3 coordinates, signifying a consistent

reduction to three dimensions. We will use this fact in Chapter 4 to reduce a 6D

25We note that conditions from demanding flat asymptotics and the absence of closed timelike curves
have also been used to constrain the ansatz data (2.47).
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geodesic problem down to a 3D one.

2.2.2 Superstrata in the D1-D5 CFT

In this section we give a basic description of the D1-D5 CFT, dual to the D1-D5 brane

system in the decoupling limit, at the free orbifold point in its moduli space. This is by

no means a complete or thorough exposition of this theory; most details of the orbifold

CFT are not required for the material presented in this thesis and so the aim of this

section is simply to motivate the dual CFT description of the superstrata discussed in

the previous section. For more details see [165–167].

We give here the general idea of an orbifold theory: given a seed CFT B with central

charge c̃, the tensor product theory BN with central charge c = c̃N is defined by taking

N non-interacting copies of the seed. By imposing invariance under a discrete gauge

group G one obtains the G orbifold theory. As a simple example consider the seed

CFT to be the theory of c̃ free bosons Xζ with ζ = 1, . . . , c̃. The tensor product theory

will contain simply the free bosons Xζ
(r) with r = 1, . . . , N . Orbifolding by the group

G = ZN gives a theory with a Hilbert space that is the product of “twisted sectors”

labelled by the conjugacy classes of ZN , i.e. the kth sector contains fields invariant

under a cyclic permutation of copies of the seed performed k times. These are “gauge

invariant” states of the orbifold theory since the original fields on individual copies of

the seed CFT are not invariant under a cyclic permutation of copies.

Given the above example we can now move on to describing the D1-D5 orbifold

CFT2. This theory uses a seed c̃ = 6 sigma model with target space T 4, containing four

bosonic and four chiral and anti-chiral fermionic fields and N = (4, 4) supersymmetry.

We denote these basic fields as

Xi(z, z̄) , ψαȦ(z) , ψ̄α̇Ȧ(z̄) , (2.56)

where α, α̇ are fundamental indices of SU(2)L and SU(2)R of the R-symmetry group

SO(4) ' SU(2)L × SU(2)R; A and Ȧ are fundamental indices of SU(2)C and SU(2)A

factors of the “organisational” SO(4)I ' SU(2)C × SU(2)A and i is a fundamental

index of SO(4)I . This SO(4)I originates from the T 4 whereas the R-symmetry SO(4)

comes from the S3. The D1-D5 CFT is the SN orbifold of N ≡ n1n5 copies of this seed.

The theory contains various twisted sectors, labelled by the conjugacy classes of the

SN – these consist of fields invariant under permutations of copies with a fixed cycle

structure. The symmetry currents on each copy are the stress tensor, R-symmetry and

supersymmetry generators (we omit the copy label here){
T (z) , Ja(z) , GαA(z)

}
,
{
T̄ (z̄) , J̄a(z̄) , Ḡα̇A(z̄)

}
, (2.57)
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which can be constructed from the basic fields (2.56). Using (2.10) and its generalisa-

tions [120], these fields have the modes{
Ln , J

a
n , G

αA
n

}
,
{
L̄n , J̄

a
n , Ḡ

α̇A
n

}
, (2.58)

where a = +,−, 3 is a triplet representation index of SU(2) and n,m ∈ Z or 1
2 + Z for

bosonic and fermionic modes respectively. The algebra formed from these modes has a

finite dimensional subgroup of the globally defined modes{
L±1 , L0 , J

a
0 , G

αA
± 1

2

}
,
{
L̄±1 , L̄0 , J̄

a
0 , Ḡ

α̇A
± 1

2

}
. (2.59)

Since the Cartan subalgebra of the holomorphic part of the mode algebra is formed

from J3
0 and L0 we can label (holomorphic) states by their eigenvalues h and j. On

top of the field content of each copy (2.56) there are also twist operators26 σk that

permute fields on k of the copies. If each copy is a CFT on a spatial circle of length

2πRy then an order k twist operator can be thought of as linking together k copies into

a single CFT27 on a circle of length 2πkRy. As a point of nomenclature, a state on k

linked copies is often referred to as a “strand” of length k. The states of interest for

the CFT description of the superstrata of Section 2.2 are the 5 bosonic T 4-invariant

Ramond-Ramond (RR) ground states per twist sector, all with dimensions h = h̄ = c
24

and labelled by their R-charges of ±1
2 and 0{
|±±〉k , |00〉k

}
. (2.60)

Under a spectral flow [168] transformation, these RR ground states are mapped in a

1-to-1 fashion to anti-chiral primaries in the Neveu–Schwarz (NS) sector28. Under such

a spectral flow between the NS- and R-sectors, the conformal dimensions and R-charges

are related via

hR = hNS + jNS +
c

24
, jR = jNS +

c

12
, (2.61)

where in the k twisted sector the central charge is c = 6k. A holomorphic anti-chiral

primary is defined by the condition

G−A− 1
2

|h, j〉 = 0 , (2.62)

26The notation σk refers to a twist operator representing the action of a permutation with one cycle
of length k summed over all choices of k copies from N to get an SN invariant object.

27In terms of fields on the plane, twist operators wind together their boundary conditions. A bosonic
field on copy (r) has boundary conditions X(r)(e

2πiz) = X(r)(z) whereas with a twist operator σk
inserted at the origin, then X(r)(e

2πiz) = X(r+1)(z). Circling X(r)(z) around the origin k times gives
back X(r)(z).

28It is purely convention to map to anti-chiral primaries. If one spectral flows in the opposite direction
then RR ground states map to chiral primaries, although (2.61) takes a slightly different form.
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which is equivalent to having h = −j. These are lowest-weight states of a short multiplet

which can be then filled out by the action of the symmetry mode operators{
L−1 , J

+
0 , G+A

− 1
2

}
,
{
L̄−1 , J̄

+
0 , Ḡ+̇A

− 1
2

}
. (2.63)

In particular, two of the RR ground states in (2.60) (per twist sector) map under

spectral flow as

|++〉k ←→ |0〉NS , (2.64a)

|00〉k ←→ |−−〉NS
k , (2.64b)

where |0〉NS is the unique NS vacuum with h = h̄ = j = j̄ = 0 and |−−〉NS
k is an

anti-chiral primary with h = h̄ = −j = −j̄ = 1
2 . From the NS sector strand |−−〉NS

k ,

we build the excited strand29

|k,m, n〉NS ≡
(
J+

0

)m
Ln−1 |−−〉

NS
k . (2.65)

The CFT state dual to a multi-mode (k,m, n) superstrata, when spectral flowed to the

NS sector, is then a coherent sum of strands of the NS vacuum |0〉NS and excited strands

of the type (2.65) with different choices of k, m and n. Of course, the total number of

copies involved should equal N . In order to have a good description in supergravity,

the number of each type of strand within this coherent sum should scale with N in

the large N limit [169]. For a single-mode superstrata there will be only two types of

strands, |0〉NS and one choice of |k,m, n〉NS. Of particular interest for this thesis is the

(1, 0, n) family of superstrata, whose dual state (in the NS sector description) is given

by (
|0〉NS

)N00
(
|1, 0, n〉NS

)N1,0,n

, (2.66)

with N00, N1,0,n ∼ N as N → ∞ and subject to the constraint N00 + N1,0,n = N . We

emphasise that to be dual to a background geometry, the state must have dimensions

∆ ∼ N and so it is really the spectral flow of (2.66) to the RR sector that is dual

to the (1, 0, n) superstrata. In terms of the parameters a and b appearing in the bulk

solution (2.47), the number of each strand type is given by

N00 = N
a2

a2
0

, N1,0,n = N
b2

2a2
0

. (2.67)

The precision holography of superstrata has been studied variously in [26, 49–51, 169–

29We note that a more general class of excited strand is used to construct the “supercharged su-
perstrata” of [161]. These strands |k,m, n, q〉 are defined in a similar manner to (2.65) but with the
additional action of the G+A

− 1
2

fermionic modes.
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171] and lends a large amount of weight to the description of the dual states of super-

strata being as described above.

2.2.3 Relation of expansion parameters

In this section we briefly give details on the relation between two expansion parameters
N1,0,n

N = b2

2a2
0

and µ used in Chapters 3 and 4. The definition of µ that we use matches

that in [52,53,101,172,173]

µ ≡
24h

[0]
H

c
=

4h
[0]
H

N
, (2.68)

where h
[0]
H is the reduced dimension of a heavy operator OH . The mode algebra formed

from (2.58) includes the commutator (see for instance appendix A.2 of [166])

[
Ln, J

a
m

]
= −mJan+m , (2.69)

and so, in particular, the R-symmetry current modes mix with L0 and thus contribute

to the dimension of a state. In order to remove these contributions, the Sugawara

construction [120] is used to define a stress tensor T Sug with modes LSug
n describing

the contribution of the current to the full stress tensor T . To decouple the algebra of

Virasoro modes from those of the current it is possible to define the reduced Virasoro

modes L
[0]
n ≡ Ln − LSug

n with commutator

[
LSug
n , Jam

]
= 0 . (2.70)

The associated reduced conformal dimension is then the eigenvalue of L
[0]
0 given by

h[0] ≡ h− J2

N
, (2.71)

with J2 being the eigenvalue of the quadratic Casimir of SU(2)L. An analogous dis-

cussion holds for the anti-holomorphic sector.

We now compute this reduced dimension for the state dual to the (1, 0, n) family

of superstrata discussed in the previous two subsections. The dimension of the heavy

operator is simpler to compute in the NS sector and then a spectral flow transformation

will be used to relate the two. From the explicit form of the state in (2.66) the NS

sector dimensions are

hNS
H = N1,0,n

(
n+

1

2

)
, jNS

H = −1

2
N1,0,n . (2.72)

This then maps to the R-sector quantum numbers using the spectral flow transforma-
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tion (2.61) with the full central charge c = 6N

hR
H = nN1,0,n +

N

4
, jR

H =
N

2
− 1

2
N1,0,n . (2.73)

Using the values of N00 and N1,0,n in terms of the bulk parameters given in (2.67), the

reduced conformal dimension is then given by

h
[0]
H = hR

H −
(
jR
H

)2
N

=
N

4

b2

2a2
0

[
4n+ 2− b2

2a2
0

]
. (2.74)

Using the relation between µ and hH in (2.68) and inverting30 gives

b2

2a2
0

= 2n+ 1−
√

(2n+ 1)2 − µ . (2.75)

2.3 AdS3 HHLL holographic correlators

In this section we briefly outline the method of computation of 4-point holographic

correlation functions involving two heavy and two light operators used in [70–72, 80].

In particular, we focus on the case of the heavy operator OH dual to the (1, 0, 0)

two-charge microstate geometry obtained from the (1, 0, n) solution (2.47) by setting

n = 0 and taking the decoupling limit (1.10). The light operator considered will be

an untwisted sector (k = 1) T 4-invariant chiral primary operator OL of dimension

(hL, h̄L) = (1/2, 1/2). For technical reasons, we will also need its superdescendent OB
L

which has dimensions (hB
L, h̄

B
L) = (1, 1) and j = j̄ = 0 (for this reason, the chiral primary

is sometimes referred to as “fermionic” and the descendent as “bosonic”, though the

terminology may be misleading). The exact form of these light operators in terms of

the basic fields (2.56) of the D1-D5 orbifold CFT is not crucial in this section, however,

we give them for possible future reference as

OL =

N∑
r=1

O++
(r) =

−i√
2N

N∑
r=1

εȦḂ ψ
+Ȧ
(r) ψ̄

+̇Ḃ
(r) , OB

L =
1√
2N

N∑
r=1

εȦḂ ∂X
+Ȧ
(r) ∂̄X

+Ḃ
(r) , (2.76)

where r = 1, . . . , N is a copy label and similar expressions hold for the “barred” op-

erators. Correlators involving these two different light operators are related via the

superconformal Ward identity

CB(z, z̄) = ∂∂̄
[
|z|C(z, z̄)

]
, (2.77)

30In inverting the expression, the root such that both sides vanish for µ = 0 is chosen.
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where we define the correlators (on the plane)

CB(z, z̄) ≡ 〈ŌH(0)OH(∞)OB
L(1)ŌB

L(z, z̄)〉 , (2.78a)

C(z, z̄) ≡ 〈ŌH(0)OH(∞)OL(1)ŌL(z, z̄)〉 . (2.78b)

Since CB has a clearer bulk dual description than C, the idea is to compute (2.78a) by

considering the bulk perturbation dual to OB
L on the background (1, 0, 0) solution and

then map the result to C using (2.77). This perturbation is described by a minimally

coupled scalar Φ which satisfies the wave equation

26Φ =
1√
g̃
∂M

(√
g̃ g̃MN∂NΦ

)
= 0 , (2.79)

where 26 is the Laplace operator in the 6-dimensional (1, 0, 0) metric g̃MN with g̃ ≡
|det g̃MN |. Since the light operator OB

L has zero R-charge, the scalar field Φ can be

projected onto the singlet S3 spherical harmonic. From the asymptotic expansion as

r → ∞ of the solution to (2.79) that is regular in the interior (r → 0), the 2-point

function on the cylinder

bB(t, y) ≡ 〈ŌH |OB
L(0, 0)ŌB

L(t, y)|OH〉 = |z|2CB(z, z̄) , (2.80)

where |OH〉 = OH(t→∞) |0〉 and similarly for 〈ŌH |, can be extracted as

Φ ≈ D(t, y) +
1

r2
bB(t, y) , (2.81)

with D(t, y) being the source on the boundary for OB
L . In (2.80), the factor of |z|2 is

simply due to the transformation from the plane to the cylinder of the operator ŌB
L(z, z̄).

A dramatic simplification to this problem occurs for the (1, 0, n) family of superstrata

(and thus also for the case of (1, 0, 0) discussed here) in that the wave equation (2.79)

is separable. As mentioned below equation (2.55), writing the 6D metric (2.47) in the

form of a dimensional reduction on the S3 as in (2.54) yields a 3-dimensional metric gµν

that is independent of the S3 coordinates (θ, φ1, φ2). In this special case, the problem

of solving (2.79) reduces to the simpler problem of solving

23Φ =
1
√
g
∂µ

(√
g gµν∂νΦ

)
= 0 , (2.82)

with g ≡ |det gµν |. This separability is not a property shared generally with other

superstrata and partly accounts for the use of the (1, 0, n) family as a workhorse for

gaining insight into black hole microstates. As will be discussed in Section 4.4, the
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(1, 0, 0) reduced 3D metric takes the form

ds2
3√

Q1Q5
=

ρ2 + α2

(ρ2 + 1)2
dρ2 − α2

(
ρ2 + α2

)
dτ2 + α2ρ2 dσ2 , (2.83)

where the coordinate redefinitions used, relative to those in Section 2.2, are

ρ =
r

a
, τ =

t

Ry
, σ =

y

Ry
, α =

a

a0
. (2.84)

Decomposing Φ(ρ, τ, σ) into Fourier modes of τ and σ labelled by ω ∈ R and ` ∈ Z
respectively, the wave equation (2.82) reduces to a radial equation for Φ(ρ) given by

d2Φ

dρ2
+

1 + 3ρ2

ρ(1 + ρ2)

dΦ

dρ
− ρ2(`2 − ω2) + α2`2

α2ρ2(1 + ρ2)2
Φ = 0 . (2.85)

Using the substitutions

w(x) = x
`
2 Φ(ρ) with x ≡ ρ2

1 + ρ2
, (2.86)

the equation (2.85) becomes the hypergeometric equation [174]

w′′ +

(
c

x(1− x)
− a+ b+ 1

1− x

)
w′ − ab

x(1− x)
w = 0 , (2.87)

with

a =
`− γ

2
, b =

`+ γ

2
, c = 1 + ` , γ ≡ 1

α

√
ω2 − `2(1− α2) . (2.88)

The hypergeometric equation has two independent solutions w+ and w− with a general

solution being the linear combination

w(x) = c+w++c−w− = c+ 2F1(a, b; c;x) + c− x
1−c

2F1(1+a−c, 1+b−c; 2−c;x) . (2.89)

The desired solution required for bB(t, y) in (2.81) is the order (1 − x) term as x → 1

(corresponding to ρ→∞) which is regular as x→ 0 (ρ→ 0). The regularity condition

in the interior fixes the constants in (2.89) to be c+ = 1 and c− = 0 and expanding the

result around x = 1 gives

w(x) ≈ Γ(1 + |`|)
Γ
(
1 + |`|+γ

2

)
Γ
(
1 + |`|−γ

2

)[1 +
`2 − γ2

4

(
H |`|+γ

2

+H |`|−γ
2

− 1
)

(1− x)

]
, (2.90)
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where Hn is a Harmonic number. Using (2.86) to obtain the required solution to the

original radial equation (2.85), bB(t, y) can be found to be proportional to

bB(t, y) ∼
∞∑

`=−∞

∫
dω

4π2
ei(ωτ+`σ)

[
`2 − γ2

4

(
H |`|+γ

2

+H |`|−γ
2

− 1
)
− |`|

2

]
. (2.91)

Using the Ward identity (2.77) to map bB(t, y) → b(t, y), with b(t, y) = |z|C(z, z̄)

involving the chiral primary light operator OL and evaluating the Fourier integral over

ω yields the correlator (2.78b)

C(τ, σ) =
a

a0

∞∑
k=1

∑
`∈Z

ei`σ
exp

[
−iτ a

a0

√
(|`|+ 2k)2 + b2`2

2a2

]
√

1 + b2

2a2
`2

(|`|+2k)2

. (2.92)

In terms of the coordinates on the plane (z, z̄), related to τ = t
Ry

, σ = y
Ry

by z = ei(τ+σ),

z̄ = ei(τ−σ), the correlator (2.92) becomes

C fer(z, z̄) =
a

a0

∞∑
k=1

∑
`∈Z

1√
1 + b2

2a2
`2

(|`|+2k)2

(z
z̄

) `
2

(zz̄)
− a

2a0

√
(|`|+2k)2+ b2

2a2 `
2

. (2.93)

The details of this calculation can be found in [72]. While (2.92) is not able to be

resummed directly, a closed form expression at first order in b2

2a2
0

was found in [133].

Despite this, the HHLL correlator (2.92) will be the starting point for Chapter 3.

Equivalent correlators for other, more complicated, heavy operators have been consid-

ered only at first order in b2

2a2
0

(see for instance [80]).

2.4 The bulk phase shift

In this section we summarise the calculation of the eikonal phase in the AdS/CFT

duality context. While the approach is general, we are particularly interested in the

case relevant to the decoupling limit of a D1-D5 brane system, and so our equations

will be specialised to the AdS3/CFT2 duality. We here provide a short discussion of

the geodesic problem relevant to the semiclassical bulk calculation and then later in

Section 4.2 summarise the technology that can be used to derive the eikonal from CFT

four-point correlators.

In the gravitational picture of the analysis of Chapter 4, we will focus on three-

dimensional geometries that arise from the dimensional reduction (2.54) of asymptot-

ically AdS3 × S3 supergravity solutions that are holographically dual to known CFT2

heavy operators. We will need to consider the time delay and angular shift accrued by
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a null geodesic – approximating the high energy light probe31 – that begins and ends

on the AdS boundary.

The action describing a massive particle (with mass m) travelling in a curved back-

ground geometry with metric gµν , along a path xµ(τ) with affine parameter τ , is given

by

Sm = −m
∫
dτ

√
−dx

µ

dτ

dxν

dτ
gµν , (2.94)

where the negative sign inside the square root is to ensure the quantity in the square

root is positive for a timelike worldline in the mostly plus signature. This action does

not allow for the generalisation to the massless case and so an auxiliary variable e(τ)

is introduced, acting as an einbein on the worldline, yielding the action

S =

∫
dτ

[
(2e)−1 dx

µ

dτ

dxν

dτ
gµν −

em2

2

]
, (2.95)

which does have a good massless limit, giving

S =

∫
dτ (2e)−1 dx

µ

dτ

dxν

dτ
gµν . (2.96)

This action is invariant under reparametrisations τ → τ̃(τ) if e(τ) transforms as

e(τ)→ e(τ̃) = e(τ)
dτ

dτ̃
. (2.97)

Here e(τ) is not dynamical since its equation of motion is purely algebraic; simply sub-

stituting its equation of motion back into (2.95) gives (2.94). In fixing the reparametri-

sation invariance (2.97), it is possible to set e = 1 simply giving the action

S =

∫
dτ

1

2

dxµ

dτ

dxν

dτ
gµν . (2.98)

The momenta conjugate to the positions xµ are given by

pν ≡
δS

δẋν
= ẋµgµν , pλ = gλνpν = ẋλ , (2.99)

which are conserved along the worldline if the spacetime has suitable Killing vectors

(as is usual, a dot signifies a derivative with respect to τ). All of the three-dimensional

reduced metrics that we will focus on have two Killing vectors; these are associated to

the coordinates that, at the boundary, are identified with the temporal (t) and spatial

(y) directions of the CFT. Thus, the momenta pt and py will be conserved along the

31This approximation to the propagation of a probe emerges from the stationary phase approximation
as discussed in [175].
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Pure AdS

a)

Ry

Deformed Geometry

∆H

b)

r0

∆y

c)

Figure 2.2: The projection of null geodesics in asymptotically AdS3 spaces with time
increasing out of the page and the asymptotic AdS boundary being the outer solid black
circle. In a) we depict null geodesics in pure AdS which all converge to one point (with
∆y = πRy) given fixed initial boundary data. In b) we show an asymptotically AdS
spacetime with a schematic representation of the deformation of spacetime away from
empty AdS. This causes the geodesics to be deflected and they re-emerge from the bulk
at different points. Figure c) indicates the spatial shift ∆y acquired by a null geodesic
as it crosses the bulk and the radial turning point r0 as the point of closest approach to
the origin r = 0.

worldline. From these, the phase shift is defined as [52,175]

δ(p) ≡ −p ·∆x = −pt ∆t− py ∆y , (2.100)

where ∆x denotes the variation of the boundary coordinate x between the two ends of

the geodesic. The geometries we consider can be written in a coordinate system where

the metric is block-diagonal, i.e. the mixed components involving the radial direction

and t, y vanish. Then, the condition for a null geodesic ẋµgµν ẋ
ν = 0 can be rewritten

in terms of the conserved quantities as follows

grrṙ
2 = p 2

t

gyy − 2βgty + β2gtt
g 2
ty − gttgyy

, (2.101)

where β is related to the impact parameter of the geodesic and defined as

β ≡ py
pt
. (2.102)

Other commonly used parameters are s and L, defined by32

|pt| =
s

Ry
coshL , py =

s

Ry
sinhL ⇒ tanhL = β , (2.103)

where Ry is the radius of the CFT spatial direction y. The radial turning point r0 is

32Note that for us, pt is negative for future-pointing geodesics.
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given by the largest real solution of the equation ṙ = 0 and so is derived by setting

Eq. (2.101) to zero. The time-delay ∆t and angular shift ∆y are then given by

∆t = 2

∫ ∞
r0

dr
ṫ

ṙ
, ∆y = 2

∫ ∞
r0

dr
ẏ

ṙ
. (2.104)

By using (2.101) and the conserved quantities (2.99), the eikonal can be written in

terms of the following integral

δ = 2 |pt|
∫ ∞
r0

dr
ṫ+ βẏ

ṙ
= 2 |pt|

∫ ∞
r0

dr
√
grr

√
gyy − 2βgty + β2gtt

g2
ty − gttgyy

. (2.105)

This formula will be used in the bulk side of the calculations for explicit examples in

Chapter 4.

49



Chapter 3

LLLL Holographic Correlators

The contents of this chapter are based on the paper [2].

3.1 Introduction and conclusion

In this chapter we extend the analysis of the light limit of HHLL correlators beyond

the first non-trivial order in the number of constituents and show that the sublead-

ing corrections capture interesting information about 4-point correlators that involve

two light, but multi-trace operators, and two standard single-trace operators. As is

usual for holographic results obtained with the use of a supergravity approximation,

these correlators are valid in the large N , strong coupling regime of the CFT. To be

more precise, we provide evidence that the results obtained from the light limit of the

supergravity HHLL correlators capture the tree-level connected Witten diagram con-

tributions relevant for the correlators under study. It is interesting to see that the

explicit results involve a generalisation of the D-function usually appearing in the cor-

relators among single-particle operators. These D-functions arise naturally from the

integrals appearing in a Witten diagram describing the contact 4-point interaction be-

tween bulk fields and can be written in terms of the Bloch-Wigner dilogarithm [176].

The multi-trace correlators we obtain here are written in terms of the Bloch-Wigner-

Ramakrishnan polylogarithms [177] which are generalisations sharing several properties

of the standard Bloch-Wigner function, but involve higher order polylogarithms. These

polylogarithms have also appeared in other physics applications, such as the evaluation

of multi-loop Feynman integrals [178], the analysis of the free energies in O(N) and

U(N) models [179, 180] and, in the holographic context, the expression of integrated

four-point correlators [181].

As already mentioned above, the multi-trace operators we consider are made from

identical constituents which are mutually BPS and so it is possible to relate the 4-point

correlators we discuss to a particular kinematic limit of a higher-point function involving
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just single-particle states. This relation to higher-point functions involves two steps.

The first is the kinematic limit taking two groups of n identical operators in a (2n+2)-

point correlator to the same position and the second is to relate the resulting n-trace

operators to those that are natural from the point of view of the heavy operators dual to

the smooth bulk geometries which are used in deriving the HHLL correlators. Despite

these two steps, we argue that the functions appearing in the multi-trace correlators we

construct are present also in higher-point functions of single-trace operators. As will

be discussed in more detail in the main text, this picture makes it evident that these

correlators contain both classical (tree-level) and quantum (loop) contributions in the

gravity picture at a given order in the 1/N -expansion. However, as previously stressed,

our results capture only the classical part and provide a window on the structure

of tree-level Witten diagrams for correlators with six or more single particle external

states, albeit in the simplifying kinematic limit where only two cross-ratios survive. We

point out that, even in this simplified regime, these results are qualitatively different

from those obtained in [182] where an explicit five-point correlator was calculated in

AdS5 × S5 and the result could still be written in terms of standard Bloch-Wigner

functions.

Since the extrapolation of the HHLL correlator to small values of the heavy oper-

ator’s conformal dimension – on which we base our derivation of the correlators with

multi-particle states – is a priori unjustified, it is important to gather independent ev-

idence on the correctness of our conjecture. We thus take various OPE limits of the

multi-particle correlators and verify that we obtain consistent results. One can, for

example, focus on the light-cone OPE limit – where to leading order, only the con-

served currents are exchanged – and check that our correlators reproduce the expected

behaviour of their conformal blocks. Alternatively, one can isolate the exchange of pro-

tected multi-trace operators – produced in the OPE of operators preserving the same

supersymmetries – and match the corresponding three-point couplings with those com-

puted in the weakly coupled (orbifold) CFT. New dynamical information is contained

in the anomalous dimensions and couplings of the non-BPS multi-trace operators and

despite, at present, not knowing all of the necessary correlators to extract this informa-

tion completely, we verify some qualitative features of the OPE in the non-protected

channels and derive constraints on these dynamical quantities. We note, however, that

the OPE data of the double-trace non-BPS operators with minimal (bare) twist can

be inferred from known amplitudes of four single-trace chiral primary operators with

the lowest dimension (1/2, 1/2) – these sit in one of the Nf tensor multiplets (where

Nf = 5 or 21 for the theory compactified on T 4 or K3). Unlike in AdS5 × S5 [183],

this task already involves a non-trivial mixing problem33 between the different multi-

33In a recent article [184] the nice observation was made that, for non-BPS multi-traces in non-trivial
flavour representations, the same mixing problem can be solved for arbitrary twist using the available
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plet flavours. This analysis provides a somewhat surprising result: we find a positive

anomalous dimension for operators of spin 0 and 2. The question of the existence of a

consistent large N CFT with a spin-two operator with a positive anomalous dimension

was raised in [185] and this is, to the best of our knowledge, the first affirmative answer

to this search.

3.2 Correlators with multi-trace operators: the setup

The main object of study in this chapter is a special class of holographic correlators in

the CFT2 dual to type IIB superstring theory on AdS3×S3×M, whereM can be ei-

ther T 4 or K3. A first way to characterise this class of correlators is in terms of 4-point

functions involving two BPS-conjugate multi-trace operators and two BPS-conjugate

single-trace operators. Since all operators that we consider are scalars, conformal in-

variance implies that the correlators depend on a single function of two cross-ratios

〈Ō n
f (z1, z̄1)O n

f (z2, z̄2)Og(z3, z̄3) Ōg(z4, z̄4)〉 =
Gn(z, z̄)

|z12|2n∆f |z34|2∆g
, (3.1)

where zij = zi − zj and Of,g (Ōf,g) are (anti)-chiral Primaries Operators (CPO) in the

D1-D5 CFT2 with identical holomorphic and antiholomorphic dimensions h = h̄ = ∆/2

and flavour indices34 f, g. We define the cross-ratio z as in (2.19) and so it is often

convenient to work in the gauge given in (2.26) where the correlator takes the form

Cn(z, z̄) ≡ lim
z2→∞

|z2|2n∆f 〈Ō n
f (0, 0)O n

f (z2, z̄2)Og(1, 1) Ōg(z, z̄)〉 =
Gn(z, z̄)

|1− z|2∆g
. (3.2)

The function Gn(z, z̄), which contains the dynamical information, at least in principle

can be calculated in the holographic regime by summing Witten diagrams. As depicted

in Fig. 3.1, there are different types of contributing diagrams and we will focus on the

connected tree-level diagrams, such that in b), which are of order 1/Nn. For the class of

correlators in (3.1) there are also other contributions relevant at the same order in the

1/N expansion (see the disconnected 1-loop diagram c in Fig. 3.1) and so our results

do not in general represent the full holographic correlators (3.1) at order 1/Nn. We

will discuss below how these disconnected loop contributions cancel in our approach.

As Fig. 3.1 suggests, it is possible to view the correlators in (3.1) as a particular

kinematic limit of a (2n+2)-point function where the multi-trace operators are replaced

by n identical CPOs at different positions, which are then taken to the same point, for

instance as O n
f (z2, z̄2) = limwa→z2

∏n
a=1Of (wa, w̄a). Thus our results provide a first

correlator data.
34Since the 6D bulk theory has 16 supercharges, the fields organise into different multiplets; we focus

on CPOs of the matter tensor multiplets of which there are 5 (21) different flavours in the M = T 4

(K3) case.
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Og

Ōg
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Figure 3.1: Three Witten diagrams contributing to (3.1) for the case of n = 2. Diagram
a) is disconnected and thus contributes at leading order in large N , while the remaining
two involve four bulk vertices (denoted by a black square) and so are both suppressed
by a factor of 1/N2 with respect to the first. Diagram b) depicts a connected tree-
level diagram, while c) contains a disconnected 1-loop structure. The results derived in
this chapter focus on the former class of contributions, where in the shaded region one
considers all possible ways of obtaining a connected tree-level structure. Such diagrams
contain up to three bulk-to-bulk propagators (labelled explicitly by 1, 2, 3 in b)) and, as
mentioned in the text, this makes a direct evaluation of such contributions challenging.

window on higher-point holographic correlators35, making it possible to go beyond

the explicit 5-point AdS5 × S5 example discussed in [182], since the n = 2 case is

already related to a correlator involving six single-trace operators. Correlators with

six or more external points and their OPE limits discussed in this thesis are expected

to be intrinsically more complicated than the lower point examples since the method

introduced in [62] to deal with bulk-to-bulk propagators will not be sufficient to evaluate

them. This can be seen by considering the connected tree-diagram given in Fig. 3.3a.

By following [62] one can, for instance, write the part of the diagram involving one pair

of the operators Of , Ōf and the bulk-to-bulk propagator 1 as a finite sum of boundary-

to-bulk propagators directly linking the two positions of the boundary operators with

the bulk interaction vertex (giving the diagram of Fig. 3.3b). This procedure can be

repeated for the remaining pair of the operators Of , Ōf and the bulk-to-bulk propagator

3 to get a sum of diagrams of the form of Fig. 3.3c. However, after this second step it is

not possible to eliminate the final bulk-to-bulk propagator (labelled 2) because each of

its endpoints is connected to three external points. Thus, tree diagrams such as the one

depicted in Fig. 3.3a cannot be recast as a sum of contact diagrams. This is in contrast

to the connected tree-diagram given in Fig. 3.1b, which can be reduced to a finite sum

35In [186] a particular class of n-point functions in N = 4 SYM was considered. These correlators
violate maximally the U(1)Y bonus symmetry of the supergravity limit and are related to lower point
correlators by a recursion relation. The multi-particle correlators relevant for our analysis preserve
the corresponding bonus symmetry, which for the AdS3 case is SU(2), and do not obey any simple
recursion relation.
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Figure 3.2: An example of the reduction of a Witten diagram contributing to the multi-
trace correlator Cn=2 that can be reduced to a contact diagram [62]. After each iteration,
the result is a finite sum of such diagrams.

of contact diagrams following the method of [62]. Therefore, even after taking the

kinematic limit reducing the higher-point correlators to the 4-point function (3.1), we

do not expect that the contribution of all connected tree diagrams can be expressed in

terms of the standard D∆1,∆2,∆3,∆4 functions. Indeed as discussed in the next section,

new objects (the Bloch-Wigner-Ramakrishnan polylogarithms) naturally appear in this

case.

We conclude this introductory section by presenting an effective way to isolate the

tree-level connected contributions to (3.1) which is suggested by the dual gravitational

description for the “heavy states” (where n ∼ N). To have a well-defined semiclassical

description it is natural to consider particular coherent-state-like linear combinations of

multi-particle states [26,169,187] that are dual to a class of asymptotically AdS3 × S3

supergravity solutions. Since these coherent states are classical supergravity objects,

one can expect that they receive contributions only from the tree-level diagrams such

as the ones in Fig. 3.1b and 3.3a and that loop diagrams cancel out. We will provide

evidence that this is indeed the case. Then by following [26, 169, 187], we define the

operator

OH,f =

N∑
p=0

√(
N

p

)(
B√
N

)p(
1− B2

N

)N−p
2

O p
f , (3.3)

where B is a parameter36 that, for simplicity, we take real and O p
f is defined such that

the 2-point function with its conjugate operator is normalised to one. Then we can

write an expansion linking the 4-point HHLL correlator involving the heavy operators

OH,f in (3.3) and the correlators Cp containing the multi-particle constituents O p
f , as

36In terms of the other expansion parameters used in this thesis, the B that is used in this chapter

is related to the supergravity parameters of the (1, 0, n) superstrata via B2 = N b2

2a20
which in turn can

be related to the µ of Chapter 4 by equation (2.75).
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Figure 3.3: An example of a connected tree-level Witten diagram contributing to the
multi-trace correlator Cn=2 with three bulk-bulk propagators which cannot be reduced
to a finite sum of contact diagrams using the results of [62]. After two applications of
this technique, the remaining bulk-bulk propagator 2 in the rightmost diagram cannot be
reduced further due to being connected to three boundary points at each vertex. After
each step given, the result will be proportional to a finite sum of such diagrams.

follows:

〈ŌH,fOH,fOgŌg〉 =
N∑
p=0

(
B2

N

)p(
1− B2

N

)N−p(
N

p

)
Cp

=

N∑
p=0

N−p∑
q=0

(−1)q
(
B2

N

)p(
B2

N

)q (
N − p
q

)(
N

p

)
Cp

=

N∑
n=0

(
B2

N

)n n∑
p=0

(−1)n−p
(
N − p
n− p

)(
N

p

)
Cp

=
N∑
n=0

(
B2

N

)n(
N

n

)
Cn ,

(3.4)

where

Cn ≡
n∑
p=0

(−1)n−p
(
n

p

)
Cp . (3.5)

In the first step we simply expanded the (N − p)-th power and rearranged the sums so

as to collect the factors of B2 and in the final step we defined the combination Cn. This

is the combination that is encoded in the HHLL correlator and, as mentioned above,

it captures only the connected tree-level diagrams of Cn for each value of n. Let us see

how this looks in the simplest examples. For n = 1 we have

C1 = 〈ŌfOfOgŌg〉 − 〈OgŌg〉 , (3.6)

so the disconnected contribution to the first term is cancelled exactly by the 2-point
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function appearing in the second term (note that we have chosen a normalisation such

that 〈Ōf (0)Of (∞)〉 = 1). The first example involving multi-trace operators requires

n = 2 and from the definition (3.5) we have

C2 = 〈Ō 2
f O 2

f OgŌg〉 − 2〈ŌfOfOgŌg〉+ 〈OgŌg〉 . (3.7)

The fully disconnected contributions of order N0 cancel as before, but now there is also

a cancellation among the partially connected contributions – diagrams with a 2-point

function factorised from the other four operators, which have a leading contribution of

order N−1 and a 1-loop term of order N−2. The remainder of the connected part of

this correlator is thus the N−2 terms not containing loops.

3.3 Multi-trace correlators

One way of calculating a HHLL correlator of the type (3.4) requires solving a wave

equation in the background of the geometry dual to the heavy state. In general this is

a difficult problem that cannot be solved exactly and one usually resorts to approxi-

mation schemes to simplify the task. For example, one can use a WKB method [31,78]

or alternatively work in the regime where the heavy state generates only small de-

formations of AdS3 × S3 rather than a fully backreacted geometry. In the latter case,

expressions can be obtained analytically using standard holographic techniques and cor-

relators have been obtained employing this method for various heavy states [70,71,80].

However, such results are typically limited only to first order corrections around the

AdS3×S3 vacuum and can be related to correlators of single-particle operator [73–75].

Nonetheless, for a specific choice of heavy state it was found that one can evaluate

the heavy-heavy-light-light correlator exactly in terms of a double Fourier series [72]. In

this section we study this particular correlator and use the expansion (3.4) to extract a

closed form expression for connected tree-level correlation functions with double-trace

operator insertions. We find that particular combinations of higher-order polyloga-

rithms – the Bloch-Wigner-Ramakrishnan polylogarithm functions – appear in these

multi-trace correlators and we dedicate a part of this section to a brief review of these

functions.

Some of the more technical results, together with examples of correlators involving

pairs of higher multi-trace operators can be found in Appendix B.1.

3.3.1 Explicit statement of higher-order correlators

To specify precisely which operators appear in the correlator that is to be the main

focus of this section, we use the notation of the orbifold point of the D1-D5 CFT at

which it is described by a sigma model with target space (M)N /SN (most of our results
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are valid for bothM = T 4 and K3). The theory contains a collection of N free bosonic

and fermionic fields which naturally split into a holomorphic and an anti-holomorphic

sector as (
∂XAȦ

(r) (z) , ψαȦ(r) (z)
)
,

(
∂̄XAȦ

(r) (z̄) , ψ̃α̇Ȧ(r) (z̄)
)
, (3.8)

where the the indices A, Ȧ = 1, 2 are related to the SU(2) symmetries of the internal

manifold M; α, α̇ = ± are fundamental SU(2)L × SU(2)R R-symmetry indices; and

(r) = 1, 2, . . . , N is an SN index labelling the N copies of the target space. In this work

we focus on operators in the untwisted sector of the orbifold theory and thus all fields

are periodic under (z, z̄)→ (z e2πi, z̄ e−2πi). For more details, see for example [41, 167]

or appendix A of [169], whose conventions we follow.

The point in the moduli space of the D1-D5 CFT that admits a dual semiclassical

supergravity description is an infinite distance away from the free orbifold point (see

for example [188]). Despite this, the notation of the latter can be useful to describe

protected supersymmetric operators such as those appearing in our correlators [189].

With that in mind, we consider light operators that are chiral primaries; since the

AdS3 × S3 theory is not maximally supersymmetric, chiral primaries can originate

from different 6D supergravity multiplets and in this chapter we restrict to those of the

Nf tensor multiplets (where either Nf = 5 or 21 forM = T 4 and K3 respectively). On

top of this, we consider such operators with minimal conformal dimension, i.e. with

∆ = 1. For example, four of the five T 4 tensor multiplet CPOs are given in the free

orbifold language by

Of (z, z̄) =
σ

(f)

ȦḂ√
2N

N∑
r=1

ψ+Ȧ
(r) (z) ψ̃+Ḃ

(r) (z̄) =
1√
N

N∑
r=1

Of(r) , (3.9)

where σ
(f)

ȦḂ
form a basis of 2 by 2 matrices (the fifth CPO is given by the twist field

of order 2). We use the same operator, but with a different flavour index, as the

fundamental building block for the construction of the heavy states. As discussed

in the previous section the most natural way to define the multi-particle operators

in (3.3) is to take the OPE limit of the single particle states which is regular as all

constituents are mutually BPS. It turns out that this is not the choice appropriate for

defining the heavy states dual to the supergravity solutions used in [71, 72] to derive

the HHLL correlators. It is easier to characterise these multi-particle states in terms

of the free orbifold theory, where for instance the relevant double-trace operators are

:O 2
f :∼

∑
r<sO(r)O(s). Notice that the contribution r = s is absent, while a term of

this type arises when taking the OPE limit O 2 ∼ limw→z O(w)O(z). By following the

dictionary [49,51] for supersymmetric operators between the supergravity and the free
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orbifold points, we have the following schematic form for the relation between the two

types of double-trace operators discussed above

:O2 : = O2 +
1√
N

[
single-particle

]
+

1

N

[
double-particle

]
, (3.10)

where the operators appearing on the right-hand side are the standard ones used in

holographic calculations in the supergravity approximation37. A signal that the mi-

crostate geometries are constructed in terms of : On : is that they induce a vev for

dimension two operators [50,51] which would be absent when using the more standard

definition because they involve extremal couplings. With a slight abuse of notation,

from now on we will write between colons the (external) multi-trace operators relevant

to the microstate geometries (3.10) and we will use the same notation also for the cor-

relators involving this type of multi-trace operator. This notation will only be used

for this chapter, in order to emphasise the difference between the two definitions of

multi-trace operators. Thus we write the heavy-heavy-light-light correlation function

on the plane38 derived in39 [72] as

:C : (z, z̄) =

(
1− B2

N

) ∞∑
k=1

∑
`∈Z

(
z z̄−1

) `
2√

1− B2

N

(
1− `2

(|`|+2k)2

) (zz̄)
− |`|+2k

2

√
1−B2

N

(
1− `2

(|`|+2k)2

)
,

(3.11)

which describes a correlator involving the heavy states

: OH,f : =
N∑
p=0

√(
N

p

)(
B√
N

)p(
1− B2

N

)N−p
2

:O p
f : , (3.12)

in the regime where the parameter B2 in chosen to scale with N as N → ∞. This

scaling limit (the ‘heavy scaling limit’) is necessary in order to treat the heavy operator

as a smooth deformation of AdS3×S3. However, following the discussion of Section 3.2

we are interested in the opposite regime, where the heavy operators are made light by

keeping B2 fixed and thus B2/N → 0 as N →∞. To describe this limit, it is convenient

37In particular the extremal correlators among them vanish and the single-particle states are orthog-
onal to the multi-particle states.

38To go from correlators on the plane to the cylinder with our choice of light operator involves simply
a Jacobian factor of |z|.

39In [72] the result was given in terms of the continuous dimensionful parameters a, a0, and b which
appear naturally in the supergravity description of the smooth geometry dual to the heavy state. Here it
is more convenient to use a dimensionless parameter B, which is related to the supergravity parameters
via

a2

a2
0

= 1− B2

N
,

b2

2a2
0

=
B2

N
,

where we used the smoothness constraint a2 + b2/2 = a2
0.
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to rewrite the correlator (3.11) as a series in B2/N , as was done in (3.4). We note that

when N is large and with n finite, the binomial appearing in the last line of (3.4) can

be approximated as (
N

n

)
n�N−−−−→
N→∞

Nn

n!
, (3.13)

so that the expansion of the correlator can also be written as

:C : (z, z̄) ≈
∞∑
n=0

(
B2

N

)n
Nn

n!
:Cn : (z, z̄) . (3.14)

This expression, together with the fact that connected correlators :Cn : scale as N−n,

makes it clear that the coefficients of each power of B2/N are finite in the large N

limit.

The main result of our analysis is that at each order in B2/N the double Fourier

series in (3.11) can be evaluated in a closed form using the procedure outlined in

Appendix B.1 and one can rewrite the coefficients :Cn : (z, z̄) in terms of elementary

functions and polylogarithms. In Appendix B.1 we present terms up to n = 4, however,

in the main text we limit ourselves to the first new result which occurs for n = 2. For

the first three values of n, the correlators are given by

C0 =
1

|1− z|2
, (3.15a)

C1 = −|z|
2

N

[
4i(z + z̄)

(z − z̄)3
P2(z, z̄) +

4

(z − z̄)2
log |1− z|+ 2(z + z̄ − 2zz̄)

(z − z̄)2|1− z|2
log |z|

]
− 1

N

1

|1− z|2
, (3.15b)

:C2 : =
4|z|2

N2

[
6i(z + z̄)(z2 + 10zz̄ + z̄2)

(z − z̄)5
P4(z, z̄)− 12(z2 + 4zz̄ + z̄2)

(z − z̄)4
P3(z, z̄)

+
8i(z + z̄)

(z − z̄)3
P2(z, z̄) +

2

(z − z̄)2
log |1− z|+ z + z̄ − 2zz̄

(z − z̄)2|1− z|2
log |z|

+
z + z̄

|1− z|2(z − z̄)2

(
log |z|

)2]
, (3.15c)

where the functions Pn are the Bloch-Wigner dilogarithm and its generalisations (see

for example [176]) discussed in section 3.3.2, see in particular (3.23) and (3.26).

The result for C0 is simply the identity contribution to the 4-point correlator and

C1 reproduces the results of [71, 72]. The first new expression is : C2 : which con-

tains, in addition to the standard functions already appearing in known holographic

correlators, the so-called Bloch-Wigner-Ramakrishnan (BWR) polylogarithm functions
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Pm(z, z̄) [177,190], which form > 2 are higher order generalisations of the Bloch-Wigner

dilogarithm. The same is true for the correlator C2 involving the more standard double-

particle operators defined as the OPE limit of mutually BPS single-particle operators.

From the general structure shown in (3.10), one can see that the difference between

C2 and :C2 : can be written in terms of connected k-point correlators with k ≤ 4 and

so these contributions do not affect the terms proportional to P4 and P3 in (3.15c). A

similar structure can be found in the correlators :Cn : for larger values of n, with the

highest order BWR polylogarithm function appearing being P2n, as we show for some

additional cases in Appendix B.1. This contribution is not sensitive to the differences

between :Cn : and Cn showing that the presence of the higher order BWR polylogarithm

functions is a generic feature of the OPE limit of supergravity holographic correlators

with many single-particle external states.

3.3.2 Generalised Bloch-Wigner functions

The expression for : C2 : in (3.15c) (and similarly for the higher order counterparts,

see (B.12)) involves Bloch-Wigner-Ramakrishnan polylogarithms – analogues of the

standard Bloch-Wigner functions containing higher-order polylogarithms – and since

these generalised functions are not widely used in the literature, we use this subsection

to briefly review their definition and some of their properties. In doing this we closely

follow the works of Lewin [191], and Zagier [190] who first presented the generalisation

of the Bloch-Wigner function in [176,177] following the work of Ramakrishnan [192].

The starting point of our analysis are the polylogarithm functions: an infinite family

of special functions generalising the logarithm function. One series representation for

these functions is [193] [194]

Lis(x) =

∞∑
k=1

xk

ks
for x ∈ R , |x| < 1 , (3.16)

where s ∈ N0 and from which it can be seen that

Li1(x) = − log(1− x) . (3.17)

A complex logarithm can be defined on its principle branch z ∈ C \ (−∞, 0) as

log(z) ≡ log |z|+ iArg(z) , (3.18)

on which it is single-valued, with (−∞, 0) being a branch cut. Here the function Arg(z)

is the principle branch of the argument function Arg(z) and log(x) is the real logarithm.

Likewise, the above series definition of Lis(x) can be extended to the complex plane,
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where in the region |z| < 1 it is analytic and admits the series representation

Lin(z) =
∞∑
k=1

zk

kn
, |z| < 1 , (3.19)

where we take n to be an integer. For non-positive integer n this defines a rational

function, while for n = 1 it gives simply

Li1(z) = − log (1− z) . (3.20)

Polylogarithm functions associated with higher integer values do not admit a represen-

tation in terms of elementary functions but can be obtained by recursion relations that

follow from their definition

z ∂zLin(z) = Lin−1(z) , Lin+1(z) =

∫ z

0

Lin(w)

w
dw , (3.21)

which can also be used to analytically continue the polylogarithm functions to generic

z ∈ C\[1,∞) by repeated integration starting from (3.20). Therefore, the polylogarithm

functions inherit some of their properties from the logarithm such as a branch cut along

the real axis starting at z = 1, except here the polylogarithms are continuous but not

analytic at their branch point (with e.g. Li2(1) = ζ(2) = π2

6 ). The polylogarithms have

non-trivial monodromy around the branch point at z = 1, with

Lim(x+ iε)− Lim(x− iε) =
2πi

(m− 1)!

(
log z

)m−1
, (3.22)

for x > 1, ε� 1 and m ∈ N. Because of this monodromy, the polylogarithms also have

a branch point at z = 0 on any sheet that is not the principle one.

The dilogarithm function Li2(z) has played an important role in the CFT literature,

as it appears in the expressions of holographic 4-point correlation functions of single-

trace operators. In fact, is it not the “bare” dilogarithm function that appears in these

correlators but a particular combination called the Bloch-Wigner dilogarithm function,

defined as40

P2(z, z̄) ≡ Im
[
Li2(z)

]
+ log |z| arg

[
1− z

]
=

1

2i

[
Li2(z)− Li2(z̄) + log |z| log

(
1− z
1− z̄

)]
, (3.23)

which has some advantageous properties compared with the ordinary dilogarithm func-

tion. For example, the dilogarithm function satisfies various identities relating the

40It is customary to denote the Bloch-Wigner dilogarithm function by D(z, z̄). Here we denote it
with P2(z, z̄) in order to facilitate an easier generalisation to higher order functions.
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values of the function at different points in the complex plane, such as

Li2

(
1

z

)
= −Li2(z)− π2

6
− 1

2
log2 (−z) , (3.24a)

Li2(1− z) = −Li2(z) +
π2

6
− log(z) log(1− z) . (3.24b)

In fact, one can show that Li2(z), Li2

(
1

1−z

)
, Li2

(
z−1
z

)
, −Li2

(
1
z

)
, −Li2

(
z

1−z

)
, and

−Li2(1− z) are all equal up the addition of elementary functions such as logarithms,

as in (3.24). In contrast to this, the function defined in (3.23) satisfies similar identities

but importantly without any additional elementary function terms

P2(z, z̄) = −P2

(
1

z
,

1

z̄

)
= −P2(1− z, 1− z̄) = P2

(
z − 1

z
,
z̄ − 1

z̄

)
= P2

(
1

1− z
,

1

1− z̄

)
= −P2

(
z

z − 1
,

z̄

z̄ − 1

)
. (3.25)

Considering the many symmetries of 4-point correlation functions involving single-

trace operators, such symmetry properties are not unexpected. Furthermore, if z̄ = z∗

the Bloch-Wigner function is real-analytic on the whole complex plane bar the points

z = 0 and z = 1 where it is continuous but not differentiable. Thus one finds no

branch cut, unlike in the case of the dilogarithm. In our analysis we often take the

analytically continued function where z and z̄ are independent, in which case a more

complicated analytic structure emerges [195]. Contrary to the dilogarithm, a generic

polylogarithm function satisfies fewer simple symmetry identities. In fact, the inversion

identity relating Lin(z) and (−1)n−1Lin
(

1
z

)
(up to several terms that include different

powers of log z) is in general the only functional identity that involves polylogarithm

functions evaluated at two generic points in the complex plane, while other identities

typically relate the values of polylogarithm functions evaluated at multiple points.

Nonetheless, it is possible to define a higher-order generalisation of (3.23) as [177]

Pn(z, z̄) = Rn

(
n−1∑
k=0

2k Bk
k!

(
log |z|

)k
Lin−k(z)

)
, (3.26)

where Rn denotes the real or imaginary part of the expression when n is odd or even

respectively and the coefficients Bj denote the Bernoulli numbers41. Once again, as

a function of a single complex variable (when z̄ = z∗), Pn(z, z̄) defines a real-analytic

function on the complex plane, except at z = 0 and z = 1 where is it only continuous.

41The first few non-zero Bernoulli numbers are B0 = 1, B1 = − 1
2
, B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
,

B8 = − 1
30

. Apart from B1 all Bernoulli numbers with an odd index vanish.
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In addition, the functions obey the inversion relation

Pn(z, z̄) = (−1)n−1Pn

(
1

z
,

1

z̄

)
, (3.27)

however, the higher order generalisations do not obey other simple symmetry identities

found in the n = 2 case (3.25). For completeness, we give the explicit expressions of the

first few generalised Bloch-Wigner-Ramakrishnan functions, which are explicitly used

in the main text

P2(z, z̄) =
1

2i

[
Li2(z)− Li2(z̄) + log |z| log

(
1− z
1− z̄

)]
, (3.28a)

P3(z, z̄) =
1

2

[
Li3(z) + Li3(z̄)− log |z|

(
Li2(z) + Li2(z̄)

)
− 2

3

(
log |z|

)2
log |1− z|

]
,

(3.28b)

P4(z, z̄) =
1

2i

[
Li4(z)− Li4(z̄)− log |z|

(
Li3(z)− Li3(z̄)

)
+

1

3

(
log |z|

)2(
Li2(z)− Li2(z̄)

)]
.

(3.28c)

Further examples can be found in Appendix B.1.

3.4 OPE limits

We proposed to identify the B2n term in the expansion of the HHLL correlator (3.11)

computed in [72] with the “connected” correlator :Cn : containing two n-trace operators

of the type :O n
f : and two single-trace operators. In this section we provide evidence

supporting this identification, concentrating on the first non-trivial example – that of

n = 2. As a first check of this result we focus on protected terms in the OPE expansion

of the correlator (3.15c) that appear in the z → 1 and z → 0 channels. We show

that these terms match the results obtained from CFT calculations at the free orbifold

point, as required by non-renormalisation theorems [189] and by the affine symmetry.

We then look at terms originating from the exchange of non-protected double-trace

operators appearing in the z → 1 OPE. By following [196], we find the anomalous

dimensions and 3-point couplings of the non-protected double-trace operators from

n = 1 correlators. With respect to the case of N = 4 SYM [183], there is an extra

complication [184] related to the flavour symmetry of the CPOs (in passing we point out

that the theory we are studying provides a top-down example of the pattern highlighted

in [185], where it was noted, in an effective field theory approach, that anomalous

dimensions of double-trace operators with low spin can be positive). Due to the flavour

mixing one would need results for other correlators, besides (3.11), in order to extend
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this analysis to n > 1 and extract precise information about the multi-trace operators

exchanged. Here we focus on general checks relating to the presence or absence of log

and log2 terms in the z → 1 OPE. The z → ∞ OPE involves triple-trace operators

even at the first non-trivial order of the n = 2 correlator and again one would need

other correlators to disentangle the flavour dependence and extract CFT data at strong

coupling. We leave a detailed study of the multi-trace anomalous dimensions and 3-

point couplings in the AdS3/CFT2 case to a future analysis.

3.4.1 The protected sector

In the limit where z̄ → 1 with z kept fixed, the leading term of the correlator is

determined by the exchange of operators with right conformal dimension h̄ = 0 and

generic left conformal dimension h. These are the chiral currents of the theory, whose

modes are the Virasoro L−n and the R-symmetry42 J3
−n generators. Since their 3-point

couplings are determined by symmetries of the theory, they can be computed exactly

at any point in the CFT moduli space and compared with the gravity result.

The z, z̄ → 0 limit of the correlator :Cn : is controlled by the non-singular OPE of the

operators Og and :O n
f : – chiral primary operators preserving the same supercharges.

The lowest dimension operator exchanged in this channel is thus protected and we

reproduce the vanishing of the term of order z0z̄0 in :C2 : from a computation at the

free orbifold point.

z̄ → 1 light-cone OPE

This check of the protected current contributions to the tree-level connected correlators

(3.15) can be simplified slightly by replacing the two single-trace operators Og , Ōg with

their superdescendant OBg – obtained by acting on Og with a right-moving and a left-

moving supercharge. The corresponding correlator, which we will denote by : CBn :, is

related to :Cn : by the supersymmetry Ward identity [72]

:CBn : (z, z̄) = ∂∂̄ :Cn : (z, z̄) . (3.29)

Starting from the correlator : C2 : in (3.15c), applying the Ward identity (3.29) and

taking the leading order term as z̄ → 1 one obtains

:CB2 : (z, z̄)
z̄→1−→ :GB2 : (z)

|1− z|4
with N2 :GB2 : (z) = 2 + 4

1 + z

1− z
log z +

1 + 4z + z2

(1− z)2

(
log z

)2
.

(3.30)

The goal of this subsection is to reproduce :GB2 : from a CFT computation. Since

OBg has vanishing R-charge, the states obtained by acting on the vacuum with the J3
−n

42Only R-symmetry neutral operators contribute in the z → 1 channel, and thus we can restrict to
the U(1) subgroup of the SU(2) R-symmetry.
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modes of the current do not contribute to :CBn :. In order to decouple the Virasoro from

the R-current algebras it is convenient to subtract from the L−n modes the Sugawara

contribution: the algebra satisfied by these “reduced” Virasoro generators, which for

notational simplicity we will still denote by L−n, is identical to the Virasoro algebra

but the conformal dimension h of an operator of R-charge j should be replaced by a

“reduced” conformal dimension h[0] ≡ h− j2

N .

States of the form L−n1L−n2 . . . L−np |0〉, containing p modes, have a norm propor-

tional to cp ∼ Np and thus contribute to a correlator at order N−p. Since we focus on

:CB2 : whose tree-level contribution is of order N−2, we can simply consider such states

up to p = 2. Resumming the states with p = 1 gives the well-known global conformal

block of the stress-tensor: for a correlator with two operators of dimension hg and two

operators of dimension hf , the contribution of these states to G = |1− z|4hgC is

p = 1 :
1

N
hfhg V1(1− z) with V1(z) =

1

3
z2

2F1(2, 2, 4; z) . (3.31)

Likewise, the contribution due to the exchange of states with p = 2 to this same

correlator is a sum of terms of the form

p = 2 :
1

N2

(
h2
fh

2
g V

(2,2)
2 (1− z) + (h2

fhg + hfh
2
g)V

(2,1)
2 (1− z) + hfhg V

(1,1)
2 (1− z)

)
.

(3.32)

The functions V(2,2)
2 and V(2,1)

2 can be readily computed and are given in Appendix D

of [126] as

V(2,2)
2 (z) =

1

18

(
z2

2F1(2, 2, 4; z)
)2
,

V(2,1)
2 (z) = − 1

18

((
z2

2F1(2, 2, 4; z)
)2

+
6

5
z3 log(1− z) 2F1(3, 3, 6; z)

)
,

(3.33)

while, as will be clear in a moment, we will not need V(1,1)
2 . For the correlator :CBn : we

should take hg = 1, the dimension of the superdescendant OBg , and hf,n = n
2 −

n2

4N , the

reduced dimension of the n-trace operator :O n
f :, where we made the dependence on

n explicit. Then combining the correlators :CB1 : and :CB2 : according to the definition

of the connected combination :CB2 : (of the same form as (3.7)) we deduce that in the

light-cone limit and up to terms of order 1/N3

:GB2 : (z) =
1

N

(
hf,2 − 2hf,1

)
V1(1− z) +

1

N2

[(
h2
f,2 − 2h2

f,1

)
V(2,2)

2 (1− z)

+
((
h2
f,2 + hf,2

)
− 2
(
h2
f,1 + hf,1

))
V(2,1)

2 (1− z) +
(
hf,2 − 2hf,1

)
V(1,1)

2 (1− z)
]

=
1

N2

[
2 + 4

1 + z

1− z
log z +

1 + 4z + z2

(1− z)2

(
log z

)2]
+O

(
1

N3

)
, (3.34)
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where in the first step we used hg = 1 and in the second we used (3.33) along with

the large N expansion of the hf,n. The final result agrees with the expression (3.30)

obtained from the gravity computation. We note that in taking the connected combi-

nation both the 1/N term and the term proportional to V(1,1)
2 cancel. This latter term

is interpreted as a quantum contribution related to bulk diagrams of the type shown

in c) of Fig. 3.1 which vanish in the limit that a pair of operators is made heavy (i.e.

hf ∼ N) and N is taken to infinity. One can show that analogous cancellations happen

with :CBn : for generic n.

Euclidean z, z̄ → 0 OPE

The exchanged operator with lowest dimension in this channel is the supersymmetric

multi-trace :O n
f Og : whose protected 3-point couplings can be computed in the orbifold

sigma-model. One can thus verify the gravity prediction, which gives for the connected

correlator :C2 : a vanishing coefficient for the lowest order term z0z̄0:

:C2 :
z,z̄→0−→ O(zz̄) . (3.35)

The explicit expressions of the relevant single- and multi-trace operators in theMN/SN

orbifold theory are

Of =
1√
N

∑
r

Of(r) , :O 2
f : =

1√(
N
2

)∑
r<s

Of(r)Of(s) , (3.36)

:OfOg : =
1√

N(N − 1)

∑
r 6=s
Of(r)Og(s) , :O 2

f Og : =
1√(

N
2

)
(N − 2)

∑
r<s
t 6=r,s

Of(r)Of(s)Og(t) ,

where the subscripts (r), (s), . . . denote the N copies of M. The operators Of(r) on

different copies are orthogonal

〈Of(r)Og(s)〉 = δf,gδr,s , (3.37)

and the N -dependent prefactors in (3.36) have been chosen to normalise two-point

functions to 1. The relevant 3-point functions can then be immediately computed as

〈Ōf Ōg :OfOg :〉 =

(
1− 1

N

) 1
2

, 〈:Ō 2
f : Ōg :O 2

f Og :〉 =

(
1− 2

N

) 1
2

, (3.38)

and the coefficient of the z0z̄0 term in :C2 : is

:C2 :
∣∣
z0,z̄0 =

∣∣〈:Ō 2
f : Ōg :O 2

f Og:〉
∣∣2−2

∣∣〈Ōf Ōg :OfOg:〉
∣∣2+1 =

(
1− 2

N

)
−2

(
1− 1

N

)
+1 = 0 ;

(3.39)
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the cancellation between the three terms, which come respectively from :C2 :, −2C1 and

C0, is thus in agreement with the gravity prediction (3.35).

3.4.2 The non-protected sector of the z, z̄ → 1 OPE

In the z, z̄ → 1 OPE channel the dynamical contribution is due to the exchange of non-

supersymmetric double-trace operators made of equal-flavour and opposite R-symmetry

constituents, of the type :Of Ōf :. At leading order in N , these operators are degenerate

with the more general class of double-traces :O(α,α̇)
f Ō(β,β̇)

g : and in order to see how this

degeneracy is lifted by 1/N corrections one needs to introduce a proper basis in the R-

symmetry and flavour space. As a first step, we separate the results into the irreducible

R-symmetry representations of the operators exchanged, which we characterise by their

R-charge (j, j̄). In the n = 1 case enough information is available in the literature to

perform a similar decomposition also in flavour space for all representations43 and hence

in the first subsection we derive the “unmixed” CFT data for the relevant anomalous

dimensions. In the second subsection we focus on the n = 2 correlator (3.15c) but limit

ourselves only to averaged CFT data, however, we point out that this is sufficient to

obtain a further consistency check of our results.

Though the results in (3.15a) and (3.15b) refer to correlators containing operators of

two different flavours and with the particular R-symmetry choice obtained by replacing

Of in (3.1) with the highest R-charge operator Of ≡ O++
f defined in (3.9), the analysis

of the following subsections would require a more general class of correlators44

:Cαα̇, ββ̇n,f1f2f3f4
: = 〈 :(O−−f1

)n: :(O++
f2

)n: Oαα̇f3
Oββ̇f4
〉 . (3.40)

These are known for generic flavour and R-symmetry indices only for n = 1, whose

expressions at order 1/N we summarise in Appendix B.2.

To carry out the program outlined above and separate the different irreducible rep-

resentations in the flavour and R-symmetry space, we need to introduce the appropriate

projectors. For the flavour part, the exchanged operator in the z → 1 Euclidean OPE

sits in the product of two fundamental SO(Nf ) representations and can be decomposed

in the singlet, symmetric-traceless and anti-symmetric irreps, whose contributions to

43At present this is true for correlators where the external operators have dimension h = h̄ = 1/2
and, as discussed in [184], for generic dimensions in the case of non-singlet flavour representations.

44To avoid clutter, we suppress the z and z̄ dependence of correlators such as (3.40) throughout this
section. It should be understood that operators are always inserted as in (3.2).
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(3.40) can be selected by using the projection operators

Psing
f3f4, g3g4

=
1

Nf
δf3f4δg3g4 , (3.41a)

Psym
f3f4, g3g4

=
1

2

(
δf3g3δf4g4 + δf3g4δf4g3 −

2

Nf
δf3f4δg3g4

)
, (3.41b)

Pasym
f3f4, g3g4

=
1

2

(
δf3g3δf4g4 − δf3g4δf4g3

)
. (3.41c)

Similarly, for the R-symmetry we can separate the singlet (j = 0) and the triplet (j = 1)

in the product of the two SU(2)L doublets (α, β) using the projectors

Rαβ,γδ(j) =
1

2
σαβ(j) σ

γδ
(j) where σαβ(0) =

(
0 −i
i 0

)
and σαβ(1) =

(
0 1

1 0

)
. (3.42)

Identical projectors R(j̄)
αβ,γδ with j̄ = 0, 1 act on the SU(2)R indices (α̇, β̇). The cor-

relator (3.40) can then be decomposed into its irreducible R-symmetry and flavour

components :Cflav
n (j,j̄)

: as

:Cαα̇, ββ̇n,f1f2f3f4
: =

∑
j,j̄=0,1

∑
flav

σαβ(j) σ
α̇β̇
(j̄)
Pflav
f1f2f3f4

:Cflav
n (j,j̄) : , (3.43)

where flav = sing, sym, asym. We discuss the R-symmetry projectors in Appendix B.3

and the n = 1 projected correlators given explicitly. Given the linear relation (3.5)

between the correlators : Cn : and their connected combinations : Cn :, an identical

decomposition defines the irreducible components :Cflav
n (j,j̄)

: of the connected correlators.

The n = 1 case and the double-trace CFT data

In this subsection we focus on the n = 1 correlators, which we give for arbitrary values

of the flavour and the R-symmetry indices in Appendix B.2, extracting the OPE data

for the lowest twist double-trace operators exchanged in the z, z̄ → 1 channel. As

standard in the Euclidean OPE, we can expand each function Cflav
1 (j,j̄)

defined in (3.43)

as z, z̄ → 1 and rewrite the result in terms of global conformal blocks. The coefficients

of this block decomposition admit a large N expansion of the form∣∣∣cflav,k
(0)(j,j̄)

∣∣∣2 +
1

N

∣∣∣cflav,k
(1)(j,j̄)

∣∣∣2 +
1

N2

∣∣∣cflav,k
(2)(j,j̄)

∣∣∣2 +O
(
N−3

)
. (3.44)
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The leading order coefficients
∣∣cflav,k

(0)(j,j̄)

∣∣2 are explained by the exchange of non-BPS

double-trace operators of the form45 (OŌ)k ∼ Of3∂
kŌf4 with conformal dimensions

hflav,k
(j,j̄)

= 1 + k + γflav,k
(j,j̄)

≈ 1 + k +
1

N
γflav,k

(1)(j,j̄)
+

1

N2
γflav,k

(2)(j,j̄)
,

h̄flav,k
(j,j̄)

= 1 + γflav,k
(j,j̄)

≈ 1 +
1

N
γflav,k

(1)(j,j̄)
+

1

N2
γflav,k

(2)(j,j̄)
.

(3.45)

Then one has the identification

〈Ōf1Of2(OŌ)k〉〈(OŌ)kO
(α,α̇)
f3

O(β,β̇)
f4
〉Pflav
f1f2, f3f4

=
∣∣∣cflav,k

(0)(j,j̄)

∣∣∣2σαβ(j)σ
α̇β̇
(j̄)

+O(N−1) . (3.46)

The subleading terms
∣∣cflav,k

(1)(j,j̄)

∣∣2,
∣∣cflav,k

(2)(j,j̄)

∣∣2 receive contributions both from the 1/N and

1/N2 corrections to the 3-point couplings in (3.46) and from the couplings with triple-

trace and quadruple-trace operators, which start at order 1/N and 1/N2 respectively.

We will not try to disentangle these different contributions, but simply extract the

total 1/N coefficients
∣∣cflav,k

(1)(j,j̄)

∣∣2, which are also the data computable from the inversion

formula (as done in Appendix C).

However, the n = 1 correlators summarised in Appendix B.2 are sufficient to derive

the anomalous dimensions of the true conformal primaries at order O(1/N) for each

value of k. Let us start from the contribution related to double-trace operators in the

R-symmetry singlet irrep (j, j̄) = (0, 0) and flavour singlet: we expand Csing
1 (0,0) up to

order (1− z̄)0 and keep the order of (1− z)t arbitrary and obtain

Csing
1 (0,0) ≈

∞∑
t=0

(1− z)t
[

1

2N

(
(t2 + t+ 2)Nf

(t+ 1)(t+ 2)(t+ 3)
−
(
1 + δt,0

))
log |1− z|2 +

1 + δt,0
4

+
1

N

(
AtNf +Bt

)]
+

∞∑
t=0

(−1)t(1− z)t+2

N |1− z|2
(t+ 1)Nf

2(t+ 2)(t+ 3)
, (3.47)

where the first values of At and Bt are

At =

{
− 7

36
,− 1

72
,− 1

225
,− 1

900
,

61

44100
,

23

7056
,

293

63504
, . . .

}
,

Bt =

{
1

2
,−1

4
,−1

6
,−1

6
,− 7

40
,−11

60
,− 4

21
, . . .

}
.

(3.48)

By focusing on the leading term in N , we can extract [145] a closed expression for the

OPE coefficients with a double-trace operator of dimension (h, h̄) = (k+1, 1)+O(1/N)

∣∣∣csing,k
(0)(0,0)

∣∣∣2 =
(

1 + (−1)k
) (k!)2

4(2k)!
. (3.49)

45We use this notation for double-trace operators exchanged only in this chapter, in order to distin-
guish them from those coming from the light limit of heavy external operators.
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As expected, only states with even spin are non-trivial. In Appendix B.4 we outline

a simple method used to extract Euclidean OPE data from a correlator. Likewise, by

projecting along the conformal blocks, from the term proportional to log |1 − z|2 we

obtain the anomalous dimensions∣∣∣csing,k
(0)(0,0)

∣∣∣2γsing,k
(1)(0,0) =

(k!)2

2(2k)!

[
(−1)k(k2 + k − 2)2

Γ(k + 4)Γ(3− k)
Nf −

(
1 + (−1)k

)]
. (3.50)

We note that for k > 2 the first term in the square parenthesis vanishes (due to the

Γ(3 − k) in the denominator) and the result for γ(1) agrees with that obtained from

the Lorentzian inversion relation [68], as seen for instance in [197] and in (C.40a) with

n̄ = 0. Then the pattern of these anomalous dimensions is

γsing,k
(1)(0,0) =

{
Nf

3
− 2, 0,

2Nf

15
− 2, 0,−2, 0,−2, 0, . . .

}
. (3.51)

In the case of AdS3 × S3 × T 4, we have Nf = 5 and all γsing,k
(1)(0,0) are negative down

to k = 0: this is also the case in N = 4 SYM [69]. However, for AdS3 × S3 × K3,

one has Nf = 21 and so the first two non-trivial values in (3.51), i.e. k = 0, 2, are

positive. This realises the possibility discussed in [185] where it was pointed out that

the gravitational interaction can counter-intuitively induce positive contributions to

anomalous dimensions for values of spin up to 2. Notice that double-trace operators

whose leading coupling is given by (3.49) can be viewed also as affine primaries. Since

in each affine block there is an infinite number of quasi-primaries, in the K3 theory

we have quasi-primaries with the same positive anomalous dimensions as the k = 0, 2

cases in (3.51) and arbitrarily high spin. This is due to the peculiar fact that for 2D

CFTs the currents, such as the stress tensor, have twist zero.

It is possible to use the Lorentzian inversion relation [68] to extract a closed form

for the 1/N terms in the expansion (3.44) of coefficients of global blocks with k > 2

and then we use the explicit data (3.48) to fix the low k values:∣∣∣csing,0
(1)(0,0)

∣∣∣2 =
1

2
−

7Nf

36
,
∣∣∣csing,1

(1)(0,0)

∣∣∣2 = 0 ,
∣∣∣csing,2

(1)(0,0)

∣∣∣2 =
1

9
−

37Nf

2700
,∣∣∣csing,k

(1)(0,0)

∣∣∣2 =
1 + (−1)k

4

(k!)2

(2k)!

(
4H2k − 4Hk − 1

)
for k > 2 ,

(3.52)

where the Hk =
∑k

n=1 n
−1 are harmonic numbers. It is straightforward to select the

other irreducible flavour representations and here we quote some key results, focusing

always on double-trace operators of the class Of3∂
kŌf4 . We note that for (j, j̄) = (0, 0)

there are no contributions of this type for the antisymmetric representation in the

flavour indices. By expanding the R-symmetry singlet and flavour symmetric traceless
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projection Csym
1 (0,0), we find the following CFT data

∣∣∣csym,k
(0)(0,0)

∣∣∣2 =
(

1 + (−1)k
) (k!)2

4(2k)!
, γsym,k

(1)(0,0) = −2 ∀ k even , (3.53)

and ∣∣∣csym,k
(1)(0,0)

∣∣∣2 =
1 + (−1)k

4

(k!)2

(2k)!

(
4H2k − 4Hk − 1

)
+ δk,0 . (3.54)

As a final example, we provide the anomalous dimensions for another R-symmetry

representation, that with (j, j̄) = (1, 0). In this case only double-trace operators with

odd values of k contribute and in the flavour-singlet sector we have the data∣∣∣csing,k
(0)(1,0)

∣∣∣2 =
(

1 + (−1)k+1
) (k!)2

4(2k)!
, γsing,k

(1)(1,0) =

{
0,
Nf

3
− 2, 0,−2, 0,−2, . . .

}
,

(3.55)

and ∣∣∣csing,k
(1)(1,0)

∣∣∣2 =
1 + (−1)k+1

4

(k!)2

(2k)!

(
4H2k − 4Hk − 1

)
−

7Nf

72
δk,1 . (3.56)

Once again these anomalous dimensions are all negative for Nf = 5, while in the

K3 case γsing,1
(1)(1,0)

∣∣
Nf=21

= 5, a shifted spectrum compared with (3.51). Finally, in the

flavour-symmetric sector we have the data∣∣∣csym,k
(0)(1,0)

∣∣∣2 =
(

1 + (−1)k+1
) (k!)2

4(2k)!
, γsym,k

(1)(1,0) = −2 ∀ k odd , (3.57)

and ∣∣∣csym,k
(1)(1,0)

∣∣∣2 =
1 + (−1)k+1

4

(k!)2

(2k)!

(
4H2k − 4Hk − 1

)
. (3.58)

One final comment is that the c(1) data matches that computed from the inversion

formula in Appendix C since in both cases what is being extracted is simply the coeffi-

cient of global blocks, which as we have noted, does not necessarily give just the OPE

coefficients of the double-trace operators Ō∂kO due to the mixing with triple-traces.

The n = 2 case

While we will not attempt a systematic analysis of the z, z̄ → 1 limit for the correlator

containing double-traces, we will show in an explicit example how to extract from the

correlator (3.15c) the OPE coefficients involving three double-trace operators.

A first general feature of the result (3.15c) is that there are no terms proportional

to log2 |1−z|2 as z, z̄ → 1. From the CFT point of view this is the result of cancellation

between different terms entering in (3.7). In order to see this let us define, in analogy

with the n = 1 case (3.44), the couplings appearing in the OPE expansion: for instance
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for the flavour singlet exchange we have

〈:Ō 2
f : :O 2

f : (ŌO)k〉〈(ŌO)kO(α,α̇)
g O(β,β̇)

g 〉Psing
ff, gg = M sing,k

(0)(j,j̄)
σαβ(j)σ

α̇β̇
(j̄)

+O(N−1) , (3.59)

where M(0) mixes information about the c(0) discussed in the previous section and

new CFT data 〈: Ō 2
f : : O 2

f : (ŌO)k〉 capturing the couplings between three double-

trace operators. As explained above, the subleading coefficients M(1) and M(2) mix the

1/N and 1/N2 corrections to the couplings in (3.59) with new couplings of triple- or

quadruple-trace primaries. The leading order M(0) can be easily derived by using the

generalised free theory at infinite N which is described by the correlators

〈:(O−−f1
)2: :(O++

f2
)2: O++

f3
O−−f4

〉 ≈ 1

|1− z|2
[
δf1f2δf3f4 + 2|1− z|2δf1f3δf2f4

]
,

〈:(O−−f1
)2: :(O++

f2
)2: O−−f3

O++
f4
〉 ≈ 1

|1− z|2

[
δf1f2δf3f4 +

2|1− z|2

|z|2
δf1f4δf2f3

]
,

〈:(O−−f1
)2: :(O++

f2
)2: O+−

f3
O−+
f4
〉 ≈ − 1

|1− z|2
δf1f2δf3f4 ,

〈:(O−−f1
)2: :(O++

f2
)2: O−+

f3
O+−
f4
〉 ≈ − 1

|1− z|2
δf1f2δf3f4 ,

(3.60)

where, as usual, we assumed that the double-trace operators are normalised to one.

Then it is straightforward to project these results onto the R-symmetry and flavour

irreducible representations, as done before, and obtain

M sing,k
(0)(0,0) = 2

∣∣∣csing,k
(0)(0,0)

∣∣∣2 , M sing,k
(0)(1,0) = 2

∣∣∣csing,k
(0)(1,0)

∣∣∣2 ,
M sym,k

(0)(0,0) = 2
∣∣∣csym,k

(0)(0,0)

∣∣∣2 , M sym,k
(0)(1,0) = 2

∣∣∣csym,k
(0)(1,0)

∣∣∣2 , (3.61)

where the extra factor of 2 simply follows from the fact that there are twice as many

generalised free field diagrams connecting the single- and double-trace operators.

The next contribution to : C2 :, beyond the one captured by the generalised free

theory, is given in (3.15c). Notice that each term in that result is multiplied by a

factor of |z|2 as is the case for the terms with D-functions in (B.19a). This reflects a

particular choice of R-symmetry quantum numbers. We can perform the projection on
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the R-symmetry singlet exactly as for the n = 1 correlators and obtain

:C2,(0,0) : =
1

N2

(
1 + z + z̄ + |z|2

)[6i(z + z̄)(z2 + 10zz̄ + z̄2)

(z − z̄)5
P4(z, z̄)

− 12(z2 + 4zz̄ + z̄2)

(z − z̄)4
P3(z, z̄) +

8i(z + z̄)

(z − z̄)3
P2(z, z̄) +

2

(z − z̄)2
log |1− z|

+
(z + z̄ − 2zz̄)

(z − z̄)2|1− z|2
log |z|+ (z + z̄)

|1− z|2(z − z̄)2

(
log |z|

)2]
. (3.62)

We don’t have enough data to perform also the decomposition on the flavour irreducible

representations since this would require a generalisation of Eq. (3.11) to the equal

flavour case. Thus from now on we focus on the correlator (3.62) with a pair of fixed

(and different) flavours. On general grounds, by focusing on the (1− z)0(1− z̄)0 terms

in the z, z̄ → 1 expansion of the connected combination : C2 :, we have up to order

O(1/N)

:C2,(0,0) : ≈
∑
flav

Pflav
ff, gg

{
Mflav,0

(0),(0,0) − 2
∣∣∣cflav,0

(0),(0,0)

∣∣∣2 +
1

N

[
Mflav,0

(1),(0,0) − 2
∣∣∣cflav,0

(1),(0,0)

∣∣∣2
+

(
Mflav,0

(0),(0,0) − 2
∣∣∣cflav,0

(0),(0,0)

∣∣∣2)γflav,0
(1),(0,0) log |1− z|2

]}
, (3.63)

where the sum is over the flavour representations ‘flav’ of the double-trace operator

exchanged. Since the correlator under investigation has two pairs of external states

with different flavours we have to take f 6= g in the projectors (3.41). We know that

the n = 2 connected correlators start at order O(1/N2), so the contributions in (3.63)

must cancel. The first line vanishes thanks to the constraints (3.61), following from the

generalised free theory and the same is true for the term proportional to log |1− z|2 in

the second line. The absence of a rational term of order 1/N yields a relation between

the couplings at O(1/N)(
M sing,0

(1),(0,0) − 2
∣∣∣csing,0

(1),(0,0)

∣∣∣2)− (M sym,0
(1),(0,0) − 2

∣∣∣csym,0
(1),(0,0)

∣∣∣2) = 0 . (3.64)

We then consider the order O(1/N2) terms in the OPE expansion (3.63)

:C2,(0,0) : ≈ 1

N2

∑
flav

Pflav
ff, gg

{
Mflav,0

(2),(0,0) − 2
∣∣∣cflav,0

(2),(0,0)

∣∣∣2 +

[(
Mflav,0

(0),(0,0)

− 2
∣∣∣cflav,0

(0),(0,0)

∣∣∣2)γflav,0
(2),(0,0) +

(
Mflav,0

(1),(0,0) − 2
∣∣∣cflav,0

(1),(0,0)

∣∣∣2)γflav,0
(1),(0,0)

]
log |1− z|2

+
1

2

(
Mflav,0

(0),(0,0) − 2
∣∣∣cflav,0

(0),(0,0)

∣∣∣2)(γflav,0
(1),(0,0)

)2
log2 |1− z|2

}
. (3.65)
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Again, thanks to (3.61) the last line vanishes, thus explaining the absence of terms

proportional to log2 |1−z|2 in the OPE expansion of the holographic results. The same

pattern holds for the term proportional to γ(2) in the first line. Thus the term with

log |1 − z|2 is determined by data at order O(1/N). By using (3.64), the anomalous

dimensions at order 1/c, γflav,0
(1),(0,0), derived in the previous section and the OPE limit

of (3.62) one can find an explicit expression for M sing
(1),(0,0) and M sym

(1),(0,0) separately. This

new data is

M sing,0
(1),(0,0) = 2

∣∣∣csing,0
(1),(0,0)

∣∣∣2 − 1 = − 7

18
Nf ,

M sym,0
(1),(0,0) = 2

∣∣∣csym,0
(1),(0,0)

∣∣∣2 − 1 = 0 ,

(3.66)

using the fact that
∣∣csing,0

(1),(0,0)

∣∣2 = 1
2 −

7
36Nf and

∣∣csym,0
(1),(0,0)

∣∣2 = 1
2 . The extension of the

analysis to exchanged operators of the form (OŌ)k>0 ∼ Of3∂
k>0Ōf4 is complicated by

the fact that they can mix, at order in 1/N , with triple-trace primaries. We leave this

analysis for the future.
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Chapter 4

The Regge Limit of Holographic

Correlators

The contents of this chapter is based on the papers [1,3]. The Sections 4.5.3 and 4.4.4

are based on unpublished work.

4.1 Introduction and conclusion

In this chapter we consider the physical process of the scattering of a highly energetic

light particle from a heavy object in asymptotically AdS3 spacetimes. In the bulk,

one can study such an experiment by approximating the path of the probe with a

null geodesic in the spacetime obtained from the backreaction of the heavy object. A

discussion of the geodesic problem relevant to the semiclassical bulk calculation was

presented in Section 2.4, where the form of the bulk phase shift for three-dimensional

metrics with suitable Killing vectors was derived. On the other hand, this scattering

can be equivalently described in the dual two-dimensional CFT: there we study the

OPE decomposition of HHLL correlators in the channel describing the fusion of a

heavy and light state, producing an intermediate excited heavy state – this we call the

“cross channel”. The heavy operators in our correlators have conformal dimensions

∆ ∼ c in the large central charge limit due to the fact that they are formed from a

large number Nb ∼ N of light constituents. Similarly to the case of standard LLLL

correlators [90], the anomalous dimensions of these heavy excited states are directly

related to the eikonal operator [52]. Likewise, the analytic bootstrap approach to the

Regge regime can be adapted from the light [97] to the heavy case, and a systematic

perturbative approach in Nb/N set up [53].

This chapter focuses initially on the first order in Nb/N for each example – AdS3

conical defects, 2-charge and 3-charge microstate geometries – at which the eikonal

in the HHLL regime is derived for atypical heavy states. For the conical defect and
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2-charge examples, this is then followed by an analysis at higher order, whereas for the 3-

charge case only the bulk phase shift is considered beyond perturbation theory. Despite

similarities between the conical defect and the effective 3D geometries describing the

heavy pure states, the resulting eikonals are different already at this first order. We

show that results obtained from CFT correlators are in perfect agreement with the

eikonal derived by studying geodesics in the dual microstate geometry – the properties

of geodesics in microstate geometries have been studied from various perspectives also

in [30,31,33,198–200]. By following [53,97] we study the relevant bootstrap relation and

show that it is satisfied by a different set of CFT data than in the conical defect case [52].

In both situations the “direct channel” – in which the two light operators are fused

together – contains the contribution of the Virasoro block of the identity, but dressed

by a different set of double-trace operators. In fact, generic conical defect geometries

are not dual to pure states and it would be interesting to understand whether the

CFT data extracted from them are fully consistent solutions of the bootstrap relation.

As an aside, let us highlight that setting Nb = 1 in the HHLL correlators described

above, as done in [66, 73, 74] and Chapter 3, reproduces the correlators of all light

states in AdS3×S3 [66,75], despite the two regimes being not obviously connected. We

analyse the Regge conformal bootstrap also in this regime in Section 4.4.3, providing an

explicit AdS3/CFT2 example of the analysis in [96,97] and showing that the information

obtained in the Regge regime can be used to fix some CFT data for spin-2 operators

that was left undetermined in [73]. These LLLL correlators are also used to briefly

consider the connection with the chaos regime of thermal correlators discussed in [115].

For comparison, in Section 4.3 we review the analogous calculation for the case of the

AdS spacetime with a conical defect of order k in three bulk dimensions [52,53]. When

this k is a positive integer, the geometry has a known dual pure heavy state [24,201,202].

However, if k is analytically continued to be real-valued this is no longer the case and

the resulting geometry is instead thought to be dual to a mixed state in the CFT.

4.2 The Regge limit of 4-point CFT correlation functions

The gravitational picture described in Section 2.4 of a light highly energetic probe in

a background geometry corresponds to a particular class of 4-point functions, dubbed

heavy-heavy-light-light (HHLL), where two of the operators – dual to the geometry –

are taken to be ‘heavy’ in the sense that in the large N limit their dimensions scale with

the central charge (∆H ∼ O(c)). In contrast, the scaling dimensions of the remaining

two operators – dual to the light probe – are kept fixed in this limit (∆L ∼ O(1)) and

thus we refer to them as ‘light’. We denote such HHLL correlators of the conformally-
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fixed form (2.28) as

C(z, z̄) ≡ 〈OH(∞)OL(1)ŌL(z, z̄)ŌH(0)〉 = (1− z)−2hL(1− z̄)−2h̄LG(z, z̄) . (4.1)

The external heavy operators that we consider are a class of multi-trace operators

made from a large number Nb ∼ N of identical single-particle states, OH ∼ ONbL .

These operators are “heavy”, since their dimensions are of order c, and are dual to

known asymptotically AdS3 × S3 microstate geometries, as described in Section 2.2.2.

From the CFT point of view they behave as standard local operators with hH and

jH indicating their conformal weight and U(1) ⊂ SU(2)L R-charge (for notational

simplicity we focus on the holomorphic part, but of course the discussion equally holds

for the anti-holomorphic sector). In order to disentangle the Virasoro and U(1) parts,

it is convenient to introduce the “reduced” dimension of a heavy46 operator OH , in

which the Sugawara U(1) contribution is subtracted (as discussed in Section 2.2.3) to

give

h
[0]
H ≡ hH −

j2
H

N
. (4.2)

The class of heavy operators that we will consider are dual to the (1, 0, n) family of

superstrata discussed in Sections 2.2 and 2.2.2. Their dimensions and U(1) quantum

numbers are given in (2.72) and (2.73) and so have a reduced dimension of (the Nb of

this chapter is equal to the N1,0,n of Section 2.2.3)

h
[0]
H = Nb

(
n+

1

2
− Nb

4N

)
. (4.3)

These heavy CFT states can be seen as part of an ensemble describing a black hole –

or more generally, a singular geometry such as a conical defect. The reduced conformal

dimension is related to the mass µ of the underlying black hole by the relation

√
1− µ ≡ α =

√
1−

24h
[0]
H

c
=

√
1− 4Nb

N

(
n+

1

2
− Nb

4N

)
, (4.4)

where the central charge c = 6N of the D1-D5 CFT was used. In this work we focus

on the limit of small Nb/N where one has

µ ≡
24h

[0]
H

c
= 4

(
n+

1

2

)
Nb

N
+O

(
Nb

N

)2

. (4.5)

To facilitate comparison with the literature, we will use µ as our expansion parameter

in everything that follows. A more complete discussion on the relation between µ and

46Under this procedure, the reduced dimensions of light operators and the value of the central charge
are unchanged at leading order in the large N limit so we do not use these here.
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ŌHOH

OL ŌL

O′

direct-channel

a)

ŌHOH

OL ŌL

O

cross-channel

b)

Figure 4.1: A schematic expansion of the 4-point correlator into different channels. In
figure a) we show the direct-channel (z1 → z2 or equivalently z → 1) where the two light
operators in a HHLL correlator are brought together. In figure b) we depict the cross-
channel expansion (z1 → z4 or z → 0) where the heavy and light operators are contracted.
While one can equivalently expand in either channel, the set of operators exchanged
(denoted by O′ in the direct-channel and O in the cross-channel) are generically different.

the natural expansion parameters of the gravity solutions are given in Section 2.2.3.

The correlator (4.1) can be decomposed into different channels as discussed in Sec-

tion 2.1.1, for instance by summing over the exchanges of quasi-primary operators (see

figure 4.1)

C(z, z̄) = (1− z)−2hL(1− z̄)−2h̄L
∑
O′

CHHO′CŌ′LL g
0,0

h,h̄
(1− z, 1− z̄) , (4.6a)

= z−h
[0]
H −hL z̄−h̄

[0]
H −h̄L

∑
O
CHLOCŌLH g

hHL,h̄HL
h,h̄

(z, z̄) , (4.6b)

where we define hHL ≡ h
[0]
H − hL and use the global conformal blocks given in (2.33).

The sets of operators {O} and {O′} exchanged in the intermediate channels in the

bootstrap relations above are qualitatively different, as we now explain.

In line with Section 2.1.1, we refer to the OPE decomposition (4.6a) where the

two light operators are brought together by taking z1 → z2 (or equivalently z → 1)

as the ‘direct channel’. The direct-channel expansion includes the contribution of the

“universal” sector consisting of: the identity, stress tensor and R-symmetry currents.

These operators and their descendants contribute a universal part to the correlator,

in the sense that it is completely determined by the symmetry algebra of the CFT

– depending only on the dimensions hH , hL, and U(1) charges jH , jL of OH(∞) and

ŌL(z). This universal contribution is given (for N large and fixed Nb/N) by the product
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V = VV VA of the “reduced” Virasoro block of the identity [99,100]

VV (z) = zhL(α−1)

(
α

1− zα

)2hL

(4.7)

and the affine U(1) block

VA(z) = z
2jHjL
N (4.8)

(times the corresponding anti-holomorphic counterparts). On top of this “universal”

sector, the direct channel contains a family of light-light double-trace operators {OLL}
given schematically47 by

OLL ≡ :ŌL∂m∂̄m̄OL : . (4.9)

The associated CFT data can then be naturally expanded in 1/N as

γm,m̄ =
1

N
γ

(1)
m,m̄ +

1

N2
γ

(2)
m,m̄ + · · ·

c 2
m,m̄ ≡ cijOijcOijij = c 2

(0)(m, m̄)

(
1 +

1

N
c 2

(1)(m, m̄) +
1

N2
c 2

(2)(m, m̄) + · · ·
)
. (4.10)

The leading-order OPE coefficients c 2
(0) of the double-trace operators in the direct chan-

nel are proportional to Nb, while the expansion parameter of the CFT data is N−1

(see (4.10)), so at the first subleading order one reconstructs Nb/N ∼ µ necessary to

match the scaling of the cross channel (4.24). The analysis in the direct channel is then

essentially the same for either HHLL or LLLL correlators: in both cases only single-

trace or double-trace operators composed of two light constituents are exchanged, while

all other multi-trace operators are suppressed in the large N limit. The perturbative

expansion of the direct channel decomposition in (2.32) then reads

C(z, z̄) = V(z)V(z̄) +
∑
m,m̄

c 2
(0)(m, m̄) (1− z)m(1− z̄)m̄Fm(z)Fm̄(z̄) (4.11)

+
µ

2

∑
m,m̄

(1− z)m(1− z̄)m̄
[
δ̄(m, m̄)

(
F̂m(z)Fm̄(z̄) + Fm(z)F̂m̄(z̄)

)
+
(
c 2

(1)(m, m̄) + δ̄(m, m̄) log |1− z|2
)
Fm(z)Fm̄(z̄)

]
+ . . . ,

where the F ’s indicate the conformal block with h = m + 2hL , h̄ = m̄ + 2h̄L and its

derivatives

Fm(z) = 2F1(m+ 2hL,m+ 2hL; 2m+ 4hL; 1− z) , F̂m(z) = ∂mFm(z) . (4.12)

Since in the direct channel it is possible to have a vanishing average of the leading order

47This form of writing the double-trace operators is schematic, since at each level the derivatives are
understood to act in such a way as to define a primary operator.
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OPE coefficients c 2
(0), we have introduced the quantity

δ̄ ≡ 〈c 2
(0)γ

(1)〉 , (4.13)

which is generically not equal to the product of the averages of c 2
(0) and γ(1).

Likewise, we call the OPE limit where a heavy and a light operator are brought

together (4.6b) by taking z1 → z4 (z → 0) the ‘cross channel’. In this channel, no

single-trace operators are exchanged and the leading contribution in 1/N comes from

the exchange of a family of heavy-light multi-trace48 operators which we denote by

OHL ≡ :OH∂m∂̄m̄OL : . (4.14)

The conformal dimensions of these operators are given by

H = h
[0]
H + hL +m+

1

2
Γm,m̄ , H̄ = h̄

[0]
H + h̄L + m̄+

1

2
Γm,m̄ , (4.15)

with Γm,m̄ denoting the anomalous dimensions. Here the Γm,m̄ are enhanced by a factor

of Nb with respect to the anomalous dimensions γm,m̄ of double-trace operators with

two light constituents. Hence, the perturbative expansion of such heavy quantities will

be in terms of µ ∼ Nb/N (4.5), taking the form49(note that our conventions for the µ

expansion of OPE coefficients differs from that of the 1/N expansion used in Chapter 3.

Here we have factored out the zeroth order GFT OPE coefficients from each order.)

Γm,m̄ =
∞∑
n=1

Γ(n) µ
n , (4.16a)

C 2
m,m̄ ≡ CHLOHLCŌHLHL = C 2

(0)

(
1 +

∞∑
n=1

C 2
(n) µ

n

)
, (4.16b)

where we have suppressed the m and m̄ dependence of the various series coefficients.

Intuitively one can think of γm,m̄ as the binding energy between the two single particle

constituents and Γm,m̄ accounting for the interaction of OL with all constituents of the

heavy operator OH . This picture holds only at first order in the ratio Nb/N , since in

general the binding energies for the heavy/light bound states depend non-linearly on

this ratio – see for instance (4.119). With the conformal dimensions of the external

operators being fixed, at leading order in 1/N the sum over operators exchanged in the

cross-channel expansion (4.6b) can thus be rewritten as sums over m, m̄ = 0, 1, 2, . . .

for the family (4.14).

48We use the terminology of ‘multi-trace’ for these heavy-light composite operators since in general
the heavy operator itself can – and for us will – be a multi-trace operator.

49These anomalous dimensions should be thought of as ‘averages’ over all operators in the spectrum
that are degenerate at leading order in 1/N . No lifting of this degeneracy [183] is studied here.
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Our goal is to study how the information about bulk high-energy scattering pro-

cesses at fixed impact parameter is encoded in the CFT. In the boundary theory this

corresponds to studying 4-point correlators in the Lorentzian kinematical regime of

the Regge limit [89–92], defined by an analytic continuation in one of the conformal

cross-ratios (here chosen to be z) around the origin, followed by taking both z and z̄

to 1:

z → z e−2πi , z, z̄ → 1 . (4.17)

Due to the branch cut along (−∞, 0] of the hypergeometric function 2F1(h, h ; 2h ; 1−z),
present in the blocks g0,0

h,h̄
(1 − z, 1 − z̄) in (A.15), the direct channel correlator will

transform non-trivially upon moving to the second sheet relevant for the Regge limit.

It is useful to parametrise the cross-ratios on the second sheet as [97]

z = 1− σ , z̄ = 1− ση , (4.18)

in which case the Regge limit is obtained by taking σ → 0 with η held fixed. Using the

analytic continuation across the branch cut of the hypergeometric function yields

2F1(h, h; 2h; 1− z) �−→ 2F1(h, h; 2h; 1− z) + 2πi
Γ(2h)

Γ2(h)
2F1(h, h; 1; z) . (4.19)

Focusing on the imaginary part, the leading behaviour of a single direct channel global

block in the σ → 0 limit is then

g0,0

h,h̄
(1− z, 1− z̄)

∣∣∣
�
≈ 2πi

Γ(2h) Γ(2h− 1)

Γ4(h)
ηh̄σ1−h+h̄ , (4.20)

showing that operators with h− h̄ large (i.e. large spin states) dominate. In particular,

the spin-1 R-charge contribution, i.e. the U(1) affine block in (4.8), is subdominant with

respect to the Virasoro block (4.7), which originates from the exchange of the stress-

tensor. In our explicit examples we will see two different patterns. A first possibility is

that operators with at most spin two are exchanged in the direct channel, such as the

stress-tensor and the double-trace operators with m = m̄+ 2. In this case, the analytic

continuation to the Regge regime can be performed block by block, using (4.20) at

leading order. Another possibility is to have contributions in the direct channel with

unbounded spin: it is then necessary to first resum the terms with m > m̄+ 2 and to

perform the Regge analytic continuation on the result. We will later show how this is

done in an explicit example (see section 4.4.3 from (4.130) onwards). In both cases,

this direct channel analysis reproduces the Regge behaviour, i.e. the imaginary part

of the correlator scales as σ−2hL−1 in the σ → 0 limit – the extra factor of −1 in the

exponent is typical of the exchange of a spin-2 state, identified holographically with the
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graviton.

In particular, we focus on the cross-channel expansion (4.6b) where the relevant

data is contained in the anomalous dimensions Γm,m̄ and the OPE coefficients CHLO.

The exact comparison between the bulk and boundary is currently beyond our reach for

the microstate geometries that we are interested in due to the fact that the relevant 4-

point correlators are known only in terms of series (for instance the correlator discussed

in Section 2.3). Since an analytic continuation is needed to go to the Regge regime of a

correlator, we have to work perturbatively by expanding in the parameter µ (as defined

in (4.5)) [1, 52, 53]. Such an expansion can be naturally interpreted in the bulk as an

expansion in the mass of an AdS-Schwarzschild black hole, while on the CFT side it

counts the number of copies of the stress tensor appearing in the Virasoro vacuum

block [52].

The strategy for analysing the HHLL correlators will be to expand the supergravity

result (initially at leading order, and later more generally) in µ ∼ Nb/N and to read off

the CFT data relevant for Eq. (4.6). At zeroth order in µ, only the identity contributes

to the direct channel and the bootstrap relation (4.6) constrains the zeroth order OPE

coefficients in exactly the same manner as Section 2.1.1 via50

(1−z)−2hL(1−z̄)−2h̄L = z−(hH+hL)z̄−(h̄H+h̄L)
∑
{OHL}

C 2
(0)(m, m̄) ghHL,h̄HL

H,H̄
(z, z̄)

∣∣∣
µ0
, (4.21)

where hHL = hH − hL, h̄HL = h̄H − h̄L, yielding C 2
(0)(m, m̄) (with the same functional

form as (2.42)) as

C 2
(0)(m, m̄) =

Γ(2hH +m) Γ(2hL +m) Γ(2hH + 2hL +m− 1)

m! Γ(2hH) Γ(2hL) Γ(2hH + 2hL + 2m− 1)
(4.22)

× Γ(2h̄H + m̄) Γ(2h̄L + m̄) Γ(2h̄H + 2h̄L + m̄− 1)

m̄! Γ(2h̄H) Γ(2h̄L) Γ(2h̄H + 2h̄L + 2m̄− 1)
.

Looking now to the cross channel decomposition in (2.32) for the HHLL correlator

at order µ, we have

C(z, z̄)|µ = z−(h
[0]
H +hL) z̄−(h̄

[0]
H +h̄L)

∑
{OHL}

C 2
m,m̄ ghHL,h̄HL

H,H̄
(z, z̄)

∣∣∣
µ
. (4.23)

On the right-hand side, the µ dependence is in both the OPE coefficients and the blocks

(due to the anomalous dimensions). One difficulty in solving this constraint is that the

first order corrections to both the OPE coefficients and the conformal dimensions appear

as unknowns. In order to decouple their contributions and to make a connection to

the classical bulk scattering of Section 2.4, we consider (4.23) in the Regge limit. The

50Note that at the order µ0 we have h
[0]
H ≈ hH , and likewise for the anti-holomorphic dimension.
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order µ crossing equations (4.23) in the Regge limit then read

C�|µ = z−(h
[0]
H +hL) z̄−(h̄

[0]
H +h̄L)

∑
{OHL}

C 2
m,m̄ e

−2πi(H−h[0]
H −hL)ghHL,H̄HL

H,H̄
(z, z̄)

∣∣∣
µ

(4.24)

= z−(h
[0]
H +hL) z̄−(h̄

[0]
H +h̄L)

∞∑
m,m̄=0

C 2
(0)

[
C 2

(1)

+
1

2
Γ

(1)
m,m̄

(
− 2πi+ (∂m + ∂m̄)

)]
ghHL,h̄HL
H,H̄

(z, z̄)
∣∣∣
µ=0

, (4.25)

where the origin of the imaginary contribution follows from the factor of zH in the

global blocks (2.33). Selecting then the imaginary part of the above equation extracts

a term proportional to the anomalous dimension and with no dependence on C 2
(1):

Im C�|µ = −πz−(h
[0]
H +hL) z̄−(h̄

[0]
H +h̄L)

∞∑
m,m̄=0

C 2
(0)(m, m̄) Γ

(1)
m,m̄ ghHL,h̄HL

H,H̄
(z, z̄)

∣∣∣
µ=0

.

(4.26)

By matching the O(µ) cross-channel expansion on the r.h.s. of (4.26) with the imag-

inary part of the correlator after having taken the Regge limit, one can extract the

anomalous dimensions Γ
(1)
m,m̄ for operators with m, m̄ � 1 – those dominating in the

Regge regime.

The same strategy described above can be used to analyse correlators of the form

(2.28) in which all external operators are light [97]: here ∆1,∆2 ∼ 1 as c→∞. In this

case the expansion parameter is simply the inverse of the central charge, parametrised

by N−1 and so it is then sufficient in the LLLL case to simply set Nb = 1. We analyse

a particular LLLL correlator in the Regge limit in Section 4.4.3 as an example. At this

stage, a number of simplifying approximations can be made for both the GFT OPE

coefficients and the conformal blocks; these approximations are different for the HHLL

and LLLL cases.

For HHLL correlators there is the hierarchy h
[0]
H � hL,m, m̄: in this limit the zeroth

order OPE coefficients (4.22) simplify to

C 2
(0)(m, m̄) ≈ Γ(2hL +m) Γ(2h̄L + m̄)

m! m̄! Γ(2hL) Γ(2h̄L)
, (4.27)

and for the additional scaling m, m̄� 1, relevant in the Regge limit, this further reduces

to

C 2
(0)(m, m̄) ≈ m2hL−1m̄2h̄L−1

Γ(2hL) Γ(2h̄L)
. (4.28)

The hypergeometric functions in the cross-channel conformal blocks (2.33) can also be
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approximated in the heavy scaling limit h
[0]
H � hL,m, m̄ by

2F1(H − hHL, H − hHL; 2H; z) =

∞∑
k=0

(H − hHL) 2
k

k!(2H)k
zk ≈ 1 +O(1/hH) , (4.29)

where we used the series representation of the hypergeometric function and the approx-

imations H ≈ h[0]
H , which follows from (4.15), and hHL = h

[0]
H −hL ≈ h

[0]
H . Implementing

these approximations in the Regge crossing equation (4.26) gives

Im C�|µ1 ≈ −π
∞∑

m,m̄=0

C 2
(0)(m, m̄) Γ

(1)
m,m̄ z

mz̄m̄ . (4.30)

For LLLL correlators, the cross-channel decomposition in the Regge limit at order

µ1 is identical to (4.26) with the replacements C 2
(0) → c 2

(0), Γ
(1)
m,m̄ → γ

(1)
m,m̄, ghHL,h̄HL

H,H̄
→

gh12,h̄12

h,h̄
and h

[0]
H → h1, where the conformal dimensions h1, h2 are of order 1 in the large

c limit. In this regime, the Regge limit allows for an approximation to the conformal

blocks in terms of modified Bessel functions of the second kind – since again, double-

trace operators with large m, m̄ dominate in the cross channel. This approximation

is derived in Appendix D. Thus, considering h, h̄ � 1 with ẑ ≡ h
√

1− z finite, the

holomorphic part of the conformal blocks (2.33) approximates to [97]

zh2F1

(
h− h12, h− h12; 2h; z

)
≈ 22h

√
h

π
(1− z)h12 K−2h12

(
2h
√

1− z
)
≡ K h12

h ,

(4.31)

giving the approximation to the full global block as

gh12,h̄12

h,h̄
≈ K h12

h (z)K h̄12

h̄
(z̄) . (4.32)

The derivation of this approximation to the LLLL blocks can be found in Appendix D.

We recall that the HHLL correlator at first order in Nb/N and the LLLL correlator

(which has Nb = 1) at first order in 1/N are identical – see for instance the n = 1

term in the final line of equation (3.4). Despite this fact, the approximations to the

conformal blocks and the OPE coefficients that are appropriate in the two regimes are

different: for the conformal blocks one should use (4.29) in the HHLL regime and (4.31)

in the LLLL one. For this reason the anomalous dimensions Γ
(1)
m,m̄ and γ

(1)
m,m̄ that one

derives in the two cases are different. This fact will be illustrated in a specific example

in Section 4.4.3.

Both anomalous dimensions Γ
(1)
m,m̄ and γ

(1)
m,m̄ for large values of m, m̄ are linked to
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the O(µ) phase shift δ(1) computed on the gravity side by identical relations [52,90,96]

Γ
(1)
m,m̄ ≈ −

δ(1)

π
, γ

(1)
m,m̄ ≈ −

δ(1)

π
for m, m̄� 1 , (4.33)

where the CFT variables m, m̄ are mapped to the bulk momenta of Section 2.4, pt, py

– of which δ(1) is a function – by

Ry |pt| = m+ m̄ , Ry py = m− m̄ ⇒ β = −m− m̄
m+ m̄

. (4.34)

These various relations and their extensions to arbitrary orders in µ will now be derived.

A generalisation to arbitrary orders in µ

The discussion thus far in this section has been essentially tailored towards an analysis

of correlators – both HHLL and LLLL – at first order in the parameter µ. In the

remainder of this section we generalise the comparison of the bulk phase shift and the

Regge limit of CFT correlators in the HHLL case to arbitrary orders in µ.

By expanding the cross-channel data of the double-trace operators (4.14) as shown

in (4.16), inserting these series into the cross-channel decomposition (4.6b) and expand-

ing in µ, one finds that in general the expansion coefficients Γ(n) and C 2
(n) are encoded

in the correlator in a complicated manner. However, the analysis can be somewhat

simplified by taking the Regge limit (4.17). The cross-channel decomposition of an

analytically continued correlator can be written to leading order in large N as

C(z, z̄)
�−−→ z−h

[0]
H −hL z̄−h̄

[0]
H −h̄L

∞∑
m,m̄=0

C 2
m,m̄ e

−πiΓm,m̄ghHL,h̄HL
H,H̄

(z, z̄) , (4.35)

where we sum over all members of the family of exchanged HL multi-trace operators

(4.14). In the above sum, the global conformal blocks implicitly depend on µ via the

conformal dimensions H and H̄ given in (4.15). After taking z, z̄ → 1 a large number of

terms contribute in the cross-channel, however, the dominant multi-trace operators are

those with m, m̄� 1. Correspondingly, we can treat m and m̄ as continuous variables

and approximate the sums by integrals. Then using (4.16), one can write the explicit
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expansion of the correlator in the Regge limit, which we denote by CR, as

CR ≈
1

zh
[0]
H +hL z̄h̄

[0]
H +h̄L

∫ ∞
0
dm

∫ ∞
0
dm̄C 2

(0)

[
1 + µ

(
C 2

(1) + Γ(1)D̃
)

+ µ2

(
C 2

(2) +
1

2
Γ2

(1)D̃
2

+
(
C 2

(1)Γ(1) + Γ(2)

)
D̃

)
+ µ3

(
C 2

(3) +
1

6
Γ3

(1)D̃
3 +

1

2
Γ(1)

(
C 2

(1)Γ(1) + 2Γ(2)

)
D̃2

+
(
C 2

(2)Γ(1) + C 2
(1)Γ(2) + Γ(3)

)
D̃

)]
ghHL,h̄HL
H,H̄

(z, z̄)

∣∣∣∣∣
µ=0

, (4.36)

where D̃ ≡ 1
2(∂m+∂m̄)−πi and the the conformal block functions should be evaluated

at µ = 0 only after the action of the derivatives in D̃. Finally, when explicitly evaluating

such integrals one can use the scaling limit h
[0]
H � m, m̄ � 1 in which the GFT OPE

coefficients simplify to (4.28) and, since the hypergeometric functions are unity up to

order O(h−1
H ) corrections as in (4.29), the global conformal blocks (2.33) in the cross

channel can be approximated by

ghHL,h̄HL
H,H̄

(z, z̄) ≈ zH z̄H̄ , (4.37)

with H and H̄ being given by (4.15).

The link between the bulk phase shift (2.100) and the CFT data (4.15) is made

by using the impact parameter representation of 4-point correlation functions in the

Regge limit [52, 53, 90]. In what follows we limit our analysis to correlators involving

only operators for which hL = h̄L and h
[0]
H = h̄

[0]
H , as is the case for the explicit examples

considered in section 4.3 and section 4.4. Starting from the cross-channel decomposition

(4.6b), we want to write the correlator in the Regge limit as an expansion over impact

parameter partial waves Im,m̄ as

CR(z, z̄) ≈
∞∑
m=0

m∑
m̄=0

Im,m̄A(m, m̄) , (4.38)

where A(m, m̄) is an arbitrary symmetric function of m and m̄ such that A|µ=0 = 1.

In d = 2, we define

Im,m̄ ≡
C 2

(0)(m, m̄)

|z|2(h
[0]
H +hL)

ghHL,hHL
H,H̄

(z, z̄)
∣∣∣
µ=0

+ (z ↔ z̄) ≈ (mm̄)2hL−1

Γ2(2hL)

(
zmz̄m̄ + zm̄z̄m

)
,

(4.39)

where we have used (4.28) and (4.37) in the final right-hand side. The impact parameter

partial waves are defined to be the GFT (µ = 0) cross-channel partial waves of the

operators (4.14). Hence by setting µ = 0 in (4.38) we recover the disconnected part of
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the correlator in the Regge limit using

∞∑
m=0

m∑
m̄=0

Im,m̄ ≈ |1− z|−4hL , (4.40)

as was explained in Section 2.1.1. In [90] it was shown that Im,m̄ admits an impact

parameter representation, which in d = 2 and in the HHLL regime takes the form51

Im,m̄ =
25−4hLπ2

Γ2(2hL)

∫
M−

d2p

(2π)2
(−p2)2hL−1 e−ip·x |m− m̄| δ2 , (4.41)

where the integral is over the lower Milne wedge M− ≡ {p ∈ R1,1
∣∣ p2 ≤ 0, pt ≤ 0} and

δ2 is defined as the combination of delta functions

δ2 ≡ δ(p · ē+m+ m̄) δ
(p2

4
+mm̄

)
, (4.42)

with ēµ ≡ −δ 0
µ . To show that the impact parameter representation (4.41) is equivalent

to (4.39), we first evaluate the p integrals using lightcone coordinates p± = pt± py and

x± = t± y yielding

Im,m̄ =
22−4hL

Γ2(2hL)

∫ ∞
0

∫ ∞
0

dp+dp− (p+p−)2hL−1 e−
1
2 i(p+x−+ p−x+) |m− m̄| δ2 , (4.43)

where the delta functions can be put into the form

δ2 = |m− m̄|−1
(
δ
(

1
2p

++m
)
δ
(

1
2p
−+ m̄

)
+ δ
(

1
2p

++ m̄
)
δ
(

1
2p
−+m

))
. (4.44)

By defining the coordinates on the plane as

z ≡ eix+
, z̄ ≡ eix− , (4.45)

it is simple to evaluate the integrals in (4.43) to give exactly (4.39).

Equally, we can insert the impact parameter representation of Im,m̄ into (4.38) and

approximate the sums over m and m̄ with integrals. By performing first the integrals

over m and m̄, one obtains

CR(z, z̄) ≈
∫ ∞

0
dm

∫ m

0
dm̄ Im,m̄A(m, m̄)

=
25−4hLπ2

Γ(2hL)2

∫
M−

d2p

(2π)2
(−p2)2hL−1 e−ip·xA(−1

2p) , (4.46)

with the identifications (4.45) implied. We have used the notation p ≡ (p−, p+) and

51Note that our conventions differ from those of [90] and [53].
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the relations

p+

2
= −m̄ ,

p−

2
= −m, (4.47)

which originate from the delta functions in (4.44). The final line of (4.46) can be

inverted and if we set A(m, m̄) = eiδ(m,m̄) then the phase can be determined in terms

of the Fourier transform of a 4-point function in the Regge limit∫
d2xCR(z, z̄) eip·x = B0(p) eiδ(p) , (4.48)

with

B0(p) =
23−4hL π2

Γ2(2hL)
Θ(−pt)Θ(−p2)

(
−p2

)2hL−1
, (4.49)

denoting the Fourier transform of the disconnected part of the correlator. Following

the proposal of [52], we identify δ(p) as the bulk phase shift of (2.100) and interpret

p as the conserved momentum along the null geodesics. In particular, from (4.47) it

follows that

|pt| = m+ m̄ , py = m− m̄ , (4.50)

and thus β = −(m− m̄)/(m+ m̄). This identification, valid in the Regge limit, directly

links well-defined bulk quantities and the operators exchanged in 4-point correlators and

will allow us to obtain concrete relations between the phase shift and CFT data (4.16).

To obtain expressions linking the two sides, we insert (4.39) and A(m, m̄) = eiδ(m,m̄)

into (4.38), approximate the sums over m and m̄ with integrals and use the assumed

symmetry of the phase shift to get

CR(z, z̄) ≈
∫ ∞

0

∫ ∞
0
dmdm̄

(mm̄)2hL−1

Γ2(2hL)
zmz̄m̄ eiδ(m,m̄) . (4.51)

This relation incorporates the key idea of the eikonal regime; namely that by comparing

with the GFT results (4.28) and (4.37) (valid in the Regge limit), one notes that the

details of the interaction between the light probe and the heavy object are resummed

into the phase. In the context of the proposal of [52], (4.51) directly relates the bulk

phase shift δ(m, m̄) (with the relations (4.50) understood) to the CFT data (4.16).

Therefore, this relation allows us to reproduce the Regge limit of particular HHLL

correlators and to extract cross-channel CFT data, all purely from the bulk phase shift

of the probe propagating in the geometry dual to the heavy operator.

To see this explicitly, we assume that the phase shift admits the perturbative ex-
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pansion52

δ(m, m̄) =
∞∑
n=1

δ(n) µ
n , (4.52)

where from now on we suppress the m and m̄ dependence of both the expansion co-

efficients δ(k) and the exact phase shift δ, and expand the right-hand side of (4.51)

using

eiδ ≈ 1 + iδ(1) µ+

(
iδ(2) −

1

2
δ2

(1)

)
µ2 +

(
iδ(3) − δ(1)δ(2) −

i

6
δ3

(1)

)
µ3 . (4.53)

Comparing the result term by term with the Regge limit cross-channel conformal block

decomposition (4.36) one gets a series of differential relations between CFT data and

the bulk phase shift. Since only elastic scattering is considered here, we take δ and all

of its expansion coefficients to be real-valued. We similarly assume that the anomalous

dimension Γm,m̄ and the square of the OPE coefficients C 2
m,m̄ take real values. Then

the set of differential equations can be split by considering the real and imaginary parts

separately, the first few of which yield previously known relations [52,53,90]53

Γ(1) = −
δ(1)

π
, C 2

(0)C
2

(1) = ∂+

(
C 2

(0)Γ(1)

)
, (4.54a)

Γ(2) = −
δ(2)

π
+ Γ(1) ∂+Γ(1) , C 2

(0)C
2

(2) = ∂+

(
C 2

(0)C
2

(1)Γ(1) + C 2
(0)Γ(2)

)
− 1

2
∂2

+

(
Γ 2

(1)C
2

(0)

)
,

(4.54b)

where we have defined the differential operator ∂+ ≡ ∂(m+m̄) = 1
2 (∂m + ∂m̄). These

relations quickly become cumbersome, particularly since they express CFT information

in terms of both the phase shift expansion coefficients and lower order CFT data.

However, as might be expected from the point of view of holography, the bulk and

boundary information can be separated and so it is possible to express the anomalous

dimensions and OPE coefficients purely in terms of the bulk phase shift. The first few

52To be precise, the bulk phase shift that is related to the CFT data is the difference in the phase
shift relative to the pure AdS result. Therefore, the expansion of δ starts at linear order in µ, since the
contribution from the pure AdS is first subtracted.

53There are additional total derivative terms which we omit in these expressions. Their contributions
vanish in all examples we have considered and furthermore, the equations (4.54) have been checked in
the example of AdS-Schwarzschild and agree with the results obtained by independent lightcone limit
methods [52,53].
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such relations read

Γ(1) = −
δ(1)

π
, (4.55a)

Γ(2) = −
δ(2)

π
+

1

2!
∂+

(
δ2

(1)

π2

)
, (4.55b)

Γ(3) = −
δ(3)

π
+ ∂+

(
δ(1) δ(2)

π2

)
− 1

3!
∂2

+

(
δ3

(1)

π3

)
, (4.55c)

and

C 2
(1) = − 1

C 2
(0)

∂+

(
C 2

(0)

δ(1)

π

)
, (4.56a)

C 2
(2) = − 1

C 2
(0)

∂+

[
C 2

(0)

δ(2)

π
− 1

2!
∂+

(
C 2

(0)

δ2
(1)

π2

)]
, (4.56b)

C 2
(3) = − 1

C 2
(0)

∂+

[
C 2

(0)

δ(3)

π
− ∂+

(
C 2

(0)

δ(1) δ(2)

π2

)
+

1

3!
∂2

+

(
C 2

(0)

δ3
(1)

π3

)]
. (4.56c)

A pattern soon emerges and so we conjecture that at an arbitrary order in µ these

relations read

Γ(n) =
∑
{kt}

∂K−1
+

[ ∞∏
t=1

1

kt!

(
−
δ(t)

π

)kt]
, (4.57a)

C 2
(n) =

1

C 2
(0)

∑
{kt}

∂K+

[
C 2

(0)

∞∏
t=1

1

kt!

(
−
δ(t)

π

)kt]
, (4.57b)

where the sums run over all configurations of kt ∈ N0 such that

n =

∞∑
t=1

tkt and K =
∞∑
t=1

kt . (4.58)

What this means is that in (4.57), for each value of n ∈ N one sums over all integer

partitions of n with each term being divided by the degeneracy of the parts appearing

in the partition.

These equations were derived using expressions that are valid only in d = 2, however,

it was argued in [53] that the relations (4.54) hold in any dimension and thus we can

conjecture that the same should be true for (4.57). Interestingly, we observe that for

light operators with hL = h̄L = 1
2 , the zeroth order OPE coefficient (4.28) are C 2

(0) ≈ 1

in the Regge limit and as a consequence, the CFT data associated with such probes
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satisfies a simple relationship at each order in µ

C 2
(n) = ∂+Γ(n) . (4.59)

Finally, let us note that one can resum the series coefficients appearing in (4.57) to

obtain relations that are exact in µ

Γm,m̄ =

∞∑
n=1

1

n!
∂n−1

+

(
− δ

π

)n
, C 2

m,m̄ =
1

C 2
(0)

∞∑
n=1

1

n!
∂n+

[
C 2

(0)

(
− δ

π

)n ]
. (4.60)

While we do not use these exact expressions in this thesis, they have been checked in

explicit examples and we will discuss their potential in Chapter 5.

4.3 Conical defect geometry

In this section we apply the methods of Sections 2.4 and 4.2 to the case of heavy opera-

tors dual to conical defect geometries. We begin by reviewing the bulk computation of

the phase shift for this example, first computed in [52], followed by an analysis of the

relevant 4-point correlation functions [70] for two types of light probes and find perfect

agreement between the CFT data and bulk phase shift. Finally, we briefly comment

on the possibility of the Regge limit distinguishing between pure and mixed states.

4.3.1 Bulk description

In order to make a connection with the AdS3 conical defect geometry analysed in

[52], we consider a particularly simple microstate geometry, first introduced in [201,

202]. This 6D geometry locally factorises into AdS3×S3 and for our purposes only the

reduced 3D metric is relevant, given by

(Q1Q5)−
1
2ds2

AdS3
=

dr2

r2 + a2

k2

−
r2 + a2

k2

Q1Q5
dt2 +

r2

Q1Q5
dy2 , (4.61)

where k ∈ N. The radius Ry of the y coordinate is related to the D1 and D5 charges Q1,

Q5 and the parameter a by Ry =
√
Q1Q5

a . With the periodic identification y ∼ y+2πRy ,

the above geometry has a conical singularity of order k at r = 0. One could formally

eliminate the conical singularity and map the metric (4.61) to global AdS3 by the local

diffeomorphism r → r k−1, t → t k, y → y k. However, since this diffeomorphism is

non-vanishing at the AdS boundary and is not globally defined due to the change in y

periodicity it induces, the geometry (4.61) and global AdS3 are physically inequivalent.

The conical singularity has a natural description at the free orbifold point of the

dual D1-D5 CFT: the heavy operator dual to the geometry (4.61), after spectral flow
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to the NS sector, is made up of N/k copies of the twist operator of order k [24]. This

description makes it evident that only the geometries with integer k can be associated

to states of the CFT. Nevertheless, in order to connect with [52], in which geometries

with real-valued defect angles were considered, one can analytically continue k to take

generic values in [1,∞) and parametrise it as

1

k
=
√

1− µ ≡ α , (4.62)

where µ = 0 describes pure AdS. The bulk phase shift computed in the reduced 3D

metric (4.61) follows from the general formula (2.105):

δk = 2aRy |pt|
∫ ∞
r0

dr

(
r2 +

a2

k2

)−1
√

1− β2

r2

(
r2 +

a2

k2

)
= πRy k |pt|(1− |β|) , (4.63)

with the radial turning point r0 = a
k (β−2 − 1)−1/2 obtained by setting Eq. (2.101) to

zero. It is noted that setting k → 1 here reproduces the phase shift in pure AdS3

as expected. Subtracting the AdS result from (4.63) gives the deviation due to the

presence of the defect as

δ = δk − δk=1 = πRy |pt|(1− |β|) (k − 1) . (4.64)

Using the analytic continuation (4.62), the phase shift can be expanded in small µ

allowing for a CFT interpretation of the bulk result and comparison with [52]:

δ = πRy |pt|(1− |β|)
[
(1− µ)−

1
2 − 1

]
= πRy |pt|(1− |β|)

(
1

2
µ+

3

8
µ2 + · · ·

)
. (4.65)

4.3.2 CFT analysis at first order in µ

We would like to understand if the bulk phase shift (4.65) captures the Regge limit of

some CFT correlator. For integer k this would be the four-point correlator between the

heavy state dual to the conical defect (4.61) and two light operators of fixed conformal

dimension (hL, h̄L). These relevant heavy operators belong to the set of Ramond-

Ramond ground states of the D1-D5 CFT, each having conformal dimensions hH =

h̄H = N
4 and SU(2) charges jH = j̄H = N

2k , and hence the corresponding reduced

conformal dimension (4.2) is given by

h
[0]
H =

N

4

(
1− 1

k2

)
. (4.66)

This four-point correlator has been computed in [70] by solving the linearised wave

equation describing small fluctuations of the light operator in the background (4.61)
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of the heavy operator, in a similar manner to Section 2.3. When the light operator is

taken to be the chiral primary operator Ofer of dimension (hL, h̄L) = (1/2, 1/2), the

correlator in the NSNS sector is

C fer
k =

1/k

|1− z|2
1− |z|2

1− |z|2/k
. (4.67)

Another natural candidate for the light operator is Obos, with dimension (hL, h̄L) =

(1, 1). This superdescendant of Ofer is obtained by acting on the chiral primary with

one left-moving and one right-moving supercharge. The explicit forms of the operators

Ofer and Obos in terms of the basic fields of the free orbifold point of the D1-D5 CFT

can be found in (2.76). In the bulk, Obos has a simpler description than Ofer, being dual

to a minimally coupled scalar in the background described by the 6D Einstein metric.

The correlators C fer and Cbos of the light operators Ofer and Obos in a 1/2-BPS heavy

state (such as the one dual to (4.61)) are related by a simple supersymmetric Ward

identity, which gives

Cbos
k = ∂∂̄

[
C fer
k

]
= ∂∂̄

(
1/k

|1− z|2
1− |z|2

1− |z|2/k

)
. (4.68)

To compare with the bulk phase shift computed in a conical defect geometry with

real-valued deficit angle, one can analytically continue the above correlators using the

parametrisation (4.62) to get

C fer
α =

α

|1− z|2
1− |z|2

1− |z|2α
, Cbos

α = ∂∂̄

(
α

|1− z|2
1− |z|2

1− |z|2α

)
. (4.69)

After analytic continuation, C fer
α and Cbos

α can no longer be interpreted as correlators of

a pure heavy state of the CFT. One possibility is that they represent correlators in an

ensemble of 1/2-BPS states with an average conformal dimension set by the parameter

α (4.4). This identification is consistent with the lightcone OPE limit z̄ → 1 of the

correlators. As an example, Cbos in this limit is given by [72]

Cbos
α

z̄→1−−−→ zα−1

(1− z̄)2

(
α

1− zα

)2

, (4.70)

which by comparison with (4.7), is the HHLL Virasoro identity block with light oper-

ators of dimension hL = 1 (multiplied by the prefactor from (4.1)).

We now study the Regge limit of this correlator and, to help the CFT interpretation,

we also take the small µ expansion. Focusing on the first order in µ, the imaginary part

of the Regge limit of Cbos obtained after performing the analytic continuation (4.17)
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reads

ImCbos
α �

∣∣∣
µ1
≈ 2π

σ4η2

(
1 + 3η + η2

σ(1 + η)3

)
=

2π

σ4η2

(
1− 2η + 5η2 − 9η4 + . . .

σ

)
, (4.71)

where we used the parametrisation in (4.18) and kept only the leading term in σ.

The overall factor of σ−4η−2 comes from the prefactor (1 − z)−2h2(1 − z̄)−2h̄2 =

σ−2(h2+h̄2)η−2h̄2 in (4.1) with h2 = h̄2 = 1. By expanding the remaining part of the

result in small η (as done in the second equality of (4.71)) one can gain some insight on

the CFT meaning of the correlator Cbos
α . Comparing each term of the small η expansion

with the behaviour of the blocks in the Regge limit (4.20), it is natural to interpret a

contribution scaling like σ−1ηn for n ≥ 0 as being due to the exchange of primaries of

weight (h, h̄) = (2 + n, n). In particular, taking the Regge limit of the Virasoro block

of the identity produces only the first term in the small η expansion. As a consistency

check of this interpretation, we can compare the first few coefficients of the η expansion

in (4.71) with those obtained in the Euclidean OPE decomposition as z → 1 (given

by (4.11) before the analytic continuation needed for the Regge limit). From the first

few terms in the Euclidean decomposition one can see the following pattern emerging:

both the leading order couplings c 2
(0) and the anomalous dimensions δ̄ are trivial, while

for the couplings at order µ there are no contributions of spin higher than two. For

instance, one can easily obtain the following data

c 2
(1)(0, 0) =

1

30
, c 2

(1)(1, 1) = − 1

210
, c 2

(1)(2, 2) =
1

275
, . . .

c 2
(1)(2, 0) = − 1

700
, c 2

(1)(3, 1) =
1

4410
, c 2

(1)(4, 2) = − 1

38808
, . . . ,

(4.72)

and of course c 2
(1)(m,m+ 2) = c 2

(1)(m+ 2,m). The couplings of the states with spin

2 agree with the expansion of the round parenthesis in (4.71) once the normalisation

in (4.20) is taken into account. This can be checked by multiplying the results in (4.72)

by the factor present in (4.20): for m = 2, 3, 4 . . .

Γ(2m+ 4) Γ(2m+ 3)

Γ4(m+ 2)

µ

2
c 2

(1)(m,m− 2)→ µ (−2, 5,−9, . . .) . (4.73)

We now analyse the cross channel interpretation of (4.71) using (4.30), which is

dominated by the double-trace operators of the form OH∂m∂̄m̄OL, with large values

of m and m̄. The anomalous dimensions Γ
(1)
m,m̄ are encoded in the phase shift (4.65),

computed from the analytically continued conical defect geometry. From (4.33) and

the identifications (4.34), one finds that

Γ
(1)
m,m̄ ≈ −min(m, m̄) , (4.74)
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in agreement with [52] (see also Eq. (6.4) of [102] which captures the large h
[0]
H , h̄

[0]
H

limit of Eq. (4.32) of [197]). We can then resum the contributions of these double-trace

operators with (4.30) by approximating the sums with integrals and using (4.28) with

h2 = h̄2 = 1

ImCbos
α �

∣∣∣
µ1

= π

[∫ ∞
0
dm

∫ m

0
dm̄mm̄2 zmz̄m̄ +

∫ ∞
0
dm̄

∫ m̄

0
dmm2m̄ zmz̄m̄

]
= π

(
I1,2,0(z, z̄) + I1,2,0(z̄, z)

)
= 2π

(
1 + 3η + η2

σ5η2(1 + η)3

)
,

(4.75)

where in the second line we used the result (E.10) and reproduced the Regge behaviour

(4.71), including all terms of order σ−1ηn for n ≥ 0. Thus, while the Virasoro block of

the identity alone does not provide a consistent solution to the bootstrap problem, the

“correlator” Cbos
α does. The terms σ−1ηn with n ≥ 0 originate from the double-trace

primaries ŌL∂2+n∂̄nOL exchanged in the direct channel (z, z̄ → 1).

The same analysis can be performed for the analytically-continued correlator with

light operator Ofer given in (4.69). After the analytic continuation to the Regge region

and the small µ expansion, the order µ contribution is

ImC fer
α�

∣∣∣
µ1
≈ π

σ3η(1 + η)
. (4.76)

Of course, one can relate (4.76) and (4.71) directly by writing the Ward identity (4.68)

in the variables (σ, η) adapted to the Regge limit

∂ = −∂σ +
η

σ
∂η , ∂̄ = − 1

σ
∂η ⇒

(
∂σ −

η

σ
∂η

)( 1

σ
∂η

)
ImC fer

α�

∣∣∣
µ1

= ImCbos
α�

∣∣∣
µ1
.

(4.77)

For large values of m and m̄, the anomalous dimensions Γ
(1)
m,m̄ of the double-trace

operators contributing to the cross channel of C fer
α are equal to the ones extracted

from Cbos
α . This agrees with the idea that the two light operators Ofer and Obos are

indistinguishable in the Regge limit, both being represented by null geodesics in the 3D

spacetime. The couplings C 2
(0) change simply due to the dimension of the light external

operator now being h2 = 1/2: using this value in (4.27), one obtains from the cross

channel decomposition an integral with the same structure as in (4.75) but involving

I0,1,0 instead of I1,2,0, which reproduces (4.76).

Let us conclude this section with some comments. The analysis of [52] starts from

the HHLL Virasoro vacuum block in the direct channel, then from this input the CFT

data in the cross channel are derived. The contributions from double-trace operators

OL∂m∂̄m̄OL in the direct channel are added as a final step in order to satisfy crossing.

Here we start from C fer
α or Cbos

α which already contain the exchanges of the operators

OL∂m∂̄m̄OL and provide directly a solution to the crossing constraint as discussed in
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this section. In spite of this difference in starting point, the results for the anomalous

dimensions in the Regge limit – given in Eq. (4.74) – of the double-trace operators

OH∂m∂̄m̄OL agree, implying that we are finding the same solution to the crossing

constraint as in [52]. We emphasise that although Cbos
α and C fer

α satisfy the bootstrap

relation, we know from the argument given at the beginning of this section that they

cannot represent correlators in pure states for generic real values of α. This argument

is based on the observation that the conical defect geometry (4.61) has an allowed

conical singularity only for integer k. It would be interesting to understand if there are

consistency requirements, detectable purely within the CFT, that are violated by Cbos
α

and C fer
α for generic values of α.

4.3.3 Higher orders in µ

Now we turn to the study of the 4-point functions (4.69) involving heavy operators

dual to the geometry in (4.61), at higher orders in the parameter µ.

We begin by analysing the Regge limit of the analytically continued correlator (4.69)

with the chiral primary light operator. We use the prescription (4.17): first analytically

continuing z around the origin (where the branch cut of zα is crossed) and then using

the parametrisation in (4.18) to take σ → 0 with η fixed. This gives

C fer
R =

α

|1− z|2
1− |z|2

1− |z|2αe−2πiα

∣∣∣∣∣
z,z̄→1

≈ 1

ησ2
+

πi

η(1 + η)σ3
µ− π2

η(1 + η)2σ4
µ2 − π3i

η(1 + η)3σ5
µ3 , (4.78)

where we have kept only the leading term in the small σ expansion at each order in µ,

which at order µk behaves as σ−k−2.

As discussed in section 4.2, it should be possible to reconstruct the Regge limit of

this CFT correlator from the bulk phase shift, at arbitrary orders in µ, using (4.51).

Using the phase shift computed for the conical defect (4.65), expanding the exponential

function of (4.51) in µ and taking the Regge limit gives the following expression54

C fer
AdS ≈ I0,0 + πiµ I0,1 +

(
πi I0,1 −

π2

2
I0,2

)
µ2 +

(
5πi

8
I0,1 −

3π2

4
I0,2 −

π3i

6
I0,3

)
µ3

≈ 1

ησ2
+

πi

η(1 + η)σ3
µ− π2

η(1 + η)2σ4
µ2 − π3i

η(1 + η)3σ5
µ3 , (4.79)

54In order to reduce clutter in our expressions, we use the notation Cfer
AdS to mean the correlator

predicted by the bulk phase shift using (4.51), which is only valid in the Regge limit.
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where in the first line we have used the integral

Ia,b(z, z̄) ≡
∫ ∞

0

∫ ∞
0
dmdm̄mam̄b

(
zmz̄m̄ + zm̄z̄m

)
=

Γ(a+ b+ 2)

(b+ 1)

[
F (z, z̄) + F (z̄, z)

]
,

(4.80)

with F (z, z̄) ≡
(
−log z

)−a−b−2
2F1

(
b+ 1, a+ b+ 2; b+ 2;− log z̄

log z

)
and in the second line

of (4.79) we have gone to the Regge limit by using the parametrisation (4.18), taking

the leading contribution in the small σ expansion at each order in µ separately.

Comparing the two methods, we see that the phase shift calculation (4.79) precisely

reproduces the Regge limit of the exact correlator (4.78). The matching of the two

results can be checked to higher orders in µ and we do not expect the agreement

to cease at an arbitrary order in the expansion. Note that taking the σ → 0 limit is

crucial here since the key relation (4.51) is valid only in the Regge limit. However, in the

case of this conical defect correlator with chiral primary light operator, the matching

extends beyond the first order terms in small σ as one finds additional agreement

between the subleading terms at each order in µ. Neglecting the disconnected part of

the correlator,55 the two methods begin to differ at subsubleading order in σ with the

leading differences being

∆C fer
R ≈ −

3(1 + η)2 + πi(1 + η + η2)

12η(1 + η)σ
µ− π2

12(1 + η)2σ2
µ2 − π3i

12(1 + η)3σ3
µ3 , (4.81)

where we have used the notation ∆C fer
R = C fer

R − C fer
AdS.

One can repeat the above procedure for the conical defect correlator with the light

operator Obos, given in (4.69). Analytically continuing this correlator to the Regge

regime and taking the small σ limit yields

Cbos
R ≈ 1

η2σ4
+

2πi(1 + 3η + η2)

η2(1 + η)3σ5
µ− 3π2(1 + 4η + η2)

η2(1 + η)4σ6
µ2 − 4π3i(1 + 5η + η2)

η2(1 + η)5σ7
µ3 ,

(4.82)

where at each order in µ we have again kept only the leading contribution as σ → 0,

which now scales as σ−k−4 at order µk. Obtaining the Regge limit from the bulk phase

shift follows in the same way as in the case of the chiral primary light operator, however,

since in this case hL = h̄L = 1 the GFT OPE coefficients appearing in (4.51) need to be

modified appropriately. This simply has the effect of replacing each integral in (4.79)

by Ia,b → Ia+1,b+1. After taking the relevant limit, we find that the leading order again

precisely matches the CFT result (4.82). However, unlike in the case of OL = Ofer, the

55We note that the order µ0 term is the disconnected part of the correlators and as such does not
contain any information about the interaction between the operators. This term is exact in σ: for
four-point functions with light operators with hL = h̄L, it is given by η−2hLσ−4hL .
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discrepancy between the two approaches already sets in at the subleading term in σ at

each order in µ, giving

∆Cbos
R ≈ 2πi(1 + 3η + η2)

η2(1 + η)2σ4
µ− 3π2(1 + 4η + η2)

η2(1 + η)3σ5
µ2 − 4π3i(1 + 5η + η2)

η2(1 + η)4σ6
µ3 . (4.83)

Let us note here that one can check that at each order in µ, the small η limit of the

expansions of the correlator expressions (4.78) and (4.82) agree with the results of the

Virasoro vacuum block with hL = h̄L = 1
2 and hL = h̄L = 1 respectively.

As shown in section 4.2, the bulk phase shift can also be used to extract CFT data

in the Regge limit. Using the expansion of the bulk phase shift (4.65) in the relations

(4.55) and (4.56) gives the data

Γ(1) ≈ −min(m, m̄) , Γ(2) ≈ −
min(m, m̄)

4
, Γ(3) ≈ −

min(m, m̄)

8
,

C 2
(1) ≈ −

1

2
, C 2

(2) ≈ −
1

8
, C 2

(3) ≈ −
1

16
,

(4.84)

where the OPE coefficients are calculated for the chiral primary light operator. The

exact anomalous dimensions are known from considerations of the bulk energy levels

of the light probe in the conical defect geometry [52], which agree with our extracted

data.

One of the current aims is to investigate whether it is possible use the Regge limit

to distinguish between pure and mixed states. Previous results [1, 52, 53] suggest that

the analysis at first order in µ cannot separate mixed from pure states and what we find

at higher orders in µ agrees with this. On the flip side, this indicates the robustness of

the proposal (4.51) in the sense that the bulk phase shift can reliably reconstruct the

Regge limit of boundary correlators, even if the heavy operators are not pure states.

4.4 Two-charge black hole microstate

In this section, we now consider the phase shift in the context of the D1-D5 system.

Firstly, we focus on the simplest subset of heavy states; the 1/2-BPS heavy operators

that are in correspondence (via spectral flow of the CFT) with the Ramond-Ramond

ground states of the theory. Though the ensemble of these states does not give rise to

a classical black hole with finite horizon, it still represents a non-trivial ensemble with

a macroscopically large entropy. The simplest states in this ensemble are the duals of

the conical defect geometries with integer k, given in (4.61). On the CFT side those

states are highly symmetric, being formed from many identical copies of one elementary

constituent (a twist operator of the orbifold CFT) and this is reflected on the gravity

side by the fact that the geometries are locally isomorphic to AdS3×S3. It is interesting

to extend the analysis to more generic states that still allow for an analytic treatment.
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For instance, the (k, 0, 0) family of solutions has tended to be a useful playground; these

were first constructed in [26] and later provided the seed for the construction of [27].

Some 4-point correlation functions – discussed in Section 2.3 – involving these heavy

states are known exactly in terms of a double Fourier series [72] and we use this result

to analyse the Regge limit beyond the leading order in the deformation parameter µ.

Finally, we compare and contrast our results to the expressions obtained in the conical

defect geometry.

4.4.1 Bulk description

The (k, 0, 0) spacetimes cannot be factorised, even locally, into asymptotically AdS3

and asymptotically S3 parts and thus have to be described in 6D. The full geometry is

given, for example, in Eq. (3.11) of [54]. It is useful, for our purposes at least, to rewrite

the 6D Einstein metric in the “dimensionally reduced” form given in Eq. (2.54). While

a reduction of this form can always be written down, in general the 3D reduced metric

gµν will depend on both the xµ and xα coordinates at finite r. A simplification occurs

for k = 1; in this case gµν turns out to be xα independent and thus can be thought

of the Einstein metric of a 3D spacetime that is asymptotically, but not locally, AdS3.

For k = 1 one can thus reduce the 6D problem to a simpler 3D one and in the following

we will restrict to the (1, 0, 0) state to take advantage of this simplification.

Before giving the full form of the (1, 0, 0) geometry, we review the set of parameters

on which it depends: these are the D1, D5 charges Q1, Q5; the radius of the CFT

spatial circle Ry; and two parameters a and b constrained by the relation

a2 +
b2

2
=
Q1Q5

R2
y

≡ a2
0 . (4.85)

Therefore, the parameter b can be varied whilst keeping the CFT quantities Q1, Q5

and Ry fixed. In this way we get a continuous family of heavy states, all of which are

collectively described by the (1, 0, 0) solution. Specifically, b is related to the number

Nb of single-particle constituents of the heavy state (given in the NS sector by (2.66)

with n = 0) that are not the spectral flow of the NSNS vacuum via

Nb

N
=

b2

2a2
0

. (4.86)

In particular, when b = 0 we have Nb = 0 and the state is just the spectral flow of the

NSNS vacuum, whose dual geometry is global AdS3 × S3.

The explicit form of the (1, 0, 0) solution in the fibred form (2.54) is given by the
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asymptotically S3 metric

Gθθ =
√
P Σ , Gφφ =

Q1Q5√
P Σ

sin2 θ , Gψψ =
Q1Q5√
P Σ

r2 + a4

a2
0

r2 + a2
cos2 θ ; (4.87)

the gauge fields

Aθ = 0 , Aφ = −a
2

a2
0

dt

Ry
, Aψ = −a

2

a2
0

r2 + a2

r2 + a4

a2
0

dy

Ry
; (4.88)

and the 3D Einstein metric

ds 2
3 = gµνdx

µdxν =
√
Q1Q5

r2 + a4

a2
0

(r2 + a2)2
dr2 −

r2 + a4

a2
0√

Q1Q5
dt2 +

r2

√
Q1Q5

dy2 , (4.89)

where

Σ ≡ r2 + a2 cos2 θ , P ≡ Q1Q5

Σ2

[
1− a2b2

2 a2
0

sin2 θ

r2 + a2

]
. (4.90)

The regime in which the CFT state is described by a classical geometry is the one

for which both N and Nb are very large numbers. We do, however, have the freedom

to choose the ratio Nb/N . In the simplest limit, this ratio is small and hence the 3D

geometry (4.89) is a small deformation of global AdS3 (this can be seen from (4.89):

when Nb/N and thus b vanish, a0 = a and ds 2
3 becomes AdS3). To take advantage of

this simplification, we can use the small expansion parameter µ defined by (4.4) with

n = 0 and (4.86):

√
1− µ = 1− N

Nb
= 1− b2

2a2
0

=
a2

a2
0

, (4.91)

and perform a perturbative expansion in µ at fixed Q1, Q5, Ry , and hence fixed a0.

Keeping only the corrections of order µ, the 3D Einstein metric becomes

ds 2
3 ≈

√
Q1Q5

r2 + a2
0(1− µ)

[
1− a2

0

a2
0 + r2

µ

]
dr2 − r2 + a2

0(1− µ)√
Q1Q5

dt2 +
r2

√
Q1Q5

dy2 .

(4.92)

The gtt and gyy components of this metric match exactly those of the conical defect

metric (4.61) with a
k replaced with a0(1 − µ)1/2, whereas grr receives corrections in µ

already at first order. To make certain that this difference is not simply a coordinate

artefact, one can compute the Ricci and Kretschmann scalars for the metric (4.89) to

first order in µ

√
Q1Q5 R ≈ −6− 2a2

0(2a2
0 + r2)

(a2
0 + r2)2

µ , Q1Q5K ≈ 12 +
8a2

0(2a2
0 + r2)

(a2
0 + r2)2

µ , (4.93)
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and note that they differ by order µ terms from the (normalised) conical defect values

R = −6 and K = 12. Therefore, the conical defect geometry (4.61) and the microstate

geometry (4.89) are physically distinct already at first order in µ and only the latter is

dual to a state of the CFT for generic values of µ.

Exploiting the separability of the (1, 0, 0) family of microstates, one can compute

the bulk phase shift in the reduced 3D metric (4.89) by applying the general formula

(2.105). This yields

δb = 2a0Ry |pt|
∫ ∞
r0

dr
(
r2 + a2

)−1

√
1− β2

r2

(
r2 +

a4

a2
0

)

= πRy |pt| |β|
(
− 1 +

√
1 +

a2
0

a2

(
β−2 − 1

) )
, (4.94)

where the radial turning point, obtained by setting to zero (2.101), is

r0 =
a2

a0

(
β−2 − 1

)− 1
2 . (4.95)

Subtracting the phase shift for pure AdS (corresponding to b = 0) gives

δ = δb − δ |b=0 = πRy |pt|

(√
2a2

0 − b2β2

2a2
0 − b2

− 1

)
, (4.96)

where we used (4.85) to express the result in terms of a0 and b. Though the phase shift

in (4.96) is exact in b, we will only attempt a CFT interpretation perturbatively in the

small b (small µ) limit, describing small deviations from the AdS3 vacuum. The first

two terms in the perturbative expansion of the phase shift for small µ are

δ ≈ πRy |pt|
[
µ

4
(1− β2) +

µ2

32
(1− β2)(5 + β2) + · · ·

]
. (4.97)

It is noted that the above expansion is in small µ but fixed impact parameter β and

hence it also applies to the regime of β small, in which the geodesic explores the region

deep inside the bulk. In the next section we will give a CFT derivation of firstly the

order µ term in (4.97), and then also a higher order analysis. For future reference, the

bulk phase shift (4.97) can be written in terms of CFT parameters via the relations

(4.34) giving

δ

π
≈ mm̄

m+ m̄
µ+

(
3mm̄

4(m+ m̄)
− m2m̄2

2(m+ m̄)3

)
µ2 +

(
5mm̄

8(m+ m̄)
− 3m2m̄2

4(m+ m̄)3
+

m3m̄3

2(m+ m̄)5

)
µ3 .

(4.98)

We conclude the bulk analysis with a comment: the phase shift is expected to be

dominated by the graviton exchange which, in the limit of large s and L (2.103),

implies a behaviour of the form δ ∼ s e−L for a 3D bulk (see for example [96]). Taking
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the large L (or equivalently the β → 1) expansion of the phase shift (4.96) gives

δ ≈ πRy s e−L
b2

2a2
0

(
1− b2

2a2
0

)−1

, (4.99)

consistent with the expected generic behaviour mentioned above. This regime describes

geodesics with large impact parameter, probing only a shallow region inside the bulk,

though we will later check explicitly that the full phase shift is determined by the

graviton exchange.

4.4.2 CFT analysis at first order in µ

With the aim of reproducing the phase shift (4.97) from a purely CFT computation,

we consider the four-point correlation function C = 〈OHOLŌLŌH〉 in the supergravity

regime. Again both OL = Obos and Ofer are considered for the light operator, while

the heavy operator is schematically OH = (Ofer)Nb , dual to the (1, 0, 0) geometry with

reduced metric (4.89). This pure heavy state of the D1-D5 CFT is an RR sector

ground state with conformal dimensions hH = h̄H = N
4 and R-symmetry charges

jH = j̄H = 1
2(N − Nb), with the corresponding reduced conformal dimension thus

being

h
[0]
H =

Nb

2

(
1− Nb

2N

)
. (4.100)

The additional free parameter Nb appearing in the expression of the charges is related

to the free parameters of the bulk description through [55]

Nb

N
=

b2

2a2
0

=⇒ 1− Nb

N
=
a2

a2
0

, (4.101)

which, when inserted into (4.100) and using the definition (4.5), justifies the relation

(4.86) on the gravity side.56 We note that in order for the operator to be dual to

a semiclassical background representing a fully backreacted geometry and not just a

small perturbation on top of global AdS, we require the ‘heavy’ scaling

Nb ∼ O(N) as N →∞ , (4.102)

where the ratio Nb/N is fixed and left undetermined. Our perturbative analysis in µ

is in essence an expansion in this free parameter.

56The heavy states dual to the geometry (4.89) are related by a spectral flow transformation to a state
in the NS-NS sector, composed of N−Nb copies of the vacuum state and a coherent superposition of Nb
(with scaling (4.102)) copies of an anti-chiral primary of dimension hNS = h̄NS = 1

2
. This heuristically

justifies the relation (4.101), since from this CFT point of view Nb can be considered a measure of the
deviation from the vacuum state, which is holographically dual to global AdS3 × S3.
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In the case that the CPO’s Ofer appearing in the light and the heavy operators

belong to different 6D multiplets57, the correlator C fer – containing the light operator

Ofer – was computed in the supergravity limit at first order in b2

a2
0

in [71] and its com-

pletion to all orders in b2

a2
0

was found in the form of a double sum in [72]. Here we need

only the O( b
2

a2
0
) result, which in the NSNS sector reads

C fer ≈ 1

|1− z|2
+

b2

2a2
0

[
N

2
− 1

|1− z|2
+

2

π
|z|2D̂1122

]
, (4.103)

where

2

π
|z|2D̂1122 = − 4i |z|2

(z − z̄)2

(
z + z̄

z − z̄
D2(z, z̄) +

log |1− z|2

2i
+
z + z̄ − 2|z|2

4i |1− z|2
log |z|2

)
,

(4.104)

with D2 being the Bloch-Wigner function given by

D2(z, z̄) =
1

2i

[
Li2(z)− Li2(z̄) + log|z| log

(1− z
1− z̄

)]
. (4.105)

Due to the same supersymmetric Ward identity (4.68) used in the previous section, one

can easily obtain the correlator Cbos involving the bosonic light operator from Cbos =

∂∂̄
[
C fer

]
. Performing the analytic continuation (4.17) and extracting the imaginary

part of the correlator Cbos at first order in b2

a2
0
≈ µ we obtain

ImCbos
�

∣∣∣
µ1
≈ 2π

σ4η2

(
1− 8η + 8η3 − η4 − 12 η2 log η

σ(1− η)5
+O(σ0)

)
, (4.106)

where the parametrisation (4.18) is used to go to the Regge limit. It is noted that the

power of σ in (4.106) again contains the contribution of the |1− z|−4h2 prefactor in

(4.1) as well as of the leading Regge term of the exchanged operator. Further taking

the limit η → 0 of (4.106) selects the exchanged operator of minimal h̄, i.e. the stress

tensor: its contribution is captured by the global block with h = 2, h̄ = 0 and is given

by ImCbos
� ≈ 2π

η2σ5 µ .

As was done for the case of the conical defect, one can try to match the higher order

terms in the η expansion of (4.106) with the spin-2 operator blocks corresponding to

the exchange of spin-2 double-trace operators OLL ≡ ŌL∂m∂̄m̄OL . A new feature

of (4.106) is the appearance of a term proportional to log η related to the anomalous

dimensions58 of the non-BPS double-trace operators OLL. This can also be seen from

57When all operators in the correlator descend from the same 6D multiplet, the HHLL correlator
contains extra contributions that were not computed in [71, 72]. The LLLL version of this correlator
was derived in [73] and it will be analysed in Section 4.4.3.

58In this discussion we use the δ̄ quantities introduced just below (4.12) rather than the more common
γ’s. The δ̄’s include the couplings c 2

(0) which bring a dependence on Nb – see the comments before (4.11).
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the direct channel Euclidean decomposition where terms containing log |1−z|2 appear,

from which we can extract the CFT data of (4.11):

δ̄(0, 0) =
1

30
, δ̄(1, 1) =

1

42
, δ̄(2, 2) =

6930

1102500
,

δ̄(2, 0) = − 3

350
, δ̄(3, 1) = − 2

735
, δ̄(4, 2) = − 462000

896464800
. . . ,

(4.107)

while all contributions from operators with odd spin and operators with spin higher

than two vanish. These Euclidean results can again be checked by comparing with the

expansion of the log η term in (4.106)

−12η2

(1− η)5
≈ −12η2 − 60η3 − 180η4 , (4.108)

which agrees with the spin-2 contributions in (4.107) after multiplication by the factor

present in (4.20). As an example, for m = 2, 3, 4 . . . we have

Γ(2m+ 4) Γ(2m+ 3)

Γ4(m+ 2)

µ

2
δ̄(m,m− 2)→ µ (−12,−60,−180, . . .) . (4.109)

A similar check can also be performed for the terms in (4.106) that are not proportional

to log η : as for the conical defect case in (4.72), these contributions should be compared

with couplings c 2
(1)(m, m̄) in (4.11). In Section 4.4.3 we will discuss in more detail a

similar comparison for the LLLL correlator with all operators in the same 6D multiplet

– the interest in this case is due to its Euclidean decomposition involving also operators

of spin larger than two.

We now consider the order µ Regge crossing equations (4.30). On the gravity side,

we can read off the anomalous dimensions Γ
(1)
m,m̄ from the leading eikonal (4.97) by

using (4.33) and the identifications (4.34)

δ
(1)
bulk =

π

4
Ry |pt| (1− β2) = π

mm̄

m+ m̄
, (4.110)

obtaining

Γ
(1)
m,m̄ ≈ −

mm̄

(m+ m̄)
. (4.111)

As discussed in [53,97], it is also possible to use the leading small η behaviour of (4.106)

along with the OPE coefficients (4.28) (with h2 = 1) to fix the anomalous dimensions

Γ
(1)
m,m̄. As an example of how this approach works, we start from an ansatz for Γ

(1)
m,m̄

in the limit of large m and m̄ (that is inspired by, but more general than, the one in

(4.111))

Γ
(1)
m,m̄ ≈

Amam̄a

(m+ m̄)c
, (4.112)
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and show that the bootstrap constraints require a = c = −A = 1, as predicted by the

gravity computation. As a first step we approximate the sums in (4.30) by integrals

ImCbos
�

∣∣∣
µ1
≈ −πA

∫ ∞
0

∫ ∞
0
dm̄ dm

ma+1m̄a+1

(m+ m̄)c
zmz̄m̄ ≡ −πA Ia,c(z, z̄) . (4.113)

This integral is discussed in Appendix E.1: by using (E.4) and then focusing on the

leading contribution for small σ we obtain

Im Cbos
�

∣∣∣
µ1
≈ −πA Γ2(a+ 2) Γ(2a+ 4− c)

Γ(2a+ 4)
ηc−a−2σc−2a−4

2F1(a+ 2, c; 2a+ 4; 1− η) .

(4.114)

Demanding that the leading small η contribution reproduces that of (4.106) fixes the

ansatz parameters to a = c = −A = 1. Substituting these values back into the

full Regge result for the cross channel (4.114) reproduces exactly the direct channel

expression (4.106) for any η. This implies that the anomalous dimensions of the OHL
operators in the Regge limit are given by the expression in (4.111). In the lightcone

OPE limit m� m̄� 1 these anomalous dimensions reduce to Γ
(1)
m,m̄ ≈ −m̄, the result

obtained from the conical defect geometry of section 4.3 and in [52] from considering the

above CFT analysis for the Virasoro vacuum block. This match is unsurprising since it

was shown in [72] that the correlator (4.103) at order b2 reduces to the Virasoro block

of the identity in the lightcone OPE limit. Finally, the anomalous dimensions (4.111)

can be confirmed by a Euclidean block decomposition of the correlator Cbos in the

cross channel, from which one can extract the anomalous dimensions at first order in

µ but for finite values of m and m̄. With the approximation (4.29) for the blocks,

the anomalous dimensions Γ
(1)
m,m̄ are the coefficients of the zmz̄m̄ log |z|2 terms in the

z, z̄ → 0 expansion of the correlator Cbos|µ1 divided by C 2
(0)(m, m̄). By looking at the

first few terms, it is simple to infer that

Γ
(1)
m,m̄ = −(m+ 1) (m̄+ 1)

(m+ m̄+ 2)
, (4.115)

which agrees with (4.111) in the large (m, m̄) limit. We have checked that (4.115) cor-

rectly reproduces the anomalous dimensions up to order 10 in the Euclidean expansion.

Of course, a similar analysis can also be carried out in much the same fashion for

the four-point function with light operator OL = Ofer, given in (4.103). Performing the

analytic continuation to the Regge limit gives the leading term in small σ as

ImC fer
�

∣∣∣
µ
≈ π

ησ2

(
1− η2 + 2η log η

(1− η)3 σ
+O(σ0)

)
, (4.116)

where the factor of η−1σ−2 comes from the usual prefactor (1−z)−2h2(1− z̄)−2h̄2 in the
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correlator. We note that, as was the case for the conical defect correlators, the Regge

limit results in (4.116) and (4.106) are directly related by (4.77). Another explicit check

we can perform in this case is that the Regge limit is dominated by the highest spin field

exchanged between the light and heavy operators. In the supergravity approximation

being used, this is just the graviton. For the case of (4.116), we can use the results

of [66] where the contribution of the Witten diagram describing graviton exchange was

calculated for the correlator involving four light operators of dimension (hL, h̄L) =

(1/2, 1/2). Since the small b2

2a2
0

limit of the HHLL correlator smoothly reproduces the

light one [74], we can obtain the first order contribution from the graviton exchange

simply by multiplying the result of [66] by b2

2a2
0

to get

C fer
grav =

b2

2a2
0

[
2

π
(z + z̄)D̂1122 −

1

|1− z|2

]
, (4.117)

where D̂1122 was defined in (4.104). By performing the usual analytic continuation

relevant for the Regge limit on (4.117) one obtains, as expected, the result (4.116)

derived from the full amplitude.

The cross channel calculation follows that of the bosonic case closely: using the

same Regge limit ansatz (4.112) and the order µ0 OPE coefficients (4.28), now with

h2 = h̄2 = 1/2, (4.30) gives

Im C fer
�

∣∣∣
µ
≈ −πA

∫ ∞
0

∫ ∞
0

dmdm̄
mam̄a

(m+ m̄)c
zmz̄m̄ = −πIa−1,c(z, z̄) . (4.118)

Again by using (E.4) in the leading small σ approximation, the choice a = c = −A = 1

is necessary to reproduce (4.116) exactly. Therefore, the anomalous dimensions at order

µ from the fermionic correlator appear to be the same as from the bosonic one – thus

from (4.33), the first order bulk phase shifts will also match. This is an explicit check of

the universality of the Regge limit since the bulk analysis is independent of the nature

of the probe used.

We conclude this analysis by re-deriving the anomalous dimensions (4.112) in yet

one further way. As mentioned after (4.15), these anomalous dimensions describe the

binding energy of a non-BPS bound state between the original heavy operator and

the probe. From the bulk point of view, these binding energies can be derived by

studying the equation of motion of the supergravity state dual to the light probe when

propagating in the background dual to the heavy operator. In [52], the case of a bulk

scalar propagating in the asymptotically AdSd+1 Schwarzschild geometry was studied

up to second order. In the case discussed here, we can still focus on a minimally coupled

scalar – dual to the operator Obos – but in the geometry relevant for the heavy state

discussed at the beginning of this section. The energies of the bound states in this

geometry were derived exactly in b2 in [72]; see59 Eq. (3.43) of that reference, which in

59The parameters l and n appearing in that equation are the spin l = m − m̄ and twist n =
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our notation reads

Γm,m̄ = ωm,m̄ − ωm,m̄
∣∣
b→0

=
a

a0

√
(m+ m̄+ 2)2 + (m− m̄)2

b2

2a2
− (m+ m̄+ 2)

≈ − mm̄

m+ m̄
µ− mm̄(m2 + 4mm̄+ m̄2)

4(m+ m̄)3
µ2 − mm̄(m4 + 6m3m̄+ 14m2m̄2 + 6mm̄3 + m̄4)

8(m+ m̄)5
µ3 ,

(4.119)

where in the second line we performed both the small µ and the large m, m̄ expansions.

At first order in µ this matches precisely (4.111). It is also noted that, by keeping m

and m̄ exact while expanding the first line of (4.119) in µ, the finite shifts of (4.115) are

reproduced. By using the result above, it is straightforward also to check the relation

between anomalous dimensions and the phase shift at second order from [53]. The

second-order version of (4.33) reads

Γ
(2)
m,m̄ ≈ −

δ(2)

π
+

1

2

δ(1)

π
(∂m + ∂m̄)

δ(1)

π
for m, m̄� 1 . (4.120)

It is straightforward to check that this identity is satisfied if the O(µ2) term of (4.119)

is used for the left-hand side, while the right hand side is calculated using (4.97) and

the identifications (4.34).

4.4.3 Light case

In the preceding section, correlators involving the heavy operator OH = (Ofer)Nb were

considered in the scaling limit Nb ∼ N → ∞. This amounts to taking the number of

non-trivial single-particle constituents in the heavy state to be of order N (to have a

backreaction on the dual geometry) but small enough for Nb
N = b2

2a2
0

to be a meaningful

expansion parameter. Alternatively, it is possible to consider these correlators in the

scaling limit N → ∞ with Nb fixed. This implies that the dimension of the ‘heavy’

operator, which scales as h
[0]
H ∼ Nb ∼ N b2

a2
0

, is no longer of order N . In the bulk it is

therefore no longer dual to a semi-classical geometry that differs from pure AdS3×S3

and in the CFT analysis the approximation (4.29) is no longer valid. However, the

Nb → 1 limit of the HHLL correlator reproduces the LLLL correlator [74]. Then for

instance, Cbos at order b2 in the light scaling limit is equal to the following LLLL

four-point function

Cbos
L

∣∣∣
b2

= 〈Ofer(∞)Obos(1)Ōbos(z, z̄)Ōfer(0)〉 . (4.121)

However, even if the analytic form of the LLLL correlator is identical to that of the

HHLL correlator at order µ, the CFT data obtained in the Regge limit are different.

Here we briefly discuss the LLLL analysis following [97]: the key difference with the

min(m, m̄) + 1.
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HHLL case is that we now need to use the approximation for the conformal blocks in

terms of Bessel functions (4.31). As before, the Regge limit crossing equations (4.26)

can be used to solve for the anomalous dimensions of the double-trace operators

OLL′ ≡ :Ofer∂m∂̄m̄Obos : , (4.122)

exchanged in the cross channel. In the Regge limit, in which operators with large m, m̄

dominate, the OPE coefficients (2.42) with external operator dimensions 2h1 = h2 = 1

reduce to

C 2
(0) =

Γ2(2 +m) Γ2(2 + m̄)

Γ(2 + 2m) Γ(2 + 2m̄)
≈ π

4
2−2(m+m̄)(mm̄)

3
2 . (4.123)

Using (4.31) and (4.123) in the first order Regge crossing equations (4.26) (for the

LLLL case, i.e. with γ(1) instead of Γ(1)) gives

ImCbos
2

∣∣∣
�
≈ −16π |1− z|−1

∫ ∞
0
dm

∫ m

0
dm̄ (mm̄)2γ

(1)
m,m̄

[
K1

(
2m
√

1− z
)
K1

(
2m̄
√

1− z̄
)

+K1

(
2m̄
√

1− z
)
K1

(
2m
√

1− z̄
)]

, (4.124)

where we took the large m, m̄ limit so that the sums can be substituted by integrals

and the Bessel functions approximated using

K1

(
2ẑ + 3

√
1− z

)
≈ K1

(
2ẑ
)

+O
(√

1− z
)
, (4.125)

where ẑ ≈ m
√

1− z is kept fixed as m → ∞. For future convenience, we split the

integral into two separate regions and exploited the fact that the anomalous dimen-

sions are invariant under the exchange m ↔ m̄, since all external states are left/right

symmetric. Using an ansatz for the leading large m, m̄ anomalous dimensions of the

form

γ
(1)
m,m̄ = A (max(m, m̄))a1(min(m, m̄))a2 , (4.126)

the two types of integrals in (4.124) are

I1(a1, a2, b) ≡
∫ ∞

0
dm

∫ m

0
dm̄m2+a1m̄2+a2Kb

(
2m̄
√

1− z
)
Kb

(
2m
√

1− z̄
)
,

I2(a1, a2, b) ≡
∫ ∞

0
dm

∫ m

0
dm̄m2+a1m̄2+a2Kb

(
2m
√

1− z
)
Kb

(
2m̄
√

1− z̄
)
. (4.127)
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Solving these integrals as shown in appendix E.2, the leading order part of (4.124) in

small σ is given by

ImCbos
L

∣∣∣
�
≈ −Aπ σ−4− 1

2
(a1+a2)η−1

[
G 2,3

3,3

(
η

∣∣∣∣−1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)

+ η−
a1
2
−1 G 2,3

3,3

(
1

η

∣∣∣∣ −1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)]
,

(4.128)

where Gm,n
p,q is the Meijer G-function (defined in Eq. (E.17)). Expanding in small η

and matching the powers of σ and η of the leading order term to the contribution of

the stress tensor fixes A = −1, a1 = 0 and a2 = 2. Inserting these values of the ansatz

parameters in (4.128) gives precisely (4.106) and so the anomalous dimensions solving

the crossing equations in the Regge limit are

γ
(1)
m,m̄ ≈ −(min(m, m̄))2 . (4.129)

Therefore, the anomalous dimensions of the OLL′ operators (4.122) in the Regge limit

take a qualitatively different form from their HL counterpart (4.111) and agree with

the structure expected from the analysis of [73] (see Eq. (5.3) of that reference).

We conclude this section by discussing the Regge limit of another LLLL correlator

〈Ofer(∞)Ofer(1)Ōfer(z, z̄)Ōfer(0)〉 , (4.130)

given in Eq. (3.10) of [73]. This example is different from those considered earlier be-

cause the CPO’s Ofer in the correlator descend from the same 6D multiplet and, hence,

single-trace operators are exchanged also in the cross channel. This implies that in the

direct channel, double-trace operators of arbitrarily high spin are exchanged, as can be

checked explicitly from the z, z̄ → 1 Euclidean OPE (4.11). For the correlator (4.130),

the leading direct channel OPE coefficients c 2
(0) are

c 2
(0)(m, m̄) = (−1)m+m̄C 2

(0)(m, m̄) , (4.131)

with C 2
(0)(m, m̄) given in (2.42). For the anomalous dimensions of the double-trace

operators exchanged in the direct channel one finds

δ̄(0, 0) = −5

6
, δ̄(1, 0) = −5

6
c 2
(0)(1, 0) , δ̄(2, 0) = −14

15
c 2
(0)(2, 0) ,

δ̄(m, 0) = −c 2
(0)(m, 0) for m > 2 ,

(4.132)
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when focusing on the case m̄ = 0 and

δ̄(1, 1) = −61

30
c 2
(0)(1, 1) , δ̄(2, 1) = −41

15
c 2
(0)(2, 1) , δ̄(3, 1) = −102

35
c 2
(0)(3, 1) ,

δ̄(m, 1) = −3 c 2
(0)(m, 1) for m > 3 ,

(4.133)

for m̄ = 1. As expected, the data for operators of spin larger than two takes the form

δ̄(m, m̄) = −(n2+n+1) c 2
(0)(m, m̄) with n = min(m, m̄) and |m−m̄| > 2 , (4.134)

in agreement with [73]. Clearly in this case one cannot follow the previous approach,

of performing the Regge limit on the contribution of each block separately, since this

would lead to poles σ−a with a > 1. Such contributions are absent in the Regge limit

of the correlator, which is again given by (4.116). We instead first need to resum all

contributions with m > m̄+ 2 and then perform the analytic continuation (4.17). The

result of this resummation, made possible by exploiting (4.134), is an analytic term

around z = 0 (which does not contribute to the Regge limit) and a contribution equal

to the naive extension of (4.134) to m = m̄+2. Then as before, the contribution to the

log η term of (4.116) comes entirely from the operators of spin 2 and one can use (4.11)

to relate the Regge limit and anomalous dimensions for these operators, obtaining

δ̄(m̄+2, m̄) =
(m̄+ 1)(m̄+ 2) Γ4(m̄+ 3)

Γ(2m̄+ 6) Γ(2m̄+ 5)
−(m̄2+m̄+1)

Γ2(m̄+ 3)

Γ(2m̄+ 5)

Γ2(m̄+ 1)

Γ(2m̄+ 1)
. (4.135)

The first term in this expression encodes the input from the Regge limit and comes from

the small η expansion of the log η term in (4.116). For example, the results of (4.132)

and (4.133) are reproduced for m̄ = 0, 1.

A similar argument can be used to also derive the couplings c 2
(1)(m̄+ 2, m̄). Again

one can use the asymptotic result [69, 145, 185] c 2
(1)(m, m̄) = (∂m + ∂m̄)δ̄(m, m̄), valid

for |m − m̄| > 2, and the terms without log η in (4.116) to find the following explicit

expression for the couplings

c 2
(1)(m̄+ 2, m̄) =

(2m̄+ 3)

Γ
− ∂m̄

(
(m̄2 + m̄+ 1)C 2

(0)(m̄+ 2, m̄)
)
− (m̄+ 1)(m̄+ 2)

Γ2
∂m̄Γ ,

(4.136)

where we defined

Γ ≡ Γ(2m̄+ 6) Γ(2m̄+ 5)

Γ4(m̄+ 3)
. (4.137)

The first term in (4.136) comes from the expansion of the explicit correlator in the Regge

limit and the other terms are obtained by rearranging the right-hand side of (4.11),

thanks to (4.135) and the relation for C 2
(1) for operators of spin |m− m̄| > 2. We note

that (4.136) agrees with the couplings obtained for the first few values of m̄ from the
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direct channel Euclidean OPE

c 2
(1)(2, 0) =

19

1350
, c 2

(1)(3, 1) =
4331

49000
, c 2

(1)(4, 2) =
520433

18522000
. (4.138)

4.4.4 Signs of chaos from LLLL correlators

In this section we make a brief detour to consider the question of what information

about chaos can be extracted from the holographic correlators considered above in the

context of the Regge limit. As discussed in the introduction, a measure of chaos in a

thermal quantum system is the behaviour of the commutator squared correlator

〈
−
[
V,W (t)

]2 〉
β

=
〈
V W (t)W (t)V +W (t)V VW (t)− 2V W (t)V W (t)

〉
β
, (4.139)

with V = V (0) and W (t) being Hermitian operators and 〈· · · 〉β a thermal expectation

value in the state |β〉. The first term in the correlator (4.139) is an expectation value

of the operator W (t)2 in the perturbed thermal state V |β〉 and the second term can

be thought of similarly but for the operator V 2. As will become clear below, these two

contributions to (4.139) for late times are dominated by the disconnected contribution

and tend to 〈V V 〉β〈W (t)W (t)〉β. The third term in (4.139) is an out-of-time-ordered

correlator (OTOC) built from the overlap of the states W (t)V |β〉 and V W (t)|β〉 that

become approximately orthogonal for late times if the system is chaotic. Due to the

OTOC term having non-trivial late-time behaviour in caparison with the first two

terms of (4.139), we can study this out-of-time-ordered correlator in place of the full

commutator squared correlator to observe signs of chaos. We define the “normalised

OTOC” for convenience

F ≡

〈
V W (t)V W (t)

〉
β

〈V V 〉β〈W (t)W (t)〉β
, (4.140)

in terms of which, for large enough t, the “normalised commutator squared correlator”

is related to (4.140) via 〈
−
[
V,W (t)

]2 〉
β

2〈V V 〉β〈W (t)W (t)〉β
≈ 1− F . (4.141)

The generically expected behaviour of this OTOC is shown in Figure 4.2, where the

period of exponential decay around the scrambling time t∗ ∼ log c corresponds to an

associated period of exponential growth in the commutator squared correlator. This

universal signal of chaos is called transient Lyaponov decay (growth) and was ob-

served [115] in the HHLL Virasoro vacuum block (4.7) approximation to a 4-point

correlator. In this section we check for the same transient Lyapunov behaviour in a

full supergravity correlator. To understand the late-time behaviour of the various cor-

relators in (4.139), it is important to see how they are derived from the appropriate
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Figure 4.2: A plot showing the general behaviour of the absolute value of the normalised
out-of-time-order correlators (F) of the type (4.140) with time t. The time scale at which
chaos begins to affect the system is the scrambling time t∗ ∼ log c, signalled by a period
of exponential decay. This plot assumes that the operators V and W have vanishing
two-point functions, otherwise there is a small period of growth at a thermal time scale
t ∼ β before the decay shown (β = 2π in the plot). A property of holographic systems
appears to be that the hierarchy t∗ � β exists [118]. The behaviour shown here is just
the “average” trend; in explicit examples there is a period of oscillatory behaviour that
sets in after the scrambling time (see [203] for more discussion). This then dies off with
time, eventually leading to the final decay seen in the figure.

Euclidean correlator. From a CFT2 on the thermal cylinder S1
τ × Rξ we perform a

double Wick rotation to the cylinder of a CFT2 on a spatial circle, RT × S1
y . The radii

of the S1
τ and S1

y are β ∼ Ry. The “vacuum cylinder” can then be mapped to the plane

with complex coordinates (z, z̄), making the overall map from the thermal cylinder to

this plane for each operator Oj

zj = e
2π
β

(ξj+τj) , z̄j = e
2π
β

(ξj−τj) . (4.142)

Following the standard prescription, τ is analytically continued to be complex, with

Lorentzian times being real and Euclidean times being purely imaginary. We note

that, by design, the Jacobian factors from the transformation of operators (2.16) in the

normalised correlator (4.140) cancel out. To obtain a particular operator ordering for a

Lorentzian correlator, one first adds a small imaginary time iεj to each operator in order

to regularise the problem (this avoids OPE singularities from operators being brought

close to each other) and then the real part of τ can be increased. We also choose to

separate the two pairs of operators in the spatial direction by an amount ξ = x. The

resulting Lorentzian correlator is dictated by the hierarchy of the εj : the operators
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will be ordered in the Lorentzian correlator from right to left with decreasing assigned

values of imaginary time. During this process it is important to track the values of the

conformal cross-ratios in the complex plane. In fact, the non-trivial behaviour of the

OTOC at large times (as compared with the other correlators in (4.139)) is due to the

crossing of a branch cut in the Euclidean correlator by the cross-ratio z.

Let us consider the LLLL correlator involving two different-flavour pairs of dimen-

sion (h, h̄) = (1/2, 1/2) CPOs and their conjugates, given in (B.19a) with f1 = f2 = f

and f3 = f4 = g (with f 6= g). For ease of reference we give the correlator here

CE(z, z̄) ≡ 〈Ōf (0)Of (∞)Og(1)Ōg(z, z̄)〉

=
1

|1− z|2

[(
1− 1

N

)
+

2|z|2|1− z|2

πN
D̂1122

]
,

(4.143)

with the standardD-function given in (4.104). To obtain the OTOC we use the operator

insertion points (where the operators in (4.143) are labelled 1, . . . , 4 from left to right)

z1 = e
2π
β

(τ+iε1)
, z2 = e

2π
β

(τ+iε2)
, z3 = e

2π
β

(x+iε3)
, z4 = e

2π
β

(x+iε4)
, (4.144)

and likewise for the anti-holomorphic positions. We will choose to have a real time

τ = t > x in order to have the different pairs of operators in each other’s lightcone.

The hierarchy ε4 > ε2 > ε3 > ε1 will then give an OTOC of the form (4.140). For

simplicity we take ε1 = ε, ε3 = 2ε, ε2 = 3ε and ε4 = 4ε. With the operator insertions

(4.144), the conformal cross-ratios (2.19) take the form

z(τ, x) = 1 +
sin2

(
2π
β ε
)

sinh2
(
π
β (τ − x− iε)

) , z̄(τ, x) = z(τ,−x) . (4.145)

Considering the cross-ratios (4.145) purely as functions of τ , increasing τ from 0 to

t > x yields Figure 4.3 in which we see that once τ is large enough, z will cross the

negative real axis clockwise. For late times both cross-ratios should be taken to 1,

however, due to the branch cut in (4.143), originating from log |z|2 terms of the D-

function, this limit should be taken on the second sheet. In fact, this is exactly the

prescription to go the the Regge limit of a vacuum correlator, given in (4.17) (this only

occurs in the case of 2-dimensional CFTs [195, 204]). Repeating this process for the

hierarchies of the εj relevant for the operator orderings of the first two terms on the

right-hand side of (4.139) yields a path that tends simply to 1 without crossing any

branch cuts for both z and z̄ – hence their simpler behaviours in the chaos regime since

this is the Euclidean OPE limit of the vacuum correlator, dominated by the identity
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Figure 4.3: Plots showing the path in the complex plane that the cross-ratios z and z̄
take when analytically continued to the “chaos regime”. The path of z crosses branch
cuts of the Euclidean correlator whereas the path of z̄ is trivial. For ε→ 0 in the plot of
z, τ starts at 0, crosses the negative real axis at τ = x and for late times tends towards
z = 1.

operator. Thus, we obtain the OTOC F (t, x) from the Euclidean correlator (4.143) as

F (t, x) = CE
(
e−2πiz, z̄

)
= CE(z, z̄) +

2πi|z|2

N(z − z̄)2

(
z + z̄

z − z̄
log

(
1− z
1− z̄

)
+
z + z̄ − 2|z|2

|1− z|2

)
,

(4.146)

where z = z(t, x) and z̄ = z̄(t, x) take the form (4.145). Expanding (4.146) in the

regime t∗ � t� x, β one obtains

F (t, x) ≈ β2

32πiε2N
e

2π
β
t
sinh−3

(
2π

β
x

)[
sinh

(
4π

β
x

)
− 4πx

β

]
. (4.147)

If also the hierarchy x� β is chosen then (4.147) has the behaviour

F (t, x) ≈ β2

8πiNε2
e

2π
β

(t−x)
, (4.148)

which has the same functional form as the Virasoro vacuum block approximation to the

OTOC [115]. As was already mentioned, it is expected that for sufficiently late times

(though still less than t∗) the absolute value of the OTOC should experience a period

of exponential decay. In the case of the vacuum block approximation to the OTOC

of [115], the full result is of the form

Fvac(t, x) =

(
1 +

fi

c
e

2π
β

(t−x)
)−g

, (4.149)

for positive real coefficients f and g, with the absolute value having the correct expo-
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nential decay of Figure 4.2. In the 1/c expansion of this one obtains

Fvac(t, x) ≈ 1− fg i

c
e

2π
β

(t−x)
, (4.150)

which is exactly the exponential growth with imaginary coefficient seen in (4.148).

Thus, we interpret (4.148) as the first term in an expansion of an analogous quantity to

(4.149) which has the behaviour of Figure 4.2. In both cases, the Lyapunov exponent

of this exponential is λL = 2π
β which is the saturation of the “bound on chaos” of [118]

for holographic systems.

The exponential growth with t of (4.148) has a 1
N suppression due to the prefactor.

The scrambling time is when this prefactor competes with the exponential growth, i.e.

t∗ ≈
2π

β
log

8πNε2

β2
. (4.151)

At this time our approximation breaks down since we can no longer trust simply the

order 1/c supergravity correlator and new stringy modes should dominate [115,117].

4.4.5 Higher orders in µ

This section builds upon the first order analysis of HHLL correlators in the Regge limit

discussed in Section 4.4.2.

The 4-point HHLL correlation functions where the heavy operators are dual to the

geometry (4.89) were studied in [71] to first order in the ratio b2

2a2
0

while in [72] an

exact expression in terms of a double Fourier series was found. In the case of the light

operator being the chiral primary OL = Ofer with hL = h̄L = 1
2 , the correlator on the

plane is given in (2.93). We can use (4.86) and expand this result as a series in µ

C fer(z, z̄) =
∞∑
n=1

µnC fer
n (z, z̄) , (4.152)

where now the expressions for C fer
n (z, z̄) can be written in a closed form in terms

of Bloch-Wigner-Ramakrishnan polylogarithm functions [177]. The properties of these

correlators were analysed in more detail in Chapter 3, with their derivation and explicit

form given in Appendix B.1. Here we are interested purely in their behaviour in the

Regge limit. Using the explicit forms of the correlators (B.17) one finds that in the
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Regge limit the correlator with OL = Ofer is given to leading order in σ by

C fer
R ≈

πi
(
1− η2 + 2η log η

)
(1− η)3ησ3

µ−
π2
(
1 + 9η − 9η2 − η3 + 6η(1 + η) log η

)
(1− η)5ησ4

µ2

−
π3i
(
1 + 28η − 28η3 − η4 + 12η(1 + 3η + η2) log η

)
(1− η)7ησ5

µ3 . (4.153)

On the other hand, using the bulk phase shift (4.96) in (4.51) and expanding in µ

yields (in the Regge limit)

C fer
AdS ≈

[
πi Ĩ1,1 µ+

(
3πi

4
Ĩ1,1 −

2πi

4
Ĩ2,3 −

π2

2
Ĩ2,2

)
µ2

+

(
5πi

8
Ĩ1,1 −

3πi

4
Ĩ2,3 +

πi

2
Ĩ3,5 −

π3i

6
Ĩ3,3 −

3π2

4
Ĩ2,2 +

π2

2
Ĩ3,4

)
µ3

]∣∣∣∣∣
z,z̄→1

,

(4.154)

where we have made use of the integral (derived in Appendix E.1)

Ĩa,b ≡
∫ ∞

0

∫ ∞
0
dmdm̄ zmz̄m̄

(mm̄)a

(m+ m̄)b
=

Γ2(a+ 1) Γ(2a+ 2− b)
Γ(2a+ 2)

(
−log z̄

)a+1−b F̃ (z, z̄) , (4.155)

with F̃ (z, z̄) =
(
− log z

)−a−1
2F1

(
a+ 1, b ; 2a+ 2 ; 1− log z̄

log z

)
. After using the parametri-

sation (4.18), the correlator predicted from the bulk phase shift agrees completely with

(4.153) to leading order in σ, at each order in µ. In fact, the matching between these

two results persists until order σ−1 for all terms in the µ expansion, with the leading

difference being

∆C fer
R ≈ −

(3 + iπ)(1 + η)

12ησ
µ− (3− iπ)(1 + η)

48ησ
µ2 − (45− 15πi+ 2π3i)(1 + η)

1440ησ
µ3 ,

(4.156)

where we have again neglected the difference in the disconnected term. This breakdown

of validity of the Regge limit approximation is very different in nature to that occurring

in the conical defect correlator (4.81) case, especially as it seems that in this case the

matching becomes increasingly better as we increase the order in µ. In principle the

reconstruction of the correlator from the phase shift is expected to be valid only in the

Regge limit, or in other words, at leading order in σ. It would be interesting to explain

this enhancement of the reconstruction and see whether it might allow us to probe

interactions beyond the Regge regime. However, we must note that this difference in

matching between the (1, 0, 0) fuzzball geometry and the conical defect cannot be seen

if the light operator is OL = Obos and the corresponding 4-point correlation function

is related to (2.93) via the Ward identity Cbos = ∂∂̄
[
C fer

]
. In that case – analysed in
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more detail in Appendix B – the difference between the Regge limit of the correlator

and the reconstruction from the bulk phase shift starts as expected at the subleading

contribution in σ at each order in µ, just as in the example of the conical defect (4.83).

Finally, we perform a check on the validity of the relations (4.57a). In [72] the exact

energy levels of the composite object formed of the light probe and the heavy operator

dual to the geometry (4.89) were calculated. Since the anomalous dimensions can be

thought of as the bulk binding energies of such bound states, we can compare with

(4.119) at each order in µ to those obtained from the phase shift (4.98) and (4.57a) and

find perfect agreement to arbitrary orders in µ. For the case of OL = Ofer we can then

use the simple relation (4.59) to get the following OPE coefficients

C 2
(1) ≈ −

m2 + m̄2

2(m+ m̄)2
, C 2

(2) ≈ −
m4 + 6m3m̄− 2m2m̄2 + 6mm̄3 + m̄4

8(m+ m̄)4
,

C 2
(3) ≈ −

m6 + 8m5m̄+ 23m4m̄2 − 8m3m̄3 + 23m2m̄4 + 8mm̄5 + m̄6

16(m+ m̄)6
. (4.157)

4.5 A class of three-charge microstate geometries

4.5.1 Bulk description

As an extension to the case of the (1, 0, 0) geometry considered in section 4.4, it is

possible to add momentum charge yielding a class of 3-charge microstate geometries –

these are the (1, 0, n) family of superstrata discussed in Sections 2.2 and 2.2.2. This

can be done so as to preserve the separability of the 6D spacetimes into asymptotically

S3 and AdS3 3-manifolds – where the Einstein metric of the latter part is independent

of the S3 coordinates. From the CFT perspective, these are 1/4-BPS states obtained

by acting n times on the single-particle constituents of the (1, 0, 0) microstates with

the Virasoro generator L−1. Each of the new Nb single-particle constituents carries n

units of momentum along the S1 of the CFT and the quantised momentum charge of

the full microstate is

nP = nNb . (4.158)

On the gravity side, the number of momentum-carrying strands Nb is controlled by the

parameter b according to the same relation (4.86), though now with a more general

dependence on the expansion parameter µ (derived in Section 2.2.3)

Nb

N
=

b2

2a2
0

= 2n+ 1−
√

(2n+ 1)2 − µ , (4.159)

where a0 is defined in Eq. (4.85).

The full 10D geometry describing this (1, 0, n) family of microstates can be found for

example in [27,55]. For the purposes of calculating the eikonal, it is again useful to write
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the 6D part of this solution (given by the ansatz form in (2.47)) in the dimensionally-

reduced form (2.54), with S3 metric Gαβ, gauge fields Aα and 3D Einstein metric ds 2
3

here given by

Gθθ = Σ
√
P , Gφφ =

Q1Q5

Σ
√
P

sin2θ , Gψψ =
Q1Q5

Σ
√
P

[
1− a2b2

2a2
0(r2 + a2)

(
r2

r2 + a2

)n]
cos2θ ,

(4.160)

Aθ = 0 , Aφ = −a
2

a2
0

dt

Ry
, Aψ = −

a2

a2
0
Fn

dt
Ry

+
(

1− b2

2a2
0

(
r2

r2+a2

)n)
dy
Ry

1− a2b2

2a2
0(r2+a2)

(
r2

r2+a2

)n , (4.161)

ds 2
3√

Q1Q5
=
r2 + a4

a2
0

(1 + Fn)

(r2 + a2)2
dr2 −

r2 + a4

a2
0

Q1Q5
dt2 +

r2

Q1Q5
dy2 +

r2Fn
Q1Q5

(dt+ dy)2 ,

(4.162)

where Σ is as defined in (4.90) and

P =
Q1Q5

Σ2

[
1− a

2b2

2 a2
0

sin2 θ

r2 + a2

(
r2

r2 + a2

)n ]
, Fn(r) ≡ b2

2a2

[
1−

(
r2

r2 + a2

)n ]
. (4.163)

The geometry (4.162) is in general difficult to work with and so for simplicity we focus

on the particular case of the (1, 0, 1) 3-charge microstate geometry. The analysis of the

bulk eikonal now follows that outlined in Section 2.4 by considering null geodesics in

the 3D geometry (4.162) (with n = 1) that begin and end on the boundary. For our

current purposes, it is sufficient to evaluate the phase shift integral perturbatively in µ.

Starting from (2.105), using the change of variables x = r
r0

(removing all b dependence

from the integral limits) and expanding in µ using (4.159) gives

δ =

∫ 1

0
dx δx =

∞∑
j=0

∫ 1

0
dx δ(j)

x µj , (4.164)

with the zeroth and first order integrands

δ(0)
x = 2|pt|Ry

|β|(1− β2)
√

1− x2

x(1− β2) + β2
, (4.165)

δ(1)
x = |pt|Ry

|β|3(1− β2)(3− 2β + β2)
√

1− x2

6
(
x(1− β2) + β2

)2 . (4.166)

In deriving these integrands the expansion of the turning point in µ is used

r0 ≈
a0|β|√
1− β2

− a0|β|(3− 2β + β2)

12
√

1− β2
µ . (4.167)
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The zeroth order phase shift obtained from the integral of (4.165) is just that of global

AdS3, δ(0) = πRy|pt|(1− |β|), whereas at first order one gets from (4.166)

δ(1) =

∫ 1

0
dx δ(1)

x =
π

24
Ry |pt|(1− β2)(3− 2β + β2) . (4.168)

The generalisation of this result to all orders in µ is given in Section 4.5.3.

4.5.2 CFT analysis at first order in µ

We would again like to compare this result for the phase shift with information con-

tained in appropriate HHLL 4-point correlators of the dual CFT. In the heavy regime,

the 1/4-BPS operators dual to the family of geometries in (4.162) have reduced di-

mensions (4.3), which scale with the central charge. These heavy operators will, for

generic values of Nb and n 6= 0, be mixtures of quasi-primary and descendant parts;

only in the light limit Nb → 1 will they be pure descendants. In the latter case, and for

n = 1, a Ward identity relates the correlator of primary operators with that containing

two primaries and two descendants [80]. Exploiting the equivalence of the LLLL and

HHLL correlators at order µ, the same Ward identity can be used to derive the O(µ)

correlator in the (1, 0, 1) heavy state from that in the (1, 0, 0) heavy state:

G1,0,1(z, z̄)
∣∣∣
µ1

=
[
(1− z)2∂(z ∂) + 1

]
G1,0,0(z, z̄)

∣∣∣
µ1
. (4.169)

The relation between the respective full correlators can then be obtained from (4.1) by

including the appropriate prefactors. In this section we consider only HHLL correlators

containing the light operator Obos with dimension (h2, h̄2) = (1, 1). The order µ0 piece

of this correlator is dependent solely on the dimension of the light operator used and so

is equal to the (1, 0, 0) case and given by |1− z|−4. At first order in µ, performing the

analytic continuation to the Regge region and extracting the leading imaginary piece

gives

Im Cbos
1,0,1

∣∣
�, µ
≈ 2π

3− 42η − 199η2 + 160η3 + 69η4 + 10η5 − η6 − 12η2(13 + 14η + 3η2) log η

3(1− η)7η2σ5
,

(4.170)

where the relation (4.159) with n = 1 and the parametrisation (4.18) have been used.

One can also obtain (4.170) from (4.106) by rewriting the differential operator in (4.169)

in terms of (σ, η) as done in (4.77).

We now move to analysing the cross channel interpretation of (4.170). From (4.30)

the contributions from double-trace operators of the schematic form OH∂m∂̄m̄OL can

be resummed; again this is dominated by the operators with large m and m̄. The

anomalous dimensions Γ
(1)
m,m̄ in the Regge limit can be extracted from the bulk phase
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shift (4.168), once again using the relations (4.33) and (4.34), giving

Γ
(1)
m,m̄ ≈ −

δ(1)

π
= −mm̄m2 + 2mm̄+ 3m̄2

3(m+ m̄)3
. (4.171)

We note that these anomalous dimensions are not symmetric under the exchange of m

and m̄, unlike those in the conical defect and (1, 0, 0) cases. This is to be expected for

the 1/4-BPS 3-charge microstates, in this case the (1, 0, n) family, as a consequence of

having acted with only holomorphic Virasoro modes on the (1, 0, 0) state – see Eq. (2.66)

in the NS sector. Resumming these double-trace contributions, with the approximation

to the OPE coefficients in (4.28), gives

ImC
(1,0,1)
�

∣∣∣
µ
≈ −π

∫ ∞
0
dm

∫ ∞
0
dm̄C 2

(0)(m, m̄) Γ
(1)
m,m̄ z

mz̄m̄

= −π
∫ ∞

0
dm

∫ m

0
dm̄C 2

(0)(m, m̄)
(
Γ

(1)
m,m̄z

mz̄m̄ + Γ
(1)
m̄,mz

m̄z̄m
)

=
π

3

(
I2,2,1(z, z̄) + I2,2,1(z̄, z) + 2I2,4,3(z, z̄) + 2I4,2,3(z̄, z)

)
, (4.172)

which gives precisely (4.170) once expanded in σ. The final line of the above is written in

terms of the integral defined in (E.5), whose solution is given in (E.10). This matching

of (4.172) and (4.170) demonstrates that the anomalous dimensions (4.171) obtained

from gravity are consistent with the crossing relations.

It is, however, curious that such a matching does occur in the 3-charge case using the

above method. As mentioned above, in the heavy scaling regime the (1, 0, 1) operator

will not purely be a quasi-primary (Nb is small compared with N but still macroscopic)

and so it appears that both the relation (4.33) and the decomposition of the correlator

used in section 4.2 should not hold. Despite this, it seems that in the heavy limit at

least, these differences in the key steps of the CFT analysis are subleading in 1/hH .

4.5.3 Towards the black hole regime

In order for the (1, 0, n) set of supergravity solutions described in Section 2.2 to be

microstates of a (non-rotating) D1-D5-P black hole with a finite sized horizon, the set

of parameters {b, a, n} should satisfy the inequality [27]

1 ≥ b2

2a2
0

> 2n+ 1− 2
√
n(n+ 1) , (4.173)

where as usual we have a2
0 = a2 + b2

2 . We note that in order to satisfy this inequality it

is necessary to have n ≥ 1: the 2-charge D1-D5 black hole has a horizon of vanishing

area at the origin. Comparing this with the form of the parameter µ in (4.159) shows

that in order to consider microstates above the black hole bound, we must go beyond
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the perturbative approach in µ. Though we leave a systematic analysis of the black

hole regime physics of these microstates to future work, some initial hints from the bulk

phase shift are presented below.

Considering the (1, 0, n) microstate geometries for generic n, using the 3-dimensional

reduced metric (4.162), the integral in the phase shift (2.105) is likely not analytically

tractable. However, we may try to attack the problem from various, simpler, angles.

The bulk phase shift can be put into the form

δ = −2Ry pt
√

1− β2

∫ ∞
ρ0

dρ

ρ

√
ρ2 − ρ2

0

√
ρ2 + ρ̄2

0

(ρ2 + 1)3
, (4.174)

where

ρ2
0 ≡

r2
0

a2
, ρ̄2

0 ≡ −
r̄2

0

a2
, (4.175)

and r2
0 and r̄2

0 are respectively the positive and negative roots of the turning point

equation ṙ2 = 0 which here reads

r2
0β
−2 −

(
r2

0 +
a4

a2
0

)
+ r2

0

a2
0 − a2

a2

[
1−

(
r2

0

r2
0 + a2

)n]
(β−1 − 1)2 = 0 . (4.176)

Note that ρ̄2
0 ≥ 1 and ρ̄2

0 = 1 for b = 0 or n = 0. The integral in (4.174) could be

computed with the residue method where it not for the branch cuts between [i, iρ̄0] and

[−iρ̄0,−i].

Phase shift at O(b2) for generic n

One, possibly näıve, approach one could take is to first consider the phase shift at linear

order in b2

2a2
0

with n general to see if anything can be gleaned from it. In the limit of

small b one has for the turning point

r2
0 ≈ a2

0 (β−2 − 1)−1

[
1− b2

2a2
0

(1 + β)−1
(

3 + β − (1− β)β2n
)]
. (4.177)

and the phase shift

δ = δ(0) +
b2

a2
0

δ(1) +O(b4) . (4.178)

The zeroth order result is, as expected, the pure AdS result

δ(0) = ptRyπ(1− β) , (4.179)
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and at first order the result is

δ(1) =
ptRy a0

4
(1− β2)−1/2

∫ ∞
s0

ds√
s− s0

a2
0(3− 2β + β2) + (1− β)2

(
s− sn

(s+a20)n−1

)
(s+ a2

0)2

=
ptRyπ

8

[
(1− β2)(3− 2β + β2) + (1− β)2

(
1 + β2 − (2n− 1)!!

2n−1 n!
2F1

(
−n, 1

2 ; 1
2 − n;β2

))]
,

(4.180)

where s0 ≡ a2
0(β−2−1)−1. Note that the hypergeometric function 2F1(−n, 1

2 ; 1
2 −n;β2)

is simply a polynomial in β2 of degree n

2F1

(
−n, 1

2 ; 1
2 − n;β2

)
=

n∑
m=0

cn(m)β2m with cn(m) =
(−1)m√

π

(
n

m

)
Γ(m+ 1

2)Γ(1
2 − n)

Γ(m− n+ 1
2)

.

(4.181)

Considering now the limit

b2 → 0 , n→∞ with
n b2

a2
0

>
1

2
, (4.182)

in such a way that the state is within the black hole limit (4.173). From (4.177), one

has the turning point

r2
0 ≈

a2
0

β−2 − 1

(
1− b2

2a2
0

3 + β

1 + β

)
, (4.183)

since (1−β)β2n → 0 for β ≤ 1 and n→∞. Thus r0 remains finite in this limit, unlike

in the case of the BTZ black hole (for which r0 → 0). The first order phase shift (4.180)

is also finite in the limit . Using Stirling’s approximation, one has

(2n− 1)!!

2n−1 n!
=

(2n)!

22n−1(n!)2
≈ 2√

π
√
n
, (4.184)

and using the fact that cn(m) ≤ 1 (with cn(0) = cn(n) = 1) and that the hypergeometric

2F1(−n, 1
2 ; 1

2 −n;β2) remains finite in the large n limit for any β < 1, from (4.180) one

finds

δ(1) ≈ ptRyπ

2
(1− β) . (4.185)

If instead β = 1 then the hypergeometric function in (4.180) becomes

2F1

(
−n, 1

2 ; 1
2 − n; 1

)
=

√
π n!

Γ(n+ 1
2)
≈
√
π
√
n , (4.186)

and thus δ(1)
∣∣
β=1
≈ 0. In conclusion, from this first approach to considering the black

hole regime of the (1, 0, n) microstates, the phase shift seems to remain finite in the

limit (4.5.3), unlike for the BTZ black hole (for which δ →∞, see Figure 4.4).
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Conical Defect (µ < 1)

k

BTZ black hole (µ > 1)

Figure 4.4: This figure schematically shows the difference in the bulk setup required for
the computation of the phase shift, described in Section 2.4, for the cases of the conical
defect and the BTZ black hole. In the latter case, the phase shift is not defined since
all ingoing radial geodesics beginning at the asymptotic boundary reach the horizon.
Viewed as a limit of the conical defect case, the phase shift obtained for the BTZ metric
is δ →∞.

Phase shift for n = 1 with generic b

A second approach to considering the black hole regime of the (1, 0, n) family of mi-

crostate geometries is to take the simplest member – that of n = 1 – but for generic

b. The bulk phase shift in the (1, 0, 1) 3-dimensional reduced geometry (4.162) is given

by the following integral

δ = 2ptRy a0

∫ ∞
r0

dr

r

√√√√r4(1− β2) + r2a2
0

(
1− 2β(1− α) + β2(1− 2α− α2)

)
− a4

0α
3β2

(r2 + a2
0)3

≡ 2ptRy α
−1/2

√
1− β2 I , (4.187)

where we have defined the parameter α ≡ a2

a2
0

for future use. The integral I is computed

in Appendix E.3 with the final result given in (E.45). The full phase shift obtained in

the (1, 0, 1) geometry is then

δ = 2ptRy α
−1/2

√
1− β2

[√
x0 + x̄0

x0x̄0
E

(√
x0(1− x̄0)

x0 + x̄0

)

−
√

x̄0

x0(x0 + x̄0)
Π

(
x0

x0 + x̄0

∣∣∣∣ x0(1− x̄0)

x0 + x̄0

)]
,

(4.188)

where E(k) and Π(m|k) are the complete elliptic integrals of the second and third kind

respectively, defined in (E.33b) and (E.33c). In (4.188), x0 and x̄0 are the functions of

α and β given explicitly in (E.26).

Now to test this phase shift against known results. Firstly, a zeroth order check is
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that by setting α = 1 (which is equivalent to setting b = 0) reduces (4.188) to the AdS3

phase shift

δ
∣∣
α=1

= πptRy(1− β) . (4.189)

Since we can relate the parameters α and µ via α = −2 +
√

9− µ using (2.75) in the

n = 1 case, we can expand (4.188) to first order in µ to get

δ
∣∣
µ

= πptRy
µ

24
(1− β2)(3− 2β + β2) , (4.190)

which is exactly what was found by doing the integral perturbatively in µ in Sec-

tion 4.5.2. Since these checks give confidence in the result (4.188), we now consider the

opposite scaling of α→ 0 in which the leading terms in the phase shift are

δ ≈ 2ptRy(1− β)α−1 −Ry
pt
2

(1 + β) logα + regular terms . (4.191)

Divergence in the strict α → 0 limit was expected since the (1, 0, n) family of metrics

tend to that of the BTZ black hole in this limit and the bulk phase shift is not defined

directly for the BTZ metric (see Figure 4.4). The point a = 0 is not part of the ensemble

of microstates of the D1-D5-P black hole, but by using the (1, 0, n) family of microstate

geometries – which can arbitrarily closely approximate the black hole – a finite value

of the phase shift can be obtained all the way up to the point α = 0.

A note on the regime of validity of this calculation is in order: the small a behaviour

of the radial turning point of the probe geodesic for any n is given by

r0 ≈ a0 α
3/2(β−1 − 1)−1

[
1 +O

(
a0α

3/2(β−1 − 1)−1
)]

. (4.192)

Note that the expansion parameter is a0 α
3/2(β−1−1)−1 and thus the small α expansion

fails when β ≈ 1; that is, when the geodesic probes the very centre of the bulk geometry.

This is natural since near r = 0 the light probe will resolve the D-brane bound state

that forms the black hole microstate and the supergravity approximation will break

down.
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Chapter 5

Conclusions and Outlook

This thesis has tried to build on two aspects of the study and construction of holo-

graphic correlators. Firstly, there is the use of HHLL holographic correlators computed

from microstate geometries to obtain LLLL correlators, not just between single-trace

operators but now also including multi-trace operators. Secondly, there is the study of

HHLL correlators in the Regge limit – where the heavy operator is an explicit pure state

of the theory – and the relation between the CFT data of non-protected heavy-light

double-traces exchanged in the intermediate channel and a bulk phase shift computed

in the geometry dual to the heavy state.

In Chapter 3 we have studied correlation functions involving two single-trace and two

multi-trace light operators obtained from the light limit of HHLL holographic correla-

tors. Since these HHLL correlators are computed from quadratic fluctuations around

the classical supergravity background dual the heavy operator, it is the connected tree-

level Witten diagram contributions to these n-trace correlators that are extracted. By

way of a particular HHLL correlator, whose expression is known exactly in momentum

space, we derived explicit expressions for correlation functions involving double-trace

operators (3.15c) (for correlators involving higher multi-trace operators see (B.12)).

The justification for our method of construction is that the behaviour of these multi-

trace correlators in the various OPE channels is consistent in all of the checks we

perform in Section 3.4, for example, we reproduce the behaviour of the n = 2 corre-

lator in the z̄ → 1 light-cone limit – dominated by the exchange of currents – from

suitable conformal blocks and in the z, z̄ → 0 Euclidean OPE from calculations at the

free point involving protected multi-trace operators.

Since 4-point multi-trace correlators can be viewed as a particular kinematical limit

of higher-point correlation functions of single-traces, we argued in Section 3.2 that, for

6-point functions and higher, there are Witten diagrams that cannot be reduced to a

finite sum of contact diagrams. Hence, the usual D-functions are not a sufficient basis
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of functions for this class of correlators. Indeed, from expressions such as (3.15c), we

see that the new ingredient appearing in correlators with multi-traces are the Bloch-

Wigner-Ramakrishnan polylogarithm functions. These are particular combinations of

(higher-order) polylogarithm functions exhibiting simpler analytic properties than the

“bare” polylogarithms.

It would be interesting to see whether other explicit computations of higher-point

holographic correlators, in any kinematic limit, also have natural descriptions in terms

of Bloch-Wigner-Ramakrishnan polylogarithms – in AdS3 or otherwise. We believe

that these functions appear generically in holographic correlators involving multi-trace

operators. Furthermore, we have argued that despite such correlators derived from

HHLL correlation functions not being exactly equal to those obtained from an OPE

limit of higher-point functions, their functional structure is the same. Thus the con-

clusions made about the generic appearance of Bloch-Wigner-Ramakrishnan polyloga-

rithm functions in multi-trace correlation functions apply to higher-order correlators as

well. However, there might exist an even more appropriate basis of functions, possibly

with a simple description in Mellin space. This new basis would contain higher-order

analogues of the D∆1,∆2,∆3,∆4 functions, commonly appearing in holographic correla-

tors (see for example [58,59]) which are just constants when written in Mellin space [45].

It would also be interesting to find a Mellin description of our multi-trace connected

correlators, however, the correlators with a simple Mellin form are likely to be those

involving multi-trace operators formed from the OPE limit of single-trace operators,

rather than those we have obtained from a HHLL correlator. If such Mellin trans-

forms were to be found, it would be interesting to see whether they are related to

the corresponding tree-level Feynman diagrams (see figures 3.1 and 3.3), with some

of the Mellin-variables set to zero in order to implement the relevant OPE limit. A

Mellin space formulation would also provide an explicit avenue towards the flat-space

limit where checks with the relevant amplitudes in Minkowski space [205, 206] could

be made. For a summary of the Mellin space description of a wide class of AdS3 × S3

holographic correlators of single-trace operators see [76].

Since the part of the multi-trace correlators obtained from the light limit of HHLL

correlators is the connected tree-level contribution, it is natural to ask about the re-

mainder. As shown in Figure 3.1, these extra contributions come from disconnected

one-loop Witten diagrams which contribute at the same order in 1/N as the associated

connected tree-level part. That is, for a correlator involving n-trace operators these

types of contributions will both be at order N−n. While the direct calculation of loop-

level Witten diagrams is technically extremely difficult, CFT techniques have been used

to make progress in this direction, for instance, in the case of AdS5 × S5 four-point

correlators [207–210]. Finding similar results in AdS3×S3 would allow us to extend our

n = 2 result from the connected part to the full 1/N2 double-trace correlator, however,
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at present not all of the prerequisite tree-level correlators are known (see [75, 76] for

the current standing of these correlators).

The known correlators of the n = 1 type are sufficient to extract dynamical data,

such as the anomalous dimensions, of individual R-symmetry and flavour irreducible

representations for the family of non-protected double-trace operators of the form

Ōf∂kOg exchanged in the z, z̄ → 1 OPE channel. This unmixed data of such oper-

ators (that are degenerate at leading order in large N) yields the result that, for the

theory on K3, the anomalous dimensions for exchanged operators of spin k ≤ 2 are

positive. To the best of our knowledge, this gives the first known example of a theory

with such behaviour – the possibility of which was first discussed in [185]. Using the

n = 2 correlators it is possible to derive constraints on the 3-point coupling involving

three double-trace operators, of the form 〈: Ō 2
f : : O 2

f : (ŌO)k=0〉. For k > 0, there

is non-trivial mixing of these primaries with new triple-trace primaries. The full un-

mixing of these operators’ data would require the input of a correlator involving two

double-trace and two single-trace operators, all with identical flavour index. Such a

correlator is not known currently.

Considering the very different qualitative behaviours of the order 1/N anomalous

dimensions of the double-trace operators Ō∂kO in the cases of the theory compacti-

fied on T 4 and K3, it is possible that this suggests a fundamental difference between

these theories. It would be interesting here to have access to similar LLLL correlators

but containing different single-trace operators in order to see whether this pattern in

anomalous dimensions is upheld by other families of double-trace operators in these

theories.

The smoothness of the limit of correlators between our “heavy scaling regime” in

which the dimension of the multi-trace operators On scales as ∆n ∼ c and the “light

scaling regime” in which ∆n ∼ 1 may be an unexpected feature, but there is now

a mounting body of evidence that this is the case [73–75]. The fact that correla-

tion functions of four light operators have been demonstrated to be obtainable from

HHLL correlators begs the question of whether also correlators involving operators of

intermediate dimensions are smoothly related. Two classes of such operators are the

BMN [211,212] and other semi-classical states with dimensions scaling as ∆ ∼ c1/4 and

possibly giant graviton states [213] with ∆ ∼ c1/2.

In Chapter 4 we studied the Regge limit of four-point AdS3 correlators in the super-

gravity approximation. For the most part we have concentrated on HHLL correlators in

which one pair of operators corresponds to particular pure 1/2- or 1/4-BPS states with

conformal dimensions ∆ of order N , in the large N limit. These heavy operators (OH)

are dual to non-trivial asymptotically AdS gravitational backgrounds, while the light

operators (OL) are described in the Regge regime by null geodesics in these geometries
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– from this set up, a phase shift can be computed. To relate this bulk phase shift

with the CFT data, we have adopted a perturbative approach in µ ∼ ∆/N , limiting

ourselves initially to the first order. In this limit the HHLL correlators we consider

take the same functional form as the single-trace LLLL correlators where the pair of

heavy operators is replaced by two light CPO’s. Despite this, different approximations

are appropriate in the analyses for the two regimes ∆ ∼ N and ∆ ∼ 1 (see for instance

(4.29) and (4.31)). This explains why two different sets of CFT data are extracted

from the HHLL and the LLLL correlators. For two of the example heavy operators

discussed, the perturbative approach is then pushed to arbitrary orders in µ using,

for instance, the correlators derived in Section 3.3 (and the higher order generalisa-

tions in Appendix B.1). We have verified that the first order relation (4.33) (first found

in [90]) between the phase shift and the anomalous dimensions of double-trace operators

(those exchanged between a heavy and a light operator) is satisfied in all the examples

we have analysed. In the spirit of this first order relation and the second order con-

siderations of [53], in Section 4.2 we derive all-order relations between the bulk phase

shift and the anomalous dimensions and OPE coefficients of the HL double-traces (see

Eq (4.60)). We have also looked at the bootstrap constraints relating the OH → OL
and the OL → OL channels. This latter channel contains a “universal sector” that is

completely determined by the Virasoro and R-symmetry algebras of the CFT – and

is thus insensitive to the details of the states appearing in the correlator. Truncating

a correlator to this universal contribution, as is often done in the literature, amounts

to replacing the pure heavy states by a statistical ensemble characterised by ∆. The

correlators in pure states, however, also contain a tower of double-trace operators that

are needed for consistency with the bootstrap constraints. An intermediate example

is represented by the correlator extracted from the conical defect geometry for generic

values of the deficit angle: despite this geometry not being dual to a pure state, the

correlator satisfies the bootstrap constraint mentioned above. Finally, as a technical

by-product, we show that knowledge of the correlator in the Regge limit is enough to

fix the anomalous dimensions and three-point couplings of double-trace operators with

spin less than or equal to 2 – these are not captured by the Lorentzian inversion for-

mula [68]. We work out explicitly an example with spin-2 operators. Our investigation

leaves open a number of possible future developments. Firstly, at a more technical

level, it would be useful to explain why the relation (4.33) between phase shift and

anomalous dimensions (that is expected to apply only to correlators of quasi-primary

operators) also works for the non-primary state considered in Section 4.5. This ques-

tion becomes particularly relevant because non-primary operators are the microstates

of the D1-D5-P black hole.

The most pressing physical question, however, is whether the Regge limit of pure-

state correlators can be used as a tool to study the black hole regime of the CFT. Heavy
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operators are dual to microstates of a black hole with a regular horizon of finite area only

if the parameter µ, defined in (4.5), is greater than 1 (µ > 1) and thus this requirement

is incompatible with the perturbative approach of Chapter 4 – which is based on the

small µ expansion. In this regime it was found that the phase shift of a light probe

in the BTZ black hole geometry (which has µ > 1) is ill-defined for all values of the

impact parameter [52], owing to the fact that all in-falling null geodesics that begin

on the asymptotic boundary fall into the black hole. In contrast, asymptotically AdS

black holes in higher dimensions do not suffer from such issues [52] and one generically

finds regions of both elastic and inelastic scattering [175]. For the (1, 0, n) subfamily of

microstates, the µ > 1 condition translates into the “black hole bound”

1 ≥ Nb

N
> 2n+ 1− 2

√
n(n+ 1) , (5.1)

which, in particular, requires n ≥ 1. While computing the full HHLL correlator requires

solving the wave equation in the (1, 0, n) geometry (4.162), and this is difficult60 to do

exactly (see [78, 79]), deriving the bulk phase shift is analytically doable, at least for

n = 1 as shown in Section 4.5.3. One of the key observations is that, in contrast to the

BTZ black hole, for horizonless fuzzball geometries considered thus far there seems to

always exist a radial turning point for in-falling null geodesics and hence a well-defined

phase shift. It would be interesting to see whether one could study classical black holes

as a particular limit of microstate geometries and analyse the transition between the

purely elastic scattering found in fuzzballs and purely inelastic capture seen for BTZ

black holes. We expect that in order to fully analyse this black hole regime it will be

necessary to work exactly in µ. Hence it would be important to understand precisely

how the CFT information is encoded in the bulk phase shift for finite values of µ, the

groundwork for which we lay in (4.60). We believe that this would provide a useful

tool with which to study the gravitational description of black hole microstates and we

hope to be able to make progress on this problem in the near future.

As a final word on this topic, we note that the derivation of (4.60) implicitly assumes

that all quantities involved are real, or in other words that the scattering in the bulk is

elastic. As discussed above, this is not always the case due to the inelastic part of the

scattering process (such as capture of the light probe and radiative dissipation) typically

being encoded in an imaginary component of the phase shift – seen for example in [175].

It would be interesting to extend (4.60) in this spirit and explore the implications.

The observation of transient Lyapunov behaviour in the AdS3 holographic LLLL

correlator considered in Section 4.4.4 allowed for a verification of the results of [115], in

which the Virasoro vacuum block approximation was used, at least at leading order in

60It turns out that this problem can be reduced to a purely mathematical one based on the connection
problem of confluent Heun equations. For recent progress on this connection problem see [214, 215].
We hope to have progress on this in the relatively near future.
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large N . Since the correlator we used is only known at order 1/N , it allows us to probe

time scales only below the scrambling time t∗ ∼ log c, beyond which higher orders and

stringy contributions would be necessary. This behaviour appears quite robust since it

has also been seen in higher derivative gravity [216] following the shockwave analysis

of [113], and from non-Lorentzian CFTs [217]. One interesting avenue was initiated in

[203] where an out-of-time-order 4-point function of light operators in the background of

a heavy state dual to a black hole microstate was studied in the eikonal approximation.

This is the analogue of the thermal OTOC, where the thermal state represents a classical

black hole. This represents an avenue of understanding the similarities and differences

of scrambling for black holes and for individual microstate geometries.

The study of Lyapunov growth in OTOCs is just one way of probing microstates

of black holes – a particular initiative of the microstate program currently. Various

current directions fall into the categories of (see [218] for a review of the phenomenol-

ogy of fuzzballs): entanglement entropy [219–221], gravitational multipoles [222–226],

geodesics and shadows [198–200,227–231], tidal Love numbers [232], gravitational wave

echos [19, 78, 233–236], quasi-normal modes [78, 214, 237] and tidal trapping [32, 34, 79,

238–241]. One might hope that, using these probes and more, in the future it might

be possible to see evidence of black hole microstructure from experiments such as the

future iterations of LIGO (see for instance [242, 243] for general discussions of funda-

mental physics from gravitational wave detections).

A second main line of development of the black hole microstate program is towards

the construction of microstate geometries that are non-BPS; undoubtedly a key step

towards understanding more realistic black holes. Some very recent progress has been

made in this direction in [164, 244–247]. As well as looking for black hole microstates

away from extremality, there is also the important question of microstates away from

atypicality for which very limited progress has been made [36].

One curious result that has recently come out of the study of the D1-D5 CFT at the

free orbifold point [248] is that, from the study of the lifting of states under deformation

of this theory [166,249–252], the key state (2.66) used in the construction of the (1, 0, n)

family of superstrata becomes non-BPS at second order in the deformation. Clearly this

is in tension with evidence from the many holographic tests that have been performed

using protected quantities based on this microstate geometry [51] at the supergravity

point. Work on resolving this tension is ongoing.
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Global Conformal Blocks

This appendix derives the form of the global conformal blocks in two different ways,

firstly by explicit resummation of a quasi-primary’s global descendants and secondly

by use of the quadratic Casimir of the global conformal group.

Global conformal blocks from projectors

The conformally invariant function G(z, z̄) from the 4-point function (2.20) can be

expanded in a basis of global conformal blocks, labelled by global primaries Oh,h̄, as in

(2.32) where a global primary is defined as

L1 |h〉 ≡ L1Oh(0)|0〉 = 0 , (A.1)

with equivalent statements in the anti-holomorphic sector. A global block for a given

quasi-primary resums the contribution of that quasi-primary and its tower of descen-

dants generated by the action of L−1. The space of global descendants of the quasi-

primary state |h〉 is then spanned by
{
Lq−1 |h〉

}
for q ∈ Z+. For simplicity, we here

calculate the form of the T-channel global conformal blocks. The T-channel decom-

position of the 4-point function 〈Ō1O2O3Ō4〉 can equivalently be thought of as the

S-channel of the correlator 〈O2O3Ō4Ō1〉. Projecting this latter 4-point function onto

the contribution of a single quasi-primary’s conformal family in the T-channel sum of

(2.32) gives

〈O2(∞)O3(1)Ph Ō4(z, z̄)Ō1(0)〉 = C23OCO41 z
−h1−h4 z̄−h̄1−h̄4 Vh(z)V̄h̄(z̄) , (A.2)

where the projection operator for the holomorphic sector is given by

Ph ≡
∞∑
q=0

Lq−1|h〉〈h|L
q
1

〈h|Lq1L
q
−1|h〉

, (A.3)

131



APPENDIX A. GLOBAL CONFORMAL BLOCKS

and 〈h| ≡ limz→∞ z
2h〈0|Oh(z). From now on in this derivation, we suppress the anti-

holomorphic part of any expression since it follows in precisely the same way. The

computation of the 4-point function (A.2) is then reduced to finding three- and two-

point functions since

〈O2(∞)O3(1)Ph,h̄ Ō4(z, z̄)Ō1(0)〉 =
∞∑
q=0

〈O1(∞)O2(1)Lq−1|h〉 〈h|L
q
1O3(z)O4(0)〉

〈h|Lq1L
q
−1|h〉

.

(A.4)

The forms of two- and three-point functions are fixed by conformal symmetry and are

given in (2.18). In order to calculate correlators containing descendants, we use the

conformal Ward identity

〈
(L−k1 · · · L−knOh)(z)O1(z1) · · · On(zn)

〉
= L−k1 · · · L−kn〈Oh(z)O1(z1) · · · On(zn)〉 ,

(A.5)

where Oh and Oi for i = 1, . . . , n are quasi-primary operators, and the operators L−k
are given by

L−k ≡
n∑
i=1

[
(k − 1)hi
(zi − z)k

− (zi − z)1−k ∂zi

]
. (A.6)

The two such operators that will be needed in the calculation below are

L1 =

n∑
i=1

[
− 2hi(zi − z)− (zi − z)2 ∂zi

]
, (A.7)

L−1 =

n∑
i=1

−∂zi = ∂z , (A.8)

with the final equality in L−1 being due to translation invariance [120]. Starting with

the norm of the exchanged state, we find using (A.7) and (2.18)

〈h|Lq1L
q
−1|h〉 = lim

z1→∞
z2→0

z2h
1 L

q
1L

q
−1〈Oh(z1)Oh(z2)〉

= lim
z1→∞
z2→0

z2h
1

[
−2h z12 − z2

12∂z1
]q(
∂z2
)q
z−2h

12

= lim
z1→∞
z2→0

z2h
1

[
−2h z12 − z2

12∂z1
]q

(2h)q z
−2h+q
12

= q! (2h)q , (A.9)

where the rising Pochhammer symbol is defined as

(h)q ≡
Γ(h+ q)

Γ(h)
. (A.10)
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Next, in (A.4) we require the three-point function

〈O2(∞)O3(1)Lq−1|h〉
C23O

= lim
z2→∞
z3→1
z4→0

z2h2
2 Lq−1

〈O2(z2)O3(z3)Oh(z4)〉
C23O

= lim
z2→∞
z3→1
z4→0

z2h2
2

(
∂z4
)q
zh−h2−h3

23 zh2−h3−h
34 zh3−h2−h

24

= (h− h2 + h3)q . (A.11)

Lastly, the remaining three-point function in (A.4) we calculate, via its Hermitian

conjugate, as

〈h|Lq1 Ō4(z)Ō1(0)〉
CO41

=
1

CO41

[
〈
(
Ō1(0)

)†(Ō4(z)
)†
Lq−1Oh(0)〉

]†
=

1

CO41

[
lim
z̄1→0
z̄4→z̄
w2→0

z̄−2h1
1 z̄−2h4

4 Lq−1〈Ō1(z̄−1
1 )Ō4(z̄−1

4 )Oh(w2)〉
]†

=

[
lim

w1→∞
w4→w
w2→0

w2h1
1 w2h4

4

(
∂w2

)q
wh−h1−h4

14 wh1−h−h4
42 wh4−h−h1

12

]∗

=
[
(h− h1 + h4)q w

−h−q+h1+h4

]∗
= (h− h1 + h4)q z

h+q−h1−h4 , (A.12)

where we have used the renaming wi = z̄−1 and

(
O(z, z̄)

)†
= z̄−2hOz−2h̄OO(z̄−1, z−1) . (A.13)

Putting these various pieces (A.9), (A.11) and (A.12) together in (A.4) gives

〈O2(∞)O3(1)Ph Ō4(z, z̄)Ō1(0)〉
C23OCO41

=
∞∑
q=0

(h− h23)q (h− h14)q
q! (2h)q

zh−h1−h4+q

= zh−h1−h4
2F1(h− h2 + h3, h− h1 + h4; 2h; z) ,

(A.14)

where once again hij ≡ hi−hj . Comparing this result with (A.2) gives for the T-channel

global blocks

Vh(z) = zh 2F1(h− h23, h− h14; 2h; z) , (A.15)

and similarly for V̄h̄(z̄). We note that in terms of the notation used in (2.32), these T-

channel global conformal blocks for external operator dimensions h1 = h2 and h3 = h4
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are

gh14,h̄14

h,h̄
(z, z̄) = Vh(z)V̄h̄(z̄) . (A.16)

Global conformal blocks as eigenfunctions

A second method for calculating conformal blocks is by making use of the quadratic

Casimir of SL(2,R) (here focusing solely on the holomorphic sector) which is given in

terms of the globally defined Virasoro modes (2.12) by

L2 =
1

2

(
L−1L1 + L1L−1

)
− L2

0 . (A.17)

By construction, the commutators of L2 with the generators L0, L±1 are vanishing and

inserting the quadratic Casimir operator in the projected four-point function (A.4) and

acting to the left and right yields the following equality

〈O2(∞)O3(1)Ph
←−
L2Ō4(z)Ō1(0)〉 = 〈O2(∞)O3(1)Ph

−→
L2Ō4(z)Ō1(0)〉 . (A.18)

We will evaluate the two sides of this equality separately and then equate them at the

end. From the left-hand side of (A.18), using (A.3) the part that is of interest is thus

〈h|Lq1
←−
L2 = 〈h|

←−
L2Lq1

= − lim
z→∞

z2h 〈0|
(

1
2

[
L1L−1,Oh

]
+ 1

2

[
L−1L1,Oh

]
−
[
L2

0,Oh
] )
Lq1

= − lim
z→∞

z2h 〈0|
(

1
2∂OhL1 + 1

2(z2∂ + 2hz)OhL−1 − (z∂ + h)OhL0

)
Lq1

= −h(h− 1) 〈h|Lq1 , (A.19)

where in the third line we have used the commutator between a quasi-primary and the

global Virasoro modes, given by

[
Ln,Oh(z)

]
= h(n+ 1)znO(z) + zn+1∂zOh , (A.20)

which is valid for n = ±1, 0 if Oh is quasi-primary and for n ∈ Z if Oh is primary. The

fact that 〈0| is the SL(2,C) invariant vacuum has been used repeatedly. Therefore,

using (A.2) the left-hand side of (A.18) reads

〈O2(∞)O3(1)Ph
←−
L2Ō4(z)Ō1(0)〉 = −h(h− 1)C23OCO41 z

−h1−h4Vh(z) . (A.21)

134



APPENDIX A. GLOBAL CONFORMAL BLOCKS

Turning now to the right-hand side of (A.18), we require the quantity

−→
L2Ō4(z4)Ō1(z1)|0〉 =

[
1

2
L−1

(
z2

4∂z4Ō4 + 2z4h4Ō4 + Ō4L1

)
+

1

2
L1

(
∂z4Ō4 + Ō4L−1

)
−
(

(z4∂z4 + h4)2Ō4 + 2(z4∂z4 + h4)Ō4L0 + Ō4L
2
0

)]
Ō1|0〉

=
[
z2

41∂z4∂z1 − 2h1z41∂z4 + 2h4z41∂z1

− (h4 + h1)(h4 + h1 − 1)
]
Ō4Ō1|0〉

= D41Ō4(z4)Ō1(z1)|0〉 , (A.22)

where we define the differential operator

Dij = z2
ij∂zi∂zj − 2hjzij∂zi + 2hizij∂zj − (hi + hj)(hi + hj − 1) . (A.23)

Using (A.22), the right-hand side of (A.18) can be written as

〈O1(z1)O2(z2)Ph
−→
L2O3(z3)O4(z4)〉 = C23OCO41D41

[
KtVh(z)

]
= C23OCO41

Kt z14

z24z21z13

[
z31

(
(h4 − h1)z2

24∂z4 + (h4 − h1)z2
21∂z1 + z24z21z41∂z4∂z1

)
− (h2 − h3)z23

(
(h4 − h1)z21 + z24z41∂z4

)]
Vh(z)

= −C23OCO41Kt

[
z2(1− z)∂2Vh − (1− h23 − h14)z2 ∂Vh − h23h14z Vh

]
, (A.24)

where the relations ∂i = ∂z
∂zi
∂ were used in the third line. In the above we used the

quantity Kt ≡ K(z2, z3, z4, z1) which is the prefactor for the correlator 〈O2O3Ō4Ō1〉
and can be obtained from (2.21) by the permutation (1234) on both the positions

zi and the dimensions hi. The equation (A.18) is then obtained by equating (A.21)

and (A.22). We are interested in the gauge-fixed correlator, obtained by taking the

appropriate limits (2.26) in order to fix the positions of the four operators zi, giving

(A.18) as

h(h− 1)Vh = z2(1− z)∂2Vh − (1− h23 − h14)z2∂Vh − h23h14 z Vh ≡ Dz
[
Vh
]
, (A.25)

where we defined the gauge-fixed differential operator

Dz = z2(1− z)∂2 − (1− h14 − h23)z2∂ − h23h14z . (A.26)

Making the ansatz Vh = zhF (z), the differential equation (A.25) becomes

z(1− z)∂2F (z) +
[
2h− (2h− h14 − h23 + 1)z

]
∂F (z)− (h− h23)(h− h14)F (z) = 0 ,

(A.27)
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which is simply the hypergeometric differential equation with the choices for the canon-

ical parameters a = h− h23, b = h− h14 and c = 2h, and so a solution to this equation

is then

F (z) = 2F1(h− h23, h− h14; 2h; z) . (A.28)

The equation (A.25) makes it explicit that global conformal blocks are eigenfunctions

of the differential operator Dz with eigenvalue h(h − 1). Global conformal blocks for

the anti-holomorphic sector take the same form with z → z̄, hi → h̄i and h → h̄ as

usual.
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Appendix B

Details of LLLL Holographic

Correlators

B.1 Derivation of connected multi-particle correlators

In this appendix we give details on the derivation of the closed form expressions for

the correlators in (3.15). In addition, we present higher order connected correlation

functions that are not discussed in the main text, together with explicit expressions of

the Bloch-Wigner-Ramakrishnan polylogarithm functions appearing in them.

The starting point is the HHLL correlation function from Eq. (2.92), which for

completeness we reproduce here using the parameter B defined in Section 3.2

:C : (τ, σ) =

(
1− B2

N

) ∞∑
k=1

∑
`∈Z

ei`σ
exp

[
−i(|`|+ 2k)

√
1− B2

N

(
1− `2

(|`|+2k)2

)
τ

]
√

1− B2

N

(
1− `2

(|`|+2k)2

) .

(B.1)

The above expression is written in terms of the dimensionless coordinates (τ, σ), related

to the coordinates (t, y) of the boundary of AdS3 through

τ =
t

Ry
, σ =

y

Ry
, (B.2)

with Ry being the radius of the spatial circle, so that y ∼ y + 2πRy. Despite being

written in terms of the cylinder coordinates (τ, σ), the expression in (B.1) represents

the correlator on the plane, whose complex coordinates z and z̄ are defined by

z ≡ ei(τ+σ) , z̄ ≡ ei(τ−σ) . (B.3)

In the following we will always work on the Euclidean patch, obtained by the usual
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Wick rotation τ → −iτe, or on its analytically continued version with z and z̄ being

independent complex coordinates with z̄ 6= z∗. Our goal is to rewrite the correlator

(B.1) in the form of (3.14) and so we expand in B2/N

:C : (τ, σ) =
∞∑
n=0

(
B2

N

)n ∑
`∈Z

∞∑
k=1

fn(τ) ei`σ−i(|`|+2k)τ , (B.4)

where we assumed that the sums are well behaved so that their order can be exchanged.

By comparing (B.4) with (3.14), we can extract the connected tree-level correlation

functions at each order in B2/N to get

:Cn : =
n!

Nn

∑
`∈Z

∞∑
k=1

fn(τ) ei`σ−i(|`|+2k)τ , (B.5)

and in what follows we show how to systematically evaluate these double sums.

In (B.4) we denote by fn(τ) polynomial functions of τ (generically of degree n),

which are read off by performing the explicit expansion of (B.1). The first few are

given by

f0(τ) = 1 , (B.6a)

f1(τ) = −1

2
− `2

2(|`|+ 2k)2
− iτ

(
`2

2(|`|+ 2k)
− (|`|+ 2k)

2

)
, (B.6b)

f2(τ) = −1

8
+

3`4

8(|`|+ 2k)4
− `2

4(|`|+ 2k)2
− iτ

(
− 3`4

8(|`|+ 2k)3
+

`2

4(|`|+ 2k)
+

(|`|+ 2k)

8

)
+ (−iτ)2

(
−`

2

4
+

`4

8(|`|+ 2k)2
+

(|`|+ 2k)2

8

)
, (B.6c)

f3(τ) = − 1

16
− 5`6

16(|`|+ 2k)6
+

9`4

16(|`|+ 2k)4
− 3`2

16(|`|+ 2k)2
− iτ

(
5`6

16(|`|+ 2k)5

− 9`4

16(|`|+ 2k)3
+

3`2

16(|`|+ 2k)
+

(|`|+ 2k)

16

)
+ (−iτ)2

(
−`

2

8
− `6

8(|`|+ 2k)4

+
`4

4(|`|+ 2k)2

)
+ (−iτ)3

(
`6

48(|`|+ 2k)3
− `4

16(|`|+ 2k)
+
`2(|`|+ 2k)

16
− (|`|+ 2k)3

48

)
.

(B.6d)

Since f0(τ) is trivial, it follows simply that

C0 =
∑
`∈Z

∞∑
k=1

ei`σ−i(|`|+2k)τ (B.7a)

=
1(

1− ei(τ+σ)
) (

1− ei(τ−σ)
) = −

[
Li0
(
e−i(τ+σ)

)
1− e−2iσ

+
Li0
(
e−i(τ−σ)

)
1− e2iσ

]
, (B.7b)

where in the last equality we have used that Li0(x) = x/(1− x). Finally, by using the
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complex coordinates given in (B.3) the correlator can be expressed in the simple form

C0(z, z̄) =
1

|1− z|2
. (B.8)

To find closed form expressions for higher order correlators we observe that the poly-

nomials fn(τ) are generically of the form

fn(τ) =

n∑
p=0

n∑
q=0

aq
(2n)!!

(−iτ)p `2q (|`|+ 2k)p−2q , (B.9)

where aq ∈ Z are some integers. Since in (B.5), these functions are multiplied by

ei`σ−i(|`|+2k)τ , the appropriate powers of ` and (|`|+ 2k) can be obtained term-wise by

differentiation or integration of (B.7a) using61

i∂τC0 =
∑
`∈Z

∞∑
k=1

(|`|+ 2k) ei`σ−i(|`|+2k)τ , (B.10a)

1

i

∫ τ

dτ1C0 =
∑
`∈Z

∞∑
k=1

1

|`|+ 2k
ei`σ−i(|`|+2k)τ , (B.10b)

−i∂σC0 =
∑
`∈Z

∞∑
k=1

` ei`σ−i(|`|+2k)τ , (B.10c)

where we have chosen the constant of integration in (B.10b) to vanish. Importantly,

we assume that the sums on the right-hand side of these expressions are convergent so

that term-wise differentiation and integration is well defined.

In practice, the left-hand side of (B.10) is obtained by using (B.7b) written in terms

of Li0 functions, since in that form the τ variable appears only in the polylogarithm

functions. Thus one can use the recursion relations (3.21) to show that

I τn (τ, σ) ≡

(i)n ∂nτ C0 n ≥ 0

(i)n
∫ τ

dτ1

∫ τ1 dτ2

∫
. . .
∫ τ|n|−1 dτ|n|C0 n < 0

= −

[
Li−n

(
e−i(τ+σ)

)
1− e−2iσ

+
Li−n

(
e−i(τ−σ)

)
1− e2iσ

]
, (B.11)

which gives a closed form expression for any integer power of (|`| + 2k) appearing in

(B.9). Differentiating (B.11) with respect to σ is trivial, but cumbersome, and we are

not aware of any closed form expression for such an action. However, since τ and σ are

independent one can always perform any τ operation first, after which the remaining σ

differentiation is easily performed. All in all, this allows us to algorithmically translate

the expansion polynomials fn(τ) into connected tree-level correlators at any order and

61Integration over σ is not needed since ` appears only with positive powers in (B.9).
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after rewriting the results in terms of z and z̄, we get

C0(z, z̄) =
1

|1− z|2
, (B.12a)

C1(z, z̄) =
1

N

[
− i

2
r2 P2(z, z̄) +

1

2
r1

(
2 log |1− z|+ z + z̄ − 2zz̄

|1− z|2
log |z|

)
− 1

|1− z|2

]
,

(B.12b)

:C2 : (z, z̄) =
2

N2

[
3i

8
r4 P4(z, z̄) +

3

2
r3 P3(z, z̄) + 2ir2

(
P2(z, z̄)− i

8

z − z̄
|1− z|2

(
log |z|

)2)
− 1

2
r1

(
2 log |1− z|+ z + z̄ − 2zz̄

|1− z|2
log |z|

)]
, (B.12c)

:C3 : (z, z̄) =
6

N3

[
− 5i

16
r6

(
P6(z, z̄) +

1

15

(
log |z|

)2
P4(z, z̄)

)
− 15

8
r5

(
P5(z, z̄)

+
1

15

(
log |z|

)2
P3(z, z̄)

)
− 33i

8
r4

(
P4(z, z̄) +

2

33

(
log |z|

)2
P2(z, z̄)

)
− 4r3

(
P3(z, z̄)− 1

24

(
log |z|

)2
log |1− z| − 1

48

z + z̄ − 2zz̄

|1− z|2
(

log |z|
)3)

− 3i

2
r2

(
P2(z, z̄)− i

6

z − z̄
|1− z|2

(
log |z|

)2)]
, (B.12d)

:C4 : (z, z̄) =
24

N4

[
35i

128
r8

(
P8(z, z̄) +

2

21

(
log |z|

)2
P6(z, z̄)

)
+

35

16
r7

(
P7(z, z̄)

+
2

21

(
log |z|

)2
P5(z, z̄)

)
+

55i

8
r6

(
P6(z, z̄) +

31

330

(
log |z|

)2
P4(z, z̄)

)
+

85

8
r5

(
P5(z, z̄) +

23

255

(
log |z|

)2
P3(z, z̄)

)
+

65i

8
r4

(
P4(z, z̄)

+
16

195

(
log |z|

)2
P2(z, z̄)− i

6240

z − z̄
|1− z|2

(
log |z|

)4)
+

5

2
r3

(
P3(z, z̄)

− 1

15

(
log |z|

)2
log |1− z| − 1

30

z + z̄ − 2z z̄

|1− z|2
(

log |z|
)3)]

, (B.12e)

where rn denote rational functions of z and z̄ defined as

rn ≡
(
z∂z − z̄∂z̄

)n(z + z̄

z − z̄

)
. (B.13)

We see that higher-order correlation functions involve higher order generalised Bloch-

Wigner-Ramakrishnan polylogarithm functions, as defined in Section 3.3. The explicit
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forms of P2, P3 and P4 are given in (3.28), while the next few read

P5(z, z̄) =
1

2

[
Li5(z) + Li5(z̄)− log |z|

(
Li4(z) + Li4(z̄)

)
+

1

3

(
log |z|

)2(
Li3(z) + Li3(z̄)

)
+

2

45

(
log |z|

)4
log |1− z|

]
, (B.14a)

P6(z, z̄) =
1

2i

[
Li6(z)− Li6(z̄)− log |z|

(
Li5(z)− Li5(z̄)

)
+

1

3

(
log |z|

)2(
Li4(z)− Li4(z̄)

)
− 1

45

(
log |z|

)4(
Li2(z)− Li2(z̄)

)]
, (B.14b)

P7(z, z̄) =
1

2

[
Li7(z) + Li7(z̄)− log |z|

(
Li6(z) + Li6(z̄)

)
+

1

3

(
log |z|

)2 (
Li5(z) + Li5(z̄)

)
− 1

45

(
log |z|

)4(
Li3(z) + Li3(z̄)

)
− 4

945

(
log |z|

)6
log |1− z|

]
, (B.14c)

P8(z, z̄) =
1

2i

[
Li8(z)− Li8(z̄)− log |z|

(
Li7(z)− Li7(z̄)

)
+

1

3

(
log |z|

)2(
Li6(z)− Li6(z̄)

)
− 1

45

(
log |z|

)4(
Li4(z)− Li4(z̄)

)
+

2

945

(
log |z|

)6(
Li2(z)− Li2(z̄)

)]
.

(B.14d)

We note that when fully written out the expressions (B.12) match (3.15).

Lastly, in Chapter 4 we find it more useful to expand the correlator (B.1) in the

parameter µ where (given in (2.75) with n = 0)

b2

2a2
0

= 1−
√

1− µ , (B.15)

so that the correlator takes on the form

C fer(z, z̄) =
∞∑
n=1

µnC fer
n (z, z̄) . (B.16)
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We give the first few series coefficients here for completeness:

Cfer
0 =

1

|1− z|2
, (B.17a)

Cfer
1 = − 1

2|1− z|2
− |z|

2(z + z̄ − 2|z|2)

2(z − z̄)2|1− z|2
log |z|2 − |z|2

(z − z̄)2
log |1− z|2 − 2i|z|2(z + z̄)

(z − z̄)3
P2(z, z̄) ,

(B.17b)

Cfer
2 =

1

8

[
− 1

|1− z|2
+
|z|2(z + z̄ − 2|z|2)

(z − z̄)2|1− z|2
log |z|2 +

|z|2(z + z̄)

(z − z̄)2|1− z|2
(

log |z|2
)2

+
2|z|2

(z − z̄)2
log |1− z|2 +

28i|z|2(z + z̄)

(z − z̄)3
P2(z, z̄)− 48|z|2(z2 + 4|z|2 + z̄2)

(z − z̄)4
P3(z, z̄)

+
24i|z|2(z + z̄)(z2 + 10|z|2 + z̄2)

(z − z̄)5
P4(z, z̄)

]
, (B.17c)

Cfer
3 =

1

16

[
− 1

|1− z|2
+
|z|2(z + z̄ − 2|z|2)

(z − z̄)2|1− z|2
log |z|2 − |z|2(z + z̄)

2(z − z̄)2|1− z|2
(

log |z|2
)2

−
2|z|2(z2 + 4|z|2 + z̄2)

(
log |z|2

)2
3(z − z̄)4

(
z + z̄ − 2|z|2

2|1− z|2
log |z|2 + log |1− z|2

)
+

2|z|2

(z − z̄)2
log |1− z|2 +

4i|z|2(z + z̄)

(z − z̄)3
P2(z, z̄) +

80|z|2(z2 + 4|z|2 + z̄2)

(z − z̄)4
P3(z, z̄)

− 4i|z|2(z + z̄)(z2 + 10|z|2 + z̄2)

(z − z̄)5

(
60P4(z, z̄) +

(
log |z|2

)2
P2(z, z̄)

)
+

4|z|2(z4 + 26z3z̄ + 66z2z̄2 + 26zz̄3 + z̄4)

(z − z̄)6

(
60P5(z, z̄) +

(
log |z|2

)2
P3(z, z̄)

)
− 4i|z|2(z + z̄)(z4 + 56z3z̄ + 246z2z̄2 + 56zz̄3 + z̄4)

3(z − z̄)7

(
60P6(z, z̄) +

(
log |z|2

)2
P4(z, z̄)

)]
.

(B.17d)

The two sets of results, (B.12) and (B.17), are simply linear combinations of each other,

determined by the relation (B.15).

B.2 Summary of the n = 1 correlators

To order 1/N all 4-point correlations functions of matter fields s1 in AdS3 × S3 are

known [66,73]. Using the notation

Cαα̇,ββ̇1, f1f2f3f4
≡ 〈O−−f1

(0)O++
f2

(∞)Oαα̇f3
(1)Oββ̇f4

(z, z̄)〉 , (B.18)
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one finds the following expressions

C++−−
1, f1f2f3f4

=
1

|1− z|2

[(
1− 1

N

)(
δf1f2δf3f4 + |1− z|2δf1f3δf2f4

)
+

2

Nπ
|1− z|2|z|2×

(
δf1f2δf3f4D̂1122(z, z̄) + δf1f4δf2f3D̂2112(z, z̄) + δf1f3δf2f4D̂1212(z, z̄)

)]
,

(B.19a)

C−−++
1, f1f2f3f4

=
1

|1− z|2

[(
1− 1

N

)(
δf1f2δf3f4 +

|1− z|2

|z|2
δf1f4δf2f3

)
+

2

Nπ
|1− z|2×

(
δf1f2δf3f4D̂1122(z, z̄) + δf1f4δf2f3D̂2112(z, z̄) + δf1f3δf2f4D̂1212(z, z̄)

)]
,

(B.19b)

C+−−+
1, f1f2f3f4

= − 1

|1− z|2

[(
1− 1

N

)
δf1f2δf3f4 +

2

Nπ
|1− z|2z

(
δf1f2δf3f4D̂1122(z, z̄)

+ δf1f4δf2f3D̂2112(z, z̄) + δf1f3δf2f4D̂1212(z, z̄)
)]

, (B.19c)

C−++−
1, f1f2f3f4

= − 1

|1− z|2

[(
1− 1

N

)
δf1f2δf3f4 +

2

Nπ
|1− z|2z̄

(
δf1f2δf3f4D̂1122(z, z̄)

+ δf1f4δf2f3D̂2112(z, z̄) + δf1f3δf2f4D̂1212(z, z̄)
)]

. (B.19d)

In the above we use the compact notation D̂∆1,∆2,∆3,∆4 , which are specific combinations

of logarithms of z and z̄, and P2(z, z̄) – the second order Bloch-Wigner-Ramakrisnan

function62. These functions naturally arise in four-point correlation functions in the

context of the AdS/CFT correspondence [40, 56, 253]. For example, contact Witten

diagrams in AdSd+1 involving four operators with scaling dimensions ∆i, dual to scalar

fields in the bulk, can be written as an integral over four scalar bulk-to-boundary

propagators [254,255]

D∆1,∆2,∆3,∆4(~zi) =

∫
dd+1w

√
g

4∏
i=1

K∆i(w;~zi) , (B.20)

where we work in the Poincaré patch of AdSd+1 in Euclidean signature

ds2 =
1

ω2
0

(
dw2

0 + d~w 2
)
, (B.21)

62Note that while in the present context it might have been more natural to denote D̂∆1,∆2,∆3,∆4

as P̂
(2)
∆1,∆2,∆3,∆4

, we retain the notation commonly used in the literature as generalisations involving
higher order BWR functions Pn are not known.
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O∆4(~z4)

Ō∆3(~z3)

w

O∆1(~z1)

Ō∆2(~z2)

Figure B.1: The contact Witten diagram corresponding to the integral (B.20). Four
scalar operator insertions O∆i with scaling dimensions ∆i interact via a quartic vertex
in the bulk. In the expression for D∆1,∆2,∆3,∆4 one has to integrate over all possible
interaction points w.

with the flat d-dimensional boundary being located at w0 = 0 and ~zi with i = 1, 2, 3, 4

denoting four insertion points of the external operators on this boundary (see fig-

ure B.1). In this spacetime, bulk-to-boundary propagators take the form

K∆i(w;~zi) =

[
w0

w2
0 + (~w − ~zi)2

]∆i

, (B.22)

which, after introducing four Schwinger parameters ti, allows us to rewrite (B.20) as

D∆1,∆2,∆3,∆4(~zi) = Γ

(
∆̂− d

2

)∫ ∞
0

4∏
i=1

[
dti

t∆i−1
i

Γ(∆i)

]
πd/2

2T
∆̂
2

e−
∑4
i,j=1 |~zij |2

titj
2T , (B.23)

where

~zij = ~zi − ~zj , ∆̂ =
4∑
i=1

∆i , T =
4∑
i=1

ti . (B.24)

By rewriting the integral in this form, one notices that differentiating D∆1,∆2,∆3,∆4 with

respect to |~zij |2 one obtains an expression which is proportional to the D-function re-

lated to contact diagrams with operator insertions that have higher scaling dimensions,

for example

∂

∂|~z12|2
D∆1,∆2,∆3,∆4(~zi) = −2∆1∆2

∆̂− d
D∆1+1,∆2+1,∆3,∆4 . (B.25)

Such relations become especially valuable, since in d = 2 one can evaluate

D1111(~zi) =
2πi

|~z13|2|~z24|2(z − z̄)
P2(z, z̄) , (B.26)
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where we used the conformal cross-ratios (B.3) and the second order Bloch-Wigner-

Ramakrishnan polylogarithm function (3.23). Furthermore, recall that in our analysis

we pick a specific gauge (2.26) and thus it is convenient to define a new set of functions

D̂∆1,∆2,∆3,∆4(z, z̄) ≡ lim
z2→∞

|z2|2∆2 D∆1,∆2,∆3,∆4(z1 = 0, z2, z3 = 1, z4 = z) , (B.27)

where zi, which denote points on the two-dimensional boundary, are now complex

variables63. Using this definition it follows that

D̂1111(z, z̄) =
2πi

z − z̄
P2(z, z̄) , (B.29)

while functions with higher values of the indices can be obtained from D̂1111 using the

derivative relations (B.25) together with several identities that D̂-functions satisfy, such

as64

D̂∆2,∆1,∆3,∆4

(
1

z
,

1

z̄

)
= |z|2∆4 D̂∆1,∆2,∆3,∆4(z, z̄) . (B.30)

Concretely, the functions appearing in (B.19) can be written explicitly as

D̂1122(z, z̄) =
−2πi

(z − z̄)2

[
z + z̄

z − z̄
P2(z, z̄) +

log |1− z|2

2i
+
z + z̄ − 2|z|2

4i |1− z|2
log |z|2

]
, (B.31a)

D̂2112(z, z̄) =
−2πi

(z − z̄)2

[
2− z − z̄
z − z̄

P2(z, z̄) +
z + z̄ − 2|z|2

4i |z|2
log |1− z|2 +

log |z|2

2i

]
,

(B.31b)

D̂1212(z, z̄) =
−2πi

(z − z̄)2

[
2|z|2 − z − z̄

z − z̄
P2(z, z̄) +

z + z̄ − 2

4i
log |1− z|2 − z + z̄

2i
log |z|2

]
.

(B.31c)

Let us conclude with the observation that the D̂-functions written above can be

written schematically as

D̂ ∼ f1(z, z̄)P2(z, z̄) + f2(z, z̄) log |1− z|2 + f3(z, z̄) log |z|2 , (B.32)

where fi(z, z̄) are some meromorphic functions of z and z̄. The same structure can also

63Note that D̂-functions are related to D̄-functions, which are often used in the literature [45,254,255],
by

D̂∆1,∆2,∆3,∆4(z, z̄) =
π Γ
(

∆̂−2
2

)
2
∏4
i=1 Γ(∆i)

|z|∆̂−2∆1−2∆4 |1− z|∆̂−2∆3−2∆4D̄∆1,∆2,∆3,∆4(z, z̄) . (B.28)

64Other identities can be found for example in [73,80].
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be seen in D̂-functions with higher values for the indices and generalisations of (B.20)

corresponding to higher n-point contact diagrams, discussed for example in [182]. Since

D̂-functions form the main building blocks of 4-point correlation functions in AdS3×S3,

it follows that correlators themselves should have the same structure.

B.3 R-symmetry projections

The R-symmetry group of the D1-D5 CFT is SU(2)L × SU(2)R, as discussed in Sec-

tion 2.2.2. The class of correlators considered in Section 3.4 are compactly given by

Cαα̇, ββ̇n,f1f2f3f4
= 〈(O−−f1

)n(0)(O++
f2

)n(∞)Oαα̇f3
(1)Oββ̇f4

(z, z̄)〉 , (B.33)

where α, β and α̇, β̇ are SU(2)L and SU(2)R fundamental indices respectively. The

single-trace operators transform in the (2,2) irreducible representation of the SU(2)L×
SU(2)R R-symmetry. Note that the usual physics notation for the representations of

SU(2) are using the quantity j (and j̄ for the right-hand sector) related to the dimension

of the representation R by dim(R) = 2j + 1. In this notation the operators Oαα̇f3

are in the (j, j̄) = (1
2 ,

1
2) representation of the R-symmetry group. The double-trace

operators of the form :Oαα̇f3
Oββ̇f4

: ∼ Oαβ,α̇β̇f3f4
exchanged in the z → 1 OPE channel of

these correlators can then be classified by representations of the tensor product group

SU(2)×SU(2) in both the left and right sectors. In this section we detail the projectors

onto the irreducible representations of the tensor product group.

We start by constructing the Euclidean signature gamma matrices in the Weyl basis

for I = 0, 1, 2, 3 as

γIE =

(
0 σI

σ̄I 0

)
where σIαα̇ =

(
I2 , −iσ

)
αα̇

, σ̄Iα̇α =
(
I2 , iσ

)α̇α
, (B.34)

where σ is a 3-vector of the usual SU(2) generators – the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (B.35)

The gamma matrices (B.34) satisfy the Cl4,0(R) = Cl4(R) Clifford algebra

{
γIE , γ

J
E

}
= 2δIJI4 , (B.36)

where δIJ is the usual metric on 4-dimensional Euclidean space. The choice of gamma
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matrices in (B.34) yields the fifth gamma matrix in the diagonal form

γ5
E ≡ −γ0γ1γ2γ3 =

(
I2 0

0 −I2

)
. (B.37)

One can define the anti-symmetrised combinations of the σ and σ̄ SO(4) vectors

σIJ β
α ≡ i

4

(
σI σ̄J − σJ σ̄I

) β
α

=
i

4

(
σIαα̇σ̄

Jα̇β − σJαα̇σ̄Iα̇β
)
,

σ̄IJ β̇
α̇ ≡ i

4

(
σ̄IσJ − σ̄JσI

) β̇
α̇

=
i

4

(
σ̄Iβ̇βσJβα̇ − σ̄Jβ̇βσIβα̇

)
,

(B.38)

which satisfy the (anti-)self-duality conditions

1

2
εIJKLσ β

KLα = σIJ β
α ,

1

2
εIJKLσ̄ β̇

KL α̇ = − σ̄IJ β̇
α̇ ,

(B.39)

and the commutation relations[
σIJ , σKL

] β
α

=
(
δILσJK + δJKσIL − δIKσJL − δJLσIK

) β
α
, (B.40)

and similarly for σ̄IJ . The SU(2)L and SU(2)R indices are raised with εαβ and εα̇β̇

respectively – such that ε12 = 1 and χα = εαβχβ. The Fierz identity for the decompo-

sition of irreps of SU(2) for 2⊗ 2 = 0⊕ 3 are

χαψβ =
1

2
εαβ
(
χψ
)

+
1

2
σIJ αβ

(
χσIJ ψ

)
. (B.41)

The singlet projection of the object χαψβ is then given by 1
2ε
αβ since the scalar product

is χψ ≡ χγψγ = χγεγδψ
δ. The projection onto the triplet of SU(2) is then the bilinear

1
2

(
χσIJ ψ

)
= 1

2

(
χγσIJγδλ

δ
)

for which there are three independent choices of I and J

due to σIJ being anti-symmetric and self-dual – one can choose

σ01
αβ ∼

(
1 0

0 −1

)
αβ

, σ02
αβ ∼

(
1 0

0 1

)
αβ

, σ03
αβ =

1

2

(
0 1

1 0

)
αβ

. (B.42)

Including both the left and right sectors requires the equivalent expression for the

decomposition (1
2 ,

1
2) ⊗ (1

2 ,
1
2) = (0, 0) ⊕ (1, 0) ⊕ (0, 1) ⊕ (1, 1) which follows trivially

from (B.41) with the triplet projection in the right sectors using instead σ̄IJ .

For our correlators we have that Cαα̇, ββ̇n,f1f2f3f4
= 0 for α = β or α̇ = β̇ and so the only

non-zero triplet projection out those in (B.42) is that of σ03. We then arrive at the
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four R-symmetry projections of the n = 1 correlators:

C1(0,0) ≡
1

4
εαβ εα̇β̇ C

αα̇, ββ̇
1,f1f2f3f4

=
1

4

(
C++−− − C+−−+ − C−++− + C−−++

)
=

(
1− 1

N

)(
1

4|1− z|2
δf1f2δf3f4 +

1

4|z|2
δf1f4δf2f3 +

1

4
δf1f3δf2f4

)
+

2

Nπ

1 + |z|2 + z̄ + z

4

[
δf1f2δf3f4D̂1122 + δf1f4δf2f3D̂2112 + δf1f3δf2f4D̂1212

]
,

(B.43a)

C1(1,0) ≡
1

2
σ03
αβ εα̇β̇ C

αα̇, ββ̇
1,f1f2f3f4

=
1

4

(
C+−−+ − C++−− − C−++− + C−−++

)
=

(
1− 1

N

)(
1

4|z|2
δf1f4δf2f3 −

1

4
δf1f3δf2f4

)
+

2

Nπ

1− |z|2 + z̄ − z
4

[
δf1f2δf3f4D̂1122 + δf1f4δf2f3D̂2112 + δf1f3δf2f4D̂1212

]
, (B.43b)

C1(0,1) ≡
1

2
εαβ σ̄

03
α̇β̇
Cαα̇, ββ̇1,f1f2f3f4

=
1

4

(
C+−−+ + C++−− − C−++− − C−−++

)
=

(
1− 1

N

)(
1

4
δf1f3δf2f4 −

1

4|z|2
δf1f4δf2f3

)
+

2

Nπ

−1 + |z|2 + z̄ − z
4

[
δf1f2δf3f4D̂1122 + δf1f4δf2f3D̂2112 + δf1f3δf2f4D̂1212

]
, (B.43c)

C1(1,1) ≡ σ03
αβ σ̄

03
α̇β̇
Cαα̇, ββ̇1,f1f2f3f4

=
1

4

(
C+−−+ + C++−− + C−++− + C−−++

)
=

(
1− 1

N

)(
1

4|z|2
δf1f4δf2f3 +

1

4
δf1f3δf2f4

)
+

2

Nπ

1 + |z|2 − z̄ − z
4

[
δf1f2δf3f4D̂1122 + δf1f4δf2f3D̂2112 + δf1f3δf2f4D̂1212

]
, (B.43d)

where the n = 1 correlators C++−−, C+−−+, C−−++, C−++− are given in (B.19).

B.4 Euclidean z, z̄ → 1 OPE data of Cn=1

In this section we give details on the extraction of the Euclidean z, z̄ → 1 analysis of

the connected correlator C1 containing double-trace operators from Section 3.4.2 to

arbitrary orders in (1− z). We only consider the exchange of double-trace operators of

minimal twist (ŌO)k ∼ Ō∂kO and use the case of the the n = 1 correlator projected

onto the R-symmetry and flavour irreps. This is given by (B.43a) with the additional
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projection (3.41a) applied, yielding

Csing
(0,0) =

1

|1− z|2

[(
1− 1

N

)(
Nf +

|1− z|2

4
+
|1− z|2

4|z|2

)

+
2|1− z|2

Nπ

1 + |z|2 + z + z̄

4

(
Nf D̂1122 + D̂2112 + D̂1212

)]
.

(B.44)

where the relevant D-functions are given in (B.31). Expanding this in the z, z̄ → 1

channel at order (1− z̄)0 gives

Csing
1 (0,0) ≈

∞∑
t=0

(1− z)t
[

1

2N

(
(t2 + t+ 2)Nf

(t+ 1)(t+ 2)(t+ 3)
−
(
1 + δt,0

))
log |1− z|2 +

1 + δt,0
4

+
1

N

(
AtNf +Bt

)]
+

∞∑
t=0

(−1)t(1− z)t+2

N |1− z|2
(t+ 1)Nf

2(t+ 2)(t+ 3)
, (B.45)

with the coefficients At and Bt given by

At =

{
− 7

36
,− 1

72
,− 1

225
,− 1

900
,

61

44100
,

23

7056
,

293

63504
, . . .

}
,

Bt =

{
1

2
,−1

4
,−1

6
,−1

6
,− 7

40
,−11

60
,− 4

21
, . . .

}
.

(B.46)

The goal is to write the conformal block decomposition of this correlator in the s-

channel up to order 1/N and at order (1 − z̄)0 with generic (1 − z). As discussed

in Section 3.4.2, there are triple-trace operators that mix with the R-symmetry and

flavour singlet double-trace operators

Osing

k,k̄
≡ :Ōf∂k∂̄k̄Of :sing

(0,0) , (B.47)

even at order 1/N , however, these contributions to the correlator (B.45) are only in

the 1/N rational terms. As discussed in Section 2.1.1 the contribution of a given quasi-

primary and its global descendants to a correlation function is packaged into global

conformal blocks (2.33), up to the OPE coefficients (2.27). The general form of a quasi-

primary’s contribution to a correlator of the form C = 〈Ō1(0)O1(∞)O2(1)Ō2(z, z̄)〉 in

the direct channel is thus

C(z, z̄) ∼ (1− z)−2h2+h(1− z̄)−2h̄2+h̄C11hCh22 2F1(h, h; 2h; 1− z)2F1(h̄, h̄; 2h̄; 1− z̄) ,
(B.48)

where h, h̄ are the dimensions of the exchanged primary. Conserved currents, having

either h or h̄ equal to zero, will be the only operators contributing with negative powers

of either (1− z) or (1− z̄) and so their contributions in (B.45) can be easily identified.
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The contribution of the operators (B.47), with dimensions

hk,k̄ = 1 + k + γsing,k,k̄
(0,0) , h̄k,k̄ = 1 + k̄ + γsing,k,k̄

(0,0) , (B.49)

to the correlator (B.44) (whose external operators have dimensions (1/2, 1/2)) will then

be

Csing
1 (0,0) ∼ |1− z|

−2
∞∑

k,k̄=0

∣∣∣csing,k,k̄
(0,0)

∣∣∣2(1− z)hk,k̄(1− z̄)h̄k,k̄2F1

(
hk,k̄, hk,k̄; 2hk,k̄; 1− z

)
× 2F1

(
h̄k,k̄, h̄k,k̄; 2h̄k,k̄; 1− z̄

)
.

(B.50)

The minimal twist double-trace operators have k̄ = 0 and so from now on, these are the

contributions that we consider. For ease of notation we redefine
∣∣∣csing,k,0

(0,0)

∣∣∣2 ≡ ∣∣∣csing,k
(0,0)

∣∣∣2
and γsing,k,0

(0,0) ≡ γsing,k
(0,0) as in the main text. We now expand these contributions in the

large N limit up to order 1/N

Csing
1 (0,0) ≈

∞∑
k=0

(1− z)k
(∣∣∣csing,k

(0)(0,0)

∣∣∣2 +
1

N

∣∣∣csing,k
(1)(0,0)

∣∣∣2)(1 +
1

N
γsing,k

(1)(0,0) log |1− z|2
)

×
(

1 +
1

N
γsing,k

(1)(0,0)∂k

)
Fk

≈
∞∑
k=0

(1− z)k
[∣∣∣csing,k

(0)(0,0)

∣∣∣2 +
1

N

(∣∣∣csing,k
(1)(0,0)

∣∣∣2 +
∣∣∣csing,k

(0)(0,0)

∣∣∣2γsing,k
(1)(0,0)

(
log |1− z|2 + ∂k

))]
Fk ,

(B.51)

where the expansion of the data∣∣∣csing,k
(0,0)

∣∣∣2 ≈ ∣∣∣csing,k
(0)(0,0)

∣∣∣2 +
1

N

∣∣∣csing,k
(1)(0,0)

∣∣∣2 + . . . ,

γsing,k
(0,0) ≈

1

N
γsing,k

(1)(0,0) + . . . ,

(B.52)

has been used, along with

∂ 1
N

2F1

(
hk,0, hk,0;2hk,0; 1− z

)∣∣∣
N→∞

= γsing,k
(0,0) ∂kFk ,

Fk ≡ 2F1(1 + k, 1 + k; 2 + 2k; 1− z)
(B.53)

As noted in Section 3.4.2 we have cheated here slightly, since only the leading term∣∣∣csing,k
(0)(0,0)

∣∣∣2 can be interpreted as a three-point function involving the double-trace op-

erators (B.47). The higher-order terms are a mixture of the subleading double-trace

OPE coefficients and leading-order triple-trace OPE coefficients at a given level. As in

Section 3.4.2, we content ourselves with finding the sum of these contributions which

we call
∣∣∣csing,k

(1)(0,0)

∣∣∣2. In order to match (B.51) term by term in powers of (1− z) with the
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expansion of the explicit correlator (B.45) we need to use a series representation of the

hypergeometric function Fk and its k derivative given by

Fk =
∞∑
q=0

(1 + k) 2
q (1− z)q

q!(2 + 2k)q
, (B.54a)

∂kFk =
∞∑
q=0

(1 + k) 2
q (1− z)q

q!(2 + 2k)q
H(1)
q,k , (B.54b)

where

H(1)
q,k ≡ 2

(
H2k+1 −Hk +Hk+q −H2k+q+1

)
. (B.55)

Using these results, (B.51) can be rewritten as

Csing
1 (0,0) ≈

∞∑
t=0

t∑
k=0

(1 + k) 2
t−k (1− z)t

(t− k)!(2 + 2k)t−k

[ ∣∣∣csing,k
(0)(0,0)

∣∣∣2 +
1

N

( ∣∣∣csing,k
(1)(0,0)

∣∣∣2
+
∣∣∣csing,k

(0)(0,0)

∣∣∣2γsing,k
(1)(0,0)

(
log |1− z|2 +H(1)

t−k,k

))]
,

(B.56)

where we relabelled the series as
∑∞

k=0

∑∞
q=0 →

∑∞
t=0

∑t
k=0 where t = k + q. Thus,

comparing (B.45) and (B.56) per order in (1− z), 1/N and the number of logs we get

the relations

1 + δt,0
4

=
t∑

k=0

(1 + k) 2
t−k

(t− k)!(2 + 2k)t−k

∣∣∣csing,k
(0)(0,0)

∣∣∣2 , (B.57a)

AtNf +Bt =

t∑
k=0

(1 + k) 2
t−k

(t− k)!(2 + 2k)t−k

∣∣∣csing,k
(1)(0,0)

∣∣∣2 , (B.57b)

(t2 + t+ 2)Nf

2(t+ 1)(t+ 2)(t+ 3)
− 1 + δt,0

2
=

t∑
k=0

(1 + k) 2
t−k

(t− k)!(2 + 2k)t−k

∣∣∣csing,k
(0)(0,0)

∣∣∣2γsing,k
(1)(0,0) , (B.57c)

with the terms At and Bt given in (B.46). These equations can then be solved recur-

sively per value of t to obtain the data quoted in the main text in (3.49), (3.51) and

(3.52).
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Appendix C

Double-trace Data from the

Inversion Formula

In this section we derive the anomalous dimensions and OPE coefficients that were

presented in section 3.4.2 using the Lorentzian inversion formula [68,256]. In particular,

we are interested in the OPE data of double-trace operators exchanged in the z, z̄ → 1

(or equivalently z1 → z2) channel of the n = 1 correlator in (3.40), which can be

extracted from the singularities of the remaining two channels.

Begin by writing the four-point correlation function as

Cαα̇, ββ̇n=1,f1f2f3f4
= 〈O−−f1

(0)O++
f2

(∞)Oαα̇f3
(1)Oββ̇f4

(z, z̄)〉 =
1

|1− z|2
Gαα̇, ββ̇n=1,f1f2f3f4

(z, z̄) ,

(C.1)

where we used the conformal cross-ratios z, z̄ defined in (2.19). Here we find it conve-

nient instead to define

Z =
z12z34

z13z24
, Z̄ =

z̄12z̄34

z̄13z̄24
, (C.2)

which are related to the z, z̄ by

z = 1− Z , z̄ = 1− Z̄ , (C.3)

and as before zij = zi−zj . The use of these capitalised conformal cross-ratios allows us

to make close contact with [68] (see also [69, 197]). The s-channel OPE limit z1 → z2,

which corresponds to taking Z, Z̄ → 0, can be written as a sum over the exchange of

quasi-primary operators, with spin k =
∣∣h− h̄∣∣ and scaling dimension ∆ = h+ h̄. The

Lorentzian inversion formula states that for large enough spin the CFT data in the
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s-channel is completely encapsulated by a function65

c(h, h̄) ≡ ct(h, h̄) + (−1)kcu(h, h̄) , (C.4)

which is analytic in spin and built from the information of the t-channel (Z → 1) and

u-channel (Z → ∞) of the correlator, with the details of the function depending on

the external operators and the dimension of the spacetime. Assuming h ≥ h̄, so that

k = h− h̄ and

h =
∆ + k

2
, h̄ =

∆− k
2

, (C.5)

in d = 2 and for the correlator (C.1), we use

ct(h, h̄) ≡ κ

2

∫ 1

0

dZ

Z2

dZ̄

Z̄2
gh(Z) g1−h̄(Z̄) dDisc

[
G(Z, Z̄)

]
, (C.6)

where

κ =
Γ4(h)

2π2 Γ(2h− 1) Γ(2h)
, (C.7a)

gh(Z) = zh 2F1(h, h, 2h, Z) . (C.7b)

The double discontinuity that picks out the relevant singularities we take to be

dDisc
[
G(Z, Z̄)

]
≡ G(Z, Z̄)− 1

2

(
G�(Z, Z̄) + G	(Z, Z̄)

)
, (C.8)

where we analytically continue around Z = 1, while leaving Z̄ fixed as66

G�(Z, Z̄) : (1− Z)→ e−2πi(1− Z) , (C.9a)

G	(Z, Z̄) : (1− Z)→ e2πi(1− Z) . (C.9b)

The function cu(h, h̄) can be obtained in a similar manner, only that the analytic

continuation is performed around Z → ∞. In practice, this can be done by swapping

z1 ↔ z2, so that z → z−1 and z̄ → z̄−1 followed by using (C.3), in which case one can

again analytically continue around Z = 1 as in (C.9).

The CFT data is contained in the analytic structure of the inversion function. The

location of simple poles gives information about the twists of the exchanged quasi-

primary operators, while the residue at that pole is related to the coefficients of global

blocks in the s-channel. If only one quasi-primary for given conformal dimensions

65Here we suppress flavour and R-symmetry indices until we consider specific correlators.
66Note that in [68] the analytic continuation is performed around Z̄ = 1, however, there h and h̄ are

exchanged as compared to (C.5).
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contributes to the correlator under question, these coefficients will simply be the square

of the OPE coefficients of external operators with the quasi-primary. The precise form

of (C.4) near a pole corresponding to the exchange of a quasi-primary with left- and

right-moving conformal dimensions (hp, h̄p) is given by

c(h, h̄) ∼ −1

2

C 2
hp,h̄p

h̄− h̄p
, (C.10)

where the factor of 1/2 comes from replacing the twist ∆− k with h̄.

We aim to reproduce the CFT data of double-trace operators exchanged in the

s-channel of (C.1), having the schematic form :OŌ :n̄,k ∼ Of3∂
n̄+k∂̄n̄Ōf4 , for which at

large N

hn̄,k = 1 + n̄+ k +
γn̄,k(1)

N
+O(1/N2) , (C.11a)

h̄n̄,k = 1 + n̄+
γn̄,k(1)

N
+O(1/N2) , (C.11b)

with γn̄,k(1) denoting the anomalous dimensions. We also expand the residues in large N

(see Section 3.4.2 for a more detailed discussion on the relation of these coefficients to

the 3-point functions of the double-trace operators :OŌ :n̄,k)

C 2
hph̄p

=
∣∣cn̄,k(0)

∣∣2 +
1

N

∣∣cn̄,k(1)

∣∣2 +O(1/N2) . (C.12)

Inserting these expressions into (C.10) and expanding in 1/N yields

c(h, h̄) ≈ −1

2

 |cn̄,k(0) |
2

h̄− (1 + n̄)
+

1

N

 |cn̄,k(1) |
2

h̄− (1 + n̄)
+
|cn̄,k(0) |

2 γn̄,k(1)(
h̄− (1 + n̄)

)2
+O(1/N2) ,

(C.13)

and thus one is able to extract the unknown quantities by analysing poles of different

degrees at h̄ = 1 + n̄, order by order in the large N expansion. In particular, to make

contact with the analysis of section 3.4.2, we focus on the minimal-twist operators67

:OŌ :k ∼ Of3∂
kŌf4 , with n̄ = 0, for which we can extract the CFT data by other

independent methods as well.

Let us now consider the specific example of the n = 1 correlator (3.40) in the

67To avoid the cluttering of indices and to have notation consistent with section 3.4, the CFT data of
double-traces with n̄ = 0 will only have a single index k denoting the spin of the exchanged operator,
for example γk(1) ≡ γ

n̄=0,k
(1) .
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R-symmetry singlet projection

G(0,0)
1, f1f2f3f4

(z, z̄) =

(
1− 1

N

)(
δf1f2δf3f4 +

|1− z|2

4
δf1f3δf2f4 +

|1− z|2

4|z|2
δf1f4δf2f3

)
+
|1− z|2

Nπ

|1 + z|2

2

(
δf1f2δf3f4D̂1122 + δf1f4δf2f3D̂2112 + δf1f3δf2f4D̂1212

)
,

(C.14)

where the D-functions are given in (B.31). We first analyse the t-channel contribution

ct(h, h̄) to the inversion formula. Begin by using (C.3) to rewrite G(0,0)
1, f1f2f3f4

in terms

of Z and Z̄, expand the expression in68 (1− Z)/Z to find

G(0,0)
1, f1f2f3f4

(1− Z, 1− Z̄) ∼
δf1f4δf2f3

4
G̃(0,0)

1 (Z̄)
Z

1− Z
+ . . . , (C.15)

where

G̃(0,0)
1 (Z̄) =

[
Z̄

1− Z̄
− 1

N

(
Z̄

1− Z̄
+

(
2

Z̄

1− Z̄
+

Z̄2

(1− Z̄)2

)
log Z̄

)]
. (C.16)

In (C.15) we only show terms that are non-vanishing after taking the double disconti-

nuity (C.8), which are poles and double logarithms at Z = 1. After inserting (C.15)

into (C.6) the integrals factorise to give

ct(h, h̄) =
δf1f4δf2f3

4

κ

2

∫ 1

0

dZ

Z2
gh(Z) dDisc

[
Z

1− Z

] ∫ 1

0

dZ̄

Z̄2
g1−h̄(Z̄) G̃(0,0)

1 (Z̄) . (C.17)

The integral involving the double discontinuity has to be evaluated with extra care.

Begin by noting that for a generic exponent p [68, 69]

dDisc

[(
1− Z
Z

)p ]
= 2 sin2(pπ)

(
1− Z
Z

)p
, (C.18)

which would näıvely vanish for integer p, however, the resulting double root precisely

cancels out a double pole arising from the integral over Z. Let us rewrite (C.17) as

ct(h, h̄) =
δf1f4δf2f3

4

κ

2
lim
p→−1

∫ 1

0

dZ

Z2
gh(Z) dDisc

[(
1− Z
Z

)p ] ∫ 1

0

dZ̄

Z̄2
g1−h̄(Z̄) G̃(0,0)

1 (Z̄)

=
δf1f4δf2f3

4

κ

2
lim
p→−1

[
2 sin2(pπ) Ip(h)

]
× (C.19)[

I−1(1− h̄)− 1

N

(
I−1(1− h̄) + 2J −1(1− h̄) + J −2(1− h̄)

)]
,

68The choice of this particular combination of Z is convenient as it allows us to evaluate the integrals
that appear in the inversion function in a closed form [68,69].
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where we defined

Ia(h) ≡
∫ 1

0

dZ

Z2
gh(Z)

(
1− Z
Z

)a
=

Γ(2h) Γ2(a+ 1) Γ(h− a− 1)

Γ2(h) Γ(h+ a+ 1)
, (C.20a)

J a(h) ≡
∫ 1

0

dZ̄

Z̄2
gh(Z̄)

(
1− Z̄
Z̄

)a
log Z̄ . (C.20b)

Integral (C.20a) is evaluated following [69] and using this closed from expression we get

2 sin2(pπ)Ip(h) = 2π2 Γ(2h) Γ(h− p− 1)

Γ2(h) Γ(h+ p+ 1) Γ2(−p)
, (C.21)

which vanishes only for non-negative integer values of p. It also follows that

κ lim
p→−1

[
2 sin2(pπ) Ip(h)

]
=

Γ2(h)

Γ(2h− 1)
. (C.22)

Next, we can repeat this procedure for the u-channel of (C.14). As already dis-

cussed, we swap z1 ↔ z2 causing z → z−1 and z̄ → z̄−1, followed by the change to Z,

Z̄ variables using (C.3). Extracting the singular terms at Z = 1 yields

G(0,0)
1, f1f2f3f4

(
1

1− Z
,

1

1− Z̄

)
∼
δf1f3δf2f4

4
G̃(0,0)

1 (Z̄)
Z

1− Z
+ . . . , (C.23)

with the function of Z̄ again being given by (C.16)69. Since this expansion is identical

to (C.15) up to the exchange of flavour indices δf1f4δf2f3 ↔ δf1f3δf2f4 , one can simply

repeat the procedure applied to the t-channel and obtain the full inversion function for

(C.14)

c(h, h̄) =
δf1f4δf2f3 + (−1)kδf1f3δf2f4

4

Γ2(h)

2Γ(2h− 1)
×[

I−1(1− h̄)− 1

N

(
I−1(1− h̄) + 2J −1(1− h̄) + J −2(1− h̄)

)]
.

(C.24)

Functions of h̄ in (C.24) contain poles that allow us to extract CFT data. Let us

first consider

Ia(1− h̄) =
Γ(2− 2h̄) Γ2(a+ 1) Γ(−h̄− a)

Γ2(1− h̄) Γ(2 + a− h̄)
, (C.25)

with generic a. The relevant poles70 arise whenever the argument of Γ(−h̄ − a) is a

69This can be understood from the fact that sending z → z−1 and z̄ → z̄−1 has the effect of
exchanging δf1f4δf2f3 ↔ δf1f3δf2f4 in (C.14), if one uses the identity (B.30). As a consequence, the
expansions (C.15) and (C.23) are identical up to this exchange of flavour indices.

70There are additional spurious poles due to Γ(2− 2h̄) which we ignore [68,256].
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non-positive integer, where the gamma function behaves as

Γ(−h̄− a) ∼ −(−1)n̄

n̄!

1

h̄− (n̄− a)
, h̄→ n̄− a , n̄ = 0, 1, 2, . . . . (C.26)

Expanding Ia(1− h̄) around this value yields

Ia(1− h̄) ∼ − (−a) 2
n̄

n̄! (n̄− 2a− 1)n̄

1

h̄− (n̄− a)
, (C.27)

where

(x)n =
Γ(x+ n)

Γ(x)
= (−1)n

Γ(1− x)

Γ(1− x− n)
, (C.28)

denotes the rising Pochhammer symbol. Writing the behaviour of Ia(1 − h̄) near the

pole in this form makes it manifest that the residue is a finite positive number if a is a

negative integer. Using this result, we can analyse simple poles in (C.24) at order N0

and find

c(h, h̄)
∣∣
N0 ∼ −

1

2

δf1f4δf2f3 + (−1)kδf1f3δf2f4

4

(n̄!)2

(2n̄)!

[(n̄+ k)!]2

(2n̄+ 2k)!

1

h̄− (1 + n̄)
, (C.29)

where we have used that h and h̄ are related by h = h̄+ k, from which it follows that

as h̄→ 1 + n̄ so too h→ 1 + n̄+ k. After being inserted into (C.22), this results in the

appearance k-dependent factorials. By comparing the above expression with (C.13),

we can extract the squares of generalised free field OPE coefficients

∣∣∣cn̄,k(0)(0,0)

∣∣∣2 =
δf1f4δf2f3 + (−1)kδf1f3δf2f4

4

(n̄!)2

(2n̄)!

[(n̄+ k)!]2

(2n̄+ 2k)!
. (C.30)

By setting n̄ = 0 one obtains

∣∣∣ck(0)(0,0)

∣∣∣2 =
δf1f4δf2f3 + (−1)kδf1f3δf2f4

4

(k!)2

(2k)!
, (C.31)

which are the leading OPE coefficients for the exchange of minimal-twist operators and

after using appropriate flavour projections (3.41) we obtain (3.49) and (3.53).

At order 1/N , we expect (C.24) to contain simple and double poles as h̄ → 1 + n̄.

In general, the location and the degree of such divergences in the inversion formula is

determined by the behaviour of integrands in (C.20) as Z, Z̄ → 0, with double poles

arising due to the presence of log Z̄ terms. To see this, we can manipulate the logarithm

function in (C.20b) and obtain

J a(1− h̄) = − d

da
Ia(1− h̄) +

∞∑
m=1

(−1)m

m
Ia−m(1− h̄) . (C.32)
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One finds that

− d

da
Ia(1− h̄) = Ia(1− h̄)

[
ψ(−a− h̄) + ψ(2 + a− h̄)− 2ψ(a+ 1)

]
, (C.33)

where ψ(z) ≡ Γ′(z)/Γ(z) is the digamma function, which diverges whenever its argu-

ment is a non-positive integer. As such, the relevant double poles arise due to the

combination of simple poles in both ψ(−h̄− a) and Γ(−h̄− a) in Ia(1− h̄), with

Γ(−a− h̄)ψ(−a− h̄) ∼ −(−1)n̄

n̄!

1(
h̄− (n̄− a)

)2 + . . . , n̄ = 0, 1, 2, . . . (C.34)

where the dots denote regular terms. In contrast, simple poles in J a arise from three

different places: from the series term in the second line of (C.32), from Γ(−h̄ − a) in

Ia(1− h̄) when it is multiplied by the remaining two digamma functions in (C.33), and

from the first order terms in the h̄ − (n̄ − a) expansion of the prefactors multiplying

(C.34)

Γ(2− 2h̄) Γ2(1 + a)

Γ2(1− h̄) Γ(2 + a− h̄)

h̄→n̄−a−−−−−→ (−1)n̄(−a) 2
n̄

(n̄− 2a− 1)n̄

[
1 +

(
h̄− (n̄− a)

)
×

(
2ψ(1 + a− n̄)− 2ψ(2 + 2a− 2n̄) + ψ(2 + 2a− n̄)

)
+O

((
h̄− (n̄− a)

)2)]
. (C.35)

After combining all these contributions, one finds that the pole structure of (C.20b)

near h̄ = n̄− a is given by

J a(1− h̄) ∼ − (−a) 2
n̄

n̄! (n̄− 2a− 1)n̄

[
1(

h̄− (n̄− a)
)2 +

2ψ(n̄− 2a− 1)− 2ψ(2n̄− 2a− 1)

h̄− (n̄− a)

]
.

(C.36)

There is also an additional, spin-dependent, contribution coming from the prefactor

(C.22)

Γ2(h)

Γ(2h− 1)
∼ Γ2(k + n̄− a)

Γ(2k + 2n̄− 2a− 1)

[
1+2

(
h̄−(n̄−a)

)(
ψ(n̄+k−a)−ψ(2k+2n̄−2a−1)

)]
,

(C.37)

which is multiplying the J a(1− h̄) in (C.24). Thus all in all

Γ2(h)

Γ(2h− 1)
J a(1− h̄) ∼ − (−a) 2

n̄

n̄!(n̄− 2a− 1)n̄

Γ2(k + n̄− a)

Γ(2k + 2n̄− 2a− 1)

[
1(

h̄− (n̄− a)
)2

+ 2
ψ(n̄− 2a− 1)− ψ(2n̄− 2a− 1) + ψ(n̄+ k − a)− ψ(2n̄+ 2k − 2a− 1)

h̄− (n̄− a)

]
. (C.38)
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Applying this result to (C.24) at order 1/N , one finds

c(h, h̄)
∣∣∣
1/N
∼

− 1

2

δf1f4δf2f3 + (−1)kδf1f3δf2f4

4

(n̄!)2

(2n̄)!

[(n̄+ k)!]2

(2n̄+ 2k)!

{
−
(
n̄2 + n̄+ 2

)(
h̄− (n̄+ 1)

)2 − 1

h̄− (n̄+ 1)
×[

1 + 4
(
ψ(n̄+ 1)− ψ(2n̄+ 1) + ψ(n̄+ k + 1)− ψ(2n̄+ 2k + 1)

)
(C.39)

+ 2n̄(n̄+ 1)
(
ψ(n̄+ 2)− ψ(2n̄+ 1) + ψ(n̄+ k + 1)− ψ(2n̄+ 2k + 1)

)]}
+ . . . ,

where the dots again denote regular terms. By comparing with (C.13), one can read

off

γn̄,k(1),(0,0) = −
(
n̄2 + n̄+ 2

)
, (C.40a)∣∣∣cn̄,k(1)(0,0)

∣∣∣2 = −
∣∣∣cn̄,k(0)(0,0)

∣∣∣2[4(ψ(n̄+ 1)− ψ(2n̄+ 1) + ψ(n̄+ k + 1)− ψ(2n̄+ 2k + 1)
)

+ 1 + 2n̄(n̄+ 1)
(
ψ(n̄+ 2)− ψ(2n̄+ 1) + ψ(n̄+ k + 1)− ψ(2n̄+ 2k + 1)

)]
,

(C.40b)

where we have used (C.30). For n̄ = 0 this CFT data simplifies greatly, in particular,

the anomalous dimensions are equal for all spins and are given by γk(1),(0,0) = −2, which

for k > 2 agrees with (3.50) and (3.53). Similarly, the 1/N corrections to the coefficients

in (C.12) can be written in terms of harmonic numbers as∣∣∣ck(1)(0,0)

∣∣∣2 =
∣∣∣ck(0)(0,0)

∣∣∣2(4H2k − 4Hk − 1
)
, (C.41)

which, after suitable flavour projections, match (3.52) and (3.54) provided the spin is

large enough.

One can also apply the above procedure to other R-symmetry projections of (C.1).

For the (1, 0) projection, the anomalous dimensions and coefficients of global blocks

to order 1/N in different flavour projections are given in equations (3.55)–(3.58). The

most important difference with respect to the R-symmetry singlet is an additional

relative minus factor between the t-channel and u-channel contributions to the inversion

function, which correctly reproduces non-zero results only for exchanges of operators

with odd spin. On the other hand, minimal twist operators exchanged in (0, 1) and (1, 1)

R-symmetry projections of (C.1) are protected by supersymmetry and correspondingly

the inversion formula shows that anomalous dimensions are non-zero only for n̄ ≥ 1

and that for n̄ = 0 the OPE coefficients match free field results.
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Appendix D

LLLL Global Blocks in the Regge

Limit

In this appendix we review the derivation of the approximation to the d = 2 global

conformal blocks when the external operators are all light – their dimensions scale as

∆ ∼ 1 as c→∞ – in the Regge limit, used in Section 4.4.3. In this ‘light scaling regime’

the approximation in (4.29) – valid in the ‘heavy scaling regime – no longer holds since

now the dimensions of the exchanged double-trace operators OLL′ ≡ OL∂m∂̄m̄OL′ do

not scale with N . These dimensions are given by

h = hL + hL′ +m+O(1/N) , h̄ = h̄L + h̄L′ + m̄+O(1/N) , (D.1)

with hL, hL′ and the anti-holomorphic versions are order 1 in the large c limit. In

the Regge limit, the dominant exchanged operators are those of large m, m̄ and so

h and h̄ are still large but not order N . In this regime, the form of the conformal

blocks are approximated by modified Bessel functions of the second kind. To see this,

the standard form of the (holomorphic) global blocks (A.15) can be rewritten using a

linear transformation between hypergeometric functions to give (in this section we use

α = −h23 and β = −h14)

Vh(z) = zh 2F1(h+ α, h+ β; 2h; z)

= zh
[
Γ− Γ(−α− β) 2F1(h+ α, h+ β; 1 + α+ β; 1− z)

+ Γ+ Γ(α+ β) (1− z)−α−β2F1(h− α, h− β; 1− α− β; 1− z)
]
, (D.2)

where we have defined the combination of gamma functions

Γ± ≡
Γ(2h)

Γ(h± α) Γ(h± β)
. (D.3)
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It is now possible to use Stirling’s approximation for the gamma function

log Γ(x) ≈ x log x− x+
1

2
log

2π

x
+

N−1∑
n=1

B2n x
1−2n

2n(2n− 1)

≈ log

(
xx
√

2π

x

)
− x , (D.4)

and so the ratios (D.3) can be approximated by

Γ± ≈

√
2π
2h (2h)2h e−2h√

2π
h±α (h± α)h±α e−h∓α

√
2π
h±β (h± β)h±β e−h∓β

≈ π−
1
2 22h−1

√
hh∓(α+β)

(
1 +O(h−1)

)
, (D.5)

where in the second line, h� α, β was used. Using this in (D.2) gives

Vh(z) ≈ zh 22h−1
√
h√

π
(1− z)−

γ
2

[
Γ(−γ)hγ(1− z)

γ
2 2F1(h+ α, h+ β; 1 + α+ β; 1− z)

+ Γ(γ)h−γ(1− z)−
γ
2 2F1(h− α, h− β; 1− α− β; 1− z)

]
, (D.6)

where γ ≡ α + β. Taking the first term in the square brackets, this can be rewritten

using the sum representation of the hypergeometric function to give

Γ(−γ)hγ(1− z)
γ
2

∞∑
k=0

(h+ α)k(h+ β)k
k! (1 + γ)k

(1− z)k ≈ Γ(−γ)hγ(1− z)
γ
2

∞∑
k=0

h2k(1− z)k

k! (1 + γ)k

= −π csc(πγ)

∞∑
k=0

(
h
√

1− z
)2k+γ

k! Γ(1 + γ + k)

= −π csc(πγ) Iγ

(
2h
√

1− z
)
, (D.7)

where we used (h + α)k ≈ hk(1 + O(h−1)) and the gamma function inversion formula

Γ(x)Γ(1 − x) = π csc(πx) for x /∈ Z was used, along with the series representation of

the modified Bessel function of the first kind

Iν(x) =
∞∑
k=0

1

k! Γ(k + ν + 1)

(x
2

)2k+ν
. (D.8)
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Repeating similar steps for the second term in (D.6) leads to

Vh(z) ≈ zh 22h−1
√
h√

π
(1− z)−

γ
2

[
− π csc(πγ) Iγ

(
2h
√

1− z
)

+ π csc(πγ) I−γ
(
2h
√

1− z
)]

=
zh 22h

√
h√

π
(1− z)−

γ
2 Kγ

(
2h
√

1− z
)
, (D.9)

using a relation between the modified Bessel functions of the first and second kinds

Kν(x) =
π

2
csc(πν)

(
I−ν(x)− Iν(x)

)
, (D.10)

for ν /∈ Z . One check is whether (D.9) is an eigenfunction of the quadratic Casimir

operator (A.26) in the large h limit. It turns out that (D.9) is valid in the regime

h, h̄� 1 with ẑ ≡ h
√

1− z finite: since the behaviour of the Bessel function in purely

the h, h̄ � 1 limit is exponentially suppressed, relative to the case of also keeping ẑ

fixed, since

Kγ

(
2h
√

1− z
)
≈ 1

2

√
π

h
(1− z)−

1
4 e−2h

√
1−z . (D.11)

Then to first order, the factor of zh can be dropped in (D.9) giving

Vh(z) ≈ 22h

√
h

π
(1− z)−

γ
2 Kγ

(
2h
√

1− z
)
. (D.12)

162



Appendix E

Useful Integrals

E.1 Cross channel heavy integrals

Integral 1:

In the discussion of the HHLL bootstrap constraints of Section 4.4, we needed to

evaluate

Ia,c(z, z̄) ≡
∫ ∞

0

∫ ∞
0
dm̄ dm

ma+1m̄a+1

(m+ m̄)c
zmz̄m̄ . (E.1)

In order to perform this integral, it is first helpful to decouple the two variables by

using a Schwinger parameter t to rewrite the denominator of the integrand. This gives

the simpler triple integral

Ia,c(z, z̄) =

∫ ∞
0
dt
t c−1

Γ(c)

∫ ∞
0
dmma+1e−m(t−log z)

∫ ∞
0
dm̄ m̄a+1e−m̄(t−log z̄)

=
Γ2(a+ 2)

Γ(c)

∫ ∞
0
dt tc−2a−5

(
1− log z

t

)−a−2(
1− log z̄

t

)−a−2
. (E.2)

Making a change of variables to x = τ
1+τ where t = −τ log z̄ and using the integral

form of the hypergeometric function

2F1(a, b ; c ; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
ds sb−1(1− s)c−b−1(1− zs)−a , (E.3)

the final integral can be performed to give

Ia,c(z, z̄) =
Γ2(a+ 2) Γ(2a+ 4− c)

Γ(2a+ 4)
(
− log z̄

)2a+4−c

(
log z̄

log z

)a+2

2F1

(
a+2, c; 2a+4; 1− log z̄

log z

)
. (E.4)
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Integral 2:

In section 4.5 the resummation of contributions of the double-trace operators {OHL}
requires the computation of integrals of the following, more general, kind

Ia,b,c(z, z̄) ≡
∫ ∞

0
dm

∫ m

0
dm̄

mam̄b

(m+ m̄)c
zmz̄m̄ . (E.5)

We now derive the result of this integral. Making a change of variables in the m̄ integral

to x = m̄
m gives

Ia,b,c(z, z̄) ≡
∫ ∞

0
dmzmma+b−c+1

∫ 1

0
dx

xb z̄mx

(1 + x)c

=

∫ 1

0
dx

xb

(1 + x)c

∫ ∞
0
dmma+b−c+1em(x log z̄+log z) . (E.6)

Using the integral representation of the gamma function

Γ(c) =

∫ ∞
0
ds sc−1e−s , (E.7)

with s = −t (x log z̄ + log z) gives

Ia,b,c(z, z̄) =
Γ(a+ b+ 2− c)(
−log z

)a+b+2−c

∫ 1

0
dxxb (1 + x)−c

(
1 + x

log z̄

log z

)c−a−b−2

. (E.8)

Now with the use of the integral∫ 1

0
dxxλ−1 (1− x)µ−1 (1− ux)−ρ (1− vx)−σ = B(µ, λ)F1(λ ; ρ, σ ;λ+ µ ;u, v) , (E.9)

with µ = 1 and B(µ, λ) the Euler beta function, (E.8) becomes

Ia,b,c(z, z̄) =
Γ(a+ b+ 2− c)

(1 + b)
(
−log z

)a+b+2−c F1

(
b+ 1 ; c, a+ b+ 2− c ; 2 + b ;−1,− log z̄

log z

)
.

(E.10)

Here F1 is an Appell hypergeometric function with series representation

F1(a; b1, b2; c ;x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
m!n! (c)m+n

xmyn . (E.11)

As a check, one can verify that setting b = a in (E.10) yields the previous result (E.4).
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E.2 Cross channel light integrals

In solving the Regge limit crossing equations at first order in the 1
N expansion for the

case of all operators being light in Section 4.4.3, the following equation is to be solved

Im Cbos
2

∣∣∣
�
≈ −16πA |1− z|−1

[
I2(a1, a2, 1) + I1(a1, a2, 1)

]
, (E.12)

where the two integrals required are

I1(a1, a2, b) ≡
∫ ∞

0
dm

∫ m

0
dm̄m2+a1m̄2+a2Kb

(
2m̄
√

1− z
)
Kb

(
2m
√

1− z̄
)

I2(a1, a2, b) ≡
∫ ∞

0
dm

∫ m

0
dm̄m2+a1m̄2+a2Kb

(
2m
√

1− z
)
Kb

(
2m̄
√

1− z̄
)
. (E.13)

Focusing on I2 first, with b = 1, performing a change of variables in the m̄ integral

using
√
x = m̄

m gives

I2(a1, a2, 1) =
1

2

∫ ∞
0
dmm5+a1+a2K1

(
2m
√

1− z
)∫ 1

0
dxx

1
2

(1+a2)K1

(
2m
√
x
√

1− z̄
)

=
1

4
(1− z̄)−

1
2

∫ ∞
0
dmm4+a1+a2K1

(
2m
√

1− z
)
G 2,1

1,3

(
m2(1− z̄)

∣∣∣∣ −a2
2

1, 0,−a2
2 − 1

)
,

(E.14)

where in the second line the following integral from Eq. (6.592.2) of [174] was used

∫ 1

0
dxxλ(1− x)µ−1Kν

(
a
√
x
)

=
2ν−1

aν
Γ(µ) G 2,1

1,3

(
a2

2

∣∣∣∣ ν
2 − λ

ν, 0, ν2 − λ− µ

)
, (E.15)

valid for Re(λ) > 1
2 |Re(ν)| − 1 and Re(µ) > 0. The remaining integral in (E.14) after

the change of variables m =
√

y
1−z is then of the form (Eq. (7.821.3) of [174])

2

∫ ∞
0
dy y−ρKν

(
2y

1
2
)
Gm,n
p,q

(
αy

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
= Gm,n+2

p+2,q

(
α

∣∣∣∣ ρ− ν
2 , ρ+ ν

2 , a1, . . . , ap

b1, . . . , bq

)
,

(E.16)

with p+q < 2(m+n), |argα| < (m+n− 1
2(p+q))π and Re(ρ) < 1− 1

2Re(ν)+min Re(bj).

The Meijer G-function is a particularly general function, designed to include as special

cases most other common special functions – such as the generalised hypergeometric

function. The primary definition of this function is in terms of the Mellin-Barnes type
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line integral

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1

2πi

∫
L
ds xs

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

,

(E.17)

where the choices of integration path L are given in section 9.302 of [174]. Using (E.16)

in (E.14) gives

I2 =
1

8

(1− z)−2− 1
2

(a1+a2)

|1− z|

∫ ∞
0
dy y

1
2

(a1+a2+3)K1

(
2
√
y
)
G 2,1

1,3

(
y

1− z̄
1− z

∣∣∣∣ −a2
2

1, 0,−a2
2 − 1

)

=
1

16

(1− z)−2− 1
2

(a1+a2)

|1− z|
G 2,3

3,3

(
1− z̄
1− z

∣∣∣∣ −1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)

≈ 1

16
η−

1
2σ−3− 1

2
(a1+a2) G 2,3

3,3

(
η

∣∣∣∣ −1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)
≈ 1

16
η−

1
2σ−3− 1

2
(a1+a2)

(
1 +

a2

2

)−1
Γ
(
2 + 1

2(a1 + a2)
)

Γ
(
3 + 1

2(a1 + a2)
)
, (E.18)

where in the third and fourth lines an expansion in small σ and then η is performed.

Likewise, I1 can be found by exchanging z and z̄ in the second line of (E.18), giving

I1 =
1

16

(1− z̄)−2− 1
2

(a1+a2)

|1− z|
G 2,3

3,3

(
1− z
1− z̄

∣∣∣∣ −1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)

≈ 1

16
σ−3− 1

2
(a1+a2)η−

1
2

(a1+a2+5) G 2,3
3,3

(
1

η

∣∣∣∣ −1
2(a1 + a2)− 2,−1

2(a1 + a2)− 1,−a2
2

1, 0,−a2
2 − 1

)
≈ 1

16
σ−3− 1

2
(a1+a2)η−

1
2

(a1+3) Γ
(
1 +

a1

2

)
Γ
(
2 +

a1

2

)
Γ
(
1 +

a2

2

)
Γ
(
2 +

a2

2

)
. (E.19)

Using (E.18) and (E.19) in (E.12) gives

Im Cbos
2

∣∣∣
�
≈ −Aπσ−4− 1

2
(a1+a2)η−1

[(
1 +

a2

2

)−1
Γ
(
2 + 1

2(a1 + a2)
)

Γ
(
3 + 1

2(a1 + a2)
)

+ η−
a1
2
−1Γ

(
1 +

a1

2

)
Γ
(
2 +

a1

2

)
Γ
(
1 +

a2

2

)
Γ
(
2 +

a2

2

)]
. (E.20)

In order to match the stress tensor’s leading σ and η behaviour, it is necessary to have

a1 = 0, a2 = 2 and A = −1. Plugging these values back into the leading σ term of

(E.12) and using the following functional relations of the Meijer G-function (see section
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9.31 of [174])

Gm,n
p,q

(
x

∣∣∣∣ a1, a2, . . . , ap

b1, . . . , bq−1, a1

)
= Gm,n−1

p−1,q−1

(
x

∣∣∣∣ a2, . . . , ap

b1, . . . , bq−1

)
(E.21)

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
= xk Gm,n

p,q

(
x

∣∣∣∣ a1 − k, . . . , ap − k
b1 − k, . . . , bq − k

)
, (E.22)

gives

Im Cbos
2

∣∣∣
�
≈ π

η4σ5

[
G 2,2

2,2

(
η−1

∣∣∣∣ −3,−1

1, 0

)
+ G 2,2

2,2

(
η

∣∣∣∣ 0, 2

4, 3

)]
+O(σ−4) . (E.23)

The relation

G 2,2
2,2

(
η

∣∣∣∣ a1, a2

b1, b2

)
= B(1− a1 + b1, 1− a2 + b2) Γ(1− a2 + b1) Γ(1− a1 + b2) ηb1

× 2F1

(
1− a1 + b1, 1− a2 + b1; 2− a1 − a2 + b1 + b2; 1− η

)
,

(E.24)

with B(x, y) the Euler beta function, allows the Meijer G-functions in (E.23) to be

evaluated, giving precisely the leading small σ term of the correlator in (4.106).

E.3 (1,0,1) bulk phase shift integrals

In this section we compute the integral I required in the bulk phase shift in the 3D

reduced geometry obtained from the (1, 0, 1) microstate geometry, as discussed in Sec-

tion 4.5.3. With the change of variables r2 = a2
0 αρ

2 from the integral in (4.187), we

define the integral to be performed as

I ≡
∫ ∞
ρ0

dρ

ρ

√√√√ρ4 + ρ2

α(1−β2)

(
1− 2β(1− α) + β2(1− 2α− α2)

)
− αβ2

1−β2

(ρ2 + 1)3

=

∫ ∞
ρ0

dρ

ρ

√
(ρ2 − ρ2

0)(ρ2 + ρ̄2
0)

(ρ2 + 1)3
, (E.25)

where ρ0 and ρ̄0 are solutions to the radial turning point equation ṙ = 0 (given explicitly
in (4.176) with n = 1) and we have 0 < α, β < 1. Changing variables to x = ρ−2 and
defining x0 = ρ−2

0 and x̄0 = ρ̄−2
0 with

(−)
x0 =

±2α(1− β2)

−1 + 2β(1− α)− β2(1− 2α− α2)±
√

4α3β2(1− β2) +
(
1− 2β + β2(1− 2α− α2) + 2αβ

)2 ,

(E.26)
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where x̄0 has the minus sign from each of the ± symbols, gives the form of the integral

as

I =
1

2

∫ x0

0
dx

√(
1− x

x0

)(
1 + x

x̄0

)
x(1 + x)3

=
1

2

∫ x0

0
dx

(
1− x

x0

)(
1 + x

x̄0

)
(1 + x)−1√

x(1 + x)
(
1− x

x0

)(
1 + x

x̄0

)
= IA + IB + IC . (E.27)

The three integrals that then need to be computed we define as

IA ≡
(x0 + 1)(x̄0 − 1)

2x0x̄0

∫ x0

0

dx (1 + x)−1√
x(1 + x)

(
1− x

x0

)(
1 + x

x̄0

) , (E.28a)

IB ≡
x0 + 1

2x0x̄0

∫ x0

0

dx√
x(1 + x)

(
1− x

x0

)(
1 + x

x̄0

) , (E.28b)

IC ≡
−1

2x0
√
x̄0

∫ x0

0
dx

√
x̄0 + x√

x(1 + x)
(
1− x

x0

) . (E.28c)

In decomposing the integral I into those in (E.28), the numerator in the second line of

(E.27) can be written as(
1− x

x0

)(
1 +

x

x̄0

)
(1 + x)−1 =

(x0 + 1)(x̄0 − 1)

x0x̄0(1 + x)
+

1 + x0

x0x̄0
− x+ x̄0

x0x̄0
. (E.29)

We note that as defined above, x̄0 is a convex function of α going to zero as α→ 0 and

to one as α → 1 while increasing β causes x̄0 to increase faster with α, plateauing off

sooner. By contrast x0 tends to zero as α→ 1 and increases sharply as α→ 0, which is

amplified for smaller β (becomes greater than 1). Thus we have x0 > 0 and 1 > x̄0 > 0.

In solving these integrals, we start by defining a one-parameter family of integrals

from which we will derive those in (E.28):

J(f) ≡ 1

2

∫ x0

0

dx√
x(f + x)

(
1− x

x0

)(
1 + x

x̄0

) , (E.30)

the integrand of which has branch points at x = 0,−f, x0,−x̄0. This is an elliptic

integral and so is invariant under SL(2,R) transformations

x→ x̃ =
ax+ b

cx+ d
such that ad− bc = 1 . (E.31)

The tactic is to use such a transformations to put J(f) into one of the Legendre normal
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forms, with our conventions for the incomplete elliptic integrals of the first, second and

third kind being given by

F
(
x; k
)

=

∫ x

0

dt√
(1− t2)(1− k2t2)

, (E.32a)

E
(
x; k
)

=

∫ x

0
dt

√
(1− k2t2)

1− t2
, (E.32b)

Π
(
n;x

∣∣m) =

∫ x

0

dt

1− nt2
1√

(1− t2)(1−mt2)
, (E.32c)

with the complete versions being

K
(
k
)
≡ F

(
1; k
)

=
π

2
2F1(1/2, 1/2; 1; k2) , (E.33a)

E
(
k
)
≡ E

(
1; k
)

=

∫ 1

0
dt

√
1− k2t2√
1− t2

=
π

2
2F1(1/2,−1/2; 1; k2) , (E.33b)

Π
(
n
∣∣m) ≡ Π

(
n; 1
∣∣m) =

∫ 1

0

dt

1− nt2
1√

(1− t2)(1−mt2)
. (E.33c)

With this goal in mind we map the branch points (0,−f, x0,−x̄0) → (−1,−k, 1, k)

using an SL(2,R) transformation (E.31) x→ x̃ with

x̃ =
f(x̄0 + x) + x(x0 + x̄0)−

√
fx̄0(f + x0)(x0 + x̄0)

fx̄0

(
x
x0
− 1
)

+ x(x0 + x̄0)
(
1 + f

x0

)
+
(
1− 2x

x0

)√
fx̄0(f + x0)(x0 + x̄0)

, (E.34)

yielding from (E.30)

J(f) =
2 x̄

1
2
0√

−(f − x̄0)k(f)

∫ 1

0

dx̃√
(1− x̃2)

(
1− x̃2

k(f)2

) =
2 x̄

1
2
0√

−(f − x̄0)k(f)
K
(
k(f)−1

)
,

(E.35)

where we have defined the quantity

k(f) =
x0x̄0 + f(x0 + 2x̄0) + 2

√
fx̄0(f + x0)(x0 + x̄0)

−x0(f − x̄0)
. (E.36)

Thus this solves one part of the integral, IB given in (E.28b), to be

IB =
1 + x0

x0x̄0
J(1) =

2(1 + x0)

x0

√
−kx̄0(1− x̄0)

K
(
k−1

)
, (E.37)

where k ≡ k(1). One can continue in a similar manner with the integrals in (E.28a)

and (E.28c), mapping the branch points to canonical points and writing them as com-
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binations of elliptic integrals, however, one can notice that the substitution

x→ t =

√
x(x0 + x̄0)

x0(x+ x̄0)
, (E.38)

can be used to solve all three most efficiently. Performing this change of variables on

the integral J(f) in (E.30) gives

J(f) =

√
x0x̄0

f(x0 + x̄0)

∫ 1

0

dt√
(1− t2)(1− T 2t2)

=

√
x0x̄0

f(x0 + x̄0)
K
(
T
)
, (E.39)

where we define

T 2 = T (f)2 ≡ x0(f − x̄0)

f(x0 + x̄0)
. (E.40)

This gives immediately

IB =
(1 + x0)√

x0x̄0(x0 + x̄0)
K

(√
x0(1− x̄0)

x0 + x̄0

)
. (E.41)

Next one notices that

−2J ′(f)
∣∣
f=1

=
1

2

∫ x0

0

dx (1 + x)−1√
x(1 + x)

(
1− x

x0

)(
1 + x

x̄0

) , (E.42)

where the prime denotes a derivative with respect to f , and so this gives the integral

(E.28a) as

IA = −2
(1 + x0)(x̄0 − 1)

x0x̄0
J ′(f)

∣∣
f=1

=

√
x0 + x̄0√
x0x̄0

E

(√
x0(1− x̄0)

x0 + x̄0

)
− 1 + x0√

x0x̄0(x0 + x̄0)
K

(√
x0(1− x̄0)

x0 + x̄0

)
. (E.43)

Finally, performing again the change of variables (E.38) on IC gives

IC = −
√

x̄0

x0(x0 + x̄0)
Π

(
x0

x0 + x̄0

∣∣∣∣ x0(1− x̄0)

x0 + x̄0

)
. (E.44)

The full integral I is then

I =

√
x0 + x̄0

x0x̄0
E

(√
x0(1− x̄0)

x0 + x̄0

)
−
√

x̄0

x0(x0 + x̄0)
Π

(
x0

x0 + x̄0

∣∣∣∣ x0(1− x̄0)

x0 + x̄0

)
,

(E.45)
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where we note that the second term of IA cancels with IB, implying that our method

of computation of this integral was not optimal.

171



Appendix F

Regge Limit of the (1, 0, 0)

Correlator with OL = Obos

Here we analyse the Regge limit of the 4-point function of the correlator involving the

heavy state dual to the (1, 0, 0) geometry presented in section 4.4 and light operator

OL = Obos with hL = h̄L = 1. This correlator is again related to the that involving the

chiral primary light operator (2.93) through a superconformal Ward identity Cbos =

∂∂̄
[
C fer

]
[72]. However, if we expand this correlator in a series as

Cbos(z, z̄) =
∞∑
n=0

µnCbos
n (z, z̄) , (F.1)

then we can apply the Ward identity at each order in the series expansion directly

Cbos
n (z, z̄) = ∂∂̄

[
C fer
n (z, z̄)

]
, (F.2)

and use the closed form expressions in (B.17).

We can now repeat the Regge analysis for this 4-point function. Using the above

method of obtaining the Cbos
n , we find that analytically continuing the obtained results

and taking z, z̄ → 1 gives

Cbos
R ≈ 1

η2σ4
+

2πi

η2(1− η)5σ5

(
1− 8η + 8η3 − η4 − 12η2 log η

)
µ

− 3π2

η2(1− η)7σ6
(1− 15η − 80η2 + 80η3 + 15η4 − η5 − 60η2(1 + η) log η)µ2

− 4iπ3

η2(1− η)9σ7

(
1− 24η − 375η2 + 375η4 + 24η5 − η6 − 60η2(3 + 8η + 3η3) log η

)
µ3.

(F.3)

On the other hand we can use the bulk phase shift (4.96) and its expansion in µ to

reconstruct the Regge limit of the CFT correlator using (4.51). We find that the analysis
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OL = OBOS

is the same as before only that now, due to the conformal dimensions of OL = Obos

being hL = h̄L = 1, we need to replace Ĩa,b → Ĩa+1,b+1 in (4.154) which explicitly yields

Cbos
AdS ≈

[
πi Ĩ2,2 µ+

(
3πi

4
Ĩ2,2 −

2πi

4
Ĩ3,4 −

π2

2
Ĩ3,3

)
µ2

+

(
5πi

8
Ĩ2,2 −

3πi

4
Ĩ3,4 +

πi

2
Ĩ4,6 −

π3i

6
Ĩ4,4 −

3π2

4
Ĩ3,3 +

π2

2
Ĩ4,5

)
µ3

]∣∣∣∣
z,z̄→1

.

(F.4)

Explicitly evaluating the integrals (4.155) and executing the limit completely reproduces

the leading σ behaviour of (F.3) at each order in µ. However, for this correlator – unlike

the case of the OL = Ofer light operator and the (1, 0, 0) heavy state – the matching

between the bulk reconstruction and the CFT Regge limit analysis ceases already at

the subleading order in σ at each order in µ. In fact for the first few orders that we

have analysed, we find that

Cbos
R ≈

(
1 + σ(1 + η)

)
Cbos

AdS , (F.5)

where at each order in µ the difference starts at the subsubleading contribution in σ.

The same behaviour can also be seen in the case where the heavy operator is dual to

the conical defect (compare (4.82) and (4.83)).
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