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Abstract

The field of topological data analysis (TDA) combines computational geometry and

algebraic topology notions for analyzing data. This thesis presents methods and efficient

algorithms that extend the TDA toolset.

After introducing the needed background information about Euler characteristic curves

and persistent homology, the former objects are extended to bi-dimensional filtrations.

The result are Euler characteristic surfaces, which capture insights about data over a

pair of parameters. Moreover, algorithms to compute these objects are described for

both image and point data.

Persistent homology in `∞ metric is also studied. It is proven that in this setting Alpha

and Čech filtration are not equivalent in general. On the other hand, two new filtra-

tions — Alpha flag and Minibox — are defined and proven equivalent to Čech filtra-

tions in homological dimensions zero and one. Algorithms for finding Minibox edges are

described, and Minibox filtrations are empirically shown to speed up the computation

of Čech persistence diagrams with computational experiments.

Then a new family of summary functions of persistence diagrams is defined, which is

related to persistence landscapes. These are called cumulative landscapes and are used

to vectorize the information contained in persistence diagrams. In particular, discretiza-

tions of these functions and their Fourier coefficients are used to obtain feature vectors

that can be applied in supervised classification problems. The effectiveness of these

feature vectors for the classification of data is compared against vectors obtained using

persistence landscapes on two open-source datasets.

Finally, a novel method is described for the analysis of high-dimensional genomics data.

Optimized metrics are defined on genomic vectors making use of a loss function. These

are used in combination with a distance-based classification method, showing good per-

formance compared to standard machine learning algorithms. Moreover, the structure

of the given optimized metrics helps identify coordinates of the genomic vectors, which

are most important for the classification task under study.
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Chapter 1

Introduction

The central objective of this thesis is to describe new computational methods for the

analysis of datasets, including efficient algorithms for their application. This research is

carried out in the framework of topological data analysis [Car09, EH10]. The focus is on

using metric information on the data at hand to measure its geometric and topological

features, which can then be used to define useful descriptors for its study. The increasing

interest in this area is motivated by the growing amount of complex data that has

become available in recent years, and the various application domains where topological

data analysis has been shown to provide useful insights. These include collaboration

networks [CH13], sensor networks [DSG07], neuroscience [BMM+16, DHL+16], robotics

[BGK15], and many others.

Persistent homology is one of the main tools of topological data analysis. It studies

the geometric and topological structure of datasets by combining concepts from the fields

of computational geometry and algebraic topology. In particular, it defines persistence

diagrams, which are multi-sets of points that compactly encode information about the

“shape” of the data at hand over a range of parameters. To obtain persistence diagrams,

functions defined on topological representations of data elements are used, which are

often determined using metric information. The notion of persistence was independently

developed by Frosini and Ferri [DFL03], Robins [Rob99], and the research group lead by

Edelsbrunner [EKS83, EM94, ELZ02]. The property of persistence diagrams that makes

them useful for real-world applications is their stability with respect to noise in the

input data [CSEH07]. On the other hand, the high computational cost of the standard

algorithm employed for their calculation represents a limit for their application. In cases

where the size of data is an issue, it may be preferable to use Euler characteristic-based

descriptors, for which more efficient algorithms are available [HW17].
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Chapter 1. Introduction 2

The methods introduced in this work extend the field of topological data analysis.

Euler characteristic curves are generalized to descriptors integrating the information

of two filtrations. Then, filtrations are described for the computation of persistence

diagrams of points in `∞ metric space. These new tools are applied to supervised classi-

fication problems on open-source data, through vectorizations obtained with a new type

of summary function called cumulative landscape. Moreover, a technique is described

for the analysis and classification of high-dimensional cancer genomic vectors, which uses

optimized metrics on the given data.

The thesis is organized as follows. Chapter 2 gives a summary of the theoretical

notions used throughout this work. The definitions of metric spaces and abstract com-

plexes are stated for completeness. Filtrations of complexes are introduced and used to

define Euler characteristic curves. This is the first descriptor presented and comes with

an algorithm for its computation on image data. Next, the theory of persistent homology

is summarized. The standard column algorithm for the computation of persistence dia-

grams is discussed, and an example is given to illustrate its application in practice. To

conclude, some of the main types of proximity filtrations used in the field of persistent

homology are introduced. These include Čech, Alpha, Delaunay-Čech, and Vietoris-Rips

filtrations, which are compared in terms of their size and the persistence diagrams they

produce.

In Chapter 3, the theory of multiparameter Euler characteristic descriptors is intro-

duced. The goal is to extend to a bi-dimensional parameter space Euler characteristic

curves, similarly to what was done in [CZ09] for multidimensional persistent homology.

The obtained objects are called Euler characteristic surfaces, and novel algorithms are

described for their computation for image and point data. The complexities of these

algorithms are stated in Proposition 3.4.1 and Proposition 3.5.1. Moreover, several

experiments, using both real and synthetically generated datasets, show that Euler char-

acteristic surfaces can contain more information than multiple curves derived from the

same data. Finally, we remark that the results and experiments discussed in this chapter

are part of the preprint [BAG+21].

Chapter 4 presents a number of results about the Čech persistent homology of points

in `∞ metric space from [BS21]. The starting point is that Alpha and Čech filtration

are equivalent in the Euclidean setting, as discussed in Section 2.4. However, the same

proof technique does not work in the `∞ metric setting, and it is possible to show a

counterexample to their equivalence using three-dimensional points. Nonetheless, it is

possible to define two new types of filtrations — Alpha flag and Minibox — having the

same persistence diagrams of Čech filtrations in homological dimensions zero and one.

This equivalence is proven by means of Theorem 4.3.6 and Theorem 4.4.4, as well as
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using the properties of `∞-Delaunay edges. Both Alpha flag and Minibox filtrations are

sequences of flag complexes, so they have the advantage of being fully determined by the

edges they contain. On the other hand, Alpha filtrations in the Euclidean setting need

all the simplices in the Delaunay complex of a set of points to be built. Furthermore,

it is shown that for n randomly sampled points the number of Minibox edges on these

points is proportional to n · polylog(n), while there are n(n−1)
2 Čech edges. Algorithms

for finding Minibox edges in two, three, and higher dimensions are described, and used in

computational experiments on random points. These show that the reduced number of

simplices contained in Minibox filtrations helps decrease the time required and memory

used to compute Čech persistence diagrams of points in `∞ metric space.

In Chapter 5 a new type of summary functions of persistence diagrams is introduced.

These are called cumulative landscapes and are shown to preserve the information con-

tained in persistence diagrams under genericity assumptions on the points of these latter

objects. Moreover, cumulative landscapes can be used for vectorizing persistence dia-

grams using a single resolution parameter. The usefulness of the obtained vectors is

evaluated on two supervised classification problems making use of open-source data.

The average classification accuracy results of vectors obtained from Euler characteristic

curves, Euler characteristic surfaces, persistence landscapes, and cumulative landscapes

are compared. This comparison shows that in the case of image data Euler character-

istic surfaces provide better results than any persistence diagram vectorization method.

However, on both image and point data, Fourier coefficients of cumulative landscapes

improve over the results of discretized persistence landscapes.

Finally, in Chapter 6 a classification problem is studied that involves high-dimensional

cancer genomic vectors. The underlying assumption in this research is that genomic vec-

tors are partitioned into two classes: those of low-risk and high-risk patients respectively.

This information is used to define the loss function used to derive optimized metrics on

a given dataset. These metrics are then used in combination with a distance-based clas-

sification method on the genomic vectors and compared against the average accuracy

results obtained with logistic regression and nearest neighbourhoods classifiers. Exper-

iments on both synthetically generated genomic and real-world vectors show that on

this type of data the optimized distance-based classifier improves over the results of the

standard machine learning algorithms mentioned above. Moreover, the local maximums

of the weight functions used to define optimized metrics correspond to the coordinates

of genomic vectors which are most informative for the classification problem at hand.



Chapter 2

Background

This chapter presents the basic definitions and results used throughout the thesis. After

recalling metric spaces and definitions of abstract/geometric complexes, Euler charac-

teristic curves are introduced together with an algorithm for their computation. Then

an overview of persistent homology is given, followed by a discussion of the main types

of proximity filtrations used in the field of topological data analysis. Several examples

are included to illustrate Euler characteristic curves and the properties of persistence

diagrams.

2.1 Preliminaries

To begin with, it is given a summary of the definitions and notation relative to metric

spaces and abstract/geometric complexes.

Metric spaces. The general definition of metric is stated for completeness. The met-

rics used throughout this work are defined, followed by a discussion of balls and boxes

derived from these.

Definition 2.1.1. A metric or distance function on a set X is a real-valued function

d• : X ×X → R such that for any x, y, z ∈ X:

(i) d•(x, y) = 0 if and only if x = y;

(ii) d•(x, y) = d•(y, x);

(iii) d•(x, z) ≤ d•(x, y) + d•(y, z).

The pair (X, d•) is a metric space.

4



Chapter 2. Background 5

Given X = Rd and x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ X, we define three

metrics:

• d1(x, y) =
∑d

i=1 |xi − yi|;

• d2(x, y) =
√∑d

i=1(xi − yi)2;

• d∞(x, y) = maxdi=1 |xi − yi|.

We refer to d2 as to the Euclidean metric, and to d1 and d∞ as the `1 and `∞ metrics

respectively. Given a metric space (Rd, d•), the open ball of radius r ≥ 0 and center p ∈
Rd is Br(p) = {x ∈ Rd | d•(x, p) < r}. The closed ball of radius r ≥ 0 and center p ∈ Rd

is denoted by Br(p). The difference between the closed and open ball is the boundary

∂Br(p). The ε-thickening of a set A ⊆ Rd is ε(A) = {p ∈ Rd | mina∈A d•(a, p) ≤ ε}, and

from the definition of ball it follows ε(Br(p)) = Br+ε(p). Moreover, a ball in `∞ metric

space, i.e. (Rd, d∞), is the Cartesian product of d open intervals. This follows from the

definition of d∞ above, so that Br(p) =
∏d
i=1 I

p
i , where Ipi = (pi− r, pi + r). As a box we

refer to the Cartesian product of d intervals in Rd, i.e. an axis-parallel hyperrectangle.

Intervals and Cartesian products have the following properties.

• The intersection of a finite number of intervals is either empty or an interval.

• Cartesian products and intersections of a finite collection of sets commute, i.e.

(A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

These follow from the definitions of intervals and Cartesian products, as given in [Mun00,

Chapter 1], and allow us to derive the below properties of boxes, which we use in Chapter

4.

Proposition 2.1.2. Let B be a finite collection of either open or closed boxes in Rd.

(i) The intersection of the boxes in B is equal to the Cartesian product of the inter-

sections of intervals defining these boxes. So this intersection is either empty or a

box.

(ii) The intersection of the boxes in B is non-empty if and only if all the pairwise

intersections of these boxes are non-empty.

Proof. Given B = {Bj}nj=1 and Bj =
∏d
i=1 I

j
i , if follows that

n⋂
j=1

Bj =

n⋂
j=1

d∏
i=1

Iji =

d∏
i=1

n⋂
j=1

Iji (2.1)
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from the properties of Cartesian products and intersections mentioned above. Point (i)

follows because
⋂n
j=1 I

j
i is either empty or an interval for each 1 ≤ i ≤ d. Thus by

Equation (2.1) the intersection of all boxes is either empty or a box.

We prove the two directions of point (ii) separately. First, if
⋂n
j=1B

j is non-empty,

then also all pairwise intersections of boxes are non-empty because they contain this

set. For the other direction, given that the pairwise intersections of boxes in B are

non-empty, we need to show that
⋂n
j=1B

j 6= ∅. Equation (2.1) can be applied with

n = 2 to any pair of boxes Bj1 , Bj2 ∈ B, implying that Ij1i ∩ I
j2
i 6= ∅ for each 1 ≤ i ≤ d

and 1 ≤ j1, j2 ≤ n. Then, defined a′i and b′i as the maximum of left endpoints and the

minimum of right endpoints of the intervals {Iji }nj=1 for each 1 ≤ i ≤ d, it must be that

a′i ≤ b′i, otherwise the intervals realizing these minimum and maximum values would

have an empty intersection. Thus I ′i = (a′i, b
′
i) ⊆ Iji for each 1 ≤ i ≤ d and 1 ≤ j ≤ n,

by definition of a′i and b′i, and
⋂n
j=1 I

j
i ⊇ I ′i 6= ∅ for each 1 ≤ i ≤ d. Finally

⋂n
j=1B

j is

non-empty because it contains
∏d
i=1 I

′
i.

Complexes. This thesis presents several results involving computational methods that

can be applied to real-world data. Two of the main types of datasets to which these

methods apply are finite point sets and images. These are dealt with by representing

them as a collection of complexes, which are hierarchical structures of combinatorial/-

geometric objects.

Definition 2.1.3. An abstract complex K is a finite collection of finite sets such that

if τ ∈ K and σ ⊆ τ , then σ ∈ K. A finite set in K is called a simplex. The dimension

of a simplex is equal to its cardinality minus one. The dimension of K is the maximum

dimension of any of its simplices.

Definition 2.1.4. Let K be an abstract complex.

• A subcollection of elements of K is a subcomplex if is itself a complex.

• The closure Cl(K ′) of a subcollection K ′ of elements of K is the smallest subcom-

plex of K containing K ′.

• The star of of σ in K is St(σ) = {τ ∈ K | σ ⊆ τ}. Note that the star of σ is not a

complex in general, while Cl(St(σ)) is.

• The link of σ in K is Lk(σ) = {τ ∈ Cl(St(σ)) | σ ∩ τ = ∅}.

The definitions above are purely combinatorial. Because of this, abstract complexes

can be translated into the matrices used by the algorithm of Section 2.3. However, the

sets in K do not correspond to geometric objects that can be visualized. To model the
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structure of complexes derived from data, the following definitions are used instead.

Definition 2.1.5. The convex hull of a finite point set S = {pi}ni=1 is the set of convex

combinations of its points of the form α1p1 + α2p2 + . . . + αnpn, where αi ≥ 0 for each

i, and
∑n

i=1 αi = 1.

Definition 2.1.6. A geometric simplex σ is the convex hull of k+1 affinely independent

points {pi}k+1
i=1 ⊂ Rd. The dimension of σ is k. A face σ′ of σ is the convex hull of k

points in {pi}k+1
i=1 . The set of all faces of the simplex σ is its boundary ∂σ.

Geometric simplices of dimension from zero to three are vertices, edges, triangles,

and tetrahedra. Higher-dimensional geometric simplices generalize these objects.

Definition 2.1.7. A geometric simplicial complex |K| is a finite set of geometric sim-

plices such that any face of a geometric simplex in |K| is also in |K|, and the intersection

of any two geometric simplices in |K| is either empty or a geometric simplex of |K|. The

dimension of |K| is the maximum dimension of any of its geometric simplices.

Definition 2.1.8. An elementary interval is a subset I ⊂ R of the form [n, n + 1] or

[n, n], where n ∈ Z. The second type of elementary intervals are said to be degenerate.

Definition 2.1.9. Let I = {Ik}ki=1 be elementary intervals, of which l ≤ k are degener-

ate. The Cartesian product C =
∏k
i=1 Ii is an elementary cube of dimension k− l. Given

two elementary cubes C ′ and C such that C ′ ⊆ C, then C ′ is a face of C. The boundary

∂C of C is the set of all its faces.

A zero-dimensional elementary cube is a vertex, a one-dimensional elementary cube

is an edge, a two-dimensional elementary cube a square, and a three-dimensional one a

cube.

Definition 2.1.10. A cubical complex |K| is a finite set of elementary cubes, such that

the boundary of every elementary cube in |K| is also in |K|. The dimension of |K| is

the maximum dimension of any of its elementary cubes.

Definition 2.1.11. Let K be an abstract complex. Given an embedding of the zero-

dimensional simplices of K as an affinely independent set of points in some Rd, the

geometric realization |K| of K is the collection of convex hulls of the embedded finite

point sets corresponding to the simplices of K.
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2.2 Euler Characteristic Curves

Given an abstract complex K, its structure can be used to define useful topological

invariants [Hat02].

Definition 2.2.1. Let K be an abstract complex, and kn denote the number of n-

dimensional sets in K. The Euler characteristic of K is the alternating sum

χ(K) = k0 − k1 + k2 − k3 + . . . (2.2)

This is one of the invariants used in this work. It has the advantage of being efficient

to compute algorithmically, as it only requires counts of elements of K.

Sublevel sets filtrations. In the context of topological data analysis [EH10, Chapter

7], the following objects are used to model real-world data parameterized by one real

variable.

Definition 2.2.2. A filtration of an abstract complex K parameterized by R is a nested

sequence of subcomplexes

KR = {Kr0 ⊆ Kr1 ⊆ . . . ⊆ Krm} , (2.3)

where R = {ri}mi=0 is a monotonically increasing set of real values, and Kri ⊆ K for each

0 ≤ i ≤ m.

Definition 2.2.3. Let K be an abstract complex. A real-value function h : K → R is a

filtering function on K if for each σ, τ ∈ K such that σ ⊆ τ , then h(σ) ≤ h(τ).

The definition above ensures that the sublevel sets h−1((−∞, r]) for r ∈ R, are

subcomplexes of K. Moreover, given any pair of values r1, r2 ∈ R, if r1 ≤ r2, then

h−1((−∞, r1]) ⊆ h−1((−∞, r2]), which allows for the following definition.

Definition 2.2.4. Let K be an abstract complex and h : K → R a filtering function on

K. The sublevel sets filtation of K induced by h on a sets of monotonically increasing

real values R = {ri}mi=0 is the nested sequence of subcomplexes

Kh
R =

{
h−1((−∞, r0]) ⊆ h−1((−∞, r1]) ⊆ . . . ⊆ h−1((−∞, rm])

}
. (2.4)

The idea is to associate a sublevel sets filtration to each element in a given dataset.

The Euler characteristic, or some other invariant, of the complexes in these filtrations,

can then be used to characterize the elements in the dataset [HW17].
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Definition 2.2.5. Let KR be a filtration of an abstract complex K on a set of mono-

tonically increasing real values R = {ri}mi=0. The Euler characteristic curve of KR is the

vector of integer values

C(KR) =
[
χ(Kr0), χ(Kr1), . . . , χ(Krm)

]
, (2.5)

where χ(Kri) is the Euler characteristic of the subcomplexes in the filtration of K.

Euler characteristic curves of images. A gray-scale image M ∈ Nn1×n2 is a n1-by-

n2 matrix of integer values in the range [0,m] ⊆ Z, i.e. the element in position (s, t) of

M is the pixel intensity vs,t ∈ [0,m]. In the following discussion, we describe a method

that can be used to obtain Euler characteristic curves out of images. This is extended

to pair of images in Chapter 3, and applied to texture images in Chapter 5.

Given a gray-scale image M , its cubical complex |KM | is defined as the set of ele-

mentary squares [s, s+ 1]× [t, t+ 1] for each pixel vs,t, together with all their faces and

vertices. The abstract cubical complex KM of M is the one whose geometric realization

equals |KM |, and where squares [s, s+ 1]× [t, t+ 1] correspond to sets σs,t.

Definition 2.2.6. Let M be a gray-scale image and KM its associated abstract cubical

complex. The pixel intensity filtering function hM : KM → [0,m] ⊆ Z of M is defined

by setting hM (σs,t) = vs,t for each σs,t ∈ K and hM (σ′) = minσs,t⊇σ′ hM (σs,t) for each

σ′ ⊆ σs,t.

Definition 2.2.7. Let M be a gray scale image with values in [0,m] and hM its pixel

intensity filtering function. Given the sublevel sets filtration KhM
R , with R consisting

of the integer values in [0,m], the Euler characteristic curve CM of M is defined as

C(KhM
R ), which is a vector of m+ 1 integers whose i-th entry is χ

(
h−1
M ([0, i− 1])

)
.

The above definition of Euler characteristic curve of an image is illustrated with an

example. Given the matrix

M =

 25 125 50

150 225 175

75 200 100

 , (2.6)

which is as a gray-scale image with values in [0, 255], Figure 2.1 displays it and gives

a plot of its Euler characteristic curve vector CM in the form of a piecewise constant

continuous curve with domain [0, 255]. A visualization of the sublevel sets filtration KhM
R

of the abstract simplicial complex KM of M is given in Figure 2.2. This shows only the

complexes for the values at which new elementary squares are added. Note that the
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(a) (b)

Figure 2.1: (a) Gray-scale image of example matrix M . (b) Euler characteristic curve of image
in (a).

Figure 2.2: Sublevel sets filtration used to obtain the Euler characteristic curve in Figure 2.1b.

Algorithm 2.1 Euler characteristic curve of images.

Input: image matrix M and range [0,m].

1: CM ← zeros array of length m+ 1
2: for vs,t in M do

3: for each face σ ∈ KM introduced at value vs,t in KhM
R do

4: CM [vs,t] = (−1)dim(σ)

5: end for
6: end for
7: CM =

[
CM [0],CM [0] + CM [1], . . . ,

∑m
i=0 CM [i]

]
8: return CM

Euler characteristic χ of the complexes in Figure 2.2 equals the number of connected

components in the complexes minus the number of holes they contain.

Algorithm. Let KM be the abstract cubical complex of an image M , and hM : KM →
[0,m] its filtering function. The Euler characteristic curve of M can be computed

with Algorithm 2.1, where dim(σ) stands for the dimension of σ. This has O(n + m)
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complexity, where n is the number of pixels in M and m the number of pixel intensity

values. The O(m) contribution to this complexity comes from the cumulative sum on

line 7 of Algorithm 2.1. A full discussion of Algorithm 2.1, including computational

experiments and its streaming version generalizing the input to d-dimensional images,

can be found in [HW17].

In Chapter 3 Euler characteristic curves are generalized to objects encoding the infor-

mation provided by a pair of filtering functions, and algorithms are described for their

computation both for image and point data. This way the elements in a dataset can be

characterized based on multiple features at the same time. For example, in the case of

image data, pixel intensities and the values of a gradient on the image can be used. For

point data, distances between points and estimates of local densities can be combined.

2.3 Persistent Homology

In the previous section the concept of filtration, Definition 2.2.2, was introduced to

be used in conjunction with abstract cubical complexes derived from image data, and

obtain a vector of Euler characteristic numbers. In this section, a topological invariant

of abstract simplicial complexes is introduced. The idea is again to characterize the

elements in a dataset with the way this invariant changes on the subcomplexes of a

filtration. This way the structural information of these elements is compactly encoded

on a range of parameters. The result of this procedure is a set of so-called persistence

diagrams for each element in the dataset. In this work, these objects are going to be

primarily applied to filtrations defined on finite point sets in Rd. The different ways of

associating such a filtration to a finite set of points are described in Section 2.4. Here

the focus is on the theory underlying persistence diagrams, their properties, and the way

they are computed.

Simplicial Homology. The Euler characteristic of K gives a summary of its structure

based on a combination of connected components and holes, as it was observed in the

example given in the previous section. Homology is a more powerful invariant, which

distinguishes between connectedness and “holes” in different dimensions. The following

discussion reviews the basics of simplicial homology theory. Additional information can

be found in [Hat02].

Definition 2.3.1. An oriented k-simplex [σ] is a k-dimensional simplex σ with an order-

ing of its elements such that two orientations are equal if the two underlying orderings

differ by an even permutation.

Definition 2.3.2. Let K be an abstract simplicial complex. A k-chain c is a formal
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sum of oriented k-simplices, i.e. c =
∑

i αi[σi], where the αi are coefficients in a field F
and the [σi] are the oriented k-simplices of K.

Definition 2.3.3. The group of k-chains Ck of an abstract simplicial complex K is the

set of its k-chains together with the addition operation defined by c1 + c2 =
∑

i(α
1
i +

α2
i )[σi] for any pair of k-chains c1 =

∑
i α

1
i [σi] and c2 =

∑
i α

2
i [σi].

Remark. Because of the use of coefficients in a field F, the chain groups defined above

are vector spaces. Using F instead of Z is required for defining persistence diagrams on

K.

Definition 2.3.4. Let [σ] = [p1, p2, . . . , pk+1] denote an ordered k-simplex in K, and

−[p1, p2, . . . , pk+1] the same simplex with orientation reversed. The boundary operator

of σ is

∂k(σ) =

k+1∑
i=1

(−1)i+1[p1, . . . , p̂i, . . . , pk+1], (2.7)

where [p1, . . . , p̂i, . . . , pk+1] is the oriented face of σ with p̂i missing.

The boundary operator is an homomorphism of k-chains into (k− 1)-chains, because

∂k(c1 + c2) = ∂kc1 + ∂kc2. Moreover, an important property of the boundary operator

[Hat02, Lemma 2.1] is that the composition ∂k∂k+1 : Ck+1 → Ck → Ck−1 is the zero

homomorphism for each k ∈ N. Defined k-cycles Zk(K) = Ker(∂k), and k-boundaries

Bk(K) = Im(∂k+1), the mentioned property of the boundary operator guarantees that

Bk(K) ⊆ Zk(K) for each k ≥ 1. In case k = 0, it is assumed that ∂0 : C0 → 0 is the zero

homomorphism, so that B0(K) ⊆ Zk(K) = C0.

Definition 2.3.5. The k-th homology group of K is the quotient group

Hk(k) =
Zk(K)

Bk(K)
. (2.8)

The k-th Betti number βk(K) is the rank on Hk(K). Elements of Hk(K) are called

homology classes, and two k-cycles mapped into the same homology class by the quotient

operation are said to be homologous.

Remark. In case it is defined ∂0 : C0 → F by setting ∂0(
∑

i αiσi) =
∑

i αi, the quotient

groups above are called the reduced homology groups H̃k(K) of K.

The zeroth Betti number β0(K) corresponds to the number of connected compo-

nents of the geometric realization |K| of K [Arm13, Theorem 8.2]. Moreover, if |K| is

homeomorphic to the unit n-sphere Sn = {x ∈ Rn+1 : ||x||2 = 1}, then βk(K) = 0 for

1 ≤ k ≤ n − 1, and βn(K) = 1. In general, βn(K) equals the number of n-dimensional



Chapter 2. Background 13

holes in the geometric realization of K. Betti numbers and the Euler characteristic of a

complex K are related by the following equation, as stated by Theorem 2.44 in [Hat02].

χ(K) =
∞∑
k=0

(−1)iβk(K). (2.9)

Persistence Diagrams. The information captured by homology groups, and in par-

ticular their rank, is useful for characterizing K. Furthermore, Equation (2.9) ensures

that Betti numbers provide more information than Euler characteristic. Section 2.4

presents various ways of associating a finite set of points S to a sequence of abstract sim-

plicial complexes, i.e. a filtration. The idea is that the complexes in a filtration encode

the topological and geometric structure of S at different scales. A possible strategy for

characterizing filtrations is to compute the Betti numbers of their subcomplexes. This

would be similar to how Euler characteristic curves are associated to K in Section 2.2.

The approach presented here captures even more information by tracking how homology

classes appear and disappear in the given filtration, i.e. how long they persist. The fol-

lowing discussion summarizes the main definitions and results of the theory of persistent

homology. An expanded discussion of these concepts can be found in [EH10, Chapter 7].

Definition 2.3.6. Let KR be a filtration of an abstract simplicial complex K, where

R = {ri}mi=0 is a monotonically increasing set of real values. The k-th persistence module

of KR is

Mk(KR) =
{
Hk(Kr0)→ Hk(Kr1)→ . . .→ Hk(Krm)→ Hk(Krm+1)

}
, (2.10)

where rm+1 = +∞ and K+∞ = K.

Because homology was defined with coefficients in a field F, persistence modules can

be put in bijection with sets of intervals on the values {ri}mi=0 ∪ {+∞}. This result

is presented as given in [Oud15, Chapter 1], for the case of finite persistence modules

containing only finite-dimensional homology groups.

Theorem 2.3.7. Every persistence module Mk(KR) is decomposable as a direct sum

Mk(KR) =
⊕
l∈L

Ilk[ri, rj ] (2.11)

where Ilk[ri, rj ] is the indecomposable interval module

[r1,ri−1]︷ ︸︸ ︷
0

0−→ 0 · · · 0 0−→

[ri,rj−1]︷ ︸︸ ︷
F 1−→ F · · ·F 1−→ F 0−→

[rj ,rm+1]︷ ︸︸ ︷
0

0−→ 0 · · · 0 0−→ 0 (2.12)
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Moreover, the decomposition in Equation (2.11) is unique up to isomorphism and per-

mutation of its terms.

The proof of this theorem follows from the Krull-Remak-Schmidt principle, and

Gabriel’s theorem [Gab72] applied to the special case of persistence modules. Each inde-

composable interval Ilk[ri, rj ] represents an homology class [γ] created at ri and deleted at

rj . A simplex σi added going from Kri−1 to Kri , that creates a k-cycle representing [γ], is

a positive simplex. On the other hand, a simplex τj added going from Krj−1 to Krj , that

creates a k-boundary of [γ], is a negative simplex. Together (σi, τj) form a persistence

pair, and the persistence of [γ] is rj − ri. This difference quantifies the importance of

the connected component/k-hole represented by [γ] in KR.

Definition 2.3.8. Let KR be a filtration and Mk(KR) its persistence module. The k-th

persistence diagram of KR is the multi-set of points

Dgmk(KR) =
{

(ri, rj) ∈ R2 | Ilk[ri, rj ] is indecomposable interval of Mk(KR)
}
, (2.13)

where R2
= (R ∪ {+∞})2 is the extended plane.

Given a d-dimensional abstract complex K, any parameterized filtration KR has non-

trivial persistence diagrams in homological dimensions 0 ≤ k ≤ d − 1. This collection

of multisets of points encodes the information about creation and deletion of connected

components and k-holes in KR.

Persistent Homology Algorithm. Given a sublevel set filtration Kh
R of a complex

K, its k-th persistence diagram can be computed by reducing a matrix Dk ∈ (F)mk×mk+1 ,

where mk is the number of k-simplices in K for any k ≥ 0. To obtain this matrix, the k

and (k+ 1)-simplices of K are first sorted on their h values, i.e. σi ≺ σj if h(σi) ≤ h(σj)

for σi, σj ∈ K. Ties are broken arbitrarily. The result are the sorted lists of k-simplices

(σ0, σ1, . . . , σmk−1) and (k+1)-simplices (τ0, τ1, . . . , τmk+1−1). The elements of the matrix

Dk are defined by setting

Dk[i][j] =


1 if σi ∈ ∂k+1([τj ]),

−1 if − σi ∈ ∂k+1([τj ]),

0 otherwise,

(2.14)

for each 0 ≤ i ≤ mk − 1 and 0 ≤ j ≤ mk+1 − 1. This way the j-th column of Dk

represents the boundary of τj .

We present the standard persistent homology algorithm [DSMVJ11]. Its pseudocode
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Algorithm 2.2 Standard persistent homology algorithm.

Input: matrix Dk.

1: Rk ← Dk

2: for j = 0 to mk+1 − 1 do
3: while ∃ j′ < j such that lowRk(j′) = lowRk(j) do
4: c← Rk[lowRk(j)][j]/Rk[lowRk(j′)][j′]
5: for i = 0 to mk − 1 do
6: Rk[i][j] = Rk[i][j]− c ·Rk[i][j′]
7: end for
8: end while
9: end for

10: return Rk

is given in Algorithm 2.2. This outputs an upper triangular matrix Rk iterating on the

columns of Dk from left to right. It makes use of lowRk(j), which is the row index of

the lowest non-zero element in the j-th column of Rk, or is undefined if this column

contains only zeros. The matrix Rk is characterized by the fact of being reduced, i.e.

any two non-zero columns j1 and j2 are such that lowRk(j1) 6= lowRk(j2), and of being

obtained with column operations from left to right. Moreover, Rk defines a collection

of pairs
{

(i, j) : i = lowRk(j)
}

, which the Pairing Lemma of [EH10, Chapter 7] ensures

to be independent of the final reduced form of Dk. These pairs of indices correspond to

pairs of simplices (σi, τj) representing the creation and deletion of a k-homology class,

and so to a point
(
h(σi), h(τj)

)
in Dgmk(KR). Besides, if row i in Dk does not contain

the lowRk(j) element of any column j, and either k = 0 or column i in Dk−1 contains

only zeros, then σi represents a k-homology class created at h(σi) that is never deleted,

and so a point (h(σi),+∞) in Dgmk(KR).

Algorithm 2.2 has a worst-case running time of O(mkm
2
k+1), as it loops twice of

the columns of Rk and once on its rows. To obtain the persistence diagrams of KR

up to homological dimension k, the matrices D0, D1, . . . , Dk need to be reduced with

Algorithm 2.2. Then the points in the persistence diagrams are derived using the filtering

function h as described above.

A substantial amount of work has been done to improve the computational complexity

of persistent homology algorithm, with a large number of results [BKR14a, BKR14b,

CK11, DSMVJ11, MN13, WCV12] which have greatly sped up computations in practice

[OPT+17]. For instance, in [MMS11] the complexity of Algorithm 2.2 it is improved

to O(nw) for the computation of zigzag persistent homology, where n is the number

of simplices of K and w ≈ 2.376 if using the Coppersmith–Winograd algorithm for
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Figure 2.3: Filtration of a complex on four vertices. The h value of the simplex added at each
step is shown above each Kri .

matrix multiplication [CW90]. However, it has also been observed that smaller complexes

generally result in faster computation. For example, Alpha filtrations are introduced in

Section 2.4 to reduce the number of simplices that need to be taken into consideration

for the computation of the Čech persistence diagrams of points in Euclidean metric

space. Similarly, the filtrations described in Chapter 4 help in reducing the size of Čech

filtrations for points in `∞ metric space.

To conclude this discussion of the standard persistent homology algorithm, it is worth

mentioning that the field of coefficients F is often assumed to be Z2 = Z/2Z. For

instance, this is the case for the original persistent homology algorithm described in

[ELZ02]. Furthermore, using Z2 allows to ignore orientations of simplices. Thus it is not

necessary to compute c on line 4 of Algorithm 2.2, and the elements of two columns of

Rk can be summed modulo two arithmetic.

Example: Persistence diagrams of filtration on four vertices. Let KR be the

filtration containing four vertices, five edges, and one triangle in Figure 2.3. These

simplices are parameterized by values from 1 to 10. In particular the list of sorted

vertices is ([1], [2], [3], [4]) with filtrations values (1, 2, 3, 4), the list of sorted edges

([1, 2], [2, 3], [3, 4], [1, 4], [1, 3]) with filtration values (5, 6, 7, 8, 9), and the list of sorted

triangles ([1, 2, 3]) with value (10). Using coefficients in Z2, these result in the matrices

D0 =



[1,2] [2,3] [3,4] [1,4] [1,3]

[1] 1 0 0 1 1

[2] 1 1 0 0 0

[3] 0 1 1 0 1

[4] 0 0 1 1 0

 and D1 =



[1,2,3]

[1,2] 1

[2,3] 1

[3,4] 0

[1,4] 0

[1,3] 1

,



Chapter 2. Background 17

Figure 2.4: Persistence diagrams of filtration in Figure 2.3.

where rows and columns are labeled with their corresponding simplex. Algorithm 2.2

can be used to reduce D0, obtaining

R0 =



[1,2] [2,3] [3,4] [1,4] [1,3]

[1] 1 0 0 0 0

[2] 1 1 0 0 0

[3] 0 1 1 0 0

[4] 0 0 1 0 0

.

On the other hand, D1 = R1 is already reduced. The pairs i = lowRk(j) of the reduced

matrices give the pairs of simplices prducing the persistence diagrams in homological

dimensions zero and one of KR, which are displayed in Figure 2.4. Note that Dgm0(KR)

contains one point at infinity, corresponding to the connected component created by [1]

at filtration value 1.0. Similarly, Dgm1(KR) contains (8.0,+∞), which corresponds to

the 1-cycle created by [1, 4].

Bottleneck distance and stability. In order for persistence diagrams to be used to

distinguish between elements of a dataset, a notion of dissimilarity between diagrams

needs to be introduced.

Definition 2.3.9. Let K1
R and K2

R be two parameterized filtrations, and ∆ =
{

(x, x) ∈
R2

with infinite multiplicity : x ∈ R ∪ {+∞}
}

the diagonal counted with infinite mul-

tiplicity. The bottleneck distance between the persistence diagrams of these filtrations

is

dB
(
Dgmk(K

1
R),Dgmk(K

2
R)
)

= inf
η:X→Y

sup
x∈X

d∞(x, η(x)), (2.15)

where the infimum is taken over the set of all possible bijections η : X → Y , from

X = Dgmk(K
1
R) ∪∆ into Y = Dgmk(K

2
R) ∪∆.
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The bottleneck distance makes use of a matching η of the points in two diagrams. The

diagonal ∆ is added with infinite multiplicity so that X and Y have the same cardinality.

These additional points can be thought as of features having persistence equal to zero.

Moreover, for sublevel sets filtrations, bottleneck distance has the following important

stability property, first described in [CSEH07].

Theorem 2.3.10 (Stability Theorem for Filtrations [EH10]). Let K be a d-dimensional

abstract simplicial complex and h1 : K → R and h2 : K → R two filtering functions. The

persistence diagrams of the sublevel sets filtrations of h1 and h2 on a set of monotonically

increasing real values R satisfy

dB
(
Dgmk(K

1
R),Dgmk(K

2
R)
)
≤ ‖h1 − h2‖∞, (2.16)

for each 0 ≤ k ≤ d− 1, where ‖h1 − h2‖∞ = supσ∈K |h1(σ)− h2(σ)|.

This guarantees that small changes in the filtering functions are reflected in small

perturbations of the points of the persistence diagrams.

2.4 Proximity Filtrations

In Section 2.2 it is shown how to define a sequence of abstract cubical complexes given

a gray-scale image M . In the following discussion are described various methods for

defining a sequence of abstract simplicial complexes on a finite set of point S. These

filtrations model the structure of S on a range of scales. In particular, a distance d• on

the points of S is used to define the different sublevel sets filtrations of this section. This

way the proximity of points in S is reflected in the local connectedness and presence of

k-holes in the filtrations subcomplexes Kri . Persistence diagrams can then be used to

compactly encode this information.

Čech filtrations. The first type of filtration uses intersections of balls centered in the

points of S to model the topological and geometric structure of this set of points. Its

subcomplexes are an instance of the following general concept.

Definition 2.4.1. The nerve of a finite collection of open or closed sets {Ai}i∈I is the

abstract simplicial complex

Nrv({Ai}i∈I) =
{
σ ⊆ I |

⋂
i∈σ

Ai 6= ∅
}
. (2.17)

Definition 2.4.2. Let S be a finite set of points in (Rd, d•). The Čech complex with
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radius r of S is

KČ
r =

{
σ ⊆ S |

⋂
p∈σ

Br(p) 6= ∅
}
. (2.18)

Given R = {ri}mi=0 to be a finite set of monotonically increasing real values, the Čech

filtration KČ
R of S is

KČ
r0 ⊆ K

Č
r1 ⊆ . . . ⊆ K

Č
rm . (2.19)

We use closed balls to define Čech complexes for consistency with the definitions of

Alpha flag and Minibox complexes in Chapter 4. Note that using either open or closed

balls results in the same ordering of simplices of K in Čech filtrations. Thus the input

matrix Dk of Algorithm 2.2 is unaffected by this choice, as well as the resulting Čech

persistence diagrams. Moreover, the following version of the Nerve Theorem can be used

to establish a connection between the topology of KČ
r and the finite union

⋃
p∈S Br(p).

Theorem 2.4.3 (Theorem 10.7 [GGL95]). Let X be a triangulable space and {Ai}i∈I
a locally finite family of open subsets (or a finite family of closed subsets) such that

X =
⋃
i∈I Ai. If every non-empty intersection Ai1 ∩ Ai2 ∩ . . . ∩ Ait is contractible, then

X and the nerve Nrv({Ai}i∈I) are homotopy equivalent.

Čech complexes have the following properties.

• The Čech complex KČ
r and the union of closed balls

⋃
p∈S Br(p) are homotopy

equivalent, by Theorem 2.4.3 applied to the finite family of closed balls {Br(p)}p∈S .

• If r ∈ R is greater than the radius of the minimal enclosing ball of the points of S,

then KČ
r contains all the simplices on the points of S, that is to say KČ

r = Kn the

full complex on S, having
(
n
k+1

)
k-simplices for k ≥ 0 where n = |S|.

• The Čech filtration can be seen as a sublevel sets filtration of the full complex

Kn on S. Its filtering function is hČ : Kn → R, defined by setting hČ(σ) =

infx∈Rd maxp∈σ d•(x, p) for each σ ∈ Kn. Moreover, hČ(σ) equals the smallest

enclosing ball radius of σ.

Given KČ
R, to produce the sorted list of k-simplices used by Algorithm 2.2 the smallest

enclosing ball radiuses of simplices in KČ
rm need to be computed and sorted. For this pre-

processing step the miniball algorithm of [Gär99] can be used. Finally, Čech persistence

diagrams are computed up to some fixed homological dimension k̄ ≥ 0. This requires to

operate on
(
n
k̄+2

)
(k̄ + 1)-dimensional simplices, i.e. Θ(nk̄+2) simplices. Thus, the value

of k̄ is typically chosen to be less than or equal to 2, because of the complexity of the

persistent homology algorithm and the number of simplices in Čech filtrations.
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Figure 2.5: Boundaries of `∞-Voronoi regions of points in R2, and corresponding `∞-Delaunay
triangulation.

Voronoi diagrams and Delaunay triangulations. The following discussion intro-

duces geometric constructions that can be used to limit the number of simplices in Čech

filtrations, and still obtain the desired persistence diagrams. In particular, Voronoi dia-

grams and Delaunay triangulations are defined for points in a general metric space.

These have been extensively studied in computational geometry [dBCvKO08], primar-

ily for Euclidean space. See [AKL13] for a reference for general Voronoi diagrams and

Delaunay triangulations.

Definition 2.4.4. Let S be a finite set of points in (Rd, d•). The Voronoi region of a

point p ∈ S is

Vp =
{
x ∈ Rd | d•(p, x) ≤ d•(q, x), ∀q ∈ S

}
. (2.20)

The set of Voronoi regions {Vp}p∈S is the Voronoi diagram of S.

Definition 2.4.5. The Delaunay complex of a finite set of points S ⊆ (Rd, d•) is the

abstract simplicial complex

KD =
{
σ ⊆ S |

⋂
p∈σ

Vp 6= ∅
}
. (2.21)

In the remainder of this section, the focus is on `∞-Voronoi regions and `∞-Delaunay

complexes, as their properties are used in Chapter 4. An example of such objects, for

points in R2, is given in Figure 2.5. To begin with, it is worth noting that the structure

of intersections of Voronoi regions defined using general polyhedral distances may be

degenerate. For instance, as in the Euclidean case, d + 2 points in Rd can have `∞-

Voronoi regions with a non-empty intersection. This is illustrated by the four points in

R2 of Figure 2.6a. Moreover, without assuming any hypothesis on S the intersection of

two `∞-Voronoi regions can be a d-dimensional subset of Rd. For example, given two
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(a) (b) (c)

Figure 2.6: (a) Four points in R2 whose Delaunay complex is three-dimensional. (b) Degenerate
intersection of `∞-Voronoi regions of two collinear points p and q, meaning that the segment pq
is either horizontal or vertical. (c) `∞-Voronoi regions are not convex.

collinear points p and q in R2, i.e. p and q share a coordinate in R2, Vp ∩Vq is the union

of a line segment and two cones, the shaded areas in Figure 2.6b. We introduce the

concept of bisector, and then describe constraints that can be imposed on the points of

S to avoid such degenerate cases.

Definition 2.4.6. Let S be a finite set of points in (Rd, d∞). The bisector of a subset

σ ⊆ S is

bisσ =
{
x ∈ Rd | d•(p, x) = d•(q, x) for p, q ∈ σ

}
. (2.22)

Remark. We have
⋂
p∈σ Vp ⊂ bisσ by definition of Voronoi region and bisector. So

showing that bisσ is non-degenerate implies that
⋂
p∈σ Vp is also non-degenerate.

In [CJS19] the structure of bisectors of polyhedral distances is studied in light of

different types (weak and strong) of general position assumptions. In particular, by

Proposition 3.1 of [CJS19], it follows that the bisector between any two points in any

(Rd, d∞) is a polyhedral complex.

In this thesis, we use different definitions of general position for point sets in different

dimensions. In particular, more conditions are imposed on points in dimension two, so

that in this case S is in weak general position, as defined in [CJS19].

Definition 2.4.7. Let S be a finite set of points in (Rd, d∞). The set S is in general

position if the distances between pairs of points of S are all distinct. Moreover, for d = 2,

it is required that no four points in S lie on the boundary of a square, no three points

are collinear, and no two points have the same x or y coordinate.

Remark. The general position of S ensures that the intersection of three `∞-Voronoi



Chapter 2. Background 22

regions in R2 is either empty or a point, by Corollary 3.19 of [CJS19].

The following result describes the bisector of a pair of points in general position in

the plane.

Proposition 2.4.8. Let p, q ∈ (R2, d∞) be in general position. The bisector of p and

q is the union of the line segment Ar̄e = ∂Br̄(p) ∩ ∂Br̄(q), where r̄ = d∞(p,q)
2 , and two

half-infinite lines with slope either 1 or −1, the initial points of which are the endpoints

of Ar̄e.

Proof. Let e = {p, q}. The bisector bise of p and q is the set of equidistant points from

p and q by definition, i.e. bise =
⋃
r>0 ∂Br(p) ∩ ∂Br(q). Moreover, both ∂Br(p) and

∂Br(q) are the boundaries of axis-parallel squares in the plane with sides of length 2r, by

definition of d∞. These have an empty intersection for any r < r̄, where r̄ = d∞(p,q)
2 . On

the other hand, Ar̄e = ∂Br̄(p) ∩ ∂Br̄(q) is a horizontal or vertical line segment, because

the axis-parallel squares intersect along a face for r = r̄. For example, in Figure 2.6c

Ar̄e is the line segment [0.0, 0.5]× [0.5, 0.5] ⊆ R2. In case r = r̄ + ε > r̄, the intersection

∂Br̄+ε(p) ∩ ∂Br̄+ε(q) consists of exactly two points aε = (aεx, a
ε
y), b

ε = (bεx, b
ε
y) ∈ R2

for each ε > 0, by the general position assumption on p and q. Given the endpoints

c = (cx, cy) and d = (dx, dy) ∈ R2 of Ar̄e, we have the below equations, which follow from

the structure of the intersections of boundaries of the axis-parallel squares ∂Br̄+ε(p) and

∂Br̄+ε(q):

aεx = cx ± ε, (2.23)

aεy = cy ± ε, (2.24)

bεx = dx ± ε, (2.25)

bεy = dy ± ε. (2.26)

Note that ε is added or subtracted depending on the relative positioning of p and q.

Because the choice of sign in these equations is fixed for any ε > 0, we have that

L1 =
⋃
ε>0 a

ε and L2 =
⋃
ε>0 b

ε are two half-infinite lines with c and d as initial points

respectively, and that L1 and L2 have slope either 1 or −1. We conclude that bise =⋃
r>0 ∂Br(p) ∩ ∂Br(q) = Ar̄e ∪ L1 ∪ L2.

Definition 2.4.9. The Delaunay triangulation of a finite set of points S in general

position in (R2, d∞) is the geometric realization of the Delaunay complex KD of S,

which is the set of convex hulls of simplices of KD.

Finally, `∞-Voronoi regions are shown to be generally non-convex. To see this consider
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p = (0, 0) and q =
(

1
2 , 1
)

in R2 and the intersection of their `∞-Voronoi regions, as in

Figure 2.6c. These are such that z1 =
(

1
4 ,

1
2

)
, z2 =

(
3
4 ,

1
4

)
∈ Vp, Vq, but the middle point

on the line segment from z1 to z2 is z1+z2
2 =

(
1
2 ,

3
8

)
which belongs to Vp only. Thus Vq is

not convex so that the standard way of proving the equivalence of Čech filtrations and

the next type of filtration introduced in this section does not work in `∞ metric.

Alpha filtrations. The Voronoi regions of S can be used to filter-out high-dimensional

simplices from Čech complexes.

Definition 2.4.10. Let S be a finite set of points in (Rd, d•). The Alpha complex with

radius r of S is

KA
r =

{
σ ⊆ S |

⋂
p∈σ

(
Br(p) ∩ Vp) 6= ∅

}
. (2.27)

Given R = {ri}mi=0 to be a finite set of monotonically increasing real values, the Alpha

filtration KA
R of S is

KA
r0 ⊆ K

A
r1 ⊆ . . .K

A
rm . (2.28)

The idea is to remove “redundant” simplices from KČ
r and preserve its equivalence

with the union of closed balls centered in the points of S. This might be possible because⋃
p∈S Br(p) =

⋃
p∈S

(
Br(p)∩Vp

)
for any r ∈ R. In practice, this works only for points in

Euclidean distance. In this case, it is known that the filtration KA
R produces the same

persistence diagrams of KČ
R. This is proven by means of the Nerve Theorem 2.4.3, which

applies because KA
r is the nerve of the collection

{
Br(p)∩Vp

}
p∈S , the elements of which

are all convex and closed, assuming the Euclidean distance d2 is used. Importantly,

convex sets are contractible, as well as any intersection of a finite number of convex sets.

Thus KA
r and KČ

r are homotopy equivalent for each r ∈ R, and their homology groups

isomorphic. The equivalence of KA
R and KČ

R follows from the next theorem.

Theorem 2.4.11 (Persistence Equivalence Theorem [EH10]). Consider two sequences

of homology groups with coefficients in a field connected by homomorphisms φi : Ui → Vi

U0 U1 . . . Um Um+1

V0 V1 . . . Vm Vm+1.

(2.29)

If the φi are isomorphisms and all square commute, then the persistence diagrams defined

by the Ui are the same as those defined by the Vi.

See [EH10, Section 3.4] for more details on Alpha complexes.
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In conclusion, Alpha filtrations can be used to speed up the computation of Čech

persistent homology of S ⊆ (Rd, d2), because KA
ri ⊆ KD for each ri ∈ R and the

Delaunay complex of S contains only a subset of the simplices of the full complex Kn.

In particular, KD is expected to contain O(nd
d
2
e) d-dimensional simplices if S consists

of n points in Rd [HB08].

Delaunay-Čech filtrations. Alpha complexes use Voronoi regions to constrain the

intersection of the closed balls centered in the points of S. The simplices of the Delaunay

complex KD can also be used directly.

Definition 2.4.12. Let S be a finite set of points in (Rd, d•). The Delaunay-Čech

complex with radius r of S is

KDČ
r =

{
σ ⊆ KD |

⋂
p∈σ

Br(p) 6= ∅
}
. (2.30)

GivenR = {ri}mi=0 to be a finite set of monotonically increasing real values, the Delaunay-

Čech filtration KDČ
R of S is

KDČ
r0 ⊆ KDČ

r1 ⊆ . . .KDČ
rm . (2.31)

Simplices in KDČ
r are parameterized by their minimal enclosing ball radius, as for

Čech simplices. So Delaunay-Čech filtrations can be seen as sublevel sets filtrations of

hDČ : KD → R with hDČ(σ) = infx∈Rd maxp∈σ d•(x, p) for each σ ∈ KD. Given points

in n-dimensional Euclidean space, in [BE17] it is proven that Alpha, Delaunay-Čech,

Čech filtrations all produce the same persistence diagrams.

Example: Perturbed Delaunay-Čech filtration. The stability of persistence dia-

grams of Delaunay-Čech filtrations is illustrated with an example. Recall that the Stabil-

ity Theorem 2.3.10 guarantees that the persistence diagrams of close filtering functions

are going to be close. So, because of the definition of Delaunay-Čech filtering functions

hDČ , infinitesimal perturbations of points sets induce infinitesimal perturbations of their

persistence diagrams. Here, this property is empirically illustrated with an example. Let

S1 and S2 consist of two distinct random perturbations of seven points disposed on a

circle of radius 10 in (R2, d2), plotted in Figures 2.7a and 2.8a. Moreover, let KD
1 , KD

2 be

the Euclidean Delaunay complexes of S1 and S2, and R1, R2 the sets of monotonically

increasing real values containing the minimal enclosing ball radiuses of all simplices in

KD
1 and KD

2 respectively. Given these, the Euclidean Čech persistence diagrams of S1

and S2 can be computed using their Delaunay-Čech filtrations KDČ
R1

and KDČ
R2

. Figures

2.7c and 2.8c show five of the subcomplexes in these filtrations.



Chapter 2. Background 25

(a) Points is S1. (b) Čech persistence diagrams of S1.

(c) Delaunay-Čech filtration of points in S1.

Figure 2.7

(a) Points in S2. (b) Čech persistence diagrams of S2.

(c) Delaunay-Čech filtration of points in S2.

Figure 2.8

The resulting Čech persistence diagrams are in Figures 2.7b and 2.8b. These were

computed using the gudhi Python package [GUD21], which was also used to calculate
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(a) Points in R2 (b) Čech complex (c) Vietoris-Rips complex

Figure 2.9: The intersections of disks in (a) produce the Čech and Vietoris-Rips complexes in
(b) and (c) respectively.

the bottleneck distances between diagrams, obtaining dB(Dgm0(KDČ
R1

),Dgm0(KDČ
R2

)) ≈
0.397 and dB(Dgm1(KDČ

R1
),Dgm1(KDČ

R2
)) ≈ 0.626.

Vietoris-Rips filtrations. An abstract simplicial complex K is a flag complex if K is

the clique complex of its 1-skeleton, i.e. K contains a simplex σ if and only if it contains

all the edges in σ. The final parameterized filtration introduced in this section consists

of a sequence of flag complexes.

Definition 2.4.13. Let S be a finite set of points in (Rd, d•). The Vietoris-Rips complex

with radius r of S is

KV R
r =

{
σ ⊆ S | max

p,q∈σ
d•(p, q) < 2r

}
. (2.32)

Given R = {ri}mi=0 to be a finite set of monotonically increasing real values, the Vietoris-

Rips filtration KV R
R of S is

KV R
r0 ⊆ K

V R
r1 ⊆ . . . ⊆ K

V R
rm . (2.33)

Both Vietoris-Rips and Čech complexes are subcomplexes of the full complex Kn on

S. The advantages of Vietoris-Rips complexes are that the parameters of their simplices

are maxp,q∈σ d•(p, q) for each σ ∈ KV R
r (there is no need to compute smallest enclosing

ball radiuses), and that their flag structure allows for shortcuts in the computation of

their persistence diagrams (apparent and emergent persistence pairs of [Bau19]). More-

over, efficient software has been developed for the computation of Vietoris-Rips per-

sistence diagrams [Bau19, TSBO18]. Hence, in case it is not possible to compute the

Delaunay complex of S, for instance in high-dimensions where the complexity of KD

explodes, Vietoris-Rips persistence diagrams are usually preferred to Čech persistence
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diagrams as a way of encoding the structure of a set of points on a range of scales.

The following proposition ensures that the sublevel sets filtrations from which Euclidean

Čech and Vietoris-Rips complexes are obtained cannot be too dissimilar. By the Stabil-

ity Theorem 2.3.10 this also gives a (multiplicative) bound on the bottleneck distance

between their diagrams.

Proposition 2.4.14. Let KČ
r and KV R

r be the Euclidean Čech and Vietoris-Rips com-

plexes of S ⊆ (Rd, d2) with radius r ∈ R. The following nesting holds

KČ
r ⊆ KV R

r ⊆ KČ

2r
√

d
2(d+1)

⊆ KČ√
2r
. (2.34)

Proof. The first inclusion follows by the definition of Čech and Vietoris-Rips complexes.

The second by Jung’s theorem [DGK63] on a set of points in Euclidean space. Finally,

note that 2r
√

d
2(d+1) converges to 2r 1√

2
=
√

2r from below for dimension d going to

infinity, hence the third inclusion.
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Euler Characteristic of

Multiparameter Filtrations

Euler characteristic curves and persistence diagrams, defined in Sections 2.2 and 2.3,

encode information about the structural changes of abstract complexes in a filtration.

This is a parameterized sequence of nested complexes, obtained by taking sublevel sets

of a real-values function h : K → R. In the case of images, an appropriate h can be

defined using pixel intensity values. On the other hand, for finite point sets the radius

of the smallest enclosing balls of geometric simplices can be used to obtain the Čech

filtering function hČ . In both cases, a single parameter determines the final filtration.

In [CZ09] it was observed that many applications would benefit from studying the

structural changes in families of complexes determined by multiple parameters. Values

of radii, densities, and curvatures are mentioned as examples of parameters that could

be combined to study the geometric structure and topological connectivity of datasets.

Moreover, in the same paper, it was introduced the theory of multiparameter persistence

and the rank invariant. Unfortunately, the computation of this invariant does not scale

as well as for persistence diagrams (although efficient implementations exist for two-

parameter persistence [LW15]), which restricts its possible applications.

Here it is proposed to utilize the Euler characteristic of families of complexes deter-

mined by two-parameters as an alternative to bi-dimensional persistence. This still allows

getting insights about data on a multidimensional parameter space, while reducing the

computational burden for obtaining them. The price to pay is a reduced amount of

topological information extracted from the given nested family of complexes, as Euler

characteristic is fully determined by ranks of homology groups, see Equation (2.9).

28
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In this chapter, Euler characteristic curves are generalized to the Cartesian product

of two parameterized filtrations. Then, algorithms are presented for the computation

of such objects, both for image and point data. A Python package implementing these

algorithms is also provided, which allows for their application in practice. To conclude,

computational experiments are given to illustrate how multidimensional parameteriza-

tions capture information that would otherwise be lost by single-parameter Euler char-

acteristic curves.

Note that, the novel results presented in this chapter are also part of the preprint

[BAG+21], where Euler characteristic is applied for the detection of diabetic retinopathy

in retinal image.

3.1 Bi-filtrations and Euler Characteristic

The concept of sublevel sets filtration (see Definition 2.2.4) can be modified to make use

of a pair of parameters for each simplex in an abstract complex K. The notation of

Chapter 2 is adopted. Thus, a filtration of an abstract complex K is denoted by KR,

where R = {ri}mi=0 is a monotonically increasing set of real values.

Definition 3.1.1. A bi-filtration of an abstract simplicial complex K parameterized by

R1 and R2 is a grid of nested subcomplexes

KR1,R2 =



K0,0 ⊆ K0,1 ⊆ · · · ⊆ K0,m2⊆ ⊆ ⊆

K1,0 ⊆ K1,1 ⊆ · · · ⊆ K1,m2⊆ ⊆ ⊆

...
...

. . .
...

⊆ ⊆ ⊆

Km1,0 ⊆ Km1,1 ⊆ · · · ⊆ Km1,m2


, (3.1)

where R1 = {r1
i }
m1
i=0 and R2 = {r2

j}
m2
j=0 are mononically increasing sets of real values,

and Ki,j ⊆ K for each 0 ≤ i ≤ m1 and 0 ≤ j ≤ m2.

Remark. The subcomplexes in Equation (3.1) are denoted with Ki,j instead of Kr1
i ,r

2
j

to

simplify notation.

The following definition is given as in [BAG+21].

Definition 3.1.2. Let KR1,R2 be a bi-filtration of an abstract complex K on the sets

of monotonically increasing real values R1 = {r1
i }
m1
i=0 and R2 = {r2

j}
m2
j=0. The Euler
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characteristic surface of KR1,R2 is the (m1 + 1)× (m2 + 1) matrix of integers

S(KR1,R2) =


χ(K0,0), χ(K0,1), · · · χ(K0,m2)

χ(K1,0), χ(K1,1), · · · χ(K1,m2)
...

...
. . .

...

χ(Km1,0), χ(Km1,1), · · · χ(Km1,m2)

 , (3.2)

where χ(Ki,j) is the Euler characteristic of the subcomplexes in the bi-filtration of K.

As done in Chapter 2 with filtering functions, we use sublevel sets of appropriate

functions to define bi-filtrations on data.

Definition 3.1.3. Let K be an abstract complex. A function h : K → R2 is a bi-

filtering function on K if for each σ, τ ∈ K such that σ ⊆ τ , then h(σ)1 ≤ h(τ)1 and

h(σ)2 ≤ h(τ)2, where h(σ) = (h(σ)1,h(σ)2), h(τ) = (h(τ)1,h(τ)2).

Definition 3.1.4. Let K be an abstract complex and h : K → R2 a bi-filtering function

on K. The sublevel sets bi-filtration of K induced by h on two sets of monotonically

increasing real-values R1 = {r1
i }
m1
i=0, R2 = {r2

j}
m2
j=0 is the bi-filtration Kh

R1,R2
such that

Ki,j = h−1
(
(−∞, r1

i ]× (−∞, r2
j ]
)
, (3.3)

for each 0 ≤ i ≤ m1 and 0 ≤ j ≤ m2.

Remark. If h is defined by means of two filtering functions h1 : K → R and h2 : K → R,

i.e. h(σ) = (h1(σ), h2(σ)) for each σ ∈ K, then Equation (3.3) is equivalent at Ki,j =

h−1
1

(
(−∞, r1

i ]
)
∩ h−1

2

(
(−∞, r2

j ]
)

by the definition of Cartesian product.

Euler characteristic surfaces of pairs of images. Given a pair of gray-scale images

M1 and M2, with the same size n1 × n2 and values in [0,m] ⊆ N, the method described

in Section 2.2 can be used to obtain the pixel intensity filtering functions hM1 and hM2

of M1 and M2 respectively. Defined h : KM1 → R by setting h(σ) = (hM1(σ), hM2(σ))

for each σ ∈ KM1
1, it follows that h is a bi-filtering function. The Euler characteristic

surface SM1,M2 of the pair of images M1 and M2 is defined as S(Kh
R1,R2

), where both

R1 and R2 coincide with the set of integer values in [0,m]. Note that the last column

and last row of S(Kh
R1,R2

) are equal to the Euler characteristic curves C(K
hM1
R1

) and

C(K
hM2
R2

) respectively, by the remark above. So the Euler characteristic surface contains

all the topological information of C(Kh1
R1

) and C(Kh2
R2

), plus the information coming

from intersections of sublevel sets of hM1 and hM2 . In case a pair of three-dimensional

1The abstract cubical complexes KM1 and KM2 coincide because M1 and M2 are both n1-by-n2

matrices.
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images M1, M2 is given, it is assumed that KM1 and KM2 are three-dimensional abstract

cubical complexes whose geometric realizations contain an elementary cube [s, s + 1] ×
[t, t + 1] × [u, u + 1] for each voxel vs,t,u ∈ [0,m] in M1 and M2. Moreover, the voxel

intensity filtering functions hM1 and hM2 are the natural extensions of pixel intensity

filtering functions, setting the value of top-dimensional elements in KM1 and KM2 to the

corresponding voxel intensities.

In Sections 3.4 and 3.5, we describe novel algorithms for computing Euler character-

istic surfaces of two and three-dimensional data. Before discussing these, we study the

invariance properties of Euler characteristic curves and surfaces, as well as their stability

with respect to perturbations in the input data. Furthermore, we investigate the struc-

ture of expected Euler characteristic surfaces of random images in order to show that

they can contain more information than Euler characteristic curves.

3.2 Properties of Euler Characteristic Curves and Surfaces

By Equation 2.9 in Chapter 2, we know that the Euler characteristic χ(K) of an abstract

complex K is determined by the ranks of the homology groups of K. So, χ(K) is deter-

mined by the homotopy type of K, as homotopy equivalent complexes have isomorphic

homology groups [Hat02]. Thus, we conclude that Euler characteristic curves and sur-

faces are invariant up to homotopy equivalence of the subcomplexes of filtrations KR

and bi-filtrations KR1,R2 .

When dealing with real-world applications, Euler characteristic curves and surfaces

are derived from sublevel sets (bi-)filtrations. Hence, we are interested in the way in

which Euler characteristic changes, given a perturbation of the input data. In this

context, it would be desirable to prove a result equivalent to the Stability Theorem

2.3.10 of persistent homology. However, we show with a counterexample that such a

result cannot be obtained.

Counterexample: “close” gray-scale images with different Euler characteris-

tic curves. We show the existence of gray-scale images M1 and M2, of arbitrary size,

with pixel values in [0, 255] such that ||hM1 − hM2 ||∞ = 1, where hM1 and hM2 are the

pixel intensity filtering functions of M1 and M2. Moreover, we show that, by increasing

the size of M1 and M2, the difference between their Euler characteristic curves goes to

infinity, i.e. ||CM1 − CM2 ||∞ → +∞.

We start by defining M1 and M2. Given two odd integers n1 and n2, we set their

sizes to (16 · n1) × (16 · n2). The idea is to make M1 and M2 into the union of 256

rectangular matrices, each of size n1× n2. To simplify the exposition, we define Z to be
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(a) (b)

Figure 3.1: A gray-scale image, in (a), the Euler characteristic curve of which, in (b), equals a
negative constant on [0, 254], which decreases by increasing the size of the image.

a zero matrix of size n1 × n2, and H to be a ‘holes’ matrix of size n1 × n2 such that

H[i][j] =

1 if i and j are odd,

0 otherwise.
(3.4)

It should be noted that, by thresholding the matrix H at level 0, we obtain a binary image

like the one on the left in Figure 3.1a. This corresponds to a two-dimensional abstract

cubical complex with one connected component and n1−1
2 · n2−1

2 one-dimensional holes.

Moreover, we define Z(k) and H(k) as the n1×n2 matrices such that Z(k)[i][j] = Z[i][j]+k

and H(k)[i][j] = H[i][j] + k for each 0 ≤ i ≤ n1 − 1 and 0 ≤ j ≤ n2 − 1.

Given these matrices, we first define

M1[i · n1 : (i+ 1) · n1 − 1][j · n2 : (j + 1) · n2 − 1] = H(j+16i−1), (3.5)

M2[i · n1 : (i+ 1) · n1 − 1][j · n2 : (j + 1) · n2 − 1] = Z(j+16i−1), (3.6)

for each 0 ≤ i ≤ 15 and 0 ≤ j ≤ 15, where [i ·n1 : (i+1) ·n1−1] and [j ·n2 : (j+1) ·n2−1]

stand for all the indices from i · n1 to (i+ 1) · n1 − 1 and from j · n2 to (j + 1) · n2 − 1.

Finally, we set M1[0 : n1 − 1][0 : n2 − 1] = Z and M2[0 : n1 − 1][0 : n2 − 1] = Z, so

that all the elements of M1 and M2 are values in [0, 255]. Given n1 = n2 = 15, Figure

3.1a shows M1 and the result of thresholding at level k one of its H(k) submatrices. Its

corresponding Euler characteristic curves is given in Figure 3.1b.

We have that ||hM1−hM2 ||∞ = 1 because this distance equals the maximum absolute

value difference between any two pixels at the same position in H(k) and Z(k). On the

other hand, the value of ||CM1 − CM2 ||∞ increases with the size of M1 and M2. This

follows, because by definition of M1 and M2:

• The subcomplexes h−1
M1

(
(−∞, v]

)
contain one connected component and n1−1

2 ·
n2−1

2
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one-dimensional holes for each v ∈ [0, 254], and only one connected component for

v = 255.

• The subcomplexes h−1
M2

(
(−∞, v]

)
contain one connected component and no one-

dimensional holes for each v ∈ [0, 255].

Thus, CM1 is equal to 1− n1−1
2 · n2−1

2 on the range [0, 254], while CM2 is equal to 1 on

the same range. Importantly, the value of the negative constant 1− n1−1
2 · n2−1

2 depends

on the size of M1 and M2, so that, by increasing n1 and n2, the value of ||CM1 −CM2 ||∞
can be made arbitrarily big.

Remark. Given the zero matrix M3 of size (16 · n1) × (16 · n2), the Euler characteristic

surfaces SM1M3 and SM2M3 can be used to extend the counterexample described above

to bi-filtrations.

We conclude that, given a fixed difference in the (bi-)filtrations producing Euler

characteristic curves and surfaces of images, these can be arbitrarily different. Therefore,

it is not possible to prove a general Stability Theorem in this setting.

3.3 Euler Characteristic Surfaces of Random Images

Here we show with an example that Euler characteristic surfaces of pairs of images can

contain useful information for distinguishing between different classes in a dataset, while

the Euler characteristic curves of the same images do not. We introduce a method

that can be used to obtain a family of pairs of random gray-scale images. While all

such images have the same expected Euler characteristic curve, we provide an analytical

expression of the expected values of the entries χ(Ki,j) in Equation (3.2), which are not

constant for different pairs in the family.

Fixed the sizes n1, n2 ∈ N and a probability p ∈ [0, 1] ⊆ R, a pair of random gray-scale

images Mp
1 , Mp

2 ∈ Nn1×n2 can be generated with the following method. To define each

pair of pixels of Mp
1 and Mp

2 at position (s, t), denoted by Mp
1 [s][t] and Mp

2 [s][t], three

random values x, v1, v2 ∈ R are sampled from independent uniform distributions U(0, 1),

U(0, 256), U(0, 256). The value of 0 < x < 1 is used to to decide if the (s, t) pixels in

Mp
1 and Mp

2 are set equal or not. In practice, if x ≤ p, then Mp
1 [s][t] = Mp

2 [s][t] = bv1c.
Otherwise, Mp

1 [s][t] = bv1c and Mp
2 [s][t] = bv2c. Thus, for each position (s, t) pixels are

set to the same random integer with probability p, and to independent random integers

with probability (1 − p). Hence, by sampling multiple values of x, v1, and p for each

position (s, t), it is possible to obtain a set of pairs of random gray-scale images with value

in [0, 255]. Moreover, Mp
1 and Mp

2 have the same expected Euler characteristic curves
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for any p ∈ [0, 1], because pixel values are sampled from the same uniform distributions

U(0, 256).

On the other hand, defined h = (hMp
1
, hMp

2
), it is possible to show that the expected

Euler characteristic surface of the pairs Mp
1 , Mp

2 are different for different choices of the

probability parameter p. In particular, we derive an analytical expression for the elements

of the expected Euler characteristic surface SMp
1 ,M

p
2
, which differs for each 0 ≤ p ≤ 1

[BAG+21].

Proposition 3.3.1. Let Mp
1 , Mp

2 be two random gray-scale images of size n1 × n2,

generated with the method described above, where p is a real value in [0, 1]. Given the

sublevel sets bi-filtrations Kh
R1,R2

of Mp
1 and Mp

2 , the expected values of the elements of

the Euler characteristic surface SMp
1 ,M

p
2

are

E[χ(Ki,j)] = (n1 − 1)(n2 − 1) ·
[
1− (1− P (σs,t ∈ Ki,j)

4)
]

+ (n1(n2 + 1) + n2(n1 + 1)− 4) ·
[
1− (1− P (σs,t ∈ Ki,j)

2)
]

+ (n1n2 + 2n1 + 2n2 + 4) · P (σs,t ∈ Ki,j),

where P (σs,t ∈ Ki,j) = min{i, j} · p+ i · j · (1− p)

Proof. First, it is observed that the expected value of χ(Ki,j), i.e. an element of the

matrix SMp
1 ,M

p
2
, is completely determined by the expected number of vertices, edges,

and squares in Ki,j ⊆ KMp
1

= KMp
2
. Moreover, it is known that a vertex is in Ki,j if

and only if at least one of the squares that include it is in Ki,j , and the same holds for

edges. So given the expected probability P (σs,t ∈ Ki,j) of a square belonging to Ki,j ,

the expected probabilities of having vertices and edges in Ki,j can be derived as well.

From the definition of Mp
1 and Mp

2 and h, it follows

P (σs,t ∈ Ki,j) = P
(
hMp

1
(σs,t) < i and hMp

2
(σs,t) < j

)
· p

+ P
(
hMp

1
(σs,t) < i

)
· P
(
hMp

2
(σs,t) < j

)
· (1− p)

= min{i, j} · p+ i · j · (1− p),

(3.7)

because the values of hMp
1
(σs,t) and hMp

2
(σs,t) are uniformly distributed in [0, 255] and

0 ≤ i, j ≤ 255. Then, because the values of different pixels are independent of each

other, the probability that a vertex or edges σ′ belongs to Ki,j is

1−
(

1− P (σs,t ∈ Ki,j)
k
)
, (3.8)

where k is the number of squares σs,t containing σ′. Besides, it is known that in the
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(a) (b)

Figure 3.2: (a) A 64-by-64 random gray scale image.(b) Plot of the expected Euler characteristic
curve of either Mp

1 or Mp
2 for any 0 ≤ p ≤ 1.

n1 × n2 abstract cubical complex K255,255 there are:

• (n1 − 1)(n2 − 1) internal vertices contained in four squares each;

• 2(n1 − 1) + 2(n2 − 1) boundary vertices contained in two squares each;

• 4 corner vertices contained in one square only;

• n1(n2 + 1) + n2(n1 + 1)− 2n1 − 2n2 internal edges contained in two squares each;

• 2n1 + 2n2 boundary edges contained in one square only;

• and n1n2 squares.

Finally, combining the expression in Equation (3.8) with the number of elements in

K255,255 above, the expected value of χ(Ki,j) is

E[χ(Ki,j)] = (n1 − 1)(n2 − 1) ·
[
1− (1− P (σs,t ∈ Ki,j)

4)
]

+ (n1(n2 + 1) + n2(n1 + 1)− 4) ·
[
1− (1− P (σs,t ∈ Ki,j)

2)
]

+ (n1n2 + 2n1 + 2n2 + 4) · P (σs,t ∈ Ki,j),

(3.9)

where P (σs,t ∈ Ki,j) = min{i, j} · p+ i · j · (1− p).

Fixed n1 = 64 and n2 = 64, the expected Euler characteristic surfaces for p = 0.1

and p = 0.8, determined by Equation (3.3.1), are represented as contour plots in Figures

3.3a and 3.3b. Note that in this setting expected Euler characteristic curves are non-

informative for distinguishing between random images generated using any 0 ≤ p ≤ 1,

as these always coincide with the curve in Figure 3.2b. On the other hand, expected

Euler characteristic surfaces are different for each 0 ≤ p ≤ 1. To further illustrate this,

in Figure 3.3c it is given the contour plot of the absolute value of the difference of the

expected surfaces for p = 0.1 and p = 0.8.
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(a) (b) (c)

Figure 3.3: In (a) and (b) the contour plots of expected Euler characteristic surfaces of pairs of
random images Mp

1 , Mp
2 with p = 0.1 and p = 0.8 respectively. In (c) the contour plot of the

absolute value of the difference of the Euler characteristic surfaces in (a) and (b).

3.4 Algorithm for Image Data

In this and the next section, we describe novel algorithms that can be used to compute

Euler characteristic surfaces. These are part of the results presented in the preprint

[BAG+21]. Here it is discussed the case of image data, while in the following section

the one of points data. In particular, it is given an algorithm to compute the Euler

characteristic surface SM1,M2 of a sublevel sets bi-filtration of h : KM1 → R2, which

is defined by setting h(σ) = (hM1(σ), hM2(σ)) for each σ ∈ KM1 , where hM1 and hM2

are the pixel intensity filtering functions of two gray-scale images M1,M2 (see Definition

2.2.6). Algorithm 3.1 takes as inputs a pair of two or three-dimensional gray-scale images

M1, M2 and a vector of precomputed Euler characteristic changes, and returns the

matrix of Euler characteristic values SM1,M2 .2 The correctness and running time of

this algorithm are discussed below, while an implementation is provided by the euchar

Python package, which is applied to real-world data in the final section of this chapter.

Discussion. It follows from the definition of h and Cartesian product that Ki,j =

h−1
(
(−∞, r1

i ]×(−∞, r2
j ]
)

is equivalent to Ki,j = h−1
M1

(
(−∞, r1

i ]
)
∩h−1

M2

(
(−∞, r2

j ]
)
. So the

j-th column of SM1,M2 equals the Euler characteristic curve of hM1 with KM1 restricted

to its top-dimensional cubes σ̄ such that hM2(σ̄) ≤ j, because of the intersection with

the cubical complex h−1
M2

(
(−∞, r2

j ]
)
. Thus, a possible approach for computing the Euler

characteristic surface of the sublevel sets bi-filtration of h is to apply Algorithm 2.1

for Euler characteristic curves to the restriction of hM1 to h−1
M2

(
(−∞, r2

j ]
)

for each 0 ≤
j ≤ m2, i.e. obtaining each column of SM1,M2 separately. We refer to this as the näıve

approach, the correctness of which follows from the one of the Euler characteristic curve

algorithm. For two-dimensional (three-dimensional) images, it has a running time of

O(nm2 +m1m2), where n is the number of pixels (voxels) in M1 and M2.

2This is restricted to two and three dimensions because of practical limitations due to the size of the
input vector of Euler characteristic changes for higher-dimensions.
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To further improve the efficiency of real-world implementations, Algorithm 3.1 makes

use of the following two strategies:

(i) Precompute the possible Euler characteristic changes produced by adding a top-

dimensional σ̄ into any Ki,j , and use these to increase or decrease the values of

SM1,M2 ;

(ii) Loop on each top-dimensional σ̄ only once, by modifying all columns of SM1,M2

where σ̄ produces the same change at the same time.

In the following discussion, points (i) and (ii) above are shown to preserve the correctness

of the näıve approach computing columns of SM1,M2 independently.

Using Euler characteristic changes as suggested in (i) is possible because the process

of going from the empty abstract cubical complex to KM1 = K255,255 can be decomposed

into steps at which a single σ̄ and its subfaces are added. This follows from the defi-

nition of the filtering functions hM1 and hM2 in terms of pixel (voxel) intensity values.

Furthermore, at each such step, the change ∆χσ̄ in Euler characteristic of the current

cubical complex is completely determined by the structure of elements adjacent to σ̄.

More precisely, defined the neighbourhood N σ̄ of σ̄ to be the set of elementary cubes that

intersect it, by Definition 2.2.1 ∆χσ̄ only depends on the numbers of elementary cubes

added into N σ̄ when σ̄ is added. So all possible Euler characteristic changes can be pre-

computed because there is a finite number of neighbourhoods N σ̄.3 In particular, there

are 2(3d−1) such neighbourhoods in dimension d, meaning that there are 256 Euler char-

acteristic changes to precompute for two-dimensional images and 67, 108, 864 changes for

three-dimensional images. For d = 4, the number of possible neighbourhoods is already

a 25 digits integer, making the computation and storage of their corresponding changes

impractical. Hence Equation (2.2) can be used to compute all the Euler characteristic

changes for d = 2 and d = 3, which can then be stored in a vector preCompChanges

using the binary representation of neighbourhoods to index them. For example, consider

the neighbourhood in Figure 3.4a corresponding to the binary matrix1 0 1

0 0 0

1 0 1

 , (3.10)

and in turn to the binary sequence 10100101. Its Euler characteristic change is −3 and

the decimal representation of its binary sequence 165. Thus −3 is stored as the 165-th

element of preCompChanges.

3For two-dimensional images, N σ̄ is a set of 8 squares and their subfaces, while for three-dimensional
images it is a set of 26 cubes and their subfaces.
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Algorithm 3.1 Euler characteristic surface of bi-filtration on a pair of images.

Input: gray-scale images M1,M2, h : K → [0,m1] × [0,m2] ⊆ Z2, and the pre-
computed vector preCompChanges.

1: Add a one pixel (voxel) thick outer layer to images, so that the new boundary pixels
(voxels) are mapped by h into (m1 + 1,m2 + 1)

2: SM1,M2 ← (m1 + 1)× (m2 + 1) zeros matrix
3: for each top-dimensional cube σ̄ in KM1 do
4: r1

i , r
2
j ← hM1(σ̄), hM2(σ̄)

5: neigh1, neigh2 ← hM1 , hM2 values in neighbourhood of σ̄
6: thresholds2 ← sorted values in neigh2 greater than r2

j , union m2 + 1

7: N σ̄
1 ← boolean matrix defined by (neigh1 ≤ r1

i ) before σ̄ and (neigh1 < r1
i ) after

σ̄
8: for k = 1 to |thresholds2| do
9: N σ̄

2 ← boolean matrix defined by (neigh2 ≤ thresholds2[k − 1])
10: N σ̄ ← element-wise AND of N σ̄

1 and N σ̄
2

11: l← decimal integer of binary representation of N σ̄

12: for ĵ = index of thresholds2[k − 1] to index of thresholds2[k]− 1 do
13: SM1,M2 [i][ĵ] += preCompChanges[l]
14: end for
15: end for
16: end for
17: SM1,M2 ← cumulative sum on columns of SM1,M2

18: return SM1,M2

(a) (b)

Figure 3.4: Euler characteristic changes produced by adding an elementary cube of maximal
dimension in a two-dimensional cubical complex. In (a) the change is equal to −3, while in (b)
it is +1.

Point (ii) above is realized by the inner loop on lines 8− 15 of Algorithm 3.1, where

r1
i = hM1(σ̄) and r2

j = hM2(σ̄) so that Ki,j is the first complex including σ̄. The idea is

to use preCompChanges to update the i-th row of SM1,M2 at each iteration. This can be

done because Ki,j = h−1
M1

(
(−∞, r1

i ]
)
∩h−1

M2

(
(−∞, r2

j ]
)
, so χ(Ki,j) and χ(Ki,j+1) can differ

by a change ∆χσ̄ induced by σ̄ if and only if N σ̄ in Ki,j+1 has changed, i.e. if there is a

top-dimensional cube σ′ ∈ N σ̄ such that hM2(σ′) = r2
j+1. But all such changes depend
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on the hM2 values of top-dimensional cubes in N σ̄ greater than r2
j . Sorting and storing

these in thresholds2 with m2 + 1 appended, it follows that the ranges of ĵ-th columns

of SM1,M2 such that ĵ is between two consecutive values of thresholds2 are such that

the Euler characteristic change induced by adding σ̄ is constant because N σ̄ does not

change. So the elements of vector preCompChanges can be used on line 13 to update

all ĵ columns such that ĵ ≥ j.

In conclusion, at the end of the loop on lines 3−16, each entry SM1,M2 [i][j] equals the

change χ(Ki,j)− χ(Ki−1,j), because all changes ∆χσ̄ induced by the top-dimensional σ̄

in Ki,j \Ki−1,j have been considered. After the cumulative sum on columns of SM1,M2 ,

it follows that

SM1,M2 [i][j] =
(
χ(K0,j)− χ(∅)

)
+ . . .+

(
χ(Ki,j)− χ(Ki−1,j)

)
=χ(Ki,j)− χ(∅) = χ(Ki,j),

(3.11)

which is the required Euler characteristic surface entry.

Proposition 3.4.1. Let M1 and M2 be two-dimensional (three-dimensional) gray-scale

images with the same size, and values in [0,m1] and [0,m2] respectively. The Euler

characteristic surface SM1M2 of the pair M1, M2 can be computed with Algorithm 3.1,

which has worst-case complexity O(nm2+m1m2), where n is the number of pixels (voxels)

in M1 and M2.

Proof. The above discussion proves the correctness of Algorithm 3.1 for the computation

of SM1M2 . The outer loop on line 3 iterates on the n pixels (voxels) of M1 and M2, while

the inner loop on lines 8 − 15 takes O(m2) operations in the worst case to update an

entire row. Finally, the cumulative sum on line 17 takes O(m1m2) operations. So, the

worst-case complexity of Algorithm 3.1 is O(nm2 +m1m2).

Remark. Compared to computing m2 Euler characteristic curves as proposed by the

näıve approach at the beginning of this section, the neighbourhood N σ̄ is computed only

once for ranges of columns where it does not change. Moreover, the entries of SM1,M2

are incremented and decremented without having to count subfaces of top-dimensional

cubes in N σ̄.

3.5 Algorithm for Point Data

Given a finite set set of points X and an abstract simplicial complex K on X, Algorithm

3.2 computes the Euler characteristic surface Sh
R1,R2

of the sublevel sets bi-filtration

Kh
R1,R2

of a given h = (h1, h2) : K → R2 on two sets of monotonically increasing
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Algorithm 3.2 Euler characteristic surface of bi-filtration on finite point set.

Input: abstract simplicial complex K, h = (h1, h2) : K → R2, and sorted values in
R1 and R2.

1: Sh
R1,R2

← (m1 + 1)× (m2 + 1) zeros matrix
2: for each simplex σ in K do
3: v1, v2 ← h1(σ), h2(σ)
4: r1

i , r
2
j ← minimum values greater than v1, v2 in R1, R2 with binary search

5: for ĵ = j to m2 do
6: Sh

R1,R2
[i][ĵ]← (−1)dim(σ)

7: end for
8: end for
9: Sh

R1,R2
← cumulative sum on columns of Sh

R1,R2

10: return Sh
R1,R2

real values R1 = {r1
i }
m1
i=0 and R2 = {r2

j}
m2
j=0. The euchar Python package provides an

implementation of this algorithm, which is applied in the next section.

Discussion. In this case, when a simplex σ is added into a Ki,j = h−1
1

(
(−∞, r1

i ]
)
∩

h−1
2

(
(−∞, r2

j ]
)

its neighbourhood does not have a fixed structure. Thus it is not possible

to precompute Euler characteristic changes as in Algorithm 3.1. However, if σ ∈ Ki,j ,

then σ ∈ Ki,ĵ for each ĵ ≥ j. So the change in Euler characteristic (−1)dim(σ), produced

by adding σ into Ki,j , also applies to Ki,ĵ for each ĵ ≥ j. This property is used on line

6 of Algorithm 3.2 to update the i-th row of Sh
R1,R2

for each σ. It follows that at the

end of the loop on lines 2 − 8 each entry Sh
R1,R2

[i][j] equals χ(Ki,j) − χ(Ki−1,j), and

the cumulative sum on columns of on line 9 returns the Euler characteristic surface of

Kh
R1,R2

.

Proposition 3.5.1. Let Kh
R1,R2

be a sublevel sets bi-filtration of an abstract simplicial

complex K. The Euler characteristic surface Sh
R1,R2

of Kh
R1,R2

can be computed with

Algorithm 3.2, which has worst-case complexity O(n(log2(m1) +m2) +m1m2), where n

is the number of simplices of K, and m1 and m2 the numbers of values in R1 and R2

respectively.

Proof. The correctness of the algorithm follows from the above discussion. The outer

loop on line 2 iterates on the n simplices in K. Then, within this loop the indices i and

j are found with binary search, taking O(log2(m1) + log2(m2)) operations, and used to

update row i of Sh
R1,R2

with at most m2 operations in the inner loop on lines 5 − 7.

Thus, the complexity of lines 2 − 8 is O(n · (log2(m1) + m2)). Finally, the cumulative

sum of line 9 takes O(m1m2) operations. So, the worst-case complexity of Algorithm 3.2
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is O(n(log2(m1) +m2) +m1m2), where n is the number of simplices in K, and m1 and

m2 the number of values in R1 and R2 respectively.

3.6 Experiments

Several experiments are presented that illustrate the additional information encoded by

Euler characteristic surfaces compared to Euler characteristic curves. For image and

point data, it is found that regions of the bi-dimensional parameter space, onto which

bi-filtrations are defined, are useful in distinguishing between elements belonging to

different classes of a given dataset. Algorithms 3.1 and 3.2 are used to compute the

Euler characteristic surfaces of two and three-dimensional gray-scale images, and finite

point sets in R2, by means of the implementations provided by the euchar Python

package.

Handwritten digits images. The MNIST dataset of handwritten digits is an open-

source collection of 28× 28 gray-scale images with values in [0, 255], see Figure 3.5a. It

contains 60, 000 training and 10, 000 test images and is a standard tool used in bench-

marking pattern recognition and machine learning algorithms [LBBH98].

In this setting Euler characteristic curves are expected to be non-informative in dis-

criminating between some classes of images. For instance, take the sets of images rep-

resenting a 6 and a 9 respectively, their average Euler characteristic curves cannot be

used to distinguish between them. This happens because these two sets of MNIST images

represent the same shape up to a rotation so that their pixel intensity sublevel sets have

almost identical expected Euler characteristics. Luckily, the second parameterization

used to define Euler characteristic surfaces can be used to account for this problem.

Given the 28 × 28 top-down uniform gradient image G displayed in Figure 3.5b, the

Euler characteristic surfaces of the pairs (M,G) for each MNIST image M were computed

with Algorithm 3.1. The idea is that this gradient should help discriminate between the

same shapes rotated by 180 degrees. The elementwise averages of surfaces representing

the digits 6 and 9 are in Figures 3.6a and 3.6b respectively, and their difference in Fig-

ure 3.6c. Finally, Figure 3.6d shows the regions of the bi-dimensional parameter space

[0, 255]× [0, 255] where the one standard deviation thickenings of these average surfaces

are disjoint. These are indices (i, j) where the elementwise average minus one standard

deviation of the surfaces representing a 6 is greater than the elementwise average plus

one standard deviation of surfaces representing a 9, or vice versa. In this case, the aver-

age values of χ(K−,255) and χ(K255,−), i.e. average Euler characteristic curves, are such

that their one standard deviations thickenings are not disjoint, while this is true in other

regions of the bi-parameter space of Euler characteristic surfaces. Thus, utilizing the
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(a) (b)

Figure 3.5: (a) MNIST images. (b) Top-down gradient image G.

(a) (b)

(c) (d)

Figure 3.6: (a) Contour plots of average Euler characteristic surfaces of pairs (M,G), where G is
the gradient in Figure 3.5b, and M is a MNIST images representing a 6. (b) Same as in (a), but
for MNIST images representing a 9. (c) Absolute value of the difference of the average surfaces in
(a) and (b). (d) The black areas are the regions of the parameter space where the one standard
deviation thickenings of the average surfaces are disjoint.

gradient image G, it is possible to capture information that would otherwise be missed

by single parameter Euler characteristic curves.
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Random images with copula distributions. In Section 3.1 it is given an analytical

expression, Equation (3.3.1), for the expected values of entries of Euler characteristic

surfaces of n1 × n2 random images. In that case a single parameter 0 ≤ p ≤ 1 is used

to regulate the strength of dependence within pairs of images. More generally, a pair of

random images M1,M2 can be generated by sampling points in R2 according to a given

bivariate distribution and setting the values of the entries of M1 and M2 equal to the

coordinates of these randomly generated points. In the following, it is shown that average

Euler characteristic surfaces of pairs of random three-dimension images generated from

two given bivariate distributions are different, while their Euler characteristic curves are

not.

A standard tool to define classes of multidimensional distributions are copula func-

tions [Nel06], which can be used to join univariate marginal distribution functions. Here,

the family of Clayton Archimedean copulas, with generator functions φ(t) = (t−θ − 1)/θ

for θ ∈ [−1 + ∞), is chosen and used to join a pair of univariate uniform distribu-

tions U(0, 1). The result is a collection of bivariate distributions parameterized by

θ ∈ [−1,+∞). In practice, the copula [HKMY20, Yan07] R package was used to sam-

ple random points from the two bivariate Clayton copula distributions with uniform

marginals and θ = 1 and θ = 5 respectively. See Figure 3.7 for examples of such points.

Then, pairs of three-dimensional 16× 16× 16 gray-scale images M θ
1 ,M

θ
2 were generated

by setting their entries to the coordinate values of sampled points. The expected Euler

characteristic curve of any image M θ
1 or M θ

2 is constant because the bivariate distribu-

tions from which voxel intensity values are obtained have the same uniform marginals.

On the other hand, average Euler characteristic surfaces of sublevel sets bi-filtrations of

h = (hMθ
1
, hMθ

2
), computed with Algorithm 3.1 over 50 pairs of random images, are dif-

ferent. Contour plots of these surfaces for θ = 1 and θ = 5 are in Figures 3.8a and 3.8b,

and the absolute value of their difference in Figure 3.8c. Furthermore, the black area in

Figure 3.8d represents the indices (i, j) ∈ [0, 255]× [0, 255] where the one standard devia-

tion thickenings of the average surfaces are disjoint. Thus, as in the case of MNIST images

above, indices such that either i 6= 255 or j 6= 255 are useful in distinguishing between

the two given classes of data, while Euler characteristic curves are non-informative.

Poisson and Hawkes spatial processes. For this last experiment, average Euler

characteristic surfaces of finite sets of points are compared. In particular, a homogeneous

Poisson process and a Hawkes cluster process are used for generating random points in

the unit square [0, 1] × [0, 1] ⊆ R2 as described in [KB13]. The intensity parameter of

the first process is set to λ = 200, while for the cluster process the intensity is λ = 140,
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(a) (b)

Figure 3.7: Random points sampled in the unit square from bivariate distributions derived from
a Clayton copula function with uniform marginals U(0, 1). For the points in (a) the Clayton
copula parameter is set to θ = 1, while in (b) it is set to θ = 5.

(a) (b)

(c) (d)

Figure 3.8: (a) Contour plots of average Euler characteristic surfaces of sublevel sets bi-filtration
of pairs (Mθ

1 ,M
θ
2 ) for θ = 1. (b) Same as in (a), but for θ = 5. (c) Absolute value of the difference

of the average surfaces in (a) and (b). (d) The black areas are the regions of the parameter space
where the one standard deviation thickenings of the average surfaces are disjoint.
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and the two parameters used in the definition of the offspring intensity function

%(x1, x2) =
α

2πβ2
exp

(
− 1

2β2
(x2

1 + x2
2)

)
, (3.12)

are set to α = 0.3, β = 0.02. Figure 3.9b provides examples of finite point sets obtained

from such spatial point processes. On these, Euler characteristic surfaces can be com-

puted by defining an appropriate bi-filtering function h and sets R1, R2. In this case, it

is used h = (h1, h2) : KD → R2, where KD is the Delaunay complex of the given finite

point set, h1 encodes information about local densities at points, and h2 maps simplices

to the radius of their minimal enclosing ball. An estimate of the inverse of the local den-

sity is obtained using the root mean square of the distances to its nearest-neighbours,

that is to say

denskinv(p) =

√
d2

1 + d2
2 + . . .+ d2

k

k
, (3.13)

where di is the distance from any point p to its i-th nearest neighbour. In practice, it

is set h1(σ) = maxp∈σ dens6
inv(p) and h2(σ) = hDČ(σ) for each σ ∈ KD, where hDČ

is the Delaunay-Čech filtering function of Section 2.4. Besides, the values in R1 and

R2 are defined so to subdivide the ranges [0,maxσ∈KD h1(σ)] and [0,maxσ∈KD h2(σ)]

into 200 intervals of equal length. Finally, Euler characteristic surfaces are computed

with Algorithm 3.2. A contour plot of the average Euler characteristic surface of h,

over 50 different point sets obtained from the Poisson process, is in Figure 3.10a. The

same, but for the Hawkes cluster process, is in Figure 3.10b. As for the previous two

experiments, the absolute value of the difference of these two surfaces is computed,

and displayed in Figure 3.10c. Regions of the parameter space where the one standard

deviation thickenings of the average surfaces are disjoint are represented by black areas

in Figure 3.10d. In this case, some of the average values of χ(K−,200) and χ(K200,−),

corresponding to those of Euler characteristic curves of h1 and h2 above, fall in regions

of the parameter space where average surfaces are disjoint. However, there exist pairs

of indices i, j ∈ [0, 200] × [0, 200] at which one standard deviation thickenings of the

average surfaces are disjoint, while the same does not hold for any (i, 200) and (200, j).

For example, this happens for (i, j) such that (r1
i , r

2
j ) = (0.07, 0.08), which is the point

marked by a red cross in Figure 3.10d. So Euler characteristic surfaces of h capture

information that is not available in the Euler curve of h1 nor in the Euler curve of h2.

3.7 Discussion

The main contribution of this chapter is the introduction of Euler characteristic surfaces,

which extend Euler characteristic curves to bi-filtrations, i.e. Cartesian products of
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(a) (b)

Figure 3.9: (a) Points obtained from a homogeneous Poisson process with intensity λ = 200.
(b) Points obtained from a Hawkes cluster process with intensity λ = 140 and offspring intensity
parameters α = 0.3 and β = 0.02.

(a) (b)

(c) (d)

Figure 3.10: (a) Contour plots of average Euler characteristic surfaces of h = (h1, h2) : KD → R2

defined on the Delaunay complex of random points obtained from a homogeneous Poisson process.
(b) Same as in (a), but for points obtained from a Hawkes cluster process. (c) Absolute value
of the difference of the average surfaces in (a) and (b). (d) The black areas are the regions of
the parameter space where the one standard deviation thickenings of the average surfaces are
disjoint.
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single-parameter filtrations. These can be used to characterize data over bi-dimensional

parameter spaces. In particular, it is possible to obtain insights on the pairs of parameters

that better distinguish between different types of data, that is to say the parameters

maximising the difference in Euler characteristic between subcomplexes of different bi-

filtrations. To illustrate this, we give various experiments on both real and synthetic

data. These show how Euler characteristic surfaces identify regions of pairs of parameters

discriminating between elements in different classes of a dataset, which would not be

detected by Euler characteristic curves.

Furthermore, Algorithm 3.1 and Algorithm 3.2 are presented for the computation of

Euler characteristic surfaces of image and point data. These have a worst-case running

time of O(nm2 +m1m2) and O(n(log2(m1) +m2) +m1m2) respectively, see Proposition

3.4.1 and Proposition 3.5.1. Note that the computation of these objects scales better

than the one of persistence diagrams introduced in Chapter 2. In that case, Algorithm

2.2 takes O(nkn
2
k+1) time to compute the k-th persistence diagram of a filtration, where

nk is the number of k-simplices in K.

In Chapter 5 Euler characteristic surfaces are used to produce feature vectors from

real-world data, which are then applied to classification tasks with standard machine

learning methods. Moreover, these are compared against classification accuracy results

obtained with feature vectors derived from persistence diagrams.



Chapter 4

Persistent Homology in `∞ Metric

This chapter studies the problem of computing the Čech persistent homology of a finite

set of points S in `∞ metric space. The idea is to investigate whether or not filtrations

of abstract simplicial complexes built out of nerves of `∞-balls (i.e. nerves of sets of

axis-parallel hypercubes in a general dimension d) can be used to efficiently compute

Čech persistence diagrams. In Euclidean metric space, it is known that Alpha filtrations

can be used for such computations while restricting simplices to those of the Delaunay

triangulation of S as discussed in Section 2.4. The main goals here are to find whether

the same approach works in the `∞ metric setting, and possibly describe novel proximity

filtrations that can be used to limit the size of Čech filtrations while producing the same

persistence diagrams.

It should be noted that, the material presented in this chapter is part of [BS21].

Given a finite set of points S ⊆ (Rd, d∞), the contributions of this research project can

be summarized as follows.

• Under genericity assumptions, i.e. the general position of S, Alpha complexes are

proven to be equivalent to Čech complexes for points in two-dimensions, i.e. filtra-

tions built with these complexes produce the same persistence diagrams. Moreover,

it is given a counterexample of this equivalence for points in higher-dimensions.

• Alpha flag and Minibox filtrations are introduced and proven equivalent with Čech

filtration in homological dimensions zero and one.

• Efficient algorithms are described for finding edges contained in Minibox complexes

of two, three, and higher-dimensional points. In two dimensions, using a sweeping

algorithm, it is shown a running time bound of O(n2) (which is optimal). In three

48
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dimensions, it is achieved a worst-case bound of O(n2 log(n)) by extending the

two-dimensional algorithm. In higher dimensions, using orthogonal range queries,

the proposed algorithm has complexity O(n2 logd−1(n)).

• For randomly sampled points in Rd the expected number of Minibox edges is

proportional to Θ
(

2d−1

(d−1)!n logd−1(n)
)

. This is an improvement over the quadratic

number of edges contained in Čech complexes and results in smaller filtrations.

Interestingly, this implies that Minibox complexes are only a polylogarithmic factor

larger than Euclidean Delanauy complexes of random points.

• We provide experimental evidence for speedups in the computation of persistence

diagrams by means of Minibox filtrations.

While there is not as large a body of work on complexes in `∞ metric, as there is for

Euclidean metric, there are several relevant related studies. In particular, approxima-

tions of `∞-Vietoris-Rips complexes are studied in [CKR17]. Moreover, the equivalence

of the different complexes in zero and one homology is related to the results of [HKS15].

In this work offset filtrations of convex objects in two and three-dimensional space are

considered. As in our case, an equivalence of filtrations is proven in homological dimen-

sions zero and one by restricting offsets with Voronoi regions. While this result holds

for general convex objects, Minibox filtrations can be used to reduce the size of `∞-Čech

filtration in dimensions higher than three. Moreover, the approach presented here, which

tries to constrain the number of edges of filtrations, is similar in spirit to the preprocess-

ing step via collapses of [BP20], but works directly on the geometry of the given finite

point set S.

4.1 `∞-Delaunay Edges

A characterization of `∞-Delaunay edges is given in terms of witness points, which are

defined below. In the next section, this is used to show that and Alpha complexes

of two-dimensional points in `∞ metric are flag complexes, as well as to prove their

equivalence.

Recall from Chapter 2 that a box is an axis-parallel hyperrectangle, i.e. the Cartesian

product of d intervals in Rd, and the ε-thickening of a set A ⊆ Rd is ε(A) = {p ∈
Rd | mina∈A d∞(a, p) ≤ ε}. In particular, a `∞-ball of radius r is a box with sides of

length 2r, such that its ε-thickening is a box with sides of length 2r+ 2ε. Moreover, the

Delaunay complex of S if denoted by KD, and the Alpha and Čech filtrations of S by

KA
R and KČ

R respectively.
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The following properties of ε-thickenings are needed for the main result of this section.

Proposition 4.1.1. (i) Let I1, I2 ⊆ R be two non-empty closed intervals. If I1 ∩ I2 6=
∅, then ε(I1 ∩ I2) = ε(I1) ∩ ε(I2).

(ii) Let B1, B2 ⊆ R be two non-empty boxes. If B1 ∩ B2 6= ∅, then ε(B1 ∩ B2) =

ε(B1) ∩ ε(B2).

(iii) Taking ε-thickenings preserves inclusions.

(iv) Let A = {A}i∈I be a finite collection of sets. The ε-thickening of the union of sets

in A is equal to the union of the ε-thickenings of sets in A.

Proof. (i) We have I1 = [a1, b1] and I2 = [a2, b2], with I1 ∩ I2 6= ∅. So either one of

the two intervals is contained in the other or they share a common subinterval. In the

first case, we can suppose without loss of generality that I1 ⊆ I2. Then ε(I1 ∩ I2) =

ε(I1) = [a1 − ε, b1 + ε] = [a1 − ε, b1 + ε] ∩ [a2 − ε, b2 + ε] = ε(I1) ∩ ε(I2). In the latter

case, we can assume without loss of generality that I1 ∩ I2 = [a2, b1], and it follows

ε(I1 ∩ I2) = [a2 − ε, b1 + ε] = [a1 − ε, b1 + ε] ∩ [a2 − ε, b2 + ε] = ε(I1) ∩ ε(I2).

(ii) Follows from property (i) and the definition of box in terms of Cartesian products,

because ε-thickenings are in `∞ metric.

(iii) Consider A,B ⊆ Rd such that A ⊆ B. Given any x ∈ ε(A) \A, by the definition

of ε-thickening there exists a ∈ A such that d∞(x, a) ≤ ε. Then x ∈ ε(B), because

a ∈ B and d∞(x, a) ≤ ε. So ε(A) \A ⊆ ε(B), and because A ⊆ B ⊆ ε(B) it follows that

ε(A) ⊆ ε(B).

(iv) Given a setA ⊆ Rd, its ε-thickening is equivalently defined as ε(A) =
⋃
x∈ABε(x).

Thus

ε

(⋃
i∈I

Ai

)
=

⋃
x∈

⋃
i∈I Ai

Bε(x) =
⋃
i∈I

⋃
x∈Ai

Bε(x) =
⋃
i∈I

ε(Ai) (4.1)

The concept of witness points is introduced next. The idea is to define these as the

points in the intersection of `∞-Voronoi regions that can be used to characterize an edge

as either belonging or not to a `∞-Delaunay complex.

Definition 4.1.2. A witness point of σ ⊆ S is a point z ∈ Rd such that z ∈
⋂
p∈σ Vp 6= ∅,

where Vp is the Voronoi region of p, and d∞(z, p) = maxq∈σ
d∞(p,q)

2 for each p ∈ σ. The

set of witness points of σ is denoted by Zσ.
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Figure 4.1: The ε-thickening of the non-empty intersection of two squares equals the intersection
of the ε-thickenings of the squares.

The following result is presented as given in [BS21].

Proposition 4.1.3. Let S be a finite set of points in (Rd, d∞) and e = {p, q} ⊆ S.

Defined Are = ∂Br(p) ∩ ∂Br(q) for r > 0, then Ar̄e = Br̄(p) ∩ Br̄(q), where r̄ = d∞(p,q)
2 ,

which is a non-empty box. Moreover, the set of witness points of e is Ze = Ar̄e \(⋃
y∈S\eBr̄(y)

)
, and e is an edge of the `∞-Delaunay complex of S if and only if Ze

is non-empty.

Proof. Ar̄e is the intersection of the boundaries of the closed balls Br̄(p) and Br̄(q),

which are axis-parallel hypercubes. So we have Ar̄e ⊆ Br̄(p) ∩ Br̄(q), because ∂Br̄(p) ⊆
Br̄(p) and ∂Br̄(q) ⊆ Br̄(q). Moreover Br̄(p) ∩ Br̄(q) is non-empty by definition of r̄

and Br̄(p) ∩ Br̄(q) ⊆ ∂Br̄(p) ∩ ∂Br̄(q) = Ar̄e, because we can show a contradiction if(
Br̄(p) ∩ Br̄(q)

)
\ Ar̄e is non-empty. In particular, given y ∈

(
Br̄(p) ∩ Br̄(q)

)
\ Ar̄e, then

d∞(y, p) ≤ r̄, d∞(y, q) ≤ r̄, and at least one of these two distances must be strictly

less than r, i.e. d∞(y, p) < r̄ or d∞(y, q) < r̄. Applying the triangular inequality

to these distances it follows r̄ + r̄ > d∞(p, y) + d∞(q, y) ≥ d∞(p, q) = 2r̄, which is

the desired contradiction. Thus Ar̄e = Br̄(p) ∩ Br̄(q) is a non-empty box, which is the

Cartesian product of the intervals defining Br̄(p) and Br̄(q), because Cartesian products

and intersections commute.

Furthermore

Ar̄+εe = ∂Br̄+ε(p) ∩ ∂Br̄+ε(q)

⊆ Br̄+ε(p) ∩Br̄+ε(q)

= ε(Br̄(p)) ∩ ε(Br̄(q)) = ε(Ar̄e),

(4.2)

because Proposition 4.1.1 (ii) can be applied to ε(Ar̄e) = ε(Br̄(p)∩Br̄(q)), see Figure 4.1.

Hence Ar̄+εe ⊆ ε(Ar̄e) for any ε ≥ 0, which is used below to prove the desired property of
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(a) (b)

(c) (d)

Figure 4.2: In (a) Euclidean balls centered in p and q intersect in a point which is covered by
the ball centered in y. As the radius grows in (b) this intersection is not covered by the ball
centered in y, so that z ∈ Vp ∩Vq and e = {p, q} ∈ KD. In (c) `∞-balls centered in p, q intersect
in Ar̄e which is covered by the `∞-ball centered in y. Again the radius grows in (d) but in this
case the `∞-ball centered in y covers Ar̄+εe .

witness points by contradiction.

First note that Zσ = Ar̄e \
(⋃

y∈S\eBr̄(y)
)

by definition of witness point, Ar̄e and r̄.

The two directions of the equivalence are proven separately.

(⇒) The pair e = {p, q} is a Delaunay edge, so Vp ∩ Vq 6= ∅. Equivalently there exist

ε ≥ 0 and z ∈ Rd such that z ∈ Ar̄+εe \
(⋃

y∈S\eBr̄+ε(y)
)
, where r̄ = d∞(p,q)

2 , because

Vp ∩ Vq =
⋃
ε≥0

Ar̄+εe \
( ⋃
y∈S\e

Br̄+ε(y)
)
. (4.3)

Suppose that Ar̄e is covered by
⋃
y∈S\eBr̄(y), i.e. Ze is empty. Then Ar̄+εe ⊆ ε(Ar̄e)

from Equation (4.2), and applying points (iii) and (iv) of Proposition 4.1.1 the following
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sequence of inclusions is obtained

Ar̄+εe ⊆ ε
(
Ar̄e

)
⊆ ε
( ⋃
y∈S\e

Br̄(y)

)
=

⋃
y∈S\e

Br̄+ε(y), (4.4)

for any ε ≥ 0. Thus Ar̄+εe ⊆
⋃
y∈S\eBr̄+ε(y), which contradicts the existence of z ∈

Ar̄+εe \
(⋃

y∈S\eBr̄+ε(y)
)

for any ε ≥ 0.

(⇐) Any point in Ze 6= ∅ belongs to Vp ∩ Vq, so that e ∈ KD.

Figure 4.2 illustrates the inclusions in Equation (4.4). Moreover, it give an example

showing that the same inclusions do not hold in the Euclidean case. The above result

allows to determine if a pair of points forms an edge in the `∞-Delaunay complex KD

of S by checking whether Ar̄e is covered or not by a union of `∞-balls.

4.2 Alpha Complexes

Given a finite set of points S in Euclidean space, it is known that the Alpha filtration

KA
R produces the same persistence diagrams of the Čech filtration KČ

R, see Section 2.4.

Moreover, KA
R restricts the simplices to those of the Delaunay complexKD, thus speeding

up the computation of the Čech persistence diagrams of S ⊆ (Rd, d2). Nonetheless,

this requires finding the O(nd
d
2
e) top-dimensional simplices of KD, which can be done

efficiently only in low-dimensions [HB08]. In this section, Alpha filtrations of points

in `∞ metric are proven to be equivalent to Čech filtrations for d = 2. Moreover, in

two-dimensions Alpha filtrations are shown to be sequences of flag complexes, so that

they are completely determined by `∞-Delaunay edges. Counterexamples of both these

properties are given for higher-dimensional points.

Alpha Filtrations in R2. For the following two results, the two-dimensional finite set

of points S is assumed to be in general position as defined in Chapter 2, i.e. pairwise

distance between points are distinct, no four points lie on the boundary of a square, no

three points are collinear, and no two points have same x or y coordinates. The following

novel result is stated as in Section 3 of the preprint [BS21].

Theorem 4.2.1. Let S be a finite set of points in (R2, d∞) in general position. The Alpha

and Čech filtrations of S are equivalent, i.e. produce the same persistence diagrams.

Proof. Alpha complexes KA
r are nerves of collections of closed sets {Br(p) ∩ Vp}p∈S for

r ∈ R. We show that any intersection of k elements in any such collection is either empty

or contractible.
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• k = 2. Let p, q be two points of S, and r̄ = d∞(p,q)
2 . We show that

L = Br(p) ∩ Vp ∩Br(q) ∩ Vq, (4.5)

is either empty or contractible. In R2 we have that Ar̄e = Br̄(p) ∩ Br̄(q) is a line

segment of length strictly less than 2r̄, by our general position assumption. If

this line segment is covered by
⋃
y∈S\{p,q}Br̄(y), then by Proposition 4.1.3 we have

that Vp ∩ Vq is empty, so that L is empty. Moreover L is empty if r < r̄, because

Br(p) ∩Br(q) is.

On the other hand, if r ≥ r̄ and A′ = Ar̄e \
⋃
y∈S\{p,q}Br̄(y) is a non-empty line

segment, we show that L is contractible. First, we define a deformation retraction

φ of Vp ∩ Vq onto A′ as the Euclidean projection of (Vp ∩ Vq) \A′ onto (Vp ∩ Vq) ∩
A′. This can be done because (Vp ∩ Vq) \ A′ contains a maximum of two line

segments, defined by the union of points in ∂Br̄+ε(p) ∩ ∂Br̄+ε(q) not contained

in
⋂
y∈S\{p,q}Br̄+ε(y) for any ε > 0. For instance, consider the bisector Vp ∩ Vq

in Figure 2.6c given in Chapter 2 to illustrate the non-convexity of `∞-Voronoi

regions. In this case, φ retracts the two line segments oriented at a forty-five

degree angle onto the horizontal line segment, which equals Ar̄e = A′. Moreover, φ

restricts to L, by the convexity of Br(p) ∩ Br(q) for any r > 0, and the fact that

this contains A′ for r ≥ r̄. Hence L has the same homotopy type of A′, which is a

line segment, and so is contractible.

• k = 3. These intersections can either be empty or contain a single point by the

general position of S.

• k > 3. Any such intersection is empty, again by the general position of S.

Thus we can apply the Nerve Theorem 2.4.3, obtaining that X =
⋃
p∈S

(
Br(p)∩Vp

)
and

KA
r are homotopy equivalent for any r ∈ R. Besides X =

⋃
p∈S Br(p), and by applying

the Nerve Theorem to the collection {Br(p)}p∈S , we have that X is homotopy equivalent

to KČ
r as well. So KA

r ' KČ
r for any r ∈ R, and the desired equivalence of Alpha and

Čech filtrations follows by applying the Persistence Equivalence Theorem 2.4.11.

This is similar to the results of [HKS15], which proves that the nerve of offsets of

convex shapes is equivalent to the union of the shapes for zero and one-dimensional

homology in two and three dimensions. Our argument using general position implies

that no higher-dimensional homology can appear in the nerve. In particular, the theorem

implies that Alpha filtrations of two-dimensional points produce equivalent persistence

diagrams to Čech filtrations. Hence, the above result ensures that the two-dimensional

homology of Alpha complexes of S ⊆ R2 is trivial, because it equals the one of the two-
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(a) (b)

Figure 4.3: Voronoi diagrams and Delaunay triangulations of four points in R2, with Euclidean
and `∞ metric in (a) and (b) respectively.

dimensional sets
⋃
p∈S Br(p). At the end of this section, it is shown that in general this

is not the case for three-dimensional points, and so for any set of points in dimension

d ≥ 3.

In order to construct the Alpha filtration of S ⊆ (R2, d∞) in general position, the `∞-

Delaunay triangulation of S is needed. Its simplices can be found with the O(n log(n))

plane-sweep algorithm of [SDT91], but it is also necessary to find the radius parameter ri

of each simplex σ ∈ KD to build the Alpha filtration, i.e. the minimum ri > 0 such that⋂
p∈σ

(
Bri(p)∩Vp

)
6= ∅. Luckily, from the next result if follows that this is

maxp,q∈σ d∞(p,q)
2

for each σ ∈ KD, i.e. half the edge length of the longest edge in σ. Thus information

about `∞-Delaunay edges is all that is needed to build Alpha filtrations of points in R2,

and compute their persistence diagrams. Figure 4.3 illustrates the differences between

Euclidean and `∞-Delaunay triangulations. The following result is presented as given in

[BS21].

Proposition 4.2.2. Let S be a finite set of points in general position in (R2, d∞) and r ≥
0. Both the Delaunay complex KD and the Alpha complex KA

r of S are flag complexes.

Moreover, given an edge e = {p, q} ∈ KD, then e ∈ KA
r if and only if d∞(p,q)

2 ≤ r.

Proof. Consider three points x1, x2, x3 ⊆ S, such that {x1, x2}, {x1, x3} and {x2, x3} are

`∞-Delaunay edges. Without loss of generality, we can assume {x1, x2} to be the longest

edge. Defined r̄ = d∞(x1,x2)
2 , and Ar̄x1x2

= ∂Br̄(x1) ∩ ∂Br̄(x2), by Proposition 4.1.3 we

have that Ar̄x1x2
= Br̄(x1) ∩ Br̄(x2). This is a non-empty axis-parallel line segment of

length less than 2r̄ by the general position assumption. Moreover, by definition of r̄, the

intersections Br̄(x1) ∩Br̄(x2), Br̄(x1) ∩Br̄(x3), and Br̄(x2) ∩Br̄(x3) are non-empty. So

the intersection Ar̄x1x2
∩Br̄(x3) 6= ∅ by property (ii) of Proposition 2.1.2.

If Ar̄x1x2
\ Br̄(x3) = ∅, then Ar̄x1x2

is covered by Br̄(x3), which is in contradiction with
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(a) (b)

Figure 4.4: Illustration of the last two cases of the proof of Proposition 4.2.2. In (a) the red

square marker represents point (a1, b̂2) on Ar̄x1x2
, which is covered by Br̄(y

′) from above. In (b)
the same point is covered by Br̄(y

′) from below. In both (a) and (b) the boundary of Br̄(y
′) is

drawn as a dashed line.

{x1, x2} being a Delaunay edge from Proposition 4.1.3.

On the other hand, if Ar̄x1x2
\ Br̄(x3) 6= ∅, then the line segment Ar̄x1x2

must intersect

the boundary of the square Br̄(x3). Defined τ = {x1, x2, x3} and Ar̄τ = Ar̄x1x2
∩ ∂Br̄(x3),

we have that the set of witness points of τ is Zτ = Ar̄τ \
(⋃

y∈S\τ Br̄(y)
)
. Hence, if

Zτ is non-empty, we can conclude that the Delaunay complex of S is a clique complex

from the definition of witness point. We suppose by contradiction that Zτ = ∅, and

show that in every possible case one between {x1, x2}, {x1, x3}, and {x2, x3} cannot be

a `∞-Delaunay edge.

We know that the axis-parallel square Br̄(x3) intersects Ar̄x1x2
without covering it, so

that Ar̄τ is a point by our general position assumption. To simplify the exposition, we

assume without loss of generality Ar̄x1x2
to be a vertical line segment in R2, and Br̄(x3)

to be intersecting Ar̄x1x2
from below. More precisely, given x1 = (x1

1, x
1
2), x2 = (x2

1, x
2
2),

and x3 = (x3
1, x

3
2), we assume d∞(x1, x2) = |x1

1 − x2
1| = 2r̄ ≥ |x1

2 − x2
2|, and that

x3
2 ≤ min{x1

2, x
2
2}. This implies

Ar̄τ ⊆ Ar̄x1x2
∩Br̄(x3) = [a1, a1]× [a2, b̂2]

where a1 = max{x1
1, x

2
1}− r̄, a2 = max{x1

2, x
2
2}− r̄, b2 = min{x1

2, x
2
2}+ r̄, and b̂2 = x3

2 + r̄.

So Ar̄τ = (a1, b̂2), and because we are assuming by contradiction that Ar̄τ is covered by

balls of radius r̄ centered in the points of S \ τ , there exists y′ ∈ S \ τ such that

(a1, b̂2) ∈ Br̄(y′). Finally, either Br̄(y′) intersects Ar̄x1x2
from above or from below. These

two cases are illustrated in Figure 4.4, where the boundary of Br̄(y′) is represented as

a dashed line, and the point Ar̄τ = (a1, b̂2) as a red square marker. In the former

case Br̄(x3) ∪ Br̄(y′) covers Ar̄x1x2
, which is in contradiction with {x1, x2} being a `∞-
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Delaunay edge, by Proposition 4.1.3. In the latter case, given y′ = (y′1, y′2), we have

min{x1
1, x

1
2} < y′1 < max{x1

1, x
1
2}, and x2

3 < y′2 < min{x2
1, x

2
2}, because Br̄(y′) intersects

Ar̄x1x2
without covering it, and contains (a1, b̂2). Finally, the location of y′ prevents either

{x1, x3} or {x2, x3} from being a `∞-Delaunay edge. This follows from Proposition 4.1.3

because Br̄(y′) covers either Ar̄13
x1x3

or Ar̄23
x2x3

, where r̄13 = d∞(x1,x3)
2 and r̄12 = d∞(x1,x2)

2 .

Thus in every possible case the set Zτ must be non-empty, and KD is a flag complex.

To conclude it is shown that KA
r is also a flag complex. By Proposition 4.1.3 any

`∞-Delaunay edge e = {p, q} is added into the Alpha filtration at r̄ = d∞(p,q)
2 . Moreover,

when the longest edge of any Delaunay triangle τ is added at radius r̄, also τ is added

in KA
r̄ , because from the discussion above there exist a point Ar̄τ at distance r̄ from the

vertices of τ , which is a witness of this triangle.

Counterexample: Alpha complexes are not flag in higher dimensions. A

counterexample to Proposition 4.2.2 is given for points in dimension three. Given

S = {xi}5i=1 ⊆ (R3, d∞), where x1 = [0, 0, 0], x2 = [2, 1, 1], x3 = [1.4, 1.6,−0.6],

x4 = [0.9,−0.3,−0.3], and x5 = [1.1, 1.4, 1.2], it is shown that the Alpha complex KA
1 of

S is not a flag complex. In practice, the existence of witness points is used to prove that

{x1, x2}, {x1, x3}, {x2, x3} ∈ KA
1 , and {x1, x2, x3} 6∈ KA

1 . One can check that:

• (1, 0, 1) is a witness of {x1, x2} at distance 1 from x1 and x2.

• (0.8, 0.8, 0.0) is a witness of {x1, x3} at distance 0.8 from x1 and x3.

• (1.5, 1.5, 0.2) is a witness of {x2, x3} at distance 0.8 from x2 and x3.

Thus the pairs {x1, x2}, {x1, x3}, {x2, x3} are edges of the Delaunay complex KD, and

edges of KA
1 by Proposition 4.2.2. On the other hand τ = {x1, x2, x3} is not a triangle

in KD, and so does not belong to any Alpha complex. This follows from the fact

that A1
τ = ∂B1(x1) ∩ ∂B1(x2) ∩ ∂B1(x3) is formed by the two line segments, plotted

as thickened lines in Figure 4.5, with endpoints (1, 0.6, 0), (1, 0.6, 0.4) and (1, 0.6, 0.4),

(1, 1, 0.4), which are covered by B1(x4)∪B1(x5). The ε-thickenings of these line segments

contain A1+ε
τ for any ε ≥ 0, by the properties of ε-thickenings used in the proof of

Proposition 4.1.3. In turn, the ε-thickenings of the two line segments are contained in

ε(B1(x4) ∪ B1(x4)) = B1+ε(x4) ∪ B1+ε(x5). This implies that it does not exist a point

z ∈ Vx1 ∩Vx2 ∩Vx3 , as this would require A1+ε
τ \

(
B1+ε(x4)∪B1+ε(x5)

)
to be non-empty

for some ε ≥ 0.

Counterexample: Non-equivalence in higher dimensions. We conclude this sec-

tion by providing a counterexample to the equivalence of Alpha and Čech filtrations in

homological dimension higher than two. This is shown with a configuration of eight
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(a) Projection along x and y axes. (b) Projection along y and z axes.

Figure 4.5: Five points in R3 realising a counterexample to Delaunay complexes being flag
complexes in dimensions higher than two. Projections along two pairs of axes are given. The
thickened line segments represent A1

τ = ∂B1(x1) ∩ ∂B1(x2) ∩ ∂B1(x3).

Table 4.1: Coordinates of points S ⊆ (R3, d∞) giving a counterexample to the equivalence of
Alpha and Čech filtrations in dimension higher than 2.

x y z

x1 6.2 1.1 1.9

x2 2.4 4.8 1.4

x3 8.6 4.4 5.3

x4 7.3 8.2 4.9

x5 7.9 3.9 7.6

x6 4.2 6.8 0.2

x7 9.0 9.2 9.7

x8 1.0 0.1 -2.4

points S = {xi}8i=1 ⊆ R3, the coordinate of which are listed in Table 4.1.

The points in S are such that their Delaunay complex contains the four faces of

the tetrahedron {x1, x2, x3, x4}, but not the tetrahedron itself. This way the Alpha

complexes of S never contain {x1, x2, x3, x4} as a simplex, but for a big enough radius

parameter they contain its the four faces. Moreover, the Delaunay complex of S also

does not contain other tetrahedra that fill in the two-dimensional void created by the

faces of {x1, x2, x3, x4}.

The points in this S were found by randomly sampling many sets of eight points in

R3, and testing whether their Alpha and Čech persistence diagrams were equal. The

existence of such a counterexample can be thought of as a consequence of the non-

convexity of general `∞-Voronoi regions, even if one may hope the nerve of general

Voronoi regions to be well behaved enough to prevent this from happening.

One can check that there are six tetrahedra belonging to the Delaunay complex KD
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(a) Projection along x and y
axes.

(b) Projection along y and z
axes.

Figure 4.6: Counterexample to the equivalence of Alpha and Čech persistent homology in `∞
metric. The two circumcenters of the tetrahedron {x1, x2, x3, x4} are the red square markers.
The boundaries of cubes centered in the vertices of {x1, x2, x3, x4} are shown as dashed lines.

of S: {x1, x2, x3, x5}, {x1, x2, x3, x6}, {x1, x2, x4, x5}, {x1, x3, x4, x6}, {x2, x3, x4, x5},
and {x2, x3, x4, x6}. This can be done by finding the circumcenters of any four given

points, and checking that the circumspheres of these (which in this case are cubes) do

not contain any of the other points. It is important to note that in `∞ metric four three-

dimensional points might have two distinct circumcenters. For instance this is the case

for {x1, x2, x3, x4}, the circumcenters of which are represented as red square markers in

Figure 4.6, having coordinates w1 = (5.95, 4.65, 1.75) and w2 = (5.05, 4.65, 4.95). On the

other hand, in Euclidean metric four affinely independent three-dimensional points have

exactly one circumcenter. Moreover, w1 and w2 are not witnesses of {x1, x2, x3, x4},
because they are closer to x5 and x6 than to the vertices of this tetrahedron. Thus

{x1, x2, x3, x4} 6∈ KD. Regarding the faces of {x1, x2, x3, x4}, one can check that:

• (5.5, 4.2, 3.9) is a witness of {x1, x2, x3} at distance 3.1 from x1, x2, and x3.

• (4.05, 4.65, 4.95) is a witness of {x1, x2, x4} at distance 3.55 from x1, x2, and x4.

• (8.75, 4.65, 1.75) is a witness of {x1, x3, x4} at distance 3.55 from x1, x3, and x4.

• (5.5, 5.1, 3.9) is a witness point of {x2, x3, x4} at distance 3.1 from x2, x3, and x4.

The tetrahedra belonging to the Delaunay complex of S (listed in the above discussion)

do not create a boundary to the two-dimensional homology class created by adding

{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, and {x2, x3, x4} into KA
r , for r > 0 big enough.

Thus the two-dimensional persistence diagram of the Alpha filtration of S has a point at

infinity, i.e. an homology class that never dies. On the other hand, the two-dimensional

persistence diagrams of the Čech filtration of S cannot have such a point, because Čech

complexes have trivial homology for a big enough radius.
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4.3 Alpha Flag Complexes

In the previous section, we have seen that Alpha filtrations can be used to compute Čech

persistence diagrams of points in R2. On the other hand, already in three dimensions

there exists a set of points S having different Alpha and Čech persistence diagrams in

homological dimensions two. Moreover, for points in (R2, `∞) Alpha and Čech filtrations

are sequences of flag complexes. In particular a simplex σ belongs to KČ
r if and only

if maxp,q∈σ d∞(p, q) ≤ 2r. The new family of complexes defined here has the same

properties.

Definition 4.3.1. The Alpha flag complex of S with radius r is

KAF
r =

{
σ ⊆ S | max

p,q∈σ
d∞(p, q) ≤ 2r and {p, q} ∈ KD for each p, q ∈ σ

}
.

In this section, we prove that Alpha flag and Čech persistence diagrams coincide in

homological dimensions zero and one. In particular, we think of Čech filtrations as a

sequence of complexes where a single edge is added when going from KČ
ri to KČ

ri+1
. It is

proven that at each such step the zero and one-dimensional homology groups of Alpha

flag and Čech complexes remain isomorphic. To deal with the problem of multiple edges

having equal length, we assume that the `∞ distances between pairs of points of S are

all distinct, i.e. S is in general position. In case this property does not hold, the finite

set of points S can be infinitesimally perturbed to obtain it. Importantly, the Stability

Theorem 2.3.10, guarantees that the persistence diagrams of the original and perturbed

points are close in bottleneck distance.

From now on the field F is omitted when referring to the homology of complexes to

simplify notation, and a pair of points {p, q} ⊆ S is said to be a non-Delaunay edge if

it does not belong to the `∞-Delaunay complex of S. We start by presenting supporting

results used in the proofs of the main two theorems.

Proposition 4.3.2. Let B1 and B2 be two boxes in Rd. If B1 ∩ B2 is non-empty, then

the Euclidean projection πB1 : B1 → B2, defined by mapping each x ∈ B1 to its closest

points in Euclidean distance on B2, is such that πB1(B1) ⊆ B1 ∩B2.

Proof. Let B1 =
∏d
i=1[aB1

i , bB1
i ] and B2 =

∏d
i=1[aB2

i , bB2
i ] such that B1∩B2 6= ∅. Because

Cartesian products and intersections of intervals commute, defined [āi, b̄i] = [aB1
i , bB1

i ] ∩
[aB2
i , bB2

i ], we have that [āi, b̄i] 6= ∅ for each 1 ≤ i ≤ d, and B1 ∩B2 =
∏d
i=1[āi, b̄i].

Given x ∈ B1, we suppose by contradiction that y = πB1(x) ∈ B2 is such that

y 6∈ B1 ∩ B2. Thus y 6∈
∏d
i=1[āi, b̄i], and there exists 1 ≤ î ≤ d such that yî 6∈ [āî, b̄î].
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The intervals [aB1

î
, bB1

î
] and [aB2

î
, bB2

î
] can intersect in four possible ways:

(i) [aB1

î
, bB1

î
] intersects [aB2

î
, bB2

î
] on the left, i.e. aB1

î
≤ aB2

î
≤ bB1

î
≤ bB2

î
. Thus

aB1

î
≤ xî ≤ b

B1

î
< yî, and we define y′ = [y1, . . . , b

B1

î
, . . . , yd];

(ii) [aB1

î
, bB1

î
] intersects [aB2

î
, bB2

î
] on the right, i.e. aB2

î
≤ aB1

î
≤ bB2

î
≤ bB1

î
. Thus

yî < aB1

î
≤ xî ≤ b

B1

î
, and we define y′′ = [y1, . . . , a

B1

î
, . . . , yd];

(iii) [aB1

î
, bB1

î
] is contained in [aB2

î
, bB2

î
], i.e. aB2

î
≤ aB1

î
≤ bB1

î
≤ bB2

î
. Thus aB1

î
≤

xî ≤ bB1

î
< yî or yî < aB1

î
≤ xî ≤ bB1

î
, and in the first case we define y′ =

[y1, . . . , b
B1

î
, . . . , yd] and in the second y′′ = [y1, . . . , a

B1

î
, . . . , yd];

(iv) [aB1

î
, bB1

î
] contains [aB2

î
, bB2

î
], i.e. aB1

î
≤ aB2

î
≤ bB2

î
≤ bB1

î
.

In case (iv) we have a contradiction as

yî ∈ [aB2

î
, bB2

î
] = [āî, b̄î] 63 yî.

In the other three cases, taken either y′ or y′′ we have

d2(x, y′) =

√√√√√(xî − b
B1

î
)2 +

d∑
i=1,i 6=î

(xi − yi)2 <

√√√√ d∑
i=1

(xi − yi)2 = d2(x, y), (4.6)

d2(x, y′′) =

√√√√√(xî − a
B1

î
)2 +

d∑
i=1,i 6=î

(xi − yi)2 <

√√√√ d∑
i=1

(xi − yi)2 = d2(x, y). (4.7)

because (xî−b
B1

î
)2 < (xî−yî)

2 in Equation (4.6), and (xî−a
B1

î
)2 < (xî−yî)

2 in Equation

(4.7). The proof follows because this contradicts y being the closest point in Euclidean

distance to x in B2.

Proposition 4.3.3. Let S be a finite set of points in (Rd, d∞). Given e = {p, q} ⊆ S,

we have that Nrv({Br̄(y)}y∈Ȳ) has the homotopy type of Ar̄e, where r̄ = d∞(p,q)
2 and

Ȳ = {y ∈ S | d∞(y, p) < 2r̄ and d∞(y, q) < 2r̄}, and so is contractible.

Proof. From the Nerve Theorem 2.4.3 it follows that Nrv({Br̄(y)})y∈Ȳ) and
⋃
y∈Ȳ Br̄(y)

are homotopy equivalent, because `∞-balls are convex so that their intersections are

either empty or contractible. Next, we show how to define a deformation retraction

φ :

( ⋃
y∈Ȳ

Br̄(y)

)
× [0, 1]→ Ar̄e. (4.8)
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Given φ, we have that the set
⋃
y∈Ȳ Br̄(y) has the homotopy type of Ar̄e, which is con-

tractible by its convexity. To obtain φ, we first define φy : Br̄(y) × [0, 1] → Ar̄e for each

y ∈ Ȳ. Given the Euclidean projection π
Br̄(y)

: Br̄(y)→ Ar̄e, we set

φy(x, t) = (1− t) · x+ t · π
Br̄(y)

(x), (4.9)

for every x ∈ Br̄(y) and t ∈ [0, 1]. From Proposition 4.3.2 we have π
Br̄(y))

(x) ∈ Br̄(y)∩Ar̄e,
so that the straight line segment from x to πBr̄(y)(x) is fully contained in Br̄(y), by the

convexity of this set. Thus φy is well-defined and continuous by the continuity of πBr̄(y).

Then we set

φ(x, t) = φŷ(x, t), (4.10)

for every x ∈
⋃
y∈Ȳ Br̄(y) and t ∈ [0, 1], with ŷ ∈ Ȳ such that x ∈ Br̄(ŷ). This might

not be well-defined, because for a given x all the φŷ corresponding to a point in Ȳx =

{ŷ ∈ Ȳ | x ∈ Br̄(ŷ)} can be used to define φ(x, t) for any t ∈ [0, 1]. Luckily, given

R =
⋂
ŷ∈Ȳx Br̄(ŷ), which is a box containing x, Proposition 4.3.2 guarantees that πR :

R → Ar̄e is such that πR(R) ⊆ R ∩ Ar̄e. Thus φ is well-defined because the straight line

segment defined by (1 − t) · x + t · πR(x) for t ∈ [0, 1] is contained within R, again by

convexity. Furthermore, φ is continuous by the continuity of the Euclidean projections,

and is a deformation retraction onto Ar̄e because Ar̄e ⊆
⋃
y∈Ȳ Br̄(y).

Proposition 4.3.4. Let K1 and K2 be two abstract simplicial complexes such that K1 ⊆
K2. If there is only one edge e contained in K2 and not in K1, and it exists a triangle

τ ∈ K2 of which e is a face, then H1(K2) cannot contain an homology class [γ] not in

H1(K1).

Proof. Any 1-cycle representing an homology class [γ] such that [γ] ∈ H1(K2) and [γ] 6∈
H1(K1) must contain e. But given e = {p, q} and τ = {p, q, y}, any such 1-cycle would

be homologous to a formal sum containing {p, y} and {y, q} in place of e. Thus it would

exist a 1-cycle representing [γ] containing edges in K1 only, which is in contradiction

with [γ] 6∈ H1(K1).

The following result is presented as given in [BS21].

Theorem 4.3.5. Let S be a finite set of points in (Rd, d∞) in general position, and

KČ
r the Čech complex of S with radius r > 0. If e = {p, q} ⊆ S is a non-Delaunay

edge contained in KČ
r , then Hk(K

Č
r \ St(e)) and Hk(K

Č
r ) are isomorphic in homological

dimensions zero and one.

Proof. We can apply the reduced Mayer-Vietoris sequence, as given in [Spa12, Sec-
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tion 4.6], with A = Cl(St(e)) ⊆ KČ
r and B = KČ

r \ St(e), because A ∩ B = Cl(St(e)) \
St(e) 6= ∅. It follows

· · · H̃k(A ∩B)→ H̃k(A)⊕ H̃k(B)→ H̃k(A ∪B)→ H̃k−1(A ∩B) · · ·

⇓

· · · H̃k(Cl(St(e)) \ St(e))→ H̃k(K
Č
r \ St(e))→ H̃k(K

Č
r )→ H̃k−1(Cl(St(e)) \ St(e)) · · ·

where H̃k(A) cancels out, because it is trivial by definition of A = Cl(St(e)). Thus

showing that H̃k(Cl(St(e)) \ St(e)) is trivial in homological dimensions k and k − 1,

implies that H̃k(K
Č
r \ St(e)) → H̃k(K

Č
r ) is an isomorphism, from the exactness of the

Mayer-Vietoris sequence above.

By definition of nerve, and Proposition 2.1.2 (ii), it follows that A = Cl(St(e)) =

Nrv
(
{Br(y)}y∈Y

)
⊆ KČ

r , where

Y = {y ∈ S| d∞(y, p) ≤ 2r and d∞(y, q) ≤ 2r}. (4.11)

Defined Ar̄e = ∂Br̄(p) ∩ ∂Br̄(q), where r̄ = d∞(p,q)
2 ≤ r, we have that Ar̄e is covered by⋃

y∈S\eBr̄(y) by Proposition 4.1.3. We can restrict this union of open balls to those

centered in the points of

Ȳ = {y ∈ S| d∞(y, p) < 2r̄ and d∞(y, q) < 2r̄} ⊆ Y, (4.12)

because Br̄(y) ∩Ar̄e = ∅ if y 6∈ Ȳ. So Ar̄e must be covered by
⋃
y∈Ȳ Br̄(y) and

Nrv
(
{Br̄(y)}y∈Ȳ

)
⊆ Nrv

(
{Br(y)}y∈Y

)
\ St(e) = Cl(St(e)) \ St(e) ⊆ KČ

r .

By Proposition 4.3.3, the nerve Nrv
(
{Br̄(y)}y∈Ȳ) has the homotopy type of Ar̄e,

and so trivial homology. Then, given the simplices in Cl(St(e)) \ St(e) and not in

Nrv
(
{Br̄(y)}y∈Ȳ), we prove that adding them into Nrv

(
{Br̄(y)}y∈Ȳ) does not alter its

zero and one-dimensional homology.

Regarding zero-dimensional homology we know that Nrv
(
{Br̄(y)}y∈Ȳ

)
consists of one

connected component. Also, the vertices in Cl(St(e)) \ St(e) not in Nrv
(
{Br̄(y)}y∈Ȳ

)
,

that could potentially create a homology class in H̃0(Cl(St(e)) \ St(e)), are the points in

Y \ Ȳ. We have that p, q ∈ Y \ Ȳ, and these are fully connected to the points in Ȳ, so do

not create any connected component. Moreover, all other points in Y \ Ȳ are connected

to both p and q by definition of Y. So Cl(St(e)) \ St(e) cannot contain a connected

component not in Nrv
(
{Br̄(y)}y∈Ȳ

)
, and H̃0(Cl(St(e)) \ St(e)) must be trivial.
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(a) (b) (c)

Figure 4.7: (a) Balls centered in the points of Ȳ = {y1, y2, y3, y4} covering Ar̄e. (b) K0 =
Nrv

(
{Br̄(y)}y∈Ȳ). (c) K1, i.e. the union of the cones from K0 to p and q.

For one-dimensional homology, we define

K0 = Nrv
(
{Br̄(y)}y∈Ȳ

)
and Kn = Nrv

(
{Br(y)}y∈Y

)
\ St(e), (4.13)

and show the existence of a filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn, such that at each step

Ki ⊆ Ki+1 no one-dimensional homology class is created. We start by defining K1 as

the union of the cones from K0 to p and q. Subfgures 4.7b and 4.7c illustrate this step for

the points in Figure 4.7a. So going from K0 to K1 one-dimensional homology remains

trivial because adding these cones cannot create any new 1-cycle. Then we add the

points of y′ ∈ Y \ (Ȳ ∪ {p, q}) into K1 one by one, obtaining a new complex Ki+1 of the

filtration above each time. Furthermore, at each such step Ki ⊆ Ki+1, we also add two

triangles {p, y′, ȳ} and {q, y′, ȳ}, where ȳ ∈ Ȳ. This can be done because Ar̄e is covered

by
⋃
y∈Ȳ Br̄(y), so that there exist ȳ ∈ Ȳ such that Br(y′)∩Br(ȳ) ⊇ Br(y′)∩Br̄(ȳ) 6= ∅,

because Br(y′)∩Ar̄e 6= ∅. Hence both Br(p)∩Br(y′)∩Br(ȳ) and Br(q)∩Br(y′)∩Br(ȳ)

must be non-empty, by Proposition 2.1.2 (ii), so that {p, y′, ȳ}, {q, y′, ȳ} ∈ KČ
r . Thus

by Proposition 4.3.4 no one-dimensional homology class is created going from Ki to

Ki+1 = Ki ∪ {y′} ∪ {p, y′} ∪ {q, y′} ∪ {p, y′, ȳ} ∪ {q, y′, ȳ}. We denote the Ki+1 having

Y as its set of vertices by Kn−1. Finally, we add all the simplices in Kn \Kn−1 in the

last filtration step. Again we can apply Proposition 4.3.4, because for each edge {y′, y′′},
with y′, y′′ ∈ Y added into Kn, there must be a triangle {p, y′, y′′} ∈ Kn by definition of

Y. Hence we can conclude that Kn has trivial reduced one-dimensional homology, i.e.

H̃1(Cl(St(e)) \ St(e)) is trivial.

The proof follows from the exactness of the reduced Mayer-Vietoris sequence as men-

tioned above, and the fact that isomorphisms in reduced homology translate into iso-

morphisms in non-reduced homology.
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The following result is one of the main contributions of this chapter. It is also

discussed in Section 4 of the preprint [BS21].

Theorem 4.3.6. Let S be a finite set of points in (Rd, d∞) in general position. Given

r > 0 and ε > 0 such that KČ
r+ε contains exactly one edge not in KČ

r , if ikr : Hk(K
AF
r )→

Hk(K
Č
r ) is an isomorphism, then ikr+ε : Hk(K

AF
r+ε)→ Hk(K

Č
r+ε) is also an isomorphism

for k = 0, 1.

Proof. Let e = {p, q} ⊆ S be the only edge added to KČ
r by increasing the radius

parameter of ε > 0. Then either e is a `∞-Delaunay edge, so that e ∈ KAF
r and e ∈ KČ

r ,

or e is non-Delaunay edge, so that e 6∈ KAF
r and e ∈ KČ

r . We split the proof in two

parts, dealing with these two cases separately.

We use the notation of Proposition 4.1.3, meaning that r < r̄ = d∞(p,q)
2 ≤ r + ε

and Ar̄e = Br̄(p) ∩ Br̄(q). Also, as in the proof of Theorem 4.3.5, we define Ȳ = {y ∈
S | d∞(y, p) < 2r̄ and d∞(y, q) < 2r̄}, so that if e is a non-Delaunay edge, then Ar̄e must

be covered by
⋃
y∈Ȳ Br̄(y).

CASE 1: e is `∞-Delaunay

For r > 0 the complexes KAF
r and KČ

r contain the same vertices by definition. Also,

because the homomorphism induced by the inclusion of complexes H0(KAF
r )→ H0(KČ

r )

is an isomorphism, KAF
r and KČ

r have the same connected components. Thus after e is

added in both KAF
r and KČ

r either connected components do not change or the same

connected component is merged in both. In the first case zero-dimensional homology

remains unchanged, while in the second case the same zero-dimensional homology class

is deleted in H0(KAF
r ) and H0(KČ

r ). In both cases i0r : H0(KAF
r+ε) → H0(KČ

r+ε) is an

isomorphism induced by the inclusion KAF
r+ε ⊆ KČ

r+ε.

We now look at one-dimensional homology. Adding a single edge e and the cliques

it forms into KAF
r and KČ

r can result in the creation or deletion of one-dimensional

homology classes. We further split this case into two subcases.

1. The edge e adds nothing but itself to the Alpha flag complex KAF
r .

2. The edge e adds itself and one or more triangles to the Alpha flag complex KAF
r .

Subcase 1.1

We start by proving that the edge e is the only simplex added into KČ
r as well. To show

this, suppose by contradiction that increasing the radius parameter from r to r+ε results

into adding e and a triangle {p, q, y} into KČ
r . This means {p, y}, {q, y} ∈ KČ

r , so that

they are strictly shorter than {p, q} from our hypothesis on distances between pairs of
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points in S, i.e. general position. Given 0 < 2δ < 2r̄−max{d∞(p, y), d∞(q, y)}, we have

d∞(p, y) < 2r̄ − 2δ and d∞(q, y) < 2r̄ − 2δ. Moreover d∞(p, q) = 2r̄, so the three axis-

parallel hypercubes Br̄(p), Br̄(q), and Br̄−δ(y) have non-empty pairwise intersections.

Their triple intersection is also non-empty, by Proposition 2.1.2 (ii), and it follows that

Ar̄e ∩ Br̄(y) = Br̄(p) ∩ Br̄(q) ∩ Br̄(y) 6= ∅. Hence the set of points Y contains at least

one point, and because e is a `∞-Delaunay edge, we have that Ar̄e \
(⋃

y∈Ȳ Br̄(y)
)

is non-

empty. Thus the closed set
(⋃

y∈Ȳ Br̄(y)
)c

needs to intersect Ar̄e, which is a closed box.

So there exist a point z of Ar̄e belonging to the boundary of the closure of
⋃
y∈Ȳ Br̄(y),

otherwise Ar̄e would need to be disconnected, i.e. Ar̄e∩∂
(⋃

y∈Y Br̄(y)
)
6= ∅. Furthermore,

z ∈ Ar̄e∩
(⋃

y∈Y ∂Br̄(y)
)
, because ∂

(⋃
y∈Y Br̄(y)

)
⊆
(⋃

y∈Y ∂Br̄(y)
)
. In conclusion there

exist z ∈ Ar̄e ∩ ∂Br̄(y′) for some y′ ∈ Y, so {p, q, y′} is a `∞-Delaunay triangle with z as

a witness point, which belongs to KAF
r+ε. This contradicts the hypothesis of Subcase 1.1,

because the Alpha flag complex KAF
r+ε cannot contain any triangles of which {p, q} is an

edge. Thus, when increasing the radius parameter from r to r+ ε, the edge e = {p, q} is

the only simplex added in both KAF
r and KČ

r .

In general, adding a single edge to an abstract simplicial complex can result in either

the deletion of a connected component or the creation of a one-dimensional homology

class. The former of these two cases is dealt with the discussion of zero-dimensional

homology above and does not affect one-dimensional homology. On the other hand, if e

does not merge connected components in KAF
r , then it also does not merge connected

components in KČ
r , because as already discussed zero-dimensional homology remains

isomorphic. Thus both H1(KAF
r+ε) and H1(KČ

r+ε) contain a new homology class. In

this case i1r+ε : H1(KAF
r+ε) → H1(KČ

r+ε) is the isomorphism induced by the inclusion,

which extends i1r : H1(KAF
r ) → H1(KČ

r ) by mapping the one-dimensional homology

class created by e in KAF
r+ε into the one created by e in KČ

r+ε.

Subcase 1.2

Adding e = {p, q} to both KAF
r and KČ

r results in one or more triangles {τ r̄j }j∈J added

to the Alpha flag complex KAF
r+ε. Moreover, by the definition of flag complex, the same

triangles are added to KČ
r+ε. Also, there might be triangles {τ̌ r̄j }j∈J̌ added to KČ

r+ε,

which are not added to KAF
r+ε. These {τ̌ r̄j }j∈J̌ contain {p, q} as an edge, and at least one

non-Delaunay edge among their other edges.

To begin with, we note that e does not create any one-dimensional homology class

in KAF
r+ε and KČ

r+ε by Proposition 4.3.4. It remains to prove that a one-dimensional

homology class [γ] ∈ H1(KAF
r ) is deleted at radius r + ε if and only if i1r([γ]) = [γ̌] ∈

H1(KČ
r ) is also deleted.

The first direction holds because if a homology class is deleted in the Alpha flag
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complex, then the same formal sum of triangles is a boundary for the same homology

class of the Čech complex.

For the opposite direction, let us suppose that [γ̌] ∈ H1(KČ
r ) is deleted at radius r+ε,

and that [γ] remains open in the Alpha flag complex with radius r + ε. We can think

of adding the triangles {τ r̄j }j∈J and {τ̌ r̄j }j∈J̌ one by one in KČ
r in any order, obtaining a

new Ǩi ⊆ KČ
r+ε at each step. At some point, one of these must be creating a boundary

deleting [γ̌] in Ǩi. If this is a triangle τ r̄j (containing Delaunay edges only), then its edges

form a formal sum which is homologous to both [γ] and [γ̌]. Moreover, τ r̄j bounds this

formal sums in both complexes, so that [γ] 6∈ H1(KAF
r+ε), which is a contradiction. On

the other hand, if a non-Delaunay triangle τ̌ r̄j is creating a boundary deleting [γ̌], we can

apply Theorem 4.3.5 to one of the non-Delaunay edges ě of τ̌ r̄j . We have a contradiction

with the assumption of τ̌ r̄j deleting [γ̌], because KČ
r+ε \ St(ě) and KČ

r+ε need to have the

same one-dimensional homology and τ̌ r̄j ∈ St(ě).

In conclusion the same one-dimensional homology classes are deleted in both com-

plexes by the same triangles, and so i1r+ε : H1(KAF
r+ε) → H1(KČ

r+ε) is an isomorphism

induced by the inclusion KAF
r+ε ⊆ KČ

r+ε.

CASE 2: e is non-Delaunay

By applying Theorem 4.3.5, we have that Hk(K
Č
r+ε \ St(e)) → Hk(K

Č
r+ε) is an isomor-

phism for k = 0, 1.

Finally, the diagram

Hk(K
AF
r ) Hk(K

Č
r+ε \ St(e))

Hk(K
AF
r+ε) Hk(K

Č
r+ε)

∼=

∼=

∼= (4.14)

obtained by applying the homology functor to the inclusion maps between complexes

commutes, because KČ
r = KČ

r+ε \ St(e) and KAF
r = KAF

r+ε, proving that Hk(K
AF
r+ε) →

Hk(K
Č
r+ε) is an isomorphism for k = 0, 1.

Corollary 4.3.7. Let S be a finite set of points in (Rd, d∞) in general position. Given

a finite set of monotonically increasing real-values R = {ri}mi=1, the Alpha flag KAF
R and

Čech filtrations KČ
R of S have the same persistence diagrams in homological dimensions

zero and one.

Proof. Given the two parameterized filtrations KAC
r0 ⊆ KAC

r1 ⊆ . . . ⊆ KAC
rm and KČ

r0 ⊆
KČ
r1 ⊆ . . . ⊆ KČ

rm . We have that Hk(K
AF
ri ) → Hk(K

Č
ri ) is an isomorphism for each
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0 ≤ i ≤ m and k = 0, 1.

• For ri ≤ 0, KAF
ri and KČ

ri are empty.

• For ri > 0, we can think of KAF
ri and KČ

ri as the result of adding one edge at a

time, plus the cliques formed by edges, into KAC
0 and KČ

0 . Theorem 4.3.6 ensures

that each new edge added preserves the isomorphism between the zero and one-

dimensional homology groups of the Alpha flag and Čech complexes.

The proof follows by applying the Persistence Equivalence Theorem 2.4.11.

The above result extends to a general ambient dimension d the equivalence of zero and

one-dimensional persistence diagrams proven in [HKS15] for two and three-dimensional

points.

4.4 Minibox Complexes

In this section, yet another family of complexes is introduced, which we prove to have

the same property of Alpha flag complexes, i.e. they can be used to compute the Čech

persistence diagrams of S in homological dimensions zero and one. We also discuss the

expected number of edges these complexes contain. In the next section, we describe

algorithms for finding these edges.

Definition 4.4.1. Let p, q be two points in (Rd, d∞). The minibox of p and q is

Minipq =

d∏
i=1

(
min{pi, qi},max{pi, qi}

)
, (4.15)

that is to say the interior of the minimal bounding box of p and q.

Proposition 4.4.2. Let S be a finite set of points in (Rd, d∞), e = {p, q} a pair of points

of S, and Minipq the minibox of p and q. If it exists y ∈ S \ e such that y ∈ Minipq, then

e is not an edge of the `∞-Delaunay complex of S.

Proof. Given r̄ = d∞(p,q)
2 , we have Ar̄e = Br̄(p)∩Br̄(q) by Proposition 4.1.3. Equivalently

Ar̄e =
∏d
i=1[bi− r̄, ai + r̄], where ai = min{pi, qi} and bi = max{pi, qi} for each 1 ≤ i ≤ d.

Then, given y ∈ Minipq, it follows that ai < yi < bi for each 1 ≤ i ≤ d, implying

yi− r̄ < bi− r̄ and ai+ r̄ < yi+ r̄. Thus [bi− r̄, ai+ r̄] ⊂ (yi− r̄, yi+ r̄) for each 1 ≤ i ≤ d,

and Ar̄e ⊂ Br̄(y). The result follows applying Proposition 4.1.3.
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Definition 4.4.3. The Minibox complex of S with radius r is

KM
r =

{
σ ⊆ S | max

p,q∈σ
d∞(p, q) ≤ 2r and Minipq ∩ S = ∅ for each p, q ∈ σ

}
.

The next theorem is another novel result, which is also presented in Section 5 of the

preprint [BS21].

Theorem 4.4.4. Let S be a finite set of points in (Rd, d∞) in general position. Given the

Alpha flag KAF
r and Minibox KM

r complexes with radius r, then Hk(K
AF
r ) and Hk(K

M
r )

are isomorphic in homological dimensions zero and one.

Proof. We have KAF
r ⊆ KM

r ⊆ KČ
r , and we know that Hk(K

AF
r ) → Hk(K

Č
r ) is an

isomorphism for k = 0, 1 from the discussion in the proof of Corollary 4.3.7. Thus

we have the following commutative diagrams, implying that Hk(K
AF
r ) → Hk(K

M
r ) is

injective for k = 0, 1 and any r ∈ R.

KAF
r KČ

r

KM
r

=⇒
Hk(K

AF
r ) Hk(K

Č
r )

Hk(K
M
r )

∼=

(4.16)

To conclude our proof we need to show the surjectivity of this homomorphism for k = 0, 1.

For k = 0, because KAF
r and KM

r have the same set of vertices, and KM
r might

contain more edges, it follows that KAF
r has the same or more connected components

than KM
r . So in homological dimension zero the homomorphism induced by the inclusion

KAF
r ⊆ KM

r , must be surjective.

To prove the surjetivity of i1r : H1(KAF
r ) → H1(KM

r ), we show that for any [γ] ∈
H1(KM

r ) a 1-cycle γ representing it has to be homologous to a 1-cycle γ′ containing only

`∞-Delaunay edges of length less than or equal to 2r, so that i1r([γ
′]) = [γ].

Let γ be a 1-cycle in KM
r representing [γ] ∈ H1(KM

r ), and e = {p, q} the non-

Delaunay edge in γ of maximum length. We have Ar̄e = Br̄(p)∩Br̄(q), where r̄ = d∞(p,q)
2

by Proposition 4.1.3. Defined Ȳ = {y ∈ S | d∞(y, p) < 2r̄ and d∞(y, q) < 2r̄}, we

equivalently have Ȳ = S ∩ B2r̄(p) ∩ B2r̄(q) = S ∩ r̄(Ar̄e), because ε(Ar̄e) = ε
(
Br̄(p) ∩

Br̄(q)
)

= Br̄+ε(p) ∩ Br̄+ε(q) by Proposition 4.1.1 (ii). For points in R2, these sets are

illustrated in Figure 4.8, where Ar̄e is represented by a thickened vertical line between p

and q. Moreover, given c = p+q
2 , we have Minipq ⊆ r̄(c) ⊆ r̄(Ar̄e), because c ⊆ Ar̄e, taking

ε-thickenings preserves inclusions, and Minipq has sizes of length less than or equal to
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2r̄ and center c. Then, because e is not a Delaunay edge, Ar̄e must be covered by the

union of balls centered in the points of S \ {p, q} by Proposition 4.1.3. Thus at least one

y ∈ S \ {p, q} is such that Br̄(y) intersects Ar̄e, i.e. Ȳ 6= ∅. Defined ȳ ∈ Ȳ to be the point

realizing

min
y∈Ȳ

d∞(y,Minipq),

we have that Minipȳ and Miniqȳ do not contain points in S \ {p, q, ȳ}, as we can show a

contradiction otherwise. Suppose there exist either y′ ∈ S \ Ȳ or y′′ ∈ Ȳ belonging to

one of these two miniboxes. Without loss of generality, we assume either y′ ⊆ Minipȳ or

y′′ ⊆ Minipȳ. In the former case we have Minipȳ ⊆ r̄(Ar̄e), because p is on the boundary of

r̄(Ar̄e) and ȳ in its interior. So y′ ∈ r̄(Ar̄e), implying that y′ ∈ Ȳ, which is a contradiction.

In the latter case, it must be that d∞(y′′,Minipq) < d∞(ȳ,Minipq) by definition of Minipȳ

and d∞, which is in contradiction with ȳ being the closest point of Ȳ to Minipq.

So there exists a vertex ȳ of the Minibox complex connected to p and q by the edges

{p, ȳ} and {ȳ, q}. These are shorter than 2r̄ so that {p, ȳ}, {ȳ, q} ⊆ KM
r . Swapping

{p, ȳ} and {ȳ, q} for e in γ, we obtain a 1-cycle homologous to γ with the property of

having a shorter longest non-Delaunay edge. This procedure can be repeated only a finite

number of times, as we have a finite number of non-Delaunay edges, and at each iteration

the maximum non-Delaunay edge length in the current 1-cycle decreases. When the

procedure cannot be repeated, we have a 1-cycle γ′ in KM
r homologous to γ, containing

only `∞-Delaunay edges. Hence γ′ represents a one-dimensional homology class in the

Alpha flag complex which is mapped into [γ] by i1r : H1(KAF
r )→ H1(KM

r ).

Corollary 4.4.5. Let S be a finite set of points in (Rd, d∞) in general position. Given

a finite set of monotonically increasing real-values R = {ri}mi=1, the Alpha flag KAF
R

and Minibox filtrations KM
R of S have the same persistence diagrams in homological

dimensions zero and one.

Proof. Follows from the Persistence Equivalence Theorem of 2.4.11 as for Corollary 4.3.7.

Number of Minibox edges. We conclude this section by studying the number of

edges that a Minibox complex KM
r can contain. We are able to show that for ran-

domly sampled points the expected number of empty miniboxes on the points of S is

proportional to n · polylog(n), where n is the number of points of S.

We start by noting that in the worst case a Minibox complex can contain O(n2)
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(a) (b)

Figure 4.8: (a) The pair (p, q) is not a Delaunay edge, but is a Minibox edge. Minipq is the
gray region having p and q as two vertices. The set Ȳ consists of four yi points contained in
the rectangle r̄(Ar̄e), whose boundary is represented by a dash-dot line. (b) Expected number of
Minibox edges of randomly sampled points for d = 2, 3, 4, compared to the number of all possible
edges (dashed line).

edges. For example the union of

S1 =

{
pi =

(
1− i

n
, 1− i

n

)}n
i=1

and S2 =

{
qj =

(
3− j

n
, 1− j

n

)}n
j=1

, (4.17)

is a set of 2n points in R2, on parallel line segments, such that all the miniboxes Minipiqj
for 1 ≤ i ≤ j ≤ n do not contain any point in S1 ∪ S2. Thus the Minibox complex of

S1 ∪ S2 contains more than n(n−1)
2 points for a large enough radius parameter.

Next, given S to be a set of random points in Rd, we can derive the expected number

of edges contained in any maximal Minibox complex.

Definition 4.4.6. Let p and q be points in Rd. We say that p dominates q if each of

the coordinates of p is greater than the corresponding coordinate of q. Given a finite set

of points S ⊆ Rd, we say that p directly dominates q if p dominates q and there is no

other point y ∈ S such that p dominates y and y dominates q.

Proposition 4.4.7. Let S be a finite set of uniformly distributed random points in the

unit hypercube [0, 1]d ⊆ (Rd, d∞). The expected number of edges contained in the maximal

Minibox complex of S is Θ
(

2d−1

(d−1)!n logd−1(n)
)

, where n is the number of points of S.

Proof. We have that if p directly dominates q, then Minipq ∩ S = ∅. On the other hand,

Minipq ∩S = ∅ does not imply that either p directly dominates q or q directly dominates
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p. However, for each pair {p, q} there exists a sequence of a maximum of d reflections

about the coordinate hyperplanes that transforms S into a set of points such that q

dominates p. There are 2d possible such sequences of reflections, one for each orthant,

and each produces a set of points Sk with a set of directly dominated pairs disjoint from

those of the other Sks. Moreover, if {p, q} is not a directly dominated pair in any Sk

for 1 ≤ k ≤ 2d, then Minipq ∩ S must be non-empty. So if the expected number of

directly dominated pairs in Sk is m, then the expected number of empty miniboxes on S

is 2d−1 ·m, because each edge {p, q} is counted twice in the 2d transformed point sets Sk.

In [Kle86] it is shown that for n random points in a bounded region of Rd the expected

number of directly dominated pairs is Θ
(

1
(d−1)!n logd−1(n)

)
. Thus, in dimension d there

are Θ
(

2d−1

(d−1)!n logd−1(n)
)

pair of points {p, q} such that Minipq ∩ S = ∅. The proof

follows from the definition of Minibox complex.

Figure 4.8b plots the expected number of minibox edges for random points in dimen-

sion 2 ≤ d ≤ 4 with n in the range [0, 2000]. This is an empirical estimate obtained

by randomly sampling points in the unit hypercube, and counting the number of edges

found with the algorithms of the next section.

4.5 Algorithms

We present algorithms for finding all pairs of points {p, q} ⊆ S such that Minipq ∩ S is

empty. By definition, these are all the edges a Minibox complex can contain. We study

the two-dimensional, three-dimensional, and higher-dimensional cases separately. For

d = 2 and d = 3, we present a plane-sweep and a space-sweep algorithm respectively.

These maintain front data structures that can be used to efficiently determine whether

Minipq ∩ S is empty or not. For general dimension d, we see the problem of finding all

empty miniboxes on S as of an offline orthogonal range emptiness problem with n(n−1)
2

range queries, and reference known results on range queries.

We also provide an implementation of these algorithms in the form of the persty

Python package, the source code of which is available at github.com/gbeltramo/persty.

Points in two dimensions. We start by taking S to be a finite set of points in

(R2, d∞). For this case, we describe a O(n2) algorithm, whose pseudocode is given in

Algorithm 4.1. This is worst-case optimal by the discussion on the number of Minibox

edges at the end of Section 4.4. An example of the edges contained in the maximal

Minibox complex of random points in the unit square [0, 1] × [0, 1] ⊆ R2 is given in

Figure 4.9b. This can be compared to the edges in Figures 4.9a and 4.9c showing the

edges contained in the maximal Alpha flag and Čech complexes on the same points.
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(a) Alpha flag edges. (b) Minibox edges. (c) Čech edges.

Figure 4.9: Comparison of Alpha flag (i.e. Delaunay), Minibox, and Čech edges of random points
in [0, 1]× [0, 1] ⊆ R2.

Algorithm 4.1 Minibox edges of a finite set of points S in R2.

Input: array points, the finite set of points S in two dimensions.

1: edges← empty list of two-tuples of integers
2: Sort points on their x-coordinate
3: front↑, front↓ ← (p0

x,+∞), (p0
x,−∞), where p0 = points[0]

4: for i = 0 to |S| − 1 do
5: for j = i+ 1 to |S| − 1 do
6: p, q ← points[i], points[j]
7: if Minipq does not contain front↑ or front↓ then
8: Add (i, j) to edges
9: Set front↑ = q if py < qy, or front↓ = q if py ≥ qy

10: end if
11: end for
12: end for
13: return edges

The algorithm works by sweeping the plane form left to right for each point p =

(px, py), starting from px. In particular, it checks whether (p, q) is a Minibox edge for

each point q = (qx, qy) in the half plane (px,+∞)× (−∞,+∞). This is done on line 7 of

Algorithm 4.1. For this it uses a front, which consists of two points front↑ and front↓.

These have the following properties:

• front↑ has a y-coordinate greater than py, while front↓ has a y-coordinate less

than or equal to py;

• Defined X to be the set of points in S with x-coordinate in the range (px, qx),

front↑ has a y-coordinate smaller than any other point x ∈ X such that xy > py,

and front↓ has a y-coordinate larger than any other point x ∈ X such that xy ≤ py.



Chapter 4. Persistent Homology in `∞ Metric 74

(a) (b)

Figure 4.10: Illustration of the plane-sweep algorithm for Minibox edges in R2, with X =
{x1, x2, x3, x4} and front↑ = x4. In (a) {p, q} is not a Minibox edge, because front↑ ∈ Minipq.
In (b) Minipq is empty, so in this case {p, q} is a Minibox edge.

These properties are true when front↑ and front↓ are defined on line 3 and are preserved

by the update operation on line 9. Moreover, because these properties always hold,

Minipq can be non-empty if and only if it contains either front↑ or front↓. For example,

given p and q such that qy > py, by definition Minipq is non-empty if and only if there

exist of point x ∈ X ⊆ S such that xy > py and q dominates x. But such a point

exists only if q dominates front↑. Thus the check on line 7 determines if {p, q} is a

`∞-Delaunay edge. This is illustrated in Figure 4.10, where X = {x1, x2, x3, x4} and

front↑ = x4.

Proposition 4.5.1. Let S be a set of finite points in (R2, d∞). Algorithm 4.1 can be

used to find the Minibox edges on S in O(n2) time.

Proof. The correctness of Algorithm 4.1 is discussed above. It loops on all possible n(n−1)
2

edges, and at each iteration it needs O(1) operations to check whether Minipq is empty

and update front↑, front↓. Thus, it has complexity O(n2).

Points in three dimensions. For a finite set of points S in three dimensions, we

present Algorithm 4.2, which uses a space-sweep strategy.

Given p = (px, py, pz) and q = (qx, qy, qz) in S, we define the sweep-plane to be the

yz-plane with origin (py, pz). We have that a point y ∈ Minipq must be such that its

projection onto the sweep-plane belongs to the same quadrant as the projection of q.

Hence, without loss of generality, we always assume the projection of q to belong to the

first quadrant of the sweep-plane. In Algorithm 4.2 this reflects into the definition of p′

and q′ on line 8. The idea is to maintain a front data structure for each quadrant of the

sweep-plane, and use it to test whether {p, q} is a Minibox edge or not.
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Algorithm 4.2 Minibox edges of a finite set of points S in three-dimensions.

Input: array points, the finite set of points S in (R3, d∞).

1: edges← empty list of two-tuples of integers
2: Sort points on their x-coordinate
3: for i = 0 to |S| − 1 do
4: fronts← list of four empty red-black trees, one per quadrant
5: for j = i+ 1 to |S| − 1 do
6: p, q ← points[i], points[j]
7: p′, q′ ← (0, 0), (|qy − py|, |qz − pz|) projections on the sweep-plane
8: k ← index such that (qy, qz) is in the k-th quadrant of the sweep-plane
9: if fronts[k] is non-empty then

10: y′ ← first element to the left of q′ in fronts[k] bisecting on q′x
11: if y′ does not exist then
12: Add (i, j) to edges
13: Delete the points in fronts[k] that dominate q′, add q′ in fronts[k]
14: else
15: if y′ 6∈ Minip′q′ then
16: Add (i, j) to edges
17: Delete the points in fronts[k] that dominate q′, add q′ in fronts[k]
18: end if
19: end if
20: else
21: Add (i, j) to edges, and add q′ to fronts[k]
22: end if
23: end for
24: end for
25: return edges

At each step of the inner loop on lines 5−23, we have that {p, q} is a Minibox edge if

and only if Minip′q′ does not contain a point y′ in the sweep-plane. Because we restrict

ourselves to the first quadrant, we only need to check whether or not q′ dominates any

y′ projected from a y ∈ S with yx in the range (px, qx). To speed this up we can store

the points y′ as we sweep on (px, qx) in a red-black tree front, sorting them on their

first coordinate, and then check if Minip′q′ is empty by searching among the points in

this front. In particular, we only store the points q′ which are adding a Minibox edge,

i.e. those that do not dominate points in the front. This happens on lines 13, 17, 21 of

Algorithm 4.2. The other points q′′, dominating another point y′ already in the front,

are not needed. This is because if a future q′ dominates q′′, then it must also dominate

y′. Furthermore, it may happen for q′ to be dominated by points previously stored in

the front. In this case, these are no longer needed, as for q′′ above, and we can replace

them with q′, which happens on lines 13 and 17. A consequence of the way points are
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stored in and deleted from the red-black tree front is that these are the vertices of a

staircase in the first quadrant of the sweep-plane, i.e. sorting the points using their first

coordinates, their second coordinates are monotonically decreasing. This disposition of

points is similar to those in the examples given for the two-dimensional case in Figure

4.10. The difference is that q′ can be dominated by one of the points already in the

front. To find y′ dominated by q′ in the front we can bisect on the first coordinate values

of its points. This follows because if q′ dominates any point in the front, then it also

has to dominate the point in the front directly to its left, by the fact that the front is a

staircase.

Proposition 4.5.2. Let S be a set of finite points in (R3, d∞). Algorithm 4.2 can be

used to find the Minibox edges on S in O(n2 log(n)) time.

Proof. The correctness of Algorithm 4.2 is discussed above. The inner loop may require

to delete and add O(n) points into a red-black tree, and to bisect on the same tree O(n)

times. Since either deleting, adding, or bisecting on a red-black tree requires O(log(n))

operations, we conclude that the inner loop takes a total of O(n log(n)) operations.

Hence, Algorithm 4.2 has O(n2 log(n)) complexity.

Points in higher dimensions. For points in general dimension d ≥ 4, we propose

different strategies, using a decreasing amount of additional storage, to test whether

Minipq ∩ S is empty for each pair of points in S.

For instance, high-dimensional range trees with fractional cascading [dBCvKO08,

Section 5.6] can be used to answer orthogonal range emptiness queries in O(logd−1(n))

time, at the additional cost of O(n logd−1(n)) storage. By testing all pairs of points in S,

we have a O(n2 logd−1(n)) algorithm. Similarly, kd-trees [dBCvKO08, Section 5.2] can

be used to answer the same query in O(n1− 1
d ) time, only taking O(n) additional storage,

resulting in a O(n3− 1
d ) algorithm for finding all the edges contained in any Minibox

complex. Furthermore, we note that by the curse of dimensionality, if d becomes too

big it might be faster to test each of the n(n−1)
2 pairs of points in S via a brute force

strategy, searching all points in S sequentially. This results in a O(dn3) total time

algorithm but does not require storing any additional data structure. The choice among

these options depends on the amount of memory that can be spared for storing additional

data structures. Moreover, we note that each of the above strategies could take advantage

of parallel implementations using the independence of tests on each pair of points in S.

Finally, we also mention that in the Word RAM model of computation the offline

orthogonal range counting algorithm of [CP10] can be used to find all empty miniboxes

on S in constant dimension d ≥ 3 in O(n2 logd−2+ 1
d (n)). Anyway, as remarked in [CP10],
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for this algorithm to be applicable to floating-point numbers one needs to assume that

the word size is at least as large as both log(n) and the maximum size of an input

number.

4.6 Computational Experiments

In this final section, we present computational experiments giving empirical evidence

of the speedup obtained by using Minibox filtrations in the calculation of zero and

one-dimensional Čech persistence diagrams of S in `∞ metric. Moreover, we compute

the persistence diagrams of Alpha flag, Minibox, and Čech filtrations obtained using

randomly sampled points in [0, 1]3 ⊆ (R3, d∞). These allow us to illustrate the similarities

and dissimilarities between two-dimensional diagrams of these filtrations.

We use the implementation of the persistent homology algorithm provided by the

Ripser.py [TSBO18] Python package, in combination with the algorithms of the persty

Python package. All computations were run on a laptop with Intel Core i7-9750H CPU

with six physical cores clocked at 2.60GHz with 16GB of RAM.

Size of Minibox filtrations. First, we study the expected size of Minibox filtrations

versus the size of Čech filtrations. Our filtrations contain vertices, edges, and triangles

because we only need to compute zero and one-dimensional persistence diagrams. So we

have that the Čech filtration contains Θ(n3) simplices. Given the edges in the maximal

Minibox complex of S, the clique triangles on these can be found in O(nk2) time, where

k is the maximum degree of any point in S, i.e. the maximum number of Minibox edges

a point is contained in. Moreover O(nk2) is also an upper bound on the number of

possible Minibox triangles, and by Proposition 4.4.7 it follows that the expected value of

k for a uniformly distributed finite set of random points is Θ
(

2d−1

(d−1)! logd−1(n)
)

. Hence,

we expect the Minibox filtration of S to contain fewer simplices compared to the Čech

filtration. We give empirical evidence of this by calculating the expected number of

Minibox simplices for 500, 1000, 1500, and 2000 uniformly distributed random points,

averaging over five runs. Table 4.2 presents our results for Minibox filtrations in two,

three and four dimensions. The number of simplices contained in the Čech filtrations

are listed for comparison.

Running time and memory usage. Next, we explore the use of Minibox filtra-

tions for the computation of Čech persistence diagrams of S ⊆ (Rd, d∞) in homological

dimensions zero and one. As already mentioned, we make use of the Ripser.py package,

which provides a Python interface to Ripser [Bau19] C++ code. In particular, we think

of Minibox filtrations as sparse filtrations, and feed into the persistent homology algo-
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Table 4.2: Average number of simplices contained in the Minibox and Čech filtrations for different
input sizes.

n = 500 n = 1000 n = 1500 n = 2000

Minibox 2D 0.01× 106 0.03× 106 0.05× 106 0.07× 106

Minibox 3D 0.17× 106 0.50× 106 0.91× 106 1.38× 106

Minibox 4D 1.19× 106 4.50× 106 9.41× 106 15.65× 106

Čech 20.83× 106 166.67× 106 562.50× 106 1333.34× 106

rithm a precomputed sparse matrix in coordinate format. We give timing and memory

usage results for points in the range [500, 32000] for Minibox filtrations, averaging over

five runs. In the case of Čech filtrations, we limit our experiments to a maximum of

8000 points because of memory constraints. Moreover, we consider only points in R2, as

results are similar in higher dimensions.

We list our results in Tables 4.3, 4.4, 4.5, and 4.6, where columns correspond to

different sizes of the input points set S, and times are given in seconds. In particular,

we use Algorithm 4.1 for edges in Table 4.3, Algorithm 4.2 for edges in Table 4.4, and

a brute force algorithm for edges in Table 4.5. We also report the average total peak

memory use in megabytes.1

In all the experiments, the reduced number of simplices of Minibox filtrations results

in a substantial improvement in memory usage over Čech filtrations, and in a speedup

in the computation of Dgm0 and Dgm1. This allows to increase the maximum size of

inputs of the persistence algorithm, given a fixed amount of available memory. The price

is having to precompute Minibox edges. We note that this computation could also take

advantage of implementations parallelizing the inner loops of Algorithms 4.1 and 4.2,

or the individual checks on edges of any brute force algorithm, as already mentioned in

Section 4.5.

Table 4.3: Timing (seconds) and memory usage (MB) with Minibox filtrations of points in R2.

500 1000 2000 4000 8000 16000 32000

Edges time 0.008 0.016 0.047 0.117 0.289 0.891 2.852

Sparse matrix time 0.023 0.070 0.141 0.312 0.734 1.562 3.406

Dgm0,1 time 0.008 0.016 0.031 0.078 0.172 0.477 1.148

Total time 0.039 0.102 0.219 0.507 1.195 2.929 7.406

Peak Memory usage 2.92 5.52 11.51 25.15 53.50 112.1 246.3

1In Windows this was measured using the Win32 function GetProcessMemoryInfo() to obtain the
PeakWorkingSetSize memory attribute of the Python process building sparse matrices and computing
persistence diagrams.
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Table 4.4: Timing (seconds) and memory usage (MB) with Minibox filtrations of points in R3.

500 1000 2000 4000 8000 16000 32000

Edges time 0.062 0.188 0.586 2.047 7.500 27.89 110.6

Sparse matrix time 0.117 0.281 0.742 1.836 4.609 11.29 26.56

Dgm0,1 time 0.016 0.055 0.211 0.547 1.664 4.516 12.34

Total time 0.195 0.523 1.539 4.429 13.77 43.70 149.5

Peak memory usage 9.22 21.87 54.91 137.3 329.3 770.1 1848

Table 4.5: Timing (seconds) and memory usage (MB) with Minibox filtrations of points in R4.

500 1000 2000 4000 8000 16000 32000

Edges time 0.273 1.648 9.430 54.16 307.1 1657 8866

Sparse matrix time 0.258 0.727 2.055 6.250 15.68 43.52 107.8

Dgm0,1 time 0.070 0.227 0.797 2.539 9.320 27.02 107.3

Total time 0.601 2.601 12.281 62.95 332.1 1728 9081

Peak memory usage 19.19 51.18 155.4 410.4 1122 2841 7960

Table 4.6: Timing (seconds) and memory usage (MB) with Čech filtrations of points in R2.

500 1000 2000 4000 8000

Sparse matrix 0.656 2.758 11.05 44.79 178.7

Dgm0,1 0.133 0.602 2.958 13.31 66.22

Total time 0.789 3.359 14.01 58.10 244.9

Peak memory usage 42.05 151.14 614.13 2532 10340

Differences in higher-dimensional diagrams. We present two examples of Alpha

flag, Minibox, and Čech persistence diagrams, obtained from distinct S1, S2 ⊆ (Rd, d∞).

These finite point sets were obtained by randomly sampling fifty points in [0, 1]3 ⊆ R3.

The persistence diagrams were calculated with Ripser.py passing in the appropriate

space matrix. For the Alpha flag case the edges belonging to the Delaunay complex of

S1 and S2 were computed with a brute force strategy using the result of Proposition

4.1.3, i.e. checking if Ar̄e is covered by
⋃
y∈S\eBr̄(y) for each pair p, q ∈ S.

The first row in Figure 4.11 contains the diagrams of S1. In this case Dgm2(KM
R )

contains a point at infinity, while Dgm2(KAF
R ) does not. Furthermore, both contain

additional off-diagonal points, which do not coincide. In the second row of Figure 4.11

we have the diagrams of S2. In this case, it is Dgm2(KAF
R ) that contains a point at

infinity, while Dgm2(KM
R ) only has an additional off-diagonal point. This shows that

it is possible to obtain Alpha flag and Minibox diagrams with off-diagonal points not

contained in the corresponding Čech diagrams in homological dimensions higher than

one. Furthermore, Dgm2(KAF
R ) and Dgm2(KM

R ) are generally different and are not one

a subset of the other.
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(a) Alpha flag diagrams of S1. (b) Minibox diagrams of S1. (c) Čech diagrams of S1.

(d) Alpha flag diagrams of S2. (e) Minibox diagrams of S2. (f) Čech diagrams of S2.

Figure 4.11: Persistence diagrams of finite sets of three-dimensional points in `∞ metric space.
Each row contains the diagrams of a different finite point set. These empirically show the equality
of diagrams in dimensions zero and one, and illustrate the possible differences between diagrams
of Alpha flag, Minibox, and Čech filtrations in homological dimension two.

4.7 Discussion

This chapter provides tools for the efficient computation of Čech persistence diagrams of

a finite set of points S in `∞ metric space. The central idea is to make use of filtrations of

flag complexes on S — Alpha flag and Minibox complexes — so that edges information

is all that is needed to build them. This way only the simplices up to dimension h + 1

need to be operated on if we are interested in computing persistence diagrams up to

homological dimension h.

On the other hand, Alpha filtrations of points in Euclidean metric require finding the

full Delaunay complex KD of S. Algorithms for finding this KD [HB08] make use of

the empty circumsphere property of Delaunay top-dimensional simplices, of which there

are O(nd
d
2
e) for S ⊆ Rd. Thus, it is not possible to determine which edges are in the

Euclidean Delaunay complex without having to consider its d-dimensional simplices.

We prove the equivalence of Alpha flag, Minibox of Čech filtrations in homolog-

ical dimensions zero and one of points in `∞ metric space, see Theorems 4.3.6 and
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4.4.4. Moreover, it is shown that for n randomly sampled points Minibox filtrations are

expected contain a number of edges proportinal to n · polylog(n), thus improving over

the n(n−1)
2 edges of Čech filtrations. Algorithms are also described for finding minibox

edges. For points in R2, it is given a O(n2) plane-sweep algorithm, while for points

in R3 a O(n2 log(n)) space-sweep one. In dimension d ≥ 4, the running time becomes

O(n2 log(n)d−1) using orthogonal range queries.

The final experiments section illustrates in practice the speedup obtained using Mini-

box filtrations. Examples are also given showing that for higher-dimensional homology

Alpha flag and Minibox filtrations are related to Čech filtrations.

Future work could focus on determining whether alternative filtrations exist that can

be used for computing Čech persistence diagrams in homological dimension two. Efficient

algorithms for finding their simplices would also need to be described, as done in this

chapter with edges of Minibox filtrations.



Chapter 5

Cumulative Landscapes for

Supervised Classification

An application of the TDA descriptors considered in this thesis is their use as signatures

of image and shape data. For example, persistence diagrams can be applied to classifi-

cation problems involving three-dimensional shapes represented as a finite set of points

in R3 [COO15]. A nice property of persistence diagrams is their stability with respect to

small perturbations in the given input set of points, which makes them robust to noise

present in real-world data. On the other hand, Euler characteristic curves and surfaces

have the advantage of consisting of a finite number of numerical values. This allows for

their direct application as feature vectors in the context of supervised classification prob-

lems. For this reason, a growing number of research papers has dealt with the problem

of encoding the information of persistence diagrams into finite vectorial representations

[Bub15, AEK+17, RCIU19].

In this chapter, we propose two new methods for vectorizing persistence diagrams.

The goal is to describe computationally efficient methods, which produce small feature

vectors leading to good classification results. The efficacy of these is tested on supervised

classification problems using open-source datasets. In particular, average accuracy scores

are used to compare our methods to other TDA vectorization methods. Moreover, the

algorithms described in Chapter 3 are used to compute Euler characteristic curves and

Euler characteristic surfaces, which are made into feature vectors and added to the

accuracy scores comparison of vectorizations of persistence diagrams.

82
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(a) (b)

(c)

Figure 5.1: (a) Points randomly sampled on three circles in R2. (b) Delaunay-Čech persistence
diagram in homological dimension one of points in (a). (c) First two persistence landscape
functions of the persistence diagram in (b).

5.1 Persistence Landscapes

A possible strategy is to map persistence diagrams into functions of one or more real

variables, which can then be discretized by sampling their values. For instance persistence

landscapes [Bub15] are defined as sequences of continuous piecewise linear functions.

Definition 5.1.1. Let Dgmh(KR) = {pi = (bi, di)}i∈I be a persistence diagram in

homological dimension h ≥ 0, and T1, T2 ∈ R be such that T1 ≤ bi ≤ di ≤ T2 for each

i ∈ I. Defined the triangular function

trii(t) =


t− bi, t ∈

[
bi,

bi+di
2

]
di − t, t ∈

[
bi+di

2 , di

]
0, otherwise

(5.1)

for each point pi = (bi, di), the persistence landscape of Dgmh(KR) is the sequence of
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functions λk(t) : [T1, T2]→ R defined by

λk(t) = kmaxi∈Itrii(t), (5.2)

for t ∈ [T1, T2] and k ∈ N, where kmax is the kth-largest value in a set.

Example: Persistence landscapes of one-dimensional diagram. Figure 5.1c

shows the first and second persistence landscape functions obtained from the persistence

diagram Dgm1(KDČ
R ) in Figure 5.1b. This was computed using the Delaunay-Čech

filtration of the points in Figure 5.1a, introduced in Section 2.4. Notice that λ1(t)

and λ2(t) are completely determined by the three points of maximum persistence in

Dgm1(KDČ
R ), which are also represented in Figure 5.1c.

Fixed a resolution parameter m ∈ N, and defined ∆ = T2 − T1 and δ = ∆
m , any

persistence landscape function λk(t) can be discretized into the vector of real values

vk = [λk (T1) , λk (T1 + δ) , . . . , λk (T1 + (m− 1)δ) , λk (T2)] .

Concatenating the vectors {vk}k̄k=1, corresponding to the first k̄ ∈ N functions in the

sequence of a persistence landscape of Dgmh(KR), it is obtained a vectorization of the

given persistence diagram.1 This procedure requires fixing the integer values of both

the resolution m and the number of landscape functions k̄. The optimal values of these

parameters need to be determined each time discretized persistence landscapes are com-

puted for a given dataset.

A concept related to persistence landscapes is the following, which was introduced in

[CDSO14].

Definition 5.1.2. Let Dgmh(KR) = {pi = (bi, di)}i∈I be a persistence diagram in

homological dimension h ≥ 0, and T1, T2 ∈ R be such that T1 ≤ bi ≤ di ≤ T2 for

each i ∈ I. Fixed p > 0 and defined the weights wi = |di − bi|p for each i ∈ I, the

power-weighted silhouette of Dgmh(KR) is the function φ(t) : [T1, T2]→ R defined by

φ(t) =

∑
i∈I witrii(t)∑

i∈I wi
, (5.3)

where trii(t) is the triangular function of the point pi in the diagram.

Any given silhouette φ(t) can be discretized by fixing a single resolution value m, but

1The concatenation of two vectors v1 and v2 containing n1 and n2 elements respectively is the vector
with n1 + n2 elements whose first n1 elements coincide with those of v1, and the last n2 elements with
those of v2.
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Figure 5.2: Cumulative landscape of Dgm1(KDČ
R ) is Figure 5.1b.

its definition requires to pick an application-specific optimal value of the power p.

Both in the case of persistence landscapes and silhouettes, a pair of parameters needs

to be determined to derive feature vectors for supervised classification tasks. When

dealing with a classification problem, the optimal values of these parameters can be

chosen via k-fold cross-validation on a subset of the data at hand.

5.2 Cumulative Landscapes

Persistence landscapes and silhouettes are two instances of what is generally called a

summary function of persistence diagrams. In this section, it is introduced a new type

of summary function, which is related to power-weighted silhouettes.

Definition 5.2.1. Let Dgmh(KR) = {pi = (bi, di)}i∈I be a persistence diagram in

homological dimension h ≥ 0, and T1, T2 ∈ R be such that T1 ≤ bi ≤ di ≤ T2 for each

i ∈ I. The cumulative landscape of Dgmh(KR) is the function Λ(t) : [T1, T2]→ R defined

by

Λ(t) =
∑
i∈I

trii(t), (5.4)

where trii(t) is the triangular function of the point pi in the diagram, as given in Defi-

nition 5.1.1.

Like the summary functions introduced earlier in this chapter, cumulative landscapes

are continuous and piecewise linear functions. Besides, as for power-weighted silhouettes,

all that is required to vectorize cumulative landscapes is a fixed resolution parameter m,

which can be used to sample Λ(t) on its domain [T1, T2]. In particular, this is the only

parameter to be optimized if using cumulative landscapes for supervised classification,

because the dependence on the parameter p used to define the weight wi in silhouettes
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has been removed. An example of a cumulative landscape is presented in Figure 5.2.

This is the curve obtained by summing up the triangular functions associated with the

points in the persistence diagram in Figure 5.1b. Moreover, under genericity assump-

tions on the coordinates of the points in Dgmh(KR), it can be shown that cumulative

landscapes can be used to reconstruct the persistence diagrams defining them. Thus,

with the appropriate hypotheses, the mapping into cumulative landscapes is information

preserving.

Definition 5.2.2. A persistence diagram Dgmh(KR) = {pi = (bi, di)}i∈I is generic if

the set X =
⋃
i∈I

{
bi, di,

bi+di
2

}
is such that

(i) x 6= x′ for each x, x′ ∈ X;

(ii) di−bi
2 6=

∣∣∣ bi+di2 − x
∣∣∣ for each i ∈ I and x ∈ X \ {bi, di}.

Proposition 5.2.3. Let Λ(t) be the cumulative landscape of Dgmh(KR). If the persis-

tence diagram Dgmh(KR) is generic, then it is possible to reconstruct its set of points

from Λ(t).

Proof. The idea is to use the first derivative Λ′(t) of the cumulative landscape to identify

the maximums of the triangular functions trii(t). This Λ′(t) is a piecewise constant (and

discontinuous) function with values in Z, because it is the sum of

tri′i(t) =


1, t ∈

(
bi,

bi+di
2

)
−1, t ∈

(
bi+di

2 , di

)
0, otherwise

(5.5)

for each i ∈ I. Thus its value changes at the point of discontinuity t = bi, t = di, and

t = bi+di
2 for each i ∈ I.

Given X as in Definition 5.2.2, let δ > 0 be such that δ < minx,x′∈X |x − x′|. By

hypothesis Dgmh(KR) is generic, so property (i) of Definition 5.2.2 guarantees that

• Λ′(bi + δ)− Λ′(bi − δ) = Λ′(di + δ)− Λ′(di − δ) = 1,

• Λ′
(
bi+di

2 + δ
)
− Λ′

(
bi+di

2 − δ
)

= −2,

for each i ∈ I. Otherwise, some bi, di, or bi+di
2 would need to coincide. Hence, the

midpoints of the triangular functions trii(t) are uniquely identified as the values at which

Λ′(t) decreases by 2. Then, for each midpoint bi+di
2 the pair of values t1 = bi and t2 = di

is such that
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(a) (b)

Figure 5.3: Two different sets of triangular functions whose sum is the same cumulative landscape.
In (a) there are three functions with local maximums in (1, 1), (1.5, 0.5) and (2, 1); in (b) a single
function with maximum in (1.5, 1.5).

• bi+di
2 − t1 = di−b2

2 and t2 − bi+di
2 = di−b2

2 ,

• Λ′(t1 + δ)− Λ′(t1 − δ) = 1,

• Λ′(t2 + δ)− Λ′(t2 − δ) = 1,

for each i ∈ I. Moreover, by point (ii) of Definition 5.2.2, there is only one pair of

t1, t2 ∈ [T1, T2] satisfying these properties. Thus the triangular function trii(t), which is

non-zero in the range [t1, t2] = [bi, di], must be in the sum defining Λ(t). In conclusion,

each value of t at which Λ′(t) decreases by 2 uniquely identifies a point (t1, t2) = (bi, di)

in the persistence diagram used to define Λ(t).

Note that if the given persistence diagram is not generic, then it may not be possible

to decompose Λ(t) into its triangular functions, and so obtain the points of the diagram.

For instance, given the persistence diagram Dgmh(KR) = {(0, 2), (1, 2), (1, 3)}, its cumu-

lative landscape could be decomposed both as the sum of the triangular functions with

non-zero values in the intervals [0, 2], [1, 2], and [1, 3], and as the single triangular function

with non zero-values in [0, 3]. See Figure 5.3.

Example: Instability of cumulative landscapes. Given two finite set of points X

and Y in Rd, the Stability Theorem 2.3.10 of persistent homology ensures that small

perturbations in X and Y result in small perturbations in the Čech persistence diagrams

of X and Y . Here we show with an example that cumulative landscapes do not have the

same property. In particular, we describe point sets in R2 at fixed Hausdorff distance

ε > 0 such that the cumulative landscapes of their one-dimensional persistence diagrams

are arbitrarily different.
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(a) (b) (c)

Figure 5.4: (a) Point set Y (1) in R2 together with the edges of its Delaunay triangulation. (b)
Point set Y (k) in R2 producing an unstable cumulative landscape. (c) Čech persistence diagram
in homological dimension one of the points in (a) and (b).

We define

X(k) = {(x, y) ∈ R2 | 0 ≤ x ≤ k and 0 ≤ y ≤ 1 and x, y ∈ N},

Y (k) = {(x, y − ε) ∈ R2 | 0 ≤ x ≤ k and 0 ≤ y ≤ 1 and x, y ∈ N},

where ε ∈ (0, 1) ∈ R is a fixed constant and k ∈ N. We compute the Čech persistence

diagrams of X(k) and Y (k) with Alpha complexes, as discussed in Section 2.4. This

way, Delaunay triangulations on X(k) and Y (k), restrict the simplices contained in the

filtrations used for this computation.

To begin with, we study the persistence diagrams in homological dimension one of

X(1) and Y (1). Figure 5.4a shows the edges of a Delaunay triangulation of Y (1) =

{x1, x2, x3, x4}. The length of the diagonal edge {x2, x4} is
√

(1− ε)2 + 1, because x2 =

(0, 1 − ε) ∈ R2. Moreover, both τ1 = {x1, x2, x4} and τ2 = {x2, x3, x4} are right-angled

triangles with {x2, x4} as hypotenuse, so τ1 and τ2 are added into the Alpha complex

KA
r of Y (1) with radius parameter r =

√
(1−ε)2+1

2 , because the circumcenter of right-

angled triangles is the midpoint of their hypotenuse. Thus, we have that the 1-cycle

containing {x1, x2}, {x2, x3}, {x3, x4}, and {x1, x4} is created at r = 1
2 , and deleted

at r =

√
(1−ε)2+1

2 in the Alpha filtration of Y (1). Besides, there is a 1-cycle of zero

persistence, which is both created and deleted at r =

√
(1−ε)2+1

2 . We conclude that{(1

2
,

√
(1− ε)2 + 1

2

)
,
(√(1− ε)2 + 1

2
,

√
(1− ε)2 + 1

2

)}
,

is the Čech persistence diagram in homological dimension one of Y (1). Similarly, the
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Čech persistence diagram in homological dimension one of X(1) is{(1

2
,

√
2

2

)
,
(√2

2
,

√
2

2

)}
,

because the ε constant is missing from the points of X(1).

Then, the Čech persistence diagrams in homological dimension one of X(k) and Y (k)

consist of the same points of those of X(1) and Y (1) above, but with the points having

multiplicity k − 1. This follows by the fact that a Delaunay triangulation on 2k points

like those in Figure 5.4b contains k − 1 pairs of triangles with the same properties of τ1

and τ2 above.

Finally, we write ΛX(k)(t) and ΛY (k)(t) for the cumulative landscapes of the persis-

tence diagrams in homological dimension one of X(k) and Y (k). We have

||ΛX(k)(t)− ΛY (k)(t)||∞ ≥ (k − 1) ·
(√2

2
−
√

(1− ε)2 + 1

2

)
, (5.6)

because the triangular functions of the points
(

1
2 ,
√

2
2

)
and

(
1
2 ,

√
(1−ε)2+1

2

)
differ by

√
2

2 −
√

(1−ε)2+1

2 at t =

√
(1−ε)2+1

2 , and there are k − 1 such functions in the sums defin-

ing ΛX(k)(t) and ΛY (k)(t). Thus, fixed any value of ε ∈ (0, 1), the value of ||ΛX(k)(t) −
ΛY (k)(t)||∞ goes to infinity, with k going to infinity. We conclude that, a small pertur-

bation of a set of points X may result in large differences in the cumulative landscapes

derived from X. So, the stability property of persistence diagrams does not hold for

cumulative landscapes.

5.3 Fourier Coefficients of Cumulative Landscapes

The simple structure of cumulative landscapes allows to reduce the dimensionality of

the output vectors obtained by discretizing Λ(t), without losing much of the structural

information they encode. The idea is to think of Λ(t) : [T1, T2]→ R as a periodic function

of period T = T2 − T1, and to use its Fourier coefficients ãk and b̃k as the elements of

the desired feature vectors. Analytical expressions for the values of these coefficients are

derived in this section, and are applied in the next to classification problems.

Definition 5.3.1. Let Λ(t) : [T1, T2]→ R be the cumulative landscape of a persistence

diagrams Dgmh(KR) in homological dimension h ≥ 0. The periodic cumulative landscape

of Dgmh(KR) is the periodic function Λ̃(t) : R→ R defined by

Λ̃(t)�[T1+j·T,T2+j·T ] = Λ(t− j · T ), (5.7)
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for j ∈ Z, where T = T2 − T1.

The periodic cumulative landscape can be expanded into the Fourier series

sk̄(t) =
ã0

2
+

k̄∑
k=1

(
ãk · cos

(2πk

T
t
)

+ b̃k · sin
(2πk

T
t
))

, (5.8)

where the coefficients ãk and b̃k are

• ã0 = 2
T

∫ T2

T1
Λ̃(t)dt;

• ãk = 2
T

∫ T2

T1
Λ̃(t) cos

(
2πk
T t
)
dt, for 1 ≤ k ≤ k̄;

• b̃k = 2
T

∫ T2

T1
Λ̃(t) sin

(
2πk
T t
)
dt, for 1 ≤ k ≤ k̄;

as given in [Tol76, Section 1.6]. Furthermore, the following result (adapted to the nota-

tion of this section) guarantees that in our setting sk̄(t) converges to Λ̃(t) for k̄ going to

infinity.

Theorem 5.3.2 (Section 3.9 [Tol76]). If Λ̃(t) is an absolutely integrable function of

period T which is piecewise smooth on the interval [a, b], then for all t in a < t < b the

Fourier series s+∞(t) of Λ̃(t) converges to Λ̃(t) at points of continuity and to the value

Λ̃(t+ 0) + Λ̃(t− 0)

2
, (5.9)

the arithmetic mean of the right-hand and left-hand limits, at points of discontinuity.

Given the cumulative landscape in Figure 5.2, its periodic version Λ̃(t) is approxi-

mated with increasing accuracy by the Fourier series s2(t), s5(t), and s20(t), which are

plotted in Figure 5.5 showing a single period [T1, T2] = [0, 7].

In conclusion, fixed k̄ ∈ N large enough, the Fourier coefficients ã0, ãk, and b̃k encode

most of the information of a cumulative landscape Λ(t), and the vector

vFk̄ =
[
ã0, ã1, ã2, . . . , ãk̄, b̃1, b̃2, . . . , b̃k̄

]
can be used as a vectorial representation of the persistence diagram used to define Λ(t).

This contains 2k̄ + 1 elements, which in practice (i.e. choosing parameters with k-fold

cross-validation as done in the following section) results in smaller vectors compared

to vectorizations of persistence landscapes and cumulative landscapes making use of

resolution parameter m.
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Figure 5.5: Fourier series of Λ̃(t) derived from the cumulative landscape in Figure 5.2, for k̄ fixed
to three different values.

Analytical expressions of Fourier coefficients. The equations defining the Fourier

coefficients ã0, ãk, and b̃k can be integrated to obtain their values explicitly in terms of

mathematical expressions containing only trigonometric functions. Recall that Λ(t) =∑
i∈I trii(t) is the cumulative landscape of Dgmh(KR) = {pi = (bi, di)}i∈I on the interval

[T1, T2] of length T .

Given that the integrals
∫ T2

T1
trii(t)dt =

∫ di
bi

trii(t)dt equal the area of the triangular
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functions trii(t) for each i ∈ I, which is (di−bi)2

4 , it follows that

ã0 =
2

T

∫ T2

T1

Λ̃(t)dt =
2

T

∫ T2

T1

Λ(t)dt =
2

T

∫ T2

T1

∑
i∈I

trii(t)dt

=
2

T

∑
i∈I

∫ T2

T1

trii(t)dt =
2

T

∑
i∈I

(di − bi)2

4
=

∑
i∈I(di − bi)2

2T
.

Next, the expression for ãk can be derived by splitting
∫ T2

T1
trii(t) cos

(
2πk
T t
)
dt in terms

of its value on the intervals [bi, ci] and [ci, di]. The same works for b̃k, for which it is only

given the final expression.

ãk =
2

T

∫ T2

T1

Λ̃(t) cos
(2πk

T
t
)
dt =

2

T

∫ T2

T1

Λ(t) cos
(2πk

T
t
)
dt

=
2

T

∫ T2

T1

∑
i∈I

trii(t) cos
(2πk

T
t
)
dt =

2

T

∑
i∈I

∫ T2

T1

trii(t) cos
(2πk

T
t
)
dt

=
2

T

∑
i∈I

[∫ bi+di
2

bi

(t− bi) · cos
(2πk

T
t
)
dt︸ ︷︷ ︸

(i)

+

∫ di

bi+di
2

(di − t) · cos
(2πk

T
t
)
dt︸ ︷︷ ︸

(ii)

]
.

The terms (i) and (ii) can be integrated by parts obtaining

(i) di−bi
2 · T

2πk · sin
(
bi+di

2
2πk
T

)
+
(

T
2πk

)2
· cos

(
bi+di

2
2πk
T

)
−
(

T
2πk

)2
· cos

(
bi

2πk
T

)
(ii) −

[
di−bi

2 · T
2πk · sin

(
bi+di

2
2πk
T

)
−
(

T
2πk

)2
· cos

(
bi+di

2
2πk
T

)
+
(

T
2πk

)2
· cos

(
di

2πk
T

)]
Thus

ãk =
T

2π2k2

∑
i∈I

[
2 cos(γik)− cos(βik)− cos(δik)

]
, (5.10)

for each k ≥ 1, where ci = bi+di
2 , βi = bi

2π
T , γi = ci

2π
T , δi = di

2π
T for each i ∈ I. Similarly

b̃k =
T

2π2k2

∑
i∈I

[
2 sin(γik)− sin(βik)− sin(δik)

]
, (5.11)

for each k ≥ 1.

5.4 Supervised Classification Experiments

In this section vectorial representations of persistence diagrams derived from cumulative

landscapes are applied to two supervised classification problems. The goal is to compare
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Figure 5.6: The 24 textures of the OUTEX TC 00000 gray-scale image dataset.

the classification accuracy results obtained by applying standard machine learning algo-

rithms with feature vectors derived with different methods from the same persistence

diagrams. Moreover, accuracy results given by Euler characteristic feature vectors are

also included in the final comparison tables.

All computations were performed on a laptop with Intel Core i7-9750H CPU with six

physical cores clocked at 2.60GHz with 16GB of RAM.

Texture images. The first open-source dataset used to benchmark the effectiveness

of TDA feature vectors is the OUTEX TC 0000 test suite, which contains 480 gray-scale

images of size 128× 128 [OMP+02]. These belong to 24 different classes, corresponding

to as many types of textures, see Figure 5.6. The test suite also provides 100 random

50/50 test-train splits, with each class evenly represented by 10 images in the train and

test data, that need to be used to compute average classification accuracy results.

To begin with, the Euler characteristic curves of pixel intensity values were com-

puted for each image with Algorithm 2.1. Next, the discrete version of the Laplace

operator [GW17] was applied to extract information about regions of high contrast in

the OUTEX TC 00000 images. In particular, the OpenCV [KB16] implementation was used
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with kernel 0 1 0

1 −4 1

0 1 0

 .

The result of this operation were Laplacian matrices of integers. Gray-scale absolute

Laplacian images were produced by taking absolute values of the elements in these Lapa-

cian matrices. Euler characteristic surfaces were computed with Algorithm 3.1 using the

pairs of images obtained by taking each OUTEX TC 00000 image and its associate absolute

Laplacian image. Finally, both Euler characteristic curves and surfaces were employed

to produce feature vectors for classifying OUTEX TC 00000 images with standard machine

learning algorithms. To obtained such vectors, step parameters s1, s2 ∈ N were chosen

via 3-fold cross-validation on one-third of the data. The curves and surfaces were down-

sampled according to these steps by only keeping their elements in positions i and (i, j)

such that i ≡ 0 (mod s1) and j ≡ 0 (mod s2).

In order to compete with the results of Euler characteristic surfaces, which integrate

the information of two sublevel sets filtrations in one vector, multiple persistence dia-

grams were computed for each image. In practice, images were first downsampled to half

their original width and height. Then, each of the resulting 64× 64 images was mapped

into a collection of four point clouds in R3. These were obtained from the downsampled

images by thresholding their values at four different levels, and mapping the remaining

pixels with value vs,t into the points (s, t, vs,t) of R3. The four threshold levels were

determined using the Euler characteristic curves of pixel intensities of OUTEX TC 00000

images. In particular, these were chosen to correspond to local maximums in the curve of

average Euler characteristic changes of OUTEX TC 00000 images and to avoid producing

empty point clouds. The result were the values {120, 127, 165, 255}. For an example of a

collection of four point clouds derived from a single OUTEX TC 00000 image see Figure 5.7.

The persistence diagrams in homological dimensions zero and one of these point clouds

were computed with the gudhi [GUD21] Python package using both Delaunay-Čech fil-

trations with Euclidean distance, and Minibox filtrations with `∞ distance. This resulted

in a collection of 8 diagrams for each OUTEX TC 00000 image, both for Delaunay-Čech

and Minibox filtrations. All these diagrams were vectorized via persistence landscapes,

cumulative landscapes, and Fourier coefficients of cumulative landscapes, as previously

described in this section. The parameters m, k̄ ∈ N that needed to be fixed for this step

were chosen applying 3-fold cross-validation to one-third of the OUTEX TC 00000 data. To

conclude, the sets of 8 vectors corresponding to persistence landscapes, cumulative land-

scapes, and Fourier coefficients of cumulative landscapes were concatenated to produce

the final persistence feature vectors.
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Figure 5.7: Four point clouds derived from one OUTEX TC 00000 image.

Table 5.1: Average classification accuracy results OUTEX TC 00000

Features preprocessing
- Min-Max scaler

Euler char. curves - Intensity 84.84± 1.93% 91.52± 1.70%

Euler char. surfaces - (Intensity, Laplacian) 97.20± 0.89% 96.31± 1.34%

Minibox pers. landcapes 84.30± 1.73% 89.30± 1.71%

Minibox cum. landscapes 96.05± 1.16% 85.94± 1.69%

Minibox Fourier coefficients 95.45± 1.22% 95.44± 1.23%

Delaunay-Čech pers. landcapes 84.04± 2.21% 92.80± 1.28%

Delaunay-Čech cum. landscapes 94.53± 1.61% 88.04± 1.89%

Delaunay-Čech Fourier coefficients 95.84± 1.13% 96.40± 1.23%

Classification on the 100 train-test splits provided by the test suite was performed

using logistic regression [FHT09, Section 4.4] with `2 regularization and the LIBLINEAR

[FCH+08] solver, as implemented by the scikit-learn [PVG+11] Python package.

The inverse regularization strength parameter C was also determined with 3-fold cross-

validation, at the same time of choosing the vectorization parameters m and k̄, or the

downsampling step in the case of Euler characteristic vectors. The average accuracy

results for all feature vectors taken into consideration are in Table 5.1. The first col-

umn refers to results where no preprocessing on the features was used, and the second

column to the average accuracy results obtained by applying a Min-Max scaler prepro-

cessing step, i.e. transforming the training set so that each feature is in the range [0, 1].

The best results are attained by Euler characteristic surfaces without preprocessing,

though similar performance is provided by Fourier coefficients of cumulative landscapes

of Delaunay-Čech filtrations with Min-Max scaler preprocessing.

Three-dimensional human shapes. The second dataset considered in this section is

the SHREC 2014 collection of 400 real human 3D meshes, representing 40 human subjects

in 10 different poses [PSR+14]. In practice, only the vertices of the meshes are used,

producing points clouds in R3 on top of which Delaunay-Čech and Minibox filtrations are

built in order to compute Euler characteristic curves/surfaces and persistence diagrams.

Note that each shape in this dataset contains approximately 15, 000 vertices. The task
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Figure 5.8: Each row displays a different human subject, and each column a different pose of the
SHREC 14 real dataset.

proposed by the SHREC 2014 track was to perform classification of the 40 classes repre-

senting different human subjects, that is to say to distinguish between shapes in different

rows in Figure 5.8. In this section, TDA feature vectors are applied to the problem of

classifying the 10 different poses, i.e. different columns in Figure 5.8, as they are found

to be not informative for the original task. This does not affect the conclusions of these

experiments, as the focus here is on comparing the effectiveness of different vectorization

methods on the same data.

As in the case of texture images above, first Euler characteristic curves and surfaces

were computed for each point cloud. Delaunay-Čech filtrations of points in R3 were

employed in the case of curves. The same filtrations, together with the estimate of the

local density given by Equation (3.13) as a second parameter on Delaunay simplices,

were used to compute Euler characteristic surfaces.

Again, persistence diagrams were computed for four different point clouds for each

element in SHREC 2014. In this case, the already mentioned estimate of the local density

was used to filter the human 3D shapes. The density thresholds chosen for all point

clouds were {0.0046, 0.0092, 0.0140, 0.05}, which were picked based on the maximum
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Figure 5.9: Four point clouds derived from one SHREC 2014 human model.

Table 5.2: Average classification accuracy results SHREC 2014

Features preprocessing
- Min-Max scaler

Euler char. curves - Miniball 59.09± 4.25% 75.95± 3.62%

Euler char. surfaces - (Miniball, Density) 69.39± 3.61% 67.01± 3.54%

Minibox pers. landcapes 88.98± 2.04% 91.17± 2.83%

Minibox cum. landscapes 88.52± 2.80% 88.11± 3.37%

Minibox Fourier coefficients 85.42± 3.58% 87.99± 2.50%

Delaunay-Čech pers. landcapes 88.41± 2.41% 91.25± 2.31%

Delaunay-Čech cum. landscapes 89.24± 3.16% 90.38± 2.17%

Delaunay-Čech Fourier coefficients 89.66± 3.34% 91.52± 2.47%

average Euler characteristic changes of Delaunay complexes of the filtered point clouds,

as done with Euler characteristic of images above. On these collections of four point

clouds, persistence diagrams in homological dimensions zero and one were computed

as for OUTEX TC 00000 images. Furthermore, the same persistence diagrams vectoriza-

tion methods (concatenating multiple vectors) and logistic regression classifier with `2

regularization were used.

Finally, the optimization of hyper-parameters (downsampling steps for Euler char-

acteristic vectors, vectorization parameters m and k̄, regularization parameter C) was

performed on one-third of the data via 3-fold cross-validation. The remaining two-thirds

of the data were instead used to compute average accuracy results over 10 repetitions

of 3-fold cross-validation. These are given in Table 5.2, including both results with no

preprocessing and with a Min-Max scaling step. In this case, Euler characteristic vectors

are not as informative as those derived from persistence diagrams. The best result is

given by using Fourier coefficients of cumulative landscapes of Delaunay-Čech filtrations

with Min-Max scaler preprocessing.
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5.5 Discussion

In this chapter the outputs of computational methods presented in this thesis are applied

to supervised classification problems. The goal is to evaluate the effectiveness of existing

vectorization methods for persistence diagrams versus those presented here. In particu-

lar, cumulative landscapes are introduced as an alternative to persistence landscapes and

related objects. Moreover, analytical expressions for the Fourier coefficients of cumula-

tive landscapes are given in terms of trigonometric functions, allowing for their direct

computation. Finally, different vectorizations of persistence diagrams are applied to two

classification problems on open-source datasets. In both cases, the Fourier coefficients

perform better than other vectorization methods of persistence diagrams, while being

competitive with Euler characteristic surfaces in the case of texture images.



Chapter 6

Optimal Metrics on Genomic

Data

The previous chapter presented an application of topological data analysis methods to

datasets of two-dimensional images and three-dimensional set of points. Here a classifi-

cation problem involving high-dimensional data is studied. In particular, the focus is on

genomic data of ulcerative colitis patients at risk of developing cancer, consisting of infor-

mation about duplication and deletion of base pairs in the genome of such patients. This

comes in the form of n vectors in Rd with n� d. The goal is to introduce a new method

that can be used for cancer class prediction and to determine important genes/locations

in chromosomes that identify these classes. The idea is to define a weighted metric opti-

mized for a specific type of genomic vectors, and use the derived weighted distances for

classification tasks. A dataset of 67 ulcerative colitis patients with low-grade dysplasia

(LGD) is used to compare results obtained with this optimized metric against standard

machine learning algorithms.

6.1 Related Work

The method described in the following section is related to studies on gene selection

and classification of cancer data. For instance in [THNC02] the authors define shrunken

centroids of genomic vectors classes, and use these in combinations with nearest-centorid

classification [FHT09]. The non-zero values of the shrunken centroids identify the genes

useful for selecting the class a patient belongs to. Standard machine learning methods

can also be applied to the same problem. For example, the LASSO [FHT09, Section

3.4] machine learning shrinkage method can be used to both classify genomic vectors

and select important genes based on the non-zero regularization coefficients it produces.

99
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Moreover, the elastic net was introduced in [ZH05] to overcome the limitations of LASSO

when working with high-dimensional data. In the same paper the elastic net was applied

to leukemia cancer microarray data, so to classify cancer types and perform automatic

gene selection.

6.2 Loss Function and Optimized Metric for Classification

In this section, it is introduced a novel approach to produce distance-based features out

of genomic vectors, which can then be used for their classification. In particular, the

following setting is considered. Let S be a set of genomic vectors of patients with or at risk

of developing cancer, that is to say S is a finite set of n points in Rd, with the dimension

d being much greater than n. It is known that the elements of S can be partitioned

into subsets S1 and S2, corresponding to the low-risk and high-risk patients respectively.

Moreover, the elements of S1 are locally clustered, as their genomic mutations show a

reduced variability compared to S2, which does not have the same property. In the next

section, data from ulcerative colitis patients with low-grade dysplasia is used, and the

sets S1 and S2 are determined by patients either progressing to high-grade dysplasia or

not. Thus it is written SNP for the set of non-progressor patients, and SP for the set of

progressor patients. The same notation is used in this section as well.

The goal is to define an algorithmic procedure capable of classifying a new and previ-

ously unseen genomic vector p ∈ Rd as coming from either a low-risk/non-progressor or

high-risk/progressor patient. A possible approach is to apply known machine learning

algorithms, using directly the elements p ∈ S as feature vectors. This will be the baseline

for the experiments in Section 6.3. Another possible strategy is to compute distances

from the centroid of non-progressors SNP and use these as features for classification. In

this section an optimized weighted metric dw is defined, so that the weight function w

encodes information about which components of the elements p ∈ S better discriminate

between elements of SNP and SP.

Loss function. Let

gµ,σ1(x) =
1

σ1

√
2π

exp

(
−1

2

(x− µ)2

σ2
1

)
(6.1)

be the Gaussian function of mean µ and standard deviation σ1. Fixed a value of σ1 ∈ R,

a weighted Euclidean distance is defined for each µ ∈ [1, d] ⊆ N. Given p, q ∈ S, the

(µ, σ1)-distance

dµ,σ1(p, q) =

√√√√ d∑
i=1

gµ,σ1(i) · (pi − qi)2, (6.2)
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weights the contributions of the differences (pi−qi)2 based on how close i is to the chosen

µ. Then, a loss function L(µ) is defined by summing up squared weighted Euclidean

distances.

L(µ) = −
∑
p∈SP

d2
µ,σ1

(cNP, p)

= −
∑
p∈SP

[ d∑
i=1

gµ,σ1(i) · (cNP
i − pi)2

]

= −
∑
p∈SP

[ d∑
i=1

1

σ1

√
2π

exp

(
−1

2

(i− µ)2

σ2
1

)
· (cNP

i − pi)2
]
,

(6.3)

where cNP ∈ Rd is the centroid of non-progressor vectors; i.e. cNP
i =

∑
p∈SNP

pi
nNP ,

with nNP equal to the number of elements in SNP. The idea is that cNP represents

well the elements of SNP, which are known to be clustered. So the local minimums of

L(µ) correspond to the values µj ∈ [1, d] ⊆ N such that the weighted (µj , σ1)-distances

better discriminate between the progressors genomic vectors and the centroid of non-

progressors. Moreover, the first derivative of the loss function with respect to µ is

∂L

∂µ
(µ) = −

∑
p∈SP

[ d∑
i=1

(i− µ)

σ3
1

√
2π

exp

(
−1

2

(i− µ)2

σ2
1

)
· (cNP

i − pi)2
]
. (6.4)

Hence the expression of ∂L∂µ can be used to find local minimums of L(µ) with the gradient

descent method [BV04, Section 9.3]. Choosing different starting points for this algorithm

in the domain [1, d], it is possible to find all such local minimums {µk}mk=1.

Optimized metric. An optimized weight w and metric dw can are obtained using the

loss L(µ) in Equation (6.3), and its set of local minimums. Let µ̄ be the vector of local

minimums sorted by the absolute values of the losses L(µk); i.e. |L(µ̄1)| ≥ |L(µ̄2)| ≥
. . . ≥ |L(µ̄m)|. Fixed an integer k̄ ≤ m and standard deviation value σ2, the optimized

weight is

w(i) =

k̄∑
k=1

Ck · gµk,σ2(i), (6.5)

where Ck = |L(µk)|∑m
j=1 |L(µj)| . This is the sum of the Gaussian functions given by the first k̄

local minimums in µ̄, weighted by their loss values at the µks. Finally, the optimized

metric between two vectors p, q ∈ S is

dw(p, q) =

√√√√ d∑
i=1

w(i) · (pi − qi)2. (6.6)
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The distance dw(cNP, p) can be used to characterize p ∈ S.

Distance-based classification. The classification method used in combination with

the optimized metric dw is the following.

Let S be partitioned into a train and test subsets Strain and Stest. The corresponding

train-test splits of the non-progressor and progressor vectors are SNP
train, SNP

test and SP
train,

SP
test. Fixed a threshold t ∈ R, a genomic vector p ∈ Rd is classified as non-progressor if

dw(cNP
train, p) ≤ t, and as progressor otherwise. Thus, the train and test accuracy functions

ftrain(t) : R→ [0, 1] and ftest(t) : R→ [0, 1] are defined by

ftrain(t) =
|{p ∈ SNP

train | dw(cNP
train, p) ≤ t}|+ |{p ∈ SP

train | dw(cNP
train, p) ≥ t}|

|Strain|
, (6.7)

ftest(t) =
|{p ∈ SNP

test | dw(cNP
test, p) ≤ t}|+ |{p ∈ SP

test | dw(cNP
test, p) ≥ t}|

|Stest|
. (6.8)

The threshold t̂ maximising the value of ftrain(t), i.e. ftrain(t̂) = maxt∈R ftrain(t), can be

found by iterating on the distances {dw(cNP
train, p)}p∈Strain , because by definition these are

the only thresholds at which ftrain(t) can increase or decrease its value. In conclusion, the

training and test accuracies obtained by using dw distances as features for classification

are ftrain(t̂) and ftest(t̂).

Example: Application to synthetic data. Here, the optimized distance classifi-

cation method described above is applied to synthetic genomic data. This is a set S

of 200 vectors with 4401 components, which are assigned random values on 28 fixed

ranges of consecutive components. For instance, pi is constant for 695 ≤ i ≤ 783 and

2262 ≤ i ≤ 2504 for each p ∈ S. The first half of the dataset models non-progressor

vectors studied in the next section. These 100 vectors have real-valued components

randomly sampled in the range [−0.5, 0.5]. The second half models progressor vectors.

These have component values pi assigned at random in [−0.8, 0.8] with a higher variance

between constant values in different ranges. Moreover, their pis are decremented by 0.4

for each 695 ≤ i ≤ 793, and incremented by 0.3 for each 2262 ≤ i ≤ 2504, which are

the two already mentioned ranges of constant components. The idea is that these are

the regions of the genome that always get altered similarly in case a patient is likely to

progress to high-grade dysplasia. Figure 6.1 presents two pairs of synthetic genomic vec-

tors. The first column contains two synthetic “non-progressor” vectors and the second

column two synthetic “progressors”.

On this data it is possible to compute the value of the loss function for µ ∈ [1, 4401],

as given by Equation (6.3), and find it local minimums with gradient descent using the
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Figure 6.1: Synthetically generated genomic vectors plotted as piecewise constant curves on the
range [1, 4401]. The column on the left shows two “non-progressor” vectors, and the column on
the right two “progressor” vectors.

Figure 6.2: Loss function and optimized weight obtained by using 60% of the synthetically
generate genomic vectors.

expression in Equation (6.4). For this, it is necessary to choose a standard deviation

value σ1. Then the weight w is determined by fixing the values of σ2 and k̄. The result

is a weighted distance dw, which can be used to classify patients and compute accuracy

results with Equations (6.7) and (6.8).

A subset containing 40% of the elements of S is set aside to determine appropriate

values of σ1, σ2, and k̄. On this data, average test accuracy results over 100 train-

test splits are used as a score to select a triplet (σ1, σ2, k̄). In practice, this is done
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Table 6.1: Classification accuracy results of synthetic genomic vectors over 100 train-test splits

Avg. test accuracy

Distance-based classifier - Euclidean distance d2 77.55± 4.09%

Distance-based classifier - optimized distance dw 93.28± 3.27%

by choosing the parameters maximizing average test accuracy results, searching over all

possible combinations of integer standard deviations and number of local minimums,

i.e. (σ1, σ2, k̄) ∈ N3. This search results into picking σ1 = 38, σ2 = 24, and k̄ = 6,

which are then used to compute the loss function and an optimized weight on the other

60% of S. Figure 6.2 provides a plot of this loss, whose two main local minimums

correspond to the midpoints of the two ranges of components which were incremented

and decremented while generating the data. Thus the weighted distance dw derived

from this loss correctly encodes values of µ which on average discriminate between “non-

progressors” and “progressors”. Lastly, the test accuracy over 100 train-test splits is

calculated with Equation (6.8) on the second 60% of the data using dw. This is compared

against the average classification accuracy obtained on the same data with standard

Euclidean distances, i.e. using d2(cNP, p) as features. Results are in Table 6.1 and show

a clear advantage in using weighted distances dw for this type of synthetically generated

data. This example provides proof of concept of the distance-based classification method

described above. It illustrates how it can be applied in practice, and it shows that

patterns in the data at hand are detected in the local minimums of the loss function

L(µ). In the next section, the same methodology used here is applied to real cancer

genomic vectors.

6.3 Application to Low-Grade Dyspalasia Data

The genomic data under consideration in this final section comes from 67 ulcerative colitis

patients with low-grade dysplasia [BCC+19, CABB+19], and consists of 269 vectors with

4401 real-valued components, representing the log2 values of copy number alterations

(CNA)1 in patients chromosomes. These vectors are the output of low-pass whole-

genome sequencing of tissue samples obtained at different time-points from the patients.

Due to their condition, the 67 patients are considered at risk of developing colorectal

cancer (CRC). Moreover, it is known that 45 of them did not progress to high-grade

dysplasia or cancer within five years, while the other 22 did. The goal is to be able to

predict which patients are progressors based on the genomic vectors. Besides, it would

also be important to identify which chromosomes regions (i.e. vectors components pi)

are important to distinguish between progressor and non-progressor patients.

1Measuring the amount of additional or missing genetic material found in chromosomes.
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Table 6.2: Classification accuracy results of real-world genomic vectors over 100 train-test splits

Avg. test accuracy

Nearest Neighbours classifier 75.43± 7.52%

Logistic regression - `2 regularization 75.62± 6.71%

Distance-based classifier - Euclidean distance d2 82.67± 7.18%

Distance-based classifier - optimized distance dw 84.24± 7.02%

Figure 6.3: Genomic vectors of log2 CNA values of ulcerative colitis patients with low-grade
dysplasia, plotted as piecewise constant curves on the range [1, 4401]. The columns on the left
shows two vectors corresponding to non-progressor patients, and the column on the right two
vectors corresponding to progressor patients.

Figure 6.4: Loss function and optimized weight obtained by using 60% of the genomic vectors of
log2 CNA values.
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The optimized distance classification method of the previous section is applied, select-

ing a single vector per patient. This choice is made by keeping only the vector with the

maximum norm, between the oldest ones of a patient, to use information from early

genetic mutations. Four such vectors are shown in Figure 6.3 as piecewise constant

curves. The column on the left contains data of two non-progressor patients and the

column on the right of two progressor patients. Then, as in the example using synthetic

genomic vectors, 40% of the data is set aside to determine the values of σ1, σ2, and k̄

as those maximizing average test accuracy over 100 train-test splits. In this case the

chosen parameters are σ1 = 26, σ2 = 96, and k̄ = 14. Given the second 60% of data, this

results in the loss function L(µ) and optimized weight w(µ) plotted in Figure 6.4. Thus,

a total of k̄ = 14 local minimums of the loss are identified as the locations {µk}k̄k=1 most

useful in characterizing the differences between genomic vectors of low-risk and high-risk

patients. In particular, the minimum found at µ̂ = 1438 identifies that location as the

most important for the binary classification task under study.

Finally, the distance-based classifier introduced in the previous section is applied.

Both the Euclidean distance d2 and the optimized distance dw are used to test the effect

of the weight w(µ) on classification results. As additional baselines to compare against,

a nearest neighbours classifier and a logistic regression classifier with `2 regularization

[FHT09] are employed on the second 60% of genomic vectors as well. For both of

these, the scikit-learn [PVG+11] Python package implementations are used (choosing

the LIBLINEAR [FCH+08] solver for logistic regression). Furthermore, the 40% of data

which is set aside to determine the values of σ1, σ2, and k̄, is also used to pick their

hyperparameters: the number of nearest neighbours to use, and the inverse regularization

strength parameter C. Average test accuracy results over 100 train-test splits are in Table

6.2. The distance-based classifiers produce the best results, with optimized distances

improving over Euclidean distances on average.

6.4 Discussion

A distance-based method for the classification of high-dimensional genomic vectors is

presented. This makes use of a loss and derived optimized weight functions, which allow

identifying coordinates of the given genomic vectors useful for distinguishing between

different classes of patients. Its efficacy in terms of average test accuracy results is

shown both on synthetic and real-world data. On the latter, distance-based classifica-

tion outperforms standard machine learning algorithms. Besides, it provides easily inter-

pretable information regarding the coordinates of genomic vectors (that can be related

to genes/chromosomes locations), which are the most informative in the classification

problem at hand.
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Conclusion

The general concept underlying the field of topological data analysis, and in particular

the theory of persistent homology, is that the geometric shape and topological structure of

data can be used for its analysis. This approach is also at the basis of the computational

methods presented in this thesis. The goal was to describe methods extending the range

of tools available in this context, overcoming some of the existing limitations of persistent

homology, and topological data analysis in general.

For instance, extending persistent homology to multidimensional parameter spaces is

problematic due to the absence of a complete discrete invariant in this setting [CZ09].

In Chapter 3, we propose the use of Euler characteristic numbers, instead of ranks

of persistent homology groups, to characterize bi-filtrations of complexes. This way

it is possible to obtain a well-defined and compact representation of the topological

information of a given bi-filtration. The idea is to generalize Euler characteristic curves

and the algorithms for their computation. This results in matrices of numbers, Euler

characteristic surfaces, which can be used to obtain insights about a two-dimensional

parameter space. Notably, we provide novel algorithms for the computation of Euler

characteristic surfaces of image and point data, the complexities of which are given

in Proposition 3.4.1 and Proposition 3.5.1. A possible development of this research

could be the generalization of our algorithms to higher-dimensional parameter spaces.

Furthermore, it would be interesting to study which combinations of parameters are

most effective in characterizing different types of data.

Another issue with the application of persistent homology is the complexity of algo-

rithms for the computation of persistence diagrams. This problem is partially solved

using Alpha filtrations, which reduce the number of simplices in Čech filtrations as seen

in Section 2.4. However, these apply only to the case of points in Euclidean metric
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space. Thus, we try to obtain similar results in other metric spaces. In particular, we

study the problem of defining alternative filtrations for the computation of Čech per-

sistence diagrams of points in `∞ metric space in Chapter 4. Alpha flag and Minibox

filtrations are introduced, which can be used for this task in homological dimensions

zero and one. The main original results discussed in this chapter are Theorem 4.3.6 and

Theorem 4.4.4, which are used to prove the equivalence of Alpha flag, Minibox, and Čech

complexes. In addition to this, algorithms are described for finding the Minibox edges

of a set of points, which is the only information needed to build Minibox filtrations. The

complexities of these algorithms are given in Proposition 4.5.1 and Proposition 4.5.2.

Furthermore, Proposition 4.4.7 shows that, for randomly sampled points, the expected

number of simplices of Minibox filtrations is lower than the one of Čech filtrations. Thus,

Minibox complexes can be seen as a tool for speeding up the computation of persistence

diagrams. Future work could focus on improving the complexity of Minibox edges algo-

rithms for points in high-dimensions. Moreover, the geometric property characterizing

`∞-Delaunay edges (Proposition 4.1.3) could be applied to obtain efficient algorithms

for finding these in ambient dimension three or higher. Besides, it may be possible to

define other filtrations, with the same properties of the Alpha flag and Minibox ones,

further reducing the expected number of simplices that need to be considered to compute

persistence diagrams.

The application of topological data analysis invariants to supervised classification

problems has recently received an increasing level of attention, with the introduction

of several methods for discretizing the information of persistence diagrams [Bub15,

AEK+17, OPT+17]. The goal is to map persistence diagrams into vectors that can

be given as inputs to machine learning algorithms. In this context, a new type of

summary function of persistence diagrams is introduced in Chapter 5, which we call

cumulative landscape. Moreover, we derive analytical expressions of the Fourier coeffi-

cients of cumulative landscapes, which are given in Equations (5.10) and (5.11). These

Fourier coefficients can then be used to produce feature vectors out of cumulative land-

scapes. Experiments on real-world data show that, compared to those obtained with

persistence landscapes, the above-mentioned feature vectors can improve classification

accuracy results. A possible future direction of work is to extend the approach involving

Fourier coefficients. The sine and cosine functions used in the Fourier series form an

orthogonal set, which is a basis for periodic cumulative landscapes. Alternative bases of

function could be used to decompose cumulative landscapes, so as to employ the derived

coefficients as features in classification tasks.

In case the data that needs to be analyzed consists of high-dimensional arrays of

values, the methods discussed in the first part of this thesis do not directly apply. In
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Chapter 6, we consider a classification problem of cancer genomic data, and describe a

technique to define optimized metrics on it. These are used to classify the data with a

distance-based classifier, which outperforms nearest neighbours and logistic regression

classifiers. Thus, by only making use of metric information, we can describe a method

improving over standard machine learning algorithms for a particular type of problem.

Further research could focus on extending our method, which employs a loss function

and optimized distance, to settings where more than two classes of genomic vectors

are given. Moreover, the effectiveness of this approach on data of patients affected by

different types of cancer than the one used in this thesis would be worth exploring.
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Delaunay Complexes. Transactions of the American Mathematical Society,

369(5):3741–3762, 2017.

[BGK15] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Persistent

Homology for Path Planning in Uncertain Environments. IEEE Transac-

tions on Robotics, 31(3):578–590, 2015.

[BKR14a] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and Compress:

Computing Persistent Homology in Chunks. In Topological Methods in

Data Analysis and Visualization III, pages 103–117. Springer, Cham, 2014.

[BKR14b] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed Com-

putation of Persistent Homology. In Proceedings of the 16th Workshop on

Algorithm Engineering and Experiments, pages 31–38, 2014.

[BMM+16] Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skw-

erer. Persistent Homology Analysis of Brain Artery Trees. The Annals of

Applied Statistics, 10(1):198–218, 2016.

[BP20] Jean-Daniel Boissonnat and Siddharth Pritam. Edge Collapse and Persis-

tence of Flag Complexes. In Proceedings of the 36th International Sympo-

sium on Computational Geometry, pages 19:1–19:15, 2020.

[BS21] Gabriele Beltramo and Primoz Skraba. Persistent Homology in `∞ Metric.

arXiv: 2008.02071, 2021.



Chapter 7. Conclusion 111

[Bub15] Peter Bubenik. Statistical Topological Data Analysis using Persistence

Landscapes. The Journal of Machine Learning Research, 16(1):77–102,

2015.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, Cambridge, 2004.

[CABB+19] Kit Curtius, Ibrahim Al Bakir, Ann-Marie Baker, Theo Clarke, Nadia

Nasreddin, Maja Kopczynska, Meghan Agnew, Kane Smith, Morgan Moor-

ghen, Manuel Rodriguez-Justo, et al. Quantifying Evolution of Early

Dysplastic Lesions in Ulcerative Colitis Predicts Future Colorectal Cancer

Risk. Gastroenterology, 156(6):S162–S163, 2019.

[Car09] Gunnar Carlsson. Topology and Data. Bulletin of the American Mathe-

matical Society, 46(2):255–308, 2009.

[CDSO14] Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence Stability for

Geometric Complexes. Geometriae Dedicata, 173(1):193–214, 2014.

[CH13] Corrie J. Carstens and Kathy J. Horadam. Persistent Homology of Col-

laboration Networks. Mathematical Problems in Engineering, ID 815035,

2013.

[CJS19] Francisco Criado, Michael Joswig, and Francisco Santos. Tropical Bisec-

tors and Voronoi Diagrams. arXiv: 1906.10950, 2019.

[CK11] Chao Chen and Michael Kerber. Persistent Homology Computation with

a Twist. In Proceedings of the 27th European Workshop on Computational

Geometry, pages 192–200, 2011.

[CKR17] Aruni Choudhary, Michael Kerber, and Sharath Raghvendra. Improved

Approximate Rips Filtrations with Shifted Integer Lattices. In Proceedings

of the 25th Annual European Symposium on Algorithms, pages 28:1–28:13,

2017.

[COO15] Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable Topo-

logical Signatures for Points on 3D Shapes. In Proceedings of the 13th

Eurographics Symposium on Geometry Processing, pages 1–12, 2015.

[CP10] Timothy M. Chan and Mihai Pătraşcu. Counting Inversions, Offline
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