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ABSTRACT

Most recent research about automatic music transcription
(AMT) uses convolutional neural networks and recurrent neural
networks to model the mapping from music signals to symbolic
notation. Based on a high-resolution piano transcription system,
we explore the possibility of incorporating another powerful se-
quence transformation tool—the Transformer—to deal with the
AMT problem. We argue that the properties of the Transformer
make it more suitable for certain AMT subtasks. We confirm the
Transformer’s superiority on the velocity detection task by experi-
ments on the MAESTRO dataset and a cross-dataset evaluation on
the MAPS dataset. We observe a performance improvement on both
frame-level and note-level metrics after introducing the Transformer
network.

Index Terms— Automatic music transcription, deep learning,
Transformer, velocity estimation

1. INTRODUCTION

Automatic music transcription (AMT) aims to convert music signals
into music notation. It is of great importance to solve the AMT prob-
lem because the transcription results can be helpful in many higher-
level tasks, like structure segmentation, music similarity assessment,
and so on [1]. However, it is not easy to provide a generic solu-
tion to AMT, since a music piece usually contains multiple different
sound sources and lots of simultaneous notes. It is usually difficult
to separate these polyphonic sounds.

Piano transcription is one subproblem of AMT. Because several
automated annotation tools (e.g., Yamaha Disklavier) can be used
to help us capture the annotation of music data, we have relatively
rich datasets for the piano transcription problem, compared to other
instruments. This advantage makes it possible to use powerful su-
pervised learning approaches, of which neural networks (NNs) are a
representative group of methods.

Recently, the Transformer networks [2] have gathered re-
searchers’ attention from different fields. The success of Music
Transformer [3] shows the superiority of using Transformers to
model symbolic music. Given the great potential of the Trans-
former on sequence modeling, we would like to explore its ability to
solve AMT tasks, where both input and output sequences have finer
granularity than [3]. Furthermore, because of its ability to model re-
lationships between all time steps in a sequence, it is especially good
at modeling long-term dependencies. We expect that this property
could bring positive impacts when dealing with AMT tasks.

To test the modeling ability of the Transformer for AMT, in this
paper, we attempt to use Transformers to solve various subtasks of
piano transcription, including multi-pitch detection, onset and offset

detection, and velocity estimation, to explore the possible improve-
ment, and find that the Transformer gives a relatively significant im-
provement on velocity detection task. Then, based on the system in
[4], we try to incorporate the Transformer into the velocity branch to
enhance the performance of velocity detection. We train and evaluate
our system using the MAESTRO dataset [5] and perform a cross-
dataset evaluation using the MAPS dataset [6]. We notice that the
improvement of the velocity branch has positive effects on the over-
all performance of the transcription system, by providing more accu-
rate information to the downstream modules of the velocity branch,
i.e., onset and frame branches. The proposed system achieves com-
petitive results compared to previous state-of-the-art systems.

2. RELATED WORK

The first trial of the NN-based AMT method starts with [7], in which
the feasibilities of several basic network structures were tested, in-
cluding recurrent neural networks (RNNs). Böck et al. [8] tried
to apply Long Short-Term Memory (LSTM) NNs to solve AMT
tasks. Sigtia et al. [9] used convolutional neural networks (CNNs)
as the acoustic model, and integrated an RNN-based music language
model to improve the performance further. Hawthorne et al. [10]
tried to do note-level transcription by designing networks for on-
set detection and using the onset information to help the learning of
the multi-pitch estimation network. Kelz et al. [11] tried to model
the time-variant note properties by considering different note stages.
Kim et al. [12] introduce an adversarial training scheme for NN-
based methods to more accurately express inter-label dependencies.
Kong et al. [4] designed a network that can provide more refined
transcription results containing onset, offset, note pitch, and key ve-
locity (speed of pressing a key). More recently, [13] shows that a
generic Transformer without domain-specific adaptation can be used
to generate note-level transcription results directly with competitive
performance.

Beyond pitch and timing information, dynamics (referred to as
‘intensities’ or ‘velocities’ interchangeably) are another important
factor of music. Szeto et al. [14] proposed to search velocity value
by employing a single-note database to artificially generate mixtures
of notes. A parametric spectrogram model to estimate note intensi-
ties was proposed in [15]. Van Herwaarden et al. [16] tried to utilize
Restricted Boltzmann Machines to deal with this task. Methods in
[17] and [18] are based on non-negative matrix factorization. How-
ever, most of the previous research was done in a score-informed
manner and is not conducted in the AMT context. The first trial of
estimating note dynamics alongside the pitch and timing information
is [10]. Models in [4] and [13] significantly improve the NN-based
velocity estimation performance by more effective network struc-
ture.



Fig. 1. Architecture of the CNN-Transformer.

The development of deep learning has brought more powerful
tools for NN-based methods in different fields. The Transformer
has become a revolutionary architecture in recent years. One of its
important internal components is the self-attention mechanism. It
allows modeling of dependencies without regard to their distance in
the input or output sequences [2]. By using the attention mechanism
entirely and eschewing recurrent structures, it can capture global de-
pendencies between input and output sequences, and meanwhile, al-
low more parallel computing than RNNs, hence improving the train-
ing efficiency.

3. METHOD

3.1. System architecture

The architecture of the proposed piano transcription system is based
on the high-resolution piano transcription system in [4] (hereinafter
called the baseline system). Inherent from the baseline system, we
divide the entire task into four subtasks, i.e., onset detection, offset
detection, multi-pitch estimation (frame classification), and velocity
estimation. We use the same data preprocessing and postprocessing
method as the baseline system.

Based on the framework of the baseline system, we first attempt
to substitute the bi-directional gated recurrent unit networks (GRU)
in the original system with the Transformers to see if there is any
performance improvement. The resulting CNN-Transformer archi-
tecture is shown in Fig. 1. We try this architecture on each sub-
task of the original system, evaluate its performance, and compare
it with the baseline system. Among these experiments, we observe
a considerable performance improvement on the velocity estimation
tasks. Hence for the final transcription system, we use the CNN-
Transformer structure for the velocity estimation branch and keep
the CNN-GRU combination for other branches. The architecture of
the resulting system is illustrated in Fig. 2. The detailed structure of
the CNN-Transformer for velocity estimation is included in Section
3.2.

3.2. Incorporating the Transformer

Following the baseline system, we solve the AMT problem using a
two-step approach: we first convert a sequence of discretized mu-
sic signals into a sequence of frame-level symbolic notations using
the designed neural networks, and then perform postprocessing for
these frame-level results by a note search approach to get the final
note-level results. The sequence-to-sequence model can be easily
incorporated into the first step in this scenario.

Fig. 2. Architecture of the proposed system. The highlighted part is
the proposed CNN-Transformer; the other parts are inherited from
the baseline system. The � refers to concatenation operation.

Fig. 1 shows the structure of the network that aims to solve one
subtask of AMT. The overall design principle is to let the Trans-
former concentrate on capturing long-range dependencies, by insert-
ing convolutional layers at the beginning of the network that tries to
learn short-term dependencies. Before input into the network, the
original data is first resampled to 16 kHz, split into 10-second clips,
and converted into log-mel spectrograms, with 229 mel bins, a Han-
ning window with size 2048, and a hop size of 10ms. Then, we use
a stacked CNN to extract features of the spectrogram. This process
can be seen as learning local relationships with convolutional lay-
ers within a relatively small context. The detailed setup of the CNN
is inherited from [4], which is shown in Tables 1 and 2. Then, the
features outputted by CNN are reduced to the same dimension as
the output of Transformer blocks by a position-wise fully connected
layer, followed by a layer normalization operation, where the archi-
tecture of the CNN-Transformer diverges from the CNN-GRU. After
that, we compute sinusoidal positional encoding as in [2] and add it
to the data. Subsequently, a series of stacked Transformer blocks is
used to capture the long-range relationships for the sequence. Each
block contains a multi-head attention layer, a fully connected layer,
and two normalization operations.

Our CNN-Transformer model processes the input signal in a
frame-by-frame manner. As in [10] and [4], classification or regres-
sion is directly performed on each frame of the spectrogram, which
is a straightforward idea to recognize the note elements at every time
step accurately. Since the time unit of the model’s output is the same
as that of input, and all the outputs are of fixed length, we did not
utilize the original encoder-decoder structure of the Transformer.

Layer Output channel Filter size Stride Padding

Conv2d m 3x3 1 1
BN 2d
Relu

Conv2d m 3x3 1 1
BN 2d
Relu

Avg pool 2d 1 x 2 2 0

Table 1. Detailed structure of a convolution block with m input
channels.



Layer Input channel Output channel Output shape

Spectrogram input 1 x 1001 x 229 (mel bins)
ConvBlock1 1 48 48 x 1001 x 114

Dropout, p=0.2
ConvBlock2 48 64 64 x 1001 x 57

Dropout, p=0.2
ConvBlock3 64 96 96 x 1001 x 28

Dropout, p=0.2
ConvBlock4 96 128 128 x 1001 x 14

Dropout, p=0.2

Table 2. Detailed configuration of convolution blocks.

4. EVALUATION

4.1. Dataset

We train our model on the MAESTRO V3.0.0 dataset [5]. It con-
tains recordings and corresponding MIDI files of the International
Piano-e-Competition, which consists of over 200 hours of solo pi-
ano recordings. We use the train/validation/test split configuration
proposed by the dataset provider to ensure that the same composi-
tion only appears in one subset.

To further show the superiority of our methods, we do a cross-
dataset evaluation using the “ENSTDkAm” and the “ENSTDkCl”
subsets of the MAPS database [6]. In this case, the system to be
evaluated is still trained on the MAESTRO dataset.

4.2. Evaluation measures

We compute two groups of evaluation metrics to evaluate our model:
metrics for subtasks and metrics for overall performance. Computa-
tion of these measures is implemented using mir eval [19].

To evaluate the performance on subtasks, we first compute
frame-level metrics directly using the output of different branches.
Following previous work [4] and [10], we use a frame size of 10 ms
for evaluation. For the outputs of onset, offset and pitch branches,
we compute the frame-wise F1 score as the measures. For the ve-
locity branch, following [15] and [17], we compute the mean and
standard deviation of absolute error for frames on which there exist
onsets. In addition to the frame-level metrics, we also compute
windowed F1 scores for only timing information when evaluating
onset and offset results. In this case, the correctness is determined
in a small window. The window size (time tolerance) of both onset
and offset is 50ms.

Note-level metrics are used to evaluate the overall performance
of the system. We compute precision, recall, and F1 score for three
types of note-level metrics, including note (onset and pitch), note
with offset, and note with offset and velocity. When computing note-
wise measures, we use 50ms for onset and offset tolerance, and 10%
of velocity range for velocity tolerance, following the work of [10]
and [4].

4.3. Training

The experiments consist of two parts. First, we used a subset of
the MAESTRO dataset to train CNN-Transformer separately on four
subtasks, i.e., onset and offset detection, multi-pitch estimation, and
velocity estimation, to test the feasibility of using this structure for
different tasks. We did not provide velocity information when de-
tecting onsets using both CNN-GRU and CNN-Transformer; hence
the architecture shown in 1 is used for onset, offset, and velocity sub-
tasks. When dealing with multi-pitch estimation subtask by CNN-

Transformer, the onset and offset information is provided by CNN-
GRU onset and offset branches.

For the second part of the experiment, we take out the Trans-
former which performs well and use GRU for the rest of the branches
to form the final transcription system, as shown in Fig 2. We train
the model using the “train” split of the MAESTRO dataset, and test
the performance by MAESTRO’s “test” split and two subsets of the
MAPS dataset. During training, all branches in the system are jointly
optimized.

Following the work in [10] and [4], we apply the sigmoid func-
tion to the output to scale them into the range of [0, 1]. We use binary
cross-entropy loss for each subtask and their summation as the over-
all loss function. The model is optimized using the AdamW [20]
algorithm. We use a batch size of 10 for all the experiments. For
the Transformer network, we set the embedding dimension dmodel

to 512, feed forward upward projection dimension dff to 2048, and
the head number to 4. To avoid time-consuming learning rate ad-
justment and the overfitting issue, we use cyclical learning rate [21]
with “triangular2” strategy during the training process. We set the
step size to 50k and train the model for 200k iterations.

4.4. Results

4.4.1. Transformer on different subtasks

The experiments in this section use a subset of the MAESTRO
dataset containing one-tenth of the original data. Table 3 shows the
results of applying the Transformer on different subtasks separately.
On the onset task, the CNN-Transformer has a similar performance
to CNN-GRU, with 0.04% higher strict F1 and 0.35% lower F1 with
tolerance. On the velocity task, the Transformer has about 6.3%
lower mean absolute error and 4.4% lower standard deviation of
the absolute error than the baseline, which is a clear performance
improvement.

On the other hand, there is a considerable performance gap be-
tween the CNN-Transformer and the baseline on the multi-pitch esti-
mation and offset detection tasks. We argue that this is because both
the ground-truth labels of multi-pitch estimation and offset detec-
tion have strong short-term temporal dependencies, and the current

Frame Onset Offset Velocity

F1 F1-s F1-t F1-s F1-t MAE STD

CNN-GRU 80.92 54.32 95.53 27.98 80.51 4.2725 4.1925
CNN-Transformer 77.38 54.36 95.18 22.66 73.87 4.0026 4.0077

Without PE 74.07 52.51 94.97 22.47 73.12 4.4241 4.3072

Table 3. Performance of separately trained CNN-Transformers. F1-
s refers to the strict frame-level F1 score. F1-t refers to windowed
F1 score of timing information. The third row shows the results of
CNN-Transformers without positional encoding. The lower velocity
measures and higher other metrics indicate better performance.

Frame Onset Offset Velocity

F1 F1-s F1-t F1-s F1-t MAE STD

Onset & Frame [10] 89.19 - - - - - -
Adversarial [12] 91.40 - - - - - -

HPT [4] 89.62 - - - - - -

HPT reproduced 89.63 57.79 97.23 31.79 87.68 3.2996 3.3822
HPT-T 90.09 57.44 97.31 32.28 88.44 2.9681 3.1583

Table 4. Frame-level comparison.



Note-2 Note-3 Note-4

P R F1 P R F1 P R F1

Onset & Frame [10] 97.42% 92.37% 94.80% 81.84% 77.66% 79.67% 78.11% 74.13% 76.04%
Adversarial [12] 98.10% 93.20% 95.60% 83.50% 79.30% 81.30% 82.30% 78.20% 80.20%

HPT [4] 98.17% 95.35% 96.72% 83.68% 81.32% 82.47% 82.10% 79.80% 80.92%
Generic Transformer [13] 98.61% 93.60% 95.95% 86.19% 81.86% 83.46% 84.95% 80.70% 82.18%

HPT reproduced 98.00% 95.42% 96.68% 83.49% 81.33% 82.38% 81.99% 79.89% 80.91%
HPT-T 97.88% 95.72% 96.77% 84.13% 82.31% 83.20% 82.85% 81.07% 81.90%

Table 5. Note-level performance comparison. Note-2 refers to note (onset and pitch). Note-3 refers to note with offset. Note-4 refers to note
with offset and velocity. The best F1 scores are bolded; the second-best are underlined.

Frame Note-2 Note-3 Note-4

F1 P R F1 P R F1 P R F1

HPT [4] 82.77% 87.60% 84.23% 85.80% 60.75% 58.48% 59.55% 45.80% 44.10% 44.90%
HPT-T 83.10% 86.47% 85.13% 85.72% 60.97% 60.10% 60.48% 47.40% 46.73% 47.02%

Table 6. Cross-dataset evaluation on MAPS dataset.

Transformer structure cannot easily model these relationships. For
example, in the multi-pitch estimation task, it is quite common to
observe a consequent sequence of note activations of the same pitch
because of the duration of notes. Hence, if many neighboring frames
of a particular frame have activation on a specific note pitch, a model
should have prior knowledge to believe that activation is more likely
to show up on this frame. As for the offset detection task, the off-
set location is also closely related to the energy decay over time of
nearby preceding frames. In both cases, the model should give more
weights to frames nearby when making decisions about a specific
frame, i.e., short-term memory is crucial for the two tasks. Because
of the forget gate inside the GRU unit, GRU tends to focus more on
neighboring frames when training and inference. However, to en-
hance the ability to learn long-range dependencies, the Transformer
is designed to connect all pairs of input and output positions, hence
equally treating all time steps when doing detections. Therefore,
the GRU can model this relationship more naturally than the Trans-
former.

Table 3 also includes the result of an ablation study to remove
the positional encoding of the CNN-Transformers. It is worth noting
that the positional encoding is crucial in all the subtasks, as the per-
formance considerably degrades when it is removed. Based on this
observation, we can infer that the absolute temporal location of each
frame in the spectrogram is essential for the subsequent Transformer.

Because the Transformer has considerable improvement on the
velocity estimation performance, we incorporate the Transformer
structure for the velocity branch in the following experiment.

4.4.2. Final system

Tables 4 and 5 show the performance comparison of the proposed
system and other state-of-the-art systems. We refer to the system in
[4] as HPT, the system with velocity Transformer, described in Sec-
tion 3, as HPT-T. In Table 4, As we expected, HPT-T outperforms
the baseline HPT on the velocity task by 10% lower mean absolute
error and 6.8% lower standard deviation. In the current system struc-
ture, the onset branch takes the transcription result produced by the
velocity branch as a condition when training and inferring, so the
performance of the velocity branch will impact the performance of

the onset branch. On the onset detection task, although HPT-T is
a little behind on the strict F1 measure (−0.3%), it slightly outper-
forms the HPT on the F1 with tolerance by 0.09%, which is a more
important metric in note-level evaluation. We can infer that the in-
formation provided for the onset branch by the CNN-Transformer
velocity branch is not as temporal-accurate as that of CNN-GRU,
but more effective for the note-level onset detection. Also, the bet-
ter onset branch benefits its downstream subtask, leading to better
multi-pitch estimation performance. On the multi-pitch estimation
task, HPT-T outperforms the HPT by 0.46%. For the offset task,
the improvement results from a better training strategy. As the re-
sult of the enhanced performance of each branch, the proposed sys-
tem achieves better note-level results on all the note-level metrics, as
shown in Table 5. Although on the Note-3 and Note-4 metrics, HPT-
T is slightly weaker than the model in [13] based a generic Trans-
former, our model has better performance on the Note-2 measure
and provide satisfactory frame-level transcriptions as well, which is
also a competitive result.

Table 6 shows the results of a cross-dataset evaluation on a sub-
set of the MAPS database. Our system has a better frame-level F1
score than HPT and also performs better on Note-3 and Note-4 met-
rics. This indicates the proposed system has a reasonable ability to
generalize to a dataset with different recording environments, and
that the introduction of the Transformer does have positive effects
on the system’s overall performance.

5. CONCLUSION

We have explored the Transformer’s ability to solving different AMT
subtasks. Based on our experiments, the proposed HPT-T system im-
proves the transcription performance of the baseline on both frame-
level and note-level metrics. We have further shown the decent gen-
eralization ability of our system by a cross-dataset evaluation. For
future study, we plan to test more possible position representations
in the current Transformer structure, instead of solely using the sinu-
soidal function as the positional encoding. In addition, we will try to
restrict self-attention to prioritize neighboring frames of the respec-
tive output position to enhance the performance of the Transformer
on multi-pitch estimation and offset detection tasks.
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