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Abstract

It is known that the eigenfunctions of a random Schrödinger operator on a strip decay ex-
ponentially, and that the rate of decay is not slower than prescribed by the slowest Lyapunov
exponent. A variery of heuristic arguments suggest that no eigenfunction can decay faster
than at this rate. We make a step towards this conjecture (in the case when the distribution
of the potential is regular enough) by showing that, for each eigenfunction, the rate of expo-
nential decay along any subsequence is strictly slower than the fastest Lyapunov exponent,
and that there exists a subsequence along which it is equal to the slowest Lyapunov exponent.

1 Introduction

Let W ≥ 1, and let V (n), n ≥ 0, be independent, identically distributed random variables taking
values in the space of W ×W real symmetric matrices, so that

E‖V (n)‖η <∞ for some η > 0, (1)

and the support S of the distribution of V (n) is sufficiently rich, say, in the following sense:[
S is irreducible (i.e. does not preserve any non-trivial linear subspace of RW )

and contains V, V ′ such that rk(V − V ′) = 1
(2)

The main example (the Schrödinger case) is

V (n)α,α′ =

{
1 , |α− α′| = 1

vn,α , α = α′
(and 0 otherwise), (3)

where {vn,α}n∈Z+,α∈{1,··· ,q} are independent, identically distributed real-valued random variables
not concentrated at one point and having E|vn,α|η <∞.

We are interested in the spectral properties of the random operator H on `2(Z+ → CW ), defined
as follows:

(Hψ)(n) =

{
ψ(n+ 1) + V (n)ψ(n) + ψ(n− 1) , n ≥ 1

ψ(1) + V (0)ψ(0) , n = 0 .
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On an event of full probability, H exhibits Anderson localisation which manifests itself in the
following spectral properties: the spectrum of H is pure point, and the eigenfunctions decay
exponentially, meaning that there exists a deterministic γ > 0 such that for each eigenfunction ψ
of H

lim sup
n→∞

1

n
log ‖ψ(n)‖ ≤ −γ . (4)

where ‖ · ‖ denotes the Euclidean norm in RW .
For W = 1, the pure point nature of the spectrum was first established in [17], and exponential

decay – by Molchanov in [31]; see further Kunz and Souillard [25]. In these works, it was assumed
that the distribution of the potential is absolutely continuous with bounded density, The case of
singular potentials was settled by Carmona, Klein, and Martinelli [6]. For W > 1 (Schrödinger
case) with absolutely continuous distribution of the potential, the pure point nature of the spectrum
was first proved in [14], and exponential decay – by Lacroix in [26, 27]. The general Schrödinger
case was settled by Klein, Lacroix and Speis in [24], building on [16]. The argument of [24] can be
extended to the general situation (2), once the result of [15] (discussed below) is taken into account;
an alternative argument avoiding multi-scale analysis and applicable to the general model (1) (and
also to its further generalisation allowing for random hopping) is given in [30]. In this paper, we
do not discuss Anderson localisation in dimension d > 1, and refer to the works of Fröhlich and
Spencer [9] and Aizenman and Molchanov [2] and also to the monograph of Aizenman and Warzel
[3].

A more precise version of the relation (4) can be stated in terms of the Lyapunov exponents
associated with H. For λ ∈ R, define the one-step transfer matrices

Tn(λ) =

(
λ− V (n) −1

1 0

)
∈ Sp(2W,R) (n ≥ 0)

and the multi-step transfer matrices

Φn,n′(λ) = Tn−1(λ) · · ·Tn′(λ) , Φn(λ) = Φn,0(λ) (n > n′ ≥ 0) .

The Lyapunov exponents γ1(λ) ≥ γ2(λ) ≥ · · · ≥ γ2W (λ) are defined as

γj(λ) = lim
n→∞

1

n
E log sj(Φn(λ)) ,

where sj stands for the j-th singular value. According to a general result of Furstenberg and
Kesten [10], one has

∀λ ∈ R P
{
γj(λ) = lim

n→∞

1

n
log sj(Φn(λ))

}
= 1 . (5)

Due to the symplectic structure, γ2W+1−j(λ) = −γj(λ) for j = 1, · · · ,W .
Following precursory work by Tutubalin (see the survey [33]) and Virtser [36], Guivarc′h and

Raugi showed [19] that if[
the action of the semigroup generated by the support Sλ of Tn(λ)

on R2W and its wedge powers is strongly irreducible and contractive,
(6)

then the Lyapunov exponents are distinct:

γ1(λ) > γ2(λ) · · · > γW (λ) > 0 . (7)
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In the case (3) with absolutely continuous distribution of vn,α, the condition (6) was verified in
[26], while in [14] (7) was directly established using the results of [33]. In [16], the following general
theorem is proved: (6) (and consequently also (7)) holds if

the group generated by Sλ is Zariski-dense in Sp(2W,R). (8)

It was also shown in [16] that in the Schrödinger case (3) one has (8) for any λ ∈ R. In [15], a
general method to compute the Zariski closure of the group generated by the support of Tn(λ) was
developed; one of its consequences is that (8) holds for any λ ∈ R also in the generality of (2).

Now we can state the full result of Klein, Lacroix and Speis [24] (in the current setting, covered
by [30]): there is an event of full probability on which each eigenpair Hψ = λψ satisfies

lim sup
n→∞

1

n
log ‖ψ(n)‖ ≤ −γW (λ) . (9)

A variety of heuristic arguments indicate that (9) should be sharp in the following strong sense:
there is an event of full probability on which each eigenpair Hψ = λψ satisfies

(conjecture) lim inf
n→∞

1

n
log(‖ψ(n)‖+ ‖ψ(n+ 1)‖) ≥ −γW (λ) , (10)

which, in conjuction with (9), implies the existence of a limit equal to −γW (λ). For example,
the Fermi Golden Rule leads one to believe that eigenfunctions violating (10) are unstable under
perturbation. From the point of view of random matrix products, an eigenfunction decaying at a
rate faster than γW indicates a non-generic intersection between the W -dimensional space of initial
conditions with the W -dimensional Oseledec subspace of decaying solutions in R2W .

The relation (10) was repeatedly conjectured at least since the 1980s; however, we are not
aware of any rigorous results improving on the trivial bound

lim inf
n→∞

1

n
log(‖ψ(n)‖+ ‖ψ(n+ 1)‖) ≥ −γ1(λ) (11)

(which follows from a general result of Craig and Simon [7], or from its quantitative version, stated
as Lemma 2.2 below). The main difficulty comes from the fact that, although for each fixed energy
λ the probability to have an eigenfunction which decays at a rate faster than γW (λ) is zero, one
can not use the union bound over the uncountable set of all real λ.

In this paper we make a step towards (10) by improving upon (11) (in the case when the distri-
bution of potential is regular enough). To state the results precisely, we introduce some notation.
Let E(H) = {(λ, ψ)} be the collection of eigenpairs of H, with the normalisation ‖ψ(0)‖ = 1 (the
choice of the sign is not important for us, and spectral multiplicity is known to be a null event).
For γ > 0 and a bounded interval I b R, consider the two realisation-dependent sets:

Fast+(γ; I) =

{
λ ∈ I : ∃(λ, ψ) ∈ E(H), lim inf

n→∞

log(‖ψ(n)‖+ ‖ψ(n+ 1)‖)
n

≤ −γ
}
,

Fast−(γ; I) =

{
λ ∈ I : ∃(λ, ψ) ∈ E(H), lim sup

n→∞

log(‖ψ(n)‖+ ‖ψ(n+ 1)‖)
n

≤ −γ
}
.

(12)

These sets consist of the eigenvalues for which the corresponding eigenvector decays at rate ≥ γ
(along a subsequence, or uniformly). We note that there is no simple way to define the sets
as random variables on the underlying probability space (see Kendall [23] and Tsirelson [35] for
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possible frameworks to address such questions); this does not cause problems since we only work
with the measureable events {Fast±(γ; I) = ∅} and {Fast±(γ; I) 6= ∅} (which in fact lie in the
tail σ-algebra).

For λ in the spectrum σ(H) of H, define the deterministic quantities

γ±∗ (λ) = inf
{
γ > 0 : ∃r > 0 , P

{
Fast±(γ, (λ− r, λ+ r)) 6= ∅

}
= 0
}
. (13)

Roughly speaking, the functions γ±∗ (λ) measure the fastest possible decay of an eigenfunction in
the vicinity of λ (recall that γj(λ) are continuous, cf. below, and that σ(H) is almost surely equal
to a deterministic set). In this notation, (9) and (11) imply that

γ1(λ) ≥ γ+∗ (λ) ≥ γ−∗ (λ) ≥ γW (λ) , (14)

whereas the conjecture (10) stipulates that the last two inequalities are in fact equalities: γ±∗
conj
= γW .

The results below show that the first inequality in (14) is strict (for W ≥ 2), whereas the last one
is an equality, at least, if one asumes

Assumption 1.1. (a) The distribution of V (n) is compactly supported on a real-analytic subman-
ifold M in the space of symmetric W ×W matrices, and is absolutely continuous with bounded
density with respect to the (dimM)-dimensional Lebesgue measure on M; (b) for each λ ∈ R the
image of M under

V 7→
(
λ− V −1
1 0

)
generates Sp(2W,R) as a Lie group.

Remark 1.2. Assumption 1.1 implies both (1) and (8).

Remark 1.3. In the Schrödinger case (3), Assumption 1.1 is satisfied if the random variables vn,α
are bounded and their distribution is absolutely contiunous with bounded density (see [28, Section
1.4]).

Theorem 1. Let W ≥ 3. If Assumption 1.1 holds, then γ+∗ (λ) ≤ γ∗,1(λ) for λ ∈ σ(H), where
γ∗,1(λ) is the unique solution of the equation

(
(W − 1)γ −

W−1∑
j=1

γj(λ)
)
+

+ γ = γ1(λ) . (15)

Here x+ = max(x, 0). We observe that for W ≥ 3 γ∗,1(λ) < γ1(λ), hence (15) indeed improves
on (11). For W = 2, γ∗,1 = γ1(λ); however, we prove

Theorem 2. Let W = 2. If Assumption 1.1 holds, then γ+∗ (λ) ≤ 2γ1(λ)+γ2(λ)
3

for all λ ∈ σ(H).

As for γ−∗ , our methods yield the optimal result:

Theorem 3. Let W ≥ 2. If Assumption 1.1 holds, then γ−∗ (λ) = γW (λ) for all λ ∈ σ(H).

The following corollary summarises our main conclusions:
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Corollary 1.4. Let W ≥ 2. If Assumption 1.1 holds, then

γW (λ) = γ−∗ (λ) ≤ γ+∗ (λ) < γ1(λ) (16)

for all λ ∈ σ(H).

In the proofs, we repeatedly use the following argument, inspired by the work of Kakutani
[22] and its ramifications by Spencer and Aizenman [1], to estimate the probability of exceptional
events. Suppose we want to bound P {A 6= ∅}, where A is a random subset of, say, the interval
[0, 1]. Suppose we find η ∈ (0, 1] and a random superset A+ ⊃ A with the following properties:
(a) for each λ ∈ [0, 1], P {λ ∈ A+} ≤ p (“single-energy bound”); (b) if λ ∈ A and |λ′−λ| < η, then
λ′ ∈ A+ (“propagation estimate”). Then the Chebyshev inequality and the Fubini theorem yield:

P {A 6= ∅} ≤ P
{

mes(A+ ∩ [0, 1]) ≥ η
}
≤ 1

η
Emes(A+ ∩ [0, 1]) ≤ p

η
.

The paper is organised as follows. Some preliminary estimates are collected in Section 2. In
Sections 3 and 4 we prove Theorems 2 and 3, respectively. In Section 5 we discuss the prospects
of improving the bounds in Theorems 1 and 2, and point out the connection to the problem, going
back to [12, 13] and recently studied by Gorodetski and Kleptsyn [18], of uniform convergence
to the Lyapunov exponents, i.e. whether the quantifier ∀λ in (5) can be inserted inside the curly
brackets. We also prove Proposition 5.1, which is an Sp(2W,R)-counterpart of one of the results
of [18]. The proof of Theorem 3 in Section 6 makes use of this proposition.

We conclude this introduction with two remarks. First, we have chosen to present the arguments
for the one-sided strip Z+ × {1, · · · ,W}; similar arguments can be applied to the two-sided strip
Z× {1, · · · ,W}. Second, it is possible that Assumption 1.1 can be somewhat relaxed, and that a
refinement of the current methods could be applicable when the invariant measure (describing the
limiting distribution of the unitary matrices in the singular value decomposition of the transfer
matrices Φn) is absolutely continuous with bounded density with respect to the Haar measure
on the compact symplectic group, or at least enjoys the Frostman property (upper bound on the
measure of every ball by a power of the radius) with a sufficiently large exponent. On the other
hand, it is known (see [20] for the case W = 1) that for singular distributions of V (n) the invariant
measure may be supported on lower-dimensional subsets of the symplectic group. Extending our
results to such cases would require additional ideas.

2 Preliminaries

Convergence to the Lyapunov exponent Assume that (6) holds at some λ. Then (6) also
holds in a neighbourhood of λ, and then (see e.g. [24, Corollary 2.5]) the Lyapunov exponents
γj(λ) are continuous at λ. For each ε > 0, let rε(λ) ∈ (0, 1/2] be such that

∀λ′ ∈ (λ− rε(λ), λ+ rε(λ)) ∀1 ≤ j ≤ W |γj(λ′)− γj(λ)| < ε . (17)

The following large deviation estimate goes back to the work of Le Page [29].

Lemma 2.1 (see [8], [5, Section V.6]). Assume (1). Let I b R be a finite interval such that (6)
holds for all λ ∈ I. Then there exist C > 0 and c > 0 such that for each λ ∈ I, 1 ≤ j ≤ W ,
ε ∈ (0, 1], and n ≥ 1

P
{∣∣∣∣ 1n log sj(Φn(λ))− γj(λ)

∣∣∣∣ ≥ ε

}
≤ C exp(−cε2n) . (18)

5



The arguments leading to the following corollary of Lemma 2.1 are also well known (for W = 1,
see e.g. Jitomirskaya and Zhu [21, Section 5]; we also mention a result of Craig–Simon [7, Theorem
2.3], which is not quantitative, but on the other hand holds in more general setting).

Lemma 2.2. Assume (1). Suppose λ ∈ R is such that (6) holds. Then there exist C > 0 and
c > 0 such that for each 1 ≤ j ≤ W , ε ∈ (0, 1], and n ≥ 1

P

{
∃λ′ ∈ (λ− rε(λ), λ+ rε(λ)) :

1

n

j∑
i=1

log si(Φn(λ′)) ≥
j∑
i=1

γi(λ) + 2jε

}
≤ Cn exp(−cε2n) .

Proof. If n ≤ 100W 2 or ε2 ≤ 100 log n/n, we can ensure the desired inequality by adjusting the
constants, therefore we assume that n > 100W 2 and ε2 ≥ 100 log n/n. Consider the j-th exterior
power Φn(λ′)∧j of Φn(λ′), so that

log ‖Φn(λ′)∧j‖ =

j∑
i=1

log sj(Φn(λ′)) .

Each matrix element p(λ′) of Φn(λ′)∧j (where p runs in a finite set P enumerating the matrix ele-
ments) is a polynomial of degree ≤ jn ≤ Wn in λ. Now we use the following result of Bernstein [4],
although we require much less than its full strength (in place of the logarithmic dependence on the
degree with a precise constant, we could do with any prefactor growing slower than exponentially):
for any polynomial q of degree n

max
|λ|≤1
|q(λ)| ≤ Cn max

α∈{0,1,··· ,n}
|q(cos(π

α + 1
2

n+ 1
))| , where Cn = (1 + o(1))

2

π
log n .

Returning to our setting, let

λα = λ+ rε(λ) cos(π
α + 1

2

Wn+ 1
) , 0 ≤ α ≤ Wn ;

then we have for any p ∈ P :

max
λ′∈(λ−rε(λ),λ+rε(λ))

|p(λ)| ≤ C log(Wn) max
α∈{0,1,··· ,Wn}

|p(λα)| ≤ e
εn
3 max

0≤α≤Wn
|p(λα)| . (19)

By Lemma 2.1 and the choice of rε,

P

{
|p(λα)| ≥ exp

{
n

[
j∑
i=1

γi(λ) +
4j

3
ε

]}}
≤ C ′ exp(−c′ε2n) .

Thus by (19)

P

{
max
p∈P

max
λ′∈(λ−rε(λ),λ+rε(λ))

|p(λ′)| ≥ exp

{
n

[
j∑
i=1

γi(λ) +
5j

3
ε

]}}
≤ C ′′n exp(−c′ε2n) .

Finally, ‖Φn(λ′)‖ ≤ C maxp∈P |p(λ′)| ≤ eεn/3 maxp |p(λ′)|, and this completes the proof.
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The probability density of transfer matrices The following lemma builds on the arguments
going back to the work of Ricci and Stein [32]. In the context of random Schrödinger operators, it
appears in the work Shubin, Vakilian and Wolff [34]. Recently, a general argument in the setting
of motivic morphisms has been developed by Glazer and Hendel [11]. For completeness, we sketch
a proof (restricted to the generality of the current discussion) below.

Lemma 2.3. Assume Assumption 1.1. There exists n0 such that the following holds.

(a) For any λ ∈ R the distribution of Φn0(λ) is absolutely continuous with bounded density with
respect to the Haar measure on Sp(2W,R).

(b) Let Φn(λ) = Un(λ)Σn(λ)Vn(λ)∗ be the singular value decomposition of Φn(λ). Then there
exists C such that for any n ≥ n0 the distributions of Vn(λ), Un(λ) and V ∗n (λ)U(λ) are
absolutely continuous with density ≤ C with respect to the Haar measure on the compact
symplectic group Sp(2W,R) ∩ SO(2W,R).

Moreover, the bounds in (a)–(b) are locally uniform in λ.

Remark 2.4. For concreteness, we may assume that the singular value decomposition is con-
structed so that Σn is diagonal with strictly decreasing positive entries on the diagonal, and the
first non-zero entry of eich column of Un and Vn is positive.

Proof. Consider the product map

Fn = Fn,λ :Mn → Sp(2W,R) , (V (1), · · · , V (n)) 7→ Φn(λ) . (20)

According to [32, Proposition 1.1], for

n1 = 2dimSp(2W,R)−dimM = 2W (2W+1)−dimM

the image Fn1(M) contains an open set in Sp(2W,R) (in the Schrödinger case, the same con-
clusion holds for n1 = dim Sp(2W,R) ÷ dimM = 2W + 1; see [28, Proposition 1.4.35]). Hence
det[(DFn1)

∗(DFn1)] is not identically zero; by continuity, the maximum of its absolute value is
bounded away from zero locally uniformly in λ.

The map (20) is real analytic, therefore the probability density of Φn1(λ) lies in Lp for some
p > 1 (this can be proved directly or deduced from [32, Proposition 2.1] using an appropriate
embedding theorem), and, again, both p and the bound are locally uniform in λ. Applying the
inequality

‖f1 ∗ f2 ∗ · · · ∗ fn‖∞ ≤
n∏

α=1

‖fα‖1+ 1
n
, fα ∈ L1+ 1

n
(Sp(2W,R))

(which is a simple special case of the Young convolution inequality on Sp(2W,R)), we obtain that
for n0 = n1(b(1− 1/p)−1c+ 1) the density of Φn0(λ) is bounded. This proves the first item, from
which the second one follows.

A geometric lemma Denote by S(F ) the unit sphere of an Euclidean vector space F . For future
reference, we record the following fact (attributed to Archimedes): if u is a random vector uniformly
distributed on S(R`), then the probability density of the random vector PFu, where PF : R` → F
be the orthogonal projection onto a fixed k-dimensional subspace F ⊂ R`, 1 ≤ k ≤ `− 1, is given
by

f`,k(v) = C`,k(1− ‖v‖)
`−k
2
−1

+ . (21)
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Lemma 2.5. Let U be a random matrix taking values in SO(`,R) such that for each u ∈ S(R`) the
vector Uu is uniformly distributed on S(R`). Let D = diag(ea1 , · · · , ea`), where a1 ≥ a2 ≥ · · · ≥ a`,
and let F ⊂ R` be a k-dimensional subspace. Then for any a1 ≥ a ≥ a`

P {∃u ∈ S(F ) : ‖DUu‖ ≤ ea} ≤ C` exp

{
−
∑̀
j=k

(aj − a)+

}
.

Proof. It is sufficient to prove the estimate for the `∞ norm ‖ · ‖∞ in place of the Euclidean norm,
as this will only affect the value of the numerical constant C`. We first observe that for a fixed
u ∈ S(R`)

P {‖DUu‖∞ ≤ ea} ≤ C` exp(−
∑̀
j=1

(aj − a)+) . (22)

Indeed, let j0 be such that aj0 ≥ a > aj0+1. The random vector ((Uu)j)
j0
j=1 has bounded density

in a neighbourhood of zero (according to (21), for j0 ≤ ` − 2 the density is uniformly bounded,
whereas for j0 = `− 1 it explodes only on the boundary of the unit ball). Therefore

P {‖DUu‖∞ ≤ ea} = P {∀1 ≤ j ≤ j0 |(DUu)j| ≤ ea} ≤ C`

j0∏
j=1

ea−aj = C` exp(−
∑̀
j=1

(aj − a)+) ,

thus concluding the proof of (22).
Second, we note that if ‖Dv‖∞ ≤ ea, then ‖Dv′‖∞ ≤ 2ea for all

v′ ∈ Qv = {v′ ∈ S(R`) : |v′j − vj| ≤ exp(−(aj − a)+)} .

For any k-dimensional subspace F1 ⊂ R` and v ∈ S(F1), the k − 1 dimensional measure of the
intersection of Qv with S(F1) admits the lower bound

σk−1(S(F1) ∩Qv) ≥ c` exp(−
k−1∑
j=1

(aj − a)+) ,

whence by the Chebyshev inequality, the Fubini theorem and (22)

P {∃v ∈ S(UF ) : ‖Dv‖∞ ≤ ea}

≤ P

{
σk−1 {v′ ∈ S(UF ) : ‖Dv′‖∞ ≤ 2ea} ≥ c` exp(−

k−1∑
j=1

(aj − a)+)

}

≤ C ′` exp(
k−1∑
j=1

(aj − a)+)Eσk−1 {v′ ∈ S(UF ) : ‖Dv′‖∞ ≤ 2ea}

≤ C ′′` exp(
k−1∑
j=1

(aj − a)+) exp(−
∑̀
j=1

(aj − a)+) = C ′′` exp

{
−
∑̀
j=k

(aj − a)+

}
.

3 Proof of Theorem 1

For the whole proof, we fix λ ∈ σ(H) and γ > γ∗,1(λ). Choose an auxiliary small parameter ε > 0;
eventually, we shall substitute ε = 1

100W
min(γ − γ∗,1(λ), 1).
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Denote
Ωn,ε(λ) =

⋂
1≤j≤W

⋂
1≤m1≤m2≤n

Ωm1,m2,j
n,ε (λ) , (23)

where

Ωm1,m2,j
n,ε (λ) =

{
∀λ′ ∈ (λ− rε(λ), λ+ rε(λ))

j∑
i=1

log si(Φm2,m1(λ
′)) ≤ (m2 −m1)

j∑
i=1

γi(λ) + 2εjn

}
.

From Lemma 2.2 (and using that Φm2,m1 has the same distribution as Φm2−m1) we obtain the
following maximal inequality:

P(Ωn,ε(λ)) ≥ 1− Cn3 exp(−cε2n) . (24)

Let

F0 =

{(
v1
0

)
: v1 ∈ RW

}
⊂ R2W (25)

be the space of initial conditions. Denote:

Fastn,ε(γ, λ) =
{
λ′ ∈ (λ− rε(λ), λ+ rε(λ)) : ∃v ∈ S(F0) , ‖Φn(λ′)v‖ ≤ e−nγ

}
, (26)

so that for any γ̃ > γ

Fast+
(
γ̃, (λ− rε(λ), λ+ rε(λ))

)
⊂ lim sup

n→∞
Fastn,ε(γ, λ) .

We shall prove that for sufficiently small ε

P {Fastn,ε(γ, λ) 6= ∅} ≤ Ce−cn ; (27)

by the Borel–Cantelli lemma, this estimate will imply that almost surely

Fast+
(
γ̃, (λ− rε(λ), λ+ rε(λ))

)
= ∅ , γ̃ > γ ,

and thus γ+∗ ≤ γ.

The proof of (27) rests on two claims, a propagation estimate and a single-energy bound. Set
η = n−1e−n(γ+γ1(λ)+4ε).

Claim 3.1. On the event Ωn,ε(λ),

λ′, λ′′ ∈ (λ− rε(λ), λ+ rε(λ))

λ′ ∈ Fastn,ε(γ, λ)

|λ′′ − λ′| ≤ η

 =⇒ λ′′ ∈ Fastn,ε(γ −
log 2

n
, λ) . (28)

Proof. On Ωn,ε(λ), we have

λ′, λ′′ ∈ (λ− rε(λ), λ+ rε(λ)) =⇒ ‖Φn(λ′)− Φn(λ′′)‖ ≤ nen(γ1(λ)+4ε)|λ′ − λ′′| , (29)

hence for |λ′ − λ′′| ≤ η we have

‖Φn(λ′)− Φn(λ′′)‖ ≤ e−nγ .

If λ′ ∈ Fastn,ε(γ, λ), then there exists v ∈ S(F0) such that ‖Φn(λ′)v‖ ≤ e−nγ, and then

‖Φn(λ′′)v‖ ≤ e−nγ + ‖Φn(λ′′)− Φn(λ′)‖ ≤ e−nγ + e−nγ = 2e−nγ , (30)

i.e. λ′′ ∈ Fastn,ε(γ − log 2
n
, λ), as asserted.
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Claim 3.2. For any γ > 0, n ≥ n0, and λ′′ ∈ (λ− rε(λ), λ+ rε(λ))

P {λ′′ ∈ Fastn,ε(γ, λ) , ω ∈ Ωn,ε(λ)}

≤ C exp

{
−n

[
2γ +

(
(W − 1)γ −

W−1∑
j=1

γj(λ)
)
+
− 2Wε

]}
.

(31)

Proof. Let n0 be as in Lemma 2.3, and let M ∈ Sp(2W,R) be a random matrix uniformly dis-
tributed according to the restriction of the Haar measure to a sufficiently large ball in operator
norm. Denote Φ̃n(λ) = Φn,n0(λ)M . According to Lemma 2.3, it suffices to show that

P
{
sW (Φ̃n(λ′′)|F0) ≤ e−γn , ω ∈ Ωn,ε(λ)

}
≤ (RHS of (31)) . (32)

Introduce the singular value decompositon

Φn,n0(λ
′′) = Un,n0(λ

′′)Σn,n0(λ
′′)Vn,n0(λ

′′)∗ , M = UΣV ∗ ,

so that
Φ̃n(λ′′) = Un,n0(λ

′′)Σn,n0(λ
′′) [Vn,n0(λ

′′)∗U ] ΣV ∗ ,

and let F1 = ΣV ∗F0. If ‖Φ̃n(λ′′)v0‖ ≤ e−nγ for some v0 ∈ S(F0), then

‖Σn,n0(λ
′′) [Vn,n0(λ

′′)∗U ] v1‖ ≤ e−nγ+C1 (33)

for v1 = ΣV ∗v0/‖ΣV ∗v0‖ ∈ S(F1). Note that [Vn,n0(λ
′′)∗U ] is distributed uniformly on the compact

symplectic group, and therefore its action on any fixed vector on the sphere is distributed uniformly
on the sphere. On the event Ωn,ε(λ), the numbers aj = 1

n
log sj(Φn0,n(λ)) satisfy

a2W+1−j = −aj ,
j∑
i=1

ai ≤ (1− n0/n)

j∑
i=1

γi(λ) + 2εj ≤
j∑
i=1

γi(λ) + 2εW (1 ≤ j ≤ W ) .

Therefore

W+1∑
j=1

(γ − aj)+ ≥ 2γ +
W−1∑
j=1

(γ − aj)+

≥ 2γ + (W − 1)
(
γ − 1

W − 1

W−1∑
j=1

aj
)
+
≥ 2γ +

(
(W − 1)γ −

W−1∑
j=1

γj(λ)
)
+
− 2εW ,

whence
W+1∑
j=1

(γ − C1

n
− aj)+ ≥ 2γ +

(
(W − 1)γ −

W−1∑
j=1

γj(λ)
)
+
− 2εW − 2C1W

n

According to Lemma 2.5,

P {(33) and ω ∈ Ωn,ε(λ)} ≤ C2 exp

{
−n

[
2γ +

(
(W − 1)γ −

W−1∑
j=1

γj(λ)
)
+
− 2εW

]}
,

as claimed in (32).
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Now we combine Claim 3.1 with Claim 3.2 (applied to γ − log 2/n in place of γ) and (24), and
use the Fubini theorem:

P {Fastn,ε(γ, λ) 6= ∅}

≤ (1− P(Ωn,ε(λ)) + 2Crε(λ) exp

{
−n

[
2γ + ((W − 1)γ −

W−1∑
j=1

γj(λ))+ − 2εW

]}
η−1

≤ Cn3e−cn + Cn exp

{
−n

[
−γ1(λ) + γ + ((W − 1)γ −

W−1∑
j=1

γj(λ))+ − 4εW

]}
.

For ε = 1
100W

min(γ − γ∗,1, 1), this expression tends to zero exponentially with n, thus concluding
the proof of (27) and of Theorem 1.

4 Proof of Theorem 2

Let γ > 1
3
(2γ1(λ) + γ2(λ)), and let ε = 1

100
min(γ1(λ) − γ2(λ), γ2(λ), 1). We keep the notation

F0 (space of initial conditions, (25)), Ωn,ε(λ) (the event on which the products of singular values
admit an upper bound, (23)), and Fastn,ε(γ, λ) (the set of energies λ′ in the vicinity of λ for which
there is a fast-decaying solution, (26)) from the previous section. Similarly to the previous section,
or goal is to prove (27), i.e. that Fastn,ε(γ, λ) is empty outside an event of exponentially small
probability.

Denote by uj(λ
′) (j = 1, 2, 3, 4) the right singular vectors of Φn(λ′) (i.e. the eigenvectors of

Φn(λ′)∗Φn(λ′); the choice of the direction of the vectors will be specified later), and by PF0 – the
orthogonal projection onto F0. Let

η =
1

n
exp(−n(γ − γ2(λ))) , (34)

A+ = {λ′′ ∈ (λ− rε(λ), λ+ rε(λ)) : ‖PF0u1(λ
′′)‖ ≤ C exp(−n(2γ − γ1 − γ2 − 4ε))} , (35)

where C > 0 will be specified shortly. The required estimate (27) follows from (24) and the
following two ingredients: a propagation estimate

on Ωn,ε(λ) :
[
λ′ ∈ A def

= Fastn,ε(γ, λ) , |λ′′ − λ′| < η , |λ′′ − λ| < rε(λ)
]

=⇒ λ′′ ∈ A+ (36)

which replaces Claim 3.1, and the single-energy bound

|λ′′ − λ| < rε(λ) =⇒ P
{
λ′′ ∈ A+

}
≤ C ′e−εnη (37)

which replaces Claim 3.2.
To prove (36), we first observe that λ′ ∈ A implies that 1

n
log s1(Φn(λ′)) ≥ γ, and hence on

Ωn,ε(λ)

1

n
log s2(Φn(λ′)) =

1

n

(
log s1(Φn(λ′)) + log s2(Φn(λ′))

)
− 1

n
log s1(Φn(λ′))

≤ γ1(λ) + γ2(λ)− γ + 4ε .
(38)

Further, λ′ ∈ A implies that there exists v ∈ F0 such that for j = 1, 2, 3

|〈v, uj(λ′)〉| ≤
exp(−nγ)

sj(Φn(λ′))
≤ exp(−nγ)s2(Φn(λ′)) ≤ exp(−n(2γ − γ1(λ)− γ2(λ)− 4ε)) .
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These inequalities imply that (for the appropriate choice of signs)

‖v − u4(λ′)‖ ≤ C1 exp(−n(2γ − γ1(λ)− γ2(λ)− 4ε)) .

Now we use the symplectic rotation J =

(
0 −1
1 0

)
. The matrix Φn(λ′) is symplectic, hence (up

to sign) Ju4(λ
′) = u1(λ

′). Thus

‖Jv − u1(λ′)‖ ≤ C1 exp(−n(2γ − γ1(λ)− γ2(λ)− 4ε)) .

On the other hand, F0 ⊂ R2W is a Lagrangian subspace (i.e. F0 = (JF0)
⊥), hence Jv ⊥ F0.

Consequently,
‖PF0u1(λ

′)‖ ≤ C1 exp(−n(2γ − γ1(λ)− γ2(λ)− 4ε)) . (39)

To complete the proof of (36), we need to show that the estimate (39) does not deteriorate too
fast as we vary λ′. If |λ′′ − λ′| ≤ η and |λ′′ − λ| ≤ rε(λ), we have (still on Ωn,ε(λ), cf. (29)):

‖Φ(λ′′)− Φ(λ′)‖ ≤ ηn exp(n(γ1(λ) + 4ε)) ,

whence by Wedin’s perturbation bound for singular vectors [37]

‖u1(λ′′)− u1(λ′)‖ ≤ C2
ηnen(γ1(λ)+4ε)

s1(Φn(λ′))− s2(Φn(λ′))

≤ 2C2ηne
n(γ1(λ)+4ε)

enγ
= 2C2 exp(−n(2γ − γ1(λ)− γ2(λ)− 4ε))

. (40)

On the second step we used that s1(Φn(λ′)) − s2(Φn(λ′)) ≥ 1
2
enγ. This estimate holds (for suffi-

ciently large n) since

s1(Φn(λ′)) ≥ enγ , s1(Φn(λ))s2(Φn(λ)) ≤ en(γ1(λ)+γ2(λ)+4ε) ,

whereas

γ >
2γ1(λ) + γ2(λ)

3
>
γ1(λ) + γ2(λ)

2
.

From (39) and (40) we obtain that λ′′ ∈ A+, provided that we set C = C1 + 2C2 in (35). This
concludes the proof of (36).

To prove (37), we use once again that if U is uniformly distributed on the compact symplectic
group Sp(2W,R)∩ SO(2W,R), then each column of U is uniformly distributed on the unit sphere.
Thus, according to Lemma 2.3, the probability density of u1(λ

′′) with respect to the Haar measure
on S(R2W ) is bounded uniformly in n ≥ n0. Hence by (21)

P {‖PF0u1(λ
′′)‖ ≤ C exp(−n(2γ − γ1 − γ2 − 4ε))} ≤ C4 exp(−2n(2γ − γ1 − γ2 − 4ε))

≤ C5 exp(−εn)η .

This concludes the proof of (37) and of the theorem.
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5 On the uniform convergence to the Lyapunov exponents

A better understanding of the deviations of 1
n

log sj(Φn(λ)) from their limiting values γj would allow

us to strengthen the conclusion of Theorems 1 and 2, possibly up to the conjectured γ+∗
conj
= γ1, as

we now discuss.
Recall the following result from [12, 13] pertaining to W = 1: with probability one, the set Λ 1

2
,

where

Λτ =

{
λ ∈ R : lim inf

n→∞

1

n
log ‖Φn(λ)‖ ≤ τγ1(λ)

}
, τ ∈ [0, 1] ,

is dense in σ(H). Subsequently, it was found that also the (possibly) smaller set Λ0 is almost
surely dense in σ(H). Recently, a general framework encompassing and generalising these results
was developed by Gorodetski and Kleptsyn [18], who also provided detailed information on the
structure of the exceptional sets Λτ , and showed that

P
{
∀λ ∈ R : lim sup

n→∞

1

n
log ‖Φn(λ)‖ = γ1(λ)

}
= 1 . (41)

We are not aware of a published reference discussing the extension of this problem for W > 1.
However, it is plausible that the arguments developed in the aforementioned works could yield
that

Λ
(W )
0 =

{
λ ∈ R : lim inf

n→∞

1

n
log sW (Φn(λ)) = 0

}
is dense in σ(H). It is not clear to us what would be the right counterpart of this statement for
1 ≤ j ≤ W − 1. If the higher exponents would exhibit regular behaviour, i.e.

if it were true that P
{
∀λ ∈ σ(H) lim

n→∞

1

n
log sj(Φn(λ)) = γj(λ)

}
= 1 , 1 ≤ j ≤ W − 1 , (42)

one could significantly improve the results of the current paper: the argument of Theorem 1 would
yield γ+∗ ≤ γ∗,2, where γ∗,2 is the solution of

γ +
W−1∑
j=1

(γ − γj)+ = γ1 ,

whereas the argument of Theorem 2 would establish the optimal bound γ+∗ = γW (for arbitrary
W , cf. the proof of Theorem 3 below). If (42) is false, it would be helpful to understand

is it true that P
{
∀λ ∈ σ(H) lim sup

n→∞

1

n
log sj(Φn(λ)) ≤ γj(λ)

}
= 1 , 1 ≤ j ≤ W . (43)

Following Craig and Simon [7] (cf. Lemma 2.2), note that (43) holds (unconditionally) for j = 1.
Also (according to the same lemma) (42) would imply (43).

In this section, we prove the following extension of (41) to 2W -dimensional cocycles. We confine
ourselves to the setting of transfer matrices, which is used in the proof of Theorem 3. Denote

Devn(λ) = max
1≤j≤W

∣∣∣∣ 1n log sj(Φn(λ))− γj(λ)

∣∣∣∣ .
13



Proposition 5.1. Assume that V (n) satisfy (1), and that (8) holds for every λ ∈ [a, b]. Then for
any ε > 0 there exist C > 0 and c > 0 such that

P

{
sup
λ∈[a,b]

min (Devn(λ),Devn2(λ)) ≥ ε

}
≤ Ce−cn . (44)

In particular,

P

{
sup
λ∈[a,b]

lim inf
n→∞

Devn(λ) = 0

}
= 1 .

Remark 5.2. Here n2 can be replaced with any function tending to infinity faster than linearly.

Proof of Proposition 5.1. Fix λ ∈ R; let ε > 0, and choose rε(λ) as in (17). It will suffice to show
that there exist C, c such that

P

{
sup

|λ′−λ|<rε(λ)
min (dn(λ′), dn2(λ′)) ≥ 10Wε

}
≤ Ce−cn , (45)

where

dn(λ′) = max
1≤j≤n

∣∣∣∣ 1n log sj(Φn(λ′))− γj(λ)

∣∣∣∣ . (46)

By the existence of a fractional moment (1) and the Chebyshev inequality, one can choose κ > 0
such that

P(Ω(1)
n ) ≥ 1− e−n , Ω(1)

n =

{
sup

|λ′−λ|<rε(λ)
‖Φn(λ′)‖ ≤ eκn

}
.

On Ω
(1)
n ,

|log sj(Φn2(λ′))− log sj(Φn2,n(λ′))| ≤ κn ,

therefore for sufficiently large n

dn2(λ′) ≤ ε+ d̃n2(λ′) , d̃n2(λ′) = max
1≤j≤n

∣∣∣∣ 1

n2 − n
log sj(Φn2,n(λ′))− γj(λ)

∣∣∣∣ .
Here d̃n2(·) is independent of dn(·). Also recall from Lemma 2.2 that P(Ω

(2)
n ) ≥ 1− Ce−cn, where

Ω(2)
n =

{
∀λ′ ∈ (λ− rε(λ), λ+ rε(λ)) , 1 ≤ j ≤ n :

1

n

j∑
i=1

log si(Φn(λ′)) ≤
j∑
i=1

γi(λ) + 2jε

}
.

Now, Lemma 2.1 implies that for each λ′ ∈ (λ− rε(λ), λ+ rε(λ))

P
{
| 1
n

log |||Φn(λ′)||| − γ1(λ)| ≥ 2ε

}
≤ C exp(−cn) , (47)

where |||X||| = maxα,β |Xα,β| (the `1 to `∞ norm). Note that each matrix entry of Φn(λ′) is

a polynomial in λ′ of degree n, therefore the set A
(1)
n of λ′ ∈ (λ − rε(λ), λ + rε(λ)) for which

| 1
n

log |||Φn(λ′)||| − γ1(λ)| ≥ 2ε is a union of at most W 2n intervals. Applying the same argument
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to the wedge powers Φn(λ)∧j, we construct the sets A
(2)
n , · · · , A(W )

n such that A
(j)
n is a union of at

most Cj(W )n intervals (where Cj(W ) may depend only on j and W ),

P
{
λ′ ∈ A(j)

n

}
≤ Ce−cn , (48)

and

λ′ ∈ (λ− rε(λ), λ+ rε(λ)) \ A(j)
n =⇒ 1

n

j∑
i=1

log si(Φn(λ′)) ≥
j∑
i=1

γi(λ)− 2jε .

We also construct similar sets A
(j)

n2,n corresponding to Φn2,n(λ′), and let

An =
W⋃
j=1

A(j)
n , An2,n =

W⋃
j=1

A
(j)

n2,n .

The set An is a union of ≤ C(W )n intervals, whereas An2,n is a union of ≤ C(W )n2 intervals. If
these two sets intersect, than either one of the edges of the intervals comprising An lies in An2,n,
or vice versa. Invoking (48), we see that

P(Ω(3)
n ) ≥ 1− Ce−cn , where Ω(3)

n = {An ∩ An2,n = ∅} .

Observe that on Ω
(1)
n ∩ Ω

(2)
n ∩ Ω

(3)
n , for each λ′, either 1

n
log sj(Φn(λ′)) is close to γj(λ) for all j, or

this holds true for 1
n2 log s1(Φn2(λ′)). This concludes the proof of the proposition.

6 Proof of Theorem 3

We keep the notation from the previous sections. Let γ > γW (λ), and let ε = 1
100W 2 (γ − γW (λ)).

It suffices to show that

P {Fastn,ε(γ, λ) ∩ Fastn2,ε(γ, λ) 6= ∅} ≤ Ce−cn . (49)

To keep the notation consistent with the previous sections, it will be convenient to rely on the
estimate (45) rather than on the conclusion of Proposition 5.1. Denote

Regn,ε(λ) = {λ′ ∈ (λ− rε(λ), λ+ rε(λ)) : dn(λ′) < 10Wε}

where dn are as in (46). From (45),

P
{

Regn,ε(λ) ∪ Regn2,ε(λ) = (λ− rε(λ), λ+ rε(λ))
}
≥ 1− Ce−cn .

Therefore (49) and the theorem are implied by (24) and the following estimate:

P
{

Fastn,ε(γ, λ) ∩ Regn,ε(λ) 6= ∅;ω ∈ Ωn,ε(λ)
}
≤ Ce−cn . (50)

The proof of (50) is similar to the argument in Section 4. Denote

A = Fastn,ε(γ, λ) ∩ Regn,ε(λ) , η =
1

n
exp(−(γ − γW (λ) + 20W 2ε)n) ,

and let A+ be the set of λ′′ ∈ (λ− rε(λ), λ+ rε(λ)) for which there exists

w ∈ S(span(u1(λ
′′), · · · , uW−1(λ′′))) , ‖PF0w‖ ≤ C exp(−n(γ − γW (λ)− 10Wε)) , (51)
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where C > 0 will be specified later. We claim that on Ωn,ε(λ) we have the propagation estimate

λ′ ∈ A , |λ′′ − λ′| < η , |λ′′ − λ| < rε(λ) =⇒ λ′′ ∈ A+ , (52)

and that for each λ′′ ∈ (λ− rε(λ), λ+ rε(λ))

P
{
λ′′ ∈ A+

}
≤ C ′ exp(−2n(γ − γW (λ)− 10Wε)) (53)

These two claims imply (50) and thus conclude the proof of the theorem.
To prove (52), we observe that if λ′ ∈ A, there exists v ∈ S(F0) such that for all 1 ≤ j ≤ W + 1

|〈v, uj(λ′)〉| ≤
exp(−nγ)

sj(Φn(λ′))
≤ exp(−n(γ − γW (λ)− 10Wε)) ,

where uj(λ
′) is the j-th right singular vector of Φn(λ′), and thus there exists θ ∈ S(RW−1) such

that

‖v −
W−1∑
j=1

θju2W+1−j(λ
′)‖ ≤ C1 exp(−n(γ − γW (λ)− 10Wε)) .

Now let w = Jv, where J is the symplectic rotation. Then w ⊥ F0, and

‖w −
W−1∑
j=1

θjuj(λ
′)‖ ≤ C1 exp(−n(γ − γW (λ)− 10Wε)) . (54)

Applying Wedin’s bound to the j-th wedge power of Φn(λ′), we have:

‖u1(λ′′) ∧ u2(λ′′) ∧ · · · ∧ uj(λ′′)− u1(λ′) ∧ u2(λ′) ∧ · · · ∧ uj(λ′)‖

≤ C2ηne
(γ1(λ)+···+γj(λ)+4Wε)n

e(γ1(λ)+···+γj(λ)−10W 2ε)n
≤ C2ηne

12W 2εn ≤ C2e
−n(γ−γW (λ)−10Wε) ,

and consequently
‖uj(λ′′)− uj(λ′)‖ ≤ C3e

−n(γ−γW (λ)−10Wε) .

This and (54) implies

‖w −
W−1∑
j=1

θjuj(λ
′′)‖ ≤ C4 exp(−n(γ − γW (λ)− 10Wε)) , (55)

i.e. λ′′ ∈ A+ (if C in (51) is chosen appropriately), as claimed in (52).
Now we prove (53). If

‖PF0

W−1∑
j=1

θjuj(λ
′′)‖ ≤ C exp(−n(γ − γW (λ)− 10Wε)) (56)

for a certain θ ∈ S(RW−1), then

‖PF0

W−1∑
j=1

θ′juj(λ
′′)‖ ≤ 2C exp(−n(γ − γW (λ)− 10Wε))
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for all θ′ in a neighbourhood of θ on S(RW−1); the (W − 2)-dimensional volume of this neighbour-
hood is bounded from below by

c exp(−(W − 2)n(γ − γW (λ)− 10Wε)) .

On the other hand, (21) implies that for each θ ∈ S(RW−1)

P

{
‖PF0

W−1∑
j=1

θ′juj(λ
′′)‖ ≤ 2C exp(−n(γ − γW (λ)− 10Wε))

}
≤ C ′ exp(−nW (γ−γW (λ)−10Wε)) .

Therefore the probability that there exists θ satisfying (56) is at most

C ′

c
exp(−2n(γ − γW (λ)− 10Wε)) ,

as claimed. This concludes the proof of (53) and of the theorem.
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[9] Fröhlich, Jürg; Spencer, Thomas. Absence of diffusion in the Anderson tight binding model
for large disorder or low energy. Comm. Math. Phys. 88 (1983), no. 2, 151–184.

[10] Furstenberg, H.; Kesten, H. Products of random matrices. Ann. Math. Statist. 31 (1960),
457–469.

[11] Glazer, I., Hendel, Y. I. On singularity properties of convolutions of algebraic morphisms-the
general case (with an appendix joint with Gady Kozma). arXiv preprint arXiv:1811.09838.

[12] Goldsheid, I. Ya. Asymptotic behaviour of a product of random matrices that depend on a
parameter. (Russian) Dokl. Akad. Nauk SSSR 224 (1975), no. 6, 1248–1251.

[13] Goldsheid, I. Ya. Asymptotic properties of the product of random matrices depending on a
parameter. Multicomponent random systems, pp. 239–283, Adv. Probab. Related Topics, 6,
Dekker, New York, 1980.

[14] Goldsheid, I. Ya. Structure of the spectrum of the Schrödinger random difference operator.
(Russian) Dokl. Akad. Nauk SSSR 255 (1980), no. 2, 273–277.

[15] Goldsheid, I. Ya. Zariski closure of subgroups of the symplectic group and Lyapunov ex-
ponents of the Schrödinger operator on the strip. Comm. Math. Phys. 174 (1995), no. 2,
347–365.

[16] Goldsheid, I. Ya.; Margulis, G. A. Lyapunov exponents of a product of random matrices.
(Russian) Uspekhi Mat. Nauk 44 (1989), no. 5(269), 13–60; translation in Russian Math.
Surveys 44 (1989), no. 5, 11–71.

[17] Goldsheid, I. Ya.; Molchanov, S. A.; Pastur, L. A. A random homogeneous Schrödinger
operator has a pure point spectrum. (Russian) Funkcional. Anal. i Priložen. 11 (1977), no.
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theorems for the products of random matrices] Probability measures on groups (Oberwolfach,
1981), pp. 258-303, Lecture Notes in Math., 928, Springer, Berlin-New York, 1982.

[30] Macera, D., Sodin, S. Anderson localisation for quasi-one-dimensional random operators.
https://arxiv.org/abs/2110.00097

[31] Molchanov, S. A. Structure of the eigenfunctions of one-dimensional unordered structures.
(Russian) Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 1, 70–103, 214.

[32] Ricci, Fulvio; Stein, Elias M. Harmonic analysis on nilpotent groups and singular integrals.
II. Singular kernels supported on submanifolds. J. Funct. Anal. 78 (1988), no. 1, 56–84.

[33] Sazonov, V. V.; Tutubalin, V. N. Probability distributions on topological groups. Teor. Vero-
jatnost. i Primenen. 11 1966 3–55. English translation: Theor. Probability Appl. 11 (1966),
1—45

[34] Shubin, C.; Vakilian, R.; Wolff, T. Some harmonic analysis questions suggested by Anderson-
Bernoulli models. Geom. Funct. Anal. 8 (1998), no. 5, 932–964.

[35] Tsirelson, Boris. Brownian local minima, random dense countable sets and random equiva-
lence classes. Electron. J. Probab. 11 (2006), no. 7, 162–198

[36] Virtser, A. D. On the simplicity of the spectrum of characteristic Lyapunov exponents of
the product of random matrices. Teor. Veroyatnost. i Primenen. 28 (1983), no. 1, 115–128.
English translation: Theory Probab. Appl. 28 (1983), no. 1, 122–135.
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