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ABSTRACT
Modern immersive virtual reality (IVR) often uses embodied con-
trollers for interacting with virtual objects. However, it is not clear
how we should conceptualise these interactions. They could be con-
sidered either gestures, as there is no interaction with a physical
object; or as actions, given that there is object manipulation, even
if it is virtual. This distinction is important, as literature has shown
that in the physical world, action-enabled and gesture-enabled
learning produce distinct cognitive outcomes. This study attempts
to understand whether sensorimotor-embodied interactions with
objects in IVR can cognitively be considered as actions or gestures.
It does this by comparing verb-learning outcomes between two
conditions: (1) where participants move the controllers without
touching virtual objects (gesture condition); and (2) where partici-
pants move the controllers and manipulate virtual objects (action
condition). We found that (1) users can have cognitively distinct
outcomes in IVR based on whether the interactions are actions or
gestures, with actions providing stronger memorisation outcomes;
and (2) embodied controller actions in IVR behave more similarly
to physical world actions in terms of verb memorization benefits.
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•Human-centered computing→Virtual reality;HCI theory,
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1 INTRODUCTION
Modern consumer immersive virtual reality (IVR) is increasingly
leveraging sensorimotor-embodied controllers as their predominant
inputmethod (e.g. controllers such as theOculus Touch, ViveWands
or Index Knuckles). However, despite their increasing ubiquity in
both consumer software and research studies, there has been little
research into how we cognitively contextualise these controller-
mediated interactions within IVR.

This ambiguity is reflected in literature discussing embodied
controllers, in which they are also referred to as gesture controllers
or hand gesture inputs [21][23]. These systems are also sometimes
referred to as natural user interfaces [40], despite the use of em-
bodied controllers being quite unnatural. For example, in order to
act-out drinking from a virtual cup in IVR using the controllers
listed above, a user must find an open space in the physical world,
grasp a plastic controller in a grip similar to how you would hold
a gun or TV remote, and move until a virtual presentation of the
hand reaches the virtual cup, then bring the virtual cup to their
virtual avatar’s head position and await system feedback that the
drinking action occurred. These movements are depicted in Fig. 1.

This is fairly distinct from the action of drinking from an actual
cup in the physical world, and could be categorised as a gesture,
given that our physical bodies move in an abstracted way and do
not interact physically with the target object. Equally, it could be
categorised as an action, as we physically act on the controllers; or,
if we examine the virtual space, our physical movements allow us
to virtually act on virtual objects. This distinction is important, as
whether a movement is an action or a gesture has consequences
for learning outcomes enabled by different embodied cognition
approaches.

Actions, defined as movements on or using objects, have a differ-
ent cognitive framework and present evidence of different cognitive
outcomes than gestures, defined as movements about objects. Learn-
ing with actions, generally, has been shown to make stronger and
more specific mnemonic impressions on people experiencing them
or enacting them, whether that is for the location of objects [14],
or the memorisation of words [58]. They have also been found to
be easier for learners to process [16].

Alternatively, learning with gestures has been shown to pro-
mote better representational rather than absolute understanding of
objects [35], and an enhanced ability to generalise verbs to wider
situations [34][58].

In order to understand if a similar distinction between action
and gesture exists in IVR, we propose investigating differences in
learning outcomes between groups memorising verbs that have
been encoded with either action-based or gesture-based interaction.
Any distinctions between these two conditions would suggest that
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Physical action Physical gesture

Virtual action Virtual gesture

Figure 1: Images showing actions and gestures in physical
and virtual world

embodied controller interactions in IVR are able to be conceptu-
alised as physical world actions, while a lack of distinctions would
support the idea that embodied IVR interactions should only be
conceptualised in a way similar to physical world gestures.

We created an IVR system for learning Japanese verbs in which
half the participants learned via actions (being able to manipulate
verb-congruent virtual objects) and half learned via gestures (not
being able manipulate virtual objects). If there was no difference
in learning outcome between the groups, then that would provide
evidence that embodied controller interactions could be considered
as gestures and could not be considered as actions, as the actions
did not provide the additional memorisation benefits suggested in
literature.

However, our results found that there were different learning
outcomes between the conditions. This suggests that embodied
controllers allow us to have cognitively distinct experiences in IVR,
and that IVR inputs are not just "gestures", but depend on how the
interaction is designed in the IVR environment.

As the action group provided better learning benefits, in the
same way as in physical world studies, these results also suggest
that we could cognitively respond to actions in IVR in a similar
way to physical world actions, and to gestures in IVR in a similar
way to real-world gestures.

These findings presents two implications for IVR language-learning
software design: (1) actions are more effective than gestures at pro-
moting verb encoding; and (2) the outcomes similarly map to the
physical world in terms of sensorimotor verb encoding. Beyond
these, the more generalized implication for embodied interface de-
sign is that the choice of action-based or gesture-based embodied
interaction in VR system designs can have notable and distinct
impacts on the user’s cognitive outcomes.

2 LITERATURE
2.1 Sensorimotor embodiment benefits; action

and gesture distinctions
Sensorimotor activity is generally considered to have an impact
on cognition, particularly learning. Many studies demonstrate evi-
dence that learners memorise information better when they encode
it while performing congruent sensorimotor activities [5][37]. This
is known as the enactment effect or self-performed task (SPT) ef-
fect [6][44][4]. Experiments have shown that both taking actions
with objects (SPT-Os) [12] and gesturing without objects aid the
memorisation process.

Recent research has suggested that there could be learning dis-
tinctions between two types of sensorimotor activity: encoding
with actions (e.g. kicking a ball) and gestures (e.g. just kicking)
[58]. Actions, defined as movements on or using objects, present
evidence of different cognitive outcomes than gestures, defined as
movements about objects [14].

Learningwith actions, generally, has been shown tomake stronger
and more specific mnemonic impressions on people experiencing
them or enacting them, whether that is for the location of objects
[14], or the memorisation of words [57]. They have also been found
to be easier for learners to process [16].

Learning with gestures has been shown to promote better repre-
sentational rather than absolute understanding of objects [35], and
an enhanced ability to generalise verbs to wider situations [34][58].

In comparative studies between actions and gestures, Wakefield
and Hall [57] found that children learned novel verbs better through
action experiences rather than gesture experiences (although they
later found similar rates of learning [58]). There have also been
higher rates of recognition and recall accuracy for verbs with a
greater amount of associated information [50].

There have been numerous explanations for the learning distinc-
tions between action-based and gesture-based learning. The first
is that acting-on-objects is cognitively distinct from gesturing-off-
objects, and uses different encoding routes, even if the movements
are similar [58]. Evidence for this exists in the distinction between
physical manipulation theories [30] and gesture-simulated action
[13] approaches to embodied cognition.

The second explanation is that the distinction can be explained
by the enactment increasing the distinctiveness of the memory
traces by adding item-specific and relational information [36]. If we
make an action on an object (in the physical or virtual worlds), and
the object reacts, we experience the object as manipulable, and there
is evidence that the perceived manipulability of an object impacts
how we memorise it [27]. In this, Madan and Singhal interpreted
the overall benefit for highly manipulatable items as being due to
automatic activation of motor representations. Perhaps actions-on-
objects stimulate these to a higher degree then gestures-off-objects?

A third explanation is that the enactment effect is not caused be
sensorimotor encoding, but by the enhanced "learning episode" the
sensorimotor activity creates [18]. By enacting an action like “lift-
ing the pen”, the act of lifting and the pen are registered together in
a single episode. This view suggests that actions-on-objects creates
deeper episodic integrations than gestures-off-objects. Supporting
this view is evidence that semantically sensible learning situations
cause stronger memorisation outcomes. For example, Mangels and
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Heinberg found that semantically sensible action phrases (e.g. “hug
the doll”) had better memorisation outcomes then stranger ones
(e.g. “hug the shovel”), suggesting semantic association played a
role in memorisation [29]. Relating this to actions and gestures,
perhaps taking actions-on-objects creates a more semantically sen-
sible learning situation than gesturing-off-objects, and hence the
noted learning effect.

2.2 Sensorimotor IVR benefits; action and
gesture distinctions?

There is growing evidence that encoding information using senso-
rimotor activity inside IVR can also provide learning benefits over
non-sensorimotor alternatives. Research into IVR second language
learning has shown greater efficacy in sensorimotor scenarios than
in non-sensorimotor ones. Vasquez found that verbs were remem-
bered better if encoded by performing congruent actions than if
learning using traditional text-based memorisation [56]. Ratcliffe
found that a combination of verbs and nouns were remembered
better if they were encoded by performing actions with objects in
IVR, than if there were those actions were not performed but the
objects were still present [38]. Fuhrman found improved learning
rates for nouns that were learned when using a relevant sensori-
motor activity compared to an irrelevant sensorimotor activity or
no sensorimotor activity [7]; while Macedonia found similar [25].

However, whether there are distinctions in cognitive and learn-
ing outcomes in IVR between action-on-object encoding and gesture-
off-object encoding is under-explored. We illustrate the distinction
between actions and gestures in an IVR system in Fig. 2, with both
gestures and actions requiring a user’s bodily activation, but with
actions also requiring virtual objects to be manipulable or for the
environmental to give feedback in response to the bodily activation.

Although there is little experimental evidence for a cognitive dis-
tinction between IVR actions and gestures, there is some evidence
that IVR actions are similar to their physical world counterparts.
Studies into sensorimotor IVR skill development have shown that
improvements transfer from virtual to physical world domains
[9][19][54]. A neuromuscular investigation into throwing in the
real-world and (non-immersive) virtual reality using electromyog-
raphy signals of 11 muscles of the upper limbs also found a very
high similarity between the virtual and physical actions [46]. How-
ever, another study found that throwing precision and accuracy in
IVR are lower, and that it requires more user effort and produces a
different kinematic throwing pattern [59].

Similarly, an argument that IVR actions are experienced in way
similar to physical world actions could be made based on inves-
tigations into the IVR body transfer illusion [51]. According to
this research, users perceive the actions of other agents on their
virtual bodies in a similar way to real actions, rather than actions
happening to a distinct avatar. However, that does not mean that
the inverse is true: that actions a user takes in IVR are considered a
physical actions rather than gestures.

From a mediated-interactionist perspective, the boundary be-
tween a cognitive agent and his or her environment can be con-
sidered malleable [1], and so it follows that IVR actions that have

Figure 2: Diagram showing proposed distinctions between
gestures and action in IVR. Actions (both embodied and non-
) feature two system-created feedback points: interactional
(user is able to move objects) and environmental (the world
responds to the user’s movement of objects). The overlap of
the system feedback and body activation is embodied action,
which in this paper we compare with gesture

similar outcomes to those of physical world actions may encour-
age our brains to think we are taking actions in IVR, and not just
outputting gestures.

2.3 Other learning-related IVR factors
Sensorimotor activity can affect other cognitive factors, such as
presence and motivation (see [39] for a summary). These factors
can then affect learning outcomes. Both higher senses of spatial
or perceptive presence (the feeling of being in a place) and mo-
tivation/engagement are linked to enhanced learning outcomes
[33][45][20], and adding sensorimotor interaction, both in IVR and
outside of it, increases users’ feelings of bothmotivation [22][53][11]
[24][49] and presence [2][32][47].

In IVR learning research it is unclear if the use of sensorimotor
interactions has a mediating or direct effect on learning, however,
there is evidence that sensorimotor interactions should be treated
as a direct contributor to IVR learning [39], similar to the physical
world sensorimotor learning studies mentioned above.

Attempts to understand the impact and experience of sensori-
motor activity and embodiment in IVRs are emerging, such as to
a quantify users’ sense of embodiment in IVR through an embod-
iment questionnaire [8]. This approach breaks embodiment into
six sub-scales for differing experimental interests, of which two
forms of embodiment are relevant to this research - agency and
body ownership.

Further work on embodiment in IVR has also shown that task
performance differs based upon the virtual avatar the user is em-
bodying [17][3][10], with experiments showing participants being
more expressive or performing better cognitively based upon em-
bodying particular avatars. It is possible that, as has been theorised
with motivation and presence, avatar type could have an interaction
effect with sensorimotor activity.

2.4 Summary
The literature presents evidence for distinct cognitive outcomes for
action-encoded and gesture-encoded learning in the physical world,
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particularly in language learning. It also presents some evidence
that for skill-based learning, actions taken in IVR are similar to
those in the physical world.

However, there remains a lack of exploration into learning dis-
tinctions resulting from gesture-encoding or action-encoding in
IVR sensorimotor learning, and whether these are similar to those
in the physical world. Therefore investigating whether there is a
distinction in language learning outcome between the encoding
types in IVR could further our understanding of types of senso-
rimotor embodiment in IVR, and their relationship with physical
world sensorimotor activities.

3 EXPERIMENT
We ran a between-subject experiment to investigate if there was
a distinction between encoding with actions or gestures on verb
memorisation in IVR. For the action condition, participants were
able to use objects to complete actions in order to learn a congruent
verb. For example, a participant had to pick up a cup, bring it to
their mouth and tilt it while learning the Japanese word for "drink".
In the gesture condition, participants had to make a gesture relevant
to the verb, but were unable to interact with the object (i.e. could
not touch or move the cup). In both conditions, an animated 3D
model demonstrated the action/gesture for the verb.

We monitored and compared the learning gain of each condi-
tion to understand the role that interactions play in cognitive and
memorisation of verbs. We also monitored participant embodiment,
presence and motivation scores to investigate potential correlations
between these metrics and our findings.

3.1 Hypotheses
Our hypotheses are based on literature that presents actions as more
powerful verb encoders than gesture. We also present hypotheses
that distinctions between actions and gestures might reflect in
affective factors related to IVR, such as embodiment, presence and
motivation results:

• h1. The action group will demonstrate stronger verb learning
gains than the gesture group

• h2. The action group will demonstrate faster response times
than the gesture group

• h3. The action group will report stronger embodiment than
the gesture group

• h4. The action group will report stronger presence than the
gesture group

• h5. The action group will report stronger motivation than
the gesture group

3.2 Procedure
Participants were asked to download and run an executable file
on their existing IVR systems. An on-boarding process, pre-test,
learning process and post-test all took place within the downloaded
software.

The on-boarding process explained the IVR control methods,
and required users to move to a target location to continue the ex-
perience. A voice-over explained the experiment goals and process.
The on-boarding process also gave an interactive tutorial of how
the learning process worked before launching a pre-test.

Participants were pre-tested for their knowledge of 15 Japan-
ese verbs. The pre-test involved listening to a Japanese word and
choosing its English meaning from a list of 15 verbs, or skipping the
question. Questions were presented sequentially and participants
were not allowed to amend previous answers.

Participants were assigned to one of two interaction groups:
action or gesture. They differ as follows:

• Action: Input is made by grabbing the actual VR object, and
doing the correct gesture with it. A complete action is given
some kind of feedback (e.g. drinking sounds for acting out a
drinking motion)

• Gesture: Input is made by doing the correct gesture in the
air, away from the object

During the experiment, participants were asked to memorise
15 verbs (see Table 1 for list). Participants were exposed to each
verb in sequence, for five sequences. Each verb related to a different
object presented in front of the participant on a podium in the IVR.
Participants were told an action/gesture, the English verb, and the
Japanese language verb. For example, a phrase used for learning
"drink" was "drink from the cup. Drink is nomimasu. Nomimasu.
Nomimasu". A 3D animation of a human doing each gesture was
also displayed.

For each verb, the participant had to either gesture or action
once (depending on their group) and say the verb aloud once. We
instructed participants to say the verb aloud in order to control for
the Production Effect, in which speaking a word while encoding
it causes stronger memorisation than not speaking it [26]. Both
groups of participants used the same avatar - a set of white hands
with no arms or body.

After the encoding process, participants repeated the pre-test
procedure. Learning gain was calculated as the final test result
minus the pre-test results. A further, web-browser-based test was
taken one week after the initial study to determine their retention
of the information.

The data collection was done inside a VR environment. To verify
the gestures and actions were completed correctly, telemetry of the
participant’s movements was recorded.

3.3 Participants
Fifty-six (56) participants took part of in our study. Of these, 53
were compensated and three were uncompensated. Uncompensated
participants volunteered to take part after compensation offers had
closed and this change had been advertised.

Forty-eight (48) participants’ data was usable in our analysis.
Two participants were excluded for having high levels of pre-
existing Japanese knowledge (they already knew six and eight of
the 15 target words). One participant was excluded for presenting
unusual movement data. A follow-up conversation revealed they
were using a spoofed virtual reality system (i.e. they used a monitor,
mouse, keyboard and emulator to access and play VR content). Five
participants were excluded due to incomplete data being returned
from the remote software, and not manually forwarding the data
when requested.

All valid participants who reported their recruitment referrer
(38 participants) came from an advertisement posted on the Reddit
/r/oculus community and used their own IVR hardware in their
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Table 1: List of target words, the user’s actions for encoding (for the action condition) and the feedback given by the system
when an action was successfully completed

Verb Action System feedback

Wear Pick-up a hat and place on head Hat sticks to head, appears at top of vision
Wash Pick-up a plate and place in a sink Plate submerges in water, washing sound plays
Drink Pick-up a cup, bring to mouth and tilt Drinking sound plays
Smoke Pick-up a cigarette and bring to mouth Inhaling and exhaling sound places
Climb Place hands on vertical climbing rope Player is raised into the air as if climbing
Open Pick-up a a box lid from a closed box Box lid makes a noise on grab and put-down
Grab Pick-up a bank note from a table Money makes a noise on grab and put-down
Take (a photo) Pick-up a camera and point it at a dog Camera makes a shutter noise when facing dog
Press Push down on an industrial button Button compresses when pushed
Pull Grab rope, pull away from fitting Rope extends as if pulled out from fitting
Turn on Push hand into lightswitch Lightswitch gets depresses, makes clicking noise
Raise Pick-up an umbrella and hold above head Raindrops are blocked by umbrella
Brush Pick-up toothbrush and bring to mouth Brushing sound is played
Set/place Pick-up a cup and place on a tray Cup makes a noise on connection with tray
Cut Pick-up knife and moved into bread Slice of bread is cut from loaf, makes noise

own setting. This suggests the participants were experienced in
using IVR hardware.

The average age of valid participants was 27 (SD = 6.75). Partici-
pant gender skewed heavily male (38) over female (8) or other/did
not say (2). Valid participants had a low knowledge of the target
learning words during the pre-test, with the average participant
knowing less than one word (M = .15; SD = .46).

The majority of valid participants were fluent in more than one
language (17 reported as fluent in one language, 26 self-reported as
fluent in two languages, 4 in three languages, and one in four lan-
guages). We did not find a significant correlation between languages
known and learning outcome (r = 0.24, p = 0.10).

Interaction condition was randomly assigned inside the software
once it was downloaded onto a participant’s computer. As such, 27
participants were assigned to the "action" condition and 21 to the
"gesture" condition.

3.4 Corpus
Participants were tested on their knowledge of 15 concrete action
verbs. Action verbs were chosen as they are highly embodied and
were used in previous gesture and action word memorisation com-
parisons [58]. The target words were chosen to be familiar actions
that allowed for mostly distinct gestures for each word.

Japanese gairaigo (import words) were specifically avoided to
reduce the chance of participants’ inferring a meaning from their
similarity to English. We also attempted to reduce the use of pho-
netically similar and particularly long Japanese words, as we were
concerned that beginner-level learners would find these words dif-
ficult to tell apart. A list of these words, the user’s action (for the
action condition) and the feedback given by the system can be
found in Table 1

3.5 Environment
We created an abstract 3D environment in Unity. The environment
was explorable via a head-mounted display and embodied con-
trollers. Navigation could be done by moving around the real space
and/or by using the thumbsticks on the controllers.

3.6 Evaluation
Participants’ knowledge of the verbs was measured in three tests:
one administered before their exposure to the environment (pre-
test); one immediately after (post-test), and one seven days later
(week-test). Participants performed the same test each time, listen-
ing to a Japanese word and choosing the English meaning from a list
of 15. All three tests were conducted remotely outside of laboratory
conditions; the first two were conducted inside IVR and the third
was via a web browser. The time taken for each question was timed
to help us evaluate the testing sessions. A visual examination of this
data did not highlight any individual user taking a consistently long
or short time to answer each question, suggesting that participants
avoided looking-up answers; being consistently distracted (in a way
that could be measured by time) during the evaluation; or rapidly
entering answers in order to receive payment. Participants were
not given feedback when submitting answers.

Learning gain was calculated as a normalised score between 0
and 1, measured as post-test score minus pre-test score, divided
by the number of eligible words for their session. Five participants
had existing knowledge of either one or two of the target verbs
- these were removed from their pre-test, post-test and eligible
words calculations. We tracked whether participants listened to the
audio clip before submitting an answer - this was the case for every
entry except one, who missed one question. We believe this was
the result of an accidental double-input on the previous question,
and so removed this question from the participant’s score when
calculating the normalised result.
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After using the system, participants were asked to complete
a survey in-browser. This consisted of the Gonzalez-Franco im-
mersive VR embodiment questionnaire [8], the Igroup presence
questionnaire [48] and the Intrinsic Motivation Inventory intrinsic
motivation questionnaire [42]).

The Gonzalez-Franco embodiment questionnaire was chosen as
it is, to our knowledge, the only attempt at a standardised embodi-
ment questionnaire for IVR research. Its division of embodiment
into six sub-scales for differing experimental interests allowed us
to isolate the two forms of embodiment particularly relevant to this
research - agency and body ownership.

The Igroup presence questionnaire was also chosen due to its
ability to measure sub-types of presence. We included questions for
all four types - general presence (the "general sense of being there"),
spatial presence ("the sense of being physically present in the IVR"),
involvement ("measuring the attention devoted to the IVR and the
involvement experienced"), experienced realism ("measuring the
subjective experience of realism in the IVR") [48]. Each of these
types could have implications for the cognitive perception of actions
and gestures in the IVR. Igroup is also a well-validated method
[28][55], and asking participants for their evaluation of presence
experienced is considered the most direct way to assess presence
[15].

The intrinsic motivation inventory is a well-established tool for
measuring sub-scales of motivation [31]. As a learning experience,
we determined that the interest/enjoyment and value/usefulness
sub-scales should be explored.

3.7 Analysis
We tested our first hypothesis (does the actions group demonstrate
stronger verb learning gains than the gesture group) by coding
correct responses as 1 and incorrect responses as 0. Where a partic-
ipant had answered correctly in the pre-test, their future responses
for that word were removed.

We used Mixed Models to account for both the fixed (interaction
type) and potential random (users, words) effects, as recommended
by Macedonia et al. [25]. As the dependent variable was binomial,
we used a Generalised Linear Mixed Model.

To test our second hypothesis (the actions group will demon-
strate faster response times than the gesture group), we used a
Linear Mixed Model due to the continuous dependent variable of
response time. Only correct answers were included in the dataset,
and outliers were removed. Outliers were highlighted by checking
for 1.5 * interquartile range above the third quartile, or below the
first quartile. We felt comfortable removing these outliers as they
were split fairly evenly between groups, and some participant’s
mean answer times were skewed by a few longer entries, potentially
caused by distracting out-of-lab circumstances.

For our third hypothesis (the actions group will report stronger
embodiment than the gesture group), we calculated linear regres-
sions between each of the two embodiment scores calculated from
survey results (ownership and agency) and the interaction condition
(action or gesture).

For our fourth hypothesis (the actions group will report stronger
presence than the gesture group), we calculated linear regressions

between each of the four presences scores calculated from survey re-
sults (general, spatial, involvement and realism) and the interaction
condition (action or gesture).

For our fifth hypothesis (the actions group will report stronger
intrinsic motivation than the gesture group), we calculated each of
the linear regression motivations scores (interest, value/usefulness)
calculated from survey results and the interaction condition (action
or gesture).

4 RESULTS
Our comparison of pre-test results of included participants found
no significant difference (t = 1.31; p = .20) between the pre-existing
knowledge of the action (m = 0.01) and gesture groups (m = 0; 1
being perfect knowledge of all 15 words), with only five participants
knowing any Japanese.

4.1 The actions group will demonstrate
stronger verb learning gains than the
gesture group

The descriptive results for both post-test and one-week learning
gain are presented in Table 2, and the GLMM results are presented
in Table 3.

For the post-test, our GLMM (n = 720; 48 participants) showed
learning gain varied across both participants (𝜎2 = 1.88) and words
(𝜎2 = 0.58) After controlling for these random factors, the model
presented a statistically significant relationship between interaction

Table 2: Table of learning gain results from tests immedi-
ately after the session (post-test) and one week later (week-
test)

Results N Mean
Score

Mean RT

Action: Post-test 27 0.66 ±0.27 9.13 ±4.84
Gesture: Post-test 21 0.47 ±0.25 8.90 ±3.92
Action: Week-test 21 0.39 ±0.25 5.76 ±4.53
Gesture: Week-test 14 0.27 ±0.19 5.35 ±4.85

Table 3: Table of Generalised LinearMixedModel results for
learning gain. Note: co-efficients are logit

Parameter Beta Lower-95 Upper-95 Std. Error

Post-test
Intercept -0.13 -0.90 0.64 0.38
Interaction
(Action) 1.12 0.24 2.04 0.44

Week-test
Intercept -1.30 -2.04 -0.63 3.46
Interaction
(Action) 0.79 -0.03 1.64 0.41
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type and learning gain (p = .012). Words encoded in the action group
were better remembered than those in the gesture group (𝛽 = 1.12,
95% CI [0.24,2.04]). In our model, given a participant and word with
average intercepts, if they were assigned to the action condition,
they would be 26% more likely to correctly remember a word than
in the gesture condition (73% vs 47%).

For the one-week follow-up test, our model (n = 525; 36 partici-
pants) also showed learning gain varied across both participants
(𝜎2 = 1.00) and words (𝜎2 = 0.22), but likely to a lesser extent. It
did not present a significant distinction in learning gain between
words encoded in the action group (𝛽 = 0.22, 95% CI [-0.03,1.64])
and those in the gesture group. Although not significant, in our
model, given a participant and word with average intercepts, the
probability of getting a correct response increases from 21% to 37%
in the action group.

Therefore h1 is accepted for the immediate post-test results, but
not for the week-test.

4.2 The actions group will demonstrate faster
response times than the gesture group

The descriptive response time results for both post-test and one-
week test are presented in Table 2, and the LMM results for both
post-test and one-week later test are presented in Table 4.

For the post-test, our LMM (n = 402; 48 participants) showed
response time varied across both participants (𝜎2 = 3.66) and words
(𝜎2 = 3.07). After controlling for these random factors, we were
unable to find a significant distinction between between the action
group (𝛽 = 0.07, 95% CI [-1.35,1.47]) and the gesture group.

For the week-test, our model (n = 173; 33 participants) showed
response time varied across words (𝜎2 = 4.47) and to a lesser extent
users (𝜎2 = 0.06). After controlling for these random factors, we
were unable to find a significant distinction between between the
action group (𝛽 = 0.1, 95% CL [-1.28,1.54]) and the gesture group.

Therefore h2 is not accepted for either immediate post-test re-
sponse times or the week-test.

4.3 Words by InteractionType
After finding repeated evidence of the random effect of words, we
used a LMM to explore whether words had an interaction effect

Table 4: Table of Linear Mixed Model results for response
time

Parameter Beta Lower-95 Upper-95 Std. Error

Post-test
Intercept 9.32 7.92 10.76 0.71
Interaction
(Action) 0.07 -1.35 1.47 0.70

Week-test
Intercept 5.82 4.19 7.48 0.81
Interaction
(Action) 0.11 -1.28 1.54 0.70

Figure 3: Jittered plot showing relationship between self-
reported embodied agency and interaction type. Black line
shows significant relationship when outliers removed, red
line shows relationship without significance when outliers
are included.

with interaction type; to understand if some words were better
or less suited to embodied encoding. However, a likelihood ratio
test indicated that adding random intercepts for each interaction
condition of each word (word*interactionType) did not improve the
model over adding random intercepts for each word only. Therefore
we cannot conclude that there is a significant interaction between
word and interactionType.

4.4 The actions group will report stronger
embodiment than the gesture group

Our results did not show a significant correlation between the
interaction type (action or gesture) and the self-reported feeling of
embodied agency (r = 0.64; s = .67).

However, we observed four potential outliers (based on inter-
quartile range), and when these were removed, our results showed
a significant correlation (r = 0.33; p = .03), which would mean inter-
action type explains 10.8% of the variability of the embodied agency
score. A graph depicting the linear correlations between embodied
agency and interaction type, both with and without outliers, is
presented in Fig. 3.

It was difficult to determine whether these were true outliers
or not. These four participants presented embodiment ratings that
appear distinct from their peers, however it is not impossible for
them to have felt incredibly embodied (or non-embodied) by the
interactions, or to have interpreted the question notably differently
from others. One of the outlier participants entered universally
the lowest scores for all embodied agency questions, but provided
more varied results for other questions. Without strong evidence
to remove these outliers, however, we have included them in the
dataset and so are not able to report a significant relationship.

The relationship with embodied ownership (r = 0.05, p = .71) was
not significant.



VRST ’21, December 8–10, 2021, Osaka, Japan Ratcliffe, Ballou and Tokarchuk

Table 5: Summary of presence scores and the size and signif-
icance of their relationship with interaction type

Presence
Type

Action
Mean

Gesture
Mean

R R2 P

General 1.7 (±1.1) 1.0 (±1.2) .32 .103 .026
Spatial 6.0 (±4.3) 5.0 (±5.2) .01 .012 .045
Involvement 0.6 (±5.9) 0.4 (±6.8) .02 .091
Realism -4.0 (±3.2) -4.0 (±2.9) .01 .092

General Spatial

Involvement Realism

Figure 4: Graphs depicting linear correlations between inter-
action type and presence scores, arranged by presence types
(general, spatial, involvement and realism). There were sig-
nificant relationships for general and spatial presence, with
a small influence on spatial presence score.

Therefore h3 is not accepted.

4.5 The actions group will report stronger
presence than the gesture group

Our results show a significant correlation between the interaction
type and self-reported general presence (r = 0.32, p = .026), which
means interaction type explains 10.3% of the variability of the gen-
eral presence score.

Our results also show a significant correlation between the inter-
action type and spatial presence (r = 0.01, p = .045), which means
interaction type explains 1.2% of the variability of the spatial pres-
ence score.

We found no significant correlations between interaction type
and the involvement presence score (r = 0.016, p = .091) or realism
presence score (r = 0.014, p = .092).

A summary of the presence scores is presented in Table 5, and
linear correlations for each of these presence measures and the two
interaction types is presented in Fig. 4.

Therefore h4 is accepted for general presence and spatial pres-
ence, but not for the involvement or realism presence variations.

4.6 The actions group will report stronger
motivation than the gesture group

We found no significance in the correlations between interaction
type and interest motivation (r = 0.049, p = .741) or value/usefulness
motivation (r = 0.013, p = .931).

Therefore h5 is not accepted.

5 DISCUSSION
5.1 Evidence sensorimotor-embodied

interactions are actions, not gestures
Our results show that verb learners who take actions on objects
in IVR achieved significant and large memorisation gains over
learners who make gestures without manipulating objects. This
was reflected in immediate learning gain scores, but not by response
times. These results have obvious implications for designing optimal
IVR-based action-verb learning applications, which should activate
users sensorimotor-systems in a form that includes objects for the
interaction and feedback from the system for the object’s congruent
use.

The explanation for why we saw these results, and what that
means for sensorimotor-embodied controllers in IVR, is more nu-
anced. It is possible that the learning gain differences between
action and gesture conditions in the IVR can be explained by the
same cognitive phenomena that has previously been evidenced in
physical world comparative studies between action and gesture. If
Wakefield’s explanation of different encoding pathways between
actions and gestures in the physical world [58] is true, then it is
likely that we are seeing a similar results in our IVR.

Extending this further, this means that embodied controllers in
IVR provide a cognitive experience similar to that in the physical
world - interacting with objects in the physical or virtual worlds are
actions; while activating the body to make movements that do not
interact with objects, in the physical or virtual worlds, are gestures.
Therefore when considering interactive actions in IVR, we should
discuss them from the perspective of action-based embodiment
theory, rather than gesture-based theory. In short: our interactions
in IVR are based upon what we are experiencing in IVR, and not
the controllers or physical world bodily movements.

However, there is also another potential explanation for the
learning distinctions, which stems from the explanation of the
enactment effect as enhancing memory traces [36]. Our results
could be highlighting the added learning efficacy that stems from
contextually-deployed system feedback and richer situational en-
coding offered by the action condition. The feedback is two-fold:
first from the virtual objects being able to be moved, and second
from the system responding to user’s manipulations of objects with
sound effects or system events. If this was the explanation, we
would be unable to extrapolate whether embodied controller users
cognitively contextualise their body-based movements as action or
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gesture (and even whether that distinction was meaningful, given
that we are explaining enhanced learning through memory traces
rather than sensorimotor encoding pathways).

These two explanations lead us into an interesting place regard-
ing the simulation of actions in IVR, in that the amount of "memory
trace" could be adjusted for exploration in a way not possible in the
physical world. For example, in the physical world, it is unlikely
that you can separate actions from their contextual environmental
feedback - pouring a jug of water will always cause water to fall
(unless, perhaps, you’re in space). However, in the IVR space, we
are able to have different forms of action-feedback that do not cor-
respond to the real world. Whether water falls, how it falls, does
not fall, floats upwards or even exists as at all are the choice of the
systems’ designers.

An interesting additional exploration to provide further clarity
on the cause of encoding differences in the IVR would be to amend
environmental feedback to gestures (the gesture for pouring water
would not move the object, but would play a pouring sound), or
stripping environmental feedback from actions (you could move
a jug to pour water, but no water or sound runs out from the
jug), and contrast these results to our virtual recreations of typical
physical world gestures and action processes. We may find that
both interactional and environmental feedback are needed for us to
contextualise embodied controller actions in IVR in a way similar
to physical actions, or that the benefits can be added to gestures
through environmental feedback.

5.2 Missing retention, similar response times
We did not find a significant difference in learning retention after
one week between the two encoding conditions, although the action
condition showed a higher, non-significant, mean learning gain.
This is similar to results in previous work [38]. There are three
potential explanations for the difference in significance between
the immediate and one-week later tests: (1) the drop in participants
(from 48 to 35), as many did not complete the one-week later test,
reduced the sensitivity of the test; (2) the difference in learning
between the conditions is reduced but not eliminated, reducing the
sensitivity of the test; (3) learning gain differences between action
and gesture only occur immediately, and longer-term learning is
similar between conditions. We believe that (1) and (2) are the most
likely explanations for our results, as a reduction in the learning
difference between experimental groups over time is a pattern
familiar in language learning investigations [41][25], and also an
artefact of a somewhat artificial language encoding experience.

We found no distinction in response times between the action
and gesture conditions. As faster response times are typically as-
sociated with stronger encoding [25][7], we would have expected
to see faster response times for the action condition to match the
learning gain scores. However, given that the difference between
the learning gain of the two conditions was so large, and that re-
sponse time is a less direct measure of learning outcome, we are
confident in claiming a distinction between the two conditions.

5.3 Presence, embodiment and motivation
metrics

Our results show that participants in the action condition had sig-
nificantly higher feelings of general presence and spatial presence
(albeit with a small correlation), but not involvement or realism.
These results suggest that being able to interact with objects in a
virtual space enhances the sense of being physically present in the
IVR. As the experiment was targeting learning in an abstract space,
it could be that no distinctions between involvement or realism
were found due the already involved nature of any learning process,
or the unrealistic environmental setting.

It was a little surprising to not find any significant relation-
ships between the interaction types and our embodiment measures
of ownership or agency. It seems reasonable to assume that of
our subjective measures, these would be the most likely to be af-
fected by the different interaction types, as we would expect to see
higher levels of self-reported embodiment for the interactive object-
manipulation. This result presents questions over the relevancy or
efficacy for this embodiment survey [8] for this type of exploration
of sensorimotor, interactive embodiment. The agency-related ques-
tions in the survey ask about visuo-motor synchronous stimulation
(e.g. "It felt like I could control the virtual hand as if it was my
own"), which according to our results, appear to be experienced
consistently whether you are interacting with virtual objects or not.
Perhaps embodiment in a virtual body that can interact with the
virtual space is an additional factor that needs a separate survey
categorisation.

6 LIMITATIONS
The study participant demographics are a notable limitation of this
study, as we used participants who were both familiar with VR
(enough to own their own headset) and who had a large enough
interest in the technology that they were members of an online
community for it. A major implication for this is that the audience
might be self-selecting: those who IVR resonate with are potentially
more likely to have invested in the hardware than the general
populous, and so may be more keenly affected by its affordances.
Our sample was also heavily skewed towards men, who have been
shown as less likely to suffer from simulator sickness with the
current incarnation of IVR technology [52].

There are also limitations to the generalisability of this research
to other uses of IVR. For example, it is not clear if the evidence
presented here for the similarity of benefits between action-based
learning in IVR and in the physical world, would work for other
academic subjects (e.g. mathematics) or other areas (e.g. empathy-
training, rather than cognitive learning).

Finally, this study uses highly sensorimotor-embodied words:
concrete action verbs. Further study of words more peripherally
linked to actions, such as nouns, adjectives, and abstract or stative
verbs are needed - although this is also true outside of IVR inves-
tigations (existing research suggests that while "the sensorimotor
neural network is engaged in both concrete and abstract language
contents ... concrete multi-word processing relies more on the sen-
sorimotor system, and abstract multi-word processing relies more
on the linguistic system" [43]).
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7 CONCLUSION
Our findings show that users can have distinct learning outcomes
from embodied controller-enabled interactions in IVR based on
whether those interactions were presented as actions (i.e. were able
to interact with objects) or gestures (i.e. were not). Learners who
encoded information while doing actions had significantly better
learning outcomes than those who encoded with gestures.

This result is similar to action vs. gesture comparisons conducted
in the physical world. If we subscribe to the view that humans
memorise information differently depending on whether it was
encoded using an actions or gesture, these results could mean that
participants had cognitive experiences in IVR that were similar to
physical world actions and gesture experiences. This suggests that
our cognitive perceptions of interactions in IVR are not restricted
by the controllers or abstracted physical world bodily movements,
but by what we are experiencing inside IVR.

While this has only been evidenced for memorization (in this
study), if this were the case generally, it would mean that we should
consider sensorimotor actions taken in IVR in the same way we
contextualise actions in the physical world, and this could have
implications for the emerging use of IVR in PTSD or exposure
therapy. We hope these results will encourage further study in
these other areas.

However, the observed learning difference could also be ex-
plained by theories around encoding depth, and that our actions in
IVR provided additional interactive feedback, which the gestures
did not. If this was the case, then it is more difficult to outline a
strong case for how we cognitively contextualise our interactions
with embodied controllers and IVR. Further research is needed to
determine which of these explanations might be the case.
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