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Abstract

A simplified model based on the novel full homogenized macro-scale model (FHM) is proposed to reduce the

computational time of the FHM model with trivial loss of fidelity. The simplified FHM model is compared with a

simplified model based on the pseudo-two-dimensional (P2D) model. The FHM model is based on the homoge-

nization theory, while the volume averaging technique is the basis of the P2D model. Diffusion Partial differential

equations (PDEs) are approximated by ordinary differential equations with time-varying coefficients. The inter-

calation current and conduction equation are also approximated to develop variants of the simplified model. The

diffusion and reaction rate parameters of the FHM model are more accurate at high temperatures than the param-

eters based on the empirical Bruggeman method, as the FHM model parameters are based on the numerical model

of the electrode structure. The simulations results verify that, compared with a similar simplified model based on

the P2D model, the proposed simplified FHM model is more accurate at 318K and higher temperature. The output

voltage predicted by the proposed simplified model and the simplified P2D model has a root mean square (RMS)

tracking error of 0.6% and 2%, respectively, at 1C input current and 318K temperature. The computational time of

the proposed simplified model is reduced by 35% compared with that of the FHM model, highlighting its superior

performance. Discretization of the model is accomplished using orthogonal collocation.

Keywords: Pseudo-Two Dimensional (P2D); Full Homogenized Macro-Scale (FHM); Reduced Order Model

(ROM); Doyle Fuller Newman (DFN); Battery Management System (BMS).
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a Electrode specific surface area,[1/m] Acel l Electrode cross-sectional area [m2]

Ce

Li-ion concentration in

the electrolyte, [mol/m3]

c̄
Average Li-ion concentration

in the electrode, [mol/m3]

Cs

Li-ion concentration

in the electrode, [mol/m3]

C j ,m

Maximum Li-ion concentration in

solid, [mol/m3]

Csc

Li-ion concentration at the

surface of electrode, [mol/m3]

c̄e Average concentration in electrolyte, [mol/m3]

De Electrolyte diffusion constant, [m2/s] Ds Electrode diffusion constant, [m2/s]

F Faraday’s constant, [V sΩ−1mol−1] Iapp Applied current, [A]

J Interaction current, [A/m3] Ke Electrolyte conductivity, [S−1M−1]

k j

P2D electrochemical reaction-rate

constant, Am2.5mol−1.5

k∗
j

FHM electrochemical reaction

rate constant, Amol−1

Ks Electrode conductivity, [S−1M−1] r Radial coordinate [m]

R Universal gas constant, [J ·mol−1 ·K −1] Rc Collector resistance, [Ω]

Rs Radius of active particle, [m] t Time, [s]

t+ Transference number T Temperature,[K ]

U Electrode open circuit potential, [V ] q̄ Average flux in electrode.[mol/m4]

θ Normalized concentration in electrode φs Electrode potential, V

φe Electrolyte potential, V defined as the ratio of ℓ and L

η Over potential, V ηe Electrolyte volume fraction

Table 1: List of symbols

2. Introduction

2.1. Literature Review

To optimize the battery efficiency, Battery Management System (BMS) plays a vital role in ensuring the bat-

tery’s safe operation in various conditions. BMS monitors essential state variables of the cell such as state of charge5

(SoC), state of health (SoH), and temperature, among others to avoid misuse of the battery [1] [2].
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The mathematical model of a Li-ion cell is an essential part of BMS to estimate the state variables. Over the past

decades, various mathematical models have been developed with a range of computational complexity and accu-

racy such as equivalent circuit models, data driven models, electrochemical models [3], [4], [5]. Equivalent circuit

models are simple and computationally most efficient as compared to other models. Equivalent circuit models are10

composed of electric circuit elements such as voltage sources, resistors, and capacitors. These fictitious elements

are added to obtain a current-voltage characteristic curve approximately equivalent to a Li-ion cell’s experimental

current-voltage characteristic curve. The battery states such as SoC and SoH calculated using the equivalent cir-

cuit models are less accurate as compared to the computationally intensive electrochemical models [6], [7].

Recently attempts have been made to improve SoC estimation using either advanced equivalent circuit models15

or adaptive neuro-fuzzy inference systems (ANFIS) based models. However the proposed models are either not

accurate or health-conscious enough as compared to electrochemical models [8], [9], [10], [11]. L. Ma et al. has

proposed joint SoC estimation based on a long short-term memory neural network. The approach shows better

results as compared to other machine learning algorithms but is not accurate enough as compared to the proposed

approach [12]. H Yang et al. and H F Khan et al. have proposed SoC estimation based on variants of the Kalman20

filter. However, the model used is a basic equivalent circuit model. The performance can be improved further by

using accurate models [13],[14].

Electrochemical models are derived from the first principles of the cell, such as the Doyle Fuller Newman (DFN)

model. Electrochemical models precisely describe the internal dynamics of the cell, such as diffusion, conduction,

and intercalation. Electrochemical models are more reliable than equivalent circuit models due to their high ac-25

curacy. However, using an electrochemical model such as the DFN model for real-time processing is not feasible

due to the high computational load. DFN model is mainly used as a reference to evaluate the accuracy of other

simplified models. A reduced electrochemical model such as a single-particle model is imperative for real-time

processing [15], [16].

Diffusion and conduction parameters of the DFN model are key parameters that influence the fidelity of the DFN30

model. The empirical Bruggeman method is used to obtain the parameters. The method leads to inaccurate results

in certain conditions [17]. Recently a more accurate model called the full homogenized macro-scale (FHM) model

is developed. FHM model inculcates the structural composition of the electrode and calculates the value of dif-
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fusion and conduction parameters De , Ds , Ke and Ks by developing a numerical model of electrode architecture.

The model is more accurate for estimation in conditions such as low values of SoC, a high value of temperature,35

and a C-rate. However performance of both models is similar at room temperature [18], [19],[20]. The FHM model

is computationally intensive and suitable for offline estimation and analysis.

We have used a one-dimensional FHM and DFN model in this article. A ’pseudo’ spherical dimension r is included

in the DFN model to describe the diffusion of Li-ions within electrode particles. The model is also known as the

pseudo-two-dimensional (P2D) Model [21]. The FHM model is computationally less intensive than the P2D model40

as it has only one dimension.

2.2. Novelty

As the P2D model fails to predict the output voltage of the cell accurately at high temperatures , i.e. above 318K

and low value of charge [22]. The performance of P2D based simplified models deteriorates further at a high value45

of input current due to approximation.

The purpose of this article is to present a simplified model based on the FHM model, which is computationally less

intensive than the FHM model but more accurate as compared to the simplified P2D model at high temperature.

We expect the simplified FHM model to show performance similar to the FHM model up to a 4C input current,

which enables us to develop an accurate model fast enough to be implementable in real-time.50

The idea of the proposed model is similar to the simplified models developed by Subramanian et al. [23], Han et

al. [24] and Deng et al. [25]. The articles, as mentioned earlier, are based on the idea that ordinary differential

equations with time-varying coefficients can approximate the Li-ion concentration. Replacement of the spatial

double derivative with time-varying coefficients simplifies the models and facilitates fast implementation.

Although some researchers have recommended high order polynomials [23], we prefer the second-order poly-55

nomial to approximate the Li-ion concentration in electrode and electrolyte. Recently it has been observed that

the approximate electrode models developed using higher-order polynomials introduce unwanted characteristics

such as eigenvalues with positive real parts, non-minimum phase zeros. In contrast, the actual electrode model

does not exhibit these characteristics. However, Second-order polynomials provide smaller bandwidth and less

precision in transients as compared to higher-order polynomial approximations [26]. Another feature of polyno-60
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mials is time variance.The coefficients of polynomials are calculated at every iteration.

The rest of the article is organized as follows. First, We present the FHM model and the P2D model, followed by the

simplified FHM model, the simplified P2D model and further simplification. Next we offer a discussion on results

and conclusions. Table of parameter values used for the simulation are provided in the Appendix.

65

3. Modelling

3.1. Pseudo Two Dimensional (P2D) Model

The electrodes in the cell consist of multiple spherical particles. The P2D electrode diffusion dynamics for a

single particle is described by the equation (1). The variable r defines the radial dimension. The Li-ion exchange

between electrode and electrolyte, known as intercalation current, occurs at the particle’s surface. The boundary70

conditions at the center and surface of spherical particles are mentioned as follows.

∂cs, j

∂r

∣∣∣
r=0

= 0,
∂cs, j

∂r

∣∣∣
r=Rs

=− J j

F ·a j
= −J j ·Rs, j

Ds, j ·F ·3η j
(6)

The net Li-ion diffusion at the center of the particle is zero. The Li-ion diffusion at the surface is equivalent to the

intercalation current scaled by the Faraday’s constant F and the electrode interfacial surface area as to account for

the porosity of the electrode. Rs, j , cs and Ds, j are the radius of the sphere, solid concentration and solid diffusion

parameter respectively. Initial concentration is given by the initial stoichiometry variable θ j ,i ni t , i.e. normalized75

value of concentration. Suffix j denotes negative and positive electrodes.

Figure 1: Li-ion cell schematic [27].
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Table 2: Comparison of P2D and FHM mathematical models [17]

Eq.

No

FHM Model P2D Model Part

(1)
∂cs, j (x,t )

∂t = Ds, j
∂2cs, j (x,t )

∂x2 − J j (x,t )
F

∂cs, j (x,r,t )
∂t = 1

r 2
∂
∂r

(
Ds, j r 2 ∂cs, j (x,r,t )

∂r

) Electrode

Diffusion

(2)
ηe, j

∂ce, j (x,t )
∂t = J j (x,t )

F +De, j
∂2ce, j

∂x2

+RT t 2+
F 2 Ke, j

∂2l n ce, j

∂x2 + t+
F Ke, j

∂2φe, j

∂x2

ηe, j
∂ce, j (x,t )

∂t = ∂
∂x

(
De, j

∂ce, j

∂x

)
+ (1−t+)J j (x,t )

F

Electrolyte

Diffusion

(3) Ks, j
∂2φs (x,t )

∂x2 = J j (x, t ) Ks, j
∂2φs (x,t )

∂x2 = J j (x, t )
Electrode

Potential

(4)

RT t+
F Ke, j

∂2l nce
∂x2 +Ke, j

∂2φe (x,t )
∂x2

=−J j (x, t )

2RT (1−t+)
F Ke, j

∂2l nce
∂x2 +Ke, j

∂2φe (x,t )
∂x2

=−J j (x, t )

Electrolyte

Potential

(5)

η=φs(x)−φe (x)−U (θ)

i0 = ((ce cs)(1− c j ,s

c j ,m
))0.5

J j (x, t ) = i02k j si nh
(

Fη j

2RT

)
η=φs(x)−φe (x)−U (θ)

i0 = ((ce c j ,s)(c j ,m − c j ,s))0.5

J j (x, t ) = i02k j · si nh
(

Fη j

2RT

)
Intercalation

Current

The Li-ion diffusion inside the electrolyte is described by the equation (2). Initial, boundary and continuity condi-

tions are mentioned in the equations (10) and (13) respectively.

ce , ηe, j and x are the liquid phase (electrolyte) concentration, electrolyte volume fraction and physical dimension

variable. L, Ln , Ls and Lp are the length of the cell, anode, separator and cathode, respectively. De is the elec-80

trolyte diffusion parameter. The initial value of the electrolyte concentration is constant and mentioned in the

Appendix. There is no Li-ion flow between the electrode and the current collector. The electrolyte medium exists

in a continuum throughout the cell. The concentration and the flux are assumed to be equal at both sides of the

electrode-separator interface.

Equation (5) describes the intercalation current J j , whereas the open circuit potential is given as follows.85

Up (θ) =−10.72θ4 +23.88θ3 −16.77θ2 +2.595θ+4.563 (7)
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Un(θ) = 0.1493+0.8493 exp(−61.79θ)+0.3824 exp(−665.8θ)−1 exp(39.42θ−41.92)

−0.03131 arctan(25.59θ−4.099)−0.009434 arctan(32.49θ−15.74)

(8)

η is the over-potential and denotes the potential difference required for the Li-ion exchange between electrode and

electrolyte. φs , φe and U are the electrode potential, electrolyte potential and open circuit potential respectively

[28]. θ, c j ,m , k j , T and R are the normalised solid concentration, maximum solid concentration, reaction rate pa-90

rameter, temperature, and universal gas constant respectively.

The dynamics of the solid phase potential drop φs and liquid phase potential drop φe is given by the equations

(4) and (3) respectively. Ks, j and Ke, j are the conductivity parameters for solid and liquid, respectively. Initial

conditions and boundary conditions of electrode and electrolyte are described by the equations (11) and (12) re-

spectively, whereas continuity conditions of the electrolyte potential are described by the equation (14). The initial95

value of the potential drop in the electrolyte is assumed zero, whereas the potential drop across the electrode is

equal to the open circuit potential difference. The solid potential at the anode collector is the reference. The value

of potential drop in the electrolyte at the electrode-collector interface is zero.

3.2. Full Homogenised Macro-scale (FHM) Model100

The FHM model consists of two partial differential equations (PDEs) and three algebraic equations as men-

tioned in Table 2, while initial and boundary conditions are mentioned in Table 3. The Li-ion diffusion in the solid

phase (electrode) is governed by Fick’s law as mentioned in equation (1). The boundary conditions are mentioned

as follows.

105

∂cs, j

∂x

∣∣∣
x=0,L

= 0,
∂cs, j

∂x

∣∣∣
x=Ln ,Ln+Ls

=− J j ·L j

Ds, j ·F ·3η j
(15)

The Li-ion diffusion at the collector end of the electrode is zero. The Li-ion diffusion at the separator end is equiv-

alent to the scaled intercalation current. The diffusion equation of the FHM model includes the intercalation

current, whereas the intercalation current only appears in the boundary condition of the P2D model solid diffu-

sion equation. The boundary condition at the electrode-separator interface is the same as the corresponding P2D

model boundary condition. The variable Rs, j in the earlier mentioned boundary condition is replaced by L j . The110
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Table 3: Initial and Boundary conditions common to P2D model and FHM model [17]

Equation

Number

Initial conditions Boundary conditions Part

(9)
cs,n = θn,i ni t · cs,n,m

cs,p = θp,i ni t · cs,p,m

- Electrode Diffusion

(10) ce,n = ce,sep = ce,p = ce,a
∂ce, j

∂x

∣∣
x=0,L = 0 Electrolyte Diffusion

(11)
φs,n = 0

φs,p =Up,i ni t −Un,i ni t

φs,n
∣∣

x=0 = 0

∂φs,p

∂x

∣∣
x=L =− Iapp

Acel l ·Ks,p

Electrode Potential

(12) φe,n =φe,sep =φe,p = 0
∂φe, j

∂x

∣∣∣
x=0,L

= 0 Electrolyte Potential

(13) −

∂ce, j

∂x

∣∣
x=Ln− =

∂ce, j

∂x

∣∣
x=Ln+

ce, j
∣∣

x=Ln− = ce, j
∣∣

x=Ln+

∂ce, j

∂x

∣∣
x=Ln+Ls− =

∂ce, j

∂x

∣∣
x=Ln+Ls+

ce, j
∣∣

x=Ln+Ls− = ce, j
∣∣

x=Ln+Ls+

Electrolyte Diffusion

Continuity Equation

(14) −

∂φe, j

∂x

∣∣
x=Ln− =

∂φe, j

∂x

∣∣
x=Ln+

φe, j
∣∣

x=Ln− =φe, j
∣∣

x=Ln+

∂φe, j

∂x

∣∣
x=Ln+Ls− =

∂φe, j

∂x

∣∣
x=Ln+Ls+

φe, j
∣∣

x=Ln+Ls− =φe, j
∣∣

x=Ln+Ls+

Electrolyte Potential

Continuity Equation
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remaining equations of the FHM model are similar to the P2D model.

4. Model Simplification

4.1. Simplified P2D Electrode Diffusion Model

The simplified electrode diffusion model presented by Subramanian [23] is used in present work. The following115

equations describe the approximate solid concentration.

dc̄(t )

d t
=−3

J j

as ·F ·Rs
(16)

Ds

Rs
[csc (t )− c̄(t )] = −J j

5as ·F
(17)

The variables c̄(t ) and csc are the average solid concentration and the surface concentration respectively. Since the

open circuit potential and other variables are function of the surface concentration csc and state of charge (SoC) is

a function of average concentration c̄(t ), (16) and (17) are used for simulating the electrode diffusion model.120

4.2. Simplified FHM Electrode Diffusion Model

We propose that the solid phase concentration along the whole length of an electrode can be approximated by

a second order polynomial as shown below.

cs (x, t ) = a(t )+b(t )
( x2

L2
j

)
(18)

We put the value of cs from the equation (18) in the equation (15) and get the following equation.125

2
Ds b(t )

L j
= −J (L j ) ·L j

3ηs ·F
(19)

The coefficient b(t ) can be calculated from the equation (19). Another equation is required to find value of a(t ) .

Following procedure is adopted to solve this problem. The average concentration c̄(t ) is related to the solid phase

concentration as follows.

c̄(t ) = 1

L j

∫ L j

x=0
c(x, t )d x (20)
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c̄(t ) = a(t )+ b(t )

3
(21)

Averaging both sides of the equation (1) gives us the following equation to calculate the average concentration c̄(t ).130

1

L j

∫ L j

x=0

[∂cs

∂t
−Ds

∂2cs

∂x2 + J (x, t )

F

]
d x = 0 (22)

dc̄(t )

d t
=− J (L j )

3ηs ·F
− Iapp

F ·L j
(23)

Iapp = I

A
(24)

A is the surface area of cell collector. I is the input current. Average concentration c̄(t ) is calculated using the

equation (23). The value of unknown time varying coefficients are calculated using the equations (19) and (21).

The solid phase concentration is calculated using the equation (18). Step-wise algorithm is presented in the table135

4.

Table 4: Algorithm for simplified FHM electrode diffusion model.

Step No Step

1 Available data : Initial discrete time k=0, Initial average Li-ion concentration in electrode c̄(k) based on initial SoC.

2 Calculate c̄(k) using the equation (23)

3 Calculate b(t ) using the equation (19).

4 Calculate a(t ) using the equation (21).

5 Calculate solid phase concentration cs (t ) using the equation (18)..

6 Update the value of time k and initial condition c̄(k) for next iteration.

7 Repeat step 2 to step 6 for next sampling instant.

4.3. Simplified Electrolyte Diffusion Model

Electrolyte diffusion equation (2) of FHM model is simplified by using (4).

ηe, j
∂ce, j (x, t )

∂t
= (1− t+)J j (x, t )

F
+De, j

∂2ce, j

∂x2 (25)

FHM electrolyte diffusion equation (25) is similar to the P2D electrolyte diffusion equation. The method in [24]140

and [25] is used to simplify FHM liquid phase (electrolyte) diffusion equation. The physical dimension variable x
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is replaced with variable z to simplify the derivation. Li-ion concentration in the three regions, i.e. anode, separator

and cathode, is approximated by a second-order polynomial as given below.

ce,n(z) = a1z2 +a0, 0 ≤ z ≤ Ln (26)

ce,s (z) = a4z2 +a3z +a2, 0 ≤ z ≤ Ls (27)
145

ce,p (z) = a6z2 +a5, 0 ≤ z ≤ Lp (28)

The first order terms in the equations (26) and (28) are zero due to boundary condition mentioned in the equation

(12). Following four equations are derived by putting the value of ce, j (z) in continuity conditions given by the

equation (13).

a1L2
n +a0 = a2 (29)

a6L2
p +a5 = a4L2

s +a3Ls +a2 (30)
150

2a1LnDe,n = a3De f f
e,s (31)

−2a6Lp De,p = (2a4Ls +a3)De,s (32)

Total amount of Li-ions in the anode, separator and cathode Qe, j is calculated by integrating the equations (26),

(27) and (28) respectively.

Qe,n(t ) = ηe,n

∫ Ln

0
ce,n(z)d z = ηe,n

(
a1L3

n

3
+a0Ln

)
(33)

Qe,s (t ) = ηe,s

∫ Ls

0
ce,s (z)d z = ηe,s

(
a4L3

s

3
+ a3L2

s

2
+a2Ls

)
(34)

155

Qe,p (t ) = ηe,p

∫ Lp

0
ce,p (z)d z = ηe,p

( a6L3
p

3
+a5Lp

)
(35)

We calculate derivatives of Qe, j subject to electrolyte boundary and continuity conditions to obtain the following

equations.

d

d t
Qe,n(t ) = Iapp (1− t+)

F
+De,n

∂ce,n

∂z

∣∣∣∣z=Ln

z=0

d

d t
Qe,n(t ) = Iapp (1− t+)

F
+De,n2a1Ln

(36)

d

d t
Qe,p (t ) = Iapp (1− t+)

F
+De,p

∂ce,p

∂z

∣∣∣∣z=Lp

z=0

d

d t
Qe,p (t ) =− Iapp (1− t+)

F
+De,p 2a6Lp

(37)
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d

d t
Qe,s (t ) = De,s

∂ce,s

∂z

∣∣∣∣z=Ls

z=0

d

d t
Qe,s (t ) = De,s 2a4Ls

(38)

The seven unknown coefficients are solved using the seven equations, i.e. (29), (30), (31), (32), (36), (37) and (38).160

The equations (26),(27) and (28) are used to simulate the electrolyte diffusion model. Step-wise algorithm is pro-

vided in table 5

Table 5: Algorithm for the Simplified electrolyte Diffusion Model [24], [25] .

Step No Step

1
Available Data:Initial discrete time k=0, Initial total concentration of Li-ion in electrolyte

¯Qe, j (0) based on initial concentration.

2 Calculate a0, a1...a6 using the equations (29), (30), (31), (32), (36), (37) and (38) .

3 Calculate total Li-ion concentration Qe, j (k) at next time instant using the equations (26),(27) and (28).

4 Update the value of time k and initial condition Qe, j (k) for the next iteration.

5 Repeat step 2 to step 6 for next sampling instant.

4.4. Approximation of Intercalation Current

The intercalation current J j is assumed constant. The following equations are derived by manipulating the165

equation (4).

Jn = Iapp

Ln ·F

Jp = −Iapp

Lp ·F

(39)

This model is called Further simplified FHM model.

4.5. Simplification of Algebraic Equations

Approximation for the algebraic equation of Li-ion cell is based on the work of S. J. Moura [29]. The intercala-

tion current J j is assumed constant. Exchange current density i0(x, t ) is approximated by the spatial average value170
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īo(t ) and approximate over-potential η̄ is given by the following equation.

η̄(t ) = RT

αF
si nh−1

( Iapp

2αLī0(t )

)
(40)

V =φs,p (L)−φs,n(0) (41)

φs (x, t ) = η̄+φe (x, t )+U (x, t ) (42)

The procedure mentioned in ref. [29] is used to simplify the output voltage and potential equation. Simplified

output voltage equation is mentioned as follows.175

V = η̄p (t )− η̄n(t )+Up (θ(L))−Un(θ(L))+

k1Iapp +k2(ln(ce (L))− ln(ce (0)))

(43)

k1 =
Ln +2Ls +Lp

2Ke f f
(44)

k2 =
2RT (1− t+)Ke f f

F
(45)

We label this model as SFHM 2 model.

5. Orthogonal Collocation

5.1. Spatial Discretisation180

Spatial discretisation is done using orthogonal collocation developed by Adrien [21] . The solution u(x, t ) of a

PDE is described by the following equation.

uN (x, t ) =
N∑

j=0
û j (t )φ j (x), xϵ[−1,1] (46)

φ j (x) = (−1) j+1(1−x2)T r
N (x)

c̄ j N 2(x −x j )
, xϵ[−1,1] (47)

c̄ j = 0 for j = 0, N and c̄ j = 1 otherwise TN (x) denotes the Chebyshev polynomial of degree N . û j (t ) is equal to the

value of solution u(x j , t ) at discretised nodes known as collocation points. The collocation points are given by the185

following equation.

xi = cos
(πi

N

)
, i = 0,1..N . (48)
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The p th derivative of u(x, t ) at collocation points is calculated as follows.

up
N (xi ) =

N∑
j=0

d p
i , j uN (x j ) (49)

d p
i , j is calculated by finding the derivative of the function φ j (x). Chebyshev polynomials are are computed offline

and stored to reduce the computational burden. The derivative equation is written in matrix form as follows.

up = Dp
N u (50)

Similarly integration or quadrature of u(x, t ) is calculated as follows.190

up
N (xi ) =

N∑
j=0

αi , j uN (x j ) (51)

αi , j is calculated by finding the integration or quadrature of the functionφ j (x). MATLAB ®functions for the differ-

entiation matrix, integration matrix etc. provided by [30] and [20] are used in this work. Consider the discretised

potential equation in electrode and electrolyte as an example. The equations are written in matrix form as shown

next.

Ks, j [D2
N ]N xN [φs ](N+1)x1 = [J ]N x1 (52)

195

RT t+
F

Ke, j [D2
N ]N xN [l n(ce )](N+1)x1 +Ke, j [D2

N ]N xN [φe (z, t )](N+1)x1 = [−J j ]N x1 (53)

We have N equations but N +2 variables. We use the boundary conditions to solve the two additional variables. To

enforce boundary conditions the first and last rows of the differentiation matrix are used. Consider the following

example.

∂φe, j

∂x

∣∣∣
z=0,L

= 0 (54)

The boundary conditions are solved to get the values of two unknown variables.

5.2. Temporal Discretisation200

Equations (23),(36), (37) and (38) are dynamic equations of the simplified model and represented as follows.

ẋ(t ) = g (x(t ),u(t )) (55)

Output equation is represented as follows.

y = h(x,u) (56)
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g , x, u, y and h are state function, system states, input current,output variable, and output function respectively.

Solid and liquid concentration variables are considered the state variables of the cell. Current is considered as the

input. Cell voltage and SoC are considered output. SoC of either electrode is calculated by the following equation.205

SoC j (t ) =
θ

av g
j (t )−θ0%

j

θ100%
j −θ0%

j

(57)

The normalized average concentration for P2D model and FHM model are calculated respectively by the following

equation.

θ
av g
j (t ) = 3

L j R3
s, j

∫ L j

0

∫ Rs, j

0
r 2 cs, j (x,r, t )

c j ,m
dr d x (58)

θ
av g
j (t ) = 1

L j

∫ L j

0

cs, j (x, t )

c j ,m
d x (59)

θ0%
j and θ100%

j denote 0% and 100% SoC respectively and mentioned in the appendix.

The equation is discretised using orthogonal collocation. The details of orthogonal collocation are discussed in210

section 5. The n dimensional matrix equation corresponding to n collocation points is expressed as follows.

XN×1 = X (t0)N×1 +
t f − t0

2
AN×N GN×1(X ,U ) (60)

AN×N is the pseudos-spectral integration matrix. t0 and t f are the initial and final times respectively. Value of state

matrix G is given as follows.

G =



− J (Ln )
3ηs ·F − Iapp

F ·Ln

− J (Lp )
3ηs ·F − Iapp

F ·Lp

Iapp (1−t+)
F +De,n2a1Ln

− Iapp (1−t+)
F +De,p 2a6Lp

De,s 2a4Ls


(61)

The output equation (43) is an algebraic equation. The following equation represents the output equation in matrix

form.215

YN×1 = HN×1(X ,U ) (62)

The value of output matrix H for voltage output is given as follows.

H = η̄p (x j )− η̄n(x j )+Up (θ(L))−Un(θ(0))+

k1Iapp +k2(ln(ce (L))− ln(ce (0)))

(63)

x j is the collocation point or discretised time.
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6. Results

Simulation results are produced using MATLAB ®.Crank-Nicolson is used for discretisation of models to pro-

duce results shown in figures 2,4,3,5 and table 6. While MATLAB ®function Ode15s and orthogonal collocation is220

used to produce results shown in table 7 and figure 6. Parameters are primarily obtained from [19],[20],[17],[18].

The sampling time is 1 second and the cell temperature is 318K. The percentage root mean square (RMS) error

between the voltage Vi and the reference voltage Vr e f ,i is calculated using the following equation to quantify the

accuracy of a particular voltage signal Vi .

225

RMS Er r or = 100

mean(Vr e f )
×

√
1

N

∑N
i=0(Vr e f ,i −Vi )2 (64)

The experimental voltage is taken as a reference for calculating RMS error. Experimental results are obtained from

[18]. Consider Figure 2, We observe that at 318K, the performance of the FHM model and the proposed simplified

FHM model is very good, and the value of RMS error is 0.6% for 1C current. As compared to the FHM model and

the simplified FHM model, the P2D model and the simplified P2D model show relatively inaccurate performance.

The value of RMS error for the P2D and the simplified P2D model is about 2% for 1C current. From Figure 2 it230

can be observed that the high value of RMS error for the P2D model and the simplified P2D model is mainly due

to performance deterioration at low values of SoC. We also observe that the output voltage of the simplified FHM

model and simplified P2D model accurately track the output of the FHM model and the P2D model respectively.

Consider Figure 2, we observe that SoC estimation using the simplified P2D model is not accurate while the sim-

plified FHM model accurately estimates SoC.235

Figure 4 shows the Li-ion concentration for the FHM model and simplified FHM model in anode at various time

instants. This plot is the same as the plot of the second-order polynomial, i.e. parabola p(x) = ax2+bx+c where x

represents the physical dimension of the electrode. Based on this fact, our assumption of approximating the Li-ion

concentration for the FHM electrode equation using a second-order polynomial is proved correct. The same plot

is observed for both electrodes at all points in time. Same observations are recorded for electrolyte, which justifies240

the use of quadratic polynomial for the approximation of liquid phase concentration.

The main reason for the superior performance of the FHM model and the simplified FHM model is that the FHM

model is derived based on the actual structure of the electrode. In contrast, the P2D model is derived based on the

16



Figure 2: Output voltage of various Li-ion cell models for 1C input current at 318K temperature.

Figure 3: SoC of various Li-ion cell models for 1C input current at 318K temperature.
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Figure 4: Li-ion concentration profile vs the length of anode for FHM model and SFHM model for 1C current input at 4,8,12 and 16s.

Figure 5: Output voltage of various Li-ion cell models for 4C input current at 318K temperature.
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Figure 6: Comparison of output voltage for FHM model, SFHM 2 model, and experiment at 1C current input at 318K temperature.

assumption that fictitious spherical particles constitute electrode. For the FHM model, the value of temperature-

dependent parameters such as the electrode diffusion parameter and the reaction rate constant is calculated based245

on numerical modelling of the electrode structure. The P2D model uses the empirical and relatively inaccurate

Bruggeman method. We observe that the RMS error of further simplified FHM model is equal to the RMS error of

the simplified FHM model for 1C current as shown in Table 6. However, if the input current is increased to 4C, the

error for further simplified FHM model is increased to 3% and error for simplified FHM model is 2.1% considering

FHM voltage output as reference signal The result is shown in the Figure 5.250

Consider the Table 6, simulation time for FHM model is 34s, less than P2D model simulation time, i.e. 62s as FHM

model has only one dimension and P2D model has additional pseudo dimension for electrode particles. The pro-

posed simplified FHM reduced the simulation time by 35% to 20s, which is slightly less than the simplified P2D

model’s simulation time, i.e. 21s. Further simplification of the FHM model slightly reduces the simulation time

to 19s. The proposed simplified FHM model can accurately track the output voltage of the FHM model up to 4C255

current with 2.1% RMS error considering FHM voltage as a reference as shown in Figure 5 and table 8.

Figure (6 ) compares output voltage obtained from experiment [22] with the output voltage predicted using various

models i.e FHM model, SFHM 2 model, . Initial and final SoC is set to 99.9% and 0.1% respectively. The sampling

time is 1 second. The cell is discharged at 1C current and 318K temperature. SFHM model is simulated using MAT-

LAB ®Odes15s function and orthogonal collocation. Other models are simulated using the Ode15s function.260

Table (7 ) compares the root mean square error (RMS) and simulation time per iteration between the experimen-
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tal output voltage and the predicted output voltage for each model. The output voltage predicted by the SFHM 2

model using the Ode15s function and orthogonal collocation has an approximation RMS error of 1.31% and 1.28%.

The models predict the output voltage with an approximation error greater than the SFHM model. The greater er-

ror is the price paid for further simplification.265

Consider the simulation time of various models at 1C discharging current mentioned in Table (7 ). The orthogonal

collocation is about 18 times faster than the ode15s function. Based on this discussion we conclude that the sim-

plified FHM model variants combines the accurate estimation property of the FHM model and the low simulation

time property of the simplified P2D model making it a good candidate for the development of BMS.

Table 6: Comparison of simulation time and RMS error for various Li-ion cell models for 1C current at 318K temperature.

Model Simulation time RMS Error

FHM model 34s 0.6%

P2D model 62s 2%

Simplified FHM model 20s 0.6%

Simplified P2D model 21s 2%

Further simplified FHM model 19s 0.6%

Table 7: Comparison of root mean square error (RMS) and simulation time for the FHM model and SFHM 2 model using various discretisation

techniques at 1C current input at 318K temperature.

Model Method RMS Error
Simulation time

(seconds)

FHM Ode15s 0.5% 21s

SFHM 2 Ode15s 1.31% 1.5s

SFHM 2 Orthogonal collocation 1.28% 0.08s
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Table 8: Comparison of voltage root mean square error (RMS) and simulation time for the FHM model, SFHM Model and SFHM 2 model

considering FHM model as reference model. The input current is 4C and the temperature is 318K.

Model Method RMS Error Simulation time(seconds)

SFHM Ode15s 2.1% 1.21s

SFHM 2 Ode15s 3% 1.2s

7. Conclusion270

In this study, a simplified FHM model is proposed and compared with a simplified P2D model. The simpli-

fied FHM model is developed by approximating the diffusion equations. The basic idea of approximation is that

polynomial functions can accurately estimate the lithium-ion concentration at any time instant. Approximation of

intercalation current and conduction equations leads to the development of variants of the simplified FHM model

to trade-off accuracy with computational cost. Simulation results verify its superior performance compared to the275

simplified P2D model. The computational time of the proposed model is 35% less than the FHM model and close

to the simplified P2D model. The simplified FHM model has a tracking RMS error of 0.6 %, while the simplified

P2D model has a 2% tracking error. The model works accurately up to a current of 4C with a maximum 2.1 % error.

The SFHM 2 model and orthogonal collocation further reduce the computational time to 0.08 seconds.

Observers are required for output feedback control of the cell to improve estimation in the presence of noise. Our280

future work will include designing observers such as moving horizon estimator, extended Kalman filter, and sliding

mode observer. The model discussed in the paper is isothermal. Incorporating the thermal dynamics of the cell

can improve the accuracy of the simplified FHM model .

8. Acknowledgement285

This work was supported in part by the Higher Education Commission, Pakistan.

21



References

[1] K. Liu, K. Li, Q. Peng, C. Zhang, A brief review on key technologies in the battery management system of

electric vehicles, Frontiers of Mechanical Engineering 14 (1) (2019) 47–64.

[2] M. K. Hasan, M. Mahmud, A. A. Habib, S. Motakabber, S. Islam, Review of electric vehicle energy storage and290

management system: Standards, issues, and challenges, Journal of Energy Storage 41 (2021) 102940.

[3] R. Xiong, J. Cao, Q. Yu, H. He, F. Sun, Critical review on the battery state of charge estimation methods for

electric vehicles, Ieee Access 6 (2017) 1832–1843.

[4] J. Meng, M. Ricco, G. Luo, M. Swierczynski, D.-I. Stroe, A.-I. Stroe, R. Teodorescu, An overview and compari-

son of online implementable soc estimation methods for lithium-ion battery, IEEE Transactions on Industry295

Applications 54 (2) (2017) 1583–1591.

[5] W. Zhou, Y. Zheng, Z. Pan, Q. Lu, Review on the battery model and soc estimation method, Processes 9 (9)

(2021) 1685.

[6] G. L. Plett, Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part

2. modeling and identification, Journal of power sources 134 (2) (2004) 262–276.300

[7] G. L. Plett, Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part

3. state and parameter estimation, Journal of Power sources 134 (2) (2004) 277–292.

[8] S. Wang, C. Fernandez, C. Yu, Y. Fan, W. Cao, D.-I. Stroe, A novel charged state prediction method of the

lithium ion battery packs based on the composite equivalent modeling and improved splice kalman filtering

algorithm, Journal of power sources 471 (2020) 228450.305

[9] M. A. Awadallah, B. Venkatesh, Accuracy improvement of soc estimation in lithium-ion batteries, Journal of

Energy Storage 6 (2016) 95–104.

[10] K. V. Singh, H. O. Bansal, D. Singh, Hardware-in-the-loop implementation of anfis based adaptive soc estima-

tion of lithium-ion battery for hybrid vehicle applications, Journal of Energy Storage 27 (2020) 101124.

22



[11] C. Yang, X. Wang, Q. Fang, H. Dai, Y. Cao, X. Wei, An online soc and capacity estimation method for aged310

lithium-ion battery pack considering cell inconsistency, Journal of Energy Storage 29 (2020) 101250.

[12] L. Ma, C. Hu, F. Cheng, State of charge and state of energy estimation for lithium-ion batteries based on a long

short-term memory neural network, Journal of Energy Storage 37 (2021) 102440.

[13] H. Yang, X. Sun, Y. An, X. Zhang, T. Wei, Y. Ma, Online parameters identification and state of charge estima-

tion for lithium-ion capacitor based on improved cubature kalman filter, Journal of Energy Storage 24 (2019)315

100810.

[14] H. F. Khan, A. Hanif, M. U. Ali, A. Zafar, A lagrange multiplier and sigma point kalman filter based fused

methodology for online state of charge estimation of lithium-ion batteries, Journal of Energy Storage 41 (2021)

102843.

[15] L. Li, Y. Ren, K. O’Regan, U. R. Koleti, E. Kendrick, W. D. Widanage, J. Marco, Lithium-ion battery cathode and320

anode potential observer based on reduced-order electrochemical single particle model, Journal of Energy

Storage 44 (2021) 103324.

[16] L. Ren, G. Zhu, J. Kang, J. V. Wang, B. Luo, C. Chen, K. Xiang, An algorithm for state of charge estimation based

on a single-particle model, Journal of Energy Storage 39 (2021) 102644.

[17] H. Arunachalam, S. Onori, What if the doyle-fuller-newman model fails? a new macroscale modeling frame-325

work, in: 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 5702–5707.

[18] H. Arunachalam, S. Onori, Full homogenized macroscale model and pseudo-2-dimensional model for

lithium-ion battery dynamics: Comparative analysis, experimental verification and sensitivity analysis, Jour-

nal of The Electrochemical Society 166 (8) (2019) A1380–A1392.

[19] H. Arunachalam, S. Korneev, I. Battiato, S. Onori, Multiscale modeling approach to determine effective330

lithium-ion transport properties, in: 2017 American Control Conference (ACC), IEEE, 2017, pp. 92–97.

[20] H. Arunachalam, A new multiscale modeling framework for lithium-ion battery dynamics: Theory, experi-

ments, and comparative study with the doyle-fuller-newman model, Ph.D. thesis, Clemson University (2017).

23



[21] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, A. Kojic, Algorithms for advanced battery-management

systems, IEEE Control systems magazine 30 (3) (2010) 49–68.335

[22] H. Arunachalam, S. Onori, Full homogenized macroscale model and pseudo-2-dimensional model for

lithium-ion battery dynamics: Comparative analysis, experimental verification and sensitivity analysis, Jour-

nal of The Electrochemical Society 166 (8) (2019) A1380–A1392.

[23] V. R. Subramanian, V. D. Diwakar, D. Tapriyal, Efficient macro-micro scale coupled modeling of batteries,

Journal of The Electrochemical Society 152 (10) (2005) A2002–A2008.340

[24] X. Han, M. Ouyang, L. Lu, J. Li, Simplification of physics-based electrochemical model for lithium ion bat-

tery on electric vehicle. part ii: Pseudo-two-dimensional model simplification and state of charge estimation,

Journal of Power Sources 278 (2015) 814–825.

[25] Z. Deng, L. Yang, H. Deng, Y. Cai, D. Li, Polynomial approximation pseudo-two-dimensional battery model

for online application in embedded battery management system, Energy 142 (2018) 838–850.345

[26] F. A. Ortiz-Ricardez, A. Romero-Becerril, L. Alvarez-Icaza, Hard limitations of polynomial approximations for

reduced-order models of lithium-ion cells, Journal of Applied Electrochemistry 50 (3) (2020) 343–354.

[27] Z. Deng, L. Yang, H. Deng, Y. Cai, D. Li, Polynomial approximation pseudo-two-dimensional battery model

for online application in embedded battery management system, Energy 142 (2018) 838–850.

[28] T. R. Tanim, C. D. Rahn, C.-Y. Wang, State of charge estimation of a lithium ion cell based on a temperature350

dependent and electrolyte enhanced single particle model, Energy 80 (2015) 731–739.

[29] S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei, M. Krstic, Battery state estimation for a single particle

model with electrolyte dynamics, IEEE Transactions on Control Systems Technology 25 (2) (2016) 453–468.

[30] L. O. Valøen, J. N. Reimers, Transport properties of lipf6-based li-ion battery electrolytes, Journal of The Elec-

trochemical Society 152 (5) (2005) A882–A891.355

24



Appendix A. Parameter Values

Temperature dependence plot of diffusion parameters and reaction rate parameter are obtained from [22].

Table A.9: Li-ion cell parameter values taken from[17],[18]

Name Symbol value

Capacity Q 1.9Ah

Universal gas constant R 8.314J .K −1.mol−1

Current collector resistance Rc 0.027Ω

Electrolyte concentration Ce,a 103mol .m−3

P2D Electrolyte conductivity Ke 0.048Ωm−1

P2D Electrolyte diffusion constant De 0.99×10−11m2.s−1

FHM Electrolyte conductivity Ke 0.06Ωm−1

FHM Electrolyte diffusion constant De 1.18×10−11m2.s−1

Table A.10: Li-ion electrode parameter values taken from [17],[18]

Name Symbol Anode Cathode Unit

Thickness L 53.2 39.9 µm

Particle Radius Rs 1.2 1.2 µm

Volume Fraction η 0.626 0.574 -

Conductivity Ke 113 113 Amol−1

Max Concentration C j ,m 27088 48700 mol .m−3

Stoichiometry θ 0.7916 0.3494

Specific Inter-facial surface Area as 15×105 15×105
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